Computing most general unifiers in Euclidean modal logics - Logique, Interaction, Langue et Calcul
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

Computing most general unifiers in Euclidean modal logics

Résumé

We prove that all extensions of K5 have unary unification. Our result applies to the parametric and relative variants of unification. In addition, our proof is constructive in the sense that we can effectively compute, in 4-exponential space, a most general unifier for any unifiable formula. We also investigate special unification types: we show that K5 and KD5 are transparent, and characterize the projective extensions of K5.
Fichier principal
Vignette du fichier
main.pdf (519.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04244893 , version 1 (16-10-2023)
hal-04244893 , version 2 (21-05-2024)

Identifiants

  • HAL Id : hal-04244893 , version 1

Citer

Quentin Gougeon. Computing most general unifiers in Euclidean modal logics. 2023. ⟨hal-04244893v1⟩

Collections

IRIT-UT3
744 Consultations
104 Téléchargements

Partager

More