Short and long-term evolutionary dynamics of subtelomeric piRNA clusters in Drosophila
Résumé
Two Telomeric Associated Sequences, TAS-R and TAS-L, form the principal subtelomeric repeat families identified in Drosophila melanogaster. They are PIWI-interacting RNA (piRNA) clusters involved in repression of Transposable Elements. In this study, we revisited TAS structural and functional dynamics in D. melanogaster and in related species. In silico analysis revealed that TAS-R family members are composed of previously uncharacterized domains. This analysis also showed that TAS-L repeats are composed of arrays of a region we have named "TAS-L like" (TLL) identified specifically in one TAS-R family member, X-TAS. TLL were also present in other species of the melanogaster subgroup. Therefore, it is possible that TLL represents an ancestral subtelomeric piRNA core-cluster. Furthermore, all D. melanogaster genomes tested possessed at least one TAS-R locus, whereas TAS-L can be absent. A screen of 110 D. melanogaster lines showed that X-TAS is always present in flies living in the wild, but often absent in long-term laboratory stocks and that natural populations frequently lost their X-TAS within 2 years upon lab conditioning. Therefore, the unexpected structural and temporal dynamics of subtelomeric piRNA clusters demonstrated here suggests that genome organization is subjected to distinct selective pressures in the wild and upon domestication in the laboratory.
Domaines
Biologie du développementOrigine | Publication financée par une institution |
---|
Loading...