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tives. Je remercie également M. Pierre COMON et M. Dirk SLOCK pour avoir
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modèle, pour sa rigueur scientifique, sa grande disponibilité, sa patience et sa
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ton efficacité lors des révisions de nos plusieurs articles ainsi que de mon mémoire.
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Abstract

In several signal processing applications for wireless communications, the received
signal is multidimensional in nature and may exhibit a multilinear algebraic struc-
ture. In this context, the PARAFAC tensor decomposition has been the subject
of several works in the past six years. However, generalized tensor decomposi-
tions are necessary for covering a wider class of wireless communication systems
with more complex transmission structures, more realistic channel models and
more efficient receiver signal processing. This thesis investigates tensor modeling
approaches for multiple-antenna systems, channel equalization, signal separation
and parametric channel estimation. New tensor decompositions, namely, the block-
constrained PARAFAC and CONFAC decompositions, are developed and studied
in terms of identifiability. First, the block-constrained PARAFAC decomposition
is applied for a unified tensor modeling of oversampled, DS-CDMA and OFDM
systems with application to blind multiuser equalization. This decomposition is
also used for modeling multiple-antenna (MIMO) transmission systems with block
space-time spreading and blind detection, which generalizes previous tensor-based
MIMO transmission models. The CONFAC decomposition is then exploited for
designing new MIMO-CDMA transmission schemes combining spatial diversity
and multiplexing. Blind symbol/code/channel recovery is discussed from the uni-
queness properties of this decomposition. This thesis also studies new applications
of third-order PARAFAC decomposition. A new space-time-frequency spreading
system is proposed for multicarrier multiple-access systems, where this decompo-
sition is used as a joint spreading and multiplexing tool at the transmitter using
tridimensional spreading code with trilinear structure. Finally, we present a PA-
RAFAC modeling approach for the parametric estimation of SIMO and MIMO
multipath wireless channels with time-varying structure.
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Résumé

Dans plusieurs applications de traitement du signal pour les systèmes de com-
munication sans fil, le signal reçu est de nature multidimensionnelle et possède
une structure algébrique multilinéaire. Dans ce contexte, la décomposition ten-
sorielle de type PARAFAC a fait l’objet de plusieurs travaux au cours des six
dernières années. Il s’avère que des décompositions tensorielles plus générales sont
nécessaires pour couvrir des classes plus larges de systèmes de communication fai-
sant intervenir à la fois des modèles de transmission et de canal plus complexes
et des méthodes de traitement plus efficaces. Cette thèse traite les problèmes de
modélisation des systèmes multi-antennes, d’égalisation de canal, de séparation
de signaux et d’estimation paramétrique de canal à l’aide d’approches tenso-
rielles. Dans un premier temps, de nouvelles décompositions tensorielles (bloc-
PARAFAC avec contraintes et CONFAC) ont été développées et étudiées en termes
d’identifiabilité. Dans un deuxième temps, la décomposition bloc-PARAFAC avec
contraintes a été appliquée tout d’abord pour mettre en évidence une modélisation
tensorielle unifiée des systèmes suréchantillonnés, DS-CDMA et OFDM, avec appli-
cation à l’égalisation multiutilisateur. Puis, cette décomposition a été utilisée pour
modéliser des systèmes de transmission MIMO avec étalement spatio-temporel et
détection aveugle. La décomposition CONFAC a ensuite été exploitée pour conce-
voir un nouveau schéma de transmission MIMO/CDMA combinant diversité et
multiplexage spatial. Les propriétés d’unicité de cette décomposition ont permis
de réaliser un traitement aveugle au niveau du récepteur pour la reconstruction du
canal et des symboles transmis. Un troisième volet du travail concerne l’application
de la décomposition PARAFAC pour la conception de nouveaux schéma de trans-
mission spatio-temporel-fréquentiel pour des systèmes MIMO multiporteuses, et
pour l’estimation paramétrique de canaux multitrajets.
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Resumo

Em diversas aplicações do processamento de sinais em sistemas de comunicação
sem-fio, o sinal recebido é de natureza multidimensional, possuindo uma estru-
tura algébrica multilinear. Neste contexto, a decomposição tensorial PARAFAC
tem sido utilizada em vários trabalhos ao longo dos últimos seis anos. Observa-
se, entretanto, que decomposições tensoriais generalizadas são necessárias para
modelar uma classe mais ampla de sistemas de comunicação, caracterizada pela
presença de estruturas de transmissão mais complexas, por modelos de canal mais
realistas, e por técnicas de processamento de sinais mais eficientes no receptor.
Esta tese investiga novas abordagens tensorias e suas aplicações em modelagem de
sistemas MIMO, equalização, separação de sinais e estimação paramétrica de ca-
nal. Inicialmente, duas novas decomposições tensoriais (PARAFAC em blocos com
restrições e CONFAC) são desenvolvidas e estudadas em termos de identificabili-
dade. Em uma segunda parte do trabalho, novas aplicações destas decomposições
tensoriais são propostas. A decomposição PARAFAC em blocos com restrições
é aplicada, primeiramente, à modelagem unificada de sistemas superamostrados,
DS-CDMA e OFDM, com aplicação em equalização multiusuária. Em seguida,
esta decomposição é utilizada na modelagem de sistemas de transmissão MIMO
com espalhamento espaço-temporal e detecção conjunta. Em seguida, a decom-
posição CONFAC é explorada na concepção de uma nova arquitetura generali-
zada de transmissão MIMO/CDMA que combina diversidade e multiplexagem. As
propriedades de unicidade desta decomposição permitem o uso do processamento
não-supervisionado no receptor, visando a reconstrução dos sinais transmitidos e a
estimação do canal. Na terceira e última parte deste trabalho, explora-se a decom-
posição PARAFAC no contexto de duas aplicações diferentes. Na primeira, uma
nova estrutura de transmissão espaço-temporal-frequêncial é proposta para siste-
mas MIMO multiportadora. A segunda aplicação consiste em um novo estimador
paramétrico para canais multipercursos.
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Notation

In this thesis the following conventions are used. Scalar variables are denoted
by lower-case letters (a, b, . . . , α, β, . . .), vectors are written as boldface lower-case
letters (a,b, . . . , α, β, . . .), matrices correspond to boldface capitals (A,B, . . .),
and tensors are written as calligraphic letters (A,B, . . .). The meaning of the
following symbols are, if nothing else is explicitly stated:

C set of complex-valued numbers

C
I set of complex-valued I-dimensional vectors

C
I×J set of complex-valued (I × J)-matrices

C
I1×···×IN set of complex-valued (I1 × · · · × IN)-tensors

a∗ complex conjugate of a ∈ C

|a| modulus of a

‖a‖1 l-1 norm of a

‖a‖ l-2 norm of a

AT transpose of A

AH Hermitian transpose of A

A−1 inverse of A

A† Moore-Penrose pseudo-inverse of A

‖A‖F (‖A‖F ) Frobenius norm of A(A)

1N “All-ones” vector of dimension N .

IN Identity matrix of dimension N .



NOTATION xv

e
(N)
n n-th canonical vector in R

N , i.e. a unitary vector containing

an element equal to 1 in its n-th position and 0’s elsewhere.

E(N) = {e(N)
1 , . . . , e

(N)
N } Canonical basis in R

N .

[A]i1,i2 = ai1,i2 (i1, i2)-th element of matrix A ∈ C
I1×I2 .

[A]i1·([A]·i2) i1-th row (i2-th column) of A.

[A]i1,i2,i3 = ai1,i2,i3 (i1, i2, i3)-th element of tensor A.

Ai1·· ∈ C
I2×I3 i1-th first-mode matrix-slice of tensor A.

A·i2· ∈ C
I3×I1 i2-th second-mode matrix-slice of tensor A.

A··i3 ∈ C
I1×I2 i3-th third-mode matrix-slice of tensor A.

a ◦ b Outer product between a ∈ C
I1 and b ∈ C

I2 .

a ◦ b =




a1b1 · · · a1bI2
...

...
aI1b1 · · · aI1bI2


 ∈ C

I1×I2 .

A ⊗ B The Kronecker product of A ∈ C
I×J with B ∈ C

K×L,

A ⊗ B =




a1,1B a1,2B · · · a1,JB
a2,1B a2,2B · · · a2,JB

...
...

...
aI,1B aI,2B · · · aI,JB


 ∈ C

IK×JL.

A |⊗|B The “block-wise” Kronecker product.

For A = [A(1) · · ·A(Q)] ∈ C
I×J , B = [B(1) · · ·B(Q)] ∈ C

K×L,
A |⊗|B = [A(1) ⊗ B(1) · · ·A(Q) ⊗ B(Q)] ∈ C

IK×R,
with A(q) ∈ C

I×Jq , B(q) ∈ C
K×Lq ,

and J =
Q∑

q=1

Jq, L =
Q∑

q=1

Lq, R =
Q∑

q=1

JqLq.

A ⋄ B The Khatri-Rao (column-wise Kronecker) product.

For A ∈ C
I×K and B ∈ C

J×K ,
A ⋄ B = [A·1 ⊗ B·1, . . . , A·K ⊗ B·K ] ∈ C

IJ×K .

vec(A) The vectorization operator.

For A ∈ C
I×J : vec(A)=




A·1
...

A·J


 ∈ C

IJ .

diag(a) Diagonal matrix with diagonal entries
given by the elements of a.

blockdiag(A1, . . . ,AN) Forms a block-diagonal matrix out of
the N matrix blocks A1, . . . , AN .
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Introduction

Several existing signal processing problems in wireless communication systems
with multiple transmit and/or receive antennas are modeled by means of matrix
(2-D) decompositions that represent the transformations on the transmitted signal
from the transmitter to the receiver. At the receiver, signal processing is generally
used to combat multipath fading effects, inter-symbol interference and multiuser
(co-channel) interference by means of multiple receive antennas. Usually conside-
red signal processing dimensions are space and time dimensions [114]. This area
has progressed over the past twenty years and has resulted in several powerful
solutions. In order to allow for a higher spectral efficiency, numerous works have
proposed blind signal processing techniques, which aim at avoiding the loss of
bandwidth due to the use of training sequences. Blind receiver algorithms gene-
rally take special (problem-specific) structural properties of the transmitted signals
into account such as constant-modulus, finite-alphabet, cyclostationarity or sta-
tistical independence for performing multiuser signal separation, equalization and
channel estimation [114, 141, 149, 11, 153, 151, 154].

On the other hand, signal processing solutions based on the use of multiple trans-
mit and receive antennas have come latter, and date back to ten years ago. In-
tensive research has been carried out, and the literature is abundant. Wireless
communication systems employing multiple antennas at both ends of the link,
commonly known as Multiple-Input Multiple-Output (MIMO) systems, are being
considered as one of the key technologies to be deployed in current and upco-
ming wireless communications standards [113]. MIMO systems have shown to po-
tentially provide high spectral efficiencies by capitalizing on spatial multiplexing
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[66, 67, 143, 70], while considerably improving the link reliability by means of
space-time coding [2, 142, 112, 76, 59]. The integration of multiple-antenna and
Code-Division Multiple-Access (CDMA) technologies has also been subject of se-
veral studies [78, 79, 56, 123, 97, 57]. The combination of MIMO and multicarrier
modulation by means of Orthogonal Frequency Division Multiplexing (OFDM) has
also been the focus of a large number of recent works [137]. In MIMO-OFDM sys-
tems, multiple transmit antennas and orthogonal subcarrriers are jointly employed
to achieve high data rates and to combat fading effects by means of Space-Time-
Frequency (STF) coding [1, 6, 139, 138, 124].

The use of tensor decompositions has gained increased attention in several signal
processing applications for wireless communication systems. In wireless communi-
cations, the fact that the received signal is a third-order tensor, means that each
received signal sample is associated with a three-dimensional space, and is repre-
sented by three indices, each one associated with a particular type of systematic
variation of the received signal. In such a three-dimensional space, each dimen-
sion of the received signal tensor can be interpreted as a particular form of signal
“diversity”. In most of cases, two of these three axes account for space and time
dimensions. The space dimension generally corresponds to the number of receive
antennas while the time dimension corresponds to the length of the data block
to be processed at the receiver. The third dimension of the third-order tensor
depends on the particular wireless communication system. This dimension is ge-
nerally linked to the type of processing that is done at the transmitter and/or at
the receiver.

In the context of wireless communications, the practical motivation for a tensor
modeling in signal processing comes from the fact that one can simultaneously
benefit from multiple (more than two) forms of diversity to perform multiuser
signal separation/equalization and channel estimation under model uniqueness
conditions/requirements more relaxed than with conventional matrix-based ap-
proaches. One of the most popular tensor decomposition is the Parallel Factor
(PARAFAC) decomposition, independently proposed by Harshman [73] and Ca-
roll & Chang [12]. This tensor decomposition has been used as a data analysis
tool in psychometrics, phonetics, exploratory data analysis, statistics, arithme-
tic complexity, and other fields and disciplines. Intensive research on PARAFAC
analysis has been conducted in the context of chemometrics in the food indus-
try, where it is used for spectrophotometric, chromatographic, and flow injection
analyses [7, 8, 135]. The attractive feature of the PARAFAC decomposition is
its intrinsic uniqueness. In contrast to matrix (bilinear) decompositions, where
there is the well-known problem of rotational freedom, the PARARAC decompo-
sition of higher-order tensors is essentially unique, up to scaling and permutation
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indeterminacies [90, 136]. Aside from its powerful uniqueness properties, tensor
models are mathematically elegant and allow a new algebraic interpretation of the
transmitter-channel-receiver transformations over the transmitted signals.

Tensor modeling appears in several existing wireless communication systems where
the received signal has a multidimensional nature. For instance, in addition to
common space and time dimensions, in a Direct-Sequence Code-Division Multiple-
Access (DS-CDMA) system [116], the third dimension is the spreading dimension
which appears due to the use of a direct sequence spreading at the transmitter. The
use of temporal oversampling at each receive antenna and the use of multicarrier
modulation at the transmitter also create a third dimension to the received signal,
which is called here oversampling and frequency dimensions, respectively. This
interpretation is illustrated in Fig. 1.
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Figure 1: Tridimensional visualization of the received signal in oversampled,
DS-CDMA and OFDM systems.

The seminal works using tensor decompositions in wireless communications are
due to Sidiropoulos et al.. In [131], the authors show that a mixture of DS-CDMA
signals received at an uniform linear array of antennas can be interpreted as a
third-order tensor admitting a Parallel Factor (PARAFAC) decomposition. In
[128], the same authors established an interesting conceptual link between the
PARAFAC decomposition and the problem of multiple invariance sensor array
processing. Following these works, the authors have proposed applications of PA-
RAFAC to blind multiuser detection in Wideband Code Division Multiple Access
(W-CDMA) systems [130], Orthogonal Frequency Division Multiplexing (OFDM)
systems, [81], blind beamforming [133], multiple-antenna space-time coding [129],
and blind spatial signature estimation [119] (see the reference list of [126] for further
related works). This decomposition has also been exploited for the blind identifica-
tion of undetermined mixtures [17, 118] and for the blind separation of DS-CDMA
signals [53] using higher-order statistics. Generalized tensor decompositions have
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been proposed in [28, 40, 47, 109] to handle frequency-selective channels under
different assumptions concerning the multipath propagation structure. Tensor de-
compositions have also been exploited recently for the blind identification of linear
and nonlinear channels [63, 64, 65, 85, 86] and for kernel complexity reduction of
third-order Volterra models [83, 84].

In the context of MIMO antenna systems, the use of tensor modeling has first
appeared in [129], where a space-time coding model with blind detection has been
proposed. This multiple-antenna scheme allows to build a third-order PARAFAC
model for the received signal thanks to a temporal spreading of the data streams at
each transmit antenna as in a conventional CDMA system. In [48], a tensor model
is proposed for a MIMO-CDMA system with multiuser spatial multiplexing, but
no spreading across the transmit antennas is permitted. In our recent works [32,
33, 39], we have proposed a generalization of [129] and [48], by covering multiple-
antenna transmission systems with partial or full spatial spreading of each data
stream across sets of transmit antennas. This idea was further generalized by
the authors in subsequent works [35, 36, 37, 42] using the CONstrained FACtor
(CONFAC) decomposition. They provide extension of [32, 33, 39] by allowing to
use multiple transmit antennas and spreading codes per data stream. In [43, 45],
the PARAFAC decomposition was exploited to design a new signaling technique
for multi-carrier multiple-access MIMO systems. These works proposed a space-
time-frequency transmission model based on a PARAFAC decomposition of the
3-D spreading code into space-, time- and frequency-domain spreading codes.

For the applications mentioned above, the key characteristics of signal processing
based on tensor decompositions, not covered by matrix based signal processing, are
the following. It does not require the use of training sequences, nor the knowledge
of channel impulse responses and antenna array responses. Moreover, it does not
rely on statistical independence between the transmitted signals. Instead, the pro-
posed receiver algorithms are deterministic, and exploit the multilinear algebraic
structure of the received signal, treated as a higher-order tensor. The proposed
receiver algorithms act on blocks of data (instead of using a sample-by-sample pro-
cessing approach) and are generally based on a joint detection of the transmitted
signals (either from different users or from multiple transmit antennas).

This thesis lies in a research field that connects tensor decompositions and
signal processing for wireless communications. New (generalized) tensor de-
compositions are developed and exploited as a modeling and signal proces-
sing tool for wireless communication problems, such as multiuser signal separa-
tion/equalization/detection, multiple-antenna transmission systems, and channel
modeling/estimation. We will show that several wireless communication systems
can be modeled by means of generalized tensor decompositions other than the
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standard PARAFAC one. For instance, this is the case of i) oversampled, DS-
CDMA and OFDM systems under frequency-selective propagation and multiple
paths per user and ii) multiple-input multiple-output (MIMO) antenna systems
under different space-time spreading/multiplexing strategies.

Contributions

The contributions of this thesis will address the three following main research axes:

• Multiuser signal separation/equalization/detection;

• Multiple-antenna transmission structures;

• Channel modeling and estimation;

Multiuser signal separation/equalization/detection: Several works have fo-
cused on the use of the PARAFAC decomposition. Despite its simplicity and po-
werful uniqueness properties, the PARAFAC decomposition has its own modeling
limitations and does not cover certain wireless communication systems. Little at-
tention has been given to the study of other tensor decompositions, with the aim
of covering a wider class of systems where the received signal has a more com-
plicated algebraic structure. This is generally the case when frequency-selective
fading and specular multipath propagation are jointly present. In this context, we
have proposed a generalized tensor decomposition for an unified tensor modeling
of oversampled, DS-CDMA and OFDM systems, with application to blind multiu-
ser separation/equalization/detection. We have studied this issue in several works
[28, 29, 27, 40]. These works can be viewed as generalizations of the ideas originally
presented in [131] under different channel models and working assumptions.

In the context of MIMO antenna systems, we propose a new modeling approach for
multiuser downlink transmission. A block space-time spreading scheme is formu-
lated using the tensor formalism. The proposed model allows multiuser space-time
transmission with different spatial spreading factors (diversity gains) as well as dif-
ferent multiplexing factors (code rates) for the users. This approach can be viewed
as a generalization of [129, 48] due to the fact that i) it is designed to cope with
multiuser MIMO transmission and ii) it jointly performs space-time spreading and
multiuser spatial multiplexing. In contrast to [129, 48] where no spatial spreading
is allowed and the number of data streams is restricted to be equal to the number
of transmit antennas, the proposed MIMO system allows a variable number of
data streams to access all the transmit spatial channels. We have addressed this
subject in [32, 33, 39, 24].
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Multiple-antenna transmission structures: Few applications of tensor de-
compositions to multiple-antenna (MIMO) systems have been developed. In this
thesis, we give special attention to the application of tensor decompositions to
MIMO systems by showing that they are useful in the design of different transmis-
sion structures with blind detection. As will be shown, transmission schemes com-
bining transmit diversity, spatial multiplexing and spatial reuse of the spreading
codes can be formulated by explicitly exploiting the multilinear algebraic struc-
ture of tensor decompositions. We have addressed this subject in several recent
works [32, 33, 35, 36, 37, 43, 45]. The originality of the proposed tensor-based
multiple-antenna transmission structures is on the following aspects.

First, the tensor-based models of [35, 36, 37] allow the association of multiple
spreading codes and data streams per transmit antenna, in contrast to [129, 48],
where each transmit antenna is necessarily associated with only one spreading
code and data stream. Secondly, a different way of exploiting the trilinear struc-
ture of the PARAFAC decomposition is originally studied in this thesis. In this
case, tensor decomposition is exploited also at the transmitter for designing a new
signaling technique. We propose an STF multiple-access transmission model ba-
sed on a 3-D spreading code tensor decomposed into the outer product of the
space-, time- and frequency-domain spreading codes. These codes allow the data
streams to simultaneously access the same set of transmit antennas, chips and sub-
carriers/tones. Compared to competing multiple-antenna multiple-access models
such as [157, 58, 105, 106], the trilinear STF spreading model has the flexibility for
controlling both the spreading and the multiplexing pattern over space, time and
frequency dimensions while allowing a blind joint detection and channel estimation
thanks to the PARAFAC modeling. We have addressed this subject in [43, 45].

Channel modeling and estimation: Another problem of interest in this the-
sis is that of modeling/estimation of SIMO and MIMO wireless communication
channels by means of a PARAFAC modeling approach. We benefit from the fact
that paths amplitudes are fast-varying, while angles and delays are slowly-varying
over multiple transmission blocks or data-blocks to build a third-order PARAFAC
model for the wireless channel and for the received signal. We have treated this
problem in [31, 25]. Contrarily to other parametric channel estimation approaches
such as [153, 151, 154], in which multipath parameters are extracted from a pre-
vious unstructured channel estimate, the proposed PARAFAC-based estimator
directly works on the received signal, avoiding error propagation in cases where
the unstructured channel estimate may not be accurate. The proposed estimator
also works with fewer receiver antennas than multipaths thanks to the uniqueness
properties of the PARAFAC decomposition.
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The different contributions of this thesis are associated with both transmitter
and receiver processing. Some of them focus primarily on receiver signal pro-
cessing (multiuser signal separation/equalization/decoding and channel estima-
tion). Others emphasize the transmitter signal processing (e.g. space-time multi-
plexing/spreading, space-time-frequency multiple-access), although these also af-
fect the receiver processing. Figures 2 and 3 link the use of tensor modeling to the
signal processing purpose at both ends of the communication chain and highlight
the three signal dimensions that generally appear in each case. Figure 4 links the
chapters to the three main research axes of the thesis.
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processing

Focus on transmitter 
processing
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Chapter 4 Chapter 5

Figure 4: Link between the chapters and the research axes of the thesis.

To summarize, the major contributions of this thesis are the following:

• Development of new generalized tensor decompositions
(
block-constrained

PARAFAC and CONstrained FACtors (CONFAC)
)
;

• Study of the uniqueness property of the CONFAC decomposition;

• Unified tensor modeling of oversampled, DS-CDMA and OFDM systems
under frequency-selective channels with specular multipath propagation;

• Proposal of a new blind multiuser separation/equalization receiver based on
the block-constrained PARAFAC model and combining a subspace method
with finite-alphabet projection;

• Development of new tensor-based transceivers for multiple-antenna systems
using space-time spreading/multiplexing based on the block-constrained PA-
RAFAC decomposition;

• Tensor modeling of MIMO-CDMA transmit schemes with blind detection
exploiting the CONFAC decomposition;

• Proposal of a new space-time-frequency spreading model for MIMO multi-
carrier system with trilinear decomposition structure of the spreading code;

• Development of a PARAFAC-based estimator of time-varying multipath
SIMO channels and generalization to MIMO channels.
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Organization

The different contributions of this thesis are divided into six chapters. In the
following, we briefly describe the content of each chapter.

Chapter 1: Tensor Decompositions: Background and New Contributions. This
chapter provides an overview of multilinear algebra and tensor decompositions. It
contains the basic material to be exploited throughout the thesis. We first intro-
duce the mathematical formalism, representations and most important operations
involving tensors. In the second part, we provide a survey of tensor decomposi-
tions and also present original contributions. We begin by presenting the Tucker-3
decomposition and its special cases. Then, the PARAFAC decomposition is intro-
duced and its uniqueness properties are discussed. An overview on block tensor
decompositions is given. We present two new tensor decompositions, which are
the block-constrained PARAFAC and the CONstrained FACtor (CONFAC) de-
compositions, and their uniqueness properties are studied.

Chapter 2: Tensor Modeling for Wireless Communication Systems with Appli-
cation to Blind Multiuser Equalization. This chapter presents a new tensor mo-
deling approach for the received signal in wireless communication systems with a
receive antenna array. Assuming a frequency-selective channel model with specular
multipath propagation and multiple paths per source, we formulate the received
signal in temporally-oversampled, DS-CDMA and OFDM systems using a block-
constrained PARAFAC decomposition. A unified tensor modeling for these three
systems is proposed. A generalization of this unified model based on a constrained
Tucker-3 decomposition is presented by considering that the number of multipaths
of each user can be different. A new blind receiver is presented as an application
of the proposed tensor model to multiuser separation/equalization.

Chapter 3: Multiuser MIMO Systems Using Block Space-Time Spreading. In this
chapter, a new block space-time spreading model is proposed for the downlink of
a multiuser MIMO system based on tensor modeling. The core of the proposed
transmitter model is a 3-D spreading tensor that jointly spreads and combines
independent data streams across multiple transmit antennas. The received si-
gnal is formulated as a block-constrained PARAFAC model, where the two fixed
constraint matrices reveal the overall space-time spreading pattern at the trans-
mitter. We present a receiver algorithm based on a deterministic elimination of
multiuser interference by each user, followed by a blind joint channel and symbol
recovery stage.

Chapter 4: Constrained Tensor Modeling Approaches to MIMO-CDMA Sys-
tems. This chapter presents new modeling approaches to MIMO-CDMA trans-
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mit schemes based on the CONstrained FACtor (CONFAC) decomposition. We
show that this generalized decomposition can be exploited to design space-time
spreading/precoding schemes for MIMO-CDMA systems with a meaningful phy-
sical interpretation for the constraint matrices of this tensor decomposition. We
begin by considering a MIMO-CDMA transmission model based on the type-3
CONFAC decomposition with two constraint matrices only. A systematic design
procedure for the canonical precoding matrices leading to unique blind symbol re-
covery is presented. Then, generalized transmission model is proposed which fully
exploits all the three constraint matrices of the CONFAC decomposition. Blind
symbol/code/channel recovery are discussed from the identifiability properties of
this decomposition.

Chapter 5: Trilinear Space-Time-Frequency Spreading for MIMO Wireless Sys-
tems. This chapter presents a new space-time-frequency spreading model for
MIMO multicarrier multiple-access wireless communication system using tridimen-
sional (3-D) spreading code with trilinear decomposition (PARAFAC) structure.
The proposed transmission model, called Trilinear Space-Time-Frequency Sprea-
ding (T-STFS), is based on a joint multiplexing and spreading of multiple data
streams across space (transmit antennas), time (chips) and frequency (tones). The
diversity performance of the proposed T-STFS model is analyzed and a necessary
condition for maximum diversity gain is derived. A PARAFAC model for the re-
ceived signal is developed and exploited for a blind joint detection and channel
estimation, and identifiability issues are discussed.

Chapter 6: PARAFAC Methods for Modeling/Estimation of Time-Varying Mul-
tipath Channels. In this chapter, we address the problem of multipath parameter
estimation of time-varying space-time wireless channels using PARAFAC mode-
ling. We use the fact that the variation of multipath amplitudes over multiple
data-blocks is faster than that of angles and delays for showing that the received
signal can be modeled as a third-order (3D) tensor. A PARAFAC-based estimator
using a training sequence is proposed for jointly recovering the directions of arrival,
the time delays and the complex amplitudes of the multipaths. We also extend
this joint modeling/estimation approach to MIMO channels.

The organization of this thesis is illustrated in Fig. 5, where the links between the
different chapters are given.
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Figure 5: Organization of the thesis in block-diagram.
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CHAPTER 1

Tensor Decompositions: Background
and New Contributions

Multilinear algebra is the algebra of tensors of order higher than two. The de-
compositions of higher-order tensors can be viewed as generalizations of matrix
decompositions. In the first part of this chapter, we briefly introduce the basic ma-
thematical formalism, the main representations, and operations involving tensors.
A background on tensor decompositions is given in the second part. We begin by
presenting the Tucker-3 decomposition and its special cases. Then, the PARAFAC
decomposition is introduced and its uniqueness issues are discussed. Connections
between Tucker-3 and PARAFAC are given. An overview on tensor decompositions
in block terms is also given. Then, we present some original contributions of this
thesis, which are the block-constrained PARAFAC and the CONstrained FACtor
(CONFAC) decompositions. Both decompositions will be exploited in subsequent
chapters in the context of the applications we shall treat.
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The theory of tensors is a branch of linear algebra, called nowadays multilinear
algebra. The word “tensor” was first introduced by William R. Hamilton in 1846,
to denote what is now called modulus. In 1899, Woldemar Voigt was the first
who used this word in its current meaning. The first tensor notations and deve-
lopments were done by Gregorio Ricci-Curbastro around 1890 in the context of
differential geometry. A broader acceptance of tensor calculus was achieved with
the introduction of Einstein’s theory of general relativity, around 1915.

A different way of viewing and treating a tensor was developed between 1960 and
1970, where the attention was given to the analysis, factorization or decomposition
of third-order tensors. L. R. Tucker [148], Richard A. Harshman [73], Carroll
and Chang [12] and Kruskal [90] are the first “players” in the development of
tensor decompositions, which can be seen as extensions of matrix decompositions
to higher-orders. Among them, two types have been extensively studied in the
literature, while being focus of several applications in different domains. These
are the Parallel Factor (PARAFAC) analysis/decomposition [73, 74], also known as
Canonical Decomposition (CANDECOMP) [12], and the Tucker-3 decomposition,
which can be interpreted as a generalization of Principal Component Analysis
(PCA) to higher orders [148]. The Tucker-3 decomposition, also known as three-
mode PCA, has been successfully applied in different areas such as chromatography
[8] and person perception analysis [89].

The attractive feature of the PARAFAC decomposition is its intrinsic uniqueness.
In contrast to matrix (bilinear) decompositions, where there is the well-known pro-
blem of rotational freedom, the PARARAC decomposition of higher-order tensors
is essentially unique, up to scaling and permutation indeterminacies [90, 136]. The
first uniqueness proof was provided by Kruskal in [90]. Recently, this proof has
been reformulated using basic linear algebra [136]. A concise proof that is valid
for complex tensors was given in [131]. A generalization of the uniqueness result
of [90] to tensors of arbitrary order was given in [127]. An alternative proof can
be found in [82, 136]. Contrarily to the PARAFAC decomposition, the Tucker-3
decomposition possesses no intrinsic uniqueness and is not interesting from a pa-
rameter estimation point of view. However, by using constrained versions of the
Tucker models one can sometimes overcome this problem [87, 144].

Tensor decompositions implicitly appear in the context of Higher-Order Statistics
(HOS) [98, 15, 16, 19]. This is due to the fact that the PARAFAC decomposi-
tion describes the basic structure of high-order cumulants of multivariate data.
HOS-based Independent Component Analysis (ICA) of non-Gaussian source mix-
tures intrinsically involves manipulation of tensor objects [14, 49, 54, 18]. A solid
contribution to the area of multilinear algebra and tensor decompositions was gi-
ven by De Lathauwer in [49], who generalized the concept of matrix Singular Value
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Decomposition (SVD) to tensors, with applications to blind source separation pro-
blems using ICA.

Tensor decompositions fall within an inter-disciplinary research field. Although
important progress has been obtained, this research field has several open issues.
On-going research ranges from fundamental studies such as uniqueness, degeneracy
and rank [20], to more practical aspects, where tensors decompositions are used
to model physical phenomena.

1.1 Basics of tensor algebra

Several approaches exist in the literature for the definition of the term tensor. They
generally depend on the scientific domain in which they are used. In a general case,
a tensor is defined in generalized coordinate systems where the coordinate axes are
general curves and not necessarily orthogonal. In this context, a tensor is treated
as a mathematical entity that enjoys the multilinearity property after a change of
coordinate system [15]. A N -th order tensor is interpreted here as an array that
exhibits a linear dependency with respect to N vector spaces, and the elements
of which are accessed via N indices [49]. Tensors are also used as a synonym of
multidimensional arrays, also known as multi-way arrays.

As special cases, a tensor of order 2 is a matrix, a tensor of order 1 is a vector
and a tensor of order 0 is a scalar. Provided that a tensor is a multilinear form
and has its own associated linear vector space, common linear operations that are
valid for matrices can be extended to higher orders.

Definition 1.1 (scalar notation) Let X ∈ C
I1×I2×···×IN be a N-th order tensor. A

scalar component of X is specified as

xi1,i2,...,iN = [X ]i1,i2,...,iN , (1.1)

where in is the n-th dimension of X , also called the mode-n of X .

Definition 1.2 (inner product) The inner product of two tensors X and Y of the
same order N is given by:

〈X ,Y〉 =

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1,i2,...,iN yi1,i2,...,iN . (1.2)
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Similar to the case of matrices, the notion of orthogonality between two tensors
is linked to the inner product, i.e., X and Y are said to be mutually orthogonal
tensors if (1.2) equals 0.

Definition 1.3 (outer product) Let X ∈ C
I1×I2×···×IN and Y ∈ C

J1×J2×···×JM be
two tensors of orders N and M respectively. The outer product between X and Y
is given by:

[X ◦ Y ]i1,i2,...,iN ,j1,j2,...,jM
= xi1,i2,...,iN yj1,j2,...,iM . (1.3)

The outer product of two tensors is another tensor, the order of which is given by
the sum of the orders of the two former tensors. Equation (1.3) is a generalization
of the concept of outer product of two vectors, which is itself a matrix (second-order
tensor). It also gives the notion of rank-1 tensor [88], as a special case.

Definition 1.4 (rank-1 tensor) A rank-1 tensor X ∈ C
I1×I2×···×IN is a tensor that

can be written as the outer product of N vectors u(1) ∈ C
I1 ,u(2) ∈ C

I2 , . . . ,u(N) ∈
C

IN , i.e.:
xi1,i2,...,iN = u

(1)
i1

u
(2)
i2

· · ·u(N)
iN

. (1.4)

The vectors u(n) are called the components of X . As a special case, a rank-1
matrix is given by the outer product of two vectors. As will be clear later, tensor
decompositions are in general linear combinations of rank-1 tensors.

Definition 1.5 (Rank) The rank of an arbitrary tensor X ∈ C
I1×I2×···×IN , denoted

by R = r(X ), is the minimal number of rank-1 tensors that yield X in a linear
combination.

Definition 1.6 (Frobenius norm) The Frobenius norm of a tensor X ∈
C

I1×I2×···×IN is defined as:

‖X‖F =
√

〈X ,X〉 =

(
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

|x|2i1,i2,...,iN

)1/2

. (1.5)

The Frobenius norm can be interpreted as a measure of “energy” in the tensor.

Definition 1.7 (Unfolded matrices) The n-th mode unfolded matrix Xn of a ten-
sor X ∈ C

I1×I2×···×IN is defined as the In× I1I2 · · · In−1In+1IN matrix, the columns
of which are the In-dimensional vectors (mode-n vectors) obtained by varying index
in and keeping the other indices fixed.
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The order of appearance of the mode-n vectors in Xn may vary from one definition
to another. A visualization of the three unfolded representations X1, X2 and X3

for a third-order tensor X ∈ C
I1×I2×I3 is depicted in Fig. 1.1.

First-mode slices Second-mode slices

••�✁X

M

M

Third-mode slices

•• ✂
✁X ✄☎••X

MX✆I

✝I

✞I

⇒

Third-order tensor

Figure 1.1: Visualization of the unfolded representations of a third-order ten-
sor.

Definition 1.8 (mode-n rank) Let Xn be the n-th mode unfolded matrix of X ∈
C

I1×I2×···×IN . The mode-n rank of X is the dimension of the vector space generated
by the n-th mode vectors (i.e., the columns of Xn).

The definition of mode-n rank is a generalization of the classical concept of rank for
matrices. Contrarily to the matrix case, where R1 = R2 = R (i.e. row rank equal
to column rank), mode-n ranks of a higher-order tensor are not necessarily the
same. Furthermore, when the mode-n ranks are equal, they can still be different
from the rank of the tensor. The mode-n rank is always inferior or equal to the
rank, i.e., Rn ≤ R.

Definition 1.9 (mode-n product) The mode-n product of a tensor X ∈
C

I1×I2×···×IN and a matrix A ∈ C
Jn×In, denoted by X •n A is specified as:

[X •n A]i1,i2,...,in−1,jn,in+1,...,iN =
In∑

in=1

xi1,i2,...,in−1,in,in+1,...,iN ajn,in (1.6)

The result of a mode-n product is a tensor of the same order, but with a new n-th
dimension Jn.

The mode-n product is a compact way of representing linear transformations invol-
ving tensors. It is an alternative to the so-called Einstein summation convention
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[98]. As pointed out in [49], this notation makes clear the analogy between matrix
and tensor decompositions, as well as it gives an intuitive understanding of tensor
decompositions.

1.2 Background on tensor decompositions

This section is focused on the decomposition of higher-order tensors (multi-way
arrays). Tensor decompositions, also referred to as multi-way factor analysis, is an
area of the multilinear algebra that characterizes a tensor as a linear combination
of outer product factors. Depending on the approach considered, tensor decompo-
sitions can be viewed as generalizations of Principal Component Analysis (PCA)
or Singular Value Decomposition (SVD) to orders higher than two. The analysis
of a tensor in terms of its decomposed tensor factors is useful in problems where
a multilinear mixture of different factors or contributions must be identified from
measured data. In the context of this thesis, the computation of a tensor decom-
position of an observed data tensor separates the signals transmitted by different
sources. This is exactly the goal of several signal processing problems that will be
addressed in this thesis. In the following, some tensor decompositions are presen-
ted. More attention is given to decompositions of third-order tensors or three-way
arrays, since this will be the case in most of the applications encountered in this
thesis. In some cases, the generalization to the N -th order is also given.

1.2.1 Tucker-3 decomposition

The Tucker-3 decomposition was proposed by L. Tucker in the sixties [148]. It
can be seen as an extension of bilinear factor analysis to third-order tensors. The
Tucker-3 decomposition is also a common name to denote the Higher-Order Sin-
gular Value Decomposition (HOSVD) of a third-order tensor [49]. The Tucker-3
decomposition is general in the sense that it incorporates most of the other third-
order tensor decompositions as special cases.

The Tucker-3 decomposition of a tensor X ∈ C
I1×I2×I3 can be written in scalar

form as:

xi1,i2,i3 =
P∑

p=1

Q∑

q=1

R∑

r=1

ai1,pbi2,qci3,rgp,q,r, (1.7)

where ai1,p = [A]i1,p, bi2,q = [B]i2,q and ci3,r = [C]i3,r are scalar components of
three factor matrices A ∈ C

I1×P , B ∈ C
I2×Q and C ∈ C

I3×R respectively, and
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Figure 1.2: Visualization of the Tucker-3 decomposition.

gp,q,r = [G]p,q,r is a scalar component of the core tensor G ∈ C
P×Q×R.

From (1.7), we note that a Tucker-3-decomposed tensor is equal to a linear combi-
nation (or weighted sum) of PQR outer products, where the coefficient (or weigh-
ting factor) of each outer product term is the corresponding scalar component of
the core tensor. We call P as the number of factors in the first mode of the tensor
X . Similarly, Q and R denote the number of factors in the second and third modes
of X . The Tucker-3 decomposition can be referred to as a tensor decomposition
that allows interactions among factors across the three modes of the tensor [73].
An illustration of the Tucker-3 decomposition is given in Fig. 1.2.

The Tucker-3 decomposition can also be stated by resorting to the mode-n product
(tensor) notation defined in (1.6):

X = G •1 A •2 B •3 C. (1.8)

Alternatively, we can state the Tucker-3 decomposition using a matrix-slice no-
tation. This notation characterizes the tensor by a set of parallel matrix-slices
that are obtained by “slicing” the tensor in a given “direction”. Each matrix-slice
is obtained by fixing one index of a given mode and varying the two indices of
the two other modes. For a third-order tensor, there are three possible slicing
directions. We call Xi1·· ∈ C

I2×I3 the i1-th first-mode slice, X·i2· ∈ C
I3×I1 the i2-th

second-mode slice and X··i3 ∈ C
I1×I2 the i3-th third-mode slice. In order to obtain
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the matrix-slice notation for the Tucker-3 decomposition, we rewrite (1.7) as:

xi1,i2,i3 =

Q∑

q=1

R∑

r=1

bi2,qci3,r

(
P∑

p=1

ai1,pgp,q,r

)
, (1.9)

and define an “equivalent” (first-mode combined) core as:

u
(1)
i1,q,r =

P∑

p=1

ai1,pgpqr = [G •1 A]i1,q,r (1.10)

i.e., u
(1)
i1,q,r = [G •1 A]i1,q,r. The i1-th matrix slice Xi1··, i1 = 1, . . . , I1, is given by:

Xi1·· = BU
(1)
i1

CT , i1 = 1, . . . I1, (1.11)

where U
(1)
i1

is the i1-th first-mode matrix-slice of the transformed core tensor U (1) ∈
C

I1×Q×R. The other two matrix-slice notations are obtained in a similar way, by
changing the order of the summations in (1.7) and defining

u
(2)
p,i2,r =

Q∑

q=1

bi2,qgp,q,r, u
(3)
p,q,i3

=
R∑

r=1

ci3,rgp,q,r, (1.12)

as scalar component of the transformed core tensors U (2) = [G •2 B] ∈ C
P×I2×R

and U (3) = [G •3 C] ∈ C
P×Q×I3 . This leads to:

X·i2· = CU
(2)
i2

AT , i2 = 1, . . . I2, (1.13)

and
X··i3 = AU

(3)
i3

BT , i3 = 1, . . . I3. (1.14)

Let X1 ∈ C
I3I1×I2 , X2 ∈ C

I1I2×I3 and X3 ∈ C
I2I3×I1 be the first- second- and

third-mode unfolded matrices of X . These matrices are defined as:

X1 =




X··1
...

X··I3


 , X2 =




X1··
...

XI1··


 , X3 =




X·1·
...

X·I2·


 , (1.15)

It can be shown from (1.11), (1.13) and (1.14) that X1, X2 and X3 can be expressed
as:

X1 = (C ⊗ A)G1B
T , X2 = (A ⊗ B)G2C

T , X3 = (B ⊗ C)G3A
T , (1.16)
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where G1 ∈ C
RP×Q, G2 ∈ C

PQ×R and G3 ∈ C
QR×P are unfolded matrices of the

core tensor G, which are constructed in the same fashion as (1.15), i.e.:

G1 =




G··1
...

G··R


 , G2 =




G1··
...

GP ··


 , G3 =




G·1·
...

G·Q·


 , (1.17)

and ⊗ denotes the Kronecker product. Each one of the three unfolded matrices
in (1.16) are different rearrangements of the same information contained in the
tensor X .

N-th order Tucker

The generalization of the Tucker-3 decomposition to the N -th order is straight-
forward. Let us consider a N -th order tensor X ∈ C

I1×I2×···×IN . Its N -th order
Tucker decomposition can be expressed as:

xi1,i2,··· ,iN =

R1∑

r1=1

R2∑

r2=1

· · ·
RN∑

rN=1

a
(1)
i1,r1

a
(2)
i2,r2

· · · a(N)
iN ,rN

gr1,r2,··· ,rN
, (1.18)

where a
(n)
in,rn

= [A(n)]in,rn
is a scalar component of the n-th mode factor matrix and

gr1,r2,··· ,rN
= [G]r1,r2,··· ,rN

is a scalar component of the N -th order core tensor. The
mode-n product notation for (1.18) is written as:

X = G •1 A(1) •2 A(2) · · · •N A(N). (1.19)

Let us go back to the third-order case. The Tucker-3 decomposition is not unique,
since there are infinite solutions for the factor matrices and for the core tensor
leading to the same tensor X . In other words, the Tucker-3 decomposition allows
arbitrary linear transformations on the three factor matrices (provided that the
inverse of these transformations is applied to the core tensor) without affecting
the reconstructed tensor X . In order to see this, let us define nonsingular matrices
Ta ∈ C

P×P , Tb ∈ C
Q×Q and Tc ∈ C

R×R. Considering the unfolded matrix X1, we
have that:

X1 = (CTcT
−1
c ⊗ ATaT

−1
a )G1(BTbT

−1
b )T

= [(CTc) ⊗ (ATa)]
[
(T−1

c ⊗ T−1
a )G1T

−T
b

]
(BTb)

T ,
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i.e.,
X1 = (C̃ ⊗ Ã)G̃1B̃

T , (1.20)

where Ã = ATa, B̃ = BTb and C̃ = CTc are transformed factor matrices and
G̃1 = (T−1

c ⊗ T−1
a )G1T

−T
b is a transformed Tucker-3 core. In (1.20), we have

applied the following property of the Kronecker product:

Property 1.1 : Given A ∈ C
I×R, B ∈ C

J×S, C ∈ C
R×P , and D ∈ C

S×Q, we
have:

AC ⊗ BD = (A ⊗ B)(C ⊗ D). (1.21)

Equation (1.20) means that we have an infinite number of matrices Ã, B̃, C̃
and G̃1 giving rise to the same matrix X1. This fact clearly states the general
nonuniqueness of the Tucker-3 decomposition. Complete uniqueness of the factor
matrices and the core tensor of a Tucker-3 decomposition is only possible in some
special cases, where at least two factor matrices have some special structure that
allows a unique determination of the transformation matrices. It has been shown
that partial uniqueness (i.e., uniqueness of at least some factors) may exist in cases
where the Tucker-3 core tensor is constrained to have several elements equal to
zero [144].

Special cases: Tucker-2 and Tucker-1

Consider a Tucker-3 decomposition and rewrite (1.7) as:

xi1,i2,i3 =
P∑

p=1

Q∑

q=1

ai1,pbi2,q

(
R∑

r=1

ci3,rgp,q,r

)
=

P∑

p=1

Q∑

q=1

ai1,pbi2,qhp,q,i3 , (1.22)

where ci3,r has been absorbed in the core gp,q,r, giving rise to an equivalent core
hp,q,i3 i.e., hp,q,i3 = [G •3 C]p,q,i3 . Equation (1.22) is the scalar notation of an
equivalent Tucker-2 decomposition. Note that the Tucker-2 decomposition is sim-
pler than its Tucker-3 equivalent, since the number of outer product terms has
been reduced to PQ. A Tucker-2 decomposition also arises from a Tucker-3 one
when one of the factor matrices, say C, is equal to the identity matrix. The slice
and unfolded notations for the Tucker-2 case can be easily obtained from (1.11),
(1.13), (1.14) and (1.16) by setting C = II3 and G = H ∈ C

P×Q×I3 . The Tucker-2
decomposition is illustrated in Fig. 1.3.
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Figure 1.3: Visualization of the Tucker-2 decomposition.
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Figure 1.4: Visualization of the Tucker-1 decomposition.

Now, let us rewrite (1.7) as:

xi1,i2,i3 =
P∑

p=1

ai1,p

(
Q∑

q=1

R∑

r=1

bi2,qci3,rgp,q,r

)
=

P∑

p=1

ai1,pfp,i2,i3 , (1.23)

where both bi2,q and ci3,r have been absorbed in the core gp,q,r, resulting in another
core fp,i2,i3 i.e., fp,i2,i3 = [G•2B•3C]p,i2,i3 . Equation (1.23) is the scalar notation of
the Tucker-1 decomposition. A Tucker-1 decomposition also arises from a Tucker-3
one when two factor matrices, say B and C, are equal to the identity matrix. The
slice and unfolded notations for the Tucker-1 case are obtained from (1.11), (1.13),
(1.14) and (1.16) by setting B = II2 , C = II3 and G = F ∈ C

P×I2×I3 . Figure 1.4
illustrates the Tucker-1 decomposition.

1.2.2 Parallel Factor (PARAFAC) decomposition

The PARAllel FACtor (PARAFAC) decomposition, also known as CANonical DE-
COMPosition (CANDECOMP), was independently developed by Harshman [73]
and Carol & Chang [12] in the seventies. It is also known by the acronym CP
(Candecomp-Parafac). Recently, this decomposition has found several applica-
tions in signal processing. Its has been exploited in wireless communications in a
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Figure 1.5: Visualization of the third-order PARAFAC decomposition.

number of different applications such [131, 128, 133, 53]. The PARAFAC decompo-
sition also describes the basic structure of higher-order cumulants of multivariate
data on which all algebraic methods for Independent Component Analysis (ICA)
are based [14, 80, 18].

For a third-order tensor, it is a decomposition of a tensor in a sum of triple products
or triads. PARAFAC can be equivalently stated as a decomposition of a three-way
array in a sum of rank-1 tensors (c.f (1.4)). The PARAFAC decomposition of a
tensor X ∈ C

I1×I2×I3 has the following scalar form:

xi1,i2,i3 =

Q∑

q=1

ai1,qbi2,qci3,q, (1.24)

where ai1,q = [A]i1,q, bi2,q = [B]i2,q and ci3,q = [C]i3,q are scalar components of
factor matrices A ∈ C

I1×Q, B ∈ C
I2×Q and C ∈ C

I3×Q respectively. Q is the
number of factors, also known as the rank of the decomposition. The columns of
the first-, second- and third-factor matrices A, B and C are respectively called
first-, second- and third-mode factor loadings. Other synonyms for the columns of
A, B and C are loading patterns or loading vectors.

Using outer product notation, the third-order PARAFAC decomposition of X can
be written as:

X =

Q∑

q=1

A·q ◦ B·q ◦ C·q.

In Fig. 1.5, a third-order PARAFAC decomposition is visualized as a sum of
Q rank-1 tensors. A different visualization is depicted in Fig. 1.6, where the
PARAFAC decomposition is interpreted as a special Tucker-3 decomposition with
an identity core tensor.
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Figure 1.6: Visualization of the third-order PARAFAC decomposition as a
special case of the Tucker-3 decomposition.

From the three possible slicing directions of X , we get the following notation for
the PARAFAC decomposition:

Xi1·· = BDi1(A)CT ,

X·i2· = CDi2(B)AT ,

X··i3 = ADi3(C)BT , (1.25)

where Di1(A) forms a diagonal matrix holding the i1-th row of A ∈ C
I1×Q on its

main diagonal.

By stacking row-wise the first-, second- and third-mode slices we have:

X1 =




X··1
...

X··I3


 =




AD1(C)
...

ADI3(C)


BT = (C ⋄ A)BT ,

X2 =




X1··
...

XI1··


 =




BD1(A)
...

BDI1(A)


CT = (A ⋄ B)CT ,

X3 =




X·1·
...

X·I2·


 =




CD1(B)
...

CDI2(B)


AT = (B ⋄ C)AT , (1.26)

where ⋄ denotes the Khatri-Rao (column-wise Kronecker) product.

One of the most interesting properties of PARAFAC is its uniqueness. Contrarily
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to bilinear (matrix) decompositions, which are in general not unique for ranks
greater than one (rank-one matrices are unique up to a scalar factor), the PARA-
FAC decomposition of tensors of rank greater than one can be unique up to scaling
and permutation of factors.

The first uniqueness studies of the PARAFAC decomposition were done in the se-
venties by Jennrich and Harshman [73, 74]. The deepest formal uniqueness proof
was provided by Kruskal in [90]. Kruskal derived sufficient conditions for uni-
queness of third-order PARAFAC decompositions of real-valued tensors. Around
two decades later, Sidiropoulos et al [131] extended Kruskal condition to complex-
valued tensors. Sidiropoulos & Bro [127] further generalized Kruskal’s uniqueness
condition to N -th order tensors. In [147], ten Berge and Sidiropoulos showed that
Kruskal’s condition is not only sufficient but also necessary for Q ∈ {2, 3}. Further
PARAFAC uniqueness issues were addressed by Jiang & Sidiropoulos in [82], who
derived necessary and sufficient conditions for uniqueness of the so-called restricted
PARAFAC model (i.e., when at least one factor matrix is full column-rank). A
more accessible proof of uniqueness is provided in [136] using conventional linear al-
gebra. In [52], a new uniqueness bound that is more relaxed than Kruskal bound,
is derived from a link between the PARAFAC decomposition and simultaneous
matrix decompositions.

The study of the PARAFAC uniqueness condition is based on a fundamental
concept, which is the concept of k-rank (Kruskal -rank), which is more restric-
ted than the usual concept of matrix rank. The k-rank concept was proposed by
Kruskal in his seminal paper [90], although the term “Kruskal -rank” was first used
by Harshman and Lundy [75]. The k-rank concept has been extensively used as a
key concept for stating PARAFAC uniqueness.

Definition 1.10 (k-rank): The rank of A ∈ C
I1×Q, denoted by rA, is equal to r

iff A contains at least a set of r linearly independent columns but no set of r + 1
linearly independent columns. The Kruskal-rank (or k-rank) of A is the maximum
number k such that every set of k columns of A is linearly independent. Note that
the k-rank is always less than or equal to the rank, and we have:

kA ≤ rA ≤ min(I1, Q).

Theorem 1.1 (uniqueness) [90]: Consider the set of I1 matrix-slices Xi1·· =
BDi1(A)CT , i1 = 1, · · · , I1, defined in (1.25). If

kA + kB + kC ≥ 2Q + 2, (1.27)

the matrices A, B and C are unique up to permutation and (complex) scaling of
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its columns [90, 131]. This means that any matrices Ã, B̃ and C̃ satisfying (1.25)
are linked to A, B and C by:

Ã = AΠ∆1, B̃ = BΠ∆2, C̃ = CΠ∆3, (1.28)

where Π is a permutation matrix and ∆1, ∆2 and ∆3 are diagonal matrices sa-
tisfying the condition

∆1∆2∆3 = IQ. (1.29)

Condition (1.27) is also necessary if Q ≤ 3. However, ten Berge & Sidiropoulos
provided in [147] a simple counter-example to the necessity of (1.27). They also
claimed that the uniqueness of PARAFAC depends on the particular joint pat-
tern of zeros in the factor matrices. This was better explained and clarified by
Jiang & Sidiropoulos in [82]. They provided both necessary and sufficient unique-
ness conditions for PARAFAC, when one factor matrix is full column-rank. This
justified the examples shown in [147].

Theorem 1.2 [132, 126]: For general PARAFAC decompositions with Q > 1, two
necessary conditions for uniqueness are:

min(rA⋄B, rB⋄C, rC⋄A) = Q and min(kA, kB, kC) ≥ 2. (1.30)

Conditions (1.30) can be interpreted in the following manner. Note that rA⋄B ≤
min(I1I2, Q), rB⋄C ≤ min(I2I3, Q) and rC⋄A ≤ min(I1I3, Q). Note also that the
meaning of kA ≥ 2 is that matrix A has no proportional columns (otherwise
kA = 1, according to the definition of k-rank). It is thus equivalent to state that,
uniqueness arises only if: i) the product of any two dimensions of the tensor is at
least equal to the number of factors and ii) none of the three factor matrices is
allowed to have a pair of proportional columns.

It was shown in [82] that (1.30) is a necessary and sufficient condition if one factor
matrix is full column-rank. Assuming for instance, that C is full column-rank i.e.,
rC = Q, it is easily checked that condition (1.30), can be equivalently stated as:

rA⋄B = Q and min(kA, kB) ≥ 2, (1.31)

which means that PARAFAC is unique if and only if the Khatri-Rao product A⋄B
is full column-rank and ii) neither A nor B has a pair of proportional columns. In
[82], it was also proposed an equivalent necessary and sufficient condition, which is
valid for general PARAFAC decompositions and is also easier to verify than (1.30)
and (1.31).
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As will be shown later, uniqueness of at least a subset of PARAFAC factors is
possible, even in cases where (a maximum of) two factor matrices have proportional
columns. Uniqueness of at least a subset of factors in one or more modes is called
partial uniqueness. It was first observed by Harshman [73, 74], who pointed out
that PARAFAC uniqueness can break down in “parts”. This concept is useful
for studying uniqueness properties of some special PARAFAC models exhibiting
proportional factors in one or more modes.

N-th order PARAFAC

The PARAFAC decomposition of a tensor X ∈ C
I1×I2×···×IN can be stated as:

xi1,i2,··· ,iN =

Q∑

q=1

a
(1)
i1,qa

(2)
i2,q · · · a

(N)
iN ,q =

Q∑

q=1

N∏

n=1

a
(n)
in,q, (1.32)

where a
(n)
in,q = [A(n)]in,q, in = 1, . . . , In, n = 1, . . . , N . Model (1.32) is a Q-factor

sum of N -fold products. In [127], Sidiropoulos & Bro provided a sufficient unique-
ness condition for N -th order PARAFAC:

N∑

n=1

kA(n) ≥ 2Q + (N − 1). (1.33)

For the N -th order case, necessary conditions follow directly from those of the
third-order case, given in (1.30). However, the existence of a necessary and suffi-
cient condition for uniqueness is not well established in the literature.

1.2.3 Alternating Least Squares (ALS) algorithm

The estimation of the three factor matrices of the PARAFAC decomposition is
generally carried out by minimizing the following nonlinear quadratic cost function:

f(A,B,C) =
∥∥∥X −

Q∑

q=1

A·q ◦ B·q ◦ C·q.
∥∥∥

2

F
. (1.34)

The Alternating Least Squares (ALS) algorithm is the classical solution to mini-
mize this cost function [7, 131, 135]. It is an iterative algorithm that alternates
among the estimation of A, B and C. In other words, the ALS algorithm converts
a nonlinear (in fact, trilinear) optimization problem into three independent linear
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Least Squares (LS) problems.

Each iteration is composed of three LS estimation steps. At each step, one factor
matrix, say, A is updated while the two others (B and C) are fixed to their values
obtained in previous estimation steps. The algorithm makes use of the Khatri-Rao
factorizations of the unfolded matrices X1, X2 and X3 given in (1.26). It can be
summarized as follows:

1. Set i = 0;
Randomly initialize B̂(i=0) and Ĉ(i=0);

2. i = i + 1;

3. From X3 and using B̂(i−1) and Ĉ(i−1), find an estimate of A by solving the
following LS problem:

Â(i) = argmin
A

∥∥∥X3 −
(
B(i−1) ⋄ C(i−1)

)
AT

∥∥∥
2

F
,

the solution of which is given by:

ÂT
(i) =

(
B̂(i−1) ⋄ Ĉ(i−1)

)†

X3;

4. From X1, and using Â(i) and Ĉ(i−1), find an estimate of B by solving the
following LS problem:

B̂(i) = argmin
B

∥∥∥X1 −
(
C(i−1) ⋄ A(i)

)
BT

∥∥∥
2

F
,

the solution of which is given by:

B̂T
(i) =

(
Ĉ(i−1) ⋄ Â(i)

)†

X1;

5. From X2, and using Â(i) and B̂(i), find an estimate of C by solving the
following LS problem:

Ĉ(i) = argmin
C

∥∥∥X2 −
(
A(i) ⋄ B(i)

)
CT

∥∥∥
2

F
,

the solution of which is given by:

ĈT
(i) =

(
Â(i) ⋄ B̂(i)

)†

X2;

6. Repeat steps 2-5 until convergence.

The convergence at the i-th iteration is declared when the error between the true
tensor and its reconstructed version from the estimated factor matrices does not
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significantly change between iterations i and i + 1. An error measure at the i-th
iteration can be calculated from the following formula:

e(i) =
∥∥X1 −

(
C(i) ⋄ A(i)

)
BT

(i)

∥∥
F
.

The convergence at the i-th iteration can be declared when ‖e(i+1) − e(i)‖ < δ,
where δ is a prescribed threshold value (e.g. δ = 10−6).

The conditional update of any given matrix may either improve or maintain but
cannot worsen the current fit. The algorithm always monotonically converges to
(at least) a local minimum. However, the ALS algorithm is strongly dependent on
the initialization, and convergence to the global minimum can sometimes be slow.
Moreover, the convergence of the algorithm can, in some cases, fall in regions
of “swamps”, during which the convergence speed is very small and the error
between two consecutive iterations does not decrease. In this case, for avoiding
a premature termination of the algorithm, it is a common practice to impose a
minimum acceptable error value e(i), above which the global convergence is not
assumed to be reached yet (even when ‖e(i+1) − e(i)‖ < δ).

Alternative algorithms and methods

Several variants of the ALS algorithm have been proposed in the literature. See
[61] for a critical review on some alternative algorithms. In order to alleviate the
slow convergence problems caused by a random initialization of the algorithm,
an eigenanalysis solution can be used [121, 91, 131]. This solution is also known
as the direct trilinear decomposition in [121]. It consists in obtaining an initial
estimate of the factor matrices of the decomposition by constructing a generalized
eigenvalue problem (or joint diagonalization problem) from two slices of the tensor.
The eigenanalysis based initialization, in addition to be limited to tensors with
only two slices in one of the modes, requires that both two factor matrices are
full column rank and the third one does not contain zero elements. The work
[52] proposes a generalization of the eigenanalysis solution to tensors with more
than two slices by linking the estimation of the PARAFAC factor matrices to the
problem of simultaneous matrix diagonalization.

Another way of improving the speed of the ALS algorithm is based on the Tucker-
3 compression method (see [3, 9] for details). This method is useful when the
dimensions of the tensor are large. [131] proposes an algorithm to accelerate the
ALS convergence This algorithm applies the Tucker-3 compression method followed
by an eigenanalysis based initialization. The convergence of the ALS algorithm
can also be improved by means of the so called Enhanced Line Search (ELS)
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method [117]. The ELS method has shown to be useful when the decomposition
of the tensor is affected by factor degeneracies. The ELS method was also used
for estimating the factors of block tensor decompositions in [111]. A Levenberg-
Marquadt method is proposed in [110].

1.2.4 Connection between PARAFAC and Tucker-3

Although Tucker-3 and PARAFAC are conceptually different tensor decomposi-
tions, it is possible to approach them in some sense. In other words, PARAFAC
can be interpreted as a special case of Tucker-3 as well as Tucker-3 can be viewed as
a constrained version of PARAFAC. This indicates that both decompositions could
in principle be applied to model the same tensor data, although their computation
is different.

Conceptual equivalences between Tucker-3 and PARAFAC were well described and
discussed by Harshman in [73]. He also pointed out that not only PARAFAC can be
equivalently stated as a special Tucker-3 and vice-versa, but both can be combined
in different ways, resulting in hybrid decompositions that simultaneously enjoy
properties of Tucker-3 and PARAFAC. This combination can be useful in cases
where one is interested in characterizing/modeling tensors with a more complex
inherent structure.

Going back to the Tucker-3 model (1.7) and considering that P = Q = R, we
have:

xi1,i2,i3 =
P∑

p=1

Q∑

q=1

R∑

r=1

ai1,pbi2,qci3,rgp,q,r =

Q∑

q=1

ai1,qbi2,qci3,qgq,q,q. (1.35)

Note that we fall into the standard PARAFAC model when gq,q,q = δq,q,q. In other
words, third-order PARAFAC is a special case of Tucker-3 with a “superdiagonal”
core tensor G = IQ, having zeros in all positions except in the main superdiagonal,
which has all elements equal to one. IQ is called the identity tensor. Note that
the elements in the superdiagonal of gq,q,q need not to be restricted to one, since
one can always absorb gq,q,q in any of the three factor matrices and still have an
equivalent PARAFAC representation as a special case. Uniqueness in this special
case is possible, provided that the necessary and sufficient conditions of PARAFAC
are satisfied.

Now, let us go in the opposite direction and show how Tucker-3 decomposition
can be interpreted as a constrained PARAFAC one. Rewrite (1.7) in its equivalent
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Tucker-2 form (1.22):

xi1,i2,i3 =
P∑

p=1

Q∑

q=1

ai1,pbi2,qhp,q,i3 , (1.36)

with hp,q,i3 = [G •3 C]p,q,i3 . Define C̃ ∈ C
I3×PQ as an unfolded matrix of the

equivalent core tensor hp,q,i3 , in the following manner:

c̃i3,p,q = [C̃]i3,(q−1)P+p. (1.37)

Define also augmented factor matrices Ã ∈ C
I1×PQ and B̃ ∈ C

I2×PQ as:

Ã = [A, . . . ,A︸ ︷︷ ︸
Q times

], B̃ = [B·1, . . . ,B·1︸ ︷︷ ︸
P times

, . . . ,B·Q, . . . ,B·Q︸ ︷︷ ︸
P times

], (1.38)

where Ã is a concatenation of Q identical matrices A while B̃ is a matrix where
each column of B, denoted by B·q, q = 1, . . . , Q, is repeated P times. Taking
these definitions into account, a Tucker-3 decomposition can be represented by
the following third-order PARAFAC decomposition of F = PQ factors:

xi1,i2,i3 =
F∑

f=1

ãi1,f b̃i2,f c̃i3,f , (1.39)

where the first- and second-mode factors ãi1,f = [Ã]i1,f and b̃i2,f = [B̃]i2,f , are
constrained in the following form:

[Ã]i1,(q−1)P+p = [A]i1,p,

[B̃]i2,(q−1)P+p = [B]i2,q, (1.40)

where f = (q − 1)P + p, p = 1, . . . , P, q = 1, . . . , Q. Hence, a Tucker-3 de-
composition can always be embedded in an equivalent PARAFAC one, where the
first- and second-mode factor matrices have repeated loading vectors while the
third-mode factor matrix is an unfolded matrix of an equivalent Tucker-3 core.
The repetition patterns on Ã and B̃ are given by (1.40). They produce all pos-
sible combinations of outer product factors necessary to completely characterize
the Tucker-3 interaction structure.

The equivalent PARAFAC decomposition (1.39) is not unique in general, since
uniqueness does not admit a pair of proportional columns in any of the factor
matrices. Both Ã and B̃ are such that k

Ã
= k

B̃
= 1 and the necessary condition
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(1.30) fails to prove uniqueness. Therefore, any PARAFAC representation of a
general Tucker-3 structure will show the same indeterminacies as the Tucker-3
representation.

1.2.5 Tensor decomposition in block terms

A tensor decomposition in block terms consists in decomposing a tensor “block”
into a sum of “blocks” of smaller mode-n ranks [50, 51]. Block term decompositions
cover both PARAFAC and Tucker-type decompositions as particular cases.

In its general formulation, the decomposition of a third-order tensor X ∈ C
I1×I2×I3

into a sum of F tensor blocks, where the core tensor of each block has mode-1,
mode-2 and mode-3 ranks equal to P , Q and R, respectively, is given by:

xi1,i2,i3 =
F∑

f=1

P∑

p=1

Q∑

q=1

R∑

r=1

a
(f)
i1,pb

(f)
i2,qc

(f)
i3,rg

(f)
p,q,r, (1.41)

or, equivalently:

X =
F∑

f=1

G(f) •1 A(f) •2 B(f) •3 C(f), (1.42)

where G(f) ∈ C
P×Q×R is a rank-(P, Q, R) core tensor, and A(f) ∈ C

I1×P ,
B(f) ∈ C

I2×Q and C(f) ∈ C
I3×R are the factor matrices associated with the f -th

decomposed tensor block. Note that (1.41) (resp. (1.42)) is a direct generalization
of (1.7) (resp. (1.8)) by assuming F > 1 blocks. Therefore, block term decompo-
sitions of third-order tensors are generalized (block) Tucker-3 decompositions. An
illustration of the block term decomposition is provided in Figure 1.7.
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Figure 1.7: Visualization of the tensor decomposition in block terms.

The matrix-slices X··i1 , i1 = 1, . . . , I1 ,X··i2 , i2 = 1, . . . , I2, X··i3 , i3 = 1, . . . , I3, are
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constructed in a similar way as for the Tucker-3 decomposition (c.f. Section 1.2.1):

Xi1·· =
F∑

f=1

B(f)U
(1,f)
i1

C(f)T , i1 = 1, . . . I1,

X·i2· =
F∑

f=1

C(f)U
(2,f)
i2

A(f)T , i2 = 1, . . . I2,

X··i3 =
F∑

f=1

A(f)U
(3,f)
i3

B(f)T , i3 = 1, . . . I3, (1.43)

i.e.
Xi1·· = BU

(1)
i1

CT , X·i2· = CU
(2)
i2

AT , X··i3 = AU
(3)
i3

BT , (1.44)

where

[U
(1,f)
i1

]
q,r

= [G(f) •1 A(f)]i1,q,r,

[U
(2,f)
i2

]
p,r

= [G(f) •2 B(f)]p,i2,r,

[U
(3,f)
i3

]
p,q

= [G(f) •3 C(f)]p,q,i3
, (1.45)

are respectively, the first-, second- and third-mode combined/transformed cores,
associated with the f -th block, and

A =
[
A(1) · · ·A(F )

]
∈ C

I1×FP ,

B =
[
B(1) · · ·B(F )

]
∈ C

I2×FQ,

C =
[
C(1) · · ·C(F )

]
∈ C

I3×FR (1.46)

are the first-, second, and third-mode block-factor matrices. The unfolded matrices
X1, X2 and X3 are given by:

X1 = (C |⊗| A)blockdiag
(
G

(1)
1 · · ·G(F )

1

)
BT ,

X2 = (A |⊗| B)blockdiag
(
G

(1)
2 · · ·G(F )

2

)
CT ,

X3 = (B |⊗| C)blockdiag
(
G

(1)
3 · · ·G(F )

3

)
AT , (1.47)

where |⊗| denotes the block-wise Kronecker product, and G
(f)
1 ∈ C

RP×Q, G
(f)
2 ∈

C
PQ×R and G

(f)
3 ∈ C

QR×P are the unfolded matrices of the core tensor G(f), which
are constructed as in (1.17).

Depending on the mode-n ranks of the tensor blocks G(1), . . . ,G(F ), special block
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term decompositions are possible. Among them, the most used are the decompo-
sition in rank-(P, P, 1) terms and the type-2 decomposition in rank-(P,Q, ·) terms
[50, 51]. These decompositions have found applications in blind deconvolution of
DS-CDMA signals [47, 48, 109, 111].

Some uniqueness results for block term decompositions have been obtained recently
in [50, 51]. They capitalize on the concept of k′-rank, which is a generalization of
the k-rank for block-matrices [47]. The generalization of the uniqueness proof for
PARAFAC in [90] for block term decompositions relies on the so-called “generalized
equivalence lemma” [50, 51].

1.3 Block-constrained PARAFAC

We now present a new tensor decomposition also mixing some properties of PARA-
FAC and Tucker-3 decompositions. This decomposition is called block-constrained
PARAFAC [30]. It consists in decomposing a third-order tensor into a sum of Q
“structured” PARAFAC blocks. Within each block, a constrained pattern of linear
combinations or interactions involving columns of the three component matrices is
permitted. The interaction structure within each block may differ from one block
to another, and is characterized by two fixed constraint matrices.

For a third-order tensor X ∈ C
I1×I2×I3 , we consider the following decomposition:

xi1,i2,i3 =

Q∑

q=1

R
(q)
1∑

r
(q)
1 =1

R
(q)
2∑

r
(q)
2 =1

a
(q)

i1,r
(q)
1

b
(q)

i2,r
(q)
2

c
(q)

r
(q)
1 ,r

(q)
2 ,i3

. (1.48)

xi1,i2,i3 is decomposed into a sum of Q trilinear blocks, every block being itself

the sum of R
(q)
1 R

(q)
2 triple products. In the composition of the full tensor, a

(q)

i1,r
(q)
1

contributes R
(q)
2 times, b

(q)

i2,r
(q)
2

contributes R
(q)
1 times, and c

(q)

r
(q)
1 ,r

(q)
2 ,i3

contributes

R
(q)
1 R

(q)
2 times.

Let us define two sets of matrices:

{A(q)} ∈ C
I1×R

(q)
1 , {B(q)} ∈ C

I2×R
(q)
2

and a set of Q third-order tensors {C(q)} ∈ C
R

(q)
1 ×R

(q)
2 ×I3 with typical elements



1.3 BLOCK-CONSTRAINED PARAFAC 39

given, respectively by:

a
(q)

i1,r
(q)
1

= [A(q)]
i1,r

(q)
1

, b
(q)

i2,r
(q)
2

= [B(q)]
i2,r

(q)
2

, c
(q)

r
(q)
1 ,r

(q)
2 ,i3

= [C(q)]
r
(q)
1 ,r

(q)
2 ,i3

.

Define also a set of Q matrices {C(1), . . . ,C(Q)} ∈ C
I3×R

(q)
1 R

(q)
2 in the following way:

[C(q)]
i3,(r

(q)
1 −1)R

(q)
2 +r

(q)
2

= c
(q)

r
(q)
1 ,r

(q)
2 ,i3

, q = 1, . . . , Q,

where the q-th matrix C(q) is linked to tensor C(q) by:

C(q) =
[
vec(C

(q)T
··1 ) · · · vec(C

(q)T
··I3

)
]T

,

C
(q)
··i3

∈ C
R

(q)
1 ×R

(q)
2 being the i3-th matrix slice of C(q), i3 = 1, . . . , I3. The matrix

slices X··i3 ∈ C
I1×I2 of X can be expressed in PARAFAC-based form as [40]:

X··i3 =

Q∑

q=1

(A(q) ⊗ 1T

R
(q)
2

)Di3(C
(q))(1T

R
(q)
1

⊗ B(q))T . (1.49)

Using property (1.21), we obtain the following equivalences:

A(q) ⊗ 1T

R
(q)
2

= (A(q) ⊗ 1)(I
R

(q)
1

⊗ 1T

R
(q)
2

) = A(q)(I
R

(q)
1

⊗ 1T

R
(q)
2︸ ︷︷ ︸

Ψ(q)

) = A(q)Ψ(q),

and

1T

R
(q)
1

⊗ B(q) = (1 ⊗ B(q))(1T

R
(q)
1

⊗ I
R

(q)
2

) = B(q)(1T

R
(q)
1

⊗ I
R

(q)
2︸ ︷︷ ︸

Φ(q)

) = B(q)Φ(q),

where
Ψ(q) = I

R
(q)
1

⊗ 1T

R
(q)
2

, Φ(q) = 1T

R
(q)
1

⊗ I
R

(q)
2

(1.50)

are constraint matrices that model interactions or linear combinations of factors
of different modes within the q-th block. They have dimensions R

(q)
1 × R

(q)
1 R

(q)
2

and R
(q)
2 × R

(q)
1 R

(q)
2 , respectively. These definitions allow us to rewrite (1.49) as:

X··i3 =

Q∑

q=1

A(q)Ψ(q)Di3(C
(q))(B(q)Φ(q))T . (1.51)

Figure 1.8 illustrates the block-constrained PARAFAC decomposition in slice form.
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Figure 1.8: Visualization of the block-constrained PARAFAC decomposition.

Now, let us define the following block-matrices:

A = [A(1), . . . ,A(Q)] ∈ C
I1×R1

B = [B(1), . . . ,B(Q)] ∈ C
I2×R2

C = [C(1), . . . ,C(Q)] ∈ C
I3×R3 ,

where we have defined

R1 =

Q∑

q=1

R
(q)
1 , R2 =

Q∑

q=1

R
(q)
2 , R3 =

Q∑

q=1

R
(q)
1 R

(q)
2 . (1.52)

Define also block-diagonal constraint matrices as:

Ψ = blockdiag(Ψ(1) · · ·Ψ(Q)) (R1 × R3)

Φ = blockdiag(Φ(1) · · ·Φ(Q)) (R2 × R3). (1.53)

Taking these definitions into account, (1.51) can be expressed in a compact matrix-
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slice form as:
X··i3 = AΨDi3(C)(BΦ)T . (1.54)

By comparing (1.25) and (1.54), we deduce the following correspondences:

A → AΨ, B → BΦ, C → C.

Hence, by analogy with (1.26), Xi=1,2,3 can be written as:

X1 = (C ⋄AΨ)(BΦ)T , X2 = (AΨ ⋄BΦ)CT , X3 = (BΦ ⋄C)(AΨ)T . (1.55)

The demonstration of (1.55) is provided in Appendix A.

From the previous equations and definitions, the following can be said about this
tensor decomposition:

• It is the factorization of a third-order tensor into a sum of Q structu-
red/constrained PARAFAC blocks, everyone of them being a function of
three component matrices A(q),B(q) and C(q). Each component matrix mo-
dels the variation of the tensor data along one dimension or mode.

• Within the same constrained PARAFAC block, it is permitted that columns
of different component matrices are linearly combined to generate the tensor
data. The term interaction is used to denote such a linear combination.

• The interaction patterns within a block are modeled by the constraint ma-
trices Ψ(q) and Φ(q), which may differ from block to block.

• When the computation of the decomposition is performed, the term between-
block resolution is a synonym of separability of the Q blocks, while the term
within-block uniqueness stands for a unique determination of the three com-
ponent matrices of the corresponding block (up to permutation and scaling).
It depends on the particular interaction structure of each block.

Note that (1.51) can be interpreted as a structured PARAFAC model [73, 12] with
augmented component matrices AΨ, BΦ and C. It is also worth noting that
the within-block structure of block-constrained PARAFAC is similar to that of
the PARALIND (PARAllel profiles with LINear Dependencies) model proposed in
[10]. The proposed approach is more general, since it considers multiple constrai-
ned blocks, each one with its own interaction structure. The block-constrained
PARAFAC model can also be linked to Tucker-2 and Tucker-3 analysis [148, 8].
From the scalar notation (1.48), it is easy to conclude that this model naturally
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takes the form of a sort of “block-Tucker-2” decomposition with variable within-
block interaction structure. It can also be interpreted as a constrained Tucker-3
decomposition [87, 147]. The block-constrained PARAFAC decomposition can be
written as a constrained decomposition in block terms (c.f 1.2.5), where each block
is constrained to have 1’s and 0’s, possibly having a different constrained structure.

1.3.1 N-th order generalization

The generalization of the block-constrained PARAFAC decomposition to a N -th
order tensor is relatively straightforward. For a tensor X ∈ C

I1×I2×···×IN , it can be
stated as:

xi1,...,iN =

Q∑

q=1

R
(q)
1∑

r
(q)
1 =1

· · ·
R

(q)
N−1∑

r
(q)
N−1=1

(
N−1∏

n=1

a
(n,q)

in,r
(q)
n

)
g

(q)

r
(q)
1 ,...,r

(q)
N−1,iN

(1.56)

where a
(n,q)

in,r
(q)
n

= [A(n,q)]
in,r

(q)
n

, in = 1, . . . , In, n = 1, . . . , N − 1, q = 1, . . . , Q, is the

n-th mode factor matrix of the q-th block, while g
(q)

r
(q)
1 ,...,r

(q)
N−1,iN

is the N -th mode

factor matrix of q-th block. Model (1.56) is a sum of Q tensor blocks of N -th order,

each one being a sum of
N−1∏
n=1

R
(q)
n outer products. The strength (or weight) of each

outer product contribution is given by the corresponding value of g
(q)

r
(q)
1 ,...,r

(q)
N−1,iN

.

1.3.2 Block-constrained Tucker-3 writing

Recall the expression for X2 in (1.55), and consider the following property of the
Khatri-Rao product:

Property 1.2 : Given A ∈ C
I×R, B ∈ C

J×S, C ∈ C
R×P , and D ∈ C

S×P , we
have:

AC ⋄ BD = (A ⊗ B)(C ⋄ D). (1.57)

Property 1.3 : Given block-partitioned matrices:

A = [A(1) · · ·A(Q)] ∈ C
I×R, B = [B(1) · · ·B(Q)] ∈ C

J×S,

C = [C(1) · · ·C(Q)] ∈ C
R×P , D = [D(1) · · ·D(Q)] ∈ C

S×P ,
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where

R =

Q∑

q=1

Rq, S =

Q∑

q=1

Sq,

and A(q) ∈ C
I×Rq , B(q) ∈ C

J×Sq , C(q) ∈ C
Rq×P , D(q) ∈ C

Sq×P , we have:

AC ⋄ BD = (A |⊗| B) · blockdiag(C(1) ⋄ D(1) · · ·C(Q) ⋄ D(Q)). (1.58)

Using property (1.58), we can rewrite (1.55) in the following manner:

X2 = (AΨ ⋄ BΦ)CT = (A |⊗| B)F (Ψ,Φ)CT , (1.59)

where A |⊗| B denotes the block-wise Kronecker product, and F (Ψ,Φ) is given
by:

F (Ψ,Φ) = blockdiag(Ψ(1) ⋄ Φ(1) · · ·Ψ(Q) ⋄ Φ(Q)). (1.60)

Note that:

Ψ(q) ⋄ Φ(q) = (I
R

(q)
1

⊗ 1T

R
(q)
2

) ⋄ (1T

R
(q)
1

⊗ I
R

(q)
2

)

= I
R

(q)
3

⋄ 1T

R
(q)
3

= I
R

(q)
3

, (1.61)

where R
(q)
3 = R

(q)
1 R

(q)
2 , yielding:

F (Ψ,Φ) = blockdiag(I
R

(1)
3

, · · · , I
R

(Q)
3

) = IR3 (1.62)

and consequently:
X2 = (A |⊗| B)G2C

T , G2 = IR3 . (1.63)

Equation (1.63) is an unfolded matrix of a special block-Tucker-3 model, where
the associated unfolded block-core G2 is equal to the identity matrix. Working
similarly on the other unfolded matrices

X1 = (C ⋄ AΨ)ΦTBT , X3 = (BΦ ⋄ C)ΨTAT , (1.64)

we arrive at the two other block-Tucker-3 unfolded matrices:

X1 = (C |⊗| A)G1B
T , X3 = (B |⊗| C)G3A

T , (1.65)
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where the unfolded block-core representations G1 and G3 are given by:

G1 = blockdiag(G
(1)
1 , . . . ,G

(Q)
1 ) ∈ C

R
′

×R2 , G
(q)
1 = (I

R
(q)
3

⋄ Ψ(q))Φ(q)T (1.66)

G3 = blockdiag(G
(1)
3 , . . . ,G

(Q)
3 ) ∈ C

R
′′

×R1 , G
(q)
3 = (Φ(q) ⋄ I

R
(q)
3

)Ψ(q)T (1.67)

where R
′

=
Q∑

q=1

R
(q)
1 R

(q)
3 and R

′′

=
Q∑

q=1

R
(q)
2 R

(q)
3 . The visualization of the equivalent

block-constrained Tucker-3 decomposition is provided in Fig. 1.9.
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Figure 1.9: Interpretation of the block-constrained PARAFAC decomposition
as a block-constrained Tucker-3 decomposition.

1.3.3 Necessary uniqueness condition

Theorem 1.3 (necessary condition for uniqueness): Consider the set of unfolded
representations (1.55) for the block-constrained PARAFAC decomposition. Assume
that the matrices A ∈ C

I1×R1, B ∈ C
I2×R2 and C ∈ C

I3×R3 are full rank. For the
uniqueness of the decomposition in the Least Squares (LS) sense, the three following
inequalities must hold:

I1I3 ≥ R2, I1I2 ≥ R3, I2I3 ≥ R1. (1.68)

In this case, there are nonsingular block-diagonal transformation matrices

Ta = blockdiag(T(1)
a , . . . ,T(Q)

a ),

Tb = blockdiag(T
(1)
b , . . . ,T

(Q)
b ),

Tc = blockdiag(T(1)
c , . . . ,T(Q)

c ), (1.69)
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satisfying:

(T(q)
a ⊗ T

(q)
b )

−1
= T(q)T

c , q = 1, . . . , Q, (1.70)

such that A = ATa, B = BTb and C = CTc give rise to the same matrices
{X}i=1,2,3.

Proof : First of all, let us rewrite the three unfolded matrices of the received signal
(1.55) in the following equivalent manner:

X1 = Z1

(
C,A

)
BT , X2 = Z2

(
A,B

)
CT , X3 = Z3

(
B,C

)
AT . (1.71)

where

Z1

(
C,A

)
= (C ⋄ AΨ)ΦT ∈ C

I1I3×R2 ,

Z2

(
A,B

)
= (AΨ) ⋄ (BΦ) ∈ C

I1I2×R3 ,

Z3

(
B,C

)
= (BΦ ⋄ C)ΨT ∈ C

I2I3×R1 . (1.72)

From (1.71), B is identifiable in the LS sense if and only if Z1

(
C,A

)
admits a

unique left pseudo-inverse, i.e. if it does not exist Y belonging to the kernel K(Z1)
such that Z1(Y + BT ) = Z1B̃

T . From the rank theorem, we have:

dim
(
K(Z1)

)
= 0 ⇒ rank(Z1) = R2,

which means that Z1 is full column-rank. Moreover, as we have rank(Z1) ≤
min(I1I3, R2), it follows that I1I3 ≥ R2, i.e. Z1 is tall. Applying the same rea-
soning to C and A in X2 = Z2

(
A,B

)
CT and X3 = Z3

(
B,C

)
AT , we obtain the

inequalities I1I2 ≥ R3 and I2I3 ≥ R1, respectively.

Now, we prove the relation (1.70). First, it should be noted that the non-singularity
of Ta,Tb and Tc comes from the full-rank assumption for A, B and C. Inserting
the block-diagonal matrices TaT

−1
a = IR1 , TbT

−1
b = IR2 and TcT

−1
c = IR3 in the

unfolded representation X2 of (1.59), and then using (1.60)-(1.62), we get:

X2 =
(
ATaT

−1
a Ψ ⋄ BTbT

−1
b Φ

)
T−T

c TT
c CT

=
(
Ã |⊗| B̃

)
blockdiag

(
(T−1

a Ψ ⋄ T−1
b Φ)T−T

c

)
C̃T

=
(
Ã |⊗| B̃

)
blockdiag

((
T(1)

a |⊗| T(1)
b

)−1
, . . . ,

(
T(Q)

a |⊗| T(Q)
b

)−1
)

F (Ψ,Φ)︸ ︷︷ ︸
IR3

T−T
c CT

=
(
Ã |⊗| B̃

)
G̃2C̃

T . (1.73)
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where

G̃2 = blockdiag
((

T(1)
a

)−1 ⊗
(
T

(1)
b

)−1
, . . . ,

(
T(Q)

a

)−1 ⊗
(
T

(Q)
b

)−1
)
T−T

c .

Comparing (1.73) with (1.63), we deduce that we must have:

G̃
(q)
2 =

(
(T(q)

a )−1 ⊗ (T
(q)
b )−1

)(
T(q)

c

)−T
= I

R
(q)
1 R

(q)
2

, q = 1, . . . , Q.

which implies that:

(
T(q)

a ⊗ T
(q)
b

)−1
=

(
T(q)

c

)T
, q = 1, . . . , Q. ¥ (1.74)

In the special case R
(1)
1 = · · ·R(Q)

1 = R1 and R
(1)
2 = · · ·R(Q)

2 = R2, condition (1.68)
can be rewritten as:

I1I2 ≥ QR1R2, I1I3 ≥ QR2, I2I3 ≥ QR1,

which is equivalent to:

min

(⌊ I1I2

R1R2

⌋
,
⌊I1I3

R2

⌋
,
⌊I2I3

R1

⌋)
≥ Q, (1.75)

where ⌊x⌋ is the “floor” operator that rounds x to the nearest smaller integer. This
condition guarantees between-block uniqueness of block-constrained PARAFAC.
Note that, for R1 = R2 = 1, condition (1.75) reduces to the necessary uniqueness
conditions for standard PARAFAC [132].

The block-diagonal structure of Ta, Tb and Tc means that rotational freedom is
confined within the blocks. In other words, the block-constrained PARAFAC de-
composition has between-block uniqueness. Within-block non-uniqueness, however,
remains in the general case R

(q)
1 ≥ 2 and R

(q)
2 ≥ 2. Note however, that rotational

freedom affecting the component matrices of a given block is constrained and obeys

T
(q)T
c =

(
T

(q)
a ⊗T

(q)
b

)−1
, which imposes some uniqueness constraints on the block-

constrained PARAFAC model that are not as strong as those of unconstrained
Tucker-3 models. For example, complete within-block uniqueness is restored, e.g.,
if C is known. Otherwise, if C has some special structure (e.g. block-diagonal,
Toeplitz, etc) one can enforce the underlying structure during the computation of
the model, in order to restrict within-block non-uniqueness.

Example 1.1: Suppose that R
(1)
1 = · · · = R

(Q)
1 = 1. This means that interactions

involving the columns of the first- and third-mode component matrices no longer
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exist, for all the blocks. In this case we have (ignoring scaling ambiguity):

TT
b = T−1

c , 1, . . . , Q, (1.76)

i.e. within-block rotational freedom only affects the second- and third-mode com-
ponent matrices, while {A(1), · · · ,A(Q)} can be determined up to common column
permutation and scaling. In this case, the within-block structure of this parti-
cular block-constrained PARAFAC decomposition exhibits partial uniqueness. It
takes on the same partial uniqueness properties of the PARALIND decomposi-
tion considered in [130, 10] (see these references for a constructive proof of partial
uniqueness).

Discussion: Uniqueness of this decomposition is related in some sense to the
“minimum uniqueness conditions” for PARAFAC originally presented in [74]. The
implication of this uniqueness study to our case, is that it establishes between-
block uniqueness of the block-constrained PARAFAC. On the other hand, within-
block uniqueness can be studied by taking special structures of one or more factor
matrices into account. Different levels of partial uniqueness within the blocks
are possible. By “partial uniqueness”, we mean that (at least some columns of)
the component matrices of one or more blocks can be uniquely determined (up to
permutation and scaling) while the determination of the other ones is affected by a
nonsingular matrix multiplication [146]. This means that within-block uniqueness
breaks down “in parts”, as pointed out by Harshman in [74], but also in “in blocks”,
since different levels of partial uniqueness (or restricted nonuniqueness) exist and
may vary from block to block.

1.4 Constrained Factor decomposition

In this section, we present a new third-order tensor decomposition herein called
CONstrained FACtor (CONFAC) decomposition [44, 35]. The tensor is decompo-
sed into a triple sum of rank-one tensor factors, where component combinations,
or interactions, involving the different tensor factors are allowed. The interaction
pattern is captured by three constraint matrices the columns of which are canoni-
cal vectors. Each constraint matrix is associated with a given dimension or mode
of the tensor.

Let us consider a third-order tensor X ∈ C
I1×I2×I3 , three factor matrices A ∈

C
I1×R1 , B ∈ C

I2×R2 , C ∈ C
I3×R3 , and three constraint matrices Ψ ∈ C

R1×F ,
Φ ∈ C

R2×F , Ω ∈ C
R3×F . The Constrained Factor (CONFAC) decomposition of X
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with F factor combinations is defined in scalar form as:

xi1,i2,i3 =
F∑

f=1

R1∑

r1=1

R2∑

r2=1

R3∑

r3=1

ai1,r1bi2,r2ci3,r3ψr1,fφr2,fωr3,f , (1.77)

with F ≥ max (R1, R2, R3).

The structure of the constraint matrices are defined by the two following assump-
tions:

A.1 The columns of Ψ (resp. Φ and Ω) are canonical vectors belonging to the
following canonical bases, respectively:

{e(R1)
1 , . . . , e

(R1)
F } ∈ R

R1 , {e(R2)
1 , . . . , e

(R2)
F } ∈ R

R2 ,

{e(R3)
1 , . . . , e

(R3)
F } ∈ R

R3 . (1.78)

A.2 Ψ, Φ and Ω are full-rank matrices.

Based on these assumptions, the constraint matrices satisfy the following proper-
ties:

R1∑

r1=1

Dr1(Ψ) =

R2∑

r2=1

Dr2(Φ) =

R3∑

r3=1

Dr3(Ω) = IF , (1.79)

F∑
f=1

ψr1,fψr′1,f =

{
n

(a)
r1 , r1 = r′1
0, r1 6= r′1

,
F∑

f=1

φr2,fφr′2,f =

{
n

(b)
r2 , r2 = r′2
0, r2 6= r′2

,

F∑
f=1

ωr3,fωr′3,f =

{
n

(c)
r3 , r3 = r′3
0, r3 6= r′3

, (1.80)

where n
(a)
r1 ∈ [1, F − R1] denotes the number of combinations involving the r1-

th column of A(1) in (1.77), i.e., the number of times that the r1-th column of

A(1) is reused for composing the tensor X . Similarly, n
(b)
r2 ∈ [1, F − R2] and

n
(c)
r3 ∈ [1, F −R3] represent the number of combinations involving the r2-th column

of A(2) and the r3-th column of A(3), respectively. In matrix form, (1.80) yields:

ΨΨT = D1, ΦΦT = D2, ΩΩT = D3, (1.81)

where D1 = diag(n
(a)
1 , . . . , n

(a)
R1

), D2 = diag(n
(b)
1 , . . . , n

(b)
R2

), and D3 =
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diag(n
(c)
1 , . . . , n

(c)
R3

). We also have:

∑

r1,r2

(
ΨΦT

)
r1,r2

=
∑

r2,r3

(
ΦΩT

)
r2,r3

=
∑

r3,r1

(
ΩΨT

)
r3,r1

= F. (1.82)

This property can be demonstrated by noting that:

∑

r1,r2

(
ΨΦT

)
r1,r2

=
∑

r1,r2,f

ψr1,fφr2,f .

For any f ∈ [1, F ], there is one and only one pair (r1, r2) such as ψr1,fφr2,f = 1,
which implies

∑
r1,r2

(
ΨΦT

)
r1,r2

= F . Reasoning similarly for ΦΩT and ΩΨT , we

obtain (1.82).

The CONFAC decomposition can be stated in a different manner, which sheds
light on a different way of interpreting its constrained structure. By exchanging
summations in (1.77), we obtain:

xi1,i2,i3 =

R1∑

r1=1

R2∑

r2=1

R3∑

r3=1

ai1,r1bi2,r2ci3,r3gr1,r2,r3(Ψ,Φ,Ω), (1.83)

where

gr1,r2,r3(Ψ,Φ,Ω) =
F∑

f=1

ψr1,fφr2,fωr3,f (1.84)

is an element of a tensor G(Ψ,Φ,Ω) ∈ C
R1×R2×R3 that follows an F -factor PARA-

FAC decomposition in terms of Ψ, Φ and Ω. We call G(Ψ,Φ,Ω) ∈ C
R1×R2×R3 , or

simply G, the constrained core tensor of the CONFAC decomposition.

Using the mode-n product notation, the CONFAC decomposition can be written
as:

X = G(Ψ,Φ,Ω) •1 A •2 B •3 C.

Alternatively, we can use the outer product notation to write the CONFAC de-
composition in the following (PARAFAC-like) manner:

X =
F∑

f=1

(
AΨ

)
·f
◦

(
BΦ

)
·f
◦

(
CΩ

)
·f
.

Relation with the Tucker-3 decomposition: It is worth noting that (1.83)
takes the form of a constrained Tucker-3 decomposition [8, 87, 144] with the par-
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Figure 1.10: Visualization of the CONFAC decomposition of a third-order
tensor.

ticular characteristic of having a PARAFAC-decomposed core tensor. The main
difference between CONFAC and Tucker-3 decompositions is in the following as-
pect. In the Tucker-3 decomposition, all the R1R2R3 possible factor combinations
exist for the composition of the tensor X , where each entry of the Tucker-3 core
tensor G defines the “strength” of each factor combination. Differently, in the
CONFAC decomposition, only F effective combinations take place for the com-
position of the tensor X . In this case, the F -factor PARAFAC decomposition of
the constrained core tensor G reveals the pattern of combinations involving the
columns of the factor matrices A,B and C. Figure 1.10 provides an illustration
of the CONFAC decomposition.

Relation with the PARAFAC decomposition: Let us consider the CONFAC
decomposition in (1.77) with Ri = F , i = 1, 2, 3 and Ψ = Φ = Ω = IF . In
this case, the CONFAC decomposition coincides with the F -factor PARAFAC
decomposition [73]:

xi1,i2,i3 =
F∑

f=1

ai1,fbi2,fci3,f . (1.85)

Matrix representations: The CONFAC decomposition can be represented in
matrix forms. Two different matrix representations of the tensor X ∈ C

I1×I2×I3

are possible, namely the slice and unfolded representations. Their construction is
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similar to that of the standard PARAFAC decomposition [73, 131]. By analogy
with (1.25), these matrix-slices can be expressed as a function of {A,B,C} and
{Ψ,Φ,Ω}, by the following set of equations:

Xi1·· = BΦDi1

(
AΨ

)(
CΩ

)T ∈ C
I2×I3

X·i2· = CΩDi2

(
BΦ

)(
AΨ

)T ∈ C
I3×I1 (1.86)

X··i3 = AΨDi3

(
CΩ

)(
BΦ

)T
, ∈ C

I1×I2

The full information contained in the tensor X ∈ C
I1×I2×I3 can be organized

in three unfolded matrices X1 ∈ C
I3I1×I2 , X2 ∈ C

I1I2×I3 , and X3 ∈ C
I2I3×I1 ,

constructed from the sets of matrix-slices, according to (1.15).

X1, X2, and X3 can be expressed by the following set of equations:

X1 =
(
CΩ ⋄ AΨ

)(
BΦ

)T
,

X2 =
(
AΨ ⋄ BΦ

)(
CΩ

)T
,

X3 =
(
BΦ ⋄ CΩ

)(
AΨ

)T
. (1.87)

Demonstration: The demonstration of (1.86) and (1.87) is simple. It is similar
to the one presented in [62] for the PARAFAC and Tucker decompositions. The
CONFAC decomposition (1.77) can be rewritten as:

xi1,i2,i3 =
F∑

f=1

(
R2∑

r2=1

bi2,r2φr2,f

)(
R3∑

r3=1

ci3,r3ωr3,f

)

·
(

R1∑
r1=1

ai1,r1ψr1,f

)

=
F∑

f=1

(
BΦ

)
i2,f

(
CΩ

)
i3,f

(
AΨ

)
i1,f

, (1.88)

which means that:

X··i3 =




x1,1,i3 · · · x1,I2,i3
...

...
xI1,1,i3 · · · xI1,I2,i3




=
(
AΨ

)
Di3

(
CΩ

)(
BΦ

)T
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and

X1 =




X··1
...

X··I3


 =




AΨD1

(
CΩ

)
...

AΨDI3

(
CΩ

)




(
BΦ

)T
,

=
(
CΩ ⋄ AΨ

)(
BΦ

)T
. (1.89)

The factorization of X2 and X3 can be demonstrated in a similar way.

Relation with the PARALIND model: By comparing (1.88) with the stan-
dard PARAFAC decomposition (1.85), we remark that the CONFAC decompo-
sition can be viewed as an F -factor PARAFAC decomposition with equivalent
(rank-deficient) matrices A = AΨ ∈ C

I1×F , B = BΦ ∈ C
I2×F , C = CΩ ∈ C

I3×F .
The rank-deficient structure due to the repetition of some columns of A, B and
C, is controlled by the constraint matrices Ψ, Φ and Ω, respectively. A rank defi-
cient tensor model using constraint matrices is proposed in [10]. This tensor model,
which is called PARALIND, makes use of two constraint matrices to model inter-
action patterns between columns of different factor matrices. In the PARALIND
model, the number of factor combinations/interactions is equal to the number of
columns of the factor matrix that is not rank-deficient. The PARALIND model
can be obtained from the CONFAC one by making F = I3 and Ω = II3 . Therefore,
the CONFAC tensor model can be viewed as a generalization of the PARALIND
one.

Interpretation as a constrained Tucker-3 decomposition: As previously
mentioned, the CONFAC decomposition can be interpreted as a constrained
Tucker-3 decomposition with PARAFAC-decomposed core tensor. We can also
rewrite (1.87) as a function of the constrained core tensor G(Ψ,Φ,Ω). Let us
define Gr1·· ∈ C

R2×R3 , G·r2· ∈ C
R3×R1 and G··r3 ∈ C

R1×R2 obtained by slicing the
constrained core tensor along its first, second and third dimensions, respectively.
In order to factorize the unfolded matrices Xi=1,2,3 as a function of the constrained
core tensor G ∈ C

R1×R2×R3 , we apply the property (1.57) to obtain the following
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expressions:

X1 =
(
C ⊗ A

)(
Ω ⋄ Ψ

)
ΦTBT

=
(
C ⊗ A

)
G1B

T ,

X2 =
(
A ⊗ B

)(
Ψ ⋄ Φ

)
ΩTCT

=
(
A ⊗ B

)
G2C

T ,

X3 =
(
B ⊗ C

)(
Φ ⋄ Ω

)
ΨTAT

=
(
B ⊗ C

)
G3A

T , (1.90)

where

G1 =
(
Ω ⋄ Ψ

)
ΦT (R3R1 × R2),

G2 =
(
Ψ ⋄ Φ

)
ΩT (R1R2 × R3),

G3 =
(
Φ ⋄ Ω

)
ΨT (R2R3 × R1), (1.91)

are the three unfolded representations of the constrained core tensor G, with

[G1](r3−1)R1+r1,r2 = [G2](r1−1)R2+r2,r3

= [G3](r2−1)R3+r3,r1 = gr1,r2,r3 .

Using the definition of the Khatri-Rao product, we have:

G1 =




ΨD1(Ω)
...

ΨDR3(Ω)


ΦT =




G··1
...

G··R3


 ,

(1.92)

where
G··r3 = ΨDr3(Ω)ΦT ∈ C

R1×R2 . (1.93)

In the same way, we get:

Gr1·· = ΦDr1(Ψ)ΩT ∈ C
R2×R3 ,

G·r2· = ΩDr2(Φ)ΨT ∈ C
R3×R1 . (1.94)

Definition 1.11 (interaction matrices) The interaction matrices of the CONFAC
decomposition (1.77) characterize the interaction pattern involving the factors of
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different pairs of modes. They are defined by:

G(1,2) =

R3∑

r3=1

G··r3 = ΨΦT (R1 × R2),

G(2,3) =

R1∑

r1=1

Gr1·· = ΦΩT (R2 × R3), (1.95)

G(3,1) =

R2∑

r2=1

G·r2· = ΩΨT (R3 × R1),

where we have used property (1.79).

Due to the canonical structure of the constraint matrices satisfying A.1-A.2, the
three interaction matrices satisfy the following relation:

∑

r1,r2

g(1,2)
r1,r2

=
∑

r2,r3

g(2,3)
r2,r3

=
∑

r3,r1

g(3,1)
r3,r1

= F, (1.96)

where g
(1,2)
r1,r2 , g

(2,3)
r2,r3 and g

(3,1)
r3,r1 are the typical elements of G(1,2), G(2,3) and G(3,1),

respectively. We can distinguish the two following situations:

• g
(1,2)
r1,r2 = 0 means that there is no interaction between the r1-th column of A

and the r2-th column of B;

• g
(1,2)
r1,r2 = γ1,2 > 0 means that there are γ1,2 interactions between the r1-th

column of A and the r2-th column of B.

The same is valid for g
(2,3)
r2,r3 (w.r.t B and C) and g

(3,1)
r3,r1 (w.r.t C and A).

Example 1.2: Let us consider the CONFAC decomposition of a third-order tensor
with F = 4, R1 = R2 = 2, R3 = 3 characterized by the following constraint
matrices:

Ψ = Φ =

[
1 1 0 0
0 0 1 1

]
, Ω =




1 0 1 0
0 1 0 0
0 0 0 1


 . (1.97)
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From (1.95) we have:

G(1,2) =

[
2 0
0 2

]
, G(2,3) =

[
1 1 0
1 0 1

]
,

G(3,1) =




1 1
1 0
0 1


 .

G(1,2) indicates that A· 1 and B· 1 interact twice. The same is valid for A· 2 and B· 2.
From G(2,3), we can see that B· 1 interacts with {C· 1,C· 2} while B· 2 interacts with
{C· 1,C· 3}. According to G(3,1), there is interaction between C· 1 and {A· 1,A· 2}
while C· 2 interacts with A· 1, and C· 3 interacts with A· 2. Summing the nonzero
elements of G(1,2), G(2,3) and G(3,1) yields the number F of factor combinations.

Example 1.3: Now, consider F = 4, R1 = R2 = 3, R3 = 2, with constraint
matrices having the following structure:

Ψ =




1 1 0 0
0 0 0 1
0 0 1 0


 , Φ =




0 0 1 0
1 1 0 0
0 0 0 1


 ,

Ω =

[
1 1 1 0
0 0 0 1

]
, (1.98)

yielding the following interaction matrices:

G(1,2) =




0 2 0
0 0 1
1 0 0


 , G(2,3) =




1 0
2 0
0 1


 ,

G(3,1) =

[
2 0 1
0 1 0

]
.

According to G(1,2), each column of A interacts with a different column of B. In
particular, A· 1 interacts twice with B· 2. We also have C· 1 interacting once with
B· 1 and twice with B· 2 as indicated by G(2,3). On the other hand, C· 1 interacts
twice with A· 1 and once with A· 3.
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1.4.1 Special CONFAC decompositions

Recall that the CONFAC decomposition allows arbitrary interaction patterns in-
volving the factors of different modes. We have shown that the factors (i.e. the
columns of the matrix) associated with a given mode can be recombined, or reu-
sed, more than once in the composition of the full tensor. However, when there
is no recombination of factors along a given mode, simpler representations of the
CONFAC decomposition are possible. Three special writings of this decomposition
exist depending on which mode is free of interactions. When there is no interac-
tion in the first mode, we have Ψ = IF . Likewise, when no interaction takes place
within the second and third modes, we have Φ = IF and Ω = IF , respectively. In
each case, we can simplify (1.77) as shown below:

1. Type-1 CONFAC (no interactions in the first mode):

xi1,i2,i3 =
F∑

f=1

R2∑

r2=1

R3∑

r3=1

ai1,r1bi2,r2ci3,r3φr2,fωr3,f , (1.99)

with F ≥ max (R2, R3).

2. Type-2 CONFAC (no interactions in the second mode):

xi1,i2,i3 =
F∑

f=1

R1∑

r1=1

R3∑

r3=1

ai1,r1bi2,r2ci3,r3ψr1,fωr3,f , (1.100)

with F ≥ max (R1, R3).

3. Type-3 CONFAC (no interactions in the third mode):

xi1,i2,i3 =
F∑

f=1

R1∑

r1=1

R2∑

r2=1

ai1,r1bi2,r2ci3,r3ψr1,fφr2,f , (1.101)

with F ≥ max (R1, R2).

In Chapter 4, the type-3 CONFAC decomposition will be exploited for designing
blind multiple-antenna CDMA schemes. This application also appears in [37, 36].
The works [32, 33] can be viewed as a particular case of type-3 CONFAC, where
the two corresponding constraint matrices have a fixed structure.
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1.4.2 N-th order generalization

The CONFAC decomposition (1.77) can be straightforwardly generalized to tensors
of any order higher than three. Let us consider an N -th order tensor X ∈ C

I1×···×IN ,
a set of N factor matrices {A(n)} ∈ C

In×Rn , and a set of N constraint matrices
{Ψ(n)} ∈ C

Rn×F , n = 1, . . . , N . The CONFAC decomposition of X ∈ C
I1×···×IN

with F factor combinations is given in scalar form by the following expression:

xi1,...,iN =

R1∑

r1=1

· · ·
RN∑

rN=1

(
N∏

n=1

a
(n)
in,rn

)
gr1,...,rN

(Ψ(1), . . . ,Ψ(N)),

gr1,...,rN
(Ψ(1), . . . ,Ψ(N)) =

F∑

f=1

N∏

n=1

ψ
(n)
rn,f ,

where gr1,...,rN
(Ψ(1), . . . ,Ψ(N)) is the N -th order constrained core tensor.

1.4.3 Uniqueness results

The uniqueness of the factor matrices A, B, C of the CONFAC decomposition (up
to permutation and scaling) depends on the particular structure of the constraint
matrices Ψ, Φ, Ω. Specifically, the degrees of freedom introduced in the decom-
position by the three constraint matrices can induce a transformational ambiguity
over (at least a subset of) the columns of the factor matrices.

Theorem 1.4 : Let us consider the CONFAC decomposition (1.77) of a third-
order tensor with F factor combinations. Suppose that A,B and C are full column-
rank, and that the joint structure of {Ψ,Φ,Ω} is such that G1 (R3R1 × R2), G2

(R1R2×R3) and G3 (R2R3×R1) are also full column-rank, then the decomposition
is identifiable from equations (1.90).

Identifiability of A,B and C means that they are unique up to a multiplication by
a nonsingular matrix, i.e. any alternative set {Ã, B̃, C̃} yielding the same tensor
X is linked to the true set {A,B,C} by:

Ã = AT(1), B̃ = BT(2), C̃ = CT(3),

with T(1) ∈ C
R1×R1 , T(2) ∈ C

R2×R2 and T(3) ∈ C
R3×R3 satisfying the following

equality: (
(T(1))−1Ψ ⋄ (T(2))−1Φ

)(
(T(3))−1Ω

)T
=

(
Ψ ⋄ Φ

)
ΩT (1.102)
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Proof : Recall the following properties. For arbitrary matrices A ∈ C
I×J , B ∈

C
K×I and C ∈ C

M×J , with B full column-rank, we have:

rank(A ⊗ C) = rank(A)rank(C), (1.103)

rank(BA) = rank(A). (1.104)

Let us define the following quantities:

Z1 =
(
C ⊗ A

)
G1 ∈ C

I3I1×R2 ,

Z2 =
(
A ⊗ B

)
G2 ∈ C

I1I2×R3

Z3 =
(
B ⊗ C

)
G3 ∈ C

I2I3×R1 .

Identifiability of A, B and C from (1.90) requires that Z1, Z2 and Z3 are full
column-rank to be left-invertible. Since A, B and C are full column-rank, using
(1.103) implies that C ⊗ A, A ⊗ B, and B ⊗ C are also full column-rank. From
(1.104), we can conclude that rank(Z1) = rank(G1) = R1 since G1 is assumed to
be full column-rank, and therefore Z1 is itself full column-rank. The reasoning is
similar for Z2 and Z3. ¥

Definition 1.12 (admissible transformation matrices): The transformation ma-
trices T(1), T(2) and T(3) are called admissible i.i.f. they preserve the constrained
structure of the decomposition satisfying (1.102).

Definition 1.13 (essential uniqueness) [90]: Essential uniqueness means that any
alternative set {Ã, B̃, C̃} giving rise to the same tensor X is equal to the set
{A,B,C} up to permutation and scaling of their columns, implying admissible
transformation matrices of the form:

T(1) = ∆1Π1, T(2) = ∆2Π2, T(3) = ∆3Π3, (1.105)

where ∆i=1,2,3 are diagonal matrices satisfying the relation ∆1∆2∆3 = I, and
Πi=1,2,3 are permutation matrices.

A proof of (1.105) is given in [136] for the standard PARAFAC decomposition,
which also applies here.

Partial uniqueness

The CONFAC decomposition is said to be partially unique (or restrictively nonu-
nique), when a subset of the columns belonging to the set {A,B,C} are essen-
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tially unique while the remaining columns are affected by a linear transformation.
Partial uniqueness was first observed in [74], and also investigated in [130] and
[145] in the context of the standard PARAFAC decomposition. For the CONFAC
decomposition, the partial uniqueness property is linked to the structure of the in-
teraction matrices. It can also be studied from equivalence relations between pairs
of constraint matrices. In this section, we present sufficient (but not necessary)
conditions for the partial uniqueness of the CONFAC decomposition implying es-
sential uniqueness in one or two modes.

We assume that A, B and C do not contain a zero row. Introducing:

Ã = AT(1), B̃ = BT(2), C̃ = CT(3)

into the slice representations (1.86), we obtain:

Xi1·· = B̃
[
(T(2))−1G

(2,3)

i1
(T(3))−T

]
C̃T ,

X·i2· = C̃
[
(T(3))−1G

(3,1)

i2
(T(1))−T

]
ÃT , (1.106)

X··i3 = Ã
[
(T(1))−1G

(1,2)

i3
(T(2))−T

]
B̃T ,

where G
(2,3)

i1
= ΦDi1

(
Ã(T(1))−1Ψ

)
ΩT , G

(3,1)

i2
= ΩDi2

(
B̃(T(2))−1Φ

)
ΨT , and

G
(1,2)

i3
= ΨDi3

(
C̃(T(3))−1Ω

)
ΦT . Note that G

(2,3)

i1
, G

(3,1)

i2
and G

(1,2)

i3
have the same

pattern of zeros (up to permutation and scaling) as G(2,3), G(3,1) and G(1,2), res-
pectively. This comes from the assumption that A, B and C do not contain a zero
row. Therefore, the uniqueness property of A, B and C is directly linked to the
structure of the interaction matrices. For instance, uniqueness of A can be che-
cked by searching the admissible structures of T(1) preserving the pattern of zeros
of G(1,2) and G(3,1). Similarly, uniqueness of B can be checked by searching the
admissible structures of T(2) preserving the pattern of zeros of G(2,3) and G(1,2).
Finally, uniqueness of C can be checked by searching the admissible structures of
T(3) preserving the pattern of zeros of G(3,1) and G(2,3).

Theorem 1.5 (partial uniqueness): Consider the CONFAC decomposition of
X ∈ C

I1×I2×I3 as a function of factor matrices A, B and C, and characterized
by interaction matrices G(1,2), G(2,3) and G(3,1). Suppose that the three factor
matrices contain no zeros. We have:

1. If rank(G(1,2)) = rank(G(3,1)) = R1, then A is essentially unique;

2. If rank(G(2,3)) = rank(G(1,2)) = R2, then B is essentially unique;

3. If rank(G(3,1)) = rank(G(2,3)) = R3, then C is essentially unique.
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Note that rank(G(1,2)) = rank(G(3,1)) = R1 only happens when R1 ≤ R2 and
R1 ≤ R3, i.e. when R1 ≤ min(R2, R3). Similarly, rank(G(2,3)) = rank(G(1,2)) = R2

only happens when R2 ≤ min(R1, R3), and rank(G(3,1)) = rank(G(2,3)) = R3 when
R3 ≤ min(R1, R2). For instance, when R1 < R2 < R3, only A is essentially unique,
while B and C are not guaranteed to be unique since only condition 1 of Theorem
1.5 is satisfied. Nevertheless, partial uniqueness (i.e. essential uniqueness of a
subset of columns) of B and C is possible.

The degree of partial uniqueness depends on the joint interaction structure of the
decomposition. The only case where all the three above conditions are met is
the one with R1 = R2 = R3, in which the CONFAC decomposition is close to
the PARAFAC one. If rank(G(1,2)) < R1 and/or rank(G(3,1)) < R1, the essential
uniqueness of A is not guaranteed by Theorem 1.5. The same comments are
valid for the essential uniqueness of B and C. The three above conditions are
sufficient but not necessary for the essential uniqueness of the factor matrices of
the decomposition.

Definition 1.14 (equivalent constraint matrices): When R1 = R2 (resp. R2 = R3

and R1 = R3), the matrix set {Ψ,Φ} (resp. {Φ,Ω} and {Ω,Ψ}) is said to be
equivalent if

Ψ = Π1Φ,
(
resp. Φ = Π2Ω, Ω = Π3Ψ

)
, (1.107)

where Πi=1,2,3 are arbitrary permutation matrices.

Note that the equivalence of two constraint matrices means that there is no inter-
action between the columns of the associated factor matrices. For instance, when
Ψ = Π1Φ, we have:

G(1,2) = ΨΦT = Π1ΦΦT = Π1D1, (1.108)

where D1 is defined in (1.81). Note that, in this case, G(1,2) has only one nonzero
element in each row and column, which means that there is a one-to-one corres-
pondence between the columns of A and B, i.e. there is no recombination of the
columns of these matrices. In Example 1.2, where Ψ = Φ are given in (1.97)
and G(1,2) is given in (1.98), no interaction between columns of A and B exist.
Similarly, when Φ = Π2Ω and Ω = Π3Ψ, we have:

G(2,3) = Π2D3, G(3,1) = Π3D1. (1.109)
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Partial uniqueness corollaries: Based on such a concept of equivalence bet-
ween constraint matrices, and from (1.107)-(1.109), we can deduce the following
corollaries for partial uniqueness:

C.1 When R1 = R2 = R < R3 and {Ψ,Φ} is an equivalent set, we have:

• {A,B} essentially unique;

C.2 When R2 = R3 = R < R1 and {Φ,Ω} is an equivalent set, we have:

• {B,C} essentially unique;

C.3 When R1 = R3 = R < R2 and {Ψ,Ω} is an equivalent set, we have:

• {A,C} essentially unique.

We can observe that the equivalence between Ψ and Φ implies G(1,2) = Π1D1 (see
(1.108)). In Corollary C.1 the essential uniqueness of {A,B} comes from the fact
that the two first rank conditions of Theorem 1.5 are satisfied, i.e. rank(G(1,2)) =
rank(G(2,3)) = rank(G(3,1)) = R. The same observation is valid for explaining the
essential uniqueness of the matrix pair {B,C} in C.2 and {A,C} in C.3.

These corollaries show that the essential uniqueness in one or two modes comes
at the expense of a restrictive nonuniqueness in the remaining mode(s). Such a
“uniqueness tradeoff” is inherent to the CONFAC decomposition. For an illustra-
tive purpose, we can apply C.1 to Examples 1.2 and 1.3, for evaluating the partial
uniqueness property in each case. In Example 1.2, A and B are essentially unique
while C is nonunique. In Example 1.3, C is essentially unique while A and B are
partially unique.

1.5 Summary

This chapter has provided some fundamentals of multilinear algebra and tensor
decompositions. In the first part of the chapter, we have provided some basic
concepts related to the algebra of tensors. Some operations involving tensor objects
have been defined. In the second part of this chapter, we have presented several
tensor decompositions that are important to the context of this thesis. These
decompositions have been formulated in both scalar (multi-indexed) and tensor
(outer product or n-mode product) forms. In each case, the factorization of the
tensor in slice and unfolded forms have been defined. The uniqueness property
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of these decompositions has been discussed, and uniqueness conditions have been
presented for these decompositions.

The chapter contains original contributions which are the development of two
new tensor decompositions, namely, the block-constrained PARAFAC and the
CONFAC decompositions. The block-constrained PARAFAC decomposition
mixes some properties of the PARAFAC and Tucker-3 decompositions. At the
same time, it falls within the framework of block term decompositions [50, 51].
We have shown that the CONFAC decomposition is more general than the block-
constrained PARAFAC one, by allowing arbitrary interactions across all the modes
of the decomposed tensor. The partial uniqueness of the CONFAC decomposition
has been studied. A sufficient condition for the essential uniqueness in one or two
modes has been derived.

The two proposed tensor decompositions will be exploited throughout the thesis
in the context of the different applications we will address. For instance, a unified
tensor modeling of the received signal in oversampled, DS-CDMA and OFDM
systems along with blind multiuser detection/equalization will be presented based
on the block-constrained PARAFAC decomposition. This decomposition will also
be exploited for modeling multiple-antenna transmissions with block space-time
spreading and blind detection. Concerning the CONFAC decomposition, we will
show that it is useful for designing finite sets of multiple-antenna CDMA schemes
with canonical precoding, where the allocation of multiple spreading codes and
data streams to transmit antennas is modeled by means of the constraint matrices
of this decomposition.





CHAPTER 2

Tensor Modeling for Wireless
Communication Systems with

Application to Blind Multiuser
Equalization

This chapter presents a new tensor approach for modeling wireless communication
systems with a receiver antenna array under the assumption of specular multipath
propagation and frequency-selectivity. The proposed tensor model uses a third-
order (3D) block-constrained PARAFAC decomposition with factor interactions.
It aims at unifying the received signal modeling for (i) Temporally-Oversampled,
(ii) Direct-Sequence Code Division Multiple Access (DS-CDMA) and (iii) Ortho-
gonal Frequency Division Multiplexing (OFDM) systems. We show that the model
for each particular system can be derived from the proposed model by making appro-
priate choices in its dimension and/or structure. As an application of the proposed
tensor model to blind multiuser separation/equalization, a new receiver algorithm
is derived, which combines tensor modeling (for multiuser signal separation) with
a subspace method (for user-by-user equalization). Simulation results illustrate the
Bit-Error-Rate (BER) performance of the proposed blind receiver.
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2.1 Introduction and motivation

Most of existing array signal processing approaches rely on matrix (2D arrays)
models for the received signal. In wireless communication systems, array signal
processing is generally used at the receiver to mitigate multiuser (co-channel) in-
terference, inter-symbol interference as well as to benefit from spatial diversity
available in the wireless channel. Usually considered signal processing dimensions
are space and time dimensions. In space-time matrix models, space dimension
usually varies along the rows of the received signal matrix while time dimension
varies along the columns. However, the main limitation of working with a matrix
model for the received signal is its lack of inherent uniqueness. Regarding the blind
recovery of information, blind algorithms generally take special (problem-specific)
structural properties of the transmitted signals into account such as orthogona-
lity, finite-alphabet, constant-modulus or cyclostationarity in order to overcome
the non-uniqueness of matrix decompositions and successfully perform multiuser
signal separation and equalization [114, 141, 150].

Unlike 2D (matrix) models, the use of 3D (tensor) received signal models in array
signal processing problems result from the incorporation of a third “axis”, also
called dimension or mode, in addition to the usually considered space and time di-
mensions. For example, when temporal oversampling is used at the antenna array
receiver, oversampling can be interpreted as the third dimension of the received
signal. In a direct-sequence code division multiple access (DS-CDMA) system,
spreading is the third dimension while in an orthogonal frequency division multi-
plexing (OFDM), frequency plays the role of this additional dimension. From a
signal processing perspective, treating the received signal as a 3D tensor makes
possible to simultaneously exploit the multiple forms of “diversity” inherent to it
for a signal recovery purpose. In [128], the PARAFAC model has first appeared as
a generalization of the ESPRIT method [120] for high-resolution direction finding.
It has also been applied to the problem of multiuser detection for DS-CDMA sys-
tems in several works [131, 130, 47, 48]. In [81], a PARAFAC receiver was also
proposed for blind channel estimation in OFDM systems.

In this chapter, we make use of the block-constrained PARAFAC decomposition for
modeling the received signal in the uplink of some wireless communication systems
subject to frequency-selective multipath fading. The proposed signal model unifies
three systems: i)temporally-oversampled systems, ii) DS-CDMA systems [116],
and iii) OFDM systems [152]. An antenna array is assumed at the base-station
receiver. Each user contributes with a finite number of multipaths to the received
signal. We show that the proposed model is subject to structural constraints
in some of its component matrices, and that the same “general” tensor model is
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shared by the three systems [28, 40]. For each particular system, the corresponding
model can be obtained from the general one by making appropriate choices in the
structure/dimension of its matrix components. For the DS-CDMA system, our
tensor modeling approach generalizes those of [130] and [47], which are limited to
special propagation models with a single path per user. Our modeling assumption
are also more general than that of [133]. Therein, multiple paths per user were
assumed but a frequency-selective channel model was not taken into account.

2.2 Channel and system models

Let us consider a uniform linear array of K half-wavelength spaced omnidirectional
antennas receiving signals from Q co-channel users. The propagation channel is
assumed to be time-dispersive and it is considered that multipath delay spread
exceeds the inverse of the coherence bandwidth of the system, i.e. multipath fading
is frequency-selective. The channel impulse response is assumed to span I symbols.
Synchronization at the symbol level among the different user signals is assumed.
The channel impulse response linking the q-th user to the k-th receive antenna has
a finite duration and is assumed to be zero outside the interval [0, (I−1)T ), where
T is the symbol period. The wireless channel is also assumed to be time-invariant
over N symbols. In order to simplify the presentation of the signal model, we omit
the additive white Gaussian noise term from the received signal throughout this
section. The discrete-time baseband representation of the signal received at the
n-th symbol period by the k-th antenna can be expressed as:

xk(n) =

Q∑

q=1

x
(q)
k (n) =

Q∑

q=1

I∑

i=1

h
(q)
k (i)s(q)(n − i + 1), (2.1)

where h
(q)
k (i) is the i-th component of the q-th user FIR channel, s(q)(n) is the n-th

symbol transmitted by the q-th user.

Let us assume that the signal transmitted by each user is subject to multipath
propagation and arrives at the receiver via L “effective” specular paths1. By “ef-
fective”, we mean that each cluster of scatterers is associated with a dominant
multipath (see Fig. 2.1). Each clustered multipath has a mean angle of arrival.

1In this model, we have assumed that all the users have the same number of multipaths in
order to simplify the mathematical notation and the presentation of the model. In section 2.5,
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Figure 2.1: Schematic representation of the multipath propagation scenario.

We assume that the cluster angle spread around the mean angle of arrival is small
compared to the spatial resolution of the antenna array and will not be considered
in the received signal model. The adopted model is valid in practice, provided
that the receive antenna array, generally located in a base transceiver station, is
sufficiently high so that it is unobstructed and no local scattering occurs. These
assumptions on the propagation scenario are typical for cellular suburban deploy-
ments [60], where the base transceiver station is on a tower or on the roof of a
building. The multipath propagation channel is usually factored in the following
manner [149]:

h
(q)
k (i) =

L∑

l=1

β
(q)
l a

(q)
k (θ

(q)
l )g(q)(i − 1 − τ

(q)
l ), i = 1, . . . , I, (2.2)

where β
(q)
l is the fading envelope of the l-th path of the q-th user. The term ak(θ

(q)
l )

is the response of the k-th antenna to the l-th path of the q-th user, θ
(q)
l being

the associated angle of arrival. Similarly, the term τ
(q)
l is the propagation delay

(normalized by the symbol period T ) and the term g(q)(i− 1− τ
(q)
l ) represents the

i-th component of the pulse-shaping filter response. In matrix form, (2.2) can be
written as:

H(q) =
L∑

l=1

β
(q)
l a(q)(θ

(q)
l )g(q)T (τ

(q)
l ), (2.3)

we will consider a more general model where users may have different number of multipaths.
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where

a(q)(θ
(q)
l ) =

[
a

(q)
1 (θ

(q)
l ) · · · a(q)

K (θ
(q)
l )

]T

=
[
1 e−jπ sin θ

(q)
l · · · e−jπ(K−1) sin θ

(q)
l

]T ∈ C
K , (2.4)

and
g(q)(τ

(q)
l ) = [g(q)(−τ

(q)
l ) · · · g(q)(I − 1 − τ

(q)
l )]T ∈ R

I

as the vector antenna array responses and pulse-shape filter responses, respectively.
Defining:

h
(q)
k,i

.
=

[
H(q)

]
k,i

, a
(q)
l

.
= a(q)(θ

(q)
l ) =




a
(q)
1,l
...

a
(q)
k,l
...

a
(q)
K,l




, g
(q)
l

.
= g(q)(τ

(q)
l ) =




g
(q)
1,l
...

g
(q)
i,l
...

g
(q)
I,l




,

we can rewrite (2.2) in a simpler form as:

h
(q)
k,i =

L∑

l=1

β
(q)
l a

(q)
k,lg

(q)
i,l . (2.5)

In order to write (2.3) in terms of matrix products, let us define:

A(q) =
[
a

(q)
1 · · · a(q)

L

]
∈ C

K×L (2.6)

B(q) = diag
(
β

(q)
1 · · · β(q)

L

)
∈ C

L×L (2.7)

G(q) =
[
g

(q)
1 · · ·g(q)

L

]T

∈ R
L×I (2.8)

as matrices concatenating L antenna array responses, multipath gains and pulse
shape responses, respectively. Eliminating the summation in (2.3), we get:

H(q) =
[

a
(q)
1 . . . a

(q)
L

]



β
(q)
1

. . .

β
(q)
L







g
(q)T
1
...

g
(q)T
L


 = A(q)B(q)G(q). (2.9)

Using these definitions, the received signal vector x(n) = [x1(n) · · · xK(n)]T ∈ C
K
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can be factored as:

x(n) =

Q∑

q=1

H(q)s(q)(n), (2.10)

where
s(q)(n) =

[
s(q)(n) · · · s(q)(n − I + 1)

]T ∈ C
I , (2.11)

is the q-th user symbol vector. Collecting the received signal samples during N
symbol periods, yields [149]:

X = [x(1) · · ·x(N)] =

Q∑

q=1

H(q)S(q)T , (2.12)

where

S(q) =




s(q)T (1)
...

s(q)T (N)


 ∈ C

N×I , (2.13)

is a symbol matrix having a Toeplitz structure with (n, i)-th element defined as:

s
(q)
n,i =

[
S(q)

]
n,i

.
= s(q)(n − i + 1).

Now, let us concatenate the Q user contributions in the following block-matrices:

A = [A(1) · · ·A(Q)] ∈ C
K×QL (2.14)

B = blockdiag(B(1) · · ·B(Q)) ∈ C
QL×QL (2.15)

G = blockdiag(G(1) · · ·G(Q)) ∈ R
QL×QI (2.16)

S = [S(1) · · ·S(Q)] ∈ C
N×QI , (2.17)

the received signal matrix (2.12) can be rewritten in a more compact form:

X = AHST , where H = BG. (2.18)

Model (2.18) is the reference model for the development of the block-constrained
PARAFAC model for oversampled, DS-CDMA and OFDM systems.
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2.3 Tensor signal models

In this section, we rewrite the received signal of each of the three considered com-
munication systems using a tensor modeling approach [28, 46, 40]. The matrices
A and S in (2.18) model the space and time dimensions of the 2D (matrix-based)
received signal. As will be shown, when the tensor model is introduced, the matrix
H in (2.18) will depend on the third dimension of the 3D received signal tensor.
The third dimension can be either an oversampling, a spreading or a frequency
dimension. In the following, the tensor notation is introduced for modeling the
received signal.

2.3.1 Model 1: Oversampled system

Typical wireless communication signals use some excess bandwidth, i.e., the Ny-
quist rate is larger but still close to the symbol rate. Some additional information
can be extracted from the received signal by means of temporal oversampling. We
assume an oversampling factor of P , which means that the signal at each receive
antenna is sampled at T/P -spaced intervals. Consequently, each transmitted infor-
mation symbol gives rise to P received over-samples. Temporal oversampling is ap-
plied at each receive antenna after the conversion of the received signal to the base-
band format. The joint use of multiple receive antennas and oversampling has been
studied in several works for blind channel identification/equalization, multiuser si-
gnal separation and multipath parameter estimation [101, 141, 150, 149, 151, 154].

Due to temporal oversampling at the receiver, the temporal resolution of the pulse-
shaping filter response is increased by a factor P , which then increases the temporal
resolution of the received signal by the same factor. We show that the use of
oversampling can be interpreted as an incorporation of a third dimension to the
received signal [29].

Defining the oversampled versions of the received signal and pulse shape response
as:

xk,n,p
.
= xk(n + (p − 1)/P ), gl,i,p

.
= g

(
i − 1 + (p − 1)/P − τlq

)
,

we can rewrite the received signal (2.1) and the multipath channel (2.5) as:

xk,n,p =

Q∑

q=1

I∑

i=1

h
(q)
k,i,ps

(q)
n,i. (2.19)
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and

h
(q)
k,i,p =

L∑

l=1

β
(q)
l a

(q)
k,lg

(q)
l,i,p, (2.20)

Let us define the overall channel impulse response (or, simply, channel response)
as:

hl,i,p
.
= β

(q)
l g

(q)
l,i,p.

Substituting (2.20) into (2.19), we obtain:

xk,n,p =

Q∑

q=1

L∑

l=1

I∑

i=1

a
(q)
k,l h

(q)

l,i,p s
(q)
n,i. (2.21)

The received signal xk,n,p (k-th receive antena, n-th symbol, p-th oversample) can
be interpreted as an element of a third-order tensor X ∈ C

K×N×P . The channel
response hl,i,p is also an element of a third-order tensor H ∈ C

L×I×P . The received
signal model (2.21) expresses the received signal tensor in the form of summations

of products involving three factors a
(q)
k,l , s

(q)
n,i, and h

(q)

l,i,p, associated with the space,
time and oversampling dimensions of the received signal, respectively.

We define the l-th slice of the channel tensor as:

H
(q)

l·· =




h
(q)T

l,1
...

h
(q)T

l,I


 ∈ C

I×P , (2.22)

where h
(q)

l,i = [h
(q)

l,i,1h
(q)

l,i,2 · · ·h
(q)

l,i,P ]T ∈ R
P collects the P oversamples associated with

the i-th component of the (l, q)-th channel response. A matrix concatenating the
L channel response vectors is defined as:

H
(q)

= [H
(q)T

1·· · · ·H(q)T

L·· ] ∈ C
P×LI (2.23)

By comparing (2.21) with (1.48), we deduce the following correspondences:

(I1, I2, I3, R
(q)
1 , R

(q)
2 ,A(q),B(q),C(q)) → (K, N, P, L, I,A(q),S(q),H

(q)
), (2.24)

By analogy with (1.51) and (1.54), and taking the above correspondences into
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account, we can express the p-th slice X··p ∈ C
K×N as:

X··p =

Q∑

q=1

A(q)Ψ(q)Dp(H
(q)

)(S(q)Φ(q))T

= AΨDp(H)(SΦ)T (2.25)

where Ψ(q) = IL ⊗ 1T
I , Φ(q) = 1T

L ⊗ II , and

Ψ = blockdiag
(
Ψ(1) · · ·Ψ(Q)

)
= IQ ⊗ (IL ⊗ 1T

I ),

Φ = blockdiag
(
Φ(1) · · ·Φ(Q)

)
= IQ ⊗ (1T

L ⊗ II)

are constraint matrices that depend on the number Q of users, on the number
L of multipaths, and on the length I of the channel impulse response. The re-
ceived signal follows a block-constrained PARAFAC model, the number of blocks
corresponding to the number of users.

2.3.2 Model 2: DS-CDMA system

The DS-CDMA system enables multiple access by means of spread spectrum mo-
dulation [116]. In a classical DS-CDMA system, the transmitted symbol sequence
is spread across the spectrum at a higher rate. The spreading operation consists
in multiplying the narrowband signal to be transmitted by a spreading sequence,
or code (see Fig. 2.2). In a DS-CDMA system, the users share the same frequency
band and time slot to communicate, and each user is identified by a unique sprea-
ding code. At the receiver, the recovery of users’ signals uses the same spreading
code as the one used for spreading at the transmitter to perform correlation detec-
tion (also known as despreading) [116, 140]. Let us define c(q)(t) as the spreading
sequence associated with the q-th user. The spreading sequences are symbol-
periodic, i.e. their period is equal to the duration of one symbol, and are given
by:

c(q)(t) =
J∑

j=1

c
(q)
j g

(
t − (j − 1)Tc

)
, (2.26)

where c
(q)
j ∈ {+1,−1}, j = 1, . . . , J is the spreading code, g(t) is the pulse shaping

filter, Tc is the chip period satisfying Tc = T/J , and J is the spreading factor (i.e.
the ratio between chip- and symbol- rates).

Including the multipath propagation model of Section ??, the spreading code is
replaced by the effective signature code, given by the convolution of the spreading
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Figure 2.2: Simplified transmitter diagram of a DS-CDMA system.

code with the channel impulse response sampled at the chip-rate. Similarly to the
oversampled system, we can define the chip-rate versions of the received signal and
the channel impulse response as xk,n,j

.
= xk(n + (j − 1)/J) and hl,i,j

.
= β

(q)
l g

(q)
l,i,j.

Define also:

u
(q)
l,i,j =

J∑

j′=1

h
(q)

l,i,j−j′ c
(q)
j′

as the convolution of the spreading codes with the channel response. With these
definitions, the received signal model for oversampled and DS-CDMA systems
are essentially the same, the only difference is that the spreading factor J plays
the role of the oversampling factor P . Thus, the scalar component (k-th receive
antenna, n-th symbol, j-th chip) of the distrete-time baseband received signal can
be written in tensor notation as:

xk,n,j =

Q∑

q=1

L∑

l=1

I∑

i=1

a
(q)
k,lu

(q)
l,i,j s

(q)
n,i. (2.27)

Note that (2.27) is equivalent to (2.21), where u
(q)
l,i,j plays the role of h

(q)
l,i,p and

J → P . Therefore, the slice factorization of X··j ∈ C
K×N follows (2.25) and is

given by:

X··j =

Q∑

q=1

A(q)Ψ(q)Dj(U
(q))(S(q)Φ(q))T

= AΨDj(U)(SΦ)T (2.28)
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where U(q) is defined as:

U(q) = C(q)H
(q) ∈ C

J×IL, (2.29)

C(q) ∈ C
J×J being a Toeplitz matrix with first row and column defined as C

(q)
1· =

[c
(q)
1 0 · · · 0] and C

(q)
·1 = [c

(q)
1 c

(q)
2 · · · c

(q)
J ]T respectively, and H

(q)
being analogous to

that defined in (2.23), where J replaces P .

2.3.3 Model 3: OFDM system

OFDM is a special form of multicarrier modulation, where a single data stream
is transmitted over a number of lower rate orthogonal subcarriers. One of the
main reasons to use OFDM is to increase the robustness against frequency selec-
tive fading and narrowband interference. This characteristic is very attractive,
especially for high-speed data transmission [152]. A simplified block-diagram of a
multicarrier OFDM system is depicted in Fig. 2.3 focusing on the q-th user and
considering a single-antenna system. In an OFDM system, the symbol sequence

�✁
✂✄
☎
✆✝
�✁
✞✄
☎
✆✝

�✁
✄
☎ ✟
✆✝

IFFT FIR
channel

FFT

M

CP
insertion

CP
removal

M

�✁
✂✄✄

☎
✆✠✡
�✁
✞✄✄

☎
✆✠✡

�✁
✄✄
☎☛✟
✆✠✡

OFDM 
signal

Figure 2.3: Simplified block-diagram of an OFDM system.

to be transmitted is organized into blocks of F symbols (serial-to-parallel conver-
sion), where F is the number of subcarriers. Multicarrier modulation consists in
linearly combining the F symbols using Inverse Fast Fourier Transform (IFFT).

Let us define s
(q)
n,f as the f -th symbol of the n-th OFDM block associated with the

q-th user. The signal at the output of the IFFT block is given by:

z
(q)
n,f =

1√
F

F∑

i=1

s
(q)
n,ie

j2π(i−1)(f−1)/F , n = 1, . . . , N, f = 1, . . . , F, (2.30)

where N denotes the number of transmitted OFDM blocks. After the IFFT, a
guard period in the form of a cyclic prefix (CP) is inserted to each OFDM block.
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The CP is used to avoid intercarrier interference, i.e. the interference between
adjacent OFDM blocks [152]. We also assume that band-limited pulse shaping is
employed at each frequency tone, and the spacing between the frequency-domain
pulses is assumed to be sufficient so that they will not overlap each other. At
the receiver, inverse processing is done, i.e. the CP is removed and the resulting
OFDM block is linearly combined by means of Fast Fourier Transform (FFT).
Defining:

Γ =
1√
F




1 1 · · · 1
1 γ1 · · · γF−1

...
...

. . .
...

1 γF−1 · · · γ(F−1)(F−1)


 , (2.31)

as the FFT matrix, where γ = e−j2π/F , the signal at the output of the IFFT block
can be expressed by the following input-output relation:

z(q)
n = ΓHs(q)

n ∈ C
F , (2.32)

where

z(q)
n =




z
(q)
n,1
...

z
(q)
n,F


 , s(q)

n =




s
(q)
n,1
...

s
(q)
n,F


 . (2.33)

We assume that the length of the CP is equal to the memory I − 1 of the channel
impulse response. The CP insertion consists in copying the last I − 1 samples of
vector z

(q)
n to the beginning of it.Therefore, the augmented OFDM symbol block

to be transmitted after the insertion of the CP is composed of F + I samples.
The transmitted signal of each user undergo frequency-selective propagation. Let
{h(q)

k,1, . . . , h
(q)
k,I} represent the length-I Finite Impulse Response (FIR) channel bet-

ween the q-th user and the k-th receive antenna. At the receiver, the baseband
signal at each receive antenna is then serial-to-parallel converted into blocks of
F + I samples. Then, the CP is removed from each block and the FFT is applied,

yielding the following input-output relation [152]:

xk,n =

Q∑

q=1

D
(q)
k s(q)

n . (2.34)

where D
(q)
k = diag

(
d

(q)
k,1 · · · d

(q)
k,F

)
and d

(q)
k,f is the frequency-domain channel at the
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f -th subcarrier, given by:

d
(q)
k,f =

I∑

i=1

h
(q)
k,ie

j2π(f−1)(i−1)/F . (2.35)

In scalar form, (2.34) can be written as:

xk,n,f =

Q∑

q=1

d
(q)
k,fs

(q)
n,f . (2.36)

Using the multipath propagation model (2.5), the channel response (2.35) can be
rewritten as:

d
(q)
k,f =

L∑

l=1

β
(q)
l a

(q)
k,l

I∑

i=1

g
(q)
i,l ej2π(f−1)(i−1)/F

︸ ︷︷ ︸
g
(q)
f,l

=
L∑

l=1

β
(q)
l a

(q)
k,lg

(q)
f,l . (2.37)

Finally, substituting (2.37) into (2.36) and defining λ
(q)
f,l = β

(q)
l g

(q)
f,l , yields:

xk,n,f =

Q∑

q=1

L∑

l=1

a
(q)
k,lλ

(q)
f,l s

(q)
n,f . (2.38)

xk,n,f is a scalar component (k-th receive antenna, n-th symbol, f -th subcarrier) of
the received signal tensor X ∈ C

K×N×F , the third-dimension of which corresponds
to the number of subcarriers.

In order to allow for a direct comparison of (2.38) with (2.21) and (2.27), we rewrite
(2.38) in the following equivalent manner:

xk,n,f =

Q∑

q=1

L∑

l=1

F∑

i=1

a
(q)
k,l λ

(q)
l,i,fs

(q)
n,i, where λ

(q)
l,i,f = λ

(q)
f,l δif . (2.39)

As it has been done for the two previous communication systems, we are interested
in representing the received signal tensor in slice notation. A matrix collecting the
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F scalar channels associated with the l-th multipath is defined as:

Λ
(q)
··l = diag

(
λ

(q)
1,l · · ·λ

(q)
F,l

)
∈ C

F×F .

Now, let us concatenate the L multipath contributions into the following matrix:

Λ(q) =
[
Λ

(q)
··1 · · ·Λ(q)

··L

]
∈ C

F×LF .

A symbol matrix collecting N OFDM symbols is defined as:

S(q) =




s
(q)T
1
...

s
(q)T
N


 ∈ C

N×F

Taking these definitions into account, and comparing (2.39) with (1.48), we deduce
the following correspondences:

(I1, I2, I3, R
(q)
1 , R

(q)
2 ,A(q),B(q),C(q)) → (K, N, F, L, F,A(q),S(q),Λ(q)), (2.40)

By analogy with (1.51) and taking these correspondences into account, we obtain
the following writing for the f -th slice X··f ∈ C

K×N of X ∈ C
K×N×F :

X··f =

Q∑

q=1

A(q)Ψ(q)Df (Λ
(q))(S(q)Φ(q))T

= AΨDf (Λ)(SΦ)T . (2.41)

Remark: The received signal models (2.25), (2.28) and (2.41) are similar, and all
of them follow the block-constrained PARAFAC decomposition defined in (1.51).
The main differences are in the structure and/or in dimension of certain component
matrices. The general tensor formulation is identical. Such a similarity is our main
motivation to formalize a unique tensor model that unifies the received signal
model of the three systems. This is done in the following section.

2.4 Unified tensor model

In this section we formalize the unified tensor model for the oversampled, DS-
CDMA and OFDM systems [40]. The proposed model brings together the received
signal modeling for these systems in a single model using a unique mathematical
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notation. The proposal of a unique model is based on the observation that the
received signal in each system can be formulated as third-order tensors following
fundamentally the same tensor model.

First note that the tensor models of the three systems are quite similar. The basic
difference is in the definition of the term associated with the third-dimension of
the received signal tensor, which is h

(q)

l,i,p for oversampled case, u
(q)
l,i,j for the DS-

CDMA case and λ
(q)
l,i,f for the OFDM case (see (2.21), (2.27) and (2.39)). Another

difference is in the structure of the component matrix S(q), which is not Toeplitz
in the OFDM model.

In order to link the unified tensor model to (1.48), let us define I3 as the length
of the third dimension of the received signal tensor. For the oversampled system
(I3, R2) = (P, I), for the DS-CDMA system (I3, R2) = (J, I) and for the OFDM
system (I3, R2) = (F, F ). The other parameters, which are common for all the
systems are I1 = K, I2 = N , R1 = L. In its general form, the tensor modeling of
the three systems can be unified in the following expression:

X··i3 = AΨDi3(W)(SΦ)T , (2.42)

where

Ψ = IQ ⊗ (IL ⊗ 1T
R2

) ∈ C
QL×LQR2 , Φ = IQ ⊗ (1T

L ⊗ IR2) ∈ C
QLR2×QR2 , (2.43)

and W is either H (c.f. (2.25)), or U (c.f. ((2.28)) or Λ (c.f. (2.41)), depending
on the considered system.

Concatenating I3 slices X··i3 , i3 = 1, . . . , I3, we get:

X1 = (W ⋄ AΨ)(SΦ)T . (2.44)

Comparing (2.44) with (1.55) we deduce the following correspondences:

A → A, B → S, C → W.

The link of the block-constrained PARAFAC model to each considered system is
provided in Table 2.1 for comparison.

In order to study the identifiability of the unified tensor model (2.44), we make use
of the necessary uniqueness condition of the block-constrained PARAFAC model
presented in (1.75).

Theorem 2.1 (identifiability condition) For full-rank A, S and W, a necessary
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Table 2.1: Unified tensor model for the three wireless communication systems
Oversampled DS-CDMA OFDM

(I3) oversampling(P ) spreading(J) frequency(F )
(R2) delay(I) delay(I) frequency(F )

W H = [H
(1)

, . . . ,H
(Q)

] U = [U(1), . . . ,U(Q)] Λ = [Λ(1), . . . ,Λ(Q)]
dimensions P × QLI J × QLI F × QLF
structure no structure no structure diagonal blocks

Matrix S S = [S(1), . . . ,S(Q)] S = [S(1), . . . ,S(Q)] S = [S(1), . . . ,S(Q)]
dimensions N × QI N × QI N × QF
structure block-Toeplitz block-Toeplitz no structure

condition for the identifiability in the general case is given by the three following
inequalities:

I3K ≥ QR2, KN ≥ QR2L, NI3 ≥ QL. (2.45)

From (2.45), the following corollaries can be obtained:

1. For N ≥ QL and K ≥ QR2, I3 ≥ 1 oversamples/chips per sym-
bol/subcarriers are necessary for identifiability;

2. For N ≥ QL and I3 ≥ QR2, K = R2 receive antennas are necessary for
identifiability;

3. For I3 ≥ QL and K ≥ QR2, N = L received samples are necessary for
identifiability.

2.5 Generalization using Tucker-3 modeling

In the previous section, we have modeled the received signal of oversampled, DS-
CDMA and OFDM systems using a block-constrained PARAFAC model, by consi-
dering that all the users have the same number of multipaths. We have also worked
under the assumption of frequency-selective channel with specular multipath pro-
pagation. In this section, we provide a more general tensor formulation of the
received signal, by assuming that the number of multipaths associated with each
user can be different. Moreover, two practical multipath propagation scenarii are
considered: i) far-field reflections without angular spread and ii) local scattering
with small delay spread. For these scenarii, we present block-constrained Tucker-3
models, where the Tucker-3 core tensor is parameterized by the two constraint
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matrices used in the block-PARAFAC model of the previous section [38]. The
Tucker-3 core captures the spatial and temporal structure of the wireless channel.

Let us assume that the q-th user reaches the receiver via L(q) propagation paths.
Recall the unified tensor model (2.44), which is rewritten here as a function of the
q-th user contribution:

X
(q)
2 =

(
A(q)Ψ(q) ⋄ S(q)Φ(q)

)
W(q)T , (2.46)

where
A(q) = [a

(q)
1 · · · a(q)

L(q)︸ ︷︷ ︸
L(q)paths

] ∈ C
K×L(q)

, (2.47)

concatenates the L(q) array responses for the q-th user,

Ψ(q) = IL(q) ⊗ 1T
R2

, Φ(q) = 1T
L(q) ⊗ IR2 , (2.48)

and
W(q) = [W

(q)
1 · · ·W(q)

L(q)︸ ︷︷ ︸
L(q)paths

] ∈ C
I3×R2L(q)

,

where W
(q)

l(q) collects R2 channel responses of the l(q)-th multipath. Note also that

(R2, I3) = (I, P ) or (I, J) or (F, F ), where W(q) is either H(q) for the oversampled
system, or U(q) for the DS-CDMA system, or Λ(q) for the OFDM system.

Using property (1.57), we can rewrite (2.46) as:

X
(q)
2 =

(
A(q) ⊗ S(q)

)
G

(q)
2 W(q)T ,

where
G

(q)
2 = Ψ(q) ⋄ Φ(q). (2.49)

Substituting (2.48) into (2.49), we get:

G
(q)
2 = (IL(q) ⊗ 1T

R2
) ⋄ (1T

L(q) ⊗ IR2) = (IL(q) ⊗ IR2) = IR2L(q) , (2.50)

which allows us to rewrite the overall received signal (summed over all the users)
in the following form:

X2 =

Q∑

q=1

X
(q)
2 =

Q∑

q=1

(
A(q) ⊗ S(q)

)
W(q)T ∈ C

KN×I3 , (2.51)
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or equivalently,

X2 =
[
A(1) ⊗ S(1) · · ·A(Q) ⊗ S(Q)

]



W(1)T

...
W(Q)T


 =

(
A |⊗|S

)
WT (2.52)

where A ∈ C
K×L, S ∈ C

N×R2Q and W ∈ C
I3×R2L are block matrices (their matrix

blocks can have different number of columns in this case), and

L =

Q∑

q=1

L(q).

In a similar way, by taking property (1.57) into account, we can obtain two other
equivalent Tucker-3 matrix representations X3 ∈ C

I3N×K and X1 ∈ C
KI3×N :

X3 =
(
S |⊗|W

)
G3A

T , X1 =
(
W |⊗|A

)
G1S

T .

Model (2.52) can be viewed as a constrained Tucker-3 decomposition [148, 144]
with Tucker-3 core matrices given by:

G1 = blockdiag
(
G

(1)
1 · · ·G(Q)

1

)
= IKL, (2.53)

G2 = blockdiag
(
G

(1)
2 · · ·G(Q)

2

)
∈ C

K2L×L (2.54)

G3 = blockdiag
(
G

(1)
3 · · ·G(Q)

3

)
∈ C

KL×KQ (2.55)

where

L =

Q∑

q=1

(
L(q)

)2
,

G
(q)
1 = IKL(q) , while G

(q)
2 and G

(q)
3 are factored in terms of Ψ(q) and Φ(q) as follows:

G
(q)
2 =

(
Φ(q) ⋄ IKL(q)

)
Ψ(q)T ∈ C

K2L(q)×L(q)

, (2.56)

G
(q)
3 =

(
IKL(q) ⋄ Ψ(q)

)
Φ(q)T ∈ C

K(L(q))2×K . (2.57)

It is worth mentioning that the Tucker-3 model (2.52) can be viewed as a special
case of the block-Tucker-3 model of [50, 109], where the Tucker-3 core has 1’s and
0’s elements.
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2.5.1 Case 1: Far-field reflections without angular spread

In some practical propagation scenarii, multipath reflections occur in remote ob-
jects that are located in the far-field of the receive antenna array. We assume
that most energy is concentrated in a single spatially resolvable path in the di-
rection of the transmitter [149]. In [130] and [47], two different tensor modeling
approaches for the received signal were proposed under the assumption of far-field
reflection without angular spread. Here, we also work with this assumption and
show that a constrained Tucker-3 formulation is also possible. Let us assume that
the L(q) reflections relative to the q-th user are located in the far-field of the an-
tenna array, so that the L(q) spatial signatures can be considered identical, i.e.,
a

(q)
1 = · · · = a

(q)

L(q) = a(q), q = 1, . . . , Q. Consequently, the array response matrix

A defined in (2.14) is now constituted of Q blocks of L(q) identical columns each,
and can be explicited as:

A =
[
a(1) ⊗ 1T

L(1) , . . . , a
(Q) ⊗ 1T

L(Q)

]
= AΥ, (2.58)

with A =
[
a(1), . . . , a(Q)

]
and

Υ =




1T
L(1)

. . .

1T
L(Q)


 . (2.59)

Substituting (2.58) into (2.52) and (2.53) yields:

X2 =
(
AΥ |⊗|S

)
WT ,

X3 = (S |⊗|W)G2

(
AΥ

)T
, (2.60)

X1 =
(
W |⊗|AΥ

)
G3S

T .

Let us consider the following property of the block-wise Kronecker product:

Property 2.1 : For arbitrary block-matrices A, B, C and D composed of Q
blocks, with C and D block-diagonal matrices with compatible dimensions, we
have:

AC |⊗|BD = (A |⊗|B)diag
(
C(1) ⊗ D(1), . . . , C(Q) ⊗ D(Q)

)
, (2.61)
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Using this property in each of the three unfolded representations (2.60), we get
the following equivalent constrained Tucker-3 representations:

X2 =
(
A |⊗|S

)
G1W

T , X3 = (S |⊗|W)G2A
T
, X1 =

(
W |⊗|A

)
G3S

T ,
(2.62)

where G1 = diag
(
G

(1)

1 , . . . ,G
(Q)

1

)
, G2 = G2Υ

T and G3 = diag
(
G

(1)

3 , . . . ,G
(Q)

3

)

are the associated constrained core matrices, with G
(q)

1 = 1T
L(q) ⊗ IK and G

(q)

3 =(
IKL(q) ⊗ 1T

L(q)

)
G

(q)
3 .

2.5.2 Case 2: Local scattering with small delay spread

Now, consider that all scattering objects are local to the receive antenna array so
that the relative propagation delays are much smaller than the symbol period, i.e.
max (τlq) << T , q = 1, . . . , Q. It is assumed that multipath delays are different.
This is also known as the incoherent multipath assumption with small delay spread,
which was addressed in [133] using tensor modeling. Since temporal dispersion at
the symbol-level is no longer present (R2 = 1), we can drop the dependence of
both the pulse-shape matrix and symbol matrix on the index r2. These matrices
can be rewritten as:

W =
[
w

(1)
1 · · ·w(1)

L(1)︸ ︷︷ ︸
L(1) paths

· · ·w(Q)
1 · · ·w(Q)

L(Q)︸ ︷︷ ︸
L(Q) paths

]
∈ C

I3×L (2.63)

and S = [s(1) · · · s(Q)] ∈ C
N×Q, where s(q) = [s

(q)
1 s

(q)
2 · · · s(q)

N ]T ∈ C
N . Substituting

W and S into (2.52) we can rewrite the resulting model as:

X2 =
[
A(1) ⊗ s(1) · · ·A(Q) ⊗ s(Q)

]
W

T
=

(
A |⊗|S

)
G2W

T
,

X3 =
(
S |⊗|W

)
G3A

T , X1 =
(
W |⊗|A

)
G1S

T
. (2.64)

Using (2.48), we have:
Ψ(q) = IL(q) , Φ(q) = 1T

L(q) ,

and (2.49), (2.56) and (2.57) are reduced to:

G
(q)
2 = IL(q) ⋄ 1T

L(q) = IL(q) ,

G
(q)
3 = 1T

L(q) ⋄ IL(q) = IL(q) , G
(q)
1 =

(
IL(q) ⋄ IL(q)

)
1L(q) .
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Using (2.43), (2.49), (2.56)-(2.57) with R2 = 1, we get the following constraint
matrices: Ψ(q) = IL(q) and Φ(q) = 1T

L(q) , which gives G1 = G2 = IL and

G3 = diag(G
(1)
3 · · ·G(Q)

3 ) with G
(q)
3 = (IL(q) ⋄ IL(q))1L(q) . Table 2.2 summarizes

the constrained Tucker-3 models presented in this paper for each scenario.

Table 2.2: Unification of constrained Tucker-3 models for blind beamforming

Factor matrices : {A,S,W} , Core matrices : {G1,G2,G3}

Unfolded matrices of the received signal:

X1 =
(
A |⊗|S

)
G1W

T , X2 = (S |⊗|W)G2A
T
, X3 =

(
W |⊗|A

)
G3S

T

General case Case 1: no angular spread Case 2: small delay spread

A = A = [A(1), . . . ,A(Q)] A = [a(1), . . . ,a(Q)] A = A = [A(1), . . . ,A(Q)]

A(q) ∈ C
M×L(q)

a(q) ∈ C
M A(q) ∈ C

M×L(q)

S = [S(1), . . . ,S(Q)] S = [S(1), . . . ,S(Q)] S = [s(1), . . . , s(Q)]

S(q) ∈ C
N×R2 S(q) ∈ C

N×R2 s(q) ∈ C
N

W = [W(1), . . . ,W(Q)] W = [W(1), . . . ,W(Q)] W = [W(1), . . . ,W(Q)]

W(q) ∈ C
P×R2L(q)

W(q) ∈ C
P×R2L(q)

W(q) ∈ C
P×L(q)

Gi = diag
(
G

(1)
i , . . .G

(Q)
i

)
, i = 1, 2, 3

G
(q)
1 = G

(q)
1 G

(q)
1 = 1T

L(q) ⊗ IR2 G
(q)
1 = IL(q)

G
(q)
2 = G

(q)
2 G

(q)
2 = G

(q)
2 1L(q) G

(q)
2 = IL(q)

G
(q)
3 = G

(q)
3 G

(q)
3 =

(
IR2L(q) ⊗ 1T

L(q)

)
G

(q)
3 G

(q)
3 = (IL(q) ⋄ IL(q))1L(q)

with G
(q)
1 , G

(q)
2 and G

(q)
3 given in (2.50), (2.56) and (2.57).

2.6 Application to blind multiuser equalization

The blind multiuser equalization problem consists in recovering the information
sequence from several users under the assumption of frequency-selective fading.
We propose a deterministic tensor-based blind multiuser receiver performing user
separation and equalization iteratively [26, 40]. We consider the oversampled sys-
tem. The receiver makes use of the block-constrained PARAFAC model. Multiuser
signal separation is carried out in the 3D tensor space, exploiting space, time and
oversampling dimensions of the received signal. Our tensor-based receiver does not
require the use of training sequences, nor the knowledge of the channel impulse
responses and antenna array responses. Moreover, it does not rely on statistical



2.6 APPLICATION TO BLIND MULTIUSER EQUALIZATION 85

independence between the transmitted signals. The number Q of users is, however,
assumed to be known at the receiver.

The Alternating Least Squares (ALS) algorithm [73] is used for this purpose. Equa-
lization is done in the 2D matrix space, where the Toeplitz structure of the symbol
matrix as well as the Finite-Alphabet (FA) property of the transmitted symbols
are exploited to estimate the transmitted symbols via a subspace method. The key
aspect of the proposed algorithm is that multiuser signal separation (PARAFAC
stage) and equalization (Subspace+FA stage) is done in an iterative way. The goal
of the PARAFAC stage is to estimate three component matrices from which the
PARAFAC model parameters can be determined. In turn, the goal of the sub-
space+FA stage is to solve the transformation ambiguity problem that is inherent
to the proposed model as well as to estimate the transmitted symbols in the 2D
space, exploiting the FA property. The FA-projected symbols are in turn used as
an input to the PARAFAC stage to refine the multiuser signal separation in the
3D space. In the following, we describe the proposed algorithm.

2.6.1 Iterative PARAFAC-Subspace receiver

For the received signal tensor X (K×N×P ), multiuser signal separation is carried
out in the 3D tensor space using the ALS algorithm, which consists in estimating
in an alternating way three matrices Z1 ∈ C

N×IQ, Z2 ∈ C
K×LQ and Z3 ∈ C

P×ILQ

from the matrix representations Xi=1,2,3 of the received signal tensor (see Sec.
1.2.3). The multiuser signal separation problem is formulated as a set of three
independent nonlinear least squares problems:

Ẑ2 = argmin
Z2

‖X1 − (Z3 ⋄ Z1Ψ)(Z2Φ)T‖2
F ,

Ẑ3 = argmin
Z3

‖X2 − (Z1Ψ ⋄ Z2Φ)(Z3)
T‖2

F , (2.65)

Ẑ1 = argmin
Z1

‖X3 − (Z2Φ ⋄ Z3)(Z1Ψ)T‖2
F .

Thus, one iteration of the multiuser signal separation stage has three steps. At
each step one component matrix is updated while the others are fixed to the values
obtained at the previous steps. By analogy with (2.44), we have Z1 → A, Z2 → S
and Z3 → W. Uniqueness of A and W is not important in the present context
since we are interested in recovering the user symbol sequences (which is the final
goal in the blind multiuser equalization problem) that should be extracted from
S. We have:

Ŝ(1) = S(1)T(1) , . . . , Ŝ(Q) = S(Q)T(Q),
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Table 2.3: Pseudo-code for the iterative PARAFAC-Subspace algorithm

i = 0; Initialize Ẑ2(0) and Ẑ3(0)
1. i = i + 1;

2. Update ẐT
2 (i) =

[(
Ẑ3(i − 1) ⋄ Ẑ1(i − 1)Ψ

)
ΦT

]†
X1;

3. Subspace+FA stage (go to table 2.4);

4. Form Ẑ2(i) =
[
Ẑ

(1)
2 (i), . . . , Ẑ

(Q)
2 (i)

]
;

5. Update ẐT
3 (i) =

[
Ẑ1(i − 1)Ψ ⋄ Ẑ2(i)Φ

]†
X2;

6. Update ẐT
1 (i) =

[(
Ẑ2(i)Φ ⋄ Ẑ3(i)

)
ΨT

]†
X3;

7. Go to step 1 until convergence.

where T(q) ∈ C
I×I , q = 1, . . . , Q are non-singular (ambiguity) matrices to be

determined. The determination of T(q) and Ŝ(q) can be viewed as an equivalent
single-input multiple-output (SIMO) blind channel identification problem, where
T(q), q = 1, . . . , Q play the role of virtual length-I SIMO channels with I outputs.

The subspace+FA stage of the proposed receiver aims at determining T(q), q =
1, . . . , Q, by the following steps. Matrices T̂(1), · · · , T̂(Q) are determined at each
ALS iteration, via a subspace method. We use the subspace method originally pro-
posed by Moulines et al. in [101]. For reasons of space, we report the interested

reader to the original work for further details. After determining T̂(q), the associa-
ted symbol matrix Ŝ(q) can be estimated (up to permutation) by pseudo-inversion.
An estimation of user symbol sequences ŝ(q) ∈ C

N is obtained by properly avera-
ging over the columns of Ŝ(q) followed by a FA-projection. We assume that the
first symbol of each user sequence is known and equal to 1. This allows us to
eliminate scaling ambiguity by normalizing each estimated symbol sequence s̃(q)(i)

by its first element. An updated (post-equalized) version of Ẑ1 is then formed and
used as an input to the PARAFAC stage to refine user signal separation in the 3D
space. At the end of the algorithm, the permutation ambiguity is resolved using a
greedy least squares (S(q), Ŝ(q))-column matching algorithm [131].

Tables 2.3 and 2.4 summarize the proposed iterative PARAFAC-Subspace algo-
rithm. Table 2.3 describes the steps of the proposed algorithm, with emphasis on
the ALS algorithm, while in Table 2.4 the steps associated with the subspace+FA
stage are detailed. The operator proj

(
·
)

projects each entry of its vector argument
to the closest point of the finite symbol-alphabet. At the end of the i-th iteration,
an overall error measurement between the estimated model and the received signal
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Table 2.4: Pseudo-code for the subspace + FA projection stage
for q = 1 to Q,

– Partition Ẑ2(i) =
[
Ẑ

(1)
2 (i), . . . , Ẑ

(Q)
2 (i)

]
;

– Determine T(q)(i) from Ẑ
(q)
2 (i) (subspace method);

– Ŝ(q)(i) = Ẑ
(q)
2 (i)[T̂(q)(i)]−1;

– ŝ(q)(i) =Average over the columns of Ŝ(q)(i);
– s̃(q)(i) = proj

(
ŝ(q)(i)

)
;

– Ẑ
(q)
2 (i) = Toeplitz

(
s̃(q)(i)

)
;

end q

tensor can be obtained from the following equation:

ei =

∥∥∥∥X1 −
(
Ẑ3(i) ⋄ Ẑ1(i)Ψ

)(
Ẑ2(i)Φ

)T
∥∥∥∥

F

. (2.66)

We declare convergence at the i-th iteration when |ei − ei−1| ≤ 10−5.

2.6.2 Simulation results

In this section, the performance of the proposed tensor-based blind multiuser recei-
ver is evaluated through computer simulations. Each obtained result is an average
over R = 1000 independent Monte Carlo runs. For each run, multipath fading
gains are generated from an i.i.d. Rayleigh generator while the user symbols are
generated from an i.i.d. distribution and are modulated using binary-phase shift
keying (BPSK). Perfect synchronization is assumed at the receiver. In all cases, a
block of N = 100 received samples is used in the blind estimation process. The
channel impulse response follows a raised cosine pulse shape with roll-off factor
0.35. We consider I = 2 channel taps, Q = 2 users and a fixed oversampling factor
P = 8. At the beginning of the algorithm Ẑ

(0)
1 and Ẑ

(0)
3 are randomly initialized.

More sophisticated initialization strategies exist, which are based on Tucker-3 com-
pression [131] or on eigenanalysis [130], but they are beyond the scope of this thesis.
We have observed however that convergence of the estimates is rapidly achieved
(within 10 ALS iterations in most of cases), and this is attributed to the use of
the FA property within the ALS loops.



88 CHAPTER 2. TENSOR MODELING FOR WIRELESS COMMUNICATION SYSTEMS

BER calculation

We adopt the following criterion for the Bit-Error-Rate (BER) calculation. 1%
of the total number of runs are discarded, corresponding to inevitable bad runs
that reach a local minimum. The criterion for selecting the bad runs is based on
the observation of the steady state estimation error, i.e., the error between the
received tensor and the tensor reconstructed from estimated components matrices
after convergence. The runs with the highest error values are discarded from
the BER averaging process. For the bit-error-rate (BER) versus signal-to-noise
ratio (SNR) results, the BER shown is the BER averaged over both users and R
independent runs, i.e.:

BER =
1

R

R∑

r=1

BER1(r) + BER2(r)

2
,

where BER1(r) and BER2(r) are the BER of the first and second users at the r-th
run, respectively.

Propagation scenarii

We adopt the multipath propagation model described in Section 2.2 and consider
L = 2 effective multipaths per user, each path being associated with a different
cluster of scatterers. Cluster angle spreads are the same for both users and are
given by (∆θ1q, ∆θ2q) = (0◦, 5◦), q = 1, 2. Concerning the mean angle of arrival, we
consider two propagation scenarii. In the first one, we have (θ11, θ21) = (0◦, 20◦)
for the first user and (θ12, θ22) = (−10◦, 10◦) for the second one. The second
propagation scenario is more challenging. The mean angle of arrival of the first
(zero-delayed) path of both users is identical, and we have θ11 = θ12 = 0◦, while the
other multipaths have the same angles as those of the first scenario. All multipaths
have the same average power E[βlqβ

∗
lq] = 1, l = 1, . . . , L, q = 1, . . . , Q.

Performance results

We begin by evaluating the convergence of the proposed PARAFAC-Subspace
algorithm. Figure 2.4 shows typical convergence curves, considering the first pro-
pagation scenario. The median values of the normalized error e2

i /(MPN), where
ei is given in (2.66), are plotted as a function of the iterations for various SNR
values. It can be seen from Fig. 2.4 that the algorithm rapidly converges, usually
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within 10 iterations. We have observed that convergence is actually accelerated
due to the use of FA property within the ALS loops.

In Fig. 2.5, we compare the proposed algorithm with the standard ALS algorithm
in terms of convergence speed. We plot the number of iterations for convergence
as a function of the SNR. We consider two propagation scenarii, the first one
with delay spread (I = 2) and the second one without delay spread (I = 1). We
can observe that the proposed algorithm converges with fewer iterations than the
standard ALS algorithm. In particular, note that the convergence of the standard
ALS algorithm is more sensitive to the delay spread, in contrast to the proposed
algorithm. The difference on the required number of iterations between both
algorithms is more pronounced for low to medium SNR values.

The BER versus SNR results are evaluated considering the first scenario, where
the users have distinct spatial signatures. In order to verify the influence of the
multipath delay spread, we consider two cases. In the first one (τ1q, τ2q) = (0, τ) =
(0, T ), while in the second one (τ1q, τ2q) = (0, τ) = (0, 0.25T ), q = 1, 2. The
results are shown in Figure 2.6, for K = 2 and 4 receive antennas. It can be
seen that the BER performance of the proposed receiver is remarkable, even with
K = 2 receive antennas only. A significant performance gain is observed when the
number of receive antennas is increased from 2 to 4, since more degrees of freedom
are available in the space domain to separate the two user signals. Improved
performance is obtained when τ = T , i.e., when the delay of the second multipath
(for both users) coincides with one symbol period. Multipath combination is more
effective when τ = T , since the multipaths are better distinguished in the time
domain. Moreover, when τ = 0.25T , some multipath energy is spread beyond
I = 2 symbol periods and this is ignored in our tensor model.

We now consider the second propagation scenario, where the first path of both
users have identical directions of arrival. We want to illustrate that in this type
of scenario, path diversity becomes important and frequency-selectivity indeed
helps the separability of the user signals in the time domain. In order to evaluate
this, the average power of the second (one-symbol delayed) path of each user is
varied. We define δ as the average ratio between the gain of the second and first
multipaths, which are assumed equal for both users. We consider δ = 0.1, 0.25, 0.5
and 1. According to Figure 2.7, improved performance is obtained when the first
and second paths have the same average power, i.e., δ = 1. In this case, the
path diversity gain is maximum. The worst result is obtained with δ = 0.1 (nearly
flat-fading channel). These results indicate that the proposed PARAFAC-Subspace
receiver effectively combines the multipaths of each user to provide a path diversity
gain, being able to blindly separate the two user signals.
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Figure 2.8: Blind PARAFAC-Subspace receiver versus MMSE receiver with
perfect channel knowledge.

In order to provide a performance reference for the proposed PARAFAC-Subspace
receiver, we also evaluate the performance of the Minimum Mean Square Error
(MMSE) receiver. In contrast to our blind iterative PARAFAC-Subspace receiver,
the MMSE one assumes perfect knowledge of all channel parameters as well as
the knowledge of the SNR. We consider K = 2 and 4 receive antennas. Figure
2.8 shows that the PARAFAC-Subspace receiver has nearly the same BER vs.
SNR improvement than that of MMSE with perfect channel knowledge. The gap
between both receivers is smaller for K = 4. For example, considering a target
BER of 10−2, the proposed receiver provides a loss in performance of 5dB for
K = 2 and 3dB for K = 4, with respect to the MMSE receiver.

In the next experiment, we consider Q = 2 users, I = 3, L(1) = 2, L(2) = 3,
N = 50, P = 12 and K = {2, 3}. The angles-of-arrival and the time-delays are
described in Table 2.5. Figure 2.9 shows that the performance of source 2 is better
than that of source 1. Indeed, the signal from source 2 is received via L(2) = 3
paths (against L(2) = 2 paths for source 1), thus achieving a higher path diversity
gain. Performance is also improved for both users, when the number of receive
antennas is increased. The figure also shows the performance of the non-blind
MMSE receiver which assumes perfect knowledge of A and H for source 2 with
K = 3. The performance loss of the proposed receiver with respect to the MMSE
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one is 3dB for a BER of 10−2.

Table 2.5: Multipath parameters for the simulated scenario.
angles-of-arrival time-delays

Source 1 (−50◦,−20◦) (0, T )
Source 2 (0◦, 30◦, 50◦) (0, 0.2T, T )
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Figure 2.9: Receiver performance for two users with different number of mul-
tipaths.

2.7 Summary

This chapter has proposed a new tensor modeling approach for the received signal
in three wireless communication systems, namely, the oversampled, DS-CDMA
and OFDM systems. The tensor models assume frequency-selective channel with
multipath propagation characterized by a few dominant paths. The first and
second dimensions of the received signal is common for the three systems, while
the third-dimension is associated with oversampling, spreading or frequency. We
have seen that the received signal tensor in each of these systems can be unified
by means of the block-constrained PARAFAC decomposition.



94 CHAPTER 2. TENSOR MODELING FOR WIRELESS COMMUNICATION SYSTEMS

A generalization of this unified model has been presented by considering that the
number of paths of each user can be different. The formulation of this generalized
model is based on a constrained Tucker-3 model. Based on the generalized mo-
del, two practical multipath propagation scenarii have been considered, namely,
far-field reflections without angular spread and local scattering with small delay
spread.

A blind receiver based on the proposed tensor model has been presented for mul-
tiuser separation/equalization under the assumption of frequency-selective fading
and in the oversampled case. The proposed receiver is deterministic, and does not
require the use of training sequences, nor the knowledge of the channel impulse
responses and antenna array responses. The IPSP receiver iteratively combines
the ALS algorithm (for multiuser separation in the tensor space) with a subspace
method (for single-user equalization in the matrix space). The FA property of the
transmitted symbols is also used. The BER performance of this receiver has been
evaluated for some propagation scenarii.

In the next two chapters, we will show that the block-constrained PARAFAC
decomposition is also useful for modeling multiple-antenna systems with space-
time spreading and multiplexing in the context of MIMO systems.





CHAPTER 3

Multiuser MIMO Systems Using Block
Space-Time Spreading

In this chapter, we consider a point-to-multipoint downlink multiuser wireless com-
munication system, where a multiple-antenna base station simultaneously transmits
data to several users equipped with multiple receive antennas. The transmit an-
tenna array is partitioned into transmission blocks, each one being associated with
a given user. Space-time spreading is performed within each block using a transmit
antenna subset. We formulate block space-time spreading using a tensor modeling.
The space-time spreading structure is chosen to allow a deterministic MUltiuser
Interference (MUI) elimination by each user. A block-constrained PARAFAC mo-
del is then presented for the received signal, where the fixed constraint matrices
reveal the overall space-time spreading pattern used at the transmitter. The distin-
guishing feature of the space-time spreading model of this chapter, is the possibility
of modeling a multiuser space-time transmission with different spatial spreading
factors (diversity gains) as well as different multiplexing factors (code rates) for
the users. Simulation results illustrate the performance of the proposed transceiver
model in terms of bit-error-rate and link-level throughput.
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3.1 Motivation and previous work

Several works have addressed the design of MIMO signaling techniques for multiu-
ser multiple-access systems, especially in the downlink, by using space-time sprea-
ding in conjunction with DS/CDMA techniques (see e.g. [103, 56, 22, 57] and the
references therein). By exploiting excess bandwidth, these approaches are gene-
rally based on the combination of linear space-time spreading codes and multiuser
spatial multiplexing, and rely on linear multiuser detection at the receiver side
to handle Multiuser Interference (MUI). [103] proposes a space-time multiplexing
model that allows several users to simultaneously access all the spatial channels, by
using mutually-orthogonal spreading codes for the transmit antennas. This idea is
pursued in [56], by using different space-time multiplexing matrices (i.e. different
2-D spreading codes) for each user. In [22], space-time multiplexing and algebraic
rotation are combined to yield full transmit diversity to each user. The receiver is
based on linear multiuser detection followed by single-user sphere decoding. [57]
proposes a space-time multiplexing model for the downlink of a Multiuser (MU)
Space-Time (ST) MIMO system and a new spreading matrix structure. All these
approaches assume that the channel is perfectly known at the transmitter (or it
has been estimated using training sequences), and rely on the orthogonality pro-
perties of the spreading codes to handle MUI at the receiver. They also focus
on suboptimal receiver structures as an alternative to Maximum Likelihood (ML)
detection.

The use of tensor decompositions in MIMO antenna systems has been addressed
in [129, 48, 32, 33] by focusing on single-user transmissions. In [48], a generalized
tensor model for MIMO systems was proposed. However, this modeling approach
only considers spatial multiplexing. The MIMO system model of [129] considers
spreading of each data stream in the temporal dimension only, i.e., across conse-
cutive chips. There is no spreading across the transmit antennas. In [32], we
proposed a constrained tensor model for MIMO systems which allows spreading
of each data stream across both space and time dimensions.

The proposed block-constrained tensor based MU-MIMO system can be viewed as
a generalization of [129] and [24, 32] due to the fact that i) it is designed to cope
with multiuser MIMO transmission and ii) it jointly performs space-time spreading
and multiuser spatial multiplexing. The MU-MIMO framework proposed here
is close to those of [103, 56, 57], which use space-time multiplexing codes for
downlink MU-MIMO systems. Our block space-time spreading structure acts as
a tridimensional (3-D) spreading sequence [39].

The tensor model presented in this chapter is more general than that of the pre-
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Figure 3.1: Block-diagram of the considered MU-MIMO system.

vious chapter in the sense that it allows constrained PARAFAC blocks with dif-
ferent interaction structure per block. We limit ourselves to a flat-fading channel
model.

3.2 System model and assumptions

Let us consider the downlink of a multiuser MIMO wireless communication system
where a multiple-antenna base station simultaneously transmits data to Q users
equipped with multiple receive antennas. Let P denote the temporal spreading
factor of the system. The base station is equipped with M transmit antennas, and
the q-th user is equipped with K receive antennas, q = 1, . . . , Q (see Fig. 3.1). It
is assumed that the base station has no knowledge of the downlink channels1.

The transmission is organized into time-slots of N symbols, each one being compo-
sed of P chips. We assume that the wireless channel is characterized by scattering-
rich propagation and is frequency-flat. The channel is also assumed to be constant
during the time necessary to transmit a time-slot, but varies between two consecu-

1When a priori information of the users’ channels is available at the transmitter, multiuser
scheduling policies can be used to allocate the transmit antennas to the users. This is the role of
the antenna-to-user mapping block shown in Fig. 3.1. Although interesting, we do not pursue
the antenna allocation issue here by simply bypassing this stage.
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tive time-slots. For the q-th user, the discrete-time baseband version of the signal
received at the k-th receive antenna, associated with the p-th chip of the n-th
transmitted symbol, can be written as:

x
(q)
k

(
(n − 1)P + p

)
=

M∑

m=1

h
(q)
k,m cm

(
(n − 1)P + p

)
,

n = 1, . . . , N, p = 1, . . . , P,

where h
(q)
k,m is the complex channel gain between the m-th transmit and the k-th

receive antenna and cm

(
(n−1)P +p

)
is the

(
(n−1)P +p

)
-th sample of the signal

transmitted by the m-th transmit antenna. Let H(q) ∈ C
K×M and Cn ∈ C

P×M

denote the MIMO channel matrix and the transmitted signal matrix at the n-th
symbol period. Let h

(q)
k,m

.
= [H(q)]k,m and cm

(
(n − 1)P + p

) .
= [Cn]p,m be the

entries of these matrices. Taking these definitions into account, we can represent
the noiseless received signal at the n-th symbol period by a P × K matrix X

(q)
n ,

with x
(q)
k

(
(n − 1)P + p

)
= [X

(q)
n ]p,k. This matrix can be expressed as:

X(q)
n = CnH

(q)T , n = 1, . . . , N. (3.1)

We assume that the channel matrix has i.i.d. entries following a zero-mean unit-
variance complex-Gaussian distribution with E[trace(H(q)H(q)H)] = MK, where
trace(·) is the trace operator. We also have E[trace(CnC

H
n )] = PT , ensuring that

the total transmitted power PT is maintained irrespective of M and P .

3.3 Block space-time spreading model

In this section, we describe the proposed transmitter/receiver model by using
the tensor formalism [39]. We assume that the M transmit antennas are asso-
ciated with Q transmission blocks of M (i) antennas each, i = 1, . . . , Q. These
Q transmission blocks are disjoint in the sense that they do not share a com-
mon transmit antenna. The total number of transmit antennas is then given by
M = M (1) + · · · + M (Q). Each transmission block is associated with a different
user to be served. At the i-th block, a serial input data stream is parsed into
R(i) parallel streams, which are individually spread in the space and time domains
over M (i) transmit antennas and P chips, respectively. After space-time spreading,
these R(i) data streams are summed up at each transmit antenna to yield the co-
ded signal tensor that is effectively transmitted. Let us denote the total number of
multiplexed data streams by R = R(1) + · · ·+R(Q). After serial-to-parallel conver-
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sion, the n-th symbol of the r(i)-th data stream of the i-th transmission block is
given by:

s
(i)

n,r(i) = s
(
(r(i) − 1)N + n

)
, (3.2)

where n = 1, . . . , N , r(i) = 1, . . . , R(i), i = 1, . . . , Q. Let us define a symbol matrix
concatenating these R(i) data streams as:

S(i) = [S
(i)
·1 · · ·S(i)

·R(i) ] ∈ C
N×R(i)

, (3.3)

where S
(i)

·r(i) = [s
(i)

1,r(i) · · · s(i)

N,r(i) ]
T ∈ C

N×1, i = 1, . . . , Q. The aggregate symbol

matrix is defined as the concatenation of the Q symbol matrices:

S = [S(1) · · ·S(Q)] ∈ C
N×R.

Due to the partitioning of the M transmit antennas into Q disjoint blocks, we can
view the MIMO channel matrix H(q) defined in Section 3.2 as a block-partitioned
matrix:

H(q) =
[
H(q, 1) · · ·H(q, Q)

]
∈ C

K×M , (3.4)

with H(q, i) ∈ C
K×M(i)

. Taking the above definitions into account, we can visualize
the block space-time spreading process as a tensor transformation. Define W(i)

∈ C
M(i)×P×R(i)

as the 3-D spreading code tensor having three dimensions: the
first one is equal to the number of transmit antennas M (i), the second one defines
the temporal spreading factor P , while the third one is equal to the number of
multiplexed data sub-streams R(i). Space-time spreading is formulated as:

W(i) : S(i) → C(i), i = 1, . . . , Q, (3.5)

where C(i) ∈ C
M(i)×N×P is a tensor collecting the coded signals over M (i) transmit

antennas, N symbols and P chips/symbol, associated with the i-th space-time
spreading block.

3.3.1 Scalar writing

The block space-time spreading model can be written in scalar form. Defining
w

(i)

m(i),r(i),p
and c

(i)

m(i),n,p
as the entries of W(i) and C(i), respectively, we have:

c
(i)

m(i),n,p
=

R(i)∑

r(i)=1

s
(i)

n,r(i)w
(i)

m(i),r(i),p
, i = 1, . . . , Q. (3.6)
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Note that the transmitted signal tensor is given by a linear combination of R(i)

signal contributions. Let h
(q,i)

k,m(i) be the channel gain between the m(i)-th transmit

antenna and the k-th receive antenna of the q-th user. The discrete-time baseband
signal received by the q-th user is a third-order tensor X (q) ∈ C

K×N×P with typical
element x

(q)
k,n,p representing the signal received by the k-th receive antenna of the

q-th user, associated with the n-th symbol and p-th chip. In absence of noise, x
(q)
k,n,p

can be written as:

x
(q)
k,n,p =

Q∑

i=1

x
(q, i)
k,n,p =

Q∑

i=1

M(i)∑

m(i)=1

h
(q,i)

k,m(i)c
(i)

m(i),n,p

=

Q∑

i=1

M(i)∑

m(i)=1

R(i)∑

r(i)=1

h
(q,i)

k,m(i)s
(i)

n,r(i)w
(i)

m(i),r(i),p
(3.7)

Figure 3.2 illustrates the proposed block space-time spreading MU-MIMO system,
where W(i) is interpreted as a 3-D spreading code for multiple data streams and
multiple transmit channels.
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Figure 3.2: Decomposition of the received signal tensor (q-th user) in absence
of noise.

Generalization to frequency-selective channels using MIMO-OFDM

The generalization of the proposed model to frequency-selective channel is straight-
forward under certain assumptions by considering OFDM [33]. In a MIMO-OFDM
system, the R data streams are spread over an M (i) ×P ×F space-time-frequency
grid associated with M (i) transmit antennas, P OFDM symbols and F subcar-
riers, and then linearly combined. The resulting signal at each transmit antenna is
parsed into blocks of Nc symbols, and an Inverse Fast Fourier Transform (IFFT)
is applied to each block followed by the insertion of a Cyclic Prefix (CP) before
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transmission. It is assumed that the Q transmission blocks use the same set of
subcarriers at the same time. After baseband conversion, the CP is removed and
Fast Fourier Transform (FFT) is applied at each receive antenna. Perfect timing
and synchronization are assumed at the receiver. We suppose that the frequency
selective fading channels between each pair of transmit and receive antennas have
L independent delay paths and the same power-delay profile. It is also assumed
that all path gains are constant over the N time-slots.

From the assumption of subcarrier orthogonality, the overall system is modeled
as Nc/F parallel sub-systems of F subcarriers each. In order to benefit from the
frequency diversity, the F frequencies can be taken Nc/L apart or more.

The received signal model is similar to (3.7), and the main difference is the presence
of the frequency-dependent index f , which adds a fourth dimension to the received
signal tensor. In absence of noise, the received signal is given by:

x
(q)
f,k,n,p =

Q∑

i=1

M(i)∑

m(i)=1

R(i)∑

r(i)=1

h
(q,i)

f,k,m(i)s
(i)

n,r(i)w
(i)

m(i),r(i),p
,

where x
(q)
f,k,n,p is the q-th user received signal at the k-th receive antenna, f -th

subcarrier, p-th OFDM symbol and n-th time-slot. xf,k,n,p is a F × K × N ×
P fourth-order tensor. We are interested in working with an equivalent third-
order tensor of dimensions FK ×N ×P obtained by concatenating the space and
frequency dimensions into one dimension. The unfolded representations of the
received signal also follow a block-constrained PARAFAC model, and are similar
to those of the flat-fading case. For further details, we refer to [33].

3.3.2 Matrix writing

Model (3.6)-(3.7) admits an equivalent matrix writing. Let us define W
(i)

m(i)··
∈

C
R(i)×P as the m(i)-th slice of the spreading code tensor W(i). This matrix models

the joint temporal spreading and spatial multiplexing of R(i) data streams at the
m(i)-th transmit antenna. Let us define:

C(i)
·n· =




c
(i)
1,n,1 · · · c

(i)

M(i),n,1
...

...

c
(i)
1,n,P · · · c

(i)

M(i),n,P


 ∈ C

P×M(i)

, (3.8)
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as a n-th second-mode matrix slice of the transmitted signal tensor C(i) ∈
C

M(i)×N×P , containing the received signal samples associated with the n-th symbol.
We can rewrite (3.6) as:

C(i)
·n· =

[(
S(i)

n· W
(i)
1··

)T

, . . . ,
(
S(i)

n· W
(i)

M(i)··

)T
]

=
[
W

(i)T
1·· , . . . ,W

(i)T

M(i)··

]



S
(i)T
n·

. . .

S
(i)T
n·


 , (3.9)

i.e.
C(i)

·n· = W(i)
(
IM(i) ⊗ S(i)T

n·

)
, (3.10)

where
S(i)

n· =
[
s
(i)
n,1 · · · s

(i)

n,R(i)

]
∈ C

1×R(i)

,

and
W(i) =

[
W

(i)T
1·· , . . . ,W

(i)T

M(i)··

]
∈ C

P×M(i)R(i)

is a space-time spreading matrix. This matrix is linked to the spreading tensor
W(i) ∈ C

M(i)×R(i)×P by:

[W(i)]p,(m(i)−1)R(i)+r(i) = w
(i)

m(i),r(i),p
. (3.11)

Substituting (3.10) into (3.1) and using (3.4), the signal received by the q-th user
from the M (i) transmit antennas corresponding to the i-th space-time spreading
block, is given by:

X(q,i)
·n· = C(i)

·n·H
(q,i)T = W(i)

(
IM(i) ⊗ S(i)T

n·

)
H(q, i)T . (3.12)

The overall signal received by the q-th user is then written as:

X(q)
·n· =

Q∑

i=1

X(q,i)
·n·

=

Q∑

i=1

W(i)
(
IM(i) ⊗ S(i)T

n·

)
H(q, i)T . (3.13)

Figure 3.3 illustrates the overall signal transmission/reception scheme in absence
of noise, by focusing on the link between the i-th space-time spreading block and
the q-th user.
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Figure 3.3: Signal transmission/reception model linking the i-th transmission
block to the k-th receive antenna of the q-th user.

Let us define an aggregate transmitted signal matrix C·n· ∈ C
P×M and an ag-

gregate spreading matrix W ∈ C
P×RM concatenating the Q users contributions

as:

C·n· =
[
C(1)

·n· , . . . ,C
(Q)
·n·

]
, W =




W(1)

...
W(Q)


 , (3.14)

where

RM =

Q∑

i=1

R(i)M (i) =

Q∑

i=1

R
(i)
M .

Note that C·n· corresponds to the Cn matrix defined in Section 3.2, now interpreted
as a concatenation of Q blocks. Using the partitioned forms (3.4) and (3.14) of

H(q) and C·n·, the received signal matrix X
(q)
·n· given in (3.13) can be written as:

X(q)
·n· = C·n·H

(q)T = WSnH
(q)T , (3.15)
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where

C·n· = W




(
IM(1) ⊗ S

(1)T
n·

)

. . . (
IM(Q) ⊗ S

(Q)T
n·

)


 , (3.16)

Sn ∈ C
RM×M being an aggregate block-diagonal symbol matrix.

3.3.3 Relation with the Khatri-Rao coding model [129]

In [129] a space-time encoding technique based on the properties of the Khatri-Rao
product was proposed for single-user MIMO antenna systems. In the Khatri-Rao
Space-Time (KRST) coding model, each transmit antenna transmits a single data
stream which is spread in the temporal domain (i.e. across P chips). Let us see
that model (3.15) includes the KRST coding model [129] as a special case. By
setting M (i) = R(i) = 1, i = 1, . . . , Q, we have M = R = Q. In this particular
case, model (3.15) can be viewed as a single-user MIMO system transmitting Q
data streams using Q transmit antennas. Then, (3.10) is reduced to the following
form:

C(i)
·n =




w
(i)
1
...

w
(i)
P


 s(i)

n ,

so that (3.13) simplifies to:

X(q)
·n· =

Q∑

i=1

w(i)s(i)
n h(q, i)T = Wdiag(Sn·)H

(q)T = WDn(S)H(q)T , (3.17)

where

H(q) =
[
h(q, 1) · · ·h(q, Q)

]
∈ C

K×Q,

Sn· =
[
s(1)

n · · · s(Q)
n

]
∈ C

1×Q,

W = [w(1) · · ·w(Q)] ∈ C
P×Q,

are the channel, symbol and code matrices. Comparing (3.13) with (3.17), we can
see that the proposed space-time spreading model can be viewed as a generalized
KRST coding model where the data streams are also spread in the spatial domain,
i.e. across the transmit antennas.
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3.3.4 Relation with the ST spreading model [32]

In [32], a space-time spreading model was proposed using tensor modeling. This
model is similar to the present one in the sense that each data stream is spread
across several antennas and chips. It can be obtained from (3.15) by setting Q = 1
(single-user/single-block system) with M (1) = M . The proposed block space-time
spreading model generalizes [32] by considering multiuser block transmission with
different space-time spreading patterns for the users/blocks. As will be detailed
in Section 3.4, a distinguishing feature of the block space-time spreading model
is its flexibility to share multiplexing (data-rate) and spatial spreading (transmit
diversity) among the different blocks (when Q ≥ 2).

3.3.5 Relation with LD coding [76]

The principle of block space-time spreading is similar to that of Linear Dispersion
(LD) coding. Both approaches propose to transmit multiple data streams in linear
combinations over space and time. In principle, the proposed approach can be
viewed as a sort of LD coding formulated using tensor notation. However, both
approaches differ in some aspects. In LD coding, space-time signal design is based
on numerical optimization with mutual information as the objective function. LD
coding does not necessarily provide full diversity and assumes accurate channel
estimation using training sequences. The proposed block space-time spreading
also provides different data rates and diversity gains, and has the distinguishing
feature of allowing a blind joint channel and symbol recovery.

3.4 Performance analysis

We apply the rank criterion for space-time code design [142] to the equivalent
matrix model (3.16) for performance analysis in terms of diversity gain. Suppose
that the joint Maximum Likelihood (ML) decoding is performed at the receiver
to recover C·n· using perfect channel knowledge. Consider an erroneous decoding
leading to an estimation of the transmitted signal matrix C′

·n·, with C·n· 6= C′
·n·.

The pairwise error probability can be upper bounded by [142]:

P (C·n· → C′
·n·) ≤

(
2ν − 1

ν

) (
ν∏

i=1

λi

)−1 (
SNR

M

)−ν

,
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where ν is given by:
ν = rEn

= r(C·n·−C′
·n·),

λ1, . . . , λν are the nonzero eigenvalues of En. Full transmit diversity gain is ob-
tained when En is full-rank, i.e. ν = rEn

= min(P, M), for all C·n· 6= C′
·n·. Using

(3.15), we have:

En = C·n· − C′
·n· = W

(
Sn − S

′

n

)
. (3.18)

In our analysis, we must ensure that Sn−S
′

n is full rank. From (3.16)), this requires

that S
(i)
n· − S

(i)′

n· contains no zeros, for all S
(i)
n· 6= S

(i)′

n· . This holds if appropriate
linear precoding over the symbol vectors S

(1)
n· , . . . ,S

(Q)
n· is used [21, 155, 59, 94].

The use of linear precoding by means of constellation rotation is important to
ensure maximum diversity gain in MIMO systems with space-time coding. These
constructions are generally based either on algebraic number-theoretic construc-
tions or on exhaustive computer search. This issue is beyond the scope of this
work and is not addressed here.

Under the assumption that Sn − S
′

n is full rank, the diversity gain, denoted by ν,
is upper-bounded by:

Kmin(P, M).

In frequency-selective channels and assuming F > L, the diversity gain is given
by:

ν ≤ KLmin(P, M). (3.19)

In the MIMO-OFDM case, the overall rate is given by:

Rate =

(
QR

PF

)
· log2(µ) bits/channel use. (3.20)

3.4.1 Design requirement and spreading structure

In order to achieve an aggregate transmit diversity gain of order M , we must have
rank(En) = rank(Sn−S

′

n) = M , which implies that the spreading matrix W must
be full column rank, i.e.:

P ≥
Q∑

i=1

R(i)M (i) =

Q∑

i=1

R
(i)
M = RM . (3.21)
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Note that this design requirement relates the temporal spreading factor P to both
the spatial spreading and multiplexing factors {M (i), R(i)}, i = 1, . . . , Q. We
choose the spreading matrix W as the following Vandermonde matrix [129]:

[W]p,r′ =
1√
P

· ej
2π(p−1)

P
(r′−1), p = 1, . . . , P, r′ = 1, . . . , RM .

Note that W is a full rank semi-unitary matrix which satisfies the following condi-
tions:

WHW = IRM
.

This structure of W has the attractive feature of allowing MUI elimination de-
terministically at the receiver, provided that all the receivers have knowledge of
their corresponding spreading matrix [94]. Moreover, the chosen structure allows
to control the number of transmit antennas M (i) as well as the number of mul-
tiplexed data-streams R(i) by simple truncation of W. Using this Vandermonde
structure can be beneficial when the channel matrix is rank-deficient (e.g. due to
strong correlation of the spatial channels). In such a situation, an equivalent full
rank channel matrix is created from the combination of the original (rank-deficient)
channel matrix with the space-time spreading matrix. A similar structure is also
considered for constructing the KRST coding model [129].

Remark: The spreading matrix W can, in principle, be any matrix satisfying the
condition for full diversity and deterministic MUI elimination. For instance, W
can be chosen as a Hadamard matrix associated with an orthogonal transforma-
tion existing for dimensions two and all dimensions multiple of 4, which satisfies
WTW = IRM

up to a scalar factor [22]. In this case, our transmission model can
be interpreted as a sort of space-time spreading DS/CDMA model, and is close in
structure to those proposed in [103, 56, 57] with W being a matrix of spreading
sequences of length P = RM . It is to be noticed that the Hadamard transform
is also used to design quasi-optimal constellation rotations in space-time coding
[21], and has the property of reducing the peak to mean envelope power ratio [23].

3.4.2 Rate issues

Taking the above design requirement and spreading matrix structure into account,
the rate of the proposed space-time spreading model can be calculated by using



3.4 PERFORMANCE ANALYSIS 109

the simple formula:

ρ(q) =

(
R(q)

P

)
log2(µ) (bits per channel use), (3.22)

where µ is the modulation cardinality. Note that the Q data streams can share dif-
ferent rates, depending on their spatial spreading factors {M (q)} and multiplexing
factors {R(q)}, q = 1, . . . , Q. Such a rate sharing characteristic comes from the
design requirement (3.21) which establishes a lower bound for the spreading factor
(which is common for all the users) function of the multiplexing factors (which
can vary across users). Table 3.1 shows different rates (in bits per channel use) for
Q = 2 and different values of {M (1), R(1)} and {M (2), R(2)}. The users’ rates are
calculated using (3.22) considering 64-QAM modulation (µ = 64) with P = RM .

Table 3.1: User rates for different spatial spreading and multiplexing factors.

{M (1), R(1)} ; {M (2), R(2)} {ρ(1), ρ(2)} ρ(1)/ρ(2)

{2, 1} ; {1, 1} {2, 2} 1
{2, 2} ; {1, 1} {2.4, 1.2} 2
{2, 1} ; {1, 2} {1.5, 3} 1/2
{2, 1} ; {2, 1} {1.5, 1.5} 1
{2, 2} ; {2, 1} {2, 1} 2
{2, 3} ; {2, 1} {2.25, 0.75} 3
{3, 1} ; {1, 1} {1.5, 1.5} 1
{3, 3} ; {1, 1} {1.8, 0.6} 3
{3, 1} ; {1, 2} {1.2, 2.4} 1/2

In order to illustrate the rate sharing characteristic of the proposed block space-
time spreading model, let us consider a system with Q = 2 and M = 2. The
modulation has cardinality µ = 16. Assume that the space-time spreading blocks
of both users have the same number of transmit antennas, i.e. M (1) = M (2) = 1.
Figure 3.4 illustrates the theoretical (maximum) rate sharing between two users as
the multiplexing factor R(1) of the first user is increased while that of the second
one is fixed at R(2) = 1 or 2. The rates are calculated using (3.22) with P satisfying
the design requirement (3.21) in each case. First of all, note that the total rate
ρ(1) + ρ(2) is constant. The increase of ρ(1) comes at the expense of a decrease of
ρ(2). The crossing of both rate curves occurs when R(1) = R(2) = 1 and 2. This
figure suggests that the rate of the different space-time spreading blocks can be
controlled by varying their multiplexing factors.

In Fig. 3.5, we show the influence of the number of transmit antennas on the
achievable rate for fixed multiplexing factors {R(1), R(2)} = {2, 1} and µ = 64.
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Figure 3.4: Rate sharing between two users.
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Users’ space-time spreading blocks have the same number of transmit antennas.
As the number of transmit antennas used for spatial spreading is increased (so is
the transmit diversity gain), the achievable rate of both users is decreased. Such
a rate decrease comes from the fact that P must be increased according to the
number of transmit antennas in order to satisfy (3.21).

3.5 Block-constrained received signal model

We formulate the received signal tensor (3.7) in equivalent matrix forms associated
with a block-constrained PARAFAC model. Moreover, we show how the constrai-
ned structure of this model is linked to the block space-time spreading pattern
used at the transmitter.

Recall the scalar writing of the received signal model (3.7). By analogy with (1.48),
and using (1.55), we can deduce the following correspondences:

(I1, I2, I3, R
(q)
1 , R

(q)
2 ,A,B,C) → (K,N, P, M (q), R(q),H(q),S,W),

so that the unfolded matrices of the received signal X
(q)
1 ∈ C

PK×N , X
(q)
2 ∈ C

KN×P

and X
(q)
3 ∈ C

NP×K are factored as:

X
(q)
1 =

(
W ⋄ (H(q)Ψ)

)
(SΦ)T , (3.23)

X
(q)
2 =

(
(H(q)Ψ) ⋄ (SΦ)

)
WT , (3.24)

X
(q)
3 =

(
(SΦ) ⋄ W

)(
H(q)Ψ

)T
, (3.25)

where H(q) is defined in (3.4), S = [S(1) · · ·S(Q)], while Ψ and Φ are block-diagonal
constraint matrices :

Ψ =




Ψ(1)

. . .

Ψ(Q)


 ∈ R

M×RM , (3.26)

Φ =




Φ(1)

. . .

Φ(Q)


 ∈ R

R×RM , (3.27)
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where their i-th blocks have, respectively, the following Kronecker structures:

Ψ(i) = IM(i) ⊗ 1T
R(i) ∈ C

M(i)×R
(i)
M ,

Φ(i) = 1T
M(i) ⊗ IR(i) ∈ C

R(i)×R
(i)
M . (3.28)

with R
(i)
M defined in (3.21).

3.6 Physical meaning of the constraint matrices

In the present context, the constraint matrices Ψ and Φ admit an interesting phy-
sical interpretation. They can be viewed as symbol-to-antenna allocation matrices
and their structure reveals the overall block space-time spreading pattern conside-
red at the transmitter. This interpretation sheds light on the different space-time
spreading designs that can be achieved by properly configuring these matrices
with 1’s and 0’s. For example, let us consider M = 3 transmit antennas and a
transmission for Q = 2 users, which implies Q = 2 transmission blocks. Assume
{M (1), R(1)} = {2, 1}, {M (2), R(2)} = {1, 3}. From (3.26)-(3.28), Ψ and Φ have
the following structures:

Ψ =




1 0 0 0 0
0 1 0 0 0
0 0 1 1 1


 , Φ =




1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 .

First, note that both Ψ and Φ are block-diagonal matrices with two diagonal
blocks, i.e.:

{Ψ(1),Ψ(2)} = {I2,1
T
3 }, {Φ(1),Φ(2)} = {1T

2 , I3}.
Each row of Ψ defines the multiplexing factor at each transmit antenna. The
number of 1’s entries in each row of Ψ defines the number of symbols combined
into each transmit antenna. Observe that the first and second rows of Ψ (both
associated with the first transmission block) have only one non-zero entry, which
indicates that both transmit antennas of this block transmit only one symbol at a
time. The third row contains three non-zero entries, meaning that three symbols
are simultaneously transmitted by the antenna of the second block.

Now, let us look at the structure of Φ. Its number of rows corresponds to the total
number of multiplexed data streams. Each row of Φ defines the spatial spreading
factor associated with each data-stream: The number of 1’s entries in each row of
Φ defines the number of antennas used to transmit each data-stream. Note that its



3.7 RECEIVER ALGORITHM 113

first row has two non-zero entries, which means that the first data-stream is spread
over the two first transmit antennas. The three other rows have only one non-zero
entry, which indicates that the three other data-streams are transmitted using
only one transmit antenna, i.e., they are not spatially spread at the transmitter.
The chosen spreading-multiplexing configuration can be checked by means of the
following matrix:

ΨΦT =




1 0 0 0
1 0 0 0
0 1 1 1


 ∈ C

M×R.

This matrix product reveals the joint spreading-multiplexing pattern. For a fixed
row, one can check for the number of data-streams multiplexed at a given antenna
by counting the number of 1’s entries in that row. On the other hand, for a fixed
column, one can check for the number of antennas over which a given data-stream
is spread.

3.7 Receiver algorithm

As mentioned in the last section, the choice of a semi-unitary (Vandermonde) ma-
trix W allows the separation of users’ transmissions deterministically, so that the
detection of each user transmitted data can be carried out independently. In the
following, we exploit the knowledge and structure of W for MUI elimination and
then the tensor structure of the received signal for a blind joint channel estimation
and symbol recovery.

3.7.1 MUI elimination

The first processing step at each receiver performs a deterministic MUI elimination,
by relying on the structure of the unfolded spreading matrix W ∈ C

P×RM and

assuming P ≥ RM . Let us define F(q) = W(q)∗ ∈ C
P×R

(q)
M as the q-th user receive

filter. For the q-th user, the elimination of the MUI coming from the transmission
blocks {1, . . . , q − 1, q + 1, . . . , Q}, consists in post-multiplying the received signal

matrix X
(q)
2 given in (3.24) by F(q), which gives:

Y
(q)
2 = X

(q)
2 F(q) =

(
(H(q)Ψ) ⋄ (SΦ)

)
D(q), (3.29)
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where

D(q) = WTF(q) =




0
R

(q−1)
M ×R

(q)
M

I
R

(q)
M

0
(RM−R

(q)
M )×R

(q)
M


 ∈ C

RM×R(q)

,

with R
(q)

M =

q∑

i=1

R
(i)
M .

Note that all the blocks in D(q) except the one corresponding to the q-th user are
zero. This allows us to rewrite (3.29) as a MUI-free model:

Y
(q)
2 =

(
(H(q,q)Ψ(q)) ⋄ (S(q)Φ(q))

)
I
R

(q)
M

, (3.30)

which can be viewed as a single-user tensor model with constrained structure.

Therefore, Y
(q)
1 is an unfolded matrix of a tensor Y(q) ∈ C

RM×R
(q)
M

×N resulting
from a linear transformation of the received signal tensor X (q) ∈ C

RM×P×N by the

associated receive filter F(q) ∈ C
P×R

(q)
M as shown in (3.29). A one-to-one corres-

pondence between the multiuser and single-user tensor models can be obtained by
comparing X

(q)
2 in (3.23) with Y

(q)
2 in (3.30). This correspondence is:

(
H(q),S,W,Ψ,Φ

)
→

(
H(q,q),S(q), I

R
(q)
M

,Ψ(q),Φ(q)
)
.

By analogy with (3.23) and (3.25), we can also represent the information contained

in Y
(q)
1 by means of two other unfolded matrices:

Y
(q)
3 =

(
(S(q)Φ(q)) ⋄ I

R
(q)
M

)(
H(q,q)Ψ(q)

)T
, (3.31)

Y
(q)
1 =

(
I
R

(q)
M

⋄ (H(q,q)Ψ(q))
)(

S(q)Φ(q)
)T

. (3.32)

Note that Y
(q)
3 ∈ C

R
(q)
M

N×K and Y
(q)
1 ∈ C

KR
(q)
M

×N are “reshaped” versions of Y
(q)
2

∈ C
NK×R

(q)
M . Defining:

Z3

(
S(q)

)
=

(
(S(q)Φ(q)) ⋄ I

R
(q)
M

)
Ψ(q)T ,∈ C

R
(q)
M

N×M(q)

(3.33)

Z1

(
H(q,q)

)
=

(
I
R

(q)
M

⋄ (H(q,q)Ψ(q))
)
Φ(q)T ∈ C

KR
(q)
M

×R(q)

, (3.34)

we can rewrite Y
(q)
3 and Y

(q)
1 as:

Y
(q)
3 = Z3

(
S(q)

)
H(q,q)T , Y

(q)
1 = Z1

(
H(q,q)

)
S(q)T . (3.35)
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3.7.2 Identifiability

For studying the identifiability of model (3.35), let us make the following assump-
tions concerning the structure of S(q) and H(q,q):

A1: “Persistence of excitation” of the transmitted symbols which implies, in our
context, that S(q) can be considered as a full rank matrix with probability
one if N is large enough.

A2: An “ideal” MIMO channel so that the entries of the channel matrix are assu-
med to be independent and randomly drawn from an absolutely continuous
distribution, which implies that H(q,q) is full rank with probability one.

Under assumptions A1 − A2, joint channel-symbol identifiability from the MUI-
free model defined in (3.35) requires that Z3

(
S(q)

)
and Z1

(
H(q,q)

)
in (3.33) and

(3.34) be full column-rank, since these matrices must have a left-inverse. Let us
study the rank properties of Z3

(
S(q)

)
and Z1

(
H(q,q)

)
. We make use of the concept

of k-rank [131], which is recalled here for convenience:

Definition 1 : The k-rank of A ∈ C
I×F , denoted by kA, is equal to r if any set of

r columns of A is independent, but there exists a set of r + 1 linearly dependent
columns in A. We have kA ≤ rank(A) ≤ min(I, F ).

We have to note that if two columns in A are repeated, and if A does not contain
a zero column, then we have kA = 1. Let us also recall the two following lemmae:

Lemma 1 (k-rank of the Khari-Rao product)[133] : Suppose that A ∈ C
I×F and

B ∈ C
J×F are such that kA ≥ 1 and kB ≥ 1 (i.e. neither A nor B has a zero

column). If kA + kB = F + 1, then A ⋄ B is full column-rank.

Lemma 2 : If A is full column-rank, then we have rank(AB) = rank(B).

Taking the definitions (3.28) of Ψ(q) and Φ(q) into account, we have:

Ψ(q) =




1T
R(q)

. . .

1T
R(q)




︸ ︷︷ ︸
M(q) times

⇒ rank(Ψ(q)) = M (q).

Φ(q) =
[
IR(q) · · · IR(q)

]
︸ ︷︷ ︸

M(q) times

⇒ rank(Φ(q)) = R(q),
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which implies that Ψ(q) and Φ(q) be full row-rank. From these expressions of Ψ(q)

and Φ(q), we get:
S(q)Φ(q) =

[
S(q) · · ·S(q)

]
︸ ︷︷ ︸

M(q) times

,

and
H(q,q)Ψ(q) = [H

(q,q)
·1 · · ·H(q,q)

·1︸ ︷︷ ︸
R(q) times

· · · H
(q,q)

·M(q) · · ·H(q,q)

·M(q)︸ ︷︷ ︸
R(q) times

],

which implies that:
kS(q)Φ(q) = kH(q,q)Ψ(q) = 1.

As we have kI
K(q)

+ kS(q)Φ(q) = K(q) + 1, application of Lemma 1 to the Khatri-

Rao product in (3.33) implies that IK(q) ⋄ (S(q)Φ(q)) be full column-rank, i.e.
rank(IK(q) ⋄ (S(q)Φ(q))) = R(q). Application of Lemma 2 leads to rank

(
Z3

(
S(q)

))
=

rank
(
Ψ(q)T

)
= rank

(
Ψ(q)

)
= M (q), i.e. Z3

(
S(q)

)
is full column-rank. The same

reasoning applies for showing that Z1

(
H(q,q)

)
is also full column-rank.

3.7.3 Blind joint channel and symbol recovery

After MUI elimination at each receiver, we propose to apply the ALS algorithm
on the resulting interference-free tensor model (3.35) in order to blindly recover
the transmitted symbols jointly with channel estimation. As in the previous chap-
ters,the algorithm is initialized using a random value Ŝ

(q)
t=0. At the t-th iteration,

the two least-squares update equations are:

Ĥ
(q,q)T
t =

[
Z3

(
Ŝ

(q)
t−1

)]†
Y

(q)
3 , (3.36)

Ŝ
(q)T
t =

[
Z1

(
Ĥ

(q,q)
t

)]†
Y

(q)
1 . (3.37)

For the q-th receiver, the following error measure is computed at the t-th iteration:

e
(q)
t =

∥∥∥Y
(q)
1 − Z1

(
Ĥ

(q,q)
t

)
Ŝ

(q)
t

∥∥∥
F

, (3.38)

We choose |e(q)
t − e

(q)
t−1| ≤ 10−6 as the convergence threshold, q = 1, . . . , Q. The

estimation of both H(q,q) and S(q) is affected by a scaling ambiguity. In other
words, the columns of the estimated channel and symbol matrices are affected by
unknown scaling factors that compensate each other. Following [129], we eliminate
this scaling ambiguity by assuming that the first transmitted symbol of each data
stream is equal to one, which corresponds to have all the elements in the first row
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of S equal to one. Thus, we eliminate the scaling ambiguity by normalizing each
column of Ŝ by its first element yielding:

S̃(q)
∞ = Ŝ(q)

∞ D−1
1

(
Ŝ(q)
∞

)
,

where Ŝ
(q)
∞ corresponds to the estimated value obtained after convergence and D1(·)

denotes the diagonal matrix formed from the first row of its matrix argument. After
such a normalization, we obtain a final estimate of the channel matrix without
scaling ambiguity using (3.36):

H̃(q,q)T
∞ =

[
Z3

(
S̃(q)
∞

)]†
Y

(q)
3 .

Discussion: Recall that we have modeled the channel between each transmit and
receive antenna by a flat-fading coefficient. In a more practical scenario with time-
dispersive multipath propagation, the channel between each pair of transmit and
receive antennas is usually characterized by a number of resolvable multipaths with
different relative propagation delays. In this scenario, we can still work with the
proposed block space-time spreading model by assuming that the spreading codes
are augmented by a number of trailing zeros, or “guard chips” in order to avoid
inter-symbol interference. The main impact is that, in this case, the spreading
matrix W is unknown at the receiver due to the convolution of the transmitted
spreading codes with the impulse response of the multipath channel. Since the
orthogonality between the transmitted data streams is destroyed by multipath
propagation, the two-steps receiver algorithm (MUI elimination + ALS) should
be replaced by a multiuser detection receiver based on the classical three-steps
ALS algorithm where the channel, symbol and spreading matrices are iteratively
estimated [131]. The price to pay is, of course, the increased complexity of the
receiver algorithm.

3.8 Simulation Results

In this section, the performance of the proposed block space-time spreading
based MU-MIMO system using the ALS algorithm is illustrated by means of
computer simulations. The number of Monte Carlo runs vary from 1000 to
5000 depending on the simulated Signal-to-Noise Ratio (SNR) value. At each
run, the noise power is generated according to the sample SNR value given by
SNR=10log10

(
‖X(q)

1 ‖2
F /‖V(q)

1 ‖2
F

)
, where V

(q)
1 represents the additive noise matrix.

A Rayleigh fading MIMO channel is assumed. The elements of the channel ma-
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trix H(q) are independent and identically distributed (i.i.d) samples of a complex
Gaussian process with zero mean and unit variance.

Each run represents a different realization of the MIMO channel and the transmit-
ted symbols are drawn from a pseudo-random QPSK or QAM sequence. The BER
curves represent the performance averaged on the transmitted data streams. In all
the results, we focus on system configurations with a small number K of receive
antennas (K ≤ M is generally assumed). For clarity of presentation, we consider
Q = 1, 2 or 3 users. In some simulations, we focus on the individual performance
of each user by averaging the performance over the data streams of each user. In
some others, the performance is averaged over all the transmitted data streams o
all the users.

3.8.1 BER performance

We begin by evaluating the BER performance of the block space-time sprea-
ding based MU-MIMO system using the ALS algorithm. We consider a two-
users system (Q = 2) with corresponding transmission blocks parameterized by
{M (1), R(1)} = {1, 2} and {M (2), R(2)} = {2, 2}. A time-slot containing N = 10
symbols is processed at the receiver. QPSK modulation is used (µ = 4). Unless
otherwise stated, we assume P = M (1)R(1) + M (2)R(2) in order to satisfy the re-
quirement (3.21) for maximum transmit diversity. In this case we have P = 6
and both users have the same rate ρ(1) = ρ(2) = 2/3 bits per channel use. A
single transmit antenna is used to transmit the two data streams of the first user,
while two transmit antennas are dedicated to the second user. Figure 3.6 shows
the individual performance of each user assuming K = 1 and 2 receive antennas.
We can clearly see that the second user has an improved performance over the
first one, due to a higher transmit diversity gain obtained by spreading the data
streams across two transmit antennas.

Now, we investigate the influence of the spreading factor P on the receiver per-
formance. We assume Q = 1 (single-user/single-block case) and consider two
space-time spreading configurations {M,R} = {2, 2} and {M,R} = {4, 2}. As
shown in Fig. 3.7, for {M, R} = {2, 2}, the transmit diversity gain is degraded
with P = 3 (note that P = 3 does not satisfy (3.21)) in comparison with P = 4
(satisfying (3.21)). The same comment is valid for P = 6 with respect to P = 8.
Such a lack of diversity, explaining the BER floors in the figure, comes with a
marginal increase in rate. Indeed, the rate is ρ = 4/3 for P = 3 and ρ = 1 for
P = 4. These comments are also valid for {M, R} = {4, 2}. These results confirm
that the receiver performance is sensitive to the spreading factor.
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Figure 3.6: BER versus SNR for K = 1 and 2.
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Figure 3.7: BER versus SNR for different values of P .
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In Fig. 3.8, we compare block space-time spreading with KRST coding [129]. We
consider M = 4, K = 2 and 16-QAM. Different space-time spreading configura-
tions are simulated by varying the number of space-time spreading blocks/users.
We consider the following cases: i) Q = 3 with {M (1),M (2),M (3)} = {2, 1, 1}, ii)
Q = 2 with {M (1), M (2)} = {2, 2}, iii) Q = 1 with {M} = 4. Note that KRST
coding is a special case of the proposed approach for Q = M = 4 (constellation
rotation is not considered here for simulating KRST coding). KRST coding pro-
vides the best performance in terms of rate, but the worst performance in terms of
BER. In the proposed approach, by decreasing the number of space-time spreading
blocks, the BER performance is improved since more transmit antennas are used
to achieve higher transmit diversity gains. However, this comes at the expense of
a decrease in rate.
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Figure 3.8: Block space-time spreading versus KRST coding.

Figure 3.9 compares the proposed MIMO system with the Alamouti code [2] in
the particular single-user case with Q = 1, M = K = 2 and R = 2. For the
Alamouti code, perfect channel knowledge is assumed at the receiver, contrarily
to our system which uses blind detection. In order to keep the same rate (1
bit/channel use) for a fair comparison, the Alamouti code uses BPSK while the
proposed MIMO system uses QPSK. The performance gap between the proposed
approach and the Alamouti code is 3dB for a BER of 2 · 10−3. The slope of the
BER curves indicate that both approaches have the same diversity gain.
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Figure 3.9: Block space-time spreading versus Alamouti code.
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Figure 3.10: Symbol RMSE for different values of N .
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3.8.2 RMSE performance

In the next experiment, we investigate the accuracy of the ALS algorithm in re-
covering the channel and symbol matrices. The fixed simulation parameters are
Q = 1, M = 2, R = 1, K = 2. The evaluation is based on the Root-Mean-Square
Error (RMSE) between the estimated and true matrices calculated according to
the following formulae:

RMSE(S) =

√√√√ 1

LNR

L∑

l=1

∥∥∥Ŝ∞(l) − S
∥∥∥

2

F
,

RMSE(H) =

√√√√ 1

LMK

L∑

l=1

∥∥∥Ĥ∞(l) − H
∥∥∥

2

F
,

where L is the number of Monte Carlo runs, while Ŝ∞(l) and Ĥ∞(l) are the
estimated matrices after convergence at the l-th run. In this experiment, we assume
L = 1000. Figure 3.10 shows that the RMSE associated with the estimation of the
transmitted symbols exhibits a linear decrease as a function of the SNR. Estimation
accuracy also improves as N increases.

In Fig. 3.11, the RMSE associated with the channel estimation is depicted for
different numbers M of transmit antennas with Q = 1, R = 2, K = 2 and N = 10.
Improved estimation of the channel matrix is obtained as M is increased. Note
that, despite the increase of the number of channel parameters to be estimated
when M is increased, this performance improvement is attributed to the higher
transmit diversity gain.

3.8.3 Comparison with classical MIMO schemes

In this section, we are interested in comparing the proposed MIMO system with
classical schemes such as Spatial Multiplexing (SM) [69] and Orthogonal Transmit
Diversity (OTD) [142], also known as V-BLAST and “Alamouti” schemes, respec-
tively. These schemes provide a performance reference for the proposed MIMO
system. The simulation of both SM and OTD consider a single-user system (no
multiuser interference) with perfect channel knowledge, which leads to the best
performance they can achieve. Contrarily to SM and OTD, the proposed space-
time spreading system is simulated in a blind setting using the ALS algorithm.

Figure 3.12 shows the BER performance of the proposed system with P = 2,
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Figure 3.11: Channel RMSE for different values of M .

compared with that of SM, for two different spectral efficiencies (2 and 4 bps/Hz),
and for M = 2 and K = 2 or 3. For achieving 2 and 4 bps/Hz, the proposed
system uses 4-PSK and 16-QAM, respectively while SM uses 2-PSK and 4-PSK,
respectively. In can be seen that, at 4bps/Hz, the proposed system is worse at low-
to-medium SNR and tends to be better at high SNR. From the slope of the two
BER curves, it can be noted that the block space-time spreading MIMO system
has a higher diversity gain than the classical SM scheme. We attribute such a gain
to the use of the spreading structure, which enforces orthogonality between the
transmit spatial channels. At 2 bps/Hz, the proposed MIMO system outperforms
SM. Note that the proposed system K = 2 has the same diversity gain as SM with
K = 3 (see the slope of the curves).

Figure 3.13 compares the proposed MIMO system with the OTD scheme. Diffe-
rently from the previous results, we now include channel frequency-selectivity and
OFDM. We consider a two-path channel (L = 2) with independent (zero and one
symbol-delayed) equal power taps and Nc = 64 subcarriers. The other transmit
parameters are Q = 1, M = K = 2, R = 2, P = 2 and F = 1. The OTD scheme
codes the input symbols in the time-domain (i.e. across P = 2 consecutive OFDM
symbols) and not in the frequency-domain. It can be seen that both systems
achieve the same diversity gain and the gap between the proposed MIMO system
and OTD is approximately 6 dB for BER=10−3.



124 CHAPTER 3. MULTIUSER MIMO SYSTEMS USING BLOCK SPACE-TIME SPREADING

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Q=2, M(1)=M(2)=1, R(1)=R(2)=1, N=10

Proposed (K=2), 4 bps/Hz
SM (K=2), 4 bps/Hz
SM (K=2), 2 bps/Hz
Proposed (K=2), 2 bps/Hz
SM (K=3), 2 bps/Hz
Proposed (K=3), 2 bps/Hz

Figure 3.12: Proposed MIMO system versus SM (V-BLAST scheme)

3.8.4 Performance with pilot symbols

In a practical system, a training sequence in the form of pilot symbols is used
for channel estimation. Here, we aim at evaluating possible performance gains
obtained when pilot symbols are used in conjunction with the ALS algorithm. We
make use of the Pilot-Assisted Channel Estimation (PACE) method for obtaining
an initial (more accurate) initialization of the channel matrix for the ALS algo-
rithm. The PACE method consists in estimating the frequency-selective MIMO
channel by using an orthogonal training sequence structure (see [93, 5] for details).

We evaluate the BER performance of the block space-time spreading MIMO system
for Q = 2, using i) standard PACE followed by LS symbol detection and ii) ALS-
based detection with joint channel-symbol estimation. It is worth mentioning
that the PACE method is sensitive to the number of pilot subcarriers, and its
performance considerably degrades when a small number of pilot subcarriers is
used. The proposed system uses Q = 2 with {M (1),M (2)} = {2, 2}, {R(1), R(2)} =
{1, 1}, Nc = 64 and F = L = 2. Figure 3.14 shows the performance of the proposed
system with PACE and ALS based detection for Nc = 16. We can observe that
the ALS based receiver outperforms the conventional PACE receiver. The gain is
more pronounced when the number of receive antennas is increased.
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Figure 3.13: Proposed MIMO system versus OTD (Alamouti scheme)

3.8.5 Throughput performance

In this section, the average throughput of the proposed MIMO system is studied for
some system configurations. Our aim is to show that the block space-time sprea-
ding model covers different “transmission modes” that could be adapted according
to the SNR in a practical transmission setting. Throughput results are interesting
from a practical point of view, since they provide a more realistic insight on the
physical-layer performance of the proposed receiver strategy.

In order to obtain Block Error Rate (BLER) measures for throughput calculation,
we introduce an 8-bit Cyclic Redundancy Check (CRC) scheme at each data block,
which is defined as a collection of NR symbols (N symbols per data stream × R
data streams). We only vary the temporal spreading factor P which can be viewed
as a parameter controlling the redundancy of the transmitted symbols in the time
domain. The average values for the BLER are calculated over 1000 independent
runs for each SNR value. No channel coding is used. The calculation of the total
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Figure 3.14: Comparison between PACE and ALS based receivers.

throughput Γ (summed over the Q users) is made using the following formula:

Γ =

Q∑

q=1

Γ(q) =

Q∑

q=1

(1 − BLER(q)) · ρ(q) (bits/Tblock),

where BLER(q) is the block-error-rate of the q-th user, ρ(q) is the nominal rate of the
q-th transmission block defined in (3.22), and Tblock = NRTs denotes the duration
of one transmission block of NR symbols, Ts being the symbol period. The number
of symbols per data stream is fixed at N = 10. In Fig. 3.15, we consider Q =
2 users with {M (1), R(1)} = {2, 1} and {M (2), R(2)} = {1, 1}. Note that both
users have the same multiplexing factor (thus the same nominal rate) but different
spatial spreading factors. In this figure, we evaluate the individual throughput
performance of each user. Each user throughput curve is reproduced for two values
of P . In the first case, we have P = M (1)R(1) + M (2)R(2) = 3. In the second case,
P = 2 is assumed, which is below the required value for achieving the maximum
transmit diversity gain. Considering first P = 3, we verify from Fig. 3.15 that
the expected transmit diversity gain of the first user is effectively translated into
a higher throughput gain with respect to the second user. When P is decreased,
we observe an increase in the first user’s throughput for medium-to-high SNR
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Figure 3.15: Per-user throughput performance for P = 2 and P = 3

levels, while, for low SNR levels, a throughput loss is observed. Therefore, the
diversity loss that occurs when P is decreased is compensated by a throughput
gain, especially for high SNR levels. For the second user, where no transmit
diversity is available, a significant degradation in the throughput performance is
observed.

Figure 3.16 shows a set of throughput curves for different values of P considering
Q = 1, M = 4, R = 4, K = 2, and using 16-QAM. This figure indicates that it is
possible to obtain a variable throughput performance by adjusting P according to
the SNR. Otherwise stated, this experiment suggests that a sort of link adaptation
could be implemented by varying the temporal spreading factor P in order to keep
the best throughput within each SNR region. In this case, the switching points
between different values of P occur at a SNR of 15, 21 and 28 dB.

3.9 Summary

This chapter has presented a new block space-time spreading model for the down-
link of MU-MIMO system based on tensor modeling. The core of the transmitter
is a 3-D spreading code tensor that jointly spreads and combines independent data
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Figure 3.16: Throughput performance for different values of P .

streams across multiple transmit antennas. We have formulated the received signal
as a block-constrained PARAFAC model, where the two fixed constraint matrices
reveal the overall space-time spreading pattern at the transmitter. The proposed
approach is flexible in the sense that it allows different spatial spreading factors
(diversity gains) as well as different multiplexing factors (code rates) for the users.
At the receiver, deterministic MUI elimination is performed by each user, followed
by a blind joint channel and symbol recovery stage using the ALS algorithm.

Simulation results have shown that the proposed MU-MIMO system is not far from
the classical SM receiver with perfect channel knowledge. We have considered the
use of pilot-assisted channel estimation in conjunction with the ALS algorithm.
According to the obtained results, significant performance gains can be obtained
when pilot symbols are used for initializing the ALS receiver. Our simulation
results have also shown that the block space-time spreading based MU-MIMO
system can achieve variable BER and throughput performances by adjusting the
three transmit parameters which are the spatial spreading, multiplexing and tem-
poral spreading factors.

In the next chapter, we show that the constraint matrices Ψ and Φ can be exploited
for designing more general MIMO transmit schemes. This is done by relying on a
CONFAC decomposition of the transmitted and received signals.





CHAPTER 4

Constrained Tensor Modeling
Approaches to MIMO-CDMA Systems

This chapter presents new modeling approaches to MIMO-CDMA transmit schemes
based on the CONstrained FACtor (CONFAC) decomposition. The constraint ma-
trices of the CONFAC decomposition are the core of the proposed transmission
model. They are exploited as allocation matrices that define the allocation of
users’ data streams and spreading codes to the transmit antennas. We begin by
considering a MIMO-CDMA transmission model based on the type-3 CONFAC
decomposition with two constraint matrices only. A systematic design procedure
for the allocation matrices leading to unique blind symbol recovery is proposed. We
show that a finite-set of spatial spreading schemes using multiple spreading codes
can be derived by controlling the canonical structure of the CONFAC constraint
matrices. In the second part of this chapter, a generalized transmission model
is proposed which fully exploits all the three constraint matrices of the CONFAC
decomposition. The core of the generalized model consists of a precoder tensor de-
composed as a function of three constraint matrices. Identifiability issues for blind
symbol/code/channel recovery are discussed. The bit-error-rate performance of se-
veral MIMO-CDMA schemes are evaluated for different structures of the constraint
matrices.
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4.1 Introduction

Several transmission models for MIMO systems using CDMA codes have been the
subject of recent research [79]. Spatial multiplexing strategies in conjunction with
CDMA is addressed in a few recent works [123, 97, 55] with focus on layered space-
time processing. In [123], the multiple transmit antennas are organized in groups
and a unique spreading code is allocated within the same group. The separation of
the different groups at the receiver is done by using a layered spacetime algorithm
[69]. Focusing on the downlink reception, [97] also considers the spatial reuse of the
spreading codes and proposes a chip-level equalizer at the receiver to handle the
loss of code orthogonality. A space-time receiver for block-spread MIMO-CDMA is
proposed in [55]. In this case, block-despreading is used prior to space-time filtering
in order to eliminate multi-user interference and reduce receiver complexity.

On the other hand, CDMA-based transmit diversity schemes have been proposed
earlier in [78, 56] and recently in [57]. These methods, commonly called space-time
spreading, are capable of providing maximum transmit diversity gain without using
extra spreading codes and without an increased transmit power. However, space-
time spreading methods put more emphasis on diversity than on multiple-access
interference. [158] investigates the performance of a range of linear single-user and
multiuser detectors for MIMO-CDMA schemes with space-time spreading. In prac-
tice, due to the joint presence of multiple-access interference and time-dispersive
multipath propagation, the large number of parameters to be estimated at the
receiver (e.g. users’ multipath channels, received powers, spreading codes) may
require too much processing/training overhead and degrade receiver performance.

In this chapter, we show that several MIMO-CDMA schemes ranging from full
transmit diversity to full spatial multiplexing and using different patterns of spa-
tial reuse of the spreading codes can be modeled with the aid of the constraint
matrices of the CONFAC decomposition introduced in Chapter 1. The distin-
guishing features of the proposed approaches w.r.t existing tensor-based CDMA
models can be briefly summarized as follows:

• The constraints in the tensor model allow to cope with multiple transmit
antennas and spreading codes per user or per data-stream, which provides
an extension of [129, 48, 32] where each data stream is associated with only
one spreading code;

• Several transmit schemes with varying degree of spatial spreading, spatial
multiplexing and spreading code reuse can be obtained by adjusting the
constraint matrices of the tensor signal model accordingly.
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4.2 System model and assumptions

We consider the uplink of a single cell synchronous MIMO-CDMA system with
Q active users and spreading factor P . The base-station receiver is equipped
with K antennas and the q-th user transmits Rq independent data streams using
Mq antennas. Multiple spreading codes per user are allowed, and Jq denotes the
number of spreading codes associated with the q-th user. Each transmitted data
stream contains N symbols. The wireless channel is assumed to be constant during
N symbol periods. Flat-fading and user-wise independent multipath propagation
are assumed. The transmit parameter set {Rq,Mq, Jq}, q = 1, . . . , Q, utilized by
the q-th user, as well as the number Q of active users are considered to be known
at the base-station receiver. Users’ spreading codes are assumed to be symbol-
periodic spreading codes.

We assume that the propagation channel between each pair of transmit and receive
antennas is characterized by L resolvable multipaths, where the l-th path delay
is (l − 1)Tc, Tc being the chip duration in seconds, i.e., the maximum path delay
is equal to τmax = (L − 1)Tc. The multipath channel is assumed to be constant
during N symbols. We assume small angle-spread around the receiver, which arises
when the multipath reflectors are in the far field of the receive antenna array [149].
Inter-Symbol Interference (ISI) is handled by assuming that the codes include L
trailing zeros (or “guard chips”) [131]. In this case, only Inter-Chip Interference
(ICI) exists, and the known codes are interpreted as unknown “effective signature
codes”, and are given by the convolution of the transmitted spreading codes with
the impulse response of the multipath channel [156], with P denoting the number
of ISI-free chips per symbol. Under the assumption of independent multipath
propagation, the effective signature codes (henceforth referred to as “spreading
codes”) are pseudo-random and mutually independent codes. We simply adopt
the term “spreading code” for simplicity reasons.

4.3 Type-3 CONFAC-based MIMO-CDMA

For the considered multiuser MIMO-CDMA system, we formulate a new tensor
model for the received signal [37, 36]. This model is based on the type-3 CONFAC
decomposition introduced in Chapter 1 (c.f. Section 1.4). We start with a single-
user model for simplicity reasons. Let hk,m be the spatial fading channel gain
between the m-th transmit antenna and the k-th receive antenna, sn,r

.
= s((r −

1)N + n) be the n-th symbol of the r-th data stream, and cp,j be the p-th element



4.3 TYPE-3 CONFAC-BASED MIMO-CDMA 133

of the j-th spreading code. Let us define H ∈ C
K×M , S ∈ C

N×R and C ∈ C
P×J

as the channel, symbol and code matrices, where hk,m
.
= [H]k,m, sn,r

.
= [S]n,r,

and cp,j
.
= [C]p,j are, respectively, the entries of these matrices. We can view the

discrete-time baseband version of the noise-free received signal at the n-th symbol
period, p-th chip, and k-th receive antenna as a third-order tensor X ∈ C

N×P×K

with the (n, p, k)-th element defined as xn,p,k
.
= xk((n− 1)P + p). We propose the

following input-output model for the considered MIMO- CDMA system:

xn,p,k =
M∑

m=1

un,p,mhk,m, (4.1)

where un,p,m
.
= um((n − 1)P + p) is the (n, p,m)-th element of the third-order

tensor U ∈ C
N×P×M representing the effective transmitted signal. We treat U as

the output of a constrained space-time spreading operation, which is modeled by
the following constrained tensorial transformation:

un,p,m =
R∑

r=1

J∑

j=1

gm(r, j)sn,rcp,j, gm(r, j)
.
= ψr,mφj,m, (4.2)

where gm(r, j) is the (r, j)-th element of Gm ∈ C
R×J . This matrix defines the

allocation of R data streams and J spreading codes to the m-th transmit antenna.
Let us define:

G = ΨΦT ∈ C
R×J

as the stream-to-code allocation matrix. This matrix synthesizes the constrained
structure of the model. It is given by the inner product of two allocation matrices
Ψ ∈ C

R×M and Φ ∈ C
J×M , respectively. Note that Ψ and Φ controls, respectively,

the allocation of R data streams and J spreading codes to M transmit antennas. Ψ
can be viewed as a stream-to-antenna allocation matrix and Φ as a code-to-antenna
allocation matrix.

The physical interpretation of (4.2) is that each data symbol sn,r is spread up to J
times using the spreading codes cp,1, . . . , cp,J . Each spread symbol sn,rcp,j is then
loaded at the m-th transmit antenna. Depending on the structure of the gm(r, j)’s,
the same spread symbol sn,rcp,j may simultaneously be loaded at several transmit
antennas in order to benefit from transmit spatial diversity. From (4.1) and (4.2),
we can express the received signal as

xn,p,k =
M∑

m=1

R∑

r=1

J∑

j=1

gm(r, j)sn,rcp,jhk,m (4.3)
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By comparing (4.3) with (1.101), we can deduce the following correspondences:

(I1, I2, I3, R1, R2, F ) → (N, P, K, R, J,M),

(A,B,C) → (S,C,H), (4.4)

which means that the received signal model follows a type-3 CONFAC decompo-
sition.

4.3.1 Multiuser signal model

Some definitions are now introduced, which allow us to view (4.3) also as a mul-
tiuser signal model. In the multiuser case, R = R1 + · · · + RQ, J = J1 + · · · + JQ,
and M = M1 + · · · + MQ denote, respectively, the total number of data streams,
spreading codes and transmit antennas considered, i.e., summed over all the Q
users. In this case, H, S and C are interpreted as aggregate channel, symbol and
code matrices concatenating Q matrix-blocks, i.e.:

H = [H(1), . . . ,H(Q)] ∈ C
K×M ,

S = [S(1), . . . ,S(Q)] ∈ C
N×R,

C = [C(1), . . . ,C(Q)] ∈ C
P×J , (4.5)

where h
(q)
k,mq

.
= [H(q)]k,mq

.
= [H]

k,
q−1∑
i=1

Mi+mq

, s
(q)
n,rq

.
= [S(q)]n,rq

.
= [S]

n,
q−1∑
i=1

Ri+rq

, and

c
(q)
p,jq

.
= [C(q)]p,jq

.
= [C]

p,
q−1∑
i=1

Ji+jq

define the entries of the q-th user channel, symbol

and code matrices, respectively. We can also view the aggregate allocation matrices
as a block-diagonal concatenation of Q matrix-blocks:

Ψ = blockdiag(Ψ(1) · · ·Ψ(Q)) ∈ C
R×M

Φ = blockdiag(Φ(1) · · ·Φ(Q)) ∈ C
J×M (4.6)

where ψ
(q)
rq ,mq

.
= [Ψ(q)]rq,mq

.
= [Ψ]q−1∑

i=1
Ri+rq ,

q−1∑
i=1

Mi+mq

and φ
(q)
jq ,mq

.
= [Φ(q)]jq,mq

=

[Φ]q−1∑
i=1

Ji+jq ,
q−1∑
i=1

Mi+mq

define the entries of the q-th user allocation matrices. Si-

milarly, the aggregate stream-to-code allocation matrix is defined as:

G = blockdiag(G(1), · · · ,G(Q)) = ΨΦT ∈ C
R×J ,

with G(q) = Ψ(q)Φ(q)T , q = 1, . . . , Q. (4.7)
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Figure 4.1: Uplink model of the proposed multiuser MIMO-CDMA system.
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Figure 4.1 depicts the proposed multiuser MIMO-CDMA model. Figure 4.2 illus-
trates the constrained factorization of the k-th third-mode slice of the received
signal tensor.

Note that the received signal model (4.3) can be expressed in equivalent matrix
forms. Let us define the three unfolded matrices of the received signal tensor as:

[X1](k−1)N+n,p = [X2](n−1)P+p,k = [X3](p−1)K+k,n = xn,p,k

Comparing (4.3) with (1.83) and using (1.87), we have:

X1 =
(
H ⋄ (SΨ)

)
(CΦ)T , X2 =

(
(SΨ) ⋄ (CΦ)

)
HT

X3 =
(
(CΦ) ⋄ H

)
(SΨ)T . (4.8)
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Relation to the PARAFAC model of [131]

The parallel can be made by assuming {Rq} = {Jq} = {Mq} = 1. In this case,
the correspondences between both tensor signal models are (M,R, J) → (Q,Q, Q),
and we have Ψ = Φ = IQ, meaning that the noiseless received signal model reduces
to a single-antenna CDMA tensor model [131]:

xn,p,k =

Q∑

q=1

sn,qcp,qhk,q. (4.9)

Therefore, the proposed model can be viewed as a generalization of the one in [131],
which is restricted to the single-antenna CDMA case. The introduction of Ψ and
Φ gives flexibility (and more degrees of freedom) to our tensor signal modeling, in
the sense that it models CDMA systems with multiple transmit antennas, multiple
data streams and multiple spreading codes per user.

Remark 4.1: This constrained tensor model has properties similar to those of
the tensor model proposed in [130] for blind single-antenna CDMA systems with
large delay spread. This model can be also viewed as a constrained tensor model
where the constrained structure is fixed and intrinsic to the propagation channel
(and not to the multiple-antenna transmitter design as in our context).

Example 4.1: In order to illustrate the physical meaning of the allocation ma-
trices, let us consider the simple example of a single-user multiple-antenna system
(Q = 1). Assume that the serial input stream is divided into R = 2 parallel
data streams transmitted by M = 4 transmit antennas using J = 3 orthogonal
spreading codes. Suppose that the allocation scheme is defined by the following
constraint matrices:

Ψ =

[
1 1 0 0
0 0 1 1

]
, Φ =




1 1 0 0
0 0 1 0
0 0 0 1


 (4.10)

The unitary entries in the first row of the stream-to-antenna matrix Ψ means that
the first data stream is spread across the first and second transmit antennas. Like-
wise, the second row of Ψ shows that the second data stream is spread across the
third and fourth transmit antennas. Now, looking at the code-to-antenna matrix
Φ, we can see that the first two antennas share the same spreading code for trans-
mission while the third and fourth transmit antennas are associated with different
spreading codes. Several allocation structures with different allocation patterns
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involving data streams and spreading codes for an arbitrary number of transmit
antennas can be accommodated in our tensor model. However, the question is
whether or not the chosen structure guarantees the uniqueness of the parameters
of interest which is the symbol matrix and, possibly, the code matrix. In the next
section, the design of the allocation matrices is studied.

4.4 Design of the allocation matrices

In this section, we study the design of the allocation matrices for ensuring blind
symbol recovery (i.e. uniqueness of S). Then, we describe a procedure for designing
Ψ and Φ which allows us to derive a set of multiple-antenna schemes for a fixed
number of transmit antennas.

4.4.1 Generating vectors

For simplicity reasons, we omit the user-dependent index q in the design of the
allocation matrices by considering a single-user system. Since the design criterion
for these matrices is exactly the same for all the users, we can bypass the user-
dependent notation without loss of generality while simplifying the notation.

We propose to parameterize the two allocation matrices Ψ and Φ by their ge-
nerating vectors. Let us define α = [α1 · · ·αR] and β = [β1 · · ·βR], where
βr = [βr,1 · · · βr,Jr

] as the generating vectors of Ψ and Φ, respectively. These
vectors completely characterize the allocation structure in the considered MIMO
system. Note that:

• αr is the r-th spatial spreading factor, and denotes the number of transmit
antennas associated with the r-th data stream;

• βr,jr
is the jr-th code reuse factor, and denotes the number of transmit anten-

nas reusing the jr-th spreading code of the r-th data stream, jr = 1, . . . , Jr.

The generating vectors are linked to the allocation matrices by the following rela-
tions:

ΨΨT = diag(α1, . . . , αR) = diag(α),

ΦΦT = diag(β1, . . . , βR) = diag(β),



138 CHAPTER 4. CONSTRAINED TENSOR MODELING APPROACHES TO MIMO-CDMA

For instance, in Example 4.1 the generating vectors of Ψ and Φ are respectively:

α = [2 2], β = [2 1 1],

where α1 = 2, α2 = 2, β1,1 = 2, β2,1 = 1 and β2,2 = 1. Note that α and β satisfy
the following constraint:

R∑

r=1

αr =
R∑

r=1

Jr∑

jr=1

βr,jr
= M. (4.11)

4.4.2 Design criterion

We borrow some basic concepts from partition theory [4] in order to design the
allocation matrices. Specifically, the generating vectors α = [α1 · · ·αR] and β =
[β1 · · ·βR] are interpreted here as partitions of size M and dimensions R and J ,
respectively. The fact that α and β are partitions of the same size is due to (4.11).
Physically, α is a partition of M transmit antennas into R subsets transmitting
different data streams (i.e.,the r-th data stream is spread across αr antennas).
Likewise, β is a partition of M transmit antennas into J subsets, each one of
which is associated with a different code (i.e., the jr-th code is reused by βr,jr

antennas). We suppose that α and β satisfy the following design criterion:

Jr∑

jr=1

βr,jr
= ‖βr‖1 = αr, 1 ≤ r ≤ R, (4.12)

where Jr is the dimension of the r-th subpartition βr = [βr,1 · · · βr,Jr
] of β, with

J1 + · · · + JR = J . βr,jr
corresponds to the number of times the jr-th spreading

code is reused by the r-th data stream, while Jr corresponds to the number of
different spreading codes within the r-th antenna set.

Based on (4.12), we propose the following partitioned construction for Ψ and Φ:

Ψ = [Ψ1, . . . ,Ψr, . . . ,ΨR],

with Ψr = 1T
αr

⊗ e(R)
r (R × αr), r = 1, . . . , R,

(4.13)
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and

Φ = [Φ1, . . . ,Φr, . . . ,ΦR],

with Φr = [Φr,1, . . . ,Φr,jr
, . . . ,Φr,Jr

] (J × αr),

and Φr,jr
=




0Jr−1×βr,jr

1T
βr,jr

⊗ e
(Jr)
jr

0(J−Jr)×βr,jr


 (J × βr,jr

), (4.14)

where 1n = [1 1 · · · 1]T is an n-dimensional vector of ones, and Jr =
r∑

i=1

Ji. Note

that Ψr is the allocation matrix associated with the r-th transmitted data stream,
and Φr,jr

is the allocation matrix associated with the jr-th spreading code used
by the r-th data stream.

Constructing Ψ(α) and Φ(β) according to the design criterion (4.12), we can
verify (see Appendix B) that any S̃ and C̃ satisfying the model are related to S
and C, respectively, by:

S̃ = ST, T = diag(t1, . . . , tR)ΠR,

C̃ = CU, U = blockdiag(U1, . . . ,UR)ΠJ , (4.15)

where Ur ∈ C
Jr×Jr is a non-singular transformation ambiguity matrix, ΠR ∈

C
R×R is a permutation matrix and ΠJ ∈ C

J×J is a block-diagonal permutation
matrix. In other words, the symbol matrix S is unique up to column permutation
and scaling while the code matrix C is unique up to a multiplication by a non-
singular block-diagonal matrix and column permutation. It is worth noting that
the simultaneous uniqueness of S and C up to permutation and scaling arises in a
particular case of (4.12) where R = J and αr = βr, r = 1, . . . , R.

Remark 4.2: The uniqueness of S is the major concern here, since our final goal
is the blind recovery of the transmitted data streams. On the other hand, the
uniqueness of H is not required in our context, since we are mostly interested in a
“direct” detection without using any knowledge about the channel.

Practical implications of the proposed design criterion: The proposed
design criterion based on α and β has some practical implications. First, we
can observe that the spatial spreading of the data streams and the reuse of the
spreading codes are restricted to adjacent transmit antennas only. This restriction
can easily be deduced from the repetition pattern of identical canonical vectors
in these matrices. Another implication of this construction is that different data
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streams cannot be associated with the same spreading code for transmission. In
other words, spreading code reuse only takes place across the transmit antennas
transmitting the same data stream.

4.4.3 Design procedure

We propose a systematic procedure for building the allocation matrices Ψ and Φ
in (4.13)-(4.14) based only on the generating vectors α and β, according to the
following steps:

(i) A choice of α is made for a fixed number M of transmit antennas (partition
size) and a fixed number R of input data streams (partition dimension);

(ii) For every αr, a sub-partition βr = [βr,1 · · · βr,Jr
] of size αr and dimension

Jr is formed so that (4.12) is satisfied, and β = [β1 · · ·βR]. The value of
Jr, i.e. the number of spreading codes for the r-th data stream, is a design
parameter.

(iii) Ψ and Φ are built according to (4.13)-(4.14).

4.4.4 Set of allocation schemes

More than one choice for β may be possible for a fixed α. This is due to the
fact that more than one way of choosing a sub-partition βr from αr, r = 1 . . . , R
may be possible without affecting the uniqueness property of the model. Each
choice will lead to a different allocation structure G = Ψ(α)Φ(β)T . Following the
proposed design procedure, a set of MIMO-CDMA schemes can be derived from the
different possible choices of α and β. Table 4.1 shows the set of schemes for M = 4
transmit antennas. We assume that α1 ≥ · · · ≥ αR, and β1,1 ≥ · · · ≥ β1,J1 ≥ · · · ≥
βR,1 ≥ · · · ≥ βR,JR

. This assumption eliminates equivalent (redundant) schemes.
For example, an allocation scheme with α = [1 3] and β = [1 2 1] is considered
equivalent to the one with α = [3 1] and β = [2 1 1]. Both schemes have the
same spreading and multiplexing pattern (the order of association of data streams
and spreading codes with the transmit antennas is irrelevant), and have the same
uniqueness property (both schemes satisfy condition (4.12)). In this table, the
different schemes are listed according to increasing values of R and J .

It can be seen from this table that 14 allocation schemes are possible. Note that for
some values of R and J , 2 schemes exist. Let us consider the case (R, J) = (1, 2),
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Table 4.1: Set of schemes for M = 4.
(R, J) α’s β’s nb. of schemes
(1, 1) 4 4 1
(1, 2) 4 {[3 1]; [2 2]} 2
(1, 3) 4 [2 1 1] 1
(1, 4) 4 [1 1 1 1] 1
(2, 2) {[3 1]; [2 2]} {[3 1]; [2 2]} 2
(2, 3) {[3 1]; [2 2]} [2 1 1] 2
(2, 4) {[3 1]; [2 2]} [1 1 1 1] 2
(3, 3) [2 1 1] [2 1 1] 1
(3, 4) [2 1 1] [1 1 1 1] 1
(4, 4) [1 1 1 1] [1 1 1 1] 1

where we have 2 possible choices. For β = [3 1], antennas 1, 2 and 3 use the same
spreading code, which is different from the one used by antenna 4. On the other
hand, for β = [2 2] each spreading code is used twice by two different antenna sets.
Both are full spatial spreading schemes, but having different code reuse patterns.
For (R, J) = (2, 2), we have 2 feasible schemes, and they correspond to those
satisfying α = β. For (R, J) = (2, 3) and (2, 4) we also have 2 schemes. Note that
the basic difference between the schemes (R, J) = (2, 2), (2, 3) and (2, 4) is on the
code reuse/multiplexing pattern, the spatial spreading pattern being the same.

Remark 4.3: In this chapter, we have considered an uplink MIMO-CDMA system
model, with multiple transmitters/users and a single (base-station) receiver. In
[41], we address the downlink case with multiuser/multicode transmission. From
the viewpoint of tensor modeling, this model is a generalization of the uplink model
of this chapter to the case of multiuser spatial multiplexing, since several user
transmissions are multiplexed across the same set of transmit antennas. Another
distinguishing feature of [41] is the design of the allocation matrices. This work
proposes a complete parametrization of the two allocation matrices along with new
design constraints that allow to easily derive sets of downlink allocation schemes
for a fixed number of transmit antennas.

4.4.5 Discussion

In practice, Ψ and Φ can be designed based on practical restrictions such as the
number of available spreading codes and transmit antennas, data-rate and diversity
requirements. One way of optimizing the allocation matrices is to take advantage
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of a priori channel state information at the transmitter. Since our design proce-
dure allows the determination of a finite-set, or codebook, of feasible allocation
schemes, limited feedback precoding methods [77, 95] can be used to select the best
pair of constraint matrices at the transmitter. Although interesting, performance-
oriented optimization of Ψ and Φ is a topic beyond the scope of the thesis and
will be elaborated in the future. Here, we only focus on uniqueness aspects for
designing the transmit schemes. However, we conjecture that the optimization of
the allocation structure can allow substantial performance gains compared to the
non-optimized case. This issue is under investigation.

4.4.6 Identifiability

Let us rewrite the three unfolded matrices of the received signal (4.8) in the follo-
wing equivalent manner:

X1 = Z1

(
H,S

)
CT , X2 = Z2

(
S,C

)
HT , X3 = Z3

(
C,H

)
ST . (4.16)

where

Z1

(
H,S

)
=

(
H ⋄ (SΨ)

)
ΦT ∈ C

KN×J , Z2

(
S,C

)
= (SΨ) ⋄ (CΦ) ∈ C

NP×M ,

Z3

(
C,H

)
=

(
(CΦ) ⋄ H

)
ΨT ∈ C

PK×R,

are the three constrained Khatri-Rao factorizations of the received signal model.

Theorem 5.1 (identifiability): The identifiability of the constrained tensor mo-
del (4.3) in the Least Square (LS) sense requires that Z1

(
H,S

)
, Z2

(
S,C

)
, and

Z3

(
C,H

)
are full column-rank, i.e.:

KN ≥ J, NP ≥ M, and PK ≥ R. (4.17)

Proof : The proof is equal to that of Theorem 1.3 by using the following corres-
pondences: (I1, I2, I3, R1, R2, R3) → (N, P, K, R, J,M). ¥

From (4.17), the following corollaries can be obtained:

1. For R = J = M (equal number of data streams, spreading codes and trans-
mit antennas), the type-3 CONFAC decomposition of the received signal
reduces to the PARAFAC decomposition of M factors, and (4.17) is equiva-
lent to condition [132]:

min(KN, NP, PK) ≥ M
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2. For 1 < R = J < M (equal number of data streams and spreading codes)
we can decouple (4.17) into the two following conditions:

K · min(N, P ) ≥ R, and NP ≥ M.

3. For 1 < R < J = M (equal number of spreading codes and transmit anten-
nas), we obtain the two following conditions:

N · min(K, P ) ≥ M, and KP ≥ R.

4.4.7 Discussion on the identifiability conditions:

Interpretation of (4.17)

These conditions relate all the system parameters of interest, which belong either
to the transmitted or to the received signal dimensions. The transmitted signal
dimensions are (R, J,M) while the receiver dimensions are (N, P, K). These iden-
tifiability conditions can be interpreted in the following manner. An increase in
a transmitted signal dimension (e.g. data stream, spreading code, or transmit an-
tenna dimension), representing an increase in the number of system parameters
to be identified at the receiver, must be compensated by an increase in the cor-
responding received signal dimension(s). As a consequence of tensor modeling, an
identifiability tradeoff arises in (4.17). For instance, an increase in the number R of
data streams can be compensated by increasing the number K of receive antennas
or by increasing the spreading factor P , or both, accordingly. A similar reasoning
applies when the number of spreading codes or transmit antennas is increased.

On k-rank based conditions

Model (4.8) can be viewed as a third-order PARAFAC model with three equivalent
factor matrices S = SΨ, C = CΦ and H. Due to the presence of sets of identical
columns in Ψ and Φ, and consequently in S and C, the identifiability result of
[131], which is based on the concept of k-rank, does not apply to this constrained
tensor model. This is due to the fact that S and C have k-rank equal to one,
and the sufficient condition of [131] fails (see [131] for further details). The same
comment is valid for the PARALIND model of [130] and [10], which exhibits similar
constrained structure.
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4.5 CONFAC-based MIMO-CDMA

Now, we present a CONFAC-based MIMO-CDMA model which generalizes the
one proposed in the previous section [44, 35, 42]. At the transmitter, R input
data streams are transmitted using J spreading codes and M transmit antennas.
The proposed transmission model consists in: i) generating F precoded signals to
be transmitted by spreading R input data streams1 with the aid of J spreading
codes and then ii) associating these F precoded signals with the M transmit
antennas. The simultaneous transmission of the data streams across multiple
transmit antennas may use different codes, or fully reuse the same code, or partially
reuse one, or a set of, spreading code(s). Such a code reuse pattern will be explicitly
modeled by fully exploiting the CONFAC decomposition structure.

4.5.1 Precoder decomposition

The signal to be transmitted is modeled by the sum of F precoded signal compo-
nents. Let gr,j,m be the (r, j, m)-th element of the precoder tensor G ∈ C

R×J×M .
This tensor determines the allocation of the r-th data stream and the j-th sprea-
ding code to the m-th transmit antenna. The F -factor decomposition of the pre-
coder tensor is given, in scalar form, by the following “constrained” PARAFAC
decomposition:

gr,j,m(Ψ,Φ,Ω) =
F∑

f=1

ψr,fφj,fωm,f . (4.18)

Ψ ∈ C
R×F , Φ ∈ C

J×F , Ω ∈ C
M×F are stream reuse, code reuse and antenna reuse

matrices, respectively. Therefore, the precoder tensor G ∈ C
R×J×M can be viewed

as a joint stream-code-antenna multiplexer which is decomposed in terms of ele-
mentary stream, code and antenna reuse matrices. For instance, ψr,fφj,fωm,f = 1
means that the r-th data stream is spread by the j-th spreading code and then
transmitted by the m-th transmit antenna.

1Although not mentioned, the R input data streams can be associated with R users in a
multiuser model.
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4.5.2 Transmitted signal model

The transmitted signal is represented by the third-order tensor U ∈ C
N×P×M

with entry un,p,m. The discrete-time baseband version of the transmitted signal
associated with the m-th transmit antenna, n-th symbol and p-th chip, is defined
as un,p,m

.
= um

(
(n− 1)P + p

)
. We propose the following constrained factorization

for modeling the effective transmitted signal:

un,p,m =
R∑

r=1

J∑

j=1

sn,rcp,j gr,j,m(Ψ,Φ,Ω),

=
F∑

f=1

R∑

r=1

J∑

j=1

sn,rcp,j ψr,fφj,fωm,f , (4.19)

By comparing (4.19) with (1.83), we have the following correspondences:

(I1, I2, I3, R1, R2, R3, F ) ↔ (N,P, M, R, J,M, F ),

(A,B,C) ↔ (S,C, IM).

Hence, the transmitted signal model is a special case of the CONFAC decomposi-
tion, where the third-mode matrix is equal to the identity matrix.

We can rewrite (4.19) in the following form:

un,p,m =
R∑

r=1

J∑

j=1

(
F∑

f=1

ψr,fφj,f , ωm,f

)
sn,rcp,j

=
R∑

r=1

J∑

j=1

[
ΨDm(Ω)ΦT

]
r,j

sn,rcp,j. (4.20)

κr,j =
[
ΨDm(Ω)ΦT

]
r,j

= 1 means that the m-th transmit antenna transmits

the r-th data stream using the j-th spreading code. The transmitted signal slice
U··m ∈ C

N×P associated with the m-th transmit antenna can be expressed as:

U··m =
∑

r,j/κr,j=1

S·rC
T
·j, (4.21)

or, equivalently, in terms of the constraint matrices:

U··m = S
(
ΨDm(Ω)ΦT

)
CT . (4.22)
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Figure 4.3: Block-diagram of the CONFAC-based MIMO transmission system.

The block diagram of the proposed MIMO transmission system is shown in Fig.
4.3. In this figure, the precoder tensor is shown in terms of its M matrix-slices.
The m-th precoder slice generates a tensor signal component un,p,m at the m-
th transmit antenna by combining transmitted symbols and spreading codes, the
combination pattern being determined by Ψ, Φ and Dm(Ω).

Example 4.2: In order to illustrate the physical meaning of the precoder decom-
position, let us consider a MIMO-CDMA system transmitting R = 2 data streams
with J = 3 spreading codes across M = 3 transmit antennas. Assume that F = 3
precoded signals are generated using the following constraint matrices:

Ψ =

[
1 0 1
0 1 0

]
, Φ = Ω =




1 0 0
0 1 0
0 0 1


 = I3.

We have:

ΨD1(Ω)ΦT =

[
1 0 0
0 0 0

]
, ΨD2(Ω)ΦT =

[
0 0 0
0 1 0

]
,

ΨD3(Ω)ΦT =

[
0 0 1
0 0 0

]
,
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resulting in the following decomposition of U··1, U··2 and U··3:

U··1 = S·1C
T
·1︸ ︷︷ ︸

signal at tx antenna 1

, U··2 = S·2C
T
·2︸ ︷︷ ︸

signal at tx antenna 2

, U··3 = S·1C
T
·3︸ ︷︷ ︸

signal at tx antenna 3

The first data stream is reused at the first and third transmit antennas with two
different spreading codes, while the second data stream is transmitted by a single
antenna using a single spreading code.

Example 4.3: Now, consider that we have R = J = 2, M = 3 and F = 4, with
the following precoder constraint matrices:

Ψ = Φ =

[
1 1 0 0
0 0 1 1

]
, Ω =




1 0 1 0
0 1 0 0
0 0 0 1


 .

We have:

ΨD1(Ω)ΦT =

[
1 0
0 1

]
, ΨD2(Ω)ΦT =

[
1 0
0 0

]
, ΨD3(Ω)ΦT =

[
0 0
0 1

]
,

From (4.21), we deduce that:

U··1 = S·1C
T
·1 + S·2C

T
·2︸ ︷︷ ︸

signal at tx antenna 1

, U··2 = S·1C
T
·1︸ ︷︷ ︸

signal at tx antenna 2

, U··3 = S·2C
T
·2︸ ︷︷ ︸

signal at tx antenna 3

In this case, the first and second data streams are code-multiplexed at the first
transmit antenna. The first and second data streams are reused respectively by the
second and third transmit antennas in order to achieve transmit spatial diversity.

Several transmit schemes can be designed for a fixed parameter set (R, J,M, F ),
by varying the pattern of 1’s and 0’s of the precoder constraint matrices.
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4.5.3 Received signal model

The scalar component xn,p,k of the received signal tensor X ∈ C
N×P×K is factored,

in absence of noise, as:

xn,p,k =
M∑

m=1

hk,mun,p,m

=
R∑

r=1

J∑

j=1

M∑

m=1

sn,rcp,jhk,m gr,j,m(Ψ,Φ,Ω) (4.23)

which is a CONFAC decomposition of the received signal as a function of symbol,
code and channel matrices, the constrained structure being determined by the
precoder tensor gr,j,m(Ψ,Φ,Ω). The following correspondences can be deduced by
comparing (4.23) with (1.83):

(I1, I2, I3, R1, R2, R3, F ) ↔ (N,P, K, R, J,M, F ),

(A,B,C) ↔ (S,C,H). (4.24)

The unfolded matrices X1 ∈ C
PK×N , X2 ∈ C

KN×P and X3 ∈ C
NP×K can be

factored as in (1.87) by taking the correspondences (4.24) into account.

4.6 Blind detection: uniqueness tradeoffs

As discussed in Chapter 1 (c.f. Section 1.4.3), the partial uniqueness property of
the CONFAC decomposition leads to a “uniqueness tradeoff”, where the essential
uniqueness in one or two modes comes at the expense of a restrictive nonuniqueness
in the other mode(s). The implications of this uniqueness tradeoff in terms of blind
symbol/code/channel recovery are now studied.

Recall that the uniqueness conditions of Section 1.4.3 establish equivalences bet-
ween pairs of constraint matrices ensuring essential uniqueness in two factor ma-
trices of the CONFAC decomposition. Having in mind the correspondences (4.24),
these equivalences admit a physical interpretation in terms of allocation of data
streams and spreading codes to transmit antennas, leading to different blind sym-
bol/code/channel recovery properties. We shall distinguish the precoder strategies
in two groups: i) those with reuse across two dimensions only and; ii) those allo-
wing reuse across all the dimensions. These two cases are now detailed:
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4.6.1 Reuse across two dimensions only

We assume that either i) data streams and spreading codes (but not the transmit
antennas) are reused more than once in the composition of the F precoded signals,
or ii) transmit antennas and data streams (but not the spreading codes) are reused
more than once. These two configurations are detailed below:

(1.a) R = J < M = F (no transmit antenna reuse): Each data stream is associa-
ted with a different spreading code. Each data stream/spreading code can
be reused more than once by different transmit antennas (spatial diversity).

(2.a) M = R < J = F (no spreading code reuse): Each transmit antenna is asso-
ciated with a different data stream. Each data stream/transmit antenna can
be reused more than once by different spreading codes (code diversity);

4.6.2 Reuse across all the dimensions

We assume that data streams, spreading codes and transmit antennas are reused
more than once in the composition of the F precoded signals. We consider two
different situations:

(1.b) R = J ≤ M < F : Equal number of data streams and codes.

(2.b) M = R ≤ J < F : Equal number of data streams and antennas.

Resorting to the partial uniqueness corollaries C.1
(
for (1.a) and (1.b)

)
and C.3(

for (2.a) and (2.b)
)

given in Section 1.4.3, we have the following results:

• For configurations (1.a) and (1.b), if Ψ and Φ are equivalent, then both S
and C are essentially unique, i.e. joint symbol-code recovery is achieved.

• For configurations (2.a) and (2.b), if Ψ and Ω are equivalent, then both S
and H are essentially unique, i.e. joint symbol-channel recovery is achieved.

These results illustrate the existing link between the space-time precoder struc-
ture with constraints used at the transmitter and the resulting blind sym-
bol/code/channel recovery property at the receiver using the proposed CONFAC
model. Several degrees of freedom for space-time precoder design are available for
ensuring the blind symbol recovery.
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It is worth noting that for configurations with more transmit antennas than data
streams (meaning that there is one or more data streams spatially spread using
multiple transmit antennas), the proposed transmission model is similar to space-
time spreading [103, 78, 56]. On the other hand, if we have more data streams than
transmit antennas (meaning that two or more data streams are code-multiplexed
at the same transmit antenna), the proposed transmission model is close to space-
time multiplexing [102, 57].

4.6.3 Receiver algorithm

As in the previous chapters, we make use of the ALS algorithm. In the present
context, this algorithm consists in fitting a CONFAC model to the received signal
tensor in order to estimate the symbol, code and channel matrices in presence of an
additive white Gaussian noise. Since the precoder constraint matrices Ψ, Φ and
Ω are known at the receiver, they are fixed during the whole iterative estimation
process.

Define X̃i = Xi + Vi, i = 1, 2, 3, as the noisy versions of Xi, where Vi is an
additive complex-valued white gaussian noise matrix. The algorithm consists of
the following steps:

1. Set i = 0;
Randomly initialize Ŝ(i=0) and Ĥ(i=0);

2. i = i + 1;

3. Using X̃1, find an LS estimate of C(i):

ĈT
(i) =

[
(Ĥ(i−1)Ω ⋄ Ŝ(i−1)Ψ)ΦT

]†
X̃1;

4. Using X̃2, find an LS estimate of H(i):

ĤT
(i) =

[
(Ŝ(i−1)Ψ ⋄ Ĉ(i)Φ)ΩT

]†
X̃2;

5. Using X̃3, find an LS estimate of S(i):

ŜT
(i) =

[
(Ĉ(i)Φ ⋄ Ĥ(i)Ω)ΨT

]†
X̃3;

6. Repeat steps 2-5 until convergence.



4.7 PERFORMANCE EVALUATION 151

In practice, it is reasonable to assume known spreading codes at the receiver. In
this case, the matrix C is fixed during the ALS algorithm and Step 3 is skipped.
The knowledge of one factor matrix generally accelerates the convergence of the
ALS algorithm, even with small blocks of received samples [129]. Therefore, ex-
ploiting the knowledge of the spreading code matrix (whenever it is available) is
beneficial from this viewpoint.

4.7 Performance evaluation

We present some simulation results for illustrating the performance of the pro-
posed MIMO-CDMA transmission models. We are interested in the symbol and
channel recovery with the knowledge or not of the spreading codes at the receiver.
Therefore, two different detection assumptions are considered:

• Code-assisted detection: The spreading code matrix C is assumed to be
known at the receiver so that Step 3 of the ALS algorithm is skipped.
Hadamard(P ) spreading codes are used in this case.

• Code-blind detection: The spreading code matrix C is assumed to be unk-
nown at the receiver as a consequence of multipath delay propagation. In
this case, the ALS receiver fully iterates for estimating the code matrix C.
The spreading code matrix is generated by convolving the Hadamard(P )
code with the considered multipath delay channel [156].

Performance evaluation is based on average Bit-Error-Rate (BER) versus Signal-
to-Noise Ratio (SNR) plots, obtained by means of Monte Carlo runs. The number
of runs vary from 1000 to 5000 depending on the simulated SNR value. At each
run, the additive noise power is generated according to the SNR value given by:

SNR = 10log10

‖X1‖2
F

‖V1‖2
F

dB.

This SNR measure takes into account the effects of multiple transmit/receive an-
tennas, fading and multipath. The spatial channel gains and multipath fading
are drawn from an i.i.d. complex-valued Gaussian generator while the transmitted
symbols are drawn from a pseudo-random Quaternary Phase Shift Keying (QPSK)
sequence. Our simulations focus on challenging system configurations with a small
number of receive antennas and short received data blocks, which is more attractive
in practice.
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It is known that the ALS algorithm is strongly dependent on the initialization
in the completely blind case (where S, C and H are unknown). Indeed, ill-
convergence to local minima generally occurs for bad initializations. At each run,
we consider 10 different random initializations and the best one is chosen for perfor-
mance evaluation. The best initialization corresponds to the one with the smallest
error. The scaling ambiguity affecting the estimates of the symbol matrix is resol-
ved by assuming that the first symbol of each data stream is equal to 1. We recall
that the unknown scaling factor that is inherent to the blind estimation process is
eliminated by normalizing each column of the estimated symbol matrix by its first
element. Differential modulation/encoding can optionally be used to eliminate
this ambiguity [131]. In the unknown spreading code case, the inherent column
permutation ambiguity in S is resolved using a greedy least squares (S, Ŝ)-column
matching algorithm [131].

4.8 Simulation results–Part 1

This section contains the first part of our computer simulation results. We eva-
luate the BER performance of the type-3 CONFAC-based MIMO-CDMA model
of Section 4.3. The second part will be dedicated to the CONFAC-based model
of Section 4.5. Different allocation structures for M = 2, 3 and 4 are considered.
The ALS algorithm is used as the multiuser detection receiver. Note that for the
type-3 CONFAC MIMO-CDMA model, the ALS algorithm coincides with the one
described in (4.6.3) with Ω = IR.

The BER curves represent the performance averaged on the R transmitted data
streams, except in some figures, where we plot the individual performance of each
data stream for a more detailed analysis. We assume K = 2 and N = 10 throu-
ghout the simulations, unless otherwise stated. The most relevant parameters to
be considered here are the generating vectors α and β of the allocation structure,
defining the spatial spreading and code reuse factors, respectively. In all the si-
mulations, the transmit parameters are shown at the top of each figure. We recall
that for given α and β, the corresponding values of R and J can be deduced, as
shown in Table 4.1 for M = 4.

It is worth mentioning that our simulation results do not distinguish between the
detection of Q user signals with Mq transmit antennas, Rq data streams and Jq

spreading codes each, or the detection of a single-user signal with M = M1 + · · ·+
MQ antennas, R = R1 + · · · + RQ data streams and J = J1 + · · · + JQ spreading
codes. Since the ALS receiver is based on a joint multiuser detection, distinguishing
between both cases is not relevant for purposes of performance evaluation.
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Figure 4.4: Average performance of 3 different transmit schemes with M = 2.
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Figure 4.5: Average performance of 4 different transmit schemes with M = 4.
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4.8.1 Performance of different schemes (M = 2 and M = 4)

First, we consider the code-assisted detection and investigate the performance of
some MIMO-CDMA schemes for M = 2 and M = 4 transmit antennas. Figure 4.4
depicts the performance of 3 different schemes for M = 2. The allocation matrices
for these schemes are given by:

generating vectors allocation matrices

α = β = [1 1] Ψ = Φ = I2

α = 2, β = [1 1] Ψ = [1 1], Φ = I2

α = β = 2 Ψ = Φ = [1 1]

We can observe that performance improves when going from full spatial multi-
plexing (α = β = [1 1]) to full spatial spreading with code reuse (α = β = 2).
Such a performance gain comes at the expense of a reduction of the spectral
efficiency P/R by a factor of two. Spatial spreading with code multiplexing
(α = [2], β = [1 1]) offers nearly the same average performance as spatial sprea-
ding with code reuse. The use of code multiplexing in place of code reuse can be
more attractive in scenarii where the spatial channels from the different transmit
antennas are correlated and transmit spatial signatures are poor [102]. We shall
come back to this issue latter in our simulation results. Figure 4.5 shows the per-
formance of 4 different schemes for M = 4, considering R = J and α = β. The
spreading factor P is adjusted for keeping the spectral efficiency P/R constant
(except for α = β = 4 where spectral efficiency is reduced twice). A variable
degree of spatial diversity is afforded by the different choices of α and β.

4.8.2 Influence of the code reuse pattern (choice of β)

Figure 4.6 compares the performance of two different schemes combining spa-
tial spreading and spatial multiplexing for M = 3. Both schemes have the same
spatial spreading pattern, the difference being on the code reuse/multiplexing pat-
tern. In contrast to previous figures, we plot the individual performance for each
data stream in order to verify the influence of code reuse/multiplexing. It can be
concluded that the difference between these transmit schemes is basically on the
performance of the second data stream, which is significantly better as code multi-
plexing is used. This result confirms that using different codes for transmitting the
same data stream across different antennas allows the receiver to use both spatial
and code information to distinguish the transmitted substreams, corroborating
with [79] and [102].
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Figure 4.6: Individual data stream performance for 2 different transmit
schemes with M = 3 and different choices of β

4.8.3 Performance over spatially-correlated channel

Now, we are interested in investigating the impact of using different codes for trans-
mitting the same data stream over a practical (non-ideal) channel with transmit
correlation. We assume that only the transmit antennas are correlated, which can
be a reasonable assumption in uplink transmission with poor scattering around
the transmitter. At the base-station receiver, we assume sufficient scattering so
that the receive antennas are uncorrelated. We adopt the following channel model
with transmit correlation [125]:

H = HoR
1/2
t ,

where Ho is a matrix of complex i.i.d. Gaussian variables of unity variance and
Rt the transmit covariance matrix. In this experiment, we assume M = 4 and Rt

is given by [71]:

Rt =




1 0.57e−2.25j 0.17e0.02j 0.29e−2.94j

0.57e2.25j 1 0.57e−2.25j 0.17e0.02j

0.17e−0.02j 0.57e2.25j 1 0.57e−2.25j

0.29e2.94j 0.17e−0.02j 0.57e2.25j 1






156 CHAPTER 4. CONSTRAINED TENSOR MODELING APPROACHES TO MIMO-CDMA

0 3 6 9 12 15 1818

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

M=4, K=2, N=50, P=4

α = β = [2 1 1]
α = β = [2 2]
α = [2 1 1] , β = [1 1 1 1]
α = [2 2] , β = [1 1 1 1]

code−assisted

Figure 4.7: Average performance of 4 different transmit schemes with M = 4
over a channel with transmit spatial correlation.

We consider four allocation schemes having different spatial sprea-
ding/multiplexing and code reuse/multiplexing patterns. We focus on the
isolated performance for each data stream. According to Figure 4.7, for a fixed
choice of α and β, better results are obtained when full code multiplexing is
used (β = [1 1 1 1]). Note that, when α = β = [2 2], the performance tends to
saturate at high SNR as a consequence of transmit spatial correlation. Keeping
α = [2 2] and using β = [1 1 1 1] in place of β = [2 2], a significant performance
improvement is obtained at the expense of using twice the number of spreading
codes. The same comment is valid for α = [2 1 1]. These results show that the
choice of the generating vectors is important in practical scenarii.

4.8.4 Code-blind versus code-assisted detection

In all the previously obtained results, we have considered code-assisted detection
by assuming perfectly orthogonal spreading codes (no inter-chip interference). The
next results consider the more challenging code-blind detection, where the (effec-
tive) spreading codes are unknown to the receiver due to multipath propagation.
The effective spreading codes are generated by convolving a Hadamard code with
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Figure 4.8: Comparison between code-assisted and code-blind detection with
M = 3.

a two-tap multipath delay channel, the delay between the two taps being equal to
two chip periods. At each run, these multipath components are drawn from an
i.i.d. complex-valued Gaussian generator. Figure 4.8 compares the performance
of code-blind and code-assisted detection. In this case we fix N = 10, P = 8,
α = β = [2 1] while K is varied. We can observe a performance loss of the
code-blind receiver with respect to the code-assisted one. The performance gap
is attributed, in part, to the presence of inter-chip interference and the lack of
knowledge of the code matrix which induces more parameters to be estimated by
means of the ALS algorithm.

4.8.5 Comparison with the optimum ZF receiver

As a reference for comparison, we now consider the performance of the Zero Forcing
(ZF) receiver with perfect knowledge of the channel and code matrices. The ZF
receiver is compared with the channel- and code-blind ALS receiver. The ZF
receiver consists in a single-step estimation of the symbol matrix given by

ŜT
ZF =

[(
(CΦ) ⋄ H

)
ΨT

]†
X̃3,
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Figure 4.9: Comparison between code-blind ALS and ZF receivers (Perfect
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H and C being perfectly known. We consider two allocation schemes with α =
β = [2 1] (M = 3) and [2 2] (M = 4). It can be seen from Figure 4.9 that the
gap between ALS and ZF is around 6dB in terms of SNR for BER=2 · 10−2. We
can observe that the same performance improvement is obtained for both ZF and
ALS when M is increased.

4.9 Simulation results–Part 2

In this section, simulation results are provided for performance assessment of the
CONFAC-based MIMO-CDMA model (4.23). Unless otherwise stated, K = 2
receive antennas and N = 50 signal samples are assumed throughout the simula-
tions.
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4.9.1 Performance of different allocation schemes

We evaluate the receiver BER performance for some choices of the precoder
constraint matrices. We begin by considering a flat-fading channel with the know-
ledge of the spreading codes at the receiver. We assume F = 3 precoded signals,
J = 2 or 3 spreading codes, and M = 2 or 3 transmit antennas. The spreading fac-
tor is set to P = 4. The orthogonal spreading codes are columns of a Hadamard(4)
matrix. The data stream allocation matrix Ψ is the one of Example 3 of Section
4.5.2, which is recalled here for convenience:

Ψ =

[
1 0 1
0 1 0

]
.

Three different precoding schemes for 2 or 3 spreading codes/transmit antennas
are tested by varying the structure of the code and antenna allocation matrices Φ
and Ω:

Φ = Ψ, Ω = I3 (J = 2,M = 3),

Φ = Ψ, Ω =

[
1 0 0
0 1 1

]
(J = 2, M = 2),

Φ = I3, Ω =

[
1 0 0
0 1 1

]
(J = 3,M = 2).

The BER performance of the three schemes are depicted in Figure 4.10. It can
be seen that the first and second schemes have similar performance. The third
scheme provides the best performance due to the fact that the two first schemes
reuse one spreading code which is not the case for the third scheme.

In a second experiment, we assume F = 4 precoded signals, and J = 2, 3 or 4
orthogonal spreading codes. The number of transmit antennas is fixed at M = 4,
and the spreading factor at P = 4. The fixed structure of Ψ and Ω is as follows
(the same used in Example 4 of Section 4.5.2):

Ψ =

[
1 1 0 0
0 0 1 1

]
, Ω =




1 0 1 0
0 1 0 0
0 0 0 1


 (4.25)

According to the structure of Ψ and Ω, we can see that each data stream is
simultaneously transmitted by two transmit antennas. We consider three code
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Figure 4.10: Performance of different allocation schemes with F = 3.

reuse patterns. The three choices for the code allocation matrix Φ are:

Φ = Ψ (J = 2), Φ =




1 1 0 0
0 0 1 0
0 0 0 1


 (J = 3),

Φ = I4 (J = 4). (4.26)

The first scheme reuses twice both spreading codes. The second one reuses only
the first spreading code while the third one uses different spreading codes. The
results are shown in Figure 4.11. As expected, the performance improves at the
expense of using more orthogonal codes. From the slope of the BER curves, we
remark that an increased spatial diversity gain is obtained with the third precoding
scheme.

4.9.2 Performance with unknown spreading codes

We now consider the case where the spreading codes are unknown at the receiver
resulting from the presence of ICI due to multipath/delay propagation. We assume
that the channel has L = 3 chip-spaced multipath components. The multipaths



4.9 SIMULATION RESULTS–PART 2 161

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

F=4, R=2, M=3, K=2, N=50, P=4

J=2
J=3
J=4

Figure 4.11: Performance of different allocation schemes with F = 4.

undergo independent Rayleigh fading. In order to avoid ISI, L = 2 trailing zeros
(guard chips) are included in each spreading code, as discussed in Section 4.5. We
consider two transmit schemes with F = 4. The first one with R = J = 2 and
P = 4 ISI-free chips (Hadamard(2) codes increased by L = 2 trailing zeros) and
the second one with R = J = 3 and P = 6 ISI-free chips. Both schemes have
the same antenna reuse pattern and the chosen Ω is the one given in (4.25). The
two other precoding constraint matrices are given below for the first and second
schemes, respectively:

Ψ = Φ =

[
1 1 0 0
0 0 1 1

]
(R = J = 2) (4.27)

Ψ = Φ =




1 0 0 0
0 1 0 0
0 0 1 1


 (R = J = 3).

Note that both schemes trade off spatial multiplexing and transmit diversity. In the
first one, each data stream is transmitted by two transmit antennas. In the second
one, spatial multiplexing takes place within the first and second antennas. Both
schemes have the same spectral efficiency (the ratio R/P is constant). According
to Figure 4.12, the first scheme outperforms the second one. This is due to the
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Figure 4.12: Performance of two transmit schemes with multipath/delay pro-
pagation and unknown spreading codes, for R = 2 and 3 data streams.

improved signal separation/resolution that is obtained at the receiver when fewer
data streams are transmitted.

4.9.3 Comparison with a PARAFAC scheme

Now, we consider three transmit schemes with F = M = 4 (i.e. Ω = I4) and
R = J = 2. In the first scheme, Ψ and Φ are given by (4.27). In the second one,
we have:

Φ = Ψ =

[
1 1 1 0
0 0 0 1

]
.

The third scheme coincides with the PARAFAC scheme of [131], where R = J =
M and Ψ = Φ = Ω = I4 (no stream/code/antenna reuse takes place). The
results are shown in Figure 4.13. The first and second schemes offer improved
performance over the third (PARAFAC) one. Note that the CONFAC schemes
transmit fewer data streams than transmit antennas, in order to achieve spatial
spreading. Consequently, more degrees of freedom are available at the receiver for
separating the data streams as compared to the PARAFAC scheme, which is a
full spatial multiplexing scheme. It is worth noting, however, that the PARAFAC
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Figure 4.13: Comparison of two CONFAC schemes with a PARAFAC scheme
for M = 4.

scheme has twice the spectral efficiency as the CONFAC schemes by simultaneously
transmitting four data streams instead of two.

4.9.4 Comparison with the nonblind ZF receiver

In order to provide a performance reference of the proposed blind receiver
(CONFAC-ALS), we have plotted the performance of the nonblind Zero Forcing
(ZF) receiver. Contrarily to the proposed receiver, the nonblind ZF one assumes
perfect knowledge of the channel parameters (fading gains and multipath/delay
response) as well as the knowledge of the spreading codes. We consider a frequency-
selective channel with L = 2 multipaths. The spreading codes are unknown at the
receiver and P = 6. The results are depicted in Figure 4.14. The chosen Ψ and Φ
are given by (4.27) and Ω = I4. We can observe a gap of, approximately, 7dB in
terms of SNR between blind ALS and nonblind ZF receivers for BER= 2 · 10−3.
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Figure 4.14: Comparison between blind CONFAC-ALS with nonblind
CONFAC-ZF receivers.

4.9.5 Blind channel recovery

As discussed in the previous section, joint blind symbol and channel recovery is
possible for some precoder structures with antenna reuse. We evaluate the accu-
racy of the blind channel estimation from the Root Mean Square Error (RMSE)
measure averaged over 100 Monte Carlo runs and defined as follows:

RMSE(H) =

√√√√ 1

100MK

100∑

t=1

∥∥∥Ĥ(t) − H
∥∥∥

2

F
,

where Ĥ(t) is the channel matrix estimated at the t-th run. We consider two
schemes with R = M and Ψ = Ω. Orthogonal and known spreading codes are
assumed with P = 4. The structure of these matrices for the first and second
schemes are as follows:

Ψ = Ω =

[
1 1 0 0
0 0 1 1

]
(R = M = 2).
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Figure 4.15: RMSE performance for the blind channel estimation.

Ψ = Ω =




1 0 0 0
0 1 0 0
0 0 1 1


 (R = M = 3).

Figure 4.15 displays the results. The dashed lines are for R = M = 2 and the solid
lines for R = M = 3. The results are shown for K = 2 and 4 receive antennas.
In all the simulated configurations, a linear decrease in the channel estimation
error as a function of the SNR is observed. The RMSE increases as the number of
data streams/transmit antennas is increased. On the other hand, the estimation
accuracy is improved as the number of receive antennas is increased.

4.9.6 Evaluation of the convergence

Figure 4.16 depicts an ALS convergence histogram (for 100 Monte Carlo runs)
for two transmit schemes: i) CONFAC scheme with (F,R, J,M) = (4, 2, 2, 3); ii)
PARAFAC scheme with (F = R = J = M = 4). For the CONFAC scheme,
Ψ = Φ and Ω are given by (4.25). We remark that the convergence of the
CONFAC scheme is achieved within 500 iterations for approximatively 90 % of
runs. In average, the PARAFAC scheme has a slower convergence, with less than
40 % of runs converging within 500 iterations. Such a difference certainly comes
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Figure 4.16: Convergence histogram for CONFAC and PARAFAC for 100
runs.

from the exploitation of the known interaction structure incorporated into the
received signal model by means of the constraint matrices. Consequently, the
number of parameters to be estimated is smaller with the CONFAC scheme as
compared to the PARAFAC one.

4.10 Summary

This chapter has presented new tensor modeling approaches for multiuser MIMO-
CDMA systems with blind detection based on the CONFAC decomposition. We
have shown that this decomposition can be exploited to design space-time sprea-
ding/allocation schemes for MIMO-CDMA systems with a meaningful physical
interpretation for the constraint matrices of the decomposition. First, we have
presented a transmission model based on the type-3 CONFAC decomposition with
two constraint matrices only. The two constraint matrices of the tensor model act
as allocation matrices and control the spatial spreading of the data streams and
the spatial reuse of the spreading codes. We have parameterized the two allocation
matrices by their corresponding generating vectors, and have presented a design
procedure for systematically deriving a set of transmit schemes with guaranteed
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blind symbol recovery.

In the second part of the chapter, we have presented a CONFAC-based transmis-
sion model, where a precoder tensor fully exploiting the CONFAC decomposition
structure defines the allocation of the data streams and spreading codes to trans-
mit antennas. Based on the CONFAC modeling of the received signal, we have
discussed blind symbol/code/channel recovery from the partial uniqueness proper-
ties of this decomposition. The BER performance of several transmit schemes has
been evaluated. Simulation results have shown that remarkable performance is
obtained with only two receive antennas and short data blocks.

The key difference between the type-3 CONFAC- and the CONFAC-based mode-
ling approaches is on the transmission flexibility that the second approach offers
as compared to the first one. As opposed to the type-3 CONFAC MIMO-CDMA
model, the CONFAC-based model allows the reuse of the same transmit antenna
by different data streams/speading codes. This comes from the introduction of
a third constraint matrix. Thanks to the transmit antenna reuse, the CONFAC-
based model covers a wider class of MIMO-CDMA transmit schemes.

We emphasize that the introduction of the two allocation matrices into the MIMO-
CDMA model can be further exploited. For a fixed number M of transmit anten-
nas, we could resort to limited feedback precoding [77, 95] to properly select the
allocation matrices from the finite-set of feasible choices (c.f. Table 4.1 for M = 4)
by taking practical requirements into account such as diversity and data-rate. We
conjecture that antenna subset selection can be implemented by introducing more
degrees of freedom in the structure of the constraint matrices of the tensor signal
model. Generalization of the CONFAC tensor modeling approach to multi-carrier
CDMA systems with space-time and frequency-domain spreading is an interesting
topic for future work.



CHAPTER 5

Trilinear Space-Time-Frequency
Spreading for MIMO Wireless Systems

We consider a point-to-point Multiple Input Multiple Output (MIMO) multicar-
rier multiple-access wireless communication system. For this system, a new Space-
Time-Frequency (STF) spreading model is proposed. A tridimensional (3-D) sprea-
ding code with trilinear decomposition structure is used for modeling the core of an
STF transmitter that jointly multiplexes and spreads multiple data streams across
space (transmit antennas), time (chips) and frequency (subcarriers). The pro-
posed model, called Trilinear Space-Time-Frequency Spreading (T-STFS), covers
different orthogonal signaling techniques using multiple antennas, while allowing
a variable degree of multiplexing and spreading over each one of the three signal
dimensions. The diversity performance of the proposed T-STFS model is analy-
zed and a necessary condition for maximum diversity gain is derived. A trilinear
(PARAFAC) model of the received signal is developed. Thanks to the identifiabi-
lity property of this model, blind joint detection and channel estimation is possible
using the alternating least squares algorithm. The bit-error-rate of T-STFS with
blind detection is evaluated from computer simulations in a variety of system confi-
gurations. The simulations also compare T-STFS with some existing Space-Time
(ST)/STF spreading models.
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5.1 Introduction

Recently, Space-Time-Frequency Spreading (STFS) transceivers were proposed re-
lying on a combination of direct-sequence spread spectrum and multicarrier modu-
lations, to enable orthogonal multiple-access in multiuser multi-antenna systems.
[58] proposed space-frequency spreading codes for the downlink of a multiuser
MIMO-OFDM system. The transmission is designed to support more multiplexed
signals than transmit antennas and to provide full-diversity for each multiplexed
signal. Another STF transmission framework based on spread spectrum modula-
tion is proposed in [104] for Multicarrier Spread Space Spectrum Multiple Access
(MC-SSSMA), with the idea of fully spreading each user symbol over space, time
and frequency. MC-SSSMA is a generalization of the single-carrier SSSMA model
proposed in [105, 106]. Despite the spectral efficiency gains achieved, the design
of [104] was restricted to the case where the number of transmit and receive an-
tennas is equal to the spreading gain. In [157], a STF transmit diversity strategy
was proposed for multicarrier DS-CDMA, which is based on the concatenation of
a space-time spreading code with a frequency-domain spreading code. A common
characteristic of these works is the assumption of perfect channel knowledge at the
receiver, which is an optimistic assumption in practice. The decoding complexity
of these codes is considerably high and prohibitive in some cases.

The distinguishing feature of the proposed T-STFS model when compared to the
existing models is the flexibility for controlling both the spreading and the multi-
plexing pattern over space, time and frequency dimensions by adjusting the corres-
ponding spreading matrices. In our context, the trilinear decomposition acts as a
triple product code that allows several data streams to simultaneously access all the
three signal diversity dimensions [34, 43, 45]. The blind joint detection/channel
estimation that is possible thanks to the identifiability property of the PARAFAC
model is a distinguishing feature of the proposed approach.

5.2 System model

Consider a MIMO multicarrier system with M transmit antennas, K receive an-
tennas and Nc subcarriers. The transmission of information is organized in a time-
frequency grid of Nt×Nf symbols, where Nt denotes the number of time-slots and
Nf = Nc/F denotes the number of frequency-slots. Each time-slot is composed of
P chips, and each frequency-slot is composed of F subcarriers. This means that
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the Nc subcarriers are partitioned into Nf frequency-slots of F subcarriers1.

The proposed system uses jointly space-, time- and frequency-domain spreading.
At the transmitter, each one of the R input data streams is spread across M
transmit antennas, P chips and F subcarriers. After such a spreading operation,
the R spread data streams are summed up to generate the transmitted signal. In
order to allow a full spreading of the R data streams over space, time and frequency
dimensions, three spreading code sequences are employed for transmitting each
data stream, namely, the Space(S)-, Time(T)- Frequency(F)-domain spreading
codes.

The transmitted signal is interpreted as a concatenation of signal tensor blocks over
a tridimensional (3-D) space-time-frequency grid, as shown in Fig. 5.1. Each STF
symbol is interpreted as an M × P × F tensor spanning M transmit antennas,

P chips and F subcarriers. Note that each point x
(nt,nf )

m,p,f in the nf versus nt

coordinate system on the left, is an element of a transmitted signal tensor of
third-order X (nt,nf ) ∈ C

M×P×F on the right.

The construction of the transmitted signal is now formalized. Let us define the
r-th symbol to be spread within the (nt, nf )-th time-frequency slot as:

s
(nt,nf )
r

.
= sr

(
(nt − 1)Nf + nf

)
,

nt = 1, . . . , Nt, nf = 1, . . . , Nf . (5.1)

A 1-D vector representation of the 3-D STF spreading sequence associated with
the r-th data stream is given by:

cr =
[
cT

r (1) · · · cT
r (F )

]T

∈ C
MPF ,

with cr(f) =
[
c
(r)
1,1,f · · · c

(r)
M,1,f · · · c

(r)
M,P,f

]T
, ∈ C

MP , (5.2)

where c
(r)
m,p,f is the p-th chip through the m-th antenna and the f -th frequency

subcarrier from the r-th data stream. Each STF-spread symbol is then generated
by:

x(nt,nf ) =
R∑

r=1

crs
(nt,nf )
r ,

1Interleaving in the frequency-domain can be used after the STF spreading process for achie-
ving frequency diversity. In this case, the F subcarriers are not necessarily adjacent. We bypass
the frequency interleaving stage here for ease of explanation.



5.2 SYSTEM MODEL 171

M

�

Frequency-slots

M
M

✁
✂

Transmit antennas

X 
✄✆☎✞✝ ✟✡✠☞☛

X 
✄ ✌✍✝ ✟✡✠ ☛

X 
✄ ✟✏✎ ✑ ✟✡✠✒☛

X 
✄✒☎✞✝ ✌✓☛

X 
✄ ✌✍✝ ✌✔☛

X 
✄ ✟✕✎ ✑ ✖✔☛

X 
✄✒☎✞✝ ☎✆☛

X 
✄ ✌✍✝ ☎✒☛

X 
✄ ✟✕✎ ✝ ☎✒☛

Time-slots

✗✘✚✙✛

✜✢✤✣✥
✦✧✞★

Figure 5.1: Illustration of the STF-spread sample x
(nt,nf )
m,p,f as an element of the

(nt, nf )-th signal tensor block.

or, equivalently,

x
(nt,nf )

(f−1)MP+(p−1)M+m =
R∑

r=1

c
(r)
m,p,fs

(nt,nf )
r ,

where x(nt,nf ) =
[
x

(nt,nf )T

(1) · · ·x(nt,nf )T

(F )

]T

∈ C
MPF concatenates F space-time-

spread symbols, x
(nt,nf )

(f) ∈ C
MP .

Figure 5.2 depicts the baseband representation of the STF spreading transmitter
focusing on the r-th data stream. At the output of the STF transmission block , the
structure of which will be detailed in Section 5.3, the resulting signal vector x(nt,nf )

is serial-to-parallel converted, and then organized as a concatenation of Nc space-
time signal vectors of MP components each: An Nc-point Inverse Fast Fourier
Transform (IFFT) is applied. Then, a Cyclic Prefix (CP) of appropriate length is
inserted. We assume that the length of the CP is at least equal to the multipath
delay spread. Band-limited pulse shaping is employed at each frequency subcarrier.
The spacing between the frequency-domain pulses is assumed to be sufficient so
that they will not overlap one another, avoiding intercarrier interference. Under
these assumptions, the time-dispersive channel between each transmit and receive
antenna can be modeled as a set of Nc scalar (flat-fading) components. The channel
is assumed to be constant across the Nt time-slots. At the receiver, and after
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Figure 5.2: Baseband representation of the STF spreading transmitter.

baseband conversion, matched filtering and sampling, the CP is properly removed
and an Nc-point Fast Fourier Transform (FFT) is applied to the resulting signal.
The modeling of the received signal will be discussed in the next section.

5.3 Trilinear STF spreading (T-STFS) model

The basic idea of the proposed STF spreading model is to treat the 3-D spreading
code vector defined in (5.2) as the Kronecker product of three spreading code
vectors:

cr = ur ⊗ vr ⊗ wr, (5.3)

where ur
.
= [ur,1 · · ·ur,M ]T ∈ C

M , vr
.
= [vr,1 · · · vr,P ]T ∈ C

P and wr
.
=

[wr,1 · · ·wr,F ]T ∈ C
F are the Space(S)-, Time(T) and Frequency(F)-domain sprea-

ding code vectors associated with the spreading of the r-th data stream over
the transmit antennas, chips and subcarriers, respectively. Let us define three
spreading matrices U

.
= [u1u2 · · ·uR] ∈ C

M×R, V
.
= [v1v2 · · ·vR] ∈ C

P×R and
W

.
= [w1w2 · · ·wR] ∈ C

F×R with entries [U]m,r
.
= um,r, [V]p,r

.
= vp,r and

[W]f,r
.
= wf,r.
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Due to the Kronecker (trilinear) product structure of the 3-D spreading code in
(5.3), we can naturally formulate the 3-D spreading model as a tensor model. Let

X (nt,nf ) ∈ C
M×P×F be the (nt, nf )-th transmitted signal tensor with entry x

(nt,nf )

m,p,f .

Similarly, we can define Cr ∈ C
M×P×F as the r-th spreading code tensor with

typical element c
(r)
m,p,f . Using the outer product notation, Cr is given by:

Cr = ur ◦ vr ◦ wr. (5.4)

Note that (5.3) and (5.4) are two different (resp. vector and tensor) writings of
the 3-D spreading code.

Let us define a vector containing the R data symbols transmitted within the nt-th
time-slot and nf -th frequency-slot as:

s(nt,nf ) .
= [s

(nt,nf )
1 s

(nt,nf )
2 · · · s(nt,nf )

R ]T ∈ C
R. (5.5)

In order to satisfy the transmit power constraint, the input symbols are normalized
so that E[‖s(nt,nf )‖2] = 1.

Definition 5.1 (Trilinear STF spreading): Given the input symbol vector s(nt,nf )

and the three spreading matrices U,V and W, we define the following trilinear
mapping:

f(U,V,W) : s(nt,nf ) → X (nt,nf ).

The STF signal tensor transmitted at the nt-th time-slot and nf -th frequency-slot
is a trilinear combination of R rank-1 outer product terms:

X (nt,nf ) =
R∑

r=1

s
(nt,nf )
r Cr

=
R∑

r=1

s
(nt,nf )
r (ur ◦ vr ◦ wr). (5.6)

Figure 5.3 depicts the transmission block-diagram of the T-STFS model using
tensor notation.

We can express (5.6) in scalar form:

x
(nt,nf )

m,p,f =
R∑

r=1

s
(nt,nf )
r um,rvp,rwf,r. (5.7)



174 CHAPTER 5. TRILINEAR SPACE-TIME-FREQUENCY SPREADING

��� ✁✂✄ ☎☎

✆✆✆ ✝✞✟ ✠✠

M

✡☛☞✌✎✍✏✒✑✑✓

✡☛☞ ✍✏ ✑✑✔✓ M
X 
✕ ✖✘✗ ✙ ✖ ✚✜✛

T-STFS (symbol 1)

Transmitted 
signal 

T-STFS (symbol R)

Input 
symbols 
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Figure 5.4: PARAFAC decomposition of the STF signal tensor at the (nt, nf )-
th time-frequency slot.

We clearly recognize (5.7) as a PARAFAC decomposition. It expresses the third-
order STF tensor X (nt,nf ) as a sum of R trilinear terms (rank-1 tensors), each one
being the outer product of three spreading code vectors scaled by the correspon-
ding information symbol to be transmitted. Figure 5.4 illustrates the PARAFAC
decomposition of the (nt, nf )-th transmitted signal tensor.

Definition 5.2 (Multiplexing and spreading factors): The multiplexing factor of
the T-STFS model is defined as the rank of the PARAFAC decomposition (5.7).
It corresponds to the number of data streams that simultaneously access the same
STF resource. The spreading factors are defined as the dimensions of X (nt,nf ),
corresponding to the lengths of the code vectors ur, vr, wr, r = 1, . . . , R.

Note that in (5.6), the r-th term contributing to the generation of the resulting
signal tensor can be interpreted as a modulated version of the STF spreading code

vectors, the modulating factor being the r-th information symbol s
(nt,nf )
r . The-

refore, the proposed T-STFS model can be viewed as a STF modulation scheme
written with the tensor formalism. It is worth noting that, in a multiuser trans-
mission, the R data streams can be associated with R different users sharing the
same STF resource.

Let us define X
(nt,nf )

··f as the f -th slice of X (nt,nf ) with
[
X

(nt,nf )

··f

]
m,p

= x
(nt,nf )

m,p,f . This
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slice admits the following factorization:

X
(nt,nf )

··f = UDf (W)diag
(
s(nt,nf )

)
VT , (5.8)

with s(nt,nf ) defined in (5.5). By stacking column-wise these F slices in a matrix
X(nt,nf ) ∈ C

FM×P , we get:

X(nt,nf ) =




X
(nt,nf )
··1
...

X
(nt,nf )
··F


 = (W ⋄ U)diag

(
s(nt,nf )

)
VT . (5.9)

Special cases:

The T-STFS model (5.9) subsumes some existing space-time signaling schemes
depending on the structure assumed for the spreading matrices U,V,W:

• Space-time spreading : For Nc = 1 (single-carrier transmission, flat-fading
channel), we can abandon the frequency-dependent index in (5.8) and our
model reduces to space-time spreading using multiple spreading codes, which
is close to several existing approaches [102, 78, 104, 56, 57, 22]. From (5.8),
we get the following factorization of the space-time spread signal:

X(nt) = Udiag
(
s(nt)

)
VT ∈ C

M×P .

• Spatial multiplexing : For Nc = 1, R = M and U = IM , model (5.8) coincides
with a spatial multiplexing multiple-antenna CDMA system using a different
spreading code per transmit antenna [79]. This is the case of the Khatri-Rao
Space-Time (KRST) coding model [129]. The nt-th transmitted signal in
(5.8) is then factored as:

X(nt) = diag
(
s(nt)

)
VT ∈ C

M×P .

• Spatial spreading : For Nc = 1, R = M and V = IM , model (5.8) reduces to
full spatial spreading transmission:

X(nt) = Udiag
(
s(nt)

)
∈ C

M×M .

• Time-frequency spreading : For Nc > 1, R = M and U = IM , only time-
and frequency-domain spreading takes place and T-STFS reduces to the
multicarrier CDMA model of [158].



176 CHAPTER 5. TRILINEAR SPACE-TIME-FREQUENCY SPREADING

5.3.1 Channel modeling

The frequency-selective MIMO channel between each transmit-receive antenna pair
is assumed to have L independent multipaths and the same power-delay profile.
Let ak,m,l denote the complex amplitude of the l-th path between the m-th transmit
antenna and the k-th receive antenna, modeled as a zero-mean complex Gaussian
random variable, for any (k, m, l), k = 1, . . . , K, m = 1, . . . , M , l = 1, . . . , L. The
ak,m,l’s are assumed to be mutually independent. The average power of each path,
assumed to be the same for every transmit-receive antenna pair, is denoted by
γ2

l = E[|ak,m,l|2],∀(k,m, l), where E[·] stands for the mathematical expectation.
They are normalized such that γ2

1 + . . . + γ2
L = 1. Due to the partitioning of

subcarriers in Nf = Nc/F frequency-slots, the frequency response of the nf -th
STF “subchannel” can be expressed as:

h
(nf )

k,m,f =
L∑

l=1

ak,m,lω
(nf )

f,l , nf = 1, . . . , Nf , (5.10)

where ω
(nf )

f,l = e
−j2π

(
(nf−1)F+f−1

Nc

)
τl

and τl is the delay of the l-th path.

The nf -th MIMO channel matrix at the f -th subcarrier is defined as:

H
(nf )

··f =




h
(nf )

1,1,f h
(nf )

1,2,f · · · h
(nf )

1,M,f

h
(nf )

2,1,f h
(nf )

2,2,f · · · h
(nf )

2,M,f
...

...
...

h
(nf )

K,1,f h
(nf )

K,2,f · · · h
(nf )

K,M,f



∈ C

K×M . (5.11)

5.3.2 Received signal modeling

By exploiting the T-STFS structure of the transmitted signal, we now formulate
the received signal as a trilinear (PARAFAC) model. This model is considered in
Section 5.5 for blind detection. At the receiver, perfect synchronization is assu-
med. The received signal is down-converted, and matched-filtering at each receive
antenna and subcarrier is applied. The CP is removed and then an FFT transform
is applied. After the FFT block, we can write the (nt, nf )-th scalar component of
the discrete-time baseband received signal as:

y
(nt,nf )

k,p,f =
M∑

m=1

h
(nf )

k,m,fx
(nt,nf )

m,p,f (5.12)
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Using (5.8), we can write (5.12) in slice form in the following manner:

Y
(nt,nf )

··f = H
(nf )

··f X
(nt,nf )

··f

= H
(nf )

··f UDf (W)
︸ ︷︷ ︸

G
(nf )

··f

diag
(
s(nt,nf )

)
VT , (5.13)

i.e.,

Y
(nt,nf )

··f = G
(nf )

··f diag
(
s(nt,nf )

)
VT ,

where
G

(nf )

··f = H
(nf )

··f UDf (W). (5.14)

Note that G
(nf )

··f is the effective space-frequency channel, i.e. the original channel
combined with the space- and frequency-domain spreading codes.

By stacking column-wise the slices Y
(nt,nf )
··1 , . . . ,Y

(nt,nf )
··F and the slices

G
(nf )
··1 , . . . ,G

(nf )
··F , we obtain:




Y
(nt,nf )
··1
...

Y
(nt,nf )
··F




︸ ︷︷ ︸
Y

(nt,nf )
∈CFK×P

=




G
(nf )
··1
...

G
(nf )
··F




︸ ︷︷ ︸
G

(nf )
∈CFK×R

diag
(
s(nt,nf )

)
VT ,

i.e.
Y(nt,nf ) = G(nf )diag

(
s(nt,nf )

)
VT . (5.15)

Collecting the received signal over Nt time-slots, we obtain:

Y
(nf )
1 =




Y(1,nf )T

...
Y(Nt,nf )T




=




Vdiag
(
s(1,nf )

)
...

Vdiag
(
s(Nt,nf )

)


G(nf )T .

Using the definition of the Khatri-Rao product, we get:

Y
(nf )
1 =

(
S(nf ) ⋄ V

)
G(nf )T . (5.16)
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where

S(nf ) .
=

[
s(1,nf )s(2,nf ) · · · s(Nt,nf )

]T

∈ C
Nt×R.

Consider the following property:

Property 5.1 : For A ∈ C
I×R, B ∈ C

J×K , and c ∈ C
R, we have:

vec(Adiag(c)BT ) = (B ⋄ A)c. (5.17)

From (5.15) and property (5.17), we get:

vec
(
Y(nt,nf )

)
=

(
V ⋄ G(nf )

)
s(nt,nf ) ∈ C

FKP ,

and then, collecting the received signal over Nt time-slots, we obtain:

Y
(nf )
2 =

[
vec

(
Y(1,nf )

)
· · ·vec

(
Y(Nt,nf )

)]
∈ C

FKP×Nt

=
(
V ⋄ G(nf )

) [
s(1,nf ) · · ·s(Nt,nf )

]
,

(5.18)

i.e.
Y

(nf )
2 =

(
V ⋄ G(nf )

)
S(nf )T . (5.19)

Note that (5.16) and (5.19) are two different matrix writings of the received data,

which follow a PARAFAC model. Both Y
(nf )
1 and Y

(nf )
2 concatenate the informa-

tion contained in the received signal tensors Y(1,nf ), . . . ,Y(Nt,nf ) ∈ C
K×P×F across

the Nt time-slots.

5.4 Performance analysis/spreading structure

In this section, we study the diversity gain of the T-STFS model (5.9) from a
code design viewpoint. Then, a necessary condition for maximum diversity gain
is derived. The structure chosen for the three spreading matrices U, V and W is
also presented.

Recall the input-output model (5.15) with an Additive White Gaussian (AWG)
noise:

Y(nt,nf ) = G(nf )diag
(
s(nt,nf )

)
VT + N(nt,nf ),

where N(nt,nf ) ∈ C
FK×P is the AWG noise matrix. Our analysis supposes that joint
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Maximum Likelihood (ML) decoding is performed at the receiver to recover s(nt,nf ).
We assume a perfect channel knowledge at the receiver. Uncorrelated multipath
propagation with equal multipath profile for each transmit-receive antenna pair
is assumed. Let us consider an erroneous decoding in favor of the “codeword”
X̃(nt,nf ), where X(nt,nf ) 6= X̃(nt,nf ). Under the above assumptions, the pairwise
error probability can be upper bounded by [142]:

P
(
X(nt,nf ) → X̃(nt,nf )

)
≤

(
2ν − 1

ν

) (
ν∏

i=1

λi

)−1 (
SNR

M

)−ν

,

where ν is the rank of E(nt,nf ) = X(nt,nf ) − X̃(nt,nf ) ∈ C
FM×P , and λ1, . . . , λν are

its nonzero eigenvalues. Provided that E(nt,nf ) is full rank, the diversity gain is
given by:

K · ν = K · min(FM, P ). (5.20)

Theorem 5.1: Suppose that E(nt,nf ) is full rank, for all X(nt,nf ) 6= X̃(nt,nf ). For
F = L, a diversity gain MKL requires:

P ≥ FM. (5.21)

From condition (5.21), we have:

• For the single-carrier flat-fading case (F = L = 1), T-STFS reduces to
space-time spreading, and a diversity gain KM requires P ≥ M ;

• For the single transmit antenna case (M = 1), with F = L, T-STFS reduces
to time-frequency spreading, and a diversity gain of KL requires P ≥ F .

This illustrates the existing tradeoff between space- and frequency-domain sprea-
ding which is inherent to the T-STFS model.

The rate of the T-STFS code is given by:

Rate =

(
R

FP

)
log2(µ) bits/channel use, (5.22)

where µ is the cardinality of a µ-Quadrature Amplitude Modulation (QAM). We
call attention that it is possible to choose P ≤ MF to tradeoff diversity and rate.
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From (5.9), let us define:

E(nt,nf ) = (W ⋄ U)diag
(
e(nt,nf )

)
VT , where e(nt,nf ) = s(nt,nf ) − s̃(nt,nf ).

We remark that linear precoding in the form of constellation rotation can be used
[155] to ensure e(nt,nf ) 6= 0R. We assume that the elements of s(nt,nf ) are coor-
dinates of a rotated constellation of dimension R with full modulation diversity
[68]. The rank of E(nt,nf ) is still dependent on the structure of U, V and W. We
consider the two following criteria for choosing these matrices:

1. U ∈ C
M×R, V ∈ C

P×R and W ∈ C
F×R are full rank;

2. [U]m,r, [V]p,r and [W]f,r have unit magnitudes;

Both criteria are satisfied if U, V and W are Vandermonde matrices defined as:

[U]m,r

.
= ej2π( r−1

R )(m−1),

[V]p,r

.
= ej2π( r−1

R )(p−1),

[W]f,r

.
= ej2π( r−1

R )(f−1). (5.23)

With this choice, U, V and W are full-rank semi-unitary matrices, as required
for maximum diversity gain. It is to be noted that this spreading structure is not
necessarily optimal for a code design viewpoint. However, using the Vandermonde
structure we can independently control both the spreading degree in each one of
the three signal dimensions as well as the number of multiplexed data streams
by truncating the spreading matrices. To be specific, a subset of columns and/or
rows of a Vandermonde matrix forms another semi-unitary Vandermode matrix
satisfying the maximum diversity criterion [100]. Therefore, the Vandermonde
design gives some spreading flexibility.

Remarks:

1. The generators of the spreading matrices can alternatively be chosen using
an algebraic number-theoretic criterium. As an example, in the case M = R
we can choose θm = ej π

M
(2m+1), m = 1, . . . , M , as the generators of U. This

structure can provide full diversity in space-time transmission with M trans-
mit antennas for finite QAM symbol constellations [68],[99]. A satisfactory
choice is to use M = 2i, i ∈ N. A jointly optimized design of the trilinear
spreading set {U,V,W} using information-theoretic tools is under investi-
gation.
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2. An alternative design approach for the three spreading matrices is based
on the Walsh-Hadamard codes. This code structure was considered in the
design of DAST codes [22] and is also applicable to the proposed STF sprea-
ding model. In this case, the proposed T-STFS transmission model is close
to a multicarrier CDMA transmission using space-, time-, and frequency-
domain spreading codes [157],[104] (the columns of U, V, W are orthogonal
spreading codes). In contrast to the Vandermonde structure, the Walsh-
Hadamard design can be useful for reducing the peak-to-mean power ratio
which results from the multiplexing of the R symbols.

5.5 Blind receiver

A distinguishing feature of the T-STFS approach is the possibility of blind detec-
tion without a priori channel estimation or training sequences. The PARAFAC
model of the received signal derived in Section 5.3.2 is exploited here for blind
joint detection/channel estimation. We present an identifiability condition, and
the blind receiver algorithm is detailed.

Recall the two matrix writings of the received signal Y
(nf )
1 and Y

(nf )
2 in (5.16) and

(5.19), in presence of an AWG noise:

Ỹ
(nf )
1 =

(
S(nf ) ⋄ V

)
G(nf )T + N

(nf )
1 ,

Ỹ
(nf )
2 =

(
V ⋄ G(nf )

)
S(nf )T + N

(nf )
2 . (5.24)

The two matrix writings (5.24) reveal the trilinear structure of the received signal,
which can be viewed as a third-order tensor Y ∈ C

FK×Nt×P following a rank-R
PARAFAC decomposition with factor matrices G(nf ) ∈ C

FK×R, S(nf ) ∈ C
Nt×R

and V ∈ C
P×R.

5.5.1 Identifiability

Applying the identifiability result of PARAFAC [136], we present the following
theorem:

Theorem 5.2: Suppose that G(nf ),S(nf ) and V are full rank matrices, V is known,
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and R > 1. If

min(FK, R) + min(P, R) + min(Nt, R) ≥ 2R + 2, (5.25)

then G(nf ) and S(nf ) are unique up to scaling of their columns, i.e.:

G̃(nf ) = G(nf )∆g, S̃(nf ) = S(nf )∆s, (5.26)

where G̃(nf ) and S̃(nf ) are any alternative matrices satisfying the model, while ∆g

and ∆s are diagonal (scaling) matrices satisfying ∆g∆s = IR.

We assume that Nt > R, which is generally the case in practice. In this case,
(5.25) reduces to the following identifiability condition:

min(FK,R) + min(P,R) ≥ R + 2. (5.27)

Proof: The complete uniqueness proof is given in [136]. The proof relies on the
fundamental concept of “Kruskal rank” [90]. In the general proof, the uniqueness
of the three factor matrices of the PARAFAC model are also affected by a column-
permutation ambiguity. In our case, this ambiguity does not exist since V is
known.

Note that this condition links the received signal diversity dimensions (F , K, P )
to the number R of multiplexed data streams. From (5.21) and (5.27), we can
obtain the following corollaries:

Corollary 5.1: For M = K = 1 (single transmit/receive antenna case) and
P ≥ R, spreading across F = 2 subcarriers is enough for blind symbol recovery. On
the other hand, condition (5.27) is equivalent to P ≥ 2. Therefore, for satisfying
both diversity and identifiability conditions we must have:

P ≥ max(R, 2).

In this case, the (frequency) diversity gain is equal to F .

Corollary 5.2: For F = L = 1 (single-carrier flat-fading case), with P ≥ R > 1
and K = 2, the identifiability condition is always satisfied, which means that two
receive antennas are enough for blind symbol recovery (regardless of the number
M of used transmit antennas). In this case, for achieving a diversity gain MK,
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we must have:
P ≥ M,

which means that it is enough to temporally spread across P = M chips.

Example: Consider a system with M = 4 transmit antennas and K = 3 receive
antennas. Suppose that R = 8 data streams should be spread across space- and
time- dimensions using P = 4 chips. The identifiability condition (5.27) yields:

min(3F, 8) ≥ 6,

i.e. F ≥ 2 subcarriers are enough to guarantee blind detection. In a single-carrier
system, where frequency-domain spreading is not available (F = 1), we should
have K ≥ 6 receive antennas for satisfying this identifiability condition. On the
other hand, if a single receive antenna is used (K = 1), spreading across F = 6
subcarriers is sufficient. Therefore, space- and frequency- spreading diversities can
be exchanged for allowing blind detection.

The use of frequency-domain spreading is beneficial in situations where the number
of receive antennas is small (e.g. K = 1 or 2). Although condition (5.21) for
maximum diversity is not satisfied in the considered configuration (since P < MF ),
blind detection is still possible.

5.5.2 Receiver algorithm

In this context, the ALS receiver alternates between LS estimations of S(nf ) and

G(nf ) based on the two matrix writings of the received data Y
(nf )
1 and Y

(nf )
2 . This

is the first stage of the blind receiver. After obtaining the final estimate of the
symbol matrix, the second stage of this receiver consists in recovering the MIMO
channel response. The proposed blind receiver benefits from the knowledge of the
trilinear spreading set {U,V,W} in the following manner:

1. The knowledge of V allows some complexity reduction (otherwise a third LS
estimation step for updating V would be necessary).

2. The knowledge of U and W is exploited in the second stage of the receiver
for estimating the MIMO channel.

The overall receiver algorithm is summarized as follows:
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1st Stage (blind symbol recovery):

for nf = 1, 2, · · ·Nf :

1. Set i = 0; Randomly initialize S
(nf )

(0) ;

2. i = i + 1;

3. From Y
(nf )
1 , find an LS estimate of Ĝ

(nf )

(i) :

Ĝ
(nf )T

(i) =
[
S

(nf )

(i−1) ⋄ V
]†

Ỹ
(nf )
1 ;

4. From Y
(nf )
2 , find an LS estimate of S

(nf )

(i) :

S
(nf )T

(i) =
[
V ⋄ G

(nf )

(i)

]†
Ỹ

(nf )
2 ;

5. Repeat steps 2-4 until convergence;

Ŝ
(nf )

(conv) ← Ŝ
(nf )

(i) ; Ĝ
(nf )
conv ← G

(nf )

(i) ;

end nf ;

2nd Stage (channel estimation):

for nf = 1, 2, · · ·Nf :

1. From Ĝ
(nf )
conv =




G
(nf )
··1
...

G
(nf )
··F


 =




H
(nf )
··1 UD1(W)

...

H
(nf )
··F UDF (W)


, find LS estimates of

H
(nf )

··f , f = 1, . . . , F , by solving the following LS problem:

Ĥ
(nf )

··f = argmin
H

(nf )

··f

∥∥∥G
(nf )

··f − H
(nf )

··f UDf (W)
∥∥∥

2

F
,

the analytic solution of which is given by:

Ĥ
(nf )

··f = G
(nf )

··f

[
UDf (W)

]†
, f = 1, . . . , F ;



5.6 PERFORMANCE EVALUATION 185

end nf ;

Remarks:

• Convergence of the estimates at the first stage is declared at the i-th itera-
tion when the error between the received signal tensor and its reconstructed
version from the estimated matrices does not significantly change between
iterations i and i + 1.

• In order to eliminate the column scaling ambiguity affecting Ĝ(nf ) and Ŝ(nf ),
we assume that an “all ones” data stream is transmitted at the first time-slot
nt = 1, i.e:

S
(nf )
1· = [1 1 · · · 1], nf = 1, . . . , Nf .

In this case, the arbitrary scaling matrices ∆s and ∆g in (5.26) can be
estimated and then eliminated.

5.6 Performance evaluation

The performance of the T-STFS model using the proposed blind receiver is eva-
luated. In all the results, the BER is shown as a function of the SNR. Each plotted
BER curve is an average over 1000 independent Monte Carlo runs. At each run,
the additive noise power is generated according to the sample SNR value given by:

SNR = 10log10

(
‖Y(nf )

1 ‖2
F

‖N(nf )
1 ‖2

F

)
,

nf = 1, . . . , Nf . The MIMO channel coefficients are drawn from an i.i.d. complex-
valued Gaussian generator while the transmitted symbols are drawn from a pseudo-
random µ-QAM sequence. The BER curves represent the performance averaged
on the R transmitted data streams. Unless otherwise stated, we assume Nt =
10 time-slots. Multicarrier transmission is simulated with Nc = 64 orthogonal
subcarriers over a total bandwidth of 1MHz, which means that the chip duration
(corresponding to one multicarrier symbol) is T = 64µs without the cyclic prefix.
We assume that multipath delays are equal to τl = (l − 1)T/Nc, l = 1, . . . L.
When considering frequency-domain spreading, F = L spreading subcarriers is
always assumed. We recall that a CP of appropriate length is used along with
band-limited frequency-domain pulses with sufficient spacing in order to avoid
intercarrier interference. Perfect synchronization is assumed.
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Figure 5.5: Performance as P and M are jointly increased.

5.6.1 Performance of different T-STFS configurations

The performance behavior of T-STFS with blind detection is shown in Fig. 5.5
for M = P = 2, 4, 8, and considering R = 1 and F = L = 1 (no frequency-domain
spreading). This figure shows that performance is improved as the space- and
time- spreading factors are jointly increased. In Fig. 5.6, T-STFS performance
is evaluated for two different multiplexing factors R = 1 and R = 2. The spatial
spreading factor (number of transmit antennas) is also varied. In each case, the
temporal spreading factor P is set to the minimum value satisfying (5.21) and
(5.27). Note that improved performance is obtained when R = 1 but this comes
with a rate reduction by a factor of two (c.f. (5.22)). This result illustrates the
existing trade-off between the multiplexing factor R and the spatial spreading
factor M . It is to be noted that configurations (R,P ) = (2, 8) and (R,P ) = (1, 4)
have the same spectral efficiency (c.f. 5.22). Both configurations also have the
same spreading/multiplexing ratio since we have M = P/2.

Now, we evaluate the influence of the temporal spreading factor P . The spatial
and frequency spreading factors are set to M = 4 and F = L = 2, respectively.
The chosen multiplexing factor is R = 1 (single data stream transmission). We
consider P = 2, 3 or 4. Figure 5.7 shows that performance improves (due to higher
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Figure 5.6: Performance for different combinations of multiplexing factors
(R = 1, 2) and spatial spreading factors (M = 2, 4).

diversity gain) when P is increased at the expense of a rate reduction. Therefore,
a diversity-rate trade off takes place when the value of P is adjusted. In Fig. 5.8,
the influence of the number L of resolvable multipaths is evaluated. The number
F of spreading subcarriers is assumed to be equal to L. We consider K = 1 and 2
receive antennas. It can be noted that the BER is improved as L is increased from
2 to 4, indicating that T-STFS efficiently exploits frequency (multipath) diversity.
Note that such a performance is achieved even with a single receive antenna.

5.6.2 Comparison with the nonblind ZF receiver

As a reference for comparison, we simulated the performance of the nonblind Zero
Forcing (ZF) receiver. Contrarily to the proposed blind receiver, the ZF one as-
sumes perfect channel knowledge. The ZF solution is given by:

Ŝ(nf )T =
[
V ⋄ G(nf )

]†
Ỹ

(nf )
2 ,

where G(nf ) is defined in (5.14)-(5.15), with H
(nf )

··f assumed to be known, f =
1, . . . , F . In this experiment, we assume R = M = P = F = 2, K = 1 and
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Figure 5.7: Influence of the temporal spreading factor P .

4-QAM. We can observe from Fig. 5.9 that the ZF receiver outperforms the blind
receiver as expected. Note that the performance gap between both receivers is
nearly 4dB for BER=10−3.

5.6.3 Comparison with a STS scheme [78]

In [78], a Space-Time Spreading (STS) scheme based on spacetime codes was
proposed to achieve transmit diversity in the forward link of DS-CDMA systems.
For two transmit antennas and one receive antenna, the STS scheme achieves the
same spatial diversity gain as the Alamouti code [2] with the advantage that no
extra spreading codes are required. Here, we compare STS with T-STFS (with
F = 1), for R = 2 data streams, M = K = 2 transmit/rceive antennas and
spreading factor P = 2. The STS scheme uses orthogonal Walsh-Hadamard codes
for spreading both data streams. Both schemes use 4-QAM to achieve a rate of 2
bits per channel use. Perfect channel knowledge is assumed for the STS scheme,
which leads to the best performance this scheme can achieve. The proposed T-
STFS scheme uses blind detection. The results are depicted in Figure 5.10. Note
that the gap between both schemes is around 5dB for BER=10−3. From the slope
of the BER curves, we can see that both schemes have the same diversity gain.
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Figure 5.8: Influence of the number L of resolvable multipaths and frequency
spreading factor F .

5.6.4 Comparison with the SSSMA model of [104]

In [104], a multicarrier based Spread-Space Spectrum Multiple-Access (SSSMA)
model was proposed to provide space and frequency diversities in the forward link
of a MIMO wireless system. The STF spreading model proposed therein, is a
generalization of [105, 106] to frequency-selective channels. In the multicarrier
SSSMA model, each transmitted data stream is modulated with a distinct space-
time “diagonal” spreading sequence (its structure is detailed in [106]) at each
subcarrier. Frequency-domain spreading is achieved by extending the space-time
spread signal across multiple orthogonal subcarriers. The multicarrier SSSMA
model is similar to the T-STFS one in the sense that space-, time- and frequency-
domain spreading is performed. Both models differ, however, in the construction of
the STF spreading codes. In Figure 5.11, the performances of SSSMA and T-STFS
are compared. We assume M = 2 transmit antennas, K = 1 or 2 receive antennas,
and F = 2 subcarriers. For a fair comparison, we adjust the transmit parameters
and the modulation to keep the same data-rate for both approaches. The SSSMA
scheme assumes R = 8, P = 2 and BPSK. For the T-STFS scheme, we have R = 4,
P = 4 and 16-QAM. In this case, both schemes have a rate of 2 bits per channel use.
Moreover, the SSSMA scheme uses a ZF receiver, and perfect channel knowledge
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Figure 5.9: T-STFS: Comparison between blind ALS and nonblind ZF recei-
vers.

is assumed. The results are displayed in Figure 5.11. For K = 1, the SSSMA
scheme exhibits a poor performance. Indeed, this scheme only works for K ≥ M .
The proposed approach has a considerably better performance in this case. The
performance gap between both approaches is due to the fact that T-STFS makes
an efficient use of the frequency diversity to separate the transmitted data streams
when spatial diversity is not available at the receiver. This is in accordance with
the identifiability results of Section 5.5.1, which illustrate the trade-off between
F and K (see (5.27) and Corollary 3). For K = 2, SSSMA outperforms T-STFS
over the low-to-medium SNR range. For higher SNR values, T-STFS has superior
performance. The slope of the BER curves indicate that the T-STFS scheme has
a higher diversity gain.

5.6.5 Channel estimation performance

As detailed in Section 5.5.2, the second stage of the proposed blind receiver consists
in estimating the MIMO channel on a per-subcarrier basis by exploiting the known
T-STFS structure. The estimation accuracy of the proposed algorithm is evaluated
from a Root Mean Square Error (RMSE) measure obtained from 100 independent
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Figure 5.10: Comparison between T-STFS (with blind detection) and a STS
scheme (with perfect channel knowledge).

runs. The overall RMSE is calculated using the following formula:

RMSE =

√√√√ 1

100KMNf

100∑

i=1

Nf∑

nf=1

∥∥∥Ĥ
(nf )

(i) − H(nf )
∥∥∥

2

F

The following system configuration is considered: R = 4, M = P = F = 2
(Nf = Nc/F = 32), Nt = 10, and K = 1 or 2. We can observe from Figure
5.12 that the RMSE has a linear decrease as a function of the SNR in both cases.
Using K = 2 antennas provides a performance gain of 3dB over the single receive
antenna case. Such a gain comes from the increased spatial diversity that helps the
separation/resolution of the data streams, despite the larger number of parameters
to estimate.

5.7 Summary

We have presented a new space-time-frequency multiple-access transmission mo-
del for MIMO wireless systems. The proposed Trilinear (T)-STFS model can be
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Figure 5.11: T-STFS (with blind detection) versus SSSMA (with perfect chan-
nel knowledge).

viewed as a 3-D spreading code tensor decomposed into the outer product of the
space-, time- and frequency-domain spreading codes. These codes allow multiple
data streams to simultaneously access the same set of transmit antennas, chips
and subcarriers. We have investigated the diversity gain and rate of the proposed
T-STFS model along with a necessary condition for maximum diversity gain in
a frequency-selective MIMO channel. The T-STFS structure affords a variable
degree of diversity across each one of the three spreading dimensions. It also
accommodates an arbitrary number of multiplexed data streams.

We have shown that T-STFS allows blind detection without a priori channel esti-
mation or training sequences. This is achieved thanks to the uniqueness property
of the PARAFAC decomposition. An identifiability condition has been presented.
This condition gives an upper-bound on the number of transmitted data streams
that can be detected/separated for a given system configuration. Some practical
corollaries that result from this identifiability condition have also been discussed.

In a multi-user scenario, a generalization of the T-STFS model would consist in
reusing the same spreading code in space, time and/or frequency for data streams
of the same user, while employing orthogonal spreading codes between users. We
conjecture that different reuse patterns of the spreading codes can be incorporated
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Figure 5.12: RMSE of the estimated channel.

into the T-STFS model using constraint matrices, or alternatively, resorting to the
CONFAC decomposition. This idea would generalize the modeling approach of
[37, 35].



CHAPTER 6

PARAFAC Methods for
Modeling/Estimation of Time-Varying

Multipath Channels

In this chapter, we address the problem of multipath parameter estimation of time-
varying space-time wireless channels based on PARAFAC modeling. We exploit
the different varying rates in the structure of the multipath channel over multiple
data-blocks to build a 3D tensor from the received signal. The proposed estima-
tion methods make use of a training sequence that is periodically extended over
multiple data-blocks, across which the fading amplitudes are assumed to vary. In
the case of SIMO channels, a PARAFAC-based estimator using the ALS algorithm
is proposed for joint recovering of the directions of arrival, time delays and com-
plex amplitudes of the multipaths. We also extend this joint modeling/estimation
approach to MIMO channels. Simulation results are provided to demonstrate the
accuracy of the proposed approach under different channel conditions.
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6.1 Motivation and previous work

The issue of parametric multipath channel estimation has been exploited in several
works [153, 151, 154]. Most of approaches are based on subspace methods, which
exploit shift-invariance properties and/or the knowledge of the pulse shape func-
tion. Simultaneous estimation of angles of arrival and delays benefits from the fact
that path amplitudes are fast-varying while angles and delays are slowly-varying
over multiple transmission blocks or data-blocks. In [153, 151, 154], the angles
and delays are blindly-estimated using a collection of previous estimates of the
space-time channel impulse response. As in [151, 154], the linear-phase variation
property of the frequency domain transformed version of the known pulse shape
function is exploited.

Training-sequence-based space-time channel estimation methods exploiting the
multiblock invariance of angles and delays have been proposed recently in [134]. In
[107, 134], unstructured methods are proposed which are based on the invariance
properties of the spatial and temporal subspaces. In [115], a multiblock approach is
proposed for multipath parameter estimation in the context of Time Division-Code
Division Multiple Access (TD-CDMA) systems. In [108], multiblock processing is
also considered for unstructured estimation of the low-rank space-time channels.

In the context of MIMO channels, channel estimation typically uses training/pilot
symbols. An accurate channel estimation is important in coherent MIMO com-
munication systems as well as it allows the design of efficient space-time signaling
techniques that better exploit the MIMO channel. Parametric channel estimation
techniques relying on a physical description of the MIMO channel (i.e. multipath
angles, delays and fading amplitudes) are of great interest in wireless position-
location systems and future wireless intelligent networks.

Different approaches for channel estimation have been proposed in several works
[13, 92, 72]. [13] proposes a modal analysis/filtering concept which exploits the
different varying rates of the multipath parameters for estimating time-varying
(block-fading) frequency-selective MIMO channels. The authors show that more
accurate channel estimates with respect to the standard LS estimation method
can be obtained. The approach proposed in [72] is based on spectral factorizations
of the specular channel into stationary (space) and non-stationary (fading ampli-
tudes) signature subspaces, and uses linear prediction for estimating/tracking the
time-varying channel. In [92], a subspace method is proposed for the parametric
estimation of physical MIMO channels. This approach works on a previous un-
structured channel estimate, and performs a subspace decomposition of the channel
covariance matrix to determine DOAs, DODs and delays.
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6.2 Parametric estimation of SIMO channels

In this section, we use the fact that the variation of multipath amplitudes over
multiple data-blocks is faster than that of angles and delays for showing that the
received signal can be modeled as a third-order (3D) tensor [31]. A PARAFAC
model arises thanks to the use of a training sequence which is periodically extended
over multiple data-blocks, which are jointly processed at the receiver. By tapping
on the powerful identifiability properties of the PARAFAC decomposition, the
proposed method performs joint estimation of the angles of arrival, the time-delays
and the fading amplitudes of the multipaths without any ambiguity.

Contrarily to other parametric channel estimation approaches such as [153, 151,
154], in which multipath parameters are extracted from unstructured estimations
of the space-time channels, the proposed PARAFAC modeling approach directly
works on the received signal, thus avoiding error propagation in cases where the
unstructured space-time channel is not accurately estimated. Numerical results
from computer simulations show that the PARAFAC-based estimator is capable of
estimating the triplet angle-delay-amplitude for each multipath with good accuracy
even for short training sequences, provided that the number of processed data-
blocks is enough. The proposed estimator also performs well with fewer receiver
antennas than multipaths.

6.2.1 Signal and channel models

Let us consider a wireless communication system in which a digital signal is trans-
mitted in a specular multipath environment. The receiver is equipped with an
array of K antennas spaced half wavelength or closer. We focus on the case of
a single-user transmission. The transmitted information symbols are organized
into Nb data-blocks. We adopt a block-fading model for the space-time channel,
which is based on the fact that, angles and delays (long-term parameters) usually
experience a much slower rate of variation than the fading amplitudes (short-term
parameters). We assume that the data-blocks are sufficiently short so that the
channel fading can be regarded as stationary over a time-interval necessary for
the transmission of a whole data-block and it varies independently from block to
block. This is typically the case of Time Division Multiple Access (TDMA)-based
systems. In such type of system, different data-blocks are allocated to different
mobile users [134].

Figure 6.1 illustrates the idea of a block-transmission. A time-frame is defined as
a concatenation of a given number of data-blocks with equal duration. In practice,
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Figure 6.1: Multiblock transmission

each data-block is allocated to a given user, so that the time interval between two
data-blocks of a given user is equal to the frame duration.

We assume that the considered system is training-sequence based, with the particu-
lar characteristic that consists in reusing the training sequence: A known training
sequence of N symbols is periodically extended over multiple data-blocks that are
jointly processed at the receiver. The idea of processing multiple data-blocks, ba-
sed on training sequence reuse is also known as multiblock processing. As will be
shown, thanks to such a multiblock processing, the problem of multipath parame-
ter estimation can be addressed using PARAFAC analysis.

Let {s(n)}N
n=1 be the training sequence known at the receiver. The temporal

support of the channel impulse response is (0, IT ]. The oversampling factor at
the receiver is equal to P . During the nb-th training block, the received baseband
discrete-time signal impinging the k-th receive antenna at the n-th symbol period,
can be written, in absence of noise, as:

xnb,k,n,p =
I∑

i=1

hnb,k,i,psn,i, (6.1)

where sn,i is the (n, i)-th element of a Toeplitz symbol matrix S ∈ C
N×I construc-

ted from the training sequence {s(n)}N
n=1, with sn,i

.
= [S]n,i

.
= s(n − i + 1). Note

that both the received signal and the propagation channel are fourth-order tensors.
Comparing (6.1) with (2.19), we can see that the first is a generalization of the
later in the sense that a fourth dimension is added in order to model the variation
of the fading amplitudes across blocks. It is to be noted, however, that (6.1) is a
single-user model (i.e. Q = 1) as opposed to (2.19). However, the extension to the
multiuser case is straightforward.

We are interested in writing the received signal as an equivalent third-order PA-
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RAFAC model by concatenating the third and fourth dimensions into a single
dimension. In order to write (6.1) in matrix form, we define Hnb·i· ∈ C

K×P and
Xnb·n· ∈ C

K×P as slices of the fourth-order channel and received signal tensors
H ∈ C

Nb×K×I×P and X ∈ C
Nb×K×N×P , respectively, in the following manner:

[Hnb·i·]k,p
.
= hnb,k,i,p, [Xnb·n·]k,p

.
= xnb,k,n,p

Using these definitions, the (nb, n)-th slice Xnb·n· for the received signal tensor can
be written as:

Xnb·n · =
I∑

i=1

Hnb· i · sn,i (6.2)

Concatenating the I slices of Hnb· i · and N slices of Xnb·n · in the following matrices

Hnb·· = [Hnb·1· · · ·Hnb·I·] ∈ C
K×IP ,

Xnb·· = [Xnb·1· · · ·Xnb·N ·] ∈ C
K×NP ,

we can express Xnb·· as:

Xnb·· =
[

Hnb·1· · · ·Hnb·I·

]



s1,1IP · · · sN,1IP
...

...
s1,IIP · · · sN,IIP




= Hnb··S
T
, (6.3)

where
S = S ⊗ IP ∈ C

NP×IP .

6.2.2 Third-order PARAFAC model

Now, we write the propagation channel hnb,k,i,p in parametric form by means of a
third-order PARAFAC model. The multipath channel within the Nb blocks can be
modeled as a combination of L paths, each one of them being characterized by an
angle of arrival θl, a relative propagation delay τl and a complex valued amplitude
(fading coefficient) βnb,l that accounts for the channel variations over the Nb blocks.
The variations of angles and delays of the paths over the Nb blocks are assumed
to be negligible so that the set of parameters {θl, τl}L

l=1 can be assumed constant,
i.e., block-independent. In mobile communication systems, this assumption is
reasonable if the number of blocks Nb is chosen according to the mobile speed and
multipath geometry.
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The block-varying propagation channel can be written, in a scalar form, as follows
(c.f. (2.20)):

hnb,k,i′ =
L∑

l=1

βnb,lak,lgl,i′ . (6.4)

hnb,k,i′ is interpreted as the (nb, k, i′)-th element of an equivalent third-order tensor
H ∈ C

Nb×K×IP , and i′ = (i − 1)P + p − 1. Note that:

βnb,l = [B]nb,l, ak,l = [A(θ)]k,l,

gl,i′
.
= g(i′/P − τl) = [G(τ )]l,i′ ,

B ∈ C
Nb×L collects the fading gains during the Nb blocks, and A(θ) ∈ C

K×L

concatenates L array responses, and G(τ ) ∈ C
L×IP concatenates L pulse shape

responses. Its l-th row Gl ·(τ ) is given by:

Gl ·(τ ) = [g(−τl), g(1 − τl), . . . , g(IP − 1 − τl)] (1 × IP ).

A(θ) and G(τ ) are parameterized by the set of angles and delays τ = [τ1, . . . , τL]
and θ = [θ1, . . . , θL]. We assume that the envelope of the fading amplitudes
{βnb,l}L

l=1 follows a Rayleigh distribution while the associated phase is uniformly
distributed. They are assumed to be uncorrelated from block to block, although
this is not a necessary assumption in our context.

The channel model (6.4) is as an L-factor PARAFAC decomposition of the equi-
valent third-order channel tensor H ∈ C

Nb×K×IP . The difference between (2.21)
and (6.4) are the following. As opposed to (2.21), the block-dependent index
nb is present in (6.4). Another difference is on the definition of the pulse shape
response. In (2.21), the oversampling index p is associated with the third dimen-
sion of the pulse shape response gl,i,p, while in (6.4), p and i are concatenated in
gl,i′ . Moreover, (6.4) is a single-user model, while in (2.21) a multiuser model is
considered.

The nb-th first-mode matrix slice of H ∈ C
Nb×K×IP is given by:

Hnb·· = A(θ)Dnb
(B)G(τ ), nb = 1, . . . , Nb. (6.5)

Collecting the Nb slices of the channel response, we arrive at the following unfolded
matrix representation for the channel tensor:

H =




H1··
...

HNb··


 =




A(θ)D1(B)
...

A(θ)DNb
(B)


G(τ ) =

(
B ⋄ A(θ)

)
G(τ ). (6.6)
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Now, let us go back to model (6.3), which expresses the received signal for the nb-
th block. Stacking column-wise the Nb slices of the received signal X1··, . . . ,XNb··,
we get:

X2 =




X1··
...

XNb··


 =




H1··
...

HNb··


S

T
=

(
B ⋄ A(θ)

)
G(τ )S

T
. (6.7)

We make use of the fact that a Fourier transform maps a delay to a certain phase
shift. This fact will be exploited for an unambiguous multipath parameter esti-
mation. If the pulse shape function is bandlimited and sampled at or above the

Nyquist rate, the Discrete Fourier Transform (DFT) of
(
Gl ·(τ )

)T
can be expressed

as [151]:

g̃l
.
= DFT

[(
Gl ·(τ )

)T
]

= diag
(
g̃0

)
·




1
φτlP

(φτlP )2

...
(φτlP )IP−1




︸ ︷︷ ︸
f(τl,φ)

= diag
(
g̃0

)
· f(τl, φ),

where
φ = e−j(2π/IP ), g̃0 = Γg0

g0 is the pulse shaping function at the zero delay, g̃0 its associated DFT, f(τl, φ)
is the phase shift of the frequency response at delay τl, and

Γ =




1 1 · · · 1
1 φ · · · φIP−1

...
...

...

1 φIP−1 · · · φ(IP−1)2


 ∈ C

IP×IP

is a DFT matrix. Therefore, by taking the Fourier transform of the signal at each
receive antenna, we effectively perform a Fourier transform on every row Gl ·(τ )
of G(τ ), and we can rewrite (6.7) as:

X̆2 =




X̆1··
...

X̆Nb··


 = H2S

T
=

(
B ⋄ A(θ)

)(
SF̆(τ , φ)

)T
, (6.8)
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Figure 6.2: Decomposition of the (multi-block) received signal tensor.

where
F̆(τ , φ) = diag

(
g̃0

)
· F(τ ,φ) ∈ C

IP×L, (6.9)

and F is a Vandermonde matrix:

F(τ , φ) =




1 · · · 1
φτ1P · · · φτLP

...
...

(φτ1P )IP−1 · · · (φτLP )IP−1


 =

[
f(τ1, φ) · · · f(τL, φ)

]
(6.10)

Defining
C(τ , φ) = SF̆(τ , φ) ∈ C

NP×L, (6.11)

and using (1.26) with the correspondences
(
A,B,C

)
→

(
B,A(θ),C(τ , φ)

)
, we

obtain the three following unfolded representations for the DFT-transformed re-
ceived signal tensor:

X̆2 =
(
B ⋄ A(θ)

)
CT (τ , φ) ∈ C

KNb×NP ,

X̆3 =
(
A(θ) ⋄ C(τ , φ)

)
BT ∈ C

NPK×Nb ,

X̆1 =
(
C(τ , φ) ⋄ B

)
AT (θ) ∈ C

NbNP×K , (6.12)

Figure 6.2 depicts the PARAFAC decomposition of the received signal tensor into
the component matrices characterizing the time-varying SIMO channel.

6.2.3 Identifiability

At this point, we focus on the identifiability conditions of model (6.12) and dis-
cuss its link to the problem of multipath parameter estimation. Using Kruskal’s
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identifiability condition given in Theorem 1.1 (Chapter 1, Section 1.2.2), if

kA(θ) + kB + kC(τ ,φ) ≥ 2(L + 1), (6.13)

the matrices A(θ), B and C(τ , φ) are unique up to permutation and scaling of
columns.

It is worth mentioning that the permutation ambiguity does not need to be solved
in the context of the multipath parameter estimation problem, since the ordering of
multipath spatial and temporal responses is not important. Concerning the scaling
ambiguity, it can be eliminated from our model by exploiting the Vandermonde
structure of A(θ) and F(τ , φ).

In the present context, we make the following assumptions concerning the multi-
path channel structure:

• The array manifold is known and the multipath signals arrive at the array
at distinct angles and delays;

• The multipaths undergo independent fading and vary independently from
block to block.

Under these assumptions, the identifiability condition (6.13) can be further sim-
plified if some additional structure of the model is taken into account. Let us first
state the following Lemmas:

Lemma 7.1 (Vandermonde k-rank Lemma [133]): A Vandermonde matrix V
∈ C

m×n with distinct nonzero generators φ1, φ2, . . . , φn ∈ C is full k-rank, i.e.,
kV = rV = min(m,n).

Lemma 7.2: Let A ∈ C
p×m and B ∈ C

m×n be two matrices. If A is full column
rank, then rAB = rB. If B is a Vandermonde matrix with distinct nonzero gene-
rators φ1, φ2, . . . , φn ∈ C, then the full column rank condition of A implies that
rAB = min(m,n).

Note that the matrix of spatial array responses A is Vandermonde, for which
Lemma 7.1 applies, i.e., kA(θ) = min(K, L). Let us study the structure of matrix

C(τ , φ) in (6.11). This matrix is factored as a function of S and F̆(τ ,φ). Without
loss of generality, let us assume that IP ≥ L. Under the condition of “persistence
of excitation” of the training symbols, matrix S is full column-rank (also full k-
rank). Thus, Lemma 7.2 can be directly applied to C(τ , φ) = SF̆(τ ,φ), which
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means that kC(τ ,φ) = min(IP, L) = L. Finally, the matrix of fading amplitudes
B is also full k-rank with probability one, under the condition of independent
multipath fading variation [131]. Thus, the identifiability condition (6.13) can be
equivalently stated as

min(K, L) + min(Nb, L) ≥ L + 2. (6.14)

By studying condition (6.14), we can distinguish two cases:

1. For Nb ≥ L, K ≥ 2 antennas are enough for estimating the L multipath
parameters;

2. For K ≥ L, Nb ≥ 2 training blocks are enough for estimating the L multipath
parameters.

6.2.4 PARAFAC-based estimator

The receiver algorithm for the joint estimation of angles, delays and amplitudes of
the multipaths fully exploits the trilinear structure of the multipath channel model,
and is based on the classical ALS algorithm. As usual, the matrices A(θ), B and
C(τ , φ) are estimated by optimizing the three following least squares criteria:

argmin
B

∥∥∥ ˜̆
X3 −

(
A(θ) ⋄ C(τ , φ)

)
BT

∥∥∥
2

F
, argmin

A(θ)

∥∥∥ ˜̆
X1 −

(
C(τ ,φ) ⋄ B

)
AT (θ)

∥∥∥
2

F
,

argmin
C(τ ,φ)

∥∥∥ ˜̆
X2 −

(
B ⋄ A(θ)

)
CT (τ , φ)

∥∥∥
2

F
, (6.15)

where
˜̆
Xi=1,2,3 are the noisy versions of X̆i=1,2,3.

Elimination of the scaling ambiguities

At this point, we show how the scaling ambiguities are eliminated. As previously
mentioned, permutation ambiguity is not important in the present context and we
do not take it into account. However, we must take care of the scaling ambiguity
in order to obtain the final estimates of the channel parameters. At the end
of the ALS-based estimation stage, an estimate of the DFT-transformed pulse

shape response is obtained from (6.11) as F̂(τ , φ) =
(
S
)†

Ĉ(τ ,φ). The final
(unambiguous) estimate of A(θ) (array responses), B (fading amplitudes) and
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F(τ , φ) (delay responses), denoted by
̂̂
A(θ),

̂̂
B and

̂̂
F(τ , φ), are linked to the

ALS-based estimates by:

̂̂
A(θ) = Â(θ)∆−1

1 ,
̂̂
B = B̂∆−1

2 ,
̂̂
F(τ , φ) = F̂(τ , φ)∆−1

3 , (6.16)

The a priori knowledge of the Vandermonde structure of A(θ) and F(τ ,φ) means
that the first row of both matrices have all-ones entries, i.e.:

A1·(θ) = [1, . . . , 1], F1·(τ ,φ) = [1, . . . , 1].

This allows a unique determination of the scaling ambiguity matrices ∆i=1,2,3 as:

∆1 = D1(Â(θ)), ∆3 = D1(F̂(τ , φ)), ∆2 = (∆1∆3)
−1, (6.17)

from which the final estimates
̂̂
A(θ),

̂̂
B and

̂̂
F(τ , φ) are obtained.

6.2.5 Simulation results

In this section, the performance of the PARAFAC-based multipath parameter
estimator is evaluated through computer simulations. The training sequence to
be used over the Nb blocks is randomly generated at each run, following a normal
distribution with unity variance. The pulse shape function is a raised cosine with
roll-off factor 0.35. The L paths are assumed to have the same average power. The
results are averaged over 100 Monte Carlo runs. For each run, multipath fading
amplitudes for the Nb data-blocks are drawn from an i.i.d. Rayleigh generator. For
the ALS algorithm, random initialization is used. If convergence is not achieved
within 100 iterations, we re-start the algorithm from a different initialization point.
The Root Mean Square Error (RMSE) between the estimated and true matrices
is used here as the evaluation metric of the estimator performance.

Figure 6.3 depicts the RMSE versus SNR for the estimation of the array (angle)
and pulse shape (delay) responses, considering a multipath scenario with L = 3
paths. The angles of arrival and time delays are {θ1, θ2, θ3} = {−10◦, 0, 20◦} and
{τ1, τ2, τ3} = {0, 1.1T, 2T}. considering K = 2 antennas and N = 8 training
symbols and an oversampling factor P = 4. The temporal support of the channel
is I = 5. The results are shown for Nb = 5 and Nb = 10 data-blocks. It is seen that
the proposed estimator exhibits a linear decrease in its RMSE as SNR increases.
This is valid for both angle and delay RMSE. The performance gap between angle
and delay estimation is due to the fact that the raised cosine pulse shape function
is not bandlimited, which leads to some delay estimation bias. As expected, the
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estimator performance improves as the number of data-blocks increases. Although
not displayed in the figure, the RMSE results for the fading amplitudes are very
close to those for the delay responses. Note that these performance results are
achieved with fewer antennas than multipaths and with a short training sequence,
which is interesting characteristic of the proposed PARAFAC-based estimator.
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Figure 6.3: RMSE performance (angles and delays).

In Fig. 6.4, we evaluate the impact of the number of training symbols N on the
accuracy of the PAFAFAC-based estimator. We assume L = 3 with {θ1, θ2, θ3} =
{−10◦, 0, 20◦} and {τ1, τ2, τ3} = {0, 0.25T, 2T}. The other parameters are I = 3,
Nb = 8, P = 4 and K = 2. We consider three different training sequence lengths:
N = 5, 10 and 20. In this figure, we plot the RMSE of the overall estimated
channel by averaging over the Nb data blocks. The RMSE is calculated according
to the following formula:

RMSEoverall =

√√√√ 1

100KIP

100∑

r=1

∥∥∥∥
̂̂
H2(r) − H2

∥∥∥∥
2

F

, (6.18)

where H2 = (B ⋄A(θ))F̆T (τ , φ) is defined in (6.8), and
̂̂
H2(r) is its reconstructed

version at the r-th run. It can be seen from this figure that the performance
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improves as N increases, as expected. The gain is more pronounced when N is
increased from 5 to 10.

0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

10
1

SNR (dB)

R
M

S
E

 (
ov

er
al

l c
ha

nn
el

)

K=2, L=3, I=3, P=4, N
b
=8

N=5
N=10
N=20

Figure 6.4: RMSE performance for different values of N .

Now, we evaluate the influence of the angular separation of the multipaths on the
performance of the proposed estimator. We assume {τ1, τ2, τ3} = {0, 0.25T, 2T},
and the two angular distributions are i) {0◦, 3◦, 5◦} (small angular separation)
and ii) {0◦, 15◦, 30◦} (large angular separation). The other parameters are I = 3,
Nb = 5, N = 8, P = 4 and K = 2. The results are displayed in Fig. 6.5, where
the RMSE of the overall channel calculated using (6.18) is plotted. We can see
that the performance of estimator is degraded as the angular separation becomes
smaller. Such a degradation becomes more important at higher SNR values. For
small to medium SNR values (e.g. between 0 and 20dB), there is no significant
difference between the two scenarii.

In the next experiment, we evaluate the RMSE for each set of estimated multi-

path parameters, i.e. angles (
̂̂
A(θ)), delays (

̂̂
F(τ ,φ)), and fading amplitudes (

̂̂
B).

The multipath channel is characterized by L = 2 dominant paths with associated
angles and delays equal to {θ1, θ2} = {−10◦, 0} and {τ1, τ2, } = {0, T}. The other
parameters are I = 3, N = 8, P = 8 and K = 2. We consider Nb = 2 and 10
blocks. Figure 6.6 depicts the results. For a fixed value of Nb, we can observe
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Figure 6.5: RMSE performance for two angular distributions.

that the estimation accuracy of the array responses A(θ) is better than that of
the delays and fading amplitudes. As previously mentioned, the estimation of the
delays is biased due to bandlimited pulse shaping. Since the final unambiguous

estimate of the fading amplitudes
̂̂
B directly depends on the scaling factor of the

estimated matrix
̂̂
F(τ , φ) (c.f. (6.17)), the estimator performance is also limited

for the fading amplitudes. A performance gain is obtained when Nb is increased.
Such a gain is significant w.r.t the estimation of the angles and delays while be-
coming less important for the estimation of the fading amplitudes. The RMSE of
the overall estimated channel is also shown in Fig.6.6.

6.3 Parametric estimation of MIMO channels

Here, we present a parametric approach for estimating frequency-selective block-
fading MIMO channels, which can be viewed as an extension of the tensor modeling
approach of the previous section [25]. It is based on the observation that the consi-
dered MIMO channel model also has a tensor structure and follows a PARAFAC
model. This model is exploited for estimating the complete set of MIMO mul-
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Figure 6.6: RMSE of the estimated channel parameters.

tipath parameters: Directions Of Arrival/Departure (DOAs/DODs), delays and
fading amplitudes. The estimation method consists in using the ALS algorithm,
followed by a final estimation stage that relies on the knowledge of the training
sequence.

6.3.1 System model and assumptions

Let us consider a MIMO antenna system with M transmit and K receive antennas.
The spacing between any two antennas at both the transmit and receive arrays is
assumed to be half-wavelength, so that we can apply the far-field approximation
by assuming a locally plane wave. In this case, the MIMO channel can be charac-
terized by specular multipath propagation, i.e., the channel between each transmit
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Figure 6.7: MIMO multipath propagation scenario

and receive antenna can be parameterized as the superposition of L paths. This
model is widely used for outdoor scenarii and has been adopted for MIMO systems
[13].

Figure 6.7 illustrates the considered MIMO propagation scenario. Each path is
associated with a different scatterer located between the transmitter and the re-
ceiver. The location of the l-th scatterer determines a DOD φl and a DOA θl (with
respect to the transmit/receive array broadside) and a relative propagation delay τl

for the l-th path [122]. As in the SIMO case, it is also assumed that the maximum
path delay exceeds the inverse of the coherence bandwidth so that the channel is
frequency-selective. The finite support of the channel impulse response is equal to
I symbol periods and the oversampling factor at the receiver is equal to P times
the symbol rate. Let us define the following matrices collecting the transmitter
and the receiver array responses and as well as the combined transmitter/receiver
pulse shape responses:

Atx(φ) = [atx(φ1) · · · atx(φL)] ∈ C
M×L

A(θ) = [a(θ1) · · · a(θL)] ∈ C
K×L

G(τ ) = [g(τ1) · · ·g(τL)] ∈ C
L×IP .

6.3.2 Block-fading MIMO channel model

As considered in the previous section, we also adopt a block-fading model for
the time-varying propagation channel. Recall that the fading amplitudes of the
multipaths are considered constant over an entire data transmission block, but
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vary between two blocks. On the other hand, φl, θl and τl are assumed to be
constant over an interval of stationarity spanning Nb blocks. This block-fading
channel model is reasonable in most of mobile communication systems with block-
transmission, and has been exploited in [13, 72], for purposes of MIMO channel
estimation.

6.3.3 Multi-block training sequence

At the transmitter, each transmission block is organized in M data streams that
are transmitted by the M transmit antennas. The structure of these data streams
depend on the considered particular scheme (e.g., spatial multiplexing, space-time
coding, etc). Each one of the M data streams has a training sequence of N symbols
known at the receiver.

The length-N training sequence at the m-th transmit antenna for the nb-th trans-
mission block is represented by:

sm(nb) = [sm(nb, 1) · · · sm(nb, N)]T ∈ C
N .

We make the following assumptions concerning the design of the training se-
quences:

A.1 The M training sequence vectors s1, . . . , sM are linearly independent;

A.2 The training sequence length N satisfies N ≥ MI;

A.3 The training sequence sm, m = 1, . . . , M , is reused across Nb successive
transmission blocks, and we have sm(nb) = sm, ∀nb ∈ [1, Nb].

We remark that the “independence” assumption does not lead to an optimal trai-
ning sequence set for estimating the MIMO channel. An optimal design should
ensure that the training sequences have perfect periodic autocorrelations and cross-
correlations within I − 1 temporal shifts [96], where I is the temporal span of the
channel impulse response. Here, we are not concerned with optimal training se-
quence design, and we simply assume independent training sequences. As will be
shown later in our simulation results, the independency assumption is enough to
guarantee accurate estimates of the MIMO channel using the proposed approach.

Figure 6.8 outlines the multiblock MIMO transmission structure with training
sequence reuse across transmission blocks. It is to be noted that one transmission
block comprises M parallel data blocks, each one of which having its own training
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Figure 6.8: Multiblock MIMO transmission with training sequence reuse

sequence. Note also that the figure indicates that the same set of training sequences
is inserted into Nb transmission blocks. Each data block has Nblock = N + Ndata

symbols, Ndata denotes the number of “useful” data symbols of each data block. For
signal modeling and channel estimation purposes, we focus only on the training
sequence portion of each data block. After having estimated the channel, the
useful data portion can be processed/recovered in a subsequent step by means of
space-time processing.

6.3.4 Third-order PARAFAC model

The block-fading MIMO channel can be viewed as a fourth-order tensor H ∈
C

Nb×K×M×IP . Let us define hnb,k,m,i′ as a scalar component of the MIMO channel
tensor H, which represents the impulse response of the i′-th tap of the channel
between the m-th transmit and k-th receive antenna for the nb-th fading block,
and i′ = (i−1)P +p−1. Similarly to the SIMO case of Section 6.2.2, here we also
propose a third-order PARAFAC model for the block-fading MIMO channel. In
PARAFAC form, the scalar component hnb,k,m,i′ of the L-path block-fading MIMO
channel is a direct generalization of (6.4), and can be written as:

hnb,k,m,i′ =
L∑

l=1

βnb,lak,lam,lgl,i′ , (6.19)
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where βnb, l = [B]nb,l, ak,l = [A(θ)]k,l, am,l = [Atx(φ)]m,l, gl,i′ = [G(τ )]l,i′ .

After baseband conversion and oversampling at each receive antenna, we collect
NP received samples at each receive antenna. Let us define xnb,k,n′ as a scalar
component of the received signal tensor X ∈ C

Nb×K×NP , representing the n′-th
received signal sample at the k-th antenna for the nb-th transmission block, and
n′ = (n − 1)P + p − 1. In absence of noise, xnb,k,n′ can be written as:

xnb,k,n′ =
M∑

m=1

IP∑

i′=1

hnb,k,m,i′ sn′,m,i′ , (6.20)

where
sn′,m,i′ = [S]n′,(i′−1)M+m,

is an element of S = S ⊗ IP ∈ C
NP×MIP , and

S = blocktoeplitz(s1, · · · , sM) ∈ C
N×MI (6.21)

is a block-Toeplitz training sequence matrix. The nb-th first-mode matrix-
slice Hnb·· ∈ C

K×MIP of the MIMO fourth-order tensor H, defined as
[Hnb··]k,(m−1)IP+i′

.
= hnb,k,m,i′ , can be expressed as a function of the MIMO multi-

path parameters as:

Hnb·· = A(θ)Dnb
(B)UT (τ ,φ), nb = 1, . . . , Nb, (6.22)

where U(τ , φ) ∈ C
L×MIP is defined as:

U(τ ,φ) = Atx(φ) ⋄ GT (τ ) ∈ C
MIP×L. (6.23)

The nb-th matrix-slice of the received signal, denoted by Xnb·· ∈ C
K×NP , can be

written as:

Xnb·· = Hnb··S
T

= A(θ)Dnb
(B)CT (τ , φ), nb = 1, . . . , Nb,

where
C(τ ,φ) = SU(τ ,φ) ∈ C

NP×L (6.24)

is a combined space-time channel response at the receiver side, i.e., a convolution
between the receiver space-time signatures and the training symbols.

Let us stack Nb slices X1··, . . . ,XNb·· in a matrix X2 ∈ C
KNb×NP , and Nb slices
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H1··, . . . ,HNb·· in a matrix H2 ∈ C
KNb×MIP :

X2 =




X1··
...

XNb··


 , H2 =




H1··
...

HNb··


 .

X2 and H2 are unfolded representations of the tensors X and H, respectively.
Using (6.22)-(6.23), we obtain the following input-output relation:

X2 = H2S
T

=
(
B ⋄ A(θ)

)
CT (τ ,φ), (6.25)

where
H2 =

(
B ⋄ A(θ)

)
UT (τ , φ).

The two other unfolded matrix representations are:

X3 =
(
A(θ) ⋄ C(τ , φ)

)
BT ∈ C

NPK×Nb ,

X1 =
(
C(τ , φ) ⋄ B

)
AT (θ) ∈ C

NbNP×K .

6.3.5 Identifiability

Identifiability of (6.25) allows one to uniquely determine (up to trivial ambiguities)
the parameters of the L multipaths from the observed received signal tensor X ∈
C

Nb×K×NP . According to the identifiability results of the PARAFAC model, the
identifiability of A(θ), B, and C(τ , φ) is linked to the concept of k-rank of these
matrices. In our context, a sufficient condition for identifying the MIMO multipath
parameters can be obtained by recalling useful results on the k-rank of a matrix
having Khatri-Rao product structure as well as on the k-rank of a Vandermonde
matrix. These results are derived in [133] (c.f. Lemmas 7.1 and 7.2, respectively).
A sufficient identifiability condition for our model can be obtained by applying the
identifiability theorem of [133] to our context:

Theorem 7.1 : Suppose that the L multipaths have statistically independent pro-
pagation (i.e. distinct DODs, DOAs and delays). A sufficient condition for iden-
tifiability is:

min(Nb, L) + min(K, L) + min(M + IP − 1, L) ≥ 2(L + 1)

Proof : Use assumptions A.1-A.2 to conclude that S is full rank (and full k-
rank) to deduce rC(τ ,φ) = rU(τ ,φ). Apply Lemma 7.1 in [133] by making the
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following correspondences: A → G(τ ), B → Atx(φ), to verify that rU(τ ,φ) ≥
min(kG(τ)+kAtx(φ)−1, L). Finally, use the fact that the k-rank of a matrix is equal
to its rank with probability one whenever its columns are drawn independently
from an absolutely continuous distribution. Thus, we have kA(θ) = min(K,L),
kB = min(Nb, L), kC(τ ,φ) = kU(τ ,φ) = min(M + IP − 1, L). ¥

Remarks:

1) The identifiability condition established in the Theorem 7.1 is sufficient but not
necessary. Assuming M > 1 and N > 1 (irrespective of the oversampling factor
P ), a necessary condition is kB ≥ 2 [74]. In practice, this means that at least
Nb ≥ 2 transmission blocks must be collected at the receiver to ensure uniqueness
of model (6.25).

2) Column permutation is unremovable although not relevant in our context, since
the ordering of the multipath responses is unimportant for channel estimation
purposes. Scaling ambiguity can be eliminated by exploiting prior knowledge of
the space-time manifold structure i.e., the array geometry and the pulse shape
function.

6.3.6 Estimation of the MIMO channel parameters

The estimation of the MIMO multipath parameters is done in two-stages. The
first one is blind, and consists in using the trilinear ALS algorithm for fitting a
third-order PARAFAC model to the received signal tensor X ∈ C

Nb×K×NP . At
the end of the ALS algorithm, we will have the estimates Â(θ), B̂, and Ĉ(τ , φ).

The second stage consists in using the training sequence matrix S to find an LS
estimate of U(τ , φ) = Atx(φ) ⋄ GT (τ ) as:

Û(τ ,φ) = S
†
Ĉ(conv)(τ ,φ).

It is worth noting that separated estimations of Âtx(φ) and Ĝ(τ ) as well as the
elimination of the scaling factors can be carried out by exploiting the Vandermonde
structures of A(θ) and Atx(φ). Note that U(τ ,φ) has a Khatri-Rao factoriza-
tion structure. Since the first row of Atx(φ) and A(θ) only have unitary entries,
i.e. (A1·)tx(φ) = [1, . . . , 1] and A1·(θ) = [1, . . . , 1], an estimate of G(τ ) can be

extracted from the first matrix block of Û(τ ,φ) of dimension L× IP (c.f. (6.23)).
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6.3.7 Simulation results

In this section, some simulation results are shown to illustrate the performance of
the proposed parametric MIMO channel estimator. We assume N = 10 training
symbols per transmit antenna. The training symbols are modulated using Binary
Phase Shift Keying (BPSK). The oversampling factor is assumed to be P = 2.
The pulse shape function is a raised cosine with roll-off 0.35. We consider L = 3
specular multipaths with equal average power. The vector containing the DODs,
DOAs and delays of the multipaths are respectively φ = [−10o, 30o, 50o], θ =
[−18o, 20o, 35o] and τ = [0, T, 2T ], where T denotes the symbol period (I=3
is assumed). The fading amplitudes are modeled as complex Gaussian random
variables and assumed to be uncorrelated between two successive blocks.

In order to evaluate the accuracy of the proposed method in estimating the spatial
signatures, Fig. 6.9 depicts the normalized MUSIC spectrum for the DODs and
DOAs. We have assumed M = K = 4, Nb = 10 and a SNR of 20dB. We can
see that accurate estimates of the transmitter and receiver spatial signatures are
obtained. Figure 6.10 shows the RMSE between estimated Ĥ and true H chan-
nel matrices as a function of the SNR. These results are an average over 1000
independent realizations assuming M = K = 2 and Nb = 3, 10 or 30. In this
simulation, 95% of the runs were retained for plotting the results. The 5% worst
(ill-convergent) runs were discarded. Convergent runs have converged within 30
iterations in average. Note that the estimation performance improves as the num-
ber of transmission blocks is increased. In fact, fading amplitudes variation across
the blocks is converted into temporal diversity for resolving the multipath signals.

6.4 Summary

In this chapter, we have presented a new method for estimating space-time wire-
less channels based on PARAFAC modeling. The proposed estimator relies on a
parametric channel model for a time-varying multipath channel. In other words,
we have used the fact that the variation of the multipath amplitudes over multiple
data-blocks is faster than that of angles and delays in order to build a third-order
PARAFAC model for the channel. We have shown that the received signal can
also be viewed as a third-order PARAFAC model thanks to the use of a training
sequence which is periodically extended over multiple data-blocks to be jointly
processed at the receiver. Using the alternating least squares algorithm, the mul-
tipath parameters are estimated directly from the received signal tensor. The
PARAFAC-based estimator provides a good estimation accuracy even for short
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Figure 6.9: The normalized MUSIC spectrum for estimated DODs and DOAs.

training sequences, provided that the number of processed data-blocks is large en-
ough. Due to the identifiability properties of the PARAFAC decomposition, the
proposed estimator performs well with fewer receiver antennas than multipaths.
We have also generalized the PARAFAC modeling/estimation approach to the case
of MIMO channels.

In a future work, we should compare the proposed modeling/estimation technique
with classical ones that determine the multipath parameters using previous un-
structured channel estimate [153, 151, 154, 92]. Although we have used a third-
order PARAFAC approach for channel modeling/estimation, which have allowed
the use of classical PARAFAC identifiability results, a fourth-order tensor mode-
ling approach is also possible by means of the block-constrained PARAFAC model.
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Figure 6.10: RMSE versus SNR performance (PARAFAC-MIMO estimator).



Conclusion and perspectives

This thesis has dealt with the study of generalized tensor decompositions with
applications in signal processing for wireless communications. Our contribu-
tions have addressed the following main research axes by means of tensor modeling:

– Multiuser signal separation/equalization/detection;
– Multiple-antenna transmission structures;
– Channel modeling and estimation.

The original contributions of this work are based on two new tensor decomposi-
tions: the block-constrained PARAFAC and the CONstrained FACtor (CONFAC)
decompositions (Chapter 1). These decompositions combine properties of the PA-
RAFAC and the Tucker-3 decompositions by allowing interactions between factors
associated with different modes of the tensor. It turns out that he CONFAC de-
composition is more general than the block-constrained PARAFAC one, in the
sense that arbitrary interaction patterns across all the modes of the decomposed
tensor is permitted. The partial uniqueness of the CONFAC decomposition has
also been studied and sufficient conditions for the essential uniqueness in one or
two modes have been derived.

Different applications of the block-constrained PARAFAC decomposition have
been presented in Chapters 2 and 3. In Chapter 2, the block-constrained PARA-
FAC decomposition has been used for a unified tensor modeling of oversampled,
DS-CDMA and OFDM systems under the assumption of specular multipath pro-
pagation with multiple paths per user. A generalization of this unified model has
been presented by considering that the number of paths of each user can be dif-
ferent. The generalized model was formulated by means of a constrained Tucker-3
modeling. A blind receiver based on the proposed tensor model has been pre-
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sented for multiuser signal separation/equalization. The IPSP receiver iteratively
combines the ALS algorithm with a subspace method, and makes use of the FA
property of the transmitted symbols. The proposed receiver is deterministic and
does not require the use of training sequences, nor the knowledge of the channel
impulse responses and antenna array responses. The block-constrained PARAFAC
decomposition has also been exploited in Chapter 3 to formulate a new multiu-
ser downlink system with block space-time spreading. We have shown that the
proposed system allows multiuser space-time transmission with different spatial
spreading factors (diversity gains) as well as different multiplexing factors (code
rates) for the users. At the same time, the proposed tensor modeling approach ge-
neralizes previous work on tensor-based multiple-antenna systems by allowing full
spatial spreading of the transmitted data streams across fixed transmit antennas.

Concerning the CONFAC decomposition, we have presented a new modeling ap-
proach for MIMO-CDMA systems with space-time spreading/precoding and blind
detection (Chapter 4). We have shown that the constrained structure of the
CONFAC decomposition has a meaningful physical interpretation. The constraint
matrices can be exploited for designing several multiple-antenna schemes with va-
rying degree of spatial spreading, spatial multiplexing and spreading code reuse.
Compared with the block space-time spreading model of Chapter 3, the CONFAC-
based MIMO-CDMA model of Chapter 4 copes with multiple transmit antennas
and spreading codes per user or per data-stream. We have first presented a trans-
mission model based on the type-3 CONFAC decomposition with two constraint
matrices only. A design procedure for deriving sets of transmit schemes with
guaranteed blind symbol recovery was presented. Then, we have derived a more
general CONFAC-based transmission model, where a precoder tensor fully exploi-
ting the decomposition structure defines the allocation of the data streams and
spreading codes to transmit antennas. Blind symbol/code/channel recovery has
also been studied from the partial uniqueness properties of this decomposition.

This thesis has also studied new applications of the third-order PARAFAC decom-
position. In Chapter 5, a Trilinear Space-Time-Frequency Spreading (T-STFS)
multiple-access model for MIMO wireless systems was proposed. T-STFS is based
on a 3-D spreading code tensor decomposed into the outer product of the space-,
time- and frequency-domain spreading codes. These codes allow multiple data
streams to simultaneously access the same set of transmit antennas, chips and
subcarriers. At the receiver, blind detection without a priori channel estimation
or training sequences is possible thanks to PARAFAC uniqueness. The PARAFAC
decomposition was also exploited in Chapter 6 for modeling/estimation of SIMO
and MIMO multipath wireless channels with time-varying structure. The propo-
sed PARAFAC-based estimator relies on the ALS algorithm to jointly estimate
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the angles of arrival, the time-delays and the fading amplitudes of the multipaths.
The estimator is deterministic and works directly on the received signal without
the need of a previous unstructured channel estimate.

Some perspectives of this thesis work can be drawn. We give hereafter some
research topics to be pursued:

• The development of efficient algorithms for estimating the factors of the
CONFAC decomposition is an interesting topic for future research. The
convergence properties of these algorithms when the number F of factor
combinations is large, or when the constraint matrices of the decomposition
are unknown should be better understood. Moreover, the identifiability pro-
perties of this decomposition deserves further investigation. The influence of
the number F of factor combinations on the uniqueness properties is to be
studied.

• With respect to CONFAC-based MIMO-CDMA systems, we call attention
that the design of the precoder constraint matrices has only focused on uni-
queness aspects and has not considered performance optimization at the
receiver. We conjecture, however, that limited feedback precoding principles
[77, 95] can be used to properly select the canonical precoding matrices from
the finite-set of feasible choices by taking practical requirements into account
such as diversity and data-rate. Cross-layer optimization can also be taken
into account to implement antenna selection and rate adaptation on top of
the proposed modeling framework. This would introduce more degrees of
freedom in the structure of the canonical precoding matrices.

• In the context of the T-STFS model presented in Chapter 5, an interesting
generalization would consist in introducing spreading code reuse in space,
time and/or frequency. This can achieved by introducing space-, time- and
frequency-domain constraint matrices into the T-STFS model, by means of
a CONFAC-based STF model. These constraint matrices would determine
the allocation/reuse of the spreading codes by the different transmitted data
streams.

• Perspectives of the PARAFAC-based approach for channel mode-
ling/estimation proposed in Chapter 6 include a performance comparison
with classical methods that rely on previous unstructured channel estimate
[153, 151, 154, 92]. Although we have used a third-order PARAFAC approach
for channel modeling/estimation, which allows the use of the classical PA-
RAFAC model, a fourth-order tensor modeling approach is also possible by
means of the block-constrained PARAFAC decomposition.





APPENDIX A

Expansion of the block-constrained
PARAFAC decomposition using

canonical vectors

In the following, we provide a demonstration of the block-constrained PARAFAC
decomposition given by (1.55) in Chapter 1. For this sake, we expand the tensor
xi1,i2,i3 in (1.48) in the form of multiple summations involving tensor products of
canonical vectors [62].

Let us recall (1.48):

xi1,i2,i3 =

Q∑

q=1

R1∑

r1=1

R2∑

r2=1

a
(q)
i1,r1

b
(q)
i2,r2

c
(q)
r1,r2,i3

. (1.1)

Consider the canonical bases E(I1) = {e(I1)
1 , e

(I1)
2 , . . . , e

(I1)
I1

}, E(I2) =

{e(I2)
1 , e

(I2)
2 , . . . , e

(I2)
I2

} and E(I3) = {e(I3)
1 , e

(I3)
2 , . . . , e

(I3)
I3

} associated with vector
spaces R

I1 , R
I2 , R

I3 , respectively.

The unfolded matrix X2 ∈ C
I1I2×I3 , defined as xi1,i2,i3 = [X2](i1−1)I2+i2,i3 , can be

expanded in terms of these canonical vectors in the following manner:

X2 =

I1∑

i1=1

I2∑

i2=1

I3∑

i3=1

xi1,i2,i3(e
(I1)
i1

⊗ e
(I2)
i2

)e
(I3)T
i3

. (1.2)
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Substituting (1.1) into (1.2) we have:

X2 =

I1∑

i1=1

I2∑

i2=1

I3∑

i3=1

Q∑

q=1

R1∑

r1=1

R2∑

r2=1

a
(q)
i1,r1

b
(q)
i2,r2

c
(q)
r1,r2,i3

(e
(I1)
i1

⊗ e
(I2)
i2

)e
(I3)T
i3

=

Q∑

q=1

R1∑

r1=1

R2∑

r2=1

(
I1∑

i1=1

e
(I1)
i1

a
(q)
i1,r1

)
⊗

(
I2∑

i2=1

e
(I2)
i2

b
(q)
i2,r2

)(
I3∑

i3=1

e
(I3)
i3

c
(q)
r1,r2,i3

)T

.

Define a
(q)
r1 as the r1-th column of A(q) ∈ C

I1×R1 , b
(q)
r2 as the r2-th column of B(q)

∈ C
I2×R2 and c

(q)
r1,r2 as the [(r1 − 1)R2 + r2]-th column of C(q) ∈ C

I3×R1R2 , and
observe that:

I1∑

i1=1

e
(I1)
i1

a
(q)
i1,r1

= a(q)
r1

,

I2∑

i2=1

e
(I2)
i2

b
(q)
i2,r2

= b(q)
r2

,

I3∑

i3=1

e
(I3)
i3

c
(q)
r1,r2,i3

= c(q)
r1,r2

,

we have:

X2 =

Q∑

q=1

R1∑

r1=1

R2∑

r2=1

(a(q)
r1

⊗ b(q)
r2

)c(q)T
r1,r2

. (1.3)

Define the set of canonical vectors e
(R2)
r2 , r2 = 1, . . . , R2. Inserting (e

(R2)
r2 )Te

(R2)
r2 = 1

into (1.3) gives:

X2 =

Q∑

q=1

R1∑

r1=1

R2∑

r2=1

[
(a(q)

r1
⊗ b(q)

r2
)e(R2)T

r2

] [
e(R2)

r2
c(q)T

r1,r2

]
. (1.4)

As e
(R2)T
r2 = e

(R2)T
r2 ⋄ e

(R2)T
r2 , the use of property (1.57) allows to rewrite (1.4) as:

X2 =

Q∑

q=1

R1∑

r1=1

R2∑

r2=1

[
a(q)

r1
e(R2)T

r2
⋄ b(q)

r2
e(R2)T

r2

] [
e(R2)

r2
c(q)T

r1,r2

]
. (1.5)

Due to the presence of the unit vector e
(R2)
r2 , we can rewrite (1.5) as:

X2 =

Q∑

q=1

R1∑

r1=1

[
R2∑

r2=1

a(q)
r1

e(R2)T
r2

⋄
R2∑

r2=1

b(q)
r2

e(R2)T
r2

][
R2∑

r2=1

e(R2)
r2

c(q)T
r1,r2

]

=

Q∑

q=1

R1∑

r1=1

[
(a(q)

r1
⊗ 1T

R2
) ⋄ B(q)

]
C(q)T

r1
, (1.6)
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with C
(q)
r1 =

R2∑
r2=1

c
(q)
r1,r2e

(R2)T
r2 ∈ C

I3×R2 .

Inserting e
(R1)T
r1 e

(R1)
r1 = 1 into (1.6) and using property (1.21), it follows that:

X2 =

Q∑

q=1

R1∑

r1=1

e(R1)T
r1

e(R1)
r1

⊗
[
(a(q)

r1
⊗ 1T

R2
) ⋄ B(q)

]
C(q)T

r1

=

Q∑

q=1

R1∑

r1=1

[
e(R1)T

r1
⊗

[
(a(q)

r1
⊗ 1T

R2
) ⋄ B(q)

]]
·
[
e(R1)

r1
⊗ C(q)T

r1

]
. (1.7)

Note that:

e(R1)T
r1

⊗
[
(a(q)

r1
⊗ 1T

R2
) ⋄ B(q)

]
=

[
e(R1)T

r1
⊗ (a(q)

r1
⊗ 1T

R2
)
]
⋄

[
e(R1)T

r1
⊗ B(q)

]
,

which allows us to express (1.7) in the following form:

X2 =

Q∑

q=1

R1∑

r1=1

[[
e(R1)T

r1
⊗ (a(q)

r1
⊗ 1T

R2
)
]
⋄

[
e(R1)T

r1
⊗ B(q)

]]
·
[
e(R1)

r1
⊗ C(q)T

r1

]
. (1.8)

Due to the block structure with zeros introduced by the factor e
(R1)
r1 , we can rewrite

(1.8) as:

X2 =

Q∑

q=1

{[
R1∑

r1=1

e(R1)T
r1

⊗ (a(q)
r1

⊗ 1T
R2

)

]
⋄

[
R1∑

r1=1

e(R1)T
r1

⊗ B(q)

]}
·
[

R1∑

r1=1

e(R1)
r1

⊗ C(q)T
r1

]

(1.9)
which leads to:

X2 =

Q∑

q=1

[
(A(q) ⊗ 1T

R2
) ⋄ (1T

R1
⊗ B(q))

]
· C(q)T . (1.10)

Now, using again property (1.21), we have:

A(q) ⊗ 1T
R2

= (A(q) ⊗ 1)(IR1 ⊗ 1T
R2

) = A(q)(IR1 ⊗ 1T
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Ψ

) = A(q)Ψ,

and
1T

R1
⊗ B(q) = (1 ⊗ B(q))(1T

R1
⊗ IR2) = B(q)(1T

R1
⊗ IR2︸ ︷︷ ︸
Φ

) = B(q)Φ,
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and (1.10) can be expressed as:

X2 =

Q∑

q=1

(A(q)Ψ ⋄ B(q)Φ)C(q)T . (1.11)

Defining A = [A(1) · · ·A(Q)] ∈ C
I1×QR1 , B = [B(1) · · ·B(Q)] ∈ C

I2×QR2 and C =
[C(1) · · ·C(Q)] ∈ C

I3×QR1R2 , and Ψ = IQ ⊗Ψ and Φ = IQ⊗Φ, we can equivalently
write (1.11) as:

X2 = (AΨ ⋄ BΦ)CT ,

and the demonstration is finished.



APPENDIX B

Uniqueness of the design criterion (4.12)

We demonstrate that the design criterion (4.12), which results in a partitioned
structure for the canonical allocation matrices according to (4.13)-(4.14), leads to
the uniqueness of S up to column permutation and scaling while the uniqueness
of C exists up to multiplication by a non-singular block-diagonal matrix and a
block-diagonal permutation matrix.

Let us define C
.
= [C1 · · ·CR] ∈ C

P×J and Cr
.
= [Cr,1 · · ·Cr,Jr

] ∈ C
P×αr with

Cr,jr
∈ C

P×βr,jr , jr = 1, . . . , Jr, as the partitioned spreading code matrix. Let us
also define H = [H1 · · ·HR] ∈ C

K×M as the partitioned channel matrix. Based
on these definitions, we can rewrite the k-th third-mode slice X··k ∈ C

N×P of the
received signal in terms of this partitioning as:

X··k = S

(
R∑

r=1

ΨrDk (Hr)Φ
T
r

)

︸ ︷︷ ︸
Hk

CT

= SHkC
T . (2.1)

Due to the canonical structure of Ψr and Φr defined in (4.13)-(4.14), it follows
that Hk is a row-wise block-diagonal matrix (it has only a single non-zero element
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per column), the blocks of which are row-vectors:

Hk =




h
(1,1)

k · · · h
(1,J1)

k 0
. . .

0 h
(R,1)

k · · · h
(R,JR)

k


 ,

where

h
(r,jr)

k =

βr,jr∑

i=1

hk,βr,jr−1
+i,

with βr,j =
j∑

i=1

βr,i. Let T ∈ C
R×R, U ∈ C

J×J be non-singular transformation

matrices. Inserting TT−1 and UU−1 in (2.1) yields:

X··k = (ST)
(
T−1HkU

−T
)
(CU)T . (2.2)

First, note that T−1 acts over the rows of Hk, while U−T acts over the columns
of Hk, respectively. It can be easily checked that T−1 only preserves the row-wise
diagonal structure of Hk if it is a diagonal matrix or a row-permutation of it, which
leads to the form (4.15) of T. On the other hand, any non-singular matrix U−T

having a block-diagonal structure with blocks U1 ∈ C
J1×J1 , . . . ,UR ∈ C

JR×JR ,
preserves the structure of Hk which implies a transformational ambiguity over the
sets of J1, . . . , JR columns of C1, . . . ,CR. Note also that the blocks U1, . . .UR can
be arbitrarily permuted without changing the pattern of zeros of Hk, which leads
to the form (4.15) of U.

The transformational ambiguity matrix U = blockdiag(U1, . . . ,UR) exists when
J > R (more spreading codes than data streams). In the particular case J = R
(one-to-one correspondence between spreading codes and data streams) with αr =
βr, r = 1, . . . , R, Hk is reduced to a diagonal matrix and the joint uniqueness of
S and C is achieved.



Bibliography

[1] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri. Space-time coded
OFDM for high data-rate wireless communications over wideband channels.
In Proc. of Vehic. Tech. Conf., pages 2232–2236, Ottawa, Canada, 1998.

[2] S. Alamouti. A simple transmit diversity technique for wireless communica-
tions. IEEE J. Sel. Areas Commun., 16(8):1451–1458, Oct. 1998.

[3] C. A. Andersson and R. Bro. Improving the speed of multi-way algorithms
Part I: Tucker3. Chemometrics Intell. Lab. Syst., 42:93–103, 1998.

[4] G. E. Andrews. The Theory of Partitions. Cambridge University Press,
Cambridge, England, 1998.

[5] I. Barhumi, G. Leus, and M. Moonen. Optimal training design for MIMO
OFDM systems in mobile wireless channels. IEEE Trans. Signal Processing,
51(6):1615–1624, 2003.

[6] H. Bolcskei and A. Paulraj. Space-frequency coded broadband OFDM sys-
tems. In Proc. of Wirel. Comm. Networking Conf., pages 1–6, Chicago, IL,
September 23-28 2000.

[7] R. Bro. PARAFAC: Tutorial and applications. Chemometrics Intell. Lab.
Syst., 38:149–171, 1997.

[8] R. Bro. Multi-way analysis in the food industry: Models, algorithms and
applications. PhD thesis, University of Amsterdam, Amsterdam, 1998.



BIBLIOGRAPHY 229

[9] R. Bro and C. A. Andersson. Improving the speed of multi-way algorithms
Part II: Compression. Chemometrics Intell. Lab. Syst., 42:105–113, 1998.

[10] R. Bro, R. A. Harshman, and N. D. Sidiropoulos. Modeling multi-way data
with linearly dependent loadings. KVL tech. report 176, 2005.

[11] J.-F. Cardoso. Blind signal separation: statistical principles. In Proceedings
of the IEEE, volume 9, pages 2009–2025, 1998.

[12] J. D. Carroll and J. Chang. Analysis of individual differences in multidimen-
sional scaling via an N-way generalization of “Eckart-Young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[13] M. Cicerone, O. Simeone, N. Geng, and U. Spagnolini. Modal analy-
sis/filtering to estimate time-varying MIMO-OFDM channels. In Proc.
Works. Smart Ant., pages 35–40, Munich, Germany, March 2004.

[14] P. Comon. Independent component analysis, a new concept? Signal Proces-
sing, 36:287314, 1994.

[15] P. Comon. Tensor decompositions: State of the art and applications. In
IMA Conf. Mathematics in Signal Process., Warwick, UK, Dec. 18-20 2000.

[16] P. Comon. Tensor decompositions. In J. G. McWhirter and I. K. Proudler,
editors, Mathematics in Signal Processing V, pages 1–24. Clarendon Press,
Oxford, UK, 2002.

[17] P. Comon. Blind identification and source separation in 2x3 under-
determined mixtures. IEEE Trans. Sig. Process., 52(1):11–22, 2004.

[18] P. Comon. Canonical Tensor Decompositions. ARCC Workshop on Tensor
Decompositions, Palo Alto, CA, July 18–24 2004. cf. I3S report, June 2004.

[19] P. Comon and B. Mourrain. Decomposition of quantics in sums of powers
of linear forms. Signal Processing, Elsevier, 53(2):93–107, September 1996.
special issue on High-Order Statistics.

[20] P. Comon, B. Mourrain, L.-H. Lim, and G. Golub. Genericity and rank
deficiency of high order symmetric tensors. In ICASSP’06, Toulouse, May
14-19 2006.

[21] M. O. Damen, K. Abed-Meraim, and J-.C. Belfiore. Diagonal algebraic
space-time codes. IEEE Trans. Inf. Theory, 48(3):628–636, 2002.



230 BIBLIOGRAPHY

[22] M. O. Damen, K. Abed-Meraim, and A. Safavi. On CDMA with space-time
codes over multi-path fading channels. IEEE Trans. Wireless Commun.,
2(1):11–19, 2003.

[23] P. Dayal and M. Varanasi. Algebraic space-time codes with full diversity
and low peak-to-mean power ratio. In Proc. of IEEE GLOBECOM, San
Francisco, USA, Dec. 2003.

[24] A. L. F. de Almeida, G. Favier, and Cavalcante C. C. Mota, J. C. M. PARA-
FAC models for hybrid MIMO: Joint channel estimation and detection. In
Wireless World Research Forum (WWRF), Paris, France, November 2005.

[25] A. L. F. de Almeida, G. Favier, and de Lacerda R. L. Mota, J. C. M. Esti-
mation of frequency-selective block-fading MIMO channels using PARAFAC
modeling and alternating least squares. In Asilomar Conference Sig. Syst.
Comp., Pacific Grove, CA, October 29 - November 1 2006.

[26] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Blind multiuser equa-
lization using a PARAFAC-subspace approach. In GRETSI Symposium on
Signal and Image Processing, Louvain-la-Neuve, Belgium, September 2005.

[27] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Generalized PARA-
FAC model for multidimensional wireless communications with application
to blind multiuser equalization. In Asilomar Conference Sig. Syst. Comp.,
Pacific Grove, CA, October 31 - November 2 2005.

[28] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. PARAFAC models
for wireless communication systems. In Int. Conf. on Physics in Signal and
Image processing (PSIP), Toulouse, France, Jan. 31 - Feb. 2 2005.

[29] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. PARAFAC receiver for
blind multiuser equalization in wireless communication systems with tem-
poral oversampling. In European Signal Processing Conference (EUSIPCO),
Antalya, Turkey, September 4-8 2005.

[30] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. The constrained block-
PARAFAC decomposition. Three-way methods in Chemistry and Psychology
(TRICAP), Chania, Crete, Greece, June 2006.

[31] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Multipath parameter
estimation of time-varying space-time communication channels using paral-
lel factor analysis. In IEEE Int. Conf. Acoustics, Speech and Sig. Proc.
(ICASSP), Toulouse, France, May 14-18 2006.



BIBLIOGRAPHY 231

[32] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Space-time multiplexing
codes: A tensor modeling approach. In IEEE 7th Workshop on Sig. Proc.
Advances in Wireless Commun. (SPAWC), Cannes, France, July 2006.

[33] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Tensor-based space-time
multiplexing codes for MIMO-OFDM systems with blind detection. In Proc.
IEEE Symp. Pers. Ind. Mob. Radio Commun. (PIMRC), Helsinki, Finland,
September 2006.

[34] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Trilinear space-time-
frequency codes for broadband MIMO-OFDM systems. In International
Telecom Symposium (ITS), Fortaleza, Ceara, September 2006.

[35] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. A constrained factor
decomposition with application to mimo antenna systems. IEEE Trans.
Signal Process., accepted for publication, 2007.

[36] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Constrained space-
time spreading for MIMO-CDMA systems: Tensor modeling and blind de-
tection. In European Signal Processing Conference (EUSIPCO), Poznan,
Poland, September 2007.

[37] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Constrained tensor
modeling approach to blind multiple-antenna CDMA schemes. IEEE Trans.
Signal Process., accepted for publication, 2007.

[38] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Constrained tucker-3
model for blind beamforming. Elsevier Signal Processing, submitted, 2007.

[39] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Multiuser MIMO sys-
tem using block space-time spreading and tensor modeling. Elsevier Signal
Processing, accepted for publication, 2007.

[40] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. PARAFAC-based
unified tensor modeling for wireless communication systems with application
to blind multiuser equalization. Signal Processing, 87(2):337–351, Feb. 2007.

[41] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Space-time spreading
MIMO-CDMA downlink system using constrained tensor modeling. Elsevier
Signal Processing, submitted, 2007.

[42] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Space-time spreading
MIMO system using canonical precoding tensor model. In Asilomar Confe-
rence Sig. Syst. Comp., Pacific Grove, CA, November 4-7 2007.



232 BIBLIOGRAPHY

[43] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. A trilinear decomposition
approach to space-time-frequency multiple-access wireless systems. In IEEE
Int. Workshop on Sig. Proc. Advances in Wireless Commun. (SPAWC), Hel-
sinki, Finland, June 2007.

[44] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. The trilinear decom-
position with constraints: Application in multiple-antenna wireless commu-
nication systems. In GRETSI Symposium on Signal and Image Processing,
Troyes, France, September 2007.

[45] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. Trilinear space-time-
frequency spreading for mimo wireless systems with blind detection. IEEE
Trans. Signal Process., submitted, 2007.

[46] A.L.F. de Almeida, G. Favier, and J.C.M. Mota. Generalized parafac mo-
del for multidimensional wireless communications with application to blind
multiuser equalization. In Signals, Systems and Computers, 2005. Confe-
rence Record of the Thirty-Ninth Asilomar Conference on, pages 1429–1433,
October 28 - November 1, 2005.

[47] A. de Baynast and L. De Lathauwer. Détection autodidacte pour des
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