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1.1 Introduction

Quelle stratégie adopter pour trouver un objet caché? Si vous avez déja perdu
vos clés, vous vous étes posé cette question.

Au-dela de cet exemple de la vie de tous les jours, les situations dans lesquelles
un chercheur — que ce chercheur soit une personne, un animal ou n’importe quel
organisme ou particule — doit trouver au plus vite une cible se rencontrent dans de
nombreux contextes, de la recherche de naufragés en mer aux réactions chimiques
dont le premier pas est la rencontre des réactifs.

Dans cette thése, nous étudions quantitativement 1’efficacité d’'une nouvelle classe
de stratégies de recherche, dénommées “recherches intermittentes”, et introduites au
LPTMC en 2004 juste avant mon arrivée en thése. L’idée centrale de cette classe de
stratégies peut facilement se comprendre en reprenant la situation de la vie quoti-
dienne. Imaginez que vous avez perdu une clé sur une plage. Quand vous cherchez
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Fi1G. 1: Recherche intermittente : le chercheur alterne des phases d’inspection minutieuse
pour détecter la clé, et des phases de déplacement rapide pendant lesquelles il va trop vite
pour pouvoir détecter la cible.

sans aucun indice la clé perdue dans le sable (voir Fig.1), vous pouvez vous accroupir,
et inspecter soigneusement le sable. De cette maniére, si la clé est prés de vous, vous
la retrouverez. Mais dans cette position, il est difficile de se déplacer. Vous pouvez
donc décider de vous lever, et de courir vers un autre point de la plage. Pendant la
phase de course, vous allez trop vite pour voir ou sentir la clé. Donc d’une part, vous
utilisez du temps qui aurait pu étre passé dans la phase de détection. Mais d’autre
part, vous déplacer vite peut vous permettre de mieux explorer la plage. Le bilan
net d’une telle stratégie intermittente n’est donc pas clair.

Deux types de questions peuvent alors étre posées :

— Ces stratégies de recherche sont-elles finalement efficaces, et si oui, comment
répartir au mieux le temps de recherche entre les phases de recherche minu-
tieuse et les phases de déplacement ?

— Ces stratégies de recherche sont-elles pertinentes vis-a-vis de la description de
situations réelles 7

Ces stratégies sont en fait observées a des échelles variées. Les premiers modéles
de recherche intermittente introduits par I’équipe qui m’a accueillie au LPTMC
concernent d’une part la recherche de nourriture par certains animaux |[Bénichou
et al., 2005a| (échelle macroscopique) et d’autre part la recherche par une protéine
de sa séquence cible sur ’ADN [Coppey et al., 2004] (échelle microscopique). Ces
deux approches mettent en jeu des déplacements a une dimension dans la phase de
recherche, ce qui correspond aux situations modélisées.

Au cours de cette thése, j’ai d’une part étendu ces modéles au cas plus général de
déplacements a 2 ou 3 dimensions, pertinents dans un grand nombre de situations.
D’autre part, j’ai démontré la robustesse de ces stratégies de recherche, suggérant
ainsi qu’elles peuvent constituer un mode de recherche efficace générique. Les parties
1.2 et 1.3 présentent des travaux de modélisation en lien avec des études expérimen-
tales, alors que la partie 1.4, plus technique, présente des résultats sur les temps de
premier passage de marches aléatoires intermittentes.

Plus précisément, dans le cadre de la modélisation de trajectoires animales, j’ai
développé un modéle de stratégies de recherche intermittentes bidimensionnel qui
apparait comme une alternative a un modele tres célébre, dit des “stratégies de Lévy”,
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trés souvent utilisé jusqu’alors dans ce contexte. Ces situations macroscopiques font
I'objet de la premiére partie de mon manuscrit.

Je me suis également intéressée a plusieurs situations & 1’échelle microscopique
(deuxiéme partie du manuscrit). La premiére concerne le probléme de la recherche
par une enzyme d’une séquence spécifique sur ’ADN. Cette recherche, qui met en
jeu des phases de diffusion 1D le long de la molécule d’ADN et des excursions 3D
en volume, peut en fait étre considérée comme intermittente au sens général défini
précédemment. J’ai été amenée au cours de cette thése a étendre les premiers modéles
de recherche intermittente en calculant la distribution de la taille des sauts le long
de 'ADN & la suite d’une excursion 3D. J’ai montré comment ce calcul théorique
a pu étre adapté aux spécificités d’une expérience & I’échelle de la molécule unique,
développée dans I’équipe de Pierre Desbiolles (LKB-ENS), pour rendre compte des
trajectoires observées. La deuxiéme situation concerne le transport de vésicules en
milieu cellulaire. Le transport en milieu cellulaire est en effet souvent une combinai-
son de phases de diffusion “passive” et de phases de transport balistique “actif” le long
des filaments du cytosquelette assuré par des moteurs moléculaires. J’ai proposé un
modele analytique de réactions limitées par le transport dans de tels milieux actifs
et montré quantitativement comment le transport actif peut accélérer les réactions
en milieu cellulaire.

Les stratégies de recherche intermittentes étant observées a des échelles variées,
j’ai alors émis I’hypothése qu’elles pourraient constituer un mécanisme de recherche
générique. La troisiéme partie de cette thése, plus technique, est ainsi consacrée a
I’étude de la robustesse des marches aléatoires intermittentes, dans le cadre d’un
modele théorique assez général. La derniére partie de ce manuscrit rassemble des
extensions et des perspectives relatives aux modéles étudiés précédemment, dont
certaines sont en cours de réalisation.

1.2 Stratégies de recherche intermittentes a I’échelle macro-
scopique

1.2.1 Introduction

La recherche de nourriture par des animaux est un exemple intéressant de re-
cherche a ’échelle macroscopique, qui a fait I’'objet de nombreuses études en écologie
comportementale, mais aussi plus récemment en physique. Un tres grand nombre de
trajectoires animales ont été décrites a ’aide du modele dit des “marches de Lévy”.
Dans ce modéle proposé par Viswanathan et al. [1999], le chercheur peut trouver sa
cible tout le long de sa trajectoire, si elle est & une distance inférieure au rayon de
détection a. Ce chercheur avance a vitesse constante sur une distance [ distribuée
selon une loi de Lévy p(l) oc [7#, puis se réoriente aléatoirement. Les auteurs s’in-
téressent a deux types de cibles trés différentes. Dans le cas de cibles “revisitables”
(i.e. régénérées au méme endroit aprés avoir été découvertes), ce type de stratégies
est optimal pour p =~ 2. Pour le cas trés souvent plus pertinent de cibles qui ne
peuvent pas étre revisitées, c’est-a-dire qui sont détruites quand elles sont trouvées,
I'optimum théorique est obtenu pour p — 1. Cet optimum correspond en fait a la
stratégie trés intuitive de la ligne droite, sans changement de direction, qui est la
meilleure fagon d’explorer ’espace.
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Comme indiqué précédemment, ce modéle des marches de Lévy suppose que
le chercheur est capable de se déplacer et de trouver les cibles en méme temps.
Une question naturelle est celle de savoir comment décrire les trajectoires animales
quand ces deux activités sont incompatibles. Il est en effet couramment admis que,
trés souvent, la vitesse diminue les capacités de détection [Kramer and McLaughlin,
2001]. Cette question est d’autant plus importante que de nombreuses observations,
concernant des lézards, des poissons ou encore des oiseaux [O’Brien et al., 1990,
Kramer and McLaughlin, 2001] font effectivement état de I'existence de deux phases
de déplacement : une phase de déplacement rapide et une phase plus lente d’inspec-
tion de ’environnement. Un premier modéle unidimensionnel de ces comportements
de recherche animaux a été proposé en 2005 [Bénichou et al., 2005a,c| et a montré
lefficacité de ces stratégies de recherche intermittentes.

Nous rappelons d’abord les résultats principaux de ce modéle, avant de présenter
deux extensions réalisées au cours de cette thése : (i) I'influence de la répartition des
cibles sur l'efficacité de la recherche; (ii) le développement d’un modéle “minimal”
bidimensionnel de recherche intermittente, qui montre 'efficacité et méme 'optima-
lité de telles stratégies. Ce dernier modeéle apparait ainsi comme une alternative au
modeéle des marches de Lévy.

1.2.2 Modéle

déplacement = = °
état 2

Fi1G. 2: Modéle simple d’intermittence pour les animaux a la recherche de nourriture.

La caractéristique centrale de ce modéle est I'alternance de deux phases (voir

Fig.2) :

— Une phase d’inspection, notée 1, pendant laquelle les organes sensoriels de
I’animal inspectent son environnement immédiat. Cette phase est modélisée
par une diffusion de coefficient D. La cible est trouvée dés que le chercheur
latteint. Comme le processus de détection requiert un temps minimum, la
durée moyenne de cette phase est supposée bornée inférieurement par 7i"".

— Une phase de déplacement, notée 2, pendant laquelle le chercheur avance a
la vitesse V toujours dans la méme direction, et pendant laquelle la cible ne
peut pas étre détectée. Cette hypothése est justifiée par le fait que, dans le
cas de certains animaux, des corrélations significatives sont observées entre
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les directions des phases balistiques successives [O'Brien et al., 1990]. Elle
correspond donc au cas limite de corrélation parfaite, qui rend le probléme
équivalent & un probléme & une dimension, avec toujours la méme direction du
déplacement balistique.
La probabilité de passer d'un état a l'autre est de plus supposée constante, ce qui
conduit a des distributions exponentielles des durées des phases d’inspection et de
déplacement, en accord avec de nombreuses observations expérimentales (par exem-
ple : Fujiwara et al. [2002], Pierce-Shimonura et al. [1999], Hill et al. [2000], Li et al.
[2008]). Par la suite, la durée moyenne d’une phase i est notée 7;. Les proies sont
supposées immobiles, espacées d'une distance L.

Sous ces hypothéses, le temps moyen exact de détection de la cible est calculé
analytiquement (voir partie 3.2). Un point important est que ce temps moyen est
proportionnel & L, alors qu’avec la phase d’inspection seule, il est proportionnel & L? :
cela montre que pour une distance entre cibles suffisamment grande, I'intermittence
diminue le temps moyen de détection de maniére significative.

Le minimum du temps moyen de détection est obtenu pour 77 aussi petit que
possible (11 = 7""), et a 7 fixé, pour une durée moyenne optimale de la phase de
déplacement 75 = 75" Dans le régime ott 77 3> 7 ot 7 = D/V? est une échelle de
temps qui dépend seulement des caractéristiques du chercheur, le temps optimal a

T’7'2 1/3 .
passer dans la phase balistique est 757" = <3Tl> . Dans le régime opposé 11 < 7,
2.3 1/5
Pt = %) . Cette stratégie optimale rend raisonnablement bien compte des

observations de O’Brien et al. [1990], Kramer and McLaughlin [2001] portant sur les
animaux au comportement de recherche intermittent.

1.2.3 Influence de la distribution de cibles sur le temps de recherche

——=e —8 & *—s ® *—8 » *—8 o —

Reépartition réguliére

«—o———8 000 00— 0§ 8 ®

Répartition poissonnienne

—a. -8 -

Répartition groupée

Fi1G. 3: Exemples de répartitions de cibles.

Les répartitions de cibles réelles sont principalement décrites comme réguliére-
ment espacées, groupées ou aléatoires [Bell, 1991] (voir Fig.3). Dans le modéle
présenté précédemment, les cibles sont régulierement espacées. C’est une réparti-
tion représentative du cas ou les cibles tendent a s’éloigner au maximum les unes
des autres. Il s’agit aussi d'une approximation de champ moyen d’autres types de
répartitions. Le deuxiéme type de répartition est celui ou les cibles sont groupées.
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Dans ce cas, quand une cible est trouvée, il est probable qu’il y en ait d’autres dans le
voisinage. La recherche se décompose donc en deux phases, 'une étant la recherche
d’un groupe de cibles, et I'autre I'exploitation du groupe de cibles. La premiére étape
est dans ce cas équivalente a la recherche d’une cible, en prenant pour L la distance
entre groupes, et est donc couverte par le modeéle précédent. Nous considérons ici
le troisiéme cas représentatif, celui d’une répartition poissonnienne de cibles. Les
résultats correspondant ont été publiés dans [Moreau et al., 2007b, 2009].

104€
103é
102é
101é

1002

10714

10‘2—: /g/
1 A

10‘3-%®/

107 1072 10° 10? 10* 108
7l

FIG. 4: In(m5"") en fonction de In(r). Prédiction analytique pour 71 < 7 (4) (pointillés
noirs). Prédiction analytique pour 71 > 7 (1) (ligne noire). Simulations (points), pour
L=10 (1)), L=10% (+), L=10% (0). D=1,V =1.

Nous reprenons le méme modéle que précédemment, mais avec une répartition
poissonnienne de cibles, L désignant désormais la distance moyenne entre cibles.
L’expression approchée du temps moyen de détection de la cible (donnée dans la
partie 3.3) permet de conclure que comme précédemment, I'intermittence est favo-
rable pour L assez grand. La stratégie optimale consiste encore a prendre 71 = 77",
mais la relation entre 75" " et 71 peut prendre deux formes :

— Dans le régime 71 > 7 :

5P T /T1\3/4
EONHE 0

T 4\t

A l'optimum, le temps moyen de détection de la cible vaut :

1y %f @

Le gain G de I'intermittence par rapport a la phase d’inspection seule (le temps
moyen de détection de la cible sans intermittence divisé par le temps moyen
de détection de la cible avec l'intermittence, en prenant 7, et 75 optimaux) est

10
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105_

104_

103 4

102_

101_
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F1G. 5: In(G) en fonction de In(m) (72 pris optimal). Prédiction analytique pour 71 < 7
(6) (pointillés). Prédiction analytique pour 71 > 7 (3) (ligne). simulations (points). L = 10
(O, vert), L = 10® (4, rouge), L = 10° (o, bleu). D =1,V = 1.

alors :

L
\/D7'1.

iptwl 1 (4)
T 2\ 7

A DPoptimum, le temps moyen de détection de la cible est :

GN

— Dans le régime 7y < 7 :

3L

<t>opt ~ W? (5)

le gain GG de l'intermittence par rapport a la phase d’inspection seule est :

G2 (6)
3D
Les simulations montrent que ’approximation utilisée dans les calculs analytiques
est satisfaisante. Si la valeur de 757 obtenue a petit 7, (équation (4)) n’est pas tout
a fait celle des simulations, la valeur de 75"* obtenue & grand 7, (équation (1)) est en
revanche en bon accord avec les simulations (voir Fig.4). Par ailleurs, le gain estimé
est lui aussi en bon accord avec les simulations (voir Fig.5).

Ainsi, comme dans le cas de la répartition réguliére de cibles, I'intermittence est
favorable quand L est grand, avec & optimum 7, = 77", La dépendance de 75"
avec 7 est un peu différente (loi de puissance, d’exposant 3/4 pour la répartition
poissonnienne au lieu de 2/3 pour la répartition réguliére).

11
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1.2.4 Modéle de recherche intermittente a 2 dimensions : une alternative
aux stratégies de Lévy

Motivation
Jusqu’ici, la recherche intermittente a été étudiée dans le cas unidimensionnel

ou la direction des phases balistiques est toujours la méme. Comme la plupart des
chercheurs “terrestres” se déplacent a 2 dimensions, nous présentons un modéle de
recherche intermittente en deux dimensions, qui recouvre un champ d’applications
beaucoup plus large. Sur la base de ce modéle aux ingrédients minimaux, nous
montrons que les stratégies de recherche intermittentes & 2 dimensions permettent
bel et bien de minimiser le temps de recherche dans le cas de cibles non revisitables,
contrairement aux stratégies de Lévy, qui dans ce cas conduisent a 'optimum trivial
donné par la trajectoire balistique (voir partie précédente). De ce point de vue, ce
modeéle fournit une alternative aux stratégies de Lévy. Nos résultats ont été publiés
dans Bénichou et al. [2006], complétés par Bénichou et al. [2007], et ont fait 'objet
d’un “News and views” de la revue Nature par Shlesinger [2006].

Modéle
~V phase 2
.- phase 2 N ,-
o a \
\w ‘K
Mode statique. Pendant la phase d o
, oce standue. T encant i bhase €e Mode diffusif. Pendant la phase de
détection, le chercheur est immobile et 3 )
L . . . R détection, le chercheur a un mouvement
réagit avec la cible si celle-ci est & une o . . L
. e . diffusif (coefficient D), et réagit
distance inférieure & a avec une . 1 . . R
s s i, immédiatement avec la cible si elle est &
probabilité k par unité de temps. . e R
une distance inférieure a a.

F1G. 6: Modéle de recherche intermittente : le chercheur alterne des phases de détection
(phases 1) de durée moyenne 71 (distribution exponentielle), et des phases “aveugles” ba-
listiques (vitesse V, direction aléatoire) (phases 2) de durée moyenne 75 (distribution ex-

ponentielle).

Le chercheur intermittent considéré dans ce modéle alterne comme précédem-
ment des phases de détection (phases 1) de durée moyenne 71, distribuées exponen-
tiellement, et des phases “aveugles” balistiques de vitesse V' et de direction aléatoire
(phases 2), de durée moyenne 7o distribuée exponentiellement. (voir Fig.6). Deux
modélisations alternatives simples du mode de détection sont envisagées : (i) un
premier mode “statique”, pour lequel, pendant la phase de détection, le chercheur

12
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est immobile et réagit avec la cible si elle est a une distance inférieure & a avec une
probabilité k par unité de temps; (ii) un deuxiéme mode “diffusif”, pour lequel, pen-
dant la phase de détection, le chercheur a un mouvement diffusif (coefficient D), et
réagit immédiatement avec la cible si elle est a une distance inférieure a a. Chacun
des deux modes (statique et diffusif) est pertinent par lui méme, et permet de rendre
compte de différentes situations réelles.

Méthodes

Le calcul se fait dans la géométrie suivante : un disque de rayon b et de bords
réfléchissants, avec la cible au centre. Cette géométrie représente a la fois le cas
d’une cible unique dans un domaine fini et celui d’un réseau régulier de cibles dans
un espace infini.

Nous notons ¢; le temps moyen qu’un chercheur met a trouver la cible quand il
part de la position r dans I’état i (et avec la vitesse V pour I’état 2). Nous montrons

que ces temps moyens vérifient des équations de type Fokker-Planck vers le passé
[Redner, 2001] :

1 27
DVity +5— /0 (ts — t1)dOy — KL(r)t, = —1, (7)
1
V- Vity — —(ty — ) = —1, (8)
T2

ou I, (r) vaut 1 sur la cible (r < a), et 0 ailleurs. Ces intégrations intégro-différentielles
ne semblent pas pouvoir étre résolues analytiquement suivant des techniques stan-
dards. Nous avons donc eu recourt a une approximation, consistant essentiellement
a supposer que la direction initiale de la vitesse n’a que peu d’influence sur le temps
de recherche dans la limite de faible densité de cibles b > a. Cette approximation
est validée par des simulations numériques.

Optimisation du temps de recherche

Le résultat principal de cette étude est que, dans la limite de faible densité, le
temps de recherche admet un minimum global comme fonction des temps moyens
71 et Ty passés dans chacune des deux phases. La stratégie optimale est déterminée
analytiquement, et prend la forme suivante : pour le mode diffusif (avec D/V <«
a<b):

opt D 1n2(b/a’) opt a 1/2
o e T T n(/a) ~ 1/2), )

alors que pour le mode statique (a < b) :

2 (2In(b/a) — 1\ "*
7 = (77) (%) = < (Inb/a) = 1/2)*. (10)
Un point important est que la durée moyenne optimale de la phase rapide 2 est
identique pour ces deux modes de détection. Ce résultat suggére que l'optimisation
est assez largement indépendante du détail de la modélisation de la phase de détec-
tion. Nous verrons par la suite qu’il s’agit en fait d’une propriété assez générale des
processus intermittents. Ces points sont développés de maniére systématique dans
la partie 1.4.
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Conclusion

Ce modeéle bidimensionnel a un statut de modéle minimal, puisqu’il ne met en
jeu que les ingrédients essentiels caractérisant 'intermittence. En utilisant une ap-
proximation vérifiée numériquement, nous avons montré que ce modéle donne lieu a
une minimisation du temps de recherche comme fonction des temps moyens passés
dans chacune des phases. Les stratégies de recherche intermittentes sont donc de
véritables stratégies optimales, contrairement aux stratégies de Lévy, qui elles ne
sont optimales que dans le cas trés spécifique de cibles revisitables précédemment
discuté. En cela, ce modeéle apparait comme une alternative a ces stratégies de Lévy.

1.2.5 Conclusion : les animaux ont-ils vraiment intérét a suivre les straté-
gies de Lévy ?

L’optimisation des stratégies de recherche dans le contexte de ’écologie com-
portementale est une question qui a suscité des polémiques récentes. Comme nous
I’avons rappelé, nous avons remis en cause en 2006 d'un point de vue théorique le
statut des marches de Lévy comme stratégies optimales de recherche, la meilleure
stratégie obtenue dans ce cadre étant trivialement la ligne droite. Ce modéle des
marches de Lévy a depuis été remis en cause d’un point de vue expérimental. En
effet, une étude récente |[Edwards et al., 2007| a montré que 'essentiel des données
qui avaient conduit a l'identification des marches de Lévy dans les trajectoires ani-
males avaient été en fait mal interprétées, et conduisaient plus vraisemblablement
a des lois de type exponentiel ou loi gamma. Notre étude montre finalement que
contrairement & une idée communément admise, il n’y a aucun paradoxe [Travis,
2007] & ce que les animaux ne suivent pas les stratégies de Lévy, puisqu’elles ne sont
pas optimales. En outre, elle met en avant les stratégies intermittentes, qui elles sont
réellement optimisables, comme modéle alternatif possible de trajectoires animales.

1.3 Stratégies de recherche intermittentes & 1’échelle micro-
scopique

Comme vu précédemment, les stratégies de recherche intermittentes sont ob-
servées a ’échelle macroscopique. Dans cette partie, nous allons voir sur deux exem-
ples que les stratégies de recherche intermittentes sont aussi observées a l’échelle
microscopique.

1.3.1 Recherche par une protéine d’une séquence spécifique sur PADN

Dans cette partie, nous définissons d’abord le concept de diffusion facilitée intro-
duit par Berg et al. [1981], et montrons que ce mécanisme a deux états peut en fait
s’'interpréter comme un processus de recherche intermittent, au sens général défini
en introduction : pour trouver plus vite leur cible, une séquence spécifique d’ADN,
certaines protéines alternent des phases liées a 'ADN et des phases de diffusion a
trois dimensions. Comme nous allons I'expliquer, connaitre la distribution de la taille
de ces excursions a trois dimensions est nécessaire pour quantifier la cinétique de ces
réactions. Nous la calculons d’abord dans un cas trés simple et adaptons ensuite ces
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résultats pour interpréter quantitativement une expérience en molécule unique. En-
fin, nous étendons ces résultats au cas d’un milieu encombré, comme 1’est le milieu
cellulaire.

Diffusion facilitée

F1G. 7: Vue d’artiste d’une enzyme qui combine des diffusions a 1 et 3 dimensions pour
trouver sa cible. Dessin de Virginie Denis/Pour la Science n°352, février 2007.

Si les virus qui menacent les humains bénéficient d’une grande couverture mé-
diatique, il existe également de nombreux virus attaquant les bactéries. Pour se
défendre, elles ne peuvent pas utiliser des cellules du systéme immunitaire comme
nous le faisons, mais elles ont cependant leur propre systéme de défense. Elles pro-
duisent des enzymes qui reconnaissent une séquence spécifique sur I’ADN, suffisam-
ment courte (4-8 paires de bases) pour étre présente sur n’importe quel ADN viral
(typiquement 5.10* paires de bases pour un bactériophage). Quand une telle enzyme
trouve sa séquence cible, elle coupe ’ADN, inactivant ainsi le virus. Sur ’ADN de
la bactérie cette séquence est protégée par une autre enzyme qui empéche ainsi la
bactérie de détruire son propre ADN. En revanche, quand un virus pénétre la bac-
térie, une course contre la montre commence : I'enzyme doit trouver sa cible avant
que le virus n’ait eu le temps de détourner la machinerie cellulaire a son profit.

D’une maniére plus générale, de nombreuses protéines agissant sur des séquences
spécifiques d’ADN sont connues pour trouver leur cible trés vite. Par exemple, Riggs
et al. [1970] ont montré que le répresseur lac agit sur sa cible & une vitesse plusieurs
ordres de grandeur au-dessus de ce qui est prévu pour les réactions limitées par la
diffusion classique. Dans une série de papiers fondateurs, Berg et al. [1981], Winter
and Von Hippel [1981], Winter et al. [1981] ont proposé qu’en plus de la diffusion
a 3 dimensions, les enzymes puissent se lier & PADN non-spécifique et diffuser a
une dimension le long de la séquence (voir Fig.7). Il s’agit en fait d’une stratégie de
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recherche intermittente dans le sens général défini dans l'introduction : la diffusion
a 3 dimensions est relativement rapide, mais ’enzyme ne peut pas réagir avec sa
cible, alors qu’a une dimension ’enzyme peut se lier a sa cible, mais la diffusion est
beaucoup plus lente. Des modéles trés simples (par exemple celui de Coppey et al.
[2004]) montrent qu’effectivement le temps moyen de détection de la cible peut étre
minimisé par une telle stratégie intermittente. Cependant, des modéles plus réalistes
sont nécessaires comme nous le détaillons dans la partie 4.1.1.

Un point particuliérement important concerne la description détaillée des excur-
sions & 3 dimensions. En effet, suivant la conformation de ’ADN, un point proche
dans 'espace & 3 dimensions peut étre en fait trés loin sur la séquence linéaire de
I’ADN. On appelle jumps (que nous traduisons par bonds) les excursions & 3 dimen-
sions qui reviennent sur ’ADN a un point de la séquence non corrélé avec le point
de départ. Les excursions a 3 dimensions corrélées sont appelées hops (que nous
traduisons par sauts) (voir Fig.8). Que dire de la statistique des sauts et des bonds,
et de leur importance relative dans le mécanisme de diffusion facilitée 7 Dans cette
partie, la distribution des excursions a 3 dimensions est calculée dans un cas simple.
Cette distribution est ensuite adaptée pour interpréter des expériences en molécule
unique réalisées par Pierre Desbiolles, Andreas Biebriecher, Isabelle Bonnet et Na-
tacha Porté de I’équipe optique et biologie du LKB ENS, Paris. Enfin, le cas d’un
milieu encombré est discuté. Ces travaux ont donné lieu a deux publications [Bonnet
et al., 2008, Loverdo et al., 2009¢].

Distribution de la longueur des sauts

Jumping
Bond
Hopping ( o
Saut

o

S
Longueur de

corrélation

F1G. 8: Distribution des sauts. Gauche : Sauts et bonds. Droite : Paramétres du modéle.

Le modéle adopté pour les excursions a trois dimensions, trés simple, consiste
a représenter I’enzyme par un point qui diffuse librement en volume, et ’ADN par
un cylindre infini de rayon a (la somme des rayons de PADN et de I'enzyme), le
tout dans un espace infini (voir Fig.8). La position de ’enzyme a l'instant ¢ est r,
z désignant la longueur selon I'axe du cylindre, et r la distance par rapport a ’axe
du cylindre. L’enzyme part de ro (z = 0 et 7 = ry). La surface du cylindre est
considérée comme semi-réfléchissante, ce qui se traduit par la condition au bord en
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r = a |[Redner, 2001] :

OP(r, z,t|re)

or
avec P(r,z,t|rg) la probabilité qu'une enzyme partant &t =0 de z = 0 et r = 1y
soit & r et z a t. La cas limite kK — 0 correspond & un cylindre réfléchissant, alors
que Kk — oo correspond & un cylindre absorbant. Cette modélisation permet aussi de
prendre le point de départ de ’enzyme a rq = a (dans le cas contraire d’un cylindre
parfaitement absorbant, I’enzyme se rattacherait aussitot).
P(r, z,t|rg) satisfait ’équation de diffusion suivante :

= kP(r,t|rog), (11)

O, P(r,t|rg) = DAP(r,t|rg). (12)

Au final (les calculs étant donnés dans la partie 4.1.2), la probabilité que I'enzyme
se lie au cylindre en z est :

_ 1 OOcos z Ko(kro)
P(zlro) = w/o ( >§K1(ka) —i—Ko(k:a)dk’ (13)

ou K;(u) est une fonction de Bessel modifiée de deuxiéme espéce. Le comportement
a grands z est donné par P(z|rg) ~ (In(ro/a) + (ka)™1)/(221n*(z/a)). Cette distri-
bution est ainsi trés large, et la distance moyenne de retour est infinie. La valeur
typique de la distance des retours peut néanmoins étre estimée a partir de la mé-
diane. Dans le cas ol ry = a, nous montrons que celle-ci est de I’ordre de k! quand
k™! < a, et de lordre de aexp(1/(ka)) quand k~! > a. Cela donne une autre
interprétation physique de k, initialement défini par I’équation (11).

Cette distribution donne en fait accés a différentes quantités relatives au pro-
bléme in vivo. D’une part, I’équation (13) donne la distribution analytique des sauts
pour |z| < & (£ étant la longueur de corrélation de ’ADN), échelle a laquelle représen-
ter TADN comme un cylindre droit est légitime. D’autre part, les retours a |z| > &
étant des bonds, la distribution cumulative complémentaire donne directement la
proportion de bonds :

In(rg/a) + 1/ka
In(¢/a)

Quand les cibles sont plus rapidement trouvées avec des bonds qu’avec des sauts,
diminuer la longueur de persistance accélére le processus de recherche, comme trouvé
par exemple par van den Broek et al. [2008]. Cependant, notre résultat montre que
la dépendance dans cette longueur de persistance est seulement logarithmique.

Clz=¢|) = /|>5 P(z|rq)dz ~ (14)

Interprétation d’expériences

Nous adaptons désormais le calcul précédent aux spécificités d’'une expérience
de molécule unique. L’expérience de I’équipe optique et biologie du LKB consiste a
observer l'interaction d’une enzyme de restriction, EcoRV, modifiée pour étre fluo-
rescente, avec des molécules d’ADN attachées par leurs extrémités & une surface
(voir partie 4.1.3). Cette expérience permet de suivre comment une enzyme interagit
avec une molécule d’ADN. On appelle “interactions effectives” les périodes durant
lesquelles 1'observation indique une colocalisation de I’enzyme avec ’ADN. Du fait
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de la résolution temporelle et spatiale finie de I’expérience, ces interactions effectives
peuvent en fait étre composées de véritables interactions avec ’ADN, et de petits
sauts que l'on ne peut pas distinguer. En pratique, une interaction effective s’arréte
quand I’enzyme disparait pendant un temps d’observation supérieur a t.,, = 40 ms,
ou bien si pendant ¢, ’enzyme s’est déplacée de plus de z,, = 200 nm.

Deux éléments principaux sont observés. D’une part, l'interaction effective a
une dimension, le long de PADN, peut étre considérée comme diffusive (DS ~
1072 um?.s™! : & titre de comparaison, Dsp ~ 50 pum?.s7!). D’autre part, il ar-
rive qu’en t,s = 40 ms, 'enzyme se déplace de plus de 200 nm, et ceci beaucoup
plus fréquemment que la diffusion & une dimension ne peut 'expliquer. Deux ques-
tions se posent. Ces grands déplacements sont-ils compatibles avec de la diffusion a
3 dimensions, c’est-a-dire avec des sauts? Si c’est le cas, des sauts plus petits que
200 nm doivent aussi exister, et ainsi influencer les propriétés de la diffusion effective
a une dimension : pouvons-nous en rendre compte ? Pour répondre a ces questions,
le modele précédent est adapté.

Tout d’abord, la distribution des sauts est donnée précédemment pour un temps
d’attente des retours infini, alors qu’ici seuls les retours avant t.,, doivent étre pris
en compte (voir partie 4.1.3), ce qui donne :

P (2) = /O Py ) FL (ta)dt, (15)

avec Py(z,t) = (4rDspt)~"/? exp(—2z%/4D;pt) le propagateur correspondant & la
diffusion le long de I'axe du cylindre. F'| (t|a) désigne la distribution du temps de
premier retour sur ’ADN dans le plan orthogonal & ’ADN, dont la transformée de
Laplace (inversée ensuite numériquement) est donnée par [Redner, 2001] :

N B Ko()
F\(s|la) = Ko(z) + (ka) LK, (z)

(16)

Ensuite, la géométrie de 'expérience doit aussi étre prise en compte. La molécule
d’ADN est finie, et attachée a une surface (qui peut étre considérée comme réfléchis-
sante, car les enzymes interagissent faiblement avec celle-ci). Comme la géométrie
réelle de I'expérience ne se préte pas a des développements analytiques, nous adop-
tons une géométrie effective, qui est celle d’un cylindre entre deux plans réfléchissants
(voir Fig.9). La méthode des images permet alors d’obtenir la distribution P*(z) dans
cette géomeétrie effective (voir partie 4.1.3 pour plus de détails) :

P*(z) = %ZYn (17)
Yo = /OO P(z)dz + (L —v)P(z) (18)
Yiso= (L —2)(P2nL +2)+ P(2nL — z)) — /2"L+Z P(z)dz. (19)

Cette distribution permet d’interpréter la statistique des grands sauts observés
expérimentalement. Les résultats expérimentaux montrent tout d’abord que cette
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F1G. 9: Comparaison entre les géométries expérimentale et modeéle. En haut : la géométrie
expérimentale : une molécule d’ADN étirée & 70% et attachée par ses extrémités sur une
surface réfléchissante. En bas : la géométrie utilisée dans le modéle : un cylindre entre deux

surfaces réfléchissantes.

C.(z)
Cizm)

F1G. 10: Probabilité de faire un saut plus grand que z en fonction de z (pm), normalisé par
le nombre de sauts plus grands que z,, = 200 nm. Data (dans la solution PIPES) : + =
10 mM NaCl, ¢ = 20 mM NaCl, [ ] = 40 mM NaCl, o = 60 mM NaCl. Lignes : distribution
théorique pour k=1 = 0,5 nm (vert), K1 = 20 nm (rouge).

distribution ne dépend que faiblement de la concentration en sel [NaCl], en accord
avec des études biochimiques qui ont montré que l'association de l’enzyme avec
I’ADN dépend trés peu de la concentration [NaCl|] [Lohman, 1986]. De plus, notre
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modéle rend bien compte de la dépendance en z de la distribution des sauts observés
(voir Fig.10 et partie 4.1.3).

0,028

0,026

0,024

0,022 4
Deff 0,020
0,018
0,016

0,014

0,012 44

Fic. 11: D$¥ (um2.s71) en fonction de 1/7 (s7!) (7 est la durée moyenne d’une interaction
effective). Données expérimentales (points noirs) avec les barres d’erreur (boites noires).
Le point & 10 mM de sel est en bas a gauche, le point & 60 mM de sel est en haut a
droite. Formule (20) pour k=1 = 0,5 nm (vert), x~! = 2 nm (rouge), x~! = 3,3 nm (bleu),
x~! =5 nm (marron).

Les interactions effectives observées combinent alors de la diffusion véritablement
a une dimension le long de ’ADN, et des sauts trop petits pour étre distingués. Ces
sauts vont influer sur le coefficient de diffusion D$. Comme vu précédemment, la
concentration en sel ne change pas les sauts. En revanche, plus il y a de sel, plus
'enzyme se détache vite de 'ADN, et plus I'effet des sauts va se faire sentir sur DS :
le temps d’interaction effectif diminue quand la concentration en sel augmente (voir
Fig.11). On obtient (voir partie 4.1.3) :

Db _ L (N -1 (B
DlD 2D1D7—

ou 7 est la durée moyenne d’une interaction effective, N — 1 le nombre moyen de
sauts dans une interaction effective (le saut N étant celui ou l'enzyme se “perd”),
D1 p le coefficient réel de diffusion & une dimension, et (I35) la distance quadratique
moyenne des sauts trop petits pour étre distingués. On peut rendre compte des
points expérimentaux avec cette équation pour k' < 5 nm (voir Fig.11), ce qui
donne une borne supérieure a ce parameétre.

Tous ces ¢éléments montrent que 1’enzyme combine bien une diffusion & une di-
mension et une diffusion libre a 3 dimensions.

, (20)

Effet de I’encombrement cellulaire

L’expérience ci-dessus est réalisée in vitro, dans un milieu dans lequel la diffusion
est effectivement normale. Le milieu cellulaire est cependant décrit comme trés en-
combré. Le transport observé est alors souvent sous-diffusif [Tolic-Norrelykke et al.,
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F1a. 12: Distribution de la taille des sauts P(z|rg) pour des excursions sur un amas de
percolation critique dans un réseau cubique & 3 dimensions, pour rp = 1 et a = 0. Des
simulations (normalisées pour z > 2) sont faites pour différentes tailles de systéme (points),
et se confondent avec la courbe théorique (ligne) obtenue par I’équation (21). Ici dl'u =d} =
3,88..., dj% =2et d'} = 1 puisque ds = 2,53... [Ben-Avraham and Havlin, 2000]. A grands
z, P(z|rg) ~ 1/2%8%+ et est comparé avec la diffusion normale pour 79 = 1 et a = 0,1
(pointillés).

2004, Golding and Cox, 2006|, c’est-a-dire caractérisé par un déplacement quadra-
tique moyen vérifiant : (r?(t)) oc t¥% ou d, > 2 est la dimension de la marche
[Metzler and Klafter, 2000]. Plusieurs mécanismes microscopiques peuvent induire
un tel effet. Une premiére possibilité est d’avoir des temps de piégeage trés longs
pendant la marche (modéles de type “continuous time random walks” [Metzler and
Klafter, 2000]). Dans ce cas, une excursion a 3 dimensions prend plus de temps,
mais la trajectoire n’est pas modifiée. la distribution des sauts obtenue pour un
temps d’observation infini sera donc inchangée, puisqu’il s’agit d’un résultat pure-
ment géométrique.

Une deuxiéme possibilité est que le milieu soit fractal. Dans ce dernier cas, la
distribution des sauts va changer. Comme précédemment, nous supposons que la
distribution des sauts peut s’écrire en décomposant la diffusion selon ’axe du cylindre
et selon le plan perpendiculaire. Au final, nous obtenons (voir partie 4.1.4 pour les
détails) :

Plro) =a [ 020, (3 K (i 1)
avec y = 2z%/2/d,,, B = 2Tg’”/2/dw, vi=1—d}/dy, (icii=1,]) et
R e

4= F(Vl)r(l—yn)

(22)

ds est la dimension de la fractale, d‘]‘c est la dimension de cette fractale projetée
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sur I’axe du cylindre, et d]% est la dimension de cette fractale projetée sur le plan
orthogonal au cylindre. Ce résultat est confirmé par des simulations numériques
(voir Fig.12). La proportion de bonds est dans ce cas proportionnelle a C(£) ~
& ~dwtdi . elle est donc beaucoup plus petite que dans le cas de la diffusion normale,
ce qui montre que ’encombrement cellulaire peut changer les caractéristiques de la

recherche.

1.3.2 Transport actif de vésicules en milieu cellulaire

A Déchelle microscopique, les stratégies intermittentes sont également observées
dans le cas du transport actif de vésicules (ou d’autres types de traceurs) en milieu
cellulaire. Nous avons proposé une théorie des réactions limitées par un tel type de
transport intermittent. Ce travail a été publié dans Loverdo et al. [2008], et a été
commenté par Mirny [2008] dans la rubrique “news and views” de Nature Physics.

Vésicules

Polymeére rigide comme
un microtubule ou de I'actine —»

Consomme de ’ATP
Distance = V't
Vitesse ~ 1 um.s™!, presque
indépendante de la taille de I'objet (voir
par exemple [Block et al., 2003])

Sans ATP
Distance? oc Dt (ou moins)
Le coefficient de diffusion diminue quand
la taille de 'objet augmente

F1G. 13: Options pour le transport de vésicules a I'intérieur de la cellule.

Du fait de la nature intrinséquement hors d’équilibre du milieu cellulaire, le trans-
port d’un traceur dans une cellule peut étre tres différent de la diffusion d’origine
thermique ordinaire. En effet, dans une cellule, un traceur type comme une vésicule
peut diffuser (voire sous-diffuser), mais aussi s’associer & des moteurs moléculaires
qui, en consommant de ’ATP (I’énergie chimique cellulaire), “marchent” le long des
filaments du cytosquelette, induisant un déplacement balistique [Alberts, 2002] (voir
Fig.13).

Ce transport dit “actif” est bien intermittent au sens général défini en introduc-
tion. Il met en effet en jeu une phase lente, ici la diffusion thermique, et une phase
rapide de transport balistique induit par les moteurs. Par ailleurs, on s’intéressera
ici & des situations dans lesquelles le traceur ne peut pas réagir quand il est asso-
cié aux moteurs, comme par exemple dans le cas ou les cibles sont des protéines
membranaires. De telles trajectoires intermittentes ont notamment été observées a
I'échelle de la vésicule unique par Huet et al. [2006]. Ces expériences semblent in-
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diquer qu’effectivement, la réaction (dans ce cas de I'exocitose) est nettement plus
favorable dans la phase diffusive que dans la phase balistique.

Ce transport actif est important pour la localisation finale des protéines trans-
portées par les vésicules, comme souligné dans la partie 8.4. De maniére générale,
on s’intéresse ici a I'impact de ce type de transport sur la cinétique réactionnelle
en milieu cellulaire. Pour cela, nous estimons la constante cinétique pour une réac-
tion de type premier ordre par I'inverse du temps moyen de premier passage sur la
cible. Techniquement, les calculs apparaissent comme un cas particulier de ’étude
systématique présentée dans la partie 1.4.

Transport & la membrane

o——-.—o‘_pcgézozo

—— =

liaison

Transport de vésicules dans le volume de
la cellule Transport dans des structures tubulaires
comme les dendrites ou les axones

F1G. 14: Transport des vésicules dans les cellules : différentes géométries pertinentes.

Optimisation de la constante cinétique

Dans le cas d'un traceur se déplacant en 3 dimensions, par exemple dans le volume
du cytoplasme (voir Fig.14 gauche), nous montrons que le transport intermittent est
plus efficace qu’un simple transport diffusif et qu’il permet de maximiser la constante
de réaction dés que le rayon de réaction vérifie : a > a, >~ 6.52 (voir partie 5.5.2).
Dans des conditions cellulaires normales, D va de 1072 um?.s~! pour des vésicules
a 10 um?s™! pour de petites protéines, et la vitesse typique d’un moteur est de
l'ordre de V' ~ 1 um.s™!. Le rayon de réaction critique obtenu va alors de 10 nm,
ce qui est plus petit que n’importe quelle organelle cellulaire, jusqu’a 10 pum, ce
qui est comparable a la taille de la cellule tout entiére. Pour des objets assez gros
comme des vésicules, le transport par les moteurs permet donc de mieux explorer
I’espace, alors que pour des objets plus petits, des petites protéines par exemple, la
diffusion seule est plus efficace. De plus, dans ces mémes conditions standards, le
temps moyen d’interaction avec les moteurs correspondant a la stratégie optimale est
de l'ordre de 0,1 s pour un rayon de réaction de 0,1 pm. Cette valeur est compatible
avec les observations expérimentales [Alberts, 2002], ce qui suggére que le transport
cellulaire pourrait étre proche de l'optimum. Enfin, pour une vésicule de rayon de
réaction a = 0,1 pum, toujours dans des conditions cellulaires standards, on peut
montrer que la constante de réaction peut étre jusqu’a 10 fois plus grande que dans
le cas d’une diffusion seule.
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Dans le cas de traceurs évoluant a 2 dimensions, typiquement sur des membranes,
ou a 1 dimension dans des structures tubulaires comme les axones ou les dendrites
(voir Fig.14 droite), la constante cinétique peut également étre optimisée. Cette fois,
la constante cinétique optimale peut devenir beaucoup plus grande. A une dimension,
pour de faibles concentrations de cibles, elle est peut étre 100 fois plus grande que
dans le cas d’une diffusion seule, car contrairement au cas a trois dimensions, le gain
dépend de la concentration de cibles.

1.4 Les stratégies intermittentes : des stratégies robustes
1.4.1 Motivations

Les stratégies de recherche intermittentes sont finalement observées aussi bien
a 1’échelle microscopique que macroscopique. Les modéles utilisés pour interpréter
les trajectoires d’animaux (partie 1.2.4) et pour les vésicules (partie 1.3.2) sont
trés semblables. Cette similarité appelle au développement d’un modéle générique
qui généralise ces aspects. Nous étudions dans cette partie ce modele de marches
aléatoires intermittentes de maniére systématique a 1, 2 et 3 dimensions, et pour
trois descriptions différentes de la phase de détection, d’une part pour mieux rendre
compte de la diversité des situations réelles, et d’autre part pour tester la robustesse
des résultats. Cette étude systématique a été publiée dans Loverdo et al. [2009a].

La quantité minimisée est le temps moyen de premier passage sur la cible. Est-ce
que l'intermittence peut permettre de diminuer le temps moyen de détection de la
cible par rapport a la phase de détection seule? Et si c’est le cas, existe-t-il une
maniére optimale de répartir le temps de recherche entre les deux phases?

1.4.2 Ingrédients du modéle générique

Dimensions de 1’espace

Dans les exemples biologiques, 1'espace de recherche est & une, deux ou trois
dimensions (voir Fig.15). De nombreux modéles de recherche sont & une dimension
(par exemple Oshanin et al. [2007|, Bressloff and Newby [2009], Rojo et al. [2009],
Reynolds [2006]). Au-dela du fait que les calculs sont souvent plus simples a une
dimension, certains problémes réels de recherche sont effectivement & une dimen-
sion. A I’échelle macroscopique, on peut penser aux fourmis, qui suivent souvent des
bords, ou des pistes [Dussutour et al., 2005|. Le modéle & deux dimensions est parti-
culiérement pertinent pour des animaux vivant a la surface du sol. D’autres animaux
utilisent les 3 dimensions de l'espace, comme les poissons, le plancton [Bartumeus
et al., 2003|, ou le ver C.elegans dans son habitat naturel (le sol) [Kiontke and Sud-
haus, 2005]. A I’échelle microscopique, comme nous I’avons vu dans la partie 1.3.2,
les espaces a 1, 2 et 3 dimensions sont pertinents pour décrire le trafic intracellulaire

[Alberts, 2002].

Descriptions de la phase de détection
La phase 1 est une phase de déplacement lent durant laquelle la détection est
possible. Le rayon de détection a est la distance maximale au-dela de laquelle le
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Microscopique Macroscopique

Vésicules dans des structures cellulaires
tubulaires comme les dendrites ou les
axones.

La ligne sombre est une piste de
fourmis.

2D

Pécheurs de coques : les coques sont
Trafic de vésicules & une membrane. cachées sous la surface. Photo de Michel
Sokolowski [Lepolard, 2007].

3D

liaison
Les poissons utilisent les 3 dimensions

Vésicules dans le cytoplasme. de lespace.

Fia. 15: Illustrations microscopiques et macroscopiques a 1, 2 et 3 dimensions.

chercheur ne peut jamais trouver d’information sur la position de la cible. Trois
modélisations différentes de cette phase sont proposées (voir Fig.16) :

— Mode statique : le chercheur est immobile, et si la cible est & une distance du
chercheur inférieure a a, il la détecte avec une probabilité k par unité de temps.

— Mode diffusif : le mouvement du chercheur est diffusif, de coefficient de dif-
fusion D, et la cible est immédiatement détectée si elle est & une distance
inférieure & a du chercheur.

— Mode balistique : le mouvement du chercheur est balistique (vitesse v;) dans
une direction aléatoire. La cible est détectée immédiatement si elle est & une
distance inférieure a a. On peut remarquer que Viswanathan et al. [1999] ont
proposé un mode de détection similaire, mais sans autre phase disponible. S’il
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v m“\phase 2 ss\phase 2
N -y A s -
- phase 2| R ; NS
\\“\ ' a \s«\\\\ . V
N
Mode statique Mode diffusif Mode balistique

Fi1G. 16: Les différentes descriptions de la phase 1, la phase oul la cible peut étre détectée
(ici représentés a deux dimensions).

n’y a pas d’autre phase disponible, et si la cible est détruite quand elle est
trouvée (on ne peut pas gagner a repasser sur la méme cible), la meilleure
stratégie est la ligne droite, sans jamais se réorienter (voir partie 1.2.1). Nous
allons voir dans la suite que si le chercheur a accés a une phase plus rapide
(méme aveugle), le temps moyen de détection de la cible peut étre encore plus
court.
Ces différents modes permettent de représenter des situations réelles trés variées. Par
exemple, quand des animaux cherchant de la nourriture sont observés [Bell, 1991,
O’Brien et al., 1990], les phases de détection sont décrites comme presque immobiles
(statiques), aléatoires (diffusives), ou avec une vitesse faible (balistique). Certaines
situations réelles combinent plusieurs modes. Par exemple, quand les vésicules ne
sont pas liées & un moteur, elles diffusent, et peuvent aussi ne pas réagir parfaitement
avec leur cible : c¢’est donc une combinaison des modes statique et diffusif. Pour
des raisons de simplicité, nous traitons ces trois modes séparément. En combinant
ces modes schématiques, une grande partie des déplacements imaginables peut étre
décrite, depuis la sous-diffusion (voire méme I'immobilité), jusqu’a la super-diffusion
(voire méme un déplacement balistique).

Mémoire minimale

La phase 2 est une phase de déplacement rapide pendant laquelle le chercheur ne
peut pas détecter sa cible. Il se déplace a une vitesse constante V', dans une direction
tirée au hasard a chaque nouvelle phase 2, sans corrélation avec la phase précédente :
le chercheur n’a pas de mémoire spatiale.

La probabilité de passer d’une phase a 'autre est fixe, indépendante du temps.
Le chercheur n’a donc pas non plus de mémoire temporelle. La distribution de la
durée des phases est donc exponentielle, de moyenne 7; pour la phase 1.

1.4.3 Meéthodes
Géomeétrie
La géométrie utilisée dans les calculs consiste en une sphére réfléchissante de

dimension d, de rayon b, avec une cible immobile en son centre. Pour tenir compte
du fait que le chercheur ne connait pas initialement la position de la cible, le temps
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moyen de détection de la cible est moyenné sur la position de départ, prise aléatoire-
ment uniformément dans la sphére. Cette géométrie représente bien deux situations :
une cible dans un domaine fini, ou des cibles réguliérement espacées dans un espace
infini. C’est aussi une approximation de champ moyen d’autres distributions. Comme
vu précédemment dans la partie 1.2.3, une distribution aléatoire de cibles peut modi-
fier significativement les résultats & une dimension. Cependant, nous nous attendons
a ce que cette différence soit moindre pour de plus grandes dimensions.

Equations de base

t; est défini comme le temps moyen de premier passage sur la cible en partant
de la phase 1 a la position r, et o comme le temps moyen de premier passage sur
la cible en partant de la phase 2 a la position r et avec la vitesse V. L’angle solide
de la sphére a d dimensions est noté €2;. Nous écrivons les équations vers le passé
satisfaites par ¢; et to [Redner, 2001].

Pour le mode statique, avec I, une fonction qui vaut 1 si r est dans la cible,
0 ailleurs, nous obtenons :

1
- /(t2 )Y o) = —1
Qq

T 1 (23)
V- Vity — —(ty —t1) = —1
T2
Pour le mode diffusif, ces équations s’écrivent :
1 de
DAt — to —t1)— =—1
1+ - (t2 1) 0y
V. Vity — —(ty — 1)) = —1 (24)
T2
ti(r<a)=0

Pour le mode balistique, avec t; qui est ici le temps moyen de premier passage sur
la cible en partant de la phase 1 a la position r et avec la vitesse vy, nous écrivons :

1 de
-V, t — [ (ty —t])— = —1
Vi1 1+T1/(2 1) 0,

1 dw
V -Vito+— [(t; =t M
tl('r<a):0

(25)

Résolution

Comme ces équations sont intégro-différentielles; elles ne peuvent pas étre ré-
solues exactement dans le cas général. A une dimension, elles peuvent étre résolues
exactement pour les trois modes de détection. A deux et trois dimensions, 1’étude
numérique du mode balistique montre que l'optimum est soit pour 75 — 0,77, — o0
(pas d’intermittence), soit pour 77 — 0 (intermittence) : nous avons ensuite étudié
ces deux cas analytiquement. Pour les modes statique et diffusif, nous utilisons une
approximation valable dés que b > a, vérifiée par simulation numérique.
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1.4.4 Reésultats principaux

La base de ce modeéle est le partage du temps de recherche entre deux phases,
I'une qui permet de détecter la cible, mais avec un déplacement qui ne permet pas
une exploration efficace de ’espace, 'autre pendant laquelle le déplacement est plus
efficace mais sans détection de la cible. L’étude systématique de ce modéle pour 3
modes différents de description de la phase de détection, et a 1, 2 et 3 dimensions,
permet d’'une part de couvrir un grand nombre de situations réelles, et d’autre part
de tirer des conclusions générales sur les propriétés des marches aléatoires intermit-
tentes.

Plus précisément, le temps moyen de premier passage sur la cible a été calculé,
et minimisé en fonction des durées moyennes des deux phases. Le tableau 1 récapi-
tule les résultats. En particulier, cette étude montre qu’il y a toujours des régimes
(que nous avons identifiés) dans lesquels I'intermittence est favorable. Il existe un
minimum global du temps moyen de détection de la cible en fonction des durées
moyennes de chacune des deux phases. Les durées optimales des phases, ainsi que
le gain par rapport a la phase de détection seule, dépendent de la densité de cibles
a/b en 1 dimension. Cette dépendance n’est plus que logarithmique a 2 dimensions,
et disparait totalement a 3 dimensions. L’intérét accru de l'intermittence en faible
dimension peut se comprendre. En effet, pour des temps longs, les trajectoires in-
termittentes que nous proposons sont équivalentes a des marches aléatoires dont
la dimension est 2. A une dimension, la marche est récurrente, c¢’est-a-dire que le
chercheur repasse souvent a des endroits déja inspectés, et les long déplacements bal-
istiques sont donc utiles pour aller vers des zones encore vierges. A trois dimensions,
la marche est transitoire, ¢’est-a-dire qu’il y a toujours des zones proches inexplorées,
donc les phases balistiques longues sont moins utiles.

Enfin, il y a des régimes dans lesquels la durée optimale de la phase balistique
ne dépend pas du mode de détection. Cela montre que les stratégies optimales de
recherche intermittentes sont robustes. Leur robustesse et leur efficacité pourrait
expliquer pourquoi elles sont observées si souvent, et dans des contextes si différents.

28



6¢

Mode statique Mode diffusif Mode balistique

. : : D D b D D b D c V. /3a
toujours intermittence b< v b> v, a<< /oy b> 3, a> \/;V v > v v <V =g/
1
opt opt ., ( v*D 3 opt ., Db opt opt
1D 1/ Tlp — 00 Tlp ~ (36‘,4) Tlp ~ T, T — 00 o —0
1
opt , a opt opt ., (22D 3 opt a b opt opt a b
Ty 2 3F Ty —0 Ty *(9\/4) T\ = Al 34 Ty —0 Ty = A/ 3.
1
opt ~ /b /| V_af3a opt ~, b2 opt ~, [ _3%b* 3 opt ~, 2b [ b opt ~ b opt ~, 2b [ b
tm 3a (1+ 2ka ) tm — 3D tm - (24DV2 tm -V a tm — tm -V a
toujours intermittence b < % b> L v >a b>a> % v > vf v <vf ~aV/ (4 In (Z))
D opt /] 1 opt _, opt  b®>  4lnw—5+c opt ., D (ln(%) i opt _, opt _, 0
=V 2k =V avE n 2 Ty o Tl = Dwldlmhw-T1+c) 1 = 2vZ 2In(L)—1 1 o0 T

opt _, _ 1 opt opt , b V4lnw—5+c opt _, a by _ 1 opt opt _, a by _ 1
Ty = 1“(5) 2 Ty —0 T2 =y w2 = v\/ln(a 2 Ty —0 T2 = v\ In(z) -3
2
opt ~, 2b° [ a b v opt ~, b b opt . ; opt ~ 20> b opt ~, wb> opt ~ 20> b
[ In (a) + 1/ 5% Pt~ 25 In (a) toP*, ¢, w : partie 5.4.2 it~ =% /In (a) R ™ Sam it~ =% /In (a)

toujours intermittence a < 6% b>a2z 6% v > vf v <vf ~0,6V
t TP t ¢ ¢ ¢
3D P = ~ 3/ P — o0 o~ 85 P — oo =0
t i t i
T°pt~1 1% =0 TP 1,18 =0 T 1,18

opt ~, 0> [ 4 24 opt ~, _b° opt ~, b3 opt ~, _4b* opt ~,
tm — Va? <\/ t — 3Da tm - 2’2Va2 t — 3a3v, tm - 2’2V 2

TAB. 1 — Récapitulation des résultats principaux du modéle générique : les stratégies minimisant le temps moyen de premier passage.
Dans chaque case, régime de validité, 7 & Poptimum, 75 & Poptimum, ¢,, au minimum (¢,, calculé pour 7, = 7. t). Le fond jaune

souligne la valeur de 75" " indépendante de la description de la phase de détection. Les résultats sont donnés dans la limite ot b > a.
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1.5 Extensions et perspectives

Nous présentons dans cette partie trois axes de développement du modeéle géné-
rique détaillé dans la partie précédente, dont la finalisation est en cours. D’abord,
nous n’avons regardé dans la partie précédente que le temps moyen de premier pas-
sage, alors qu’il pourrait ne pas étre représentatif du temps typique. La distribution
compléte du temps de premier passage sur la cible est nécessaire pour vérifier que
le choix du temps moyen comme quantité & minimiser est le bon. Ensuite, dans ce
modeéle, la mémoire du chercheur était minimale, et I'effet de mémoire temporelle ou
spatiale est a étudier. Enfin, nous présentons des donnés expérimentales de recherche
de cibles a I’échelle humaine.

1.5.1 Distribution compléte du temps de recherche

Dans la partie précédente, nous avons calculé et minimisé le temps moyen de
premier passage sur la cible. La distribution compléte du temps de premier passage
sur la cible donne beaucoup plus d’informations, mais son calcul analytique est
évidemment beaucoup plus difficile.

0,57

0,1
0,05
0,14
0,09
0,084 0,014

0,07 0,005

i 2 3 4 5 . — — .
t/7* 0001  0,0050,01 005 0,1 05 1
VD1 [(vT2)
i ) i Probabilité p de trouver la prochaine
2 * * *
cible re}nor.rr}ahse ft/r ) /T en fonct19n de t/T cible en fonction de v/Dry/ (V7).
(7* défini éq. (26)). Prévision analytique (27)

Distribution du temps de premier passage sur la

Simulations (croix rouges), prédiction

avec p ajusté (=0,244) (ligne noire). Simulations .
th =2vD %4 28
(couleurs) avec L = 2.10° (rouge), L = 2.10° condte p 71/ (V) (28)

(bleu), L = 2.107 (vert). Distribution
exponentielle (pointillés noirs). 71 = 106,
9 = 7100.

(ligne bleue), borne supérieure p = 1
(pointillés noirs). L = 10°, 75 = 103.

F1G. 17: Distribution du temps de premier passage sur la cible dans le cas de cibles réguliére-
ment espacées en une dimension avec les phases balistiques toujours dans la méme direc-
tion : comparaison entre simulations et expressions analytiques. D =1,V = 1.

Nous présentons ici une premiére distribution, celle obtenue dans une limite
d’un cas unidimensionnel, plus précisément celui de la partie 1.2.2 : la phase de
détection est diffusive, et la phase sans détection est balistique, toujours dans la
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méme direction. Les cibles sont réparties de maniére réguliére. 7* est défini comme
le temps typique mis pour aller d'une cible a la suivante :

L
Tr=— (11 + 7). 26
—(n+ ) 20
La distribution des temps de premier passage est en “marches d’escalier” si L >

V1, D1y, sinon elle tend vers une exponentielle. Dans ce premier régime, pour
tenrt*;(n+1)7*] (neN):

fo =P g

T*

VTQ

) o

ou p est la probabilité que le chercheur détecte la cible suivante. Quand L > V>
v D11, p peut étre estimée :
AV DTl
p=2

N V’TQ ’
Ces deux expressions (27) et (28) sont en bon accord avec les simulations (voir
Fig.17).
Avec la distribution compléte des temps de premier passage, on peut obtenir tous
les moments de la distribution :

I TN ek B RN e N
5t ) vV
En particulier, (t)/7* = (2 — p)/(2p), et (t?)/7*? = (6 — 6p + p*)/(3p?).

Cette distribution des temps de premier passage en marches d’escaliers est un cas
trés particulier : elle n’est obtenue qu’a une dimension, avec les phases balistiques
toujours dans la méme direction, et pour une répartition réguliére de cibles. Dés
qu’une contrainte est levée, la distribution tend vers une exponentielle, comme par
exemple si les cibles sont distribuées de maniére poissonnienne, ou encore quand les
phases balistiques ne sont plus corrélées (voir Fig.18).

Que la distribution soit en escalier ou exponentielle, le temps moyen de recherche
est bien représentatif du temps typique de recherche, puisqu'une seule échelle de
temps est mise en jeu dans la distribution. Ces résultats sont importants car ils
montrent que le premier moment du temps de recherche étudié tout au long de cette
thése est représentatif.

(28)

p_m+18_p

1.5.2 Meémoire temporelle

L’idée de stratégie de recherche intermittente présentée ici a suscité de 'intérét
dans la communauté scientifique, et elle a été reprise depuis dans d’autres travaux
(voir partie 6.3, et partie 6.4 pour une liste qui compléte ce qui suit).

Notre modeéle générique suppose des distributions exponentielles des durées des
phases. Une premiére possibilité d’extension est d’étudier l'effet de distributions
non exponentielles, qui correspondent & des processus non markoviens, et donc a des
chercheurs disposant d’une certaine mémoire temporelle. Par exemple, si le chercheur
change de phase a 7; exactement (temps d’attente déterministes), on peut montrer
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0,5 u

0,1 %,

0,05 4,

t/%ﬂ ’ 0,5 1 15 2
Cas parfaitement corrélé (dimension effective 1), ’
pour des cibles réparties aléatoirement.
L=100:1=1,m=1();

71 =1072, 75 = 0,05 ().
L=10%: 7 =10% 7 =103 (0);
=102 7 =32 (1);
m=1m=1(e);m =102 7 =0,05 (M).

Cas sans corrélation & trois
dimensions (mais le résultat est
similaire a 2 dimensions)
avec des cibles réparties
réguliérement.

a=10,b=100, 7 =6, 7 = 11.

Fi1G. 18: f(t/(t))/(t)) en fonction de t/(t). Distribution exponentielle (ligne noire), simu-
lations (points). D =1, V = 1.

que le temps moyen de détection de la cible diminue, mais reste du méme ordre de
grandeur (voir partie 6.3.1 pour plus de détails). Par ailleurs, Lomholt et al. [2008]
ont montré qu’a une dimension (pour un mode de détection diffusif), si la distance
entre cibles L est assez grande, et si les phases balistiques sont de durée distribuée
selon une loi de Lévy (p(t) oc 77!, avec a €]1,2[) le temps moyen de détection
de la cible obtenu est également plus petit que dans le cas exponentiel. Cependant,
cette stratégie est moins efficace qu'une simple distribution de Lévy tronquée (voir
partie 6.3.2).

1.5.3 Mémoire spatiale

La mémoire peut étre temporelle, comme nous venons de le voir, mais elle peut
aussi étre spatiale. En effet, dans le modéle générique (partie 1.4), il n’y a aucune
corrélation entre deux phases balistiques successives, c’est-a-dire aucune mémoire
spatiale. Le cas inverse de corrélation parfaite (c’est-a-dire ou la direction de la
phase balistique est toujours la méme) est traité partie 1.2. Comme de nombreuses
trajectoires d’animaux présentent en fait des niveaux intermédiaires de corrélations
|O’Brien et al., 1990], il est important de tenir compte de ces effets dans nos modéles.
C’est aussi une question intéressante du point de vue théorique. En effet, si on prend
par exemple le mode de détection statique a une dimension (le plus simple a traiter),
et en définissant p comme la probabilité qu’une phase balistique soit dans la méme
direction que la phase balistique précédente, nous montrons que :

— Dans le cas d'une corrélation parfaite (p = 1), optimum est obtenu pour 7

tendant vers 0, et 77 tel que 71 = aTs, ou « ne dépend que de ak/V et a/b
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(explicitement donné dans la partie 6.2) ;
— Dans le cas ou il n’y a aucune corrélation (p = 0,5), le temps moyen de

détection de la cible a un minimum global en fonction de 7, et 75, pour 7" =

JE (L) et 7 = & [ (voir tableau 1).

Quand le niveau de corrélation est intermédiaire (0,5 < p < 1), le temps moyen de
détection de la cible est-il minimisé pour des durées de phase finies (comme pour
p =0,5) ou tendant vers 0 (comme pour p = 1) ? Ou se situe la transition ?

Ayant calculé le temps moyen de détection de la cible (dans la partie 6.2), nous
montrons que dés que p < 1, les durées optimum des deux phases sont finies (méme
si elles peuvent étre trés petites).

0,44

1024 0,24

0,01 005 01 05 1 0,001 0,005 0,01 0,05 01 05 1
X X

F1G. 19: TZ-Opt en fonction de 2(1 — p). Prédiction analytique pour 77* (30) (pointillés) et
prédiction analytique pour 757* (31) (lignes), comparées a 7 (o) et 75" () obtenus par
la minimisation numérique de I’expression exacte du temps moyen de détection de la cible
(équation (334)). a = 0,01, b =1 (vert), a = 0,01, b = 100 (bleu), a = 1, b = 100 (violet),
a=1,b=10% (rouge), a = 100, b = 10* (orange), a = 100, b = 10° (marron). V = 1,
D=1

En particulier, pour (1 — p) 2 a/b, le temps moyen de détection de la cible est
minimisé pour des expressions de 7; dans la continuité de celles du cas sans aucune

corrélation (voir Fig.19) :
b1 p\ 4
7_10pt _ Y (__p) , (30)

Vk \a 6
opt a b2(1 _p)
S i St 2 1
e VVa 3 (31)

Ces résultats, intéressants du point de vue théorique aussi bien que pour la modéli-
sation de trajectoires animales, sont a étendre, au moins numériquement, aux autres
modes de détection, et a 2 et 3 dimensions.

1.5.4 Comparaison avec des expériences

Une autre perspective est la comparaison avec des données expérimentales. Une
premiére collaboration est en cours avec Vincent Fourcassi¢ (CRCA, Université Paul
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Sabatier, Toulouse) sur des trajectoires individuelles de fourmis. Une deuxiéme col-
laboration a été initiée avec Michel Sokolowski (chercheur en psychologie & 'uni-
versité de Picardie - Jules Verne, Amiens), en vue d’étudier le comportement de
recherche de cible cachée & ’échelle humaine.

T Ny,

La caméra, en hauteur, filme un sujet
qui cherche des cibles dans 'aréne.

Fia. 20: Expérience de recherche de cible par des humains.

Le protocole est le suivant : un sujet doit trouver de petites cibles sur le sol
d’une aréne de 10 meétres de rayon, et les sujets les plus rapides obtiennent une
récompense. Ils sont filmés (voir Fig.20), et les images sont ensuite traitées, jusqu’a
obtenir les trajectoires qui sont ensuite analysées (pour plus de détails, se référer a
la partie 6.6). Les résultats préliminaires peuvent étre classés dans deux catégories.

Si les sujets ont un champ de vision normal, ou s’ils ont un chapeau qui leur
cache les repéres extérieurs, mais qui leur permet cependant de voir jusqu’a un meétre
devant eux, les sujets tentent de suivre des stratégies soit du type “spirale”; soit du
type “Pearson” (voir Fig.21). Ils essaient d’aller suffisamment lentement pour pouvoir
détecter la cible tout au long de la trajectoire : ils n’adoptent pas de stratégies
intermittentes.

En revanche, quand les yeux des sujets sont bandés, les trajectoires observées
sont intermittentes, car se déplacer en méme temps qu’explorer le sol est difficile
(voir Fig.22). Les directions des phases de déplacement successives sont fortement
corrélées.

Ces données sont en cours d’exploitation.
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1.5 EXTENSIONS ET PERSPECTIVES

Trajectoire en spirale Trajectoire “Pearson”

Fia. 21: Exemples représentatifs de trajectoires de 7 minutes avec un champ de vision
normal ou presque. Le grand cercle noir représente 'aréne (10 métres de rayon, 1’échelle
est en métres). Les petits cercles noirs montrent o sont les cibles. les trajectoires sont les
lignes colorées dont la couleur change quand une cible a été détectée.
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Exploration lente. Les deux genoux sont
avancés, puis la surface proche est
explorée avec les deux mains, et ainsi de
suite.

Exploration rapide. Un genou est
déplacé, une main explore la zone proche,
puis symétriquement, et ainsi de suite.

F1G. 22: Vitesse (m/s) en fonction du temps (s) sur des trajectoires ou le sujet a les yeux

bandés. Les lignes noires et rouges correspondent & des lissages plus ou moins forts de la
trajectoire.
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1.6 Conclusion

Les stratégies de recherche intermittentes reposent sur une hypothése simple : le
chercheur alterne entre deux phases de déplacement, I'une lente durant laquelle la
cible peut étre détectée, et 'autre rapide mais ne permettant pas la détection de la
cible.

Au cours de cette thése, nous avons montré que de telles stratégies de recherche
sont effectivement observées & des échelles trés variées. A I’échelle macroscopique,
c’est notamment le cas de certains animaux a la recherche de nourriture. Motivés par
cet exemple, nous avons proposé un modéle minimal bidimensionnel de stratégies
de recherche intermittentes. Nous avons montré analytiquement que le temps moyen
de recherche d’une cible peut étre minimisé comme fonction des durées moyennes
de chaque phase. Il existe ainsi une maniére unique de répartir son temps entre les
deux phases pour trouver une cible au plus vite. Cette intermittence constitue donc
une stratégie de recherche optimale. En cela, ce modéle constitue une alternative au
célébre modeéle des stratégies de Lévy qui, elles, ne sont optimales que dans des cas
trés spécifiques.

Ces stratégies de recherche intermittentes sont également observées a 1’échelle
microscopique. Un premier exemple est donné par la recherche par des protéines de
cibles spécifiques sur ’ADN. Comme suggéré par Berg et al. [1981], les trajectoires
réactionnelles combinent des phases de diffusion 1D le long de ’ADN et des phases de
diffusion en volume. Ce mécanisme de recherche, dont l'efficacité a été discutée par
différents groupes, est ainsi par essence intermittent. Dans cette thése, nous avons
calculé analytiquement la distribution de la distance parcourue le long de ’ADN lors
d’une excursion 3D, qui joue un réle important dans la détermination du temps de
recherche. Nous 'avons adaptée aux spécificités d’'une expérience a 1’échelle d’une
molécule unique, et avons montré que les trajectoires observées étaient bien décrites
par une alternance de phase de diffusion & 1D et 3D. Un deuxiéme exemple de tra-
jectoire intermittente a 1’échelle microscopique est donné par le transport actif en
milieu cellulaire, qui met en jeu des phases de diffusion thermique et des phases de
déplacement balistique assurées par des moteurs moléculaires. Nous avons proposé
un modele général de réaction chimique du premier ordre limitée par ce type de
transport. Sous ’hypothése que la réaction n’est possible que dans la phase diffu-
sive, nous avons montré qu’il était possible d’optimiser la constante de réaction. Le
transport actif permet ainsi d’optimiser la cinétique réactionnelle en milieu cellu-
laire. Cet effet est particuliérement marqué pour des structures cellulaires de basse
dimension, comme les membranes ou les structures tubulaires de type axone.

Ces stratégies intermittentes étant observées a des échelles variées, nous avons
émis ’hypothése qu’elles pourraient constituer un mécanisme de recherche généri-
que. Nous avons ainsi, dans une derniére partie plus technique, étudié de maniére
systématique I'influence d’une part de la modélisation de la phase de détection des
cibles, et d’autre part de la dimension de I’espace sur les temps moyens de premier
passage de marches aléatoires intermittentes. Cette étude montre que 'optimalité
des stratégies intermittentes est un résultat trés largement robuste. Finalement, si
les stratégies intermittentes sont si largement observées dans la nature, c¢’est proba-
blement parce qu’elles constituent un mécanisme de recherche efficace.
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2.1 Foreword and outline

Figure 23: What is the best strategy to adopt when searching for a key?

What is the best strategy to find a missing object? If you have ever lost your
keys, you have faced this problem (see figure 23). This every day life situation is
a prototypical example of a search problem, which in its simplest form involves a
searcher (either a person, an animal, or any kind of organism or particle) who is in
general able to move across the search domain, and one or several targets. Even
if very schematic, the search problem as stated turns out to be a quite universal
question, which pops up at different scales and in various fields, and has generated
an increasing number of works in recent years.

Theoretical studies of search strategies can be traced back to World War II, dur-
ing which the US navy tried to most efficiently hunt for submarines and developed
rationalized search procedures [Champagne et al., 2003|. Similar search algorithms
have since been developed and utilized in the context of castaway rescue operations
[Frost and Stone, 2001], or even for the recovery of Scorpion, a nuclear submarine
lost near the Azores in 1968 [Richardson and Stone, 1971]. Another important
and widely studied example of search processes at the macroscopic scale relates
to animals searching for mates, food or a shelter [Charnov, 1976, O’Brien et al.,
1990, Bell, 1991, Viswanathan et al., 1999, Bénichou et al., 2006, Shlesinger, 2006,
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Edwards et al., 2007] which we discuss in more details in this thesis. At the micro-
scopic scale, search processes naturally occur in the context of chemical reactions,
for which the encounter of reactive molecules — or in other words the fact that one
searcher molecule finds a reactive site — is a required first step. One should obviously
mention the theory of diffusion-controlled reactions, initiated many years ago by the
celebrated theory of von Smoluchowski [1917], developed by innumerable researchers
(see for instance the review of Hanggi et al. [1990]). More recently, there has been a
renewed interest in this field, in the context of biochemical reactions in cells where
the number of reactive molecules is sometimes very small, making the first step —
the search for a reaction partner — crucial for the kinetics. A prototypical example
is the search for specific DNA sequences by transcription factors [Berg et al., 1981,
Von Hippel, 2007, Gorman and Greene, 2008, Bonnet et al., 2008, Mirny, 2008|.

X 4o 1 AS

Figure 24: Intermittent search : the searcher either carefully inspects the surroundings, or
runs to reach unvisited areas.

In all these examples, the time needed to discover a target is a limiting quantity,
and consequently minimizing this search time often appears as essential. In order to
get an intuition of what could be an efficient search strategy on general grounds, let
us go back to the everyday-life example mentioned above. Imagine that you have
lost a tiny object — let us say a key — in a large sandy beach, and that you have no a
priori information on the position of the key. The key is so small that it cannot be
detected if you pass by too fast. What is then the best strategy for finding the key as
fast as possible? A first strategy consists in a slow and careful exploration (to make
sure that the key will be detected upon encounter) of the sand all along the beach. In
the case of a very large beach, the search time can then be very long. An alternative
strategy you can think of consists in interrupting the slow and careful exploration
of the sand by mere displacement phases, during which you run in order to relocate
on the beach very fast, but without even trying to detect the key (see figure 24).
We will call hereafter “intermittent search” such strategies that combine two distinct
phases : a phase of slow displacement which enables target detection, and a phase
of faster motion during which the target cannot be detected (note that Bartumeus
[2009] has used the same word more recently, but with a broader definition, covering
any intrinsic change of motion in the searcher’s trajectory). The efficiency of such
intermittent strategies results from a trade—off between speed and detection and can
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be qualitatively discussed. Intuitively, the advantage of the fast relocation phases is
to reach unvisited regions. The drawback however is that during these phases time
is consumed without any chance of detecting the target. The net efficiency of this
strategy is therefore not trivial, and the main goal of my thesis is to explicitly answer
the following questions : (i) Can phases of fast motion which disable detection make
the global search more efficient? (ii) If so, is there an optimal way for the searcher to
share the time between the two phases? (iii) Are these intermittent search patterns
relevant to the description of real situations?

Models of intermittent search strategies, as previously defined, have been intro-
duced by my advisors in 2004. The first models of intermittent search that they
have introduced relate to foraging animals at the macroscopic scale [Bénichou et al.,
2005a], and to proteins searching for a target sequence on DNA at the microscopic
scale [Coppey et al., 2004]. Both models are developed in one dimension, which is
the relevant geometry to these real-life examples.

During my PhD, I have first extended these models, in particular to displace-
ments in 2 and 3 dimensions, which cover a much broader range of real situations.
I have also studied the robustness of these search strategies, and have come to the
conclusion that they could constitute genuine efficient search strategies. This thesis
consists on the one hand of modeling aspects in close connection with experimen-
tal studies (section 3 and 4), and on the other hand of theoretical developments
and more technical results on first passage time for intermittent random walks (see
section 5).

More precisely, for the case of foraging animals trajectories, I have developed a
model of bidimensional intermittent search strategies, which appears as an alterna-
tive to a famous model, named “Lévy strategies”, very often used in this context.
These macroscopic situations are the object of section 3. I have also studied two
examples of search problems at the microscopic scale (section 4). The first relates
to proteins searching for a specific sequence on DNA. Since generally these proteins
alternate between 1-dimensional phases of motion along DNA and 3D excursions in
the bulk, this search process can be qualified as intermittent, in the general meaning
previously defined. During my PhD, I have extended the existing models by calcu-
lating analytically the distribution of the length traveled along the DNA during a
3D excursion. I have then adapted this calculation to the quantitative interpretation
of a single-molecule experiment, developed by the group of Pierre Desbiolles (LKB-
ENS). The second microscopic example I have studied relates to vesicle transport in
cellular medium. Vesicles can either diffuse passively, or bind to molecular motors
performing an active ballistic motion. I have proposed an analytical model of reac-
tions limited by transport in such active media and shown quantitatively how active
transport can speed up reaction kinetics. Given that intermittent search strategies
are observed at various scales, I have suggested that they could constitute a generic
search mechanism. In the more technical section 5, I study the robustness of inter-
mittent random walks, in a quite general theoretical framework. In the final section
(section 6) gathers extensions and perspectives related to the previous models, some
of them being currently under investigation.
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2.2 General framework

The search problem can take multiple forms ; in this section we define more precisely
the framework of this thesis — namely the random intermittent search strategies —
and introduce the main hypothesis which will be made.

2.2.1 Effect of cues

Although in essence in a search problem the target location is unknown and cannot
be found from a rapid inspection of the search domain, in practical cases there are
often cues which restrict the territory to explore, or give indications on how to explore
it. We can quote the classic example of chemotaxis [Berg, 2004, which keeps arising
interest in the biological and physical communities (see for example Yuzbasyan et al.
[2003], Kafri and Da Silveira [2008]). Bacteria like E.coli swim with a succession of
“runs” (approximately straight moves) and “tumbles” (random changes of direction).
When they sense a gradient of chemical concentration, they swim up or down the
gradient by adjusting their tumbling rate : when the environment is improving,
they tumble less, whereas when the environment worsens, they tumble more, which
results in a bias towards favorable regions. Chemical cues can be as varied as
salts, glucose, amino-acids, oxygen, etc., but this behavior can also be triggered
by other kinds of gradients : temperature gradients [Maeda et al., 1976, Salman
et al., 2006, Salman and Libchaber, 2007|, light intensity [Sprenger et al., 1993],
etc. Chemotactic search requires a well defined gradient of chemoattractant, and
is therefore applicable only when the concentration of cues is sufficient. On the
contrary at low concentrations cues can be sparse, or even discrete signals which
do not allow a gradient based strategy. For example, this is the case for animals
sensing odors in air or water where the mixing due to the flow turbulence distribute
odors in random and disconnected patches of high concentration. Vergassola et al.
[2007] proposed a search algorithm, which they called “infotaxis”, designed to work
when cues are sporadic and information partial. It locally maximizes the expected
rate of information gain. Among the trajectories produced by infotaxis, there are
“zigzagging” and “casting” paths similar to those observed in the flight of moths.

In this thesis we focus on the case where no cue is present, or before finding the
first cue. This assumption applies to targets are qualitatively “hard to find”, that is
targets that can be detected only if the searcher is within a given detection radius a
that is much smaller than the typical extension of the search domain. In particular
this assumption clearly covers the case of search problems at the scale of chemical
reactions, and more generally the case of searchers whose motion is independent of
any exterior cue that could be emitted by the target.

2.2.2 Searching without cues : systematic vs. random strategies

Whatever the scale, the behavior of the searcher strongly relies on his ability, or
inability, to keep memories of his past explorations. Depending on the searcher and
on the space to explore, there is more or less capacity for spatial memory.

In an extreme case, the searcher has a mental map of the exploration space and
thus performs a systematic search. Figure 25 presents several systematic patterns
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]

Spiral Expanding square Lawn-mower

Figure 25: Examples of patterns for systematic exploration of space.

which are designed to avoid oversampling : spiral, expanding square and lawn-mower
(for more patterns, see for example Champagne et al. [2003]).

In many search problems however the searcher has no memory of his past ex-
ploration. It does not mean than there is no strategy to adopt. For example, when
you are searching for a key, if you do not move, search will be unsuccessful, and
the rule “walk straight ahead” would be a better strategy for you. In particular,
rules can rely on stochastic processes, i.e. the sampling of probability distributions.
This is obviously the case for “molecular” searchers at the microscopic scale, but also
at larger scales of animals with low memory skills. Search trajectories can in this
case be qualified as random, and the theory of stochastic processes provides pow-
erful tools for their quantitative analysis. This thesis is focused on random search
problems.

2.2.3 Framework of this thesis

To summarize, in this thesis we shall focus on intermittent search strategies for
targets which emit no cue. The searchers will be assumed to have no (or low)
memory skills, resulting in their trajectories being random walks. To assess the
efficiency of such strategies from a kinetic point of view, we shall mainly calculate
the mean first passage time to a target, and study the minimization of this quantity.
And when possible, we shall investigate the complete distribution of first passage
time, which provides more information (see section 6.1).
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The case of foraging animals is an interesting example of search at the macro-
scopic scale. There is a vast literature on animal displacements. Trajectories of
numerous animals have been recorded, in particular when they are in search for
food, shelter or mate. The observed search trajectories are often described as a
sequence of ballistic segments (or relatively straight motion), interspersed by much
slower phases, or even stops [O’Brien et al., 1990, Bell, 1991|. We first review two
models that have been proposed to interpret the experimental data : Lévy walks and
a simple model based on intermittence. For this thesis project, we have extended
this last model in two directions. (i) We have studied the influence of the target
distribution. (ii) More importantly, we have extended this model to two dimensions.
After presenting these extensions, we discuss the relevance of Lévy walks and of
these models based on intermittence for the description of animal trajectories.
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3.1 Lévy strategies

Figure 26: Example of Lévy walks, with g = 1.5 (green, not present on the zoom), u = 2
(red), u = 3 (blue). The total path length is the same for the 3 examples.

The ballistic phases interspersed with turns of animal trajectories mentioned
above have often been interpreted as Lévy walks [Viswanathan et al., 1999, 2008|.
Shlesinger and Klafter [1986] were the first to report that, due to their weak over-
sampling properties (see figure 26), Lévy walks could be an efficient way to explore
space and could be used to model trajectories of foraging animals in particular.
This observation led Viswanathan et al. [1999] to propose the following Lévy search
model, in the presence of fixed targets randomly and sparsely distributed : they con-
sider a searcher performing ballistic flights at constant speed, and detecting targets
closer than r,. A target is found when the searcher encounters it for the first time.
The flight lengths are drawn from a Lévy distribution p(l) o< [7#, with 1 < p < 3.
For ;x = 1, the probability distribution is not defined. For 1 < p < 2, the distri-
bution has no mean and no variance. For 2 < p < 3, the distribution has a mean
but no variance. For u > 3, the distribution has both a mean and a variance, and
thus obeys the central limit theorem : after sufficiently many flights, the probability
distribution of the distance covered from the starting point is a Gaussian whose
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variance scales linearly with time, as in the case of diffusion. They found that in the
case of revisitable targets, u°?' ~ 2, whereas in the case of non revisitable targets
(that are destructed when encountered) p" — 1, which in fact is simply a ballistic
motion without reorientations.

3.2 A simple model based on intermittence

In the Lévy walks model, the searcher is assumed to be able to detect its target all
along its trajectory. However, as it was the case with the example of the lost key, it is
evident that in some situations speed degrades perception. In some studies on animal
behavior, the reported slow phases are clearly aimed at sensing the environment in
order to detect the targets [Kramer and McLaughlin, 2001]. Is this alternation of
slow and fast phases beneficial for the search? To answer this question, a simple
model relying on intermittence was proposed in 2005 [Bénichou et al., 2005a,c|. We
first review how this model is constructed and its results, before extending it.

3.2.1 Model

Move
state 2

Search
state 1

Figure 27: Simple model for intermittent search.

The central point of this schematic model is that it relies on the explicit de-
scription of search trajectories as intermittent. The searcher is assumed to display
alternatively two distinct attitudes (see figure 27) :

e a scanning phase, named phase 1, during which the sensory organs of the
searcher explore its immediate vicinity. This phase is modeled as a “slow”
diffusive movement (a continuous random walk with diffusion coefficient D).
The target is found when this movement reaches the target location for the
first time. As focusing and processing the information received by sensory
organs require a minimum time, the scan phase cannot be too short, which
implies a minimal mean time spent in this phase, noted 7",

e a motion phase, named phase 2, during which the searcher moves “fast” and
is unable to detect the target. These repositioning moves are characterized
by a ballistic motion (at constant velocity V). In the case of animals, there
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are usually correlations in the angles between two successive ballistic phases
|[O’Brien et al., 1990]. Here the case studied is the limit of high correlations,
making the problem effectively 1-dimensional for both phases, with the velocity
in phase 2 always in the same direction.

Next, the searcher is assumed to switch randomly from phase 1 (respectively, 2)
to phase 2 (respectively, 1) with a fixed rate per unit time A; (respectively, As),
which corresponds to a searcher without time memory. It leads to a mean duration
7, = 1/)\; of phase i, and the phase durations are distributed exponentially, as
observed in numerous experimental studies (see for example Fujiwara et al. [2002],
Pierce-Shimonura et al. [1999], Hill et al. [2000], Li et al. [2008], but this list is far
from exhaustive). Preys are assumed to be immobile. The assumed geometry is one
centered target in a domain of length L with reflective boundaries. This geometry
also mimics an array of regularly spaced targets on an infinite segment.

3.2.2 Results

The mean first passage time to the target, uniformly averaged over the starting
position of the searcher, is [Bénichou et al., 2005a] :

L (P —1)1+4r+ (142r)(ef —e* 1
0 = () (LT ez =) 1) g
2 V1+4r(ef —1) (e — 1)V r
with :
r=73V?/(Dr), (33)
L 1 1 1
e 4 34
o 2( T2V+\/722V2+ Dﬁ)’ (34)
L 1 1 1
N 4 . 35
2 (TQV+\/TQ2V2+ DTl) ( )
In the limit of L > Vry, /D7, D11 /(V13), this expression simplifies :
-~ L(T2+T1><D7'1+2T22V2) (36)

2V DrVD1 +412V2

Note that thanks to intermittence, (t) o« L, whereas for diffusion alone the mean
detection time is 7qi¢ oc L?. Intermittence is thus favorable, at least for L large
enough. The gain of intermittence compared to diffusion alone is :

TAiff L(TQV\/DTl\/DT1+4T22V2)

oy Tt . 37
Jam = "y 6D(m1 + 1) (D71 + 2752V2) (37)

Intermittence is favorable in particular when 71 and 7, are taken as optimal. The
min

. . L. t t . . .
mean search time is minimized for 7;*" = 77", and 757" satisfying the relation :

7_27_2 7_5
™ +6 172 — T—’g:o, (38)

where 7 = D/V? is an extra characteristic time, depending on the searcher’s char-
acteristics. This minimum takes a simple form in two different regimes.
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min

e If 74 > 7, the minimum of the search time is for 7, = 77", and :

3 2\ 1/3
7 = ( 7471) . (39)

In this regime, 7 > 75 : the searcher spends more time scanning than moving.

e If 7, < 7, the minimum of the search time is for 7, = 7{"", and :

2.3\ 1/5
= () (10)

In this regime, 7, < 7o, which means that the searcher spends more time
moving.

These results have been compared to experimental data from O’Brien et al. [1990]
and Kramer and McLaughlin [2001], who provide the average duration of detection
and ballistic phases, characterizing the saltatory behavior of 18 different species, as
various as planktivorous fish, ground foraging birds, or lizards. The optimal strategy
obtained above has been shown to account reasonably well for these data.

Now that this first simple model has been defined, we present two extensions that
we have considered for this thesis project. On the one hand, we study the influence
of the target distribution on the search time. On the other hand, we extend this
model to a two-dimensional space, which is relevant in many search problems at the
macroscopic scale.

3.3 Influence of the target distribution on the search time

We first study the influence of target distribution on the previous results.

3.3.1 How real targets are distributed?

Target distributions are often described as regular, random or patched [Bell, 1991|
(see figure 28). In the model presented above, the chosen geometry can be interpreted
as one target in a finite domain, or as an infinite array of regularly spaced targets.
The regular distribution is representative of the real-life case of targets that repel
each other, thus being as far as they can from each other. This distribution is also
a mean-field approximation of other distributions. As the regular distribution has
already been studied, let us discuss the other representative distributions.

If targets are in patches, when a target is found it is likely that there are other
targets in the immediate surroundings. Thus a simple strategy is to switch behavior
when a target is encountered, as proposed for example by Benhamou [1992]. The
search is then in two steps : finding a patch, and exploiting it. For the first step, if
patches are regularly spaced, previous results are still valid, except for the density
of targets which has to be replaced by the density of patches. The patches could
also be randomly located.

The last case of Poissonian targets corresponds to situations of non-interacting
targets. The following results have been published in [Moreau et al., 2007b, 2009].
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Figure 28: Examples of target distributions.

3.3.2 Analytical results in the case of a Poissonian distribution of targets

In the case of a Poissonian distribution of targets, the distance between two consec-
utive targets is exponentially distributed. Except for this change, the other param-
eters remain as defined in the previous model (see section 3.2).

The mean search time is in general hard to calculate for Poissonian targets, which
can be seen as frozen disorder. However, estimates (for L > D/V') can be given in
3 regimes (see Moreau et al. [2007b, 2009| for details) :

e In the large ballistic displacements limit (when V7, > /D7), two successive
diffusive phases can be considered as non-overlapping. It can be shown that
in this regime :

T1 + To

2\/ DTl ‘

e In the small ballistic displacements limit (when V7 < /D7), it can be
considered that successive diffusive phases considerably overlap. It leads to :

()~ L (41)

1+ T2

t) ~ L
<> V’TQ

(42)

e The most interesting situation is the intermediary regime. Indeed, in the first
case (large ballistic displacements), relocations are too long and overshoot the
target; and in the second case (small ballistic displacements), there are often
repetitive scans of the same areas. In the intermediary regime, the mean first
passage time to the target can be approximated by :

(#) ~ L7'1 + 7 (14 9)2(1 + €0)
Vo (1440 +2€0%)°

(43)

with 0 =V /v/D1 and € = /D1y /L.

This last regime enables us to discuss the efficiency of the intermittent search. We
discuss the efficiency comparing (¢)°P*, the mean search time with intermittence at
the minimum with 743 = L?/(2D), the mean search time with diffusion alone. We
define 7,y = L/V as the typical time scale needed to travel in the ballistic mode
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the distance between two consecutive targets. Intermittence is found to decrease
the search time. To minimize the mean search time, 7, should be taken as small as
possible. The optimization with respect to 7 leads to two regimes, depending of the
value of 7, compared to the previously introduced timescale T = D/V?2, characteristic
of the searcher. :

e When 74 > 7 :

7_0pt 7 It 3/4
i (@) (44)
At the optimum, the mean search time is :
° L 1
()" ~ v\ (45)
and the gain is :
L 274
G Tdift| (46)

AV DTl B T
As we shall see in the following, in this regime the approximations are very

accurate.

e When m < 7 :
opt 1

T T
Eaal e )
At the optimum, the mean search time is :
3L 3
()" ~ Ty 4 b (48)
and the gain is :
2LV 47—diﬁ
G~ —= . 49
3D 3Tbal ( )

As we shall see in the following, the approximations are qualitatively good
in this regime, but not as precise as in the other regime. Indeed, the gain
obtained here would mean that the mean first passage time to the target is
smaller than 7., which is the minimal mean time to travel to the target
(except if Tpr > Tair). In fact, as can be seen in figure 31, simulations show
that ()" — T7p4. It means that very fast intermittence enables the searcher
to retain the best of the two phases : reactivity of phase 1 and motion of phase
2.

3.3.3 Simulations in the case of Poissonian targets

Simulations are needed to check the approximations. Generating an array of ran-
domly spaced targets is very easy. It is enough to know the position of the nearest
target on the left and of the nearest target on the right. When the searcher is in
the diffusive mode when it passes on one of these two targets, the search is over.
When the searcher is in the ballistic mode, it can only go past the right target, as
its motion is always in the same direction. When the searcher moves past its right
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Figure 29: Validity of the approximations. Mean first passage time to the target, renormal-
ized by the mean first passage time without intermittence. Small ballistic displacements
approximation (42) (dashed line). Large ballistic displacements approximation (41) (dotted
line). Intermediary approximation (43) (line). Numerical simulations (symbols). D =1,
V=1,L=103.
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Figure 30: In(m5"") as a function of In(7). Small 7y analytical prediction (47) (dashed black
line). Large 71 analytical prediction (44) (solid black line). Numerical values (symbols),
for L = 10 (green ), L = 103 (red +), L = 10° (blue o). D =1,V = 1.

target, it is sufficient to randomize a new target, the right target becoming the left
target and the new target becoming the target on the right. These steps can be
repeated until the new position after a ballistic phase is between the left and right
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100_
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Figure 31: In(G) as a function of In(m) (72 taken optimal). Small 7 analytical predic-
tion (49) (dotted line). Large 71 analytical prediction (46) (line). Numerical simulations
(points). L = 10! (green, 0), L = 103 (red, +), L = 10° (blue, 0). D =1,V = 1.

targets. Only two positions are to be kept in memory. To gain time without losing
accuracy, the length of diffusion steps is tuned depending on the distance to the
target, as proposed by Berezhkovskii et al. [1998|.

Figure 29 represents the mean search time (¢) as a function of 71 and 7 for
typical values of the other parameters. They allow comparing the numerical results
with the approximations (41) and (42), and with the intermediary approximation
(43). It shows that the approximations of large and small ballistic displacements are
valid in the expected conditions, and the intermediary approximation (43) correctly
reproduces the existence and the position of the minimum of (¢). Figure 30 supports
the scaling laws relating 7 and the corresponding optimal waiting time 75 at the
optimum. The exponent 3/4 of the theoretical scaling law (44) for 7 < 7 is very well
confirmed by the simulations. This is not the case for the law (47) for 7 > 7, which
indicates that the approximations should be handled with care for short waiting
times 7y, 7o, although their results are qualitatively correct. Figure 31 shows the
gain as a function of 77 in different possible conditions. It supports the conclusions
of the theoretical study, and indeed confirms that the gain due to intermittence can
be very important if 7qi¢ > Tpa-

3.3.4 Conclusion

In the case of a Poissonian distribution of targets, we have shown that the intermit-
tence remains valid as a strategy minimizing the search time. The optimal strategy
still consists in taking 7; as small as possible. However, 757" " is different from the
case of regularly spaced targets. The optimal mean duration of ballistic flights

scales as \/2(7'137)1/4 in the limit 7, > 7 = D/V?. In this regime, at the opti-
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mum, (t) ~ 1& 7, with a gain compared to diffusion alone oc L//D7y. As 3Pt

scales differently with 71 (exponent 3/4 instead of 2/3 when targets are regularly
distributed), if accurate experimental data were available, the two cases could be

distinguished.

3.4 Minimal model of intermittent search in two dimensions

3.4.1 Motivation

The models of intermittent search presented previously are one-dimensional, with
ballistic phases infinitely correlated, in the sense that the direction taken is always
the same. Here we develop a model of intermittent search strategies in two dimen-
sions without correlation, which encompasses a much broader field of applications, in
particular for animal or human searchers (published in [Bénichou et al., 2006], com-
pleted in [Bénichou et al., 2007| and highlighted by Shlesinger [2006]). On the basis
of this model with minimal ingredients, we show that bidimensional intermittent
search strategies do optimize the search time for non revisitable targets, i.e. targets
that are destructed when found. We explicitly determine the optimal way to share
the time between the phases of non reactive displacement and of reactive search.
Our approach relies on an approximate analytical solution based on a decoupling
hypothesis, which proves to reproduce quantitatively our numerical simulations over
a wide range of parameters. The main results of this model are discussed in this
section, while its technical analysis is left for section 5 — since this model appears as
a special case of a general model presented in detail in section 5.

3.4.2 Model
LV phase 2
-7 : -t A
.-~ phase 2; Y ;
; a \
Statl.c mode. The. slow reactive phfctse 5 Diffusive mode. The slow reactive phase
static and detection takes place with a e L .
i is diffusive and detection is infinitely
finite rate k. .
efficient.

Figure 32: Two models of intermittent search: The searcher alternates between slow reac-
tive phases (regime 1) of mean duration 71, and fast non reactive ballistic phases (regime

2) of mean duration 7.
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Following the previous model, we consider a two-state searcher (see figure 32) of
position r that performs slow reactive phases (denoted 1), randomly interrupted by
fast relocating ballistic flights of constant velocity V' and random direction (phases
2). We assume the duration of each phase i to be exponentially distributed with
mean 7;. As fast motion usually strongly degrades perception abilities [O’Brien et al.,
1990, Kramer and McLaughlin, 2001|, we consider that the searcher is able to find a
target only during reactive phases 1. The detection phase involves complex biological
processes that we do not aim at modeling accurately here. However, we put forward
two modes of detection. The first one, referred to in the following as the “diffusive
mode”, corresponds to a diffusive modeling (with diffusion coefficient D) of the search
phase like in the previous one-dimensional model in agreement with observations for
vision [Huey, 1968], tactile sense or olfaction [Bell, 1991]. The detection is assumed
to be infinitely efficient in this mode : a target is found as soon as the searcher-target
distance is smaller than the reaction radius a. On the contrary, in the second mode,
denoted as the “static mode”, the reaction takes place with a finite rate k, but the
searcher is immobile during search phases. Note that this description is commonly
adopted in reaction-diffusion systems |Rice, 1985 or operational research [Frost and
Stone, 2001]|. A more realistic description is obtained by combining both modes and
considering a diffusive searcher with diffusion coefficient D and finite reaction rate
k. In order to reduce the number of parameters and to extract the main features
of each mode, we study them separately by taking successively the limits k& — oo
and D — 0 of this general case. More precisely, in these two limiting cases, we
address the following questions : what is the mean time it takes the searcher to
find a target? Can this search time be minimized? And if so for which values of the
average durations 7; of each phase?

3.4.3 Methods

We now present the basic equations combining the two search modes introduced
above in the case of a point-like target centered in a spherical domain of radius b
with reflexive boundary. Note that this geometry mimics both relevant situations of
a single target and of infinitely many regularly spaced non revisitable targets. For
this process, the mean first passage time to a target satisfies the following backward
equations (for derivation of these equations, see section 5 and [Redner, 2001]) :

DV?2t, +

/ T (ty — t1)dBy — KL () = 1, (50)

27Ty

V. Vity — (ts— 1) = —1, (51)
T2

where t; stands for the mean first passage time starting from state 1 at position
r, and t, for the mean first passage time starting from state 2 at position r with
velocity V. I,(r) = 1if |r| < @ and I,(r) = 0 if |[r| > a. In the present form,
these integro-differential equations do not seem to allow for an exact resolution with
standard methods. If the searcher initially starts in phase 2, and if the target is
close, its initial direction matters. But as soon as the initial position is far from the
target, there are numerous reorientations before finding the target, implying that
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the initial direction does not matter. We take into account that the searcher initially
does not know where the target is by averaging the mean search time over the initial
starting position, uniformly distributed in the disk. Consequently, if b > a and
once the mean search time has been averaged over the starting position, the effect
of the initial direction can be neglected. It allows us to make an approximation and
solve the system (for more technical details, see section 5.4.1 for the static mode and
section 5.4.2 for the diffusive mode).

3.4.4 Results for the diffusive mode

TTT T T I T T[T T T T[T T T T[T T T T[T TTT[TTTTI[TT
10 20 30 40 50 60 70

LF

-5.0 -2.5 0.0 25 5.0 7.5

Figure 33: Simulations (symbols) versus analytical approximate (equation 52) (line) of the
search time in the diffusive mode : the search time rescaled by the value in absence of
intermittence as a function of 7 (left) and In7 (right) (the logarithmic scale has been
used due to the flatness of the minimum), for D =1, V =1, b = 451 and a = 10 (green
), a =1 (blue o) and a = 0.1 (red +).

For the diffusive mode (k — o0), the mean search time (t) estimate is :

1 —a*/b? M L. o*Dr (3—4In(b/a))b* — 4a®b* + a*
t) = — v/ja® — 1) — — — —=
< > (Tl+72) (O[2D7—1)2 {CLO(( /a’ )2L+ L+ 8DT2 b2 o a? } ’

(52)

with Ly =Ty [ ——— | (I (ba)K1 (a) — I (aa)K, (ba))

\/ 57‘2

tay/Dr Ty | —— | (Ii(ba)Ko(aa) + To(aa)K:(ba)),

\/ﬁTQ

54
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and :

M =, \/; (11 (bo) Ko(ac) + Ip(aa)Ky (ba))
DT2~ (54)
a“\/ Dry a
—4 (I (ba) Ky (acx) — 1 (ac) Ky (b))

181
2 _ 42)2 ~
aW=a* "\ | /b,

where o = (1/(D71) + 1/(D7))"2, and I; and K; are modified Bessel functions.
This expression (52) has proved to be in good agreement with numerical simulations
for a wide range of parameters (see figure 33). The optimization of the explicit
expression (52) leads to simple forms in the following situations, depending on the
relative magnitude of the three characteristic lengths of the problem a, b, and D/V'.
We limit ourselves to the case of low target density (a < b), which is the most
relevant for hidden target search problems. Three regimes then arise. In the first
regime a < b < D/V, the relocating phases are not efficient and intermittence is
useless. In the second regime a < D/V < b, it can be shown (see section 5.4.2)
that the intermittence can significantly speed up the search (typically by a factor
2), but that it does not change the order of magnitude of the search time. On the
contrary, in the last regime D/V < a < b, the optimal strategy, obtained for

D I(bfa) .
optN optrv_1 _121/2
N e 1 2~y =12 (55)

leads to a search time arbitrarily smaller than the non intermittent search time when
V —o00:

tair V2aV 1 Iy (WW) )

ain = ~
g opt 8D \ 4In(b/a) ) =31, (2/ 21n(b/a) — > 2¢/2In(b/a) —
(56)
This optimal strategy corresponds to a scaling law
D 1 (57)

=72 (2 -1/ In(b/a))’

which does not depend on V.

3.4.5 Results for the static mode

We now turn to the static mode (D — 0), which leads to the following estimation
for the search time

Tl+72 1 2 _ 2 2lo(@)
+4_1 (8y2 + (14 km) (4y* In(y/z) + (y* — 2%)(2* — 3y> + 8)))
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Figure 34: Simulations (points) versus analytical approximation (line) of the search time
in the static mode : the search time rescaled by the optimal value as a function of 72/a
(left) and 7 (right), for k =1, V =1, b = 28 and a = 10 (green 0J), a = 1 (blue o) and

a=0.1 (red +).
2]{}7'1 2]{37'1 b
h = —
where = V1+kn VTQ 1+knVn (59)

Here again, this expression (58) is in very good agreement with numerical simulations
for a wide range of the parameters (see figure 34)). In this case, intermittence is
trivially necessary to find the target, and the optimization of the search time (58)

leads for b > a to :
a N2 (2n(b/a) — 1\ 4
T1,min = <W> (%) ; (60)

Tomin = % (In(b/a) — 1/2)"/?, (61)

which corresponds to the scaling law 75 pmin = Qkaymin, which still does not depend

on V.

3.4.6 Conclusion

We have proposed a two state model of search processes for non-revisitable targets,
which closely relies on the experimentally observed intermittent strategies adopted
by foraging animals. Using a decoupling approximation numerically validated, we
have studied analytically the physically relevant bidimensional geometry, allowing
us to draw conclusions. (i) The mean search time (t) presents a global minimum for
finite values of the 7;, which means that intermittence is an optimal strategy. (ii)
The optimal TOp are different and depend explicitly on D and k, leading to different
scaling laws which are susceptible to discriminate between the two search modes .
(iii) A very striking and non intuitive feature is that both modes of search studied
lead to the same optimal value of 7'20pt. As this optimal time does not depend on the
specific characteristics D and k of the search mode, it seems to constitute a property
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of intermittent search strategies, as discussed in detail in the framework of a more
general model studied in section 5.

3.5 Are Lévy strategies really so advantageous?

As seen before, intermittent strategies are an alternative to Lévy walks (defined
in section 3.1) for interpreting trajectories of foraging animals. However, the Lévy
walks are often thought as optimal and widespread in nature. Is it really true?

3.5.1 The albatross story

Many foraging animals, including albatrosses, deers and bumblebees to name a few,
have been thought for long to adopt Lévy strategies described in the pioneering work
of Viswanathan et al. [1999]. These foraging behaviors were repeatedly accounted
for by a simple model stating in the more general framework of search processes
that Lévy walks are optimal search strategies, as they constitute the best way to
explore space. Recently, Edwards et al. [2007]| reanalyzed these data, completed
by newly gathered data on foraging albatrosses, and showed that in fact there was
no experimental evidence for the Lévy flight behavior. This study challenges the
interpretation of several experimental works, but also raises a new important and
puzzling question : why animals do not adopt the Lévy flight strategy which has
however been reported to be an optimal search strategy [Travis, 2007|? Here we
clarify this apparently paradoxical situation.

3.5.2 Optimizing the encounter rate with targets with Lévy walks : how
and when?

Viswanathan et al. [1999] actually consider in their model (see section 3.1 above) two
very different types of targets, which lead to two very different optimal strategies
(i.e. maximizing the number of targets detected at large time) :

e In the first case of what they call “revisitable targets” - meaning that , as
soon as detected, a target reappears at the same location - they find that the
encounter rate is optimized for a Lévy exponent p =~ 2.

e In the second case of “destructive search” where each target can be found only
once, or in the case of a single available target, the optimal strategy proposed
in Viswanathan et al. [1999] is not anymore of Lévy type, but reduces to a
simple linear ballistic motion.

Since then, further studies have completed these results.

Bartumeus et al. [2002] studied the case of non-revisitable moving targets. They
showed that a Lévy strategy with u = 2 is often better than a “Brownian” one
(u > 3). However, James et al. [2008] extended the study to ballistic motion, that
outperformed these Lévy strategies.

An intermediate situation has been studied by Raposo et al. [2003|, Santos et al.
[2004], where the immobile target is destructed upon encounter, but regenerates
after a time 7 at the same place. There are two regimes. When 7 is large (> 7,
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a critical time), ballistic motion remains the best strategy. When 7 < 7., the
best pis 1 < p°? < 2. However, if 7 is smaller than the time needed to travel
between two targets, waiting for renewal of the target will outperform searching for
an hypothetical other target. When 7, is explicitly calculated or simulated in Raposo
et al. [2003], Santos et al. [2004], it is smaller than the typical time spent to travel
from one target to another.

In Bartumeus and Levin [2008], targets are in patches or Lévy distributed. Even
if the targets are destroyed upon encounter, finding a target means that the presence
of other targets in the vicinity is likely, which is close to the case of revisitable targets.
Unsurprisingly, optimum is achieved for a Lévy distribution, with pu ~ 2.

In Reynolds and Bartumeus [2009], the optimum for destructive targets is yp — 1
except in two cases (where 1 < p" < 2). On the one hand the optimum is not
ballistic when the searcher can fail in capturing a detected target. On the other hand,
for targets destroyed upon encounter, and for the very specific one-dimensional case,
as the measure of efficiency is the number of targets captured during a long time,
the searcher is after some time in a situation with a target close on one side, but
the next target on the other side very far away : pure ballistic motion is not favored
because it can take the wrong direction.

Finally, in the case of revisitable targets and the related cases (regenerating tar-
gets, patches, failed capture), the Lévy strategy u ~ 2 emerges only as a compromise
between trajectories returning to one and the same ever target zone, and straight
ballistic motion which is indeed the best way to explore space. However, it does not
mean that Lévy strategy is the most relevant here. Indeed, once a target is found,
the animal could switch behavior as suggested by Benhamou [1992]. In the case of
non-destructed or regenerating target, it would be enough to stop and wait. In the
case of a failed capture, or of patched preys, “Brownian” search (u > 3), or other
strategies which enable the searcher to thoroughly explore its surroundings where
target(s) lie, would be efficient. For allowing the searcher to use strategies better
than Lévy, it is enough that the internal state of the animal changes when it detects
a target, which is a very minimal form of memory. Thus Lévy walks are optimal
only in restrictive conditions.

3.5.3 Do animals really perform Lévy walks?

As the optimality of Lévy strategies crucially requires conditions on the targets
(regenerating at the same place, patched or hard to capture) and conditions on the
searcher (no switch when a target is found, which is a very simple form of memory),
it cannot be taken as a general rule even if realistic for certain species. On the
contrary, we argue that the general question of determining the best strategy for
finding a single hidden target belongs to the situation of destructive search, where
in the framework of the model of Viswanathan et al. [1999], the most efficient way
to find a randomly hidden target is simply a linear ballistic motion and not a Lévy
strategy. As a consequence, there is no paradox : the reason why Lévy walks are
not observed in the work of Edwards et al. [2007] is probably because they do not
constitute robust optimal search strategies.

And what about other experimental observations? Among experimental studies
analyzing organisms trajectories as a succession of segments interspersed with turns,
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many of them report that the times between turns are distributed exponentially (a
list of examples far from exhaustive : C.Elegans worm [Fujiwara et al., 2002, Pierce-
Shimonura et al., 1999], fish [Hill et al., 2000], plankton in a part of the conditions
studied by Bartumeus et al. [2003], amoebae |Li et al., 2008|, etc.). However, apart
from the controversial albatrosses study |[Edwards et al., 2007|, there is a boom in
publications claiming that Lévy behavior is observed for some animals. A part of
them can be dismissed as a convincing proof of Lévy behavior. On the one hand, as
explained in details in Edwards et al. [2007|, due to experimental limitations, most
data span over a very limited range (typically 1-2 decades), and only a few studies
go beyond a linear fit with logarithmic scale which cannot convincingly rule out
other decreasing functions (exponential or Gamma laws for example). On the other
hand, patterns and processes should not be confused, as underlined by Benhamou
[2007]. The same observed patterns can often be explained by different models. It
is not because a trajectory is similar to a Lévy walk that the underlying process is
necessarily a Lévy walk. For example, a composite classical random walk can look
very similar to a Lévy walk for a time short enough (see figure 35). Nonetheless, not
all the studies could be discarded (see Viswanathan et al. [2008] for a review), but it
does not mean that Lévy walks are an efficient search strategy. Indeed, as underlined
by Viswanathan et al. [2008], other selection pressures could be predominant. For
example, when targets location is known and when exploitation is optimized instead
of search, Lévy walks can emerge from the interaction between the environment and
the searcher [Boyer et al., 2006, Santos et al., 2007, Jiang et al., 2009].

3.6 Conclusion on animal foraging

Lévy walks are a fashionable model for interpreting trajectories of foraging animals.
Two main restrictions should be kept in mind. On the one hand, there is a contro-
versy about at least a part of the experimental data which were thought to support
Lévy walks. On the other hand, the conditions in which Lévy walks are optimal are
very restrictive. However, this does not rule out any contribution from Lévy walks.
For example, as discussed by Lombholt et al. [2008]| and in section 6.3.2, intrinsically
intermittent search models could be advantageously combined with Lévy walks.

In this context, we argue that some animals cannot detect their target when they
are moving ballistically, and in fact alternate between these fast but blind phases
with slow detection phases.

A simple model of intermittent search has been extended for this thesis project.
The influence of target distribution on the mean search time has been studied. The
relevant case of a searcher in a two-dimensional space without correlation in the
direction of successive fast “blind” phases is another important extension. We have
shown that the mean search time for such intermittent behavior can be minimized
by tuning the mean durations of each phase. In particular, in the latter case, the
optimal mean duration of the fast blind phase does not depend on the description
chosen for the slow detection phase.

Intermittent search strategies, because they rely on experimental observations,
and because they prove to be efficient and robust, appear as a good alternative for
interpreting animals trajectories.
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Lévy walk with p =2

Composite random walk : alternation of about 10 short steps (mean 1, distributed
exponentially), and one large step (mean 10, distributed exponentially).

Figure 35: Comparison between a Lévy walk and a composite random walk : they look
similar at short times.
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We have just seen that intermittent search strategies are observed at the macro-
scopic scale. They are also observed at the microscopic scale. In what follows, we
will focus on two examples : the localization by a protein of a specific DNA sequence;
and active transport towards reactive targets inside cells. In the first example, it
has already been shown that the search is intermittent and that this intermittence
does speed up the search. For this thesis project, an important aspect of these
modelings has been completed, namely the distribution of length traveled on DNA
for a 3-dimensional excursion. To describe the case of vesicle transport, we build a
completely new model based on intermittent search.

4.1 Protein/DNA interaction

The first example of microscopic intermittent search we present is the search by a
protein for a specific sequence on DNA.

First, we introduce the concept of facilitated diffusion and review recent mod-
els. In particular, the searching protein alternates between 1-dimensional and 3-
dimensional phases. The 3-dimensional excursions can be separated in “jumps” and
“hops” that we define in the following. We explain why the hop distribution is needed
(section 4.1.1). After this introduction, we analytically give the hop distribution in
the simple case of normal diffusion in an infinite space (section 4.1.2). Then, these
results are adapted to interpret a single-molecule experiment, done in a finite ob-
servation time and in a specific geometry (section 4.1.3). Eventually, the results are
extended to anomalous diffusion, relevant to in vivo situations (section 4.1.4).
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The work presented in this section has been done in collaboration with Pierre
Desbiolles, along with his post-doc Andreas Biebriecher and his PhD students Is-
abelle Bonnet and Natacha Porté, of the optic and biology team, LKB (ENS, Paris).
Christophe Escudé (MNHN) helped also for the DNA construct and showed me some
molecular biology. This work is reported in two publications : Bonnet et al. [2008]
and Loverdo et al. [2009¢].

4.1.1 Short review of facilitated diffusion

Biological context

Figure 36: Artist view of a DNA /protein interaction, which combines 1-dimensional sliding
phases and 3-dimensional relocation phases. Picture by Virginie Denis/Pour la Science
n°352, February 2007.

Various functions of living cells - and therefore at larger scales of living organ-
isms - are regulated by chemical reactions between different molecules. The first step
before reaction is the encounter between these different molecules. The importance
of the kinetics of such biochemical reactions is illustrated by the bacterial restric-
tion and modification system [Wilson and Murray, 1991], that involves couples of
methyltransferase and restriction enzymes recognizing the same sequence on DNA
(for example EcoRV recognizes the sequence GAT ATC' [Taylor and Halford, 1989]).
Methyltransferase enzymes methylate this specific sequence on the bacterial DNA
in order to protect it from restriction enzymes. When an unmethylated viral DNA
enters the cell, it is very likely to contain the target sequence. Indeed, this sequence,
typically 4-8 base pairs, is short compared to the viral genome, which, depending
on the virus, is made of 10*> — 105 base pairs (typically 5.10% for bacteriophages)
(additionally, for a better efficiency, there are different restriction enzymes). The
infected bacteria then faces a vital search problem : restriction enzymes must find
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their target sequence on the viral DNA to inactivate the virus before it exploits the
bacteria machinery and kills it.

More generally, it is well established that some sequence-specific proteins find
their target site in a remarkable short time. For the lac repressor for example,
Riggs et al. [1970] measured association rates orders of magnitude larger than those
expected for reactions limited by the classical three-dimensional diffusion (results
confirmed by Hsieh and Brenowitz [1997] at different salt concentrations, ruling out
electrostatic effects as the only explanation). Halford [2009] argues that in fact only
a few enzymes react significantly faster than the 3-dimensional diffusion limit. But
he underlines that there are many enzymes reacting at rates close to the diffusion
limit, and that this observation is still impressive. Indeed, enzymes have to find their
target in experiments with a considerable excess of DNA, and, as they have to probe
the target to be sure it is the right one, they are expected to waste a lot of time on bad
sequences. In a series of seminal articles, Berg et al. [1981], Winter and Von Hippel
[1981], Winter et al. [1981] proposed that 3D diffusion (“hopping”/“jumping”) was
not the only motion available to the protein, even if no energy is consumed (unlike
some enzymes consuming energy to scan DNA processively). In some cases, proteins
have several sites that can associate to DNA, and thus they could do “intersegmental
transfer”. We shall consider in the following the case of proteins with only one site
of association with DNA, ruling out this possibility. Another possibility is a weak
electrostatic interaction between these proteins and DNA, enabling the proteins to
diffuse along the DNA | a process called “sliding” (see Von Hippel [2007] and Dahirel
et al. [2009] for more details on the weak electrostatic interaction). Berg and Von
Hippel proposed that the combination of sliding and 3D diffusion, i.e. facilitated
diffusion, makes the search for a sequence faster than 3D diffusion alone.

Actually, this search mechanism can be classified as intermittent, in the general
meaning defined in section 2.1. Indeed, on the one hand, 3-dimensional diffusion off
the DNA is fast, but does not allow for target detection. On the other hand, sliding
is a phase of motion along DNA, which therefore enables target detection. The
enzyme motion during sliding is however much slower (there is much more friction,
and in some models, a protein of size R is assumed to follow the helical groove,
leading to a diffusion coefficient scaling as R? instead of R for classical diffusion

[Schurr, 1979]).

Such intermittent trajectories can reduce the mean search time, as shown by
different models (see for example Coppey et al. [2004], Slutsky and Mirny [2004]
for simple approaches). We present below a simple argument for the efficiency of
intermittence using a simple model. Sliding is taken as diffusive, with its duration
exponentially distributed, of mean 7. The mean span of such a diffusive phase is
Ly = 2y/Dmy. 3D excursions are taken as “teleportation”, meaning that after a 3D
excursion, the new position on the DNA sequence is taken at random, uncorrelated
with the previous position. These excursions are supposed to have a mean duration
T3. The mean search time is then (t) ~ (73 + 72) N, where N is the mean number
of 3D excursions needed to find the target. The average probability of finding the
target during one sliding phase is L;/¢, ¢ being the DNA length. Consequently
{t) ~ (nn + TQ)Q\/LDT. Here, the mean search time scales linearly with the DNA

length, whereas with sliding alone, the mean search time scales as £2. More precisely,
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the mean search time is minimized for 71 = 7. It is what is found by Slutsky and
Mirny [2004] and is refined by Coppey et al. [2004].

The pioneering studies on facilitated diffusion |Riggs et al., 1970, Berg et al.,
1981, Winter and Von Hippel, 1981, Winter et al., 1981| are based on ensemble
measurements, which were for a long time the only way to experimentally access to
protein/DNA interaction. Recently developed techniques make possible the obser-
vation of this interaction at the level of a single molecule, with a resolution in space
and time still improving (for a recent review on the experimental results of such
techniques, see Gorman and Greene [2008]). It is now confirmed directly that many
proteins searching for a specific sequence on DNA combine “hopping/jumping” and
“sliding” (see figure 36). Sliding phases have been clearly identified (both in vitro
[Kabata et al., 1993] and in vivo |Elf et al., 2007|), as well as hopping/jumping
phases |[Gowers et al., 2005, van den Broek et al., 2008, Komazin-Meredith et al.,
2008, Bonnet et al., 2008|.

With these new experiments, theoretical studies have bloomed too. In what
follows, we review recent models (we do not treat intersegmental transfer, but only
motions accessible for proteins with a single DNA binding site). First, we define the
methods and the observables used, then the descriptions of the 1D phase and the
3D phase that have been proposed.

Approaches
We first classify the main approaches used.

Elementary interactions

Some models (see for example Florescu and Joyeux [2009]) propose to go back
to the electrostatic potential created by DNA and to follow dynamics by molecular
simulations. When they simulate the trajectory of a protein subject to these poten-
tials, they do observe sliding and 3D excursions. However, answers are only found
numerically, and hypotheses on the interaction energies are not more justified than
hypotheses directly on the 1D and 3D motions properties.

Scaling laws

Some other models are based on scaling arguments. Halford and Marko [2004]
for example propose an optimization of the sliding length by roughly estimating the
time for the protein to find the coil, then the time to find the target inside the
coil. They do find an optimal sliding length. Hu et al. [2006] give scaling relations
using equality between fluxes. They propose that there is an “antenna length”, i.e.
a typical scale below which the dominant transport is sliding. They see the DNA as
a collection of beads of antenna length size. They balance the 3D flux to DNA, and
the 1D flux to the target. The latter flux is dependent on the probability that an
enzyme is in the bead containing the target, and on the typical time and probability
of finding the target when in the right bead.

Stochastic modeling

Another way to construct models is to make assumptions on the 1D and 3D
motions, follow what can happen to a single protein and with which probability,
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attempt to obtain mathematically the probability distribution of the search time,
rich in information, and exploit it. This method is used by Coppey et al. [2004],
Lombholt et al. [2005, 2007, 2009], Eliazar et al. [2007, 2008|, Meroz et al. [2009],
Bénichou et al. [2009]. Meroz et al. [2009] underline that this stochastic approach
gives similar results as “kinetics” approach (based on concentrations and reaction
rates), but allows numerous extensions.

Parameters relevant to the optimization of the search

Mean search time

Minimizing the mean search time is the optimization procedure the most often
used (see for example Coppey et al. [2004]). However, obtaining the entire distribu-
tion of the search time is more informative than the mean search time alone. Indeed,
the relevant parameter for the cell is often the mean search time (as it is at the first
order the inverse of the reaction rate), but not always, as will be illustrated.

Variability

Wunderlich and Mirny [2008] partly focus on variability. A target which is close
to the starting point of the protein can be found by sliding alone, and with a low
variability of the search time. In contrast, if the target is far away from the starting
point of the protein, it is found after numerous 3D excursions. The mean search
time is longer, and the spread of the distribution of the search time is larger, even
relatively to the median of the distribution. This spread induces more noise. As noise
could sometimes be problematic, reliability of the signal may be more important for
some functions than kinetics.

Typical time

Another outcome of variability is that the mean time is not necessarily represen-
tative of the typical time. Bénichou et al. [2009] propose a model in which enzymes
can be stuck forever at the wrong place. The mean search time is then infinite. But,
depending on the parameters, the probability p of such a catastrophic event can be
very low, and what matters will be the typical time. They underline that this effect
is particularly important when there are n > 1 searchers. In this case, the catas-
trophic event happens only when all the n enzymes are stuck, event of probability
p", decreasing rapidly with n.

Mean search time for several searchers

The influence of the number of searchers is also discussed in Sokolov et al. [2005],
Eliazar et al. [2007, 2008], Meroz et al. [2009]. As before, the mean time for the
target to be found by any of the searchers is not simply the mean time divided
by the number of searchers, it depends on the distribution of the search time for a
single searcher. Moreover, if the concentration of searchers increases considerably,
searchers cannot be considered as independent anymore. Proteins sliding on DNA
will act as “roadblocks” for each other.
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Large number of searchers

These roadblocks will decrease the effective sliding length, and may also hide the
target. This can have negative consequences. Li et al. [2009] see it as a trade-off.
On the one hand, the more the proteins, the more the searchers for the target, the
quicker the search. On the other hand, the more the proteins, the more the crowding,
the less efficient the search of a single protein. They predict that the optimum is
10* — 10° DNA binding proteins for E.Coli, close to the experimental value of 30 000
proteins.

Colocalization

These roadblocks can however be beneficial if the target is close, as they prevent
the sliding searcher from overshooting the target. Kolesov et al. [2007], Wunderlich
and Mirny [2008] study transcription factors, proteins binding on DNA and regu-
lating how often a gene sequence is read, thus regulating gene expression. They
argue that a sequence coding for a transcription factor should be colocalized with
its target sequence (see also Bénichou et al. [2008b] for a further optimization of
this colocalization effect with respect to the diffusion coefficient of the protein). It is
indeed what is observed in real prokaryotes genomes. It only works in prokaryotes,
where there is no cell compartments separating protein production from DNA. But
other mechanisms could be imagined in eukaryotes.

FEukaryotes

Indeed, in eukaryotes, DNA is packed inside the nucleus. Not all the DNA is
equivalent. A first heterogeneity comes from having DNA close to the nucleus pores,
and DNA buried deep inside the nucleus. Moreover, eukaryote DNA is packed in
what is called chromatin (a complex system of proteins binding to the DNA and
controlling the 3D structure). Some DNA regions could be more or less accessible
depending on the chromatin configuration. The 3D regular structure of chromatin
could also often bring together the same sequences in the 3D space, a sequence far
away in the linear sequence could consequently help locating the target sequence.
Kampmann [2005] argues qualitatively that proteins binding to DNA could take
advantage of these heterogeneities : depending on the searched sequence, the optimal
strategy is not the same.

Specificity

If different strategies are adopted depending on the target, it will also help for
specificity. For example, in the case of the restriction-modification system, the diffi-
culty is methylating the sequence on bacterial DNA while cutting the same sequence
on viral DNA. As bacterial and viral DNA do not have the same characteristics (bac-
terial DNA is supercoiled, longer, with more bound proteins), the properties of the
enzymes search could have been selectioned by evolution to ensure maximal inacti-
vation rate for viral DNA, while not plaguing bacteria with auto-immune damage
[Nardone et al., 1986].
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Finally, various observables can be optimized, but the first step of modeling
always consists in defining the different motions. Facilitated diffusion consists of 1D
and 3D excursions. Different modelings of these two phases have been proposed,
which we review in the next sections.

Descriptions of the 1D phase (sliding and recognition)

] ‘

—— diffusion,
or other
motions

| | ‘ |

Figure 37: Sliding is often represented by diffusion with perfect reactivity on the target.
This figure shows the two main directions for a more realistic description of the 1D phase :
on the one hand, the sliding is not necessarily diffusive, and on the other hand the 1D
phase could be in fact a combination of 2 phases, one fast but with low recognition, and
another slow (or immobile), but with high recognition of the target.

Simplest description

The phase of one-dimensional interaction with DNA| “sliding”; is often described
as Brownian diffusion with perfect reaction when passing on the target (see for
example Coppey et al. [2004] or Bénichou et al. [2008b]).

How the motion could depart from diffusion

A first limitation of this simple description is when proteins binding to DNA are
numerous and create traffic jams [Sokolov et al., 2005]. But even in the case of a
single protein, it should be kept in mind that the DNA is not homogeneous. Indeed,
the DNA function is to encode information, implying an heterogeneous sequence.
Then, the DNA /protein interaction energy will vary with the sequence. The energy
distribution is often assumed to be Gaussian |Barbi et al., 2004, Wunderlich and
Mirny, 2008]. Barbi et al. [2004] show that in this case sliding is not purely diffusive :
the protein will be trapped for a longer time on some sequences. However, with
realistic numbers, they argue that for sliding longer than a hundred base pairs,
diffusive behavior is recovered because of averaging.

How the motion influences results

As sliding could depart from Brownian diffusion, the influence of the type of
sliding motion has to be investigated. Coppey et al. [2004] propose a simple model
describing 3D phases as “teleportation”, and 1D motion as Brownian motion, with
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exponential durations of both phases. The exact analytical expression of the Laplace
transform of the first passage time distribution is calculated. Intermittence is found
to decrease the mean search time if the length of DNA /7 is large enough. Indeed, with
the 3D excursions, the mean search time scales as ¢, whereas with sliding alone, the
mean search time scales as ¢2. This simple model is extended by Eliazar et al. [2007]
(see also the shorter articles Eliazar et al. [2008], Meroz et al. [2009]). They rewrite
the Laplace transform of the first passage time distribution, and discuss results for
several non Brownian 1D motions (ballistic, self-similar, with halts (in particular
when halts durations are widely distributed, leading to a subdiffusive behavior)).
They find that there are always regimes in which intermittence is favorable. In
particular, in the case of 3D excursions with finite mean durations, the mean search
time with arbitrary scanning mechanism cases remains of order o< ¢. Consequently,
for long enough DNA| intermittence is favorable compared to sliding alone, for a
wide range of sliding motions.

Target recognition

Another simplification often used is to assume perfect reactivity with the target,
1.e. when sliding, the searcher detects immediately its target when it passes on
it. Slutsky and Mirny [2004] discuss the influence of sequence roughness. If o, the
typical energy scale of interaction energy between protein and DNA, is of order
kgT, the sliding diffusion is fast, but the enzyme would not stop at its target. If
the typical energy scale o is of order bkgT, recognition is at the contrary high,
but sliding diffusion coefficient is very low, leading to a huge search time. They
propose that the enzyme changes conformation while sliding, alternating a search
state (low o) and a recognition state (high o). If the two energy landscapes are
highly correlated, it is possible to conciliate high speed and high reliability. Hu
et al. [2008] have extended their previous scaling arguments [Hu et al., 2006] in the
case of a similar 2-state enzyme. More quantitatively, Bénichou et al. [2009] study
a search strategy where three modes are available for the enzyme : 3-dimensional
excursions, modeled as teleportation; 1-dimensional “search” mode : diffusive sliding,
but without target detection; and 1-dimensional “recognition” mode : immobile, but
allowing the protein to form a stable complex with the target. The energetic profile
of the barrier from the “search” to the “recognition” state is taken Gaussian, the
target being the lowest point of this profile. In the extreme case with no return
from the recognition phase, there are catastrophic events when all the enzymes are
stuck at a wrong sequence. However, depending on the parameters, the probability
of such events and the typical search time can be low.

Descriptions of the 3D phase (jumping/hopping)
We now review the different descriptions of the phase in 3 dimensions.

Time distribution

In the simple model of Coppey et al. [2004], the distribution of the duration of the
3D phase is assumed to be exponential. The Laplace transform of the distribution
of the first passage time to the target for this model is extended for any distribution
of 3D excursion duration by Eliazar et al. [2007] (see also Eliazar et al. [2008],
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Figure 38: Description of 3D excursions : there are uncorrelated jumps, that can be con-
sidered as “teleportation”; but loops formed by the DNA can induce Lévy-distributed relo-
cations; and 3D excursions can also return on DNA at short scales, leading to correlations
in the position on the sequence of the starting and ending point (hops).

Meroz et al. [2009]). The expression of the mean search time does not depend
on the duration distribution of the 3D phase, but only of its mean duration, as
Coppey et al. [2004] have already noticed. Eliazar et al. additionally discuss what
would happen with infinite mean relocation time. Lomholt et al. [2007] propose
an explanation for such a large distribution. They explore the effect of a crowded
environment with subdiffusion (r?(t)) o t* (0 < o < 1) caused by waiting times
distributed as p(t) ~ 7%/t'T®. They argue that because of these waiting times, the
probability that the protein has not yet left the DNA at time ¢ and the probability
that an unbound protein has not yet bound to DNA after a time ¢ both scale as
1/t1*. Their results have two main practical implications. On the one hand, in an
experiment, as enzymes can remain stuck for very long times, ensemble averages do
not lead to the same results as time averages. On the other hand, as enzymes would
slide for a longer time and as it would take them a very long time to return to DNA,
the genes coding for transcription factors should be close to their target sequences,
as already underlined by Wunderlich and Mirny [2008].

Jumps

Another widespread assumption (used for example by Hu et al. [2006] at scales
larger then the antenna size, Coppey et al. [2004], Eliazar et al. [2007], Bénichou
et al. [2009], etc.) is that the 3D excursions are “teleportations” : no matter how
long an excursion lasts, the new position on DNA is chosen at random, uniformly
over the DNA . The justification for such an approximation is that in biological
systems, DNA is coiled. When the protein has a span (end-to-end length of the 3D
excursion) greater than the DNA correlation length (also called persistence length,
and noted ¢), the protein “sees” the coil. Thus, when performing a 3D excursion,
the enzyme could bind on DNA at a location close in 3D, but very far away in
the sequence. Randomness is justified in these relocations. We shall call “jumps”
these 3D excursions, whose starting and ending points are uncorrelated in the 1D
sequence. We shall call “hops” the correlated 3D excursions. van den Broek et al.
[2008], Lomholt et al. [2009] underline that coiling is important, notably because
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it changes the local DNA concentration : the more packed the DNA, the higher
the local DNA concentration, the higher the probability of jumps compared to hops
(enabling the protein to explore previously unscanned areas), and the less the time
spent in 3D.

Loops

In complement to these “teleportation” jumps, Lomholt et al. [2005] suggested
that as polymers form loops with length between contact points distributed as
|z|717 (for instance a = 0.5 for Gaussian chains, o ~ 1.2 for self-avoiding walks
chains), it adds relocations following this law : at the end of a 3D excursion, even
proteins with a single binding site are likely to land on regions of DNA that are close
in the 3D space. They obtain a rich behavior and optimization depending on «, for
an annealed description of the loops (relevant as the DNA conformation fluctuates).
Li et al. [2009] suggest that sites susceptible to be close to the target by looping
could have been designed to help searching for the target.

Hops

Hopping is often included in an effective sliding length (Hu et al. [2006] for ex-
ample). It is not always satisfying. On the one hand, this effective sliding length
could be hard to estimate (because it is not related only to the binding energy).
On the other hand, hopping has different properties from sliding : a target is very
unlikely to be found with a hop, and a hop could enable a protein to bypass ob-
stacles. Wunderlich and Mirny [2008| present a composite model : sliding as 1D
diffusion; teleportation jumps; and hops as 3D excursions rebinding to the same
DNA strand, evaluated mainly numerically. They use numerical simulations to eval-
uate the distributions of hops (where the protein goes back) and the probability that
a 3D excursion is a jump instead of a hop (found to be 0.1675). Their results depend
strongly on the size of the nodes chosen (here 1 nm). A simple way to understand
why the node size matters is to perform a random walk in one dimension : a target
is located at = 0, and an absorbing wall is at = 4 (analogue to the limit length
beyond which 3D excursions are considered as hops). If you make steps of dx = 2,
and you start one step away from your target, you find your target half of the time.
If you make steps of dx = 1, and you start one step away from your target, you find
the target 3/4 of the time. Wunderlich and Mirny [2008] also try to evaluate ana-
lytically the jump probability (for an extension of their formula, see equation (78)).
In the following section, we give a much more comprehensive analytical account of
hops.

4.1.2 Hops and jumps : normal diffusion

Motivation

An analytic description of hops (i.e. 3D excursions with a span shorter than &,
the DNA correlation length) is needed for more realistic models of facilitated diffu-
sion. Indeed, two questions are to be solved. On the one hand, the hop distribution
is important in itself, as it shows how far a hop goes, and how hopping could com-
plete the other correlated motion, sliding. On the other hand, the proportion of
hops and jumps among 3D excursions is important, as jumps enable the protein to
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scan sequences far away from the starting point. We first give analytically the hop
distribution for a simple configuration.

Note that Chechkin et al. [2009] and Levitz et al. [2008] study very similar
problems of diffusion close to an absorbing cylinder, but in the limit of perfect
absorption. They analyze the time of first return to the cylinder, whereas, as detailed
in the following, we convert the time to the span of a 3D excursion. The conversion
of time into distance is simple for normal diffusion, as diffusion in different directions
are independent. The return time to the cylinder is calculated by considering only
the plane perpendicular to the cylinder, whereas the quantity of interest is the
distance traveled along the axis of the cylinder.

Model and methods

Jumping
Hopping (’0)
Sliding
b -
g
DNA

Figure 39: Facilitated diffusion of a protein on DNA. Left: schematic definition of sliding,
hopping and jumping. Right: model parameters.

The simplest modeling of 3D excursions is normal 3D diffusion, with diffusion
coefficient D. We model the DNA as an infinite cylinder of radius a = Rpna +
Ryrotein, and consider a point-like protein (modeling equivalent to a cylinder of radius
Rpna and a spherical protein of radius Ry,otein) (see Fig. 39 right).

We denote ¢ = ¢(r, 2,0, t|rg, z0,t = 0) as the probability that a protein, starting
at t = 0 from the point r = 7y, 2 = zg, with uniform probability on #, will be at
(r,z,0) at t. Because of the symmetry in 6,

oc 0? 2? 10
—=D|(—=+-—=+-=—)c 2
ot (82’2 i or? * r@r) ¢ (62)
The boundary conditions are :
c(r,z,t=0) = d(r —19)d(z — 29), (63)
271"/’0
Oc
= - =a). 4

This latter condition, a radiative boundary condition, traduces the idea that the
cylinder is semi-absorbing [Redner, 2001]. If K — oo, it is equivalent to a perfectly
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absorbing cylinder. If kK — 0, it is equivalent to a perfectly reflective cylinder. These
equations are rewritten for g = g(r, 2|, ro, 20) = fooo cdt :

0?2 9 10 1
D <@+ﬁ+;5)g— —rm5(T—To)5(z—Zo), (65)
dg
I . = kg(r =a). (66)

The probability that the protein comes back to the cylinder at z (starting from rg
and zg = 0) is :

© 0
P(z|rg) = 27m/ D a—;

0

dt = 2raD @

o = 2maDkg(r = a). (67)

r=a

r=a

g is symmetric in respect to z, as we have chosen zy = 0. It is convenient to
decompose g into Fourier components :

1 o
g=— cos(kz)hy(r)dk. (68)
2m Jo
Then : -
P(z|ro) = aD/@'/ cos(kz)hg(r = a)dk, (69)
0
with Ay solution of :
Phy  1dhy d(r — o)
dr? + rdr Wohi == 2rroD (70)

The solutions of the homogeneous equation are Ko(kr) and Iy(kr) (modified Bessel
functions). h.(r) is the solution for r € [a, ], h~(r) is the solution for r € [rq, 0ol.
The boundary conditions are :

hs(r — o0) — 0, (71)
Oh
8—: -~ = kh(r =a), (72)
ho(r=rg) = hs(r =1¢), and (73)
Oh~ Oh. 1
> _ < S _ 4
or |,  Orl._, 2mwroD (74)

We solve and obtain (noting r,, = min(r,ro) and ry; = maz(r,ro), and using the
Wronskian relation Ko(x)I;(z) + Ki(z)lo(z) = 1/x) :

he(r) = 27:1) T IZ(;(TZ){O Ty Uo(Er,) (EE () + I (k) + Ko(kr) (KT (Fe) = (k).
(75)
In particular, for r = a :
(@) = — Ko(kro) (76)

~ 27Da kK, (ka) + rKo(ka)

72



4.1 PROTEIN/DNA INTERACTION

Results
Consequently :

= l h cos(kz Ko(kro)
P(z|ro) = - /0 (k )le(lm) n Ko(ka)dk' (77)

The behavior at large z is given by P(z|rg) ~ (In(ro/a) + (ka)™1) /(22 In*(z/a)).
As underlined by Levitz et al. [2008], the tail of the distribution of returns to a
cylinder is very wide, with an infinite mean return time, which translates here in an
infinite mean distance |z| between starting and ending points.

Going back to the original problem of DNA hopping/jumping in vivo, when the
DNA is randomly coiled, this distribution answers two questions. On the one hand,
Eq.(77) gives the analytical distribution of hops, as for z < £ (£ being the DNA
persistence length), modeling the DNA as a straight cylinder is legitimate. On the
other hand, all returns with z > ¢ will be jumps, thus we have directly access to the
proportion of jumps with the complementary cumulative distribution:

In(ro/a) + 1/ka
In(¢/a)

Wunderlich and Mirny [2008] have also evaluated analytically the jump proba-
bility. They found pjump ~ In(ro/a)/In(R;/a). with ro and a defined similarly to
our model, and R, is an upper limit, beyond which the protein is likely to bind to
another DNA strand. They have indeed considered an infinitely absorbing cylinder,
and their expression is coherent with ours. They have studied one asymptote (k
finite and ry — a) whereas we completely solve the problem. In section 4.1.3, when
we compare our model with experimental data, we choose the other limit regime (x
finite and ro — a) because we think that this description is more relevant than the
other limit regime for describing the interaction of an enzyme with DNA. Indeed,
it is improbable that DNA could be perfectly absorbing, because, for example, the
enzyme can present its wrong face to the DNA, which would not allow for the bind-
ing. Moreover, the enzyme starts a 3D excursion just after a sliding phase, very
close to the DNA. It should be conceded that our model is continuous, and that it
possible that a length ry — a exists in the microscopic system. But this length is
hard to evaluate, and if we describe the interaction with x finite and rq > a, in the
very likely regime (rg — a) < k™!, the contribution of ry to the jump proportion is
negligible.

The equation (78) means that as soon as the protein departs from the DNA
further than its diameter, the jump probability is high. Returning to the search
problem, when jumping is favorable, decreasing the persistence length speeds up the
search process, as found by van den Broek et al. [2008|.

C(lz =€) = / Pl ~ (78)

Median of the distribution

As seen above from equation (77), the mean distance of return is infinite. The
relevant quantity to look at is therefore the typical return distance, given for instance
by the median. In what follows, we study the median of the length of return (length
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along the axis of the cylinder). We first study the two limits (rp = @ and & finite
first, then kK — oo and ry > a) before deriving the full expression. Besides giving
the typical return distance, these results give another physical interpretation of .

Regime rg = a
We first study the case of rp = a. In this regime, the probability of return at a
distance z is :

P(z) = P(z|rg = a) = 1 /OOO COS(kZ)EKl(

™

K()(kd)
ka) + Ko(ka)

dk:. (79)

If K — oo (the cylinder is infinitely absorbing), it tends to d(z), as expected.
The distribution of the size of the hops (|z| instead of z) is :

2 [ Ko(k
P(l2]) = —/ cos(kz)~ otka) . (80)
7T Jo K1 (ka) + Ko(ka)
The probability of making a hop smaller than z writes :
? 2 [ sin(k Ko(k
C(l2)) = / P(])dz — _/ simtkz) __ Folka) gy
0 T Jo ko ZKi(ka) + Ko(ka)
8 7
10 // o
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108 //
Ve
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Figure 40: Median of returns as a function of =1 (with ro = a). Blue solid line : analytical
expression for k1 < a : Zmeq ~ 0.53557 1. Red dashed line : analytical expression for
K 1> a: 2med = aexp (é) Violet dotted line : fit z,.q = Sexp (%). ¢ : numerical
estimate for ¢ finite, with more than 95% of returns. a = 0.005 pum (everything can be
renormalized by this length), 5 = 1.05 (parameter of the discretization of the integral
(see appendix 8.1.1)) (except k' = 0.1 um : 3 = 1.1), a (see appendix 8.1.1) such as

fla)a ~ 1075,

In the regime k™! < a, we assume that the median is zn.q < a. We can then
make a large a expansion :

C(lz]) = %/OOO Smlikz) . _’i Cdk. (82)
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The median z,,.q being defined by :

2 [ sin(kzmed) K 1
- dk = -
T /0 k K+ k 2’ (83)

it leads to zpmeq = k' exp(g), with g solution of 4ge? — 4e9 + 4vyed — we?d + 7 = 0
(7 being the Euler constant). Therefore, z,.q ~ 0.535x7!. Since k! < a, the
assumption z,,.q < a is verified. This expression works very well (see figure 40).

We now study the regime x~' > a. We define u = kz, 2* = z/a and * = ka.
The probability that a return is smaller than z is

el =2 [ pwau, (84)
with f defined as follows :
1
fu) = oy (85)
1+ u KI(ZT)

K*2* Ko(i)

e

We suppose that the median is large compared to a, thus we can restrict the study
to z* > 1, and additionally k* < 1. Under these assumptions :

Ki (%) wu 1 . u
Ko (%) (22" /u) —~  z*In(z*)’ (86)
Consequently : . ( )
u Ki(x) 1
K2 Ko () m*n(zr)’ (87)
2 (% sin(u) N 1
Cleh == [ )~ e (59)

The median (defined by C(|zmea|) = 1/2) is £*In(z7,.,) = 1, which is equivalent to :

Zmed ~2 4 €XP (i) . (89)
Ka

This expression does not work perfectly well (see figure 40), but the scaling is indeed
exponential. Problems in the estimate comes from the numeric solution which is
calculated for up to 95% of the returns. We shall see in the following (see equation
95) the generalization of equation 89 : if the proportion p of the hops are longer

14
than z,, 2, c aexp | 2 ) Assuming that the returns taking the longest time are

ra

also the larger returns, p = 0.525, leading to (% —1) ~ 0.9 : it explains the observed
shift.

To summarize, when the enzyme starts from the DNA (rg = a), the hop length
median is ~ 0.53x7' when k™! < a, and o< aexp(1/(ka)) when 7! > a. Tt gives
another physical interpretation of the parameter x originally defined by equation

(64).
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4 INTERMITTENT SEARCH STRATEGIES AT THE MICROSCOPIC SCALE

1084

1054

104_

1024

100_

1072_

10 1072 10°' 10° 10" 10*> 10 10°
X

Figure 41: Median in the regime k' — 0, 79 > a : l0g(2meq/a) as a function of log(rg/a —
1). Numerical calculation (¢), fit zpmeq = 70 — @ (red line), fit z,0q/a = 0.55(ro/a)? (blue
line).

Regime k=1 — 0 and ry > a
When k=1 — 0 and ry > a, the probability that a return is smaller than z is :

O(l=l) = 2 /0 " IEO(E%), (90)

with 2* = z/a and * = r¢/a.
When (rg —a) < a :

C(l2)) ~ %/OOO du”’;(“) exp (—J“ - “) | (91)

z

When 2 = Zped, C(Zmed) = 1/2, leading to zpeq =~ (ro — a). It is logical because for
small distances, the enzyme does not see that the target surface is a cylinder and
not a plane, and thus the typical traveled distance is (ro — a) when returning to the
cylinder.

When rq > a, we develop C(z) assuming z* > r* > 1. We obtain : C(|z]) =
1— ;Zgg% zp is the length with only 1/n of the returns larger than z, (29 is the
median) : z,/a = (r9/a)".

These expressions are in good agreement with numerical data (see figure 41).

Full expression : k finite and ro > a

oo sin(u . Ko(urg/z
We start from : C(|z]) = % 0 #f(u), with f(u) = Kl(ua/z)uo/((;izo)/—‘,—%(o(ua/z)'

® 2neqd < aif 1o — a and k71 are small compared to a. If 1 —a < k7!, the
typical hop length will be k=%, and reversely.

76



4.1 PROTEIN/DNA INTERACTION

o If 2,,c4 > a, we can make the assumption z > a to simplify f(u) :
log (%)
w) o~ —— N 92
f(u) T og (3) (92)

and f(u) does not depend on u anymore.

C(z) ~ %, (93)

and as zpeq is defined as C(zpeq) = 1/2 :

2 1
Zmed = T_Oexp (_) . (94)
a

Ra

Results are consistent with the limits K — oo or rg — a. z,, the length such
as 1/n of the returns are larger than this length is :

B () e (%) o

To summarize, the mean distance of return is infinite, but we have given the
median of the distribution of return length, that is more representative of the typical
returns. Doing so, we have found another physical interpretation of .

4.1.3 Hops and jumps : comparison with single molecule experiments

We now adapt the previous hop distribution (calculated for an infinite cylinder in
an infinite space and for an infinite observation time) to the specificities of single-
molecule experiments. These experiments are made by the optics and biology team,
LKB, ENS, Paris (Pierre Desbiolles, Andreas Biebricher, Isabelle Bonnet and Nata-
cha Porté). We first present the experiments, their main results and the reason why
a theoretical model for hops is needed. Then we describe how the previous model
for hop distribution is adapted. Finally, we compare with experimental results and
show that the observations are indeed compatible with a combination of sliding and

hopping.

Experiment

The experiment is aimed at observing directly the interaction between an enzyme
and DNA molecules. This direct observation is made possible by single-molecule
techniques.

Ezxperimental set-up

EcoRV restriction enzymes are modified so as to be fluorescent. DNA molecules
are biotinylated at their extremities, to bind to the surface, which is coated with
streptavidin. Indeed, biotin and streptadivin form strong bonds. DNA is introduced
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Figure 42: Experimental set-up. Biotinylated DNA molecules are attached at both ends to
a streptavidin-coated surface. The molecules are in an elongated conformation, but free to
fluctuate. Fluorescent proteins are visualized using Total Internal Reflection Fluorescence
Microscopy (TIRFM).

in the DNA chamber first without flow, for having DNA molecules bound by one
of their extremities to the surface. Then, a flow is applied, and the velocity of the
flow determines the typical distance at which the other end of the DNA will attach.
The DNA extension rate is about 70%, so that a DNA molecule is elongated enough
for observations, but at the same time free to fluctuate, and with not too important
influence of the surface. The distance between the attached ends is L = 2.2 pm on
average. Due to a surface treatment by a blocking reagent, the interaction between
enzymes and the surface is weak, so that the surface can be considered as reflective.
To visualize proteins, a laser light is pointed to the surface at the reflection angle,
so that only evanescent light enters the sample (see figure 42). Only enzymes close
to the surface (distance of the order of magnitude of the wavelength (532 nm)) can
be seen, thus enzymes in interaction with DNA are observed without the fluorescent
background of all the enzymes in solution. Images are acquired at a rate of 20 ms,
and the position of the enzyme is fitted with a Gaussian, leading to a maximum
precision of ~ 30 nm.

Results

Before presenting the results, we shall define the terms used afterwards. The
enzyme is observed where the DNA is located during several frames. It is what we
shall call “interactions”, or more precisely “effective interactions”, as the enzyme may
combine sliding, when the enzyme is really in interaction with DNA, and small hops,
with no interaction with DNA, but that cannot be distinguished from sliding due to
the limited spatial resolution. The effective interaction, for example when studying
the large changes in position, is ended if the observed enzyme is not seen during
two frames (it ensures that the probability of confounding another enzyme with the
initial one is very low). When studying the effective diffusion coefficient, an effective
interaction is also ended if the enzyme’s position changes more than z,, = 200 nm
in t,s = 40 ms (two frames). z,, is chosen to be 200 nm, because this length is
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4.1 PROTEIN/DNA INTERACTION

large compared to the typical length traveled by the effective 1-dimensional diffu-
sion during ¢.s (30 nm), and is also large compared to DNA fluctuations (70 nm).
These large relocations (change of position larger than z,,) have to be explained by
something else, as we shall detail in the following. We assume in our model that
enzymes alternate between sliding and 3-dimensional excursions. When using the
number of 3-dimensional excursions by effective interaction, we also count the last
excursion which ends the effective interaction. Now that we have defined the terms
used, we can describe what is observed in the experiment.

OO@DOJF
e S, S eYeYa ey
02 04 06 08 1,0 1,2 1,4 1,6 1,8

Number of relocations larger than z during an
effective interaction as a function of z (um).

1,0
0,91
0,81 &
0,71
0,61
0,51
0,41
0,31
Images of the experiment. Frames 2]
are numerated, and this number is 0.17 Or o o
proportional to time. The white S Y 1-8+
disk is the enzyme. The yellow o
circle represents the extremities of Number of relocations larger than z renormalized
DNA. The distance between the by the number of relocations larger than

extremities is L = 2.2 pm. Zm = 200 nm as a function of z (pm).

Figure 43: Experimental results : large relocations. Left Between frame 46 and 47 there
is a large relocation. Right Distribution of the relocation larger than z,, = 200 nm in 1 or
2 frames (maximum observation time t,,s = 40 ms). Data (in PIPES buffer): + = 10 mM
NaCl, ¢ = 20 mM NaCl, [[] = 40 mM NaCl, o = 60 mM NaClL
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Figure 44: In PIPES buffer, measurements are made at different salt concentration. The

efficient 1D diffusion coefficient (M) was measured, along with the mean effective interaction
time (e).

Two main observations are made in these experiments. On the one hand, en-
zymes interact with DNA. The durations of effective interactions are exponentially
distributed. Motion observed is compatible with 1D diffusion along the DNA, with
an effective coefficient of typical magnitude DST, ~ 1072 um?2.s~! (see figure 44),
much smaller than the 3D diffusion coefficient Ds3p ~ 50 um?.s™! (measured sepa-
rately by fluctuation correlation spectroscopy). On the other hand, relocations on
the DNA larger than z,, (for example between frames 46 and 47 in the left of figure
43) are observed within t,,s, in a proportion much higher than expected with the
1D diffusion alone. Indeed, except for these large relations, the 1D steps are Gaus-
sian distributed, with a variance ¢ = 30 nm, and z,, > 60, which for a Gaussian
distribution results in an extremely low probability. The concentration of enzymes
is low enough, so that the event of a second enzyme rebinding within ., after the
first enzyme leaves is highly improbable, and cannot explain these relatively frequent
large relocations. The distribution of these large relocations is determined (figure
43 right). Additionally, experiments are made with different salt concentrations :
increasing the salt concentration decreases the interaction time, and increases the
diffusion coeflicient (see figure 44).

Questions raised

During t,, the typical distance traveled along the DNA axis for 1D diffusion is
\/QDT%tObS ~ 30 nm, whereas the typical distance covered by free 3D diffusion is
V2D3ptops >~ 2 um. The first question question is to determine whether the observed
distribution of large relocations is compatible with free 3D diffusion. The second
question is to determine to which extent 3D relocations which are too short to be
distinguished impact on the effective interactions, which in this picture are actually
a combination of real 1D interaction (sliding), and of small 3D relocations.
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4.1 PROTEIN/DNA INTERACTION

Distribution of the durations of the effective 1D interactions

The observed distribution of the durations of these effective interactions is ex-
ponential. If one dimensional effective interactions are a combination of real 1D
diffusion (sliding) and of small hops that cannot be distinguished, the first step is to
check that an exponential distribution of durations is compatible with a combination
of sliding and hopping.

Assuming standard bimolecular association, the distribution of sliding durations
is exponential : pip(t) = A\jexp (—tA;), with the mean duration of a sliding phase
71p = 1/A1. For each 3D excursion, the probability that the enzyme does not go back
on DNA before t, is ¢, assumed to be fixed, i.e. not to vary between excursions.
The probability P, that an effective interaction has n hops (including the hop when
the enzyme does not return before ¢4,) is :

Py=q(1—q)"". (96)

The mean duration of a 3D excursion 73p is assumed to be much smaller than
the mean duration of a sliding phase 7p. Indeed, Dsp ~ 50 um?s~! > DS ~
0.01 pm?.s7! : if 71p and 73p were of the same order of magnitude, it would not be
possible to have such a low DS, The Fourier transform of p;p is:

e1p(u) = /%ei“tplp(t)dt = L —. (97)

Y

The Fourier transform of the probability that an effective interaction having n hops
lasts ¢ is :

p(u,n) = (1p(u))". (98)

The Fourier transform of the probability that an effective interaction lasts t is :

> > 1\ 1 1 q u
_ A
@(U)ZZOPnsO(u,n)Zz()Q(l—Q)” 1<1 w) =4y 21_q< T 1m>-
n= n=

_ _ _ du
A1 1_% A1 qA1
(99)
Inverting the Fourier transform, the probability distribution of duration of effective
interactions writes :

PO = hploe e+ L8 (Ali_qA) — Mg (100)
This distribution is exponential, as observed experimentally. However, it is not very
discriminating : having a fixed loss probability by hop is a sufficient condition, and
does not say anything about the hop length distribution. The distribution of effective
interaction durations is compatible with a combination of sliding and hopping, but
we have to go further. We next adapt our model of hops to the finite time and
specific geometry of the experiment.

Finite time

The relocations observed in the experiment are hops (and not jumps), because
in the set-up the DNA is elongated : the starting point always matters. We will
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take ro = a, as the enzyme starts a hop by unbinding from DNA. However, we have
to adapt our model of hops to the experiment.

First, we have calculated the hop distribution waiting an infinite time for returns,
whereas here the observation time %, is finite. We write the hop length distribution
for a finite time :

Py (2) = / " Pz O (ta)dr, (101)

where Pj(z,t) = (47 D3pt)~'/? exp(—2z%/4Dspt) represent the 3D diffusion along the
DNA axis; F'| (t|a) is the first passage density to DNA in the orthogonal plane,
obtained by the numerical inversion of its Laplace transform, known analytically

(with x = ay/s/D) |Redner, 2001] :

K() (l‘)
Ko(z) + (ka) 1Ky (z)

Fi(s|la) = (102)

For details on the numerical inversion, see appendix 8.1.1. Note that the distribution
given equation 101 is not normalized : 1 — [*°_ P, , (z)dz give the proportion of 3D
excursions that are “losses” (in the sense that they end effective interactions).

Geometry

Figure 45: Comparison between experimental and model geometries. Top : experimen-
tal geometry : DNA elongated at 70%, bound by its extremities to a reflective surface.
Bottom : model geometry : a cylinder between reflective planes.

Second, we have previously considered an infinite cylinder in an infinite space,
whereas here elongated DNA is finite, stuck by its ends on a surface (DNA ends
are separated by L ~ 2.2 um). This surface can be considered as reflective, as
non-specific interactions with the proteins are weak. To simplify the problem, we

82



4.1 PROTEIN/DNA INTERACTION

use an effective geometry which retains the main features of the real geometry,
while making analytical calculations tractable. We model the DNA as a cylinder of
radius a and length L between two reflective planes perpendicular to the cylinder
axis (see figure 45) (for other possible choices and why they are not adequate, see
appendix 8.1.2). At the extremities, this geometry locally represents well that the
ends are stuck to a surface. As t, is small enough, multiple reflections on the
planes are unlikely (L, = v/2D3ptops >~ 1.4 um, L = 2.2 pm), thus we expect this
approximation to be valid.

2=-7 Z=Zg . _
z=-2L+zo__ Vil ‘ . = 220
} z=-L z=L L - z==2L+47,

z=-L z=0 v Q;L

AN T — E z
V%;zw 22, | | AN B
g@_ 2L-v-23 | | 22+ : |
2L-v | i ; 2L+v ' § § 2L-v-23
‘ 2lv L oy : L e :
C2L-v+2z Lo ) ‘ 2L+v+27 o 2Ly
2L+v+27 ¢ L

case L2 > 2 > v case L/2 > zy and v > z

Figure 46: Methods of images : a finite cylinder between reflective planes with one source
(in z = zp) is equivalent to an infinite cylinder with an infinity of mirrored sources.

Reflective boundaries at z = 0 and z = L with a source (the starting point) at
2z = zp are equivalent to an infinite cylinder with sources in z = zy + 2nlL and in
z = —2zp+ 2nL, with n € Z (methods of images) (see figure 46).

We note P(v) the probability of a hop of size v with an infinite cylinder, and
P*(v|zp) the probability of a hop of size v starting from z, with reflective boundaries.
The protein has a probability 1/2 of making a hop on the left and 1/2 of making a
hop on the right. When L/2 > z; > v (cf. figure 46 left) :

P*(v]|z) = f: P(2nL —v) —|—P(2nL+v))—|—%(P(Zzo—kv)—f—P(Zzo —))

1 oo
+ = 3 2 P(2nL+v —2z) + P(2nL — v — 2z)
+ P(2nL + v+ 229) + P(2nL — v + 2z)].
(103)

When L/2 > zy but v > 2y (cf. figure 46 right) :

P*(v]|z9) == [P(v) + P(229 + v)+

DN | —

(P(2nL —v) + P(2nL +v) + P(2nL — v — 22) + P(2nL + v + 2z))

M]3

n=1

(104)
P*(v) = %fOL P*(v]z0)dz = 2 OL/2 P*(v|20)dzg is the probability of making a hop
of size v starting from a random position of the cylinder, with uniform probability.
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Because of symmetry, starting from a random point zy € [0, L/2] is equivalent. P*(v)
can be written as a infinite sum :

_ % i W, (105)

with : -
Wy = ZP(0) + (g - v) P(v) + /O " Pzt )iz + / " 22 — o)z, (106)
Wo = (L — v)P(v) + % / Y playdn % / Y o), (107)
Wo = (L— 0)P(v) + / Y P+ : /L T P(z)dz. (108)

W,= £(P@2nL—v)+ P(2nL +v))+ (5 —v) (P(2nL — v) + P(2nL + v))
+ fOL/2 (P(2nL — v — 2z) + P(2nL + v + 2z)) dz
+ va/Q (P(2nL 4 v — 2z) + P(2nL — v + 2zp)) d=zy,

(109)
W, = (L — ) (P(2nL — U) + P(2nL +v))
w3 (Sl Pada + [t Playde + [0, Po)de + J700 " Ple)de)
(110)
It can be noticed that :
ZWn :(L—U)Z(P(Qn[/—v)+P(2nL+v)) —i—/ P(x)dx
n=1 n=1 L—v (111)
1 L+v oo v
-5 /L_v P(z)dx — ; (/_v P(2nL + x)dm) :
leading to :
P*(v) = % (/ P(z)dz + (L —v) (nz:% P(2nL +v) + ; P(2nL — v)) - z:: / P(2nL + x)dx)
(112)
Consequently, P*(v) can also be written as another infinite sum :
1 o
~ 13w (113)
n=0
with : -
Yo = / P(z)dx + (L —v)P(v), (114)
2nL+v
Yoo = (L —v) (P(2nL + ) + P(2nL — v)) — / P(z)de.  (115)
2nL—v

In practice, the formula (113) is more convenient that the form (105), and for both
the first 2 terms of the sum are sufficient (see appendix 8.1.2).
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Figure 47: Probability of observing a hop larger than z during an effective interaction as a
function of z (um). Experimental data (in PIPES buffer) (symbols) : + = 10 mM NacCl,
o =20 mM NaCl, [ = 40 mM NaCl, o = 60 mM NaCl. Solid lines: distribution from our
model for k% = 0.5 nm (black), x~! = 1 nm (sienna), x~! = 2 nm (red), x~! = 10 nm
(blue), x~! = 20 nm (green), x~! = 50 nm (orange).
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Figure 48: Cumulative distribution of hop length z (um) normalized by the number of
hops larger than z,, = 200 nm. Data (in PIPES buffer): + = 10 mM NaCl, ¢ = 20 mM
NaCl, [] = 40 mM NaCl, o = 60 mM NaCl. Solid lines: distribution from our model for
k1 =0.5 nm (green), k! = 20 nm (red).

Distribution of large hops

Now we have adapted the distribution both to a finite observation time and to
the specific experimental geometry, we can compare the experimental distribution
of large hops to what we expect from 3D diffusion.

The large hops distribution have been obtained for different salt concentrations in
the PIPES buffer. Biochemical studies reported only a slight dependence on [NaCl]
of the binding rate to DNA [Lohman, 1986]. Thus, the hop distribution should
depend only weakly on [NaCl|. The data at 40 mM and 60 mM cannot be distin-
guished, but the number of large relocations by interaction is higher with lower salt
concentration (see figure 47). To fit these results, we use Cf, (2) = [ P;, (2)d=.
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The number of large relocations is measured for an effective interaction (not for
a 3D excursion), thus we have to renormalize Cf (z) by the mean number of 3D
excursions by effective interaction, N = (1—Cf, (0))7" : we use NC}, (2) to fit the
curves of figure 47. We fit varying the parameter x : £~! ~ 20 nm for the 40 mM and
60 mM salt points and with £~ < 2 nm (the values for k! < 2 nm are confounded)
for the 20 mM salt points. The 10 mM salt value could not be fitted. However on the
one hand, experimental curves are renormalized. Indeed, the fluorophore bleaches,
i.e. it enters a non-fluorescent state, with a probability per unit time proportional
to light intensity. Consequently, a part of the trajectories ending is not caused by
the enzyme leaving, but by the enzyme becoming invisible. The curves are renor-
malized for this effect, and this correction is only roughly estimated in particular for
the 10 mM case, as the interaction time is longer. On the other hand, we have an
effective geometry which may not give a completely accurate estimate of N. Thus,
a completely quantitative fit seems out of reach. However, the order of magnitude
of the number of jumps by effective interaction is consistent with the model.

Furthermore, the z dependence of the relocation length distribution can be
precisely accounted for by the model by considering the normalized distribution
Cy . (2)/CF, (2m). The shape of the distribution is very good. Indeed, after normal-
ization by the total number of observed relocations, the cumulative distributions of
the relocation lengths at different salt concentrations collapse (see figure 48). We
compare the experimental curve with the theoretical prediction C} (2)/Cf, (2m).
Since the latter depends weakly on k, it is not possible to evaluate quantitatively
this parameter. As the adjustable parameter x is not really adjustable, we obtain
a good agreement between data and the model with no real fitting parameter (see
figure 48).

Effective diffusion coefficient

We have shown that the large relocations are compatible with free 3D diffusion.
Thus we now suppose that the observed diffusion coefficient DS, is a combination
of real 1D diffusion (sliding), and hops too small to be distinguished (< z,,). The
question is how these hops quantitatively influence the observed diffusion coefficient.
This coefficient is measured at different salt concentration. As we have just seen,
the large relocation distribution depends only weakly on [NaCl|, as was expected
|[Lohman, 1986]. We will then suppose that the hop distribution does not change
with salt concentration. On the contrary, the time spent bound to DNA (sliding),
decreases with the salt concentration. Indeed, the mean effective interaction time 7
decreases when the salt concentration increases.

Let us suppose there are n — 1 hops during a trajectory (n 3D excursions, leading
ton — 1 returns and 1 loss) :

n n—1 n n—1 2
2D (Zt}’? + Zt§D> — (Z al!P + Zejzj@) : (116)
i=1 Jj=1 i=1 j=1

with ¢, = £1. Averaging over the different trajectories, and with N the mean
number of 3D excursions by effective interaction, we can write :

2D (NT'P + (N = 1)7P) = N (i) + (N — 1) (I3), (117)
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Figure 49: D$T (um2.s71) as a function of 1/7 (s71) (7 is the mean effective interaction
time). Experimental data (+) with error bars (L1). 10 mM point is bottom left and
60 mM is top right. Formula (121) for k=% = 0.5 nm (green), x~! = 2 nm (red),
k~! =5 nm (blue), k! =5 nm (sienna).

with 7P the mean duration of a phase in i dimension. It is reasonable to assume
P < 7P, Indeed Dsp ~ 50 pm?.s7! > 0.01 pm?.s™ ~ Dyp, and if (I},) is larger
or of the same order of magnitude than (I2,), then it is sure that 7P < 7P, We
obtain :

1
2D TP = 2D pr'P + (1 - N) (Gp) s (118)
and assuming N > 1 :
e {I3p)
le[f) = D1D+ ZleDa (119)
D5, {I3p)
—= =14 ——=—. 120
DID + 2D1DT1D ( )

In terms of 7 the mean effective interaction time, and N — 1 the estimated number
of hops returning at < 200nm during the observation time (the N is the hop that
ends the effective interaction), we obtain :

D, (V-1

121
DlD 2D1DT ( )

We use this expression for figure 49 : D;p is a fit parameter, and for a given x we
calculate from our hop model (N — 1) (I25,). We can fit the diffusion coefficients for
k=1 <5 nm. It gives an upper bound for this parameter. With this expression, we
can explain the two-fold variation of the effective diffusion coefficient with the salt
concentration.
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Conclusion

To summarize, to interpret quantitatively single-molecule experiments, we have
adapted a simple model to both a finite time and a specific geometry. First, the
large relocations are compatible with 3-dimensional free diffusion excursions. Then,
the distribution of effective interaction durations is compatible with a combination
of hop and sliding. Finally, the dependence of the effective diffusion coefficient on
the effective interaction duration is also accounted for by a combination of sliding
and hopping. All these elements strongly support that EcoRV combines sliding and
hopping, and that hopping description as free 3D diffusion is relevant.

4.1.4 Hops and jumps : subdiffusion

Motivation

The previously studied experiment is in vitro, in water with few other compo-
nents, where the 3D excursions can be considered as Brownian diffusion. However,
in vivo, the cellular environment is crowded, and the dynamics of tracers molecules
often departs from usual diffusion [Tolic-Norrelykke et al., 2004, Golding and Cox,
2006]. Anomalous diffusion modifies importantly the kinetics on transport limited
reactions [Metzler and Klafter, 2000, Lomholt et al., 2007, Condamin et al., 2007,
2008]. We present here how it also affects the hop distribution.

Subdiffusion behavior is characterized by a mean square displacement that scales
as (Ar?) ~ t?/%v where d,, > 2 is defined as the walk dimension [Metzler and Klafter,
2000]. There are several microscopic mechanisms that can explain such a scaling.
We present here two possibilities :

e subdiffusion could come from waiting times. Continuous time random-walks
(CTRWs) models [Metzler and Klafter, 2000], in which at each step the walker
can be trapped for a long period of time, mimic the cage effect in crowded
environments

e subdiffusion could come from spatial inhomogeneities. Bancaud et al. [2009]
describe chromatin as a fractal medium. For example, on critical percola-
tion clusters [Ben-Avraham and Havlin, 2000], the numerous dead-ends make
random walks subdiffusive.

Which mechanisms are at play inside biological cells is still discussed [Condamin
et al., 2008|.

These different models of microscopic mechanisms lead to the same mean square
displacement, but not to the same hop length distribution. In the case of subdiffusion
stemming from CTRW, it is only the time which is affected, not the geometry of the
trajectories. Thus the relocation length distribution will not change : Eq. (77) and
its extensions remain valid in this case. On the contrary, in the case of fractal type
subdiffusion, the geometry of trajectories is changed by crowding, as we shall show
quantitatively in the following.
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Fractal crowding

After dissociating from DNA, a protein walks on a fractal embedded in 3D space.
We assume again that transport along the DNA axis is independent from the trans-
port in the direction perpendicular to the cylinder. Similarly to Eq. (101), the
distribution of relocation length writes P(z[ro) = [~ Py(2,t)FL(t|ro)dt, where P
stands for the longitudinal propagator, characterized by d,, the walk dimension and
dl} the dimension of the projection of the fractal on the axis parallel to the cylin-
der, and F'| is the transverse first passage time density to DNA, characterized by
dimensions d,, and d.

Following O’Shaughnessy and Procaccia [1985|, we assume that the diffusion cur-
rent obeys a generalized Ficks’s law. We thus write an effective transport operator,
such as any diffusing quantity c is solution of :

K
O = KAe(r) = md%“ (rdf_d“’ﬂic(r)) : (122)

where K is the generalized diffusion coefficient. Note that for subdiffusion d,, > 2 >
d]% : the exploration is termed compact [de Gennes, 1976] and we can take the limit
a — 0. After some algebra the first-passage-time density F'| reads:

dyt K- t? e
Fitlo) = St [, (aa (123)

where [ = 2rgw/2/dw and v; = 1 — d}/d,, (here i =1, ||). Using the propagator of
O’Shaughnessy and Procaccia [1985], we get :

Pelro) =a [ W, (YK, (v (124)

with y = 22%/2/d,,, and
B

“= F(Vl)r(l—V”)

(125)

Comparison with numerical simulations

To check that our decoupling assumption of the longitudinal and transverse pro-
jections of motion is valid, we compare the analytical expression (124) of the re-
location length distribution for subdiffusion in fractals to numerical simulations in
the representative example of a percolation cluster embedded in 3D space (see fig-
ure 50) (for more details and other examples, see appendix 8.1.3). The large =

dw—df _ .
behavior (using 124) is P(z|rg) ~ 1" 7 /2' T4 97 . which always decays faster than

the diffusion case (~ 1/z1n*(z/a)) as illustrated in Fig. 50. The proportion of jumps
in the case of random conformation of DNA in the fractal type crowding scales like
C) ~¢ ~dwtdf . it is much smaller than for regular diffusion, thus fractal crowding
changes the overall search. If the enzyme and its target are colocalized (as suggested
by Wunderlich and Mirny [2008], see section 4.1.1), our results further suggest that
in this case crowding could be beneficial for target location since it enhances the
local scanning of the DNA by reducing the proportion of jumps.
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Figure 50: Distribution of the relocation length P(z|rg) for 3D excursions on a critical
percolation cluster embedded in a 3D cubic lattice, for rg = 1 and a = 0. Simulations
(normalized for z > 2) are performed for different system sizes to rule out finite size effects
(symbols), and collapse on the theoretical curve (plain line) obtained from Eq.(124). Here
dl, = ds = 3.88..., d]% =2 and dl} = 1 since dy = 2.53... [Ben-Avraham and Havlin, 2000].
The large z scaling follows P(z|rg) ~ 1/2%8 and is compared to the case of normal
diffusion (dashed line) with 7o =1 and a = 0.1.

4.1.5 Conclusion on DNA enzyme interaction

When searching for a specific DNA sequence, enzymes perform facilitated diffusion.
Facilitated diffusion is intermittent : it is a combination of motion (i) in one di-
mension, in close interaction with DNA, called “sliding”, which is the state in which
the target is found; and (ii) 3D excursions, that change the global transport of
the searcher. Development of new experimental techniques to study the classical
facilitated diffusion raises new questions, that are addressed by recent models that
we have reviewed. The relevant quantity to optimize is not necessarily the mean
search time, as other quantities may matter more, depending on what is vital for
the cell. Models with calculation of the whole probability distribution of the search
time make possible to extract more information relevant to biology. To describe
accurately what happens in biological cells, several modelings of the 1D and the 3D
phases are proposed. The 1D phase (“sliding”) is not necessarily diffusive. There is
also a trade-off between motion and complex stability : a two-state sliding model
have been proposed, with different protein conformations corresponding to search
and recognition states. The 3D phase can be mainly separated between “‘jump-
ing” (3D excursions with starting and ending positions uncorrelated in the DNA
sequence) and “hopping” (correlated 3D excursions). As they have different proper-
ties for the search, knowing what proportion of 3D excursions are hops is important,
along with the distribution of hop size.

We first answer this question by calculating analytically the distribution of hops
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for an infinite cylinder, for normal diffusion and an infinite observation time. These
results can be applied to a coiled DNA. On the one hand, as DNA can be considered
as a cylinder at small scales (smaller than the persistence length) the hop distribution
is valid in this regime. On the other hand, as hops larger than the persistence length
will actually be jumps if the DNA is coiled, we also obtain the jump proportion. We
then adapt our results to interpret quantitatively a single molecule experiment : we
obtain the distribution for a finite observation time, and in an effective geometry.
Our results support that the interaction observed in the experiment is a combination
of sliding and hopping, that can actually be modeled as free 3D normal diffusion.
We extend the model to the case of subdiffusion. Indeed, cellular crowding can affect
the results and has to be taken into account.
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4.2 Active transport of vesicles in cells

After this first microscopic example of intermittent search, we turn to another ex-
ample : active transport of vesicles reacting at specific locations in cells.

4.2.1 Active transport in cells

Rigid polymer such as
microtubule or actin

_>

Consumes ATP
Distance = V't
Velocity ~ 1 um.s~!, almost independent
from the object size (see for example
Block et al. [2003])

Does not need ATP
Distance? oc Dt (or less)
Diffusion coefficient decreases when the
size of the object increases

Figure 51: Transport options for vesicles inside cells.

Various motor proteins such as kinesins or myosins are able to convert the chem-
ical fuel provided by ATP into mechanical work by interacting with the semiflexible
oriented filaments (mainly F-actin and microtubules) of the cytoskeleton [Alberts,
2002|. As many molecules or larger cellular organelles like vesicles, lysosomes or mi-
tochondria, hereafter referred to as tracer particles, can randomly bind and unbind
to motors, the overall transport of a tracer in the cell can be described as alternat-
ing phases of standard diffusive transport, and phases of active directed transport
powered by motor proteins [Alberts, 2002, Salman et al., 2005] (see figure 51). In
particular, Huet et al. [2006] studied the rate of transitions between ballistic, dif-
fusive and “on the target” states of vesicles, and found that the vesicles studied
are much more likely to react in the free diffusive phase than when bound to mo-
tors. Active transport is therefore clearly a further example of intermittent behavior.
Active transport in cells has been extensively studied both experimentally, for in-
stance by single particle tracking methods [Sheetz and Spudich, 1983, Howard et al.,
1989], and theoretically by evaluating the mean displacement of a tracer [Shlesinger
and Klafter, 1989, Ajdari, 1995|, or stationary concentration profiles [Nedelec et al.,
2001]. This transport is important for example for dynamically regulating the dis-
tribution of proteins such as membrane receptors. Appendix 8.4 shows an instance
where activity of the receptor and transport are linked, a variation in the activity
leading to changes in the receptor distribution , which has important functionality
consequences.

Most of cell functions are regulated by coordinated chemical reactions which in-
volve low concentrations of reactants (such as ribosomes or vesicles carrying targeted
proteins), and which are therefore limited by transport. However, a general quan-
titative analysis of the impact of active transport on reaction kinetics in cells, and
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more generally in generic active media, was missing, even if a few specific examples
had been tackled (see for instance Holecman [2007]). We propose |[Loverdo et al.,
2008|] (highlighted in a “News and views” of Nature Physics by Mirny [2008]) an
analytical model based on the idea of intermittence which allows us to determine
the kinetic constant of transport limited reactions in active media, and show that it
can be optimized. We give the main results of the model, and postpone the technical
details for section 5 (where they appear as a part of a more general model).

4.2.2 Model

The model relies on the idea of intermittent search strategies and has important
similarities with the model of section 3.4, similarities discussed in section 5. We
consider a tracer particle evolving in a d-dimensional space (in practice d = 1,2, 3)
which performs thermal diffusion phases of diffusion coefficient D (denoted phases 1),
randomly interrupted by ballistic excursions bound to motors (referred to as phases
2) of constant velocity V' and direction pointing in the solid angle wy (see figure 52).
The distribution of the filaments orientation is denoted by p(wv ), and will be taken as
either disordered or polarized (see figures 52, 54, 56), which schematically reproduces
the different states of the cytoskeleton [Alberts, 2002]. The random duration of each
phase 7 is assumed to be exponentially distributed with mean 7;. The tracer T' can
react with reactants R (supposed immobile) during free diffusion phases 1 only, as
T is assumed to be inactive when bound to motors. Reaction occurs with a finite
probability per unit of time k£ when the tracer-reactant distance is smaller than a
given reaction radius a. In what follows we explicitly determine the kinetic constant
K of the reaction T'+ R — R.

4.2.3 Methods

We now present the basic equations in the case of a reactant centered in a spherical
domain of radius b with reflecting boundary. This geometry both mimics the relevant
situation of a single target and provides a mean field approximation of the general
case of randomly located reactants with concentration ¢ = a?/b%, where b is the
typical distance between reactants. We start from a mean field approximation of
the first order reaction constant [Berg and Blomberg, 1976] and write K = 1/(t),
where the key quantity of our approach is the reaction time (t) which is defined as
the mean first passage time [Redner, 2001, Condamin et al., 2007] of the tracer at
a reactant position uniformly averaged over its initial position. ¢; is defined as the
mean reaction time if the tracer starts in phase 1 at position r, and t, is defined as
the mean reaction time if the tracer starts in phase 2 at position r with velocity v.
For the active intermittent dynamics defined above, t; and t, satisfy the following
backward equations |[Redner, 2001| (see section 5 for derivation) :

1
DArtl + — (tQ — tl)p(wv)dwv — /{;Ia(r)tl =-1
1 (126)
V Vity — —(ty —t;) = —1
T2

where 1, is the indicator function of the sphere of radius a. As these equations (126)
are of integro-differential type, standard methods of resolution are not available for
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a general distribution p.

However, in the case of a disordered distribution of filaments (p(w,) = 1/,
where (), is the solid angle of the d-dimensional sphere), these equations can be
solved exactly in one dimension. In 2 and 3 dimensions, we make the approximation
that the first direction taken does not matter, and as the mean search time is aver-
aged over the starting position, it leads to good results when b > a. The details of
calculation are given in section 5, where this model is generalized. We present here
simplified expressions of the resulting kinetic constant by taking alternatively the
limit £ — oo, which corresponds to the ideal case of perfect reaction, and the limit
D — 0 which allows us to isolate the k& dependence.

4.2.4 Active transport in the cytoplasm

Binding

Figure 52: Vesicle transport in the bulk (3 dimensions).

We first discuss the d = 3 disordered case (see figure 52), which provides a general
description of the actin cytoskeleton of a cell in non polarized conditions, or of a
generic in vitro active solution. An analytical form of the mean first passage time
(t) = 1/K3q4 is given section 5.5.2, and plotted in figure 53. Strikingly, K34 can be
maximized as soon as the reaction radius exceeds a threshold a. ~ 6D /V for the
following value of the mean interaction time with motors:

opt V3a a
= — ~1.078—= 127
7—2,3d on V’ ( )

where ¢ is the solution of 2tanh(x) — 2z + x tanh(x)? = 0. The 7; dependence is
very weak, but one can roughly estimate the optimal value by 7, Pl o~ 6D/V?. This
gives in turn the maximal reaction rate

¢V /3 (xy — tanh(z))
8d = T - 5 = (128)

o)
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so that the gain with respect to the reaction rate K%, in a passive medium is G4 =
K§/KY, ~ CaV/D with C' ~ 0.26.

37 3

3
<)
1 g,
RPL) \%3‘;1;*04:3\91*,{»(‘\, -
0.9 T R Mv&v%;%$ O
0.8
0.7
0.6
T T T T
0.05 0.1 05 1
T2
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Figure 53: Optimization of the reaction rate for intermittent active transport. Gain of
reactivity due to active transport in 3 dimensions as a function of 7o for different values
of the ratio b/a (logarithmic scale). The analytical form (the mean detection time with
diffusion alone (288) divided by the mean detection time with intermittence (280)) (plain
lines) is plotted against numerical simulations (symbols) for the following values of the
parameters (arbitrary units): a = 1 (green, 0J), a = 5 (blue, %), a = 7 (purple, o), a = 10
(red, 4+), a = 14 (brown, X), a = 20 (orange, ¢), with 1 =6, V =1, D = 1. G34 presents
a maximum only for a > a. ~ 4.

Several comments are in order. (i) First, Tigfi neither depends on D, nor on
the reactant concentration. A similar analysis for & finite (in the D — 0 limit)
shows that this optimal value does not depend on k either (see section 5.5.1), which
proves that the optimal mean interaction time with motors is widely independent
of the parameters characterizing the diffusion phase 1. (ii) Second, the value a,.
should be discussed. In standard cellular conditions D ranges from ~ 1072 um?.s™!
for vesicles to ~ 10 pm?2.s~! for small proteins, whereas the typical velocity of a
motor protein is V ~ 1 um.s~!, value which is widely independent of the size of the
cargo |Alberts, 2002|. This gives a critical reaction radius a. ranging from ~ 10 nm
for vesicles, which is smaller than any cellular organelle, to ~ 10 pum for single
molecules, which is comparable to the whole cell dimension. Hence, this shows
that in such 3-dimensional disordered case, active transport can optimize reactivity
for sufficiently large tracers like vesicles, as motor mediated motion permits a fast
relocation to unexplored regions, whereas it is inefficient for standard molecular
reaction kinetics, mainly because at the cell scale molecular free diffusion is faster
than motor mediated motion. This could help justifying that many molecular species
in cells are transported in vesicles. Interestingly, in standard cellular conditions 7'; I;)td
is of order 0.1 s for a typical reaction radius of order 0.1 pum. This value is compatible
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with experimental observations [Alberts, 2002|, and suggests that cellular transport
is close to optimum. (iii) Last, the typical gain for a vesicle of reaction radius
a 2 0.1 um in standard cellular conditions is G34 2 2.5 (see figure 53) and can reach
G'3q =~ 10 for the fastest types of molecular motors (V' ~ 4 um.s™!, see refs [Alberts,
2002, Sheetz and Spudich, 1983]), independently of the reactant concentration c. As
we shall see below the gain will be significantly higher in lower dimensional structures
such as axons.

4.2.5 Active transport at membranes

Figure 54: Planar structures such as membranes and lamellipodia (d = 2).

We now come to the d = 2 disordered case (see figure 54). Striking examples in
cells are given by the cytoplasmic membrane, which is closely coupled to the network
of cortical actin filaments, or the lamellipodium of adhering cells [Alberts, 2002]. In
many cases the orientation of filaments can be assumed to be random. It can be
shown that as for d = 3 (see section 5.4.2), the reaction rate Ks; can be optimized
in the regime D/V <« a < b. Remarkably, the optimal interaction time 75712’2 takes
one and the same value in the two limits £k — oo and D — 0 :

o a
Ty ™ V—ﬁ(lﬂ(l/c) — 1) (129)

which indicates that again 7';%2 does not depend on the parameters of the thermal

diffusion phase, neither through D nor k. In the limit & — oo one has 7'1052 =
%1%%?1, and the maximal reaction rate can then be obtained :
Vv
S — (130)

ay/2In(1/c)
Comparing this expression to the case of passive transport yields a gain Gy =

KJ /K2, ~ avy/In(1/c)/(4D+/2). As in the d = 3 case, this proves that active
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transport enhances reactivity for large enough tracers (with a critical reaction radius
a. ~ D/V of the same order as in the d = 3 case) such as vesicles. However, here
the gain (G54 depends on the reactant concentration ¢, and can be more significant :
with the same values of D, V' and a as given above in standard cellular conditions,
and for low concentrated reactants (like specific membrane receptors) with a typical
distance between reactants b = 10 um, the typical gain is G54 = 8, and reaches 10
for single reactants (like examples of signaling molecules) (see figure 55).

5 10 50 100
12

t
7'127‘127.

Figure 55: Optimization of the reaction rate for intermittent active transport. Gain of re-
activity due to active transport G4 in two dimensions as a function of 71 or 72 (logarithmic
scale). The analytical form (the mean detection time with diffusion alone (234) divided by
the mean detection time with intermittence (230)) (plain lines) is plotted against numerical
simulations (symbols) for the following values of the parameters (arbitrary units): a = 20,
b = 2000 (brown, %), a = 10, b = 1000 (red, O), a = 10, b = 100 (green, +), a = 2.5,
b = 250 (blue, o) with V' =1, D = 1. These curves represent standard cellular conditions
(as discussed in the text).

4.2.6 Active transport in tubular structures

The case of nematic order of the cytoskeletal filaments, which depicts for instance the
situation of a polarized cell [Alberts, 2002|, can be shown to be equivalent in a first
approximation to the 1-dimensional case, which is exactly solvable (see figure 56)
(for calculations, see section 5.3.2). The d = 1 case is also important on its own
in cell biology as many 1-dimensional active structures such as axons, dendrites, or
stress fibers are present in living cells [Alberts, 2002|. As an illustration, we take
the example of an axon, filled with parallel microtubules pointing their plus end in
a direction e. We consider a tracer particle interacting with both kinesins (“+” end
directed motors, of average velocity Ve ) and dyneins (“” end directed motors, of
average velocity —V'e) with the same characteristic interaction time 75 (see figure
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Figure 56: Tubular structures in cells such as axons and dendrites (d = 1).

1b). For this type of tracer, the mean first passage time satisfies equations (126)
with an effective nematic distribution of filaments p(wv) = 2(6(V —e) +6(V +e)).
The reaction rate K4 is maximized in the regime D/V < a < b for the following
values of the characteristic times (see figure 57) :

1 D 1 a
opt opt
Ta = 18 V2 Totd = ﬁVcl/Q’ (131)
for £ — oo. The maximal reaction rate K7 is then given by
3/2
m o \/gl7 (132)
2a

and the gain is G4 = K/ K?, ~ aV/(2/3Dc"/?), which proves that active trans-
port can optimize reactivity as in higher dimensions. Very interestingly the ¢ de-
pendence of the gain is much more important than for d = 2,3, which shows that
the efficiency of active transport is strongly enhanced in 1-dimensional or nematic
structures at low concentration. Indeed, with the same values of D, V and a as
given above in standard cellular conditions, and for a typical distance between re-
actants b 2 100 um (like low concentrated axonal receptors), one obtains a typical
gain G4 2, 100 (see figure 57). In the limit of finite reactivity (k finite and D — 0)

opt __ a [ 2In(l/c)—1 1/4 . opt
one has 7'/, = /v (T4~ — and the same optimal value (131) of 7,;. As

in higher dimensions 757, depends neither on the thermal diffusion coefficient D of
phases 1, nor on the association constant k, which shows that the optimal inter-
action time with motors 75" presents remarkable universal features. Furthermore,
our approach permits an estimate of 73 P’ compatible with observations in standard
cellular conditions, which suggests that cellular transport could be close to optimum.

4.2.7 Conclusion

Starting from the observation of vesicles alternating free diffusion and phases bound
to motors performing ballistic motion, and from the observation that (at least in
some cases), vesicles can only react in the free phase, we have proposed a model for
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Figure 57: Optimization of the reaction rate for intermittent active transport. Gain of
reactivity due to active transport G14 in one dimension as a function of 71 or 75 (logarithmic
scale). The analytical form (the mean detection time with diffusion alone (177) divided
by the mean detection time with intermittence (179)) is plotted against the exact solution
(361) (symbols), for the following values of the parameters (arbitrary units): D =1,V =1
for all curves and a = 10,b = 10* (red, +), a = 10,b = 10 (blue, o), a = 2.5,b = 103
(green, OJ). Standard cellular conditions (as discussed in the text) correspond to blue and
red curves.

intermittent active transport. We have explicitly calculated the reaction rate, which
can be approximated by the inverse of the mean first passage time. We have explored
it for various cellular geometries (bulk cytoplasm, membranes, tubular structures),
with random orientations of cytoskeletal filaments. We have shown that intermittent
transport can indeed increase reaction rates, in particular for large objects such as
vesicles, and in particular in low dimensions. The model for the reactive phase is
either diffusive or static (with a reaction rate), and both lead to the same optimal
duration of the ballistic phase. The latter point is investigated in more details in
next section.
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As shown in previous sections, intermittent search strategies are observed at the
macroscopic scale (foraging animals) as well as at the microscopic scale (localization
of a DNA sequence by a protein, vesicle transport within cells). The models we have
used to interpret these findings, in particular in sections 3.4 and 4.2, present similar
general features.

In this section, we present a generic model of intermittent search [Loverdo et al.,
2009a] based on these general features. We study it systematically in 1, 2, and
3 dimensions, and for three different modelings of the detection phase. General
conclusions on intermittent random walks can be drawn from this systematic study,
and are summarized in table 3.

5.1 Introduction

The generic model presented here relies on a succession of slow phases with detection,
and ballistic phases without detection, without direction correlation between ballistic
phases. This model is minimal is the sense that the searcher has low memory skills.

101



5 INTERMITTENT SEARCH : A ROBUST STRATEGY

Indeed, without correlations between ballistic phases, there is no spatial memory.
We also assume a Markovian searcher, i.e. that does not have temporal memory.
As illustrated in the previous examples the search time is often a limiting quantity
whose optimization can be very beneficial for the system — be it an animal or a single
cell. In the case of intermittent search strategies, the minimization of the search time
can be qualitatively discussed : on the one hand, the fast but non-reactive phases
can appear as a waste of time, since they do not give any chance of target detection.
On the other hand, such fast phases can provide an efficient way to relocate and
explore space. This puts forward the following questions : is it beneficial for the
search to perform such fast but non reactive phases? Is it possible, by properly
tuning the kinetic parameters of trajectories (such as the durations of each of the
two phases) to minimize the search time? We develop in what follows a systematic
analytical study of intermittent random walks in one, two and three dimensions
and fully characterize the optimal regimes. Overall, this systematic approach allows
us to identify robust features of intermittent search strategies. In particular, the
slow phase that enables detection is often hard to characterize experimentally. Here
we propose and study three distinct modelings for this phase, which allows us to
assess to which extent our results are robust and model independent. Our analysis
covers in details intermittent search problems in one, two and three dimensions and
is aimed at giving a quantitative basis — as complete as possible — to model real
search problems involving intermittent searchers.

We first define our model and explain our methods. Then we systematically
examine each case, studying the search problem in one, two and three dimensions,
where for each dimension different types of motion in the slow phase are considered.
Each case is ended by a short summary, and we highlight the main results for each
dimension. Eventually we synthesize the results in the table 3 where all cases, their
differences and similarities are gathered. This table finally leads us to draw general
conclusions.

5.2 Model, notations and simulations methods

5.2.1 Model

The general framework of the model again relies on intermittent trajectories. We
consider a searcher that switches between two phases. The switching rate Ay (resp.
Ag) from phase 1 to phase 2 (resp. from phase 2 to phase 1) is time-independent,
which assumes that the searcher has no temporal memory and implies an exponential
distribution of durations of each phase i of mean 7, = 1/\;.

Phase 1 denotes the phase of slow motion, during which the target can be de-
tected if it lies within a distance from the searcher which is smaller than a given
detection radius a, which is the maximum distance within which the searcher can get
information about target location. We propose 3 different modelings of this phase,
in order to cover various real life situations (see figure 58).

e In the first modeling of phase 1, hereafter referred to as the “static mode”, the
searcher is immobile, and detects the target with probability per unit time k
if it lies at a distance less than a.
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Figure 58: The three different descriptions of phase 1 (the phase with detection), here
represented in two dimensions.

e In the second modeling, called the “diffusive mode”, the searcher performs a
continuous diffusive motion, with diffusion coefficient D, and finds immediately
the target if it lies at a distance less than a.

e In the last modeling, called the “ballistic mode”, the searcher moves ballis-
tically in a random direction with constant speed v; and reacts immediately
with the target if it lies at a distance less than a. We note that this mode
is equivalent to the model of Lévy walks searches proposed by Viswanathan
et al. [1999], except for the law of the time between reorientations (see sec-
tion 3.1). They showed that for destructed targets, i.e. targets that cannot
be revisited, the optimal strategy is obtained for a straight ballistic motion,
without reorientations (see section 3.5). We show here that if another motion,
“blind” (i.e. without detection) but with higher velocity is available, there are
regimes outperforming the straight line strategy.

Some comments on these different modelings of the slow phase 1 are to be made.
First, these 3 modes schematically cover experimental observations of the behavior
of animals searching for food [Bell, 1991, O’Brien et al., 1990|, where the slow phases
of detection are often described as static, random or with slow velocity. Several real
situations are also likely to involve a combination of two modes. For instance the
motion of a reactive particle in a cell not bound to motors can be described by a
combination of the diffusive and static modes. For the sake of simplicity, here we
treat these modes independently, and our approach can therefore be considered as
a limit of more realistic models. Finally, combining these three schematic modes
covers a wide range of possible motions, from subdiffusive (even static), diffusive, to
superdiffusive (even ballistic). Beyond the modeling of real-life systems, studying
different detection modes enables us to assess the robustness of our results.

The phase 2 denotes the fast phase during which the target cannot be found.
In this phase, the searcher performs a ballistic motion at a constant speed V in a
random direction, redrawn each new phase 2, independently of previous phases. In
real examples correlations between successive ballistic phases could exist, as observed
for foraging animals [O’Brien et al., 1990|. If correlations are very high, it is close
to a 1-dimensional problem with all the phases 2 in the same direction, a different
problem already treated section 3.2. We consider here the limit of low correlation,
that is of a searcher with no memory skills.
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We assume that the searcher evolves in a d-dimensional spherical domain of
radius b, with reflective boundaries and with one centered immobile target of radius
a. As the searcher does not initially know the target’s location, we start the walk
from a random point of the d-dimensional sphere, and average the mean target
detection time over the initial position. This geometry models the case of a single
target in a finite domain, and also provides a good approximation of an infinite space
with regularly spaced targets. Such regular array of targets corresponds to a mean-
field approximation of random distributions of targets, which can be more realistic
in some experimental situations. We note that in the 1 dimensional case, we have
shown that a Poissonian distribution of targets can lead to significantly different
results from the regular distribution (see section 3.3). We expect this difference to
be less in dimension 2 and 3, and we limit ourselves here to the mean field treatment
for the sake of simplicity.

5.2.2 Methods

We explain here the general methods, and introduce the notations.
We define s;(r,t) the probability that the searcher has not yet found the target
at t, starting from r in state i, where state ¢ = 1 is the slow motion phase with
detection and state ¢ = 2 is the fast motion phase without target detection. Note
that in dimension 1, the space coordinate will be denoted by x, and in the case
of a ballistic mode for phase 1, the upper index in tii stands for ballistic motion
with direction +z. To find the equations s;(r,t) is solution of, we enumerate all
that could have happened in the beginning of the walk. (i) If the searcher is on
the target (r < a) and if it is in the detection phase, the searcher can detect the
target. In the diffusive and the ballistic modes, si1(r < a,t) = 0. In the static
mode, as the searcher finds its target with probability k& per unit of time, it leads
to the term —ksy(r,¢)l,(r), with I,(r) = 1 when r < a, and 0 else. (ii) The
searcher has a motion characterized by the adjoint operator L [Gardiner, 1996|. For
example, for diffusion, Ls;(r,t) = DA,s;(r,t), and for ballistic motion with velocity
v, Ls;(r,t) = v.V,s;(r,t). (iii) The searcher has a probability 1/7; per unit of time
of switching to the other state j, and in this case, its survival probability will be s;
instead of s;. Finally, it leads to the backward equation (with —ks;(r,¢),(r)d(i —1)
only in the case of the static mode) :
1 8s,~(r, t)

Ls;i(r,t) + — (sj(r,t) — si(r,t)) — ks;(r, ) [,(r)d(i — 1) =

- S (189)

Now we define ¢;(r) as the mean first passage time to the target, for a searcher
starting in the phase i from point r. t;(r) and s;(r,t) are related as follows :

ti(r) = — /O mt%dt. (134)

It can be noticed that :

> 9%s(r,t) Os;(r, 1)1 [ Os4(r,t) o
/0 t 542 dt {t B L +/0 p dt = 0+[s;(r,t)];, =0
(135)
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Consequently, ¢;(r) is solution of :

Lt;(r) + % (tj(r) —t;(r)) — kt;(r)L,(r)d(: — 1) = —1. (136)

(2
For each case, the corresponding equations are explicitly written. These equations
are then solved (exactly in one dimension, with an approximation in 2 and 3 di-
mensions). We assume that the searcher starts in phase 1, and to take into account
the fact that it does not initially know the target’s location, we average the mean
detection time over the starting point, leading to the following definition of the mean

search time : .
tm = ——— t(r)dr, 137
o | ) (137)

with Qg the d-dimensional sphere of radius b and V' (€2,) its volume. Unless specified,
we will consider the low target density limit a < b.

Our general aim is to minimize t,, as a function of the mean durations 71, 75 of
each phase, and in particular to determine under which conditions an intermittent
strategy (with finite 75) is faster than a usual single state search in the phase 1 only,
which is given by the limit 77 — oo. In the static mode, intermittence is necessary
for the searcher to move, and is therefore always favorable. In the diffusive mode,
we will compare the mean search time with intermittence ¢,, to the mean search
time for a single state diffusive searcher tqi¢, and define the gain as gain = tqig/tm.
Similarly in the ballistic mode, we will compare ¢, to the mean search time for a
single state ballistic searcher t,,, and define the gain as gain = tpq/t,.

The upper index “opt” is used to denote the value of a parameter or variable at
the minimum of ¢,, .

5.2.3 Methods of simulation

As we will show, in 1 dimension, calculations are exact; but in 2 and 3 dimensions,
there are approximations in the analytical calculations, that we have checked through
simulations.

To save time in the simulations of diffusion, we use variable step length, as in
Berezhkovskii et al. [1998] (see figure 59).

Another method to save time in all the simulations is to use squares (2d) or
cubes (3d) with reflective boundaries instead of disks or spheres of the same surface
or volume. We numerically test that there is no difference in the results obtained
through the two geometries, as soon as b > a (see figure 60).

5.3 One dimension

Besides the fact that it involves more tractable calculations, the 1-dimensional case
is also interesting to model real search problems (see figure 61). At the micro-
scopic scale, tubular structures of cells such as axons or dendrites in neurons can be
considered as 1-dimensional [Alberts, 2002|. The active transport of reactive parti-
cles, which alternate between diffusion phases and ballistic phases when bound to
molecular motors, can be schematically captured by our model with diffusive mode
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5 INTERMITTENT SEARCH : A ROBUST STRATEGY

Figure 59: A diffusive phase. Red : the target of detection radius a. Green : a trajectory
if the diffusion step is taken equal to the duration of the phase. It artificially decreases
the probability of finding the target. Blue : a diffusive step the way it is simulated : step
length decreases when approaching the target.
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Figure 60: Comparison of simulations made in a square ([J) and in a disk (o), for the
diffusive mode in 2 dimensions. Mean search time is represented as a function of 7 (with

9 =~ 75 or T (with 7y ~ 7). D =1, V = 1. b is the radius of the disk, the side of the
square being L = /b.

[Loverdo et al., 2008]. At the macroscopic scale, one could cite animals like ants
[Dussutour et al., 2005] which tend to follow tracks or one-dimensional boundaries.

5.3.1 Static mode

In this section we assume that the detection phase is modeled by the static mode.
Hence the searcher does not move during the reactive phase 1, and has a fixed
reaction rate k per unit time with the target if it lies within its detection radius a
(see figure 62). It is the limit of a very slow searcher in the reactive phase.
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Microscopic scale : vesicles in a tubular
cell structure such as dendrites or axons.

Macroscopic scale : ants following a
track.

Figure 61: Examples of biological systems which dimension is effectively one.
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phase 2 _---

Figure 62: Static mode in one dimension.

Equations
Outside the target (for x > a), we have the following backward equations for the
mean first-passage time :

dtr 1
V=2 4+ —(t; —t5) = -1 138
m+@“ 3) : (138)
dt; 1

V=2 4 —(t;—t;)=—1, and 139
dx+72(1 2) , an (139)
Lttt N _ (140)
T1 2 L= '

Inside the target (z < a), the first two equations are identical, but the third one is
written :
1t 4+t
1 2

—(%+@h=—1 (141)

. o t3 ety d _ ti—ty .
We introduce t; = 252 and t; = 252. Then outside the target we have the

following equations :

V———t5=0 142
dx T 2 ) ( )
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d’ty 1
2 2 _
%4 TQW—Fg(tl—tg) —0, (143)
1
—(ty—t) = —1. (144)
71

Inside the target the first two equations are identical, but the last one writes :

1 1

1 T1

Due to the symmetry = <> —x, we can restrict the study to the part = € [0,a] and
the part « € [a,b]. This symmetry also implies :

dtin
ir |, =0, (146)
dtgt
= 0. 147
dr |,_, (147)

In addition, continuity at x = a for 5 and t, gives:
th(z = a) = t3"(z = a), (148)

(s = ) = 870 = o). (a9)

This set of linear equations enables us to explicitly determine t;, to, t inside and
outside the target.

Results
An exact analytical expression of the mean first passage time to the target is
then given by :
b b—a) b—a)?
ntm —+( al +ﬁ( @) coth
b kT 3V273 V1o

t = ngﬁ) (b a)ﬁz) . (150)

where = \/(km)~' + 1.

In order to determine the optimal strategy, we need to simplify this expression,
by expanding (150) in the regime b > a :

1 b? 3b a
bt = — ——coth 2. 151
(r1+7) (kﬁ + 3V2rs + VTQCO (VTgﬁ) +5 ) (151)
We make the further assumption 7 < 1 and obtain, using § > 1:
tm = (T1+ T2) L+b—2+629+ﬁ2 (152)
m =TT kr — 3V27] a '

Since # > 1 and # > 1/(km1), we obtain in the limit b > a :
b? 1 b
ty = — —4+1)-. 1
(7'1 +7'2) (3V2722 + (le + ) CL) ( 53)
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Figure 63: Static mode in one dimension. Exact expression of t,, (150) (lines) compared
to the approximation of t,, (153) (symbols), both rescaled by tor* (156). 77" from (154),
5P from (155). V =1, k = 1. b/a = 10 (green, O), b/a = 100 (red, o), b/a = 1000 (blue,
+).

This simple expression gives a very good and convenient approximation of the mean
first passage time to the target as shown in figure 63.
We use this approximation (153) to find 7; and 7 values minimizing ¢,, :

1/4
rort — i( ’ ) , (154)

VE \12a
opt a b
— — )= 1
Ty V 3a ( 55)

It can be noticed than 7,7 * does not depend on k. Then the expression of the minimal

value of the search time t,, (153) with 7, = 7*" and 7, = 5% is :

i b (O 20k (30! 2%ka  (3a\"*
tm = — 3 AW +1 wv Tl . (156)
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Summary
For the static modeling of the detection phase in one dimension, in the b > a
limit, the mean detection time is :

b? 1 b
tm:(71+7'2) (W—F (k_7'1+1) a) . (157)

Intermittence is always favorable, and the optimal strategy is realized when 77 b=

TE (%)1/ *and ToF b= 1/ % Importantly, the optimal duration of the relocation

phase does not depend on k, i.e. on the description of the detection phase.

5.3.2 Diffusive mode

phase 2

_

2a

Figure 64: Diffusive mode in one dimension.

We now turn to the diffusive modeling of the detection phase. The detection
phase 1 is now diffusive, with immediate detection of the target if it is within a
radius a from the searcher (see figure 64).

Equations
Along the same lines, the backward equations for the mean first-passage time
read outside the target (z > a) :

V%—i—%(zﬁl—t;) =1, (158)
—vcg—i 4 %(tl ) = -1, (159)
D%+% (%—F%—tl) =1, (160)
and inside the target (x < a) :
RIS o)
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dt; 1
— % — T_2t2 = —17 and (162)
t; = 0. (163)

+ 4= + 4=
We introduce the variables t, = % and t4 = % This leads to the following
system outside the target (x > a) :

dt, 1

V== ¢ 164
d.T T 29 ( )
dto 1
Vim——4+ —(t; —ty) = —1 165
T2 + 72( 1 — ta) ; (165)
d’t; 1
D— 4+ —(ty —t1) = —1 166
(- t) =L (166)
and inside the target (z < a)
A T yd 167
dx ) 2,in? ( )
V2 — — —ty;, = —1, and 168
T2 dl’ T2 2 an ( )
t; = 0. (169)

Interestingly, this system is exactly of the same type that what would be obtained
with 2 diffusive phases, with DST = V27, in phase 2. Boundary conditions result
from continuity and symmetry :

ti(a) =0, (170)
t3 (a) = t3,,(a), (171)
ty (a) =ty (a), (172)

dts

o2 — 1

|, 0, (173)
dty
— = (0 and 174
dz |,_, an (174)
dts in,

: = 0. 175
=y (175)

Results

Standard but lengthy calculations lead to an exact expression of the mean first
detection time of the target ¢,, given in appendix 8.2.1. We first studied numerically
the minimum of ¢,, in appendix 8.2.1, and identified 3 regimes. In the first regime

b < L) intermittence is not favorable. For b > £ intermittence is favorable and
% i%
two regimes (;3[‘)/22 < 1 and 53%22 > 1) should be distinguished . We now study

analytically each of these regimes.
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Regime where intermittence is not favorable : b < %

Ifo < %, the time spent to explore the search space is smaller in the diffusive
phase than in the ballistic phase. Intermittence cannot be favorable in this regime,
as confirmed by the numerical study in appendix 8.2.1.

Without intermittence, the searcher only performs diffusive motion and the prob-
lem can be solved straightforwardly. The backward equations read tqi¢ = 0 inside
the target (x < a), and outside the target (z > a) :

d’t gige
dx?

D S (176)

Since tqg(z = a) =0 and 22| =0, we obtain tag(z) = 55((b — a)* — (b — x)?).
The mean first passage time to the target then reads :

(b—a)’

tair = —5 75, (177)
which in the limit b > a leads to :
b2
Laiff ™~ 3D (178)
Optimization in the first regime where intermittence is favorable : b > %
and fg; > 1

As explained in details in appendix 8.2.1, we use the approximation of low target
density (b > a), and we use assumptions on the dependence of 7** and 757" on b and
a. These assumptions lead to the following approximation of the mean first passage
time :

b 1
fo— b . 179
(r+7) (3V2T§ + DTl) (179)

We checked numerically that this expression gives a good approximation of t,, in

this regime, in particular around the optimum ((see figure 65)).
The simplified ¢, expression (179) is minimized for :

ot 1 3/202D

TP = 3 Y TR (180)
Opt 3 2b2D

=\ gy (181)

. 35 bl

ot~ 0 S DTE (182)

This compares to the case without intermittence (177) according to :

2 2
tai 24 DV 3 bV \ 3
goin = = {5 () =0 () 19)

These results are in agreement with numerical minimization of the exact t,, (Table
4 in appendix 8.2.1).
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Figure 65: Diffusive mode in one dimension. t';ﬁ, taig from (178), and ¢, exact expression

(361) (line), approximation in the regime of favorable intermittence and f3DV22 > 1 (179)
(symbols). a =1 and b = 100 (green, o), a = 1, b = 10* (red, +), a = 10, b = 10° (blue,
0). D=1,V =1. Tfpt is from expression (180), Tgpt is from expression (181).
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Figure 66: Diffusive mode in 1 dimension. ﬁ’ taig from (178), and t,, exact expression

(361) (line), approximation in the regime of favorable intermittence and Cf’g,DV22 < 1 (184)
(symbols). a = 10 and b = 100 (green, o), a = 10, b = 1000 (red, +), a = 100, b = 10*
(blue, ). D=1,V = 1. 7" is from expression (185), 75" is from expression (186).

Optimization in the second regime where intermittence is favorable
b > % and 1> b2

a3V?
We start from the exact expression of t,, (361). As detailed in appendix 8.2.1,

we make assumptions on the dependence of 7** and 75" with b and a, and use the

assumptions that b > a and 1 > %. It leads to :
b a ab
ty ~ — . 184
a(Tl+T2) <CL+\/D_7'1+3V27'22) (184)

This expression gives a good approximation of ¢,,, at least around the optimum ((see
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figure 66)), which is characterized by:

Db
opt — 1
opt a b
= — e ]_

2a [ b\*?
gort ~ =0 (—) , (187)
V3 \a

‘ 1 aV b
gain ~ mﬁ\/; (188)

These results are in very good agreement with numerical data (Table 4 in appendix
8.2.1). Note that the gain can be very large at low target density.

Summary

We calculated explicitly the mean first passage time ¢, in the case where the
detection phase is modeled by the diffusive mode. We minimized ¢, as a function of
71 and 7o, the mean phases durations, with the assumption a < b. There are three
regimes:

. . . . ¢ t
e when b < 2 intermittence is not favorable, i.e. 7% — oo, 757" — 0, t% =

Vo
b2
laiff ™~ 35
h b D bD?2 . . s f bl ith opt opt
e when b > ¥ and 5% > 1, intermittence is favorable, with 7,7 = 277" =
3/2b2D opt ~, 3/3% bt
V ova s and = 4/ 55 pi
D bD? : : ; : opt _ Db
e when b > ¢ and 57 < 1, intermittence is favorable, with 7" = -,

ot _ a [b opt o, 2a (b)3/2
T2 _V\/3a’tm_v\/§(a> '

This last regime is of particular interest, since the value obtained for 75" is the same
as in the static mode (see section 5.3.1).

5.3.3 Ballistic mode

We now treat the case where the detection phase 1 is modeled by the ballistic mode
(see figure 67). This model schematically accounts for the general observation that
speed often degrades perception abilities. Our model corresponds to the extreme
case where only two modes are available : either the motion is slow and the target
can be found, or the motion is fast and the target cannot be found. Note that this
model can be compared to the model of Viswanathan et al. [1999], where there is
only the detection phase.
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>~ phase 2
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Figure 67: Ballistic mode in one dimension.

Equations
The backward equations read outside the target (x > a) :

vl%+% <%+%—tf) =1, (189)
V%+% (%+%_—t;) = —1 and (191)
_ ‘;L;Jr%(%Jr%_t;):—L (192)

. d tF—t- thtT . . ..
Defining ¢§ = “5= and t; = =5+, we get the following equations (and similar

expressions with v, — V' t; — tg, to — 1) :

dtd 1
— 4+ —(ta —t1) =—1 193
Uldl‘+71(2 1) ; (193)
dat, 1 ,
S T — 194
Uz o 0 (194)
which eventually lead to the following system :
?*ty 1
2 1 _
UlTlﬁ—i_T_l(tQ_tl) =-1 (195)
e, Ltz 1 (t — ty) = —1 (196)
To—— + —(t; — t3) = —
2z T, ;
together with :
dty
tl = UlTl%’ (197)
dt
td = vrgd—;. (198)
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Inside the target (z < a), one has t7""(z) = t;"*(z) = 0, and :

V2 — =1 199
de T 2 ) ( )
;™ 1,

V2 — )" =1, 200
d.T T2 2 ( )
Finally, the boundary conditions read :
dity
— =0 201
el (201)
dty
- =0 202
=l =0 (202)
ty (a) = t3,,(a), (203)
ty (a) = t5,,(a), (204)
dta i
: =0 and 205
dr |,_, o (205)
t; (a) =0. (206)

Results
The exact expression of t,, (see appendix 8.2.2) is obtained through lengthy but
standard calculations. To simplify this expression, we consider the small density

limit a/b — 0 and finally obtain the following very good approximation of ¢,, (see
figure 68) :

by = % ((g + L1> Va+TLy(vVa + L2)> : (207)

where :

r_ Wa— L)L+ Lo) + Va(Ls = L+ Va)X + X2Lo(Ls — L)

((Ll + \/a>X2 -+ (Ll — \/a))(\/a+ L2 . Ll) ) (208)
X =i, (209)

a=Li+ L (210)

Ly =V and (211)

Ly = um. (212)

A numerical analysis indicates (see figure 68 and table 2) that, depending on the
parameters, there are two possible optimal strategies :

e 7, — 00 . Intermittence is not favorable.
t . .
o 7 — 0,75 = 7,"". Intermittence is favorable.

We now study analytically these regimes.
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Figure 68: Ballistic mode in one dimension. Comparison between low density approxima-
tion (207) (symbols) and the exact expression of t,,, (403) (line). (a), (b) : t,, as a function
of 71, with 75 = 0.1757" (red, +), 7o = 5% (blue, ), 7 = 107" (green, o). (c), (d) :
tm as a function of Tg/Tgpt, with 71 = 0 (red, +), 71 = 10 (violet, o), 71 = 100 (blue, O0),
71 = 10000 (green, o). (a), (c) : vy; = 0.12 > v} : intermittence is not favorable. (b), (d) :
v = 0.06 < vf : intermittence is favorable. 75" is from the analytical prediction (217).
a=1,V =1, b=100.

=1 [y =01 \ v = 0.01 vy = 0.001 7_20pt,th<217)

b=5 |n—o0 7 — 0, 5" = 0.86 720,91
b= 50 T — 00 71— 0, 75" =29 TP — 9.9
b = 500 T — 00 =0, 7 =91 O g ]
b = 5000 T — 00 7 — 0, Tgpt — 99 7_2opt,th — 99

Table 2: Ballistic mode in one dimension. Numerical minimization of the exact t,,
(403). Values of 7 and 7 at the minimum. Comparison with theoretical 7. a = 0.5,
V=1

Regime without intermittence : 7, — oo

In this regime, there is no intermittence. The searcher starts either inside the
target (z in [—a,a]) and immediately finds the target, or it starts at a position z
outside the target. We can therefore take = € [a,b]. If the searcher goes in the —x
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5 INTERMITTENT SEARCH : A ROBUST STRATEGY

direction, it find its target after 7' = (z — a)/v;. If the searcher goes in the +x
direction, it finds its target after 7' = ((b — z) + (b — a))/v;. This leads to :

1 (°b—a (b—a)?
toug = ~ dz — . 213
batl b/a U v b’Ul ( )

Intermittent regime
We take the limit 71 — 0 in the expression of t,, (207) and obtain :

2a
b b elz +1
lim t,, = — ; . 214
Tllino V <3L2 +€LZ_1) ( )
Taking the derivative with respect to Ly yields :
T (tim 1) o 1205 4 20685 — b — pets 215
2 2 — — 2
i lim ¢, ) oc 12ae + 2be elz, (215)

which has only one positive root :

2a

Ly = : (216)
In (1 +6a/b+21/3a/b+ 9a2/b2>
In the limit b > a it leads to :
opt a [b
= /- 217
Ty 3V CL7 ( )

which is in agreement with the numerical minimization of the exact mean detection
time shown in the table 2.

The mean first passage time to the target is minimized in the intermittent regime
for 7, — 0 and 7 = 757", We replace 75 by (217) in the expression (214), and take

b > a to finally obtain :
2 b
to = %V\/;a (218)

gain = ——y [ —. (219)

This shows that the gain is larger than 1 for v; < vf = V\/Tg \/g , which defines the
regime where intermittence is favorable.

Summary

In the case where the phase 1 is modeled by the ballistic mode in one dimension,
we have calculated the exact mean first passage time t,, at the target. t,, can be
minimized as a function of 7 and 7y, yielding two possible optimal strategies :

. . . ¢ ¢
e for v; > v¢ = V¥ /2 intermittence is not favorable : 7% — oo, 7" — 0
l 2 b 1 y 12 1)

: , : : ¢ ¢

o for vy < vf = V‘/Tg /¥, intermittence is favorable, with 77" — 0 and 7, =
a /b
3\ a -
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5.4 TWO DIMENSIONS

Note that the model studied by Viswanathan et al. [1999] shows that when targets
are not revisitable, the optimal strategy for a single state searcher is to perform a
straight ballistic motion. This strategy corresponds to 7, — oo in our model. Our
results show that if a faster phase without detection is allowed, this straight line
strategy can be outperformed.

5.3.4 Conclusion in one dimension

Intermittent search strategies in one dimension share similar features for the static,
diffusive and ballistic detection modes. In particular, all modes show regimes where
intermittence is favorable and lead to a minimization of the search time. Strikingly,
the optimal duration of the non-reactive relocation phase 2 is quite independent

of the modeling of the reactive phase : 757" = %\/g for the static mode, for the

ballistic mode (in the regime v; < vf ~ ¥,/3%), and for the diffusive mode (in the

regime b > £ and a > g\/g) This shows the robustness of the optimal value 75"

5.4 Two dimensions

Microscopic scale : vesicles traffic on a
membrane.

Macroscopic scale : gatherers searching
for cockles hidden below the surface.
Photo from Michel Sokolowski [Lepolard,
2007].

Figure 69: Biological examples of search in two dimensions.

The 2-dimensional problem is particularly well suited to model animal behaviors;
it is also relevant to the microscopic scale, since it mimics for example the case of
cellular traffic on membranes[Alberts, 2002] (see figure 69). While in one dimension
the mean search time can be calculated analytically, we introduce in two dimensions
(and later in three dimensions) approximation schemes, which we check by numerical
simulations.

5.4.1 Static mode

We study here the case where the detection phase is modeled by the static mode :
the searcher does not move during the detection phase and has a finite reaction rate
with the target if it is within its detection radius a (see figure 70).
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5 INTERMITTENT SEARCH : A ROBUST STRATEGY

Figure 70: Static mode in two dimensions.

Equations

Figure 71: Static mode in two dimensions. Simulations (symbols) and analytical approxi-
mate (223) (lines). k=1, V =1, b=56; a = 10 (red, 4+) (77" = 2.41, 77" = 11.2), a =1
(blue, o) (77" = 0.969, 757 = 1.88), a = 0.1 (green, O0) (77" = 0.348, 757" = 0.242). Left :

. . . t . .
mean search time ¢, as a function of 7o /a, with 7, = Tfp . Right : mean search time t,, as

) : :
a function of 71, with 7 = 757

The mean first passage time at a target satisfies the following backward equations
[Redner, 2001]:

27:71 /O (1) - t (7)) d0y — KL(7 )t (7) = —1. (220)
V. Vito(F) — %(@(7) CH(F)) = —1 (221)

The function 1, is defined by I,(7) = 1 inside the target (if | 7| < a) and I,(7") =
0 outside the target (if |7'| > a). In the present form, these integro-differential
equations (completed with boundary conditions) do not seem to allow for an exact
resolution with standard methods. %, is the mean first passage time to the target,
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5.4 TWO DIMENSIONS

H
starting from 7 in phase 2, with speed V', of angle #y, and with projections on
the axes V,, V,. i and j can take either x or y as a value. We use the following
decoupling assumption :

(ViVita)oy = (ViVi)ey (t2)ey (222)

and finally obtain the following approximation of the mean search time, which can
be checked by numerical simulations (see figure 71) :

I0(5'3)

T+ T2

_ 1 2\2
o= g { L0 k)2 o)

S8+ (14 k) (40 In(y/) + (52 — %) (s — 3? + 8))]} ,
(223)

2]€T1 2]67'1 b
h =4/ ——. 224
whnere r = 1+ le V7_2 1+ le VT2 ( )

In that case, intermittence is trivially necessary to find the target. In the regime
b > a, the optimization of the search time (223) leads to :

o _ <%>1/2 (21n(b/8a) - 1)1/47 (225)

P = % (In(b/a) — 1/2)"/2, (226)

and the minimum search time is given in the large volume limit by :

ot VP20 (@® —40%)In(b/a) +20° — o’
™ a?k Ve (21n(b/a) — 1)3/4
V2 (96a%0? — 1920%) In*(b/a) + (1920 — 144a%6?) In(b/a) + 46ab* — 47b* + a*
- 48ab2V (2In(b/a) — 1)3/2 '

(227)

Summary

In the case of a static detection mode in two dimensions, we obtained a sim-
ple approximate expression of the mean first passage time t,, at the target. With
the static detection mode, intermittence is always favorable and leads to a sin-

gle optimal intermittent strategy. The minimal search time is realized for 7" =

1/4
(%)1/2 <%§‘1)_1> and 75" = 2 (In(b/a) — 1/2)"%. Importantly, the optimal

duration of the relocation phase does not depend on k, i.e. on the description of the
detection phase, like in one dimension.

5.4.2 Diffusive mode

We now assume that the searcher diffuses during the detection phase (see figure 72).
For this process, the mean first passage time to the target satisfies the following
backward equation [Redner, 2001]:

DV2t, (7)) +

/0 C(6a(T) — 0 (7)) dby = (228)

T
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5 INTERMITTENT SEARCH : A ROBUST STRATEGY

g@ phase 1

Figure 72: Diffusive mode in two dimension.

1
V. Vita(T) — —(t2(T) — (7)) = L, (229)

2
with ¢ (7) = 0 inside the target (r < a). We use the same decoupling assumption
than for the static case (222). It eventually leads to the following approximation of

the mean search time, which is checked by numerical simulations (see figure 73) :

B 1 —a*/b? 2,0 M L. a’Dn (3—4ln(b/a))b" — 40’ + o'
b = (71+72)m {aa(b /a 1)2L+ Y, 2 o2 } :
(230)
with :
with Ly =Ip [ —=— | (L (ba)K; (acr) — I, (aa)K, (b))
V D2 (231)
+ay\/Dnl \/% (L (ba)Ko(ac) + Ip(ac)K, (ba)) ,
DTQ
and :
M =I, \/% (I (ba) Ko (aex) + Ip(aa)K (b))
DTQ
(232)

a?\/ D, a
- 4a(b2 - a2)211 \/ﬁ»T2 (L (br) Ky (ac) — Ty (aa) Ky (bav))

where o = (1/(Dm) + 1/(D73))"? and D = v?r,. We then minimize this time as a
function of 7 and 7.

a<b< D/V : intermittence is not favorable
In that regime, intermittence is not favorable. Indeed, the typical time required
to explore the whole domain of radius b is of order b*/ D with diffusive motion, which
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075 0.75

0.5

T N Y A B

— -
TTT T [T T T T[T T T T[T T T T [TTTT] rrrrrrrr[rrrrrrrrrrrrrrjfl

10 20 30 40 50 -2.5 0.0 2.5 5.0 7.5
T2 In( 1)

Figure 73: Diffusive mode in two dimensions. Simulations (symbols) versus analytical
approximate (230) (line) of the search time, rescaled by the value in the absence of inter-
mittence tqig as a function of 7 (left) and In(7) = (right), for D =1, V =1, b = 226.
Left : a =10, 74 = 1.37 (green O); a = 1, 71 = 33.6 (blue 0); a = 0.1, 71 = 213 (red +).
Right: a =10, 79 = 15.9 (green, 0); a = 1, 7o = 13.7 (blue, o); a = 0.1, 75 = 22 (red, +).

is shorter than the corresponding time b/V with ballistic motion. As a consequence,
it is never useful to interrupt the diffusive phases by mere relocating ballistic phases.
We use standard methods to calculate the mean first passage time to the target in
this optimal regime of diffusion only :

D d dt
—— | r— ) =-1. 2
r dr (rdr> (233)

The boundary conditions t(a) = 0 and % (r = b) = 0 lead to :

1 212 4 4 4 b
tdiﬁ:m (4a b —a —3b +4b 111— s (234)

a

and we find in the limit b > a :

tig = 5 (34 am? (235)
le_8Deff a .

a < D/V < b: first regime of intermittence
In this second regime, one can use the following approximate formula for the
search time:

. b2 T1 + T2
~ 4DV2a? 173

(VTQ)2
DTl

tm {4ln(b/a) -3-2 (In(aa) +v —1n 2)} : (236)

~ being the Euler constant. An approximate criterion to determine if intermittence
is useful can be obtained by expanding t,, in powers of 1/7 when 7 — oo (13 — 00
corresponds to the absence of intermittence), and requiring that the coefficient of
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5 INTERMITTENT SEARCH : A ROBUST STRATEGY

the term 1/7; is negative for all values of 7. Using this criterion, we find that
intermittence is useful if

V2exp(=7/4+~)Vb/D — Aln(b/a) + 3 > 0, (237)
In this regime, using Eq(236), the optimization of the search time leads to :

ot 0? Alnw—5+4¢ opt b VAInw—5+c¢
=5 » Ta8 = 17 )
Dw?(4lnw — 7+ ¢) %4 w

(238)
where w is the solution of the implicit equation w = 2Vbf(w)/D with :

I =5 )+ (64 (b)) In w10 In (o) 1 1—c(c/2+2 nfa/)-3/2),
(239)

and ¢ = 4(y — In(2)), v being the Euler constant. An useful approximation for w is
given by :

2V Vb
~ . 24
wept (2D1n(b/a)> (240)
The gain for this optimal strategy reads :
win — L 1 4lnd/a—3+4a®/V* —a' /b 1 +wD Anw—-7 \ '
g = ot 24Inb/a — 3+ 2(4lnw)In(b/aw) \4lnw —5 bV (4lnw — 5)3/2

(241)
If intermittence significantly speeds up the search in this regime (typically by a
factor 2), it does not change the order of magnitude of the search time.

D/V <« a < b : “universal” regime of intermittence
In the last regime D/V < a < b, the optimal strategy is obtained for :
opt D lnz(b/a) opt a
B ~ , Ty —
2V221In(b/a) — 1

(In(b/a) — 1/2)"2. (242)

<

and the gain reads :

RZ V2aV 1 Iy (2/\/W> .
%t 8D 41n(b/a —31 (2/\/W> 2111(()/@)—

(243)
Here, the optimal strategy leads to a significant decrease of the search time which
can be rendered arbitrarily smaller than the search time in absence of intermittence.

Summary

We have studied the case where the detection phase 1 is modeled by the diffusive
mode, and obtained an approximation of the mean first passage time to the target.
We have found that intermittence is favorable (i.e. better than diffusion alone), in
the regime of large system size b > D/V. The optimal intermittent strategy then
follows two subregimes :
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Figure 74: Values of 71 and 75 at the minimum of ¢,,, obtained via the approximation in the
case a < D/V (238) (discontinuous line), via the approximation in the case a > D/V (242)
(continuous line), via the minimization of analytical ., (230) (+), and via the simulations
(o) (which are not very precise due to the flatness of the minimum), for V=1, D = 1,
b =113 (red), b = 451 (light green), and b = 1800 (dark blue).

e if a < D/V, the best strategy is given by (238). The search is significantly
reduced by intermittence but keeps the same order of magnitude as in the case
of a single state diffusive search.

e if a > D/V, the best strategy is given by (242), and weakly depends on b. In
this regime, intermittence is very efficient as shown by the large gain obtained
for V large.

5.4.3 Ballistic mode

Figure 75: Ballistic mode in two dimensions.

In this case, the searcher has access to two different speeds: one (V) is fast but
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5 INTERMITTENT SEARCH : A ROBUST STRATEGY

prevents the searcher from finding its target, and the other one (v;) is slower but
enables the searcher to detect it target (see figure 75).

Simulations

5.x10°
v =0.7> v
1.x10%
5.x10%

1.x10%4
5.x 1039

1.x10%
5.x10%q

1072 107! 10"7—2 10! 10? 10° 1072 107! 10"7—210‘ 102 10°

Figure 76: Ballistic mode in two dimensions. In(t,,) as a function of In(mz). Simulations
(symbols), diffusive/diffusive approximation (230) with (247) (colored lines), 71 — 0 limit
(248) (black line), 71 — oo (no intermittence) (246) (dotted black line). b = 30, a = 1,
V =1. 1 =0 (black, x), 1 = 0.17 (yellow, @), 71 = 0.92 (green, ©), 71 = 5.0 (blue, x),
71 = 28 (purple, o), 71 = 150 (red, +), 7 = 820 (brown, 0J).

Since an explicit expression of the mean search time is not available, a numerical
study is performed. Exploring the parameter space numerically enables to iden-
tify the regimes where the mean search time is minimized. Then, for each regime,
approximation schemes are developed to provide analytical expression of the mean
search time. The numerical results presented in figure 76 suggest two regimes defined
according to a threshold value vf of v; to be determined later on :

o for v; > vy, t,,, is minimized for 75 — 0

o for vy < vy, t,,, is minimized for 1, — 0 .

Regime without intermittence (1 — 0, 71 — )

Qualitatively, it is rather intuitive that for v; large enough (the precise threshold
value vf will be determined next), phase 2 is inefficient since it does not allow for
target detection. The optimal strategy is therefore 7, — 0 in this case. In this
regime, the searcher performs a ballistic motion, which is randomly reoriented with
frequency 1/71. Along the same line as in Viswanathan et al. [1999] (where however
the times between successive reorientations are Lévy distributed), it can be shown
that the optimal strategy to find a target (which is assumed to disappear after
the first encounter) is to minimize oversampling and therefore to perform a purely
ballistic motion. In our case this means that in the regime 7 — 0, the optimal 7 is
given by 777" — oo.

In this regime, we can propose an estimate of the optimal search time t;,. The
surface scanned during dt is 2av;0t. p(t) is the proportion of the total area which
has not yet been scanned at t. If we neglect correlations in the trajectory, p(t) is

solution of :
dp _ 2avp(l)

dt mh? (244)
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Figure 77: Ballistic mode in two dimension. %" as a function of b, logarithmic scale.
Regime without intermittence (72 = 0 and 731 — oo, v; = 1), analytical approximation
(246) (blue line), numerical simulations (o). Regime with intermittence (with 7 = 0,
Ty = Tyl .V = 1), analytical approximation (250) (red line), numerical simulations ().
a=1.

Then, given that p(t = 0) = 1, we obtain :

2
p(t) =exp (——7 ). (245)
b2
and the mean first passage time to the target in these conditions is :
> dp b2
toal = — t—dt = —. 246
bat /0 dt 2av; (246)

This expression yields (see figure 77) a good agreement with numerical simulations.
Note in particular that t,, Uil

Regime with intermittence 7, — 0

In this regime where v; < vy, the numerical study shows that the search time is
minimized for 71 — 0 ((see figure 76)). We here determine the optimal value of 7
in this regime. To proceed we approximate the problem by the case of a diffusive
mode previously studied (230), with an effective diffusion coefficient :

2
p="0 (247)
2
This approximation is very satisfactory in the regime 71 — 0 as shown in (see

figure 76).
We can then use the results of the previous section for the diffusive mode in the
71 — 0 regime and obtain:

A N TR T O e e B A 1 G-
m = T2 b2 4 7-22‘/2((,2_a2) Vrz\/§ a2 I <M
T2
(248)
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The calculation of 757 minimizing t,, then gives:

b\ 1
= % In <5> -5 (249)

In turn, replacing 7 by 757 (249) in (248), we obtain the minimal mean time of
target detection :

opt __

" _uﬂV

2
a o _u2(3—|—41n(%))b4—4a2b2+a4+“<2_2_1> Iy (2u)
b? a?2 (b2 — a?) I; (2u)
(250)

1
with v = (ln (g) — 1) 2. Tt can be noticed that 2" % Note that if b > a this
last expression can be greatly simplified:

2
Pt~ 2 In (é) (251)

aV a

Finally the gain reads (using (246) and (251)):

, tha TV b\ \ *°
gain = zpi ~ T (ln <a>) : (252)

Numerical simulations of figure 77 show the validity of these approximations.

Determination of v}

10 50 100 b 500 1000

Figure 78: Ballistic mode in two dimension. v as a function of In(b) by simulations
(symbols), predicted expression (253) (red dotted line), predicted expression multiplied by
a fitted numerical constant (blue line). V =1, a = 1.

It is straightforward than v < V. Indeed, if v; = V/, phase 2 is useless, since the
target cannot be detected. Actually, an estimate of vf can be obtained from (252)
as the value of v; for which gain =1 :

o o % (m <§)>_0’5 o \/ﬁ (253)
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We note that this expression ((see figure 78)) gives the correct dependence on b, but
it however departs from the value obtained by numerical simulations. This is due to
fact that the expression of t%" with intermittence (251) is underestimated, while tp,,
given in (246) is overestimated. It is noteworthy that intermittence is less favorable
with increasing b. This effect is similar to the 1 dimensional case, even though it
is less important here. It can be understood as follows: at very large scales the
intermittent trajectory is reoriented many times and therefore scales as diffusion,
which is less favorable than the non intermittent ballistic motion.

Summary

We have studied the case of the ballistic mode for the detection phase in two
dimensions. When v; > vf, the optimal strategy is to remain in phase 1 and to
explore the domain in a purely ballistic way. Therefore, 757" — 0, 77" — co. When

v < vf, we find on the contrary 777" — 0 and 75" = £, /In (2) — 1. The threshold
value is given by vj o 1Yb/ ) and shows that when the target density decreases,

intermittence is less favorable.

5.4.4 Conclusion in two dimensions

Remarkably, for the three different modes of detection (static, diffusive and ballistic),
we find a regime where intermittence minimizes the search time for one and the

same 75", given by 15" = &,/In (%) — 3. As in one dimension, this indicates that
optimal intermittent strategies are robust and widely independent of the details of

the description of the detection mechanism.

5.5 Three dimensions

Binding

microscopic scale : vesicles in the bulk Macroscopic scale : fish lives in a
cytoplasm of a cell 3-dimensional space

Figure 79: Biological examples in 3 dimensions.

The 3 dimensional case is also relevant to biology (see figure 79). At the micro-
scopic scale, it corresponds for example to intracellular traffic in the bulk cytoplasm
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of cells, or at larger scales to animals living in 3 dimensions, such as plankton |Bar-
tumeus et al., 2003, or C.elegans in its natural habitat (soil) [Kiontke and Sudhaus,
2005]. As it was the case in two dimensions, different assumptions have to be made
to obtain analytical expressions of the search time. We checked the validity of our
assumptions with numerical simulations using the same algorithms as in two dimen-
sions.

5.5.1 Static mode

Figure 80: Static mode in three dimensions.

We study in this section the case where the detection phase is modeled by the
static mode, for which the searcher does not move during the detection phase and
has a finite reaction rate with the target if it is within a detection radius a (see
figure 80).

Equations

Denoting ¢;(r) the mean first passage time to the target starting from a distance
r from the target in phase 1 (detection phase), and 39 4(r) the mean first passage
time to the target starting from a distance r from the target in phase 2 (relocation
phase) with a ballistic motion in a direction characterized by 6 and ¢, we obtain :

— — 1
V.vt2797¢ + 7_— (tl — t2797¢) = —1. (254)
2

Then outside the target (r > a) :

1 1 s . 2
7_—1 <E/O d@smﬁ/ﬂ d(ﬁtg’@,d) — t1> = —1, (255)

and inside the target (r < a) :

11 T . 2T 1
—— d@sm&/ ditrpe — | — +k |t =1 (256)
0 71

T 47 Jo
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With to = L [T dlsin [, déts g4, We obtain outside the target (r > a) :

1
71

and inside the target (r < a) :

1 1

1 1

Making a similar decoupling approximation as in two dimensions, we finally obtain :

V2 1
2Nty — = (t—to) = —1. (259)

3 T2

We solve these equations inside and outside the target, using the following boundary

conditions : .
ou

=0 260

I (260)

15" (a) = t3'(a), (261)
dtg* dty’

= 262

dr | ._, dr|,_,’ (262)

and the condition that ¢5*(0) should be finite.

Results
We find an explicit expression of the mean search time :
b 1 1 203 (B2 — o2 b — g3 3@2 1b5 5
m—(T1+7'2> k—ﬁ—i—m — ( —CL)+( —a) @4‘5 +5( —CL)
(263)
with :
P sinh'(a) a® + a cosh (@) b3’ (264)
a (—sinh (o) + a cosh (a))
and o = S%Viﬁ

In the limit b > a, this can be simplified to :

1 1 [—sinh(a)a®+a cosh(a)b® 9, 3a?
ty = — —=b"+ — . (265
(1 +7) (kﬁ * A% ( a(—sinh (@) + @ cosh (a)) 5 T (265)

Assuming further that « is small, we use the expansion (3 ~ % (1 — tanh(a)/ a)_l ~
3 3 6 . .
s (; + g) and rewrite mean search time as :

VB(ro+m) [((1+km) 6
_ 266
a ( T1ka? 575V 2 (266)

tn

This expression of ¢, can be minimized for :

3\1* a
opt
— _— —_— 2
n (10) vk’ (267)

ST

131
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P = \/_ — (268)

and the minimum mean search time finally reads :

2
110 [ [ak
toPt = Y e (269)
m \/_k,a?,(

Comparisons with simulations
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Figure 81: Static mode in 3 dimensions. In(¢,,) as a function of In(m) for different values
of 71, a and b/a. Comparison between simulations (symbols), analytical expression (263)
(line), expression for b > a (265) (small dots) and simple expression for b > a and «

small (266) (dashed line). 71 =~ {7 == 0.741/ % (267) (blue, +), 71 = 0.25,/ %Y (red, o),
71 =25/ (green, ). V =1, k=1.

Data obtained by numerical simulations (figure 81, and additionally in appendix
8.2.3) are in good agreement with the analytical expression (263). In particular, the
position of the minimum is very well approximated, and the error on the value of
the mean search time at the minimum is close to 10%. Note that the very simple

expression (266) fits also rather well the numerical data, except for small 75 or small
b.

Summary
In the case of a static detection mode in three dimensions, we obtained a simple
approximation of the mean first passage time to the target t,, = b3(T2a+ﬁ) <(1T;L,f;21 ) 4 5726‘/2) :
2

» has a single minimum for 7" = (& ) Vi and $P = /1.2, and the minimal

mean search time is 1 “’3 (,/ akog1/4 4 51/4> . With the static detection mode,
intermittence is always favorable and leads to a single optimal intermittent strategy.
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5.5 THREE DIMENSIONS

As in one and two dimensions, the optimal duration of the relocation phase does
not depend on k, i.e. on the description of the detection phase. In addition, this
optimal strategy does not depend on the typical distance between targets b.

One can notice than for the static mode in the three cases studied (1, 2, and 3

dimensions), we have the relation : 77" = /75" /(2k). This relation between the
optimal durations of the two phases is independent from the dimension.

5.5.2 Diffusive mode

\‘x\phase 2 X

Figure 82: Diffusive mode in three dimensions.

We now study the case where the detection phase is modeled by a diffusive mode.
During the detection phase, the searcher diffuses and detects the target as soon as
their respective distance is less than a (see figure 82).

Equations
Outside the target (r > a), we write :

— — 1
V. .Vtage + - (t1 —tap) = —1, (270)
2
1 1 s ’ 2w
DA tl +— | — dfsinf d¢t2797¢ — tl = —1, (271)
and inside the target (r <a) :
- — 1
V.vt2797¢ — —t279,¢ = —1, (272)
T2
t = 0. (273)

With ¢, = 1= [, dfsind fOZW ddte g 4, we get outside the target (r > a) :

1
DA+ — (15" - 1) = -1, (274)
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The decoupling approximation described in previous sections then yields outside the
target :

1
g A6 ) =1, (275)

and inside the target (r <a) :

V2 . 1.
372 AUt = -1, (276)

These equations are completed by the following boundary conditions :

dtg“t
=0 277
dr T:b ) ( )
t5"(a) = t3"(a), (278)
dt3* dty
= 279
dr |,_, dr |._, (279)

Results in the general case

Through standard but lengthy calculations we solve the above system and obtain
an analytical approximation of ¢, (see appendix 8.2.4). In the regime b > a, we use
the assumption b/(71 D)~ + 3(12v)~2 > 1 and obtain :

Pl ) ta () + os0)
K1 k1K21 Da <tanh(/£2a) + Z—;) — tanh(kqa)

with k; = —WD nd ke = v . As shown in Fig.83 left or in the additional
figure 124 in appendlx 8.2.4, t, only weakly depends on 7y, which indicates that
this variable will be less important than 75 in the minimization of the search time.
The relevant order of magnitude for 77" can be evaluated by comparing the typical
diffusion length Ly = v/6Dt and the typical ballistic length Ly, = Vt. An estimate
of the optimal time 77" " can be given by the time scale for which those lengths are

of same order, which gives :

W~ —. (281)

Note that taking 71 = 0 does not change significantly t%" (see figure 83 left), and
enables us to significantly simplify ¢,

—1
b3
t = \/§ V3a o[ Y3a . (282)
Virg \ Vi V1o

In turn, the minimization of this expression leads to :

3
= % (283)

134



5.5 THREE DIMENSIONS

with x solution of :

2tanh(z) — 22 + x tanh(z)* = 0. (284)
This finally yields :
P 1.078% (285)

Importantly this approximate expression is very close to the expression obtained for
the static mode (757" = \/E% ~ 1.0953;) (268), and there is no dependence with

the typical distance between targets b. The simplified expression of the minimal ¢,,
(282) can then be obtained as:

b3x? 1 b
t%’t = \/§a2v (;U — tanh(x)) >~ 218@, (286)
and the gain reads:
. Laift aV
gain = (o7 ~ 0.153. (287)

Intermittence is then favorable for a > a, ~ 6D/V.

Comparison between analytical approximations and numerical simula-
tions

T{mt.sim Tupz‘.s[m <> %
T;pt.t/z i
. 3 g g
1.0
&
6 é <> 0.9 1
5 4
S 0.8
41 g < 0.7 g
37 <& & 06 X
& g
21 & 057 %
14 O 0.4 1
0 ) VL 0.3 - T T —TT T T ™
40 60 80
b/a, 2 4 6 810 ZOb/a4O 60 80

Figure 83: Diffusive mode in 3 dimensions. Comparison between analytical approximations
(281) (283) (black lines) and numerical simulations : the symbols are the values of 7, and
75 for which gsimulation 1 gggoptsimulation = 100 =1 D =1.

Numerical simulations reveal that the minimum of ¢,, with respect to 7 is shallow
as it was expected (cf Fig.83 left). It approximately ranges from 0 to the theoretical
estimate (281). The value 727" at the minimum is close to the expected values
(283) (cf. Fig.83 right), except for very small b, which is consistent with our as-
sumption b > a. We can then conclude than the position of the optimum in 7 and
Ty is very well described by the analytical approximations, even if the value of ¢,, at
the minimum is underestimated by our analytical approximation by about 10-20%
((see figure 84)).
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5 INTERMITTENT SEARCH : A ROBUST STRATEGY

Figure 84: Diffusive mode in 3 dimensions. t¢,,/tqif (tqig given by (288)) as a function of
7o for different values of the ratio b/a (logarithmic scale). The full analytical form (441)
(plain lines) is plotted against the simplified expression (280) (dashed lines), the simplified
expression with 7 = 0 (282) (dotted line), and numerical simulations (symbols) for the
following values of the parameters (arbitrary units): a = 1 (green, OJ), a = 5 (blue, %),
a = 7 (purple, o), a = 10 (red, +), a = 14 (brown, x), a = 20 (orange, ©). 71 = 6
everywhere except for the small dots, V' =1, D = 1. t,,/tqig presents a minimum only for
a>a.>~4.

Case without intermittence : single state diffusive searcher
If the searcher always remains in the diffusive mode, it is straightforward to
obtain (see appendix 8.2.4):

taig = 5Dl (5b3a3 + 565 — 9b%a — a6) , (288)
which gives in the limit b/a > 1 :
b3
taift = 3Da’ (289)

Criterion for intermittence to be favorable

There is a range of parameters for which intermittence is favorable, as indicated
by (see figure 84). Both the analytical expression for ¢ in the regime without inter-
mittence (288) and with intermittence (286) scale as b®. However, the dependence
on a is different (see appendix 8.2.4). In the diffusive regime, t,, < a~!, whereas in
the intermittent regime t,, o< a=2. This enables us to define a critical a., such that
when a > a., intermittence is favorable: a, ~ 6.5% is the value for which the gain

(287) is 1.

Summary
We have studied the case where the detection phase 1 is modeled by a diffusive
mode, and calculated explicitly an approximation of the mean first passage time
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5.5 THREE DIMENSIONS

to the target. We found that intermittence is favorable (i.e. better than diffusion
alone) when a > a, ~ 6.5£ :

e if a < a., the best strategy is a single state diffusion, without intermittence,

and the mean first passage time to the target is t¢,, ~ 31’;(1.

e if a > a., intermittence is favorable. The dependence on 7; is not crucial, as
long as it is smaller than $2. The value of 75 at the optimum is 757" ~ 1.08%.

. . . 3
The minimum search time is then ¢ ~ 2.18@2—‘/.

5.5.3 Ballistic mode

X

Figure 85: Ballistic mode in three dimensions.

We now discuss the last case, where the detection phase 1 is modeled by a ballistic
mode (see figure 85). Since an explicit analytical determination of the search time
seems out of reach, we proceed as in two dimensions and first explore numerically the
parameter space to identify the regimes where the search time can be minimized. We
then develop approximation schemes in each regime to obtain analytical expressions
(more details are given in appendix 8.2.5).

Numerical study
The numerical analysis puts forward two strategies minimizing the search time,
depending on a critical value vf to be determined ((see figure 86)) :

e when v; > of, 7" — oo and 75" — 0. In this regime intermittence is not
favorable.

e when v; < of, 77" — 0, and 75" is finite. In this regime the optimal strategy
is intermittent.

Regime without intermittence (single state ballistic searcher) : 7 — 0
Following the same argument as in two dimensions, without intermittence the
best strategy is obtained in the limit 77 — oo (see appendix 8.2.5) in order to
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Figure 86: Ballistic mode in 3 dimensions. t,, as a function of 75 in loglogscale. Simulations
(symbols). Approximation vy < a (441 with 456) (colored lines), approximation 71 = 0
(291) (black line), approximation 71 = 0 and b > a (282) (dotted black line). Ballistic
limit (75 — 0 and 71 — o00) (no intermittence) (290) (green dotted line). (a),(d) : v; > vf,
T1,1 = 0.04, T1,2 = 0.2, 71,3 = 1, T14 = 5, T1,5 = 25. (b),(e) LU Ulc, T1,1 = 0.08, T1,2 = 0.4,
7'173 = 2, T174 = 10, T1,5 = 50. (C),(f) oy < ’Ulc, 7'1,1 = 0.2, 7'172 = 1, 7'173 = 5, T1,4 = 25,
T15 = 125. V. =1, a =1. 7 = 0 (black, ¢), 71 = 711 (brown, +), 7 = 712 (red, O),
Tl = T1,3 (pink, *), Tl = T14 (blue, O), T1L=T15 (green, X).

minimize oversampling of the search space. Following the derivation of (246) (see
appendix for details), it is found that the search time reads :

4p3
3a2v;

toar = (290)

Regime with intermittence

In the regime of favorable intermittence, the numerical study suggests that the
best strategy is realized for 7 — 0 (see figure 86). In this regime 71 — 0, the phase
1 can be well approximated by a diffusion with effective diffusion coefficient Deg (see
(456)). We can then use the analytical expression ¢, derived in (441). We therefore
take 77 = 0 in the expression of ¢, (441), which yields :

u V3 b* — a®)’u
tm(T1 = 0) ~ - (5b%a* — 3b° — 2a°) + , 291
(n=0)= 57 ( 5 ( ) V3a(u — tanh(u)) (29)
where u = % In the limit b > a, this expression can be further simplified (see

(282)) to :

—1
b3

ty = @ V3a o (V30 , (292)
Verg \ Vi V1o
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5.5 THREE DIMENSIONS

and one finds straightforwardly that 757 = %, where z is solution of x tanh(x)? +

2tanh(z)—2z = 0, that is x ~ 1.606. Using this optimal value of 7, in the expression
of t,, (282), we finally obtain :

2 x v v
ot — — T~ 2 18— 293
™ y/3tanh(z)? a?V a’V (203)

These expressions show a good agreement with numerical simulations (see figures
86 and 87).

Discussion of the critical value vy

opt
m
108_

1074
108 4
105 4
104
1034

10%

5 10 b50 100 500

Figure 87: Ballistic mode in 3 dimension. %" as a function of b, logarithmic scale. Regime
without intermittence (7o = 0 and 71 — oo, vy; = 1), analytical approximation (290)
(blue line), numerical simulations (o). Regime with intermittence (with 7 = 0, V' = 1),
analytical approximation (293) (red line), numerical simulations ([J). a = 1.

The gain is given by :
e, Vv
bl 0.61—. (294)

opt
tp Uy

gain =

As in two dimensions, it is trivial that vy < V, and the critical value v{ can be
defined as the value of v; such that gain = 1. This yields :

vp ~ 0.6V. (295)

Importantly, vf neither depends on b nor a. Simulations are in good agreement with
this result (see appendix 8.2.5), except for a small numerical shift.

Summary

We have studied the case where the detection phase 1 is modeled by a ballistic
mode in three dimensions. We have shown by numerical simulations that there are
two possible optimal regimes, that we have then studied analytically.

e In the first regime v; > v}, the optimal strategy is a single state ballistic search

_ o 4b3
(11 — 00, 79 = 0) and t,, ~ Sa%ur -
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5 INTERMITTENT SEARCH : A ROBUST STRATEGY

e In the second regime v; < vf, the optimal strategy is intermittent (r; = 0,
7~ 1.1%), and t,, ~ 2.18-5= (in the limit b > a).

The critical speed is obtained numerically as vy ~ 0.5V (analytical prediction :
v ~ 0.6V). It is noteworthy that when b > a, the values of 7 and 7» at the
optimum, and the value of vf does not depend on the typical distance between
targets b.

5.5.4 Conclusion in three dimensions

We have found that for the three possible modelings of the detection mode (static,
diffusive and ballistic) in three dimensions, there is a regime where the optimal
strategy is intermittent. Remarkably, and as was the case in one and two dimensions,
the optimal time to spend in the fast non-reactive phase 2 is independent of the
modeling of the detection mode and reads 75" b 1.13;. Additionally, while the mean
first passage time to the target scales as b3, the optimal values of the durations of
the two phases do not depend on the target density a/b.

5.6 Discussion and conclusion

200000 <> +
180000; N g
1600005 ¢ 00
1400005 s e o

120000 1

Figure 88: Robustness of the minimum of ¢,, in 7o, here for static, diffusive and composite
modes in two dimensions. The mean search time t,, as a function of 7, with 7 ~ 777,
for different descriptions of the slow reactive phase : diffusive mode (D = 1, k = oo,
71 = 9.19) (o), static mode (D = 0, k = 1, 71 = 8.8) (+), composite mode (D = 1,
k =100, 7, = 0.165) (1), and another composite mode (D =1, k = 1, 3 = 10) (¢). For
all the simulations, a = 100, b = 1800, V = 1.

The starting point of this model is the observation that intermittent trajectories
are observed in various biological examples of search behaviors, ranging from the
microscopic scale, where searchers can be molecules looking for reactants, to the
macroscopic scale of foraging animals. In these different problems, we have devel-
oped particular models, which share common characteristics. More precisely, this
model is a generalization of the models of sections 3.4 and 4.2. We addressed the
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general question of determining whether such kind of intermittent trajectories could
be favorable from a purely kinetic point of view, that is whether they could allow to
minimize the search time for a target. On very general grounds, we have proposed a
generic model of search strategy based on intermittence, where the searcher switches
between two phases, one slow where detection is possible, the other one faster but
preventing target detection. This model is minimal in the sense that the search is
assumed to have very limited memory skills. We have studied this generic model in
one, two and three dimensions, and under several modeling hypotheses. We believe
that this systematic analysis can be used as a basis to study quantitatively various
real search problems involving intermittent behaviors. In addition, it provides the
framework for analyzing the mean first passage time of intermittent random walks.

More precisely, we have calculated the mean first passage time to the target
for an intermittent searcher, and minimized this search time as a function of the
mean duration of each of the two phases. The table 3 summarizes the results. In
particular, this study shows that for certain ranges of the parameters which we
have determined, the optimal search strategy is intermittent. In other words, there
is an optimal way for the intermittent searcher to tune the mean time it spends
in each of the two phases. We have found that the optimal durations of the two
phases and the gain of intermittent search (as compared to a single state search)
do depend on the target density in one dimension. In particular, the gain can be
very high at low target concentration. Interestingly, this dependence is smaller in
two dimensions, and vanishes in three dimensions. The fact that intermittent search
is more advantageous in low dimensions (1 and 2) can be understood as follows.
At large scale, the intermittent searcher of our model effectively performs a random
walk, and therefore scans a space of dimension 2. In an environment of one dimension
(and critically of two dimensions), the searcher therefore oversamples the space, and
it is favorable to perform large jumps to go to previously unexplored areas. On
the contrary, in three dimensions, the random walk is transient, and the searcher
on average always scans previously unexplored areas, which makes large jumps less
beneficial.

Additionally, our results show that, for various modeling choices of the slow
reactive phase, there is one and the same optimal duration of the fast non reactive
phase, which depends only on the space dimension (see figure 88). This further
supports the robustness of optimal intermittent search strategies. Such robustness
and efficiency could explain why intermittent trajectories are observed so often, and
in various forms.
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Table 3: Recapitulation of the main results of the generic model : strategies minimizing the mean first passage time to the target.

In each cell, validity of the regime, optimal 71, optimal 72, minimal ¢, (¢, with 7, = 77 t) Yellow background highlight the value of
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independent from the description of the slow detection phase 1. Results are given in the limit b > a.
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6 Extensions and perspectives
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Far from closing the problem, the generic model presented in the previous sec-
tion on the contrary opens interesting perspectives. We highlight a few promising
directions in this section, some of them being currently under investigation. First,
in the previous section the quantity optimized is the mean first passage time : in
section 6.1 we study the complete distribution of the first passage time. Second,
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in the generic model of section 5, the searcher has minimal memory skills. Indeed,
on the one hand, the phase duration distribution is exponential, which means that
there is no temporal memory : the effect of other duration distributions is studied
in section 6.3. On the other hand, the direction of each new ballistic “blind” phase
is taken at random, independently of the previous phases, meaning that there is no
spatial memory : we study the effect of correlations in section 6.2. Last, we stress
that our works on intermittent search strategies have raised interest, and subsequent
models of intermittent search have been developed, as detailed in section 6.4. Fur-
ther models could also be applied to design efficient searches instead of interpreting
biological systems (see section 6.5). Last but not least, we show preliminary results
of a comparison of this model with experimental data on humans, which is a return
back to the first example of a lost key (see section 6.6).

6.1 Beyond the first moment

Until now, the quantity calculated has been the mean first passage time to the target.
Nonetheless, the mean time might not be representative of the typical time. Thus,
it is important to know what the complete distribution looks like.

In this section, we study the distribution of the first passage time for the inter-
mittent search with a diffusive detection phase. We expect that the other modes of
detection give similar results.

6.1.1 Regularly spaced targets in one dimension with infinite correlation

We start with the case of regularly spaced targets in one dimension with infinite
correlation. More precisely, the searcher alternates between phases of diffusion of
diffusion coefficient D, where the target can be immediately detected (here the
detection radius @ — 0), and ballistic blind phases of velocity +V (like in the model
of section 3.2). Correlation is infinite in the sense that ballistic phases are all in
the same direction. The distance between two successive targets is 20 = L. They
are regularly spaced (or equivalently, there is one centered target on a segment with
reflective boundaries).

Analytic distribution

In this case, it is possible to calculate analytically the distribution, at least in
some limits.

If /D7,,V 1y < L, the probability p that the searcher detects the next target is
the probability that the searcher is in phase 1 (the detection phase) instead of phase
2 (the fast non-reactive phase) when it passes on the target. We define L; as the
mean span of one phase i. If Ly > L;, the probability p writes :

-7 (296)

p

As phase 2 is ballistic of mean duration 75, Ly = V75. The mean span of a diffusive
phase of duration ¢ is S; = 44/ 2% (see appendix 8.3.1), then Ly = [;° dtS(¢) exp(—t/m)/m =
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2y/DT1y. Thus p writes :

p= 2\/D7'1

= . 297
VTQ ( )

If the searcher finds the first target, the traveled distance is in [0, L], with uniform
probability. Indeed, the starting position is random, taken uniformly in [0, L]. The
exception is when the starting point if very close to the target (as compared to the
typical scales Ly and Ls) : as the searcher starts in phase 1, if the target is within
Ly, the probability of finding it is higher than p.

If the first target is missed, but the second found, there is an additional distance
L traveled, leading to a distance traveled in [L,2L]. If the first n targets are missed
but the (n 4 1)-th is found, the traveled distance is in [nL, (n + 1)L], with uniform
probability.

The probability of missing the first n targets but of finding the (n + 1) target
is p(1 —p)".

The last step is to convert distance into time. Diffusive phases imply a zero mean
displacement, as they are symmetric. Under the assumption that x > V /D7y
the mean time ¢ to travel over a distance x writes :

x

t= V—7_2 (7'1 + 7'2) . (298)

In particular, we define 7* the mean travel time between 2 targets :

L
T*:V_7—2(T1+T2>. (299)

Finally, in the regime L > V' 1y, /D7y, the density of first passage time to the target
f(t) writes for t € [n7*; (n+ 1)7*] (n € N) :

VTQ
L (7'1 + 7'2) ’

iy =AD" gy

300
= (300)
Numerical simulations

If L is much larger than /D7y, V7, then the analytical expression (300) is in
agreement with simulations. Else, the distribution converges to an exponential dis-
tribution (see figure 89).

The analytical value of p (297) is in agreement with simulations, as soon as
VD1 < V1y (see figure 90).

Moments of the distribution
Now that we have obtained the complete distribution of the first passage time
to the target, all the moments of the distribution can be calculated :

(™ =3 p(1 - p)" /

(n+1)7* n+1

dt -
e 1—p)" . 1
=y [ o)

T*
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Figure 89: Distribution of the first passage time to the target in the correlated one dimen-
sional case with regularly spaced targets. f(t/7*)/7* as a function of t/7*. 7* defined in
(299). Theoretical prediction (300) with fitted p = 0.244 (black line). Simulations (colors,
symbols) with L = 2.10° (red, +), L = 2.10° (blue, ), L = 2.107 (green, o). Exponential
distribution (dashed black line). 71 = 105, 75 = 7100, D =1, V = 1.
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Figure 90: Probability p of finding the first target in the correlated one dimensional case
with regularly spaced targets. p as a function of /D71 /(V12). Simulations (+), theoretical
prediction p = 2v/D7y/(V12) (297) (blue line), upper limit p = 1 (horizontal dotted black
line). L =10% =103 D=1,V =1.
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6.1 BEYOND THE FIRST MOMENT

In particular, the first two moments write :

) P 5 P’ 0 — i
= L p e =550 ) (i )L -p)
2 o 2 00
— _p_ﬁ _ _ n_ 4+ ~ . 3 - n+1
=5 ap(l p)nzz()(n+1)(1 p)" = 5 (1 p)ap ;(1 D)
2 00 2
_P0 N9 o P9 0 1 (303)
=3 8p(l p)=—(1 p);(l p)" = 5 8])(1 p)a (1-p)
2 0p p? 2 p?
_2-p
-5
(t*) 2 %) 2—p p*6—6p*+p* 6—6p+p?
(7_*)2 - g(_l)a_p(l _p) p3 = 3 p4 = 3]?2 (304)
More generally :
@y _ p [0, m“}_ proo, o om (")
()™ m+1 ap(p Y Com+1 8p<p 1>p2 (7*)m-1 (305)

Comparison with previous result
(t) has already be obtained with a different method (equation 32). In the limit
L > V1y,v/D1,D1/(VTy) , this expression has been simplified (equation 36) :

D? D
L V2 V472§ + 2V2T1
(t) = VD (11 + 72) R (306)
Vir2 V3

In the limit /D7 > V7 (little or no overlap between successive diffusive phases),
it can be further simplified :

1% 255 L
ty=L— (1 + L =
=Ly n E)VQé) VD7

(11 + 72). (307)

Now we compare with the first moment of the distribution (equation 303) :

2—0p 2L 2—0p
) =7"—=— 308
e (30)
If VD1 > V1o, 1> p~2y/D7/(V1) (equation 297), hence :
2L L
1) ~ o~ . 309
< > PV Ty (Tl + TQ) \/D_Tl (Tl + T2) ( )

The different methods lead to the same result.
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Figure 91: f(t/(t))/(t)) as a function of ¢/(t) in the correlated one dimensional case, with
Poissonian targets. Expected exponential (black line), simulations (symbols). L = 100 :
m=11m=1x);71 =102 7 =005 (<). L=10*: 1y = 10* 7 = 103 (0); 71 = 102,
=32(();mn=1m=1(e);71=102 =005 M). D=1,V =1.

6.1.2 Randomly located targets in one dimension with infinite correla-
tion

In the case of regularly spaced targets, we have obtained a “stair” distribution for
the first passage time to the target. It is very specific of regularly spaced targets
in one dimension with infinite correlation in the directions of the ballistic phases.
As expected, taking the same model but with a Poissonian distribution of targets
averages stairs, resulting in an exponential distribution of the first passage time to
the target (see figure 91).

6.1.3 Regularly spaced targets in two dimensions without correlation

In the case of regularly spaced targets for the diffusive mode in two dimensions
without correlation, the distribution is exponential, except for very small ¢ (see

figure 92).
6.1.4 Regularly spaced targets in three dimensions without correlation

For regularly spaced targets for the diffusive mode in three dimensions without
correlation, the distribution of the detection time is exponential, except for very
small ¢ (¢t < (t)) (see figure 93).

6.1.5 Conclusion on the distribution of the first passage time to the
target

In the very specific case of regularly spaced targets in one dimension with infinite
correlations of the direction of the ballistic phase, the first passage time to the tar-
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Figure 92: Regularly spaced targets for the 2-dimensional case. f(t/(t))/(t)) as a function
of t/(t). Simulations (symbols), exponential distribution (black line). D =1, V = 1.
T = Tfp , Tog = ’7'20pt.
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Figure 93: Regularly spaced targets for the 3-dimensional case. f(t/(t))/(t)) as a function
of t/(t). simulations (symbols), exponential distribution (black line). D =1, V = 1.
7o TPy P

get is stair-distributed. But as soon as one constraint is relaxed (for example, with
targets randomly located, or with no correlations between ballistic phases), the dis-
tribution tends to an exponential (except for the very beginning of the distribution,
for t < (t)). It means that the mean search time is the only time scale of the
distribution. Our choice of studying the mean search time is consequently justified.
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6.2 Taking into account partial correlations in ballistic phases

6.2.1 Motivation

In section 3.2 and section 5, models are very similar. The searcher alternates between
a slow reactive phase, and a fast ballistic blind phase. The difference is that in section
3.2, ballistic phases are always in the same direction, whereas at the contrary, in
section 5, for each new ballistic phase, direction is taken at random, without any
correlation with the previous ballistic phase.

In the case of animals, there is usually correlation in the angles between two
successive ballistic phases [O’Brien et al., 1990]. We have studied the two extremes :
no correlation or perfect correlation. In both cases, there are regimes of favorable
intermittence. However, in the case of infinite correlation, there is a relation between
the mean duration of the two phases minimizing the search time, but the shorter
the durations are, the smaller the search time. In contrast, in the case without
any correlation, the minimal search time is obtained for finite 7 and 7. In the
intermediate case of finite range correlations, determining the nature of the minimum
is an interesting theoretical question. Besides, as real biological systems often present
correlation, it is an important issue to add correlations to our generic model.

We present in the following preliminary results on correlations, obtained in the
simplest case of the static mode in one dimension.

6.2.2 Model

The model studied is the static mode in one dimension. The searcher is either in the
reactive phase 1 (no motion, reaction rate k if the target is at a distance smaller than
a), or in the ballistic phase 2, of velocity V', in the same direction as in the previous
ballistic phase with probability p, and in the opposite direction with probability
1 — p. Distribution of the duration of the phases is exponential, of mean 7;. The
distance between two targets is 20.

As calculated in the section 5.3.1, when p = 0.5, the mean search time is (150) :

_ it ( b (b—a)®*  B(b—a)? coth (ijﬁ) +(b— a)52) . (310)

b \kn = 3V272 V)
where 3 = /(km1)~! + 1. At the optimum, r{" = /3% (&)1/4 (154) and 757" =
o, /L (155).
We first calculate and optimize the mean search time when p = 1, then we
calculate the mean search time for arbitrary p. As it is not easy to minimize the

resulting expression, we give an argument for the form of the minimum, and finally
we conclude.

tm

6.2.3 Infinite range correlations

Mean search time
t; is the mean search time starting from x at ¢ = 0 in state i. The target is in
[—a, a], and we study the segment [—a,2b — a|. Inside the target (x € [—a,a]), the
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equations for t; are :

A (85 — ") — Rt = —1, (311)
dtz2nt int int
Vet (¢ — ") = —1. (312)
Outside the target (z € [a,2b— a]) :
A (57— t7") = -1, (313)
dt;mt exr exr
Vot A (£ —t5") = —1. (314)
t5 is continuous, and the boundaries are circular. It leads to :
t3"(a) = t5"(a), (315)
t(—a) = t5"(2b — a). (316)

With this set of equations, we solve the system. The mean search time starting from
a random position in state 1 is :

b= 22 () 0 PO (T ) coth (2T
A b\ Y5 Vry(l+km)) )

(317)

The next step is the minimization of the mean search time.

Minimization

Figure 94: Minimization of the mean search time for the static mode with infinite corre-
lation (p = 1). aP! as a function of w. Theoretical expression for w small (492) (brown
dots), for w intermediate (495) (black solid line), for w large (497) (colored dashed lines).
Optimization of the exact expression (with 79 — 0 and 71 = a7y) (symbols). b = 100
(green, 00), b = 10% (blue, +), b = 10* (violet, ©), b = 10° (red, *). a =1, V = 1.

As detailed in appendix 8.3.3, the mean search time (317) is minimized for 7
and 7y tending to 0, with 7 = am. We define w = ak/v, and depending on this
parameter :
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6 EXTENSIONS AND PERSPECTIVES

o w>w: a%~ /2

wb
. . In(4w* . .
w* is defined as the solution of % = 4/ jfb. These expressions are in good

agreement with the numerical minimization of the entire exact expression of the
mean search time (see figure 94).

6.2.4 Intermediate correlation

We have obtained the mean search time and optimized it for the case without cor-
relation (p = 0.5), and for the case of infinite correlation (p = 1). Now, let us study
the case with an arbitrary correlation p.

Equations
In what follows, + denotes a phase 2 in the direction +x, or a phase 1 coming
after a phase 2 in the direction +x, and equivalently for —. ¢ means “inside the
target”.
Inside the target : 4
dty" i i
VN (6 —t) = -1, (318)
dx
dty " i -
-V de +h (-6 = -1, (319)
M (pty" + (L= p)ty" —67) =kt = 1, (320)
A (pty? + (L= p)ts ' — ") =kt = —1. (321)
Outside the target :
dty T+
V=2 4 (H — 1) = —1, (322)
dz
dty _
—vd—; + X (17 — 1) = —1, (323)
M (ptg + (1 —p)ty —tf) = -1, (324)
M (pty + (1=p)tg —t7) = —1. (325)

Resolution
These equations can be written differently, with ¢; = (t7 +¢;)/2 and t§ =
(t; —t;)/2. Inside the target :

dtg’i i i
Tt he (i —t) = -1 (326)
dt: i i

V24 (t‘f’ - t;l’) —0, (327)
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A (th =) — Kt} = —1, (328)
A <(2p )bt t‘f”’) ~ k=0, (329)
Outside the target :

Vd—tgnL/\(t—t)——l (330)

d$ 2 \t1 2) — )

dt

Vd—; o (t—td) =0, (331)
)\1 (tQ - tl) - —1, (332)
M ((2p— 1)t —tf) =0. (333)

We have symmetry in z = 0 (the center of the target) and in = b (where the
distances from the target on the left and on the right are equal), consequently in
these points & = 5. It leads to t3'(x = 0) = 0 and td(x = b) = 0. ¢ and t;
are continuous in a (at the target boundary). Thus ti(z = a) = to(x = a) and
19z = a) = td(z = a).

Mean search time
We solve using these boundary conditions. We are interested in the mean first
passage time to the target, starting from phase 1 in a random direction, i.e. t,, =

% (foa ti(x)dx + f: t1(x)d:c). We obtain :

tm:(m+ﬁ)<k1ﬁ+b—a<2(1—p)(b—a) gL ulb-a) Oth<\/m>>>7
4)

c
b 3 T52V?2 kri  VETmV TV (14+km)
(33

with u = \/2(1 — p) + k7.

6.2.5 An argument on the form of the minimum

The mean search time obtained (334) is hard to optimize. A question raised is if it
is minimized for finite 7y and 7, (like the case p = 0.5), or for 71 and 7 tending to
0 (like the case p =1).

A lower bound can be set for the mean search time :

t > (71 + T) (kiﬁ G _ba) 2;;;};)) . (335)

Supposing the minimum is for at least one of the 7; — 0, 3 cases arise.

e 7 — 0 with 7 < 7. In this case t,,, > 7o/(kT1) — 0.

(b—a)® 2(1—p)

e 7, — 0 with 75 < 71. In this case t,,, > 71— e
2

— OQ.

e 7, ~ Ty and both — 0. In this case t,, > TQ@% ~ 1/1y — 0.
2

The conclusion is that the minimum is for finite values of 7, and 7 as soon as p < 1.
However, these values could depend on p, and be small when p is close to 1.
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6.2.6 Optimization with low correlations

We first study the case with low correlations, with p > 0.5, but not too close to
p=1.

We assume b > a. It can be noticed that as p > 0.5, Vkm1\/2(1 — p) + k71 /(1 +
kr) < VETV/1+Ekr /(1 + kr) < 1. We assume that the optimal 7, value will
not be too different from the value for p = 0.5, leading to »V > a. With this
supposition, coth (\/k_ﬁua/ (e V(1 + kﬁ))) can be developed. With again b > a,
and with the additional hypothesis 2(1 — p)b?/(372V?) > 1, the expression of the
mean search time can be greatly simplified :

b = (124 7) (2“ mt LLIC *’”1)) | (336)

3 T2V2 kT a

The minimum of the search time is obtained for :

o a (b(1—p 14
TP = VE (a( 5 )) and (337)
opt a 92(1 p)
Ty = —A/ 3 (338)

Interestingly, note that the relation 75" = 2k (17 t)Q obtained initially in the case of

the absence of correlations Table 3 still holds in this case.
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Figure 95: 7% as a function of 2(1 — p). Theoretical value of 7{*" (337) (dashed line) and

theoretical value of 757" (338) (solid lines), compared to the numerical minimization of the

full exact mean search time, leading to 777 (o) and 75" (O). a = 0.01, b = 1 (green),

a = 0.01, b = 100 (blue), a = 1, b = 100 (violet), a = 1, b = 10* (red), a = 100, b = 10*
(orange), a = 100, b = 10° (brown). k =1,V = 1.

These expressions are in agreement with the numerical minimization of the exact
expression of the mean search time (see figure 95), except when 1 — p is very small.
We assumed V75 > a. When correlations increase, 7, decreases, and when (1 — p)
is of the same order of magnitude or smaller than a/b, this approximation breaks
down.
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6.3 OTHER DISTRIBUTIONS OF PHASES DURATION

6.2.7 Conclusion

In the simple case of the static mode in one dimension, the influence of correlations
on the mean search time and its minimization can be studied. We have obtained
the exact expression of the mean search time. Its minimum is for finite values of 7
and 7, as soon as p < 1. When (1 — p) > a/b, the optimal durations 7/ and 75"
can be explicitly given, and they are in continuity with the case without correlation
p = 0.5.

In the future, a first step would be to give 77" and 75" for p — 1, and then
to study other cases : other modes, and other dimensions. However, it is probable
that solving analytically in other cases is very hard, and maybe answers can only be

found numerically.

6.3 Other distributions of phases duration
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Figure 96: Different distributions for the duration of the ballistic non-reactive phase. Red
dashed-dotted line : exponential distribution, used in our generic model (see section 5);
violet dots : probability peaked around the mean, a form of temporal memory (see section
6.3.1); blue dashed line (o = 1.5) and green line (o = 1.1) : Lévy distribution (see section
6.3.2); All these distributions have a mean of 1.

The model presented in section 5 is minimal in the sense that the searcher has
no memory. As seen in the previous section, a possibility is to add some spatial
memory. Another possibility is to add temporal memory. In the generic model, we
have assumed a “Markovian” searcher, in the sense that the rate of switching from one
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phase to the other is constant. It leads to exponential distribution of the durations of
the phases. In this section, we study the influence of the distribution of the duration
of the phases. On the one hand, we have studied the effect of distributions peaked
around the the mean duration [Bénichou et al., 2007]. On the other hand, Lomholt
et al. [2008] have studied the case of Lévy-distributed “blind” phases. We present
their main results and show that this strategy can be outperformed.

6.3.1 Fixed durations of the phases
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Figure 97: Comparison between the search without temporal memory (o) and the search
with temporal memory (). Static mode in two dimensions. ¢,, as a function of 7. k =1,
V=10b=113,a =10, 1 = 2.6.

In the generic model previously described, we have considered exponential du-
rations of phases. A minimal form of memory could be to switch from one phase
to another at deterministic times instead of exponentially-distributed times. As
calculations are more complex than for an exponential, we only propose a hint in
one case. We study numerically [Bénichou et al., 2007] the effect of such temporal
memory for the static mode in 2 dimensions. The optimal 77" and 75" are supe-
rior to their values without memory, but are of the same order of magnitude (see
figure 97). Such temporal memory decreases the mean search time. Indeed, there
is neither time lost due to very short relocation which are inefficient, nor time lost
due to too large excursions that overshoot the target (see figure 96). However, the
gain from this temporal memory is quite low (less than 40% in an extended range
of parameters, and decreasing with b/a increasing).

6.3.2 Lévy distribution of the fast phase durations

Reynolds [2006] proposes to combine intermittence with Lévy walks. In one di-
mension, steps are taken from a Lévy law (p(l) oc [7*7 1), but steps smaller than a
cut-off [y are assumed to allow the searcher to detect targets, whereas steps larger
than [, are assumed to be “blind”. Reynolds’ numerical study is very artificial in
the sense that there is an unjustified upper cut-off [* . Viswanathan et al. [1999]

max-*
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also introduce an upper cut-off, but it is a natural outcome of the details of their
model. Since in their study the searcher can find its target all along the trajectory,
if the typical distance between targets is L, then the maximum flight length will be
of order L. In Reynolds [2006], there is no natural justification for an upper cut-off.
It dramatically changes the validity of his results. In particular, for 0 < a < 1,
the mean is not defined for a real Lévy flight, and it would result in an efficiency
tending to 0, while it is in this regime that Reynolds [2006| finds the optimum for
non-revisitable targets. The effect of the cut-off for 1 < a < 2 is less dramatic, but
probably still important.

Lombholt et al. [2008| study analytically and through simulations a combination
of intermittence with real Lévy walks. Their model is similar to our generic model,
more precisely to the diffusive mode in one dimension (with a — 0), except that the
ballistic phase duration is taken from a Lévy law (p(I) oc [771 with 1 < a < 2,
see figure 96 : more exactly, the characteristic function of the distribution is ¢(I) =
exp(—(al)®), o being defined as the scaling factor of the distribution). L is the
distance between two successive targets.

The relation between o, a, the velocity V' and 7, (the mean duration of phase 2,
which is defined since a > 1) is (equation 10 of Lomholt et al. [2008]) :

V1

T M (1-1/a)

o

(339)

The mean search time is evaluated with the exact formula (equation 9 of Lomholt
et al. [2008]) :

oo

2(m + m
=2 ang( n - ;(k;n) (340)

n=1
where k, = 27/L, and A is the characteristic function of the distribution : A(k) =
exp(—o®[k|®) (p(k) = [°2_ e**p(x)dz). This infinite sum can be approximated with

the more tractable expression (equation 14 of Lomholt et al. [2008]) :

(t) = 2(ry + ) (4\/2_71 + (2ﬁa)a C(a)) (341)

with ¢(«) = > 7, n~® is the Riemann ¢ function.

Lombholt et al. argue that as diffusion is recurrent in one dimension, large relo-
cations are favorable, in particular for large distance L between targets, and that
Lévy walks, thanks to their infinite variance, are good candidates for optimizing the
search. They show that when L is large, Lévy-distributed relocations decrease the
mean search time more than exponentially distributed relocations. They find that
when L — oo, the search time is minimized for @ — 17.

However, relocations larger than L cannot be profitable, as L is the distance
between two targets. And the closer to 1 is a, the more often these time-wasting
relocations occur. A simple idea is that a Lévy distribution with a cut-off at L should
be better. We performed simulations (see appendix 8.3.2 for technical details). For
L = 10* (see figure 98), the optimum without cut-off is for approximately o ~ 1.4,
with ¢,, >~ 195 000; and the optimum with a cut-off of L is for a ~ 1.3, with
tm =~ 188 000, that is ~ 3.7% lower. For L = 10° (see figure 99), the optimum
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Figure 98: t,,, as a function 71, o being at the theoretical minimum (numerical minimization
of equation 341). lines : approached analytical formula 341. x : simulations without cut-
off. + : simulations with cut-off at L. sienna : a = 1.6; red : o = 1.5; violet : a = 1.4;
blue: « =1.3; green: a=12. L=10* D=1,V =1.
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Figure 99: t,, as a function 71, o being at the theoretical minimum (numerical minimization
of equation 341). lines : approached analytical formula 341. x : simulations without cut-
off. 4+ : simulations with cut-off at L. sienna : a = 1.4; red : a = 1.35; violet : a = 1.3;
blue : @ =1.2; green: a =1.1. L=10°>. D=1,V = 1.

without cut-off is for o ~ 1.3, ¢,,, >~ 3 260 000; the optimum with a cut-off of L is for
a~1.2,t, ~ 3060 000, that is ~ 6.5% lower. As explained in appendix 8.3.2, even
if there can be some imprecisions, they are not large enough to change the main
conclusions : as expected, using a cut-off decreases the mean search time; and the
gain is larger when L is increasing.

The Lévy-distributed relocations decrease the mean search time more efficiently
than exponentially distributed relocations, but it is not because of their infinite
variance. Indeed, Lévy-distributed relocations with a cut-off (no relocation larger
than the distance between targets) have a finite variance and outperform pure Lévy-
distributed relocations.

158



6.4 OTHER MODELS OF INTERMITTENT SEARCH

6.4 Other models of intermittent search

In the previous section, we have seen that the Lévy walks combined to intermittence
have been studied by Lomholt et al. [2008]. Our work on intermittence has raised
interest in the physics community. We review in the following other models on
intermittence, departing more from the models we have proposed, but still relying
on the idea of intermittence.

Oshanin et al. [2007]

Figure 100: Model used by Oshanin et al. [2007].

Oshanin et al. [2007] propose a model very similar to the diffusive mode in one
dimension of our generic model, but in discrete space, on an infinite lattice. At each
time step, with probability «, the searcher jumps to the neighboring node of the
line (with equal probabilities for each side, which corresponds to diffusion). With
probability 1 — «, it stays off-lattice during a time 7" and after this time, it lands at
a distance L from its initial position (once again, with equal probabilities for each
side) (see figure 100). This phase is equivalent to a ballistic non-reactive phase.
Its duration is exactly T, whereas the duration of the diffusive phase with target
detection is exponentially distributed, with mean duration 1/(1 — «). There is one
target, but an infinite set of searchers, initially randomly distributed. The quantity
maximized is the probability that at a given time ¢, the target has already been
found by any of the searchers. Oshanin et al. do find an optimal «, but dependent
on t.

Rojo et al. [2009]

Rojo et al. [2009] propose a model which displays some similarities with the
previous model (see figure 101). The search domain is also a one-dimensional dis-
crete infinite lattice with one target, there are also an infinite set of searchers, and
the quantity optimized is also the probability that the target is found by any of
the searchers at a given ¢t. The detection phase consists of jumps to the nearest-
neighbors, with a given frequency. Such a rule is equivalent to diffusion. The
non-reactive phase consists of jumps to the next nearest neighbors. It is again dif-
fusion, but if the jump frequency is the same as in the other phase, it is a faster
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6 EXTENSIONS AND PERSPECTIVES

Figure 101: Model used by Rojo et al. [2009].

diffusion. In both phases, there is a fixed rate of switch to the other phase, leading
to exponentially distributed durations of the phases. If one of the mean durations is
fixed, the probability that the target is already found at t is minimized for a finite
duration of the other phase. But the optimum is for infinitely short phases, enabling
the searcher to combine the faster diffusion of one phase and the detection capacities
of the other phase.

Reingruber and Holcman [2009]

3D

1D

target

7w

b

Do N
|

7

Figure 102: Model used by Reingruber and Holcman [2009].

Reingruber and Holeman [2009] propose a model which is also diffusive/diffusive
(see figure 102). They study this model first in one dimension : the searcher’s
starting point is at one extremity of a segment, a reflecting boundary. The target is
at the other end of the segment. However, in phase 1 (diffusion of coefficient D), the
target can be found, whereas in phase 2 (diffusion of coefficient Ds), both extremities
are reflecting. There are fixed rates of switching from one phase to another. The
results show that there are two regimes : if Dy > D, straightforwardly, the optimum
for the searcher is to be in phase 1 only; if Dy > Dy, the optimum is to switch very
rapidly between the two phases, such as to spend almost all the time in the faster
phase 2, but not to miss the target. This model is extended to a 3-dimensional
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6.4 OTHER MODELS OF INTERMITTENT SEARCH

ball (the initial position is almost without importance in this geometry), but with
a target of radius a on the border (which is reflecting everywhere else). The two
phases are defined like in one dimension. Reingruber and Holcman [2009] give two
limits in this case. It can be noticed that the expression we have obtained in the
generic model for the diffusive mode in 3 dimensions (441) could be used, with
3V?272 = Dyry. In fact, our calculations use a “diffusive/diffusive” approximation,
with an effective DST = 3V27,. The optimization will be quite different, because the
dependence in 7, is dramatically changed if instead of a fixed Ds, D5 is a function of
Ty. Indeed, the optimum for our generic model is for finite 7; and 75, whereas, even
if not explicitly calculated, it is probable that the optimum for diffusion/diffusion in
three dimensions is similar to the one-dimensional case, 7.e. for phases durations as
small as possible. Their goal is to model cellular signaling, with a ligand binding to
a target which will transmit a signal.

Bressloff and Newby [2009], Newby and Bressloff [2009]

target

v+ v— | -

N =

Figure 103: Model used by Bressloff and Newby [2009], Newby and Bressloff [2009].
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Bressloff and Newby [2009] present another model applied to intracellular trans-
port, more precisely here to the transport of mRNA granules inside neurons. They
present a model in one dimension, standing for example for an axon with little
branching. The starting point is at one extremity, which is reflecting : it models
granules produced in the soma of the neuron and that have to be exported to the
axon. The target, a synapse, is somewhere in the segment. The other end of the seg-
ment is an absorbing boundary, representing that the vesicles containing the mRNA
can be degraded, or that there can be other targets further away in the axon that can
absorb the searcher. To complete this idea that there are several targets that are not
equivalent, and that these targets are in competition, they also calculate explicitly
the probability that the searcher finds a target more often than the others. In this
model, there are 3 states (see figure 103) : an immobile detection phase, similar to
the static mode, switching to ballistic modes with probability a per unit time; a
ballistic phase in direction +, with speed v, , and with a transition rate to the detec-
tion mode (3, ; a ballistic phase in direction —, with speed v_, and with a transition
rate to the detection mode S_. During the two ballistic phases, the searcher cannot
detect the target. Movement is biased to the direction + if vy /G, > v_/(_.
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6 EXTENSIONS AND PERSPECTIVES

This modeling implies that for each direction, there are different motors, with
different velocities and binding properties. It can be for example the case in an axon,
where microtubules are known to be aligned in the same direction, and with vesicles
binding with different affinities to the motors walking in the two opposite directions.
On the contrary, in dendrites for example, microtubules are not all oriented in the
same direction. In this case, if the vesicles bind to one type of motors, 5, = 3_,
and v, = v_, and if the concentration of microtubules pointing to one or the other
direction are not equal, «, the switching rate from detection phase to ballistic phase
will be different for the two directions of the ballistic phases. This last modeling
may be more realistic in certain cases. However, it is probable that the main results
would not change by taking a bias due to the « instead of the .

The results are based on the fact that on the segment, there are two contradicting
constraints : maximizing the hitting probability (as the searcher can be degraded
before finding the target), and minimizing the time to find the target when the
target is found. Indeed, if there is more bias, the time to find the target will be
smaller, but the target will be missed more often. With a fixed hitting probability,
the mean first passage time to the target (on the condition that the target is found)
is minimized when there is more bias. In other words, unidirectional motion is better
than bi-directional motion in this case.

Newby and Bressloff [2009] extend this problem to the case of a directed tree. In
this case, unidirectional motion has a drawback : a wrong branch can be taken, an-
nihilating any possibility to find the target. Biased bidirectional motion can be seen
as an effective combination of a ballistic and a diffusive motion. It exists a critical
hitting probability p*. If the mean first passage time to the target is minimized given
that the probability of finding the target is a given p < p*, unidirectional motion is
better; but if the given probability is p > p*, there is an optimal finite bias which
minimizes the mean search time in case of success.

Ramezanpour [2007]

Intermittence in networks such as the tree we have just seen is an interesting
extension. Ramezanpour [2007] proposes (see figure 104) to explore a network in
which the degree (= number of neighbors) distribution is p(k) o k=2, constructed as
proposed by Barabasi and Albert [1999], or with some modifications. On this finite
network, at each time step, the searcher chooses randomly one of the edges connected
to the node where it is, and goes to the node connected by this edge. Every t,, the
searcher jumps to a completely random node. The question is whether the mean
time to cover the nodes and the edges of the network can be optimized as a function
of t,,. For the nodes, the random jumping is a way to visit all the nodes with equal
probability, thus t,, should be as small as possible. For the edges, there is an optimal
finite t,,. Indeed, if t,, is small, most edges visited will emanate from low-connected
nodes (as the low connected nodes are the more numerous nodes, such edges are
more likely to be visited after a random jump), but if ¢, is large, the searcher would
spend most of its time on the edges connecting high degree nodes, and will take time
to explore the whole network, especially for remote edges connecting nodes of low
degree.
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Figure 104: Model presented by Ramezanpour [2007].

Summary of these other models of intermittent search

Finally, the simple idea of intermittence has been developed in various different
directions. These models present rich behaviors, and show that, depending on the
situation, intermittence can be an optimal search strategy.

6.5 Designing efficient searches

As seen previously, intermittent reaction paths are involved in various search prob-
lems involving biomolecules at the microscopic scale, as well as biological organisms
at the macroscopic scale. Simple analytical models show that intermittent transport
can actually minimize search time. A reason why such intermittent trajectories are
widely observed could be simply that they constitute very generic optimal search
strategies, and consequently they could have been selected by evolution.

Beyond modeling what is observed in real-life biological examples, such inter-
mittent strategies could also be used to design searches, at the microscopic and
macroscopic scales.

6.5.1 Microscopic scale

Heterogeneous chemical reactions, with targets fixed at an interface (1D (polymer)
or 2D (surface)) are intermittent [Bénichou et al., 2008a|. Indeed, the reactant can
either diffuse in the bulk volume, where it cannot find a target, or bind to the in-
terface and diffuse more slowly (see figure 105 left). Beyond evident optimizations
(increasing the target and the reactant concentrations, increasing the diffusion coef-
ficients of the reactant in the bulk or at the interface, etc.), the mean duration of the
phases (free or bound to the surface) are the main adjustable parameters. Indeed,
the mean search time can be optimized tuning these parameters, in particular using
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Figure 105: Design of heterogeneous chemical reactions, with targets (green disks) here
fixed on a 2-dimensional surface. The reactant either diffuses in the volume (blue), or
diffuses on the surface (orange thick line). The flow is represented by magenta arrows.

the “teleportation” approximation. In this approximation, after a bulk excursion,
the distance between the reactant landing point on the surface and its starting point
is larger than the typical distance between targets. With such a condition, each
new bound phase is independent from the previous one, limiting overlap. The mean
durations of the phases can actually be tuned in real systems. The mean time a
reactant remains bound to the interface depends on its affinity with the interface,
which could be tuned. The mean time spent in the bulk is mainly controlled by the
confinement volume [Kac, 1959, Blanco and Fournier, 2003, Bénichou et al., 2005b,
Condamin et al., 2007|. The mean time spent in the bulk should be large enough to
make the approximation of “teleportation” valid, but otherwise as small as possible
to save time. Another possibility is to apply a hydrodynamic flow parallel to the sur-
face, which makes the teleportation approximation valid even for a very small time
spent is the bulk, provided the velocity of the flow is high enough (see figure 105
right). There are regimes in which intermittence is favorable and can be optimized
[Bénichou et al., 2008a].

6.5.2 Macroscopic scale
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Systematic search Stochastic search

Figure 106: Design of macroscopic searches. Blue line : searcher trajectory. Red line (left) :
target trajectory.

At the microscopic scale, stochastic strategies are often the only available strate-
gies. But at the macroscopic scale, for example in robotics, what is the justification
for a stochastic search? Indeed, systematic strategies often find targets faster than
stochastic strategies. There could be material considerations (limitation in robot
memory, accumulations of mistakes, ...), coupled with the fact that the difference
between the mean search time using systematic strategies compared to stochastic
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6.6 COMPARISON WITH EXPERIMENTAL DATA

strategies can be small. Beyond these contingent aspects, if the target does not
want to be found, and if it can watch the strategy adopted by the robot, the target
can easily escape a systematic strategy. For example, if police search apartments in
a building one by one, respecting the number, only preventing people from leaving
the building but not from circulating from one apartment to another, it is enough
that the wanted person switch apartment before the police arrive to the apartment
where he initially was. In contrast, if police search at random, some time is lost as
already searched apartments are searched again, but there is no strategy ensuring
escape of the wanted man (see figure 106). In the case of targets that do not want
to be found and that have memory, stochastic search, by its unpredictability, will be
more efficient (except if the target guesses which aleatory number generator is used,
which is more difficult than understanding a systematic strategy). Such stochastic
strategies could be optimized depending on the context.

6.6 Comparison with experimental data
6.6.1 Motivation

Our models show that intermittent search is efficient and robust. Consequently, we
expect intermittent search to be a widespread strategy. Indeed, as seen in sections
3 and 4, intermittent search is observed in real systems. However, to go further, a
more quantitative comparison with experiments is needed.

We have a project with Ana-Maria Lennon-Duménil (“Protéase et immunité”
team, Institut Curie, Paris, France) on dendritic cells. These cells are of particular
interest because they travel in the organism searching for pathogens. We have
another project with Vincent Fourcassié (CRCA, Université Paul Sabatier, Toulouse,
France) on ants. However these projects are not advanced enough to be presented
here.

Another interesting animal is the human being. Indeed, the idea itself of in-
termittent strategies stems from the every-day life situation of searching for a key,
or any small object. We have shown that when a searcher alternates between a
slow phase with detection and a fast phase without detection, there are regimes of
favorable intermittence. But how does a human really search for a small object?

To answer this question, we observed trajectories of humans searching for a small
object, with the pressure of finding it rapidly.

The work presented in the following is done in collaboration with Michel Sokolowski,
searcher in psychology at the University of Picardie - Jules Verne (Amiens, France).
We present here preliminary results.

6.6.2 Experiment

The set-up is a circle of 20 meters of diameter in a lawn (see figure 107 right). A
camera records the subjects searching for targets in the arena (see figure 107 left)
(telling how the camera is controlled, how data are acquired, how to power all this,
the technical problems that aroused and how they were eventually solved, would be
a long story, not uninteresting, but probably irrelevant here).
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Image taken from the camera, where
you can see a subject in an arena.

The camera is on top of a vertical
tube, which is installed on a bank
close to the arenas.

Figure 107: Experimental set-up.

Figure 108: One of the large targets. The nail fixes the target to the ground. The smaller
targets are of the same color.

For practical reasons, subjects are mainly students in psychology. There is always
only one subject at the same time, for not influencing the subject. For the same
reason, we ask them not to tell about the experiment to their fellow students. First,
we explain to them the procedure of the experiment, and tell them that the subjects
finding the more rapidly the targets will get a prize (a sum of money depending of
their rank; they are not paid otherwise, except that participating to such experiments
increases their grades).

There are 3 conditions in which the experiment is performed.

e The “normal” condition : subjects are not restricted in their vision, and the
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only perturbation is that they are clothed in white, to facilitate subsequent
analysis of the movies.

e The “hat” condition : subjects wear a hat preventing them from seeing what
is around them. They can see the ground up to 1 meter in front of them.

e The “blind” condition : they are blindfolded.

The “normal” condition is the most natural condition. The “hat” condition is aimed
at preventing the subjects from using external benchmarks to orientate themselves.
The “blind” condition is aimed at enforcing an intermittent behavior : it is really
hard to move while scanning the ground for the target. In the “normal” and the
“hat” conditions, there are 3 targets in the arena. A target is a green plastic disk of
3 mm of diameter, mounted on a small nail to remain fixed on the ground (of the
same color than the larger target of figure 108). In the “blind” condition, there are
12 targets (as moves are much slower in this condition, a higher density is needed
to obtain a similar probability of finding a target), the targets are larger (10 cm of
diameter), and can be sensed when scanned by hand, but not sensed when walking
on them. The targets are placed at random. To ensure that the randomness is
really “random”, random patterns are made before the experiment with a computer
program, and targets are placed according to these patterns (with more or less
accuracy, but the randomness is satisfying).

The subjects are first trained to find the target in a 1 meter wide corridor. They
also stay for one minute in the empty arena to get used to it. Then they are placed
near the center of the arena and have 7 minutes to search for targets. This search
is repeated three times (with the old targets removed and new targets added).

Some of the subjects do two of the conditions, with the same procedure.

6.6.3 Data analysis

The acquired movies are first decomposed into images. Then images are analyzed
using ImagelJ, an open source software [Rasband, 1997-2009]. Figure 109 shows the
process of analysis from an image of the movie to the detection of the subject’s
position : the last image (Figure 109 (f)) shows the position of the subject. The
horizontal position is taken as the horizontal of the barycenter, and the vertical
position is taken as the lowest point of the detected shape. Positions are then
renormalized for the vision angle. The output are trajectories. These trajectories are
smoothed (in the vertical direction in particular, there are moves of one pixel leading
to abrupt changes, and unsmoothed trajectories present regular “wave” patterns
corresponding to the walk itself) (see figure 110). After all this process, the result
is exploitable trajectories of the subjects.

6.6.4 Preliminary results

The “normal” and “hat” conditions give very similar results. Full vision does not seem
to really help the search in these conditions, at least in the light of the first data
gathered. Most trajectories look like spirals, or like Pearson walks (straight lines
reflected by the boundaries) |Pearson, 1905, or a combination of both. However,
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(d) result of the substraction (b)-(c) (c) image of the empty arena

(e) thresholded image (d) (f) automatically detected shape

Figure 109: Image analysis : The initial image (a) is decomposed into the different color
canals. The canal used is the blue one (b), as it has the best contrast. An image of the
empty arena (c) is subtracted, leading to the image (d). This image is then thresholded,
resulting in the image (e). Then a routine of ImageJ identifies the shape (image (f)) (with
here the additional rule that shapes are made of a number of pixels larger than a cut-off,
in order to remove noise).

spirals (see for example figure 111 left) are far from being perfect spirals. The
subjects performing such trajectories declared afterwards (they were asked at the
end if they applied a strategy, and if so, which one) that they wanted to make a
spiral to cover the space without going back to previously scanned areas : when
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raw trajectory smoothed trajectory

Figure 110: Trajectory analysis : trajectories are first smoothed.

Spiral trajectory Pearson trajectory

Figure 111: Representative examples of 7 minute trajectories in the “normal“ and “hat*
conditions (here, the "hat” condition). The large black circle represents the arena (with the
scale in meters), the colored lines are the trajectory, with a change of color when a target
is detected. The targets positions are represented by small black circles.

we see the real trajectories, it seems that they did not succeed! However, as they
can miss the target even passing on it, it did not really seem a handicap, at least
qualitatively. In these conditions, search is not intermittent. The subjects look at
the ground all along the trajectory. These trajectories are however interesting and
further analysis is on the way.

The “blind” condition makes the search intermittent (see figure 112). Indeed,
the ground has to be scanned by hand. The subjects most often kneel down on the
ground, and use their hand to ease their displacements. So either they scan, or they
move, but not both at the same time. There are very strong correlations between
“ballistic” phases : subjects declared trying to follow a straight line until arriving to
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Figure 112: Velocity on “blind” trajectories. Velocity (m/s) as a function of time (s). Black
and red lines represent different degrees of smoothing of the trajectory.

the boundary, and they succeeded quite well in this.

These data are quite qualitative, because only a small part of the movies have
been analyzed. The analysis of the other movies is under way. The total number of
subjects is however relatively small, but interesting information can be extracted,
even if not fully quantitative.
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7 Conclusion

Intermittent search strategies rely on a simple assumption : the searcher alternates
between two phases, one during which the target can be detected, but with slow
motion, and another of faster motion but without target detection. The latter phase
could be detrimental, as it means spending time in a state with no target detection,
but it also could be beneficial, as it allows the searcher to better explore the search
domain.

This simple idea of intermittence comes from the observation of real-life biological
searches. At the macroscopic scale, an example is given by animals searching for
hidden food, who alternate between fast ballistic relocation phases with no target
detection, and phases of slower motion aimed at detecting the target. After reviewing
a simple model based on this observation, we have extended it in two directions. On
the one hand, we have studied the influence of the target distribution. On the
other hand, as the initial model assumes infinite correlations in the direction of
the searcher, we have extended it to the case of a random reorientations in two
dimensions. This model is particularly relevant for animals living on the ground,
which is a 2-dimensional interface. We have shown analytically that the mean search
time can be minimized as a function of the phases mean duration. There is one single
way to share time between the two phases to find the target as fast as possible. This
intermittent search is then an optimal search strategy. In this aspect, this model is
an alternative to the famous Lévy walks model which is optimal only in restrictive
conditions.

Intermittence is also observed at the microscopic scale. A first example involves
specific DNA sequence localization by proteins in cells : as proposed by Berg et al.
[1981], a protein either diffuses in the bulk of the cell, moving rapidly, or is bound
non-specifically to DNA, where the target is located, but moving much slower. When
a protein leaves the DNA and diffuses, as the DNA is coiled, it can either bind back
to DNA to a position of the sequence correlated with the starting point (hop), or far
away on the linear sequence, even if it is close in the 3-dimensional space (jump). An
accurate description of the distribution of the hop size and of the proportion of hops
among 3-dimensional excursions was missing. First, we have obtained the hop dis-
tribution in a simple model (normal diffusion, infinite observation time and idealized
geometry). Then, we have adapted this distribution to the interpretation of a single-
molecule experiment of enzyme interaction with DNA, with a finite observation time
and a specific geometry. The observations have been compared quantitatively with
the model, showing that the enzyme does combine sliding and hopping. Finally,
we have extended our calculations to the hop distribution in a crowded medium.
Another example of intermittence at the microscopic scale is given by active trans-
port of vesicles reacting with a specific target within cells. Vesicles can either freely
diffuse or bind to motors performing ballistic motion. We have studied this trans-
port in the framework of a simple analytical model. As expected, vesicles, diffusing
slowly, react faster with intermittent transport. The gain is small in the cytoplasm
(3D), but for a membrane (2D) or a tubular structure (1D), the gain can be very
large if the target concentration is low.

Since these intermittent search strategies are observed at various scales, we have
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proposed the hypothesis that they could constitute a generic search mechanism. In
a more technical section, we have studied systematically a generic model in the
framework of intermittent random walks, in 1, 2 and 3 dimensions, and for three
different descriptions of the slow reactive phase, in order to account for the variety
of real-life situations on the one hand, and to assess the robustness of this model
on the other hand. This study shows that the optimality of these search strategies
is a widely robust result. Finally, if intermittent random walks are observed in
real biological systems, it is probably because they do constitute an efficient search
strategy.
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The appendices are in fact of two types. Appendices 8.1, 8.2 and 8.3 give details
on calculations or simulations too cumbersome for the main text (even if important
from the technical and practical point of view). Appendix 8.4 is presenting another
work which is not directly related to intermittent search strategies. However, simi-
larly to section 4.2, this appendix is about vesicle transport within cells :
worked on a model interpreting experimental data showing the relation between a
membrane receptor activity and its distribution, which has important functional
implications.

8.1 Complements to hops and jumps

Here we give complements to the section on hops and jumps of a protein interacting

with DNA (see section 4.1).
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8 APPENDICES

8.1.1 Numerical inversion

We use a numerical inversion of a Laplace transform (see section 4.1.3). Here its
practical implementation is detailed.

Method for numerical inversion

P,,,.(2) is the probability of observing a hop larger than z during te., Pj(2|t) is
the probability of a displacement z along the cylinder axis after a time ¢ by Brownian
diffusion, F'| (t) is the probability of going back to the cylinder at . These quantities
are related :

Pn() = [ AR (342)

Movement is independent along the different directions (not that z is here the ab-
solute value of the distance along the axis of the cylinder) :

Py(z|t) = e~ Dt (343)

F'| (t) is the probability of coming back at ¢ in 2 dimensions on a disk of radius a
and with the boundary condition characterized by k, starting at ¢t = 0 on ry > a.
The Laplace transform F'| (s) of F'| (t) writes [Redner, 2001] (K is the second kind
of modified Bessel function of order 0) :

_ Ko (r0y/3)
= T + V[ (ay/5) (344

Using the Stehfest algorithm in Maple [Vogt, 2006|, we inverse the Laplace transform
F| (s). Then we take the integral as a sum :

P = [ RGIDPL (@ = 3 PG5 (345)

The problem is to choose the right interval §°t : short enough to have an accurate
estimate, and not too long to keep calculation time reasonable. When x — oo and
ro > a, F (t) has a maximum, at approximately ¢, = (mﬁ;;)z (minimal time to go
back to the cylinder, that can also be found using the small time approximation in
Levitz et al. [2008]). After some tests, we have chosen o = 0.06¢,. When x is finite
and o = a, F| (t) — oo for t — 0. However, tF'| (t) decreases when t — 0. After
some tests, we have chosen « such that aF| (a) ~ 107°. The integral on ¢ from 0 to

tops 1s sliced as follows :
e the first interval ¢ € [0, a], with value F)| («)/2,

® 7,0, intervals (i € [1,n4.)) t € [aB71 af], with value F (a3 (5 —1)/2),
and n,,q, defined such that af8"mee < t,, and afmatl > ¢,

e the last interval t € [, tps], of value F| (™™ — ty,)/2).
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8.1 COMPLEMENTS TO HOPS AND JUMPS

We have chosen 3 = 1.05 for a good precision.
To obtain the cumulative instead of the direct probability :

Cun@) = [ Pzt [ P (316)

As the numerical calculation from a finite z to infinity is long, we calculate first the
integral from z,,,, (taken here = 2.2um) to infinity, then add it to integrals between
finite z.

Simulations methods
To check the results of the numerical inversion, we have performed simulations.

0.004 *\
0.002 4 \/%Q&

o
Nl

2N l‘!\\\‘
-0.005 0 0. 0.010

-0.06 0.04 ~-0.02 \D

S
a2

-0.002 4 M 1>

-0.044

-0.0¢7 i [
-0.004 4 -2+ |~

. . . Two trajectories coming Four trajectories not
Some trajectories quickly . . .
. . back to the disk after a returning to the disk
coming back to the disk. .
large excursion. before tops.

Figure 113: some trajectories from simulations, starting from (z = a + 9,y = 0), with
a = 5nm, ryp = 2 nm. Disk of radius a in black, z and y in pm. D = 54 um?.s~!
tops = 0.04 s.

, and

For the simulations we take kK — oo and ry > a, and the simple case of an infinite
cylinder in a infinite space. In this case, the problem reduces to a disk of radius a
in an infinite plane. At each time step the distance from the disk is calculated, and
time steps are taken smaller close to the disk, as proposed by Berezhkovskii et al.
[1998] : steps need to be small for accuracy near the disk, but it saves time to make
large steps far away from the disk (see figure 113).

Comparison between numerical inversion and simulations
Simulations and numerical inversion are in good agreement (see figure 114).

8.1.2 Effective geometry

To interpret experimental data, we have to choose an effective geometry where an-
alytical calculations are tractable (see section 4.1.3). Here, we present two other
model geometries that could have been thought of, but that are not as good as the
chosen geometry. The chosen geometry is a cylinder between reflective planes : we
also present the practical implementation of the result, and additionally some other
calculations in this model.
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Probability that for a 3D excursion, the resulting hop is larger than z, as a function of
z (pm).

50 1™
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Probability of observing a hop larger than z during an effective interaction as a function
of z (nm).

Figure 114: Comparison between numerical inversion (lines) and simulations (symbols).
D =54 um%s™! a=5nm, tys = 0.04s. 7o —a = 0.34 nm (red), 79 — a = 2 nm (green),
ro —a =5 nm (blue).

Cylinder partly absorbing

A first possibility to take into account the fact that the DNA molecule is finite is
to represent the cylinder as infinite, but to define hops returning at z < 0 or z > L
as losses, along with returns taking longer than t,s. If P(z) is the probability of a
return of size z for an infinite cylinder, then for such a partly absorbing cylinder,
the corresponding probability is P*(z) = £22P(z).

However, such a representation does not take into account at all that there is
also a reflecting surface, that will allow enzymes to return more often. In particular,

the distribution for large returns will be biased. Yet, the experimental observation is
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8.1 COMPLEMENTS TO HOPS AND JUMPS

the number of hops by effective interaction. The theoretical distribution of hops by
3D excursion is thus renormalized by the probability that an enzyme is lost during
a 3D excursion. As a consequence, a bias on the large hops would be a problem for
a quantitative analysis.

Cylindrical confinement

A way to represent the reflecting surface could be to confine the cylinder in a
reflecting cylinder of larger radius R.

Following the method of Redner [2001], in 2 dimensions, a partially reflecting
disk stands at a < ry (parameter k), a reflecting circle at R > ry, and the walker
starts at ro. p(r,t) is the probability of being at a radius r at ¢ :

o(r —7“0)'

2rr

p(r,t=0) = (347)

c(z,s) is the Laplace transform of p, with the change in coordinates z = r\/3
(Zo = T0\/3 Ta = Tar/ 35> X = R\/3, 2 = +1/3). ¢ is solution of :

2 _
Oe 10 _ dz=20) (348)

022 ' 10z 27

The solutions are the modified Bessel functions Iy(z) and Ky(x). We have to study
separately the domains < zy and = > xz(, then use the boundary conditions.
¢~ = Aly(z) + BKy(x) and c. = Cly(x) + EKo(x). At the outer circle :

i (349)
o |,_y
At the inner circle : 5 )
c
a—; . = x—ﬁc<(x = Zq4). (350)

¢ is continuous in x = ¢ (¢ (xg) = c<(xp)). Last, the initial conditions are trans-

lated by :
1
= (351)

de> _
oy 27TIOD .

ox

_ Occ

I(J)r 6;1:

We obtain ¢ and c., using the Wronskian relation (Ko(z)I(2) + K (2)lo(z) = 1).

de.
F(s) = D2rx, —
(s) Mo~

_ K1(X)Io(wo) + 11(X) Ko(zo)

Ki(X) (Io(7a) — wD1(24)) + 1(X) (Ko(2a) — 2 K1 (24))

(352)

This representation of the reflective plane can be sophisticated by adding a finite-
size effect as proposed previously (cylinder absorbing outside z € [0, L]). However,
in this geometry, either we take R large, and reflection would not be significant
within %, whereas the real surface is relatively close to DNA in experiments; or we
take R small, and there would be much more returns than with a planar surface :
indeed, in this model geometry, there is a confining surface all around. It is not a
satisfying model geometry to model the experiment.

T=xq
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Figure 115: Probability that a 3D excursion leads to a hop of length z before ¢, as a
function of z (um). Calculation of P*(z) using equations 105, 108 and 110. P(z) for an
infinite cylinder (red dots), Wy (108) (blue line), W; (110) (green dots), Ws (110) (pink
dots), and P*(z) = Wy + W; (black line). With rg = a, tops = 40 ms, D3p = 54 um?.s71,
a=5nm, L =22 um, and k' = 10 nm.
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Figure 116: Probability that a 3D excursion leads to a hop of length z before ¢, as a
function of z (um). Calculation of P*(z) using equations 113, 114 and 115. p(z) for an
infinite cylinder (red dots), Yp (114) (blue line), Y7 (115) (green dots), Y (115) (pink dots),
and P*(z) = Yp+Y; (black line). With rg = a, tops = 40 ms, D3p = 54 um?.s7 !, a = 5 nm,
L =22 pm, and x~! = 10 nm.

Practical numerical implementation of the reflective boundaries

We have chosen a cylinder between reflective planes as the model geometry. For
the numerical calculation of P*(z), we use the equation 113, but keeping only n =0
(equation 114) and n = 1 (equation 115); for small values of z, n = 0 is sufficient
(see figure 116). However, the formula 105 is useful too, because integrating from v
finite to v — oo is long (and is a required step for the calculation of Yy (114)). As it
is the case for Y;, the first two terms of the W; sum are enough (even the first term
for z small) (see figure 115).

Additional calculations in the case of reflective boundaries

When we calculate the influence of the small hops on the effective diffusion
coefficient, we need N the number of 3D excursions by interaction, the interaction
being ended if there is a hop larger than 2, = 0.2 um, or if the return time to
the cylinder is longer than t,,. We also need (I?) = [’ 22P*(z)dz. Indeed, the
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8.1 COMPLEMENTS TO HOPS AND JUMPS

correction to the 1D diffusion coefficient due to small hops is (N — 1)(1%). As z,,

is small, we can make the approximation P*(z) ~ Wy or P*(z) ~ Y. q is the
probability that a 3D excursion results in losing the enzyme (loss if ety > tops and
if Zveturn > Zm), N = 1/q. We define :

1 [
_ 1 / Wodo, (353)
L Jo

1 [
= — Yodv. 54
AR (354)

We will use ¢ =1 — R, or ¢ =1 — Ry. After some calculations :

Zm 1 L—zm L - L4z, 1 L+zm
Ry = / p(v)dv+— (zm/ p(v)dv + T2 / p(v)dv — —/ vp(v)dv) ;
0 L Zm 2 L—zpm, 2 L—zm

(355)
Ry = / | p(v)dv—i—zfm / p(v)dv. (356)
0 Zm
We define : | g
B =7 / v Wodv, (357)
0
2 1 o 2
(2)y = Z/ P Yodo. (358)
0

After some calculations :

Bh = i vl
ey (_4f0zm () + 22 (2IL () du +fL+zm dv) +fL+zm —v)3p(v)dv)
(359)

)y = /Ozm (v )dv+giL< 3 /Z:Op(v)dv—Z/ozm v3p(v)dv). (360)

The simplified expressions (equation 355 for instance) are faster to compute in nu-
merical calculations than the direct expression (equation 353 for instance). The
difference between Ry, and Ry, and between (I?)y, and ([*)y, is less than 0.4%, at
least in the tested cases.

8.1.3 Simulations on percolation clusters

Simulations are made on percolation clusters to check the analytical formula of hops
in a fractal medium (see section 4.1.4).

Introduction to percolation clusters

To check the hop distribution when the environment around the DNA is fractal
(equation 124), we perform simulations on percolation clusters. More precisely, we
use percolation of bonds in a square lattice. DNA is represented by a cylinder. In
the simulations, it is represented by a line of the lattice. We define :

e p. the critical probability (simulations are done with ppouna = pe)
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e d; the fractal dimension of the critical cluster

° dj% the dimension of the projection of the critical cluster on the plane perpen-
dicular to the cylinder

° dl} the dimension of the projection of the critical cluster on the plane parallel
to the cylinder

e d, the dimension of a walk in the critical cluster (same dimension if projected
on a line or on a plane)

e d!, the dimension of a walk in a lattice with ppouna = pe, but on any cluster.

The relevant parameters for us are (for more information about percolation, see Ben-
Avraham and Havlin [2000] (chapters 2 and 6), and Hughes [1996] (in particular page
176)) :

e dy df dy d, d,
2D 05 91/48 1 1 2878 3.04
3D 0.248812 253 2 1 3.88 5.07

We checked that on simulated lattices, the obtained values of the dimensions are
coherent with these expected values.

2 dimensions

30400 04040 010 04040 O 040 010 0140
<) 58 + obod B8

owidiod v 08 TES

+ & T rob S e 4

&
CROR OFOF

BrorD OrOw Br0 B0 OIONOHBNG OHOr0
E0r0 Bror0 OrOrBOKD @@2 L

o500 O @g@@o o000 T

50 510 B1oOOD B0 O+ BidrBrOLOF

<]
o
&)
o

-200 -10 0 10 20 30 40 50 60

The largest cluster (red), 7 he 1 Zoom : bonds (+) and
and another cluster oom on the largest nodes (o) belonging to the
cluster
(green) largest cluster

Figure 117: Percolation clusters in 2 dimensions. Simulation on a finite lattice (201x100
nodes). The cylinder representing DNA in y = 0. The largest cluster (in red) does not
extend from side to side in the horizontal direction : indeed, the probability to percolate
from one side to the other tends to 1 when the size of the system tends to infinity.

Figure 117 shows how the largest cluster looks like in a simulation in two dimen-
sions.

The analytical formula (Eq. 124) works well (see figure 118) in two dimensions,
with a walk on any cluster as well as on the largest cluster.
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VA

Start on the largest cluster. Simulations :
start close to the center of the largest
cluster, in a lattice of 1001 x 1001 nodes

Start from any cluster. Simulation :
10 000 x 20 001 nodes

Figure 118: log(p(z)) the probability of returning to the cylinder at a distance z as a
function of log(z) in 2 dimensions. Black line : analytical formula (Eq. 124). Red squares :
simulations. Simulations are averaged over 10 000 clusters, and over 10 000 walks by cluster.

Zoom Zoom

Figure 119: Percolation cluster in 3 dimensions : simulations in a finite lattice (61 x 61 x 61
nodes). Only the nodes of the largest cluster are represented. The cylinder representing
DNA is the line y =0, z = 0.

3 dimensions

Figure 119 shows how the largest cluster looks like in a simulation in three
dimensions.

The agreement between simulations and the analytical formula (124) is not as
good in three dimensions as in two dimensions (see figure 120). Problems are con-
centrated on z small. Indeed, the calculation leading to the formula (124) has been
made in continuous space, whereas in simulations space is discrete. For a walk on
any clusters, simulation points are well fitted by the theoretical curve for z larger
than a few nodes. For a walk starting on the largest cluster, there is a considerable
bias for the point z = 0, that shifts the rest of the curve : when divided by the
adequate coefficient, the simulation points and the theoretical curve are in good
agreement.

For the largest cluster in 3 dimensions, we renormalize the results by the number
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1 5 10 50 100 1 5 10 50 100
Start from any cluster. Start on the largest cluster.
Simulation : average on 10 000 clusters Simulations : average on 1000 clusters.

Figure 120: log(p(z)) the probability of returning to the cylinder at a distance z as a
function of log(z) in 3 dimensions. Black line : analytical formula (Eq. 124). Blue line :
analytical formula multiplied by a fitted coefficient (0.13). [J : simulations. Simulations
are in lattices of 401 x 401 x 401 nodes, and for each cluster 10 000 walks are performed.

of returns equal or larger than 2 nodes, to remove the influence of the first points,
where the discretization does not represent well a continuous space (see figure 121).
It is what we use in the figure 50 in the main text.

Figure 121: log(C(z)) the probability of returning to the cylinder at a distance larger than
z as a function of log(z) in 3 dimensions, renormalized by the number of returns larger
than 2 nodes. Black line : analytical formula. Symbols : simulation, with a box of side
length 41 (-+), 101 (o), 201 ([J), 401 (o), 801 ().

8.2 Complements to the generic intermittent search model

Here we present additional material about the generic search model (see section 5).
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8.2.1 Diffusive mode in one dimension

Exact results (see section 5.3.2)
The mean detection time for the diffusive mode in one dimension exactly writes :

1 (11 4+ 72) Num

t = = : 361

3 (% Den (361)
with :

Num:a1+a2+a3+a4+a5+a6+a7 (362)

Den =~ + v + 73+ Y (363)

a1 = L* ((3Ls* (L3 — L3) + 20%8) h/BS + 811 La (Ly* — 208) C) (364

ay = —LhL3 (23 + 3L3) RC (365)
az = Ly (21" 3% — 3L§) BC (366)
as = h*/B (6L + h*B (B + L?)) RS (367)
as = \/BhL3 (4h*B + 313 (L3 — L2)) BS (368)
ag = L1L3 (3 (2h*Loff + L3) B+ h (3L5 (B + L3) + 2h*3) R) (369)
ar = —Ly (3L5 + 2h*3?) (370)
m=LLR(C—1) (371)
vo = \/Bh (212 + L) RS (372)
7 =V/BLy(B-1)S (373)
2
B = cosh (L—‘D (375)
C = cosh <2h\ [L7?+ L;Q) (376)
R = sinh <i—j) (377)
S = sinh (Qh\ [Li%+ L2‘2> (378)
B=L3+135 (379)
L1 = \/ DTl (380)
LQ == VTQ (381)
h=0b-—a. (382)
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b/a 100 | 10° 107 10° 10° 107
gain™T | 0.085 | 0.39 1.8 8.5 39 180
gain®™Z [ 0.014 | 0.046 | 0.14 0.46 1.4 4.6

! 0.19 | 0.89 4.1 19 89 410

0.005 | " 2.1 21 210 2100 | 21000 | 2.1.10°
! 038 | 1.8 8.2 38 180 820
op

" N s4 | 38 | 180 | 820 |

" 0.029 | 0.091 | 0.29 0.91 2.9 9.1
gain™T | 1.8 8.5 39 180 850 4000
gain™ 1.4 4.6 14 46 140 460

! 4.1 19 89 410 1900 | 8900

no [ m7 1085 | 15 | 78 | 890 | 1900 | 8800 |

0.5 " 2.1 21 210 2100 | 21000 | 2.1.10°
ot 8.2 38 180 820 3800 | 18000
" 2.9 9.1 29 91 290 910

oo [ 500 | 5500 | 21000 [RO1000
) 140 460 1400 4600 14000 46000

gain®™
et 89 410 1900 | 8900 | 41000 | 1.9.10°
a— ﬂ_ 230 [ 2500 | 21000
50 i 2.1 21 210 2100 | 21000 | 2.1.10°

7T 17180 | 820 | 3800 | 18000 | 82000 | 3.8.10°

290 | 910 | 2900 | 9100 | 29000 | 91000
gain®™T | 850 | 3900 | 18000 | 85000 | 3.9.10° | 1.8.10°

14000 | 46000 | 1.4.10 4.6.10 1.4.10 4.6.10

ot 1900 | 8900 | 41000 | 1.9.10° | 8.9.10° | 4.1.10°

5000 | 7] 2.1 21 210 2100 | 21000 | 2.1.10°
' | 3800 | 1800 | 82000 | 3.8.10° | 1.8.10% | 8.2.10°
o
" 29000 | 91000 | 2.9.10° | 9.1.10° | 2.9.106 | 9.1.10°

Table 4: Diffusive mode in 1 dimension. Optimization of t,, as a function of 71 and 7
for different sets of parameters (D = 1, V = 1). For each (a,b), numerical values for the
exact analytical function (361) are given with the theoretical values in the regimes where
intermittence is favorable, either with ;T[‘)/QZ > 1 (th,1), or with ;bf‘)/wz < 1 (th,2). gaint™!
(183), gain = t3%" /taiw, gain® (188). ("' (180), 7**, 7{* (185). "' (181), 7", 3"

(186). Colors indicate the regime : red when intermittence is not favorable, green in the
bD?
a3V2

> 1 regime, blue in the % < 1 regime.
Numerical study (see section 5.3.2)

We have numerically studied the optimum of the exact ¢,, expression (361) (Table
4). 3 regimes can be distinguished : one with no intermittence, and two with
favorable intermittence, but with different scalings. Intermittence is favorable when
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bD? __
adV2 T 1

b > %. The demarcation line between the two intermittent regimes is
Details of the optimization of the regime where intermittence is favorable,
with % > 1 (see section 5.3.2)

We suppose that the target density is low, s.e. § < 1.

We are interested in the regime where intermittence is favorable. It is clear
that 2(b — a)\/L;* + Ly* > 2bL_—1“ and 2(b — a)\/L;? + Ly;* > 21’5—2“. In a regime of
intermittence, one diffusion phase does not explore a significant part of the system,
leading to b/L; > 1. Alternatively, having a ballistic phase of the size of the
system is a waste of time, thus close to the optimum b/Ly; > 1. Consequently
2(b —a)/Li* + Ly > 1.

We use the numerical results (Table 4) to make assumptions on the dependence

of 77" and 75" with the parameters. We define k; and ks :
_ (0?D\*®
T = (kl) <W> s (383)

Ty = (ko)™ (i);—?); . (384)

We make a development of ¢, for b > a. We suppose that k; and k3 do not depend

onb/a :
1D (bV\5 ki + ko [,
ty =~ [ K2+ 3k ) .

" 3V2(D> ks (48 +3Vk) (385)

We checked that this expression gives a good approximation of ¢, in this regime,
in particular around the optimum (see figure 65 in section 5.3.2).

Derivatives of (179) as a function of k; and ks must be equal to 0 at the optimum,
leading to :

3

—3k{ + 3k3 + 3v/kiky = 0, (386)
3

3k? — 2k3 — kik3 = 0. (387)

On four pairs of solutions, only one is strictly positive :

oot 13/202D
/202D
=7 ST (389)

Details of the optimization of the universal intermittent regime % <1
(see section 5.3.2)
We start from the exact expression of ¢,, (361). We have to make assumption on

the dependence of 75" with b and a. We define f by 7 = %%@ / %, and we suppose
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that f is independent from a/b. We make a development of a/b — 0. The first two

terms give :
b 1 2 Dry f?
PO (Y (RS s e O iy (390)
a 3Vf a+/Dm

This expression gives a very good approximation of ¢,, in the bD?/(av?) < 1 regime,
especially close to the optimum (see figure 66, in section 5.3.2).

We then minimize t,, (390) as a function of f and 7. We introduce w defined
as :

aV  |a
=—4/-. 391
w=54/3 (391)
We make an assumption on the dependence of 7% " with a /b, inferred via the numer-

ical results : ) ;
= ——. 2
° nVZ2a (392)

We write the equation (390) with these quantities. Its derivatives with f and s
should be equal to zero at the optimum, leading to :

—V/35%2w? + V352w f2 + V3swf? + 6/swfP+6 2 =0, (393)

6 5% 2w f3 + 652 fw? — w?sV3+3ws f+12ws f2+6/sf> = 0. (394)

Starting from the equation (393), we make the assumption that « < b < ¢

D2 Y
leading to :
V332w (f2 1) = 0. (395)
Consequently f = 1. We incorporate this result to the equation (394) :
12 8%%w? — w?s*V/3 + 15ws + 6 /s = 0. (396)

The relevant solution is :

(1, 5v3 416w iQ
Ssol = <3 w \5/6 +\/§> 5 (397)

with :

= (270w+27\/§+ 192w2\/§+9\/55\/§w+84w2~|—27> w. (398)

When w — o0, 555 = 48. As we have made the assumption ;’3?/22 = w2 < 1, the
difference from the asymptote will be small (see figure 122).

It leads to :
opt
72 f"ptV V 3a \/ 3a (399)

ovt — 400
T s"ptVQa 48V2a (400)

These equations are in agreement with numerical results (Table 4).
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Ssol
64
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58 1
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Figure 122: Diffusive mode in 1 dimension. s, (397) (red line) as a function of In(w),
with its asymptote (blue dotted line).

We use equations (177), (184) to calculate the gain :

2a b\ 2
ot ~ [ = d 401

. 1 aV [b
gain ~ mﬁ\/g (402)

The latter equation is in very good agreement with numerical data of table 4. the
gain can be very large if the target density a/b is low.
8.2.2 Ballistic mode in one dimension : exact result

For the ballistic mode in one dimension, the exact mean search time is calculated
analytically (see section 5.3.3). It writes :

T+ T

tm b (M1 + 72+ ) (403)
h? (h+ 3L
7= % (404)
Ly(h+ L _2a L 2
Vo = —zg/QdenO <g4(—1)e Ly — 94(1)> (93(—1)62 itz + gy(1)e” L1L2> (405)

_palii-va) vab _pal - vab aa
den = gi(1)e ™ T 4 gi(—1)2Tats 4 go(1)e > tita + go(—1)e? Ttz (406)

Lo numinumsy

BT T s denydens (407)
numy = fi(1) + fi(=1)e" % + 0y + 03 + 03 + 04 (408)
fi(€) = 2 (aga(e) (h+ L1) + Ly (eLy — Ly)) (409)
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o1 = (fol=1) + Fu(1,1) + fo(1) eiF2 (410)

= (h1) + Al ~1) + fo(-1)) e B (411)

o3 = ((~L 1)+ fo(1) + fo(1) & BiEr (412)

or = (fa(=1,=1) + fo(=1) + fo(~1)) e > s (413)

fa(e) = (Va + €Ls) Ly (L1 — L») g5(e) (414)

fa(€) = —LiLiv/a (h+ L) (\/a + €Ly + eLl) (415)

fier,€2) = ha (h+ L) ((2La + €1 Ly) (e2v/a + Ly) + L7) (416)

fs(€) = —ehy/aLy (L1 + Ls) (2 (ev/a+ Ly) Ly + L7) (417)

fo(€) = L3Ly (Lo (ev/ar+ Lo) (L1 + Lo) — Voo (h + Ly) (Va4 €Ly — €Ly))  (418)
numy = 6 + @ — ga(D)e? (fr(1) + fs(1) = ga(=1)e % (fr(~1) + fo(~1)) (419)
a =2Va ((L3 - h*) a— Lih) (62 By 4 ﬁ;> (420)

6o =2Ly (h(h+ Ly) o — L3) (e%ﬁé —e !fﬁ;) (421)

) = 0t (L + e ) va (25 4 22 (122)

fs(e) = (eha + L3 + €L}) ( 22555 + ¢’ L\(LI;) (423)

deny = Vo (S + &+ &+ &+ &+ &+ &) (424)

& =2L1 (h+ L) o (425)

& = Lov/a <(a + L3) sinh (2;1\5) + 2Lyy/a cosh <2th\5>) (426)

&3 = L1Ls (a sinh (i—j) — 2L,L5 cosh (i—j)) (427)

&4 = —Lyv/a (o + 2L1h + Lj) cosh (i“) sinh (Qth\f) (428)

& = (L1 (h+ L) a+ L cosh ( > (2;}\1/_5) (429)

& = —Loa(2h + L) sinh ( ) cosh (2;\1/_1_) (430)

& = —va (2h+ L) a + L3) sinh (i‘:) sinh (ﬁf) (431)

domy = i (Ve BT 4 g, (DA gy (1) S 4 g ()P EE (432)
gl(e) = L2 (Ll + Lz) (\/5 — ELQ) (433)
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g2(€) = Va (2h + Ly) (—ev/a — Ly + €Ly) + ea®? + L — e L3 (434)
g3(€) = hv/a (—ey/a — L) + €2 L3L, (435)

ga(e) = ((eLo — L1) h + L3) (436)

h=b-a (437)

a=L}+ L5 (438)

Ly = un (439)

Ly =V (440)

This result has been checked by numerical simulations and by comparison with
known limits.

8.2.3 Static mode in 3 dimensions : more comparisons between the
analytical expressions and the simulations

Here we further compare the analytical expressions and the simulations for the static
mode in 3 dimensions (see section 5.5.1).

e, *
FIRBE: %;11 % *
= < $
= 1101 g 7l
£ S +
& , 2 4 I +
2 7 Qp10{————————F P
3 1.08 s x 3\5\ ——__@___ﬁ____l—‘_—__g_.___
Q - D N\
£ 1061
N z 0 0.9 +
1.04 O
O S S
1.024——— ——’+'———+———+———_‘—_—
[r] 0.8
& *
1.00 - : = == ] — T T
5 10 50 100 5 10 50 100
(a) b/a (b) b/a

Figure 123: Static mode in 3 dimensions. Study of the minimum : its location in the 71, 7
space (a), and its value (b). sim means values obtained through numerical simulations, th
means analytical values. Value expected if there was a prefect agreement between theory
and simulations (black line), and values taking into account the simulations noise (dotted
black lines) (we performed 10 000 walks for each point). a = 0.01 (L)), a = 0.1 (+),
a=1(0),a=10 (x),a=100 (¢). V=1 k=1

The numerical study of the minimum mean search time (see figure 123) shows
that the analytical values give the good position of the minimum in 7, and 7 as
soon as b/a is not too small. However, the value of the minimum is underestimated
by about 10%.
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8.2.4 Diffusive mode in 3 dimensions

Full analytical approached expression of t,, (see section 5.5.2)
For the diffusive mode in three dimensions, the approached analytical expression
of the mean detection time is :

= (X +Y + 2), 441
b3a4dpD( +Y +2) (441)

with :

a a? as

a2 (b3—a3 3_a3)(a2dp—7r1 +~aa a o
(17t + a2dp) (—(ba )—35) (é(b J(o?dr3") | 7t @aRt) | adp(-14TT)

)

X =
T <(T1_1 + a2dp) 75 Ro + (_QdeJ;TQ ) =+ oty (;1 = )>
(442)
taS
Y =3 1a2 (443)
g _i) (=b+a)’a? (a® + 3ba® + 6%a + 50°) (17 + a’dp) (444)
15 a
a=/(nD)"! + (rDs)! (445)
1
D2 == §V27'2 (446)
DD,
dp = 44
P=D-D, (447)
ay = (12 D5) 7" (448)
h — -1
R abtanh (a (b—a)) (449)

ab — tanh (a (b—a))

_ (a?ba—1)tanh (o (b—a)) + o (b—a)
o= ab— tanh (a (b—a)) (450)

A A

TT = (451)

tanh (g a)’

Dependence of t,, with 7
The mean detection time is very weakly dependent on 7; as long as 7, < 6D/V?
(see figure 124).

tm in the regime of diffusion alone (see section 5.5.2)

For a diffusive random walk starting from r = 7y in a sphere with reflective
boundaries at r = b and absorbing boundaries at » = a, the mean time of absorption
t(ro) is solution of the following equation :

1 d dt(?”o)
De— | — [ 2 = —1. 452
ﬁr% (dro (TO dro )) ( g )
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tm/(tm(b > a,7 — 0))

Figure 124: Diffusive mode in 3 dimension. t,, from (441), t,,,(b > a, 7 — 0) from (282).
o= P (283), D = 1, V = 1, a = 10 (dotted lines), a = 100 (lines), a = 1000
(symbols), b/a = 10 (blue,circles), b/a = 100 (red, squares).

With the boundary conditions, the solution is :

1 203 20°

As the searcher starts from a random point of the sphere, we average on ry :

tain = - (5b%a® + 5b° — 9b°a — a°) | (454)

which in the limit b/a > 1 simplifies :

b3

Laig = . 455
i =5 (455)

Criterion for intermittence : additional figure (see section 5.5.2)
The figure 125 shows the dependence of t%" with a. In the regime a < D/V,
tP" o a~!, whereas in the regime a > D/V, t%' «c a2

8.2.5 Ballistic mode in 3 dimensions

Without intermittence (see section 5.5.3)
In the regime without intermittence, 7 is not necessarily equal to 0. We calculate
t,;n, in two limits : 7; small or 77 large.

Limit o — 0, vy < a
In the limit v;71 < a, we can consider the phase 1 as diffusive, with :

1
D = gUZQTl' (456)
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1072 107! 10° 10! 102 a 103

Figure 125: Diffusive mode in 3 dimensions. Simulations : b/a = 2.5 (+), b/a = 5 (O),
b/a =10 (o), b/a = 20 (v). Analytical expressions in the low target density approximation
(b/a > 1) : 71 = 0 (282) (with » = Tgpt’th (283)) (dotted line), diffusion alone (288)
(continuous line). V. =1, D = 1.

We use the approached expression of ¢, obtained in the diffusive mode (288) with
this effective diffusive coefficient, leading to :

1

tm = ——— (5b%a® + 5b° — 9°a — af 457

5vl27'1ab3 ( @+ a—a )’ (457)
and in the limit b > a : \
b

ty, = ) 458

vina (458)

limit 79 — 0, m — o0

We name V,; the volume of the sphere. ¢(t) is the volume already explored by
the searcher at a time ¢. The volume explored during dt is mva®dt. If we assume
that the probability of encountering unexplored space is uniform, which is wrong at
short times but close to reality at long times, the volume explored for the first time
after t and before ¢+ dt is V"l‘;—j(t)wvlant. Then with this hypothesis, ¢(t) is solution
of :

t
Vi —
g(t) = / l—g(u)ﬂ"UZGQdu. (459)
0 Vor
This equation can be simplified taking a renormalized time r = ’rf}‘zzt, and f =

9/ Vo )
F(r) = / (1 f(w))dw. (460)

Then, as f(0) = 0 (nothing has been explored at time 0), f(r) = 1 —e™". The
probability of encountering the target at time ¢ during dt (and not before) is the
volume explored for the first time at ¢ divided by the whole volume V,; in the mean-
field approximation. Then the probability p(r) that the target is not yet found at

time 7 is solution of : p
D

— =—(1-— ) 461
= —(1- ) (161)
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Since p(0) = 1, the result is p(r) = e~". Then the mean detection time of the target
is 1 in renormalized time, which in real time means :

403
thar = . 462
bl 3ay, (462)
Numerical study
\ ©
O—o—
N
0.5
0.2]5 0:1 015 £1 5I lIU 5'0
Figure 126: Ballistic mode in 3 dimensions. Regime without intermittence (72 = 0).

In(t,,/b%) as a function of In(7), simulations for b =5 (1) and b = 20 (o). Ballistic limit
(11 — o0) (no intermittence) (290) (red horizontal line), diffusive limit (v < a) (457)
with b = 5 (green dashed line), b = 20 (blue dotted line), b > a limit (458) (black line).
a = 1, v = 1.

These expressions give a very good approximation of the values obtained through
simulations (see figures 87 and 126). In the regime without intermittence, t,, is
minimized for 7, — oo.

Numerical vf (see section 5.5.3)

In simulations (see figure 127), when b is small, v decreases, but stabilizes for
larger b, which is coherent with the fact that this value is obtained through a de-
velopment for b/a large. The value of v; for large b is different (even if close) to the
expected value. The main explanation of this discrepancy is that in the regime of in-
termittence, the approached value of ¢, is about 20% away from the value obtained
through simulations.

8.3 Complements to the extensions and perspectives
8.3.1 Appendix : span of a phase of 1D diffusion

Here, we complete section 6.1.1. We calculate the span of a phase of 1D diffusion.
Starting from z( at t = 0 with a coefficient of diffusion D in one dimension, the
probability of being in x at ¢ is :

1 —(x — @)*
f(zo,z,t) = el exp (T) : (463)
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Figure 127: Ballistic mode in 3 dimensions. vj as a function of In(b), obtained by simula-
tions. a =1, V = 1.

Now, adding absorbing boundaries at —a and b, the probability of being at = at ¢
starting from x =0 at t =0 is :

+oo
g(x,t) = Y ga(z,t), with (464)
gn(z,t) = f(2n(a+b),z,t) — f(2n(a +b) + 2b, z, t). (465)
The survival probability at ¢ is :
b
S(t) = / g(x,t)dx. (466)

If a walk is absorbed for (—a, b+ db) but not absorbed for (—a, b), it means that the
maximum of the walk is at b. Consequently, the probability that the minimum of
the walk is at —a and the maximum at b is :
9*S
(ta,b) = . 467
If the span of the walk is L, b= L —a and a € [0, L]. The probability that the span
of a walk is L is :

L

P(L,t) = / pm(t,a, L — a)da. (468)
0
We decompose P(L,t) in several components according to (464) :

P(L,t)= > Pu(L,t), with (469)
P ) = (~1+ é—) 51 (470)

s —_= —_ e t e t s
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2 2
P(L,t) = ( 54 3e” b +2ed 5,:)@—% ! and (471)
VDt
—npl? 2 L2(4n—1 L2(142n
Pn(L,t) = ((5n+6n2+1)ei%76n27n+(2n27n)ei%7(3n+2n2+1)e7%

™

(472)
We check that the distribution is normalized, i.e :

/0 T P(L L = 1. (473)
The terms n = 0 and n = —1 give :
/OOO Py(L,t)dL = 0.5, (474)
/OO P_(L,t)dL = 0.5. (475)
Vn different from 0 and -1 : 0
/000 P,(L,t)dL = 0. (476)

Therefore, the distribution is indeed normalized. After this verification, we calculate
the mean span :

(L) = / LP(L.t)dL. (477)
0
The first terms have to be calculated separately :
o 3 | Dt
/ LPy(L, )L = 24/ 2 (478)
2V 7
5 Dt
/ LP(L,t)dL = 4/ 2 (479)
0 T2V
> 13 Dt
LP_ —1/— 480
/ 1 6 T ? ( )
o 1 /Dt
LPy( = —4/— 481
/0 2 20V 7 (481)
o 7 |Dt
LP_ =——1/— 482
/0 2 60V 7’ (482)
o 13 /Dt
LPs( = —4/— and 483
/0 3( sa0V 7 (483)
e 11 /Dt
LPs( =——1/—. 484
/0 3 420V 7 (484)

For the other n :
& Dt dn+1
LP,(L,t)dL =/ — . 485
/0 (L.1) V. 7 2n(1+n)(2n+1)(2n — 1) (485)
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Finally :

(L Dt(3 13 5 1 7 13 11 3 3
Vo276 12 20 60 840 420 < (4n2—1)(n? —1)

Dt(?) 13 5 1 7 13 11 1)_4 Dt
T

26 T 12720 60 T80 120 168

(486)

It is different from the result page 202 of Weiss [1994] ((L} = \/STDt), but it is what

we expect.
The mean span of a diffusive phase which duration is exponentially distributed

(of mean 7) is :
> —t Dt
L1 = / — exp (—) 4 dt =2 D7'1. (487)
0

e

8.3.2 Appendix : details of the simulation of intermittent model with
Lévy-distributed relocations

We have performed simulations (see section 6.3.2) using variable diffusion steps for
simulating the phase 1 [Berezhkovskii et al., 1998|, and the Chambers-Mallows-
Stuck algorithm for the Lévy distribution of phase 2 [Chambers et al., 1976]. We
have rejected flights larger than L when simulating a cut-off. There are two main
issues when trying to determine the minimum : there could be too much noise, and
the minimum could be missed.

On the one hand, the mean search time is obtained by averaging over a finite
number of simulations. Consequently, there is noise in the values obtained, especially
when o — 1, since the distribution of the ballistic phase duration becomes very large.
The mean search times obtained cannot be compared if the noise is larger than the
differences seen between these values. To rule out this possibility, we have averaged
the search time over a large number of iterations (the results shown are obtained for
107 iterations, and are within 0.5% of the results with 10° iterations).

On the other hand, we estimate the function for a finite number of «, 7, and
0. The real minimum could be missed, and comparing a value close to the real
minimum, and another value, thought to be minimal but in fact non-representative
of the minimum, could lead to wrong conclusions. The values of o that we have
used are represented in figures 98 and 99 : it can be seen that the minimum is flat
enough in « so that there is no risk to have missed the minimum to the point to
make the conclusions uncertain. We have chosen 71 and ¢ by minimizing numerically
the approached analytical expression for the mean search time without cut-off (341).
We have checked that taking these theoretical optimal values divided or multiplied
by 2 leads to a larger mean search time. Moreover, a shift in the minimum is more
likely for the simulations with a cut-off, because the function (341) used to choose
where to calculate t,, is an approximation of the function without cut-off. It means
that if imprecisions for not taking the real minimum exist, the mean search time
with a cut-off is more likely to be overestimated than the mean search time without
cut-off.
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8.3.3 Appendix : static mode in one dimension with perfect correlation

We give here the details of the optimization of the mean search time for the static
mode in one dimension with perfect correlation (see section 6.2.3).

Another way to write ¢,

t,, is minimized for 75 — 0 and 7, — 0. We can introduce « and ( such that :
T = om'zﬁ. It can be seen easily that if § # 1, t,, — oo when 75 — 0. Thus 71 = am.
What is the optimal a? Taking b > a, 1 = am and 7» — 0 in (317), the mean
search time can be greatly simplified :

kt,, =

SHES

(1 + «) coth (wav) (488)

with w = a—‘f, d = a/b. The value of @ minimizing this expression is z/w, with z
solution of 4ze?* — e** + 1 + 4we?* = 0. This approximate works, except for very
large w (of the same order or larger than b/a) (see figure 128).

=)
eu
O+ U
¢ ¥
¥ ¥ 0O

SO

T T T L L
107 1072 10° 10° 10*
X

Figure 128: Minimization of ¢,, when p = 1 : " as a function of w, optimization of the
exact expression (black points), for b = 100 (O), b = 10® (+), b = 10* (¢) (with 72 — 0),
z/w (o). For w small, slope seems to be —2/3 (blue line), for w large, slope seems to be
—1/2 (green lines). (a =1,V =1).

w small
When w is small, ¢, can be simplified, because the argument of the coth can be
considered small :

11
mm:ff(——+—aw). (489)

aw 3

For dt,,/do = 0, a should be :

1 1
— S 4
o 6(u+u ), (490)
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IOZA

101A

10%

10—2A

G

1071L

1074 1073 1072 107" 10° 10" 10*> 10°
w

Figure 129: Minimization of t,, when p = 1, pour w small : o' as a function of w,

optimization of the exact expression (black symbols), for b = 100 (O), b = 103 (+), b = 10*
(0) (with 79 — 0), z/w (o). Theoretical « for small w (490) (red line), simplified form
(492) (a =1,V =1).

with :

w w

u= 24 (3>2—1 . (491)

w being small, this expression can be simplified :

o= (%) | (492)

This expression works well (see figure 129).

w intermediate
In the regime b/a >> w >> 1, we assume that the argument of the coth is large,
thus coth can be developed :

B 1_}_6721
S l—e 2

coth(z) ~ 1+ 2e %, (493)

The expression to minimize is proportional to :

tm o< (1+ @) (1+2e72") 1+ o+ 2e 2% (494)
dt,/da = 0 requires :
In(4w)
= , 495
“ 2w (495)

This expression gives a good approximation of the intermediate regime (see fig-
ure 130).
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Figure 130: Minimization of ¢,, when p = 1, for intermediate w : P! as a function of w,
optimization of the exact expression (black symbols), for b = 100 (O), b = 103 (+), b = 10*
(0), b= 105 (x) (with 75 — 0), z/w (o). Theoretical o for intermediate w (495) (red line)
(a=1,V=1).

Figure 131: Minimization of t,, when p = 1, for large w : o’ as a function of w,
optimization of the exact expression (symbols), for b = 100 ([)), b = 103 (+), b = 10*
(¢), b = 10° (x) (with 7 — 0). theoretical a®® for intermediate w (495) (black line),
theoretical aP! for large w (497) (colored lines). (a =1,V =1).

w large
We start from the whole expression of t,,, with 7 = a7, and 75 — 0. We assume
that the argument of the coth is very large, thus coth ~ 1. It leads to :

kt, ~ (a+1) (g—iJrM). (496)

a ba bu
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This expression gives a good approximation of a®” when w is large (see figure 131).

8.4 An example of the importance of transport in biology
8.4.1 Introduction

The main subject of this thesis is search strategies. A search strategy consists in
finding how to move to find a target as fast as possible. Transport is important to
biology in a more general way.

We present here an example of the importance of transport in biology : the
dynamics of the distribution of a membrane receptor in HEK cells and in neurons.
We have worked on the interpretation of data of Zsolt Lenkei and Anne Simon,
team “Dynamique des Récepteurs Neuronaux” of the laboratory “Neurobiologie et
Diversité Cellulaire” of the ESPCI, Paris. An article is submitted [Simon et al.,
2009].

They work on a membrane protein (CB1R cannabinoid type-1 receptors : a tar-
get for marijuana ; see Marzo et al. [2004] for a review on the endocannabinoid
system). At the membrane, this receptor is either active or inactive. It has a con-
stitutive activity, meaning that a wild type receptor (denoted WT afterwards), even
without any ligand, switches between these two states. Ligands shift the equilibrium
to more activity (WIN for example), or to less activity (AM for example). There are
also mutant receptors that have more (these mutants are denoted I in the following)
or less (these mutants are denoted A in the following) intrinsic activity. But before
being on the membrane, receptors have to be transported from inside the cell, where
they are produced, to their destination. After some time at the membrane, they
are endocytosed to be recycled or degraded [Koenig and Edwardson, 1997]. Con-
sequently, these receptors are located either at the membrane, or in vesicles inside
the cell. They can be visualized with fluorescence. However, the techniques used
are not the same for labeling all the receptors or only the receptors at the surface
of the cell. This explains why most measurements are values relative to the WT
without ligand, and not absolute values. Different phenotypes are observed. The
distribution of the receptors between the inside and the surface of the cell is variable
(see section 8.4.2), and in polarized cells the geography of receptors is also variable
(see section 8.4.3). The main idea is that differences in the activity of the receptor
could be responsible for these changes. Endocytosis could happen only to receptors
in the active state, and not in the inactive state. We shall see in the following if
data and model support this hypothesis.

8.4.2 HEK cells

Model

CBIR receptors are first studied in HEK cells (HEK means “human embryonic
kidney cells”, this cell lineage is often used because these cells are easy to modify).
These cells can be more or less considered as spherical. Receptors are either inside
the cell (state C in figure 132), or at its membrane (states M; and M, in figure 132).
At the membrane, the receptor is either active (M,) or inactive (M;). We consider
that the kinetic constants between these states are fast enough to always assume
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Figure 132: Model of receptor dynamics for HEK cells.

that equilibrium between M; and M, is immediate, with an equilibrium constant
K (K = M,/M;, X representing implicitly the quantity of receptors in state X).
The switching rate from state C to state M,; is kout. Kout is thought to be linked
mainly to the timescale of receptor recycling. We assume that k,,; and k;, are
constant. Consequently, the only parameter of the equilibrium that will change in
the experiments is K, characterizing the activity of receptors. We assume that the
total number of receptors in the cell is fixed : T'= M, + M, + C' is a constant

410" 2] aTotal CB1

Surface / Total
(log, % of WT vehicle)

Sl g
1079 T210A-CB1

Surface Alexa 568 (log)

105_

o ®
o:‘ ® m WT-CB1
L4 @ T210-CB1
A T210A-CBA
4,10 T T T T T )
5.10° 6.10° 7.10° 8.10° 9.10° 107 XU T2101-CB1 5 pm

Total GFP(log)

Figure 133: Fluorescence measurements for HEK cells. Here, receptors are fluorescent
(green), and the green fluorescence is measured to estimate the quantity of receptors in the
whole cell. At the surface, receptors are targeted by antibodies that are eventually labeled
with fluorescence (red), and the red fluorescence is measured to estimate the quantity of
receptors at the membrane. Here, results are shown without ligand, for the WT, A and I
receptors. Inset A’ shows the average ratio of fluorescence, compared to the WT. Inset B
shows how a cell typically looks like.

201



8 APPENDICES

As can be seen figure 133, the distribution depends on whether the receptor is
mutant or not. A similar figure could have been obtained with the W'T receptor in
a solution with ligands that change activity. And reversely, if the ligand with the
opposite effect on activity is added to the environment of a cell with mutant proteins
(for example if AM is added to the I mutant), a normal phenotype can be recovered
for adequate concentrations, supporting the hypothesis that activity (characterized
by the parameter K') does control the distribution of the receptors.

Endocytosis and activity

Endocytosis | Activity
I 135£7 133 £8
A 59 +3 66 + 20

Table 5: Antibody feeding and activity in mutants compared to the WT (the value for
WT receptors is set at 100).

Activity is indirectly measured, and is supposed to be proportional to the quan-
tity of active receptors on the membrane, 7.e. M,. Endocytosis is measured using
antibody feeding. Antibody feeding consists in adding antibodies in the environ-
ment that bind on the receptors at the membrane. If the receptors are endocytosed,
antibodies are endocytosed with them. After washing the environment, fluorescence
is measured, and is proportional to the quantity of receptors endocytosed. It should
then be proportional to k;, M,. Variations of the antibody feeding and of the activity
for the mutants are coherent, supporting the hypothesis of k;, constant (see table
5).

Mean fluorescence Ratio (MFR)

Leterrier et al. [2004] (figure 4Cb of this article) measured ratios of fluorescence
between the inside of the cell and the membrane. These fluorescence measurements
inside the cell and at the membrane are supposed to be comparable. Ratios are
absolute, not relative.

However, a first correction, geometric, is to be made on original measurements.
We make the assumption that a HEK cell is spherical. We define R as its radius,
m the membrane thickness, e the thickness of the optical slice, d,, the density of
receptors in the membrane, d. the density of receptors inside the cell. The MFR
is defined as the total quantity of receptors at the membrane divided by the total
quantity of receptors inside the cell. Thus :

M 4w R*md,,, ~ 3md,y,
C  inR3d.  Rd.

MFR = (498)

Fluorescence is measured at the equatorial plane of the cell, leading to the measure-

ment :
2t Remd,,  2md,,

7R2ed,  Rd.

MFRmeasured — (499)
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The measurements have to be renormalized as follows :

MFR™ = 1.5 M F Rmeesured, (500)

0 20 40 60 80 100 120 140 160 180

t

Figure 134: MFR (the fluorescence on the membrane divided by the fluorescence inside
the cell) as a function of time (minutes). Ligand is added a t = 0. O : ligand added
is AM (at a concentration of 7 uM), which decreases activity. B : ligand added is WIN
(at a concentration of 330 nM), which increases activity. Black lines are the fit (504) for
kL = 135 min. Orange lines are the same curves for k_ L = 77.5 min, and green lines for

out — out =
k... =270 min. Other parameters of the fit are initial and final values, that are taken as
measured.

The change in MFR is measured in WT cells that are initially in a medium
without ligand, in which a ligand is added at ¢ = 0 (see figure 134). Temporal
variations of the quantities of receptors follow these equations : :

dC

— = —kouC + ki M,, (501)
dt

dM

Y, kou - kmMm 2
= ko€ (502)
M=(211)nm (503)

= % -

Defining M F' Ry as the value of the MFR at ¢t = 0 and M F' R, as the value of the
MFR at t = oo, the solution is :

MFR.(1+MFRy) + (MFRy — MFR..) exp (- (1 + m) tkout>

MFR =
L+ MFRy + (MFRo ~ MFRo) exp (— (14 sz ) thou)

(504)

Experimental data with different ligands can be fitted with a single k,,;, supporting

the hypothesis that this parameter is indeed constant (see figure 134). It gives a

direct estimate of &, ~ 135 min.
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We can also express M F' R, with the parameters of our model (since when the
distribution does not change anymore, ky,M, = k;,C) :

Mi+Ma_Ma/K+Ma_kout (1 ]-)

MFR = = _
C koutMa/kin k’LTL

+ % (505)

In the case of the measurements with highly concentrated WIN, the MFR does not

change anymore with higher concentrations. We can assume that in this case, K is
very large, consequently k,,;/k;, can be estimated :

kout
kin

As we have already an estimation of k,,;, we can estimate k:l-_nl ~ 16.7 min. Values
obtained for k;, and k,,; seemed of the expected order of magnitude according to
the biologists.

Endocytosis and relative fluorescence
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(% of WT Vehcile)

70

60
O wrcB1 | +Am281
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50 100 150 200 250
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Figure 135: Endocytosis as a function of SCOP, i.e. the ratio between surface and total
fluorescence (both are relative to the value for the WT), for different receptors and with or
without ligand (symbols, with light color areas representing error bars). Black thick line
is the theoretical fit (513), and the other lines are theoretical fit with error bars on the
parameters used.

SCOP is the fluorescence at the surface divided by the total fluorescence. It has
only a meaning in comparison with the WT, because the two fluorescences measured
cannot be directly compared. For different receptors and with or without ligand,
SCOP is measured, along with the endocytosis. We check what relation we expect
with the model :

M M, + M; 1+1/K

SCOP = = = =
T Ma+Mz+C 1+1/K+kzn/kout’

kin/kout
1+ 1/K + kin/kou

(507)

1— SCOP = (508)
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Endocytosis is proportional to k;, M,. As k;, and T are assumed to be constant, it is
equivalent to say that endocytosis is proportional to M, /T = 1/(1+1/K +kin/kout)-

Thus :
kin Ma

1—-SCOP = . 509
kout T ( )
It is also true for the WT :
kin [ M,
1— Pyr = 2 | =2 ) 1
SCOPywr %m(T>WT (510)
We combine these equations :
A4 B 1—SCOP __L+SCOPWT—SOOP__1+1—4£%$T
1—SCOPyr 1—-SCOPyr —5001PWT -1
(511)

AsMFR=M/C,SCOP = M/T and T = M+C, we have MFR = (SC’OP‘1 — 1)_1.
This leads to :

) — 1+ MFRyr (1 (512)
w

M, M,
T T
Using now quantities in percentage of WT', the equation for figure 135 writes :

M, M, SCOP
— =1 MF 100 — [ —— . 1
( T / ( T )WT)% o fwr ( 0 <SCOPWT)%> (513)

We are able to fit the data with this expression (see figure 135). Note that there is
no adjustable parameter.

_ SCOP
SCOPyr

Predictions

Now that we have gained some confidence in our model and that we have eval-
uated kot /kin, we study what the model predict for the activity (K value), and for
the proportion of active receptors (M,). As K = M,/M;, M,/M = M,/(M,+ M;) =
M,/(M,+ M,/K)=1/(1+1/K).

M/T = 1/(1+ 1/MFR) : as the MFR is measured experimentally, M /T is
obtained straightforwardly. We assume that koui/kin ~ M F Rwn. This leads to
K=1/(MFR/MFRy;y)—1). We can then estimate K for the different receptors
(see figure 136).

Now we have obtained K, we can estimate the proportion of the receptors of
the cell that are in the active state : M, /T = 1/(1 + 1/K + kin/kou) (see fig-
ure 137). An issue is that the relative variations of M, /T between the mutants and
the WT obtained with the model are smaller than the relative variations measured
with the endocytosis (supposed to be proportional to M,/T). Error bars may be
underestimated. Different experiments with different neuron batches may be hard to
compare : M FR and SCOP measurements are also not fully compatible. However,
the relative M, /T variations, obtained by the model or by measurements, even if
out of the errors bars, are of the same order of magnitude.
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Figure 136: M/T as a function of K. Symbols have for coordinates experimental values
of M/T, and K estimated with the model, with the estimation of kyy:/kin stemming from
MF Ry . Lines represent the prediction from our model.
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Figure 137: M,/T as a function of K. Both are inferred via the model and the M FR
measurements. Lines represent the prediction from the model.

Implications

The idea that the activity of the receptor (equilibrium between inactive and
active state at the membrane) controls its distribution (inside the cell or at the
membrane) is supported by the results of this simple kinetic model applied to the
experimental data. These results tend to show that the proportion of receptors that
are actually in the active state at the membrane only represent about 10% of all the
receptors in the cell. From a design perspective, the proportion of receptors inside
the cell may regulate signaling function in two opposing ways. In cells like here,
with a low proportion of receptors in the active state, the initial signaling response
to a ligand may not have a large amplitude, but the stock of receptors can maintain
the response. Reversely, in cells with most receptors in the active state, a change
in the environment can lead to a highly efficient activation of intracellular signal-
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ing, but the following desensitization period limits cellular response to subsequent
activation. Consequently, by regulating the availability of the receptors, biological
characteristics of different cell types may have an important influence to establish
the optimal trade-off level between efficiency and robustness of receptor signaling.

8.4.3 Neurons

CB1 in neurons

Figure 138: Distribution of receptors in neurons. Blue is a marker for the soma, receptors
are green, receptors on the membrane are labeled in red.

The same receptors are studied in neurons. The distribution of receptors between
the soma and the axon is very different depending on the receptor type (WT, I, A)
(see figure 138). If the receptors are the A mutants, they are mainly located in the
soma, whereas if they are the I mutants, they are mainly located in the axon. The
WT has an intermediate distribution.

We first explain here how we imagine the “life cycle” of these receptors in a
neuron. Receptors are produced inside the soma. Then they are exported to the
membrane in vesicles by a first transport pathway which does not send the vesicles
too far away. They arrive at the soma membrane, or at the axon membrane close
to the soma. Activity will change the effective internalization rate kgy,, as it was
the case in the HEK cells. But when the receptors being at the soma membrane are
internalized, the endocytosis vesicles are exported via a second transport pathway,
sending them to the axon. Once on the axon membrane, the receptors will diffuse,
and the internalization rate k..., will again be dependent on the activity. Once
internalized, receptors are sent back to the soma to be degraded or recycled. In
what follows, we shall see if the distribution of receptors along axons is compatible
with this model with two transport pathways.

Parameters

Receptors are transported inside the axon starting from the soma (see figure 139).
The model relies on the idea that there are two transport pathways in the axon. For
each transport the probability that the receptors are released to the membrane per
unit time is constant. The two transports have not the same release rate.

e Assuming that the direct transport is diffusive (with coefficient Dy), and have
a release rate kg, the mean length over which receptors are transported before
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Figure 139: Model for the distribution of receptors in neurons.

being released to the membrane is l; = y/Dy/kq. We assume that the flux jy
of receptors using this transport pathway is fixed.

e Assuming that the transport after the endocytosis at the soma membrane is
ballistic (velocity v) and that the release rate is k,,, the mean length over which
receptors are transported before being released to the membrane is I, = v/ky,.
The flux of receptors using this pathways is assumed to be proportional to the
the endocytosis rate at the soma ksopmq.

On the axon membrane, receptor diffuse with a constant D,,, and are endocytosed
back with a rate of kyzon. It means that l,,, = \/ Dy /kazon is the typical length on
which they diffuse before “dying” (in the point of view of the model, since afterwards
they are sent back to the soma, where other processes recycle or degrade them). In
fact, only 14, I, and [, matters. The details of the transport are not important, only
the typical length over which receptors are released to the membrane matters.

The axon is assumed to be a simple segment of length L. It is a simplification,
as real axons are branched. Receptors transported inside the axon are assumed to
be released when they are at the end of the axon opposite from the soma (zr =
L). This boundary is reflective for the receptors diffusing at the membrane. The
other boundary (separating the axon from the soma) (z = 0) is considered to be
semi-reflective for the receptors diffusing at the membrane, with a parameter s
translating this condition (0,c = kc at x = 0). Indeed, a diffusion barrier is observed
experimentally at the beginning of axons [Nakada et al., 2003].  can be either
positive or negative depending on the net flux of receptors at the membrane (to the
soma or to the axon).

Equations

P.(x,t) is the concentration of receptors transported inside the axon by the
ballistic pathway. Py(x,t) is the concentration of receptors transported inside the
axon by the diffusive pathway. P, (x,t) is the concentration of receptors at the
membrane.

0P, 0P,
5~ Vo kP, (514)
0P, 0Py
or ~ Diggr ~habe (515)
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0P, 0*P,,
=D, knP. 4+ kaPy — ke Py,. 516
o g fmle T Nl (516)
In the stationary case, all the derivatives relative to ¢ are equal to 0. This leads to :
P, = Cie %/, (517)
Since j. = vP.(z = 0) :
Je —= Je —z
P =2t = e 518
S (518)
and with a similar reasoning :
Ji mmpE ja =
P, = Pa — 2% o714 519
" /Daka laka (519)

These expressions replace P; and P, in the equation on P,

aQP) ]c -z ] 5
D —_ le l — kepm — O 520
oz T° iy e (520)

The boundary conditions are :

AP,
. x: = kP, (z = 0) and (521)
dP,, APy
o =vP.(x=L)— D; —= 522
m| =ere=n-D (522)

Finally, P,, divided by the mean concentration writes :

x
1

. 1) (s () +oh (i) ) - (;%ldzme*%z 7) (en (&) +tmwsn ()

L ch(ﬂ)a— (e_%ldfd-ﬁ-e

L N _L
lel.2jc +e td dlg 711) lm K

- (o () e () ) (25 i) o () + (o F

with o = lm2 (]:\c +]Ad + K (lcjc + ld.fd))? jl - jl/(l?n - ll2)

(523)

Results

We use this expression to fit profiles of concentration in axons. These profiles are
averaged over several axons, grouped into “long” and “short” axons. These profiles
are for the CB1 receptor wild type (WT), and for the mutants A and I. There are
additional profiles of the SST receptor, which is thought to be only transported with
a pathway similar to the diffusive pathway:.

Fit parameters appear at first numerous. But with a closer examination, it is
not completely true.

e In fact, if you look at equation 523, r; = j./jq matters, but not each flux.
the WT value of r; is a fit parameter. However, as j; is assumed to be fixed,
and as j. is assumed to be proportional to ke, measurements of kg, for
the mutants compared to the WT ( kY1 = 32 (in arbitrary units) kgoma =
65 ~ 2k T ki, = 175 ~ 0.5k (see figure 140)) lead to : r] ~ 27T

J
~ wT
j ~ 0.57“J .
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Figure 140: Internalization rates

e It is the same for [, : ZK T is a fit parameter, however, as kyzon is measured
for mutants relative to the WT (k¥Z = 5.0 (arbitrary units), kL = = 40.5 ~

aron aron

SARWT "EA =23~ 22kWT (see figure 140)), we obtain (2 ~ 1.5/ and

axon’ aron axron

I ~0.35"T.
e [, does not matter as long as it is short compared to the other length scales.
e /. is supposed to be the same for all the CB1 data, be it WT or mutant.

We can qualitatively fit the gradient of concentration of the receptors (see fig-
ure 141). However, x allows us a lot of freedom in the adjustment. The results
should not be coined as quantitative.

The distribution of the SST receptor, thought to be only transported via the
“diffusive” pathway, can be roughly fitted (however here there is only one adjustable
parameter) (see figure 142).

The concentration close to the soma (z < 50um : gray area in figures 141 and
142) is not well captured by the fit. Indeed, it is the typical scale below which the
diffusion barrier has a significant influence, and our model has only included it in
the parameter x at © = 0 [Nakada et al., 2003].

Our model shows qualitatively that the observed concentration gradients of re-
ceptors are compatible with two transport pathways, linked to endocytosis rates.
However, too many fit parameters (in particular x) remain, thus our fits are not
very discriminating, and besides that, the data are very noisy.

8.4.4 Conclusion

The activity of the receptors changes the distribution of the receptors in cells. For
the spherical HEK cells, more activity means that the receptors will be more endocy-
tosed, and thus there will be more receptors inside the cells than at their membrane.
The presence (or the absence) of such a “reservoir” inside the cell could change the
robustness of the response to a signal. For the polarized neurons, the concentra-
tion of receptors varies on the axon membrane with the distance from the soma.
Depending on the activity of these receptors, this distribution is radically changed.
It matters, because it would change the connections with other neurons. Besides,
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Figure 141: Concentration p(z) as a function of x (um), renormalized by the mean con-
centration. Average on several axons. Fit parameters : I; = 1 pm (not important as long
as it is short compared to other length scales : it would only change the local shape close
tox =0). T = 1500 wm (If 7 is larger, there would be little change. Another value
Iy, > 1000 pm would also work). [, = 250 um (another value in 200 pm — 300 wm would
also work). (j./ja)""T = 0.5 (a value in 0.3-1 would also work). ! = —0.003 pm™1,
kW1 =0.012 um™ !, k4 = 0.012 pm~!.

cultured neurons with mutant receptors have axons more or less branched than the
WT, depending on the mutant type : it could be that with fewer receptors, an axon
does not receive signals triggering its growth. It could radically change the network
properties. The activity of these receptors being modified by pharmacological drugs
as well as by cannabis, their use could affect overall brain networks properties. Zsolt
Lenkei and Anne Simon are now on a project studying links between chronic expo-
sure to cannabinoids, structural abnormalities and onset of psychosis : microscopic

211



8 APPENDICES

2.2

2.0

1.8

1.6

1.4+

1.2

1.0

0.8

0.6 1

0.4 0.4

0 100 200 300 400 0 100 200 300 400 500 600
X X

short long

Figure 142: SST receptor : p(z) as a function of z (pum), renormalized by the mean
concentration. Average on several neurons. Fit parameters : I[; = 1 um (not important as
long as small, except for the local shape in x = 0). [,, = 500 um. Here x = 0 (reflecting
boundary), but k£ # 0 would only make a local difference : indeed, k practically adds a
source (or a well) in x = 0, and here, as l; is short, and as there is no other transport
pathway, inside transport is also equivalent to a source in x = 0 : the shape only depends
on I, (except very locally, close to the soma).

properties leading to macroscopic changes.
This example of the distribution of receptors shows the importance of transport
in biology.
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Résumé

Cette thése concerne les stratégies de recherches de cible dites intermittentes, qui
alternent des phases lentes permettant la détection de la cible, et des phases rapides
sans détection.

Un exemple & I’échelle macroscopique est celui d’animaux en quéte de nourriture.
Nous en proposons un modéle, alternatif aux célébres stratégies de Lévy, et montrons
analytiquement que le temps moyen de recherche peut étre minimisé en fonction des
durées moyennes de chaque phase.

Un premier exemple & I’échelle microscopique est celui de la recherche par des
protéines de cibles sur ’ADN. Nous calculons analytiquement la distribution de
la distance parcourue le long de 'ADN lors d'une excursion 3D, I'adaptons a une
expérience de molécule unique et montrons que les trajectoires observées combinent
des diffusions 1D et 3D. Un autre exemple cellulaire concerne le transport actif de
vésicules, qui diffusent ou se lient a des moteurs assurant un déplacement balistique.
Nous optimisons la constante cinétique dans un modeéle général de réaction limitée
par ce type de transport.

Finalement, ces stratégies intermittentes pourraient constituer un mécanisme
de recherche générique. Nous étudions de maniére systématique 'influence de la
modélisation de la phase de détection et de la dimension de I’espace, et montrons
que l'optimalité des stratégies intermittentes est un résultat robuste.

Mot-clés : physique statistique, marches aléatoires, biophysique, stratégies de
recherche, processus stochastiques, temps de premier passage

Abstract

This thesis deals with intermittent target search strategies, which combine slow
phases, allowing the searcher to detect the target, and fast phases without detection.

Foraging animals are an example at the macroscopic scale. We propose a model,
alternative to the famous Lévy strategies, and show analytically that the mean search
time can be minimized as a function of the mean duration of both phases.

Our first example at the microscopic scale is given by proteins searching for
targets on DNA. We analytically calculate the distribution of the distance travelled
along DNA during a 3D excursion, adapt it to a single-molecule experiment and
show that the observed trajectories combine 1D and 3D diffusion. Another cellular
example is provided by active transport of vesicles, which diffuse or bind to motors
performing ballistic motion. We optimize the global kinetic constant within a general
framework of reactions limited by this kind of transport.

Finally, these intermittent strategies could constitute a generic search mecha-
nism. We systematically study the influence both of the modeling of the detection
phase and of the space dimension, and show that the optimality of intermittent
strategies is a robust result.

Keywords : statistical physics, random walks, biophysics, search strategies,
stochastic processes, first passage time



