A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus - Logique, Interaction, Langue et Calcul Access content directly
Conference Papers Year : 2024

A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus

Abstract

We introduce FIK, a natural intuitionistic modal logic specified by Kripke models satisfying the condition of forward confluence. We give a complete Hilbert-style axiomatization of this logic and propose a bi-nested calculus for it. The calculus provides a decision procedure as well as a countermodel extraction: from any failed derivation of a given formula, we obtain by the calculus a finite countermodel of it directly.
Fichier principal
Vignette du fichier
CSL_24_final_versionPROVVISORIA.pdf (822.61 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
licence

Dates and versions

hal-04457356 , version 1 (14-02-2024)

Licence

Identifiers

Cite

Philippe Balbiani, Han Gao, Cigdem Gencer, Nicola Olivetti. A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus. 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), Feb 2024, Naples, Italy. pp.1--21, ⟨10.4230/LIPIcs.CSL.2024.13⟩. ⟨hal-04457356⟩
207 View
44 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More