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Global optimization of mechanical systems
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Résumé étendu en Français iii
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Résumé étendu en Français

Eléments d’optimisation en mécanique

Les problèmes d’optimisation, c’est à dire la minimisation ou la maximisation de
fonctions ou de fonctionnelles, entrent à de nombreux niveaux dans les activités
de modélisation et de conception de systèmes mécaniques. L’identification d’un
modèle fait intervenir des minimisations d’écarts entre modèles et expériences. La
modélisation peut souvent être formulée comme une minimisation d’énergie (par
exemple l’énergie potentielle totale pour les systèmes conservatifs). Enfin, la con-
ception optimale est une recherche de solutions maximisant des critères de perfor-
mance.

Si l’on porte un regard numérique sur les difficultés de la modélisation et, a
fortiori, de la conception en mécanique, on constate que nombre de ces difficultés
sont liées à la complexité des problèmes d’optimisation sous-jacents. La construc-
tion d’un modèle en présence de données expérimentales incomplètes (ce qui est
généralement le cas) est un problème d’identification mal posé. La fragilité des
logiciels d’analyse par éléments finis non linéaires est due à la grande taille de
l’espace dans lequel on minimise les résidus (le nombre de degrés de liberté) et à
la non différentiabilité (e.g., plasticité, endommagement), voire à la non convexité
(e.g., flambage) des résidus. Au niveau de la conception optimale, les obstacles
rencontrés sont le temps de calcul des modèles, qui crôıt à la même vitesse que la
puissance des ordinateurs, l’absence de calcul des sensibilités des modèles par rap-
port aux variables, la fragilité numérique des modèles et les difficultés d’interfaçage
entre modèles et algorithmes d’optimisation.

Pour saisir la problématique de l’optimisation de systèmes mécaniques, il
est utile de décomposer un problème en étapes génériques :

Modélisation : Définition du modèle numérique1 du système considéré, y, où
y est un vecteur de réponses. Le modèle peut être établi sur une base physique,
par exemple la résolution d’équations aux dérivées partielles par éléments finis,
ou à partir d’un jeu d’entrées x - sorties y qui sont numériquement apprises. Un
même système est souvent décrit par plusieurs modèles, par exemple un modèle
d’apprentissage construit à partir de simulations physiques fines (cf. l’optimisation
multi-fidélité en section 3.3.2).

Formulation : Ecriture du problème d’optimisation sous la forme d’un vecteur
de critères f à minimiser en changeant les variables x dans un espace de recherche

1Les cas où le modèle et la résolution du problème d’optimisation peuvent être traités de façon
analytique ne sont pas l’objet de nos travaux car ils ne sont pas, en général, des problèmes difficiles.

iii
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S, en satisfaisant des contraintes d’inégalité, g,

{
minx∈S f(x)
tel que g(x) ≤ 0

(1)

f et g sont des fonctions implicites des variables x et d’autres variables non opti-
misées e à travers l’exécution du modèle numérique y, par exemple
f(x) ≡ f(x, e, y(x, e)).

Stratégie de résolution : Une fois la formulation faite, la nature mathématique
du problème d’optimisation de l’Equation (1) est précisée. S est il continu, discret
ou mixte, quel est le nombre de variables, existe-t-il des contraintes, le problème est
il linéaire, quadratique, convexe, la solution du problème est elle unique, les critères
d’optimisation sont ils bruités ? Cette analyse permet de définir une stratégie de
résolution qui pourra également tenir compte d’autre connaissance a priori (e.g.,
Fully Stressed Design en optimisation de formes, [75]). Il en résulte un algorithme
d’optimisation ou optimiseur.

Mise en œuvre : Mise en place informatique du modèle et de son interface avec
l’algorithme d’optimisation. Cette étape est en général très consommatrice de temps
humain.

Verrous à l’optimisation en mécanique

Toutes ces composantes de l’optimisation appliquée sont traditionellement abordées
de manière séparée dans les disciplines scientifiques établies (la modélisation par les
physiciens des domaines concernés, l’optimisation par les mathématiciens appliqués,
la mise en œuvre par les informaticiens). Pour autant, une analyse des verrous
actuels à l’optimisation de systèmes réels montre que ceux-ci se situent souvent à
l’interface entre ces composantes.

Coût des simulations. le temps de calcul de y(x) est l’obstacle le plus com-
munément rencontré en optimisation. Cela restera ainsi à l’avenir car la com-
plexité des modèles numériques crôıt plus vite que la puissance des ordinateurs.
Tous les éléments constitutifs de l’optimisation appliquée sont impliqués dans le
contrôle du coût numérique. Tout d’abord, le nombre possible d’analyses oriente
le choix de l’optimiseur : sous 1000 analyses, on ne peut pas utiliser une méthode
d’optimisation stochastique. Par ailleurs, le coût des simulations peut conduire
à la création d’un autre modèle, numériquement plus efficace, qui puisse orienter
l’optimisation à moindre coût (c’est le sujet de la multi-fidélité, cf. section 3.3.2).
Enfin, un trop grand coût de simulation peut entrâıner un changement de formu-
lation, en particulier une décomposition du problème initial. Par exemple, dans
[Luersen et al., J2006], la conception optimale d’une monopalme de nage est
simplifiée en un problème bidimensionnel dont les solutions sont ensuite transposées
en trois dimensions.

La présence d’optima locaux. Les développements de la simulation et de
l’optimisation numérique ont été de pair avec de la multiplication des problèmes
dont la régularité n’est pas connue et comportant des optima locaux. Les méthodes
d’optimisation globales, i.e., capables d’échapper aux optima locaux, qui étaient
des sujets de recherches dans les années 80 sont maintenant utilisées dans de nom-
breux bureaux d’études industriels. Ceci représente un important changement
de perspectives, comparable à l’entrée de la non-linéarité dans le domaine de la
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modélisation. Or, l’optimisation globale est un problème mathématiquement dif-
ficile, qui nécessite souvent l’ajout, aux approches d’optimisation généralistes, de
connaissances spécifiques au problème traité. C’est pourquoi l’essentiel de ce doc-
ument est consacré aux synergies entre visions mécaniciennes et mathématiques de
l’optimisation. L’ajout de connaissances a priori peut intervenir à tous les niveaux
de l’optimisation. Dans le plus simple des cas, une bonne solution a priori peut servir
de point de départ à un optimiseur. Parfois, une solution connue modifie la formula-
tion du problème: elle sert à régulariser un problème mal-posé (cf. [Le Riche and

Guyon, T1999]), ou elle permet de fixer des objectifs à l’optimisation (un exem-
ple en optimisation couplée process-structure est donné dans [Le Riche et al.,

J2003-2]). Dans d’autres cas, la connaissance a priori prend la forme d’une rêgle
d’optimisation qui peut générer ou accélérer un optimiseur global : un exemple
est donné avec le fully-stressed-design et l’optimisation évolutionnaire de formes
en section 2.3; l’optimisation évolutionnaire de composites, dont nous traitons en
section 2.2, constitue un excellent exemple d’optimisation globale intégrant de la
mécanique.

Autres verrous. Il y a d’autres difficultés récurrentes en optimisation de systèmes
mécaniques.

• La présence de paramètres incertains dans les fonctions optimisées, par exem-
ple des bruits de mesures ou des conditions de fonctionnement mal contrôlées.
Pour en tenir compte, il faut traiter deux problèmes imbriqués, l’optimisation
du système et l’évaluation de l’effet des incertitudes sur ce système. L’opti-
misation en présence d’incertitudes est une perspective que nous détaillons en
section 3.1.

• Les espaces de recherche non continus, e.g., les espaces mixtes et les espaces
non paramétriques. L’optimisation de l’épaisseur de stratifiés composites
décrite en section 2.2.1 est un exemple d’optimisation non paramétrique.

• La complexité croissante des logiciels de simulation fait qu’ils sont souvent
vus comme des bôıtes noires lors de l’optimisation. Ceci a deux effets : les
sensibilités aux paramètres d’optimisation sont de plus en plus rarement cal-
culées par les simulateurs et il est courant que les simulations échouent pour
certains choix des paramètres.

Positionnement scientifique

Les problèmes d’optimisation qui demeurent d’actualité sont difficiles et méritent
d’être abordés à la fois à travers la modélisation, la formulation, les algorithmes
d’optimisation et la mise en œuvre informatique. Les travaux de recherche que j’ai
réalisés portent sur l’optimisation de systèmes mécaniques, l’optimisation étant vue
sous tous ces angles:

• La modélisation a été principalement abordée dans le cadre de l’apprentissage
statistique [Rakotomamonjy et al., J2007; Rakotomamonjy et al.,

J2002; Le Riche et al., J2001];

• La formulation; dans [Gogu et al., J2008; Molimard et al., J2005;

Molimard and Le Riche, J2003], nous avons étudié l’influence de la formu-
lation des distances modèle-expérience à des fins d’identification; [Le Riche

et al., J2003-2] est une étude sur la formulations de l’optimisation couplée
d’une structure et de son procédé de fabrication; Dans la partie 1.3.2, la con-
ception d’une monopalme est décomposée en deux étapes, une optimisation
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en deux dimensions avec prise en compte des couplages fluide-structure et une
optimisation structurale en trois dimensions, de manière à rendre le problème
calculable; Le brevet [Bay et al., P2005] est essentiellement un travail sur
la formulation du contrôle optimal de laminoirs;

• Les méthodes d’optimisation généralistes sont discutées dans le chapitre 1;

• Les méthodes d’optimisation spécialisées sont présentées dans le chapitre 2;
dans l’esprit des théorèmes de No Free Lunch pour l’optimisation (cf. sec-
tion 0.3), il s’agit de concevoir des algorithmes d’optimisation adaptés aux
problèmes traités à savoir, la conception de structures composites et l’optimi-
sation de forme. Des concepts venant de la mécanique sont inclus dans des
algorithmes évolutionnaires.

• La mise en œuvre informatique est susceptible de faire gagner, ou perdre,
beaucoup de temps à un projet d’optimisation. Elle peut aussi donner des
idées ou les contraindre : tous les liens imaginables entre simulateurs et opti-
miseurs devraient pouvoir être réalisés. L’article [Le Riche et al., J2002]

est une réflexion sur comment obtenir une grande liberté d’association entre
simulateurs et optimiseurs au moyen de programmation orientée objet.

Contributions scientifiques

Les travaux présentés dans cette thèse sont le fruit de collaborations avec mes
coauteurs et ont été influencés par des chercheurs du monde entier. Qu’ils soient
tous remerciés pour leur aide, leurs idées et leur enthousiasme.

Une liste complète des publications que j’ai coécrites est donnée dans le chapitre 4.2.
Une sélection d’article est reproduite en Annexes. Parmi ces publications, nous
dégageons maintenant les travaux qui nous paraissent les plus importants. Ces
travaux sont classés en contributions méthodologiques et applicatives.

Contributions méthodologiques

Mes coauteurs et moi même avons contribué au développement de méthodes d’optimi-
sation généralistes. Nous mentionnerons en particulier les travaux suivants :

• Une nouvelle stratégie de prise en compte les contraintes d’optimisation basée
sur la dualité a été proposée dans [Le Riche and Guyon, J2002]. C’est une
méthode de pénalisation minimale, où la faible pénalité est obtenue au prix
d’une perte de continuité. Cette méthode est particulièrement adaptée aux
algorithmes évolutionnaires, mais elle peut être également utilisée dans tout
autre optimiseur d’ordre 0.

• Une autre stratégie de prise en compte des contraintes basée sur la coévolution
de solutions faisables et infaisables a été décrite dans [Le Riche et al.,

C1995-1]. Cette méthode, appelée SeGregated Genetic Algorithm (SGGA),
est spécifique aux algorithmes évolutionnaires. A notre connaissance, c’était
la première technique coévolutionnaire de traitement des contraintes en op-
timisation continue ( [146, 147] ont développés des concepts similaires mais
dans le cadre de la recherche opérationnelle).

• L’algorithme “Globalized and Bounded Nelder-Mead” (GBNM, cf. [Luersen
et al., J2003]) est une amélioration du populaire algorithme de Nelder-
Mead. Grace à une stratégie de redémarrage probabilisé, GBNM est global.
De plus, il prend en compte les bornes sur les variables et les contraintes
d’optimisation non linéaires.
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• Un algorithme d’optimisation statistique à double distribution (DDOA) a
été introduit dans [Grosset et al., J2006]. Bien qu’il n’ait été jusqu’à
présent appliqué qu’en conception de composites, l’idée est générale : deux
distributions de probabilités simples sont apprises à des fins d’optimisation,
l’une dans l’espace des x, l’autre dans un espace de variables auxiliaires.
Bien qu’aucune de ces distributions ne décrive les couplages entre variables,
l’utilisation conjointe des deux distributions génèrent des lois couplées dans
l’espace des x. De plus, les variables auxiliaires permettent d’introduire une
information de haut niveau dans l’optimisation, les rigidités globales de la
structure alors que les variables x sont des détails géométriques.

• Un critère d’optimisation globale basé sur le krigeage, l’amélioration espérée
multi-points, a été proposé dans [Ginsbourger et al., C2007]. Il s’inspire
du critère d’amélioration espérée de [93], mais, contrairement à celui-ci, il
fournit plusieurs points à chaque itération. L’amélioration espérée multi-
points permet donc des mises en œuvre parallèles et n’est pas un critère
d’amélioration immédiate.

Nos travaux sur la spécialisation des optimiseurs évolutionnaires pour l’optimisation
de structures ont été parmi les premiers dans le domaine.

• [Le Riche and Haftka, J1993] et [Le Riche and Haftka, J1995] ont ou-
vert la voie à de nombreux projets de conception de structures en compos-
ites par algorithmes évolutionnaires (e.g. [112, 91, 141, 151, 179, 145], entre
autres).

• En optimisation de forme, nous avons développé une méthode combinant une
heuristique de type fully-stressed-design et un algorithme évolutionnaire ([Le
Riche and Cailletaud, J1998]).

Applications

Nous aimerions également mentionner deux familles d’applications prises parmi nos
études: l’apprentissage de réponses d’automobiles et l’identification de paramètres
de lois de comportement.

• Identification de réponses d’automobiles. [Le Riche et al., J2001],
[Rakotomamonjy et al., J2002] et [Rakotomamonjy et al., J2007] avaient
pour but d’estimer les efforts transmis au chassis, la masse instantanée, et le
couple moteur, respectivement, à partir de mesures en clientèle d’accélérations
et des commandes du pilote (vitesse engagée et course de la pédale d’accélérateur
en particulier). Comme l’état de la route, le vent et le chargement du coffre
étaient inconnus, une modélisation physique n’était pas possible. Nous avons
mis en œuvre diverses techniques d’apprentissage statistique (machines à sup-
ports vectoriels, réseaux de neurones, régression) pour réaliser les estimations.
Dans tous nos travaux, les variables utilisées dans l’apprentissage et la forme
fonctionnelle des régresseurs étaient trouvées au moyen de modèles physiques
simples d’automobiles. Une illustration est donnée en Fig. 1.

• Identification de lois de comportement. Dans [Le Riche and Guyon, T1999],
nous avons revu en profondeur les moindres carrés et l’algorithme de Levenberg-
Marquardt. Outre une synthèse des principaux résultats sur l’identifiabilité,
deux contributions éventuellement originales du rapport sont i) une preuve
de convergence de l’algorithme vers la solution de moindre norme pour les
problèmes linéaires et ii) une analyse de sensibilité réalisée à partir de la
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trajectoire de l’algorithme. L’algorithme de Levenberg-Marquardt a été re-
programmé avec prise en compte des bornes sur les variables et diverses tech-
niques de mise à l’échelle. Ces travaux ont ensuite servi de base à [Molimard

and Le Riche, J2003] et [Molimard et al., J2005].
Nous avons aussi contribué à l’identification de propriétés élastiques de solides
à partir de mesures de champs ([Molimard et al., J2005], [Silva et al.,

J2007-1], [Silva et al., J2007-2]). Fig. 2 est une illustration extraite
de ces travaux. L’influence de la formulation du résidu sur les propriétés iden-
tifiées a été étudiée. Nous avons montré dans [Molimard et al., J2005]

que, du fait de la grande quantité de mesures, il était possible d’inclure des
incertitudes expérimentales, e.g., un mauvais alignement d’éprouvette, parmi
les variables identifiées.
Récemment, nous nous sommes efforcés de fournir une précision avec la valeur
des paramètres identifiés. Dans [Silva et al., J2007-2], des intervalles
de confiances sont estimés par ré-échantillonnage (bootstrap) des mesures,
répétition des identifications, et statistiques sur l’ensemble des propriétés
obtenues. Dans [Gogu et al., J2008] enfin, la distribution des paramètres
estimés est obtenue directement par une technique Bayésienne.

Perspectives

Optimisation et incertitudes. Il est important pour les chercheurs en optimisa-
tion de réaliser que les simulateurs y qu’ils utilisent ne sont que des représentations
imparfaites de la réalité. Il existe donc des incertitudes, qui peuvent être de na-
ture déterministe, comme des paramètres expérimentaux inconnus, ou de nature
aléatoire, par exemple un effort aérodynamique. Ces incertitudes peuvent le plus
souvent être traduites dans les modèles sous la forme de paramètres incertains dont
il faut tenir compte lors de l’optimisation [104, 180].

La conception en présence d’incertitudes, en particulier l’optimisation et l’estimation
simultanées de quantiles, est donc une de nos perspectives. Elle est présentée dans
la partie 3.1.

Une seconde perspective à nos travaux est l’identification, à partir de mesures
de champs, de propriétés matériaux. La surabondance des données obtenues (1000
à 10000 mesures indépendantes) doit permettre à l’avenir i) de mieux identifier
des changements locaux du matériau, c’est à dire de l’endommagement, et ii) de
caractériser la distribution des paramètres matériaux identifiés au moyen d’une (ou
de peu d’) expérience(s), ce qui est une information plus riche que les intervalles de
confiance. Ces perspectives sont détaillées en section 3.2.

Optimisation à coût fini. Il est clair que le coût numérique des simulations est,
et restera, un facteur limitant à l’optimisation. De nombreux travaux s’attaquent
à ce verrou en substituant aux simulateurs fins des modèles moins coûteux, parce
qu’obtenus à partir de physiques dégradées ou bien appris sur des données [150,
177, 74]. Pour répondre au problème du temps de calcul, nous proposons une
direction différente mais complémentaire. Il s’agit de développer des méthodes
d’optimisation qui, explicitement, à chaque itération, prennent en compte le nombre
de simulations restantes pour décider quelle région de l’espace du possible explorer.
La prise en compte du temps de calcul encore disponible lors de l’optimisation
permettra également de contrôler la finesse des simulations à venir. Ces idées sont
décrites en section 3.3.

Optimisation distribuée. Ces vingt dernières années, la capacité mondiale en
calcul haute performance (HPC) a doublé chaque année : elle était d’un teraflop
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en 1994, le petaflop a été atteint en 2005 et, fin 2007, la HPC était estimée à 7
petaflops, dont 0.5 appartenaient à l’ordinateur le plus rapide au monde. Cette
accroissement des capacités de calcul n’est pas seulement dû aux super-calculateurs
intégrés, mais aussi aux grilles de calcul, qui permettent la création d’équipements
de grande capacité à partir d’ordinateurs faiblement connectés (e.g., la grille de
production EGEE, [53]).

Le calcul distribué est une solution technologique pour réduire le temps de calcul
de l’optimisation. Les disciplines les plus consommatrices en calculs, telles que la
météorologie, la mécanique des fluides, l’astrophysique ou la génétique, utilisent déjà
des ressources informatiques distribuées. L’optimisation en sciences pour l’ingénieur
a également amorcé le virage vers la distribution des calculs [190, 199, 105, 143, 193],
pas seulement d’ailleurs pour réduire le temps de calcul mais également parce que
les acteurs de l’optimisation multi-disciplinaire sont éloignés géographiquement [67].
Néanmoins, l’essentiel des méthodes d’optimisation actuelles ont été conçues dans
un cadre déterministe. Il est important aujourd’hui de penser l’optimisation de
manière asynchrone. C’est une des conditions2 au développement de méthodes qui
passent bien à l’échelle d’un grand nombre de nœuds de calcul. Nos perspectives
scientifiques à savoir, l’optimisation en présence d’incertitudes, l’identification à
partir de mesures de champs et l’optimisation à coût fini, sont toutes susceptibles
de bénéficier des technologies de distribution des calculs.

2Les autres obstacles au développement de l’optimisation distribuée sont la complexité et
l’instabilité des middlewares impliqués et, en optimisation multi-disciplinaire, le volume de données
à échanger entre disciplines.



x RÉSUMÉ ÉTENDU EN FRANÇAIS



Foreword

This thesis has been written in partial fulfilment of the French “Habilitation à
Diriger les Recherches” degree (HDR, which means authorization to advise doc-
torate students). The first part of the dissertation consists of a summary of the
research work accomplished between 1994 and 2008 by the author and his collabo-
rators. The summary is partial because it will only concern the global optimization
of mechanical systems: to preserve a unity of topic and avoid a long list of weakly
related projects, works devoted to system identification and complex optimization
problem formulations will not be covered in this text. The reader should also be
informed that this dissertation is not a self-contained scientific text: the main re-
sults dealing with the global optimization of mechanical systems are presented and
situated with respect to related works with references to the associated articles and
reports. Chapter 4.2 is an extensive list of published articles, reports, patents, and
seminars.

The text starts with general considerations on optimization in mechanical engi-
neering. This introduction gives a high-level view of the engineering optimization
activity. It explains the logic that relates the different technical results which are
presented afterwards in two chapters: general global optimization algorithms (chap-
ter 1) and specialized evolutionary algorithms.
My research perspectives are presented in chapter 3.
The last part of the dissertation is devoted to the other aspects of my research
activities, in particular teaching, advising students, managing projects in collabora-
tion with industry, research agencies and other universities, and reviewing. Selected
publications are added as Appendices for easier reference.

Two standards are used in the text to cite publications: extended citations,
e.g., [Le Riche et Guyon, C2001], refer to works that I have co-authored and
are listed in section 4.2. They are composed of the authors names, followed by
a letter and the year of publication. The letters P, J, C, S, T and V designate
patents, journal article, conference articles, seminars, technical reports (including
contract reports) and popularizing articles, respectively. Bracketed numbers refer
to publications in which I was not involved. They are listed in section 4.1.

xi
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Optimizing mechanical

systems

0.1 The different sides of an optimization problem

in engineering

Optimization is the art of minimizing or maximizing functions or functionals. In
any modelling or design effort optimization problems are embedded. Identifying a
model involves minimizing a distance between experiments and model predictions.
Modelling can often be formulated as energy minimization. For example, the equi-
librum of a conservative system can be obtained by minimizing its total potential
energy. And, of course, optimal design is also concerned with the maximization of
performance criteria.

Optimization is therefore a versatile practice. Readers who are not familiar with
optimization in engineering may find it difficult to understand what “optimizing a
mechanical system” encompasses. This is particularly true in France where none
of the academic committees (the “sections” of the Conseil National des Univer-
sités) can give a ruling on all of the engineering optimization activities. Related
committees are applied mathematics, computer science, and the applications fields.

The next two sections aim at clarifying the problematics of mechanical system
optimization so that all readers may understand what unites the scientific results
that are presented later in the text: the problematics is decomposed into elemen-
tary tasks in section 0.1.1, then the links between these tasks are discussed in
section 0.1.2. These sections will also introduce basic notations.

0.1.1 Optimization basic components

The optimization practice can be divided into the following elementary tasks:

Modelling is the task of defining the model y of the considered system. y is
a vector of responses. Physical based models start with the writing of the basic
equations that the system has to satisfy. It is followed by the implementation of a
numerical3 solution. In the typical example of the design of a structure, the basic
equations are those of solid mechanics (equilibrium, behavior laws and boundary
conditions) and most numerical solutions involve finite elements softwares. y could
consist of the mass of the system and finite elements nodes displacements.
The other type of models are statistical, i.e., learned from a given set of input x -
output y. These a priori data come from measurements or other simulations (often
from a calculation-intensive physics-based model).

3Analytical models are of great interest for developing search algorithms, but current real
problems rarely have analytical expressions.

xiii
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Note that there can be many models of the same system, which is the topic of
multi-fidelity design. (See section 3.3.2.)

Formulation is the definition of the performance criteria f , of the solution’s
feasibility through the inequality constraints g, and of the optimization variables x,

{
minx∈S f(x)
such that g(x) ≤ 0

(2)

where S is a search space. f and g are in fact implicit functions of the optimization
variables x and other (not optimized) problem parameters, e, through the model
y, i.e., f(x) ≡ f(x, e, y(x, e)) and g(x) ≡ g(x, e, y(x, e)). To be comprehensive, one
should add equality constraints, h(x) = 0. However, actual equality constraints
are seldom encountered in engineering optimization. They usually express physics
fundamental relations that must be satisfied, for example an equilibrium of forces,
and are therefore taken care of in y. In many other cases, equality constraints are
handled by removing one variable, say x1, by solving for it h(x1, x2, . . . , xn) = 0. In
most remaining cases, the equality constraint can be relaxed into two inequalities,
−ε ≤ h(x) ≤ ε, ε a small positive constant. For these reasons, this manuscript
only discusses inequality constraints. The topic of equality constraints regains im-
portance in multi-disciplinary optimization (MDO, see [1, 117]) and simultaneous
analysis and constraints (SAND, see [77]) because parts of the physical simulations
and the optimizations are considered together.

Optimization algorithm After the formulation, some mathematical features of
the optimization problem appear: is the search space, S, continuous, discrete or
mixed (between continuous and discrete variables) ? How many variables and con-
straints are there ? Do we know if the problem is linear, quadratic, or convex ? Do
we expect a unique solution, many local solutions, or a continuum of global solu-
tions as in ill-posed problems ? Are the objective functions and constraints noisy
? The answers to these questions guide the choice of an off-the-shelf optimization
strategy or the creation of a new algorithm.

Implementation In terms of programming, the implementation involves, firstly,
the parameterization of the model y so that x can be changed easily, as will be
needed for calculating the objective functions and the constraints. In the simplest
parameterizations, the model y is completely recalculated for each new x. For
calculation intensive models, it may save a lot of computing time to program a
parameterization that only updates what is required when x changes. For example,
if x is a vector of material parameters, it is a major waste of time to reload the
geometry of a structure and remesh it. Next, the calculation of f and g from y is
implemented. Finally, interfaces between the optimizer and the simulator can be
created. The implementation typically involves a high labor input.

0.1.2 Engineering optimization: connecting the basic com-

ponents

The above elementary optimization steps are traditionally treated separately in
well-established fields. Modelling a system based on its physics is the topic of one
or many particular physical domains such as fluid mechanics, solid mechanics, mag-
netics, thermics . . . . Modelling from data is the statistical data mining problem.
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Devising optimization algorithms for treating well formulated optimization prob-
lems is an applied mathematics objective. Implementing models and optimizers
and interfacing them together is a computer science activity.

However, the relations between these aspects of the optimization are numerous.
In our experience, the links are most often created by the following elements.

Cost of a single analysis The computing time of y(x) is the most frequently
encountered obstacle to solving an optimization problem. It will remain this way
despite progress made in computers because the models’ complexity increases faster
than the calculation capacities.
The number of affordable analyses guides the choice of the optimization algorithm.
For example, below about 1000 analyses, no statistical optimization can be per-
formed.
The cost of one analysis may have an influence on the model: a common technique
to alleviate the analysis cost is to add a low cost metamodel to y. This metamodel
will partly guide the optimizer. Such practice is called multi-fidelity optimization.
A high analysis cost may also affect the problem formulation: it can be preferable
to forego the optimality of the solution and decompose the problem into smaller,
affordable, subproblems. [Luersen et al., J2006] is an example of problem de-
composition: the design of a monofin is first treated in two dimensions to make it
computationally affordable and the result is then translated into three dimensions.

Sensitivity information Local sensitivity analysis, that is, the calculation of
∂fi/∂xj and ∂gi/∂xj , has been one of the founding tasks of engineering optimiza-
tion. In structural optimization for example, great efforts were made from the 1980’s
to the turn of the century to calculate shape sensitivity information ([187, 72, 29, 5]).
Sensitivity analysis connects all of the elementary steps of the previous section: the
formal calculation of ∂yi/∂xj takes place at the model level; it is then propagated

at the formulation level (∂fi/∂xj =
∑ny

k=1
∂fi

∂yk

∂yk

∂xj
) and subsequently needs to be

implemented. The availability of sensitivity calculations guides the choice of the
optimizer. Exact sensitivity information is so important that it will be used in
the optimization algorithm if it is available. When sensitivities have not been cal-
culated, they are often approximated by finite differences. Such approximation is
costly when the number of variables, n, grows, and it is numerically noisy. The
associated optimization strategy has to be economical and accept noisy gradients.

A priori information Moreover, one almost always has a priori information
about the problem solution. Such a priori information can be accounted for at any
of the elementary optimization levels.
The most frequently encountered situation is that of a previously known good
solution. This is the case with redesign projects. One can simply choose this good
solution as a starting point of the search, which has a minimal impact on the imple-
mentation. Knowledge of a good solution can also affect the problem formulation. In
[Le Riche et al., J2003-2] for example, knowledge of the structural optimum
design permits the setting of performance objectives (in the form of constraints) of
the coupled process-structure optimization. Ill-posed identification problems, where
there is an infinite number of solutions, can be regularized by minimizing the dis-
tance to a known good solution (e.g., [Le Riche and Guyon, T1999]).
Another type of a priori information is a heuristic which is known to improve so-
lution points. For example, in structural optimization, the fully stressed design rule
([75] and see section 2.3) has been known since at least the 1960’s ([163]). It was
coupled with a genetic algorithm in [Le Riche and Cailletaud, J1998], which
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illustrates how a priori information can modify the optimizer. In fact, many com-
ponents of the algorithms for optimizing composite laminates that are presented in
section 2.2 are based on making efficient optimizers from the a priori understanding
of composite laminates.
Another feature is that f (or g) is not calculable everywhere. For example, if f
is related to the orbit of a satellite that has been launched by a rocket of trajectory
y, and if the rocket never reaches the targeted orbit (say it crashes shortly after
take-off) for the given x, f(x) cannot be calculated. Another simple example comes
from material science when identifying material parameters from a traction-creep
experiment: if the material parameters, x, are such that the ultimate stress that
can be obtained by pulling on the specimen is smaller than the creep load, the creep
response cannot be calculated. More generally, most simulators involving non-linear
equations are prone to fail for certain x choices. When this is expected, the formu-
lation, the optimizer and the implementation may be complemented accordingly:
the formulation can penalize points in or near non-calculable areas; the optimizer
should not to fail when the objective function does not return a value; and the
implementation should make the simulation hang up after waiting a maximum time
for a response.

Experience feedback Since good optimizers may use model, formulation or im-
plementation flaws to improve the performance of their solutions, early optimization
results provide important information to improve all the previous steps.

Research in engineering optimization has its essence in considering all of the
above basic optimization steps together.

0.2 Bottlenecks when optimizing mechanical sys-

tems

On the one hand, there are mathematical features that complicate an optimiza-
tion problem, such as the design space dimension, the problem non-convexity, the
problem irregularity4 and the occurrence of local optima5 to name a few6. These
features are so fundamental that they receive constant research attention. Every
optimization strategy starts by addressing them. Having optimization algorithms
that can escape local optima and eventually locate global optima moved from being
a theoretical research subject in the 1980’s to being a demand from optimization
users. It represents a major change of perspective, equivalent to going from linear to
non-linear representations in modelling. The first two chapters of this dissertation
will be devoted to the design of global optimization algorithms.
Mixed search spaces, i.e., problems where some of the variables are continuous while
others are discrete, are a common bottleneck. In mechanical engineering, mixed
search spaces are encountered when some of the components of the optimized sys-
tem are chosen from a catalogue (e.g., truss members profiles, ply thicknesses in
composite laminates, booster configurations and stage propulsion technologies for
satellite launchers). The difficulty with mixed variables is that there is no stan-

4In Lipschitz continuous functions, the regularity is classically quantified by the Lipschitz con-
stant. The fitness-distance correlation presented in section 1.1 is another regularity measure.

5The importance of local optima, or multimodality, can be measured for a given optimizer by
the probability that the optimizer, when randomly started, asymptotically converges to a local (as
opposed to global) optimum.

6One can always find counterexamples to such statements. In classification and regression, for
example, it may be advantageous – at least in terms of direct value of classification and regression
– to work in high dimensional spaces.
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dard algorithm to handle these cases. It is rarely affordable to solve the continuous
subproblem for each combination of the discrete variables. (If it is affordable, the
problem becomes easy.) Branch-and-bound approaches ([119, 122]) permit the re-
duction of some of the combinatorial cost when accurate bounds on the optimal
objective function can be obtained for a restriction of the initial problem. Although
the paradigm is general, the branching and bounding operations are case dependent.
These algorithms tend to remain costly because they are enumerative. Probabilistic
search algorithms, in particular evolution strategies ([169, 11, 21, 54]), have stan-
dard versions that can be applied to mixed problems. This has contributed to the
rapidly growing popularity of these methods in the last twenty years. More will be
said about these algorithms in sections 1.1 and 2.2. Note that they remain costly
search methods and do not offer a diagnostic about the optimality of their solution.
Another important complication in optimization is the presence of uncertainties in
the model that make the optimization criteria f and g noisy. Deterministic opti-
mization approaches will typically fail to converge or will provide useless results.
Measurement noise, uncertainties in the boundary conditions and material prop-
erties are common sources of randomness in mechanics. Optimization approaches
that address this issue compose the domains of reliability-based design optimiza-
tion (RBDO), robust optimization and stochastic optimization. Section 3.1 briefly
returns to this topic which constitutes some of the perspectives of our work.

On the other hand, one may encounter practical difficulties when optimizing a
system.
As already stated in the previous section, despite the progress made in computers,
the simulation times (i.e., the time of one calculation of y(x)) have increased in the
last 20 years because the models complexity typically grows faster than the com-
putation speed. Of course, the optimized models have become more sophisticated
in the meantime. However, the lesson is that optimization researchers should not
expect an increasing available number of simulations in the future. To address the
simulation cost problem, an important contemporary research direction that has
given rise to the field of multifidelity optimization, is to substitute one or many
metamodels for y (or f and/or g). Another current response to simulation cost is
the distribution of the calculations among many computers. Because the limited
simulation capacity is a determining factor for optimization, the GBNM algorithm
presented in section 1.3 and the genetic algorithms of section 2.2 are designed to
perform at a given number of analyses.
It has also become seldom for simulators (we mainly mean commercial non-linear
finite element simulators) to provide sensitivity information. The reason is probably
the complexity of implementing sensitivity calculation in an existing large code and
the computation overhead that would result for non-optimizing users. Today, auto-
matic differentiation is capable of tackling real size direct calculations (e.g., [130]),
but its behavior on iterative numerical procedures is still not understood well [183].
It therefore seems to have become accepted by the engineering optimization commu-
nity that simulators be handled as black boxes, with the sensitivity analysis being
performed outside the code through metamodels and design of experiments.
As a last practical difficulty, we remind the reader of the non-calculable optimization
criteria previously discussed in section 0.1.2.

It is important to address these optimization bottlenecks and develop more
efficient, more robust, more versatile and more global search methods. Indeed,
optimization is a key point in many analysis and design activities. Inferring new
models from experimental data is an ill-posed optimization (identification) problem.
Non-linear finite element simulators may experience convergence difficulties because
of the underlying large scale optimization, that is, the residuals minimization in
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the space of degrees of freedom. Convergence is even more difficult to achieve
when dealing with non-differentiable (e.g., plasticity) or multi-modal phenomena
(e.g., buckling). And, of course, the optimum design domain directly benefits from
improvements in optimization methods.

0.3 General versus specific solutions : the No Free

Lunch theorem

In 1995, a theoretical result known as the “No Free Lunch” theorem (NFL, [196])
shed a theoretical light on a phenomenon often noticed by optimization methods
developers: when improving the performance of a search algorithm for a certain
function, there is a simultaneous performance deterioration for another function.
The first NFL theorem stated that “any two algorithms are equivalent when their
performance is averaged across all possible problems”. The NFL theorem was estab-
lished in discrete finite dimensional spaces, which is not a major practical restriction
since real numbers are encoded in 32 or 64 finite arithmetic in computers. An il-
lustration of the NFL theorem could be that any given search method which is
more efficient than a random search for certain functions is less efficient for other
functions.

A naive interpretation of the NFL theorem would be that there is no point
improving search algorithms for some functions since, simultaneously, one makes
them worse for other functions. Such reasoning overlooks that the NFL is based
on an average of all problems, whereas one is always interested in a much more
restricted problem class.

Other NFL theorems hold over more specific problems classes. By problem
classes, we mean functions probability distributions. The above first NFL theorem
discusses the uniform functions distribution, i.e., every function is equally likely.
Other classes are theoretically possible, but it is necessary and sufficient for the
NFL to hold that the considered functions have an invariant distribution with re-
spect to any coordinate (x) permutation ([88]). I am not aware of any practical
problem class that matches this condition. For example, if one takes into account
all possible performance criteria of composite laminates, permuting the outermost
and innermost plies in the function coding will profoundly affect each criterion and,
as a consequence, will change the criteria distribution. Optimization algorithms
are always meant to solve a small class of problems: the most general algorithms
studied here hypothesize functions with essential optima (cf. section 1.1) in order
to avoid unsolvable needle-in-a-haysack problems.

The NFL theorem is a result against general optimization algorithms and in favor
of specialized algorithms. By specialized we mean that “(the problem) structure
must be known and reflected directly in the choice of the algorithm” ([197]). In
theory, the specialization should be carried out beforehand, in the design of the
algorithm. Checking a posteriori may be misleading: it is not because an algorithm
performs better on a certain class of problems than another that it is specialized.
Both can have a poor performance. To be pertinent, research in optimization should
link the optimization algorithm to its targeted problem.
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0.4 Scope of this dissertation

0.4.1 Our research process

In the previous pages, we have introduced elements that can now be assembled to
explain the logic that unites our work.

We have decomposed optimization problems into elementary tasks (section 0.1.1)
and shown how these tasks are connected by a particular problem (section 0.1.2).
The optimization problems that are of interest are difficult and should be tackled
from all sides. That is the reason why we have considered the following research
subjects:

• Modelling was mainly addressed through system identification [Rakotomamonjy

et al., J2007; Rakotomamonjy et al., J2002; Le Riche et al., J2001];

• Optimization formulations; in [Gogu et al., J2008; Molimard et al., J2005;

Molimard and Le Riche, J2003], we looked for adequate formulations of
identification problems; [Le Riche et al., J2003-2] compared different
formulations for simultaneously optimizing a structure and its manufactur-
ing process; in section 1.3.2, the design of a swimming monofin is decom-
posed into subproblems in order to become computationally tractable; [Bay
et al., P2005] is a work on the formulation of an optimal control problem.

• Optimization algorithms will be discussed at length in chapters 1 and 2.

• Implementation issues are a practical aspect of every optimization project.
[Le Riche et al., J2002] was a reflection on how to achieve flexibility in
an optimization software using programming objects.

Section 0.2 gave a short diagnostic on optimization bottlenecks. Many of these
will be addressed in this dissertation: the presence of local optima, the compu-
tational cost of a single analysis, the absence of sensitivity information and the
programming of simulator-optimizer interfaces.

Finally, we have argued in section 0.3 that optimization problems require spe-
cialized algorithms. Accordingly, our work is focused on mechanical applications,
among which the design of composite structures and the identification of constitu-
tive law parameters have particularly held our attention. Whenever possible, our
thought process aims at exploiting synergies between the mathematical and the
mechanical view points.

0.4.2 Structure of the dissertation

The dissertation starts with a chapter on general global optimization algorithms.
This chapter 1 gives an introduction to evolutionary algorithms that will be useful
later on when speaking of constraints handling and specialized evolutionary based
approaches. It also describes two non-evolutionary global optimization algorithms,
the Globalized and Bounded Nelder-Mead algorithm (GBNM, section 1.3) and the
Parallel Efficient Global Optimization (1.4). The chapter concludes with a section
on constraints handling strategies that are compatible with these global optimiza-
tion algorithms.

The specialization of evolutionary algorithms in specific problems is the sub-
ject of chapter 2. The evolutionary optimization paradigm is indeed particularly
well suited to incorporating problem-specific knowledge. The considered knowledge
domains are composite structures (section 2.2) and shape optimization (section 2.3).

Chapter 3 gathers our scientific perspectives. The dissertation finishes with a
summary of other professional activities, that is, teaching, project management and
reviewing. Copies of our main publications are included in the appendices.
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0.4.3 Scientific contributions

Our work constitutes an example of research in engineering optimization. We have
most often proceeded with a problem-solving type of approach, i.e., starting from the
problem and sometimes reaching methodological developments. Such a progression
has high chances of yielding a practical result and the application is an important
source of theoretical ideas. Nevertheless, we have always felt the need to balance this
approach with efforts starting from theoretical, mathematical bases. In hindsight,
we feel that we have not taken enough time to proceed in this direction, from the
theory onwards, and plan to achieve a better balance between the two approaches
in the future.

The work presented here is the product of collaborative work with all of my
co-authors and has been influenced by many other researchers from all over the
world. I am grateful to them for their help, ideas and enthusiasm.

An extensive list of the publications I have co-authored can be found in chap-
ter 4.2. A selection of those is copied in the appendices of this dissertation. Out of
these publications, we now outline the contributions which we find most important.
They are classified into methodological and applicative contributions.

Methodological contributions

My co-authors and I have contributed to the development of general global opti-
mization methods. In particular, we would like to mention the following works:

• A new strategy for handling constraints based on duality has been proposed
in [Le Riche and Guyon, J2002]. It achieves a minimal amount of penalty,
at the expense of losing continuity. It is particularly adapted to evolutionary
algorithms but can also be used with other zeroth-order optimizers.

• Another constraint handling strategy based on the coevolution of feasible
and infeasible solutions has been proposed in [Le Riche et al., C1995-1].
The method, the SeGregated Genetic Algorithm (SGGA), is specific to evolu-
tionary algorithms. To our knowledge, it was the first constraint handling
strategy based on coevolutionary concepts applied to numerical optimiza-
tion ([146, 147] have developed comparable ideas earlier but in operations
research).

• The Globalized and Bounded Nelder-Mead algorithm is an improvement of
the well-known Nelder-Mead algorithm. It is global (thanks to a fixed cost
restart mechanism) and handles variables bounds and non-linear constraints
(see [Luersen et al., J2003]).

• A double-distribution statistical algorithm for optimization has been devised
in [Grosset et al., J2006]. Although it has only been applied to compos-
ite laminates optimization so far, the concept offers wide-ranging applications:
two simple probability density functions (pdfs) are learned for optimization
purposes, one in the x-space, the other in an auxiliary space. Although none
of these pdfs accounts for variables couplings, the joint use of the two can
create complex pdfs with variables interactions in the x-space, which would
be have been difficult to learn directly. The auxiliary variables are also a way
to incorporate high level information7 into the search.

• In [Ginsbourger et al., C2007], a global optimization criterion based on
kriging has been proposed. Like EGO ([93]), it is an expected improvement

7E.g., global stiffnesses for structures when the primal variables are detailed structural dimen-
sions.
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(a) Acceleration measurement system. (b) Comparison between measured and predicted
forces on a real vehicle. The prediction is based on
an autoregressive network and the data was not used
in learning.

Figure 1: Identification of vehicle mass, loads in the suspension chamber and torque
from online acceleration and pilot controls measures. Cf. [Le Riche et al.,

J2001; Rakotomamonjy et al., J2002; Rakotomamonjy et al., J2007].

criterion. The originalities are, firstly, that is it not an immediate payoff
optimization criterion and, secondly, that many points are provided at each
iteration, which makes it suitable for parallel optimization. Approximations
to this multi-point expected improvement that are computationally tractable
have been devised.

We have also made early contributions to specializing evolutionary optimization
algorithms for mechanical problems.

• [Le Riche and Haftka, J1993] and [Le Riche and Haftka, J1995] were
among the very first of a large series of projects on the design of composite lam-
inates by specialized evolutionary algorithms (e.g. [112, 91, 141, 151, 179, 145],
among others).

• Similarly, in shape optimization, we have developed an approach combining a
fully-stressed based heuristic and an evolutionary algorithm ([Le Riche and

Cailletaud, J1998]).

Applicative contributions

We also would like to mention two application classes from the body of work, the
identification of automotive systems and the identification of behavior law param-
eters.

• Identification of automotive systems. [Le Riche et al., J2001],
[Rakotomamonjy et al., J2002] and [Rakotomamonjy et al., J2007]

aimed at estimating the load in the suspension chamber, the instantaneous
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(a) Experimental ε11 strain map.
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(b) Numerical ε11 strain map.

Figure 2: Identification of the elastic properties and the orientation of a composite
plate with a hole. Comparison of (a) the experimental with (b) the numerical ε11

strain map after identification. T = 1, 250 KN. (Cf. [Silva et al., C2007-2].)

mass and the engine torque from accelerations and pilot controls measure-
ments (engaged gear and accelerator position mainly). Because the measure-
ments were made during customer surveys, the state of the road, the wind
and the cargo are unknown, a direct physical model cannot be calculated.
We relied on various statistical learning techniques (support vector machines,
neural networks, least squares regression) to make the estimations. In every
case, the regression variables and the functional form of the regressor were
inferred from simple physical models of the system. See Fig. 1.

• Identification of constitutive law parameters. In [Le Riche and Guyon, T1999]

we revisited non-linear least squares and the Levenberg-Marquardt algorithm
in depth. Besides gathering important classical results on identifiability and
uniqueness, two original contributions of the report may be the proof of the al-
gorithm’s convergence to the minimum norm solution for linear problems and
sensitivity analysis based on the algorithm’s trajectory. An implementation
of the algorithm has been made with variables bounds handling and careful
scaling. This work has been of great use in other parameters identification
studies ([Molimard and Le Riche, J2003], [Molimard et al., J2005]).
Non-linear least squares based identification has been carried out with full-
field measurements in solid mechanics ([Molimard et al., J2005], [Silva
et al., J2007-1], [Silva et al., J2007-2]). Fig. 2 provides an illustra-
tion of the work on identification from full-field measurements. The influence
of the residual formulations on the identification convergence has been stud-
ied. The possibility of including uncertainties of the experimental set-up in
the identification procedure has been proposed and investigated ([Molimard
et al., J2005]).
We have recently started to identify the parameters and their accuracies. In
([Silva et al., J2007-2]), confidence intervals stem from repeated iden-
tifications and subsequent statistics. Bayesian identification estimates the pa-
rameters distributions. Bayesian and least squares identifications have been
compared in ([Gogu et al., J2008]).



Chapter 1

General global optimization

algorithms

1.1 Evolutionary optimization

1.1.1 Context

Evolutionary algorithms (EAs), of which genetic algorithms are popular examples,
are forty years old: in the last fifteen years, they have been applied intensely to
difficult engineering optimization problems. Today, they no longer represent an
engineering fashion fuelled by a biological metaphor. Accumulated experience en-
ables us to draw lessons from the advantages and limitations of EAs, and how they
compare to other global optimization methods.

By default, when dealing with EAs we will address the following (mono-objective)
global optimization problem

{
x∗ ∈ S
x∗ = Argminx∈Sf(x)

(1.1)

where f goes from the x search space S to IR. Alternatively, the problem is some-
times transformed into a maximization of a fitness function F . The discussion of
constrained problems such as Problem (2) is postponed until section 1.2.

The only hypothesis made on S is that it is a topological space, i.e., a space in
which neighborhoods exists. This assumption is necessary to define local solutions,
x̄ ∈ S, such that {

∃V (x̄), neighborhood of x̄,
x̄ = Argminx∈V (x̄)∩Sf(x)

(1.2)

On the contrary, solutions to (1.1) are global.
Two optimization problem classes need to be distinguished. The optimization is
parametric whenever S satisfies one of the following inclusions,

S ⊂ IRn or S ⊂ Dm or S ⊂ IRn ×Dm, n, m ∈ IN (1.3)

where D is a finite discrete set. The optimization variables are the components of
x ∈ S. They are taken in S continuous (a compact of IRn), discrete (Dn) or mixed
(continuous and discrete). The remaining cases, for which there are no integers
(n, m) such that (1.3) stands, are called non-parametric. To avoid numerical
problems, we further assume that the global optima x∗ of (1.1) are such that f(x∗) >
−∞. In continuous parametric cases, it is also assumed that the global optima

1
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are not isolated1, in order not to focus on artificially deceptive problems and to
allow global convergence proofs. No other hypothesis on S and f is required to
treat (1.1). Contrary to mathematical programming, no regularity (e.g., Lipschitz
regularity), continuity, differentiability or convexity is needed. So few assumptions
are not specific to EAs but it is a property of stochastic optimizers. For example,
simulated annealing ([110]) is also very flexible in terms of mathematical framework.
Consequently, stochastic optimizers, EAs in particular, can be applied to a wide
range of situations. The price of such ubiquity is the large number of analyses
EAs typically take to locate good solution points. As the No Free Lunch theorem
hinted, this number of analyses depends on the problem. Moreover, since EAs are
a large family of algorithms, the performance also depends on the particular EA
implementation and its suitability to the problem at hand (cf. paragraph 1.1.4).

1.1.2 Overall structure of an evolutionary algorithm

The Darwinian metaphor

Evolutionary algorithms are stochastic optimization methods that produce a set of
points in S at each iteration using stochastic operations (cf. example in Fig. 1.1).

Figure 1.1: Evolutionary optimizers handle a set of points (a “population”) at each
iteration. In this example, the objective function f has local optima. f expresses
the in-plane stiffness A11 of a composite laminate penalized so that Poisson’s ra-
tio is bounded 0.48 ≤ ν ≤ 0.52. The variables x1 and x2 are the material fiber
orientations, cf. [Grosset et al., J2006]

It is a common practice to introduce EAs through a Darwinian metaphor: a
point x in S is dubbed an individual of a given species. An overly simplified version
of Darwin’s theory is that species evolve through two mechanisms, blind variations
that occur during reproduction and natural selection that favors those individu-
als who are most adapted to their environment. If the individuals are associated
with points in S and the adaptation level is quantified by the objective function f ,
such an evolution process can be seen as solving the optimization problem (1.1).
The main metaphorical terminology is summarized in Tab. 1.1. More generally,

1In mathematical terms, only essential global optima are tracked, i.e.,

f∗ = min{y | ∀ε > 0 , v(x ∈ S|f(x) < y + ε) > 0}

where v is a set measure such as v(E) = Volume(E)/Volume(S).
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individual, phenotype x
chromosome, genotype coding of x

gene one component of x’s coding
allele a gene’s – or component’s – value

fitness, performance, adaptation F (x)
population P = {x1, . . . , xµ} ∈ Sµ

generation change of population from Pt at time t to Pt+1

Table 1.1: The Darwinian metaphor.

frequent allusions to biological concepts can be found in EAs literature (e.g., pop-
ulation niches [127], chromosome’s diploidity [65], . . . ). We will sometimes use this
metaphor because it helps to explain and even devise new EAs. However, we will
keep in mind that a metaphor does not justify algorithmic choices.

Evolutionary algorithm skeleton

Fig. 1.2 shows the flowchart of a generic evolutionary algorithm, which encompasses
genetic algorithms (GAs, cf. section 1.1.4), evolution strategies (ES, cf. section
1.1.6) and estimation of density algorithms (EDAs, cf. section 1.1.6). To keep the
flowchart simple , Fig. 1.2 accounts neither for EAs with varying population sizes,
nor for EAs with a memory (or archive, [121]), nor for EAs that have subpopulations
(as in parallel implementations, [129], or coevolutionary versions, [123, 146]).

The optimizer state at time t is completely determined by the µ individuals
of the population Pt and their performances. The initial population, P0, can be
randomly chosen in S. Alternatively, P0 can be initialized in a way that controls its
composition, e.g., the number of 1’s in binary chains ([99]). Some of the individuals
of P0 can also be chosen by the user, which is a simple way to inject a priori
knowledge into the search. Iterations are made of selection and/or replacement, and
stochastic variations. Examples of selection, replacement, crossover and mutation
will be given in the paragraphs 1.1.2.

The principle of evolutionary searches is the following: selection and replacement
take samples from the population Pt in a biased way that favors the individual’s
performance (so-called “natural” selection). Selected individuals, or parents, un-
dergo blind, i.e., independent of the performance, variation operators, which yields
λ new points or children. In classical EAs (see section 1.1.2), the variation oper-
ators are known as crossover and mutation. In EDAs, the variation operators are
the updating of a probability density function pt followed by its sampling (cf. sec-
tion 1.1.6). The function of crossover is to transmit the parent’s beneficial features
to the children (your brain and my beauty); preserving the population diversity and
exploring the search space are objectives of the mutation (more will be said on this
topic in 1.1.3). As illustrated in Fig. 1.3, the variation operators, both crossover
and mutation, as well as the initialization, work in the space of genotypes (the space
of the codings of x). On the contrary, selection and replacement depend only on
the phenotypes (the optimization criteria) and are independent of the coding.

Variation operators create stochastic transitions in Sµ. These transitions are
biased towards highly performing individuals by the phenotypic operators. Three
stopping criteria can be used: a maximum number of calls to f (and/or g for
constrained problems, or any measure of a maximum simulation time), a maximum
number of iterations without improvement of the best known point, and a minimum
population diversity2.

2Population diversity can be measured in terms of the f ’s, e.g., σf/f
ref, where σf is the
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To finish this introduction, the following paragraphs provide examples of usual
selection and variation operators, without discussing the details of various possible
implementations of EAs. Even though there are standard EA implementations (for
example, CMA-ES for continuous parametric optimization, cf. section 1.1.6), as
soon as the problem is non-parametric, there is no other choice but to create a spe-
cialized EA from variation operators defined for the specific search space considered,
and mixed in the spirit of the flowchart of Fig. 1.2. The examples given hereafter
should be seen as components to be assembled. We will provide some rules whereby
this assembly will result in an efficient optimizer.

A reader willing to complete this introduction may refer to the following books:
[66] is an historical book, even if the hopes raised by the schema theory are now
thought not to be founded (cf. paragraph 1.1.4). A good introduction to modern
EAs that is still relevant today is [135]. A contemporary book on EAs is by Eiben
and Smith (2003) [54]. The recent book by K. DeJong [96] gives a unified view of
the evolutionary calculation field. French readers may want to consult [Le Riche

et al., J2007].

t ← 0.
Initialize the population P0 ⊂ Sµ.

Evaluate P0 (calculate the f’s).
Do while continue(P, t)

t ← t + 1
Selection.

Variation (crossover and mutation or, update then sample

the distribution pt) ⇒ λ children.

Evaluate the children.

Replace some of the parents with some of the children.

End.

Figure 1.2: Generic flowchart of an evolutionary algorithm with µ “parents” and λ
“children”. Pt is the population at iteration t. For EDAs, pt is an estimate of the
good points density at iteration t. For CMA-ES, pt is a distribution of good steps
(cf. section 1.1.6) . . .

Phenotypical operations : selection and replacement

Selection chooses a few individuals from a population with a probability based on
their performance (f and g). The underlying idea of a probabilistic selection is that
it may be beneficial for the optimization to have a small, yet non-null, probability
of keeping low performance individuals. This is because there is typically a bad
correlation between performance and distance to the optima in difficult problems (cf.
section 1.1.5). It is therefore sometimes advantageous not to select in a deterministic
fashion.

A simple yet fine selection implementation is the size τ tournament. Its pseudo-
code is:

standard variation of the f ’s in Pt and f ref is a normalization quantity. Alternatively, diversity
can be calculated in S, but for large dimensional spaces the calculation may become numerically
costly.
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Figure 1.3: Within the evolutionary metaphor, the working space of variation oper-
ators and the space of optimization performance criteria (f and g) where selection
operates are called “genotypes” and “phenotypes”, respectively (from Lewontin,
94).

TournamentSelection(P) % Usually, P ⊂ Sµ,

% parents’ population

Take τ individuals uniformly in P without replacement

Return the individual with optimal performance

End

The procedure is repeated when many individuals are needed. For example, in
genetic algorithms (GAs), one would apply3 SelectionTournoi λ times on Pt

(sampling with replacement) to obtain λ children. Tournament selection has two
advantages. Firstly, it is not sensitive to the values of f and g, but only to the
rank. This is important in order to maintain a constant selection pressure4 even
when the individuals in the population become similar to one another. Secondly,
the selection pressure can be tuned by changing τ : if τ = µ, the population’s best
individual is always selected. At the other extreme, if τ = 1, tournament selection
degenerates into random selection. τ = 2 is usually the recommended value ([11]).
There are many other selection implementations. We can cite selections based on
the performance value (e.g., the roulette wheel of GAs, [86]), and selections whose
pressure differential follows a Boltzmann law such as simulated annealing ([128]).

Replacement, as the name suggests, replaces some of the parents with some of
the children depending on their respective performances. Evolution strategies (ES,
cf. section 1.1.6) exclusively rely on replacement rather than on selection in order to
bias the search towards optimal regions of S. In ES, replacement is deterministic and
can take two forms, written as (µ,λ)-ES and (µ+λ)-ES. In (µ,λ)-ES replacement,
the µ best individual among the λ children5 make up the next population, Pt+1.
Pt is not kept. It is therefore possible that the best individual at iteration t + 1
is not as good as the former best at iteration t. Note that the accidental loss of
the best solution may seem difficult to accept, particularly when the simulation
is costly. However, this is a trait that favors global search and auto-adaptation

3Historically, GAs did not use the tournament method but rather a selection probability pro-
portional to performance known as “roulette wheel”, [86]. See section 1.1.4.

4Selection pressure is defined as the expected number of offsprings in the population Pt+1 of
Pt’s best individual. It is related to the take-over time ([10]), which is the expected number of
iterations before the population is entirely composed of copies of the same best individual as a
result of the application of selection only.

5It is necessary that the number of children λ be larger than the number of parents µ. In
practice, a recommended ratio is λ/µ = 7 [11].
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(cf. section 1.1.6): one needs to accept that performance may decrease from one
generation to the next in order to have the chance to locate global optima. Refusing
the loss of the population’s best individual also stems from the confusion between
the search and memory roles of the population. If memory is added to (µ,λ)-ES,
the simplest version of which would be to remember the best ever solution found,
the incentive to non-elitist6 EAs becomes stronger.
The (µ+λ)-ES replacement builds Pt+1 by taking the µ best individuals from Pt

and the λ children. If the best individuals of Pt remain competitive with respect to
the children, they are kept (this is the elitism property). (µ+λ)-ES is recommended
when the calculation cost of the analyses is high, with the risk of converging to local
optima.

Before we turn to the variation operators, note that we will not cover an im-
portant phenotypic aspect of EAs, the (selection in) multi-objective optimization.
Multi-objective optimization has been one of the major successes of evolution-
ary algorithms. We omit it here because our research has only marginally con-
cerned multi-objective optimization (with the exception of [Le Riche et al.,

J2003-1]). For French speakers, multi-objective evolutionary optimization is briefly
discussed in [Le Riche et al., J2007]. An extended discussion is provided in
the specialized books [40, 31] and further information can be found in the specialized
conferences [200, 58, 25].

Genotypic variation operators

We will now illustrate the preceding discussion on three common search spaces: real
variables, discrete variables, and permutations. The reader should not forget that
EAs can be modified to better fit a particular problem (see chapter 2 on specializing
EAs). The variation operators are, initially, a crossover that produces an individual
x′, and subsequently a mutation that yields xe (densities pt are the subject of
section 1.1.6). The crossover operator takes as input ρ previously selected points,
either directly by the selection operator, or indirectly through the replacement. In
the latter, the ρ points are randomly taken from the current population Pt. Some
EAs do not use crossover, in which case x′ is the copy of a selected individual.

The purpose of the crossover is to recombine features of points that have been se-
lected in order to create new points. In particular, it is necessary that the crossover
transmits to the children features that all of their ρ parents share. This is the
“respect” property of [152]. The mutation operator stochastically perturbs individ-
uals from the current population. Without mutation, under the combined action
of selection (and/or replacement) and crossover, the population would converge to
a single point that depends on the initial population. Such loss of population di-
versity is called premature convergence. EAs can not be global optimizers without
mutation.

Continuous variables
Let us now consider continuous variables, x ⊂ IRn. An example of crossover between
ρ (previously selected) points x1, . . . , xρ is7

x′
i =

ρ∑

j=1

βjx
j
i , i = 1, n (1.4)

6The elistism heuristic is to copy the best individual of Pt into Pt+1.
7This crossover is given here as a general form. When ρ = 2, it is the “panmictic generalized

intermediate recombination” of [11]. When βj = 1/ρ, it corresponds to the “global intermediate
recombination” of [169].
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with

βj ≥ 0 ,

ρ∑

j=1

βj = 1

(
for expl., βj =

αj∑n
k=1 αk

, αk ∼ U [0, 1]

)
. (1.5)

Note that here, x′ is in the convex hull of the ρ parents. By reducing the convex
hull from one generation to the other, this may jeopardize the chances of finding a
global optimum. To avoid such a contracting crossover, it is recommended to take
αk uniformly in [−.5, 1.5] [135].

x′ is then mutated to yield a child point, xe, typically using a multi-gaussian
law centered on x′ and having covariance C,

xe = x′ +N (0, C) (1.6)

The choice of C induces an average step size and privileged directions. It is discussed
in section 1.1.6. If the variables are independently mutated, C is a diagonal matrix
with Cii = σ2

i [11].

Discrete variables
Let us turn to discrete variables. Each xi, i = 1, n, belongs to an alphabet
{1,2,...,A}. The crossover between x1, x2 , . . . , xρ can take the following expression
(this is the uniform crossover or ρ-ary discrete recombination of [169]).
With probability pc, do,

x′
i = xj

i where j is randomly taken from {1, ..ρ} (1.7)

If the crossover does not take place (with probability 1− pc), one of the ρ selected
individuals is copied as x′. Note that if the variables xi are seen as independent ran-
dom variables, the uniform crossover is a bootstrap procedure [52] from the parent’s
population. This interpretation is important because it explains the link between
traditional EAs (with crossover and mutation) and estimation of distribution algo-
rithms: performing uniform crossover and sampling from UMDA or PBIL (these
estimation of distribution algorithms are discussed in section 1.1.6) is equivalent.
It amounts to creating new points from the distribution underlying the parent’s
population.

Each component of x′
i can then be independently mutated with probability pm.

For example,

xe
i = j , j 6= x′

i , with probability 1/(A-1) . (1.8)

This corresponds to a mutation without correlation between variables. Correlated
mutations are discussed in the part on EDAs and in [140] and [Grosset et al.,

J2006].

Permutations
Finally, we will briefly discuss the optimization of permutations. Permutations are
ordered lists of n distinct elements. There are n! possible permutations. The sim-
plest example is the traveling salesman problem that consists of the determination of
the shortest tour linking n given cities. Permutations appear in many other ordering
problems. They present specific implementation issues for evolutionary optimiza-
tion: it becomes non-trivial to propose a coding and the associated crossover that
yield valid permutations. For example, if the permutations are encoded as ordered
lists and one seeks to cross the two following permutations (one is in subscripts, the
other in superscripts) with the uniform crossover of discrete variables, one could
have



8 CHAPTER 1. GENERAL GLOBAL OPTIMIZATION ALGORITHMS

x1 = [A B C D E F G H I]

x2 = [d f e b a g c h i]

x′ = [A f e D a g G H I]

which is not a valid tour (two a’s, no b, . . . ). One of the oldest and simplest
operators for permutations coded as ordered lists is the ordered crossover by Davis
([37]): i) Take two cutting points randomly in the parents x1 and x2. ii) Elements
of x1 located between the cutting points are copied into x′. iii) Starting from the
second cutting point and going to the start of the list when its end is reached, find
the next elements of x2 that do not appear in x′. Copy them, still starting from
the second cutting point.

i) x1 = [A B C | D E F G | H I]

i) x2 = [d f e | b a g c | h i]

ii) x′ = [- - - | D E F G | - -]

iii) non copied elements : h i b a c

iii) x′ = [b a c | D E F G | h i]

This crossover preserves relative and absolute positions for x1 between the cuts as
well as relative positions for x2 outside the cuts. There are many other crossovers
for permutations. For example, the “edge recombination” operator ([195]) seems
particularly adapted to the traveling salesman problem because it respects the edges
(parts of the tour that determine the tour total length).

The simplest mutation of a permutation is an inversion of the order between two
randomly chosen positions (2-opt operator of [125]). For example, if the inversion
occurs between positions 3 and 6,

xe = [b a | F E D c | G h i] .

Evolutionary optimizer characteristics

Evolutionary optimization algorithms therefore have four characteristics:

1. The EA produces many points at each iteration, as opposed to methods that
change one point at a time (e.g., mathematical programming [138], greedy
search, simulated annealing). This bestows a higher robustness for multi-
modal functions on EAs since the search occurs in the volume of S, and not
on trajectories in S as is the case for point-wise optimizers. However, this
robustness has a numerical price, that of evaluating µ points instead of one.
Therefore, it is not guaranteed that, at a fixed number of analyses, an EA is
more efficient than many local searches with a random restart.

There are, however, functions for which the evolution of a population leads to
a faster search than the evolution of a unique point. Let us compare in IRn a
(µ+λ)-ES, µ > 1, and a (1+1)-ES with Gaussian mutation and no crossover
in a sphere-tunnel function (see Fig. 1.4): as soon as (1+1)-ES has found the
tunnel, it is doomed to follow this tunnel because any point outside has a lower
performance. Following a tunnel can be made arbitrarily long by narrowing
it. (µ+λ)-ES can hit the tunnel but, since it has a population, some of its
individuals typically remain outside it, which makes it easier for them to ap-
proach the optimum. Notice that tunnel topologies are not unrealistic. They
reflect what happens in constrained optimization with penalty functions. The
tunnel interior corresponds to the feasible domain. For a fixed number of f
(and g) analyses, the advantage of population-based approaches has also been
proven for noisy functions [4] and empirically seen for the auto-adaptation (cf.
[21] and section 1.1.6).
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2. Variation operators and variables coding must be designed together. The only
explicit example of coding choice we have seen so far concerned permutations
(cf. section 1.1.2). Permutations were encoded as ordered lists. Before that,
we had implicitly encoded real and discrete variables as vectors and lists re-
spectively. Other representations exist, for example those based on binary
alphabets (see section 1.1.4). It is common and advisable to compare differ-
ent representations for a given problem; one quality of EAs is that changing
the representation only impacts on the initialization, crossover and mutation
operators.

3. EAs move in S through transitions in probabilities8. Therefore, it is not likely
that two successive executions of an EA will yield the same result. Moreover,
EAs need a minimum number of points calculations before the probabilities
engine is started. This induces a numerical cost that may be unaffordable
on certain applications. I estimate that there is no possible evolutionary
optimization below 1000 analyses. An advantage of propabilistic transitions is
that they make convergence to the global optima possible. Proofs of globality
are asymptotic (i.e., for t→∞) and assume an upper bound on the selection
pressure and a lower bound on the mutation strength and population size, cf.
[27, 162].

4. EAs are zeroth-order optimizers, i.e., they only need the values of the opti-
mization criteria and do not require gradients or Hessians. Today, zeroth-order
optimizers have a large application field as most non-linear simulators do not
provide gradients – a fortiori Hessians – because they are too complex to
calculate or because they do not exist.

Figure 1.4: 2D view of the sphere-tunnel function, to be minimized. f(x) = xT x
if x ∈ T , f(x) = − exp(−||x||/10) otherwise, where the tunnel is defined as
T = {x ∈ S | − 0.5 ≤ xi ≤ 0.5 , i ∈ [2, n]}. Any point inside the tunnel has
a better objective function than any point outside. A population enables the EA
to progress outside the tunnel even if some of its members are inside, which eases
progress towards x∗ = 0.

8EAs can be seen as Markov chains in Sµ where the selection, replacement and variation
operators define the probabilistic transitions between the states, i.e., between the populations,
[191].
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1.1.3 Tuning an EA : the exploration-exploitation compro-

mise

Every global optimizer compromises between the exploration of new regions in S
and the exploitation of already acquired knowledge about S and f . Past knowledge
corresponds to the identification of the best regions among those already explored.
Exploration is necessary for global convergence, but it implies numerous f calcula-
tions. The archetypal exploratory search is the random sampling of S with memory
of the best point (Monte Carlo method). Exploitation leads to an accelerated con-
vergence at the risk of missing global optima (premature convergence).

EA parameters tune the exploration-exploitation compromise. Increasing the
mutation strength (pm, eigenvalues of C) and the population size (µ) makes the EA
more exploratory. Reciprocally, increasing the selection pressure (τ), the number
of children (λ) and the crossover probability (pc) moves the balance towards more
exploitation. In EAs, an excess of exploitation induces premature convergence.

There is no general optimal EA tuning since the optimal tuning depends on the
problem (f and g), the objective of the optimization (find a global optimum with
. . . accuracy after . . . analyses and with . . . probability) and even the distance to the
optimum. As a general rule, the more difficult it is to optimize the function, the
more exploration should be emphasized and vice versa.

Theoretical studies on the dependence of EA parameters on the problem dimen-
sion n have established the following rules:

• Minimum population size on binary alphabets, µ ∼ O(n) [62, 27].

• Mutation probability on binary alphabets, pm ∼ O(1/n) [9].

• Multi-Gaussian mutation strength, σ2
i ∼ O(1/n), where σ2

i are the eigenvalues
of C [168].

1.1.4 An historical standpoint

“Evolutionary algorithms” is the common name of various algorithms:

• Genetic algorithms (GAs) were invented and analyzed by J. Holland in 1975
[86] as a means of mimicking adaptation. They have been used as optimizers
by K. DeJong [43], and popularized by D. Goldberg with his book [66]. One
should read the article and recent book by K. DeJong on this topic [42, 96].

• Evolution strategies were devised by two engineering students in Berlin in
1965, I. Rechenberg [157] and H.-P. Schwefel whose reference book was written
in 1981 [168]. Th. Bäck was one of the first to link evolution strategies and
genetic algorithms in 1995 [11].

• Evolutionary programming dates from the early 1960’s in California with the
work of L. J. Fogel [57]. After first being applied to the evolution of finite
state machines, this technique was generalized for any representation by D.
B. Fogel at the beginning of the 1980’s. D. B. Fogel also coined the term
“Evolutionary Computation” in his book [56].

• Genetic programming has appeared more recently as a special type of ge-
netic algorithm that evolves programs represented as trees [32]. It has been
popularized by J. Koza (92) [114, 115, 116].

• Statistical optimization, or Estimation of Density Algorithms (EDA, see sec-
tion 1.1.6), are even more recent and date back to S. Baluja’s and H. Mühlenbein’s
research ([13], [140]).



1.1. EVOLUTIONARY OPTIMIZATION 11

These various EAs have existed for over 35 years now. In the meantime, they have
had thousands of applications in every scientific field. They have mainly merged
under the influence of Z. Michalewicz and his book [135] where he shows that these
algorithms (which he still called “Evolution Programs” in 1992) can be applied to
every representation. Today, EAs share over four international annual or bi-annual
conferences (GECCO and CEC organized from the USA, PPSN and Evo* organized
from Europe), and a French conference which is open to international participants,
Evolution Artificielle. There are three specialized journals (Evolutionary Compu-
tation, IEEE Trans. on Evolutionary Computing and Genetic Programming and
Evolvable Machines), but many contributions can also be found in Complex Sys-
tems, Journal of Heuristics, BioSystems, Natural Computing, Journal of Global
Optimization, and Theoretical Computer Science (C).

EA history can be split into two time periods. The first lasted until the middle
of the 1990’s when researchers aimed at a universal optimizer, efficient in every
problem. This was followed by the second contemporary period when the scientific
community realized that EAs needed to match the problem at hand.

The Genetic Algorithm myth of a universal optimizer

Research for a universally well-performing optimizer lasted from 1970 to the middle
of the 1990’s and hinged on three topics: representation, the respective roles of
crossover and mutation, and the algorithm’s optimal tuning.

The algorithm embodying the best the ideas of this period, and the algorithm
that received the most attention, was the genetic algorithm (GA, [86, 95, 66]). The
classical GA takes the set of binary n-tuples, S ≡ {0, 1}n as search space. As we
shall soon see, this choice is substantiated by the schemata theory. The selection is
made in proportion to the fitness F . The selection probability of xi ∈ Pt is

ps(x
i) =

F (xi)∑
xj∈Pt F (xj)

. (1.9)

Two parents are taken with replacements from the current population Pt with
probability ps. Their crossover generates two points that are added to the children’s
population. The selection/crossover/mutation cycle is repeated µ/2 times until the
population Pt+1 is complete. In the elitist versions of GAs, the best individual is
copied from the previous to the current population, replacing any of the individuals
before evaluation. Most often, a one-point crossover is used in which one breaking
position is taken at random in the parents’ chromosome and the chromosome’s parts
are exchanged. For example,

[0m1 1 1]

[1m1 0 0]
⇒ [0 1 0 0]

[1 1 1 1]
.

The GA’s mutation is that of discrete variables, which has already been described
in section 1.1.2.

The efficiency of GAs has been analyzed with the schemata theorem [86]. A
schema H is a subspace of {0, 1}n. It is usually written with the symbol ∗ that
stands for “0 or 1”. For example,

H = [0 ∗ 1 ∗ 1] = {[0 0 1 0 1], [0 1 1 0 1], [0 1 1 1 1], [0 0 1 1 1]} .

The order of the schema, o(H), is the number of fixed bits (o(H) = 3 in the
example). The schema length, ℓ(H), is the maximum distance between any fixed bits
(ℓ(H) = 4 in the example). Let us use N(H, t) for the number of individuals of the
population Pt that belong to the schema H, and F̄ (Ω) for the average performance
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of individuals in Ω. The schemata theorem states that the expected number of
individuals in Pt+1 that belong toH grows as a function of the number of individuals
of H in Pt and the performance advantage of H. Vice versa, the number of H
representatives in Pt+1 decreases with the order and the length of the schema
because it makes H more sensitive to the effects of the mutation and crossover [86]:

E[N(H, t + 1)] ≥ N(H, t)
F̄ (H ∩ Pt)

F̄ (Pt)

[
1− pc

ℓ(H)

n− 1

]
[1− pm]

o(H)
. (1.10)

The term F̄ (H∩Pt)
F̄ (Pt)

describes the amplification effect of the roulette wheel. The

term
[
1− pc

ℓ(H)
n−1

]
captures the destructive effects of the one-point crossover, if the

breaking point falls between the schema defining bits. For example, H = [1 ∗ 0 ∗] is

lost through a crossover of [1 0 m 0 1] and [0 1 m 1 1]. Finally, the term [1− pm]
o(H)

is a model of the destructive effects of the mutation; if mutation occurs at one of
the schema defining bits, the schema is lost for this individual.

This theorem has given rise to the idea of building blocks. Building blocks are
short schemata (o(H) and ℓ(H) small) that have above-average performance. For
short schemata and a low mutation probability pm, the last two terms in equation
(1.10), i.e. the terms related to schemata extinction by crossover and mutation, can
be neglected. If a schema has above average performance on a long-term basis, i.e.,

F̄ (H ∩ Pt+k)

F̄ (Pt+k)
> 1 + ε , ε > 0 , k = 0 . . . T (1.11)

then

E[N(H, t + T )] > N(H, t)(1 + ε)T . (1.12)

At the condition of a low mutation rate, GAs would therefore favor the rapid emer-
gence of building blocks in the population. Crossover would then assemble these
building blocks to lead to the optimum x∗. Moreover, each individual is part of a
large number of schemata (2n in a binary alphabet, ∗ or its bit value at each tuple
position) whose performance is estimated through the calculation of one f (g). Such
underlying parsimony in GAs has been called “implicit parallelism” [86].

The debates of the 1990’s

The above arguments that stem from the schemata theory provided hope until the
1990’s that it would be possible to obtain algorithms which would be efficient on
average in all problems. However, contradictions between GA theory and empirical
results were rapidly been observed, which spawned debates on representation and
the relative importance of crossover and mutation in EAs.

The coding of the x’s
An often cited argument [86, 66] is that binary codings maximize the schemata
proportion sampled by one individual, hence it maximizes its implicit parallelism.
It has since then been proved by Antonisse that this statement is not correct9 [3].

9The number of schemata to which a given individual belongs is 2n. In a cardinality A alphabet,
this number of schemata is (A + 1)n; the schemata fraction sampled by one individual would be
maximum when A = 2. The mistake here is that there are in fact many ∗ symbols in an alphabet
whose cardinality is A > 2 if one wants to count all subspaces. For example, for A = 3,
one has ∗0,1, ∗0,2,∗1,2,∗0,1,2. Moreover, the comparison between cardinalities must be performed
at a constant search space size, 2n2 = AnA . With these two corrections, individuals coded
with alphabets of cardinality A > 2 sample a larger proportion of the total number of subspaces
(schemata) than binary coded individuals do.
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It seems that binary coding proponents have been intuitively attracted by the
idea that an alphabet of smallest cardinality makes a maximum decomposition10

of the information in x. Since there is no informative entity smaller than a bit, a
binary alphabet reveals all possible building blocks in a problem. The difficulty is
to find, among the numerous possible binary codings (2n!), the one that favors the
most compact high performance building blocks. To this end, projects that aim
at optimizing the coding by the GA itself have been carried out. The meaning of
the allele is coded on the gene and manipulated by the GA. Examples of these are
inversion [86] and the messy GAs [63, 64].

Generally, “natural” representations, that match the problem at hand, have
turned out to be more efficient than binary codings. Building blocks can often be
inferred from the problem statement. It is preferable to handle them directly using
an ad hoc coding. Describing solutions on a smaller scale (binary) will often induce
a loss of problem understanding. In this way, evolution strategies (ES, [168, 11, 82])
directly handle vectors of real numbers and have turned out to be more efficient for
continuous variables optimization than EAs working with binary codings. In [102,
103, 78], many representations have been compared for the topological optimization
of solid structures. Binary codings are not as efficient as, for example, codings based
on Voronöı cells because they do not propagate topological features well during
crossover. Moreover, binary codings cannot locally refine the shape description for
a fixed n, unlike Voronöı cells.

Crossover versus mutation
Another background discussion between 1980 and 1995 dealt with the relative im-
portance of crossover and mutation in EAs. The schemata theorem (equation (1.10))
describes the building blocks’ growth assuming a marginal use of mutation, whose
purpose is only to prevent premature convergence. By recombining building blocks,
crossover is considered as the main search operator11. On this basis, genetic al-
gorithms use low mutation probabilities around pm = 0.01 (in O(1/n)) and high
crossover probabilities, 0.6 ≤ pc ≤ 1.

On the contrary, evolution strategies and evolutionary programming [57, 55]
mainly rely on mutation to find x∗. The first versions of ES and evolutionary
programming in the 1960’s and 1970’s did not use crossover at all. Similarly to GAs
that look at mutation as a repair operator (re-injecting in the population building
blocks that have been lost by sampling errors), ES consider crossover as a repair
operator: it extracts similarities in high performing individuals of the population
to compensate for some of the mutation induced noise, thus increasing convergence
speed [19, 20].

The end of the myth

Around 1995, feedback from numerical experiments and some elements of analysis,
the No Free Lunch theorem (cf. section 0.3), showed that a universal optimizer
cannot exist.

Experiments feedback
The EA development in the 1990’s fostered a large number of studies and appli-
cations whose results often contradicted, at least partially, the schemata theory.
For example, in [Le Riche and Haftka, J1993] and [Le Riche and Haftka,

10Maximum decomposition means here the non-redundant coding that yields the largest number
of components, n. If the coding is seen as a map ψ : C → S, where C is the space of coded
individuals, the coding is non-redundant if ψ is bijective.

11It should be noted that this constructive action of the crossover operator is not accounted for
in the schemata theorem
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J1995], an empirical optimization of a GA parameters for designing composite
laminates concluded that small population sizes (µ ≈ 10) and large mutation
probabilities yielded the best strategy. Progressively, the idea of matching the EA
and the problem emerged.

Critics of the schemata
At the same time, it was becoming clear that two hypotheses were missing in the
schemata theory. Firstly, the schema performance estimate in the current popula-
tion, F̄ (H ∩ Pt), is a rough approximation of the schema performance, F̄ (H). Its
accuracy decreases when the spread of F (x), x ∈ H, increases. The schemata the-
orem is therefore valid only for schemata with a low performance variation. This
discussion is continued in section 1.1.5. Secondly, in difficult, non-linear problems,
good schemata typically do not contain the global optimum x∗. The assumption
that recombining short low order schemata leads to the optimum is close to a linear-
ity hypothesis. Difficult problems are often deceptive [194]: for binary alphabets,
a function is deceptive at the order k if all the order k schemata that have best
average performance do not contain x∗. For example, a 3 bits problem such that
F̄ ([0 ∗ ∗]) > F̄ ([1 ∗ ∗]), F̄ ([∗ 0 ∗]) > F̄ ([∗ 1 ∗]), F̄ ([∗ ∗ 0]) > F̄ ([∗ ∗ 1]), and
x∗ = [1 1 1] is deceptive at the first order.

1.1.5 Tools for designing EAs

Once the idea of adapting the algorithm to the problem emerged, it became nec-
essary to measure how an EA component (the coding, the initialization procedure
and the variation operators) fits the function f (and g if there are constraints). Of
course, the simplest way to measure the appropriateness of the implementation is
to perform a series of runs and decide a posteriori. However, a priori analysis is
more likely to help an undertanding of why an optimization mechanism fits a given
function. We present hereafter two types of a priori performance analysis12.

The EA-performance relation

An evolutionary algorithm is made of an x coding, an initialization strategy for P0

and variation operators. It is instructive to confront the distribution of the points
generated by each of these components with the distribution of their performances.

A simple tool to study a coding or an initialization implementation is to plot
f(x) as a function of the distance d(x, x̂∗) between x and the best sampled point x̂∗

using this implementation [98, 99]. Without further a priori knowledge, one should
favor a coding that yields a good covering of the (f, d) plane. An example is shown
in Fig. 1.5; the optimization aims at finding a tuple s in {0, 1}900. The fitness
function F (x) is the number of digits that are common to s and x. There are 100
0’s in s. Two initialization procedures are compared in figure: on the left, each bit
is independently set to 0 or 1 with a probability of 1/2. The total number of 1’s
follows a binomial distribution and for n = 900, 99% of the generated tuples have
between 411 and 489 1’s. On the right, the probability of an apparition of a 1 at
each bit is taken from U [0, 1] independently for each individual. The plot shows
that, for this problem, the second initialization procedure is more appropriate since
a larger (d,f) diversity is observed.

There are measures that summarize (d,f) plots, in particular the fitness-distance

12There is a third approach based on estimating the epistasis, i.e., the distance between a
function and its closest decomposable function, fd(x) =

Pn
i=1 fi(xi), [159]. The idea here is

that the more the variables are coupled, the more difficult optimization is. In fact, it depends on
the ability of the search operators to identify and account for these couplings.
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(a) FDC=-0.156133 for a random (uniform)
initialization with Pr(xi = 1) = 1/2

(b) FDC=-0.999255 for an initialization with
Pr(xi = 1) = px; px ∼ U(0, 1)

Figure 1.5: Performance vs distance to the best individual of a 6000 points sam-
ple for two initialization procedures (from [99]). There is a better covering with
the individual based initialization (right), which will induce an easier subsequent
convergence to x∗. The empirical FDC close to -1 indicates an easy problem.

correlation or FDC, [94]),

FDC =
1/N

∑N
i=1(f(xi)− f̄)(d(xi, x̂∗)− d̄)

σdσf
(1.13)

where N is the sample size, f̄ , σf , d̄ and σd are the averages and standard deviations
of f and d in the sample, respectively. The OneMax function, which calculates
the number of 1’s in x, has an FDC equal to 1. This corresponds to an easy
problem, because every fitness improvement is associated with a step towards x∗.
The individual-based initialization on the right of Fig. 1.5, with an estimated FDC
close to -1, characterizes an easy problem. Note that the FDC does not provide
reliable information on a particular optimization difficulty for an EA except for
extreme values (1 and -1) that indicate an easy problem.

Similarly, the study of the performance-distance distribution can be applied to
the choice of couples (coding,crossover) and (coding,mutation). In these cases, one
should look at the relation between the performance of the best parent and the
performance of its best offspring. Several averages that sum up this relation are
analyzed in [98] but, like the FDC, the complete plot carries more information.

The formae variance

Formae are a generalization of the schemata of section 1.1.4. Formae are equiv-
alence classes generated by the equivalence relation “has the same features as”
applied to points of S [152]. If the considered feature is the bits values at certain
locations of a binary n-tuple, then formae and schemata are synonymous. However,
formae also apply to variable length codings (used in non-parametric optimization,
an example of which can be found in section 2.2). The features are elementary
entities carried by the coding and recombined by the crossover. Out of this gen-
eralization, the concepts of formae order and performance are similar to those of
schemata already seen in section 1.1.4.

If one accepts the conjecture that EAs work by recombining elementary features
carried by good individuals (the building blocks), it is logical that the efficiency of
EAs depends on the possibility of identifying these features from a limited group of
individuals (the population). Let H be one of the formae that contains the global
optimum x∗. It can be expected that the EA optimization is made easier if the
average performance of H is better than that of other same order formae that do
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not contain x∗. But for H to be detected and propagated, it is also necessary that
the variance of its performance be small. Therefore, a principle for choosing an EA
coding is to minimize the associated formae variance. An example can be found
in [153] where the formae variance of different codings for the traveling salesman
problem are compared and a correlation between low variance and EA efficiency is
observed.

1.1.6 Parametric evolutionary optimizers: EDAs and ES

We now turn to standard instances of parametric EAs that optimize a finite number
of variables. An example of a non-parametric evolutionary optimizer in the design
of composite laminates will be given later in the text (section 2.2).

At each iteration t, all the evolutionary optimizers define a probability distri-
bution pt that will be sampled to produce the λ new points. Algorithms based on
crossover operators define these distributions implicitly: pt is not calculated and
the offsprings are produced with the aid of the variation operators. When expertise
about the optimized functions is available, as in composite laminate design ([Le
Riche and Haftka, J1993], [Le Riche and Haftka, J1995]), working directly
on the variation operators and the coding may help better accounting for back-
ground knowledge. Nevertheless, general parametric EAs benefit, through the ex-
plicit use of pt, from a better formalization which, in turn, permits better control.

Three types of parametric EAs will now be summarized: the estimation of dis-
tribution algorithms (EDAs), the auto-adaptive ES and the adaptive ES. A shared
feature of all these algorithms is that one learns at each iteration a probability dis-
tribution parameterized by a vector θ, pt(x) ≡ p(x|θt) (or pt(x) ≡ p(x|θt(x)) for
auto-adaptive ES). The difference between these algorithms resides in the distribu-
tion updating. EDAs learn pt by maximizing the likelihood of good observed points
at t. Adaptive ES rely on the dynamics of good observed points over the iterations.
Auto-adaptive ES optimize the parameters θ at the same time as the variables x.

Estimation of distribution algorithms

Although EDAs are not regarded today as efficient evolutionary algorithms [106],
they are of great theoretical interest [120, 61]. EDAs illustrate the difference be-
tween evolutionary optimization and other global optimization approaches such as
stochastic optimization and Bayesian optimization. Comparing EDAs and ES is
also instructive.

EDAs search the space S by sampling the distribution pt and updating it using
the best observed points. EDAs were first introduced in discrete spaces, with the
distribution pt replacing the variation operators (“Population Based Incremental
Learning” – or PBIL – algorithm in [13], “Univariate Marginal Distribution Algo-
rithm” – or UMDA – in [139]). An EDA flowchart has the following structure:

1. Initialize the distribution p0(x), t = 0.
2. Create λ points by sampling pt(x).
3. Evaluate F for the λ points.

4. Select the µ best points (µ < λ).
5. Update pt+1 using the µ best pointsa and pt(x).
6. If continue, t← t + 1, go to 2.

aIn some variants, the updating also uses the worst points of the current population
[14, 172].

The distribution pt is a representation of what was learned about F during the
evolution [33]; the individuals (x, F (x)) are a sample of the function (see Fig. 1.6),



1.1. EVOLUTIONARY OPTIMIZATION 17

and assumptions made on F spatial correlation provide bounds on how F (x) is
likely to change as a function of the distance between x and known points.

If F̂ ∗ is a performance value beyond which a point is considered as good (for ex-
ample, the best known performance at time t), the distribution pt can be interpreted
as

pt(x) = P (x|F (x) > F̂ ∗) =
P (F (x) > F̂ ∗|x)P (x)

P (F (x) > F̂ ∗)
(1.14)

where P (x) is a prior distribution. For a uniform prior distribution, pt(x) ∝ P (F (x) >
F̂ ∗|x). Equation (1.14) shows the relation between EDAs and stochastic optimizers.
Stochastic optimizers process a probabilistic representation of F (x). An example
of a stochastic optimizer is given in [Ginsbourger et al., C2007] and summed
up in section 1.4. Other examples can be found in [164, 93]. In [93], the point
taken at iteration t + 1 is chosen so as to maximize the expected improvement
E[max(0, F (x)− F̂ ∗)].
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(b) Contours of P (F (x)|F (xi) = f(xi)).

Figure 1.6: Representation of the uncertainties on non-sampled regions of S as a
random process P (F (x)|F (xi) = f(xi)) (from [69]).

EDAs can also be regarded as a Bayesian method. If one assumes that the
selection defines a probability of selection on S, ps, and in the idealization of an
infinite population, the flowchart steps 2 and 4 lead to

pt+1(x) ∝ pt
s(x).pt(x) . (1.15)

Fig. 1.7 illustrates the convergence of such an idealized EDA (pt is not parameter-
ized and f(x) is supposed to be known everywhere in S). In practice, the densities
pt are parameterized through θ, pt(x) ≡ p(x|θt), and the populations have a finite
size, which brings about two difficulties.

First of all, in order to locate the optima efficiently, the EDA (its distribution
pt) must be able to describe the couplings between the variables. In Fig. 1.8 for
example, the variables x1 and x2 are independent, so that p(x1, x2) = p1(x1)p2(x2)
cannot have its highest probability region coincide with x∗. In order to improve
the description of variables couplings, early EDAs that had independent variables
(PBIL [13], UMDA [139]) were supplemented with algorithms with more complex
distributions (e.g., FDA [140] or BOA [148] which relies on Bayesian networks).

Secondly, estimating distribution requires a number of data ((x, F ) couples) that
increases with the p(.|θ) distribution flexibility13. In EDAs, p(.|θ) is inferred from
the µ best points among λ and a prior distribution. The real cost of each iteration

13The flexibility, or complexity, of a parameterized functional reflects the independence of the
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(a) Example of a 1D function to maximize with
three local maxima x = 0.11, x = 0.61, and
x∗ = 1.00 (global optimum). F (x) = 50 −
60x2 + 50x5 + 20x10 + 20 sin(40x/π)
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(b) Convergence of the distribution p(x) to the
Dirac distribution δ(x∗). The idealized EDA
process is pt+1(x) ∝ pt

s(x)p
t(x) ∝ f(x)pt(x)

Figure 1.7: Example of an idealized EDA convergence in 1D (from [69])

is λ analyses. If µ is too small with respect to how p(.|θ) is flexible, p(.|θt) will
strongly vary with the sampled points and the algorithm’s behavior will be erratic.

EDAs offer another illustration of the bias-variance compromise known in regres-
sion [48, 188]. A balance must be found between pt’s complexity and the populations
size. At one extreme, some EDAs rely on simple distributions: for example, in con-
tinuous spaces, PBILc [171] uses a multi-Gaussian density without correlations. The
Double Density Optimization Algorithm discussed in section 2.2 and introduced in
[Grosset et al., J2006] is an attempt to keep the distribution structure simple,
while enriching its abilities to capture variable interactions by working in two joined
spaces. At the other extreme, EDAs that opt for rich dependencies between the
variables must, in addition to maximizing the likelihood of the good points, resort
to regularization techniques. The two main regularization techniques are the mini-
mization of a regularized risk and cross-validation (cf. [48]). The IDEA algorithm
[23] represents joint continuous variable densities by products of conditional densi-
ties. When estimating pt, IDEA maximizes the likelihood of good points penalized
(regularized) by the number of edges in the conditional probabilities graph.

To stabilize EDAs, it is common to express the new θ as a linear combination
of the last estimate and its previous value,

pt(x) = p(x|(1− α)θt + αθt−1) , α ∈ [0, 1[ . (1.16)

As already stated, EDAs are not regarded today as efficient optimizers. They are
based on learning, at each iteration, the probability of a point being good, and this in
the entire search space S. The underlying assumption is that a large proportion of S
has been sampled, which is a costly, or even unrealistic, hypothesis. Furthermore,
the learned density is a static picture of what is already known from S at time
t. It does not encourage the exploration of new regions because these lie in the
distribution tails and have low probabilities of being visited. Efficient optimizers,
such as adaptive ES, do not attempt to infer a distribution on F at every point of
S. Instead, they exploit the population dynamics over many iterations and learn
favorable moves. They can hasten their steps in the directions associated with the
greatest progress.

values it can take knowing some of its values; for example, two points uniquely define a linear
function in 1D. Formally, the complexity of a class of functions can be measured by its VC
(Vapnik-Chervonenkis) dimension. The interest reader is referred to [188, 170].
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Figure 1.8: Selected points (a) and contour lines of the marginal densities (b) for
(x1, x2) ∈ {0, 5, 10, . . . , 85, 90}2 on a composite laminate designed for a vibration
problem (from [70]). When the selected points distribution is represented by inde-
pendent variables (the product of the marginal densities, p(x1, x2) = p1(x1)p2(x2)),
high probabilities and high performance regions may not coincide.

We believe that EDAs should be compared to EAs with crossover but without
mutation. The equivalence between the uniform crossover and the PBIL and UMDA
distributions makes this point clear (cf. section 1.1.2). pt(x) and the crossover are
two ways of sampling new points from the empirical distribution underlying the
parents. Furthermore, we have found experimentally that mutation improved the
efficiency of EDAs (cf. section 2.2.2).

Evolution strategies

Evolution strategies (ES) are EAs for continuous parametric optimization (S = IRn,
or a subset of IRn).

The history of evolution strategies illustrates well the different principles for
tuning the parameters of evolutionary parameters. More specifically, the tuning of
the Gaussian mutation, which is central to ES, has gone through all the stages,
starting from fixed to adaptive, then auto-adaptive, before returning to adaptive.

Gaussian mutation

The main operator in ES is the Gaussian mutation, which adds a centered Gaus-
sian noise to each individual. A way to substantiate the Gaussian framework for
optimization is to note that among all distributions with a given covariance, the
Gaussian law has the highest entropy, and therefore corresponds to injecting the
least a priori knowledge. This is appropriate when no a priori information is known.
In n dimensions, the multi-Gaussian distribution N (m, C) has an average m and
an n× n positive definite covariance matrix C. The associated probability density
function is

Φ(X) =
exp(− 1

2 (X −m)tC−1(X −m))√
(2π)n|C|

where |C| is the determinant of C.
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The Gaussian mutation of a vector x ∈ IRn can be rewritten by separating a
scale factor σ (also called step) from the principal directions of the mutation

x→ x + σN (0, C)

The simplest example is when C is the identity matrix: the variables are mutated
independently from each other by a Gaussian noise of variance σ2.

Tuning ES parameters amounts to looking for the best values of the step and
the covariance matrix during the evolution. The first experiments dealt with the
isotropic case in which the only degree of freedom is the step σ.

Step adaptation
The Gaussian mutation step sets the scale at which the optimizer “sees” the objec-
tive function. As a simple illustration, let us consider a (1+1)-ES (see section 1.1.2)
on f = x2 in one dimension. Next, the average distance between two successive
individuals is proportional to σ, with two consequences: firstly, if the starting point
is d0, an average of d0/σ iterations will be necessary to reach a neighborhood of 0.
Secondly, the maximum convergence accuracy that one should expect is also pro-
portional to σ. Such arguments lead to the idea of adapting the step, for example
in proportion to the distance to the optimum. The progress rate theory by Schwefel
[168] and later by Beyer [20] detailed these ideas. Recently, Auger [7] provided
formal proof of the convergence of this type of adaptive algorithm.

Of course, in practice, one does not know the distance to the optimum, so
adaptation must rely on other information. The success rate, i.e., the rate at which
mutation has improved an individual, indirectly gives information about the current
step. This observation by Rechenberg [158] has produced the “1/5 rule”, the first
known example of step adaptation in EAs. The 1/5 rule increases the step size
when the success rate is larger than 0.2 (1/5) and vice versa. Indeed, when the step
tends toward 0, the success rate tends toward 0.5 (think of a zoom making contour
lines linear). Too small a step (in terms of the speed at which one approaches the
optimum) yields too high a success rate. The 1/5 rule has been proved for some
simple functions (sphere, corridor), but it is put at fault by any function that does
not allow a 1/5 success rate when the step becomes small (such as contour lines
making a sharp V). Although the 1/5 rule is no longer used today, it represented
an important phase in the development of ES.

Auto-adaptation and ES
The next important phase for ES was the invention of the auto-adaptive mutation:
the mutation parameters (the step σ and even the covariance matrix C) are attached
to each individual and are themselves subject to . . .mutations. An individual mu-
tation starts with a mutation of its mutation parameters, followed by a mutation
of x with the new parameters. The underlying idea is that selection, although only
taking the individual’s performance f(x) into account, can also select the individu-
als that carry the best mutation parameters because they are indirectly expressed
in the performance of the offsprings. Let us take two individuals with same perfor-
mance, of which one has better mutation parameters than the other. The individual
with the better parameters will produce, on average, better offsprings, so that its
parameters will propagate in the population over several generations, to the detri-
ment of the other individual’s settings. It has hence been said that auto-adaptation
tuned mutation parameters “for free”. Auto-adaptation has long been considered
as the state-of-the-art in ES [11].

We can distinguish three versions, according to which parameters are used: the
isotropic mutation is exclusively based on one step, σ, per individual, the covariance
matrix being equal to the identity; the non isotropic mutation assigns a vector of
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steps (σ1, . . . , σn) to each individual and the covariance matrix is diagonal with σ2
i

at the i-th position. The variables are, again, mutated independently from each
other but with different variances; finally, the correlated mutation attaches a full
covariance matrix to each individual. More details can be found in [168, 12, 54].

Let us return to the discussion on what “good” mutation parameters are. This
has been addressed for a single step parameter in one dimension. Similar arguments
obtained by replacing the sphere function (

∑
x2

i ≡ xtx) by an ellipsoid (1
2xtHx,

H positive definite) show that the covariance matrix should be proportional to the
inverse of the Hessian, H−1. However, it has been proved that the auto-adaptation,
while it finally learns the correct step [11, 41], does not learn the inverse of the
Hessian [6].

CMA-ES: back to a deterministic adaptation
Even when auto-adaptation works, it tends to be slow. It takes several generations
to learn a correct step size. This observation led Hansen and Ostermeier to propose
a deterministic adaptation procedure first for the step size [83], and then for the
complete Gaussian mutation covariance matrix [81]. The intuition is that if two
successive mutations have been successful in a given direction, one should probably
hasten the step in this direction. The complete algorithm, called CMA-ES (Covari-
ance Matrix Adaptation) has been proposed and well analyzed – with carefully set
default parameters – in [82]. Contrary to EDAs that learn the distribution of good
individuals, CMA-ES learns the distribution (assuming it is Gaussian) of successful
steps.

Today, CMA-ES is the state-of-the-art evolutionary optimizer for continuous
parametric problems. It won the 2005 contest on evolutionary optimization at the
CEC congress [181], and later was even found to be competitive in terms of con-
vergence speed with the BFGS mathematical programming algorithm on unimodal
twice differentiable function in “real life” conditions, i.e., with gradients estimated
by finite differences [165].

Conclusions on ES
This summary of the history of evolution strategies illustrates the experience in
tuning EAs parameters acquired during the last twenty years. It seems clear today
that there are no static optimal EA parameters, as was seen for the mutation
operator. The 1/5 rule often fails because it is based on indirect information, the
success rate. Auto-adaptive methods are more robust, but they remain slower than
modern adaptive methods, i.e., CMA-ES, that directly process the successful steps.

1.2 Handling non-linear inequality constraints

1.2.1 Context

Most engineering optimization problems have inequality constraints, g(x) ≤ 0,
which must be satisfied at the optimum. These constraints describe bounds on
the variables, limits on a structure displacements, load carrying limitations due
to strength or buckling failure, minimum performance in a multi-criteria context,
compatibilities between neighboring components, . . . . Variables bounds and, more
generally, linear constraints are efficiently handled by projection techniques. We do
not discuss them here and focus on non-linearly constrained problems. The primal
constrained optimization problem (P ) is,

(P )

{
minx∈S f(x),
such that g(x) ≤ 0.

(1.17)
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Assumptions on the objective function f , the constraints g, the search space S are
the same as for unconstrained problems (equation (1.1)). We further assume that
there is at least one feasible point in S, i.e., a point x such that g(x) ≤ 0.

Four types of methods for handling constraints exist: the transformation of (P )
into an unconstrained problem using penalty functions (differentiable penalty func-
tions [76] section 5.7, non differentiable penalties [87], and for EAs [107, 149, 160,
178, 16, 73, 17] ), the projection of infeasible solutions onto the feasible domain (e.g.,
projected gradient), constraints representation building in the course of the search
(e.g., sequential quadratic programming) and, for EAs, the coevolution of popula-
tions which together solve the constrained optimization problem (e.g., [147]). These
approaches are related and have been coupled, e.g., coevolution and penalty meth-
ods in [Le Riche et al., C1995-1] and [182]. A review on constraints handling
in evolutionary optimization can be found in [136].

Penalty functions are a general approach to handling constraints. The choice
of the penalty function is critical to the success and the efficiency of optimizers, in
particular EAs. Let us first consider a static penalty function,

L̄(x, p) = f(x) + p max(0, g(x)) (1.18)

where p is a constant vector of penalty parameters. If p is too small, the solution
to (1.18) is infeasible, g(arg min fp(x)) > 0. Vice versa, a too large p makes
it impossible for the search to go through the infeasible domain and this absence
of “short cuts” may be fatal to the global exploration of the space. A tempting
alternative is to start the search with small penalties, so that a global exploration
of the domain can occur, and then increase the penalty to force convergence to the
feasible domain. However, to be efficient, such a dynamic penalty is difficult to tune
because it depends both on the problem and on the search state. Adaptive penalties
adjust the amount of penalty depending on the search history. The adaptive penalty
functions which are the best understood and the most important in practice (for the
sensitivity of the optimum to the constraints) are based on duality and the related
(classical, augmented and extended) Lagrangians concepts.

All the methods presented next use penalty functions. Part 1.2.2 is specific to
EAs as it relies on the coevolution of subpopulations who are differently penalized.
It is followed, in part 1.2.3, by a study on adaptive penalties and duality which,
although often cast in the context of EAs, is applicable to any zeroth-order optimizer
such as GBNM (cf. section 1.3).

1.2.2 The segregated genetic algorithm

The SeGregated Genetic Algorithm (SGGA) is a coevolutionary algorithm for opti-
mizing constrained problems. SGGA was introduced in [Le Riche et al., C1995-1].
In the SGGA, constraints are handled by penalty functions. The unconstrained
penalty function, which is minimized instead of solving (P ), is generically written
Fp(x), where p is a vector of penalty parameters. The static penalty function of
equation (1.18) is an example of Fp(x). As it has been argued in the previous para-
graph, it is preferable not to penalize too much infeasible points in order not to
forbid short cuts through the infeasible domain, yet it is necessary to sufficiently
penalize in order to ultimately converge to a feasible point. This rule has long
been known in the evolutionary calculation community as the minimal penalty rule
[38, 160, 178]. Section 1.2.3 will investigate the mathematical calculation of mini-
mal penalties using duality theory. On the contrary, the SGGA works with fixed, a
priori given penalty parameters, but it aims at desensitizing the search to the choice
of these parameters.

The basic idea of the SGGA is to use two penalty parameter values (say p1 and
p2) instead of one. The two values are associated with two groups of solutions that
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t ← 0.
Initialize a population P0 ⊂ Sµ.

Evaluate P0 (calculate the Fp1 and Fp2) and create two ranked

lists.

Merge the two lists into one ranked list by alternating ranks

without copies.

Do while continue(P, t)
t ← t + 1
Selection.

Variation (crossover and mutation)⇒ λ children.

Evaluate the children for Fp1 and Fp2, create two

ranked lists, merge them without copies.

Keep the µ solutions with higher ranks.

End.

Figure 1.9: Flowchart of a segregated genetic algorithm (from [Le Riche et al.,

C1995-1]).

have different levels of constraint satisfaction. Each of the groups corresponds to the
best performing individuals with respect to one penalty parameter. The two groups
interbreed (through crossover), but they are segregated in terms of performance
evaluation. Two advantages are expected. Firstly, because the penalty parameters
are different, the two groups will have distinct trajectories in the search space.
Because the two groups interbreed, they can help each other out of local optima.
The SGGA is thus expected to be more robust than an equivalent EA. Secondly, in
constrained optimization problems, the optimum is often14 located at the boundary
between feasible and infeasible domains. If one selects one penalty parameter large
(say p1) and the other one small (say p2), one can achieve simultaneous convergence
from both the feasible and the infeasible sides. The global optimum will then be
encircled by the two groups of solutions, and since the points are mixed by crossover,
the optimum should be located faster.

For example, in structural optimization, one usually seeks to minimize the weight
of a structure. The “p1 group” typically contains heavy designs that do not fail,
while the “p2 group” contains light designs that fail. The optimum design, which
is a compromise between weight and constraint satisfaction is located somewhere
between the p1 and p2 groups.

Fig. 1.9 shows the flowchart of the SGGA. It is a (µ+λ)−ES with the exception
of the evaluation procedure which ranks the points in two lists according to their
Fp1 and Fp2 values, and then merges them in a ranked list by taking the best of
list 1, then the best of list 2 which was not already selected, then the second best
of list 1 . . . .

The SGGA was tested for the optimum design of composite laminates (cf. formu-
lation in equation (2.1)). The objective was to minimize laminate thickess such that
the laminate would not fail, neither from buckling, nor from insufficient strength.
The penalty function was geometric, p acting as a power of the constraint (cf. [Le
Riche et al., C1995-1]). The reliability15 of the SGGA was estimated from

14The solution of a constrained optimization problem does not have to be at the constraint
boundary. The Kuhn and Tucker multipliers can be null at the optimum, cf. Fig. 1.10 for
example. In practice however, the optimum will most often be in the vicinity of a constraint
boundary.

15The reliability of the SGGA is defined as the probability of finding an optimal weight design
with a critical load within 10% of the global optimum.
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3000 independent searches of 6000 analyses each. The laminate was subjected to
three load cases and failure was calculated for the most critical load case. The ex-
periments confirmed that the SGGA is more reliable and less sensitive to the choice
of p than an equivalent classical EA. Furthermore, it was observed that SGGA con-
verged to the optimum with an average population weight inferior to the average
population weight of a classical EA.

A practical difficulty left unresolved by the SGGA is that it does not specify
how to choose p1 and p2. An improvement of the SGGA was later proposed in
[17], where the idea of forcing a balance between feasible and infeasible points in
the population remained, but only one penalty parameter was used. And, precisely,
it was adjusted so as to preserve a minimum proportion of feasible and infeasible
individuals in the population: Let Θt

feasible denote the proportion of individuals
satisfying the constraints at generation t, and Θinf and Θsup two user set bounds
on Θt

feasible. Low values of the penalty parameters favor infeasible individuals, and
vice versa, which suggests the updating rule,

pt+1 =






β · pt if Θt
feasible < Θinf

(1/β) · pt if Θt
feasible > Θsup

pt otherwise

where β > 1. Empirical default values are β = 1.1,Θinf = 0.4, et Θsup = 0.8 ([17]
and [Le Riche et al., J2007]). Note that variations of p are not monotonous,
so that there is no guarantee that the best population individual is feasible. It can
even happen that no feasible point is in the current population. However, in this
case, the steady increase in p will favor the emergence of feasible points.

1.2.3 Non-differentiable penalty functions and duality

Alternatively, duality theory can be called upon to build adaptive penalty functions.

Elements of duality

We now review some duality principles which will be useful in the rest of the dis-
sertation. For the sake of simplicity, the number of constraints is limited to one.
It should be noted that problems having m > 1 constraints can always be set in
terms of a single constraint by taking the most critical constraint,

{
minx∈S f(x),
such that g(x) = maxi=1,m{gi(x)} ≤ 0.

(1.19)

The set of solutions of (P ) is denoted X∗, x∗ is any element of X∗. The Lagrangian
formulation (Pλ) of the primal problem is,

(Pλ) minx∈SL(x, λ), (1.20)

where,

L(x, λ) = f(x) + λg(x). (1.21)

λ is a Lagrange multiplier. The set of solutions of (Pλ) is Xλ. We further assume
that for each λ ≥ 0, there exists at least a bounded solution xλ ∈ Xλ. This
assumption is fulfilled, for example, if f and g are continuous (Weierstrass theorem,
[138]).

The dual function is,

φ(λ) = min
x∈S

L(x, λ), (1.22)



1.2. HANDLING NON-LINEAR INEQUALITY CONSTRAINTS 25

and the dual problem is stated as,

(D) max
λ≥0.

φ(λ). (1.23)

The dual search occurs in the Lagrange multipliers space. The solution of (D) are
the Lagrange multipliers at the optimum, λ∗, and associated values of x are Xλ∗ .
An example of dual function is given in Fig. 1.10. When multiple constraints are
handled through the maximization scheme of equation (1.19), λ∗ is the optimal
Lagrange multiplier of the most critical constraint.

The motivations for solving the dual optimization problem (D) are i) to directly
solve the primal problem (P ) when X∗ = Xλ∗ , ii) to calculate λ∗, which per-
mits formulating exact penalty functions (cf. the “minimal step penalty” later).
At first glance, the dual problem seems much more complex than the primal prob-
lem since calculating the dual function involves solving an optimization problem,
minx∈S L(x, λ). However, favorable properties of the dual function added to the
possibility of approximately solving (D) make duality a powerful approach for ra-
tional constraints handling.

Property 1 (Concavity of φ) The dual function φ(λ) is concave in λ.

Property 2 (sub-gradient) For all λ ≥ 0, let us denote Xλ = {x ∈ S / L(x, λ) =
φ(λ)}. Then, for all xλ ∈ Xλ, g(xλ) is a sub-gradient of φ at λ.

The two above properties, proofs of which can be found in [138], are valid under very
general conditions (f and g bounded). They considerably simplify the resolution
of (D) since φ is a concave function with a known sub-gradient. Lagrangian based
penalty functions, such as the ones introduced in [Luersen and Le Riche, J2004]

(summarized hereafter as “adaptive linear penalty”), [16, 73] and [107], have penalty
adaptation schemes where, schematically, the Lagrange multiplier is increased if
the current best solution in terms of the penalized objective function is infeasible
(g(xb) > 0) and vice versa. Since g(xb) is an approximation of the sub-gradient
of φ(λ), those penalty adaptation schemes are variations of a gradient based dual
search. An alternative strategy is taken to solve the dual problem in [Le Riche and

Guyon, J2002] (see later “minimal step penalty and evolutionary optimization”).

Approximate dual problem In terms of λ, (D) is easy to solve because it is
a concave problem with a known subgradient. (D) has no local maximum and
many algorithms exist to solve it (nondifferentiable optimization or linear program-
ming, such as presented hereafter). The main difficulty remains the resolution of
minx∈S {f(x) + λg(x)} at a given λ in the primal space. For this reason, the
dual optimization problem is now approximated by restricting S to a discrete set
of points T . It yields an approximate dual function,

φT (λ) = min
x∈T

{f(x) + λg(x)} , (1.24)

and an approximate dual problem,

(AD) max
λ≥0.

φT (λ), (1.25)

where T ⊂ S is a set of points of the primal space. By construction φT is concave
and piecewise linear. (AD) can be formulated as a linear programming problem:

(AD)






maxw,λ≥0 w ,
such that f(xi) + λg(xi) ≥ w ,∀xi ∈ T ,
λ ≤ λmax ,

(1.26)
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where λmax is an arbitrarily large upper bound on Lagrange multiplier meant to
ensure the existence of a solution to (AD) even when all points in T are infeasible.
The linear programming problem (AD) is efficiently solved by a simplex algorithm
(cf. [Le Riche and Guyon, T2001]. Let its solution be λT .

0 2 4
−20

−10

0

10

i iiDi : f(x ) +     g(x  ) , x  in T

λT

φ(
λ

∗)
φ 

  (
   

  )
λ

T
T

λ∗

D1
D0

D2

φ(λ)

(P )

{
minx f(x) = x2

1 + x2
2 ,

s.t. 2x1 + x2 + 4 ≤ 0 .

(D) φ(λ) = −5λ2

4 + 4λ .

xλ =

(
−λ
−λ/2

)
,

λ∗ = 8
5 , x∗ =

(
−8/5
−4/5

)
,

T =

{(
−0.5
−0.25

) (
0
1

) (
−3
−3

)}

Figure 1.10: Example of dual and approximate dual functions, problem with a
saddle point.

Adaptive linear penalty as generalized Lagrangian

An adaptive linear penalty function is the simplest way to handle general inequality
constraints. (P ) is replaced by

(PP )

{
minx∈S L̄(x, λ) , where
L̄(x, λ) = f(x) +

∑m
i=1 λi max(0, gi(x)) .

(1.27)

This last problem is unconstrained, but appropriate values of the penalty parameters
λi need to be estimated. More usual penalization approaches are based on quadratic
penalty, ordinary Lagrangian or augmented Lagrangian functions. The current
adaptive linear penalty has the following advantages, proofs of which are given
in Appendix B of [Luersen et al., J2003] using generalized Lagrangian theory
([161, 138]):

• With respect to a quadratic penalty, convergence to the feasible optimum can
be achieved for finite values of the parameters λi.

• With respect to an ordinary Lagrangian, generalized duality theory can be
applied to calculate the λi’s for a larger class of functions f and gi. In other
terms, if λ ≥ λ∗, where λ∗ are the ordinary Lagrange multipliers, then mini-
mizing L̄(x, λ) will lead to x∗ for more functions than minimizing the ordinary
Lagrangian L(x, λ∗) would.

• Finally, augmented Lagrangians have more penalty parameters to set than
L̄. Unlike L̄, if f and the gi’s are differentiable, augmented Lagrangians are
differentiable at places where g(x) = 0. This however is not a decisive
drawback of L̄ when a non differentiable framework is assumed (e.g., with
EAs, GBNM, other pattern search methods, . . . ).

The penalty parameters are updated after each generation of a new point, xnew.
The updating scheme is intuitive since it consists of increasing penalty parameters
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of violated constraints,

if (L̄(xnew, λk) ≤ L̄(xbest, λk)) ,

λk+1
i = λk

i + smax(0, gi(x
new)) , i = 1, m ,

xbest = arg min
x∈{xnew,xbest,archive of other points}

L̄(x, λk+1) ,

end ,

(1.28)

where s is a positive step size. This updating strategy is interpreted as a fixed step
approximate gradient search on the dual function (see Appendix B of [Luersen et

al., J2003]).

On simple functions like the bounded Rosenbrock problem,

{
minx1,x2∈[0,20] 100(x2 − x2

1)
2

+ (1− x1)
2

,
such that 4− x2

1 ≤ 0 .
(1.29)

the above scheme, included in the GBNM algorithm (see section 1.3 and [Luersen

et al., J2003]) converges to λ = 0.5± 1.10−6 after about 800 analyses (based on
100 independent runs, λ0 = 0 and s = 0.001). However, other experiments with
more complex functions (higher dimensions, with local optima) have shown that
this adaptive penalty scheme, although of an appealing simplicity, has a convergence
which depends a lot on the starting point and step size. The following minimal step
penalty, associated with a proper solution of the approximate dual problem, is more
stable and therefore recommended.

Minimal step penalty and evolutionary optimization

Augmented Lagrangian functions and Lagrange multipliers updating have been ap-
plied to derive adaptive penalty functions in evolutionary algorithms. Bean and
Hadj-Alouane ([16]) have proposed a penalty adaptation scheme which resembles
Lagrange multipliers updating strategies. Kim and Myung ([107]) and Tahk and
Sun ([182]) have used augmented Lagrangian penalty functions in evolutionary op-
timization, calculating Lagrange multipliers as a by-product of the search. In [182],
a coevolutionary algorithm simultaneously evolves a population of unknowns vari-
ables and a population of Lagrange multipliers.

The current work is also concerned with solving the dual optimization problem
as a way to adapt a penalty function. Fundamentally, it differs from previous works
in two aspects. Firstly, an evolutionary algorithm is devised which explicitly solves
the dual optimization problem. Secondly, the penalty function is not an augmented
Lagrangian. Indeed, augmented Lagrangians were originally derived for mathemat-
ical programming. They are continuously differentiable functions. They depend on
the choice of a penalty parameter (the “augmented” term), which, if taken too small,
leaves local optima. Continuous differentiability is not needed in evolutionary opti-
mization. The freedom gained in the formulation of the penalty permits removing
the parameter and obtaining global optimality and minimal penalty properties.

A dual evolutionary algorithm The dual evolutionary optimizer iterates be-
tween the primal problem (Pλ) and the approximate dual problem (AD). Based on
a particular choice of λ, Pλ resolution by evolutionary optimization produces points
to include in T . Based on T , (AD) resolution by the simplex algorithm yields a new
Lagrange multiplier λT . Most dual optimization methods iterate between primal
and dual spaces. Our algorithm bears particular resemblance to Dantzig’s algorithm
([36]). The difference lies in the evolutionary primal optimization:
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• It can visit different basins of attraction of the Lagrangian, L(x, λ), during
convergence, i.e., it can yield many judicious points to be included in T at
each iteration.

• It can handle non-convex, discontinuous functions.

A flowchart of a dual evolutionary optimizer is given in Fig. 1.11. Xf
k and

Xi
k are the sets of feasible and infeasible active points of (AD) at iteration k,

respectively. The evolutionary algorithm used is a steady-state algorithm with
continuous mutation and crossover, and tournament selection ([11]). Evolutionary
searches are stopped as soon as an improvement on L(x, λk) has been observed.
This is an important implementation aspect as it saves much computational effort
that would otherwise be spent minimizing the Lagrangian with λk far from λ∗. As
a side effect, this stopping criterion increases the number of resolutions of (AD).
The cost of solving (AD) is however negligible because no evaluation of f or g is
performed and the simplex algorithm is efficient. In all the tests performed (cf. [Le
Riche and Guyon, J2002]), the CPU time spent in (AD) is less than a percent
of the total CPU time for Tk sets of up to 10000 elements. Further details on the
simplex implementation, existence of Xf

k , and convergence rate of the method can
be found in [Le Riche and Guyon, T2001]. Important outputs of the algorithm
are λkfinal

and Xf
kfinal

. λkfinal
is an estimate of λ∗. Xf

kfinal
is an estimate of the

feasible points in Xλ∗ .

1. k = 0, initialize λ0, φ0 = DBL MAX.

2. Evolutionary (primal) search minimizing on x L(x, λk). If

k > 0, include Xf
k−1 and Xi

k−1 in the initial population.

Stop when a point x′ has been found such that L(x′, λk) < φk.

3. Add x′ plus other nf and ni best feasible and infeasible

individuals according to L(x, λk) to Tk −→ Ttemp.

4. Simplex exact resolution of dual (AD) with Ttemp according

to formulation (1.26) −→ λtemp , Xf
k , Xi

k.

5. k = k + 1, Tk = Ttemp, λk = λtemp, φk = f(xf
k) + λkg(xf

k).
If cumulated number of analyses > Nmax, kfinal = k, stop.

Else go to 2.

Figure 1.11: Dual evolutionary optimizer

Tk gathers information from many potentially important points sampled by all
evolutionary runs up to iteration k. Values of Lagrange multipliers are inferred
from these points through an exact resolution of the approximate dual problem
(AD). Such an approach is thought to be more efficient than gradient based dual
searches which change λk based on a local information, an approximation of g(xλk

),
xλk
∈ Xλk

.

A minimal, exact, step penalty function The previous paragraph has intro-
duced a coupled evolutionary / simplex algorithm for solving the dual problem (D).
But the goal is to tackle the primal problem (P ). In fact, problems having a saddle
point at the optimum are readily solved because in this case, X∗ = {x∗}, x∗ unique,
Xλ∗ = {xλ∗}, xλ∗ unique, and x∗ = xλ∗ ([138]). In other terms, the dual and the

primal problems are equivalent. The dual evolutionary algorithm provides Xf
kfinal
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(cf. Fig. 1.11), which includes an estimate of x∗. To sum up, the Lagrangian is a
valid penalty function for problems having a saddle-point.

For problems without saddle point, solving (D) does not directly provide a
solution to (P ), Xλ∗ 6= X∗. This can be seen on the example of Fig. 1.12 where
Xλ∗ = {1.058 , 4.58}, xf = 1.058 and X∗ = {4.5}. Problems without a saddle
point require using another penalty function. Nevertheless, as will soon be seen,
solving (D) still generates information for properly penalizing the constraints : Xλ∗

contains at least one feasible element denoted xf , g(xf ) ≤ 0 (see [Le Riche and

Guyon, T2001]).

Primal space Dual space
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(P )

{
min−20≤x≤20 f(x) = − exp(−0.1x2)− exp(−0.5(x− 5)2) ,
s.t. (x− 0.5)(x− 4.5) ≤ 0 .

X∗ = {4.5} , λ∗ = 0.064 , Xλ∗ = {1.058 , 4.58}

Figure 1.12: Example of dual and approximate dual functions, problem without a
saddle point.

Let Fp denote any penalized objective function. The choice of the penalty func-
tion has a profound effect on the evolutionary optimization efficiency. When too
high a penalty is imposed on infeasible points, the population is prematurely pushed
into the feasible domain, often far from optima x∗. Subsequent convergence to x∗

can be extremely slow. In evolutionary terms, penalization makes Fp deceptive.
Reciprocally, if too low a penalty is enforced, the algorithm converges into the in-
feasible domain. The optimal penalty function is problem dependent. However,
several authors have described a reasonable heuristic, the minimal penalty rule, as
a remedy against penalization induced deceptiveness (Davis [38], Richardson et al.
[160], Smith and Tate [178]). It says: on average, it is best to apply the smallest
amount of penalty such that the algorithm converges to a feasible optimum, x∗. For
calculation purposes, a more precise definition of “amount of penalty” is needed.

Définition 1 (Amount of penalty) For optimization problems without a saddle
point and such that there is an infeasible solution to the dual, xi, the amount of
penalty, r, is defined as,

r = Fp(x
i)− f(xi) , (1.30)

where Fp is any penalized objective function.

A class of Lagrangian based exact penalty function is now introduced.
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Proposition 1 (A class of exact penalty functions) For f and g bounded, let
fp(x;λ+, xf ) be defined as,

fp(x;λ+, xf ) = f(x) + H(g(x))[λ+g(x)− λ+g(xf )− f(xf ) + f(x̂∗) + ǫ] , (1.31)

where,

H(y) = 0 if y ≤ 0 , H(y) = 1 otherwise,

λ+ ≥ λ∗ , xf ∈ Xλ∗ / g(xf ) ≤ 0 , ǫ > 0 ,

x̂∗ is the known feasible point with lowest f .

fp(x;λ+, xf ) has an absolute minimum at x∗ ∈ X∗.

This class of penalty functions contains a minimal penalty function.

Proposition 2 (A minimal step penalty function) Among exact penalty func-
tions, Lp, based on the addition of a step, p, to a generalized Lagrangian,

Lp(x, λ∗) = f(x) + H(g(x))[λ∗g(x) + p] , (1.32)

fp(x;λ∗, xf ) uses the smallest amount of penalty.

The proofs of Propositions 1 and 2 along with a more gentle introduction to fp can
be found in [Le Riche and Guyon, J2002 and T2001].

Proposition 1 explains how a constrained evolutionary optimization using fp(x;λ∗, xf )
as penalty function converges to an optimum. In addition, because it is a minimal
penalty strategy (Proposition 2), it promotes fast convergence. An evolutionary
optimizer for general constrained optimization problems is described in Fig. 1.13.
Finally, we emphasize that no parameter of the penalty function is arbitrarily set
since λ∗ and xf have a precise definition in terms of (D). λ0, Nmax, nf and ni

control the rate of convergence in the dual space. These parameters have little
influence compared to penalty parameters.

1. Run the dual evolutionary algorithm of Fig. 1.11

−→ λkfinal
, xf

kfinal
, xi

kfinal
.

2. Final evolutionary search minimizing on x fp(x;λkfinal
, xf

kfinal
).

xf
kfinal

and xi
kfinal

are included in the initial population.

Figure 1.13: Evolutionary optimization based on fp.

A graphical representation of the convergence of an EA on the hoop problem is
given in Fig. 1.14. The feasible domain is a thin curved shell. On this problem,
a reasonable penalty, p = 10 in the static penalty of equation (1.18), is too large
and induces a premature convergence inside the feasible domain, but far from the
optimum. Progress is then slow. The minimal step penalty function, fp(x;λ∗, xf ),
authorizes short cuts through the infeasible domain and induces a faster convergence
to x∗. More details and numerical tests can be found in [Le Riche and Guyon,

J2002]. The experiments illustrate three claims. Firstly, the minimal penalty func-
tion promotes fast and reliable convergence as compared to arbitrarily tuned static
penalty functions. Secondly, the dual evolutionary optimizer is a better strategy
than an adaptive linear penalty. Thirdly, the dual evolutionary optimizer is not
sensitive to its parameters setting.
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Figure 1.14: Comparison of EA convergences for varying amounts of penalty. Hoop
problem : the feasible domain is inside the circles and x∗ = (1.9, 0)T . Left: Fp(x) =
f(x) + 10 max(0, g(x)); for large penalty the population is confined to the feasible
domain and convergence is slow. Right: Fp(x) = fp(x;λ∗, xf ) = f(x) + 7.e −
5 max(0, g(x)); a minimal penalty permits a faster convergence to x∗.

1.3 GBNM

This section and the following describe approaches to global optimization we have
contributed to develop which are not based on evolutionary calculation. We start
here with the Globalized and Bounded Nelder-Mead algorithm (GBNM) which was
first introduced in [Luersen et al., J2003].

1.3.1 A brief presentation of GBNM

As the name indicates, GBNM is based on the well-known Nelder-Mead algorithm16

([142, 198]). The Nelder-Mead algorithm is a local search method that proceeds
by simple geometric transformations of n + 1 points in n dimensions (a simplex).
Referring back to evolutionary algorithms (section 1.1), one could see one iteration
of the Nelder-Mead algorithm as a crossover operator in IRn [49] from n+1 parents.
The Nelder-Mead algorithm is popular among engineers because i) it is a zeroth
order method, i.e., it does not require function gradients, ii) it is a very simple
method to program, iii) it is scale invariant, i.e., its convergence is not affected by
any monotonous transformation of the objective function which, in turn, provides
a certain robustness for poorly conditioned functions. However, the Nelder-Mead
algorithm is not so popular among mathematicians: it can fail if the n+1 points of
the simplex are in a subspace that does not contain the local optimum; it converges
slowly in more than 10 dimensions because only one of the n + 1 points is moved
at each iteration. Moreover, it is not a global optimizer. A flowchart of the Nelder-
Mead algorithm can be found at the end of [Luersen et al., J2003].

The GBNM algorithm is an attempt to improve on the Nelder Mead algorithm,
while keeping a practical approach. By practical we mean a zeroth order method,
whose behavior is guided by a total analyses budget, and that accounts for variables
bounds and inequality constraints. With respect to the original algorithm, the
components added in GBNM are the following:

• The search is made global by a probabilistic restart mechanism. The algorithm
performs at least one local Nelder-Mead search. If the analysis budget is

16also known as sequential simplex method.
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not exhausted, a new Nelder-Mead search is started and so on. The new
starting point is, in probability, far from past starting and convergence points
in order to increase the chances of visiting new basins of attraction. The
restart distribution is created with Gaussian Parzen windows.

• Variable bounds are taken into account.

• General inequality constraints are handled by the linear penalty function
of equation (1.27) where the Lagrange multipliers are updated using equa-
tion (1.28).

• Simplex degeneracy is checked at each Nelder-Mead iteration. A simplex is
degenerated if it belongs to a subspace of dimension smaller than n, while
not touching variables bounds17. The test for degeneracy is based on the
determinant and the sizes of the simplex edges. If a simplex is degenerated,
it is re-initialized from its best point.

• Convergence of Nelder-Mead is checked by re-initializing a Nelder-Mead search
with a small simplex from the best point of the converged simplex.

As it can be seen on the GBNM flowchart of Fig. 1.15, the difficulty is to archi-
tecture these components together. The output of the GBNM algorithm is the list
of Nelder-Mead convergence points. They are candidate local optima and some of
them can be global optima.

At the time of this study, the GBNM clearly outperformed a steady state evolu-
tionary algorithm with continuous crossover and fixed Gaussian mutation for func-
tions having up to 12 variables. The readers who are looking for some details should
consult [Luersen et al., J2003].

Today, it seems necessary to compare GBNM with more efficient EAs like the
CMA-ES [80]. In light of accumulated experience and explanations, we also be-
lieve that the GBNM constraints handling mechanism should be improved: the
estimation of the Lagrange multipliers should be changed from the simple – but
unstable – updating scheme of equation (1.28) to the more robust resolution of the
approximate dual problem presented in section 1.2.3.

1.3.2 Application to the design of swimming monofins

The GBNM optimizer was applied to design a swimming monofin in [Luersen

et al., J2006]. Monofins, a picture of which is shown in Fig. 1.16, are the
most efficient way of swimming for human beings. It is expected that further
progress can be achieved because today’s monofin design is empirical and studies in
aquatic locomotion modes [173] and oscillating hydrofoils [2] show that more efficient
swimming systems exist: fish like tuna, mackerel, sharks and marine mammals have
propulsive efficiencies greater than 90% at high swimming speed in calm waters.

However, the simulation of the swimmer and monofin system is very complex:
the flow is unsteady, it interacts with the fin which is a composite structure in dy-
namic motion with large displacements. A single simulation of such a system is a
research study by itself and it is far too computationally intensive to allow subse-
quent optimization. The monofin optimization problem was therefore formulated in
such a way so as to use efficient 2D fluid-structure simulations but also to provide a
3D design at the end of the process. Accordingly, the problem was decomposed into
two subproblems: i) a two-dimensional optimization of the fin stiffness distribution
which accounts for fluid structure interactions and ii) the identification of a 3D fin
that is mechanically equivalent to the 2D, previously optimized, fin. Both steps
involved optimizations that were performend with the GBNM algorithm.

17Simplexes are allowed to degenerate along the variables bounds to follow them.
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Figure 1.16: Carbon monofin by Breier c©.

Figure 1.17: Swimmer and fin model. Blue squares are the solid obstacle (swimmer
and fin), green crosses are emitted particles, red vectors are the relative speed
vectors.
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Figure 1.18: Optimal stiffness distribution for various swimmer power upper-bounds
Cmin = 300Nm/rad and Cmax = 15000Nm/rad. (The sign convention used in
[Luersen et al., J2006] is the contrary of that chosen here. Therefore, powers
are negative and upper-bounds become lower-bounds in this figure.).

Two-dimensional fin optimization. If one assumes an inviscid, incompressible
flow that remains attached to an obstacle without thickness, the computationally
efficient unsteady vortex based flow model of [132] can be used. As it can be seen in
Fig. 1.17, the model is efficient because only the solid boundary and the wake need
to be discretized. The swimmer is represented by four linear segments (the arms,
the torso, the thighs and the tibias) with imposed displacements. The monofin is
calculated as six rigid bars articulated by five torsional springs of stiffnesses Ci,
i = 1, . . . , 5. At each iteration of the swimmer-monofin simulation, the swimmer
position is updated. Next, the orientation, angular velocities and angular accel-
erations of the monofin’s bar joints are calculated to satisfy the monofin dynamic
equations. Once the equations are satisfied, the forces exerted by the fluid on the
obstacle are known. One can calculate the time-averaged propulsive power of the
fin, P̄fx, and the total power spent by the swimmer to move the fin in the water,
P̄f .

The 2D design of the monofin is formulated as the maximization of the propulsive
power, while the total power spent by the swimmer is bounded,

{
maxCi

P̄fx

such that P̄f < P̄max and Cmin ≤ Ci ≤ Cmax , i = 1, 5 .
(1.33)

Problem (1.33) was solved with the GBNM method for three swimmer power upper-
bounds. The optimal stiffness distributions are plotted in Fig. 1.18. They are
tapered from the leading to the trailing edge. Changes in swimmer total power
affect mainly the fin near the leading edge, while low stiffness is always optimal
near the trailing edge.

Translation into a 3D structure. The 2D optimized stiffness distribution is
now translated into a 3D structure. The mapping can be seen as an identification
procedure where the “experience” is a 2D bar system whose behavior is approxi-
mated by a 3D finite element model of the fin. In its most general statement, this
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Figure 1.19: Modal FE analysis of a fin for identifying longitudinal thickness dis-
tribution.

identification problem is ill-posed since the 3D system has more degrees of freedom
than its 2D counterpart. Many combinations of shape and thickness distribution
can represent the 2D monofin. In practice, however, the planform shape of the
monofin is dictated by manufacturing (cost of molds) and marketing considerations
which has yielded forms that mimmick marine mammals (cf. Fig. 1.16). Once the
fin planform shape is fixed, the spring stiffnesses are mapped into a fin thickness
distribution. Because the fin is manufactured using composite prepreg layup, the
thickness is constant spanwise and varies chordwise at ply drops.

The equivalence between the two models can be sought in terms of static behav-
ior, modal behavior, or a mix of static and modal behavior. The advantage of static
behavior is that large displacements analyses are available. However, it neglects the
fin inertia in comparison to water inertia and fin flexural stiffness. On the contrary,
the modal dynamic identification accounts for both fin inertia and flexural stiffness
but it is, in essence, a small displacements analysis. Furthermore, 3D non-bending
modes have no pendant in the 2D system and higher natural bending frequencies
are far away from the frequency of the imposed movement. For these reasons, only
the first natural mode, which was empirically found for the monofin to consistently
be bending (see Fig. 1.19), is considered.

The 3D thickness distribution is found by minimizing

J = αJstatic + (1− α)Jfreq

where Jstatic is a distance between deformed shapes of the 2D model and the plane
of symmetry of the 3D fin, Jfreq is a distance between first eigenfrequencies of the 2D
and 3D fins, and 0 ≤ α ≤ 1. J is minimized in terms of six thicknesses in [Luersen

et al., J2006] using the GBNM algorithm. It is observed that taking α = 0,
i.e., accounting only for the distance in terms of first eigenfrequency, resulted in an
ill-posed problem: many thickness distributions have the same first eigenfrequency.
When accounting only for static displacements (α = 1), besides a few pathological
load cases that make the identification impossible because the deformed shape is
not sensitive to some of the Cis, no difference in identified thickness distribution is
observed between small and large displacements formulations. The recommended
approach in order to take the most physics into account and to improve the identi-
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Figure 1.20: Comparison of identified monofin thickness distributions from different
formulations. The x-axis is a normalized chord length, the leading edge is at x = 1
ad the trailing edge at x = 6. The target 2D model was the optimum for P̄f =
2000W . The obtained profiles are more taperred than those already manufactured
by Breier Inc.

fiability, is to mix the static and dynamic norms (α = 0.5). Results for the various
formulations are compared in Fig. 1.20.

1.4 A multi-point global optimization criterion based

on Gaussian processes

1.4.1 Space filling design of experiment for optimization

We now turn to the global optimization methods proposed in [Ginsbourger et

al., C2007]. These methods are based on a principle fundamentally different
from that underlying EAs (with the exception of EDAs) and GBNM: whereas EAs
and GBNM have search mechanisms based on randomized steps from particular
space points, we consider here methods that build a metamodel of f(x) in the
entire search space S from a list of already calculated points (xi, f(xi)), i = 1, m.
To create optimization methods that are global in scope, it is necessary that the
metamodel provides at least two responses at each point x, a prediction of f and
a measure of its uncertainty. The optimizer then trades off ressource allocation
between high-performance and uncertain regions of the design space. An early
example of such process is the DIRECT method [46] where, in simplified terms, the
prediction is the function value f(xi) of the nearest already sampled point xi, and
the uncertainty is the distance to xi. Such optimization methods typically define
space filling design of experiments, the space filling property explaining why they
are global in scope. Since they proceed by building global metamodels in S, they
are not appropriate for problems that have more than n = 10 dimensions.
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1.4.2 Ordinary kriging

The current work lie within the framework of ordinary kriging probabilistic meta-
models [33]: the function that is optimized is supposed to be a realization of the
spatial random process

F (x) = f̄ + ε(x) , (1.34)

where f̄ is an unknown constant mean and ε(x) a stationary Gaussian process
of known covariance18. With these assumptions, the density of F (x) knowing its
realizations F (xi) = f(xi) is analytically known19,

[F (x)|F (x1) = f(x1) . . . F (xm) = f(xm)] ∼ N
(
mOK(x), s2

OK(x)
)

(1.35)

Full expressions of mOK and s2
OK in terms of the ε(x) covariance and the set

(xi, f(xi)) can be found in [Ginsbourger et al., C2007]. At each point x, the
function process conditioned by already calculated points has a Gaussian den-
sity of mean mOK(x) and variance s2

OK(x). The probabilistic model of equa-
tion (1.35) is reasonable for deterministic functions f : for all xa and xb in S,
[F (xa)|F (xi) = f(xi) , i = 1, m] and [F (xb)|F (xi) = f(xi) , i = 1, m] are correlated
Gaussian variables (and the expression of their correlation is known); the closer xa

and xb are, the more correlated their kriging function values are; mOK(xi) = f(xi)
and s2

OK(xi) = 0, therefore [F (x)|F (xi) = f(xi) , i = 1, m] is interpolating. An
illustration of the ordinary kriging distribution is given in Fig. 1.6. It should also
be noted that the form of the covariance of ε(x) is linked to the regularity of the
instantiated function. For example, if

Correlation (F (x), F (y)) = exp

[
n∑

k=1

θk|xk − yk|pk

]

and pk = 2, then f is infinitely differentiable [184].

1.4.3 Kriging-based optimization criteria

A review of optimization methods relying on metamodels can be found in [45]. It
analyzes and illustrates why directly optimizing a deterministic metamodel (like a
spline, a polynomial, or the kriging mean) may be dangerous, and does not even nec-
essarily lead to a local optimum. Kriging-based sequential optimization strategies
(as developed in [93]) may avoid converging to non (locally) optimal points by tak-
ing the kriging variance term, s2

OK , into account, hence encouraging the algorithms
to explore unvisited zones. Such optimization algorithms produce at each iteration
one point that maximizes a figure of merit (or criterion) based upon [F (x)|F (x) = f ]
(where F (x) = f is a shorthand notation for F (x1) = f(x1), . . . , F (xm) = f(xm)).
In essence, the criteria balance kriging prediction and uncertainty.

Visiting the point with highest uncertainty: maximizing sOK . The fun-
damental mistake of minimizing the kriging mean (mOK) when globally minimizing
a function is that the uncertainty associated with mOK is not taken into account.
At the extreme inverse, it is possible to define the next optimization iterate as the
least known point in S,

x′ = argmaxx∈SsOK(x)

18In kriging-based optimization, one often improperly uses maximum likelihood covariance hy-
perparameters without taking the variance of the estimation into account. This approximation
has the advantage of delivering a Gaussian posterior distribution (1.35), even if the uncertainty is
slightly underestimated.

19Cf. the theory of conditioned Gaussian vectors [26].
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This procedure defines a series of x′s which will fill the search space (it is dense
in S) and, in this sense, it will ultimately locate a global optimum x∗. Yet, since
no use is made of previously obtained f(xi) information (look at the formula for
s2

OK [Ginsbourger et al., C2007]), there is no bias in favor of high performance
regions. Maximizing the uncertainty is inefficient in practice.

Compromises between mOK and sOK . The most general formulation for bal-
ancing the exploitation of previous simulations, which is supplied by mOK , with
the exploration, which is estimated by sOK , is the two criteria problem

{
minx∈S mOK(x)

and maxx∈S sOK(x)

Let C denote the Pareto set of solutions20. Finding one (or many) elements in C
remains a difficult problem since C typically contains an infinite number of points.
We have mentioned earlier the DIRECT method [46]. Although DIRECT is not
based on kriging, it uses a Pareto set to balance exploration (distance to the near-
est neighbors) and performance (f of nearest neighbors). All subregions that are
Pareto optimal receive computational resources at the next iteration. Note that
[24] proposes a parallelized version of DIRECT.

Maximizing the probability of improvement At first sight, the probability of
improving the function below the currently known minimum
min(f) ≡ min(f(x1), . . . , f(xm)) may seem to be crucial to an optimizer effi-
ciency:

PI(x) = P (F (x) ≤ min(f)|F (x) = f)

= Φ

(
min(f)−mOK(x)

sOK(x)

)

φ and Φ stand for the probability density function and the cumulative distribution
function of the standard normal law N (0, 1), respectively. min(f) is sometimes
replaced by some arbitrary target T ∈ R. However, the PI criterion is known to
provide a very local search whenever the value of T is close to min(f). Taking
several T ’s is a remedy proposed in [45] to force global exploration.

Maximizing the expected improvement An alternative solution is to maxi-
mize the expected improvement

EI(x) = E
[
(min(f)− F (x))+|F (x) = f

]
(1.36)

which additionally takes into account the magnitude of the potential improvement.
Above, (u)+ means max(0, u). EI measures how much improvement is expected
when sampling at x. In fine, the improvement will be 0 if the actual f(x) is above
min(f) and min(f) − f(x) in the opposite case. Since we know the conditional
distribution of F (x), it is straightforward to calculate EI in closed-form (see [93]):

EI(x) = E[(min(f)− F (x))IIF (x)≤min(f)|F (x) = f ]

= (min(f)−mOK(x))Φ

(
min(f)−mOK(x)

sOK(x)

)
+ sOK(x)φ

(
min(f)−mOK(x)

sOK(x)

)

(1.37)

20Definition of the Pareto front of (sOK ,−mOK): ∀x ∈ C,∄ y ∈ S : (mOK(y) <
mOK(x) and sOK(y) ≥ sOK(x)) or (mOK(y) ≤ mOK(x) and sOK(y) > sOK(x))
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Figure 1.21: PI and EI surfaces of the Branin-Hoo function. The design of ex-
periments is a 3 × 3 factorial design. The covariance is an anisotropic squared
exponential with parameters estimated by gaussian likelihood maximization [33].
Maximizing PI leads to sample near the good points whereas maximizing EI leads
here to sample between the good points. By construction, both criteria are null at
the design of experiments, but the probability of improvement is very close to 1

2 in
a neighborhood of the point(s) where the function takes its best observed value.
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EI represents a trade-off between promising and uncertain zones. EI has important
properties for sequential exploration: it is null at the already visited sites, and posi-
tive everywhere else with a magnitude which is increasing with the kriging variance
and with the decreasing kriging mean (EI maximizers are part of the Pareto front
of (sOK ,−mOK)). The expected improvement and the probability of improvement
are compared in Fig. 1.21.

The EGO algorithm ([93]) relies on the EI criterion. Starting with an initial
Design x (typically a Latin Hypercube), EGO visits, at each iteration, the current
global maximizer of EI and updates the kriging metamodel (including hyperparam-
eters re-estimation):

1. Evaluate f at x, set f = f(x) and estimate covariance parameters

of F by MLE (Maximum Likelihood Estimation)

2. While stopping criterion not met

(a) Compute x′ = argmaxx∈SEI(x), set x = x∪{x′} and f = f∪{f(x′)}
(b) Re-estimate covariance parameters by MLE

EGO was developed and applied in [126]. It was then considered as a reference and
has inspired contemporary works in optimization of expensive-to-evaluate functions.
For instance, [35] exposes some EGO-based methods for the optimization of noisy
black-box functions. [111] proposes an adaptation of EGO to multi-objective opti-
mization.

The Stepwise Uncertainty Reduction strategy (SUR) has been introduced
in [34] and extended to global optimization in [90]. By looking at possible objective
functions as conditional processes, F (x)|f , it is possible to define X∗|f , the random
vector of the location of the minimizer of F (x)|f , of density pX∗|f (x). The uncer-
tainty about the location of the optimum of F (x) is measured as the entropy of
pX∗|f , H(X∗|f). H(X∗|f) diminishes as the distribution of X∗|f gets more peaked.
Conceptually, the SUR strategy for global optimization chooses as next iterate the
point that specifies the most the location of the optimum,

x′ = argminx∈SH(X∗|f , F (x))

In practice, pX∗|f ,F (x) is estimated by Monte-Carlo sampling of F (x)|f , F (x) at a
finite number of locations in S, which may become a problem in high dimensional
spaces as the number of locations must geometrically increase with the number of
dimensions to properly fill the space. The SUR criterion is different in nature from
the other criteria presented so far in that it does not maximize an immediate (i.e.
at the next iteration) payoff defined in terms of F but rather lays the foundation of
a more delayed payoff by gaining a more global knowledge on F (reduce the entropy
of its optima). The multi-points expected improvement criterion introduced next
also uses a delayed payoff measure.

1.4.4 The multi-points expected improvement

Definition The multi- (say q-) points expected improvement, or q-EI, general-
izes the expected improvement seen in the previous section. It is the expected
improvement of q points,

EI(xm+1, ..., xm+q) =

E
[
max

(
(min(f)− F (xm+1))+, ..., (min(f)− F (xm+q))+

)
|F (x) = f

]
=

E

[
(min

(
f)−min

(
F (xm+1), ..., F (xm+q)

))+ |F (x) = f
] (1.38)
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Figure 1.22: Comparison between 1-point EI (lower left) and 2-points EI (right).
The learned function, y(x) = 3x, is known at x = {−1,−0.5, 0, 0.5, 1}. The couple
of points that maximize 2-EI is plotted using dashed lines on the EI curve (lower
left). These two points bracket the maximizer of EI but are different from it. (The
ordinary kriging has a cubic covariance with parameters σ2 = 10, scale = 1.4.)

q-EI was first defined in [126]. It was later developed in D. Ginsbourger’s doctoral
thesis and [Ginsbourger et al., C2007] within the framework of (simple and
ordinary) kriging. The q-EI criterion is a function of q vectors, xm+1, . . . , xm+q. Like
the SUR criterion, q-EI does not target an immediate payoff but rather a delayed
return after q objective function calculations. We believe this is an important
property for finite cost global optimizers: if it is known that q analyses will be
computed, maximizing q times an immediate payoff is not the best strategy because
some time can be devoted to better exploring the search space. Another advantage
of q-EI is that maximizing it yields q points whose objective functions can then
be calculated in parallel. An optimizer using the q-EI criterion may therefore be
labelled a parallelized EGO.

In order to better understand and calculate q-EI, one needs to say that the
variables [F (xm+1)|F (x) = f ], . . . , [F (xm+q)|F (x) = f ] are not independent: any
piece of information obtained at a certain point in space carries over to neighboring
points in a way accuratly described by kriging. The statistical law followed by the
conditioned vector of objective function values is analytically known,

[(F (xm+1), ..., F (xm+q))|F (x) = f ] ∼ N ((mOK(xm+1), ...,mOK(xm+q)), Sq)
(1.39)

The expression of Sq is given in [Ginsbourger et al., C2007]. An analytical
expression of the two-points expected improvement was obtained in [Ginsbourger

et al., C2007]. It was used to draw the plots of Fig. 1.22 which show, on a
simple unidimensional linear function, that maximizing EI and 2-EI does not yield
the same points: the two maximizers of 2-EI, which are shown on the EI lower
left curve by dashed lines, are in high EI regions, but none of them is at the EI
optimum. Furthermore, the two 2-EI optima need to be away from each other to
collectively maximize the expected improvement.

The analytical calculation of q-EI for q greater than two gives a complex expres-
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sion that depends on q-dimensional Gaussian cumulative density functions whose
computation is necessarily approximated as soon as q is larger than four. Therefore,
when q is larger than two, q-EI is estimated by Monte Carlo simulations:

For i = 1, nsim do,

instantiate fi(x)|F (x) = f
calculate Ii(x

m+1, . . . , xm+q) =(
min(f)−min(fi(x

m+1), . . . , fi(x
m+q))

)+ |F (x) = f
End For

qEIsim = 1
nsim

∑nsim

i=1 Ii(x
m+1, . . . , xm+q)

The central limit theorem can then be invoked to control the precision of qEIsim by
changing nsim. Like the SUR method, the Monte Carlo estimation of q-EI requires
simulating the conditioned Gaussian process F (x)|F (x) = f on a grid of points,
which will inevitably become costly as search space dimension, n, increases.

Approximated q-EI maximization Ideally, one would like to maximize the
q-points expected improvement,

(x∗m+1, . . . , x∗m+q) = arg max
x∈Sq

EI(xm+1, . . . , xm+q) (1.40)

but the problem becomes computationally intractable as n and q grow: there are
n × q unknowns and the Monte Carlo approximation to q-EI is expensive when n
increases. Two heuristics for approximating the solution of the q-EI maximization
were proposed in [Ginsbourger et al., C2007]. Both heuristics, the constant
liar and the kriging believer, boil down to solving a series of modified EI maximiza-
tions:

xm+1 = arg maxx∈S E [(min(f)− F (x))+|F (x) = f ]
For i = 2, q do,

xm+i = arg maxx∈S E
[
(min(f)− F (x))+|F (x) = f , F (xm+1) = L1, . . . ,

F (xm+i−1) = Li−1

]

End For

In the constant liar, Li is set equal to a constant which is either min(f) or mean(f)
or max(f). Since the final goal of the procedure is to minimize f , Li = max(f)
generates more repulsion from already visited xm+i than Li = mean(f) which, in
turn, generates more repulsion than Li = min(f). The repulsion from already visited
points is synonymous of a more explorative algorithm. In the kriging believer, Li

has the value of the kriging predictor knowing F (x) = f , F (xm+1) = L1, . . . ,
F (xm+i−1) = Li−1.

Tests were performed in [Ginsbourger et al., C2007] on the two-dimensional
Branin-Hoo function and on 4000 realizations of Gaussian processes with various
covariance structures. The aforementioned heuristics were compared to q-point de-
signs generated by Latin Hypercuble Sampling (LHS) and random UNIForm sam-
pling (UNIF). Fig. 1.23 presents the results on the Branin-Hoo function. It is seen
that the constant liars achieve much better multi-point expected improvements
than the LHS and UNIF random designs, which confirms that these heuristics ap-
proximately optimize the q-EI. With the Gaussian processes test functions, it was
observed that the min constant liar is statistically more likely to yield good results
than the max constant liar but it is also more likely to fail: indeed, the max constant
liar is more exploratory than the min constant liar. The experiments done with the
kriging believer offer another example of No Free Lunch: The kriging believer per-
forms well – typically better than the constant liars – when optimizing Gaussian
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Figure 1.23: Comparaison of the q-points EI achieved by constant liars (min and
max), LHS and uniform random samples for the Branin-Hoo function and q ∈ [1, 10].
q-EI is estimated as qEIsim; LHS and the uniform random samples’ performances
are based on 2000 realizations.

processes because the objective functions match perfectly well its covariance struc-
ture; however, the kriging believer is clearly beaten by the constant liar heuristics
when optimizing the Branin-Hoo function because it wrongly predicts values well
below min(f) at the first iterations and prematurly focuses on a few regions of the
search space.



Chapter 2

Specialized evolutionary

optimization algorithms

2.1 How to specialize EAs

Evolutionary algorithms belong to the class of global optimization methods. The
globality of the search is obtained thanks to probabilistic transitions and the use of a
population, two features that, in turn, make EAs expensive optimization methods1.
Nevertheless, EAs can be adapted in many ways to the problem at hand to make
them more efficient.

Customizing coding and operators. Firstly, the EA coding and variation op-
erators can account for domain-specific knowledge. In the case of non-parametric
optimization (defined in section 1.1.1), adapting coding and variation operators to
the problem is the rule. For example, in [167] and [155, 156] genetic programming
has been adapted to the non-parametric identification of solids behavior laws. An
in depth study of codings and variation operators for topological optimization of
structures can be found in [101, 100, 102, 99, 78, 79]. Our work on evolving com-
posite laminates, which will soon be summarized (in section 2.2), provides other
examples of specialized coding and variation operators.

Coupling EAs and heuristics. Secondly, the EA’s structure leaves many pos-
sibilities open for coupling them with other search strategies. Such coupling is
appealing with local optimization methods or improvement rules of thumb. In or-
der to simplify the terminology, we will henceforth call any method that is supposed
to improve points a “heuristic”, irrespective of whether it is mathematically or em-
pirically founded, and irrespective of whether it is local or global. The EA makes
the search global, while the heuristic may increase its convergence speed. Drawing
once again on the biological metaphor, if an EA is the adaptation, a heuristic could
be the education. The synergy between EAs and heuristics has been acknowledged
early on (see for example [39], chap. 4). It has greatly contributed to the success of
the EA in practical applications since, if the analysis cost allows it, one can often
improve the best known resolution strategy by coupling it with an EA.

There are three typical couplings between EAs and heuristics. The heuristic can
be used to introduce high performing points in the initial population. It can also
be added as a specialized mutation operator. Finally, it can improve some points of

1Again, to give a cost estimate, no evolution is possible below 1000 calls of the objective function
and constraints.

45
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the last population. These couplings are presented in the following EA flowchart.

t ← 0, Population initialization [with a heuristic]
Evaluate the pop. (f)
While continue

t ← t + 1
Selection.

Variations (crossover, mutation, [heuristic]).
Evaluate the children.

Replace some parents by some children.

end while.

[heuristic applied to the best individuals]

While coupling an EA and a heuristic, the respectives roles of the different
search strategies must be balanced as a function of the total analyses budget. At
one extreme, for large resources, it is possible to apply the heuristics to every
population point until they converge. This idea underlies memetic evolutionary
algorithms [84, 85]. The evolutionary memetic algorithm then searches in the set
of the heuristic convergence points. If the heuristic is a local optimizer, this set
contains the local optima. At the other extreme, the heuristic can be applied as
a post-treatment of the best individual found by the EA. Between these extremes,
calls to the heuristic must be controlled. The main criterion remains computation
resources. There is also a risk that the heuristic induces premature convergence,
for example by giving a determining advantage early in the evolution to only a few
locally high performing individuals. Finally, the heuristic may make individuals less
recombinable with each other. In these cases, the heuristic should be applied with
caution.

2.2 Evolutionary algorithms for composite struc-

tures

2.2.1 Specializing the coding and the variation operators

We will now describe an evolutionary algorithm specifically designed to optimize
the stacking sequences of composite laminates [Le Riche and Haftka, J1995].
The objective is to design structural elements made by stacking layers of unidirec-
tional composite material. Each of the layers, or ply, is composed of fibers, typically
glass or graphite fibers, aligned in a preferential direction θ, and glued together by
an epoxy matrix. The structural elements are simply supported rectangular plates
subjected to in-plane compressive forces Nx and Ny (cf. Fig. 2.1). Such simple ele-
ments can be analyzed by an analytical simulation (the classical lamination theory,
[18, 71]). Hence, they are computationally inexpensive and it is possible to optimize
them with an EA.

The composite laminate optimization problem aims at choosing the best number
of layers and the best fiber orientations in each layer. Because of manufacturing
constraints, possible ply orientations are taken from {0◦,+45◦,−45◦, 90◦}. In order
to obtain a laminate with a symmetric behaviour, one further imposes that i) the
stacking sequence be symmetric with respect to its middle and ii) that there are as
many plies turned by +θ◦ as plies turned by −θ◦ (the laminate is then “balanced”).
The symmetry of the sequence eliminates the in-plane / flexural coupling, which is
written B = 0 with the notations of classical lamination theory (CLT) [18, 71]. The
plies balance removes the in-plane extensional-shear coupling, i.e., in CLT terms,
A16 = A26 = 0. The symmetry and balance constraints can directly be accounted



2.2. EVOLUTIONARY ALGORITHMS FOR COMPOSITE STRUCTURES 47

for in the coding: only one half of the plies is described, the other half being obtained
by symmetry; each allele is defined as a pair of plies2, xi = ± θ◦, θ ∈ {0, 45, 90}.
Therefore, any ordered list of xi’s describes balanced stacking sequences. If the
indices denote the number of adjacent layers, and noticing that +90◦ and −90◦

designates the same ply, alleles take on values in {02,±45, 902}. For example, the
chromosome x = [±45, 902,±45] corresponds to the 12 ply laminate whose stacking
sequence is [45◦/−45◦/90◦/90◦/+45◦/−45◦/−45◦/+45◦/90◦/90◦/−45◦/+45◦].
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Figure 2.1: Composite plate coding, from [Le Riche and Haftka, J1993 and

J1995]. A laminate is a superposition of plies in which fibers have the orienta-
tion θ. It is common to enforce a symmetry constraint in the θ’s with respect to the
laminate mid-plane and a balance constraint, i.e., as many θ’s as −θ’s. These con-
straints can be handled through the coding by describing one half of the laminate
and by grouping plies in balanced alleles ±θ. The number of alleles is variable for
changing the laminate thickness. The varying number of alleles makes the problem
non-parametric.

The design of composite laminates can be formulated as





minn ,
by changing x ∈ {02,±45, 902}n (n variable) ,
such that λbu(x) ≥ 1 , λcs(x) ≥ 1 and nc(x) ≤ 4 .

(2.1)

Including n in the variables makes the problem non-parametric. λbu is the criti-
cal buckling load factor, λcs is the critical strength failure load factor (calculated
with the maximum principal strains criterion) and nc is the number of contiguous
plies with the same fiber orientation. The two first constraints guarantee that the
laminate does not undergo buckling or strength failure under the (Nx, Ny) loads.
The upperbound on the number of contiguous plies with the same orientation is
an expert rule for preventing matrix cracking. These three constraints are handled
through static penalties (the subject of constraints handling and penalties has been
debated in section 1.2).

Stacking sequence problems are non-linear and are likely to have local minima
because of the overabundance of variables (the number of plies can be in the order
of 100). In addition, the discrete and non-parametric features of S are an invita-
tion to tackle the problem with an evolutionary algorithm. Many versions of EAs
for composite design have been proposed, e.g. in [Le Riche et Haftka, J1993,

J1995] and [112, 113, 179]. We will now present the experiments made in [Le

Riche et Haftka, J1995].

2+θ and −θ layers are thus always next to each other with this coding. This is a restriction
on all possible balanced laminates since it prohibits having other layers in-between. In addition
to enforcing the balance condition, this coding minimizes the laminate flexion-twist coupling. In
CLT terms, it minimizes D16 and D26. For more than 20 layers, such an assumption should not
significantly deteriorate the performance of the solutions. For thin laminates, this assumption
should be removed, but in this case the design space size is sufficiently small to allow enumerative
strategies.
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A criterion is defined to compare different EAs for stacking sequence design.
It is the cost of the search and is equal to the average number of analyses (f and
g calculations) necessary to reach a near optimal solution with 80% probability3

Near optimal solutions have the same number of plies as the global optimum x∗

and min(λbu, λcs) > 0.999 min(λbu(x∗), λcs(x
∗)). The global optimum was the

best ever point found, resulting from thousands of optimizations. The cost was
estimated by averaging 200 independent runs for three load cases (Nx, Ny), that is,
600 independent runs were made for each EA version. The contribution of each EA
component (mutation, crossover, . . . ) to the cost also depends on the other compo-
nents because they all contribute to the overall exploration-exploitation EA balance
(cf. section 1.1.3). In order to be rigorous, we therefore cannot discuss the effect of
one component without accounting for its interactions with the other components.
Nevertheless, testing all the combinations of the components to meta-optimize the
EA (e.g., [68]) was deemed computationally too complex to be conducted without
losing intuition. In particular, note that not only the EA parameters (population
sizes and probabilities of the variation operators) were tuned, but also different vari-
ation operators were investigated. The experimental process chosen in [Le Riche

and Haftka, J1993 and J1995] was to find, by successive enumerations on each
EA parameter of each EA component, a local optimum4 in the space of the EA.
The starting EA of this empirical meta-optimization was an elitist genetic algo-
rithm with its archetypal parameters settings (population size µ = 100, two-points
crossover with pc = 0.6, pm = 0.01). Selection was ranked-based. The optimized
EA had µ = 8 individuals with new variation operators. Its search cost was 1450
analyses for designing laminates that were 48 layers thick, i.e., laminates coded by
12 alleles. The efficiency of the algorithm can be appreciated by comparing the cost
to the search space size, larger than 312 = 531441: less than 0.2% were sampled
on average.

Composite laminates formae
In order to understand the laminate specialized variation operators, it is useful to
have in mind the simple mechanical features on which we will rely. Remember from
section 1.1.5 that formae are equivalence classes that are defined by equivalence
relations. Relevant equivalence relations for composite laminates are:

• laminate A [has fewer plies than] / [has as many plies as] / [has more plies
than] laminate B.

• laminate A [is made of the same layers as] laminate B, irrespective of the lay-
ers’ relative positions. A weaker formulation of this relation is [has the same
in-plane stiffness as], where the in-plane stiffness designates the A matrix
of classical lamination theory. For constant material laminates, an equiva-
lent statement is [has the same extensional lamination parameters V as], see
[Grosset et al., J2006] and section 2.2.2.

• laminate A [has the same layer(s) at position(s) . . . as ] laminate B. For the
stacking sequence coding introduced and n fixed, this equivalence relation de-
fines schemata (see section 1.1.4). For example, [∗ . . . ∗ 902] is the order 1
schema (subset) of all balanced and symmetric laminates that have a 90◦2 stack
adjacent to their midplane. In the Appendix of [Le Riche, T1994], a strong
correlation was observed in the case of composite laminates between order 1

3Mathematically, it is the 80% percentile of the random variable “number of analyses to find a
near optimal solution”.

4This is a local optimum only for searches that vary one variable at a time. It may not be a
local optimum if more than one parameter is changed simultaneously.
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Parent 1 : [x1
1 x1

2 x1
3 x1

4 � � �]
Parent 2 : [x2

1 x2
2 x2

3 x2
4 x2

5 x2
6 x2

7]

X1-thin, ic = 2 : [x1
1 x1

2 x2
3 x2

4 x2
5 x2

6 x2
7]

X1-thick, ic = 5 : [x1
1 x1

2 x1
3 x1

4 � x2
6 x2

7]
i.e., [x1

1 x1
2 x1

3 x1
4 x2

6 x2
7]

X2-thin, ic = 1 and 3 : [x1
1 x2

2 x2
3 x1

4]

X2-thick, ic = 1 and 6 : [x1
1 x2

2 x2
3 x2

4 x2
5 x2

6]

Figure 2.2: Examples of crossovers for composite laminates. ic designates the break-
ing points’ indices.

schemata average performance and problem easiness. Also, a strong correla-
tion was seen between order 1 schemata performance variance and problem
difficulty.

Crossover
Five crossovers have been compared, X1-thin, X1-thick, X2-thin, X2-thick and uni-
form crossover. These crossovers require two parents to make one offspring. If the
two parents do not have the same thickness, the chromosome of the thinner parent
is patched with “void” alleles, �, until it has the same size as the thicker parent.
Whenever a void appears inside a chromosome, it is deleted and the stacking se-
quence is compacted. The X1-. . . crossover series has one breaking point. X1-thin
has its breaking point occurring in the filled part of the chromosome of the thinnest
laminate. Hence, the child laminate always has the thickness of one of its parents.
X1-thick takes its breaking point in the filled part of the chromosome of the thicker
parent. The produced laminate can have any thickness between and including those
of the parents. The X2-. . . series of crossovers follows the same logic with two
breaking points. Uniform crossover has already been described in section 1.1.2.
Crossover examples can be found in Fig. 2.2.

The better performing operator for designing laminates is X1-thick. Contrary
to X. . . -thin crossovers, it properly mixes the parents’ thicknesses since it is able to
produce any intermediate thickness between those of the parents. On top of that,
it benefits from having only one breaking point because it transmits large parts
of the parents’ sequences unchanged. This last property is an advantage because,
as will soon be seen, intensive use is made of the permutation operator. Without
permutation, it is likely that more sequence mixing would have been demanded
from the crossover.

Mutation(s)
Three local perturbations of the stacking sequence can be imagined: a change of
ply orientation, a change of ply position in the sequence, and a change of the
number of plies (or laminate thickness). It is important to isolate each of these
mutations in order to best tune the EA. As a demonstration, let us consider the
counterexample of directly applying a standard EA to the design of composite lam-
inates. One would resort to the discrete mutation of equation (1.8) with the coding
xi ∈ {02,±45, 902,�}, i = 1, n, n fixed a priori (parametric framework). If all
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alleles have the same appearance probability (1/(A− 1)), the three aforementioned
mutation events have implicitly varying occurrence probabilities that are functions
of n and the laminate thickness. For example, the thinner a laminate is, the more
�’s its chromosome has, and the higher its chances of becoming thicker by mutation
(mutation of a � into a full allele, 02, ±45, or 902).

For stacking sequence design, the mutation is therefore decomposed into three
operators: ply orientation variation, ply order variation and thickness variation.

Ply orientation variation was trivially implemented by changing a full allele
(02, ±45 or 902) into another full allele with a given probability. An optimal static
probability of 0.01 (1%) per allele was found in the context of these experiments.

Ply order variation is given the name permutation operator. With a probability
pp per individual, it exchanges the positions of two alleles (each allele codes a
balanced stack of two plies):

Before permutation : [x1 x2 x3 x4 . . . xn]
Permutation of 2 and 4 : [x1 x4 x3 x2 . . . xn]

The permutation operator makes a crucial contribution to an efficient evolution of
the stacking sequences. It is applied to every child sequence, pp = 1. Permutation
has the advantage of exploring sequences that have new numbers of contiguous
plies (nc in equation (2.1)) and new critical buckling loads (λbu), while keeping
the strength of the laminate λcs and the number of plies n unchanged. In terms of
optimization criteria landscapes, permutation permits movements along the contour
lines5 of n and λcs. Once the constraint on buckling is satisfied, permutation allows
intensive exploration of the other criteria, while remaining in the feasible domain
for λcs.

Thickness variation was performed with two operators. The first, and most
straightforward, thickness mutation adds or deletes a two-ply stack anywhere in
the sequence with a given probability per individual. Empirically, average values of
0.05 (5%) of adding and, independently, deleting, were found to be optimal.
In a second phase, such blind thickness variation was complemented by a scaling
mutation operator. When a laminate is subjected to scaling mutation, its buckling
and strength critical load factors, λbu and λcs, are calculated. Use is then made of
the scaling relations

λcs ∝ h , λbu ∝ h3

that come from strength of materials. h is the plate thickness. New “buckling” and
“strength thicknesses” can be defined using these proportional relations in order for
the corresponding load factors to equal one,

hbu = h/ 3
√

λbu

hcs = h/λcs

The new thickness is the largest of hbu and hcs rounded to a multiple of the basic
stack of four-ply thickness6. Stacks deletions or additions are made so as to reach
the new thickness.
By lowering the rate of blind thickness variations to 1% and compensating by ap-
plying scaling mutation to 10% of the children, the price of the search was further
decreased to 1310 analyses.

5The term “contour line” is an abuse of the language in the current discrete space, but we think
it helps to visualize the explanation.

6A stack of four plies is the allele unit thickness here because of the balance and symmetry
handling.
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2.2.2 The Double Distribution Optimization Algorithm

The Double Distribution Optimization Algorithm (DDOA) is a particular Estima-
tion of Distribution Algorithms (EDAs) which have already been discussed in sec-
tion 1.1.6. DDOA was introduced in [Grosset et al., J2006] and is an example
of the specialization of an evolutionary algorithm in the design of composite lami-
nates. We would like to mention that the ideas arising from the DDOA algorithm
can easily be generalized to apply to many engineering optimization problems.

General presentation of the algorithm

The general principle of the DDOA is to estimate the distribution pt(x) of high per-
forming points from two distributions, firstly, pt

x(x), a function of primal x variables
and secondly, pt

v(v), a function of auxiliary v variables.
The auxiliary variables v depend on x through v(x). They provide a way to

incorporate a priori knowledge into the search. Auxiliary variables can be high level
information on the physics of the considered point x. For example, in mechanics,
the v’s can be flexural rigidities, masses or moments of inertia, while the x’s are the
structural element details. The v’s could also be drag coefficients in aerodynamics
or permeabilities in the study of porous media. Note that in these examples, the
v’s are integral quantities of the x’s and their calculation is computationally much
simpler than that of a full simulation (a calculation of f and g). The auxiliary
variables sometimes provide complete information, that is, f and g are functions
of the v’s only. But the DDOA is still applicable when the v’s supply only partial
information, i.e., f and g are functions of both v and x. Note that when the v’s are
integral quantities of the x’s, the inverse map, v = v−1(v) does not exist.

t ← 0.
Initialize pt

x and pt
v.

Do while continue(P, t)
t ← t + 1
Sampling:

create λ target v’s from pt
v

and ν ≥ λ candidate x’s from pt
x,

calculate the ν v(x)’s,
keep the λ candidates closest to the targets.

(Apply mutation.)

Evaluate f (and g) of the λ children.

Select µ < λ points based on performance

(the new population P).
Re-estimate pt

x and pt
v from P.

End.

Figure 2.3: Generic flowchart of a DDOA algorithm.

The flowchart of the DDOA algorithm is shown in Fig. 2.3. At each iteration
t, ν ≥ λ candidate points are created in the x space by sampling from pt

x. Inde-
pendently, λ target points are created in the v space by sampling from pt

v. The
auxiliary variables v of the candidates are calculated. The candidate points whose
v’s are closest to the target points are selected (no copies) and constitute the next
population of children. The rest of the algorithm is the usual EDA except that two
distributions are estimated instead of one. Note that the DDOA may be applied
even if f and g are not completely determined by the auxiliary variables because
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all λ children have their primal variables x defined (they have first been sampled in
the primal space).

Although it is not standard, we find it necessary to complement EDAs with a
mutation in order for them to perform well. Hence, a mutation instruction figures in
the flowchart. The importance of mutation in EDAs was observed experimentally
during Laurent Grosset’s PhD and can be understood as follows: EDAs without
mutation do not work well because their distributions are static pictures of already
known good regions of S. In constrast to learning high performance positions
in S, as EDAs do, the state-of-the-art CMA-ES learns successful steps. EDA’s
distributions play the same role as the crossover operator: they are an exploitation
mechanism that infers new points from a population of already known good points.
But, without mutation, an exploration mechanism is missing in EDAs.

An analytical expression of the distribution pt sampled by the DDOA algorithm
is not known to date. It is a function of pt

x, pt
v and is parameterized by ν. When

ν = λ, all the candidates points are kept so that pt ≡ pt
x. When ν → ∞ and all

points in the v space have non zero probability pt
v(v), some candidate points are

arbitrarily close to the target points and only the auxiliary distribution drives the
sample, pt ≡ pt

v. For ν > λ, pt is an unknown compromise7 between pt
x and pt

v.
Two advantages are expected using the DDOA method:

i) the functional expression of pt
x and pt

v can be very simple, yet the sampled
distribution pt accounts for variable couplings. In [Grosset et al., J2006], pt

x

only describes independent variables,

pt
x(x) =

n∏

i=1

pi(xi) (2.2)

but the dependencies are reintroduced in pt through pt
v since v(x) is a function

of many of the xi’s. Simple distributions are not flexible. As already discussed in
section 1.1.6, this is advantageous because simple distributions need few data points
to be identified. This means that small population sizes can be used, which is an
important condition in making EAs less expensive.
ii) The auxiliary variables are a way to introduce high level information in the
search at a neglible computational cost (the v calculation time should be much
smaller than those of f and g). Typically, the dimension of the auxiliary space is
smaller than that of the primal space. One half of the DDOA thus evolves in a
space of reduced dimensions.

Application to composite laminates

In [Grosset et al., J2006], the DDOA is applied to the optimization of com-
posite laminate stacking sequences. The variables are defined as in section 2.2.1: xi

is the fiber orientation of the i-th stack of two plies of a symmetric laminate, i.e.,
the laminate’s stacking sequence is [±x◦

n/ . . . /±x◦
1]s. The fiber angles are taken in

{0◦, ± 22.5◦, ± 45◦, ± 67.5◦, 90◦}. The four auxiliary variables are extensional
and flexural lamination parameters,

V ∗
{1,3} = 1

n

∑n
k=1{cos 2xk, cos 4xk} ,

W ∗
{1,3} = 1

n3

∑n
k=1[(n− k + 1)3 − (n− k)3]{cos 2xk, cos 4xk} ,

(2.3)

respectively [186, 137]. Within the assumptions of the classical lamination theory,
for given fiber and matrix materials and symmetric and balanced laminates, these
four lamination parameters fully determine the overall extensional and flexural be-
haviour of the plate (i.e., the A and D matrices). This property is an important

7A linear approximation could be pt(x) = α(ν)pt
x(x) + (1−α(ν))pt

v(v(x)) where 0 ≤ α(ν) ≤ 1,
α(ν) −→ 1− when ν −→ λ+, and α(ν) −→ 0+ when ν −→ ∞.
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source of inspiration in laminate design because there can be some 100 ply angles,
while the number of lamination parameters remains constant at four [Harrison et

al., C1995],[71, 185].
The distribution pt

x assumes independent variables (equation (2.2)) and the
pi(xi = θ) are simply the frequency of the appearance of θ at the ith variable
in the last population. Although the lamination parameters take discrete values
that follow bounded regular geometric patterns [186, 137], they are described in the
DDOA by an unbounded continuous distribution. Indeed, they can take a large
number of well spread values in the (V ∗, W ∗) space and tests have shown that ac-
counting for the bounds slowed down the DDOA [Grosset et al., J2006]. The
density in the auxiliary space is a sum of Gaussian kernels,

pt
v(v) =

1

µ

µ∑

i=1

K(v − vi) , K(u) =
1

(2π)d/2σd
exp

(
−uT u

σ2

)
(2.4)

where vi is the vector of lamination parameters of an individual in the population,
d is the number of lamination parameters taken into account and σ is a bandwidth
(adjusted by maximum likelihood).

Three problems were investigated. The in-plane stiffness problem is to maximize
the transverse in-plane stiffness with bounds on the effective Poisson’s ratio,

{
maxx A22(x)
such that νlow ≤ νeff(x) ≤ νupp .

(2.5)

The two extensional lamination parameters are sufficient to fully describe the solu-
tions because A22 and νeff are only functions of V ∗

1 and V ∗
3 (d = 2 in this case).

The extensional/flexural problem is to minimize the longitudinal coefficient of ther-
mal expansion with a lower bound on the first natural frequency,

{
minx |ᾱx(x)|
such that ω1(x) ≥ ωmin .

(2.6)

In this problem, the four lamination parameters are necessary to fully describe the
solution because ᾱx is a function of V ∗

1 and V ∗
3 , and ω1 of W ∗

1 and W ∗
3 .

The last problem is to maximize the laminate strength. The strength load factor is
calculated using a first-ply maximum strain failure criterion,

max
x

λs(x) = min
k=1,...,n

{
min

[
max

(
ǫt1

ǫ1(k)
,
−ǫc1
ǫ1(k)

)
,max

( −ǫc2
ǫ2(k)

,
ǫt2

ǫ2(k)

)
,

γult
12

|γ12(k)|

]}

(2.7)
For this strength definition, the extensional lamination parameters provide only
partial information: all angles need to be individually known to calculate ply fail-
ures.

The DDOA is compared to a genetic algorithm with a two-points crossover and
pc = 0.6, and to a UMDA. All algorithms have a population size of µ = 30 indi-
viduals. UMDA and DDOA have λ = 60 children. DDOA has ν = 120. Each of
these algorithms uses a local mutation at a rate pm = 0.02 per allele. In essence,
these algorithms are the same with the exception of the exploitation mechanism
(crossover or pt) which is therefore the studied component. The algorithms’ perfor-
mances are estimated by their reliability, defined as the probability of finding the
optimum after a certain number of analyses. Reliability is obtained from 50 inde-
pendent optimizations. For all design problems, the improvement brought by the
DDOA over the GA and the UMDA can be observed. It becomes particularly clear
when the number of dimensions increases. An example result is given in Fig. 2.4.
For more details, the reader is referred to [Grosset et al., J2006].
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Figure 2.4: Reliability of the GA, UMDA and DDOA on the extensional/flexural
design problem, n = 12.

2.3 Evolutionary algorithms for shape optimiza-

tion

An example where an EA is coupled to a heuristic for shape optimization was
developed in [Le Riche and Cailletaud, J1998]. The optimization goal is to
minimize a fan disk volume, V , with bounds on Von Mises and hoop stresses, σvm

and σθθ respectively. These constraints are handled by a static linear penalty, so
that the final function to minimize is8

V + p max

[
max
fan

(σvm − σallow
vm , σθθ − σallow

θθ ), 0

]

where p is a penalty parameter (set to 0.5 in the experiments described below).
The shape is parameterized by B-splines. The optimization variables, x ∈ IRn,

are the positions of the B-splines control points. In order to encode realistic shapes
(prevent B-splines loops and control overall fan dimensions), each control point is
constrained to remain inside a convex polygon. The fan shape coding is depicted
in Fig. 2.5. The disk and its loading are assumed to be axisymmetric. Once the
positions of the B-splines’ control points are set, the contours of a radial cross-
section of the disk are known. A free mesh generator is called and the stresses
are calculated by finite elements. The disk is subjected to centrifugal forces and
to Fblades. Fblades replaces the blades’ centrifugal forces that would be passed on
the disk. Other boundary conditions are shown in Fig. 2.5. The mesh contains
around 2000 degrees of freedom and the material is supposed to be elastic linear.
The Zebulon finite element software was used for this study [44]. A complete fan
analysis, including B-splines and mesh generation, finite element calculations and
post-processing, took about 10 seconds CPU at the time of the study (in 1997).

The shape improvement heuristic devised in [Le Riche and Cailletaud,

J1998] is called penalized generalized biological growth. Biological growth [131,
144, 50] locally adds material at the solid surface if neighboring Von Mises stresses
exceed an allowable value. In addition, generalized biological growth locally removes
material if Von Mises stresses are below the allowable value. Penalized biological

8The function that was really minimized also had normalization constants for the stresses and
the volume. To simplify the text, we do not reproduce them here but they are useful in setting p.
See [Le Riche et Cailletaud, J1998].



2.3. EVOLUTIONARY ALGORITHMS FOR SHAPE OPTIMIZATION 55

Figure 2.5: Coding of a blade fan disk shape with B-splines. The fan is axisym-
metric, subjected to centrifugal forces and to Fblades. The B-splines control points
remain inside convex polygons. (From [Le Riche and Cailletaud, J1998].)
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Figure 2.6: Penalized generalized biological growth heuristic for improving the
shape of a fan disk. The shape is parameterized by B-splines (from [Le Riche

and Cailletaud, J1998])
.

growth controls how much material is removed depending not only on the local
but also on the global stress state. Fig. 2.6 illustrates the effect of the penalized
generalized biological growth of a fan disk.

In a coupled biological growth - evolutionary approach, new designs are created
either by the usual crossover and mutation operators or by the growth heuristic:
biological growth needs the stress state of the design and cannot directly follow the
variation operators. Several strategies for coupling the shape improvement heuris-
tic and the evolutionary algorithm are compared in [Le Riche and Cailletaud,

J1998]: biological growth is applied to the initial population, to the worst indi-
vidual of the current population or to the entire population. The frequency of the
application of the heuristic, i.e., the number of designs created by biological growth
over the total number of calculated fans is varied between 1 and 1/10.
Experiments were carried out with a steady-state genetic algorithm composed of a
flat crossover (applied at rate pc = 1) and a fixed anisotropic Gaussian mutation
(pm = 0.1 per variable and σ2

i = (xmax
i −xmin

i )2/16). There were 50 individuals per
population and the search stopped after 2000 analyses (i.e., 5.5 hours CPU). Due to
the length of a single optimization, each strategy was tested by repeating the search
only three times. The tests show that it is better to apply the shape improvement
heuristic to the entire population at a frequency of 1/10, i.e., 9 individuals are gen-
erated by the variation operators for 1 by generalized penalized biological growth.
This strategy outperforms an EA alone, an EA with more mutation (pm = 0.2), a
random search and the heuristic alone. The optimum design found is reproduced
in Fig. 2.7.
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Figure 2.7: Optimum fan disk shape obtained by coupling an EA with a shape
improvement heuristic, the penalized generalized biological growth. The material is
off center with respect to the rotation axis in order to increase disk flexural stiffness.
Stress constraints are violated by less than 1%. Cf. [Le Riche and Cailletaud,

J1998].
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Chapter 3

Perspectives

Optimization and uncertainties. It is important for researchers in engineering
optimization to realize that the simulators, y, they are working with are imperfect
representations of the actual systems. These imperfections can often be translates
into uncertain model parameters which should be accounted for in the optimization
[104, 180]. Some of these uncertainties are of a deterministic nature, like uncon-
trolled experimental parameters. Other uncertainties are random in nature, for
example wind loadings. Therefore, designing and identifying in the presence of ran-
dom uncertainties are two perspectives to our work which are discussed in sections
3.1 and 3.2.

Accounting for simulation cost. We have already mentioned in the “bottle-
necks” introductory part to this manuscript that the simulation cost is, and will
remain, a determining factor of any optimization approach. A large number of re-
cent optimization studies address this issue by replacing some of the high-fidelity
numerical simulations by computationally less expensive physically-based or learned
models [150, 177, 74]. Another of our perspectives, further described in section 3.3,
will be to explicitely include the cost of the simulations in the formulation of the
optimization problem.

Distributed optimization. In the last 20 years, the total high performance com-
puting capacity available worldwide has doubled each year. Starting from a teraflops
in 1994, it has reached a petaflops in 2005. At the end of 2007, it is estimated at
7 petaflops, 0.5 of which belongs to the current most powerful computer. This in-
crease in computing capacity is not only attributed to large integrated systems, but
also to grid-computing, which allows the creation of virtual super-computers from
a network of loosely-coupled computers (e.g., the European EGEE grid, [53]).

Distributed computing technologies are a way of addressing the simulation cost
barrier. They are rapidly adopted by computationally demanding domains (clima-
tology, fluid mechanics, genetics, astrophysics). Engineering optimization is also
turning towards distributed computation [190, 199, 105, 143, 193], not only as a
remedy to the computational cost of repeated simulations, but also because the de-
sign of complex systems typically involves many experts, softwares and computers
that are geographically distant from each other [67]. However, in design, the change
to distributed computing is still at an experimental stage. Most optimization meth-
ods have been devised in a sequential frame of mind. I think it is now important
for optimization researchers to envision asynchronous methods. This is one of the
conditions for having methods that scale well with the number of computing nodes.
Other obstacles to the development of distributed optimization are the complex-

59
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(x, U) −→ θ −→ numerical model −→ y

Figure 3.1: Parameters definitions: x are the design variables, U the random vari-
ables, θ the numerical model parameters and y its output.

ity and instability of software (middleware) components1 and, in multidisciplinary
applications, the amount of data exchanged between nodes. The perspectives that
will be described in Sections 3.1, 3.2 and 3.3 will favor methods which are prone to
being distributed.

3.1 Optimum design accounting for uncertainties

There are two principal types of uncertainties in optimization2: parametric un-
certainty is due to randomness in some of the parameters of a numerical model;
model uncertainty refers to the approximations made when describing a physical
system with a numerical model. For example, representing a structure with an
elastic material when a non-linear material behavior is expected introduces a model
uncertainty. Reducing the number of elements of a finite elements model is another
example of model uncertainty introduction. In the sequel, we focus on parametric
uncertainties.

Let y be a numerical model whose parameters are grouped in the vector θ. θ
depends on the deterministic design parameters x ∈ S and on the random param-
eters U taken in a probability space. (See Fig. 3.1.) Note that, as usual, capital
letters will denote random variables and lower cases realizations of these variables.
The model is y(θ(x, U)) or, in shorthand notation, y(x, U). A typical example
in design is when dimensions are supposed to be perturbed by additive Gaussian
manufacturing errors:

θ ≡ dimension
x = (m, σ) = (x1, x2)

U ∼ N (0, 1)
θ = x1 + x2U

m is the average dimension and σ is associated to the product quality class. In this
example the noise is controlled through x2. In other cases, the noise is not directly
controlled, e.g. when U represents a random aerodynamic load.

The uncertainty introduced by U propagates through the optimization criteria
f and g which become random functions,

F (x) ≡ f(x, U) ≡ f(x, U, y(x, U))
G(x) ≡ g(x, U) ≡ g(x, U, y(x, U))

In robust and reliability based design, one looks for a unique x (a design) which
guarantees a certain level of performance knowing the law followed by U (but one
does not consider particular realizations u). The deterministic optimization problem
(2) is reformulated using statistical measures of the criteria. A particularly relevant
formulation is {

minx∈S pα(F (x)|G(x) ≤ 0)
such that Prob (G(x) ≤ 0) > β

(3.1)

1Luckily, many projects and products address the middleware issue, e.g., ProActive [89].
2The word “uncertainty” may also be used to describe errors generated by computer finite

arithmetics. The question of whether a local solution is global or not is sometimes called “the
fundamental uncertainty”.
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where pα is the α-th percentile of the performance of feasible designs, hence the con-
ditionning. β is a lower bound on the probability that all constraints are satisfied.
It should be noted that this formulation accounts for all statistical dependencies
between the f ’s and the g’s 3.

Although the criteria in (3.1) have been made deterministic by averaging out
the uncertainties in the percentiles and the probabilities, the problem is much more
difficult than the original (2): estimating percentiles and probabilities is a complex
task. If the statistics are empirically estimated by Monte Carlo simulations with N
analyses each, the cost of the optimization is multiplied by N . If one remembers
that the computational cost is already a barrier in deterministic optimization, it
is clear that including simple Monte Carlo simulations inside an optimization loop
becomes rapidly out of computational reach. Therefore, optimizing while accounting
for uncertainties was approached in the past

1. by replacing the probabilities by reliability indices, i.e., distances to the most
probable failure points (e.g., FORM and SORM methods, [133, 154]),

2. by constructing metamodels of f(x, u) (idem with g) and subsequently esti-
mating statistical measures with them (either through Monte Carlo [118, 15,
124] or analytically [28, 51]),

3. by constructing metamodels of the statistical measures in S (typically the
average and the variance of f(x, U) and g(x, U)) [189, 15],

4. by approximating the random processes F (x) and G(x) by polynomial chaos
expansions [60, 109].

The problem (3.1) is of contemporary interest because there is a tendency to
account for more and more uncertainty sources at early design stages (variations in
boundary conditions, variations in material parameters, manufacturing tolerances).
Moreover, probability measures are more accurate than safety factors and might
allow structural mass savings [97]. We propose to study methods for solving (3.1)
which are based on the following principles:

• Uncertainty is propagated by improved Monte Carlo methods; importance
sampling [175], recycling of the simulations4, common random numbers [104].
An important feature for later use in optimization algorithms is to have con-
fidence measures for pα and the probability of being feasible5. With Monte
Carlo simulations, these confidence measures are functions of the number of
simulations at each x.

• Early in the search, the statistical measures of f and g do not need to be
accurate. They only need to allow progress towards high performing regions
of S. Therefore, at the beginning of the search, the empirical estimates of the
performance statistics can be based on fewer analyses than later. The number
of analyses allocated to each Monte Carlo simulation can be controlled by
progressively increasing the confidence levels during the optimization.

• The optimizer that decides which x’s are analyzed should be able to work with
noisy functions since empirical estimates of performance statistics are noisy.
Evolutionary algorithms are good candidates for such a task.

3Statistical dependency seems to be often neglected in the litterature. For example, in [108, 59],
the probabilities of satisfying the constraints are handled separately which guarantees that a point
is feasible in β% of the cases only if the constraints are statistically independent.

4For example, if θ = x + U , a simulation y(x1 + u1) done at x1 may be re-used as a Monte
Carlo realization at x2, y(x2 + x1 − x2 + u1), i.e., u2 = x1 − x2 + u1.

5More precisely, for rank-based optimization algorithms such as evolutionary algorithms and
pattern-search methods, confidence levels on the relative ranks of points x in S are needed, e.g.,
Prob(pα(x1) < pα(x2)).
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• The computational burden of optimizing while accounting for uncertainties is
due to the imbricated iterations of the optimization and the statistics. Meth-
ods that both optimize and estimate statistical measures at the same time
were proposed. To our knowledge, they all focus on optimizing the expec-
tation of f(x, U): The Robbins-Monro method in stochastic approximation
[180] and evolutionary strategies for robust optimization in [22]. An early
try at generalizing the Robbins-Monro formula to variance, α-percentile and
probability estimations can be found in [Pujol et al., J2008].

• In order to take advantage of the emerging distributed-computing technologies
for tackling the computational cost barrier, methods proposed for optimizing
noisy functions should be as asynchronous as possible. This argument is in
favor of Monte Carlo methods for estimating the statistics.

3.2 Identification accounting for uncertainties in

solid mechanics

Contrary to design, when identifying parameters from measures, realizations of
the uncertainties occur before the optimization is done: boundary conditions and
measures have a certain value, even if this value is not always known. Identification
in the presence of uncertainties is an example of “closed-loop” problem where an
optimum can be sought for each occurence of the noise:

{
θ∗(u) = arg minθ∈S f(θ, u)
such that g(θ∗(u), u) ≤ 0

(3.2)

Note that in this section about identification in solid mechanics, we temporarily
change the notation for optimization variables (here identification parameters) from
x to θ because x will be needed as the usual symbol for spatial positions. Typically
here, θ are material parameters and f is a distance between a model, ymod, and ex-
perimental outputs, yexp. The solutions of problem (3.2) for all uncertainties define
the random vector, θ∗(U), of all identified parameters. Today, estimating confidence
intervals about θ∗(U) (e.g., the parameters one looks for are in [θlow bnd, θupp bnd]
with 99% confidence) and, a fortiori, estimating the probability density function of
θ∗(U), is becoming important in identification.

3.2.1 Identification from full-field measurements

In the last decade, progress in optical full-field measurement techniques and the ap-
pearance of affordable CCD cameras have enabled the acquisition of entire displace-
ment and strain fields, as opposed to point measurements (e.g., by strain gages).
Full-field measurement techniques are typically based on image correlation, moiré
and speckle interferometry, and grid methods. They provide from 1000 to 10000
independent measurement points. These developments, combined to those in solid
mechanics simulation (finite elements in particular), have opened the way to the
direct identification of material parameters from structural tests (e.g., [Besson et

al., J1998; Molimard et al., J2005; Silva et al., J2007-2]). The older,
but still standard, identification methodologies work with specimen designed to cre-
ate locally (arguably) homogeneous strain and stress fields. Global material param-
eters are then estimated from analytical models. Identification based on structural
tests allows heterogeneous strain and stress fields. Because these fields provide
more information, fewer tests are necessary and local material parameters can be
estimated. Moreover, in situ identification can serve to control structural safety.
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hx  , yh
θ

R

Figure 3.2: Identification of experimental parameters in addition to the material
constitutive parameters. The experimental parameters are the specimen tilt angle,
θ, and the hole position and radius, xh, yh and R, respectively. The material
parameters are the four in-plane elastic moduli, Exx, Eyy, Gxy, νxy. The specimen
is a plate with a hole made of NC2 c© reinforcement from Hexcel Composite with
epoxy resin manufactured in a RTM mold. The stacking sequence is [(0/90)3]s. Cf.
[Molimard et al., J2005].

A lot of attention has been devoted to formulating a distance between the sim-
ulated and measured fields. Five types of distances were described in the recent
survey [8] by a French “identification” working group (the CNRS GDR 2519): a
least squares distance from a finite element model, the constitutive equation gap
method, the virtual fields method, the equilibrium gap method and the reciprocity
gap method. Contrary to the finite element technique, the last four methods are
directly related to the variational formulation. They gain additional information
(e.g., explicit minimizations in the constitutive equation gap) and possibilities (e.g.,
choose a virtual field which makes the identification insensitive to unknown bound-
ary load distributions) at the expense of restricted application cases (e.g., the entire
strain field must be known in the virtual field method) and more complex implemen-
tations. Our previous work about identification considered least squares distances
to finite elements models and studied the numerical aspects of iterative identifica-
tion: we addressed the computational complexity of fields comparison in [Silva

et al., J2007-1], the implementation of the Levenberg-Marquardt algorithm for
scaling and bounding variables [Le Riche and Guyon, T1999; Molimard and Le

Riche, J2003] and the effect of distance norms on identifiability [Molimard et

al., J2005].
A characteristic feature of full-field identification problems is that they are

largely overdetermined: there are much more independent data points than pa-
rameters to determine. Current identification practice is still often restricted to
superimposing experimental and simulated responses and minimizing the distance
between them by changing material parameters. Full advantage is not taken from
all information provided by the fields. In particular, full-field techniques allow to
analyze possible experimental errors and estimate material confidence intervals.

Identification of experimental parameters

Because full-field identification problems are overdetermined, it is possible to add to
the list of unknown constitutive parameters other parameters that describe uncer-
tain aspects of the experimental setup. In [Molimard et al., J2005], the four
in-plane elastic properties (Exx, Eyy, Gxy, νxy) of a thin orthotropic composite
laminate were identified from a plate-with-a-hole test. As illustrated in Fig. 3.2
the precise position of the hole, its radius and the specimen misalignment angle
were added to the identified parameters. An on-going work done in G. Silva’s PhD
is to systematically calculate the displacement field created by probable determin-
istic experimental errors. The following error sources were analyzed: mismatching
of the experimental and numerical coordinate systems, rigid body motion, camera
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Figure 3.3: Addition of a rigid body rotation onto the u displacement field of a
plate with a hole in traction (from G. Silva PhD Thesis, [176]).

misalignment and image distortion. Fig. 3.3 shows an example of rigid body rota-
tion field superimposed onto the longitudinal displacement field of a plate with a
hole.

We propose to study how the contributions of several experimental errors sources
can be identified from field measurements before, at the same time as, or after the
constitutive parameters. New error sources, stemming from propagating uncer-
tainties through the optical acquisition chain and the image processing, should be
accounted for. Care should be taken to discuss the identifiability, i.e., the possibility
to separate the contribution of each material and error parameter.

Damage identification

Another important application of full-field identification is finding heterogeneous
material properties, i.e., locally damaged areas. For linear elasticity, if the hetero-
geneity takes the form of a scalar field,

A(x) = c(x)A0

where A(x) is the local elasticity Hooke tensor, the equilibrium gap method or the
virtual field method should be used [30]. (In this case, note that the experimental
displacement field must be known at each mesh node.) When this is not possible,
the identification can be tackled from outside the simulation, through the ill-posed
inclusion identification problem [166]. A first attempt at such an identification was
done in G. Silva’s PhD [176]: as it can be seen in Fig. 3.4, once the homogeneous
plate properties have been estimated, local damage often has a local signature on
the residuals map (in particular on the strain map). When such a signature is
visible, the domain is partitioned along the residuals map frontiers. Next, each
subpartition is assigned a different set of material parameters and the identification
is repeated.
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Figure 3.4: Distance maps of a plate with a hole in traction with an elliptical
local material aberration. E1 = 19.49GPa, E2 = 13.65GPa, G12 = 11.42GPa,
ν12 = 0.60 excepted in the ellipse where E1 = 10.69GPa, E2 = 16.69GPa, G12 =
11.06GPa, ν12 = 0.62. The identified homogeneous properties are E1 = 19.45GPa,
E2 = 12.11GPa, G12 = 12.49GPa, ν12 = 0.57. From [Silva et al., C2006].

We propose to continue this work and consider more difficult cases where strains
differences do not clearly partition the domain. This identification problem includes
looking for partitions with different material parameters. This is a difficult non-
parametric optimization problem. It was already approached in [166] using Voronöı
cells but this identification problem is so fundamental that it deserves further at-
tention.

Identifying the distribution of parameters

An important perspective of full-field identification is to estimate, from one or a
few experiments, the density of the identified parameters θ∗(U) (cf. (3.2)). (Of
course, all deterministic experimental errors that can be removed before identifying
the constitutive parameters should be corrected.) We consider here homogeneous
material properties and note that, typically, our models (displacements and strains)
are non-linear in terms of material and experimental parameters. Two approaches
can be taken.

Firstly, one can linearize the field with respect to the θ parameters around a
set of identified parameters. Then, under the assumption that the model is linear,
the parameters distributions (or only confidence intervals) can be calculated using
classical regression analysis [47]. In this case, a noise model, for example

yexp(U) = ymod(θtarget) + U , where U ∼ N (0, σ2II) , (3.3)

will be required. The noise model may stem from propagating uncertainties through
the measurements chain or from analyzing the residuals. The parameter density
obtained with the linearity assumption should be checked a posteriori. Advantage
could be taken of the large number of data by repeating the identification using
subsets of all measurements: the variances of the identified parameters should be
larger (multiplied by about m/m′ where m is the total number of measurement and
m′ the size of the control subsets) and the law should remain the same.
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Secondly, one can stay within a non-linear regression framework and rely on re-
sampling (bootstrap) strategies [52]. Resampling strategies involve computationally
expensive repeated identifications. However, the identifications can (and should) be
distributed among several computers. The idea is to take advantage of the growing
computational capacity to estimate standard errors that are not directly derivable
from theory. Once several realizations θ∗(u1), . . . , θ

∗(um) of θ∗(U) have been cal-
culated, statistics can be performed to infer confidence intervals or, if m is large
enough, a density. A first trial at bootstraping for estimating parameters standard
errors was published in [Silva et al., J2007-2]. An additive noise model with
stationary and independent errors such as (3.3) was assumed. In the future, a more
careful analysis of the noise model will be carried out: spatial dependency of the er-
rors U could be described by Gaussian processes whose covariance structures could
be inferred by maximizing their likelihood knowing [yexp(u)− ymod(θ∗(u))].

3.2.2 Bayesian identification

Bayesian identification is a method for directly estimating the probability density
function of θ without solving the optimization problem (3.2). As the name suggests,
it is based on Bayes rule applied to continuous random vectors

p(θ|yexp(u)) =
1

K
p(yexp(u)|θ) p(θ) (3.4)

where the p()’s are probability density functions (pdf’s) and K is a normalization
constant such that the left-handside integrates to 1, as every pdf should. p(θ) is
called the prior distribution. It is our a priori knowledge about the distribution of
parameters. p(yexp(u)|θ) is the probability of observing the measures yexp(u) when
the parameters have values θ, or likelihood of θ knowing yexp(u). p(θ|yexp(u)) is the
a posteriori density of θ knowing the experimental results yexp(u). In the following,
we will shorten the notation from yexp(u) to yexp

In [Gogu et al., J2008], advantages of Bayesian methods over other identi-
fication approaches were shown through a truss and a plate examples. Fig. 3.5 is a
graphical comparison of least squares and Bayesian results for a Young’s modulus
identification from strain measurements on a three bar truss. There is a gradual
sophistication from simple least squares (LS) to Bayesian identification:

Simple LS; θ∗ = arg min
θ

1

2

(
ymod(θ)− yexp

)T (
ymod(θ)− yexp

)

Generalized LS; θ∗ = arg min
θ

1

2

(
ymod(θ)− yexp

)T
C(θ)−1

(
ymod(θ)− yexp

)

Max. likelihood; θ∗ = arg max
θ

p(yexp|theta)

Bayes; p(θ|yexp) =
1

K
p(yexp|θ) p(θ)

Compared to the simple least squares, the generalized formulation appropriately
handles normalization as well as measurements correlations thanks to the variance-
covariance matrix C(θ). For example, if two measures are strongly correlated, their
collective influence is decreased through the C weighting so that they do not hide
information present in other measurements. In addition, measurements exhibiting
strong deviations are underweighted. The maximum likelihood also has these ad-
vantages. In addition, it can handle non Gaussian distributions and the likelihood
provides of measure of the confidence one has in the identified parameters. Bayesian
identification also properly normalizes and accounts for variance-covariances of the
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Figure 3.5: Graphical comparison of the least squares and Bayesian identifications
for the three bar truss example of [Gogu et al., J2008]. Different uncertainty
levels in the loads translate into different uncertainties in the bars strains. The red
circle is the experimental measurement and its orthogonal projection (red cross)
the least squares identified modulus. The ellipses are the contour plots of the strain
distribution, p([εA, εB ]|E). E = E∗

LS, the least squares identified modulus, for the
dashed ellipses. E = E∗

bayes, where E∗
bayes = arg maxE p(E|εA, εB), for the full line

ellipses. Note that the likelihood of E = E∗
bayes is higher than that of E∗

LS for the
measurements.

measurements. It can be applied to non-Gaussian measurements. Moreover, it in-
corporates previous knowledge about the parameters with the prior distribution and
it yields a complete distribution of the parameters from which confidence intervals
can be calculated.

In most cases, an analytical expression of the likelihood function p(yexp|θ) is
not known. It follows that the apparently simple expression (3.4) for Bayesian
identification hides in fact a large computational cost: for each choice of θ, the
pdf p(y(U)|θ) needs to be estimated by Monte Carlo sampling of the U ’s in order
to, next, calculate the likelihood of θ, p(yexp|θ). Again, the curse of the “double
loop” seems to haunt an estimation problem in the presence of uncertainties. This
computational barrier is increasingly daunting with the dimension of y.

Future work on Bayesian identification will focus on finding strategies for com-
puting the likelihood p(yexp|θ). An interesting target application is to be able to
carry out the Bayesian identification of homogeneous anisotropic material param-
eters from full-field measurements. In this case, y has dimension 1000 to 10000 !
Four research directions can be taken:

• Reducing the dimension of the original problem, for example by proper or-
thogonal decomposition (POD) [104, 192];

• Improving the efficiency of the Monte Carlo sampling procedure by turning
to Monte Carlo Markov Chains [174];

• Replacing the original model ymod by a metamodel which is computationally
faster and, if its functional form allows it, provides an analytical expression
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for the likelihood6.

• Developing the above strategies by keeping in mind that the computations
will be distributed on a large number of processors.

3.3 Finite-cost optimization

3.3.1 A sequential finite-cost algorithm based on kriging

Formulation of the finite-cost optimization problem. Optimization meth-
ods, to the exception of the SUR method [90] and the multi-points expected im-
provement [Ginsbourger et al., C2007] (cf. Section 1.4.4), choose a next iterate
that maximizes an immediate figure of merit which is a mixture of expected f and
possible progress, e.g., the expected improvement [93]. Such algorithms behave as
if the search ended at the next iterate. For global optimization purposes, this is a
mistake as it prevents these algorithms from taking the time they have to correctly
explore the design space.

If it is known that q analyses can still be performed before the search ends, an
appropriate formulation of the unconstrained optimization problem is

min
(x1,...,xq)∈Sq

min[f(x1), f(x2), . . . , f(xq)] (3.5)

that is, one looks for an optimum in the next q evaluations of f . During the
optimization, the search points xi are chosen sequentially according to a predicted
payoff criterion, w (for worth), which is maximized. The specificity of “finite-cost
optimization methods” is to include all the remaining search points in the worth of
the next iterate, i.e., they implement,

max
x1∈S

w[x1, x2(x1), . . . , xq(x1)] (3.6)

Note that the optimization is carried out with x1, the next iterate, and that it is
assumed that future search points, x2, . . . , xq, depend on x1. The choice of x1

paves the way for later optimization. The critical component of any method that
implements (3.6) is the relation between an iterate, xi, and its successor xi+1. In
general, since the real f(xi) is not known in advance, use will be made of prob-
abilities and there is not a single xi+1 associated to xi, but rather a distribution
Xi+1(xi). An example of this is proposed by D. Ginsbourger in his doctoral work
where the worth is based on kriging. We now outline this idea. Readers are referred
to Section 1.4 for an introduction to kriging.

The two-points sequential expected improvement. It is clearer to start with
q = 2 points to introduce the idea. In the kriging context, the function f is known
at certain points x and it is globally seen in S as a conditioned Gaussian process,
[F (x)|F (x) = f ]. The improvement at a point x is

I(x) =
[
(min(f)− F (x))+|F (x) = f

]
.

It is extended here to newly evaluated points,

I(x|f1) =
[
(min(f)−min(F (x), f(x1)))+|F (x) = f , F (x1) = f1

]
.

The notation will be further compacted by writing F1 ≡ F (x1).

6For example, if the metamodel can be decomposed into the product of one-dimensional func-
tions of the uncertainties ui, then the expectation and the variance can simply be calculated by
one-dimensional integrals, [92].



3.3. FINITE-COST OPTIMIZATION 69

The 2-points Sequential Expected Improvement, 2-SEI, is a payoff criterion (an
example of w) that predicts the effect of calculating f at x1 on the overall improve-
ment at the second iterate x2:

2-SEI(x1) = EF1

[
max

x2

EF2
I(x2|F1)

]
(3.7)

In algorithmic form, the 2-SEI has the pseudo-code,

1. function s = 2-SEI(x1)

2. s = 0
3. for i = 1, M1 do

4. sample f1 ∼ F (x1)
5. I∗ = maxx2 EI(x2|f1)
6. s = s + I∗

7. end for

8. return s/M1

Note that, on line 5, EI(x2|f1) is a one-point expected improvement and therefore
its analytical expression is known. The 2-SEI should not be mixed up with the two-
points expected improvement, 2-EI, already discussed in Section 1.4: 2-EI involves
two independent points while 2-SEI involves only the next iterate and a prediction
on its effect one step later. Mathematically, the difference is made clear by rewriting
2-EI,

EI(x1, x2) = E
[
(min(f)−min(F (x1), F (x2)))+|F (x) = f

]

= EF1

[
EF2

I(x2|F1)
]

.

The dependency on x2 can be removed by maximization,

M2EI(x1) = max
x2

EI(x1, x2) = max
x2

EF1

[
EF2

I(x2|F1)
]

.

This last equation is different from (3.7) because the expectation and the maximum
operators do not permutate.

The q-points sequential expected improvement. A q-points sequential ex-
pected improvement, q-SEI, can be defined recurcively:






I∗q = maxxq EFq
[I(xq|F1, . . . , Fq−1]

I∗k−1 = maxxk−1 EFk−1
[I∗k ] , k = 3, . . . , q

q-SEI(x1) = EF1
[I∗2 ]

(3.8)

Of course, the computational cost of q-SEI is tremendous because of the imbricated
expectations (performed in general by Monte Carlo simulations) and maximizations.
It is even higher than the cost of q-EI. However, problem (3.5) expresses the real
global optimization challenge, i.e., finding the best possible point within a limited
number of function evaluations. We therefore think that approximations to problem
(3.5) should be investigated, in the same spirit as approximations to q-EI were
proposed in [Ginsbourger et al., C2007] (section 1.4).

3.3.2 A finite-cost, multi-fidelity optimization problem

Problem (3.5) includes the computational cost of the simulations in the optimization
problem formulation in a rough way, through the number of simulations q that can
still be performed. To be more accurate, we propose to account for the predicted
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computational cost of the model. In fact, we will say models because, in engineering
optimization, there are usually many models available. These models represent
various compromises between an accurate description of the physics and an efficient
computer simulation. One speaks of various fidelity levels. For example, a finite
element model is more accurate when its number of elements increases, but its
numerical cost grows simultaneously; a solid mechanics model that accounts for
visco-plasticity is physically more accurate than an elastic model but it takes longer
to be simulated.

To account for the fidelity of the models in the optimization problem, a variable
z, which identifies the model used, is added to the x variables. The model becomes
y(x, z) and, similarly, the optimization criteria become f(x, z) ≡ f(y(x, z)) and
g(x, z) ≡ g(y(x, z)). z is a finite discrete number when there are different separate
simulators available, or it is a natural number when the model fidelity is parame-
terized. The two principal examples of the latter are i) z is the number of elements
of a finite elements model, or, ii) z is the number of simulations of a Monte Carlo
analysis. In addition to f and g, one assumes that an accuracy function a(x, z)
and a computational cost function c(x, z) are known. To shorten notations, the
extended variable s = (x, z) is introduced which belongs to M = {S ∪ D} or
M = {S ∪ IN}.

A general finite-cost, multi-fidelity optimization problem can be written,






minq,(s1,...,sq)∈{IN∪M}q f(s∗) ,
where s∗ = arg minsi/a(si)≥amin [f(s1), f(s2), . . . , f(sq)] ,
such that

∑q
i=1 c(si) ≤ Cmax ,

(and g(s∗) ≤ 0 for constrained problems)

(3.9)

This problem is non-parametric because q, the number of points to be calculated,
is unknown. Out of the q points, one considers the performance of the best point
that satisfies a minimum accuracy condition, a(xi, zi) ≥ amin. The constraint put
on

∑m
i=1 c(xi, zi) says that the total cost of the search should be lower than an

allowable computation budget, Cmax. Problem (3.9) is the finite-cost problem (3.5)
with additional cost constraints that lead to a multi-fidelity formulation.

It is a very complex problem and it will be necessary to simplify it. A first
step is to solve problem (3.9) in batches of r points, r < q, where the r points are
chosen simultaneously. The simplification is that one does not have to exhibit the
dependency of the points, xi+1(xi), as it was done in section 3.3.1. The problem is
formulated like in (3.9) with r instead of q. An implementation to solve it could use
a kriging metamodel with nugget effect to account for the accuracy a and it would
consist in






maxs1,...,sr EI(s1, . . . , sr) ,
such that a(s∗) ≥ amin , where s∗ = arg maxi=1,r EI(si) ,
and

∑r
i=1 c(si) ≤ Cmax .
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4.2 Personal bibliography

The letters P, J, C, S, T and V in front of the year refer to patents, journal arti-
cles, conference articles, seminars, technical reports (including contract reports) and
popularizing articles respectively. Table 4.1 summarizes the number of publications
per year and per type. The following facts should be stressed:

• Two patents have been registered.

• The communication [Le Riche, S2004] is an invited talk in a workshop
devoted to state-of-the-art presentations in numerical methods.

• The article [Le Riche et Guyon, C2001] obtained the best paper price at
“Artificial Evolution 01”.
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Patents Journals Conf.
+ P +
R

Conf.
+ P

Seminars Others

2008 0 1 1 2 0 1
2007 1 4 3 1 1 4
2006 0 2 1 1 1 1
2005 1 1 0 0 0 0
2004 0 2 5 1 1 4
2003 0 4 3 1 1 3
2002 0 3 3 1 4 1
2001 0 1 3 0 0 4
2000 0 0 0 0 1 3
1999 0 0 1 0 0 1
1998 0 3 0 1 1 1
1997 0 1 3 0 0 0
1996 0 1 1 0 0 2
1995 0 1 2 1 0 1
91-94 0 1 3 0 1 0
Total 2 25 29 9 11 26

Table 4.1: Number of publications and communications per year. “Conf.+P+R”
designates conferences with proceedings and reviewing, “Conf.+P” are conferences
with proceedings but without reviewing, “Seminars” are all the presentations with-
out proceedings, and “Others” include technical reports, contract reports, popular-
izing articles and dissertations. Cf. section 4.2 for an extensive list.

• The article [Le Riche et Haftka, J1993] is cited 179 times on GoogleTM

Scholar1, [Michalewicz et al., J1996] is cited 160 times, [Le Riche et

al., C1995-1] is cited 74 times, [Le Riche and Haftka, J1995] is cited
59 times, [Harisson et al., J1995] is cited 21 times.
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and Serval, F., Régulation de la planéité d’une bande métallique à la sortie d’une
cage de laminoir, (flatness control of a metal sheet in a rolling-mill) patent INPI
No. 04-13753 (France), submitted on 22 December 2004.

4.2.2 Journals

[Pujol et al., J2008] G. Pujol, R. Le Riche, O. Roustant and X. Bay, L’incertitude
en conception: formalisation, estimation, to be published as a chapter in the
book Optimisation Multidisciplinaire de Systèmes Mécaniques : multi-niveaux et
robustesse, Mécanique et Ingénierie des Matériaux series, Hermes publisher, Dec.
2008 (in French).

1Estimation made in July 2008 on the research engine GoogleTM Scholar,
http://scholar.google.com, using the key word “le riche”.
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Traité Mécanique et Ingénierie des Matériaux, P. Breitkopf and C. Knopf-Lenoir
eds., Hermes publ., Feb. 2007, pp. 187-259 (in French).

[Luersen et al., J2006] Luersen, M.A., Le Riche, R., Lemosse, D. and Le Mâıtre,
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timization Processes-Properties of Composite Plates, Comptes rendus des 13ièmes
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Chapter 5

Other professional activities

5.1 Project management

5.1.1 The OMD project

Since June 2006, I have lead the French national “Optimisation MultiDisciplinaire”
project. This three years long project has an overall budget of 3 Meuros and was
granted 1.3 Meuros by the French Agence Nationale de la Recherche (ANR). (A sum-
mary of the main acronyms used in this chapter can be found in table 5.1.) It is a
national effort to foster the development of optimization in industry and academics.
14 entities are taking part to the OMD project, 10 public laboratories and 4 private
companies. The project is structured into 8 research operations: metamodels for
optimization, specialized metamodels in solid mechanics, specialized metamodels in
fluid mechanics, optimization using multi-level variables, multi-fidelity optimization,
optimization with model uncertainties, collaborative optimization and software de-
velopment. Three industrial design applications are targetted: a supersonic business
jet (in collaboration with Dassault Aviation), a car engine air inlet (in collabora-
tion with Renault) and a satellite launcher (in collaboration with Astrium Space
Transportation). The project developments are prototyped in the Scilab language1

because it is an opensource clone of the popular Matlab language. Collaboration
between the participants is fostered by the use of a common programming language
and by communications through the collaborative web site http://omd.lri.fr .

I have been very involved in this project. The tasks I am in charge of comprise

• organizing the proposal and writing parts of it,

• writing a consortium agreement,

• hiring collaborators,

• organizing and managing the project web site,

• organizing periodical project meetings (three each year),

• gathering progress reports and writing syntheses,

• and presenting the project in various meetings.

A book showing the contributions of the project and a Scilab optimization tool-
box are currently in preparation. We have just learned2 that OMD2 (“Optimisation
MultiDisciplinaire Distribuée”), a three years continuation of the OMD project ori-
ented towards distributed implementations, was accepted by the French ANR.

1Cf. http://www.scilab.org .
2on the 15th of July 2008
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5.1.2 Other projects in collaboration with private companies

Figure 5.1: Illustration of the gears optimized in the CETIM project. The gears
are analyzed with the Filengrene software [134].

The CETIM project. I am also currently leading a small project for the French
“Centre des Etudes et Techniques de l’Industrie Mécanique” (CETIM) that aims
at optimizing gears while accounting for wear. This is a complex robust design
problem. The project has a grant of 50 Keuros and is carried out in partnership
with the Institut National des Sciences Appliquées (INSA) de Rouen (André Meyer
and Didier Lemosse), the Ecole Centrale de Lyon (Emmanuel Rigaud and Joel
Perret-Liaudet) and the Ecole Nationale d’Ingénieurs de Saint-Etienne (ENISE,
Joel Rech). Fig. 5.1 provides an illustration of the considered gears.

In the past, I have often been involved in joined projects with private companies.
A list of these works follows:

• Pre-design of a bow with a tension release mechanism, series of student
projects with a grant of 5000 euros given by Wildsteer Comp., 2008. (Cf.
a drawing of the prototype in Fig. 5.2).

• Identification of instantaneous engine torque by statistical learning, contract
for PSA (2004, in parntership with A. Rakotomamonjy, INSA de Rouen, 15250
euros). The results of this project have been patented ([Gualandris et al.,

P2007]).

• Estimation of the cargo from online acceleration measures, contract for PSA
(2003, in partnership with A. Rakotomamonjy, INSA de Rouen, 15250 euros).

• Swimming monofin optimization, contract for Breier S.A., (7620 euros in 2002,
2000 euros in 2003, managed by ARMINES).

• Identification of hygro-thermal cycles for accelerated wet-ageing in composites,
contract for EADS-CCR, (2002, 3811 euros, managed by INSA de Rouen).
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Figure 5.2: Drawing of the bow prototype that was built: an inner pulley with
two eccentricities and a spring create a mechanism that releases tension in the bow
string as it is pulled. This is a feature of modern compound bows.
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• Identification of moisture diffusion in composites, contract for EADS-CCR,
(2002, 3811 euros, managed by INSA de Rouen).

• Consulting for the development of the LAMKIT software, EADS-CCR, 2003,
7620 euros, managed by Centrale Lyon Innovation.

• Dynamic interfacing in LAMKIT, contract for EADS-CCR, 2001, 4573 euros,
managed by INSA de Rouen.

• Buckling analysis in LAMKIT, contract for EADS-CCR, 2001, 4573 euros,
managed by INSA de Rouen.

• Dynamic systems representation by neural networks, contract for PSA, 2000,
7620 euros, managed INSA de Rouen. The methods developed for PSA were
“industrialized” in 2001, i.e., they were rewritten and became part of PSA’s
design offices.

• Optimization of cable carrying structures, contract for Compagnie d’Electricité
de la Seine (CES), 2000, 3050 euros, managed by INSA de Rouen.

• Simulation of the thermal choc test, contract for GDF, 38000 euros, 1996,
managed by ARMINES.

• Identification of the AS5U3G alloy constitutive law, contract for Montupet,
1996, 38000 euros, managed by ARMINES.

• Shape optimization of fan disks, contract for SNECMA, 76200 euros, 1995,
managed by ARMINES.

5.2 Teaching

As permanent research assistant with the CNRS, teaching is not my primary as-
signment. Nevertheless, I think teaching is intimately linked to researching, firstly
because it is an efficient way to diffuse acquired knowledge to the rest of the soci-
ety, and secondly because it helps the researcher to put his activity into perspective.
Ever since I started my PhD in 1991, I have always devoted some of my time to
teaching. The topics I have taught range from strength of material to global opti-
mization and include programming and identification of constitutive laws in solid
mechanics. I have taught students of levels varying from first year undergraduate
to Master’s students and continuing education. More precisely, in the French ed-
ucational system, they were students from DEUG, IUT, all years of engineering
college, DEA (i.e., Master’s degree) and CACEMI. In total, about 450 hours were
spent teaching classes. In addition, I have always tutored projects in the university
and professional trainings (see section 5.2.2).

5.2.1 Classes taught

The classes I have taught are summarized in Table 5.2 where the year, the place,
the topic, the academic level and the number of students attending the class are
listed. The class topics are described in more details in the following syllabus. The
acronyms used are explained in Table 5.1.
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1Y,2Y,3Y 1st, 2nd, 3rd year undergraduate engineering college
ANR Agence Nationale de la Recherche
CACEMI Centre d’Actualisation des Connaissances et d’Etude des

Matériaux Industriels
CETIM Centre des Etudes et Techniques de l’Industrie Mécanique
CIME option Connâıtre et Imaginer les Matériaux pour Entreprendre de

3ième année de l’ENSM-SE
CNAM Conservatoire National des Arts et Métiers
CNRS Centre National de la Recherche Scientifique
DEUG Diplôme d’Etudes Universitaires Générales
DLR Deutsches Forschungsinstitut für Luft und Raumfahr
EADS European Aeronautic Defence and Space company
EADS-CCR Centre Commun de Recherches d’EADS (now EADS-Innovative

Works)
EF Eléments Finis
ENISE Ecole Nationale d’Ingénieurs de Saint-Etienne
ENSMP Ecole Nationale Supérieure des Mines de Paris

ENSM-SE Ecole Nationale Supérieure des Mines de Saint-Étienne
FC Formation Continue
ICM Ingénieur Civil des Mines
INSA Institut National des Sciences Appliquées
IPSI Institut pour la Promotion des Sciences pour l’Ingénieur
IUT Institut Universitaire de Technologie
LDC Lois de Comportement
LdV Pôle Universitaire Léonard de Vinci
NFL No Free Lunch
OMD Optimisation MultiDisciplinaire (project)
PCA and PSA Peugeot Citroen Automobiles
Prof. project Professional project during the 3rd year of eng. college, 120 h.
3Y training 3rd year professional training, that concludes the engineering col-

lege (Bachelor of Science).
UJM Université Jean Monnet
UF University of Florida at Gainesville
UTC Université de Technologie de Compiègne

Table 5.1: Main acronyms.
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Year University Topic Level Hours No. Students
2007-2008 and
2006-2007 and

2005-2006

ENSM-SE
UJM+ENSM-SE

Global Optim. 1 [GO1]
Global Optim. 2 [GO2]

2Y
Master

21
10

15
10

2004-2005
ENSM-SE
ENSM-SE

UJM+ENSM-SE

Optim. Context [OC]
Global Optim. 1 [GO1]
Global Optim. 2 [GO2]

1Y
2Y

Master

0,5
21
10

100
18
10

2003-2004 and
2002-2003

ENSM-SE
ENSM-SE
ENSMP

Global Optim. 1 [GO1]
Struct. Optim. 1 [SO1]
Struct. Optim. 2 [SO2]

2Y
3Y
3Y

2× 21
2× 6

6

≈ 20
≈ 20
≈ 15

2001-2002

ENSM-SE
INSA Rouen

ENSMP
ENSMP

Global Optim. 1 [GO1]
Struct. Optim. 2 [SO2]
Struct. Optim. 2 [SO2]
Struct. Optim. 2 [SO2]

2Y
DEA
3Y

Master

21
20
6
12

≈ 20
≈ 20
≈ 15
≈ 15

2000-2001
INSA Rouen

CACEMI/CNAM
ENSMP

Struct. Optim. 2 [SO2]
Identif. Const. Laws [IdCL]

Struct. Optim. 2 [SO2]

DEA
FC

Master

20
5
6

≈ 20
≈ 10
≈ 15

1999-2000
INSA Rouen

ENSMP
ENSMP

Struct. Optim. 2 [SO2]
Optim. in Zset [ZsetC]

Identif. Const. Laws [IdCL]

DEA
FC
3Y

20
8
6

≈ 20
≈ 10
≈ 15

1998-1999

INSA Rouen
ENSMP
ENSMP

UTC
LdV

Programming [C++]
Optim. in Zset [ZsetC]

Identif. Const. Laws [IdCL]
Evol. Optim. [EA]

Optim. Evolut. [EA]

1Y
FC
3Y
FC

Master

33
8
6
3
6

≈ 20
≈ 10
≈ 15
≈ 10
≈ 15

1997-1998
INSA Rouen

IPSI
LdV

Programming [C++]
Identif. Const. Laws [IdCL]

Evol. Optim. [EA]

1Y
FC

Master

16
3
6

≈ 20
≈ 30
≈ 15

1996-1997
IUT

Champs/Marne
Programming [ProgC] IUT 60 ≈ 30

Table 5.2: Summary of classes taught with the year, topic, number of hours and
number of students. Cf. syllabus for a description of the class material and Table 5.1
for a glossary of the abbreviations.
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Syllabus of the classes taught

C++ C++ Programming : basic commands, pointers, introduction to classes
and objects, polymorphism, inheritance, dynamic inheritance.

OC Optimization put in a broader Context : uses in modelling, identification,
design. Main softwares. Practical remarks.

IdCL Identification of constitutive laws : introduction, identifiability (unicity,
stability), non-linear least squares, Levenberg-Marquardt algorithm.

GO1 Global Optimization 1 : introduction to global optimization, methods
classification, deterministic methods, enumerative methods, evolution-
ary algorithms. 9 hours practice in computer lab.

GO2 Global Optimization 2 : reminder of main methods, theory of stochastic
perturbations (variance control, use of populations), kriging and opti-
mization.

SO1 Structural Optimization 1 : introduction to structural design, reminder
on optimality conditions, application to the minimization of a system
total potential energy and to optimal design, mathematical program-
ming (gradient and Gauss-Newton), introduction to the identification of
models.

SO2 Structural Optimization 2 : introduction to structural design, optimality
conditions, application to the minimization of a system total potential
energy and to optimal design, mathematical programming (order 0, 1
and 2), non-linear least squares and model identification.

ProgC C Programming : basic commands, compilation, loops, functions, input-
output, pointers. Application to a truss simulation.

ZsetC Class on the optimization module of the finite elements software Zset.
Behavior laws simulation. Input files. Presentation of the implemented
optimizers (Nelder-Mead, evolutionary algorithm, sequential quadratic
programming). Application to the identification of elasto-visco-plastic
behavior laws.

5.2.2 Students advising

Graduate students

I have co-advised six doctorate and three masters’ students:

• Christian Gogu is in his 2nd year of a PhD about the use of response surfaces
to identify and optimize structures. He is co-advised by Raphael Haftka from
Univ. of Florida at Gainesville, Jérome Molimard, Alain Vautrin and myself
(Ecole des Mines de Saint-Etienne).

• Gustavo Silva will defend his PhD in the Fall of 2008. He is working on the
identification of elastic material properties and other experimental parameters
from full-field measures. This PhD is co-advised by Jérome Molimard, Alain
Vautrin and myself.

• David Ginsbourger will defend his PhD on multiple surrogates, kriging and
optimization in the Fall of 2008. His work is co-advised by Laurent Carraro,
Olivier Roustant and myself at the Ecole des Mines de Saint-Etienne.

• Marco Luersen has defended his PhD entitled GBNM, un algorithme d’optimisation
par recherche directe – Application à la conception de monopalmes de nage in
December 2004 at the INSA de Rouen, France. I served as unique advisor
(administrative Director: Eduardo Souza de Curci).
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• Laurent Grosset has defended his PhD entitled Statistical optimization of com-
posite structures in September 2004. I have advised 50% of the work in collab-
oration with Raphael Haftka from the Univ. of Florida at Gainesville. Alain
Vautrin was the French administrative Director.

• I currently co-advise Christophe Mediavilla’s Master thesis with Michel Rava-
chol (Dassault Aviation). The thesis concerns the robust design of a super-
sonic business jet.

• I have co-advised 30% of Gustavo Silva’s Master thesis with J. Molimard and
A. Vautrin in 2004. The work concerned the identification of elastic composite
properties from full-field measures.

• In collaboration with Alain Vinet from EADS-CCR, I co-advised Franck
Pellé’s Master thesis, defended in September 2003 and entitled Optimisation
des matériaux composites stratifiés en fluage (optimization of composite ma-
terials for creep).

Moreover, I was a member of the following PhD jurys:

• Laurence Giraud Moreau, Optimisation des systèmes mécaniques : couplage
des méthodes déterministes et évolutionnaires pour les problèmes en variables
mixtes, (Optimization of mechanical systems: coupling determinist and evo-
lutionary methods for mixed variables problems,) November 1999, Univ. de
Technologie de Troyes.

• Chung-Hae Park, Simultaneous optimization of manufacturing and design of
composite structures, June 2003, Ecole des Mines de Saint-Étienne and Seoul
National University, South Corea.

• Papa Aldemba Faye, Couplage algorithme génétique - code éléments finis
pour le dimensionnement de structures en matériaux composites, (Genetic
algorithm-finite elements coupling for designing composite structures,) March
2004, Univ. Clermont Ferrand 2 and ONERA Lille.

• Jung Riul Lee, Application of Laser Interferometric Techniques to the Exper-
imental Analysis of Materials and Structures – Special case of Composites,
Ecole des Mines de Saint-Étienne, March 2004.

• Marco Gigliotti, Modelling, simulation and experimental assessment of hy-
grothermoelastic behaviour of composite laminated plates, Ecole des Mines de
Saint-Étienne, December 2004.

• Antoine Merval, Application de modèles réduits à l’optimisation multiniveaux
d’une structure aéronautique, (Reduced models for the multi-level design of
an airplane structure), Institut Supérieur de l’Aéronautique et de l’Espace,
June 2008.

Undergraduate students

I now summarize my tutoring activity related to

• the students professional training in external companies (3rd and 2nd year
undergraduate professional training),

• and the professional project, the long project and the short project, all of
which are taking place in the university during the undergratuate studies.
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3Y
train-
ing

2Y
train-
ing

Prof.
proj.

long
proj.

short
proj.

total
/ year
(h. tutoring)

2007-2008 1 1 0 2 0 26
2006-2007 1 0 1 2 1 43
2005-2006 1 1 0 2 1 33
2004-2005 3 2 0 2 1 43
2003-2004 2 2 1 1 4 62
2002-2003 2 1 0 0 2 24
2001-2002 0 0 0 0 0 0
2000-2001 0 0 1 1 0 22
1999-2000 2 0 1 0 0 8
1998-1999 2 0 0 1 0 18
1997-1998 1 0 1 0 0 16
Total : 295

Table 5.3: Undergraduate students advising activity per year, in tutoring hours.

The projects I tutored dealt with composite materials, structural design, optimiza-
tion, data mining and programming. Table 5.3 provides an estimation of my un-
dergraduate tutoring activity in equivalent tutoring hours (or “heures équivalent
TD”). At the ENSM-SE, tutoring hours are defined as follows: 20% of the actual
duration of short projects; the short and long projects, which last 50 and 35 hours
respectively, are associated to 10 and 7 h. tutoring; 10% of the actual length of the
120 hours long professional project, i.e., 12h. tutoring; 4 and 2h. tutoring for the
3rd and 2nd year professional trainings, respectively. According to this scale, I have
tutored 295 hours in total (not accounting for graduate students advising).

5.3 Reviewing and other administrative tasks

5.3.1 Reviewing

Journals:

• Review editor at Structural and Multidisciplinary Optimization since 2006.

• Structural and Multidisciplinary Optimization, about 2 articles each year since
2001.

• Journal of Global Optimization, 1 article, 2008.

• Revue des Sciences et Technologies de l’information (Hermes publ., in French),
3 articles, 2005.

• Int. Journal of Numerical Methods in Engineering, 2 articles, 1998 and 1999.

• IEEE Transactions on Evolutionary Computation, 10 articles from 1998 to
2004.

• European Journal of Finite Elements, 4 articles from 1998 to 2000.

Conferences:

• Congrès Français de Mécanique (CFM05), Univ. de Technologie de Troyes,
France, 29 August - 2 September 2005, 10 articles.
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• 8th International Conference on Parallel Problem Solving from Nature (PPSN
VIII), Birmingham, England, 18-22 September 2004, 3 articles.

• Artificial Evolution 03, Marseilles, France, 27-30 October 2003, 4 articles.

• 7th Intl Conference on Parallel Problem Solving from Nature, Granada, Spain,
7 - 11 September 2002, 3 articles.

• 9th World Symposium on Biomechanics and Medicine in Swimming, Saint-
Étienne, France, 21-23 June 2002, 2 articles.

• Artificial Evolution 01, Le Creusot, France, 29-31 October 2001, 3 articles.

• The Sixth International Conference on Parallel Problem Solving from Nature,
Paris, 16-20 September 2000, 3 articles.

• Genetic and Evolutionary Computation Conference, GECC-99, Joint meeting
of the 8th Int. Conference on Genetic Algorithms and the 4th Annual Genetic
Programming Conference, Orlando, Florida, 13-17 July 1999, 3 articles.

• The 1999 Congress on Evolutionary Computation, CEC99, Mayflower Hotel,
Washington DC, 6-9 July 1999, 3 articles.

Projects:

• Agence Nationale de la Recherche, France, 2007, 1 project.

• Université Numérique Ingénierie et Technologie, France, 2006, 1 project.

• Fonds de recherche sur la nature et les technologies, Quebec, Canada, 2006,
1 project.

5.3.2 Conferences and seminars organization

• Organizer of the optimization workshop in the Congrès Français de Mécanique,
CFM’05, Université de Technologie de troyes, 2005.

• Organizer of the “identification work group” at the ENSM-SE, two meetings
in 2004 and 2005.

• Organizer of the “Z-Set work group” at the ENSM-SE (one day training),
2004.

• Organizer of the “optimization work group” at the ENSM-SE, 7 meetings in
2002 and 2003.

• Organizer of the seminars at the Laboratoire de Mécanique de Rouen from
1998 to 2000.

5.3.3 Other administrative tasks

• Member of the hiring committee of the Université Jean Monnet (Saint-Etienne,
France) in the mechanical engineering section since 2007.

• Elected member of the scientific board of the INSA de Rouen from 1998 to
2000.
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5.4 Curriculum Vitae

Le Riche Rodolphe optimization and identification
of mechanical systems

Permanent research assistant, CNRS 4, rue Hovelacque, 42100 St.-Étienne
D.O.B. Sept. 4th 1968 France
2 children Tel : (33)(0)477420023

e-mail : leriche@emse.fr

2002-2008 Permanent research assistant, 1st class, French National
Research Center (CNRS),

Ecole des Mines de Saint-Étienne, France.
Research : leader of the French multi-disciplinary optimization
project (ANR/OMD, 3 Meuros of budget); co-author of 2 patents,
17 journal articles, 14 contracts with private companies. Advisor
of 5 PhD and 2 Master students.
Teaching : global optimization, structural optimization.

1998-2001 Permanent research assistant, 2nd class, CNRS.
Lab. de Mécanique de Rouen, INSA de Rouen, France.
Research : co-author of the LAMKIT software, 4 journal articles
and 4 contracts. 3 month training period at Stanford Univ. with
I. Kroo.
Teaching : structural optimization, constitutive law identification,
C++, evolutionary algorithms.

1996-1997 Post-Doctorate Ecole des Mines de Paris (with G. Cailletaud).
Research : co-author of the Zset finite elements software, 2 jour-
nal, 3 contracts.
Teaching : C/C++, constitutive law identification in solids me-
chanics, evolutionary algorithms.

1995 Military Service at the Secrétariat Général à la Défense Nationale,
Paris.
Technological survey on military and space launchers.

1991-1994 Ph.D. of Aerospace Engineering, Virginia tech, USA
Subject : evolutionary optimization of composites structures (R.T.
Haftka, advisor). Co-author of 2 journal articles. 1 month training
period at NASA Langley (with J. Starnes). Teaching assistant.

1986-1991 Mechanical Eng. Bachelor, Université de Technologie de
Compiègne, France. Majors: materials and design.
6 month professional training with Elsnerdruck, Berlin, Germany.

1986 Baccalauréat of science, Pontoise, France.
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