Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées - Thèses de l'Université d'Orléans
Thèse Année : 2024

Probability-graphons, limits of weighted random graphs and hidden branching Markov chains

Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées

Julien Weibel

Résumé

Graphs are mathematical objects used to model all kinds of networks, such as electrical networks, communication networks, and social networks. Formally, a graph consists of a set of vertices and a set of edges connecting pairs of vertices. The vertices represent, for example, individuals, while the edges represent the interactions between these individuals. In the case of a weighted graph, each edge has a weight or a decoration that can model a distance, an interaction intensity, or a resistance. Modeling real-world networks often involves large graphs with a large number of vertices and edges.The first part of this thesis is dedicated to introducing and studying the properties of the limit objects of large weighted graphs : probability-graphons. These objects are a generalization of graphons introduced and studied by Lovász and his co-authors in the case of unweighted graphs. Starting from a distance that induces the weak topology on measures, we define a cut distance on probability-graphons. We exhibit a tightness criterion for probability-graphons related to relative compactness in the cut distance. Finally, we prove that this topology coincides with the topology induced by the convergence in distribution of the sampled subgraphs. In the second part of this thesis, we focus on hidden Markov models indexed by trees. We show the strong consistency and asymptotic normality of the maximum likelihood estimator for these models under standard assumptions. We prove an ergodic theorem for branching Markov chains indexed by trees with general shapes. Finally, we show that for a stationary and reversible chain, the line graph is the tree shape that induces the minimal variance for the empirical mean estimator among trees with a given number of vertices.
Les graphes sont des objets mathématiques qui servent à modéliser tout type de réseaux, comme les réseaux électriques, les réseaux de communications et les réseaux sociaux. Formellement un graphe est composé d'un ensemble de sommets et d'un ensemble d'arêtes reliant des paires de sommets. Les sommets représentent par exemple des individus, tandis que les arêtes représentent les interactions entre ces individus. Dans le cas d'un graphe pondéré, chaque arête possède un poids ou une décoration pouvant modéliser une distance, une intensité d'interaction, une résistance. La modélisation de réseaux réels fait souvent intervenir de grands graphes qui ont un grand nombre de sommets et d'arêtes.La première partie de cette thèse est consacrée à l'introduction et à l'étude des propriétés des objets limites des grands graphes pondérés : les graphons de probabilités. Ces objets sont une généralisation des graphons introduits et étudiés par Lovász et ses co-auteurs dans le cas des graphes sans poids sur les arêtes. À partir d'une distance induisant la topologie faible sur les mesures, nous définissons une distance de coupe sur les graphons de probabilités. Nous exhibons un critère de tension pour les graphons de probabilités lié à la compacité relative dans la distance de coupe. Enfin, nous prouvons que cette topologie coïncide avec la topologie induite par la convergence en distribution des sous-graphes échantillonnés. Dans la deuxième partie de cette thèse, nous nous intéressons aux modèles markoviens cachés indexés par des arbres. Nous montrons la consistance forte et la normalité asymptotique de l'estimateur de maximum de vraisemblance pour ces modèles sous des hypothèses standards. Nous montrons un théorème ergodique pour des chaînes de Markov branchantes indexés par des arbres avec des formes générales. Enfin, nous montrons que pour une chaîne stationnaire et réversible, le graphe ligne est la forme d'arbre induisant une variance minimale pour l'estimateur de moyenne empirique parmi les arbres avec un nombre donné de sommets.
Fichier principal
Vignette du fichier
2024ORLE1031_va.pdf (3.74 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04831156 , version 1 (11-12-2024)

Identifiants

  • HAL Id : tel-04831156 , version 1

Citer

Julien Weibel. Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées. Probabilités [math.PR]. Université d'Orléans, 2024. Français. ⟨NNT : 2024ORLE1031⟩. ⟨tel-04831156⟩
0 Consultations
0 Téléchargements

Partager

More