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THÈSE

présentée et soutenue publiquement le 12/11/2009

pour l’obtention du

Doctorat de l’Institut National Polytechnique de Lorraine
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Université Montpellier 2, Montpellier

Krishna BUSAWON Professeur
Northumbria University, Royaume-Uni

Examinateur : Philippe GUILLOT Mâıtre de Conférences,
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Directeur de thèse : Gilles MILLERIOUX Professeur
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Notations

SISO Single Input Single Output
MIMO Multi Input Multi Output
SSC Synchronous Stream Cipher
SSSC Self-Synchronizing Stream Cipher
CFB Cipher Feedback Mode of operation

R Set of real numbers
N Set of natural numbers
N+ Set of positive natural numbers
Z Set of integer numbers
Zp Set of remainders in arithmetic modulo p
Fp Set of remainders in arithmetic modulo p when p is prime (finite field)
Up subset of Fp

Fnp Set of vectors of dimension n whose components are in Fp

Fp[zk] Ring of polynomials whose indeterminates z
(i)
k and the coefficients are in Fp

I, U, V Dense or compact sets
l Distance in a topological space

f State transition function
h Output function
f (i) i-order iterated state transition function
h(i) i-order iterated output function
mk Inputs of a dynamical system
yk Outputs of a dynamical system
xk Internal state of a dynamical system
x0 Initial condition

A Set of inputs mk
B Set of outputs yk
X Set of internal states xk

n Dimension of a dynamical system
m Number of inputs
p Number of output
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Notations

θ Parameters of dynamical system
L Dimension of the parameter vector θ

r Left inherent delay of dynamical system
R Relative delay of dynamical system
K Flatness characteristic number of a dynamical system

f̃ , h̃ Functions describing the receiver part of a cryptosystem
m̂k Reconstructed input at the receiver part
ŷk Reconstructed output at the receiver part
x̂k State vector at the receiver part
rik Residual for detection at the receiver part

σ Switching function
J Number of modes of the switching function σ
N Number of input/output relations or numbers of receivers in a bank
MN (K) Number of monomials of a Veronese map

zk Regressor vectors in an identification procedure
N ′max Maximum number of regressor vectors
bt Parameter vector in an identification procedure
pN (zk) Hybrid decoupling constraint polynomial
hN Coefficient of hybrid decoupling constraint polynomial
NI/O Maximum number of input/output relations
LN Matrix of regressor vectors

l
[k]
i,j k + 1 order minor of a matrix lij

x∗ Stationnary state
Ko, K

′o Order of a periodic orbit
T Particular discrete time k

{ } Family of elements

{a}k2
k1

Sequence of symbols ak between k = k1 and k = k2
T Compound matrix in the Extended Euclidean Algorithm for

computing the multiplicative inverse
gcd(a, b) Greatest common divisor between a and b

V Lyapunov function
P Positive definite matrix of a Lyapunov function
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1n n dimensional identity matrix
0 Zero matrix with appropriate dimension if not specified

‖xk‖ Euclidean norm of vector xk. ‖xk‖ =
√

xTk xk
X† Moore-Penrose pseudo inverse of X
XT Transpose of the matrix X
Ker(X) Kernel (null space) of X
eig(X) Eigevalues of X
rank(X) Rank of X

νe Encoding function in a two-channel transmission
νd Decoding function in a two-channel transmission
e Encryption function in stream ciphers
d Decryption function in stream ciphers
σs Keystream generation function in SSC
s Ouput function in SSC
σss Keystream generation function in SSSC
qk Internal vector of automata in SSSC based on Maurer approach
gθ Next state transition function in automata based on Maurer approach
M Delay of memorization in SSSC
h′ Filter function of an SSSC in CFB mode
lθ Function describing in terms of past ciphertexts

ekj Expansion rate of trajectories in an attractor
λL Lyapunov Exponent
λ Divergence rate of two trajectories or eigenvalues
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Introduction

Hybrid systems have inspired a great deal of research from both control theory
and theoretical computer science. They provide a strong theoretical foundation
which combines discrete-event and continuous-time systems in a manner that can
capture software logic and physical dynamics in a unified modelling framework.
The most well-known area of applicability of hybrid systems are naturally mod-
elling, analysis and control design of embedded systems. Switched systems are an
important class of hybrid systems that are widely studied in the literature. Stabil-
ity, identifiability, controller or observer design are challenging problems related
to hybrid system. They are usually addressed for engineering applications. This
manuscript deals with a specific engineering application : secure communications.
As it will turn out, dynamical systems will play a central role in this context.

Chaotic behavior is one of the most complex dynamics a nonlinear system can
exhibit. One of the formal definitions of chaos is due to R.L. Devaney [Dev89].
A dynamical system is said to be chaotic in the sense of Devaney if it fulfills
two properties : transitivity and density of periodic points. It can be shown that
sensitivity to the initial condition, which is the property most often associated
with chaotic behavior, is actually a consequence of those two others properties.
Roughly speaking, a system is said to be sensitive to initial conditions if a small
change in the initial condition drastically changes the behavior of a system in
the long run, thus making long-term predictions unfeasible in practice. Complex
dynamics had its beginnings in the work of the French mathematician Henri
Poincaré (1854-1912), who also recognized the practical unpredictability of such
systems. Sensitive dependent phenomena were highlighted by Edward Lorenz in
1963 while simulating a simplified model of convection. But it was the paper
“Period Three Implies Chaos” by Li and Yorke in 1975 [LY75], where the word
“chaos” was coined in the framework of dynamical systems, which triggered a
tremendous interest in this kind of phenomena.

Signals generated by chaotic systems are broadband, noiselike and present random-
like statistical properties, in spite of being deterministic. This makes them a very
convenient tool to implement the principles of confusion and diffusion required
by Shannon in cryptography [Sha49][Mas92]. The first ideas in this direction
were made around 1990 [Mat89][HNSM91]. Since the 90’s, many schemes, also
called cryptosystems or ciphers, have been proposed to scramble information with
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chaotic signals. The papers [CP91] or [MVH93] can be considered as pioneering
works on this topic. This new approach to encryption is commonly called chaos-
based (or “chaotic”) cryptography. To illustrate the high research activity in this
field, let us mention than many special issues have been already published in in-
ternational journals like IEEE Transactions on Circuits and Systems, or Interna-
tional Journal on Bifurcations and Chaos ([Ogo93][Has98][Yan04][AL06][MAD08]
are some important surveys dealing with the topics). Furthermore, numerous in-
vited sessions on chaos-based cryptography have been organized at international
conferences, e.g., the International Symposium on Circuits And Systems (ISCAS),
the International Symposium on NOnLinear Theory and Applications (NOLTA),
and many others.

This being the case, two points deserve important comments and further consider-
ation. First, chaos-based cryptographic primitives were most often considered as
secure exclusively because of the complexity of the dynamics which is exhibited.
However, observe that when chaotic generators are implemented on machines
with finite accuracy (say, a computer), the sequences are not really chaotic. In-
deed, since the variables take values in sets of finite cardinality, such sequences
obviously get trapped in a loop, called cycle, of finite period. We can expect this
period to be not too short and the degree of “randomness” of the sequence to be
high (as measured e.g. by standard statistical tests), but guaranteeing the said
properties requires some caution [Knu98]. Important contributions to this issue
and a definition of so-called discrete chaos can be found in [KSAT06]. Secondly,
not enough attention has been paid on the basic rules borrowed from standard
cryptography an encryption scheme should obey, in particular the fundamental
assumption first stated by A. Kerkhoff in ([DK02]). This assumption states that
any unauthorized person (called adversary or eavesdropper) knows all the details
of the cryptosystem, including the algorithm and its implementation, except the
secret key. More generally, the cryptanalysis, that is the study of attacks against
cryptographic schemes in order to reveal their possible weakness, is an essential
issue which has most often been omitted when designing chaotic cryptosystems.

As a result, it is well admitted that, if potential applications of dynamical sys-
tems is sought for cryptography, deeper insights are really necessary. This is the
main objective of this work. More precisely, the aim of this PhD thesis is threefold.

– bringing out a connection between chaotic and conventional cryptography by
comparing the respective algorithms proposed so far, highlighting the most
relevant chaos-based algorithms and finding out the ones which still make sense
bearing in mind that chaos turns into discrete chaos if digital implementation
is sought, the dynamics being thereby closely related to pseudo-randomness.
The investigation will focus on structural consideration and control theoretical
concepts will be the central tools to this end.

– motivating the use of hybrid dynamical systems for the design of cryptographic

8



primitives. Indeed, an interesting, even though very general, cryptosystems
design principle suggests mixing algebraic domains and using primitives built
from combinations of boolean and arithmetic operations [LM91][KS04]. It turns
out that hybrid systems is a typical class of dynamical systems which fulfils
such a constraint since they involve several algebraic models which are switched
in time according to some logical rules. A special class of hybrid systems will
be considered : the switched linear systems.

– deriving cryptanalytic methodologies for assessing the security of cryptosystems
based on hybrid systems. Again, concepts borrowed from control theory, namely
identifiability and identification, will be considered. A major specificity related
to the special context of secure communications and cryptography must be
taken into account. In usual control theory, the variables are assumed to take
values in a continuum (often Rn or a subset of Rn) since they are related to
physical quantities. In the cryptographic context, variables take values in finite
cardinality sets (e.g. finite fields).

The layout of this manuscript is the following :

Chapter 1 recalls the essential concepts borrowed in control theory. The thesis
focuses on the switched linear discrete-time systems (switched systems for short)
and three central properties, namely invertibility, flatness and stability. These
properties will appear as useful to design cryptographic primitives.

Chapter 2 introduces the general principles for scrambling information with
chaotic systems. The recovery of information at the receiver part is known as chaos
synchronization. Note that only the discrete-time chaotic maps are surveyed. The
most important schemes obeying such a principle are surveyed, such as : additive
masking, chaotic switching, parameter modulation, two channel transmission and
message-embedding. The message-embedding scheme is very attractive insofar as
the synchronization between the transmitter and the receiver can be guaran-
teed without any restriction on the rate of variation of the information to be
encrypted. The chapter ends up by giving a numerical example which illustrates
how to incorporate the control theory concepts described in Chapter 1 into the
message-embedding cryptographic scheme.

Chapter 3 considers the message-embedding scheme when implemented on finite
state machines. All the variables of this scheme will take values in a finite field.
Considering finite fields rather than the field of real numbers will deserve special
treatments especially the identification technique for assessing the security of the
message-embedding scheme.

Chapter 4 introduces background on standard symmetric cryptography espe-
cially stream ciphers. Then, a comparison between the message-embedding and
general class of standard symmetric cryptosystems is carried out. The major re-
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Introduction

sult states that, under flatness condition, the message-embedding scheme acts as
a self-synchronizing stream cipher. Furthermore, it is shown how the identifiabil-
ity and identification concepts are related to the security of the resulting cipher.
The security is assessed in terms of the algebraic complexity of the identification
process.

The Conclusion sums up the main contribution of this thesis and addresses open
issues and possible perspectives.

Appendix consists of 4 parts. Appendix A recalls the numerical method for com-
puting Lyapunov Exponents. Appendix B gives background on algebra involved
in Chapter 3. Appendix C details the Gaussian elimination algorithm. Appendix
D recalls the specifications of the self-synchronizing stream cipher Moustique’s
family.

The papers published related to this research work are listed below :

1. P. VO-TAN, G. Millérioux, J. Daafouz, Left invertibility, flatness and
identifiability of switched linear dynamical systems : a framework for crypto-
graphic applications, International Journal of Control, 83(1) :145-153, 2010.

2. P. Vo-Tan, G. Millérioux, J. Daafouz, A comparison between the mes-
sage embedded cryptosystem and the self-synchronous stream cipher Mosquito,
18th European Conference on Circuit Theory and Design, ECCTD’2007, 2007.

3. P. Vo-Tan, G. Millérioux, J. Daafouz, Invertibility, flatness and identi-
fiability of switched linear dynamical systems : an application to secure com-
munications, 47th IEEE Conference on Decision and Control, CDC’08, 2008.

4. P. Vo-Tan, G. Millérioux, J. Daafouz, Sur les propriétés structurelles
des systèmes dynamiques pour le chiffrement, 3èmes Journées Doctorales /
Journées Nationales MACS, 2009.
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Chapter 1

Control theoretical concepts

The aim of this chapter is to provide the essential concepts in control theory
which are necessary for the understanding of the remaining part of this thesis.
Invertibility, flatness and stability of switched linear discrete-time system are the
main topics discussed here.

By switched linear systems we mean a set of linear subsystems and a switching
function which determines at each instant of time the active subsystem. This
important class of hybrid systems have received a great amount of attention in
the last years. From the very beginning until now, several new techniques for
stability analysis and control design has appeared, as for instance those con-
cerning switching control [Lib03], stability [LM99] [DRI02][DM02], observabil-
ity [BE04][BBBV02] and identification [JHFT+05]. In addition, left invertibility,
which stands for the ability to recover the input sequences from the output se-
quences, attracted great attention. The original works [BM65][Sil69][SM69] are
dedicated to linear time invariant systems. Recently, several contributions have
been proposed for switched linear systems as in [SH06][MD07] for the discrete-
time setting and [VL08][TL08] for the continuous-time one. Under the assumption
that the switching function is known in real time, the results in [SH06][MD07]
allow to recover the input sequences using an inverse system. Moreover, it is
shown in [MD07] that flatness property plays a key role in deriving an explicit
input/output relationship. An exhaustive presentation of flatness is out of the
scope of this work but one can refer to [FLMR95][SRA04] for more details. As it
turns out, the contributions related to invertibility and flatness of switched linear
systems are useful in the construction of cryptographic primitives.

The outline of this chapter is as follows : Section 1.1 is dedicated to general
definitions. We expose in Section 1.2 invertibility and flatness in the context
of switched linear system. The corresponding detailed results can be found in
[MD07]. Numerical illustrations are given in Section 1.3 before a conclusion.
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Chapter 1. Control theoretical concepts

1.1 General definitions

Let us consider the discret-time dynamical system described by the general
form :

{

xk+1 = fθ(xk, mk)
yk = hθ(xk, mk)

(1.1)

Such a dynamical system is described by the 5-tuple (A,B,X, fθ, hθ) where

– k is the discret-time
– A is the set of inputs mk
– B is the set of outputs yk
– X is the set of internal states xk also called state vectors
– fθ : X × A −→ X is the (next) state transition function
– hθ : X × A −→ B is the output function.
– θ is the parameter vector associated to the next state transition and the

output function.

Throughout this chapter, the sets A,B,X will be respectively Rm, Rp and Rn.
m, p and n will correspond respectively to the number of inputs, outputs and the
dimension of the system.

1.1.1 Iterated functions

Definition 1 The i-order iterated next-state function, f
(i)
θ : X × Ai −→ X

describes the way how the internal state xk+i ∈ X of (1.1) at time k + i depends
on the state xk ∈ X and on the sequence of i input symbols mk · · ·mk+i−1 ∈ A

i.
It is defined for i ≥ 1 and recursively obeys for k ≥ 0,







f
(1)
θ (xk, mk) = fθ(xk, mk)

f
(i+1)
θ (xk, mk · · ·mk+i) = fθ

(

f
(i)
θ (xk, mk · · ·mk+i−1), mk+i

)

for i ≥ 1

Definition 2 The i-order iterated output function h
(i)
θ : X × Ai+1 −→ B de-

scribes the way how the output yk+i of (1.1) at time t + i depends on the state
xk ∈ X and on the sequence of i + 1 input symbols mk · · ·mk+i ∈ A

i+1. It is
defined for i ≥ 0 and recursively obeys for k ≥ 0,







h
(0)
θ (xk, mk) = hθ(xk, mk),

h
(i)
θ (xk, mk . . .mk+i) = hθ

(

f
(i)
θ (xk, mk · · ·mk+i−1), mk+i

)

for i ≥ 1

1.1.2 Relative degree

For a Single Input Single Output (SISO) system (that is m = p = 1), we define
the relative degree as follows :

12



1.1. General definitions

Definition 3 The relative degree of the dynamical system (1.1) is the quantity
denoted R with

– R = 0 if ∃xk ∈ X, ∃mk, m
′
k ∈ A with hθ(xk, mk) 6= hθ(xk, m

′
k).

In other words, there exists a state xk ∈ X and two distinct input symbols
mk, m

′
k ∈ A that lead to different values of the output.

– R > 0 if for any sequence mk+1 · · ·mk+R of input symbols

∃xk ∈ X, ∃mk, m
′
k ∈ A with

h
(R)
θ (xk, mk · · ·mk+R) 6= h

(R)
θ (xk, m

′
k · · ·m

′
k+R)

In others words, for i < R, the iterated output function h
(i)
θ only depends on

xk while for i ≥ R, it depends both on xk and on the sequence of i − R + 1
input symbols mk · · ·mk+i−R. In particular, for i = R, the iterated output
function depends both on mk and on xk, that is, there exists a state xk ∈ X
and two distinct input symbols mk ∈ A and m′k ∈ A that lead to different
values of the output, for any sequence mk+1 · · ·mk+R of input symbols.

Roughly speaking the relative degree of the dynamical system (1.1) is the min-
imum number of iterations such that the output at time k + R is influenced by
the input at time k. Consequently, for R > 0, the R-order output function h

(R)
θ

may be considered as a function on X × A→ B.

Finally, one has for R ≥ 0 :

yk+R = h
(R)
θ (xk, mk) (1.2)

1.1.3 Left invertibility

Definition 4 The dynamical system (1.1) is left invertible if there exists a non-
negative integer r < ∞, called inherent delay, such that for any two inputs
mk ∈ A and m′k ∈ A the following implication holds :

∀xk ∈ X
h(0)(xk, mk) · · ·h

(r)(xk, mk · · ·mk+r) = h(0)(xk, m
′
k) · · ·h

(r)(xk, m
′
k · · ·m

′
k+r)

⇒ mk = m′k.
(1.3)

The left invertibility property means that the input mk is uniquely determined
by the knowledge of the state xk and of the output sequence yk, . . . , yk+r.
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For dynamical systems with SISO and when A = B, another interpretation of
left invertibility is that for any internal state xk ∈ X, the map

hxk :
A −→ A
mk 7−→ h(r)(xk, mk)

(1.4)

is a bĳection.

1.1.4 Flatness

Flatness was introduced by Fliess and al. [FLMR95] in 1995 and a deep insight
into the subject can be found in the quite recent book [SRA04].

Definition 5 An output for (1.1) is said to be flat if all system variables of (1.1)
can be expressed as a function of yk and a finite number of its forward/backward
iterates. In particular, there exists two functions F and G and integers t1 < t2
and t′1 < t

′
2 such that

xk = F (yk+t1, · · · , yk+t2)
mk = G(yk+t′1, · · · , yk+t′2)

(1.5)

Then, the dynamical system (1.1) is said to be flat if it admits a flat output and
the flatness characteristic number is defined as the quantity t2 − t1 + 1.

1.2 Particularization for switched linear systems

We examine switching linear discrete-time systems of the form :

{

xk+1 = Aσ(k)xk +Bσ(k)mk
yk = Cσ(k)xk +Dσ(k)mk

(1.6)

where xk ∈ Rn, mk ∈ Rm and yk ∈ Rp are the states, the inputs and the mea-
surements, respectively. All the matrices, namely Aσ(k) ∈ Rn×n, Bσ(k) ∈ Rn×m,
Cσ(k) ∈ Rp×n and Dσ(k) ∈ Rp×m belong to the respective finite sets (Aj)1≤j≤J ,
(Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J . At a given time k, the index j corresponds
to the mode of the system and results from a switching function σ : k ∈ N 7→ j =
σ(k) ∈ {1, . . . , J}. {σ}k1+T

k1
refers to the mode sequence {σ(k1), . . . , σ(k1 + T )}.

For a given switching rule σ, the set of corresponding mode sequences over any
interval of time of length T + 1 is denoted by ΣT . This set may contain either
all possible mode sequences (also called paths) if there are not any repetitive
switching patterns or can be reduced if any. We assume that the mode is known,
either accessible or reconstructed (see [BBBV02] for this reconstruction issue).
No restriction on the time separation between switches (“dwell time”) is imposed.
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At time k, for each initial state xk ∈ Rn, when the system (1.6) is driven by
the input sequence {m}k+Tk = {mk, . . . , mk+T}, for a mode sequence {σ}k+Tk ,
{x(xk, σ,m)}k+Tk refers to the solution in the interval of time [k, k + T ] of (1.6)
emanating from xk and {y(xk, σ,m)}k+Tk refers to the corresponding output se-
quence in the same interval of time [k, k + T ].

We recall in this Subsection some important results borrowed from the paper
[MD09].

We first recall some notations related to specific vectors and matrices.

For i < 0 :
M iσ(k) = 0

For i = 0 :
M0
σ(k) = Dσ(k)

For i > 0 :

M iσ(k) =



















Dσ(k) 0p×m . . . . . . . . .

Cσ(k+1)Bσ(k) Dσ(k+1) 0p×m . . . . . .

.

.

.
.
.
.

. . .
. . .

. . .

.

.

.
.
.
.

. . .
. . .

. . .

Cσ(k+i)A
σ(k+i−1)

σ(k+1)
Bσ(k) Cσ(k+i)A

σ(k+i−1)

σ(k+2)
Bσ(k+1) . . . Cσ(k+i)Bσ(k+i−1) Dσ(k+i)



















(1.7)
with the direct transition matrix

A
σ(k1)
σ(k0) =

{

Aσ(k1)Aσ(k1−1) . . . Aσ(k0) if k1 ≥ k0
1n if k1 < k0

Īm = (1m 0) (1.8)

Oiσ(k) =















Cσ(k)
Cσ(k+1)Aσ(k)

...

Cσ(k+i)A
σ(k+i−1)
σ(k)















(1.9)

mik =













mk
mk+1

...
mk+i













, yi
k

=













yk
yk+1

...
yk+i













(1.10)

When (1.6) is driven by an input sequence {m}∞k and a mode sequence {σ}∞k ,
one has for all i ≥ 0 :

yi
k

= Oiσ(k)xk +M iσ(k)m
i
k (1.11)
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1.2.1 Input left invertibility of a switched linear system

For switched linear systems, the issue of recovering the input of a dynamical
system from the output, assuming that the switching sequence is known is called
the input left inversion. In spite of the fact that left invertibility refers to the
ability of both recovering the input and the mode, input left invertibility is also
sometimes but abusively merely called left invertibility.

Theorem 1 [MD09] The system (1.6) is input left invertible if there exists a
nonnegative integer r <∞ such that for all mode sequences in Σr,

rank M rσ(k) − rank M
r−1
σ(k+1) = m (1.12)

The quantity r is called left inherent delay

1.2.2 Input left inversion of a switched linear system

Definition 6 A system is a left r-delay inverse for (1.6) if, under identical initial
conditions x0 and identical mode sequences {σ}∞0 , when driven by yr

k
, its output

m̂k+r fulfills m̂k+r = mk for all k ≥ 0

Theorem 2 [MD09] Assume that (1.6) is input left invertible with left inherent
delay r. The system







x̂k+r+1 = P rσ(k)x̂k+r +Bσ(k)ĪmM
r†
σ(k)y

r
k

m̂k+r = −ĪmM
r†
σ(k)O

R
σ(k)x̂k+r + ĪmM

r†
σ(k)y

r
k

(1.13)

with

P rσ(k) = Aσ(k) − Bσ(k)ĪmM
r†
σ(k)O

r
σ(k) (1.14)

is a left r-delayed inverse system for (1.6) with Īm = (1m 0m×(m·r)).

Remark 1 In the Definition 6, the initial condition is considered at the particular
discrete time k = 0 but can be replaced by any other initial condition xk considered
at the discrete time k = k0 and m̂k+r = mk for all k ≥ k0.

Remark 2 It is also shown in [MD09] that the state vector of the left r-delay
inverse (1.13) fulfills x̂k+r = xk for all k ≥ 0 and that the error of reconstruction
ǫk = xk − x̂k+r fulfills

ǫk+1 = P rσ(k)ǫk (1.15)
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1.2.3 Flatness of a switched linear system

1.2.3.1 Algebraic characterization

Let us define the inverse transition matrix as

P
σ(k1)
σ(k0) =

{

P rσ(k1)P
r
σ(k1−1) . . . P

r
σ(k0) if k1 ≥ k0

1n if k1 < k0

with

P rσ(k) = Aσ(k) −Bσ(k)ĪmM
r†
σ(k)O

r
σ(k) (1.16)

Theorem 3 [MD09] A componentwise independent output yk of the system (1.6)
assumed to be square (m = p) and left input invertible with inherent delay r, is
a flat output if there exists a positive integer K < ∞ such that, for all mode
sequences in Σr+K−1, the following equality applies for all k ≥ 0 :

P
σ(k+K−1)
σ(k) = 0 (1.17)

Σr+K−1 stands for the set of mode sequences over the interval of time [k, . . . , k+
r +K − 1].

1.2.3.2 Other characterization

In order to test whether a system is flat, we can also try to express each com-
ponent x

(i)
k (i = 1, . . . , n) and m

(i)
k (i = 1, . . . , m) as a function which depends

only on the output and its iterations. The method can be based on the elimi-
nation technique. There exists many elimination algorithms (cf. [Wan91] for a
detailed comparison) especially derived from resultants theory, characteristic set
or Gröbner basis. We are generally not able to a priori decide which method is the
best. The elimination algorithms are incorporated in many symbolical computa-
tion software as Maple, Mathematica or the freeware Maxima1 which is based on
the theory of resultant [Wan91].

1.2.4 Stability of switched linear systems

We recall two important theorems characterizing the stability of switched linear
systems. Consider (1.6) in the autonomous regime :

xk+1 = Aσ(k)xk (1.18)

1available at http ://maxima.sourceforge.net

17



Chapter 1. Control theoretical concepts

Theorem 4 (Quadratic stability) [BGFB94] The system (1.18) is quadrati-
cally stable if and only if there exists a symmetric positive definite matrix P of
dimension n, such that :

(

P ATi P
PAi P

)

> 0 ∀i ∈ {1, . . . , J} (1.19)

The relation (1.19) consists of J matrix inequalities called LMIs (Linear Matrix
Inequalities) where P is the indeterminated matrix. If Theorem 4 is fulfilled, we
can show that the Lyapunov function

V (xk) = xTkPxk

fulfills :

∆V (xk+1, xk) = V (xk+1)− V (xk) = xTk+1Pxk+1 − x
T
kPxk < 0, ∀xk 6= 0

Theorem 5 (Poly-quadratic stability) [DRI02] The system (1.18) is poly-
quadratically stable if and only if there exists symmetric positive definite matrices
Si and matrices Gi of appropriate dimensions, such that :

(

Gi +G
T
i − Si G

T
i A
T
i

AiGi Sj

)

> 0 (1.20)

for all i ∈ {1, . . . , J} and j ∈ {1, . . . , J}.

In this case, the Lyapunov function :

V (xk) = xTk Pσ(k)xk

where
σ(k) ∈ {1, . . . , J} and Pi = S−1

i i ∈ {1, . . . , J}

verifies :

∆V (xk+1, xk) = V (xk+1)− V (xk)
= xTk+1Pσ(k+1)xk+1 − x

T
k Pσ(k)xk < 0, ∀xk 6= 0

1.3 Example

In this section, we illustrate the theoretical concepts of left invertibility and
flatness presented in this chapter. We consider the system (1.6) with the special
setting :

Aσ(k) =

(

q
(1)
σ(k) 1

0.5 0

)

Bσ(k) =

(

0

q
(2)
σ(k)

)

Cσ(k) = (1 0) Dσ(k) = 0

(1.21)
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and the number of modes J = 4. The time-varying entries fulfill q
(1)
1 = q

(1)
2 = 1.7,

q
(1)
3 = q

(1)
4 = −1.7, q

(2)
1 = q

(2)
3 = −0.01, q

(2)
2 = q

(2)
4 = 0.01.

Inherent delay
For evaluating the inherent delay, we construct the matrices M iσ(k) as in (1.7). We
get that :

M0
σ(k) = Dσ(k) = 0

M1
σ(k) =

(

Dσ(k) 0
Cσ(k+1)Bσ(k) Dσ(k+1)

)

=

(

0 0
0 0

)

M2
σ(k) =







Dσ(k) 0 0
Cσ(k+1)Bσ(k) Dσ(k+1) 0

Cσ(k+2)Aσ(k+1)Bσ(k) Cσ(k+1)Bσ(k) Dσ(k+2)





 =







0 0 0
0 0 0

q
(2)
σ(k) 0 0







It turns out that
rank M2

σ(k) − rank M
1
σ(k+1) = 1

and so, the inherent delay is r = 2 according to Theorem 1.

Flatness characterization based on the algebraic approach

Aσ(k) =

(

q
(1)
σ(k) 1

0.5 0

)

Aσ(k+1) =

(

q
(1)
σ(k+1) 1

0.5 0

)

Hence the direct transition matrix reads :

A
σ(k+1)
σ(k) =

(

q
(1)
σ(k+1) 1

0.5 0

)(

q
(1)
σ(k) 1

0.5 0

)

=





q
(1)
σ(k+1)q

(1)
σ(k) + 0.5 q

(1)
σ(k+1)

0.5q
(1)
σ(k) 0.5





and one gets :

O2
σ(k) =







Cσ(k)
Cσ(k+1)Aσ(k)
Cσ(k+2)A

σ(k+1)
σ(k)





 =









1 0

q
(1)
σ(k) 1

q
(1)
σ(k+1)q

(1)
σ(k) + 0.5 q

(1)
σ(k+1)









We are now computing the pseudo inverse of matrix

M2
σ(k) =







0 0 0
0 0 0

q
(2)
σ(k) 0 0







The singular value decomposition of M2
σ(k) yields :

M2
σ(k) = USV T =







0 0 −1
0 1 0
−1 0 0













q
(2)
σ(k) 0 0

0 0 0
0 0 0













−1 0 0
0 1 0
0 0 1







Consequently, the pseudo inverse of M2
σ(k) reads :
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M2†
σ(k) = V S†UT =







−1 0 0
0 1 0
0 0 1







1

q
(2)
σ(k)







0 0 −1
0 1 0
−1 0 0





 = (q
(2)
σ(k))

−1







0 0 1
0 1 0
−1 0 0







The computation of (1.14) gives :

P 2
σ(k) = Aσ(k) − Bσ(k)ĪmM

2†
σ(k)O

2
σ(k)

=





q
(1)
σ(k) 1

−q
(1)
σ(k+1)q

(1)
σ(k) −q

(1)
σ(k+1)





and

P 2
σ(k+1) =





q
(1)
σ(k+1) 1

−q
(1)
σ(k+2)q

(1)
σ(k+1) −q

(1)
σ(k+2)





This yields

P
σ(k+1)
σ(k) = P 2

σ(k+1)P
2
σ(k) = 0

As a result, (1.21) is flat with K = 2 according to Theorem 3.

Flatness characterization based on elimination theory
We use the freeware Maxima2 in this example.

There are three necessary steps :
– define the state equations
– write out the successive iterations of the state equation
– choose the variables to be eliminated

For the first component x
(1)
k , the answer is obvious and there is no need for

supplementary computations. We have :

x
(1)
k = yk (1.22)

To understand the script Maxima for searching the expression of the second com-
ponent x

(2)
k and of mk, let us introduce some notations. The variables x

(i)
k , yk and

mk are respectively written as xik, yk and mk. The l-th iteration is denoted xikl,
ykl and mkl. An equation always has to be labelled like eqj where j stands for
the j-th iteration. The non-constant entries of matrices Aσ(k) and Bσ(k), that are

q
(1)
σ(k) and q

(2)
σ(k) are denoted q1k and q2k. Their l-th iterations are denoted q1kl

and q2kl. Finally, an equation is implicitly known as a relation which is equal to
zero. Now we detail the different scripts.

We precise firstly the state equations of the system :

2available at http ://maxima.sourceforge.net

20



1.4. Conclusion

(%i1) eq1:x1k1-q1k*x1k-x2k;

(%i2) eq2:x2k1-0.5*x1k-q2k*mk;

(%i3) eq3:yk-x1k;

We write out the iterations of the state equations :

(%i4) eq4:x1k2-q1k1*x1k1-x2k1

(%i5) eq5:x2k2-0.5*x1k1-q2k1*mk1;

(%i6) eq6:yk1-x1k1;

(%i7) eq7:yk2-x1k2;

To obtain the expression (if it exists) x
(2)
k as a unique function of the output and

its possible iterations, we use the function eliminate in Maxima which is based
on the resultants technique for which the list of used equations and eliminated
variables must be provided :

eliminate([eq1,eq2,eq3,eq4,eq5,eq6,eq7],

[mk,mk1,x1k1,x1k2,x2k1,x2k2]);

We get that :

x
(2)
k = yk+1 − q

(1)
σ(k)yk (1.23)

To obtain the expression (if it exists) of mk, we give the list of used equations
and the eliminated variables :

eliminate([eq1,eq2,eq3,eq4,eq5,eq6,eq7],

[mk1,x2k,x1k1,x1k2,x2k1,x2k2]);

We obtain :

2q
(2)
σ(k)mk = 2yk+2 − 2q

(1)
σ(k+1)yk+1 − yk (1.24)

From (1.22), (1.23) and (1.24), we conclude that the two components x
(i)
k (i = 1, 2)

of the state vector and the input mk depend exclusively on the output yk and its
iterates. We so conclude that the system (1.21) is flat.

1.4 Conclusion

In this chapter, key results for switched linear systems further required for
our purpose, namely the context of secure communications and cryptography,
have been recalled. The main ones concern structural properties, namely left
invertibility and flatness.
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Chapter 2

Chaos-based secure
communication

This chapter is devoted to a review of the most popular chaos-based cryp-
tosystems proposed over the years since the 90’s. Two main approaches can be
distinguished. The first one consists in computing a great number of iterations
of a chaotic map, using a digital message as initial data. We refer to [SAMK05]
[Sch01] [HNSM91] [ASK05] and references therein for details. The second method,
which is discussed in this chapter, is based on signals synchronization (see the
reviews [Ogo93] [Has98] [Yan04] [AL06] [MAD08] according to the chronology).
Chaos-based schemes with their advantages and drawbacks are presented here :
additive masking, chaotic switching, parameter modulation, two-channel trans-
mission and message-embedding.

The outline of this chapter is as follows : We start, in Section 2.1, by giving a
formal definition of chaos. Section 2.3 is dedicated to chaos-based cryptosystems
listed above. We give in Section 2.4 a numerical experiment of the message-
embedding scheme, which highlights the role played by control theoretic concepts
described in Chapter 1. We end this chapter with a conclusion.

2.1 Background on chaos

Autonomous nonlinear dynamics corresponding to maps can be written in the
generic explicit form :

xk+1 = f(xk), with the initial condition x0 (2.1)

xk ∈ Rn is called the state vector and n corresponds to the dimension of the
system.

The system is said to be autonomous since the discrete time k does not appear
explicitly in the equation (2.1).
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The solution of (2.1) from the initial condition x0, is a sequence of points called
iterated sequence, or discrete phase trajectory, or orbit. The time evolution of the
state is completely determined by the initial state x0 of the system and the dy-
namics. In general, the explicit solution of (2.1) in terms of known elementary
and transcendental functions is unknown but actually, we are often only inter-
ested in the steady-state behaviors. The iterated sequence may reach more or less
complex steady states which can coexist, the most often encountered being :

Stationary state
A stationary state is also called equilibrium point or fixed points. It obeys :
xk+1 = xk = x∗

Periodic orbit
A periodic orbit corresponds to cycles of finite order Ko and obeys :
xk+Ko = xk and xk+K ′o 6= xk for K

′o < Ko

Chaotic orbit
A chaotic orbit can be viewed in some sense as an infinite period trajectory and
thus obeys :

xk+Ko 6= xKo ∀K
o and xk is bounded.

This relation is not sufficient to formally define chaos. In the following, we give a
strict definition of chaos.

Let (I ∈ R, l) denote a compact metric space (l is a distance) and consider the
nonlinear continuous function defining the map :

f : I → I, xk+1 = f(xk), x0 ∈ I

Before providing a strict definition of chaos which is due to R.L. Devaney [Dev89],
some basic definitions are required.

Definition 7 f is said to have the property of sensitive dependence on initial
conditions or to be sensitive to initial conditions if there exists some δ > 0 such
that, for any x0 ∈ I and any ǫ > 0, there is a point y0 ∈ I and an integer j ≥ 0
fulfilling

l(x0, y0) > ǫ⇒ d(f
(j)(x0), f (j)(y0)) > δ

where l stands for the distance and f (j) for the j-order iterated of f .

Definition 8 f is said to be topologically transitive if, U and V being non-empty
open sets in I, there is some x0 ∈ U and an index j ∈ Z+ such that f (j)(x0) ∈ V
or equivalently, there exist an index j ∈ Z+ such that f (j)(U) ∩ V 6= ∅
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We are now in position of stating the definition of a chaotic system in the sense
of Devaney.

Definition 9 A continuous function f : I → I is said to be a chaotic map or to
define a chaotic dynamical system if :
a) f is sensitive to initial conditions
b) f is topologically transitive
c) the set of periodic points of f is dense in I

To determine the sensitivity to initial conditions of a dynamical system, we can
resort to the notion of Lyapunov Exponents. It is based on the measure of the
divergence rate between two distinct trajectories which started from two nearby
initial conditions (see Appendix A for a numerical routine for the computation
of Lyapunov Exponents)

2.2 Some examples of discrete chaotic maps

Logistic chaotic map
The Logistic chaotic map has been considered by the biologist Robert May
[May76] for describing the evolution of the population of a species. It is a one
dimensional map which is given as :

xk+1 = θxk(1− xk)

with 0 < θ ≤ 4. The state vector xk ∈ [0, 1] is the number of individuals in the
population at instant k and the parameter θ stands for the increment factor of
the population.

Henon chaotic map
The Henon chaotic map [Hen76] is a two-dimensional map given by :

{

x
(1)
k+1 = −1.4(x

(1)
k )2 + x

(2)
k + 1

x
(2)
k+1 = 0.3x

(1)
k

The corresponding Henon attractor is depicted in FIG. 2.2A.

Ikeda chaotic map
The two-dimensional chaotic map Ikeda [Ike79], considered in optics by the physi-
cian Ikeda, are given in the following form :















x
(1)
k+1 = 1 + 0.9(x

(1)
k cos(θk)− x

(2)
k sin(θk))

x
(2)
k+1 = 0.9(x

(1)
k sin(θk) + x

(2)
k cos(θk))

θk = 0.4− 6

1+(x
(1)
k

)(2)+(x
(2)
k

)(2)
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The corresponding attractor of the Ikeda map is depicted in FIG. 2.2B.

Lozi chaotic map
First considered in [HOP92], the Lozi chaotic map is a two-dimensional chaotic
map governed by :

{

x
(1)
k+1 = −1.7|x

(1)
k |x

(2)
k + 1

x
(2)
k+1 = 0.5x

(1)
k

The corresponding attractor of the Lozi map is depicted in FIG. 2.1.
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Fig. 2.1 – The chaotic attractor of the Lozi map
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Fig. 2.2 – Chaotic attractor. A : Henon map, B : Ikeda map.
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2.3 General principles of scrambling informa-

tion with chaotic systems

Scrambling information (or message) denoted hereaftermk ∈ R views a chaotic
system with dynamic f as a complex sequence generator. f is often specified by
a state representation with corresponding state vector xk ∈ Rn, the dimension
of the system being n. f is parametrized by a vector θ of dimension L which is
expected to act as the secret key. Only a part of the state vector xk obtained via
a function h, possibly parametrized by θ as well, called the “output” and denoted
yk, is conveyed through the public channel. yk is usually of low dimension and
should be unidimensional in the ideal case. In what follows, we will assume that
yk is a scalar (dimension 1) belonging to R, the transmitter being thus restricted
to a so-called Single Input Single Output (SISO) system. The receiver is a dy-
namical system with dynamics f̃ and with output function h̃, both parametrized
by θ̂. Its state vector is denoted x̂k.

Both functions f̃ and h̃ must be properly chosen to recover the message mk at the
receiver side. A first condition is that θ̂ = θ. For most of the chaos-based cryp-
tosystems, the recovering of the message mk is performed in two steps : chaos
synchronization and static inversion.

i) Chaos synchronization
Let M be a constant matrix of appropriate dimension, and U a non empty set of
initial conditions. There are two main concepts of synchronization :

Definition 10 Asymptotical synchronization :

lim
k→∞
‖Mxk − x̂k‖ = 0 ∀x̂0 ∈ U. (2.2)

Definition 11 Finite time synchronization :

∃kf <∞, ‖Mxk − x̂k‖ = 0 ∀x̂0 ∈ U and ∀k ≥ kf . (2.3)

If only a part of the components are reconstructed, the observer is a reduced
observer and rank(M) < n. If all the components of the state vector are recon-
structed, the observer is a full observer and M is the identity matrix.

Remark 3 In practice, if a digital implementation is carried out, because of the
finite accuracy of any computers, the error of an asymptotical synchronization
can be considered to be zero after a finite transient time.

Synchronization can be viewed as a state reconstruction. In 1997 several papers
[HY97] [MWO97] [Mil97] [GM97] brought out this connection. As a result, the

27



Chapter 2. Chaos-based secure communication

receiver often consists of an observer.

ii) Static inversion
Static inversion involves a “static” function d that depends on the internal state
x̂k and the output yk. The function d delivers a quantity d(x̂k, yk) = m̂k and must
verify

d(x̂k, yk) := m̂k = mk if x̂k = xk

Various cryptosystems, corresponding to distinct ways of scrambling a message,
have drawn the attention of researchers over the years. They are reviewed in the
following subsections. Let us point out that we are going to restrict to discrete-
time systems (maps) having in mind the comparison with digital conventional
cryptography, but most of these chaotic cryptosystems can also be found in the
literature for the continuous time.

2.3.1 Additive masking

This scheme was first suggested in [MVH93] and [WO93]. The information mk
to be concealed is merely added to the output yk of the transmitter (FIG. 2.3) :

{

xk+1 = fθ(xk),
yk = hθ(xk) +mk.

(2.4)

The generic equations of the receiver read :

{

x̂k+1 = f̃θ(x̂k, yk),

ŷk = h̃θ(x̂k).
(2.5)

The quantity yk which appears in (2.5) reveals the unidirectional coupling between
both the transmitter and the receiver systems. Provided that synchronization
(2.2) or (2.3) can be achieved, the recovering of the information is performed by
the static inversion

m̂k = yk − h̃θ(x̂k).

Unfortunately, most often, the information cannot be exactly retrieved. Indeed,
mk acts as a disturbance on the channel and precludes the receiver from being
exactly synchronized ; neither (2.2) nor (2.3) can be exactly fulfilled. As a result,
x̂k 6= xk, ŷk 6= yk and, finally, m̂k 6= mk for any k.

mk

m̂k
ŷk

f̃θ, h̃θfθ, hθ

xk x̂k

yk

+

+

+

−transmitter reeiver
Fig. 2.3 – Additive masking
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2.3.2 Modulation

2.3.2.1 Chaotic switching

Chaotic switching is also referred to as chaotic modulation or chaos shift keying.
Such a technique has been mostly proposed in the digital communications con-
text. A thorough description can be found in [GPO98], even though the method
was proposed a couple of years before, say, in 1993 [HPM93]. Basically, at the
transmitter side, to each symbol mk = mi, belonging to a finite set {m1, . . . , mN},
is assigned a chaotic signal emanating from the dynamic f iθ with output function
hiθ (i = 1, . . . , N). Therefore, in the transmitter description, the index i depends
on mk.

{

xk+1 = f
i(mk)
θ (xk),

yk = h
i(mk)
θ (xk).

(2.6)

The simplest case involves binary-valued information and only two different chaotic
dynamics f 1

θ , f
2
θ are needed. Then, according to the current value of the symbol

mk at times k = jK0 (j ∈ N), a switch is periodically triggered on every K0

samples. During the interval of time [jK0, (j + 1)K0 − 1], mk is assumed to be
constant and the chaotic signal yk of the system which has been switched on is
conveyed through the channel (FIG. 2.4).

yk

x̂k

x̂k

fN
θ , hN

θ

f1
θ , h1

θ

mk

xk

xk
m̂k

f̃N
θ , h̃N

θ

f̃1
θ , h̃1

θ

logical

rule
detection

.

.

.

.

.

.

transmitter 1 receiver 1

transmitter N receiver N

Fig. 2.4 – Chaotic switching

The objective at the receiver end is to decide which chaotic system f iθ is most

likely to have produced the sequence {yk}
(j+1)K0−1
jK0

. To this end, the receiver part
is composed of as many systems, say N , as at the transmitter part :

{

x̂k+1 = f̃ iθ(x̂k, [yk]),

ŷk = h̃iθ(x̂k).
(2.7)

The symbol [·] means that yk is possibly involved in f̃ iθ and distinguishes two
methods : the coherent and the non coherent detections. Non coherent detection
involves statistical approaches mainly based upon correlation operations between
the transmitted signal yk and the estimated signal ŷk. In this case, the receivers
are autonomous systems with dynamics f̃ iθ, and yk must be omitted in (2.7).
Coherent methods require the synchronization of both the transmitter and the
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receiver. The synchronization (2.2) or (2.3) (where x̂0 must be replaced by x̂jK0)
is obtained by unidirectional coupling through the variable yk which is really
involved in f̃ iθ of Eq. (2.7). Only one of the N receivers (observers, for instance)
can be synchronized according to the value ofmk which is assumed to be constant
within the interval of time [jK0, (j + 1)K0− 1]. A simple logical decoder enables
to retrieve the original information when analyzing the residuals rik, where

rik = yk − h̃
i
θ(x̂k).

When multi-valued information is considered [PM01], the number of receivers in-
creases and a sophisticated logical mechanism, located after the bank of receivers,
is required.
Regarding a noisy context, the modulation technique is appealing because it ben-
efits from some immunity properties. In a noise-free context though, it is much
less attractive because it suffers from the fact that each switch of mk causes a
transient in the synchronization process. That motivates the requirement that mk
must be constant within an interval of time. Unfortunately, that prevents high
throughput transmissions. To the lack of efficiency adds to the mounting number
of receivers when N becomes larger.

2.3.2.2 Parameter modulation

Basically, there are two kinds of parameter modulation : the discrete and
the continuous one. The setup corresponding to a discrete parameter modula-
tion [UOL+93] [HPM93] is depicted in FIG. 2.5a. In such a case, a parameter
depending on the input mk denoted λ(mk) (different from the secret key θ) of
a single chaotic system, takes values according to a prescribed rule over a finite
set {λ1, . . . , λN} : one has λ(mk) = λi. For binary messages, the parameter of
the transmitter only takes two distinct values λ1, λ2. During the interval of time
[jK0, (j + 1)K0 − 1], mk is assumed to be constant and the chaotic signal yk is
conveyed through the channel :

{

xk+1 = f
λ(mk)
θ (xk),

yk = h
λ(mk)
θ (xk).

(2.8)

The receiver part can consist of a bank of N receivers, usually observers, each of
them being coupled in a unidirectional way with the transmitter through yk :

{

x̂k+1 = f̃λ
i

θ (x̂k, yk),

ŷk = h̃λ
i

θ (x̂k).
(2.9)

Only one observer, set with the same value λi of the transmitter which has actually
delivered the sequence {yk}

(j+1)K0−1
jK0

, can be synchronized according to (2.2) or
(2.3) (where x̂0 must be replaced by x̂jK0) within the time interval [jK0, (j +
1)K0 − 1] . Thus, again, a simple logical decoder permits to retrieve the original
information when analyzing the residuals
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rik = yk − h̃
λi

θ (x̂k).

For the continuous modulation (FIG. 2.5b), the information mk takes values over
an uncountable set. Consequently, an infinite number of units at the receiver side
would be required. As a matter of fact, for the recovering of λ(mk) and then
of mk, we usually resort to adaptive techniques and identification procedures
[FM97][CHR00][HM97][AMB04]. The estimation λ̂k must achieve λ̂k = λ(mk)
after a transient as short as possible.

For both discrete and continuous modulation, the function delivering λ(mk) must
be bĳective so that mk can be recovered in a unique way.

x̂k

xk

f̃λN

θ , h̃λN

θ

f̃λ1

θ , h̃λ1

θ

f
λ(mk)

θ
, h

λ(mk)

θ

x̂k

yk

f λ̂k

θ , h̃θ

m̂k

f
λ(mk)
θ , hθ

λ̂k, m̂k

xk

yk

x̂k

detection

.

.

.

b

rule

receiver N

transmitter

a

receiver 1

logical

receivertransmitter

Fig. 2.5 – Parameter modulation

Nevertheless, for the parameter modulation as with chaotic switching, the infor-
mation must be constant during a prescribed interval of time (or at least slowly
time-varying in a bounded range) to cope with the transients induced by the
adaptation of the identification process. As with chaotic switching, this tech-
nique severely limits high throughput purposes and, therefore, it does not seem
very appealing for encryption.

2.3.3 Two-channel transmission

For a two-channel transmission (FIG. 2.6), a first channel is used to convey
the output yk of an autonomous chaotic system with dynamic fθ and output
function hθ. Besides, a function νe, depending on a time-varying quantity, say,
the state vector xk of the chaotic system, encodes the informationmk and delivers
uk = νe(xk, mk). Then, the signal uk is transmitted via a second channel. The set
of equations governing the transmitter is











xk+1 = fθ(xk),
yk = hθ(xk),
uk = νe(xk, mk).

(2.10)
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At the receiver end, since the chaotic signal yk is information-free (and so not
disturbed), a perfect synchronization fulfilling (2.2) or (2.3) can be achieved by
resorting to an observer. As a consequence, the information mk can be correctly
recovered by :











x̂k+1 = f̃θ(x̂k, yk),

ŷk = h̃θ(x̂k),
m̂k = νd(x̂k, uk).

(2.11)

The decoding function νd is defined by

m̂k = νd(x̂k, uk) = mk when x̂k = xk. (2.12)

This technique has been proposed, for example, in [MM98][ZP02]. The advantage
lies in that, unlike modulation-based approaches, mk is allowed to switch every
discrete times k without inducing synchronization transients for each symbol. The
recovering is wrong only for a finite number of first symbols of the message. On
the other hand, a transmission involving two channels may be unsatisfactory for
throughput purposes.

xk

x̂k

xk

yk

xk

mk
uk

x̂k

m̂k

hθ

fθ

f̃θ

νe νdtransmitter reeiver
Fig. 2.6 – Two-channel transmission

2.3.4 Message-embedding

First of all, the reader is cautioned that different but equivalent terminologies
can be encountered in the literature referring to the same technique : embedding
[KYP00][MD04], non autonomous modulation [Yan04] or direct chaotic modula-
tion [Has98]. The reasons for this diversity are the following. At the transmitter
part, the information mk ∈ R is directly injected (or, as it is also usually said,
embedded) in a chaotic dynamics fθ. The resulting system turns into a non au-
tonomous one since the information acts as an exogenous input. The system
involves a state vector xk ∈ R

n. Injecting mk into the dynamics can be consid-
ered as a “modulation” of the phase space. Only the output yk of the system is
transmitted.

A message-embedded cryptosystem (depicted on FIG. 2.7) obeys :

{

xk+1 = fθ(xk, mk),
yk = hθ(xk, mk).

(2.13)
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f̃θ, h̃θ

yk

mk

xk

x̂k

hθ

fθ

xk

m̂k

transmitter

receiver

Fig. 2.7 – Message-embedding. mk is embedded into fθ and hθ if the inherent
delay is 0 or mk is only embedded into fθ if the inherent delay is strictly greater
than 0

For recovering the message at the receiver side, two mechanisms have been pro-
posed in the literature : the inverse system approach [UMW96] and the un-
known input observer (UIO) approach [ET01] [BDR02] [MD04] [MD03] [MD06]
[BBBBT04]. As a matter of fact, UIO is nothing else but a left inverse system
slightly modified by adding some extra terms, for the sake of robustness in noisy
environments. The generic equations governing an inverse system or an UIO for
(2.13) are :

{

x̂k+r+1 = f̃θ(x̂k+r, yk, . . . , yk+r),

m̂k+r = h̃θ(x̂k+r, yk, . . . , yk+r),
(2.14)

with gθ such that

m̂k+r = h̃θ(x̂k+r, yk, . . . , yk+r) = mk when x̂k+r = xk. (2.15)

The index r corresponds to the inherent delay of (2.13) and must be introduced,
in particular, for the sake of causality.

This technique follows the same spirit as the observer-based techniques required
for the cryptosystems described in Subsect. 2.3.1, 2.3.2 and 2.3.3. Nevertheless,
a major difference lies in that the receiver, unlike a mere observer, must recon-
struct the state xk to guarantee the synchronization without the knowledge ofmk.

Let M be a constant matrix of appropriate dimension, and U a non empty set of
initial conditions. There are again two main concepts :

Definition 12 Unknown Input Asymptotical synchronization :

lim
k→∞
‖Mxk − x̂k+r‖ = 0 ∀x̂0 ∈ U and ∀mk (2.16)

Definition 13 Unknown Input Finite Time synchronization :

∃kf <∞, ‖Mxk − x̂k+r‖ = 0 ∀x̂0 ∈ U, ∀k ≥ kf and ∀mk. (2.17)

Remark 4 Similarly to the mere synchronization, in practice, if a digital im-
plementation is carried out, because of the finite accuracy of any computers, the
error of an unknown input asymptotical synchronization can be considered to be
zero after a finite transient time.
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The message-embedded approach is very appealing because not only, similarly to
the two-channel approach, the recovering can be achieved without any assump-
tion on the rate of variation ofmk but also (unlike in a two-channel transmission),
only a single channel is required.

2.4 Example of the message-embedding

The objective of this example is to illustrate the message embedding scheme
described in Subsection 2.3.4.

Transmitter
We consider the switched linear dynamical SISO system (1.6) as the transmitter.
The number of mode is J = 2 with the corresponding switching function σ : k ∈
N→ {1, 2} :

σ(k) =

{

1 if x
(1)
k > 0

2 if x
(1)
k ≤ 0

All the matrices Aσ(k), Bσ(k), Cσ(k) and Dσ(k) are given as :

A1 =







−1.7 0.5 1
0.5 0 0

0 0 1





 A2 =







1.7 0.5 1
0.5 0 0

0 0 1





 (2.18)

B1 = B2 = B = [0.005 0.002 1]T and C1 = C2 = C = [1 1 1]

Actually, the dynamics of (2.18) is nothing but the Lozi map rewritten in a
three-dimensional space to cope with the bias term which is incorporated in the
dynamics x

(3)
k+1 = x

(3)
k = 1.

The dynamical system (1.6) is used as the transmitter for encrypting a 24-bits
colored image depicted in FIG. 2.8. Each 8 bits numerical value of the input
mk ∈ {0, . . . , 255} is extracted from a three dimensional array of integers which
encodes the respectively red, green and blue layer of the image.

The random-look output signal yk is depicted in FIG. 2.9 and the resulting en-
crypted image is depicted in FIG. 2.10.

Receiver
In order to design the receiver, it is necessary to find out the inherent delay. To
this end, we must compute the matrices M iσ(k) as in (1.7). We have :

M0
σ(k) = Dσ(k) = 0

M1
σ(k) =

(

Dσ(k) 0
Cσ(k+1)Bσ(k) Dσ(k+1)

)

=

(

0 0
1.007 0

)
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Fig. 2.8 – The original image
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Fig. 2.9 – A part of output signal yk

and
rank M1

σ(k) − rank M
0
σ(k+1) = 1

Hence, the inherent delay is r = 1 according to Theorem 1.

We can thereby suggest the inverse system (1.13) (actually the inverse system
(2.14) particularized for switched linear systems) for recovering the image from
the output sequence. We recall (see Subsection 1.2.2 in Chapter 1) that the error
of reconstruction ǫk = xk − x̂k+r fulfills

ǫk+1 = P rσ(k)ǫk

To check whether the error state reconstruction is at least asymptotically sta-
ble (which would correspond to the relation (2.16) in the definition of an un-
known input asymptotical synchronization), we can test the quadratic and the
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Fig. 2.10 – Encrypted image

polyquadratic stability (see Subsection 1.2.4 in Chapter 1 by substituting Aσ(k)
by P rσ(k)). From this perspective, we can resort to the freeware LMISOL3. The
following results have been obtained.

– The error of synchronization is quadratically stable since we can find a common
symmetric positive matrix

P =







1.1351 0.0615 −0.2094
0.3039 0.9047 0.2559
0.0763 0.7164 0.6319







which verifies Theorem 4

– The error of synchronization is poly-quadratically stable since we can find ma-
trices

S1 =







0.9712 0.0347 0.0013
0.0347 0.8804 0.0209
0.0013 0.0209 0.9591





 , S2 =







0.7328 0.3031 0.0085
0.3031 0.6506 0.0285
0.0085 0.0285 0.7456







G1 =







0.9712 0.0347 0.0013
0.0347 0.8804 0.0209
0.0013 0.0209 0.9591





 , G2 =







0.7328 0.3031 0.0085
0.3031 0.6506 0.0285
0.0085 0.0285 0.7456







which verify Theorem 5.

3available at http ://www.dt.fee.unicamp.br/ mauricio/lmisol10.html
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2.5. Conclusion

The error of synchronization is depicted in FIG. 2.11. We can easily realize that
the Remark 4 applies. Indeed, after a finite transient time, because of the dig-
italization in the computation, the error reaches strictly zero and the image is
properly recovered after a finite transient time (see FIG. 2.12).
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Fig. 2.11 – Error state reconstruction ǫ
(1)
k (left) and ǫ

(2)
k (right).

Fig. 2.12 – Recovered image. Upper left : errors due to the synchronization
transient

2.5 Conclusion

This chapter has recalled the most popular techniques for concealing infor-
mation using chaos. Several limitations related to the performances concerning
encryption/decryption speed, throughput, complexity of the receiver have been
pointed out. The additive masking, which considers the information as a distur-
bance, is not able to reconstruct it accurately. The modulation method depends
on the rate variation of the information and the structure of the receiver is likely
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to be complex. The two-channel transmission suffers from throughput problem
as it does require two channels, one for synchronization and another one for con-
veying the encrypted information. The message-embedding scheme appears to be
the most attractive one. The receiver is unique and does not depend on the rate
variation of the information to be encrypted.

However, if a digital application is sought (hardware implementation in e.g. FPGA
or DSP), the data to be encrypted are either intrinsically digital or digitalized
and so lie in a finite set. It is clear that resorting to a map which takes value
in dense set (chaotic map and the underlying set of real values for example) will
cause the output (the corresponding encrypted information) to also take value
in a dense set. When implemented in a finite state machine, the output will be
automatically quantized, the transient time before convergence will be finite, but
clearly, this is a poor solution regarding the throughput. Undoubtedly, resorting
to a map which directly takes value in a finite set whose range is identical to the
one of the data would be a better solution. The next chapter is mainly dedicated
to this important aspect.
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Chapter 3

Message-embedding over a finite
field

It has been shown in Chapter 2 that various cryptosystems, corresponding to
different ways of hiding a message, have drawn the attention of the researchers
over the years. The most important schemes are additive masking, chaotic switch-
ing, discrete or continuous parameter modulation, two-channel transmission, and
message-embedding. The message-embedding appears to be very attractive as
the synchronization between the transmitter and the receiver can be guaranteed
without any restriction on the rate of variation of the message to be encrypted.
However, in the context of digital applications, it has been stressed in Chapter 2
that resorting to maps which take value in a finite set whose range is identical to
the one of the digital data would be a better solution.

The aim of this chapter is to revisit the message-embedding scheme where the
dynamics is generated by switched linear systems over a finite field Fp. SISO dy-
namical systems will be considered because they bring out some advantages. The
switched linear system (transmitter part) has a simple inverse system (receiver
part) which can be easily derived from the left invertibility and flatness condi-
tion. Furthermore, the resulting schemes are very convenient for implementation
using hardware description languages (eg. VHDL). Considering a finite set, more
precisely a finite field Fp instead of the dense set R implies many consequences :

– The "chaos" terminology does no longer make sense and must be replaced by
the appropriate one "complex dynamics".

– The control-theoretical properties given in Chapter 1 need to be reconsidered
in this new context. Indeed, we are only interested in the SISO case and we
are able to derive a simple but effective inverse mechanism that fulfills the
requirements related to computational speed and throughput.

– The parameters of a message-embedding scheme play the role of secret key.
In our context, the attack consists in recovering the parameters through ac-
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cessible sequences of inputs (the message) and the outputs (the encrypted
information). That requires an identification algorithm. Classical identifica-
tion of switched linear systems is no longer valid over finite fields and need
to be adapted.

The outline of this chapter is as follows : Section 3.1 recalls the algebra which
gives the background on computation over a finite field. Section 3.2 is dedicated
to the design of the message-embedding scheme over a finite field. Switched linear
systems and their control-theoretical properties are revisited in this new context.
Identification of switched linear systems over a finite field is addressed in Sec-
tion 3.3. We end up this chapter by a conclusion.

3.1 Recall on algebra

Before proceeding any further, we must recall the definition of a finite field
and a polynomial ring. (see Appendix B for more details on algebra).

Finite Field :

Given any integer a and a positive integer p, we define and denote a (mod p) the
division of a by p that leaves the remainder between 0 and p− 1. We call two in-
tegers a and b to be congruent modulo p if a (mod p) = b (mod p) and we express
such a congruence by a = b (mod p). We denote Fp the set Fp = {0, 1, · · · , p−1},
that is the set of remainders in arithmetic modulo p. When p is a prime number,
Fp is a field.

Indeed, Fp is a ring, that is a set together with two laws of composition (two
mappings Fp × Fp 7→ Fp), namely the addition (denoted +) and the multiplica-
tion (denoted · or without any symbols) modulo p. The addition is associative
and commutative and has a unit element denoted 0 (for every element x ∈ Fp,
the relation x + 0 = 0 + x = x applies) and has an inverse (for every element
x ∈ Fp, there exists an element y ∈ Fp such that x + y = y + x = 0). The
multiplication is associative and has a unit element denoted 1 (for every element
x ∈ Fp, the relation x · 1 = 1 · x = x applies). Besides, distributivity of the addi-
tion over the multiplication applies (for all x, y, z ∈ Fp one has (x+y)z = xz+yz.

Furthermore, Fp is a division ring that is a ring such that 1 6= 0, and such that
every non-zero element is invertible (for every element x ∈ Fp there exists an
element y ∈ Fp such that x · y = y · x = 1). The existence of an inverse for every
non-zero elements is guaranteed by the fact that p is prime.

Finally, Fp is a field because it is a commutative division ring (that is the multi-
plication is commutative).
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Polynomial ring :
A polynomial ring denoted Fp[zk] or Fp[z

(1)
k , . . . , z

(i)
k , . . . , z

(n)
k ] is a ring of whose

elements are polynomials. The indeterminates are the vector components z
(i)
k and

the coefficients lie in Fp.

All along this chapter, the addition and the multiplication are performed modulo
p and for shortness, (mod p) will be omitted.

3.2 Design

3.2.1 Transmitter part

As the transmitter part of the message-embedding cryptosystem, we consider
the SISO switched linear dynamical system :

{

xk+1 = Aσ(k)xk +Bσ(k)mk
yk = Cσ(k)xk +Dσ(k)mk

(3.1)

where mk ∈ Fp, yk ∈ Fp and xk ∈ F
n
p . The switching function σ

σ : k ∈ N 7→ j = σ(k) ∈ {1, . . . , J}

is arbitrary, in particular no dwell time is assumed. All the matrices, namely
Aσ(k) ∈ Fn×np , Bσ(k) ∈ Fn×1

p , Cσ(k) ∈ F1×n
p and Dσ(k) ∈ Fp belong to the respective

finite sets (Aj)1≤j≤J , (Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J . At a given time k, the
index j corresponds to the mode of the system given by the switching function σ.

3.2.2 Receiver part

It has been stressed in Chapter 2 that the receiver part of a message-embedded
cryptosystem must have the form of an inverse system and that the existence is
guaranteed through the left inversion property. Algebraic characterizations had
been provided in Chapter 1. It is shown in this subsection that, because the
transmitter is SISO the expression of the inverse system can be simplified. Finally,
some specific algorithms for inverting over Fp are provided herein.

3.2.2.1 Left invertibility

We provide a condition for checking for the left invertibility of (3.1) which is
simpler than the rank condition (1.12)
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To this end, we first find out the expression of yk+i by iterating (3.1).

yk+i = Cσ(k+i)A
σ(k+i−1)
σ(k) xk +

j=i
∑

j=0

T i,jσ(k)mk+j (3.2)

with

T i,jσ(k) = Cσ(k+i)A
σ(k+i−1)
σ(k+j+1)Bσ(k+j) if j ≤ i− 1, T i,iσ(k) = Dσ(k+i) (3.3)

and with the direct transition matrix defined as :

A
σ(k1)
σ(k0) =

{

Aσ(k1)Aσ(k1−1) . . . Aσ(k0) if k1 ≥ k0
1n if k1 < k0

Let us define a quantity r as follows :

– r = 0 if T 0,0
σ(k) 6= 0 for all k

– the least integer such that for all k

T i,jσ(k) = 0 for i = 0, . . . , r − 1 and j = 0, . . . , i

T r,0σ(k) 6= 0
(3.4)

If r is finite (r <∞), the output at time k + r is given as :

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) xk + T r,0σ(k)mk (3.5)

and the input mk can be deduced in a unique way as :

mk = (T r,0σ(k))
−1(yk+r − Cσ(k+r)A

σ(k+r−1)
σ(k) xk) (3.6)

According to the Definition 4, r is actually the inherent delay of (3.1) and (3.5)
defines the function hxk (see Eq. (1.4) in Chapter 1).

Remark 5 Actually the inherent delay r coincide in this case with the relative
degree R according to the Definition 3 (see Chapter 1))

We can derive the following Proposition :

Proposition 1 The system (3.1) is left invertible if it has a finite and constant
inherent delay r (or equivalently relative degree R = r)

Remark 6 The existence of the inverse of T r,0σ(k) is guaranteed since, by definition
(see Eq. (3.4)), it is always different from zero and we recall that every non-zero
element has an inverse in Fp. On the other hand, if p would not have been prime,
the relative degree would no longer have coincided with the inherent delay. Indeed,
Fp would have been reduced to a ring for which not every non-zero element have an
inverse, the condition on the existence of an inverse turning into gcd(T r,0σ(k), p) = 1.
Hence the explicit dependence (3.5) of yk+r on mk would not have been necessarily
induced that (3.6) holds.
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3.2.2.2 Left inversion

We are now concerned with a recursive left inversion of (3.1) achieving the
recovery of mk from yk without any knowledge of xk. Owing to the fact that a
transmitter in a form of a SISO system is considered, we show that the expression
of the inverse system can be simpler than (1.13).

Let us define the inverse transition matrix as

P
σ(k1)
σ(k0) =

{

P rσ(k1)P
r
σ(k1−1) . . . P

r
σ(k0) if k1 ≥ k0

1n if k1 < k0

with

P rσ(k) = Aσ(k) −Bσ(k)(T
r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) (3.7)

Proposition 2 Assume that (3.1) is left invertible and has inherent delay r. The
following dynamical system is a r−delayed inverter for (3.1).















x̂k+r+1 = P rσ(k)x̂k+r +Bσ(k)(T
r,0
σ(k))

−1yk+r

m̂k+r = −(T r,0σ(k))
−1Cσ(k+r)A

σ(k+r−1)
σ(k) x̂k+r

+(T r,0σ(k))
−1yk+r

(3.8)

Proof 1 On one hand, substituting (3.5) into (3.8) yields :

x̂k+r+1 = P rσ(k)x̂k+r +Bσ(k)(T
r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) xk

+Bσ(k)(T
r,0
σ(k))

−1T r,0σ(k)mk
(3.9)

Taking into account (3.7) and noticing that (T r,0σ(k))
−1T r,0σ(k) = 1, ǫk = xk − x̂k+r

fulfills the recursion :

ǫk+1 = (Aσ(k) − Bσ(k)(T
r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) )ǫk

= P rσ(k)ǫk
(3.10)

On the other hand, from the expression (3.6) of mk and the expression of m̂k+r
in (3.8), we get that :

mk − m̂k+r = −(T r,0σ(k))
−1Cσ(k+r)A

σ(k+r−1)
σ(k) (xk − x̂k+r) (3.11)

Remark 7 Clearly, defining a stable r−delayed inverter in terms of uniformly
asymptotical stability of the system ǫk+1 = P rσ(k)ǫk makes sense in R but does no
longer make sense in the finite field like Fp. Only the finite time stability still
holds. It is defined as follows.

Let Up be either a subset of Fp or Fp itself.
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Definition 14 The system (3.10) is finite time stable if

∃kf <∞, ‖ǫk‖ = 0 ∀ǫ0 ∈ Up and ∀k ≥ kf . (3.12)

Finite Time Stability induces Unknown Input Finite Time synchronization with
(3.1) (see (2.17) in Chapter 2).

We are now in position of characterizing the finite time stability.

Proposition 3 The system (3.10) is finite time stable whenever there exists an
integer K <∞ such that for all k ≥ 0

P
σ(k+K−1)
σ(k) = 0 (3.13)

Remark 8 We must notice that the condition (3.13) is nothing but the condi-
tion (1.17) characterizing flatness. We can thereby conclude that, over Fp, the
only transmitters for which an acceptable (because finite time stable) receiver is
guaranteed are the flat systems. This is an important difference compared to R.

We can obtain the expression of xk. Indeed, if (3.1) is left invertible and has
inherent delay r, (3.8) exists. Iterating (3.8) l − 1 times yields :

x̂k+r+l = P
σ(k+l−1)
σ(k) x̂k+r

+
∑l−1
i=0 P

σ(k+l−1)
σ(k+i+1)Bσ(k+i)T

r,0
σ(k+i)yk+i+r

(3.14)

If (3.13) is fulfilled, (3.14) turns into

x̂k+r+K =
∑K−1
i=0 P

σ(k+K−1)
σ(k+i+1) Bσ(k+i)T

r,0
σ(k+i)yk+i+r (3.15)

revealing that x̂k+r+K is independent of x̂k+r. In particular, (3.15) holds for
x̂k0+r = xk0 for all k0 ≥ 0, that is for ǫk0 = 0 with k0 ≥ 0. We infer that
ǫk = 0 for all k ≥ k0 and thus x̂k+r+K = xk+K for all k ≥ 0. Therefore, after
performing the change of variable k → k−K, we obtain an explicit form for xk :

xk =
∑K−1
i=0 P

σ(k−1)
σ(k+i+1−K)Bσ(k+i−K)T

r,0
σ(k+i−K)yk+i+r−K (3.16)

3.2.2.3 Methodology for inverting over a finite field

To complete the design of the receiver, we must provide a methodology for
computing the (multiplicative) inverse of T r,0σ(k) 6= 0 which is an element in Fp.
Regarding this problem, there exist two approaches : i) Greatest common divisor
approach, ii) Fermat’s little theorem approach.

Greatest Common Divisor-based approach
The first one is based on the computation of the gcd (greatest common divisor)
of T r,0σ(k) and p. Indeed, since p is prime and T r,0σ(k) < p, we have :
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gcd(T r,0σ(k), p) = 1

From the Bezout’s lemma, there exists two integers α, β, such that :

αT r,0σ(k) + βp = 1

This yields :

αT r,0σ(k) = 1 (mod p)

Consequently, we obtain :

(T r,0σ(k))
−1 = α (mod p)

The corresponding algorithm for computing the integers α, β are the Extended
Euclidean Algorithm [MOV96] and the binary algorithm [Knu98].

Let T (i, j), T (i, :) denote respectively the component at i-th row and j-th column
and the i-th row of the matrix T defined as

T =

(

T r,0σ(k) 1 0

p 0 1

)

Let Quot(T r,0σ(k), p) denote the quotient of the division
T
r,0
σ(k)

p
. The Extended Eu-

clidean algorithm for completing the multiplicative inverse of T r,0σ(k) is described
below.

Algorithm 1 Extended Euclidean Algorithm

Input : T r,0σ(k), p

Output : inva ∈ Fp % multiplicative inverse of T r,0σ(k)

Construct the matrix T =

(

T r,0σ(k) 1 0

p 0 1

)

Set the variable Continue = true

while Continue do

tmpRow = T (2, :)
T (2, :) = T (1, :) + T (2, :) · (−Quot(T (1, 1), T (2, 1)))
T (1, :) = tmpRow
if T (2, 1) == 0 then Continue = false
end if

end while

inva = T (1, 2) % multiplicative inverse of T r,0σ(k)
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Fermat’s Little Theorem-based approach
The second approach is based on the Fermat’s Little Theorem. For any given
non-zero T r,0σ(k) ∈ Fp, we have :

(T r,0σ(k))
p−1 (mod p) = 1

This yields :
(T r,0σ(k))

p−2T r,0σ(k) (mod p) = 1

As a result, we obtain :

(T r,0σ(k))
−1 = (T r,0σ(k))

p−2 (mod p)

For this approach, the multiplicative inverse is obtained by computing the expo-
nent which is nothing but the multiple multiplications over the finite field. The
most effective algorithm for performing this task is the Montgomery algorithm
[Mon85].

3.3 Identification over finite fields

Let θ be a parameter vector consisting of a subset of entries of (Aj)1≤j≤J ,
(Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J in the state space model (3.1). As these
parameters are expected to act as the secret key, we must present an identification
procedure of θ.

3.3.1 General principle

Since the unauthorized party has in general no access to the internal state
(state vector xk), the general principle can be based on the corresponding in-
put/output model of (3.1). It has been highlighted (see Remark 8) that only flat
switched systems are acceptable candidates to act as a transmitter. When the
system (3.1) is flat, its input/output model can be obtained in a systematic and
convenient way. Indeed, if (3.1) is flat with flat output yk, the state vector xk
obeys (3.16). Substituting the expression (3.16) of xk into (3.5) yields directly
the input/output relation :

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) ·

(
∑K−1
i=0 P

σ(k−1)
σ(k+i+1−K)Bσ(k+i−K)T

r,0
σ(k+i−K)yk+i+r−K) + T r,0σ(k)mk

(3.17)

Let {σ1}
k+r−1
k+r−K, . . . , {σN}

k+r−1
k+r−K theN possible mode sequences {σ(k+r−K), . . . , σ(k+

r−1)} over the interval of time [k+ r−K, k+ r−1]. The number N of all possi-
ble mode sequences is finite since the number J of modes of (3.1) is. These mode
sequences will be respectively denoted for short σ1, . . . , σN in the sequel. Thus,
for t = 1, . . . , N , the input/output relation (3.17) can be rewritten as

yk+r =
K−1
∑

j=0

aj(σt)yk+j+r−K + c(σt)mk (3.18)
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where c(σt) and the aj(σt)’s (j = 0, . . . , K − 1) are coefficients depending, in dif-
ferent ways according to the sequence σt, on the entries of the matrices (Aj)1≤j≤J ,
(Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J of (3.1)

Proposition 4 The maximum number N = NI/O of input/ouput relations re-
gardless of the number J of modes is NI/O = pK+1

Proof 2 The proof is an immediate consequence of the two following claims. The
input/output relation (3.18) involves K+ 1 coefficients. Each of them takes value
in the set Fp which is of finite cardinality p.

Based on (3.18), two different procedures according to the accessibility of σt can
be suggested for the identification of c(σt) and the aj(σt)’s.

σt is accessible
Since for each σt, the parameters c(σt) and the aj(σt)’s appear in a linear fashion
in the input/output relation (3.18), the identification is easy. Indeed, for a given
mode sequence σt, the identification can be performed by iterating the relation
(3.18) until a set of linear independent equations is obtained and can be solved.

σt is not accessible
The previous procedure does no longer work. On the other hand, it can be in-
spired from the method proposed in [VMS03] for switched ARX systems over R.
The method is adapted to our context and described below.

Each input/output relation (3.18) can be rewritten for t = 1, . . . , N as :

zTk bt = 0 (3.19)

with

– zk = [yk+r, yk+r−1, · · · , yk+r−K, mk]
T ∈ FK+2

p

– bt = [1,−a0(σt), . . . ,−aK−1(σt),−c(σt)]
T ∈ F

K+2
p

zk is the regressor vector while bt is the parameter vector corresponding to the
mode sequence σt.

We can thereby define N hyperplanes St, t = 1 . . . , N

St = {zk : zTk bt = 0}

The following equation applies regardless of the switching sequences :

pN(zk) =
N
∏

t=1

(zTk bt) = νN(zk)
ThN = 0 (3.20)

It is called Hybrid Decoupling Constraint equation and pN is the Hybrid Decou-
pling Constraint Polynomial.
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Remark 9 The first component h
(1)
N of hN equals 1

Since the multiplication is closed in the ring Fp[zk], the product pN(zk) is also in
Fp[zk].

hN ∈ F
MN is the coefficient of the Hybrid Decoupling Polynomial and νN : zk ∈

FK+2
p 7→ ξk ∈ FMNp is a Veronese map of degree N , the components of ξk corre-

sponding to all the MN monomials (product of the components z
(i)
k of zk) sorted

in the degree-lexicographic order4

The quantity MN depends on K and is given by

MN(K) =

(

N +K + 1
N

)

=
(N +K + 1)!

N !(K + 1)!
(3.21)

For shortness, MN(K) will be sometimes merely written MN in the sequel.

For the identification of the bt’s in (3.19), it is first required to compute the co-
efficients hN of (3.20). Then bt can be derived.

Computing hN
Let LN denote the embedded data matrix involving N ′ mapped regressor vectors
zk through νN

LN =











νN (zk1)
νN (zk2)
...
νN (zkN′ )











T

∈ F
N ′×MN
p (3.22)

The following relation applies :

LNhN = 0 (3.23)

N ′ is an integer large enough such that the νN (zki)’s (i = 1, . . . , N ′) can span a
MN − 1 dimensional vector space, i.e

rank(LN ) =MN − 1 (3.24)

The lower bound of N ′ is obviously MN − 1. If (3.24) is fulfilled, the coefficient
hN can be retrieved by

hN = Ker(LN) (3.25)

4 A lexicographic order is a ranking according to the names of the variables and their iterates
such that :

– z
(i)
k < z

(i)
k+l, ∀l ∈ N,

– z
(i)
m < z

(j)
l ⇒ z

(i)
m+t < z

(j)
l+t, ∀m ∈ N, ∀l ∈ N, ∀t ∈ N,

– z
(i)
k < z

(j)
k ⇒ (z

(i)
k )α < (z

(j)
k )β , ∀α ∈ N, ∀β ∈ N
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To find out the kernel in (3.25), there exist two methods : i) Gaussian elimi-
nation over Fp, ii) Gaussian-Bareiss elimination technique (see Appendix C for
the details). The first method replaces the division operation by multiplying the
(multiplicative) inverse over the finite field Fp. To determine the multiplicative
inverse, we refer to the subsection 3.2.2.3. The second one performs the elemen-
tary row operation in a specific way so that the result of division operation is still
an integer number.

Computing bt
Let us recall the following definition :

Definition 15 [Lan02] A derivation D on the field Fp is a mapping D : Fp 7→ Fp

which is linear and satisfies the ordinary rule for derivatives, ie., for every ele-
ment x, y in Fp,

D(x+ y) = D(x) +D(y) and D(x.y) = xD(y) + yD(x)

As a result, the derivative DpN(zk) of pN(zk) in (3.20) is also in the polynomial
ring Fp[zk] and reads :

DpN(zk) =
∂pN (zk)

∂zk
=
∂

∂zk

N
∏

t=1

(zk
T bt) =

N
∑

t=1

bt
N
∏

l 6=t

(zk
T bl) (3.26)

We rewrite (3.26) as :

DpN(zk) = bt
N
∏

l 6=t

(zk
T bl) +

N
∑

i6=t

bi
N
∏

j 6=i

(zk
T bj) (3.27)

Now, consider an arbitrary vector wt ∈ FK+2
p , such that, wTt bt = 0. Replacing wt

(t = 1, . . . , N) into (3.27) yields :

DpN(wt) = bt
N
∏

l 6=t

(wTt bl) = bt.c (3.28)

where c is a scalar. Thus, the parameter vectors bt’s (t = 1, .., N) is obtained by
normalizing (3.28)

To determine the N distinct points wt that lie on the N hyperplanes St, the fol-
lowing algebraic procedure can be carried out.

Consider a parametrized random line with direction v and a base point w0 :

D : µv + w0 ∀µ ∈ Z
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The lineD intersects with all the hyperplanes atN distinct intersections under the
condition that it is not parallel with any of the hyperplanes. The three dimensional
case is illustrated in FIG. 3.1. In others words, the equation of degree N

pN(µv + w0) = 0 (3.29)

has N distinct integer roots {µt}
N
t=1 under the constraint pN(v) 6= 0 (or equiva-

lently v /∈ St). Therefore, the intersection of this line and all of the hyperplanes
are given by :

wt = µtv + w0 ∀t ∈ {1, .., N}

S2

w1

w2 D

S1

v

w0

Fig. 3.1 – The intersection of a random line D and two planes S1, S2 in a three-
dimensional space

Remark 10 An alternative approach can be also suggested. Since wt belongs to
a finite field, an exhaustive search for finding out µt could be effective as well.

3.3.2 Unicity

When the switching sequences are unknown, the identification procedure re-
quires to compute the solution of (3.23), that is finding out the kernel hN of LN .
The one-dimensionality of the solution is guaranteed by the rank condition (3.24)
recalled below :

rank(LN ) =MN − 1

Actually, whenever the one-dimensionality of the solution hN is guaranteed, its
unicity is as well. Indeed, let us recall (see Remark 9) that a normalization must
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be performed to ensure that the first component h
(1)
N of hN equals 1.

When working over R, the assumption that the mapped regressor vectors νN (zki)
are sufficiently exciting is known as the PE condition. Over a finite field like Fp,
the PE conditions make no longer sense. Indeed, the number of possible regres-
sors zki is finite over Fp. The objective of this subsection is to provide necessary
conditions under which the rank condition can be fulfilled.

Proposition 5 The maximum number N ′ = N ′max of regressors zki that (3.1)
can generate, regardless of the number J of modes, is N ′max = pK+1

Proof 3 The number of components of the regressor vector zk is K + 2. On the
other hand, regarding (3.17), the component yk+r is linearly congruent to the other
ones yk+r−1, . . . , yk+r−K, mk. These K + 1 components take value in the set Fp

which is of finite cardinality p. That completes the proof.

Besides, the Veronese map in (3.20)

νN : zk ∈ F
K+2
p 7→ ξk ∈ F

MN
p

is surjective over the finite field Fp. Thus, the cardinality of the sets {zk} and
{ξk} fulfills :

card ({ξk}) ≤ card ({zk}) = Nreg = p(K+1)

This implies :

rank(LN) ≤ N ′max = p(K+1) (3.30)

Based on the relations (3.24) and (3.30), it can be inferred that a necessary
condition for the one-dimensionality (and so unicity) of the kernel hN is that the
triplet (p,K,N) is such that :

N ′max = p(K+1) ≥ MN(K)− 1 (3.31)

The following proposition applies :

Proposition 6 For all pairs (p,Kc) with p ≥ 2, there exists an integer N ∈
[1, NI/O] so that :

N ′max = p(K+1) ≥ MN(K)− 1

for K ≥ Kc

Proof 4 We recall the expression (3.21) of MN (K) :

MN (K) =

(

N +K + 1
N

)

=
(N +K + 1)!

N !(K + 1)!
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On one hand, since M1(K)− 1 = K + 1, it is clear that, for all p ≥ 2

p(K+1) > M1(K)− 1 (3.32)

On the other hand, let us first show that

p(K+1) < MNI/O(K)− 1 (3.33)

It is clear that for all p ≥ 2 we have :

pK+1 + 2 > 2
...

...
pK+1 +K + 1 > K + 1

Multiplying all the terms in the lefthand side and the righthand side yields :

K+1
∏

i=2

(pK+1 + i) > (K + 1)!

Multiplying both sides by (p(K+1) + 1)! yields :

(p(K+1) + 1)!
∏K+1
i=2 (pK+1 + i) > (p(K+1) + 1)!(K + 1)!

(p(K+1) +K + 1)! > (p(K+1) + 1)!(K + 1)!

Dividing both sides by (p(K+1))!(K + 1)! yields

(p(K+1) +K + 1)!

(p(K+1))!(K + 1)!
> (p(K+1) + 1)

and so

(p(K+1) +K + 1)!

(p(K+1))!(K + 1)!
− 1 > p(K+1)

Yet, from (3.21) and taking into account that NI/O = pK+1, the following equality
applies

MNI/O(K) =
(p(K+1) +K + 1)!

(p(K+1))!(K + 1)!

which proves (3.33).

Finally, it is easy to see that the functions K → pK+1 and K → MN (K)− 1 for
any N are monotonic increasing functions of K.

As a result, for any prescribed pairs (p,Kc) with p ≥ 2, there exists an integer
N ∈ [1, NI/O] so that the functions K → pK+1 and K → MN(K) − 1 intersect
each other, and so there exists N such that p(K+1) > MN (K)− 1 for K ≥ Kc.
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K

MN(K) − 1

M1(K) − 1

MNI/O
(K) − 1 p(K+1)

Kc

Fig. 3.2 – Graphical interpretation of the Proposition 6

A graphical interpretation of the Proposition 6 can be made and is illustrated
in FIG. 3.2. For a prescribed p, all the pairs (K,N) with K < Kc for which the
curve pK+1 is lower than the curve MN(K)− 1 prevent the rank condition (3.30)
to be fulfilled and so the unicity of hN .

Remark 11 The converse is not true. Even if (3.31) holds, the rank condition
(3.30) may not be fulfilled. Indeed, owing to the dynamics of the system, the
number N ′ of independent regressors zki may be lower than the maximum number
N ′max

Remark 12 Proposition 6 can be used in order to choose an appropriate number
of modes J since the number of input/ouput relations N is related to J .

3.4 Examples

The purpose of this section is to illustrate through different examples the
identification procedure and the impact of the choices of the triplets {p,N,K}.

3.4.1 Example 1

Consider a one-dimensional switched dynamical system over the finite field F2

(p = 2) of the form (3.1) with Aσ(k) = qσ(k) ∈ {0, 1}, Bσ(k) = Cσ(k) = 1 and
Dσ(k) = 0.
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Inherent delay
According to (3.4), the inherent delay is r = 1 since CB 6= 0.

Flatness
According to (3.13), the system is flat since for all k, P

σ(k+K−1)
σ(k) with K = 1

verifies P
σ(k+K−1)
σ(k) = Pσ(k) = 0.

Identification based on the input/output relation
In view of (3.17), the corresponding input/ouput model reads :

yk+1 = qσ(k)yk +mk

The regressor vector is given by zk = [yk+1, yk, mk]
T and, according to the Propo-

sition 5, the maximum number of regressors is N ′max = pK+1 = 21+1 = 4.

According to the Proposition 4, the maximum number of input/output relations
are NI/O = pK+1 = 4 but actually, here there only exists two input/output rela-
tions according to the value of qσ(k). Hence, N = 2.

For N = 2 and K = 1,MN(K)−1 = 5. Thus, the necessary rank condition (3.30)
is not fulfilled and the kernel will not be unique.

Applying the Gaussian-Bareiss algorithm yields precisely four possible vectors
hN :

hN ∈ ( [1, 1, 1, 0, 0, 0]T , [1, 1, 0, 0, 1, 1]T ,
[1, 0, 0, 1, 0, 1]T , [1, 0, 1, 1, 1, 0]T)

To each kernel vector hN , we can find the corresponding parameter vector bt. Only
the kernel vector [1, 1, 0, 0, 1, 1]T gives the right solution for the bt’s : b1 = [1, 1, 1]T

and b2 = [1, 0, 1]T .

Remark 13 The maximum number of regressors is N ′max = pK+1 = 21+1 = 4 but
actually, only two independent regressors are obtained. That explains the reason
why there are four distinct solutions in hN : MN (K)− 2 = 6− 2 = 4

3.4.2 Example 2

Consider a three-dimensional switched dynamical system over the finite field F2

(p = 2) of the form (3.1) with

Aσ(k) =







0 1 0
0 0 1
1 qσ(k) 1





 , Bσ(k) =







0
0
1





 , Cσ(k) = [1 0 0] , Dσ(k) = 0
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and qσ(k) ∈ {0, 1}

Inherent delay
According to (3.4), the inherent delay is r = 3 since basic manipulation yields

T 3,0
σ(k) = Cσ(k+3)A

σ(k+2)
σ(k+1)Bσ(k) = 1 6= 0.

Flatness
According to (3.13), the system is flat. Indeed,

P 3
σ(k) = Aσ(k) −Bσ(k)(T

3,0
σ(k))

−1Cσ(k+3)A
σ(k+2)
σ(k)

=







0 1 0
0 0 1
1 qσ(k) 1





−







0 0 0
0 0 0
1 qσ(k) 1







=







0 1 0
0 0 1
0 0 0







and for all k, P
σ(k+K−1)
σ(k) with K = 3 fulfills

P
σ(k+K−1)
σ(k) =







0 1 0
0 0 1
0 0 0







3

= 0

Identification based on the input/output relation
In view of (3.17), the corresponding input/ouput model reads :

yk+3 = yk+2 + qσ(k)yk+1 + yk +mk

The regressor vector is given by zk = [yk+3, yk+2, yk+1, yk, mk]
T ∈ F5

2 and, accord-
ing to the Proposition 5, the maximum number of regressors is N ′max = pK+1 =
23+1 = 16.

According to the Proposition 4, the maximum number of input/output relations
are NI/O = pK+1 = 16 but actually, there only exists two input/output relations
according to the value of qσ(k). Hence, N = 2.

For N = 2 and K = 3, MN (K) − 1 = 14. Thus, the necessary rank condition
(3.30) is fulfilled. Applying the Gaussian-Bareiss algorithm yields a unique vector
hN :

hN = [1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0]T

We find the parameter vectors b1 = [1, 1, 1, 1, 1]T and b2 = [1, 1, 0, 1, 0]T from the
kernel vector hN .
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3.4.3 Example 3

Consider a one-dimensional switched dynamical system over the finite field F251

(p = 251) of the form (3.1) with Aσ(k) = qσ(k) ∈ F251 , Bσ(k) = 5 , Cσ(k) = 1 , Dσ(k) = 0.
The switching function σ(k) is not accessible and defined by :

σ : k ∈ N 7→ σ(k) = j ∈ {1, 2}

and qσ(k) = {q1, q2} = {38, 213}

Inherent delay
According to (3.4), the inherent delay is r = 1 since T 1,0

σ(k) = Cσ(k+1)Bσ(k) = 5 6= 0.

Flatness
According to (3.13), the system is flat since for all k, P

σ(k+K−1)
σ(k) with K = 1

verifies P
σ(k+K−1)
σ(k) = Pσ(k) = 0.

Multiplicative inverse of T 1,0
σ(k)

The receiver governed by Eq. (3.8) aims at recovering the input mk and the
multiplicative inverse of T 1,0

σ(k) = 5 over the finite field Z251 must be computed.
The greatest common divisor approach and the Extended Euclidean Algorithm 1
are used. The following successive matrices T are obtained :

T =

(

5 1 0
251 0 1

)

Step 1 : T =

(

251 0 1
5 1 0

)

Step 2 : T =

(

5 1 0
1 201 1

)

Step 3 : T =

(

1 201 1
0 251 246

)

At step 3, the Algorithm 1 stops since T (2, 1) = 0 and we derive the multiplica-
tive inverse of 5 over Z251 : inva = T (1, 2) = 201.

Identification based on the input/output relation
In view of (3.17), the input/ouput model reads :

yk+1 = qσ(k)yk + 5mk (3.34)

We have two parameter vectors b1 = [1,−q1,−5]T and b2 = [1,−q2,−5]T . Since
213 = −38 (mod 251) and 246 = −5 (mod 251) one has b1 = [1, 213, 246]T and
b2 = [1, 38, 246]T .
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The regressor vector is given by zk = [yk+1, yk, mk]
T and, according to the Propo-

sition 5, the maximum number of regressors is N ′max = pK+1 = 2511+1 = 63001.

According to the Proposition 4, the maximum number of input/output relations
are NI/O = pK+1 = 63001 but actually, there only exists two input/output rela-
tions according to the value of qσ(k). Hence, N = 2.

For N = 2 and K = 1,MN (K)−1 = 5. Thus, the necessary rank condition (3.30)
is fulfilled. Consequently, the vector coefficient hN can be unique.

Computing hN
Starting with a random input sequences

{mk}
9
k=1 = {144, 231, 93, 162, 11, 122, 2, 176, 127}

the corresponding output sequence is given by

{yk}
9
k=1 = {0, 218, 150, 36, 195, 186, 68, 187, 205}

Thus, we obtain N ′ = 8 regressor vectors :

zk1 = [218 0 144]T

zk2 = [150 218 231]T

zk3 = [36 150 93]T

zk4 = [195 36 162]T

zk5 = [186 195 11]T

zk6 = [68 186 122]T

zk7 = [187 68 2]T

zk8 = [205 187 176]T

The embedded data matrix LN involving N ′ = 8 mapped regressor vector through
the Veronese map νN is given by (3.22) and numerically reads :

LN =































85 0 17 0 0 154
161 70 12 85 158 149
41 129 85 161 145 115

124 243 215 41 59 140
209 126 38 124 137 121
106 98 13 209 102 75
80 166 123 106 136 4

108 183 187 80 31 103































Applying the Gaussian-Bareiss algorithm in the Appendix C with matrix LN ∈
F

8×6
251 yields the upper-triangular form

LN =

















85 0 17 0 0 154
0 177 40 197 127 170
0 0 211 138 215 204
0 0 0 87 109 226
0 0 0 0 175 0
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and the kernel reads after normalization (see Remark 9)

hN = [1, 0, 241, 62, 0, 25]T

Computing bt
First, we show how to compute N = 2 points wt, such that, wTt bt = 0. Consider a
random line with a direction v = [25, 181, 61]T and a base point w0 = [42, 155, 208]T .

Solving (3.29) (or an exhaustive search according to the Remark 10) yields t1 = 59,
t2 = 197 and two corresponding intersections w1 = [11, 41, 42]T , w2 = [198, 170, 177]T .

Finally, the parameter vectors bt according to (3.28) are given by :

b1 = [1, 213, 246]T

b2 = [1, 38, 246]T

We obtain exactly the two expected parameter vectors bt.

3.5 Conclusion

This chapter has considered the message-embedding scheme over a finite field.
We conclude that the dynamical system used in the transmitter part has to be
flat. Moreover, it turns out that there are several advantages resorting to SISO
systems. Indeed, in the case of MIMO switched linear systems, the inverse system
(1.13) would be more complex than in the SISO case. It could be seen as a par-
allel algorithm for recovering simultaneously m inputs. However, this parallelism
would be ineffective. The computation of the pseudo-inverse over a finite field in
(1.13) degrades the decryption speed comparing to the SISO case (compare with
the Equation (3.8)).

Finally, for recovering the parameters which are expected to act as the secret key,
an identification procedure has been proposed for switched linear systems over a
finite field.

Keeping in mind these features, a validation of this kind of cryptosystems needs
a further step which consists in a comparison with the conventional ciphers. The
next chapter is devoted to this study.
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Chapter 4

A connection with standard
cryptography

In this chapter, we survey the different ciphers and the corresponding de-
sign methodologies encountered in standard cryptography. Next, we bring out a
connection between chaos-based cryptosystems and standard ciphers. The inves-
tigation relies on structural consideration.

The outline of this Chapter is as follows : Section 4.1 recalls the background on
standard encryption schemes with special emphasis on the so-called stream ci-
phers. Section 4.2 brings out the connection between the additive masking and
the so-called Synchronous Stream Cipher on one hand, the message-embbeding
and the Self-Synchronizing Stream Cipher on the other hand. A particulariza-
tion for switched linear systems is made. Section 4.3 provides the state of the
art in the design of Self-Synchronizing Stream Ciphers along with some exam-
ples. The distinct design methodologies are compared and it is proved why the
message-embedding scheme involving flat dynamical systems appear as a new so-
lution for the design of Self-Synchronizing Stream Ciphers. Section 4.4 deals with
identifiability in connection with the concept of security.

4.1 Class of ciphers in standard cryptography

4.1.1 Generalities on cryptography

The considerable progress in communication technology during the last decades
has led to an increasing need for security in information exchanges. In this con-
text, cryptography plays a major role as information is mostly conveyed through
public networks. The main objective of cryptography is, precisely, to conceal the
content of messages transmitted through insecure channels, to unauthorized users
or, in other words, to guarantee privacy and confidentiality in the communica-
tions.

59



Chapter 4. A connection with standard cryptography

Since the early 1960s, cryptography has no longer been restricted to military or
governmental concerns, which has spurred an unprecedented development of it.
At the same time, this development benefited very much from the advances in
digital communication technology in form of new and efficient ways of design-
ing encryption schemes. Modern cryptography originates in the works of Claude
Shannon after World War II [Sha49].

In a general encryption mechanism, also called cryptosystem or cipher, we are
given an alphabet A, that is, a finite set of basic elements named symbols. On
the transmitter part, a plaintext (also called information or message) m ∈M (M
is called the message space) consisting of a string of symbols mk ∈ A is encrypted
according to an encryption function e which depends on the key ke ∈ K (K is
called the key space). The resulting ciphertext c ∈ C (C is called the ciphertext
space), a string of symbols ck from an alphabet B usually (and assumed here-
after) identical to A, is conveyed through a public channel to the receiver. At the
receiver side, the ciphertext c is decrypted according to a decryption function d
which depends on the key kd ∈ K. For a prescribed ke, the function e must be
invertible.

Among a wide variety of cryptographic techniques, two major classes can be typi-
cally distinguished : public-key ciphers (or asymmetric-key ciphers) and secret-key
ciphers (also called symmetric-key ciphers).

Public-key ciphers are largely based upon computationally very demanding math-
ematical problems, for instance, integer factorization into primes. The year 1976 is
a milestone with the seminal paper of Diffie and Hellmann [WM76] that founded
the public key cryptography. The year 1978 has been marked by the publication
of RSA, the first full-fledged public-key algorithm. This discovery was important
notably because it solved the key-exchange problem of symmetric cryptography.
Actually, the key ke is public whereas kd is secret.

In symmetric encryption, the pair (e, d) is such that the key kd can be easily
recovered from ke. Hence, not only kd must be kept secret but the key ke as well.
It is customary that both keys are identical, that is kd = ke. There are two classes
of symmetric-key encryption schemes which are commonly distinguished : block
ciphers and stream ciphers.

A block cipher is an encryption scheme that breaks up the plaintext messages
into strings (called blocks) of a fixed length over an alphabet and encrypts one
block at a time. Block ciphers usually involve compositions of substitution and
transposition operations. A key date in the recent history of cryptography is
1977, when the block cipher Data Encryption Standard (DES) was adopted by
the U.S. National Bureau of Standards (now the National Institute of Standards
and Technology - NIST), for encrypting unclassified information. DES is now in
the process of being replaced by the Advanced Encryption Standard (AES), a
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new standard adopted by NIST in 2001.

Stream ciphers are mainly based on generators of complex sequences in the form
of dynamical systems, which must be synchronized at the transmitter and receiver
sides. We thereby realize why dynamical systems exhibiting complex dynamics, in
particular chaotic, have a connection with cryptography. As we shall investigate
this connection thoroughly, we must detail this class of ciphers.

4.1.2 Stream ciphers

In the case of stream ciphers, the encryption (resp. decryption) function e
(resp. d) can change for each symbol because it depends on a time-varying key
zk (resp. ẑk) also called running key. The sequence {zk} (resp. {ẑk}) is called the
keystream.
This being the case, stream ciphers are generally well appropriate and their use
can even be compulsory when buffering is limited or when only one symbol can
be processed at a time : the field of telecommunications often includes such con-
straints.

Stream ciphers require a keystream generator which is parametrized by the se-
cret key ke = kd = θ. It is usual that the plaintext mk and the ciphertext ck
are binary words. If so, the most widely adopted function e is the bitwise XOR
operation and if the generator delivers a truly random keystream {zk} which is
never used again, the encryption scheme is called one-time pad - the only cipher
known to be unconditionally secure so far. However, in order to decrypt the ci-
phertext, the recipient party of a one-time pad encryption setup would have to
know the random keystream and, thus, would require again a secure transmission
of the key. Besides, for the one-time pad cipher, the key should be as long as
the plaintext and would drastically increase the difficulty of the key distribution.
As an alternative to such an ideal encryption scheme, one can resort to pseudo-
random generators. Indeed, for such generators, the keystream is produced by a
deterministic function (often involving feedback shift registers along with non-
linearities [Knu98]) while its statistical properties look random. There are two
classes of stream ciphers, the difference lying in the way the keystream is gener-
ated : the synchronous stream ciphers and the Self-Synchronizing Stream Ciphers.

Synchronous Stream Ciphers (written hereafter SSC for short) admit the equa-
tions :











qk = σs(qk−1)
zk = s(qk)
ck = e(zk, mk)

(4.1)

σs is the next-state transition function while s acts as a filter and generates the
keystream {zk}.
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Self-Synchronizing Stream Ciphers (written hereafter SSSC for short) admit the
equations :

{

zk = σssθ (ck−l−M , . . . , ck−l)
ck = e(zk, mk)

(4.2)

σssθ is the function that generates the keystream {zk}. l is a nonnegative integer
standing for a possible delay. σssθ depends on past values of ck. The number of
past values is most often bounded and equals M , the delay of memorization.

Regardless the class of ciphers, synchronous or self-synchronizing, the ciphertext
ck is worked out through an encryption function e which must be invertible for any
prescribed zk. In the binary case, one has A = B = {0, 1} and e(zk, mk) = zk⊕mk
where ⊕ denotes the modulo 2 addition on the 2-element field. The decryption is
performed through a function d depending on the ciphertext ck and the running
key ẑk of the receiver’s generator. Such a function must obey the rule :

m̂k := d(ck, ẑk) = mk if ẑk = zk (4.3)

In the binary case, one has d(ẑk, ck) = ẑk ⊕ ck

Synchronization issues
For stream ciphers, the generators at both sides have same generator function
and synchronization of keystreams {zk} and {ẑk} generated respectively at the
transmitter and receiver sides is a condition for proper decryption.

For SSC, the generators are not coupled each other. Consequently, the only way
to guarantee synchronization of the keystreams is to share the seed (the initial
running key z0). This being the case, the secret key θ is nothing but the seed z0.

For SSSC, since the generator function σssθ shares, at the transmitter and receiver
sides, the same quantities, namely the past ciphertexts, it is clear that the gen-
erators synchronize automatically after a finite transient time of length M . The
secret key is some suitable (according to the security) parameters of the function
σssθ .

4.2 Connection between standard stream ciphers

and chaotic cryptosystems

4.2.1 Additive masking vs synchronous stream ciphers

A natural connection can be made between additive masking and SSC. In
fact,the transmitter of the respective schemes has exactly the same structure.
The sequences {xk} for chaotic cryptosystems (resp. {zk} for SSC) are indepen-
dent from the plaintext mk and the ciphertext yk (resp. ck). The standard stream
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ciphers involve pseudorandom generators over finite fields and require an initial-
ization process at both ends to ensure synchronization. For additive masking, the
generator is chaotic and synchronization is inevitably lost within a very short
time window due to sensitivity to initial conditions. To handle such a problem, a
controlled synchronization at the receiver part usually based on observers, is of-
ten suggested as mentioned in Section 2.3.1. The resulting cipher does no longer
belong to the class of SSC. Besides, as pointed out in Chapter 2, the added
information to be masked acts as a disturbance and prevents the control from
guaranteeing an exact synchronization. This renders the additive masking not
more appealing than a conventional SSC.

4.2.2 Message-embedding vs self-synchronizing stream ci-
phers

4.2.2.1 General case

We first recall the general equations of the transmitter for the message-
embedding (see Chapter 2).

{

xk+1 = fθ(xk, mk),
yk = hθ(xk, mk).

We examine two assumptions labelled H1 and H2.

H1 : the transmitter is left invertible with inherent delay r.
Hence, the map (see Chapter 1)

hxk :
A −→ A
mk 7−→ yk+r = h(r)(xk, mk)

is well-defined and is a bĳection.

H2 : the transmitter is flat with flat output yk and a flatness characteristic num-
ber t2 − t1 + 1.
Hence, the state vector xk obeys (see Eq. (5) in Chapter 1))

xk = F (yk+t1, · · · , yk+t2)

The following Proposition brings out a connection between the message-embedding
and an SSSC.

Proposition 7 If the system (2.13) fulfills the following assumptions H1 and H2
– it is left invertible with inherent delay r (H1)
– it is flat with flat output yk and a flatness characteristic number t2−t1 +1 (H2)
then it is structurally equivalent to a self-synchronizing stream cipher of the form
(4.2) with the correspondences (presented below for short by the symbol ↔)
– a keystream generator (also named ciphering function) σssθ ↔ F
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– a running key zk ↔ xk
– a ciphertext ck+r ↔ yk+r
– a ciphering function e ↔ h(r)

Identification of the equations and properties derived from assumptions H1 and
H2 with (4.2) gives the correspondence.

Remark 14 When the inherent delay r is strictly greater than zero, there is a
delay r between the plaintext mk and the corresponding ciphertext yk+r. It is sim-
ilar to what typically happens when the output function of an SSC is pipelined
(see the algorithm Moustique described in Subsection 4.3.2.2).

The equivalent representation of the message-embedded cryptosystem is depicted
on FIG. 4.1.

F

yk+r

xk

mk h(r)(xk, mk)

Fig. 4.1 – Self-synchronizing Message Embedded Stream Cipher

4.2.2.2 Particularization for switched linear systems

We turn back to the SISO switched linear dynamical system (3.1) of which
equations are recalled below :

{

xk+1 = Aσ(k)xk +Bσ(k)mk
yk = Cσ(k)xk +Dσ(k)mk

The following conditions provide conditions under which (3.1) is structurally
equivalent to a self-synchronizing stream cipher.

Proposition 8 (3.1) is structurally equivalent to a self-synchronizing stream ci-
pher if :
– (3.1) has a left inherent delay r
– yk is a flat output
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Remark 15 Implicitly the switching rule σ must be self-synchronizing itself

Proof 5 If (3.1) has a left inherent delay r and is flat, by virtue of (3.5) and
(3.16) (see Chapter 3), the system (3.1) can be rewritten in the following equiv-
alent form :







xk =
∑K−1
i=0 P

σ(k−1)
σ(k+i+1−K)Bσ(k+i−K)T

r,0
σ(k+i−K)yk+i+r−K

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) xk + T r,0σ(k)mk

(4.4)

and the result follows from the identification of (4.4) with (4.2), the correspon-
dences being :
– yk ↔ ck (ciphertext)
– xk ↔ zk (keystream)
– (yk+r−K, . . . , yk+r−1) 7→ xk ↔ σ

ss
θ (keystream generator)

– (xk, mk) 7→ Cσ(k+r)A
σ(k+r−1)
σ(k) xk + T r,0σ(k)mk ↔ e (encryption function)

– r ↔ bs (delay)

Actually, the model (4.2) of an SSSC is a conceptual model, called canonical
representation, that can correspond to different architectures and that result from
different design approaches. In the open literature, few designs methods have
been proposed. They are detailed below in a way which highlights the central
role played by dynamical systems and the reason why some concepts borrowed
from control theory appear to be useful.

4.3 State of the art in the design of SSSC and

examples

4.3.1 Block ciphers in CFB mode

This SSSC design approach resorts to a length M shift register and a block
cipher (DES for instance) both inserted in a closed-loop architecture. It is a very
special mode of operation involving block ciphers naturally called Cipher Feed-
Back (CFB) mode. The block cipher’s input is the shift register state. Usually a
limited number of the block cipher output bits are retained, the selection being
performed through a so-called filter function denoted h′ on the FIG. 4.2. Such
a configuration is often used in 1-bit CFB mode. In such a case, the encryption
function e is a XOR (modulo 2 addition over {0, 1}). The keystream generator σssθ
of the corresponding canonical form (4.2) results from the composition of three
functions : the state transition function of the shift register, the block cipher and
the filter function h′.

This mode is quite inefficient in terms of encryption speed since one block cipher
operation, and so multiple rounds, are required for enciphering a single plaintext
mk.
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block

cipher

register
shift

h′

zk

mk e
ck

Fig. 4.2 – Block cipher in CFB mode

4.3.2 Maurer’s approach

In [Mau91], it is suggested an alternate design approach exclusively dedicated
to SSSC. It includes two main ideas.

The first idea consists in replacing the shift register, the block cipher and the
output bit filter function of the CFB mode architecture by an automaton. The
automaton obeys the dynamics

{

qk+1 = gθ(qk, ck)
zk = hθ(qk)

(4.5)

The function gθ is the (next) state transition function while hθ is the output
function.

The automaton must have a finite input memory of size M meaning that the
state qk must be expressed by mean of a function lθ which depends on a finite
number of past ciphertexts ck−i :

qk = lθ(ck−M , . . . , ck−1) (4.6)

Substituting the above expression of qk into the second equation of (4.5) gives
the function σssθ of the canonical form (4.2). One has the following composition :
σssθ = hθ ◦ lθ. According to the discussion of Subsect. 4.1.2 on synchronization
issues, self-synchronization is guaranteed.

Let us notice that the CFB mode can be rewritten into the form (4.5)-(4.6). The
function lθ is very simple since it merely reduces to a shift. The output function
hθ results from the composition of the block cipher (parametrized by its secret
key θ) and the filter function h′.
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In the Maurer’s approach, the SSSC is based on a cryptographically secure state-
transition function gθ as well as on a cryptographically secure output function hθ.
Consequently, the resulting SSSC can be secure unless both functions are simul-
taneously unsecure. That differs from the CFB mode for which the security relies
entirely on the security of the output function hθ and so mostly on the block
cipher function.

The second idea of the Maurer’s principle consists in increasing the complexity
by combining several finite automata in serial or in parallel or more generally by
performing composition. As a result, many components that are relatively simple
in terms of implementation complexity and memory size can be combined to form
an SSSC realizing a very complicated function σssθ in the corresponding canonical
representation (4.2). For a serial composition of multiple automata, the resulting
memory size equals the sum of the memory size of each automaton. For a parallel
composition of multiple automata, the resulting memory size equals the upper
memory size. When implemented in hardware, parallelization leads to very high
achievable encryption speed. An example of architecture involving four automata
is depicted in FIG. 4.3.

register
shift

shift
register

register
shift

shift
register

mk

zk

ck

e

h̃

σss3
θ

σss4
θ

σss2
θσss1

θ

Fig. 4.3 – Example of serial/parallel connection of four automata. The function
h̃ combines the accessible automata outputs to deliver the keystream zk
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Two European projects have influenced the evolution of stream ciphers : the
project NESSIE within the Information Society Technologies Programme of the
European Commission which had started in 2000 and ended in 2004 followed by
ECRYPT5 launched on February 1st, 2004. Sponsored by ECRYPT, eSTREAM
is a multi-year effort aiming at identifying promising both software and hardware
oriented symmetric cryptosystems with proposals from industry to academia.
Throughout the eSTREAM project, two fully specified algorithms have retained
attention : SSS and Moustique. They are shortly described to illustrate how the
general principle of Maurer is taken into account. As a matter of fact, only the
first idea of Maurer consisting in resorting to an automaton with finite input
memory has been adopted throughout these two examples. Indeed, as it turns
out, the second idea is too general as is. These examples are also interesting in
that they give us a better understanding in the way how the dynamical systems
are “shaped” to guarantee the self-synchronization property.

4.3.2.1 SSS

SSS is a software bit oriented cryptosystem which has been proposed in
[HPRM04]. The corresponding block diagram is depicted on FIG. 4.4.
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k
q
(12)

k

Fig. 4.4 – Block diagram of SSS

The following notations are necessary to describe SSS.

– x >>> n denoted the rotation of n bits to the right of the word x
– Sθ(x) = SBOXθ(xH)⊕x with xH the most significant byte of the word x is the

XOR operation between x and the result of SBOXθ which is a combination
of two S-boxes implementing nonlinear substitutions called Skipjack S-box and
Q-box and parametrized by the secret key θ

The keystream generator obeys (4.5). The dimension of the state vector qk equals

n = 17 that is the number of shift registers. Each component q
(j)
k assigned to a

5website available at http ://www.ecrypt.eu.org/stream/
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shift register obeys an independent dynamics gjθ :

q
(16)
k+1 = ck
q

(j)
k+1 = q

(j+1)
k (j = 0, 2, . . . , 11, 13, 15)

q
(14)
k+1 = q

(15)
k + Sθ(ck >>> 8)

q
(12)
k+1 = Sθ(q

(13)
k )

q
(1)
k+1 = q

(2)
k >>> 8

(4.7)

The initial state of the shift register number 16 fulfills q
(16)
1 = c0. Furthermore,

insofar as the state q
(j)
k+1 (j = 1, . . . , 15), at time k+1, depends on the state q

(j+1)
k

at time k (triangular feature), thus after 16 iterations, the internal state qk will
depend exclusively on the 16 past ciphertexts ck−i. Hence for all k ≥ 16 there
exists a function lθ fulfilling

qk = lθ(ck−16, . . . , ck−1) (4.8)

The output function hθ delivering the keystream zk is defined as :

zk = hθ(qk) = Aθ >>> 8⊕ q
(0)
k (4.9)

with Aθ = Sθ
(

Sθ(q
(0)
k + q

(16)
k ) + q

(1)
k + q

(6)
k + q

(13)
k

)

Finally, combining the equations (4.8) and (4.9), the keystream generator can be
equivalently rewritten in the SSSC canonical form (4.2) :

zk = hθ(lθ(ck−16, .., ck−1))
= σssθ (ck−16, .., ck−1)

(4.10)

and guarantees the self-synchronization property.

The encryption function e and decryption function d follow the classical rules
described in Subsection 4.1.2 where ⊕ is viewed in this case as a componentwise
addition over the 2-element field.

4.3.2.2 Moustique

Another interesting SSSC, called Moustique, which follows the first idea in
the Maurer’s approach, has been proposed in [DK05b]. It is a revisited version of
two former algorithms called Mosquito and Knot. Unlike SSS, it is an hardware
bit oriented algorithm. Furthermore, although the structure still relies on the au-
tomaton (4.5) which must have a finite memory, a different “shape” for the state
transition function gθ is provided to guarantee self-synchronizing property. More-
over, the output function is designed through the concept of pipelining. Those
two facts are explicited below.

For Moustique, the dimension of the state vector qk in (4.5) equals n = 96.
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As far as the state transition function gθ is concerned, each component q
(j)
k obeys

a dynamics gjθ in the form :

q
(j)
k+1 = gjθ(q

(j−1)
k , q

(j−2)
k , ..., q

(1)
k , ck) j = 1, . . . , n (4.11)

The jth component of qk+1 does no longer depend exclusively on one component of
qk (as it is for SSS), but it depends actually on several components of qk, especially

q
(l)
k with l < j. The function gθ has however, similarly to SSS, a triangular feature

and ensures qk to be independent of the initial condition q0 after n iterations.
Similarly to SSS, there exists thereby a function lθ which expresses (4.11) in a
different but strictly equivalent way for k ≥ n and depends exclusively on a finite
number of past ciphertexts ck−i

qk = lθ(ck−n, ..., ck−1) (4.12)

The output function is made up of a composition of bs = 9 functions. Unlike SSS,
the output function is pipelined (see FIG. 4.5). That means that the keystream
is computed in a sequential way and the computation involves bs = 9 successive
stages. Each stage corresponds to a specific function si (i = 0, . . . , bs−1) depend-
ing on the result of the previous stage. For the function s0 one has s0(qk) = qk.
The keystream is computed from the state qk but is delivered at time k + bs :

zk+bs = s8(s7(...(s0(qk)))) = h(qk) (4.13)

Combining (4.12) and (4.13) gives σssθ

zk+bs = h(lθ(ck−n, ..., ck−1))
= σssθ (ck−n, ..., ck−1)

(4.14)

As it turns out, the keystream generator can be again equivalently rewritten in
the SSSC canonical form (4.2) and self-synchronization is guaranteed.

The pipeline is interesting in that it enables to increase the complexity of the out-
put function while a single clock cycle is still needed to deliver the running key.
Indeed the computation of each function si is parallelized. That induces a delay
bs between the plaintext and the corresponding ciphertext. Notice that none of
the function si depend on the secret key θ. Actually, the output function hθ in
(4.5) should be rewritten as a non-parametrized function h.

Similarly to SSS, the encryption function e and decryption function d follow the
classical rules described in Subsection 4.1.2.
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ck+bs

Stage 0 (128 bits)

Stage 1 (53 bits)

Stage 7 (3 bits)

Stage 8 (1 bits)

lθ

h

mk

ck+bs−1

zk+bs

ck−n

qk

required past ciphertetxts to encipher 1 plaintext

ck−1

Fig. 4.5 – Block diagram of Moustique. The functions si deliver a quantity of
decreasing size : from 128 bits for the stage 0 to a single bit for the last stage 8
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4.4 Identification vs security of the message-embedding

4.4.1 General consideration

An essential issue for the validation of ciphers is the cryptanalysis that is the
study of attacks against cryptographic schemes in order to reveal their possible
weakness. A fundamental assumption in cryptography first stated by A. Kerkhoff
in ([DK02]), is that any unauthorized person (called adversary or eavesdropper)
knows all the details of the cipher, including the algorithm and its implemen-
tation, except the secret key. As a result, as far as the parameters of (3.1) are
expected to act as the secret key, the security is directly related to the complexity
of retrieving the parameters θ.

It is usual to assume that the eavesdropper has the opportunity of controlling
the input of the cipher, namely the plaintext, and analyzing the corresponding
ciphertext (the attack is called chosen plaintext attack). In our context, if the dy-
namical system (3.1) is considered as a cipher, that means that the pair (mk, yk) is
assumed to be known by the eavesdropper. The recovery of θ can only be achieved
through an identification procedure based the input/output model of (3.1). The
identification procedure detailed in Chapter 3 is thereby nothing but a so-called
algebraic attack.

Besides, it worth emphasizing that a cipher must face at least the most basic at-
tack, i.e. the brute force attack. This attack consists in trying exhaustively every
possible parameter value in the parameter space of the secret key (which is in
practice a finite space). The quicker the brute force attack, the weaker the cipher.
Consequently, the worst situation for the eavesdropper and the best for the se-
curity arises when, for known plaintexts and corresponding ciphertext sequences,
only one solution in the parameters of the cipher exists. The unicity is directly
related to the notion of parametric identifiability.

As a result, we conclude that the most relevant parameters of a system to act as
the secret key are the ones which are identifiable. Such a result might appear as
paradoxical at first glance because of a possible misunderstanding on the meaning
of ”identifiable”. Actually, identifiability means unicity in the parameters. Such a
paradox has been highlighted in [AMB06].

4.4.2 Particularization for switched linear systems

We recall the Equation (3.1) in Chapter 3 of the message-embedded cryptosys-
tem particularized for switched linear systems :

{

xk+1 = Aσ(k)xk +Bσ(k)mk
yk = Cσ(k)xk +Dσ(k)mk
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When particularized for switched linear systems, the aforementioned considera-
tion on unicity yields the following proposition :

Proposition 9 The secret key θ must be the set of entries of (Aj)1≤j≤J , (Bj)1≤j≤J ,
(Cj)1≤j≤J and (Dj)1≤j≤J of (3.1) which can be deduced from c(σt) and the aj(σt)’s
in a unique way.

Actually, the security is related to the complexity of the underlying identification
procedure (see Chapter 3). Clearly the identification procedure is much more
complex when σt is not accessible. Thus the secret key θ must be determined so
that the eavesdropper has no other choice than resorting to the second identifica-
tion procedure. As a result, σt must not be directly accessible and the following
proposition must be thereby fulfilled :

Proposition 10 The switching rule σ must depend on θ.

We can assess the security in terms of the complexity of the required algebraic
computations to identify θ. The most important task in the identification proce-
dure related to the case when the switching sequences σt are not accessible is the
computation of the coefficients hN through (3.25). In practice, the kernel (null
space) is obtained through a Gaussian-Bareiss elimination of which complexity
is O(min(N ′M2

N , N
′2MN)). The lower bound of N ′ being MN − 1, when MN is

large enough, the complexity can be approximated by O(M3
N). The expansion

rate of MN and complexity for the difference values of N and K are depicted
respectively in FIG. 4.6 and FIG. 4.7.
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Fig. 4.6 – MN versus N for difference values of K
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Fig. 4.7 – The evolution of complexity when N varies for difference values of K

4.5 Conclusion

The main results of this Chapter are summed up. The message-embedding
scheme may act as a self-synchronizing stream cipher (SSSC) from a structural
point of view under flatness condition. In standard SSSC ciphers, in order to guar-
antee a self-synchronizing property, the state transition function must have a par-
ticular feature : triangular. On the other hand, flatness confers a self-synchronizing
property without such a constraint and appears as an alternative for the design of
SSSC. Identifiability is the necessary required property such that the parameters
of the message-embedding may be involved in the secret key. Identification con-
sists of an algebraic attack in the context of secure communication. For switched
linear systems, the complexity to identify the parameters can increase significantly
with the number of modes.
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Conclusion

Various cryptosystems, corresponding to different ways of hiding a message,
have drawn the attention of the researchers since the 90’s. The message-embedding
appears to be the most attractive as the synchronization between the transmitter
and the receiver can be guaranteed without any restriction on the rate of varia-
tion of the message to be encrypted and a single channel is required.

However, if a digital application is sought (hardware implementation in e.g. FPGA
or DSP), resorting to a map which directly takes value in a finite set whose range
is identical than the one of the data is a better solution. As a result, the message-
embedding over a finite field must be considered. It has been stressed that the
only acceptable systems for which left inversion at the receiver side can be carried
out are flat ones. Methodologies for the design of a left inverse system over finite
fields have been provided. Besides, it has been highlighted that flat systems are
structurally equivalent to conventional stream ciphers called Self Synchronizing
Stream Ciphers and the use of flat systems appears as a new solution for the de-
sign of Self Synchronizing Stream Ciphers. A particularization for switched linear
systems has been made. This special class of hybrid systems obeys the Shamir’s
suggestions [KS04] consisting of mixing different algebra.

If a practical and viable application of such dynamical systems is sought, the se-
curity aspect must be taken into account. Chaos-based cryptographic primitives
were most often considered as secure exclusively because of the complexity of
the dynamics which is exhibited. Over a finite field, chaos does no longer make
sense. The security has been assessed here in terms of the parameters recovering
task complexity. Thus, a special identification procedure over finite fields and its
related complexity has been provided.

Finally, the message-embedding scheme is currently being implemented in prac-
tice. The testbench, based on the FPGA, consists of a four-dimensional switched
linear system which have four modes and work on the binary finite fields. Pre-
liminary results shows that the system is operating well. The overall tasks for
encrypting/decrypting the video signal in the real time are fulfilled.

Let us now address possible perspectives.
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Conclusion

An essential issue for the validation of cryptosystems is the cryptanalysis, that
is the study of attacks against cryptographic schemes in order to reveal their
possible weaknesses. The consideration in the design of the possible attacks and
their complexity dictates the way how the secret key must be defined. We quote
some of cryptanalytic approaches which deserve attention in the context of the
message-embedding.

The core of an SSSC is the ciphering function. Its complexity can be assessed
through the “distance” from a given function having low algebraic degree (see
[GM05] for the details). If the “distance” is not large enough, then there exists
decoding algorithms that are able to reconstruct the whole low degree approxima-
tion of the ciphering function and provide thereby an estimation of the plaintext.

Furthermore, it can be proved that a sufficient condition for an SSSC to be secure
is that the adversary cannot distinguish the ciphering function from a random one.
Indeed, in this case, the cryptanalyst has no information at all on the keystream.
The existence of a distinguisher is a weakness in the ciphering function.

The question whether switched linear systems could be good candidates for de-
signing cryptosystems deserves deeper insights. Piecewise nonlinearities are likely
to be not resistant enough and others nonlinearities should be considered while
keeping the hybrid aspect.

If the secret key is embedded in a device such as a smart card or an electronic
component, an adversary who has temporarily access to the device may try to
recover the secret key through physical measures such as time, power consump-
tion, glitch and so on. The consideration of these attacks, known as side-channels
attacks, is a modern topic of great interest at the moment. As a result, the issue
of implementation which could resist such attacks must be seriously addressed
and can constitute interesting further works.
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Appendix A

Lyapunov exponents

Consider an autonomous dynamical system :

xk+1 = f(xk) (A.1)

where xk ∈ Rn. We assume that the trajectory emanating from an initial condi-
tion x0 has reached an attractor (xk is bounded).

Case n = 1
Let x0, x′0 denote two nearby initial conditions. If two trajectories with iterates
xk and x′k evolve exponentially after k iterations, we have :

|x′k − xk| = |x
′
0 − x0|e

kλ

λ corresponds to the divergence rate of two trajectories and is given as :

λ =
1

k
ln

∣

∣

∣

∣

∣

x′k − xk
x′0 − x0

∣

∣

∣

∣

∣

If x0 and x′0 are very close, their difference ǫ = |x′0−x0| tends toward 0, we define :

λL = lim
k→∞

1

k
lim
ǫ→0

ln

∣

∣

∣

∣

∣

x′k − xk
x′0 − x0

∣

∣

∣

∣

∣

This yields :

λL = lim
k→∞

1

k
lim
ǫ→0

ln

∣

∣

∣

∣

∣

x′k − xk
x′k−1 − xk−1

x′k−1 − xk−1

x′k−2 − xk−2
· · ·
x′1 − x1

x′0 − x0

∣

∣

∣

∣

∣

and

λL = lim
k→∞

1

k
lim
ǫ→0

k−1
∑

i=0

ln

∣

∣

∣

∣

∣

x′i+1 − xi+1

x′i − xi

∣

∣

∣

∣

∣

= lim
k→∞

1

k
lim
ǫ→0

k−1
∑

i=0

ln

∣

∣

∣

∣

∣

f(x′i)− f(xi)

x′i − xi

∣

∣

∣

∣

∣

Finally, we have :

λL = lim
k→∞

1

k

k−1
∑

i=0

ln

∣

∣

∣

∣

∣

df(xi)

d(xi)

∣

∣

∣

∣

∣

(A.2)
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The quantity λL is called Lyapunov exponent. λL measures the convergence/divergence
rate of two distinct trajectories starting from two nearby initial conditions. If λL
is positive, two trajectories are divergent and the dynamical system is chaotic. In
particular, it is sensitive to initial conditions.

Case n>1
There are n Lyapunov exponents λ

(j)
L (j = 1, . . . , n). Each one characterizes the

convergence/divergence rate of two distinct trajectories starting from two nearby
initial conditions along n orthogonal directions.
For computing the Lyapunov exponent, we start from an initial point x0 ∈ Rn

and characterize the infinitesimal behavior near the point xk through the first
derivative matrix

Df(xi) =













∂f1(xi)

∂x
(1)
i

· · · ∂f1(xi)

∂x
(n)
i

...
...

...
∂fn(xi)

∂x
(1)
i

· · · ∂fn(xi)

∂x
(n)
i













Denote Jk = Df(xk−1) · · ·Df(x0) with J0 = Df(x0). The Lyapunov exponent is
computed as :

λL = lim
k→∞

1

k
ln
∣

∣

∣eig
(

JkJ
T
k

)∣

∣

∣ (A.3)

The square roots of n eigenvalues of the matrix JkJ
T
k stand for the length of n

axes of an image ellipsoid. They qualify the amount of shrinking and stretching
due to the dynamic near the orbit beginning at x0. When k is large, the compu-
tation of the Lyapunov exponent in (A.3) is delicate because JkJ

T
k is often a bad

conditioned matrix (very small and large eigenvalues). To tackle this problem, we
need to compute Jk recursively and perform a normalization. It is now detailed.

We are given an initial orthonormal basis {w
(0)
1 , · · · , w

(0)
n } in R

n and J0.

Each step i (i = 1, · · · , k) involves the following operations :
– compute the quantity

Ji = Df(xi−1) · · ·Df(x0)

and the vector
z

(i)
j = Jiw

(i−1)
j j = (1, · · · , n)

– derive {w
(i)
j }j=1,...,n, the orthogonal set of {z

(i)
j }j=1,...,n obtained from the Gram-

Schmidt orthogonalization algorithm. As a result, {w
(i)
j }j=1,..,nmeasures the one

step growth in the direction j. The total expansion rate in the direction j after
k steps called Lyapunov numbers is defined as ekj = ||w

(k)
j || . . . ||w

(1)
j ||.

The Lyapunov Exponent λ
(j)
L is given by :

λ
(j)
L = ln(ekj )

1/k =
1

k

k
∑

i=1

ln(||w
(i)
j ||)

For the system (A.1), the attractor is chaotic if there exists at least one λ
(j)
L > 0
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Algebra

The reader can refer to [Lan02],[Cal98] for useful algebra material.

Law of composition Let S be a set. A mapping S× S 7→ S, from S into itself,
is called law of composition. Let x, y be two elements in S. We often have 2 laws
of composition : addition x+ y, multiplication x.y
If (x+ y) + z = x+ (y + z) ∀x, y, z ∈ S, we say that the addition is associative.
If (x.y).z = x.(y.z) ∀x, y, z ∈ S, we say that the multiplication is associative.
If x+ y = y + x ∀x, y ∈ S, we say that the addition is commutative.
If x.y = y.x ∀x, y ∈ S, we say that the multiplication is commutative.

Remark 16 Since the image of the law of composition is also in S, the law of
composition implies the "closure" property.

Unit element of a law of composition :
An element e of S, such that x.e = x = e.x ∀x ∈ S, is called unit element of
multiplication law.
An element e of S, such that x+ e = x = e+ x ∀x ∈ S, is called unit element or
zero element of addition law.

Monoid A monoid is a set with a law of composition which is associative, and
having a unit element.

Remark 17 When the law of composition is commutative, we have a commuta-
tive monoid or abelian monoid.

Example 1 (N,+) is an abelian monoid . (N+,+) is not a monoid since unit
element does not exist.

Group A group G is a monoid, such that for every element x ∈ G there exists
an element y ∈ G such that xy = yx = e. Such an element y is called an inverse
for x. In addition, this inverse is unique.

Remark 18 If G is an abelian/commutative monoid with unique inverse ele-
ment, G is called an abelian/commutative group.
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Example 2 (Z,+) is an abelian group but (Z,×) is not since inverse element
does not exist.

Cyclic groups A group G is defined to be cyclic if there exists an element a ∈ G

such that every element of G (written multiplicatively) is of the form an for some
integer n. If G is written additively, then every element of a cyclic group is of the
form na. One calls a a cyclic generator.

Example 3 (Z,+) is an additive cyclic group with generator 1, and also with
generator −1. There are no other generators. (Zp,×) is a group but it is not a
cyclic group since we cannot find a generator a so that we can write every element
in the form an.

Subgroup Let G be a group. A subgroup H of G is a subset of G containing the
unit element, and such that H is closed under the law of composition and inverse
(i.e. if x ∈ H then x−1 ∈ H). A subgroup is called trivial if it consists of the unit
element alone. The intersection of an arbitrary non-empty family of subgroups is
a subgroup.

Ring A ring A is a set, together with two laws of composition called multiplication
and addition respectively, and written as a product and as a sum respectively,
satisfying the following conditions :
– With respect to addition, A is a commutative group.
– The multiplication is associative, and has a unit element.
– For all x, y, z ∈ A we have (x+ y)z = xz + yz

Remark 19 If the multiplication law is commutative (ie. both associative and
commutative), we have a abelian/commutative ring.

Example 4 Zp is an abelian ring because it is an abelian group with the addition
and the multiplication law.

Let A be a ring, and let U be the set of elements of A which have both a right and
left inverse. Then U is a multiplicative group (each element of U have multiplica-
tive inverse). Indeed, if a has a right inverse b, so that ab = 1, and a left inverse c,
so that ca = 1, then cab = b, whence c = b, and we see that c (or b) is a two-sided
inverse, and that c itself has a two-sided inverse, namely a. Therefore U satisfies
all the axioms of a multiplicative group, and is called the group of units of A. It is
sometimes denoted by A∗, and is also called the group of invertible elements of A.

Division ring A ring A such that 1 6= 0, and such that every non-zero element
is invertible is called a division ring.
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Example 5 Zp where p is a prime number, is a division ring but Zn, with n a
non zero natural number, is not. Let’s consider an abelian ring Zk and a is an
arbitrary element in Zk. Let b be an inverse element of a. Then ba = 1mod k. This
yields ba + kc = 1 and implies that b exists if and only if gcd(a, k) = 1 ∀a ∈ Zk.
So we have the solution.

Field A commutative division ring is called a field. We observe that by definition,
a field contains at least two elements, namely 0 and 1.

Ideal A left ideal I in a ring A is a subset of A which is a subgroup of the additive
group of A (ie. has the same composition law), such that A × I ⊂ I. We have
the same definition for right ideal. On the commutative/abelian ring, every left
or right ideal is a two-sided ideal. The two-sided ideal is called simply ideal. Note
that (0) and A itself are ideal.

If A is a ring and a ∈ A, then Aa = I is a left ideal, called principal. We say that
a is a generator of I (over A). More generally, let a1, ..., an be elements of A. We
denote by (a1, ..., an) the set of elements of A which can be written in the form
x1a1 + ... + xnan (xi ∈ A). (a1, ..., an) is a left ideal and a1, ..., an are generators
of left ideal.

Example 6 Consider the abelian ring Z. Each number in Z is an ideal. Let us
choose n = 2 ∈ Z. Since Z is abelian, the set of even number {2Z} is an ideal,
called principal (because the set {2Z} is generated by a unique generator). The
number 2 is called generator of I = 2Z over Z.
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Appendix C

Gaussian elimination

C.1 Gauss-Bareiss elimination

We recall the Sylvester’s identity Theorem and its application in the Gaussian-
Bareiss elimination method described in [Bar68].

Sylvester identity
Consider a matrix A = (aij) ∈ An×n where A is an arbitrary abelian ring. For
k < i, j ≤ n, the (k+1) order minor is the determinant of the matrix constructed
by the first k rows and first k columns and augmented with the i-th row and j-th
column of A.

a
[k]
i,j =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 . . . a1k a1j
...

...
...

ak1 . . . akk akj
ai1 . . . aik aij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

It can be noted that the (k+ 1) order minor a
[k]
i,j is the determinant of a (k+ 1)×

(k + 1) matrix.

Example 7 : consider a 4× 4 matrix

A =











a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44











All the 3 order minors are given by :

a
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∣

∣

∣

∣
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a
[2]
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∣

∣

∣

∣

∣

∣
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a31 a32 a34

∣

∣

∣

∣

∣

∣

∣
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a
[2]
4,3 =

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a41 a42 a43

∣

∣

∣

∣

∣

∣

∣

a
[2]
4,4 =

∣

∣

∣

∣

∣

∣

∣

a11 a12 a14

a21 a22 a24

a41 a42 a44

∣

∣

∣

∣

∣

∣

∣

Theorem 6 (Sylvester’s identity) Given a matrix A ∈ An×n where A is an ar-

bitrary abelian ring. We suppose that the k order minor of A, a
[k−1]
k,k , is different

to zero ∀k ≥ 1. We have :

|A|(a
[k−1]
k,k )n−k−1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
[k]
k+1,k+1 a

[k]
k+1,k+2 . . . a

[k]
k+1,n

a
[k]
k+2,k+1

...
...

...

a
[k]
n,k+1 a

[k]
n,k+2 a[k]n,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

with a
[0]
i,j = ai,j

Proof 6 Matrix A is first divided into 4 block sub-matrices

A =

∣

∣

∣

∣

∣

A1,1 A1,2

A2,1 A2,2

∣

∣

∣

∣

∣

with A1,1 ∈ A
k×k, A1,2 ∈ A

k×(n−k), A2,1 ∈ A
(n−k)×k, A2,2 ∈ A

(n−k)×(n−k).

We have the following relation

A =

(

A1,1 0
A2,1 1n−k

)(

1k A−1
1,1 · A1,2

0 A2,2 − A2,1 · A
−1
1,1 ·A1,2

)

The determinant of A verifies :

|A| = |A1,1| · |A2,2 − A2,1 · A
−1
1,1A1,2| (C.1)

and

|A||A1,1|
n−k−1 = |A1,1|

n−k · |A2,2 − A2,1 · A
−1
1,1A1,2|

Notes that |c ·M | = cn|M | with c is an arbitrary constant and M ∈ An×n. Hence,
we have :

|A||A1,1|
n−k−1 = ||A1,1|(A2,2 − A2,1 · A

−1
1,1A1,2)| (C.2)

where (A2,2 − A2,1 ·A
−1
1,1A1,2) ∈ An−k.
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C.1. Gauss-Bareiss elimination

Consider now the k order minor, the relation (C.1) still holds in this case

a
[k]
i,j =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 . . . a1k a1j
...

...
...

ak1 . . . akk akj
ai1 . . . aik aij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |A1,1| · |aij − r
T
i · A

−1
1,1 · cj| (C.3)

where ri = (ai1, . . . , aik) ∈ A1×k, cTj = (a1j , . . . , akj) ∈ A1×k

Since (aij − r
T
i · A

−1
1,1 · cj) is a scalar, we have :

a
[k]
i,j =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 . . . a1k a1j
...

...
...

ak1 . . . akk akj
ai1 . . . aik aij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |A1,1| · (aij − r
T
i · A

−1
1,1 · cj) (C.4)

For all i, j ∈ [k + 1, n], we have the following relation :

(

a
[k]
i,j

)

= |A1,1|(A2,2 −A2,1 · A
−1
1,1A1,2)

Then

∣

∣

∣(a
[k]
i,j)
∣

∣

∣ = ||A1,1|(A2,2 −A2,1 · A
−1
1,1A1,2)|

From (C.2) and |A1,1| = a
[k−1]
k,k the proof of Theorem 6 is completed.

Example 8 : Consider a 4× 4 matrix

A =











a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44











Apply Theorem 6 with k = 3, that is considering the 3 order minor, a
[2]
3,3, we have :

|A|(a[2]
3,3)

0 =
∣

∣

∣ a
[3]
4,4

∣

∣

∣ (C.5)

Apply Theorem 6 with k = 4, that is considering the 4 order minor, a
[3]
4,4, we have :

|A| = a
[3]
4,4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

∣

In others words, the determinant of a n × n matrix is nothing but its n order
minor which is unique.

87



Appendix C. Gaussian elimination

Apply Theorem 6 with k = 2, that is considering the 2 order minor a
[1]
2,2, we have :

|A|a
[1]
2,2 =

∣

∣

∣

∣

∣

a
[2]
3,3 a

[2]
3,4

a
[2]
4,3 a

[2]
4,4

∣

∣

∣

∣

∣

(C.6)

It is worthy to note that the determinant of matrix A in Theorem 6 corresponds
to, a[n−1]

n,n , the n order minor. Theorem 6 still holds while substituting |A| by a
[k+1]
i,j ,

the (k + 2) order minor. Consequently, we substitute n by k + 2. This yields :

a
[k+1]
i,j · (a

[k−1]
k,k )

(

(k+2)−k−1

)

= a
[k+1]
i,j · a

[k−1]
k,k =

∣

∣

∣

∣

∣

∣

a
[k]
k+1,k+1 a

[k]
k+1,j

a
[k]
i,k+1 a

[k]
i,j

∣

∣

∣

∣

∣

∣

(C.7)

for k + 1 < i ≤ n , k + 1 < j ≤ n , 0 ≤ k < n− 1

Let us consider a sub-matrix L = (li,j) ∈ Am×n with m < n, constructed by the
first m columns of matrix A where li,j denotes the component at the i-th row and
j-th column of matrix L. We have :

li,j = ai,j for 1 ≤ i ≤ n , 1 ≤ j ≤ m (C.8)

Substituting ai,j in (C.7) by li,j in (C.8), we obtain :

l
[k+1]
i,j · l

[k−1]
k,k =

∣

∣

∣

∣

∣

∣

l
[k]
k+1,k+1 k

[k]
k+1,j

l
[k]
i,k+1 l

[k]
i,j

∣

∣

∣

∣

∣

∣

(C.9)

for k + 1 < i ≤ n , k + 1 < j ≤ m , 0 ≤ k < m− 1

The relation C.9 is very useful to construct the fraction free Gaussian-Bareiss
which is described in the sequel

Gaussian-Bareiss elimination method
Gaussian-Bareiss elimination technique is an integer-preserving gaussian elimina-
tion. It is often used to solve linear equations. The algorithm works in a recursive
way.

Consider an arbitrary matrix L = (lij) ∈ An×m with n ≥ m. Let us denote
L(0) = (lij). The algorithm computes recursively matrices which are denoted L(k)

at each iteration k and l
(k)
i,j are the corresponding entries.

Assuming that the so-called pivot element l
[k−1]
k,k 6= 0, the matrix L(k+1) is con-

structed from L(k) according to :



























l
(k+1)
i,j = l

(k)
i,j if 1 ≤ i ≤ k + 1 , 1 ≤ j ≤ m

l
(k+1)
i,j = l

[k+1]
i,j =

∣

∣

∣

∣

∣

∣

l
[k]
k+1,k+1 l

[k]
k+1,j

l
[k]
i,k+1 l

[k]
i,j

∣

∣

∣

∣

∣

∣

l
[k−1]
k,k

if k + 1 < i ≤ n , 1 ≤ j ≤ m

(C.10)
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C.1. Gauss-Bareiss elimination

The algorithm performs m− 1 steps.

Remark 20 The update in the Eq. (C.10) is derived from the Eq. (C.9). Let us
note that Eq. (C.9) is derived from the Sylvester’s identity Theorem which actually
applies for square matrices. Nevertheless, we can construct an augmented square
matrix from L with dummy columns. Considering only the first m columns of this
augmented matrix yields exactly Eq. (C.10).

Remark 21 At step k, if the pivot element l
[k+1]
k+2,k+2 = 0, it is necessary to switch

the (k + 2)-th row of the matrix L(k+1) with an arbitrary t-th row of L(k+1), t ∈

{k + 3, · · · , n}, for which l
[k+1]
t,k+1 6= 0 to prevent from a division by zero. The

algorithm stops if we can not find any l
[k+1]
t,k+2 6= 0.

Remark 22 Assume that the matrix L has two rows linearly dependent, say, the
(k + 1)-th row and the (k + d)-th row, then we have :

l
(0)
k+1,j = s.l

(0)
k+d,j

By induction, we can show that :

l
[k]
k+1,j = s.l

[k]
k+d,j

At step k, the value of the (k + d)-th rows of A(k+1)

l
[k+1]
k+d,j =

∣

∣

∣

∣

∣

∣

l
[k]
k+1,k+1 l

[k]
k+1,j

l
[k]
k+d,k+1 l

[k]
k+d,j

∣

∣

∣

∣

∣

∣

l
[k−1]
k,k

= 0

Remark 23 Bareiss’ elimination method works on a matrix whose entries belong
to an arbitrary abelian ring A. Let us observe that it still works work on a field
Fp.

Remark 24 If n < m, the algorithm still holds.

The Gaussian-Bareiss elimination method is summed up in the FIG. C.1 and
FIG. C.2
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TRUE

FALSE

k < m

i = 1

j = 1

j ≤ mj ≤ m

i = i + 1

TRUE

FALSEFALSE

TRUE

TRUE

FALSE

l
(k+1)
i,j = l

[k+1]
i,j

i ≤ n

j = 1 i = i + 1

j = j + 1

TRUE

j = j + 1

k = k + 1

TRUE

FALSE

Non Null Pivot

Find

Check k

STOP

FALSE

l
(k+1)
i,j = l

(k)
i,j

k = 1

l
(k+1)
k+2,k+2

6= 0

1 ≤ i ≤ k + 1

l
(0)
i,j = L

Fig. C.1 – Diagram detailing the Gaussian-Bareiss elimination method
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Non Null Pivot

Find

t = k + 2

t ≤ n − 1

k = k + 1

Check k

TRUE

FALSE
t = t + 1

TRUE

FALSE
STOP

l
(k+1)
t,k+2

6= 0

temp = l
(k+1)
k+2,∗

l
(k+1)
k+2,∗

= l
(k+1)
t,∗

l
(k+1)
t,∗ = temp

Fig. C.2 – The subroutine for finding the non null pivot element. The symbol *
means “all the column elements”

91



Appendix C. Gaussian elimination

Example 9 Consider the (4× 3) matrix

L =











l11 l12 l13

l21 l22 l23

l31 l32 l33

l41 l42 l43











with L(0) = L and l
[−1]
0,0 = 1. We have to compute k = 3−1 = 2 matrices L(1), L(2)

before completion.

k = 0 : The first step of the Gaussian-Bareiss elimination method yields :

L(1) =













l11 l12 l13

0 l
[1]
2,2 l

[1]
2,3

0 l
[1]
3,2 l

[1]
3,3

0 l
[1]
4,2 l

[1]
4,3













The first row is kept unchanged and all the components l
[1]
i,1 with i > 1 become zero.

k = 1 : The second step of the Gaussian-Bareiss elimination method yields :

L(2) =













l11 l12 l13

0 l
[1]
2,2 l

[1]
2,3

0 0 l
[2]
3,3

0 0 l
[2]
4,3













The first and the second row are kept unchanged and all the components l
[2]
i,2 with

i > 2 become zero.

Example 10 Consider the (4× 3) matrix

L =











4 1 249
5 238 7

250 9 240
2 243 12











∈ F
4×3
251

with L(0) = L and l
[−1]
0,0 = 1. We have to compute at most k = 3− 1 = 2 matrices

L(1), L(2) before completion.

k = 0 : The first step of the Gaussian-Bareiss elimination method yields :

L(1) =











4 1 249
0 194 38
0 37 205
0 217 52
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C.1. Gauss-Bareiss elimination

The first row is kept unchanged and all the components l
[1]
i,1 with i > 1 become zero.

k = 1 : The second step of the Gaussian-Bareiss elimination method yields :

L(2) =











4 1 249
0 194 38
0 0 53
0 0 84











Example 11 Consider the (4× 3) matrix

L =











4 1 249
5 238 7
50 121 70
250 9 240











∈ F
4×3
251

with L(0) = L and l
[−1]
0,0 = 1. We have to compute at most k = 3− 1 = 2 matrices

L(1), L(2) before completion.

k = 0 : The first step of the Gaussian-Bareiss elimination method yields :

L(1) =











4 1 249
0 194 38
0 183 129
0 37 205











The first row is kept unchanged and all the components l
[1]
i,1 with i > 1 become zero.

k = 1 : The second step of the Gaussian-Bareiss elimination method yields :

L(2) =











4 1 249
0 194 38
0 0 0
0 0 53











It turns out that the 3-rd row vanishes. This is due to, according to the re-
mark 22, the fact that the second row of L depends linearly on the third row.
Indeed, l

(0)
2,j = 10.l

(0)
3,j mod 251.

Besides, since l
[2]
3,3 = 0, according to the Remark 21, it is necessary to switch the

3-rd row and the 4-th row. We get that :

L(2) =











4 1 249
0 194 38
0 0 53
0 0 0
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C.2 Gaussian elimination over Fp

We describe the modification of Gaussian elimination algorithm so that it can
work in the finite field Fp.

Consider the matrix L = (li,j) ∈ Fn×mp with n > m. Let li,j and li denote respec-
tively the component at i-th row and j-th column and the i-th row of the matrix L.

The Gaussian elimination performs m iterations which involve m columns of the
matrix L from the left to the right. The current column which is being computed
is called pivot column. The diagonal element in the pivot column is called pivot
element. The row corresponded to the pivot element is called pivot row. Each
iteration consists of three steps :

i) Ensure that the pivot element has biggest absolute value in the pivot column.
If not, exchange the pivot row with one containing the biggest absolute value.

ii) Reduce the pivot element to 1

iii) Eliminate all entries below the pivot element by row elementary operation.

The principal modification takes place in step ii) where the division operation is
replaced by multiplying the (multiplicative) inverse over the finite field Fp. To
find out the multiplicative inverse, we refers the subsection 3.2.2.3. Consequently,
the computation results are always in the finite field Fp. The modified Gauss
elimination is described in the following.
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Algorithm 2 Gaussian elimination over Fp

Input : L = (li,j) ∈ Fn×mp

Output : The upper-triangular form of L

Set the current pivot’s row i = 1
Set the current pivot’s column j = 1

while j ≤ m do

% Find the biggest element in the current pivot column
maxi = i
for k = i+ 1 to k ≤ n do

if abs(lk,j) > abs(lmaxi,j) then maxi = k
end if

end for

if lmaxi,j 6= 0 then

% Ensure that the pivot element has the biggest absolute value
% in the pivot column
temp = li
li = lmaxi
lmaxi = temp

% Reduce the pivot element to 1

% Find the multiplicative inverse of pivot element over the
% finite field Fp

inv_pivot = multiplicative inverse of li,j

% Multiply inv_pivot with the pivot row
li = inv_pivot× li (mod p)

% Eliminate all entries below the current pivot element by row
% elementary operation.

for k = i+ 1 to k ≤ n do
lk = lk − lk,j × li (mod p)

end for

i = i+ 1
end if

j = j + 1

end while

95



Appendix C. Gaussian elimination

Example 12 Consider the matrix L ∈ F
8×6
251

L =































85 0 17 0 0 154
161 70 12 85 158 149
41 129 85 161 145 115

124 243 215 41 59 140
209 126 38 124 137 121
106 98 13 209 102 75
80 166 123 106 136 4

108 183 187 80 31 103































Applying the modification of Gaussian elimination algorithm, it takes 6 iterations
to transform the matrix L to the upper-triangular form.

At the first iteration, the value of current pivot’s row and column are respectively
i = 1 and j = 1. The biggest element in the first column is found at the 5-th row.
Thus, we exchange the first row and the 5-th row. That yields :

L =































209 126 38 124 137 121
161 70 12 85 158 149
41 129 85 161 145 115

124 243 215 41 59 140
85 0 17 0 0 154

106 98 13 209 102 75
80 166 123 106 136 4

108 183 187 80 31 103































The pivot element are 209. To reduce the pivot element to 1, we compute the mul-
tiplicative inverse of 209 ( see the Algorithm 1 in subsection 3.2.2.3 for details).
We have :

inv_pivot = 245

Multiplying the pivot row with inv_pivot yields :

L =































1 248 23 9 182 27
161 70 12 85 158 149
41 129 85 161 145 115

124 243 215 41 59 140
85 0 17 0 0 154

106 98 13 209 102 75
80 166 123 106 136 4

108 183 187 80 31 103































Applying the row elementary operation to eliminate all entries below the pivot
element, we obtain :
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L =































1 248 23 9 182 27
0 51 74 142 223 69
0 1 146 43 213 12
0 113 124 180 81 55
0 4 70 239 92 118
0 165 85 8 137 225
0 155 40 139 134 103
0 5 213 112 204 199































Keep iterating until the last column and delete all the zero rows, we obtain the
upper-triangular form :

L =

















1 248 23 9 182 27
0 1 107 140 13 47
0 0 1 231 44 50
0 0 0 1 36 118
0 0 0 0 1 0

















and the kernel reads :

Ker(L) = [1, 0, 241, 62, 0, 25]T
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Appendix D

Daemen’s design of self
synchronizing stream ciphers

This appendix details the successive versions of self-synchronous stream cipher
Moustique : Knot [DGV92], Mosquito [DK05a] and Moustique [DP06].

We recall the updating function :

[q
(j)
k+1]i = g

(t)
K ([q

(j−1)
k ]i, [q

(j−2)
k ]i, . . . , [q

(1)
k ]i, ck) for j = 1, . . . , n (D.1)

Each bit of qk called cell is denoted by

[q
(j)
k ]i 0 ≤ i ≤ 15

and arranged as in FIG. D.1.

119
117
115
113
111
107
103
95

110

102

94

106
109

101

93

105
100
9291

9998

90
97
89

12
11
10
9

8
7
6
5
4
3
2

1
0880

E
xp

an
si

on
 b

its
 

124
123
122

121
120
118
116
114
112
108

104
96

125

15
14
13126

127

128

[q
(93)

k
]3

j

i

Fig. D.1 – The arrangement of cells [q
(j)
k ]i of the internal state qk

The output function is recalled

zk+bs = s8(s7(...(s0(qk)))) = h(qk) (D.2)
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where the stage si (i = 0, . . . , 8) is detailed in TAB. D.1

Knot Mosquito Moustique
Stage Name Length Name Length Name Length
s0 CCSR 128 Q 128 Q 128
s1 A 64 A 53 A 53
s2 B 64 B 53 B 53
s3 C 32 C 53 C 53
s4 D 32 D 53 D 53
s5 E 16 E 53 E 53
s6 F 16 F 12 F 12
s7 G 8 G 3 G 3
s8 zk 1 zk 1 zk 1

Tab. D.1 – The length of shift registers in each stage with respect to the particular
algorithm

In the following Sections, we precise all the value t, i, j, the updating function g
(t)
K

and the function si (i = 0, . . . , bs−1) corresponding to each particular algorithm.
To this end, let Kj (j = 1, . . . , 96) denotes the i-th bit of the secret key K. We
keep the notation provided in [DGV92], [DK05a], [DP06]. As a result, the XOR
operator and AND operator are denoted respectively by + and the concatenation.

D.1 Knot

The function g
(t)
K in equation (D.1)

Knot has two updating function g
(t)
K (e.g. t = 1, 2) which are defined as :

{

g
(1)
K for 1 ≤ j ≤ 96 and 0 ≤ i ≤ 7

g
(2)
K for j = 96 and 8 ≤ i ≤ 15

(D.3)

and

g
(1)
K = a + b+ c(d+ 1) + 1

g
(2)
K = a(b+ 1) + c(d+ 1)

The values of a, b, c, d entries are given from TAB. D.2 to TAB. D.6.

The function si in equation (D.2)
Let Xl denotes the l-th bit of the register X in TAB. D.1. All the round transition
functions si are defined as below :
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j i a b

89 i = 1 [q
(j−1)
k ]i−1 [q

(71)
k ]0

93 i ≥ 2 [q
(j−1)
k ]i−2 [q

(0)
k ]6j+47

95 i ≥ 4 [q
(j−1)
k ]i−4 [q

(0)
k ]6j+11

0 ck K0

otherwise [q
(j−1)
k ]i Kj−1

Tab. D.2 – The value of a, b entries for 1 ≤ j ≤ 96 and 0 ≤ i ≤ 7

i a b c d

8 [q
(95)
k ]0 [q

(69)
k ]0 [q

(94)
k ]0 [q

(77)
k ]0

9 [q
(95)
k ]1 [q

(70)
k ]0 [q

(94)
k ]1 [q

(78)
k ]0

10 [q
(95)
k ]2 [q

(71)
k ]0 [q

(94)
k ]2 [q

(79)
k ]0

11 [q
(95)
k ]3 [q

(72)
k ]0 [q

(94)
k ]3 [q

(80)
k ]0

12 [q
(95)
k ]4 [q

(73)
k ]0 [q

(94)
k ]4 [q

(81)
k ]0

13 [q
(95)
k ]5 [q

(74)
k ]0 [q

(94)
k ]5 [q

(82)
k ]0

14 [q
(95)
k ]6 [q

(75)
k ]0 [q

(94)
k ]6 [q

(83)
k ]0

15 [q
(95)
k ]7 [q

(76)
k ]0 [q

(94)
k ]7 [q

(84)
k ]0

Tab. D.3 – The value of a, b, c, d entries for j = 96 and 8 ≤ i ≤ 15

j c d

6l + 4 ck [q
(6l+2)
k ]0 0 ≤ l < 16

6l + 7 [q
(6l+2)
k ]0 ck 0 ≤ l < 15

3l + 5 [q
(3l+1)
k ]0 [q

(3l+3)
k ]0 0 ≤ l < 31

3l + 6 [q
(3l)
k ]0 [q

(3l+4)
k ]0 0 ≤ l < 30

1, 2, 3, 6 0 0

Tab. D.4 – The value of c, d entries for 0 ≤ j ≤ 95 and i = 0
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c

i = 1 88 < j ≤ 92 [q
(j−2)
k ]0

i = 2, 3 92 < j ≤ 94 [q
(j−2)
k ]imod2

0 < i < 8 j = 95 [q
(j−2)
k ]imod4

0 ≤ i < 8 j = 96 [q
(j−1)
k ]i

Tab. D.5 – The value of c entries for i > 0 and 88 < j ≤ 96

j i d j i d j i d

89 1 [q
(81)
k ]0 94 3 [q

(86)
k ]0 96 0 [q

(90)
k ]0

90 1 [q
(82)
k ]0 95 1 [q

(87)
k ]0 96 1 [q

(90)
k ]1

91 1 [q
(83)
k ]0 95 2 [q

(88)
k ]0 96 2 [q

(91)
k ]0

92 1 [q
(84)
k ]0 95 3 [q

(85)
k ]0 96 3 [q

(91)
k ]1

93 1 [q
(87)
k ]0 95 4 [q

(92)
k ]0 96 4 [q

(93)
k ]1

93 2 [q
(89)
k ]0 95 5 [q

(92)
k ]1 96 5 [q

(93)
k ]1

93 3 [q
(89)
k ]1 95 6 [q

(89)
k ]0 96 6 [q

(93)
k ]2

94 1 [q
(85)
k ]0 95 7 [q

(89)
k ]1 96 7 [q

(93)
k ]3

94 2 [q
(88)
k ]0

Tab. D.6 – The value of d entries for i > 0 and 88 < j ≤ 96

s1 = g
(1)
K (CCSR6l, CCSR6l+3, CCSR6l+1, CCSR6l+2)

s2 = g
(1)
K (A5l, A5l+3, A5l+1, A5l+2)

s3 = g
(1)
K (B6l, B6l+3, B6l+1, B6l+2)

s4 = g
(1)
K (C5l, C5l+3, C5l+1, C5l+2)

s5 = g
(1)
K (D6l, D6l+3, D6l+1, D6l+2)

s6 = g
(1)
K (E5l, E5l+3, E5l+1, E5l+2)

s7 = g
(1)
K (F6l, F6l+3, F6l+1, F6l+2)

s8 = G0 +G1(G2 + 1) + 1
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D.2 Mosquito

The function g
(t)
K in equation (D.1)

Mosquito has three updating function g
(t)
K (ie. t = 1, . . . , 3) which are defined as :















g
(1)
K ([q

(j−1)
k ]i, Ki−1) for 0 ≤ j ≤ 4

g
(2)
K ([q

(j−1)
k ]i, Ki−1, [q

(v)
k ]i, [q

(w)
k ]i) for 4 < j < 96 and [q

(96)
k+1]0

g
(3)
K ([q

(95)
k ]i, [q

(95−i)
k ]0, [q

(94)
k ]i, [q

(94−i)
k ]1) for j = 96 and 1 ≤ i ≤ 15

(D.4)
where :

g
(1)
K = [q

(j−1)
k ]i +Ki−1 + 1

g
(2)
K = [q

(j−1)
k ]i +Ki−1 + [q

(v)
k ]i([q

(w)
k ]i + 1) + 1 and 0 ≤ v, w < j − 1

g
(3)
K = [q

(95)
k ]i([q

(95−i)
k ]0 + 1) + [q

(94)
k ]i([q

(94−i)
k ]1 + 1)

The value w, v are given in TAB. D.7 :

v w
(i+ j)mod3 = 0 i− 4 + (jmod2) i− 2
(i+ j)mod3 = 1 i− 6 + (jmod2) i− 2
(i+ j)mod6 = 2 i− 5 + (jmod2) 0
(i+ j)mod6 = 5 0 i− 2

Tab. D.7 – The value of w, v in the function g
(2)
K

The function si in equation (D.2)
Let Xl denotes the l-th bit of the register X in TAB. D.1. All the round transition
functions si are defined as below :

s1 = g
(2)
K (Q128−l, Ql+18, Q113−l, Ql+1) for 0 ≤ l ≤ 128

s2 = g
(2)
K (Al, Al+3, Al+1, Al+2) for 0 ≤ l ≤ 53

s3 = g
(2)
K (Bl, Bl+3, Bl+1, (Bl+2) for 0 ≤ l ≤ 53

s4 = g
(2)
K (Cl, Cl+3, Cl+1, Cl+2) for 0 ≤ l ≤ 53

s5 = g
(2)
K (Dl, Dl+3, Dl+1, Dl+2) for 0 ≤ l ≤ 53

s6 = g
(2)
K (E4l, E4l+3, E4l+1, El+2) for 0 ≤ l ≤ 53

s7 = F4l + F4l+1 + F4l+2 + F4l+3 for 0 ≤ l ≤ 12
s8 = G0 +G1 +G2

D.3 Moustique

The function g
(t)
K in equation (D.1)

Moustique has four updating functions g
(t)
K (t = 1, . . . , 4) which are defined as :

[q
(j)
k+1]i = g

(t)
K ([q

(j−1)
k ]imodnj−1, Ki−1, [q

(v)
k ]imodnv , [q

(w)
k ]imodnw) (D.5)
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where 0 ≤ v, w < j − 1 and

g
(1)
K = [q

(j−1)
k ]imodnj−1

+Ki−1 + 1 for 0 ≤ j ≤ 2

g
(2)
K = [q

(j−1)
k ]imodnj−1

+Ki−1 + [q
(v)
k ]imodnv + [q

(w)
k ]imodnw for 2 ≤ j < 96

and [q
(96)
k+1]0

g
(3)
K = [q

(j−1)
k ]imodnj−1

+Ki−1 + [q
(v)
k ]imodnv([q

(w)
k ]imodnw + 1) + 1 for 2 ≤ j < 96

and [q
(96)
k+1]0

g
(4)
K = [q

(95)
k ]imod8([q

(95−i)
k ]0 + 1) + [q

(94)
k ]imod4([q

(94−i)
k ]1modn94−i

+ 1) for j = 96
and 1 ≤ i ≤ 15

The function g
(2)
K ,g

(3)
K and w, v, nj−1, nv, nw are chosen as in TAB. D.8 and TAB. D.9 :

Index Function v w
(j − i)mod3 = 1 g2 2(j − i− 1)/3 i− 2
(j − i)mod3 = 2 g3 j − 4 i− 2
(j − i)mod6 = 3 g3 0 i− 2
(j − i)mod6 = 0 g3 j − 5 0

Tab. D.8 – The value of w, v in the function g
(2)
K and g

(3)
K

Range l nl
1 - 88 1
89 - 92 2
93 - 94 4

95 8
96 16

Tab. D.9 – The value of nj−1, nv, nw in the function g
(2)
K and g

(3)
K

The function si in equation (D.2)
Let Xl denotes the l-th bit of the register X in TAB. D.1. All the round transition
functions si are defined as below :

s1 = g
(2)
K (Q128−l, Ql+18, Q113−l, Ql+1) for 0 ≤ l ≤ 128

s2 = g
(3)
K (Al, Al+3, Al+1, Al+2) for 0 ≤ l ≤ 53

s3 = g
(3)
K (Bl, Bl+3, Bl+1, (Bl+2) for 0 ≤ l ≤ 53

s4 = g
(3)
K (Cl, Cl+3, Cl+1, Cl+2) for 0 ≤ l ≤ 53

s5 = g
(3)
K (Dl, Dl+3, Dl+1, Dl+2) for 0 ≤ l ≤ 53

s6 = g
(3)
K (E4l, E4l+3, E4l+1, El+2) for 0 ≤ l ≤ 53

s7 = g
(2)
K (F4l, F4l+1, F4l+2, F4l+3) for 0 ≤ l ≤ 12

s8 = G0 +G1 +G2
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