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Abstract

The topic of dissipation by macroscopic flows is approached by considering two of its most
representative occurences, namely dissipation by plasma flows in the vanishing collisionality limit
and dissipation by fluid flows in the vanishing viscosity limit. It is argued that dissipation can arise
either due to the residual effect of a microscopic coupling parameter, or due to purely macroscopic
nonlinear mixing effects. The combination of these two phenomena puts the problem out of reach
of the most successful statistical methods that have been developed in the context of conservative
systems, and also raises fundamental mathematical questions. Moreover, explicit computations
that would resolve all scales of such flow are still unfeasible in this context, because of the present
limitations in memory size and number of operations. It is thus widely recognized that new ways
have to be found to make progress.

For that purpose, we explore the applicability of a multiscale wavelet framework. First, the
partial differential equations which describe the flow must be recast into a discrete wavelet rep-
resentation, while preserving consistency with the dissipative mechanisms we have outlined. This
step, which we call regularization, is the subject of two chapters in this thesis, concerning the
special cases of the one-dimensional Vlasov-Poisson equations on the one hand, and of the two-
dimensional incompressible Euler equations on the other hand. The possibilities to develop these
schemes for the practical simulation of flows is assessed, and they are compared with other existing
regularizations mechanisms.

To proceed further, the origin of the residual dissipation must be tracked down and linked to
mathematical properties of the solutions. We obtain some elements in this direction by studying
the collision of a vorticity dipole with a wall in the vanishing viscosity limit. If the solutions are
known behave well mathematically, one can readily move to the next step, which is the definition
of macroscopic dissipation in the wavelet representation. This is the case for two-dimensional
homogeneous turbulent flows which we subsequently address. Finally, as a perspective for future
work, we perform a preliminary wavelet analysis of a three-dimensional turbulent boundary layer
flow.

Keywords : wavelets, turbulence, Navier-Stokes, Vlasov, boundary layer.

Étude en base d’ondelettes de la dissipation

par les écoulements dans les plasmas et dans les fluides

Résumé

Le problème de la dissipation par les écoulements macroscopiques est abordé par l’entremise
de deux de ses manifestations les plus représentatives, la dissipation par les écoulements plasmas
dans la limite de faible collisionalité, et la dissipation par les écoulements fluides dans la limite de
faible viscosité. On part du principe que la dissipation peut avoir deux causes distinctes, soit l’effet
résiduel d’un paramètre de couplage au niveau microscopique, soit l’effet purement macroscopique
du mélange non-linéaire. La combinaison de ces deux phénomènes rend le problème impossible à
traiter par les méthodes habituelles qui ont été appliquées avec succès aux systèmes conservatifs,
et soulève des questions mathématiques fondamentales. De plus, le calcul explicite à toutes les
échelles de tels écoulements n’est pas encore envisageable dut fait des limitations actuelles de la
taille mémoire et de la vitesse des opérations. Il est donc communément admis que de nouvelles
méthodes doivent être développées.

Dans ce but, on explore le potentiel d’une approche multi-échelles en ondelettes. Tout d’abord,
les équations aux dérivées partielles décrivant l’écoulement doivent être reformulées dans le cadre
d’une représentation discrète en ondelettes qui reste compatible avec les mécanismes dissipatifs
soulignés plus haut. Cette étape, appelée régularisation, fait l’objet de deux chapitres de cette thèse,
concernant les cas particuliers des équations de Vlasov-Poisson d’une part, et des équations d’Euler
bi-dimensionelles incompressibles d’autre part. On évalue la faisabilité d’un calcul des écoulements
en utilisant les schémas ainsi développés, et on compare ces derniers à d’autres schémas proposés
précédemment.
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Pour aller plus loin, il faut remonter aux origines de la dissipation résiduelle et la relier aux
propriétés mathématiques des solutions. On obtient quelques éléments allant dans cette direction
en étudiant numériquement le phénomène de collision d’un dipôle de vorticité avec une paroi dans la
limite de faible viscosité. Lorque les solutions se comportent bien mathématiquement, comme c’est
le cas pour les écoulements turbulents bi-dimensionels homogènes que nous abordons ensuite, on
peut dors et déjà passer à l’étape suivante qui est la définition de la dissipation macroscopique dans
la représentation en ondelettes. Finalement, on présente une analyse en ondelettes d’un écoulement
turbulent tri-dimensionel dans une couche limite, ce qui ouvre des perspectives pour l’extension de
la méthode.

Mots-clefs : ondelettes, turbulence, Navier-Stokes, Vlasov, couche limite.
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qui ont été déterminants. Sur ce plan je suis aussi redevable à Alex Grossmann, Laure
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10 Introduction

Introduction

The long term goal underlying this work is the identification and description of macroscopic
dissipative processes in classical flows. By macroscopic, we mean that which does not
depend on the microscopic (i.e. molecular) properties of the system, for example on coupling
coefficients such as fluid viscosity or plasma collisionality. The achievements presented here
are extremely modest in regard to the ambition of this program. We have focused on two well
known systems, turbulent flows in fluids, and filamentary flows in hot plasmas 1. Both have
been studied experimentally and theoretically for a long time, the medal going undoubtedly to
turbulent flows in this respect. There has been a long term and fruitful connection between
them on the theme of “wave turbulence”, which appears in plasma as well as in fluids.
However, the connection between the study of “strong turbulence” (or simply “turbulence”,
as we refer to it from now on) in fluid flows and phenomena occurring in hot plasmas has
been fully realized only in the last few years. We have directly benefited from this new
state of mind. Indeed, the collaborations going on at the moment between the communities
working on the dynamo problem in astrophysics and geophysics, on turbulent fluids, and on
the controlled nuclear fusion program is extremely active and stimulating, and have inspired
a lot of what we are going to present.

Maybe it is time to slip a word or two about the scientific motivations from which this
work has originated. The first comes from the atmospheric sciences, a field which features
as a recurring concern the frontier between the predictable and the unpredictable. It is the
wish of long range weather forecasters to push back this frontier as far as possible. For this
we must bring under our scrutiny the phenomena that are currently beyond the frontier and
understand what makes us unable to predict them. Turbulence is of course presumed guilty
here, and this justifies the study of the loss of information which is entailed by dissipation in
turbulence.

Another important motivation is the development of the research program on controlled
nuclear fusion, a five decades long undertaking in terms of physics and engineering. The
priority up to now was to write down the equations governing each part of the system,
and to study their linear stability, in order to help the experimentalists reach situations that
remain stable for a few seconds. This is now more or less complete. At present the tools
for the analysis of these equations are still being developed, and some basic phenomena
remain unexplained. But the main concern is now shifting towards an integrated system
view, of a reactor that has to produce energy for years. This has been common practice in
the fluid mechanics world for years. When the system is fully nonlinear and sustained, new
types of questions emerge. What are the main structures that play a role in the disordered
steady state? What reliable cycles can be implemented around the steady state to operate
the reactor, for fueling, exhausting, etc. ? What will be the state of the vessel after a few
months of operation? Understanding the matter of dissipation is essential to approach all
these questions.

Let us now briefly mention some recurrent technical themes of this thesis. The first
theme is multiscale analysis, and it comprises the orthogonal functions known as wavelets.
Thanks to the unique properties of wavelets, flows can be at the same time discretized in
conservative ways, and decomposed into superposition of multiple scales. Another theme
that will pop up all the time is statistics. It will allow us to define dissipation, thanks to the

1The notion of filamentary flow will be introduced in Chapter 1
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Bayesian – or “Jaynesian” – interpretation of statistical physics, and then to study it using
wavelets and other tools. Finally, a third theme that we would like to mention is numerical
experimentation, i.e. the explorations of the properties of a mathematical model by numerical
integration using a computer. The results that we shall obtain with this approach are tied to
the model from which they are obtained, and their purpose is not so much to directly learn
about the underlying physical systems, than to understand the models better.

We dedicate a first chapter to a historically oriented presentation of the context of the
present study. At the onset, a few open physical questions are stated, and the words of the
title are defined. Then we split the presentation into three sections, dedicated to different and
complementary approaches to the same problem: statistical, mathematical, and numerical.

In a second chapter, we set ourselves to give the elements of wavelet theory that are
required to understand the sequel. A unified notation is proposed, that we specialize in the
next chapters when working on more specific problems. In addition, we propose a complete
formulation of an adaptive wavelet transform framework.We describe some choices that were
made in the implementation, since we believe that they are crucial to actually make things
work. To conclude this chapter, we report a few mathematical results that helped us on the
way, and an application to experimental data processing.

The third chapter contains the results we have obtained in the field of plasma simulation.
The first step was to study how wavelets could be used to obtain a regularized – or even
denoised – estimate of the particle distribution function, starting from the position of many
discrete markers. The second step was to actually implement in a code the estimation
method that came out of the first step, and to solve the 1D Vlasov-Poisson problem in order
to demonstrate the capability of the approach.

A closely connected topic is treated in the fourth chapter, namely the regularization of
inviscid fluid equations. The first attempt that we made, reported in the first section of this
chapter, was restricted to a toy model, the 1D Burgers equation, for which we showed the
regularizing properties of a wavelet-based filter, relying on Kingsbury wavelets. The success
of this approach drove us to generalize it to the 2D Euler equations, and to systematically
compare it with several other regularization methods. The results are reported in the next
section. In particular, we obtained the surprising result that simple Galerkin-truncation was
sufficient to regularize the 2D incompressible Euler equations, in contrast to what happens
for the 1D Burgers toy model. The final section of chapter 4 recalls some mathematical
results that help understand the results of the two previous ones.

In the fifth and final chapter we start directly addressing physical questions that were
only implicit in the preceding ones. A preliminary section is necessary to describe in some
detail the penalization method that we apply in the second section to explore the issue of
energy dissipation in 2D flows with solid boundaries. Then we come back to 2D wall-less
flows and focus on conditional statistical modeling and the associated notion of macroscopic
dissipation Finally, we report results on turbulent boundary layer analysis, obtained in a
collaboration with a group at Technische Universität Darmstadt (Germany), that constitute
a first step towards the extension of our approach to three dimensions.
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I.1 Physical concepts

I.1.1 Turbulent fluid flows

Many types of fluid flows appear very disordered while possessing some reproducible prop-
erties. Two grassroot examples are the flow of air past an airplane wing, and the flow in
the lower layers of the atmosphere on a windy day. Enough is known about the lift and
drag forces exerted by the air on a wing to allow thousands of planes to fly safely every-
day. Weather forecasting techniques can already predict the average wind speed with some
confidence, and our own senses have recorded many subtle properties, most of which are
even difficult to formulate rigorously, but such that we can immediately tell the difference
between a strong breeze and a gusty storm precursor.

Striking descriptions of such flows are found in da Vinci’s notebooks, but the first precise
mechanical studies seem to date from the time of Newton (see, e.g., Truesdell, 1968). In
the 18th century, rational mechanics was eagerly tackling many long standing issues in all
domains of engineering, and flows were an important part of that huge undertaking. Two
of the most important contributors of the time were Euler and d’Alembert. They were both
prolific writers, to say the least, and reviewing their work would take us well beyond our scope.
Let it suffice to give some elements that matter the most for for our purpose. Elaborating
on the general principles set by Newton, and on the work of Jean Bernoulli, Euler worked
out the conservation of linear momentum, introduced the general notion of pressure field
and derived differential equations for the motion of fluids (Truesdell, 1968). He realized that
certain fluids were effectively incompressible, and that the pressure field would then have to
adjust itself so as to locally preserve the volume of fluid elements. The modern formulation
of the equations he arrived at – the incompressible Euler equations – can be written as:

{
∂u
∂t

+ (u ·∇)u = −∇p

∇ · u = 0
, (I.1.1)

where u(x, t) is the velocity field, ∇ is the gradient operator acting on x, and p is the
pressure field. The density of the fluid is assumed to remain constant and has been fixed to
1 by an appropriate choice of mass unit. In the following, we consider only this incompressible
case, and shall therefore mostly refer to (I.1.1) simply as “the Euler equations”. Note that
we have also omitted the external body forces, which would appear on the right hand side
of the first equation in (I.1.1).

D’Alembert (1768), working with the potential flow model that he had developed and
that can also be seen as a special case of (I.1.1), pointed out that when a flow arrives from
infinity at constant velocity and encounters a solid body, the fluid does not exert any force
on the body in the flow direction, i.e., that the drag force vanishes. This conclusion, that
has become known as the d’Alembert paradox, seemed in contradiction with many natural
phenomena, like the flying of birds, and also with the everyday experience of engineers.
For that matter, this was not the last occurrence of a contradiction between theory and
experiment in the history of fluid mechanics, far from it. The required breakthrough was
made in the 1820s, first by Navier (1823) with important contributions of Cauchy (1823), and
then by Saint-Venant (1843) and Stokes (1845) using a different approach. The resulting
theory was enriched by allowing for non-conservative contact forces interior to the flow,
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leading to the now well established incompressible Navier-Stokes equations:

{
∂u
∂t

+ (u ·∇)u = −∇p + ν∆u

∇ · u = 0
, (I.1.2)

where ν is the kinematic viscosity of the fluid. Due to the occurrence of the Laplace operator
∆ in (I.1.2), additional boundary conditions are required in the presence of solid obstacles,
compared to (I.1.1) for which it is sufficient to impose the obvious non penetration of the
flow. Navier (1823) proposed that the velocity component uτ parallel to a wall should be
proportional to the shear stress ν∂nuτ across the plane tangent to the wall at the same
location, i.e.,

uτ + α∂nuτ = 0, (I.1.3)

where α is called the “slip length”. The relation (I.1.3) is now called the Navier boundary
condition. In rarefied gases, it can be justified from kinetic theory, as envisioned by Maxwell,
and proved rigorously by (Coron, 1989). However, in dense gases and in liquids, it is more
customary to use the “no-slip” boundary conditions, which correspond to the case α = 0
above, and were proposed by Coulomb (1800) and advocated by Stokes (1845) after some
hesitations. A detailed historical account of the controversies on this topic in the XIX-th
century has been put together by Goldstein (1965, p. 676).

During the same period, thanks to the development of differential calculus, formal com-
putations based on equations (I.1.1-I.1.2) allowed new interesting results to be derived.
Helmholtz (1858) pointed out an important quantity, the vorticity

ω = ∇× u, (I.1.4)

and used it to show that the circulation of the velocity field u along any closed loop advected
with the flow was conserved for solutions to the incompressible Euler equations. This is
also contained in a famous theorem of Kelvin (1869), which gave birth to a whole field of
research now known as topological fluid dynamics. For flows which depend only on two space
coordinates, ω is a scalar and it is conserved along the trajectories of infinitesimal particles
advected by the flow, called Lagrangian markers. This is a first and instructive manifestation
of the important differences between two-dimensional and three-dimensional flows, on which
we return later.

Parallel to the theoretical work on the equations, fluid mechanics evolved into a ma-
ture experimental field during the 19th century. A milestone on this road was the study by
Reynolds (1883) of flows in pipes for varying inflow velocities and diameters. He discovered
the phenomenon of transition to turbulence, and showed that, for a given flow geometry,
this transition was controlled by a single dimensionless parameter, now called the Reynolds
number Re, corresponding to the ratio between inertia and viscous forces. The same phe-
nomenology was reproduced in various flow geometries by Couette (1890), and later by G.I.
Taylor (1936) and many others. It was hence understood that disordered flows corresponded
to the case Re ≫ 1, that is, when nonlinear effects due to inertia are dominant. For ex-
ample, the Reynolds number for a car on a motorway typically takes values between 106

and 107, while it reaches above 109 in the atmospheric boundary layer. We shall refer to
this regime as “fully developed turbulence”, which we shall most of the time abbreviate by
the single word “turbulence”. We thus stick to the strict definition of turbulence as the
disordered motion of a fluid occurring at high Re. Note that the Reynolds number can be
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used rigorously as a scaling parameter when the geometry, boundary conditions, and initial
data are fixed, whereas more informal comparisons require a lot of caution.

Major progress towards a resolution of d’Alembert’s paradox using the Navier-Stokes
equations was made by Prandtl (1904). Given a flow in contact with a solid obstacle, and
assuming Re ≫ 1, Prandtl focuses on a thin neighborhood of the obstacle of thickness

scaling like Re−
1
2 , called the boundary layer. By a suitable rescaling of variables, he shows

that under certain hypotheses the flow inside this layer is a solution to some simplified
equations, now called the Prandtl equations (see Schlichting, 1979 and Sec. I.3.3 below).
To describe the flow outside the layer, the Euler equations are to be used, considering that
since Re≫ 1 the effects of viscous forces are negligible far from the wall. If everything goes

well in the limiting process, the scaling of the drag force with Re is constrained to be Re−
1
2 .

However in the 1930s it became clear from the results of many aerodynamic experiments
including those by the groups of Prandtl, Burgers, von Kármán, and Dryden that this scaling
breaks down for sufficiently large Re. Visual observation of the flow in the new regime reveals
that in some regions the boundary layer tends to “detach” from the wall, in the sense that
some fluid particles that are close to the wall at some time get entrained far from it at later
times.

This new regime has fascinating consequences on the behavior at large Re of the drag
force FD, which can be written by dimensional analysis as

FD = CDρU
2L2,

where ρ is the fluid density, U is some characteristic velocity, L is some characteristic length,
and CD is a non-dimensional number called the drag coefficient. It turns out that the
most simple approximation is that the drag coefficient depends only on the geometry of the
obstacle and not on the Reynolds number. Most drivers know that the fuel consumption
of their vehicle is roughly proportional to the square of its velocity. This empirical behavior
of CD, already reported by Newton in his study of the pendulum, was familiar to civil
engineers at the beginning of the XIX-th century, as mentioned also by Coulomb (1800),
and recalled by Darcy (1858) in his 260 pages mémoire on pipe flows. Since then much
more empirical knowledge has been accumulated, concerning for example the drag crisis (the
sudden reduction in the drag coefficient first observed for flows around spheres at Re ∼ 105

by Eiffel, and studied by Nikuradse and Prandtl in the Göttingen wind tunnel, see Darrigol,
2005), logarithmic dependency with Re in confined flows and the influence of rugosity (see
e.g. Schlichting, 1979). Further theoretical investigations were conducted by von Kármán
(1921, 1930) and Prandtl (1925, 1932) and have led to a few verifiable statements known
today as the law of the wall. This theory is essentially based on similarity arguments and
as such contains several unknowns whose behavior remains to be explained. Moreover even
its most basic predictions are still challenged by comparison with modern experimental data,
as we shall see below. We should also mention that in a largely forgotten work, Burgers
(1923) worked out a simple 2D kinematic model for a fully developed turbulent channel flow
involving vortices of size scaling like Re−1 in the neighborhood of the walls, whose presence
is sufficient to qualitatively explain the observed drag force. The difficulty to incorporate
dynamical effects in such a model may explain its lack of popularity. Overall, it appears that
the explanation of the behavior of CD in the fully developed turbulence regime is still an
open problem. It is one of the most basic, long standing, and yet central questions in the
field of turbulence.

The drag question has at least one reassuring quality, namely that it is clearly formu-



16 Physical concepts

lated, and that any proposed theory is therefore liable to immediate experimental falsification.
Another important question concerns the energy dissipation rate of homogeneous isotropic
turbulence (HIT), but it is arguably less clearly cut than the drag question, because the def-
initions of the words “homogeneous” and “isotropic” rest on non trivial statistical concepts.
For the moment, let us simply imagine a region of turbulent flow that is left to itself and
far from any forcing device. By averaging the kinetic energy contained in this region, one
can measure an energy dissipation rate ε. Then by repeating this experiment at different
Reynolds numbers, while keeping the same preparation protocol for the flow, one can study
the dependency of ε as a function of Re. In practice, this has been done in wind tunnels using
so called “grid generated turbulence” (Burgers, 1926; Dryden and Kuethe, 1929; Batche-
lor and Townsend, 1948; Comte-Bellot and Corrsin, 1966) and the outcome showed that ε
becomes almost independent on Re for Re sufficiently large (Sreenivasan, 1984). Coming
back to the car example, we can only admire the great consistency of Nature: for large Re,
energy is injected in the flow due to the non-vanishing drag at the surface of the vehicle
(an apparently very local phenomenon), and the flow arranges itself so that it manages to
dissipate this energy thanks to the non-vanishing ε in its bulk! (Frisch, 1995).

Other open questions in the field of turbulence suffer from a less enticing guise. Among
them, one finds almost everything that has to do with localized flow events. It is thus an open
question to even formulate such notions as a “predictable local event” in a turbulent flow.
Far from being purely academic, these topics are of central concern for many applications,
among which weather forecasting and the study of pollution spreading.

I.1.2 Filamentary plasma flows

Before coming to plasmas, we are compelled to make a brief return to the kinetic theory of
gases, which will serve as a transition. Around the same period of time when the mechanical
aspects of fluids were studied, the successes of thermodynamics motivated some physicists
to propose microscopic models with the hope that it would allow them to directly compute
the values of some thermodynamic coefficients that had been measured experimentally 2.
Their starting hypothesis was that the properties of matter resulted from simple laws of
motion followed by very many molecules (Maxwell, 1867). In this way, Maxwell explained
the stability of Saturn’s rings and computed the velocity distribution of particles in a gas.
This distribution, usually denoted f , is the central object of kinetic theory. It is defined by
the property that for any Ω ⊂ R6,

∫
Ω
f(x,v, t)dxdv is the probability of finding at time

t a particle whose position x and velocity v are such that (x,v) ∈ Ω. Boltzmann (1872)
then derived the equation now bearing his name, which describes the time evolution of the
aforementioned distribution in the case of a dilute gas:

∂f

∂t
+ v ·∇xf +

Fext

m
·∇vf = C(f), (I.1.5)

where Fext is an external force acting on each particle, m is the mass of a particle, and
C(f) models the effect of binary collisions. He proved the inevitable increase of the quan-
tity SB(f) = −

∫
f log f , which we refer to as the Boltzmann entropy, and made the bold

conjecture that this was the reason for the second principle of thermodynamics. A major

2Here and in the following, the term microscopic is strictly reserved to phenomena occurring at a molecular
scale, independently of the description chosen for the system.
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argument supporting his view was that the only distribution of molecular velocities maxi-
mizing his entropy corresponded to the distributions previously obtained by Maxwell, and
which could be deduced in an independent manner using the notion of statistical ensemble
that Boltzmann had introduced earlier, and that had been further developed by Gibbs. The
increase of Boltzmann entropy, although it does not prove the second principle of thermody-
namics as is now well understood (see e.g. Jaynes, 1965), concerns us nevertheless because
it justifies the passage from the molecular description to the fluid description. The process,
known as the Chapman-Enskog expansion, consists in a derivation of the fluid flow equations
by taking the low order moments of (I.1.5) with respect to v. For its success, it is essential
that f is close to a local Maxwellian distribution, a state called local thermodynamic equi-
librium which is established when the mean free path of molecules is small with respect to
the macroscopic length scale.

Plasmas are like gases except that they contain charged particles, i.e., ions and electrons,
instead of only neutral molecules. The word plasma was coined by Langmuir (1928) when
he first described the waves that now bear his name. Langmuir used the essential concept
of shielding, introduced earlier by Debye and Hückel (1923), which roughly stated means
that a particle effectively experiences forces only from other particles closer than a certain
length, the Debye length. In plasmas, the Boltzmann collision operator cannot be used,
and the matter of collisions become altogether very complicated (see Villani, 2002 for a
review). Fortunately, there exists a regime where interesting macroscopic phenomena occur
at length and time scales smaller than the mean free path and mean free time. This regime,
corresponding to the opposite of the fluid regime, is usually called “hot”, because it is most
commonly triggered by raising the temperature of the plasma. The effects of the collision
term C(f) can then be replaced by a mean field approximation, where the electromagnetic
forces are added to Fext. The Vlasov equation is thus obtained:

∂f

∂t
+ v ·∇xf +

F + Fext

m
·∇vf = 0 (I.1.6)

where F = q(E + v × B), with q the charge of the considered particle, and E and B

respectively the electric and magnetic fields due to the particles themselves. In the following,
and in the title of this thesis, “plasma flow” refers to the distribution function f , which plays
the same role in a hot plasma as does the velocity field in a fluid. To obtain a closed system
of equations, one writes down the Maxwell equations for E and B, thus yielding a nonlinear
system called the Vlasov-Maxwell equations, or Vlasov-Poisson in the special case when the
magnetic field vanishes or can be neglected.

Contrary to the Boltzmann equation which relies on strong hypotheses concerning the
post-collisional velocities, the Vlasov equation can be derived directly from the Newton equa-
tions of molecular dynamics, although at the moment the derivation has been made rigorous
only for a mollified interaction potential (Braun and Hepp, 1977). The approximation leading
to the Vlasov equation is controlled by the largeness of the so-called “plasma parameter”,
usually denoted Λ, which is the number of particles contained in a sphere whose radius is
the Debye length. The Vlasov equations have been used to derive many important results
concerning plasmas, including the explanation of Landau damping, i.e., the transfer of en-
ergy between waves and particles due to resonant interactions. Unsurprisingly, the main
shortcoming of the Vlasov equation is that it does not describe the effect of collisions.

As for turbulent fluid flows, there are many open questions concerning hot plasma flows.
A number of interesting ones have applications in the field of magnetically confined nuclear
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fusion, which we take as an illustrative example. Due to Coulomb repulsion, the fusion
between two nuclei can occur only if their kinetic energy is very large, for example compared
to the one of molecules in a gas at a normal temperature. To achieve an appreciable amount
of fusion events, it is thus necessary to reach temperatures of several million Kelvins, at
which a gas has long since turned into a plasma. By surrounding the plasma with suitably
arranged coils, the Lorentz force can be tailored as a confinement device, and the system
can, in principle, function as a stationary source of energy. In practice, the situation is made
extremely complex by the wild variety of instabilities that feed on the free energy present in
the system. The resulting fluctuations are often referred to as “plasma turbulence”, because
of the stochastic nature of the flow and of the waves observed in the plasma. But it should
be stressed that this has little to do, in terms of the quantities involved, with fluid turbulence
as we have seen it in the previous section. The rotational motion occurring generically in
incompressible fluid flows, and in which the word “turbulence” has its etymological roots, is
observed in plasmas only in special cases. In a recent proposition to extend the concept of
“cascade” to magnetized plasmas (Schekochihin et al., 2008), turbulence is defined roughly
as a process transferring energy from large to small scales, which seems at the same time
too restrictive – since flows are typically forced locally in space by the effect of boundaries –
and too vague – since there are non-turbulent, yet very efficient ways of transferring energy
to fine scales, e.g. shock formation in compressible fluids. We would like to avoid these
semantic issues altogether by using the word turbulence, for the time being, only when it
applies to fluid flows. The use of the term “hot plasma” is common to refer to a plasma in
the low collisionality regime, but it would be more satisfactory to qualify f rather than the
plasma, in the same manner that the adjective “turbulent” qualifies the flow and not the
fluid. In the following, we use the adjective “filamentary” to refer to such flows, since it has
been observed that f develops filaments in phase space, which get more numerous as the
collisionality is lowered. As the corresponding noun we choose “filamentation”.

One of the goals of the research program on magnetically confined fusion is to understand
the fluctuations in hot plasmas in order to improve the energy confinement time of the
device, and thus to open the possibility of using fusion as an economically sustainable source
of energy. In the currently most successful configuration, called the tokamak, the plasma has
the shape of a torus. The coils produce a toroidal magnetic field, and an additional poloidal
field is generated by a strong current circulating in the plasma itself. For lack of a cheaper
solution, the most utilized manner of increasing the energy confinement time has been to
increase the size of the device. The largest one is called the Joint European Torus (JET)
and is located in Culham (UK). Its major and minor radius are respectively 3 meters and
90 centimeters. The International Tokamak Experimental Reactor (ITER), currently under
construction in Cadarache (France), will be about twice as large. For reasons that we do
not detail, the largest the size of the device, the smallest the collisionality of the plasma.
Hot plasmas are thus at the heart of the fusion program. They are also well represented in
astrophysics. But the understanding of hot plasmas is far from complete from a theoretical
point of view. In a sense the situation is even more dire than what we have mentioned
concerning turbulence, since for plasmas the relevant collision model, the Landau operator,
is extremely complicated and poorly understood, and in addition the respective status of
other approximate models is not clear from a mathematical point of view.
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I.1.3 Dissipation

Now that we have separately introduced turbulence and filamentation, and summarized some
open problems of general interest concerning these two regimes, we would like to explain
what brings them together in this thesis, and to formulate the specific questions we are
seeking to answer. As suggested by the title, it turns out that the key concept is dissipation.

In the common language, the word dissipation can take many connotations, from the
negative judgment addressed to an “intemperate, dissolute, or vicious way of living” (Oxford
English Dictionary, 1931) to the the resolution of a misunderstanding which leaves a vague
impression still floating in the air. In the following, we concentrate on the precise concept of
dissipation in modern physics, defined by Balian (2006) as an increase of the entropy. That
brings us to the definition of entropy, the central concept of statistical physics. Fascinating
historical accounts on the subject are to be found in (Brush, 1976; Truesdell, 1980; Gallavotti,
1995). We sketch here only the modern view, with a special emphasis on the previously
introduced physical systems.

For simplicity we consider an isolated (or thermostated) fluid or plasma. To any proba-
bility density ρ over microscopic states corresponds a microscopic entropy, which we denote
by SG(ρ), the Gibbs entropy:

SG(ρ) = −
∫

Γ

ρ log ρ, (I.1.7)

where Γ denotes the phase space. Because of the Liouville theorem, SG is conserved by
the Hamiltonian microscopic dynamics of the fluid or plasma. At this level, it is therefore
basically a useless quantity. However, it turns out that SG is maximal over all admissible ρ’s
when ρ is an equilibrium distribution, where the macroscopic flow vanishes. The value of SG
realized by such an equilibrium state may be called the equilibrium entropy, SE (experimental
entropy in (Jaynes, 1965), sometimes called Clausius entropy). Hence SG is well suited to
the analysis of equilibrium problems, or of perturbations thereof.

But a moving fluid is by definition out of thermodynamic equilibrium, and therefore its
properties – including dissipation – can not be computed using SG. Nevertheless, since
parcels of fluids are assumed to be in local thermodynamic equilibrium, an entropy density
sL can be defined and integrated over the fluid volume to yield a time dependent non-
equilibrium entropy SL of the moving fluid. SL can be shown to increase monotonically in
time, because of molecular friction, which makes the fluid relax towards a global equilibrium
characterized by SL = SE. In general, one has only the inequality SL ≤ SE . The increase of
SL in time corresponds to what is usually referred to as “molecular dissipation”, a contraction
for “dissipation due to molecular friction forces”. There have been numerous attempts to
base predictive theories of turbulence on hypotheses concerning SL. The “maximum entropy
production principle” and the “minimum entropy production principle” fall into that category,
which we do not develop further.

In a plasma described, for example, by the Boltzmann equation, the role of SL is played
by the Boltzmann entropy SB, which takes into account the absence of local thermodynamic
equilibrium. Hence the increase of SB in a plasma is a form of dissipation. Note that the
Boltzmann equation can also be used to describe a dilute gas, which may happen to be
in local thermodynamic equilibrium, so that the relevant entropy could well be SL. This
apparent conflict allows us to pinpoint the essential notion that the entropy depends on the
description of the system currently being considered. For a fluid, it is natural to speak of
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“energy dissipation”, because the increase of entropy is equivalent to the decrease of kinetic
energy. With that terminology in mind, we are strongly driven to wonder what is the quantity
that is being dissipated in a plasma, and we feel that there ought to be such a quantity,
and that the use of the word dissipation does not make sense without it. Sometimes, the
Boltzmann entropy is defined without the minus sign and one speaks of “entropy dissipation”,
a strange expression which seems at odds with the simple definition of dissipation recalled
above.

Before we can help soothe the linguistic itch, we need to say a little bit more about
the interpretation of the entropy itself. Since the work of Jaynes (1957), it is clear that
SG should be interpreted as a quantifier of the spreading of the distribution ρ over Γ. For
example, if Γ has a finite volume, SG will reach its maximum for the uniform distribution.
The entropy is hence seen as a lack of information. Complete information about the system
would mean that ρ is concentrated in a single point of Γ, in which limit SG tends towards
−∞. Now coming back to the word “dissipation”, we see that it comes directly from the
Latin verb “dissipare”, constructed by adding the prefix “dis” – apart – to “supare” – to
throw away, to spread. It is therefore legitimate to speak of dissipation of the probability
density ρ, whose spreading indeed corresponds to an entropy increase, and also to a rejection
of information.

In our view, the link between turbulence and filamentation lies in the interplay of macro-
scopic mixing with microscopic dissipation. In turbulent fluid flows, macroscopic mixing
arises because of the advection term in the Euler equations, and microscopic dissipation
because of molecular friction. In filamentary plasma flows, macroscopic mixing can be at-
tributed to the nonlinear term in the Vlasov equation, and microscopic dissipation to residual
collisional effects. The main theoretical prospect that motivates our study on the long term
is to bring these macroscopic and microscopic phenomena under the scrutiny of a unified set
of concepts. But first, we present some of the lines of thought that have been followed up
to now to tackle such problems.

I.2 Statistical models

I.2.1 (Un-)Predictability

Following the trend at the beginning of the XX-th century, it was legitimate to attack the
issue of turbulence by the deterministic edge, that is, to try to predict the future evolution
of the flow from the knowledge of its present state. This innocent wish has opened a
Pandora box of questions pertaining to predictability, through which we want to make a small
detour before coming to the statistical models per se. The predictions we are interested
in are announcements of future events, or more generally assignments of probabilities to
future events, using the rational knowledge of causes and effects. Predictability studies thus
naturally share a strong bond with numerical weather forecasting, a field which can be traced
back to the famous book by Richardson (1922). The declared goal of the field is to predict
the evolution of flows and other components of the atmospheric systems as long as can
be achieved given a certain array of measurement devices. This problem was discussed at
length by Lorenz (1969a,b, 1982), who introduced the notion of “range of predictability”
in the context of weather forecasting. He popularized the notion that accurate predictions
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were possible for a short time – of the order of one or two weeks in the atmosphere – and
impossible for longer times.

Beyond weather forecasting, crude approximations to the Navier-Stokes equations are
now used on an everyday basis in an attempt to answer questions that depend on the local
properties of the flow, for example: will an oil spill in the gulf of Mexico affect the fishing
industry in the North Atlantic? And even more questions seem completely outside of the
range of our predicting tools, for example: will the tree in your garden survive the next storm?
These questions are very difficult to answer because the flow evolution is very sensitive to
perturbations in its initial conditions. That is, two flows initially very similar to each other
are likely to look very different after some time. This property defines a class of dynamical
systems that are called “chaotic”. For the weather forecast problem and others, it seems
that our eagerness to predict needs to be somewhat tempered as soon as chaos is at work.
However, this does not mean that the deterministic description of Nature is irrelevant. For
any system, chaotic or not chaotic, attempts at predicting the future are prone to some
amount of uncertainty. It is thus largely irrelevant to speak of unpredictable systems, but it
is a key question to find out what is predictable about a system, given a certain knowledge
about its present state and environment.

Perhaps the first studies that were related to this issue concern the stability properties of
known stationary solutions to the Euler equations, as introduced by Rayleigh (1879). The
topic continues today with the study of transition to turbulence, or more generally transition
to chaos. However, in the fully developed turbulent regime, flows are non stationary and it
is very difficult to relate their properties to those of stationary or quasi-stationary solutions,
although there has been some amount of work along this line (Robert and Sommeria, 1992).
Other tools like eigenmode expansions do not seem well suited to address predictability,
and even generalized concepts like Lyapunov exponents fail to capture its essential features
(Lorenz, 1996). In particular, predictability could depend on the type and amplitude of the
initial perturbation, as was shown by Robert and Rosier (2001) for the 2D incompressible
Euler equations, and by Zaliapin and Ghil (2010) in the broader context of the Earth climate
system. In fact, to this day most practically relevant issues pertaining to predictability are
still largely open, as for example the prediction of prediction errors, or the characterization
of the perturbations to which the flow is the most sensitive on the long term.

I.2.2 The K41 and KBL67 theories

The large number of active degrees of freedom observed in turbulent flows, and the phe-
nomenological arguments supporting their unpredictability, seem to call for a statistical the-
ory. This was also a natural route to follow if one strove to interpret the somewhat peculiar
experimental observations on turbulent flows, and was advocated for that purpose by Burgers
(1929) and Taylor (1935). The idea soon attracted the interest of mathematicians specialized
in probability theory, like Kolmogorov (1941) (hereafter K41) who, inspired by experimental
results and ideas of Obukhov (1941), took as central quantity the statistical distribution F
of the difference δu(x, t, r) between the velocities at two points in a 3D flow separated by
the vector r. To define this distribution, they modeled the flow by a random variable living
in some ensemble of realizations, and indexed by some probability space, which they had to
leave unspecified for lack of a better way. They then made several hypotheses. The first was
that the flow was statistically stationary, homogeneous and isotropic, i.e. that F did not
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depend on t and x, and was covariant under change of coordinates by rotation and transla-
tion. The second hypothesis was that F depended only on r, on the Reynolds number, and
on the average energy dissipation rate, denoted ε. Finally, the third hypothesis was that for
|r| larger than a certain length η = ν

3
4 ε−

1
4 – now called the Kolmogorov length – F ceased

to depend on Re, and depended only on r and on ε.

From these three hypotheses, K41 derived in particular that:

〈 |δu · r|2
|r|2

〉
= Cε

2
3 |r| 23 , (I.2.1)

where C is a constant. This prediction has shown great success in describing many experi-
mental results. It is perhaps better known as the Kolmogorov 5/3 law because it is equivalent
to

〈E(k)〉 = CKε
2/3k−

5
3 ,

where E(k) is the energy spectrum of the flow, defined as the energy content of a shell
k ≤ k < k + 1 in Fourier space, and CK is called the Kolmogorov constant. Later on,
followers of Kolmogorov realized that under the same hypotheses as K41 much stronger
constraints on the overall flow statistics could be deduced, in particular concerning the
higher order moments of the velocity difference distribution, which are known as structure
functions: 〈 |δu · r|p

|r|p
〉

= Cε
p
3 |r| p3 (I.2.2)

for any positive p. And unfortunately, such generalized predictions, commonly referred to as
an extended “K41 theory”, typically disagree with experiments. In particular, it was shown
that structure functions increased more slowly with r, than predicted by (I.2.2), see for
example (Anselmet et al., 1984) for landmark results on this. To explain this discrepancy
it can be argued that the idealized hypotheses underlying K41 do not correspond to the
situation encountered in experiments. But the same discrepancy was observed in numerical
experiments constructed to be compatible with K41 (see e.g. Ishihara et al., 2009). In
that case the flaw is likely due to large deviations of typical individual realizations, for
example because activity is more and more localized in regions occupying a vanishingly small
fraction of space when going to fine scales, a phenomenon known as intermittency. Another
hypothesis which is often associated to K41 is that the flow does not have any dynamically
important features at scales finer than the Kolmogorov scale (i.e. that the evolution will be

the same if those scales are filtered out). Given that η is proportional to LRe−
3
4 (where L is

the length scale used to define the Reynolds number), this hypothesis leads to an estimate

of the number of active degrees of freedom of order Re
9
4 .

The case of 2D flows was later studied by Kraichnan (1967), Leith (1968) and Batchelor
(1969) (hereafter KBL67) who made use of the same kind of arguments. The situation is
made a little bit more complex by the existence of two independent quadratic quantities
conserved by the 2D Euler equations, namely the energy and the enstrophy Z = 1

2

∫
Ω
ω2.

As a result, two different behaviors for the structure functions are possible in such a theory.
KBL67 conjectured that the enstrophy dissipation rate η would play the same role in 2D
as the energy dissipation rate in 3D, while in 2D the energy dissipation rate would vanish
in the fully developed turbulence regime. This implies in particular that, if L denotes the
“energy injection scale”, then for r ≤ L, the structure functions should behave like η

p
3 rp.

The corresponding energy spectrum is proportional to k−3.
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The derivation of theories “à la Kolmogorov” to describe plasma flows is currently a hot
research topic. Indeed, it has been noticed that the same phenomenology was ongoing in hot
plasmas, albeit with a number of new features due to the fact that plasmas have their own
characteristic length and time scales so that their flows are not approximately scale invariant
like fluid flows, but tend to develop different regimes depending on the scale that is being
considered (Schekochihin et al., 2008). Despite these additional difficulties, Gürcan et al.
(2009) were able to derive an expression for the statistically stationary spectrum of drift wave
turbulence, and showed that it agreed reasonably well with experimental measurements in
the scrape-off layer (SOL) of the tokamak Tore Supra.

To take into account the observed intermittency of turbulent flows, it is possible to allow
the scaling exponent of the velocity increments to depend on space. This leads to the mul-
tifractal framework (Frisch and Parisi, 1985; Benzi et al., 1984; Meneveau and Sreenivasan,
1987). However, in its present formulation, the approach still lacks explanatory power, and
it still cannot be derived from the NSE. Even when leaving aside the matter of intermittency
the main shortcoming of this sort of statistical theory is that their range of application is
very limited. Indeed the underlying hypotheses are rarely satisfied in practical situations. We
come back in some detail on these points in Sec. V.3.2.

I.2.3 Turbulence models

To make theoretical progress, and at the same time to help engineers confronted to prac-
tical problems, there is a strong need of reduced models of turbulence. Since it would be
unreasonable to attempt to review even all the different kinds of turbulence models, we limit
ourselves to a few illustratory examples (see Schiestel, 1993 for more).

One of the most natural approaches to derive statistical models is to start by averaging the
Navier-Stokes equations over an ensemble of realizations. As remarked already by Reynolds
(1995), the resulting equation is not closed, since it involves averages of products that can
not be reduced to products of averages. Nevertheless a second equation can be obtained to
describe the time evolution of these products, which in turn depends on rank three tensors,
etc. In the end an infinite hierarchy of moment equations is obtained, and turbulence
models attempt to truncate this hierarchy to only a few equations by imposing a model for
the moment at some predefined order.

Such closed models can be divided into two categories, one point closures and two
point closures. One of the most popular two point closures is the eddy-damped quasi
normal Markovian (EDQNM) closure, introduced by Orszag (1970), and for which closure is
imposed at the level of fourth order moments. Another approach starts from the equations
written in Fourier space and uses them to propose closed evolution equations for the energy
spectrum of the flow, called “shell models”. This practice is well established in the fluid
turbulence community, and has recently been applied to some equations relevant for hot
plasmas (Gürcan et al., 2010). On the other hand, one point closure models are usually
referred to as Reynolds-averaged Navier-Stokes equations (RANS), since their main objective
is to model the Reynolds stresses, i.e. the second order centered moments of the velocity
field. RANS is widely used in engineering applications, since its mathematical simplicity
allows for a large range of effects to be included in some phenomenological way. See the
review by Speziale (1991) for more on RANS.
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Instead of averaging over a statistical ensemble, another idea that has been pursued is
to coarse-grain the velocity field by convolving it with a smoothing kernel, by truncating
its Fourier expansion, or by any other more sophisticated means. Once again the resulting
equations are not closed, and this time a model has to be introduced to describe the so-
called “sub-grid scales”, i.e. the scales that have been lost to coarse-graining. This idea
was put forward by Prandtl (1925) and Richardson and Gaunt (1930) who introduced what
is now called “eddy viscosity”, which consists in modeling the effects of the sub-grid scales
simply by increasing the viscosity coefficient. The latter authors also proposed a statistical
interpretation on which we shall come back in Sec. V.3.2. More advanced numerical imple-
mentations of the same approach are now called large eddy simulations (LES), as pioneered
by Smagorinsky (1963) and Lilly (1967) for modeling the general circulation of the atmo-
sphere, and developed by Deardorff (1970) and later authors for application to engineering
related problems. The simple eddy viscosity is there replaced by a coefficient depending on
the local properties of the flow. Later Kraichnan (1976) advocated the use of a spectral
eddy viscosity depending on wave-number, and thus shed light on the link between LES and
statistical theories of turbulence. In the context of atmospheric modeling, the Smagorinksy
model has been superseded by other approaches like hyper-dissipation (Basdevant et al.,
1981), which consists in replacing the term ν∆u by −να(−∆)αu with α > 1, and that we
shall encounter again in Sec. IV.2. Today LES has become a very popular mean of simulating
complex engineering flows (see e.g. Ferziger and Perić, 2002; Lesieur et al., 2005), but it
still suffers from severe shortcomings.

I.3 Mathematical view

In addition to the statistical theories outlined above, there have been a number of attempts
to derive results on turbulence from first principles. This section recalls a few issues that
were encountered in doing so.

I.3.1 Weak solutions and well-posedness

The first question coming to the mind of a mathematician when given a initial value problem
from physics concerns the existence and uniqueness of solutions. She may also wonder if
the solutions depends continuously on the initial data. These questions were first formulated
explicitly by Hadamard (1902) and they are at the basis of the well-posedness theory for
differential equations. For partial differential equations (PDEs), it was possible to start
fulfilling the program proposed by Hadamard only after Leray (1934) introduced the concept
of weak solution. In the modern formulation, one may simply say that a weak solution
satisfies a PDE “in the sense of distributions”, and we do not reproduce the definition here.
In contrast, a solution is said to be “classical” when it satisfies the PDE in the point-wise
sense. We feel that it is important to review a few important results concerning the well-
posedness of the Navier-Stokes, Euler and Vlasov-Poisson equations.
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I.3.1.1 Navier-Stokes equations

The strong formulation of the initial value problem for the Navier-Stokes equations (NSE)
is as follows (Foiaš et al., 2001). Given an initial vector field u0 defined on an open subset
Ω of Rd (d = 2 or 3), taking values in Rd, and such that its divergence ∇ · u0 vanishes,
and given a final time T > 0, find sufficiently regular fields u : Ω × [0, T ] → Rd and
p : Ω× [0, T ]→ R satisfying (I.1.2) such that u(·, 0) = u0 and u(x, ·) = 0 on ∂Ω (no-slip
boundary conditions). Sometimes, instead of Ω ⊂ Rd, we shall encounter the case Ω ⊂ Td,
where T = R/Z is the unit torus, or even Ω = Td. The latter corresponds to a periodic flow
filling the whole space, which is quite non physical but very convenient mathematically and
numerically. In the following we shall always assume that the frontier of Ω is as regular as
necessary, since the presence of corners or other boundary singularities introduces additional
difficulties which we want to avoid.

The well-posedness results on this initial value problem are divided into two main cat-
egories: long time results, and short time results. The first kind holds on arbitrary time
intervals [0, T ], whereas the second kind holds only on sufficiently short time intervals [0, T⋆],
where T⋆ may depend on the initial data. Long time existence of weak solutions, for initial
data in L2, has first been established by Leray (1934) in the whole space, and then by
Hopf (1951) in bounded domains. Solutions constructed using their approach are now called
Leray-Hopf weak solutions. In two dimensions (2D), thanks to results of Lions and Prodi
(1959) and Ladyzhenskaya (1959), the uniqueness of these weak solutions is established, as
well as their continuity with respect to initial data. Therefore the well-posedness in the sense
of Hadamard is granted.

In three dimensions (3D), only short time uniqueness is proved, for strong solutions
and smooth initial data. The possible lack of uniqueness is related to the occurrence of
singularities in the Leray-Hopf solutions, which can be shown to require that the velocity
becomes infinite in some points of space. The set of points in space-time where this occurs
is at the moment best controlled by a theorem of Caffarelli et al. (1982) asserting that its
Hausdorff dimension is strictly less than one. Note that the apparition of singularities in a
regular solution is often referred to as “blow-up” of the solution. Although the blow-up of
the 3D NSE is still an important open problems in mathematical physics (Fefferman, 2000),
it is widely believed that solving it will not help much in the answering of physical questions,
mostly because it involves non physical infinite velocities.

I.3.1.2 Euler equations

Recent nice reviews on the mathematical theory of the incompressible Euler equations may
be found in (Bardos and Titi, 2007) and (Constantin, 2007). For the Euler equations,
there is no general and well established existence theory for weak solutions. The difficulties
encountered when attempting to build such a theory are revealed by a series of striking
results by Scheffer (1976), Shnirelman (1998) and de Lellis and Székelyhidi (2009, 2010),
who constructed so-called “wild solutions” of the Euler equations, that can suddenly start
to oscillate when they were equal to zero a moment before, and whose energy can vary in
an almost arbitrary way!

In 2D, the best long time existence and uniqueness results for weak solutions were proved
by Yudovich (1963) in the case of bounded vorticity (ω ∈ L∞). Delort (1991) proved long
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time existence in the case where ω is a measure with simple changes of sign. Note that this
last case is especially interesting since it is closely related to the problem of the evolution of
a vortex sheet, which has important physical applications.

In 3D, short time existence and uniqueness is proved for sufficiently smooth initial data,
but for long times both existence and uniqueness are open. A crucial theorem of Beale,
Kato, and Majda (1984) (BKM) asserts that if a smooth solution exists on the time interval
[0, T⋆], and if it is such that ∫ T⋆

0

max
Ω
|ω| < +∞,

then there exists T > T⋆ such that the solution can be extended to [0, T ]. In particular,
blow-up of Euler solutions is possible only if their vorticity diverges to infinity. The BKM
theorem was followed by several similar results belonging to the class of blow-up criteria for
the Euler equations, and it has now become possible to confront numerical approximations
of the solutions to these criteria in order to accumulate some evidence for or against blow-up
(see Gibbon, 2008 for a recent review on this topic).

The research on well-posedness of the Euler equations is arguably more crucial for progress
on turbulence theory than the one for the NSE3. Indeed, the program stemming from the
“Onsager conjecture” (see Eyink and Sreenivasan, 2006) aims to describe turbulent flows by
weak solutions to the Euler equations containing singularities, and which should have a non-
zero energy dissipation rate, in order to agree with experimental evidence (see Sec. I.1.1).
Should that goal be achieved, one would have a Re-independent theory of turbulence, an
attractive perspective (which is however repeatedly criticized, to say the least, see e.g.
Kholmyansky and Tsinober, 2009). The idea of Onsager relied on the notion of Hölder
regularity of a solution u, defined by

∀x,y, |u(x)− u(y)| < C|x− y|α

where C and α are real constants, and α is called the order of regularity. He proved that
energy would be conserved for weak solutions with Hölder regularity of order α > 1

3
, and

conjectured the existence of dissipative weak solutions with α ≤ 1
3
. Up to now, there are two

main kinds of results along this line. On the one hand, upper bounds have been derived on
the regularity of putative dissipative weak solutions to the Euler equations (Constantin et al.,
1994; Cheskidov et al., 2008), by showing that solutions whose regularity is large enough
(in some sense more complicated than Hölder regularity) necessarily conserve energy. On
the other hand, there have been systematic attempts to construct dissipative weak solutions
to the Euler equations (Shvydkoy, 2009, 2010). Despite these considerable advances, this
central mathematical challenge related to turbulence theory remains open, both in 2D and
in 3D.

I.3.1.3 Vlasov-Poisson equations

Restricting ourselves to the periodic case for simplicity, the initial value problem for the
Vlasov-Poisson equations in non-dimensional form is as follows. Given a positive initial
condition f0(x,v) defined on Td×Rd, and a final time T , find a positive function f(x,v, t),

3In particular, the occurence of singularities in Euler solutions does not require that the velocity becomes
infinite
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defined on Td ×Rd× [0, T ], such that f(·, ·, 0) = f0, satisfying the Vlasov equation (I.1.6),
with m = 1 and F = ∇φ where φ – the electric potential – solves the Poisson equation:

−∆φ = 1−
∫

Rd

f(x,v, t)dv, (I.3.1)

the constant 1 coming from the neutralizing background of ions, which are supposed to
remain immobile in this description.

Existence and uniqueness of classical solutions was obtained under fairly optimal condi-
tions by Lions and Perthame (1991), building on many earlier results. Pfaffelmoser (1992)
gave a completely different proof of existence of classical solutions. All this is concisely
reviewed in (Bouchut et al., 2000). Another mathematical question concerns the rigorous
derivation of the Vlasov equations from the microscopic Newton equations governing the
charged particles For a smooth potential this is known (Braun and Hepp, 1977) as we have
previously seen, but it is an open problem in the case of the actual Coulomb potential (see,
e.g., Hauray and Jabin, 2007). The long time existence seems to be also an open prob-
lem when the Landau collision operator is added to the Vlasov-Poisson equations (Villani,
2002). On the other hand, when using the much simpler Fokker-Planck operator, long time
existence and uniqueness are granted (Bouchut, 1993).

I.3.2 Dynamical systems and attractors

Following a long period of lethargy4, the mathematical theory of dynamical systems initiated
by Poincaré at the end of the XIX-th century was revived in the second half of the XX-th
century following the seminal work of Lorenz (1963) and Smale (1967). It is now being
actively developed, in particular in its application to turbulence. A detailed account is to be
found in (Foiaš et al., 2001), and the collection of papers by Ruelle (1995) offers a panorama
on the subject. A global attractor of a dynamical system such as the forced NSE is a set
of states close to which any trajectory ends up being. Associated to it, there may exist
invariant measures, which quantify the average fraction of time that the system spends in
every subset of the attractor. The geometry of a global attractor and the behavior of an
invariant measure, if they exist, contain much information about the long time behavior of
a system. The landmark paper of Ruelle and Takens (1971) led to the realization that such
attractors were, in most cases of interest, not smooth manifolds but more complicated sets.
In particular, their Hausdorff dimension is typically not an integer.

We report some of the rigorous results on this topic here because they are important to
understand the present limitations of the numerical approach. In a sense such results aim to
give rigorous ground to the qualitative estimates obtained from the K41 and KBL67 theories,
that the number of “active degrees of freedom” of a turbulent flow should be proportional

to Re
9
4 in 3D and to Re1 in 2D. However, since the results are formulated in the case of

the forced NSE, they are stated in terms of the Grashof number G which characterizes the
amplitude of the forcing after the equations have been non-dimensionalized. A possible
definition of G, which we have adopted in the discussion below, is G = Re2F , where F is
the long time average of the energy injected into the flow by the forcing.

4see however the historical accounts by Dahan Dalmedico et al. (1992) emphasizing in particular the
early contributions of the Russian school
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A first category of results are concerned with the minimal number of modes of a solution
of the forced NSE that have to be known in order to unambiguously determine its behavior
in the limit t→∞. This approach was started by Foiaš and Prodi (1967). Roughly stated,
the subsequently proved theorems tell us that for 2D periodic wall-less flows, the number of
determining modes is of order O(G) or less (Jones and Titi, 1993), and for flows in contact
with walls, it is O(G2) or less (Foiaš et al., 1983). A second category of results relates to
properties of the attractor of the forced NSE. A global attractor is a subset of the allowed
solution space close to which all the solutions end-up being in the limit t→ ∞. The main
theorem that concerns us is that the Hausdorff dimension of the global attractor for the 2D
NSE is bounded from above by O(G), with or without walls (see Foiaš et al., 2001).

To put this last result in the context of what we shall discuss below it is essential to
understand the link between G and Re. The point is that for the energy of a solution to
remain bounded, the forcing characterized by G has to be balanced by a sufficient amount of
energy dissipation. That is, denoting by ε∞ the non-dimensional long time average energy
dissipation rate, we must have ε∞ ∼ F . Hence if ε∞ = O(1), we get that G = O(Re2),
whereas if ε∞ = O(Re−1) we get that G = O(Re). Hence roughly stated, the global
attractor for the 2D NSE has dimension bounded by O(Re) if ε∞ = O(Re−1), and by
O(Re2) if ε∞ = O(1). The reason for singling out these two cases will be explained in the
conclusion to this thesis.

One of the hopes behind the study of the attractor for the NSE is to obtain rigorous
justifications of some numerical methods used to compute the flow. At the moment, it is
still an open question to show in the general case that the solutions to finite dimensional
projections of the Navier-Stokes equations accurately approximate the solutions to the full
equations uniformly in time. Nevertheless, a heuristic estimate of the required number of
modes can be proposed based on the dimension of the attractor. Momentarily denoting by
NA this dimension, and assuming that the problem is isotropic, this can be translated into
an estimate for the numerical resolution ∆x:

∆x ∝ NA

1
d . (I.3.2)

I.3.3 Singular limits

The study of the attractor associated to a forced and dissipative PDE gives information about
the long time behavior of ensemble of solutions. The features of the attractors are functions
of the parameters of the PDE, like the viscosity or the collisionality, and the properties of
these functions can tell us something about the various possible regimes for the PDE, as we
have seen in the previous paragraph. A complementary approach consists in focusing on a
single solution, studying its dependency on the PDE parameters, and possibly introducing
some statistical measure at a later stage of the analysis. We emphasize this approach in
this section, by recalling some results on turbulent flows seen as functions of their Reynolds
numbers, and on filamentary plasma flows seen as functions of their collisionalities. A review
on singular limits in fluid dynamics may be found in (Masmoudi, 2007).
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I.3.3.1 Vanishing viscosity limit

The mathematical formulation of the vanishing viscosity limit problem for the NSE is as
follows: what is the behavior when ν → 0 of the family of solutions (uν) of the NSE on a
time interval [0, T ], all corresponding to the same initial condition, but each one to a different
viscosity ν ? Note that by suitable rescaling the family can be equivalently parametrized by
Re−1, which is more suited to the comparison with experimental results. The case where
the initial condition itself depends on ν is also of interest but we leave it aside for simplicity.

More precisely, one may first wonder in what norms (uν) is bounded when ν → 0, and
then if it converges in some sense to some limit velocity field u. If this is the case, it is
natural to ask whether this limit satisfies the Euler equations, since the latter are obtained
by letting ν = 0 in the NSE. We distinguish between the wall-less case, where the fluid is
not in contact with any solid, and the opposite wall-bounded case.

Wall-less case. The vanishing viscosity limit of classical solutions to the Navier-Stokes
solutions in the absence of walls was studied by Golovkin (1966) in 2D, and by Swann
(1971) and Kato (1972) in 3D. It is shown that the Navier-Stokes solutions converges to
the smooth Euler solution as long as the latter exists, that is, for all time in 2D and possibly
for a finite time in 3D. Note that the smoothness requirements for these results are higher
than the minimal smoothness of classical solutions. The convergence rate is O(ν) in any
Sobolev norm compatible with the smoothness (Beale and Majda, 1981; Constantin, 1986).
However, the constant in the O may increase very fast in time. This explains why in the 2D
case, the rate O(ν) is observed numerically in the L2 norm, but is very difficult to observe
for higher order Sobolev norms (see Sec. IV.2).

The more abstract case of Leray-Hopf weak solutions was considered by DiPerna and
Lions (see Lions, 1996; Bardos and Titi, 2007). They showed that any weak vanishing vis-
cosity limit of a family of such solutions was a so-called “dissipative solution” to the Euler
equations. In addition, they proved that as long as a smooth solution to the Euler equations
exists, any dissipative solution on the same time interval coincides with it. Therefore the
DiPerna and Lions convergence results include the above results concerning classical solu-
tions, however, in the weak setting convergence rates are not available. Bardos and Titi
(2007) explore further the general case where the existence of a smooth Euler solution is not
assumed. They show that a weak limit u of a sequence (uν) of Leray-Hopf weak solutions
satisfies a modified Euler equation, with additional terms that can heuristically be linked with
the turbulence models discussed above. A connection with the statistical energy spectrum
of turbulence is also proposed.

The specific case of vortex patches, that is, when the initial vorticity field is the indicator
function of a compact set, was explored by Constantin and Wu (1995, 1996). Abidi and

Danchin (2004) proved that the convergence rate was O(ν
3
4 ) if the patches have smooth

boundaries (see also Masmoudi, 2007). The nice thing with vortex patches is that the initial
condition has vorticity in L∞, so that it is regular enough to fit within the Yudovich existence
and uniqueness theory (see Sec. I.3.1.2). The situation is more delicate for vortex sheets, that
is, when the initial vorticity field is a measure supported on a regular curve. This last case
concerns us since we shall see in the next paragraph and in Sec. V.2 that it is closely related
to the existence of a non-vanishing molecular dissipation rate in the vanishing viscosity limit
of wall-bounded 2D flows. The problem was briefly discussed by Delort (1991) in the same
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paper were he studied the well-posedness issue, and he concluded that the vanishing viscosity
limit of solutions to the NSE with positive vortex sheet initial data would be a weak solution
to the Euler equations. However it is not clear whether or not such solutions conserve energy.

Remark that the convergence rate O(ν) proved in the case of smooth solutions has
important numerical consequences. Indeed one of the most common ways of approximating
solutions to the Euler equations is by computing solutions to the Navier-Stokes equations
with very small viscosity. We have seen in Sec. I.3.2 that a rough estimate of the numerical

resolution required to resolve these solutions was ∆x ∝ N
1
d
A , where NA is the attractor

dimension. We have also recalled that, in the case d = 2 and when the energy dissipation
rate scales like O(Re−1) (i.e., like O(ν)) NA is bounded from above by Re1. Overall these
results suggest that ∆x should be proportional to Re−1/2 (i.e., to

√
ν). Equivalently, one

may say that the minimum viscosity for which the flow can be correctly computed for a given
resolution ∆x is proportional to ∆x2. That means that the error with respect to the inviscid
flow is also proportional to ∆x2, or in other words that a 2D Navier-Stokes solver can be
used as an order 2 solver for the 2D Euler equations.

Another practically important field of research concerns other ways of approaching the
Euler solution. We have already mentioned some of them in Section I.2.3, where they
were introduced as turbulence models. That category includes the hyper-dissipative Navier-
Stokes equations (Basdevant et al., 1981), the Euler-α equations (Holm et al., 1998), the
Smagorinsky model as well as other LES models, contour dynamics (Dritschel, 1989), and
vortex methods (Cottet and Koumoutsakos, 2000). We shall come back to this issue in more
detail in Sec. IV.2.

Wall-bounded case. The first formal asymptotic analysis of the vanishing viscosity limit
in the presence of walls goes back to Prandtl (1904). It consists in splitting the problem into
two parts by introducing a boundary layer of thickness proportional to

√
ν along the solid:

ΓP = {x ∈ Ω | d(x, ∂Ω) < c
√
ν}

where c is an arbitrarily chosen constant. Under the appropriate scaling (so called parabolic
scaling), the flow is then shown to asymptotically satisfy the Euler equations in Ω\ΓP , and
new equations – the Prandtl equations – are derived that are asymptotically satisfied inside
ΓP . In the simplified case where the boundary of Ω is assumed to be horizontal, the Prandtl
equations can be written





∂tv1 + v1∂1v1 + v2∂2v1 − ∂2
2v1 = α(x1)

∇ · v = 0

v(·, 0) = 0, v(·, X2) −−−−→
X2→∞

β(x1)

, (I.3.3)

where v1(X1, X2) = u1(X1, εX2), v2(X1, X2) = ε−1u2(X1, εX2), ε =
√
ν, and the func-

tions α and β depend on the solution outside the boundary layer. Prandtl realized that his
approach would break down in some cases. We now would like to state a few rigorous results
from the literature about this problem since they are essential for the understanding of the
work presented in Section V.2.

The first result we are presenting justifies the Prandtl approach in the restricted setting
where the initial data are analytic (i.e. when u0(x) can be extended to a holomorphic
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function u0(z) of a complex vector z, defined for each coordinate of z close enough to the
real axis). Moreover, the domain Ω is assumed to be a half-space. The results are believed to
hold more generally when ∂Ω has analytic regularity. The theorem can be informally stated
as follows:

Theorem 1 (Sammartino and Caflisch, 1998a,b). Suppose that Ω ⊂ Rd is a half-space,
and that the initial condition u0 is analytic. Then there exists a time Td, independent of ν,
such that for t ∈ [0, Td],

‖uν(t)− u0(t)‖ =
ν→0

O(
√
ν),

where the norm can be, for example, any Sobolev norm. Moreover the restriction of uν to
ΓP approximates a rescaled solution to the Prandtl equations (I.3.3).

Which means that in the context of the initial value problem, the Prandtl approach is
basically valid up to Td, but may break down at later times. The importance of the analyticity
condition is still not fully understood, but it is conjectured to be essential. Recent results
indeed support the fact that the Prandtl equations are ill-posed in Sobolev spaces (Gerard-
Varet and Dormy, 2009). The next and maybe most important result concerns the link
between vanishing viscosity limit and energy dissipation.

Theorem 2 (Kato, 1984). Assume that there exists a smooth Euler solution u(t) on [0, T ].
Then the following assertions are equivalent:

(i) uν(t)→ u(t) in L2(Ω) uniformly with respect to t ∈ [0, T ],

(ii) uν(t) ⇀ u(t) weakly in L2(Ω) for each t ∈ [0, T ],

(iii) ν

∫ T

0

∫

Ω

|∇u|2 −−→
ν→0

0,

(iv) ν

∫ T

0

∫

ΓK(ν)

|∇u|2 −−→
ν→0

0, where ΓK(ν) = {x ∈ Ω | d(x, ∂Ω) < cν}.

The boundary layer ΓK(ν) is reminiscent of the one which was introduced for physical
reasons by Burgers (1923) and which was discussed in Sec. I.1.1. We thus refer to ΓK(ν)
as the Burgers-Kato boundary layer.The quantity |∇u|2 (where ∇u is the velocity gradient
tensor, not to be confused with ∇ · u, the divergence of u) can be seen as the rate of
dissipation of kinetic energy by the flow, even though in physical terms, it would be more
adequate to define the latter by |S|2, where S is the symmetric part of the tensor ∇u.
In any case, the interpretation of the Kato theorem is that the convergence to the Euler
solution in the vanishing viscosity limit is equivalent to the convergence to zero of the energy
dissipation in the Burgers-Kato layer on the same time interval. Interpreted in the light of
Kato’s theorem, the results that we will present in Sec. V.2 suggest that uν 9 u in general.
In contrast, for flow satisfying certain symmetries, for example 2D circularly symmetric
flows (Lopes Filho, Mazzucato, and Nussenzveig Lopes, 2008; Lopes Filho, Mazzucato,
Nussenzveig Lopes, and Taylor, 2008), uν → u can be proved rigorously. Some consequences
of the Kato theorem in terms of numerics will be discussed in Sec. I.4.3.1.

In the event that uν 9 u, it can still be shown that uν converges weakly to some limit
u (Bardos and Titi, 2007), and one may wonder if u is another weak solution to the Euler
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equations, or a solution of some modified equations including additional terms to account
for the dissipative effects. This question is completely open, and even some clue about it
would be a remarkable breakthrough in the field of mathematical fluid dynamics.

I.3.3.2 Vanishing collisionality limit

Up to now the mathematical community has focused mostly on the opposite limit of high
collisionality, for which convergence to Navier-Stokes solutions is now proved. According to
Villani (2002), no rigorous result on the approximation of the Vlasov equation in the presence
of small collisional effects, modeled for example by the Landau operator, is available. Even the
simpler case of the Fokker-Planck operator does not seem to have drawn much mathematical
attention.

Fortunately, a few very interesting results related to this issue are to be found in the
physics literature. Lenard and Bernstein (1958), Auerbach (1977) and Ng et al. (2006)
studied Landau damping in the vanishing collisionality limit of the linearized Vlasov-Poisson
equations augmented with simplified collision operators, and showed that entropy production
occurs in a localized region of phase space, of thickness proportional to ν

1
3 . Strikingly,

the entropy production rate seems to converge to a value independent of ν when ν → 0.
Hazeltine (1998) studied transport theory, i.e. the derivation of flux-gradient relationships for
stationary solutions, in the vanishing collisionality limit under the simplified Krook collision
model. studied weakly collisional Landau damping. Krommes and Hu (1994) made a detailed
analysis of the “entropy paradox”, a concern that had been raised by earlier studies. They
arrived at the conclusion that collisions are essential for the eventual establishment of steady
states but did not comment on finite time collisional effects.

We now briefly recall the properties of Landau damping which, although it is a purely
collisionless effect, could reinforce collisions, as we explain below. The phenomenon was pre-
dicted by Landau (1946) using the Vlasov-Poisson equations, and confirmed experimentally in
the 1960s, see (Malmberg and Wharton, 1964) and references therein. In the simplified set-
ting where the plasma is excited by a cosine wave, damping manifests itself by an exponential
decay of the electric energy V = 1

2

∫
Ω
|E|2. Since the total energy E = V+ 1

2

∫
R

dv
∫
Ω

dx|v|2f
is constant for solutions of the Vlasov-Poisson equations, it follows that the kinetic energy
E − V increases. In this framework, all this happens at constant Boltzmann entropy. We
present a numerical example of Landau damping in Section III.2. Note that a recently proved
mathematical theorem, the main arguments behind which are summarized in (Mouhot and
Villani, 2010), rigorously establishes Landau damping for the nonlinear Vlasov-Poisson equa-
tion starting from an initial condition which is very close to a stationary solution satisfying
certain stability conditions. In particular, the proof lifts all the doubts on the fact that the
mechanism underlying Landau damping is the conversion of the variations of f with respect
to x into fast oscillations of f with respect to v. This raises the questions of how Landau
damping is modified in the presence of small collisional effects. Indeed, all collision operators
tend to smear out oscillations of f in the v direction, and this is accompanied by an increase
of the Boltzmann entropy. The trend to equilibrium for the Fokker-Planck and Boltzmann
problems was studied by Desvillettes and Villani (2001, 2004), but in the framework of neu-
tral gases where Landau damping is absent. The rigorous mathematical study of Landau
damping coupled with weak collisional effects is therefore an open topic of great physical
interest.
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The results from the physical literature quoted above suggest that Landau damping could
be the plasma analog to the missing link between turbulence and molecular dissipation in
the case of the Euler equations. In the situations that have been studied up to now, the
effect of Landau damping on the electric field seems to be robust to weak collisional effects,
or in other words the vanishing collisionality limit seems to be dissipative but non-singular.
More general cases remain open for exploration.

I.4 Numerical approach

I.4.1 Foundations

Computational fluid dynamics (CFD) aims to take advantage of some information about the
present state of a fluid in order to predict its future state (stationary or not), by computing
approximate solutions to differential equations that can be derived from physical considera-
tions. Here, we do not come back on the meaning of “predict” which has been covered in
Sec. I.2.1, and we would like to focus on the “computing” part.

The historical roots of CFD can be traced back to the very beginning of the XX-th
century with Sheppard and Richardson, but its full potential was recognized only after the
invention of digital computers. The events of this early period lay somewhat buried under
the weight of World War II, and are tied to the Manhattan project and the development of
the hydrogen bomb in the 1950s. A very brief and instructive summary has been published
in Farge (1988b). Much more information can be found in the complete works of John von
Neumann (1963), who is considered as one of the founders of the field. Today CFD has
evolved into a multi-disciplinary tool belonging to the wide class of numerical experimentation
methods, which is sometimes attributed the status of an independent field of research under
the name computational science.

CFD can also be interpreted in a slightly different way, as part of the broader field
named “numerical mathematics”, i.e. the detailed analysis of numerical approximations
to solutions of mathematical problems in order to understand their properties and provide
indications of what could maybe be proved or what is likely to be false. This game has been
played by mathematicians basically for ever (think of number theory, geometry, etc.), but
its rules are now rapidly changing due to the increase in computer power. The technical
difficulties to take advantage of this increased power are becoming so high that there is now
a tendency towards specialization in numerical mathematics, giving birth to new fields of
research like computational number theory, computational geometry, etc. Given the host of
mathematically open questions concerning fluid dynamics, of which we have reviewed but
a small part above, it seems wholly justified to include CFD inside numerical mathematics.
However the overlap between the physical, mathematical, and engineering aspects of CFD
is at the same time fruitful and severely confusing. The current theories being still quite
incomplete, it is very difficult to dissipate this confusion, and we have not succeeded in doing
so, as will appear to the reader in the upcoming chapters.

We now briefly recall the technical ingredients of CFD. The first one is discretization,
i.e. the reduction of the problem to a finite number of operations realizable in a finite time
on a computer. The study of discretization is one of the goals of the mathematical field
known as numerical analysis. The discretization involves two steps: space discretization,
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and time discretization. For both steps many options are available, each one having its
pros and its cons. Concerning spatial discretization, we shall be mostly concerned with so-
called Galerkin approaches, where the equations are projected onto a finite dimensional linear
space spanned by a set of orthogonal functions. The Fourier-Galerkin approach for the Euler
equations is described in some detail in Sec. IV.3, and the Wavelet-Galerkin discretization
for the Poisson equation is presented in Sec. III.2. Time discretization is commonly done
using time marching algorithms, that “advance” the solution in time in a causal fashion. We
shall make use of two such algorithms, third order Runge-Kutta and Verlet. In addition to
accuracy, an essential property to consider in the case of time marching algorithms is their
stability. Indeed, even a very accurate approximation breaks down sooner or later if the error
grows exponentially in time. For the explicit time discretization schemes that we are using,
stability imposes a restriction on the time step δt which is dictated by the spatial resolution.
In the case of linear transport equations, of the type

∂tθ + u ·∇θ = 0,

the stability criterion was rigorously obtained by Courant, Friedrichs, and Lewy (1928) and
is now referred to as the CFL condition.

I.4.2 Technological requirements

The persistent increase in the power of computers has been an important factor in the
development of CFD since its infancy. In this section we briefly mention how it is possible
to take advantage of this technological progress to tackle new problems.

For technical and commercial reasons, the potential of recent computers can only be
fully exploited if many central processing units (CPUs) are simultaneously utilized during the
computation. Most of the time, this requires that they communicate through a network,
and these communications take time. The more CPUs participate to the resolution of a
given computational problem, the more communications are necessary. The dependency of
the total time required to finish it on the number of CPUs is called the “scaling” of the
method. A commonly used measure of scaling is the parallelization efficiency, which is the
ratio between the CPU time consumed for the same task before and after parallelization. New
algorithms, and sometimes even new programming methods, are needed to obtain a good
scaling. This has given rise to yet another emerging field of study, namely high performance
computing (HPC). We have chosen to include in the body of this thesis some technical points
that we have developed concerning the parallel wavelet transform, and that are essential to
the viability of our approach in the long term. These may be found in Sec. II.2. Note that
recently, the use of graphics processing units (GPUs) as a complement to large parallel codes
has been achieved with some degree of success, but the viability of the approach is not clear
on the long term, and we have therefore chosen not to engage in it.

We feel that the often overlooked matter of software engineering also deserves to be
mentioned here. In the last few decades the establishment of a global software industry has
stimulated the invention of modern programming techniques that aim to improve efficiency
in terms of development, verification, debugging and code reuse. The paradigm of object
oriented programming, embodied by languages such as Java and C++, is at the heart
of these efforts. Although this evolution has been up to now mostly overlooked by the
CFD community, other scientific domains already take advantage of it. We have chosen
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to work with the C/C++ language, mostly because it benefits from a much wider user
community than FORTRAN, but also because generic programming techniques have allowed
us to implement very general wavelet transform algorithms that can now be adapted to many
contexts, a feature that would have been much more difficult to obtain using FORTRAN.
Moreover, for complicated problems involving parallelization, it is essential to take advantage
of libraries that have been well documented and well tested by the community. Concerning for
example the Fourier transform algorithms that we make heavy use of, a huge effort has been
spent by a team at the Massachusetts Institute of Technology (Frigo and Johnson, 2005) to
develop the “fastest Fourier transform in the west” (FFTW). This library relies on advanced
software engineering techniques to select a way of computing the Fourier transform which
is actually optimal for the specific computer, and for the specific configuration at the time
when the program is being run. Input/output operations in a parallel environment are also a
very delicate thing to do, and it has been essential for us to use the HDF5 library (developed
by a consortium of US government agencies), which provides a portable and efficient data
storage format. The analysis of the huge amount of data resulting from HPC will probably
require even more advanced storage interfaces in the future. FORTRAN interfaces are also
available for these libraries, but they may become unsupported in the future.

I.4.3 Examples of current achievements

I.4.3.1 Turbulent wall bounded flows

It is instructive to briefly describe some state of the art computer experiments of turbulent
wall-bounded flows in contact with solids found in the CFD literature.We also take this
opportunity to introduce the classical concepts of wall turbulence that are essential to follow
the discussion. The basic theory and vocabulary can be found for example in the textbook
(Tennekes and Lumley, 1972), but we utilize mostly the recent review article by Marusic
et al. (2010), and the clear statements of open problems by McKeon and Sharma (2010).

To understand the scope of the problem, some background must first be given. The
study of wall-bounded flows has focused on three canonical configurations, the boundary
layer, the pipe flow and the channel flow, and we focus here on the channel flow. Strictly
speaking, one calls channel flow the flow between two parallel plates extending indefinitely
in the directions labeled x and z which occurs when there a constant pressure gradient is
applied in the x direction. x,y and z are respectively called the stream-wise, the wall-normal,
and the span-wise directions. The walls are assumed to be located at y = 0 and y = 2h. The
classical theory has focused mostly on the description of the mean flow U in the stream-wise
direction, which by symmetry depends only on y. By averaging the Navier-Stokes equations,
U can be shown to satisfy the equation

ν
dU

dy
= uv + U2

τ

(
1− y

h

)
, (I.4.1)

where u and v are the components of the velocity fluctuations respectively in the x and

y directions, · denotes averaging along x, z and time, and Uτ =

√
ν dU

dy

∣∣∣
y=0

is called the

friction velocity. The term uv is called diagonal Reynolds stress. Since the work of von
Kármán (1921), the classical approach has been to look for a solution of this equation under
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the form

U = Uτf

(
yUτ
ν

)
, (I.4.2)

where f is a universal function. In various ways, dimensional arguments and (I.4.1) can be
used to predict the existence of a region, called the log-layer, where

f(y+) ≈ 1

κ
ln(y+) +B, (I.4.3)

with κ a possibly universal constant called the Kármán constant, and B a geometry de-
pendent constant. The experimental support for this attractively simple and general “law
of the wall” is at the same time overwhelming and shaky. Indeed, a log-layer is observed
in virtually all high Reynolds number experiments, and even in some of the most recent
numerical simulations (see below), but only for a restricted range of y+. Moreover, the value
of the “universal” constant κ is not agreed upon. Due to these difficulties, many alternative
theories have been proposed, some of which attempt to describe f using power laws instead
of a logarithm. From this brief discussion, it appears that the theory of wall bounded flows is
very incomplete even concerning the average velocity, leaving aside the matter of fluctuations
which are even less understood.

However, one particular feature of the existing theory that is very interesting to us has to
do with its scaling at high Reynolds number Re, where Re is defined by hU(h)/ν. We would
like to make a digression about this here, although it is slightly out of place. We assume
that (I.4.3) still holds as a very rough order of magnitude when y = h, i.e. at the center of
the channel. Then from (I.4.2), and due to the logarithmic dependence of f on y+ (I.4.3),
it appears that the ratio between U(h) and Uτ can have only a logarithmic dependence on
the Reynolds number. By definition of Uτ , this implies that in non-dimensional units:

dU

dy

∣∣∣∣
y=0

∝ Re

up to logarithmic factors. By a naive gradient length argument, this scaling can be seen
as the statistical signature of the existence of a boundary layer of thickness Re−1 in the
neighborhood of the wall. Hence we see that the log-law, as an experimental result, is
consistent with the model of Burgers (1923) that was mentioned earlier, and also with Kato’s
theorem. This connection can be made, as we just did, in a purely phenomenological way
without invoking the Kolmogorov scale and the notion of cascade. In fact the essential point
is that the stream-wise velocity everywhere in the channel scales with Uτ , and this scaling
hypothesis was introduced by von Kármán (1921) precisely to account for the behavior of
the drag coefficient at high Reynolds number, which was the essential issue at the time.
From this discussion is appears that the Kato theorem is a good starting point to start
investigating rigorous foundations of the phenomenological Kármán theory.

After this digression, we now review some CFD techniques that are currently being applied
to channel flows. Numerical results on the channel flow problem were recently reviewed by
Jiménez and Moser (2007). Numerically, periodic boundary conditions with a sufficiently
large period are used in the x and z directions. The standard approach to the problem is
strongly influenced by the work reported by Kim et al. (1987), who worked at a Reynolds
number 3300 (based on the channel width and mean velocity), and used a resolution of
192 × 129 × 160. The unknown velocity field is expanded onto a mixed basis constructed
from Fourier modes in the x and z directions, and Chebychev polynomials in the y direction.
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Moser and Moin (1984) gave more detail on the numerical methods, and concluded that “The
energy spectra [...] illustrate that the grid resolution is adequate, since the energy density
associated with the high wave-numbers is several decades lower than the energy density
corresponding to low wave-numbers, and there is no evidence of energy pile-up at high
wave-numbers. It should be noted, however, that the drop-off of the computed spectra of
high wave-numbers is not sufficient evidence that the computed results are unaffected by the
small-scale motions neglected in the computations. It is not clear what significant dynamical
roles, if any, these small scales would play if included in the computations. Numerical
experiments with much finer resolutions than those used here would presumably clarify this
issue. Such computations are very difficult and time consuming to carry out with the present
computers.” Today, impressive results are reported that use much higher resolutions.For
example, del Álamo et al. (2004) and Hoyas and Jiménez (2006) reported computations
with respectively 768× 769× 768 and 6144× 633× 4608 grid points. But they also work
with much larger values of Re than in previous studies. Hence convergence studies at a
fixed Re are still difficult and most of the time omitted in the reported results. The choice
of numerical resolution is normally justified by the comparison of the grid spacing with the

Kolmogorov length, which scales like Re−
3
4 . For example, in (Hoyas and Jiménez, 2006), the

condition that ∆y = 1.5η, where ∆y is the wall-normal grid spacing, is considered sufficient
to ensure that the flow is well resolved.

From this discussion, we have the feeling that the main factor limiting the ability of
CFD to accurately simulate high Reynolds number wall-bounded flows is computer power.
Due to the rapid development of parallel computing techniques, we expect that much larger
Reynolds numbers will be achievable in the next few decades. To extract useful information
from these upcoming simulations, it will be necessary to develop original analysis techniques.
The wavelet analysis of a turbulent boundary layer reported in Sec. V.4 is a first step in this
direction.

I.4.3.2 Plasma numerics

To put the results of Chapter 3 in perspective, we briefly review the computational meth-
ods used in the context of hot plasmas. Indeed the applications of plasma simulation are
numerous. The most prominent ones include laser-plasma acceleration and controlled fusion.

Historically, the first methods were developed at Stanford by the group of Oscar Buneman,
and gave birth to a whole school of plasma simulation using particles (Birdsall and Langdon,
1985; Hockney and Eastwood, 1988) that has now migrated to a number of adjacent fields
of research. We refer to their approach as Lagrangian, because its main ingredient consists
in following discrete marker particles described by so-called characteristic equations, whose
trajectories are such that the particle distribution function is constant along them. Nowadays
two other types of numerical methods for the Vlasov equations have appeared, namely semi-
Lagrangian and Eulerian. In the semi-Lagrangian discretization, the particle distribution
function is assumed to be sufficiently smooth and is represented by its values over a grid,
but its time evolution is approximated by integrating the characteristic equations backwards
in time starting from the grid-points, and using the conservation property. In Eulerian solvers,
the Vlasov equation is interpreted as a hyperbolic conservation law which can be discretized
using for example a finite volume scheme. Due to the high dimensionality of the problem (6
dimensions in general, 3 in space and 3 in velocity), the full discretization over an Eulerian
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grid can be very costly and even prohibitive in some cases. The advantage of the Lagrangian
schemes is that a grid is only required to represent the electromagnetic fields which depend
only on the space variables. We come back to this point in more detail in Chapter 3.

To describe the core plasma of a magnetic fusion device, the equations currently used
are called the gyrokinetic equations. They are an approximation of the Vlasov equations, ob-
tained by “gyro-averaging”, i.e. averaging out the fast rotation of the particles perpendicular
to the magnetic field lines (Brizard and Hahm, 2007). Since the gyrokinetic equations are
mathematically analogous to the Vlasov-Maxwell equations, they can be discretized by very
similar numerical methods, i.e. Lagrangian, semi-Lagrangian, and Eulerian ones. A recent
review of the various state-of-the-art methods and of the results obtained up to now can be
found in (Batchelor et al., 2007). The demands in terms of computational power, memory
and data storage to simulate a large tokamak like ITER are currently very high. As an
example we consider ITER-like simulations using the GYSELA code developed at the french
atomic energy commission (CEA) in Cadarache, at Université de Nancy and at Université
de Strasbourg (Grandgirard et al., 2006). An important GYSELA run performed in 2010,
on the occasion of a challenge to test a newly installed computer, took about 30 days on
8192 CPUs, i.e. more than 6.7 · 106 hours of CPU time. The discretization of the particle
distribution function required 272 · 109 grid points, and 27.2 Gb of memory per node. The
data accumulated as output of this run occupies a total of 6 terabytes (1012 bytes) on hard
drives, of which 4.7 consist simply in restart files. Some important effects, in particular
the kinetic response of the electrons in the plasma, have been neglected in this simulation.
Taking them into account will imply a further increase in computational requirements. This
example shows that, as in fluid turbulence, the computational complexity is and will be part
of the limiting factors in our ability to predict the behavior of magnetically confined plasmas.
Further research on fundamental statistical properties of plasma flows could help reduce this
complexity, and also facilitate the extraction of useful information out of the huge quantity
of data resulting from such simulations.
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II.1 Mathematical theory

Wavelet theory has developed into a whole branch of harmonic analysis ripe with interesting
concepts and theorems. In this section, we introduce only the mathematical definitions and
results that are essential to the understanding of the following chapters. Well established
textbooks on the subject include (Daubechies, 1992; Mallat, 1999). The following presenta-
tion focuses on discrete wavelet families, and the topic of the continuous wavelet transform
is left aside. Most of the material is classical, with a few exceptions, namely:� the presentation of the adaptive wavelet transform (Sec. II.1.2.3), which is original but

closely related to previous approaches,� the explicit generalization of the Kingsbury complex wavelet transform to arbitrary
space dimension (Sec. II.1.1.3).

The way the wavelets are indexed has been given some particular attention, and although it
may seem rather esoteric at first sight, we hope that its overall effect is positive.

II.1.1 Multiresolution analysis

II.1.1.1 Wavelets

The construction first takes place in the Hilbert space L2(Rd), where the scalar product is
denoted by 〈· | ·〉 and the norm by ‖ · ‖. We start with two functions ϕ and ψ in L2(R) such
that ‖ϕ‖ = ‖ψ‖ = 1, which satisfy for t ∈ R the two scale refinement equations:

ϕ(t) =
√

2

S−1∑

i=0

hiϕ(2t− i) (II.1.1)

ψ(t) =
√

2
S−1∑

i=0

giϕ(2t− i+ S − 2), (II.1.2)

where (hi)0≤i≤S−1, (gi)0≤i≤S−1 are finite sequences of real numbers linked by

gi = (−1)i+1hS−1−i. (II.1.3)

and such that the discrete Fourier transform of h, defined by

ĥ(ξ) =
∑

n∈Z

hne
ιnξ,

satisfies the quadrature property

∀ξ, |ĥ(ξ)|2 + |ĥ(ξ + π)|2 = 2. (II.1.4)

ϕ and ψ are respectively called the scaling function and the wavelet, and h and g are
the associated quadrature mirror filters. For an easier correspondence with the numerical
implementation, we have adopted the convention that g and h are both indexed by positive
integers, which is different from the convention in (Mallat, 1999), hence the shift by (S−2)
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in (II.1.2). We assume that (II.1.1-II.1.2) have well behaved solutions, whose supports are
contained in [0, S − 1], see (Daubechies and Lagarias, 1991, 1992).

An important property of ψ is that its low order moments vanish

∫

R

xmψ(x) = 0 for 0 ≤ m ≤ M − 1, (II.1.5)

where M is at least 1 for the lowest order wavelet family, called the Haar family, and in
practice M > 1 for other commonly used families that we shall encounter. Regularity
is a less important but nevertheless interesting matter concerning wavelets (Daubechies
and Lagarias, 1991, 1992). Compactly supported wavelets are not infinitely differentiable
functions. In fact, as we shall see below, the most common ones have relatively low order
smoothness.

II.1.1.2 Orthogonal wavelet bases

In this presentation we directly define the wavelet basis in d dimensions, where d ∈ N∗.
Simpler notations for the wavelet transform in 1 or 2 dimensions may be found below in the
introductions to the more specialized parts of this thesis. We start by defining a wavelet
basis on Rd, which we will have to periodize afterwards. The wavelets will be indexed by a
parameter

λ ∈ ΛA = Z× {0, 1}d × Z
d, (II.1.6)

where� the first factor indicates the scale the wavelet, and is denoted by jλ,� the second factor indicates the directions of oscillation of the wavelet, and is denoted
by µλ ∈ {0, 1}d,� the third factor indicates the position of the wavelet, and is denoted by a vector with
integer components iλ ∈ Zd.

We shall thus always have λ = (jλ,µλ, iλ). Now for x = (xk)1≤k≤d ∈ Rd, let

ψλ(x) := 2
djλ

2

∏

k,µλk=1

ψ(2j
λ

xk − iλk)
∏

k,µλk=0

ϕ(2j
λ

xk − iλk). (II.1.7)

For example, if d = 2, µλ can take the four values (0, 0), (1, 0), (0, 1) and (1, 1). For the
first value, the scaling function is obtained, and for the three remaining values, the three
wavelets oscillating respectively in the x1 direction, in the x2 direction, and in both directions
are obtained. In general it is convenient to consider the vector µλ ∈ {0, 1}d as a binary
expansion of the more classical direction index µ, which can take 3 nonzero values in 2
dimensions, 7 in 3 dimensions, and 2d − 1 in d dimensions. Note that we have adopted the
convention that the scale index jλ increases when going from coarse to fine scales. Denoting

Λϕ =
{
λ
∣∣µλ = 0

}
(II.1.8)

Λψ =
{
λ
∣∣µλ 6= 0

}
, (II.1.9)



42 Mathematical theory

we say that for λ ∈ Λϕ, the function ψ is a scaling function, and in that case we denote
ϕλ = ψλ. For λ ∈ Λψ, ψ is called a wavelet. In this manner a “unified notation” designs
at the same time scaling functions and wavelets. For clarity and consistency with classical
notations, we nevertheless use a different notation for ϕλ and, except otherwise noticed,
when writing ψλ we implicitly assume that µλ 6= 0, i.e. that ψλ is a wavelet and not a
scaling function. When µλ = 0 we shall sometimes use the abbreviated notation (jλ, iλ) for
λ. The main difference between wavelets and scaling functions is that the former have zero
mean, whereas the latter do not.

The main property of (ψλ)ΛA, as can be deduced from the properties of ψ and ϕ that
we have seen in the previous paragraph, is that it is an orthogonal basis of L2(Rd). Hence
L2(Rd) is spanned by dilates and translates of a few elementary functions. A set of points
of the form 2−ji, where j ∈ Z and i ∈ Zd, is called a dyadic grid. It is therefore commonly
said that wavelets “live on a dyadic grid”. Now defining

Λϕ,j =
{
λ
∣∣jλ = j,µλ = 0

}

for j ∈ Z, we denote by Vj the space spanned by (ϕλ)λ∈Λϕ,j . Because of (II.1.2), Vj ⊂ Vj+1

for all j, so that we may also define Wj , the orthogonal complement of Vj in Vj+1. For
any J ∈ Z, L2(Rd) can thus be decomposed in the following way, called a multi-resolution
analysis:

L2(Rd) = VJ ⊕
⊕

j≥J
Wj, (II.1.10)

and by construction, each Wj is spanned by the (ψλ)λ∈Λj,ψ , where

Λj,ψ =
{
λ
∣∣jλ = j,µλ 6= 0

}
.

For every function f ∈ L2(R), VJ contains a coarse scale approximation of f , while the Wj ,
j ≥ J contain the details necessary to reconstruct f entirely. This information is encoded
in the scaling coefficients and wavelet coefficients of f :

fλ = 〈f | ϕλ〉 (II.1.11)

f̃λ = 〈f | ψλ〉, (II.1.12)

and it can be used to reconstruct f using its wavelet decomposition:

f =
∑

λ∈Λϕ,J

fλϕλ +
∑

j≥J

∑

λ∈Λψ,j

f̃λψλ. (II.1.13)

As for the wavelets, the notations for the coefficients can be unified since (II.1.11) can be
seen as the special case of (II.1.12) corresponding to µλ = 0. But we prefer to distinguish

fλ and f̃λ, for the same reasons as before and also because the notation · is evocative of
averaging, while the notation ·̃ is evocative of oscillation.

For numerical applications, we are usually not interested in wavelets defined on R, but
instead on wavelets defined on a torus

T[m] =

d⊗

k=1

R

mkZ
,
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where the mk are integer periods. Most of the time, it is sufficient to work with Td = T[1]d,
but for some anisotropic problems it is important to cover the general case for m. To obtain
periodized wavelets, one effectively replaces each ψλ by

ψλ(x)→
∑

i∈Zd

ψλ(x + m⊗ i). (II.1.14)

From now on, we are concerned only with the periodized case, but we pursue with the same
notations for simplicity. It is important to notice that the sum in (II.1.14) contains more
than one term if and only if the size of the support of ψλ is larger than mk for a certain k.
Since the support of ψ has length S − 1, the one of ψλ has length 2−j

λ
(S − 1). Therefore,

a sufficient condition such that the size of the support of ψλ is smaller than mk is

jλ ≥ log2(S − 1)− log2(mk). (II.1.15)

We shall refer to (II.1.15) as the non-overlap condition. When J in (II.1.10) is chosen such
that J ≥ log2(S − 1) − log2(mk), we see that the wavelet coefficients of a function f ∈
L2(T[m]) in the periodized basis are identical to the coefficients of the periodic continuation
of f to Rd. Another important point is that periodized wavelets satisfying the non-overlap
condition have the same number of vanishing moments as the mother wavelet. In contrast,
the moments of coarse scale periodized wavelet that fail to satisfy the non-overlap condition
others than the mean do not have vanish in general. Note that the wavelet coefficients in the
periodized basis are also periodic themselves, so that the position index iλ can be restricted
to a finite subset of Zd depending on jλ, and that the definition (II.1.6) of ΛA becomes:

ΛA =
{

(j,µ, i)
∣∣∣j ∈ N,µ ∈ {0, 1}d, i ∈

{
0, 1, . . . , mk2

j − 1
}d}

.

In the same manner, Λϕ,j and λψ,j are restricted so that they both become finite. In the
following, position indices at scale j always have to be understood modulo mk2

j. To end
this section two examples of wavelets in 1D are shown in Fig. II.1.1.

II.1.1.3 Dual tree complex wavelet transform

Sampling on a dyadic grid as in (II.1.7) is necessary to avoid redundancies in the represen-
tation of a signal, but it also introduces a lack of translation invariance that can be a severe
drawback for some applications. Taking as example a simple set of 1D Heaviside signals
(Fig. II.1.2), it appears that the position of the wavelet artificially imposed by the choice of
the origin when constructing the basis entails a very different distribution of the information
between all the scales for the shifted versions of the signal. This is a problem for many
applications, among which one is the estimation of the variance of stochastic processes, as
detailed in Sec. II.3.3.

To circumvent this issue, Kingsbury has been constructing since 1998 complex-valued
wavelets families that are not bases but tight frames of L2(Rd) (Kingsbury, 2000, 1999,
1998). As defined in (Daubechies et al., 1986), a tight frame (ψλ)λ∈Λ is characterized by
the fact that for any f ∈ L2(Rd):

‖f‖22 = A
∑

λ∈Λ

| 〈f | ψλ〉 |2 (II.1.16)
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(a) Haar wavelets (b) Coiflets of order 2

Figure II.1.1: For the most simple wavelet family, called the Haar family (a), and which was
known well before the birth of wavelet theory proper, it is easily seen that the a wavelet (blue
line), its contraction by a factor two (red dashed line), and its neighbor on the dyadic grid
are orthogonal to each other. The Coiflet family of order 2 (b) enjoys the same properties;
but its construction is much more delicate (see Sec.II.1.3.2).

Figure II.1.2: Comparison between the reconstructions of sixteen shifts of a Heaviside
function, from their wavelet coefficients at various scales, using either a frame of nearly
translation invariant complex-valued wavelets (a), or an orthogonal wavelet basis (b). Figure
reproduced by courtesy of N. Kingsbury.
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where A is a constant. It can be shown that (II.1.16) implies a reconstruction formula that
is nearly identical to that for an orthogonal family:

f =
1

A

∑

λ∈Λ

〈ψλ | f〉ψλ (II.1.17)

Since the elements of a tight frame are not linearly independent, the expansion of a function
involves some redundancy. This redundancy was exploited by Kingsbury to reduce the prob-
lems associated to translations. We now briefly describe the construction in the d dimensional
setting.

The basic ingredients are two mother wavelets ψR and ψI and their scaling functions ϕR

and ϕI , associated to two pairs of quadrature mirror filters, which we denote respectively by
(hR, gR) and (hI , gI) where the exponents R and I stand respectively for real and imaginary.
The filters hR and hI are tailored in a specific way so that the complex-valued wavelet
ψ = 1√

2
(ψR + ιψI) and scaling function ϕ = 1√

2
(ϕR + ιϕI) (where ι =

√
−1) both have

their Fourier transform nearly vanishing for negative wave-numbers:

∀ξ < 0, ψ̂(ξ) ≃ 0. (II.1.18)

Since general functions have nonzero energy at negative wave-numbers, we see that we will
need to use both ψ and ψ∗ to represent them, where ·∗ denotes complex conjugation. To
cope with this, we add a new degree of freedom to the index λ compared to orthogonal
wavelets. Denoting by γλ ∈ {0, 1}d this new parameter, the definition of complex-valued
wavelets goes like

ψλ(x) := 2
djλ

2

∏

k,γλk=0

µλ
k
=1

ψ(2j
λ
xk−iλk)

∏

k,γλk=0

µλ
k
=0

ϕ(2j
λ
xk−iλk)

∏

k,γλk=1

µλ
k
=1

ψ∗(2j
λ
xk−iλk)

∏

k,γλk=1

µλ
k
=0

ϕ∗(2j
λ
xk−iλk),

(II.1.19)

From (II.1.19), we see that γ characterizes the part of Fourier space to which the support
of the wavelet is approximately restricted due to (II.1.18), i. e. {ξ | (ξk ≥ 0 for γk =
0) and (ξk < 0 for γk = 1)}. Thanks to this property, Kingsbury wavelets are more direc-
tionally selective than orthogonal wavelets: to each value of (µ,γ) (with µ 6= 0) corresponds
a different direction of oscillation, which makes a total of (2d−1)×2d directions. Note that
since γλ ∈ {0, 1}d, the family contains 2d times more wavelets than an orthogonal wavelet
family, which will imply an additional cost to compute all the coefficients.

The periodization and the definition of wavelet coefficients is analogous to what we have
seen for orthogonal wavelets in the previous paragraph, and the reconstruction formula is
given by (II.1.17) with A = 2d, which can also be written

f = 2−d


 ∑

λ∈Λϕ,J

fλϕλ +
∑

j≥J

∑

λ∈Λψ,j

f̃λψλ


 ,

where the index sets Λϕ,J and Λψ,j have been modified to take into account γ.

The transformation from f to its coefficients in the basis of complex-valued wavelets is
called dual tree complex wavelet transform (DTCWT) (Kingsbury, 2001). In the following
we use the shorthand DTCWT rather loosely to refer either to wavelets, to coefficients, or
to algorithms related to the dual tree complex wavelet transform.
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II.1.2 Fast wavelet transform

II.1.2.1 Non-adaptive transform

In this section we briefly recall the fast wavelet transform algorithm (see (Mallat, 1999)
and references therein). The transform is first assumed to be real and orthogonal, and we
explain the generalization to the DTCWT case afterwards. The 1D fast wavelet transform
algorithm (Mallat, 1999) is obtained by injecting the refinement equations (II.1.1-II.1.2) into
the expansion (II.1.13) of a function in the wavelet basis. The following relations between
the coefficients at successive scales are thus derived:

fλ =

S−1∑

n1=0

hn1 . . .

S−1∑

nd=0

hndf (jλ+1,2iλ+n), (II.1.20)

f̃λ =

S−1∑

n1=0

gµ
λ
1
n1
h1−µλ1
n1

. . .

S−1∑

nd=0

g
µλd
ndh

1−µλd
nd f (jλ+1,2iλ+n−(S−2)µλ), (II.1.21)

so that the wavelet and scaling coefficients at scale jλ can be computed from the scaling
coefficients at scale jλ+1 by applying (II.1.20-II.1.21) with the position iλ varying successively
along each direction. The (µλk) appearing as exponents in (II.1.21) simply mean that in each
direction, either the filter g or the filter h has to be applied, depending on the direction being
considered. A great advantage of the fast wavelet transform is that only one dimensional
filters have to be applied. One can also remark that, in the unified notation, (II.1.20) can
be seen as the special case of (II.1.21) corresponding to µλ = 0.

The shift of the index by the quantity (S − 2)µλ in (II.1.21) needs some clarification.
This comes from the way the filter g is defined by (II.1.3), with only positive indices. Thanks
to this shift, (II.1.21) holds for the standard definition of the wavelet coefficients, as used
for example by (Mallat, 1999), despite the different definition of g. As we shall see below
this has important practical consequences on the numerical implementation.

Now assuming that in the beginning the scaling coefficients at a certain scale J are
known, the wavelet coefficients at scales j such that 0 ≤ j ≤ J can be computed by using
(II.1.20-II.1.21) recursively. See Fig. II.1.3 for a schematic representation of the wavelet and
scaling coefficients known at each step of this process. This whole process is called the fast
wavelet transform algorithm. We come back to its practical implementation in Sec. II.2.2.

The inverse process is defined by inverting (II.1.20-II.1.21) thanks to the perfect recon-
struction property of the filters. Using the unified notation, a compact formula for the
reconstruction can be written:

fλ =
∑

µ∈{0,1}d
n∈{0,...,S−1}d

2|i−n

d∏

k=1

h1−µk
nk

gµknk f̃(jλ−1,µ,(i−n+(S−2)µ)/2). (II.1.22)

However, in practice, the computation is done by applying successively one dimensional
filters, which is better understood when considering the following equivalent formulation:

fλ =

S−1∑

nd=0
2|id−nd

1∑

µd=0

h1−µd
nd

gµdnd . . .

S−1∑

nd=0
2|i0−n0

1∑

µ1=0

h1−µ1
n1

gµ1
n1
f̃(jλ−1,µ,(i−n+(S−2)µ)/2). (II.1.23)
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For the DTCWT, the idea is to reduce the computation to a series of real wavelet
transforms over bases constructed from the real and imaginary parts of the complex-valued
wavelet, and then to use the fast wavelet transform as above. In this process the notations
will be more and more tedious, and to attempt to simplify them we first introduce

ψ0,0 = ϕR, ψ1,0 = ϕI , ψ0,1 = ψR, ψ1,1 = ψI .

We then rewrite (II.1.19) as follows:

ψλ(x) = 2
djλ−1

2

d∏

k=1

(
ψ0,µk(2j

λ

xk − iλk) + (−1)γ
λ
k ιψ1,µλk (2j

λ

xk − iλk)
)

(II.1.24)

and expand this new expression:

ψλ(x) = 2
djλ−1

2

∑

r∈{0,1}d
ι|r|(−1)γ

λ·r
d∏

k=1

ψrk,µ
λ
k (2j

λ

xk − iλk). (II.1.25)

Now using (II.1.25), the wavelet coefficients f̃λ = 〈f | ψλ〉 can be expanded as a linear
combination of scalar products of f with functions of the form

ψr
λ(x) =

d∏

k=1

ψrk,µ
λ
k (2j

λ

xk − iλk). (II.1.26)

Such functions can be seen as d-dimensional anisotropic wavelets, where in each direction k,
either ψR or ψI is used, depending on the value of rk. Formulas (II.1.20-II.1.21) and (II.1.23)
can be generalized to compute the scalar products 〈f | ψr

λ〉. We refrain from writing the
generalized formulas explicitly, but they can be explained as follows. When computing the
sum corresponding to direction k, the filter to use is respectively hR if (rk, µk) = (0, 0), hI

if (rk, µk) = (1, 0), gR if (rk, µk) = (0, 1) and gI if (rk, µk) = (1, 1). Note that to ensure
a better translation invariance at the discrete level, Kingsbury (2001) has proposed to use
different filters for the first level of the wavelet transform. That means that if (II.1.20-II.1.21)
is applied with jλ + 1 = J , where J is the finest scale, a pair of biorthogonal filters are used
instead of hR and gR, and the same filters shifted by one sample are used instead of hI and
gI .

II.1.2.2 Scaling function coefficients and function values

In many applications, it is necessary to work in one way or another with the values of a
function sampled on a Cartesian grid. To introduce wavelet series in these applications, it
is therefore necessary to establish a link between the values of the function and its scaling
coefficients. From the scaling coefficients, the wavelet coefficients can then be computed
using the algorithm presented in the previous section.

Let us start from the definition:

fλ =

∫

T[m]

f(x)ϕλ(x)dx = 2
djλ

2

∫

T[m]

f(x)

d∏

k=1

ϕ(2dj
λ

xk − iλk)dx
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(a) Initialization (b) Stage 1

(c) Stage 2 (d) Stage 3

(e) Stage 4 (f) Stage 5

Figure II.1.3: Schematic representation of the available coefficients throughout successive
stages of a non-adaptive 1D fast wavelet transform. Red circles: wavelet coefficients. Blue
squares: scaling coefficients. The scale varies from j = 0 for the first row to j = 4 for the
fifth row, and the position i increases from left to right.
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(a) Initialization (b) Stage 1

(c) Stage 2 (d) Stage 3

(e) Stage 4 (f) Stage 5

Figure II.1.4: Schematic representation of the available coefficients throughout successive
stages of an adaptive 1D fast wavelet transform. Red circles: wavelet coefficients. Blue
squares: scaling coefficients. In this example, the filter length is S = 4. Note the two
additional scaling coefficients necessary to the left in (f), which correspond to the zone of
influence of the wavelet coefficients present at stage 4 (see text and Eq. II.1.31).
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Assuming that jλ is sufficiently large so that the non overlap condition (II.1.15) holds, the
integral can be extended to Rd, and we can make the change of variable y = 2dj

λ
x− iλ:

fλ = 2−
djλ

2

∫

[0,S−1]d
f
(
2−dj

λ

(y + iλ)
) d∏

k=1

ϕ(yk), (II.1.27)

which can be rewritten

fλ = 2−
djλ

2 f
(
2−dj

λ

iλ
)

+ 2−
djλ

2

∫

[0,S−1]d

(
f
(
2−dj

λ

(y + iλ)
)
− f

(
2−dj

λ

iλ
)) d∏

k=1

ϕ(yk),

where we have used the property
∫
[0,S−1]d

∏d
k=1 ϕ(yk) = 1. Now assuming that f is Lipschitz,

we obtain the following approximation for fλ:

fλ = 2−
djλ

2

(
f
(
2−dj

λ

iλ
)

+O
(
2−dj

λ
))

. (II.1.28)

Note that the precision can be better if the scaling function ϕ has vanishing moments, as
occurs for the wavelets known as “Coiflets” (Daubechies, 1992) (see Sec. II.1.3.2).

For some applications, a higher order approximation of fλ is needed, and sometimes
(II.1.28) cannot even be used because the values of f are not known on a dyadic grid but
on a more complex grid or at arbitrary points. For all these cases, there exist an alternative
approach, proposed by Sweldens and Piessens (1994) and developed by the quantum chem-
istry community for applications to ab initio density functional calculations (Johnson et al.,
1999; Neelov and Goedecker, 2006). Suppose that values fg of f are known at certain nodes

g ∈ G. The idea is to replace f(2−dj
λ
(y + iλ)) in (II.1.27) by its approximation using a local

Lagrange interpolation of the (fg). The degree of the interpolating polynomial is chosen to
be S−1. By reordering (II.1.27), one obtains an approximation of fλ which depends on the
coefficients of the Lagrange polynomial and on the moments of ϕ:

Mk =

∫ S−1

0

xkϕ(x)dx,

which can be determined using the recurrence relation (Johnson et al., 1999)

Mk =
(
1− 2−k

)−1
k−1∑

p=0

(
k
p

)
MpM′

k−p ,

where m′
p is a discrete moment of h:

M′
p =

1√
2

S−1∑

k=0

kphk .

The reverse operation of going from the scaling coefficients to the grid point values can be
done using the expansion

f(x) ≃
∑

λ∈Λϕ,J

fλϕλ(x),

but if f is a smooth function this is not a very accurate expansion, except for J very
large, because ϕ is normally not smooth. Depending on the situation, it may thus be more
profitable to use another approach (Neelov and Goedecker, 2006) which we omit here.
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II.1.2.3 Adaptive transform

As in the non-adaptive case, the goal of an adaptive wavelet transform is, starting from a
certain set of scaling coefficients fλ, to compute a corresponding set of wavelet coefficients

f̃λ. But in contrast to the non-adaptive case, the input scaling coefficients are not all located
at the same scale. In the formulation that we have chosen, it is more natural to start by
defining the inverse wavelet transform. Consider a finite set of indices Λ ⊂ Λψ, and denote
WΛ the subspace of L2(T[m]d) spanned by (ψλ)λ∈Λ. A function f ∈WΛ can be decomposed
as

f = f +
∑

λ∈Λ

f̃λψλ, (II.1.29)

where f is the mean value of f on T[m]. Now the aim of the inverse wavelet transform is to
compute scaling function coefficients (fλ) for λ in a certain set Λ, such that they contain all
the information needed to reconstruct f . The main difficulty compared to the non-adaptive
case is that the corresponding scaling functions will in general not be pairwise orthogonal,
and even not linearly independent, since they may live at different scales.

Necessary properties on Λ. To construct Λ, we proceed one scale at a time. Denote
J0 = min

{
jλ
∣∣λ ∈ Λ

}
the coarsest scale present in Λ0 = Λ. We would like to find a set

Λ1 ⊂ ΛA enjoying the following properties:

(i) Jp+1 := min
{
jλ
∣∣λ ∈ Λp+1,µ

λ 6= 0
}

= Jp + 1,

(ii) all the coefficients of Λp can be computed from the coefficients of Λp+1,

(iii) all the coefficients of Λp+1 can be computed from the coefficients of Λp.

where for the moment p = 0. Note that for Λp+1 we use the unified notation, that is, Λp+1

may contain both wavelet and scaling function indices. Condition (i) means that Λp+1 should
not contain wavelet coefficients at scales coarser than Jp+1. Hence passing from Λp to Λp+1

consists in replacing the wavelet coefficients at scale Jp by scaling coefficients at scale Jp+1,
while leaving the indices at scales Jp +1 or finer unchanged (see Fig. II.1.3). To understand
what to do concerning scale Jp, we start by considering condition (ii). From formula (II.1.21),
it appears that a wavelet coefficient indexed by λ = (Jp,µ

λ, iλ) ∈ Λp depends on the scaling
coefficient indexed by κ = (Jp + 1, 0, iκ) if and only if for all directions k,

2iλk − (S − 2) ≤ iκk ≤ 2iλk + 1. (II.1.30)

We have thus shown that

Λp+1 ⊃
{
(Jp + 1, 0, i)

∣∣∃λ ∈ Λ, jλ = J0, ∀k, 2iλk − (S − 2) ≤ iκk ≤ 2iλk + 1
}

(II.1.31)

where, as usual, everything is implicitly periodized with a period 2j
κ
. On the other hand,

to satisfy condition (iii), we need to be able to compute the coefficients at scale Jp in Λp+1

from those in Λp. Using (II.1.23), we deduce the following condition:

Λp ⊃ {(j − 1, 0, (i− n)/2) |(j, 0, i) ∈ Λp+1∀k, 0 ≤ nk ≤ S − 1 and 2 | ik − nk } .
(II.1.32)
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Since we had assumed that Λ0 contains only wavelet coefficients, (II.1.32) cannot be satisfied
for p = 0 unless J0 = 0, which we impose from now on. In that case (II.1.32) becomes
unnecessary since the only scaling coefficient at scale 0 is already taken into account as the
mean value appearing in (II.1.29). The situation becomes more interesting when the process
is iterated to find Λ2, Λ3, etc., satisfying (i), (ii), (iii) respectively for p = 1, p = 2, etc.
Imposing (II.1.31) will be sufficient to apply Eq. (II.1.21) so as to reconstruct all the wavelet
coefficients in Λp−1 from the coefficients of Λp. However, this will not be enough to compute
the scaling coefficients of Λp−1, because the indices appearing in Eq. (II.1.20) are not the
same, so that it seems that we may be missing some coefficients!

Edge matrices. To understand the situation better, it is useful to come back to the 1D
case, and to let S = 4. Then Eqs. (II.1.20-II.1.21) can be written explicitly as follows:

f (j,i) = h0f (j+1,2i) + h1f (j+1,2i+1) + h2f (j+1,2i+2) + h3f (j+1,2i+3) (II.1.33)

f̃(j,i) = g0f (j+1,2i−2) + g1f (j+1,2i−1) + g2f (j+1,2i) + g3f (j+1,2i+1), (II.1.34)

where the notation (j, i) = λ for the indices has been used for clarity. By condition (II.1.31)
on Λp+1, all scaling coefficients appearing in (II.1.34) are known. But if λ lies on the frontier
of Λp, i.e. (j, i+1) /∈ Λp, as we assume from now on, f (j+1,2i+2) and f (j+1,2i+3) are unknown.
Fortunately, there are enough constraints on f to determine them exactly without employing
any ad-hoc interpolation method. To see this, recall that f̃λ = 0 for λ /∈ Λp. In particular,

f̃(j,i+1) = g0f (j+1,2i) + g1f (j+1,2i+1) + g2f (j+1,2i+2) + g3f (j+1,2i+3) = 0. (II.1.35)

On the other hand, by (II.1.22) we have

f (j+1,2i+2) = h0f (j,i+1) + h2f (j,i) + g0f̃(j,i+2) + g2f̃(j,i+1) (II.1.36)

f (j+1,2i+3) = h1f (j,i+1) + h3f (j,i) + g1f̃(j,i+2) + g3f̃(j,i+1), (II.1.37)

where f̃(j,i+1) = 0 according to (II.1.35). To proceed further, we make an assumption on the
set Λp. Going back to an undetermined value of S, but still in the 1D setting, we impose
that

((j, i) ∈ Λp and (j, i+ 1)) /∈ Λp =⇒ ∀k ∈
{

1, . . . ,
S

2

}
, (j, i+ k) /∈ Λp, (II.1.38)

which roughly means that Λp cannot contain any hole of length smaller than S
2
. Now using

(II.1.38), we get that f̃(j,i+2) = 0, and (II.1.36-II.1.37) thus becomes

f (j+1,2i+2) = h0f (j,i+1) + h2f (j,i) (II.1.39)

f (j+1,2i+3) = h1f (j,i+1) + h3f (j,i), (II.1.40)

which can be injected back into (II.1.33) to get:

f (j,i) = h0f (j+1,2i) + h1f (j+1,2i+1) + (h2h0 + h3h1)f (j,i+1) + (h2
2 + h2

3)f (j,i).

Following (Beylkin, 1992), we now show that the interesting cancellation h2h0 + h3h1 = 0
holds as long as h satisfies (II.1.4). Indeed, coming back to the general case for S, (II.1.4)
can be rewritten more explicitly as

∀ξ,
∑

p,q

(
1 + (−1)p+q

)
hphqe

ι(p−q)ξ = 2,
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which, by regrouping equal powers of eιξ, is seen to imply:

∀k ∈ {1, (S − 2)/2},
S−1∑

p=2k

hphp−2k = 0. (II.1.41)

Using this result, we finally get for our S = 4 example that

(1− h2
2 − h2

3)f (j,i) = h0f (j+1,2i) + h1f (j+1,2i+1), (II.1.42)

which can be solved for f (j,i). It turns out that (II.1.42) admits a generalization to S > 4,

where the missing coefficients f (j,i), . . . , f (j,i+S/2−2) are determined by a linear system of
S/2− 2 equations. The solution to this system can be written in the form




f (j,i)
...

f (j,i+S/2−2)


 = ME




f (j+1,2i)
...

f (j+1,2i+S−3)


 , (II.1.43)

where we call ME the “edge matrix”.

Sufficient definition of Λ. Now provided that condition (II.1.38) is satisfied at each step,
we are able to construct a sequence (Λp) such that Λ0 = Λ, and verifying (i), (ii) and (iii),
simply by letting:

Λp+1 = {λ ∈ Λp | jλ ≥ p+ 1}⋃ {
(p+ 1, 0, i)

∣∣∃λ ∈ Λp, j
λ = p, ∀k, 2iλk − (S − 2) ≤ iκk ≤ 2iλk + 1

}
.

We stop the sequence at the index pmax such that Λpmax does not contain any wavelet
coefficient, and we finally define

Λ = Λpmax. (II.1.44)

The definitions in this paragraph were admittedly rather cryptic, and to help the under-
standing some explicit examples will be provided in Sec. II.2.3. A schematic view of the sets
Λp is provided in Fig. II.1.4 for a simple 1D case with S = 4.

II.1.3 Wavelet families

In this section, we recall the main properties of the wavelet families that are commonly
used in computational fluid dynamics. We also summarize for convenience a number of
algorithms used to compute the coefficients of the associated filters. Note that the literature
provides pre-computed values for the coefficients, but they sometimes suffer from a rather
low precision.

II.1.3.1 Daubechies minimal support wavelets

These famous wavelet families were constructed in (Daubechies, 1988). Their main property
is that the length of their support is minimal among all orthogonal wavelet families having a
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given number of vanishing moments. If M denotes the number of vanishing moments, then
the length of the filters is S = 2M , and the length of the support is thus S − 1 = 2M − 1.

To compute the filter coefficients, the procedure is as follows. Let PM be the polynomial
of degree M − 1 defined by

PM(X) =
M−1∑

k=0

(
M − 1 + k

k

)
Xk,

In (Daubechies, 1988) it is shown that the discrete Fourier transform of a finite length filter
corresponding to an orthogonal wavelet basis can necessarily be factorized under the form:

ĥ(ξ) = 2−M
(
1 + eιξ

)M
Q
(
eιξ
)
,

where Q is a polynomial such that

|Q
(
eιξ
)
|2 = PM

(
sin2 ξ

2

)
+

(
sin

ξ

2

)2M

R

(
1

2
cos(ξ)

)
, (II.1.45)

and R is an odd polynomial.

To build Daubechies minimal support wavelets, one first chooses R = 0, and then one
has to solve (II.1.45) for Q. The procedure to do this is explained in (Daubechies, 1988),
and we recall it in a simplified manner. Denoting by (ak)1≤k≤M−1 the complex roots of PM ,
compute for each k the two roots r+

k and r−k of the equation

X2 − 2(ak − 2) + 1 = 0,

and let

rk =

{
r+
k if |r+

k | ≤ 1

r−k otherwise.
(II.1.46)

The resulting Q is given by

Q(X) = C

M−1∏

k=1

(X − rk) ,

where the normalization constant C can be determined a posteriori using the constraint
that

∑S−1
i=0 hi =

√
2. This procedure is called “minimal phase spectral factorization”, and

is classical in filter design. It is possible to replace (II.1.46) by another choice of roots, in
which case the spectral factorization is not minimal phase anymore, but still yields minimal
support length Daubechies wavelets. For example, in (Daubechies, 1993), it was proposed
to globally optimize the choice between the r+

k and the r−k so that the resulting wavelets are
as symmetric as possible. These are known as “Symlets”.

To implement the algorithm in practice, one needs a high precision polynomial root finder,
which exists for example in C++ in the Nacre library. The advantage of using C++ and
generic programming is that the algorithm can be made as precise as required by changing
the type of the floating point numbers. For example, the minimal phase results are given
in Table II.1.3.2 for M = 2, M = 3, M = 4, and M = 5, with 18 accurate digits. The
accuracy can be checked a posteriori by testing the perfect reconstruction property.
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II.1.3.2 Coiflets

Coiflets families were constructed by Daubechies in (Daubechies, 1993). For a given number
of vanishing moments M , the corresponding Coiflet has a support of length 3M . The
characteristic property of Coiflets is that, in addition to vanishing moments for the wavelet
(Eq. II.1.5), they benefit from vanishing moments for the scaling function, that is

∫

R

xmϕ(x) = 0 for 1 ≤ m ≤M − 1. (II.1.47)

This property endows the simple approximation of scaling function coefficients (II.1.28) in
the case of Coiflets with a higher precision than for general wavelet families.

The construction of the Coiflets uses techniques that are similar to the above. The main
idea is to relax the constraint R = 0, in order to be able to impose the additional condition
(II.1.47). The filter values are provided in (Daubechies, 1993).

An interesting section at the very end of (Daubechies, 1993) defines specific low order
Coiflets, which we call R-Coiflets to distinguish them from the previous ones. The R-Coiflets
are specifically tuned to enjoy a better regularity than the standard Coiflets for given filter
length and number of vanishing moments, hence the prefix “R”. We recall here the algorithm
for the computation of the corresponding filter coefficients for M = 2 and M = 4, that is
respectively for the R-Coiflet 6 and R-Coiflet 12 families. In general for Coiflets, the following
Ansatz for the filter in the Fourier domain is introduced:

ĥ(ξ) =

(
cos2 ξ

2

)K (
PK

(
sin2 ξ

2

)
+

(
sin2 ξ

2

)K
f(ξ)

)
, (II.1.48)

where M = 2K, and f remains unknown. For R-Coiflet 6, one uses the Ansatz f(ξ) =
aeιξ+be2ιξ, for which (II.1.48) implies that a = (s−1)/2, b = (−s+3)/2, where s = ±

√
15.

The R-Coiflet 6 corresponds to s = +
√

15 (and not s = −
√

15 as is mistakenly stated in
(Daubechies, 1993)).

For R-Coiflet 12, the Ansatz is f(ξ) = ae−ιξ + b + ceιξ + de2ιξ. By developing (II.1.48)
in powers of eιξ and identifying term by term, we obtain the following system of equations:





(a + b+ c+ d)2 = 16d+ 8(a+ c)

ac + bd+ 6ad = 0

a + c+ 4d+ 2 = 0

b = 3d+ 5

,

which can be pivoted to get the system





32d2 + 88d+ 45 = 0

2c2 + (8d+ 4)c+ (26d2 + 78d+ 45) = 0

a = −2− 4d− c
b = 3d+ 5

admitting 4 quadruplets (a, b, c, d) as solutions. One of these solutions yields a filter which
agrees with the coefficients given in (Daubechies, 1993). The filter coefficients for the
R-Coiflet 6 and R-Coiflet 12 wavelet families are provided in Table II.1.3.2.
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R-Coiflet 6
0.568910863637797393
0.403360960493705453

-0.077161555495773499
0.607491641385684143
0.215357473044523631

-0.303745820692842071

R-Coiflet 12
0.036797113136414754

-0.006700453459679574
-0.193465866829234017
0.015361209805458600
0.626863205073584621
0.712666476561508862
0.238059669115279298

-0.041841810360839877
0.000935901149918644
0.039061962673359208

-0.002083240459415777
-0.011440604033259695

Daubechies 4
0.482962913144534143
0.836516303737807906
0.224143868042013381

-0.129409522551260381

Daubechies 6
0.332670552950082616
0.806891509311092576
0.459877502118491570

-0.135011020010254589
-0.085441273882026661
0.035226291885709536

Daubechies 8
0.230377813308896501
0.714846570552915647
0.630880767929858908

-0.027983769416859854
-0.187034811719093084
0.030841381835560763
0.032883011666885199

-0.010597401785069032

Daubechies 10
0.160102397974192914
0.603829269797189670
0.724308528437772927
0.138428145901320731

-0.242294887066382032
-0.032244869584638374
0.077571493840045713

-0.006241490212798274
-0.012580751999081999
0.003335725285473771

Table II.1.1: Coefficients of R-Coiflet 6, R-Coiflet 12 and some Daubechies minimal sup-
port/minimal phase filters with 18 digits of accuracy.
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Figure II.1.5: Complex-valued wavelet from the Q-Shift B Kingslet family (left) and the
corresponding scaling function (right).

II.1.3.3 Kingslets

We call Kingslets the Q-Shift wavelets described by Kingsbury in (Kingsbury, 2001). Here
we briefly review these wavelet families, especially since we will use them for one applica-
tion in Sec. IV.1. Kingslets belong to the class of DTCWT wavelets already introduced in
Sec. II.1.1.3. Contrary to most other wavelet families, Kingslets filters are not defined by
equations but are the result of an optimization procedure. By varying the parameters of the
optimization procedure, various properties can be enforced to a good degree of approxima-
tion.

In the applications of Kingslets that we consider in Chapter 3, we shall only make use of
the Kingslet named Q-Shift B, which is represented in Fig. II.1.5 next to the corresponding
scaling function. It has two approximately vanishing moments (their amplitude is about
10−6), and filters of length 14. Note that the extra length of the Kingslet filters allows them
to enjoy good translation invariance properties, but their number of vanishing moments
is quite low. In the future it may be possible to construct Kingslets with more vanishing
moments.

II.1.3.4 Selesnick wavelets

Selesnick wavelets are alternative DTCWT wavelet families that were introduced in (Se-
lesnick, 2002). If M is the number of vanishing moments (denoted by L in (Selesnick,
2002)), the length of the filter is 2(M +L), where L is an adjustable integer which controls
how well the Fourier transform of the wavelet vanishes for negative wave-numbers.

The filter coefficients of minimal phase Selesnick wavelets are provided in Table II.1.2.
They were computed with 15 digits precision using a C++ implementation of the Matlab
code provided in (Selesnick, 2002), with some modifications to improve the precision of the
result. Note that the filters differ from those in (Selesnick, 2002), which used mid-phase
spectral factorizations instead of minimal phase.

II.1.4 Representation of differential operators

The representation of differential operators in wavelet spaces is essential for applications to
the numerical approximation of partial differential equations. Important results on this topic
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Selesnick 1/2
hR

0.063722005204896
0.679872882462790
0.725610498781959
0.019527181672067
-0.082225722800308
0.007706717051690

hI

0.001541343410338
-0.004114397277358
-0.144918766341865
0.392611152439421
0.850484204118075
0.318610026024484

Selesnick 2/1
hR

0.150856631227302
0.681133683988679
0.700930246420804
-0.006070468508676
-0.144680096461559
0.032043565706544

hI

0.01068118856884
-0.01974352930359
-0.14012240952992
0.27428041680823
0.83654800214762
0.45256989368190

Selesnick 2/4
hR

0.003713680476139
0.137657968389623
0.608838482922821
0.744293913959969
0.099827234284518

-0.211975875247260
0.002643711948873
0.037516078031551

-0.008056349815213
-0.000381526507967
0.000140021369405

-0.000003777439371

hI

-0.000000419715485
0.000004365516982
0.000429940683837

-0.004568431032085
0.004506876043497
0.054321878030781

-0.115201566195227
-0.160517482306511
0.469733549136782
0.784443326692122
0.347638401233140
0.033423124285255

Selesnick 3/3
hR

0.008846655842947
0.202541675343599
0.663564515821794
0.681689981462920
0.029191650826211
-0.223975383050148
0.018345881119283
0.048379737687138
-0.013509874338369
-0.001500055319494
0.000667951914677
-0.000029174937471

hI

-0.000004167848210
0.000028736130733
0.001512510330566
-0.010767728009051
0.008846447292283
0.066565500871343
-0.106398625212835
-0.196613924769040
0.376184343629676
0.785967606061924
0.426966272995064
0.061926590900633

Selesnick 4/2
hR

0.021102599277254
0.268378378150965
0.712965714026111
0.605543425035167
-0.047563788371239
-0.214427465912031
0.034799514500651
0.052591871682046
-0.016656062380741
-0.004786091932662
0.002458804134508
-0.000193335836941

hI

-0.000038667167388
0.000182423487795
0.003409940503429
-0.017300957911382
0.006340085364341
0.086267604737072
-0.094497819046072
-0.231826057852929
0.294105321867595
0.764270772339713
0.497787919664638
0.105512996386273

Table II.1.2: Coefficients of some Selesnick filters with 15 digits of accuracy.
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where derived in (Beylkin, 1992), and we briefly recall a small part of them that we will make
use of.

We fix a positive integer J and work in the space VJ spanned by a family of scaling
functions (ϕλ)λ∈Λϕ,J . A function f ∈ VJ can thus be decomposed into

f =
∑

λ∈Λϕ,J

fλϕλ.

Now denoting by Dp a differential operator
∂|p|

∂p1x1 . . . ∂pdxd
where p ∈ Nd and |p| =

∑d
k=1 pk, we have:

Dpf =
∑

λ∈Λϕ,J

fλDpϕλ.

The Galerkin representation of Dp in VJ , for which we use the shorthand notation Dp, is
therefore given by

Dpf =
∑

λ,λ′∈Λϕ,J

fλ 〈Dpϕλ|ϕλ′〉ϕλ′.

In (Beylkin, 1992), an effective way of computing the matrix elements 〈Dpϕλ|ϕλ′〉 is derived.
First, by a change of variables it is shown that

〈Dpϕλ|ϕλ′〉 = 2|p|J
d∏

k=1

r
(pk)

iλ
′
k −iλk

,

where

r
(p)
i =

∫

T

ϕ(p)(y)ϕ(y − i)dy.

Then, the r
(p)
i are shown to satisfy the following linear system (Beylkin, 1992):

{
r
(n)
i = 2n

(
r2i + 1

2

∑S/2
k=1 a2k−1(r

(n)
2i−2k+1 + r

(n)
2i+2k−1)

)

∑
i i
nr

(n)
i = (−1)nn!

, (II.1.49)

where (ai)0≤i≤S−1 depends on the scaling function filter h via

ai =
S−1−i∑

k=0

hkhk+i.

In (Beylkin, 1992), it is shown that (II.1.49) admits a unique solution, and this solution
is given for some of the Daubechies minimal support wavelets. We provide here the solution
for R-Coiflet 1 and R-Coiflet 2 wavelets, see Table II.1.3.

II.1.5 Denoising

In this section, we briefly recall the mathematical theory of denoising using wavelets. The
presentation is meant to provide a heuristic basis for most of the developments and results
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R-Coiflet 6, r(1)

0
0.619368727403235
1.403784906417689
-2.427684222146337
0.839028531550099

R-Coiflet 6, r(2)

0.622642595976898
-0.389477243531951
0.179082676222473

-0.326853461357942
0.225926730678971

R-Coiflet 12, r(1)

0
-0.867954504854107
0.285598759981490
-0.095340803975880
0.025921268507550
-0.004471277482279
0.000182709149420
0.000045997383079
0.000004103052443
-0.000000039014015
0.000000000032848

R-Coiflet 12, r(2)

-3.658969347796646
2.291512188822066
-0.634322626940372
0.234068159382585
-0.078417496426037
0.018448823282131
-0.001655689924465
-0.000116101105014
-0.000032781272494
0.000000198414036
-0.000000000334114

Table II.1.3: Coefficients of first and second order derivation filters for R-Coiflet 6 and
R-Coiflet 12 wavelet families. The values of r

(n)
i are given for i ≤ 0 in increasing order.

Those for i < 0 can be deduced by symmetry for even n, and by antisymmetry for odd n.

presented in the rest of this thesis. The topic is treated in more detail in the book by Mallat
(1999).

We restrict ourselves from the beginning to the case of an additive noise, for which the
observed signal can be written

X[n] = F [n] +W [n], n = 1..N (II.1.50)

where W is a centered Gaussian process, and (F [n]) is a deterministic signal resulting from
the uniform sampling of a function F ∈ L2(T), via F [n] = F ( n

N
). The problem of denoising

consists in the estimation of F from the noisy measurements (X[n]). The efficiency of any
proposed estimator E can be measured by the associated risk

R(E , F ) =
N∑

n=1

E
(
|F [n]− E(X)[n]|2

)
,

or equivalently the signal to noise ratio (SNR) measured in decibels (dB), and defined by

SNR(E , F ) = 10 log10

( ‖F‖22
R(E , F )

)
.

To model the a priori knowledge we have about the signal, we assume that it belongs to some
subset of L2(T) denoted T . Following the minimax approach, we then look for estimators
E such that the maximal risk

R(E , T ) = sup
F∈T

R(E , F ) (II.1.51)

is as small as possible (hence the name minimax). In the best of worlds, the risk of such an
estimator will thus be

R(T ) = inf
E
R(E , T )

where the lower bound is taken over all possible estimators. Two things may influence the
value of R(T ), namely
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From now one we use the shorthand notation .̌ to denote statistical estimators, i.e. E(X) =
F̌ .

Donoho and Jonhstone (1994) studied the efficiency of a wavelet thresholding approach
to the minimax estimation problem in the case where W is uncorrelated (i.e. a white noise).
They showed that this approach, which we now briefly recall, almost achieves the minimax
risk for very diverse choices of T . First, a 1D orthonormal wavelet basis is chosen, over which
the wavelet coefficients (X̃λ) of the noisy signal are computed. To do this, the approximation
(II.1.28) is always used for the scaling function coefficients at the finest scale, since the noise
cannot be interpolated. We therefore have to assume that N = 2J , i.e., that the signal has
been sampled on a dyadic grid. By linear transformation of (II.1.50), a similar equation is
obtained in terms of wavelet coefficients:

X̃λ = F̃λ + W̃λ (II.1.52)

Thanks to the properties of the Gaussian distribution and to the orthogonality of the wavelet
basis, the wavelet coefficients (W̃λ) of the noise are Gaussian and independent. The advan-
tage of (II.1.50) compared to (II.1.50) is that for the types of signals that arise commonly
in many applications, the energy of F is concentrated on a very small fraction of its wavelet
coefficients, a property which is called sparsity. In contrast, the energy of the noise is evenly
distributed between all of its wavelet coefficients. Consequently, the wavelet coefficients
containing the majority of the signal’s energy are only weakly affected by the noise, and
conversely, the remaining coefficients are strongly affected by the noise but they do not
contribute much to the signal. This heuristic observation leads to the following candidate
for estimating the signal:

ˇ̃
F λ =

{
Ỹλ if |Ỹλ| > qσ

0 otherwise
, (II.1.53)

where σ is the standard deviation of the noise, and q is a chosen constant. Donoho and
Jonhstone (1994) showed that, with the choice q =

√
2 logN , the method was asymptot-

ically minimax when N → ∞ up to a logarithmic correction factor. Eq. (II.1.53) admits
an obvious generalization to the case where σ := σλ depends on the index λ. It has been
proposed by many authors to apply this generalized thresholding approach to extend wavelet
denoising to situations where the noise is correlated (Wang, 1996; Silverman, 1999; John-
stone and Silverman, 1997). Indeed, for some simple correlations models, the behavior of σλ
can be computed. Explicit examples are given in Sec. II.3.4 to demonstrate the feasibility of
the approach.

In practical denoising applications, the variance of the noise is often unknown and then
has to be estimated from X. To do this in the case of a white noise, Donoho and Jonhstone
(1994) have proposed to compute the median MD of the |Ỹ |λ where λ is restricted to the
finest scale. Indeed, for sufficiently sparse signals, the finest scale is likely to be mostly
affected by the noise. By neglecting the influence of the signal, one can show that σ is
related to MD by σ ≃ 1.4826MD. In the case of a correlated noise, i.e. when σλ depends
on scale, the same procedure can be applied scale by scale. For white noises, an alternative
approach was introduced by Azzalini et al. (2004), and we have extended it to the case of
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correlated noises. The reader is referred to Sec. V.3.5.1 for a detailed presentation of this
method, called scale-wise CVE, which we do not reproduce here to avoid an unnecessary
redundancy.

II.2 Implementation

In this section we complete the presentation of the FWT algorithms we have implemented,
by insisting on some important points that fall more into the category of computer science
than mathematics per se. C++ implementations of the algorithms are available under the
GNU General Public License at the following URL:

https://sourceforge.net/project/kicksey-winsey.

II.2.1 Review of some existing implementations

The implementation of the fast wavelet transform algorithm immediately followed its math-
ematical derivation. Indeed, when working with moderately sized data, the algorithm is
straightforward. Many toolboxes exist in Matlab for the 1D and 2D cases, among which the
best known is Wavelab (Mallat, 1999). However, for the applications we are considering,
this kind of implementation is insufficient, since it cannot take advantage of modern parallel
architectures.

The parallelization of the fast wavelet transform algorithm was first demonstrated in
architecture dependent frameworks (Goirand et al., 1994; Holmström, 1995), but since then
much of the effort has been spent in developing efficient algorithms that run within generic
distributed memory parallel environments such as the message passing interface (MPI). Early
approaches used to mimic the parallel FFT algorithm, which involves a global transposition
step that requires exchange of data between all processes, and thus strongly degrades effi-
ciency. The parallelization strategy that we employ here was first proposed and studied by
Nielsen and Hegland (2000) for both the 1D wavelet transform and the 2D tensor-product
wavelet transform. The key ingredient to obtain good scalability is some sort of domain
decomposition approach, since it preserves the quasi-locality of the wavelet transform (Yang
and Misra, 1998; Gonzales et al., 2001). It was extended to 2D multiresolution analyses in
(Chaver et al., 2002), who reported parallelization efficiency of up to 0.9 using a maximum
of 32 processes and images of size up to 2048× 2048. Recently, the wavelet transform was
also ported to general purpose graphics processing units (GPGPU) (Tenllado et al., 2008).

Our main objective in the development of the implementation presented below was to be
able to treat extremely large datasets, especially in 3D or more. By extremely large, we mean
that the dataset does not fit inside the memory of a standard currently available personal
computer, which is likely to be the case if it is larger than, say, 16Gb.
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II.2.2 General structure of our approach

II.2.2.1 Notations

To describe the implementation of the wavelet transform, it is convenient to define some
new vocabulary and notations. We shall call “level” of a wavelet or scaling coefficient the
integer l = J−j, where j is the scale of the coefficient. The wavelet transform is “adaptive”
when the input scaling coefficients are not all at the same scale (see Sec. II.1.2.3). The fast
wavelet transform algorithm consists in several successive “stages”. After stage k, the level
of all remaining scaling coefficients in the representation of the function must be greater
than k. The multiple real wavelet transforms that have to be computed when doing the
DTCWT of a signal (see Sec. II.1.1.3) will be called “trees”.

In 1D we adopt the following shorthand notations to design the coefficients themselves:

ji := f j,i, (II.2.1)

j̃i := f̃j,i+(S−2). (II.2.2)

Note the shift by (S − 2) of the wavelet coefficients, which will be understood later.

To store a d-dimensional array A in memory, one has to define a relationship between the
d-dimensional index i1, . . . , id of the elements and their memory position p. All the indices
start from zero. Denoting by (N1, . . . , Nd) the size of the array, we adopt the following
convention:

p = i1 +N1i2 + . . .+ (N1 . . . Nd−1)id.

The corresponding element is then denoted A(i1, i2, . . . , id). The first direction is called the
“major” direction, and the last one is called the “minor” direction.

II.2.2.2 Memory layout

Several memory layouts have been proposed for storing wavelet coefficients. In 1D, the most
common choice is to group together coefficients of the same scale, as follows:

Input 30 31 32 33 34 35 36 37

Stage 1 20 21 22 23 2̃0 2̃1 2̃2 2̃3

Stage 2 10 11 1̃0 1̃1 2̃0 2̃1 2̃2 2̃3

Stage 3 00 0̃0 1̃0 1̃1 2̃0 2̃1 2̃2 2̃3

however this approach has several disadvantages:� the transform cannot be done in place� the space locality of the wavelet coefficients is not reflected in their memory ordering,
since coefficients that are very close in space but at different scales can be stored very
far in memory.

To solve these two issues we have adopted the following interlaced storage order:
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Figure II.2.1: Schematic view of the ordering of the wavelet coefficients before and after
transformation. Red lines: possible domain decomposition for distributed memory paral-
lelization involving 4 processes. Round edged boxes: communication between processes to
compute the first step (see text). Here, the notations c and d design respectively the scaling
and wavelet coefficients, the exponents indicate the scale and the two subscripts correspond
to the positions i1 and i2.

Stage 0 30 31 32 33 34 35 36 37

Stage 1 20 2̃0 21 2̃1 22 2̃2 23 2̃3

Stage 2 10 2̃0 1̃0 2̃1 11 2̃2 1̃1 2̃3

Stage 3 00 2̃0 1̃0 2̃1 0̃0 2̃2 1̃1 2̃3

The disadvantage of the new layout is that strided memory access is required to perform
the filter at each stage except the first. We do not expect this to cost too much computa-
tionally since most of the time is spent on the first few stages of the transform, especially
in higher dimensions.

The generalization of the layout to higher dimensions is obtained by storing the input
scaling coefficients in a block n-dimensional array and by applying each stage of the 1D
wavelet transform along each direction before going to the next stage (see Fig. II.2.1 for a
2D example).

In the DTCWT case, the coefficients corresponding to the 2d possible values of the
additional parameter γ are stored contiguously in memory, and the interlaced layout is
utilized to arrange the resulting groups of coefficients.

II.2.2.3 In-place algorithm

Let us first consider the 1D case. The input scaling coefficients are stored in memory
according to the layout described above, and the array is denoted (Ai)0≤i≤N−1. The size of
A can necessarily be put under the form N = m2J , where m is an integer. To compute
level l of the FWT, Algorithm 1 below follows immediately from the relationships between
the scaling and wavelet coefficients at neighboring scales, (II.1.20-II.1.21). It is necessary to
take care of periodization, because the computed coefficients at the end of the array depend
on the input coefficients that were initially located at the beginning. These coefficients have
to be stored beforehand in a buffer, called B. The amount of memory which is required in
addition to the input array is therefore S, i.e. the contents of the buffer B, plus the temporary
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Algorithm 1 Level l for 1D in-place FWT of array (Ai)0≤i≤N−1

s← 2l

for i = 0 to S − 3 do
B(i)← A(si)

end for
5: for i = 0 to N − sS step 2s do

a←
∑Sg−1

k=0 g[k]A(i+ sk)

b←∑Sh−1
k=0 h[k]A(i+ sk)

A(i)← a
A(i+ s)← b

10: end for
for i = N/s− S + 2 to N/s− 1 step 2 do

a←
∑N

s
−i−1

k=0 g[k]A(s(i+ k)) +
∑Sg−1

k=N
s
−i g[k]B(k − N

s
+ i)

b←∑N
s
−i−1

k=0 h[k]A(s(i+ k)) +
∑Sh−1

k=N
s
−i h[k]B(k − N

s
+ i)

A(si)← a
15: A(s(i+ 1))← b

end for

variables a and b. The number of multiplications is S2−lN . Note that all indices are to be
taken modulo N , and recall that S is the length of the wavelet filter. The correctness of
this algorithm relies on the shift by (S − 2) in (II.2.2). Without this shift, it would not be
possible to derive such a simple in-place algorithm. To compute the full FWT, Algorithm 1
is repeated for l = 0, . . . , J − 1. For the inverse wavelet transform, which we omit here, the
procedure is roughly the same except that the coefficients must be traversed backwards to
preserve the in-place property.

Algorithm 2 d-dimensional in-place FWT of (A(i))

for l = 0 to J − 1 do
s← 2l

for k = 1 to d do
for i′ ∈⊗p 6=k{0, . . . , Np/s− 1} do

5: apply Algorithm 1 to (A(si′1, . . . , si
′
k−1, i, si

′
k, . . . , si

′
d−1))1≤i≤N

end for
end for

end for

In the d-dimensional case, each level of the wavelet transform is decomposed into d
stages acting along each of the dimensions, as can be seen from (II.1.21), and similarly for
the inverse wavelet transform (II.1.23). Using this property, the generalization of Algorithm 1
to d dimensions is straightforward, see Algorithm 2. A denotes the array containing the input
coefficients, and we take J such that for all k, Nk = mk2

J , where mk is an integer. The
loop on i′ in Algorithm 2 can be seen as a loop on 1D cuts through the array A in the
direction k. The complexity of Algorithm 2 is :

Q =

J−1∑

l=0

dSN1N2 . . . Nk2
−dl ≃ 2dSN1N2 . . . Nk
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For illustrative purposes, we detail the procedure in the case of a 2D array of size 8× 8.
The memory locations of the scaling coefficients at the finest scale are shown in Fig. II.2.1
(left). The red lines should be ignored for now. The FWT algorithm starts by computing
a single level of the filter bank on the columns of the matrix, using (II.1.20) and (II.1.21).
The results of the computation are stored in-place, alternating between scaling coefficient
and wavelet coefficient. Due to the periodic wrapping of the column, the leading S − 2
coefficients at scale J are needed to compute the trailing S − 2 coefficients at scale J − 1.
These coefficients should therefore not be overwritten right away, but held in memory until
they are not needed anymore. This can be accomplished thanks to a small buffer of size
S − 2. No additional memory is required. The results of this very first step are shown in
Fig. II.2.1 (middle). The exponents 2.5 indicate that we stand halfway through the first level
of the transform. Once all the columns have been filtered comes the turn of the lines. They
are processed in exactly the same way, except that the stride in memory is now much larger,
which makes this step usually more expensive due to cache issues. After all array dimensions
have been filtered, the input data has been replaced by scaling and wavelet coefficients at
scale J − 1. The scaling coefficients sit in the memory locations with even-numbered row
and column indices. The remaining memory locations are filled with the wavelet coefficients
at scale J − 1, which do not need to be touched by any further steps of the algorithm.
The next level in the filter bank can hence be computed exactly in the same way as the
first, as long as only the even-numbered rows and columns of the original memory space are
considered. Continuing this procedure until only one row and one column remain yields the
fully wavelet transformed data, arranged as shown in Fig. II.2.1 (right).

The generalization to the DTCWT is relatively straightforward, based on what we have
outlined at the end of Sec. II.1.2.1. The FWT algorithm is first applied in place to compute
the coefficients with respect to the anisotropic wavelets (II.1.26), and the linear combination
(II.1.25) is then utilized to deduce the coefficients in the DTCWT basis. Using this approach
the total cost of the DTCWT would be 2d times the one of a real FWT, plus the cost required
to compute the final linear combinations. In fact a trick, proposed by N. Kingsbury, can be
implemented to reduce the overhead factor to d−1(2d − 1) (e.g., 1.5 instead of 4 in 2D and
2.33 instead of 8 in 3D).

II.2.3 Adaptive wavelet transform

The implementation of the adaptive wavelet transform is much more challenging than the
non-adaptive one, due to the structure of the index sets Λ and Λ (see Sec. II.1.2.3). Hence
we consider here only the 1D case. It follows from the definition (II.1.44) that Λ has at least
as many coefficients as Λ. Therefore, the memory requirements for the adaptive wavelet
transform are determined by Λ. The coefficients are stored in a contiguous block of memory,
ordered according to the position in space of their corresponding scaling function, that is
2−ji. To describe the set Λ itself, we also store the memory locations where the scale of the
coefficients changes.

For simplicity we describe the FWT and IWT algorithms in detail only in the simple
example corresponding to Fig. II.1.4, and we restrict ourselves to a few remarks concerning
the generalization to more complex structures. As usual we assume that S = 4. The
input scaling coefficients (corresponding to panel (f) in Fig. II.1.4) are ordered in memory
as follows:
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50 51 52 53 54 55 56 57 58 59 510 511 512 513 514 515 48 49 410 411 412 413 414 415

For the first stage, only the coefficients at scale 5 need to be considered, and those at
coarser scales are left untouched. To compute 4i, 4̃i for i ≤ 6, (II.1.20-II.1.21) can be
directly applied, as in Algorithm 1:

40 = h050 + h151 + h252 + h353

4̃0 = g050 + g151 + g252 + g353, etc.

yielding:

40 4̃0 41 4̃1 42 4̃2 43 4̃3 44 4̃4 45 4̃5 46 4̃6 514 515 48 49 410 411 412 413 414 415

To compute 47, we use the edge matrix procedure outlined in Sec. II.1.2.3. On the other
hand, by looking at the red circles in Fig. II.1.4 (panel (e)), we see that 4̃7 = 0. Stage 1 is
thus completed:

40 4̃0 41 4̃1 42 4̃2 43 4̃3 44 4̃4 45 4̃5 46 4̃6 47 0 48 49 410 411 412 413 414 415

Note the wasted memory location indicated by the presence of the zero right after 47, and
due to the fact that Λ is bigger than Λ. For subsequent stages, we may simply apply the
non-adaptive algorithm to the set of scaling coefficients at scales 4, 3, 2 and 1 successively,
since they are all known when they are needed. The final memory layout is:

00 4̃0 3̃0 4̃1 2̃0 4̃2 3̃1 4̃3 1̃0 4̃4 3̃2 4̃5 2̃1 4̃6 3̃3 4̃7 0̃0 3̃4 2̃2 3̃5 1̃1 3̃6 2̃3 3̃7

For the inverse transform, the adaptivity influences only the last stage as well, and even
there it poses no specific difficulty, since we have everything we need to directly apply
(II.1.23). If the sets Λ and Λ have a more complex structure, the same simple rules can
be applied. Condition (II.1.38) ensures that the edge matrix is sufficient to resolve any
indeterminacy that may arise during the process. Note that the more Λ is complex, the
more the memory traversal pattern becomes complicated, especially during the intermediate
stages of the transform, when the wavelet coefficients stored from previous stages have to be
jumped over. Extensive studies will be necessary to determine the impact on the performance
of the algorithm, as compared to other approaches using pointers.

II.2.4 Parallelization

Parallelization is considered here only for the non-adaptive wavelet transform. We adopt a
hybrid MPI/OpenMP scheme, where the domain is, from the beginning, decomposed and
distributed between processes communicating through MPI, and where the computations of
each process are in turn shared between several threads using the OpenMP standard.

II.2.4.1 Shared memory OpenMP parallelization

The OpenMP parallelization layer is activated only for wavelet transforms involving two
dimensions or more. According to Algorithm 2, to compute one stage of a forward or
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inverse wavelet transform, a d-dimensional array has to be traversed successively along all
the directions, and therefore a total of d times. When the array is traversed along direction k,
the computations are reduced to a series of single-stage one dimensional wavelet transforms.
The OpenMP parallelization consists in splitting the loop on i′ into pieces, each piece being
then attributed to a thread. The splitting is done along direction k + 1 if k < d and along
direction 1 if k = d. We expect the speedup due to this parallelization layer to scale linearly
with the number of threads, since there is no data dependency at all.

II.2.4.2 MPI parallelization

Algorithm 3 MPI-parallel 1D in-place FWT of (A(i))

for l = 0 to J − 1 do
s← 2l

for k = 1 to d do
Send data with MPI_ISend / MPI_IRecv

5: for i′ ∈
⊗

p 6=k{0, . . . , Np/s− 1} ∩ {i−p , . . . , i+p − 1} do
A′ points to (A(si′1, . . . , si

′
k−1, i, si

′
k, . . . , si

′
d−1))i−k ≤i<i+k

for i = i−k to i+k − 1− sS step 2s do

a←
∑Sg−1

k=0 g[k]A′(i+ sk)

b←
∑Sh−1

k=0 h[k]A′(i+ sk)
10: A′(i)← a

A′(i+ s)← b
end for

end for
Wait for data with MPI_Wait

15: B is such that B(i) = A(si1, . . . , sik − i+k , . . .) for 0 ≤ ik < S − 2
for i′ ∈⊗p 6=k{0, . . . , Np/s− 1} ∩ {i−p , . . . , i+p } do
A′ points to (A(si′1, . . . , si

′
k−1, i, si

′
k, . . . , si

′
d−1))i−k ≤i≤i+k

B′ points to (B(i′1, . . . , i
′
k−1, i, i

′
k, . . . , i

′
d−1))0≤i≤2S−5

q ← 0
20: for i = i−k − sS + 2 to i+k − 1 step 2 do

a←∑i+k −i−1

k=0 g[k]A′(i+ sk) +
∑Sg−1

k=i+k −i
g[k]B′(k −N/s+ q)

b←
∑i+k −i−1

k=0 h[k]A′(i+ sk) +
∑Sh−1

k=i+k −i
h[k]B′(k −N/s+ q)

A′(si)← a
A′(s(i+ 1))← b

25: q ← q + 1
end for

end for
end for

end for

When the MPI layer is activated, we assume that the input data has already been dis-
tributed among processors, according to a certain domain decomposition pattern. Each piece
of the global array A is assumed to be of the form (A(i1, . . . , id)) where each ik varies in
a certain interval

{
i−k , . . . , i

+
k − 1

}
. The intervals should have even length, but they are

otherwise arbitrary.
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The loops on l and k in Algorithm 2 are not affected by the parallelization, and the
loop in i′ is simply restricted to the local array,

{
i−k , . . . , i

+
k − 1

}
. The main difficulty is to

parallelize Algorithm 1. The idea is to make use of the buffer B to communicate between
processors. However, inserting the MPI calls directly within Algorithm 1 could be very
inefficient because it would imply the exchange of many very small messages of size (S−2).
To avoid this issue, the idea is to merge the messages into bigger pieces, as summarized by
Algorithm 3. We do not enter into the details of the exact contents of the messages that
must be transferred between processors, but they are such that the condition indicated at
line 15 is satisfied. Under that condition each process has all the input it needs to compute
the requested wavelet and scaling coefficients. A major advantage of this communication
scheme is that it allows to overlap communication and computation, since the data can be
handed over to MPI before the main loop (line 4) and received after it has completed (line
14). As a counterpart, the necessary buffers become large when computing the coarse levels
of the transform, which limits the parallel efficiency (See Sec. II.3.1).

For clarity we now come back to our 2D example (Fig. II.2.1) and describe its paralleliza-
tion using MPI. We assume that the initial data is split between 4 processes, as indicated by
the red lines in Fig. II.2.1 (left), that S = 4, and that the sizes of the subdomains belonging
to each process are equal, and are powers of 2.. Processes are numbered in row-major order.
To compute the coefficients in the dotted blue box (Fig. II.2.1) , all the coefficients in the
solid blue box need to be sent from process 2 to process 1. Because of periodicity, all the
coefficients in the solid green box need to be sent from process 1 to process 2. The same kind
of communication occurs between processes 3 and 4 during this step. The coefficients in the
magenta boxes can be computed without waiting for the communications to be completed.
For large array sizes, they will correspond to the majority of coefficients, ensuring a good
overlap of computation and communication.

II.3 Verification and benchmarking

In this section, we report the results of a few test cases that required particular attention.

II.3.1 Parallel efficiency

The consumed CPU time for a forward wavelet transform using the algorithm described in
Sec. II.2.4, with Daubechies filters of length 4, was measured on an IBM Regatta Power6
machine. The results are shown in Fig. II.3.1. One observes near perfect speedup up to
32 processes. The sudden degradation of efficiency when going from 32 to 64 processes is
mostly due to hardware limitations, since each node on the machine contains 32 Power6
cores. Simulations with a higher number of cores require communication through a different
network, which has a longer latency.

We have also performed benchmarks on a BlueGene/P machine, and the results are
reported in Fig. II.3.2. This machine is made of basic cubes, each one containing 1024
nodes. Each node is made of 4 CPUs sharing 2Gb of memory. The machine can be used in
three different modes, virtual node (VN) where each process is attributed to one CPU, dual
mode where each process is attributed to two CPUs, and SMP mode, where each process
is attributed to four CPUs. For the tests reported here, only the VN and SMP modes are
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considered, and no OpenMP parallelization was used. The algorithm shows good scaling
results for 3D arrays using up to 1024 processes. In 2D, for an array of size 16384× 16384,
we observe near perfect scaling up to 1024 processors in SMP mode, and an efficiency of
0.5 up to 1024 processors in VN mode.

The results of this section demonstrate the good scaling properties of the FWT algorithms
we have presented, on two quite different machines, and for large datasets.

II.3.2 Representation of translation operators

We now make a brief digression in order to show the limitations of translation invariance in
complex-valued wavelet families. Moreover, we will derive a formula that will be useful for the
next section. Here, ϕ can be any square integrable, complex-valued, 1-periodic function on
R, and not necessarily a scaling function. Our goal is to calculate the matrix of a translation
operator with respect to a family of evenly spaced translates of ϕ. We look for conditions
under which the subspace spanned by these integer translates is stable, or approximately
stable, under all translations.

II.3.2.1 Expansion over a family of translates

For ξ ∈ T and f ∈ L2(T), let Tf be defined by:

∀x ∈ R, (Tξf)(x) = f(x− ξ). (II.3.1)

To study T it is convenient to introduce the Fourier modes (ck)k∈Z, defined for x ∈ T by

ck(x) = e2ιπkx, and which make up an orthogonal basis of L2(T). Denoting by (f̂k)k∈Z the
Fourier coefficients of a function f , T is thus characterized by

T̂ fk = e2ιπkξf̂k. (II.3.2)

Now let M be any positive integer, define for 0 ≤ m < M ϕm = Tm/Mϕ, and consider the
mapping F from L2(T) to CM which is characterized by (Ff)[m] = 〈f | ϕm〉, where the
elements of a sequence a ∈ CM are denoted a[m], m = 0, . . . ,M − 1. Using Parseval’s
identity and (II.3.2) we get

(Ff)[m] = 〈f̂ | ϕ̂m〉 = e−2ιπk m
M 〈f̂ | ϕ̂〉, (II.3.3)

where we have denoted by 〈· | ·〉 the canonical scalar product on l2(Z). Now denoting
by ǫα[m] = 1

M
e2ιπα

m
M for α ∈ Z the discrete Fourier basis in CM , we obtain a matrix

representation of the operator F : L2(T)→ CM :

〈Fek | ǫα〉 = 〈êk | ϕ̂〉
M−1∑

m=0

1

M
e2ιπ(α−k)m

M .

Denoting momentarily by Skα the Poisson sum on the right hand side, we have the classical
result that Skα = 1 if k − α is a multiple of M , and Skα = 0 otherwise. Therewith:

〈Fek | ǫα〉 = Skαϕ̂k (II.3.4)
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and moreover, letting F ∗ : CM → L2(T) be the adjoint of F , we have

〈F ∗Fek | ek′〉 = 〈Fek | Fek′〉 =

M/2∑

α=−M/2+1

〈Fek | ǫα〉〈ǫα | Fek′〉 (II.3.5)

=

M/2∑

α=−M/2+1

Skαϕ̂kSk′αϕ̂k′ (II.3.6)

= ϕ̂kϕ̂k′ if M | k − k′ and 0 otherwise. (II.3.7)

II.3.2.2 Translation operators and aliasing terms

We are looking for a representation of Tξ in CM , that is, a mapping T+
ξ : CM → CM so

that the following diagram commutes:

E �
F ∗

V

E

Tξ

? F
- V

T+
ξ

?

An obvious solution to this problem would be given by T+
ξ = FTξF

∗. Let us first examine
the outcome of this choice.

〈FTξF ∗ǫβ | ǫα〉 = 〈TξF ∗ǫβ | F ∗ǫα〉 =
∑

k∈Z

〈TξF ∗ǫβ | ek〉〈ek | F ∗ǫα〉

=
∑

k∈Z

e2ιπkξ〈ǫβ | Fek〉〈Fek | ǫα〉 =
∑

k∈Z

e2ιπkξSkβϕ̂kSkαϕ̂k

= δαβ
∑

p∈Z

e2ιπ(α+Mp)ξ|ϕ̂[α +Mp]|2,

where δαβ = 1 if α = β and 0 otherwise. If the (ϕm) are pairwise orthogonal, then for all α
(Mallat, 1999, p.222): ∑

p∈Z

|ϕ̂[α +Mp]|2 = 1 (II.3.8)

so that FT0F
∗ = FF ∗ = IdV . More generally, the condition T+

0 = IdV is natural to
impose. However if ϕ is a complex Kingsbury scaling function, this will not be the case.
Instead, ϕ = ϕR + iϕI where (ϕRm)0≤m≤M−1 and (ϕIm)0≤m≤M−1) are orthogonal families,
but in general 〈ϕRm | ϕIm′〉 6= 0. This is the main difference with the Fourier case, where the
sin and cos families are completely orthogonal to each other. To overcome this difficulty,
we need to consider another lifting of Tξ. Let us denote by σ the complex conjugation with
respect to the canonical basis in V . One has:

〈σFTξF ∗σǫβ | ǫα〉 = 〈FTξF ∗ǫ−β | ǫ−α〉 = δαβ
∑

p∈Z

e2ιπ(−α+Mp)ξ|ϕ̂[−α +Mp]|2

= δαβ
∑

p∈Z

e2ιπ(α+Mp)ξ|ϕ̂[−α −Mp]|2
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Defining now T+
ξ = 1

2
(FTξF

∗ + σFT−ξF
∗σ), one has:

〈T+
ξ ǫβ | ǫα〉 = δαβ

1

2

∑

p∈Z

e+2ιπ(α+Mp)ξ|ϕ̂[+α+Mp]|2 +e−2ιπ(α+Mp)ξ|ϕ̂[−α−Mp]|2. (II.3.9)

Now putting ξ = 0:

〈T+
0 ǫβ | ǫα〉 = δαβ

1

2

∑

p∈Z

|ϕ̂[+α +Mp]|2 + |ϕ̂[−α −Mp]|2

= δαβ
1

2

∑

p∈Z

∣∣∣ϕ̂R[+α +Mp]
∣∣∣
2

+
∣∣∣ϕ̂I [+α +Mp]

∣∣∣
2

+ 2Im

(
ϕ̂R[+α +Mp]ϕ̂I [+α +Mp]

)
+
∣∣∣ϕ̂R[−α −Mp]

∣∣∣
2

+
∣∣∣ϕ̂I [−α−Mp]

∣∣∣
2

+ 2Im

(
ϕ̂R[−α−Mp]ϕ̂I [−α −Mp]

)

= δαβ
∑

p∈Z

∣∣∣ϕ̂R[+α+Mp]
∣∣∣
2

+
∣∣∣ϕ̂I [+α +Mp]

∣∣∣
2

.

If 2ϕR and 2ϕI independently satisfy (II.3.8), as in the case of a DTCWT pair, then we
finally have T+

0 = IdV .

More generally, the operator T+
ξ defined by (II.3.9) tells us how the coefficients of a

function over the family of translates of ϕ is transformed under the action of the translation
operator Tξ. For an arbitrary choice of ϕ, this process will entail some loss of information,
but for certain clever choices of ϕ, this loss of information can be made minimal. This is
the meaning of “translation invariance” in our context. The goal of the construction of
complex-valued wavelets is precisely to maximize translation invariance, by tailoring ϕ̂ so
that only one term dominates all the others in the sum (II.3.9). In the next paragraph,
we give actual examples of the application of T+

ξ to some functions, in order to assess the
translation invariance properties of these wavelets.

II.3.2.3 Numerical examples

In this section, we use the above expression (II.3.9) to translate functions numerically. On
Fig.II.3.3 we plot the phase and modulus of a translation filter computed for the Q-Shift D
wavelet with ξ = 1/8th of a sample. We see in particular that the phase is not linear but
seems to have some sort of cosine shape. The modulus is not constant equal to one, which
it would have to be if the transform was perfectly translation invariant. On Fig.II.3.4, the
phase of the Fourier coefficient of a discrete Dirac delta function is plotted as a function of
wave-number, for increasing translation parameters. Perfect translation at all wave-numbers
would correspond to a linear increase of the phase. On Fig.II.3.5, we show the functions
obtained by repeatedly applying a translation operator with a very small parameter to a
Gaussian function. The dispersion after each translation is very small, but it accumulates
and thus slowly deteriorates the result.
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II.3.3 Power spectrum estimation

II.3.3.1 Statement of the problem

Given one realization of a zero-mean discrete stationary Gaussian process (Xn)0≤n≤N−1

(N = 2J), one would like to find out some information about its power spectrum ĉ(k),
where the covariance function c is defined by

c(p) = E(XnXn+p).

A popular solution when the process is known to posses some self-similarity properties is
to use the discrete wavelet coefficients to perform this estimation. In particular the power
spectrum is related to the variance of the wavelet coefficients :

X̃jb = 〈X | ψjb〉.

For example, in (Kaplan and Kuo, 1996; Abry et al., 1993; Abry and Veitch, 1998; Tewfik and
Kim, 1992) orthonormal wavelet decompositions are used to estimate the Hurst exponent of
fractional Brownian motions. In particular it is shown that if the mother wavelet has enough
vanishing moments, the variation of σ2

(j) with j is closely related to the spectral behavior

of the process. The wavelet coefficients at different scales and/or positions are almost
uncorrelated, and bounds for the residual correlation are given. Then an estimator for the
Hurst exponent H is constructed, and the variance of this estimator is studied. However
the results provided are asymptotic and assume complete uncorrelation between the wavelet
coefficients which is never exactly the case. As one can expect intuitively, more weight has
to be given to finer scales because they benefit from a larger number of orthogonal wavelets.
In the following, we propose to give some quantitative results concerning the estimation of
σ2

(j) with known wavelet families. In particular, we are interested in the comparison between
orthogonal wavelet families and DTCWT complex-valued wavelets.

In the following we will drop the index j and consider the more general problem of
estimating

σ2 = E
(
|〈X | ψ〉|2

)
, (II.3.10)

where ψ is any given function in L2(T), normalized to ‖ψ‖2 = 1. By the Parseval identity,
σ2 can be related to the power spectrum of the process:

σ2 =
1

N

∑

k∈Z

ĉk

∣∣∣ψ̂k
∣∣∣
2

,

and for ξ ∈ R, we also have thanks to the stationarity of X:

σ2 = E(|〈X | Tξψ〉|2) (II.3.11)

where Tξ was introduced in the previous section. In the following we study estimators for σ2

of the form

Σ2 =
1

2j

2j−1∑

i=0

|〈X | T2−j iψ〉|2 . (II.3.12)
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II.3.3.2 Variance of Σ2

The estimator Σ2 is always unbiased, because

E
(
Σ2
)

=
1

2j

2j−1∑

i=0

E
(
|〈X | T2−j iψ〉|2

)
= σ2, (II.3.13)

where we have made use of (II.3.11). The statistical uncertainty associated to Σ2 can be
quantified by computing its variance, denoted Var (Σ2). Using Parseval again, we can rewrite
Σ2 as:

Σ2 =
1

2j

2j−1∑

i=0

〈
X̂ | T̂2−jiψ

〉〈
X̂ | T̂2−j iψ

〉
, (II.3.14)

or in a more condensed form:

Σ2 =
1

2j
X̂†F †FX̂ (II.3.15)

where ·† denotes the Hermitian conjugate of a matrix, and F is the matrix defined by

(FX̂)i =
〈
X̂ | T̂2−j iψ

〉
, that we have already encountered in the previous section. As the

process is stationary and periodic, we known that the discrete Fourier transform achieves
a Karhunen-Loeve decomposition, which means that the components of the vector X̂ are
independent random variables. A classical theorem about the variance of a quadratic form
evaluated for a jointly Gaussian vector hence gives us:

Var
(
Σ2
)

=
2

22j
Tr

((
F †FCov

(
X̂
))2

)

where the diagonal matrix Cov
(
X̂
)

is the covariance of X̂, or in other words the power

spectrum of the process, (ĉ[k]), that we have already encountered. Using the result (II.3.5)
from the previous section, we obtain:

Var
(
Σ2
)

= 2
∑

k∈Z

|ĉk|2
∣∣∣ψ̂k
∣∣∣
2∑

γ∈Z

∣∣∣ψ̂k+2jγ

∣∣∣
2

(II.3.16)

which is the essential result of this section. The terms corresponding to γ 6= 0 in this
expression are called aliasing term, and they should be made as small as possible if we want
the variance of Σ2 to be small.

II.3.3.3 Behavior of the variance

There are cases where the aliasing terms in (II.3.16) are exactly or almost equal to zero,
so that considering more and more translated version of our function doesn’t bring any
improvement to the variance estimator. The most simple one arises when we take a Fourier
mode:

ψ(x) = exp(2ιπk0x),

for which the aliasing products
∣∣∣ψ̂k
∣∣∣
2 ∣∣∣ψ̂k+2jγ

∣∣∣
2

are zero whatever the values of k0 and γ and

the variance of the estimator is always simply given by

Var(Σ2) = 2 |ĉk0 |2 .
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Haar Coiflet 12 Coiflet 18 Daub. 4 Daub. 8 Daub. 12 QShift-B
Σ 0.123 0.125 0.125 0.125 0.125 0.125 0.105
r 3.00 1.57 1.43 2.03 1.60 1.45 1.003

Table II.3.1: Deterioration of the variance estimator due to lack of translation invariance,
for white noise and different wavelets.

The complex-valued wavelets corresponding to the dual tree complex wavelet transform
(DTCWT) (Kingsbury, 2001) possess the key shift-invariance property that makes the alias-
ing products almost equal to zero (Kingsbury, 2000, 1999). We shall see numerical examples
of that phenomenon below. For that purpose, let rj be defined by:

r =

∑
k∈Z
|ĉk|2

∣∣∣ψ̂k
∣∣∣
2∑2j−1

γ=0

∣∣∣ψ̂k+2jγ

∣∣∣
2

∑
k∈Z
|ĉk|2

∣∣∣ψ̂k
∣∣∣
4 ,

which quantifies the increase of variance due to the presence of aliasing terms.

II.3.3.4 Numerical examples

We now report results on the evaluation of Σ and r for some popular wavelets. They are
summarized in table II.3.1. The estimation is made at scale j = 7 (which contains 128
wavelet coefficients), for a white noise (ck = 1 for all k). We see that smaller values of r
are attained by higher order wavelets. This is explained by the property that higher order
wavelets are more localized in Fourier space, and thus less prone to aliasing effects. On the
other hand, the corresponding wavelets have a longer support, and the wavelet coefficients
are thus affected by more fluctuations, which explains why the value of Σ is close to 0.125
for all wavelet families. The only exception is the QShift-B wavelet, for which the standard
deviation is reduced to 0.105. From these results, we conclude that Kingslets allow for a
better estimation of the power spectrum of random processes, thanks to their translation
invariance properties.

II.3.4 Denoising correlated noises

One of the important research subjects that we have explored is the denoising of turbulent
vorticity fields under the assumptions that the noise is Gaussian and additive, but with as
little restriction as possible on the correlation of the noise. To understand the inherent
limitations implied by the presence of correlations, we have made some tests with academic
signals which are reported here. We circumvent for a moment the problem of estimating
the variance of the noise by using synthetic noise with a known variance. Even the constant
q in (II.1.53) is determined from the data itself in order to minimize the risk. In this way
we obtain a lower bound on the risk which is achievable in practice, and we concentrate on
the effect due to the correlation of the noise, independently of the chosen algorithm. This
procedure is called “oracle thresholding”, see (Mallat, 1999).

We focus on two types of correlated noise that are idealized versions of those often en-
countered in practice, namely fractional Gaussian noise and exponentially correlated Gaussian
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noise. The correlation function of a fractional Gaussian noise is given by

E(XH [0]XH [n]) =
σ2

2
(|n+ 1|2H + |n− 1|2H − 2|n|2H),

where H is called the Hurst exponent. Some examples of realizations are presented in
Fig. II.3.6, along with their time integral, which are called fractional Brownian motions. The
covariance of an exponentially correlated Gaussian noise is given by

E (X[0]X[n]) = σ2 exp

(
−|n|
τC

)
,

where τC is called the correlation time.

The results, presented in Fig. II.3.8 show that in each case, the performance of denoising
is strongly limited by the correlation in the noise. The limitation is observed when the Hurst
exponent tends to 1, and when the correlation time exceeds a few percents of the total
length of the signal. This can be heuristically understood by noticing that the more a noise
is correlated, the more it will affect the wavelet coefficients at coarse scales. Since there
are few wavelet coefficients at coarse scale, there is simply no room left for the signal to
emerge out of the background noise. Anyway, as we have seen in the previous section, it
would be very difficult to estimate precisely the variance of the noise at coarse scales even if
it was separated from the signal, because the small number of available wavelet coefficients
implies a large uncertainty on the estimation. Based on these simple tests, we have decided
to systematically restrict the denoising to scales finer than some minimal scale j0, whose
value will be specified later on.
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Figure II.3.1: Consumed CPU time for increasing number of MPI processes on the IBM
Regatta Power6. Left: 4096 × 4096 2D array. Right: 256 × 256 × 256 3D array. The
different colors indicate successive scales in the wavelet transform, starting from the finest
scale at the bottom.

Figure II.3.2: FWT performance on IBM BlueGene machine. Left: CPU time consumed
to compute one FWT of a 2D array of size 16384× 16384, as a function of the number of
processors and parallel mode (see text). Right: CPU time consumed to compute on FWT
of a 3D array of size 1024× 1024× 1024 using the SMP parallel mode. In both figures the
various colors distinguish the contributions of the successive scales of the FWT, from the
finest scale in blue at the bottom to the coarsest scale at the top.
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Figure II.3.3: Phase (left) and modulus (right) of the translating filter (II.3.9) for the qshift
d wavelet at several scales. The translation parameter ξ equals one eighth of a sample.
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Figure II.3.4: The phase of the Fourier transform of a Dirac delta function at the origin, after
translation. Top,left: QShift B, Top,right: QShift C, Bottom,left: QShift D, Bottom,right:
QShift 32
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Figure II.3.5: The shifts of a Gaussian by increasing amounts, computed using (II.3.9)
Top,left: QShift B, Top,right: QShift C, Bottom,left: QShift D, Bottom,right: QShift 32,

Figure II.3.6: Examples of realizations of fractional Gaussian noises (left) and the associated
fractional Brownian motions (right) for several values of the Hurst exponent H . The number
of samples is N = 1024.
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Figure II.3.7: Denoising of an academic signal corrupted by Gaussian white noise by thresh-
olding of its wavelet coefficients. The procedure used to estimate the variance of the noise
is the global CVE algorithm, which will be explained in Sec. V.3.5.1.

Figure II.3.8: Influence of noise correlation on denoising performance, for the academic
signal in Fig. II.3.7. Left: optimal risk for fractional Gaussian noise as a function of the
Hurst exponent. Right: optimal risk for exponentially correlated noise as a function of the
correlation time.
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Figure II.4.1: Schematic representation of the camera setting with appropriate notations.

II.4 Application: edge plasma tomography

This section stems from a collaborative effort, with the participation of Nicolas Fedorczak
and Pascale Monier-Garbet from CEA-IRFM, Frédéric Brochard and Gérard Bonhomme from
LPMI-CNRS-IJL (Nancy Université), Kai Schneider and Marie Farge. It will form the basis
of a future publication after some remaining questions are addressed.

II.4.1 Introduction

Turbulent fluctuations of plasma density in the edge of tokamaks are important for cross-field
particle and heat transport, and for plasma-wall interaction. The plasma is at a relatively
low temperature in these regions, allowing it under certain conditions to emit visible light,
which can be observed by a fast camera.

Since the photons received by each pixel on the camera screen have been emitted all
along the corresponding line of sight, the received intensity cannot be directly related to the
volumic emissivity of the plasma. Nonetheless, as we will show, it is theoretically possible to
invert the transformation if one assumes that the light emission is constant along field lines.
This is a reasonable hypothesis if the toroidal angle does not vary too much within the field
of view covered by the camera.

A similar problem has been encountered in space imaging, or in X-ray sensing of mechani-
cal devices, but in these cases the simplifying assumption was made, that the object was lying
at infinity. In that case the transformation is called the Abel transform. We first introduce
a generalized definition of the Abel transform, and propose a way to solve the associated
inverse problem by wavelet-vaguelette decomposition. We then show a few academic exam-
ples of inversion, validate the procedure by applying it to independently generated images,
and finally, apply it to Tore Supra movies.
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II.4.2 Reconstruction method

II.4.2.1 Notations

We start with magnetic coordinates (Ψ, θ, ϕ), where Ψ is a flux coordinate, ϕ is the toroidal
angle, and θ is an appropriate poloidal coordinate such that the magnetic field lines have the
equation: {

Ψ = ψ0

ϕ− q(Ψ)θ = constant
(II.4.1)

where q is the safety factor. We assume that (Ψ, θ, ϕ) can be related to cylindrical co-
ordinates (ρ, z, ϕ), where ρ is the distance to the axis of symmetry, and z is the vertical
coordinate with respect to the horizontal midplane. In general, such a relation can be ob-
tained using a magnetic reconstruction code, but for the purpose of this study, we limit
ourselves to magnetic surfaces having a circular cross section, and we allow for a Shafranov
shift. Taking for ψ the radius r of the flux surface, we obtain the analytic expressions:

ρ = R

(
1 + γ

(
1− r2

a2

))
+ r cos

(
θ +

ϕ

q(r)

)
(II.4.2)

z = r sin(θ) (II.4.3)

where γ characterizes the amplitude of the Shafranov shift. The axially symmetric case
corresponds to q = +∞.

The camera is modeled by a vanishingly small diaphragm located in cylindrical coordinates
at C(ρC , zC , ϕC). The vertical and horizontal tilts of the screen are denoted respectively by
αC and βC , and the distance between the screen and the diaphragm is d. The rays going
through C can be parametrized by two angles : α is the angle with the plane ϕ = 0, and β
is the angle with the plane z = 0. We call H the point on a ray which has the smallest ρ,
and ρH is then the distance of closest approach of the ray to the z-axis. See Fig. II.4.1 for
a schematic view of the setup.

Elementary geometry allows us to express α and β as functions of ρH and zH as follows:

sin(α− ϕC) =
ρH
ρC

(II.4.4)

tan(β) =
zH − zC√
ρ2
C − ρ2

H

(II.4.5)

and, denoting by s the arc length along a ray, with s = 0 at H , we obtain a parametric
representation of the ray in cylindrical coordinates:

ρ(s) =
√
ρ2
H + s2 cos2(β) (II.4.6)

z(s) = zH + s sin(β) (II.4.7)

ρ(s) cos(ϕ(s)− ϕC) = ρC − s cos(α− ϕC) (II.4.8)

II.4.2.2 Helical Abel transform

Let S0(ψ, θ, ϕ) be the emissivity of the plasma at a point M defined by its field line coordi-
nates (ψ, θ, ϕ). S0 is expressed in W.m−3.Sr−1. We assume that the emission spectrum is
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independent of position, so that the spectral response of the camera can be eliminated by
a proper calibration. Moreover, we consider a transparent plasma, so that the flux density
received by the camera screen around a point P = (x, y) is given, up to a dimensional
constant depending on d and the opening of the diaphragm, by the integral of the volume
emissivity along the unique ray going through P and C:

I0(x, y) =

∫ ∞

sC

S0(ψ, θ, ϕ)ds (II.4.9)

where

x = d tan(α− αC) (II.4.10)

y = d tan(β − βC) (II.4.11)

and

sC = −
√
ρ2
C − ρ2

H

cosα
(II.4.12)

We denote by K the operator such that I0 = KS0. We are interested in the action of
K on special kinds of emissivity fields, namely those that vary slowly along magnetic field
lines as defined by Eq. II.4.1. Due to the fact that the safety factor q can be irrational, it
would not be realistic to assume that S0 is constant along field lines, since by continuity
that would, in most cases, mean that S0 is constant on magnetic surfaces. In the following,
we shall assume that S0 is constant on any connected portion of a field line visible in the
camera field. This requirement will not exactly be met by real data, as we shall see, and this
is one of the reasons why we need a very robust inversion algorithm. Now the restriction of
K to these helically symmetric fields is a generalization of the classical Abel transform. To
compute I0, (II.4.2-II.4.3) need to be inverted and (II.4.9) can then be used. In our case the
inversion can be done analytically, since r is defined as a root of a quadratic polynomial.

To discretize the operator K, we restrict (r, θ) to a rectangular domain [rmin, rmax] ×
[θmin, θmax] and use a regular Cartesian grid (ri, θj) with i = 1, . . . , Nr and j = 1, . . . , Nθ.
We assume that S vanishes for r > rmax and for r < rmin. In the θ direction, we as-
sume extend S periodically with the period θmax − θmin. Similarly, (x, y) is restricted to
[xmin, xmax] × [ymin, ymax] and discretized using by a grid (xi, yj) with i = 1, . . . , Nx and
j = 1, . . . , Ny. The integral in (II.4.9) is approximated by the method of rectangles using
1024 points between the bounds smin and smax defined by:

cos(α)2s2
min = ρ2

C − ρ2
H (II.4.13)

cos(α)2s2
max = (R + a)2 − ρ2

H (II.4.14)

(II.4.15)

The discretized operator K, for which we keep the same notation for simplicity, thus trans-
forms matrices defined on the grid (ri, θj) into matrices defined on the grid (xi, yj).

II.4.2.3 Wavelet-vaguelette decomposition

In practice, the measured I is corrupted by noise:

I = I0 +W = KS0 +W,
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and even if K is invertible, a regularization method must be used to obtain a reasonable
estimate for S0. We propose to use the wavelet-vaguelette decomposition (Donoho, 1992)
(WVD) method, which is now briefly recalled. Consider an orthogonal wavelet basis (ψλ)λ∈Λ

on the domain [rmin, rmax] × [θmin, θmax] with periodic boundary conditions. The elements
of the index set Λ are of the form (j, i), where j indicates the scale of the wavelet, and i its
position. The corresponding vaguelette families (uλ)λ∈Λ and (vλ)λ∈Λ are then defined by:

Kψλ = κλvλ (II.4.16)

K∗uλ = κλψλ, (II.4.17)

where K∗ is the adjoint of K, and the constants κλ are chosen in order to impose ‖uλ‖ = 1
for all λ. Therewith vλ is defined in the image plane (x, y), while uλ is defined in the (r, θ)
plane. From their definitions (II.4.16-II.4.17) it follows that the families (uλ) and (vµ) satisfy
the biorthogonality relations:

〈uλ | vµ〉 = δλ,µ (II.4.18)

where δλ,µ is the Kronecker symbol.

The WVD-reconstructed density SR is then defined by:

S = S0 +
∑

λ∈Λ

1[Θ,+∞[

(
〈I | uλ〉 κ−1

λ

)
ψλ (II.4.19)

where S0 is the space average of S0 and Θλ is a global threshold to be specified later. In
practice, S0 is unknown, so that our algorithm will actually only allow us to reconstruct
S − S0. This is however sufficient for the applications we are interested in.

The optimal threshold to use depends on the level of noise. To estimate it directly from
the observed camera image, we propose to use an iterative algorithm(Azzalini et al., 2004).

To implement formula (II.4.19) in practice, the vaguelettes vλ are first computed by
applying K to the wavelets, and the uλ are then obtained using (II.4.18). To invert the
linear system (II.4.18), we use sparse Cholesky decomposition. Overall, the algorithm thus
consists in the following steps:

(i) construct a sparse matrix representation of K,

(ii) compute the vλ from (II.4.16),

(iii) compute the uλ from (II.4.18) using sparse Cholesky decomposition,

(iv) compute the vaguelette coefficients 〈I | uλ〉 using sparse matrix multiplication,

(v) reconstruct S from (II.4.19).

Note that the only expensive step in this algorithm is (iii), which needs to be done only once
for a given geometric configuration of the camera. In the following we take as wavelet family
the most regular Coiflets (Daubechies, 1993) with filters of length 12. Moreover, to be able
to use the was wavelet transform algorithm, we impose that Nr = Nθ = 2J for some integer
J , but there is no restriction on Nx and Ny. Note that the restriction on Nr and Nθ could
be diminished by using scaling function coefficients.
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Figure II.4.2: Representation of a wavelet in the (r, θ) plane (left) and of the correspond-
ing vaguelette vλ in the image plane (right). The geometric parameters are indicated in
Table. II.4.1.

II.4.3 Validation

II.4.3.1 First examples

In this section we report the results of some simple test cases, using the geometric parameters
in the first column of Table II.4.1. For simplicity there is no Shafranov shift and no magnetic
shear.

To give an idea of the type of functions we are working with, we first provide a rep-
resentation of a wavelet and the corresponding vaguelette vλ (Fig .II.4.2). As expressed
by (II.4.16), the vaguelette vλ is simply the image of the wavelet ψλ seen by the camera.
The conjugated vaguelettes uλ are not shown here because they do not benefit from such a
simple interpretation. Moreover, since they are obtained from the vλ by solving the inverse
problem (II.4.18), they tend to be individually quite noisy, and only the whole family (uλ) is
meaningful.

To test WVD-reconstruction, we now apply it to a simple academic test case. We start
with a homogeneous emissivity map (Fig. II.4.3, a) in a toric shell extending from r = 0.47 to
r = 0.73, and we first apply the operator K to obtain a synthetic camera image (Fig. II.4.3,
b). It is interesting to remark the critical curves that appear in the image plane due to
the integration along lines of sight intersecting the toric shell. Then, we perturb the image
with a Gaussian white noise having a standard deviation σ = 0.125 (Fig. II.4.3, c), and
apply WVD-reconstruction to reconstruct the emissivity field from the noisy image. The
result (Fig. II.4.3, d) preserves the main features of the input (Fig. II.4.3, a), although the
consequences of the degradation, like spurious peaks and oscillations, are visible.
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(a) (b)

(c) (d)

Figure II.4.3: Denoising test with uniform radiating shell from r = 0.47 to r = 0.73. The
geometric parameters are indicated in Table. II.4.1. (a) Source emission intensity S0. (b)
Corresponding noise-less image I0. (c) Noisy image I, with σ = 0.125. (d) WVD-inverted
emission intensity S.
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Examples TOKAM TS 42967
R 2.30 2.30 2.22
γ 0 0 0.0650
q ∞ −3.00 −3.25

ρC (m) 4.00 3.20 3.53
zC (m) 0 0 0.190
αC 0 0 0

ϕL(rad) −0.846 −0.846 −0.727
rmin (m) 0.200 0.400 0.28
rmax (m) 1.00 0.600 0.47
θmin(rad) −π/2 0 0
θmax(rad) π/2 π/3 π/2
xmin (d) −0.750 0 0.111
xmax (d) 0.300 0.404 0.382
ymin (d) −0.404 −0.404 −0.431
ymax (d) 0.404 0.404 0.266
Nx 100 101 110
Ny 100 150 283

Table II.4.1: Parameters of reported numerical experiments.

II.4.3.2 Test with Tokam data

To validate the method further, we apply it to camera images that are generated artificially
but using a different method than the one presented above. In order to come closer to the
experimental situations we are going to face, we take as input emissivity field the fourth
power of the ion density in a computation of edge plasma fluctuations obtained with the
Tokam 2D code (Ghendrih et al., 2005), shown in Fig. II.4.4 (a). The artificial camera image
(Fig. II.4.4,b) was obtained by accumulating projections of successive poloidal cross-sections
through S using Matlab, i.e. the operator K is discretized by splitting the integral (II.4.9)
into a sum over ϕ instead of a sum over s as we normally do. This can be seen as a primitive
way of evaluating the impact of all the small effects that we have not taken into account in
our definition of K. The geometric parameters for this test case are shown in the second
column of Table II.4.1.

The emissivity map reconstructed by WVD is shown in Fig. II.4.4 (c). It looks as a
smooth approximation of the input map. In particular the radial position of maximum
average emissivity is well captured, as well as some of the main blobs, like the one in the
top left corner. By applying the operator K again to this inverted emissivity map, we obtain
an image (Fig. II.4.4, d) that is visually very similar to the one we start from (Fig. II.4.4,
b), which supports the fact that not much information has been lost in the reconstruction
process.
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(a) (b)

(c) (d)

Figure II.4.4: Inversion test with artificial image generated from the TOKAM code. (a)
Emissivity in the (r, θ) plane obtained from TOKAM run. (b) Artificial image obtained by
stacking method. (c) WVD-inverted emissivity I. (d) Regenerated image KI using our
method.
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(a) (b) (c)

Figure II.4.5: Inversion test with experimental movie from Tore Supra shot 42967. (a)
Movie frame. (b) WVD-reconstructed emissivity map S in (r, θ) plane. (c) Artificial movie
frame regenerated by applying K to S.

II.4.4 Application to Tore Supra movies

In this section we present preliminary results obtained by applying the WVD-reconstruction
method to an experimental movie frame acquired during the Tore Supra shot 42967. The
plasma is in a detached phase, and therefore is strongly radiative in the neighborhood of
a magnetic surface located at r ≃ 0.4. The camera is oriented so that its line of sight is
approximately tangent to this magnetic surface. The geometric parameters are provided in
the last column of Table. II.4.1. Note that these parameters were estimated from the movie
itself using a key-point detection method based on some visible features of the vessel.

One frame (Fig. II.4.5, a) was picked out randomly within the acquired movie to test
WVD-inversion. Note that the time average of the whole movie has been subtracted from
the frame, so that only the fluctuations are visible. The inverted emissivity map is shown in
Fig. II.4.5 (b). The strong radiative activity going on around r = 0.4 is well detected by the
algorithm. Except some very intense and localized artifacts, the field is quite smooth. The
movie reveals that the structures are preserved in time and propagate counter-clockwise. In
Fig. II.4.5 (c), we show the artificial movie frame obtained by applying K to the inverted
emissivity map. The main features that were visible by eye in the original movie frame
(Fig. II.4.5, a) are strongly enhanced in the artificial one, while the noise has been reduced
to a very low level.

II.4.5 Conclusion

We have proposed a new method for reconstructing the volumic light emissivity map of
a tokamak plasma using a single camera. Our method relies on the hypothesis that the
emissivity varies sufficiently slowly along magnetic field lines. We have demonstrated its
feasibility using simple academic test cases, and validated its robustness by applying it to
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independently generated artificial movies based on numerical computations of plasma edge
fluctuations by the Tokam 2D code. Finally, we have presented a preliminary result showing
that the method can be applied to an actual experimental movie. The comparison with
other diagnostics, like Doppler reflectometry, is ongoing and we hope that it will validate the
method.

The technical tool underlying our approach is the wavelet-vaguelette decomposition
(Donoho, 1992) (WVD), which is an efficient way of solving ill-posed inverse problems in
the presence of noise. Thanks to the localization of the wavelets, features such as blobs
and fronts are preserved in the denoised emissivity map. We have seen that some artifacts
persist in the denoised output, but there are good hopes that the method could be improved
in the future, for example by choosing the threshold in a more refined way.



“Ah, this is marvelous!” said Lord Wen-hui. “Imagine skill reaching such
heights!”
Cook Ting laid down his knife and replied:
“What I care about is the Way, which goes beyond skill. When I first began
cutting up oxen, all I could see was the ox itself. After three years I no longer
saw the whole ox. And now – now I go at it by spirit and don’t look with my
eyes. Perception and understanding have come to a stop and spirit moves where
it wants. I go along with the natural makeup, strike in the big hollows, guide the
knife through the big openings, and follow things as they are. So I never touch
the smallest ligament or tendon, much less a main joint.”

Zhuangzi, chapter 2
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III.1 Wavelet-based density estimation

The contents of this section are reproduced from a published paper, see (Nguyen van yen
et al., 2010b).

III.1.1 Introduction

Particle-based numerical methods are routinely used in plasma physics calculations (Birdsall
and Langdon, 1985; Hockney and Eastwood, 1988). In many cases these methods are more
efficient and simpler to implement than the corresponding Eulerian methods. However,
particle methods face the well known statistical sampling limitation of attempting to simulate
a physical system containing N particles using Np ≪ N computational particles. Particle
methods do not seek to reproduce the exact individual behavior of the particles, but rather to
approximate statistical macroscopic quantities like density, current, and temperature. These
quantities are determined from the particle distribution function. Therefore, a problem of
relevance for the success of particle-based simulations is the reconstruction of the particle
distribution function from discrete particle data.

The difference between the distribution function reconstructed from a simulation using
Np particles and the exact distribution function gives rise to a discretization error generically
known as “particle noise” due to its random-like character. Understanding and reducing
this error is a complex problem of importance in the validation and verification of particle
codes, see for example Refs. (Nevins et al., 2005; Krommes, 2007; McMillan et al., 2008) and
references therein for a discussion in the context of gyrokinetic calculations. One obvious way
to reduce particle noise is by increasing the number of computational particles. However,
the unfavorable scaling of the error with the number of particles, ∼ 1/

√
Np (Krommes,

1993; Aydemir, 1994), puts a severe limitation on this straightforward approach. This has
motivated the development of various noise reduction techniques including finite size particles
(FSP) (Hockney, 1966; Langdon and Birdsall, 1970), Monte-Carlo methods (Aydemir, 1994),
weight spreading (Brunner et al., 1999), Fourier-filtering (Jolliet et al., 2007), coarse-graining
(Chen and Parker, 2007), Krook operators (McMillan et al., 2008), smooth interpolation
(Cormier-Michel et al., 2008), low noise collision operators (Lewandowski, 2005), and Proper
Orthogonal Decomposition (POD) methods (del Castillo-Negrete et al., 2008) among others.

In the present paper we propose a wavelet-based method for noise reduction in the recon-
struction of particle distribution functions from particle simulation data. The method, known
as Wavelet Based Density Estimation (WBDE), was originally introduced in Ref. (Donoho
et al., 1996) in the context of statistics to estimate probability densities given a finite number
of independent measurements. However, to our knowledge, this method has not been ap-
plied before to particle-based computations. WBDE, as used here, is based on a truncation
of the wavelet representation of the Dirac delta function associated with each particle. The
method yields almost optimal results for functions with unknown local smoothness without
compromising computational efficiency, assuming that the particles’ coordinates are statisti-
cally independent. As a first step in the application of the WBDE method to plasma particle
simulations, we limit our attention to “passive denoising”. That is the WBDE method is
treated as a post-processing technique applied to independently generated particle data. The
problem of “active denoising”, e.g. the application of WBDE methods in the evaluation of
self-consistent fields in particle in cell simulations, will not be addressed. This simplification
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will allow us to assess the efficiency of the proposed noise reduction method in a simple
setting. Another simplification pertains the dimensionality. Here, for the sake of simplicity,
we limit attention to the reconstruction and denoising problem in two dimensions. However,
the extension of the WBDE method to higher dimensions is in principle straightforward.

Collisions, or the absence of them, play an important role in plasma transport problems.
Particle methods handle the collisional and non-collisional parts of the dynamics differently.
Fokker-Planck-type collision operators are typically introduced in particle methods using
Langevin-type stochastic differential equations. On the other hand, the non-collisional part
of the dynamics is described using deterministic ordinary differential equations. Collisional
dominated problems tend to wash out fine scale structures whereas collisionless problems
typically develop fine scale filamentary structures in phase space. Therefore, it is important
to test how the efficiency of denoising depends on the level of collisionality. Here we test
the WBDE method in strongly collisional, weakly collisional and collisionless regimes. For
the strongly collisional regime we consider particle data of force-free collisional relaxation
involving energy and pinch-angle scattering. The weakly collisional regime is illustrated
using guiding-center particle data of a magnetically confined plasma in toroidal geometry.
The collisionless regime is studied using particle in cell (PIC) data corresponding to bump-
on-tail and two streams instabilities in the Vlasov-Poisson system.

Beyond the role of collisions, the data sets that we are considering open the possibil-
ity of exploring the role of external and self-consistent fields in the reconstruction of the
particle density. In the collisional relaxation problem no forces act on the particles, in
the guiding-center problem particles interact with an external magnetic field, and in the
Vlasov-Poisson problem particle interactions are incorporated through a self-consistent elec-
trostatic mean field. One of the goals of this paper is to compare the WBDE method with
the Proper Orthogonal Decomposition (POD) density reconstruction method proposed in
Ref. (del Castillo-Negrete et al., 2008).

The rest of the paper is organized as follows. In Sect. II we review the main properties
of kernel density estimation (KDE) and show its relationship with finite size particles (FSP).
We then review basic notions on orthogonal wavelet and multiresolution analysis and outline
a step by step algorithm for WBDE. For completeness, we also include in this section a brief
description of the POD reconstruction method proposed in Ref. (del Castillo-Negrete et al.,
2008). Section III discusses applications of the WBDE method and the comparison with
the POD method. We start by post-processing a simulation of plasma relaxation by random
collisions against a background thermostat. We then turn to a δf Monte-Carlo simulation
in toroidal geometry, whose phase space has been reduced to two dimensions. Finally, we
analyze the results of particle-in-cell (PIC) simulations of a 1D Vlasov-Poisson plasma. The
conclusions are presented in Sec. IV.

III.1.2 Methods

This section presents the wavelet-based density estimation (WBDE) algorithm. We start by
reviewing basic ideas on kernel density estimation (KDE) which is closely related to the use
of finite size particles (FSP) in PIC simulations. Following this, we give a brief introduction
to wavelet analysis and discuss the WBDE algorithm. For completeness, we also include a
brief summary of the POD approach.
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III.1.2.1 Kernel density estimation

Given a sequence of independent and identically distributed measurements, the nonparamet-
ric density estimation problem consists in finding the underlying probability density function
(PDF), with no a priori assumptions on its functional form. Here we discuss general ideas on
this difficult problem for which a variety of statistical methods have been developed. Further
details can be found in the statistics literature, e.g. Ref. (Silverman, 1986).

Consider a number Np of statistically independent particles with phase space coordinates
(Xn)1≤n≤Np distributed in Rd according to a PDF f . This data can come from a PIC or a
Monte-Carlo, full f or δf simulation. Formally, the sample PDF can be written as

f δ(x) =
1

Np

Np∑

n=1

δ(x−Xn) (III.1.1)

where δ is the Dirac distribution. Because of its lack of smoothness, Eq. (III.1.1) is far
from the actual distribution f according to most reasonable definitions of the error. The
dependence of f δ on the statistical fluctuations in (Xn) can lead to an artificial increase of
the collisionality, which could be problematic in the modeling of near collisionless plasmas
of interest to controlled fusion. Beyond introducing dissipation, noise can lead to other
problems including self-heating and momentum spread which, for example, is known to be
an issue in laser-plasma interaction computations. Also, computations involving derivatives
of f , like for example quasilinear fluxes in wave-particle interaction calculations, can be
seriously compromised by poor reconstruction techniques.

The simplest method to introduce some smoothness in f δ is to use a histogram. Consider
a tiling of the phase space by a Cartesian grid with Nd

g cells. Let {Bλ}λ∈Λ denote the set of
all cells with characteristic function χλ defined as χλ = 1 if x ∈ Bλ and χλ = 0 otherwise.
Then the histogram corresponding to the tiling is

fH(x) =
∑

λ∈Λ

(
1

Np

Np∑

n=1

χλ(Xn)

)
χλ(x) (III.1.2)

which can also be viewed as the orthogonal projection of f δ on the space spanned by the χλ.
The main difference between f δ and fH is that the latter cannot vary at scales finer than
the grid scale which is of order N−1

g . By choosing Ng small enough, it is therefore possible
to reduce the variance of fH to very low levels, but the estimate then becomes more and
more biased towards a piecewise continuous function, which is not smooth enough to be
the true density. Histograms correspond to the nearest grid point (NGP) charge assignment
scheme used in the early days of plasma physics computations (Hockney, 1966).

One of the most popular methods to achieve higher level of smoothness is kernel density
estimation (KDE) (Parzen, 1962). Given (Xn)1≤n≤Np, the kernel estimate of f is defined as

fK(x) =
1

Np

Np∑

n=1

K(x−Xn) , (III.1.3)

where the smoothing kernel K is a positive function, normalized such that
∫
K = 1. Equa-

tion (III.1.3) corresponds to the convolution ofK with the Dirac delta measure corresponding
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to each particle. A typical example is the Gaussian kernel

Kh(x) =
1

(
√

2πh)d
e−

‖x‖2
2h2 (III.1.4)

where the so-called “bandwidth”, or smoothing scale, h, is a free parameter. The optimal
smoothing scale depends on how the error is measured. For example, in the one dimensional
case, to minimize the mean L2-error between the estimate and the true density, the smoothing

volume hd should scale like Np
− 1

5 , and the resulting error scales like N
− 2

5
p (Silverman, 1986).

As in the case of histograms, the choice of h relies on a trade-off between variance and
bias. In the context of plasma physics simulations the kernel K corresponds to the charge
assignment function (Hockney and Eastwood, 1988).

A significant effort has been devoted in the choice of the function K since it has a strong
impact on computational efficiency and on the conservation of global quantities. Concerning
h, it has been shown that it should not be much larger than the Debye length λD of the
plasma to obtain a realistic and stable simulation (Birdsall and Langdon, 1985). Given a
certain amount of computational resources, the general tendency has thus been to reduce
h as far as possible in order to fit more Debye lengths inside the simulation domain, which
means that the effort has been concentrated on reducing the bias term in the error. Since
the force fields depend on f through integral equations, like the Poisson equation, that tend

to reduce the high wavenumber noise, we do not expect the disastrous scaling hd ∝ Np
− 1

5 ,
which would mean Np ∝ λ5d

D in d dimensions, to hold. Nevertheless, the problem remains
that if we want to preserve high resolution features of f or of the electromagnetic fields,
we need to reduce h, and therefore greatly increase the number of particles to prevent the
simulation from drowning into noise. Bandwidth selection has long been recognized as the
central issue in kernel density estimation (Chiu, 1991). We are not aware of a theoretical or
numerical prediction of the optimal value of h taking into account the noise term. To bypass
this difficulty, it is possible to use new statistical methods which do not force us to choose
a global smoothing parameter. Instead, they adapt locally to the behavior of the density f
based on the available data. Wavelet based-density estimation, which we will introduce in
the next two sections, is one of these methods.

III.1.2.2 Bases of orthogonal wavelets

Wavelets are a standard mathematical tool to analyze and compute non stationary signals.
Here we recall basic concepts and definitions. Further details can be found in Ref. (Farge,
1992) and references therein. The construction takes place in the Hilbert space L2(R) of
square integrable functions. An orthonormal family (ψj,i(x))j∈N,i∈Z is called a wavelet family
when its members are dilations and translations of a fixed function ψ called the mother
wavelet:

ψj,i(x) = 2j/2ψ(2jx− i) (III.1.5)

where j indexes the scale of the wavelets and i their positions, and ψ satisfies
∫
ψ = 0.

In the following we shall always assume that ψ has compact support of length S. The
coefficients 〈f | ψj,i〉 =

∫
fψj,i of a function f for this family are denoted by (f̃j,i). These

coefficients describe the fluctuations of f at scale 2−j around position i
2j

. Large values of j
correspond to fine scales, and small values to coarse scales. Some members of the commonly
used Daubechies 6 wavelet family are shown in the left panel of Fig. 1.
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Figure III.1.1: Daubechies 6 wavelet family. Left, bold red: scaling function ϕ at scale j = 5.
Left, bold blue: wavelet ψ at scale j = 5. Left, thin black, from left to right: wavelets at
scales 6, 7, 8 and 9. Right : (a) 2D scaling function ϕ(x1)ϕ(x2). (b) first 2D wavelet
ψ(x1)ϕ(x2). (c) second 2D wavelet ϕ(x1)ψ(x2). (d) third 2D wavelet ψ(x1)ψ(x2).

It can be shown that the orthogonal complement in L2(R) of the linear space spanned
by the wavelets is itself orthogonally spanned by the translates of a function ϕ, called the
scaling function. Defining

ϕL,i = 2
L
2 ϕ(2Lx− i) (III.1.6)

and the scaling coefficients f̄L,i = 〈f | ϕL,i〉, one thus has the reconstruction formula:

f =
∞∑

i=−∞
f̄L,iϕL,i +

∞∑

j=L

∞∑

i=−∞
f̃j,iψj,i (III.1.7)

The first sum on the right hand side of Eq. (III.1.7) is a smooth approximation of f at the
coarse scale, 2−L, and the second sum corresponds to the addition of details at successively
finer scales.

If the wavelet ψ has M vanishing moments:
∫
xmψ(x)dx = 0 (III.1.8)

for 0 ≤ m < M , and if f is locally m times continuously differentiable around some point x0,
then a key property of the wavelet expansion is that the coefficients located near x0 decay
like 2−j(m+ 1

2
) when j → ∞ (Jaffard, 1991). Hence, localized singularities or sharp features

in f affect only a finite number of wavelet coefficients within each scale. Another important
consequence of (III.1.8) of special relevance to particle methods is that, for 0 ≤ m < M ,
the moments

∫
xmf(x)dx of the particle distribution function depend only on its scaling

coefficients, and not on its wavelet coefficients.

If the scaling coefficients fJ,i at a certain scale J are known, all the wavelet coefficients at
coarser scales (j ≤ J) can be computed using the fast wavelet transform (FWT) algorithm
(Mallat, 1999). We shall address the issue of computing the scaling coefficients themselves
in section III.1.2.4.
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The generalization to d dimensions involves tensor products of wavelets and scaling
functions at the same scale. For example, given a wavelet basis on R, a wavelet basis on R2

can be constructed in the following way:

ψ1
j,i1,i2(x1, x2) = 2jψ(2jx1 − i1)ϕ(2jx2 − i2) (III.1.9)

ψ2
j,i1,i2(x1, x2) = 2jϕ(2jx1 − i1)ψ(2jx2 − i2) (III.1.10)

ψ3
j,i1,i2

(x1, x2) = 2jψ(2jx1 − i1)ψ(2jx2 − i2) , (III.1.11)

where we refer to the exponent µ = 1, 2, 3 as the direction of the wavelets. This name
is easily understood by looking at different wavelets shown in Fig. III.1.1 (right). The
corresponding scaling functions are simply given by 2jϕ(2jx1 − i1)ϕ(2jx2 − i2). Wavelets
on Rd are constructed exactly in the same way, but this time using 2d − 1 directions. To
lighten the notation we write the d-dimensional analog of Eq. (III.1.7) as

f =
∑

λ∈Λφ,L

fλφλ +
∑

λ∈Λψ,L

f̃λψλ (III.1.12)

where λ = (j, i, µ) is a multi-index, with the integer j denoting the scale and the integer
vector i = (i1, i2, . . .) denoting the position of the wavelet.

The wavelet multiresolution reconstruction formula in Eq. (III.1.7) involves an infinite
sum over the position index i. One way of dealing with this sum is to determine a priori
the non-zero coefficients in Eq. (III.1.7), and work only with these coefficients, but still
retaining the full wavelet basis on Rd as presented above. An alternative, which we have
chosen because it is easier to implement, is to periodize the wavelet transform on a bounded
domain (Mallat, 1999). Assuming that the coordinates have been rescaled so that all the
particles lie in [0, 1]d, we replace the wavelets and scaling functions by their periodized
counterparts:

ψj,i(x) →
∞∑

l=−∞
ψj,i(x+ l) (III.1.13)

ϕj,i(x) →
∞∑

l=−∞
ϕj,i(x+ l) . (III.1.14)

Throughout this paper we will consider only periodic wavelets. For the sake of completeness
we mention a third alternative which is technically more complicated. It consists in con-
structing a wavelet basis on a bounded interval (Cohen et al., 1993). The advantage of this
approach is that it does not introduce artificially large wavelet coefficients at the boundaries
for functions f that are not periodic.

III.1.2.3 Wavelet based density estimation

The multiscale nature of wavelets allows them to adapt locally to the smoothness of the ana-
lyzed function (Mallat, 1999). This fundamental property has triggered their use in a variety
of problems. One of their most fruitful applications has been the denoising of intermittent
signals (Donoho and Jonhstone, 1994). The practical success of wavelet thresholding to
reduce noise relies on the fact that the expansion of signals in a wavelet basis is typically
sparse. Sparsity means that the interesting features of the signal are well summarized by
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a small fraction of large wavelet coefficients. On the contrary, the variance of the noise is
spread over all the coefficients appearing in Eq. (III.1.12). Although the few large coeffi-
cients are of course also affected by noise, curing the noise in the small coefficients is already
a very good improvement. The original setting of this technique, hereafter referred to as
global wavelet shrinkage, requires the noise to be additive, stationary, Gaussian and white.
It found a first application in plasma physics in Ref. (Farge et al., 2006), where coherent
bursts were extracted out of plasma density signals. Since Ref. (Donoho and Jonhstone,
1994), wavelet denoising has been extended to a number of more general situations, like
non-Gaussian or correlated additive noise, or to denoise the spectra of locally stationary time
series (von Sachs and Schneider, 1996). In particular, the same ideas were developed in
Ref. (Vannucci and Vidakovic, 1998; Donoho et al., 1996) to propose a wavelet-based den-
sity estimation (WBDE) method based on independent observations. At this point we would
like to stress that WBDE assumes nothing about the Gaussianity of the noise, nor on its
stationarity. In fact, under the independence hypothesis – which is admittedly quite strong –
the statistical properties of the noise are entirely determined by standard probability theory.
We refer to Ref. (Vidakovic, 1999) for a review on the applications of wavelets in statistics.
In Ref. (Gassama et al., 2007), global wavelet shrinkage was applied directly to the charge
density of a 2D PIC code, in a case were the statistical fluctuations were quasi Gaussian and
stationary. In particular, an iterative algorithm (Azzalini et al., 2004), which crucially relies
on the stationnarity hypothesis, was used to determine the level of fluctuations. However,in
the next section we will show an example where the noise is clearly non-stationary, and this
procedure fails.

Let us now describe the WBDE method as we have generalized it to several dimensions.
The first step is to expand the sample particle distribution function, f δ, in Eq. (III.1.1) in a
wavelet basis according to Eq. (III.1.12) with the wavelet coefficients

f
δ

λ = 〈f δ | ϕλ〉 =
1

Np

Np∑

n=1

ϕλ(Xn) (III.1.15)

f̃ δλ = 〈f δ | ψλ〉 =
1

Np

Np∑

n=1

ψλ(Xn) . (III.1.16)

Since this reconstruction is exact, keeping all the wavelet coefficients does not improve the
smoothness of f δ. The simple and yet efficient remedy consists in keeping only a subset of
the wavelet coefficients in Eq. (III.1.12). A straightforward prescription would be to discard
all the wavelet coefficients at scales finer than a cut-off scale L. This approach corresponds
to a generalization of the histogram method in Eq. (III.1.2) with Ng = 2L. Because the
characteristic functions χλ of the cells in a dyadic grid are the scaling functions associated
with the Haar wavelet family, Eqs. (III.1.12) and (III.1.2) are in fact equivalent for this
wavelet family. Accordingly, like in the histogram case, we would have to choose L quite
low to obtain a stable estimate, at the risk of losing some sharp features of f . Better
results can be obtained by keeping some wavelet coefficients down to a much finer scale
J > L. However, to prevent that statistical fluctuations contaminate the estimate, only
those coefficients whose modulus are above a certain threshold should be kept. We are thus
naturally led to a nonlinear thresholding procedure. In the one dimensional case, values of
J , L, and of the threshold within each scale that yield theoretically optimal results have
been given in Ref. (Donoho et al., 1996). This reference discusses the precise smoothness
requirements on f , which can accommodate well localized singularities, like shocks and
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filamentary structures known to arise in collisionless plasma simulations. There remains
the question of how to compute the wavelet coefficients f̃j,i based on the positions of the
particles. Although more accurate methods based on (III.1.15) may be developed in the
future, our present approximation relies on the computation of a histogram, which creates
errors of order N−1

g . The complete procedure is described in the following Wavelet-based
density estimation algorithm:

(i) construct a histogram fH of the particle data with Ng = 2Jg cells in each direction,

(ii) approximate the scaling coefficients at the finest scale Jg by :

fJg,i ≃ 2−Jg/2fH(2−Jg i) (III.1.17)

(iii) compute all the needed wavelet coefficients using the FWT algorithm,

(iv) keep all the coefficients for scales coarser than L, defined by 2dL ∼ N
1

1+2r0
p where r0

is the order of regularity of the wavelet (1 in our case),

(v) discard all the coefficients for scales strictly finer than J defined by 2dJ ∼ Np
log2Np

,

(vi) for scales j in between L and J , keep only the wavelet coefficients f̃λ such that

|f̃λ| ≥ Tj = C
√

j
Np

where C is a constant that must in principle depend on the

smoothness of f and on the wavelet family (Donoho et al., 1996).

The choice of parameters for the algorithm was justified rigourously in (Donoho et al.,
1996). The dependence of the threshold onNp and j can be intuitively understood as follows.
Since the particles are assumed to be statistically independent, the standard deviation of each
wavelet coefficient is proportional to 1√

Np
. Because of the L2 normalization of the wavelets

(see (III.1.5)), the standard deviation is to a good approximation scale-independent. On
the other hand, the central limit theorem implies that the fluctuations are almost Gaussian
provided the number of particles is large enough. Therefore, to filter the fluctuations, the
threshold should be larger than the typical value taken by a Gaussian random variable with
standard deviation σ ∼ 1√

Np
. A standard choice to ensure this level of denoising is to

take the threshold proportional to σ
√

2 ln(M), where M is the number of samples (Mallat,
1999). Since there are 2dj wavelet coefficients at scale j, we get a threshold proportional

to σ
√

2 ln 2dj = C
√

1/Np

√
j. In the following, except otherwise indicated, we will assume

the proportionality constant to be, C = 1
2
. For the wavelet bases we used orthonormal

Daubechies wavelets with 6 vanishing moments and thus support of size S = 12 (Daubechies,
1992). In our case, r0 = 1, which means that the wavelets have a first derivative but no

second derivative, and the size of the wavelets at scale L for d = 1 is roughly N
− 1

3
p . Since

Np ≫ 1, it follows from the definition at stage 5 of the algorithm that the size of the

wavelets at scale J is orders of magnitude smaller than N
− 1

3
p . Using the adaptive properties

of wavelets, we are thus able to detect fine scale structures of f without compromising
the stability of the estimate. Note that the error at stage (ii) could be reduced by using
Coiflets (Daubechies, 1993) instead of Daubechies wavelets, but the gain would be negligible



100 Wavelet-based density estimation

compared to the error made at stage (i). We will denote the WBDE estimate of f as fW .
In the one-dimensional case,

fW =
2L∑

i=1

fL,iϕL,i +
J∑

j=L

2j∑

i=1

f̃j,iρj(f̃j,i)ψj,i (III.1.18)

where ρj is the thresholding function as defined by stage (vi) of the algorithm : ρj(y) = 0
if |y| ≤ Tj and ρj(y) = 1 otherwise.

Finally, let us propose two methods for applying WBDE to postprocess δf simulations.
Recall that the Lagrangian equations involved in the δf schemes are identical to their full f
counterparts. The only difficulty introduced by the δf method lies in the evaluation of phase
space integrals of the form δI =

∫
A·(f−f0), where A is a function on phase space and f0 is

a known reference distribution function. In these integrals, f − f0 should be replaced by δf ,
which is in turn written as a product wf , where w is a “weighting” function. Numerically, w
is known via its values at particles positions, w(Xn), and the usual expression for δI is thus
δI =

∑Np
n=1A(Xn)w(Xn). We cannot apply WBDE directly to δf , since this function is not

a density function. An elegant approach would be to first apply WBDE to the unweighted
distribution f δ to determine the set of statistically significant wavelet coefficients, and to
include the weights only in the final reconstruction (III.1.18) of fW . A simpler approach,
which we will illustrate in section III.1.3.2, consists in renormalizing δf , so that

∫
|δf | = 1,

and treating it like a density.

III.1.2.4 Further issues related to practical implementation

In this section we discuss how the WBDE method handles two issues of direct relevance to
plasma simulations: conservation of moments and computational efficiency. As mentioned
before, due to the vanishing moments of the wavelets in Eq. (III.1.8), the moments up to
order M of the particle distribution distribution are solely determined by its scaling function
coefficients. As a consequence, we expect the thresholding procedure to conserve these
moments, in the sense that

MW
m,k =

∫
xmk f

W (x)dx ≃
∫
xmk f

δ(x)dx =Mδ
m,k (III.1.19)

for 0 ≤ m ≤ M − 1 and for all i ∈ {1, . . . , d}. This conservation holds up to round-off
error if the wavelet coefficients can be computed exactly. Due to the type of wavelets that
we have used, we were not able to achieve this in the results presented here. There remains
a small error related to stages 1 and 2 of the algorithm, namely the construction of fH and
the approximation of the scaling function coefficients by Eq. (III.1.17). They are both of
order N−1

g . We will present numerical examples of the moments of fW in the next section.

Conservation of moments is closely related to a peculiarity of the denoised distribu-
tion function resulting from the WBDE algorithm: it is not necessarily everywhere positive.
Indeed, wavelets are oscillating functions by definition, and removing wavelet coefficients
therefore cannot preserve positivity in general. Further studies are needed to assess if this
creates numerical instabilities when fW is used in the computation of self-consistent fields.
The same issue was discussed in Ref. (Denavit, 1972) where a kernel with two vanishing
moments was used to linearly smooth the distribution function. The fact that this kernel is
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Figure III.1.2: Estimation of the density of a sample of size 214 drawn uniformly in [1/3, 2/3],
using Gaussian kernels (left) or wavelets (right). The discontinuous analytical density is
plotted with a dashed line in the two cases.

not everywhere positive was not considered harmful in this reference. We acknowledge that
it may render the resampling of new particles from fW , if it is needed in the future, more
difficult. There are ways of forcing fW to be positive, for example by applying the method
to
√
f and then taking the square of the resulting estimate, but this implies the loss of the

moment conservation, and we have not pursued in this direction.

The number of multiplications required to perform forward and inverse wavelet trans-
forms between scales J and L using the FWT algorithm in d dimensions is 4dS2d(J−L),
where S is the length of the wavelet filter (12 for the Daubechies filter that we are using).

From the definitions of J and L it follows that 2d(J−L) ∼ N
2
3
p / log2Np. Thus, for a sim-

ulation in d dimensions involving Np = 10m particles, the number of operations scales as
∼ (4Sd log10 2/m) × 102m/3. For example, for a 2-dimensional simulation with 107 parti-
cles, J = 10 and L = 4. In this case, the computation of the wavelet coefficients require
∼ 1.5× 106 multiplications which takes about 0.3 sec of CPU time on a desktop computer.
For a more demanding 4-dimensional simulation with 108 particles, we find that J = 6 and
L = 3, which increases the number of multiplications to 12.5×106. The cost of the binning
stage is of order Np, so that the total number of operations for computing fW is proportional
to Np, but overall the number of multiplications per particle remains small. On the other
hand, advancing the particles in time is likely to require several multiplications per particle.
If one wishes to use a finer grid to ensure high accuracy conservation of moments, the stor-
age requirement grows like Nd

g . Thanks to optimized in-place algorithms, the amount of
additional memory needed during the computation does not exceed 3S. Also, an important
issue that needs to be kept in mind is that the FWT algorithm requires Ng to be an integer
multiple of 2J−L. For comparison purposes, let us recall that most algorithms to compute
the POD in 2 dimensions have a complexity proportional to N3

g , in addition to the order Np

cost of binning.

To conclude this subsection, Fig. III.1.2 presents an example of the reconstruction of a 1D
discontinuous density that illustrates the difference between the KDE and WBDE methods.
The probability density function is uniform on the interval

[
1
3
, 2

3

]
and the estimates were

computed on [0, 1] to include the discontinuities. The sample size was 214, and the binning
used Ng = 216 cells to compute the scaling function coefficients. For this 1D case the value
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m = 0 m = 1 m = 2 m = 4
fK 1.81 · 10−5 1.70 · 10−5 7.52 · 10−4 3.90 · 10−3

fW 1.08 · 10−11 1.52 · 10−5 2.93 · 10−5 5.52 · 10−5

Table III.1.1: Relative absolute difference between the moments of f δ and those of fK and
fW , for the distribution function corresponding to Fig. III.1.2.

C = 2 was used to determine the thresholds (step (vi) of the algorithm). The KDE estimate
is computed using a Gaussian kernel with smoothing scale h = 0.0138 (Ihler, 2003). The
relative mean squared errors associated with the KDE and WBDE estimates are respectively
19.6 × 10−3 and 6.97 × 10−3. The error in the KDE estimate comes mostly from the
smoothing of the discontinuities. The better performance of WBDE stems from the much
sharper representation of these discontinuities. It is also observed that the WBDE estimate
is not everywhere positive. The approximate conservation of moments is demonstrated on
Table III.1.1. Note that the error on all these moments for fW could be made arbitrary low
by increasing Ng. The overshoots could also be mitigated by using nearly shift invariant
wavelets (Kingsbury, 2001).

III.1.2.5 Proper Orthogonal Decomposition Method

For completeness, in this subsection we present a brief review of the POD density recon-
struction method. For the sake of comparison with the WBDE method, we limit attention to
the time independent case. Further details, including the reconstruction of time dependent
densities using POD methods can be found in Ref. (del Castillo-Negrete et al., 2008).

The first step in the POD method is to construct the histogram fH from the particle
data. This density is represented by an Nx × Ny matrix f̂ij containing the fraction of
particles with coordinates (x, y) such that Xi ≤ x < Xi+1 and Yi ≤ y < Yi+1. In two
dimensions, the POD method is based on the singular value decomposition of the histogram.
According to the SVD theorem (Golub and van Loan, 1996), the matrix f̂ can always be
factorized as f̂ = UWV t, where U and V are Nx ×Nx and Ny ×Ny orthogonal matrices,
UU t = V V t = I, and W is a diagonal matrix, W = diag (w1, w2, . . . wN), such that
w1 ≥ w2 ≥ . . . ≥ wN ≥ 0 with N = min(Nx, Ny).

In vector form, the decomposition can be expressed as

f̂ij =

N∑

k=1

wk u
(k)
i v

(k)
j , (III.1.20)

where the Nx-dimensional vectors, u
(k)
i , and the Ny-dimensional vectors, v

(k)
j , are the or-

thonormal POD modes and correspond to the columns of the matrices U and V respectively.
Given the decomposition in Eq. (III.1.20), we define the rank-r approximation of f̂ as

f̂
(r)
ij =

r∑

k=1

wk u
(k)
i v

(k)
j , (III.1.21)
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where 1 ≤ r < N , and define the corresponding rank-r reconstruction error as

e(r) = ||f̂ − f̂ (r)||2 =

N∑

i=r+1

w2
i , (III.1.22)

where ||A|| =
√∑

ij A
2
ij is the Frobenius norm. Since f̂ (r=N) = f̂ , we define e(N) = 0.

The key property of the POD is that the approximation in Eq. (III.1.21) is optimal in the
sense that

e(r) = min
{
||f̂ − g||2 |rank(g) = r

}
. (III.1.23)

That is, of all the possible rank-r Cartesian product approximations of f̂ , f̂ (r) is the closest
to f̂ in the Frobenius norm.

The SVD spectrum, {wk}, of noise free coherent signals decays very rapidly after a few
modes, but the spectrum of noise dominated signals is relatively flat and decays very slowly.
When a coherent signal is contaminated with low level noise, the SVD spectrum exhibits
an initial rapid decay followed by a weakly decaying spectrum known as the noisy plateau.
In the POD method the denoised density is defined as the truncation fP = f̂ (rc), where rc
corresponds to the rank where the noisy plateau starts. In general it is difficult to provide
a precise a priori estimate of rc, and this is one of the potential limitations of the POD
method. One possible quantitative criterion used in Ref. (del Castillo-Negrete et al., 2008)
is to consider the relative decay of the spectrum, ∆(k) = (wk+1−wk)/(w2−w1), for k > 1,
and define rc by the condition ∆(rc) ≤ ∆c where ∆c is a predetermined threshold.

III.1.3 Applications

In this section, we apply the WBDE method to reconstruct and denoise the particle distri-
bution function starting from discrete particle data. The data corresponds to three different
groups of simulations: collisional thermalization with a background plasma, guiding center
transport in toroidal geometry, and Vlasov-Poisson electrostatic instabilities. We will com-
pare the WBDE and POD methods in all three cases. Note that the first two groups of
simulations were already analyzed using POD methods in Ref. (del Castillo-Negrete et al.,
2008). The third group, which is new here, allows the testing of the reconstruction algo-
rithms in a collisionless system that incorporates the self-consistent evaluation of the forces
acting on the particles, as opposed to the colliional, test particle problems analyzed before.
When comparing the two methods, it is important to keep in mind that POD has one free
parameter, namely the number r of singular vectors that are retained to reconstruct the
denoised distribution function. In the cases studied here, we used a best guess for r based
on the properties of the reconstruction. In Ref. (del Castillo-Negrete et al., 2008) the POD
method was developed and applied to time independent and time dependent data sets. How-
ever, in the comparison with the WBDE method, we limit attention to 2-dimensional time
independent data sets.

The accuracy of the reconstruction of the density at a fixed time t will be monitored
using the mean square error

e =
∑

i,j

|f est(xi, yj; t)− f ref(xi, yj; t)|2 , (III.1.24)
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where (xi, yj) are the coordinates of the nodes of a prescribed Ng ×Ng grid in phase space,
and f est denotes the estimated density computed from a sample with Np particles. For the
WBDE method f est = fW , and for the POD method f est = fP . In principle, the reference
density, f ref , in Eq. (III.1.24) should be the density function obtained from the exact solution
of the corresponding continuum model, e.g. the Fokker-Planck or the Vlasov-Poisson system.
However, when no explicit solution is available, we will set f ref = fH , where fH is the
histogram corresponding to a simulation with a maximum number of particles available,
which in the cases reported here correspond to Np = 106. We will also use the normalized
error

e0 =
e∑

i,j |f ref(xi, yj; t)|2
. (III.1.25)

III.1.3.1 Collisional thermalization with a background plasma

This first example models the relaxation of a non equilibrium plasma by collisional damping
and pitch angle scattering on a thermal background. The plasma is spatially homogeneous
and is represented by an ensemble of Np particles in a three-dimensional velocity space.
Assuming a strong magnetic field, the dynamics can be reduced to two degrees of freedom:
the magnitude of the particle velocity, v, and the particle pitch, λ = cos θ, where θ is
the angle between the particle velocity and the magnetic field. In the continuum limit the
particle distribution function is governed by the Fokker-Planck equation, which in the particle
description corresponds to the stochastic differential equations

dλ = −λνD dt−
√
νD (1− λ2) dηλ , (III.1.26)

dv = −
[
α νs v −

1

2v2

d

dv

(
ν||v

4
)]

dt+
√
v2 ν|| dηv , (III.1.27)

describing the evolution of v ∈ (0,∞) and λ ∈ [−1, 1] for each particle, where dηλ and dηv
are independent Wiener stochastic processes and νD, νs and ν‖ are functions of v. For further
details on the model see Ref. (del Castillo-Negrete et al., 2008) and references therein.

We considered simulations with Np = 103, 104, 105 and 106 particles. The initial
conditions of the ensemble of particles were obtained by sampling a distribution of the form

f(v, λ, t = 0) = Av2 exp

{
−1

2

[
(λ− λ0)

2

σ2
λ

+
(v − v0)

2

σ2
v

]}
, (III.1.28)

where a v2 factor has been included in the definition of the initial condition so that the volume
element is simply dvdµ, A is a normalization constant, λ0 = 0.25, v0 = 5, σλ = 0.25 and
σv = 0.75. This relatively simple problem is particularly well suited for the WBDE method
because the simulated particles do not interact and therefore statistical correlations cannot
build-up between them.

Before applying the WBDE method, we analyze the sparsity of the wavelet expansion
of f δ, and compare the number of modes kept and the reconstruction error for different
thresholding rules. The plot in the upper left panel of Fig. III.1.3 shows the absolute values of
the wavelet coefficients in decreasing order at different fixed times. The wavelet coefficients
exhibit a clear rapid decay beyond the few significant modes corresponding to the gross
shape of the Maxwellian distribution. A similar trend is observed in the coefficients of the
POD expansion shown in the upper right panel of Fig. III.1.3. However, in the wavelet
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Figure III.1.3: Wavelet and POD analyses of collisional relaxation particle data at different
fixed times, with Np = 105. Top left: absolute values of the wavelet coefficients sorted by
decreasing order (full lines), and thresholds given by the global wavelet shrinkage algorithm
(dashed lines). Top right: singular values of the histogram used to construct fP . Bottom

left: error estimate e1/2

N2
g

with respect to the run for Np = 106 as a function of the number

of retained wavelet coefficients (full lines), error obtained when using the global wavelet
shrinkage threshold (dashed lines), and error obtained using the WBDE method (dash-dotted

lines). Bottom right: error estimate e1/2

N2
g

for fP as a function of the number l of retained

singular values.

t = 28 t = 44 t = 72
fH 0.14 0.17 0.12
fP 0.068 0.090 0.094
fW 0.064 0.094 0.088

Table III.1.2: Normalized root mean squared error e0 (III.1.25) for the histogram, POD and
WBDE estimates of the particle distribution function for Np = 105 at three different times
of the Maxwellian relaxation problem.
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Figure III.1.4: Contour-plots of estimates of f for the collisional relaxation particle data.
First row: Histogram method estimated using Np = 105 particles. Second row: Histogram
method estimated using Np = 106 particles. Third row: POD method estimated using
Np = 105 particles. Fourth row: WBDE method estimated using Np = 105 particles. The
three columns correspond to t = 28, t = 44 and t = 72 respectively. The plots show twenty
isolines, equally spaced in the interval [0, 0.4].
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Figure III.1.5: Reconstruction error, e1/2

N2
g

, as a function of Np for the collisional relaxation

particle data corresponding to the Maxwellian equilibrium state. Bold solid lines correspond
to the WBDE method, bold dashed lines correspond to the POD method, and thin dashed
lines correspond to the histogram method.

case the exponential decay starts after more than 100 modes, whereas in the POD case the
exponential decay starts after only one mode.

The two panels at the bottom of Fig. III.1.3 show the square root of the reconstruction
error normalized by Ng,

√
e/N2

g , in the WBDE and POD methods. Because in this case we
do not have access to the exact solution of the corresponding Fokker-Planck equation at the
prescribed time, we used fH computed using Np = 106 particles as the reference density
f ref in Eq. (III.1.24). The error observed when applying a global threshold to the wavelet
coefficients (bottom left panel in Fig. III.1.3) is minimal when around 100 modes are kept
whereas in the POD case (bottom right panel in Fig. III.1.3) the minimal error is reached
with about two or three modes. Fig. III.1.3 also shows the wavelet threshold obtained by
applying the iterative algorithm based on the stationary Gaussian white noise hypothesis
(Azzalini et al., 2004; Farge et al., 2006). The error corresponding to this threshold is larger
than the optimal error because the noise in this problem is very non-stationary due to the
lack of statistical fluctuations in the regions were particles are absent. In contrast, the error
corresponding to the WBDE procedure (dash-dotted line in Fig. III.1.3) is typically smaller
than the optimal error obtained by global thresholding. This is not a contradiction, because
the WBDE procedure is not a global threshold, but a level dependent threshold.

Figure III.1.4 compares at different times the densities estimated with the WBDE and the
POD (retaining only three modes) methods using Np = 105 particles with the histograms
computed using Np = 105 and 106 particles. The key feature to observe is that the level
of smoothness of fW and fP corresponding to Np = 105 is similar, if not greater, than the
level of smoothness in fH computed using ten times more particles, i.e. Np = 106 parti-
cles. Table III.1.2 summarizes the normalized reconstruction errors for Np = 105 according
Eq. (III.1.24) using fH with Np = 106 as f ref . The WBDE and POD denoising methods
offer a significant improvement, approximately by a factor 2, over the raw histogram method.

A more detailed comparison of the estimates can be achieved by focusing on the
Maxwellian final equilibrium state

fM(v) =
2√
π
v2e−v

2

, (III.1.29)
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where, as in Eq. (III.1.28), the v2 metric factor has been included in the definition of the
distribution. For this calculations we considered sets of particles sampled from Eq. (III.1.29)
in the compact domain [−1, 1] × [0, 4]. Since fM is an exact equilibrium solution of the
Fokker-Plack equation, the ensemble of particles is in statistical equilibrium but it exhibits
fluctuations due to the finite number of particles. Figure III.1.5 shows the dependence of
the square root of the reconstruction error, e (normalized by N2

g ) on the number of particles
Np and the grid resolution Ng for the WBDE and POD methods. The main advantage of
this example is that the exact density fM can be used as the reference density f ref in the
evaluation of the error.

III.1.3.2 Collisional guiding center transport in toroidal geometry

The previous example focused on collisional dynamics. However, in addition to collisions,
plasma transport involves external and self-consistent electromagnetic fields and it is of inter-
est to test the particle density reconstruction algorithms in these more complicated settings.
As a first step for solving this challenging problem, we consider a plasma subject to col-
lisions and an externally applied fixed magnetic field in toroidal geometry. The choice of
the field geometry and structure was motivated by problems of interest to magnetically con-
fined fusion plasmas. The data was presented and analyzed using POD method in Ref. (del
Castillo-Negrete et al., 2008). The phase space of the simulation is five dimensional. How-
ever, as in Ref. (del Castillo-Negrete et al., 2008), we limit attention to the denoising of
the particles distribution function along two coordinates corresponding to the poloidal angle
θ ∈ [0, 2π] and the cosine of the pitch angle µ ∈ [−1, 1]. The remaining three coordinates
have been averaged out for the purpose of this study. The θ coordinate is periodic, but the
pitch coordinate µ is not.

An important issue to consider is that the data was generated using a δf code
(DELTA5D). Based on an expansion on ρ/L ≪ 1 (where ρ is the characteristic Larmor
radius and L a typical equilibrium length scale) the distribution function is decomposed into
a Maxwellian part fM and a first-order perturbation δf represented as a collection of particles
(markers)

δf(x) =
∑

n

Wnδ(x−Xn) , (III.1.30)

like in Eq. (III.1.1) except that each marker is assigned a time dependent weight Wn whose
time evolution depends on the Maxwellian background (Parker and Lee, 1993). The direct
use of δf(x) is problematic in the WBDE method because δf is not a probability density. To
circumvent this problem the WBDE method was applied after normalizing the δf distribution
so that

∫
|δf |H = 1, on a 128× 128 grid.

Figure III.1.6 shows contour plots of the histogram fH corresponding to Np = 32× 103,
Np = 64×103, andNp = 1024×103 along with the WBDE and POD reconstructed densities.
The POD reconstructions were done using r = 3 modes, as in Ref. (del Castillo-Negrete
et al., 2008). It is observed that comparatively high levels of smoothness can be achieved
with considerably less particles by using either the WBDE or POD reconstruction methods.
The WBDE method provides better results for the δf ∼ 0 contours. This is because POD
modes are tensor product functions, that have difficulties in approximating the triangular
shape of these contour lines. Note that the boundary artifacts due to periodization of the
Daubechies wavelets do not seem to be very critical. The large wavelet coefficients associated
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Figure III.1.6: Contour plots of estimates of f for the collisional guiding center transport
particle data: Histogram method (first row), POD method (second row), and WBDE method
(third row). The left, center and right columns correspond to Np = 32 · 103 (left), Np =
128 ·103 (middle) and Np = 1024 ·103 (right) respectively. The plots show seventeen isolines
equally spaced within the interval [−0.5, 0.5].

Figure III.1.7: Error estimate, e1/2

N2
g

, for collisional guiding center transport particle data

according to the histogram, the POD, and the wavelet methods.
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with the discontinuity between the values of δf at µ = ±1 are not thresholded, so that the
discontinuity is preserved in the denoised function. Figure III.1.7 compares the reconstruction
errors in the WBDE, POD, and histogram methods as functions of the number of particles.
To evaluate the error we used fH computed with Np = 1024× 103 as the reference density
f ref . As in the collisional transport problem, the error is reduced roughly by a factor 2 for
both methods compared to the raw histogram. Note that the scaling with Np is slightly
better for WBDE than for POD.

III.1.3.3 Collisionless electrostatic instabilities

In this section we apply the WBDE and POD methods to reconstruct the single particle
distribution function from discrete particle data obtained from PIC simulations of a Vlasov-
Poisson plasma. We consider a one-dimensional, electrostatic, collisionless electron plasma
with an ion neutralizing background in a finite size domain with periodic boundary conditions.
The dynamics of the distribution function is governed by the system of equations

∂tf + v∂xf + ∂xφ∂vf = 0 (III.1.31)

∂2
xφ = ζ

∫
f(x, v, t)dv − 1 , (III.1.32)

where the variables have been non-dimensionalized using the Debye length as length scale
and the plasma frequency as time scale, and ζ is the normalized length of the system.
Following the standard PIC methodology (Birdsall and Langdon, 1985), we solve the Poisson
equation on a grid and integrate the particle equations in time using a leap-frog method.
The reconstruction of the charge density uses a triangular shape function. We consider two
initial conditions: the first one leads to a bump on tail instability, and the second one to a
two streams instability.

III.1.3.4 Bump on tail instability

To trigger a bump on tail instability we initialized ensembles of particles by sampling the
distribution function

f0(x, v) =
2

3πζ

1− 2qv + 2v2

(1 + v2)2 (III.1.33)

using a pseudo-random number generator. This equilibrium is stable for q ≤ 1 and unstable
for q > 1. The dispersion relation and linear stability analysis for this equilibrium studied in
Ref. (del Castillo-Negrete, 1998) was used to benchmark the PIC code as shown in Fig. III.1.8.
In all the computations presented here q = 1.25 and Np = 104, 105 and 106. The spatial
domain size was set to ζ = 16.52 to fit the wavelength of the most unstable mode.

Since the value of q is relatively close to the marginal value, the instability grows weakly
and is concentrated in a narrow band in phase space centered around the point where the
bump is located, v ≈ 1 in this case. In order to unveil the nontrivial dynamics we focus
the analysis in the band v ∈ (−3, 3), and plot the departure of the particle distribution
function from the initial background equilibrium. The POD method is applied directly to
δfH = fH(x, v, t)− f0(x, v), but the WBDE method is applied to the full fH(x, v, t), and
f0(x, v) is subtracted only for visualization. Note that because we are considering only a
subset of phase space, the effective numbers of particles, Np = 7318, Np = 73143 and
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Figure III.1.8: Electrostatic energy as a function of time in the Vlasov-Poisson PIC simu-
lations of the bump on tail instability for different numbers of particles. The straight lines
denote the growth rate predicted by linear stability theory (del Castillo-Negrete, 1998).

Np = 104 Np = 105

fH 0.443 0.140
fP 0.163 0.090
fW 0.173 0.086

Table III.1.3: Comparison of normalized root mean squared errors e0 (III.1.25) for the raw
histogram and for the WBDE and POD methods, for the bump-on-tail instability at t = 149,
depending on the number of particles. The simulation with Np = 106 is used as a reference
to compute the error.

Np = 731472, are smaller than the nominal numbers of particles, Np = 104, Np = 105 and
Np = 106 respectively.

Figure III.1.9 shows contour plots of δf for different number of particles. Since the
instability is seeded only by the random fluctuations in the initial condition, increasing Np

delays the onset of the linear stability and this leads to a phase shift of the nonlinear saturated
regime. To aid the comparison of the saturated regime for different numbers of particles
we have eliminated this phase shift by centering the peak of the particle distributions in the
middle of the computational domain. A 256 × 256 grid was used in the WBDE method,
and a 50× 50 grid was used for the histogram and the POD methods. The thresholds for
the POD method where r = 1, r = 2, and r = 3 for Np = 104, Np = 105 and Np = 106,
respectively. Except for the case where Np = 104, both the POD and WBDE estimates are
very smooth, in agreement with the expected behavior of f for this instability. It is observed
that the level of smoothness of the histogram estimated using 106 particles is comparable
to the level of smoothness achieved after denoising using only 105 particles. One should
mention that for scales between L and J occurring in the WBDE algorithm we find that
none of the wavelet coefficients are above the thresholds at each scale. In fact, a simple
KDE estimate with a large enough smoothing scale would probably do the job pretty well for
this kind of instabilities which do not induce abrupt variations in f . Table III.1.3 shows the
POD and WBDE reconstruction errors for Np = 104 and Np = 105. The error is computed
using formula (III.1.25), taking for fref the histogram obtained from the simulation with
Np = 106.
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Figure III.1.9: Contour plots of estimates of δf for the bump-on-tail instability PIC data
at t = 149: Histogram method (first row), POD method (second row), and WBDE method
(third row), The left, center and right columns correspond to Np = 104, Np = 105 and
Np = 106 particles respectively. The plots show thirteen contour lines equally spaced within
the interval [−0.0120.012].

Figure III.1.10: Relative error on the second order moment as a function of the grid res-
olution, Ng, in the POD, WBDE, and histogram methods for the bump on tail instability
particle data at t = 149, with Np = 106 particles.
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Figure III.1.10 shows the relative error on the second order moment :

|MW
v,2 −Mδ

v,2|
Mδ

v,2

where MW
v,2 is defined by (III.1.19). A similar quantity is also represented for fH and fP .

Time and number of particles are kept fixed at t = 149 and Np = 106, and only grid
resolution is varied. As expected, fH and fW conserve the second order moment with
accuracy O(N−1

g ). The errors corresponding to fP is of the same order of magnitude but
seems to reach a plateau for Ng ≃ 1024. This may be due to the fact that for Ng ≥ 1024,
there is less than one particle per cell of the histogram used to compute fP .

III.1.3.5 Two-streams instability

As a second example we consider the standard two-streams instability with an initial condition
consisting of two counter-propagating cold electron beams initially located at v = −1 and
v = 1. This case is conceptually different to the previous one because the initial condition
depends trivially on the velocity. Therefore, there is no statistical error in the sampling of
the distribution and the noise builds up only due to the self-consistent interactions between
particles. In other words, there is initially a strong correlation between particles’ coordinates,
which will eventually almost vanish. This situation offers a way to test robustness of the
WBDE method with respect to the underlying decorrelation hypothesis.

The analysis is focused on four stages of the instability, corresponding to t = 40, 60,
100, and 400. Fig. III.1.11 shows a comparison of the raw histogram, the POD and the
WBDE reconstructed particle distribution functions at these four instants. Grid sizes were
Ng = 1024 for the WBDE estimate, and Ng = 128 for the two others. For t = 40, no noise
seems to have affected the particle distribution yet, therefore a perfect denoising procedure
should conserve the full information about the particle positions. Although WBDE introduces
some artifacts in regions of phase space that should contain no particles at all, it remarkably
preserves the global structure of the two streams. This is possible thanks to the numerous
wavelet coefficients close to the sharp features in f that are above the thresholds, in contrast
to the bump-on-tail case. On the next snapshot at t = 60, the filaments have overlapped
and the system is beginning to loose its memory due to numerical round-off errors. The
fastest filaments still visible on the histogram are not preserved by WBDE, but the most
active regions are well reproduced. At t = 100, the closeness between the histogram and
the WBDE estimate is striking. To put it somewhat subjectively, one may say that WBDE
did not consider most of the rough features present at this stage as ’noise’, since they are
not removed. Only with the last snapshot at t = 400 does the WBDE estimate begin to
be smoother than the histogram, suggesting that the nonlinear interaction between particles
has introduced randomization in the system.

The POD method is able to track very well the fine and coarse scale structures of the
particle density using a small number of modes. In particular, for t = 40, 60, 100, and 400
only r = 28, r = 27, r = 18, and r = 5 modes were kept. The decrease of the number of
modes with time results from the lost of fine scale features in the distribution function.
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Figure III.1.11: Contour plots of estimates of f for the two streams instability PIC data
at times t = 40, t = 60, t = 100 and t = 400 (left to right). Histogram method (first
row), WBDE method (second row), and POD method (third row), The gray level tone varies
uniformly in the interval [0, A], where A = 0.15, A = 0.08, A = 0.05 and A = 0.025 in the
first, second, third and fourth columns respectively.
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III.1.4 Summary and Conclusion

Wavelet based density estimation was investigated as a post-processing tool to reduce the
noise in the reconstruction of particle distribution functions starting from discrete particle
data. This is a problem of direct relevance to particle-based transport calculations in plasma
physics and related fields. In particular, particle methods present many advantages over
continuum methods, but have the potential drawback of introducing noise due to statistical
sampling.

In the context of particle in cell methods this problem is typically approached using
finite size particles. However, this approach, which is closely related to the kernel density
estimation method in statistics, requires the choice of a smoothing scale, h, (e.g., the
standard deviation for Gaussian shape functions) whose optimal value is not known a priori.
A small h is desirable to fit as many Debye wavelengths as possible, whereas a large h would
lead to smoother distributions. This situation results from the compromise between bias
and variance in statistical estimation. To address this problem we proposed a wavelet based
density estimation (WBDE) method that does not require an a priori selection of a global
smoothing scale and that its able to adapt locally to the smoothness of the density based
on the given discrete data. The WBDE was introduced in statistics (Donoho et al., 1996).
In this paper we extended the method to higher dimension and applied it for the first time
to particle-based calculations. The resulting method exploits the multiresolution properties
of wavelets, has very weak dependence on adjustable parameters, and relies mostly on the
raw data to separate the relevant information from the noise.

As a first example, we analyzed a plasma collisional relaxation problem modeled by
stochastic differential equations. Thanks to the sparsity of the wavelet expansion of the
distribution function, we have been able to extract the information out of the statistical
fluctuations by nonlinear thresholding of the wavelet coefficients. At late times, when the
particle distribution approaches a Maxwellian state, we have been able to quantify the differ-
ence between the denoised particle distribution function and its analytical counterpart, thus
demonstrating the improvement with respect to the raw histogram. The POD-smoothed
and wavelet-smoothed particle distribution functions were shown to be roughly equivalent in
this respect. These results were then extended to a more complex situation simulated with a
δf code. Finally, we have turned to the Vlasov-Poisson problem, which includes interactions
between particles via the self-consistent electric field. The POD and WBDE methods were
shown to yield quantitatively similar results in terms of mean squared error for a particle
distribution function resulting from nonlinear saturation after occurrence of a bump-on-tail
instability. We have then studied the denoising algorithm during nonlinear evolution after
the two-streams instability starting from two counter-streaming cold electron beams. This
initial condition violates the decorrelation hypothesis underlying the WBDE algorithm, and
thus offers a good way to test its robustness regarding this aspect. The WBDE method was
shown to yield qualitatively good results without changing the threshold values.

Defining a ’mode’ as one term in the decomposition of the particle distribution function
into a sum, it appears that the number of modes used in the POD reconstruction algorithm
is considerably less than the number of modes needed using wavelets. But to make a
systematic comparison when it comes to storage requirements or data compression, one has
to keep in mind that POD modes are empirical and problem dependent whereas wavelet
modes are known a priori. Because of this, the specification of each POD mode requires
2Ng +1 components whereas the specification of each wavelet component only requires one
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number: the amplitude of the mode. A potential limitation of the POD method is the the
lack of systematic a priori thresholding criteria to determine the optimal number of modes.
However, the information contained in the decay of the spectrum of the singular values can
be used to determine optimal ranks. For example, in Ref. (del Castillo-Negrete et al., 2008)
a criterion based on the relative rate of decay of the spectrum provided consistent good
results for denoising Monte-Carlo particle data.

To test and compare the proposed denoising algorithms we have focused on the dis-
tribution function because it is in some sense the most basic and fundamental quantity in
PIC and Monte-Carlo simulations. It would be of interest to explore the use of other fields
like for example fluxes, charge densities, or derivatives of f rather than f itself. Lack of
space did not low us to elaborate more on this issue that we look forward to address in a
future publication. Regarding this, it is important to keep in mind that what to chose to
compare the algorithms, beyond the obvious choice of the raw f , depends on the physics of
the specific problem of interest. For example, calculations that require evaluation of quasi-
linear fluxes in wave particle-interaction problems might benefit from denoising gradients of
f . On the other hand, active denoising Vlasov-Poisson codes might only require denoising
of the charge distribution (i.e. the integral of f in velocity) whereas denoising the current
(first velocity moment of f) would be important in Vlasov-Maxwell codes. Other specific
needs might arise when coupling particle codes to continuum codes, e.g. when performing
extended MHD calculations. It may also be of interest to focus on the reconstruction error
of the force fields, which determine the evolution of the simulated plasma. These forces
depend on f through integrals, and statistical analysis of the estimation of f using weak
norms (Victory and Allen, 1991) might be beneficial.

The computational cost of our method scales linearly with the number of particles and
with the grid resolution. Therefore, WBDE is an excellent candidate to be performed at each
time step during the course of a simulation. Once the wavelet expansion of the denoised
particle distribution function is known, it is possible to continue using the wavelet representa-
tion to solve the Poisson equation (Jaffard, 1992) and to compute the forces. The moment
conservation properties that we have demonstrated in this paper should mitigate the un-
avoidable dissipative effects implied by the smoothing stage. In Ref. (McMillan et al., 2008),
a dissipative term was introduced in a global PIC code to avoid unlimited growth of particle
weights in δf codes, and this was shown to improve long time convergence of the simula-
tions. It would be of interest to assess if the nonlinear dissipation operator corresponding to
WBDE has the same effect.

There are several potential extensions and applications of the techniques and results
presented. Some of these include high dimensional problems, active denoising, and appli-
cations to more complex plasma models. The implementation of the WBDE algorithm to
high (greater than two) dimensions is in principle straightforward. The POD method on the
other hand can be more challenging since the SVD is applied to matrices. One simple way
to circumvent this problem is to “fold” high dimensional data into matrices.However, this
straightforward approach can be numerically inefficient. A promising alternative would be to
use tensor decomposition techniques like the method of generalized low rank approximation
of matrices used in (del Castillo-Negrete et al., 2008). The problem of active denoising, and
the application of the reconstruction algorithms to more complex plasma models like Vlasov-
Maxwell and gyrokinetics is a key follow up of the results presented here. Also, it would be
of interest to explore applications to the problem of coupling particle and continuum codes
in extended MHD and radio-frequency heating studies in fusion plasmas.
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III.2 Particle-in-Wavelets scheme for the 1D Vlasov-

Poisson equations

The contents of this section have been submitted for publication in ESAIM:Proceedings, see
(Nguyen van yen et al., 2010d)

Introduction

The state of a hot plasma out of local thermodynamic equilibrium is characterized by a
particle distribution function depending on position, velocity, and time. When the effects
of collisions are neglected, this distribution satisfies the partial differential equation (PDE)
known as the Vlasov equation. In the presence of simplifying hypotheses and/or special
symmetries, the complexity of the problem can be reduced to permit a resolution of the
Vlasov equation using the Eulerian PDE discretization approach which requires a mesh in
position and velocity. Recent progresses have pushed back the limit of the feasible to include
for example the 5D gyrokinetic approximation (Grandgirard et al., 2006; Wang et al., 2006;
Idomura et al., 2007). However the full equation with six variables plus time remains a major
computational challenge, which could take as much advantage of better numerical methods
as of further machine development and parallelization.

In the past, even more stringent limitations in memory size and computing power have
driven physicists to develop specific simulation methods, which approximate the plasma by
a collection of macro-particles (Birdsall and Langdon, 1985; Hockney and Eastwood, 1988)
and can be linked to Monte-Carlo methods (Aydemir, 1994). Although the precision of
Monte-Carlo methods is limited by sampling error, they are known to be competitive for
problems involving integrals over many dimensions. For the specific problem of solving
the Vlasov equations, it is well known that particle methods offer a more straightforward
implementation and an easier parallelization than their Eulerian counterparts. However, the
debate over the best compromise in terms of overall development and simulation cost versus
precision remains unsettled. Current outstanding applications of particle methods include
magnetic confinement fusion (Jolliet et al., 2007; Heikkinen et al., 2008), and laser-plasma
acceleration (Cormier-Michel et al., 2008). But in the last decade, there has been a tendency
to challenge some results obtained using legacy particle methods on the grounds that the
simulations were underresolved (Nevins et al., 2005).

Plasma simulation using particles is dominated by derivatives of the finite size particle
(FSP) method (Birdsall and Langdon, 1985; Hockney and Eastwood, 1988), to whom a
vast amount of research has afforded the status of a reference. FSP schemes are obtained
by convolving the empirical density corresponding to the distribution of marker particles by
a fixed kernel, also known as charge assignment function (Hockney and Eastwood, 1988).
Their numerical properties are well understood empirically and they also benefit from an
elegant physical interpretation (Langdon and Birdsall, 1970). The most widely used FSP
method, particle-in-cell (PIC), uses a triangular kernel. Higher order variants have been
studied in the past (Okuda et al., 1979) but their computational cost has made their use
relatively rare, since precision and reduction of noise were not the main concern at the time.

In (Nguyen van yen et al., 2010a), we have studied another way of estimating the density
from the particle positions, called wavelet-based density estimation (WBDE). WBDE was
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first introduced in the more general context of nonparameteric density estimation (Donoho
et al., 1996), as an alternative to the classical kernel density estimation (KDE) method.
Instead of being convolved with a kernel, the empirical density is projected onto a finite
dimensional linear space spanned by a family of orthogonal wavelets. The projection space
is determined from the data itself, which allows for a refined representation around sharp
features, and could make the method more precise than FSP for a given computational cost.

The aim of this paper is to present a new scheme for the 1D Vlasov-Poisson equations,
that we call particle-in-wavelets (PIW) because it relies crucially on wavelet expansions of
the Dirac delta functions corresponding to every particle. WBDE is used for the density
estimation step in the PIW scheme. The information pertaining to each particle thus gets
spread to neighboring wavelets, in the same manner as it gets spread among neighboring
grid points in the PIC case. The general philosophy of this work has been to build the
scheme from scratch, taking as much advantage of wavelets as possible, so as to have a
proof of principle of various properties specific to wavelets. We are focusing mostly on
understanding the precision of the scheme and the conservation properties, as opposed to
optimizing numerical efficiency.

Other methods have been proposed, and sometimes successfully implemented, to improve
PIC simulations, but they all rely on the application of a linear operator to the particle
distribution function in order to reduce the noise. Linear denoising operators are optimal when
the regularity of the signal to be denoised is homogeneous in space. However, the distribution
function within collisionless plasmas is known to develop sharp features. Therefore a nonlinear
thresholding approach could be more efficient, and this work is a first step in this direction.

We first recall some background, on the Vlasov-Poisson equations in one space dimension
on the one hand, and on wavelets on the other hand. Reference semi-Lagrangian Eulerian
and PIC schemes are also described. After that we proceed to define the various steps of the
PIW (particle-in-wavelets) wavelet-based scheme. Finally, numerical results from the three
schemes are presented and the properties of the new PIW scheme are assessed in detail.

III.2.1 Background

III.2.1.1 Vlasov equations

The Vlasov equation governs the evolution of the particle distribution function f(x, v, t) of
a given species in a collisionless plasma. In the 1D case which we focus on, v varies in R,
and for simplicity, we assume periodicity in the x direction, i.e. x ∈ T := R

lZ
, where l is the

period. Γ = T× R is the phase space for one particle in the plasma. We restrict ourselves
to the case where the ion density is assumed to remain constant, and the magnetic field is
neglected. The system is then fully described by the Vlasov-Poisson equations, which can
be written in non-dimensional form as follows:

∂tf + v∂xf + ∂xφ∂vf = 0 (III.2.1)

∂xxφ+ 1− l
∫

R

f(x, v, t)dv = 0 (III.2.2)

where φ(x, t) is the electric potential. In the following, we denote by E(x, t) = −∂xφ(x, t)
the electric field, and by ρ(x, t) =

∫
R
f(x, v, t)dv the charge density. Note that we have
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adopted here the following slightly uncommon normalizations for ρ and f :
∫

Γ

f(x, v, t)dxdv = 1 (III.2.3)
∫

T

ρ(x, t)dx = 1 (III.2.4)

We shall also need the definitions of two physical quantities associated to the Vlasov-Poisson
problem, namely the electrostatic energy

V(t) =
1

2

∫

T

|E(x, t)|2 (III.2.5)

and the total energy

E(t) =
1

2

∫

Γ

v2f(x, v, t)dxdv + V(t), (III.2.6)

the latter being constant for solutions of the Vlasov-Poisson equations.

The goal of this paper is to describe a new numerical scheme for solving (III.2.1-III.2.2)
together with an initial condition for f . We will use the fact that any solution of (III.2.1) is
constant along the characteristic trajectories defined by:

{
x′(t) = v(t)

v′(t) = −E (x(t), v(t), t)
(III.2.7)

Existing approaches to the same problem are divided into two main categories, that were
already mentioned in the introduction:� particle solvers, which integrate the characteristic equations (III.2.7) and discretize the

potential on a grid in the x variable,� Eulerian solvers where the full distribution function f is discretized on a phase space
mesh or grid.

The first category is especially appealing when the phase space has dimension 4 or more,
since it is then very costly to use an Eulerian approach. However, the discretization of f
using particles is subject to statistical sampling noise which normally makes it of rather low
precision (Nevins et al., 2005). In particular, for the 1D problem that we are considering here,
we expect Eulerian solvers to be much more precise for a given computational cost. This
allows us to take the solution obtained with a high precision Eulerian solver as a reference
for measuring the convergence of particle methods. We have chosen a well validated semi-
Lagrangian (SL) solver using cubic spline interpolation (Sonnendrücker et al., 1999).

It is a reasonable requirement that any new particle method should offer some improve-
ment over the legacy PIC approach. As a contestant to compare with our newly proposed
PIW method, we therefore take a PIC solver, which uses a triangular charge assignment
function to estimate the charge density, and Fourier transforms to solve the Poisson equa-
tion.

When assessing the convergence of particle solvers, the loading scheme is especially
important since it controls the initial amplitude of the noise. Provided that the initial data
f0 is factorized

f0(x, v) = f0,x(x)f0,v(v)
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h0 = 0.03858077774789 h2 = -0.07716155549577 h4 = 0.74568755893443
h1 = -0.12696912539621 h3 = 0.60749164138568 h5 = 0.22658426519707

Table III.2.1: Scaling function filter coefficients for the C1 Coiflet family with 2 vanishing
moments introduced in (Daubechies, 1993) and used throughout this paper.

we ensure that the initial noise is small using the following classical approach. First, compute
a 2D Hammersley sequence (Hammersley et al., 1975), (ai, bi)i∈N, Then set as initial particle
positions

xi(0) = F−1
0,x (ai)

vi(0) = F−1
0,v (bi)

where F−1
0,x and F−1

0,v are the inverse mappings corresponding to the cumulative distribu-
tion functions F0,x and F0,v associated respectively to f0,x and f0,v, and are in practice
approximated using a pre-generated lookup table and polynomial interpolation. With this
initialization scheme, called “quiet start”, the initial error on the particle distribution function

is expected to scale like N−1
p , as opposed to N

− 1
2

p for a random start.

III.2.1.2 Wavelets

In this section we recall some notions on wavelets. We keep the same notations as in
(Nguyen van yen et al., 2010a). More background may be found in the literature (see e.g.
(Mallat, 1999)). The construction is done in R

lZ
with l = 1, and the adjustments for l 6= 1

will be made further down the moment they are required. Let ψ be a 1-periodic wavelet
generating an orthogonal basis of L2(R

Z
), and ϕ be the associated scaling function.

The dilated and translated scaling functions and wavelets are denoted

ϕλ(x) = 2
jλ
2 ϕ(2jλx− iλ) (III.2.8)

ψλ(x) = 2
jλ
2 ψ(2jλx− iλ) (III.2.9)

where λ = (jλ, iλ) is a multi-index characterizing the scale jλ and position iλ of a wavelet.
We denote by VJ the 2J -dimensional linear space spanned by

(
ϕ(J,i)

)
0≤i≤2J−1

. An important

property of the function ϕ is that it satisfies the two-scale recurrence equation (Mallat,
1999):

ϕ(t) =
√

2
S−1∑

i=0

hiϕ(2t− i) (III.2.10)

where (hi)0≤i≤S−1 is called the scaling function filter.

The scaling function and wavelet coefficients of a function u ∈ L2(T) are defined by

uλ = 〈u | ϕλ〉 (III.2.11)

ũλ = 〈u | ψλ〉 (III.2.12)
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i 0 1 2 3 4

r
(1)
i 0 -0.619368727403 -1.403784906417 2.427684222146 -0.839028531550

r
(2)
i 0.622642595976 -0.389477243531 0.179082676222 -0.326853461357 0.225926730678

Table III.2.2: Stencils for first and second derivative operators in the R-Coiflet 6 scaling
functions basis. Only the values for positive k are given. The values for negative k are
obtained from the conditions that r(1) is odd and r(2) is even.

where 〈· | ·〉 denotes the usual scalar product in L2(T). For any positive integer L, u can
be decomposed as follows:

u =
2L−1∑

i=0

u(L,i)ϕ(L,i) +
∞∑

j=L

2j−1∑

i=0

ũ(J,i)ψ(J,i) (III.2.13)

where the first sum is the projection of u on VL, and the second sum contains all the
additional details needed for the full reconstruction of u.

In the following we shall also need to represent first and second order differential operators
in the space VJ . The results necessary to do so were derived in (Beylkin, 1992), and we
summarize them here for completeness. For any u ∈ VJ we have, using (III.2.13):

u′ =

2J−1∑

i=0

u(J,i)ϕ
′
(J,i)

The Galerkin representation of the first order derivation operator in VJ is thus defined by
the matrix G such that:

Gi1,i2 =
〈
ϕ(J,i1) | ϕ′

(J,i2)

〉
= 2J

∫

T

dxϕ
(
2Jx− i1

)
ϕ′ (2Jx− i2

)

=

∫

T

dyϕ (y + i2 − i1)ϕ′(y) := r
(1)
i2−i1

In (Beylkin, 1992), it is shown that the matrix elements r
(1)
i2−i1 can be determined by solving

a linear system with coefficients depending only on the hi, and that they satisfy the anti-
symmetry relation r

(1)
−i = −r(1)

i , so that applying the matrix G is numerically equivalent to
applying a centered finite difference operator. G is thus an antisymmetric matrix. The same
procedure can be followed to obtain the Galerkin representation of the second derivative in
VJ , defined by the matrix L such that:

Li1,i2 =
〈
ϕ(J,i1) | ϕ′′

(J,i2)

〉

and which corresponds to a symmetric filter r
(2)
i .

In the following we make use of only one orthogonal wavelet basis, namely the C1 Coiflets
with S = 6 introduced at the end of (Daubechies, 1993), which we dub ”R-Coiflet 6”. This
wavelet is more regular than the normal Coiflet 6 wavelet, hence the R which stands for
“regular”. Note that 6 is the minimal filter length for which both r(1) and r(2) are well
defined. The scaling function filter coefficients (hi) are recalled in Table III.2.1. Except
otherwise noticed, the results presented below also hold for any other orthogonal wavelet
basis. The filters r(1) and r(2) corresponding to the R-Coiflet 6 wavelet basis are provided in
Table III.2.2 for completeness.
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III.2.2 Description of the PIW scheme

III.2.2.1 Wavelet-based density estimation

Let us briefly recall the wavelet-base density estimation (WBDE) algorithm for estimating
the charge density from the position of a finite number Np of particles. A more detailed
account, illustrated by several applications, may be found in (Nguyen van yen et al., 2010a).
WBDE, first introduced in (Donoho et al., 1996) belongs to the class of density estimators
constructed from orthogonal projections (Silverman, 1986). Its main originality is that the
members of the orthogonal family on which the density is projected are chosen in an adaptive
manner, depending on the observed particle positions.

In this work, we have focused on the Vlasov-Poisson problem, for which only the spatial
distribution of particles matters when estimating the electric field, while the velocity distri-
bution is irrelevant. Therefore, we apply the WBDE algorithm to the spatial distribution
only, which is one dimensional. In the units we are working with, this spatial distribution is
identical to the charge density ρ. Defining the empirical density associated to the particle
positions (xn)1≤n≤Np by

ρδ(x) =
1

Np

Np∑

n=1

δ(x− xn) (III.2.14)

where δ is the Dirac measure, the idea of the WBDE algorithm is to project f δ on the finite
dimensional subspace spanned by all the wavelets at scales coarser than L and part of the
wavelets at scales j such that L ≤ j ≤ J , where the scales L and J are defined as follows:

L =

⌊
log2N

1
1+2r0
p

⌋
(III.2.15)

J =

⌈
log2

Np

log2Np

⌉
(III.2.16)

In these formulas, ⌈·⌉ and ⌊·⌋ denote respectively the lower and upper integer parts, and r0
is the order of regularity of the wavelet, which is 1 in our case. The wavelets that are kept
for L ≤ j ≤ J are determined according to the amplitude of the corresponding coefficients
in ρδ, in the spirit of the classical wavelet denoising algorithms, see (Donoho and Jonhstone,
1994; Donoho et al., 1996; Mallat, 1999). The threshold at scale j is defined by:

Θj = K

√
j

Np

where K is a constant which in principle depends on the regularity of the solution. In
the following, we have fixed K = 1. The threshold was derived rigorously in (Donoho

et al., 1996), and as detailed in (Nguyen van yen et al., 2010a), the N
− 1

2
p dependence can

be justified heuristically from the asymptotic distribution of the wavelet coefficients when
estimating a probability density from Np independent realizations.

To treat the case l 6= 1, we can rescale ρδ to obtain a normalized distribution on R

Z
:

x → l−1x (III.2.17)

ρδ → lρδ (III.2.18)
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and notice that this change of variables leaves the scaling function and wavelet coefficients
(III.2.11-III.2.12) unchanged. Therefore at this stage the algorithm can be applied harmlessly
as if l = 1.

In summary, the following steps are required to actually implement the estimation:

(i) compute some approximation ρS(J,i) of the scaling function coefficients of ρδ at scale

J , by which the projection of ρδ on the space VJ can be expressed:

ρS =
2J−1∑

i=0

ρS(J,i)ϕ(J,i) (III.2.19)

(ii) apply the fast wavelet transform algorithm to compute the wavelet coefficients of ρS

at scales j such that L ≤ j ≤ J :

ρS =
2L−1∑

i=0

ρS(L,i)ϕ(L,i) +
J−1∑

j=L

2j−1∑

i=0

ρ̃S(j,i)ψ(j,i) (III.2.20)

(iii) apply the nonlinear threshold operator :

ρW =

2L−1∑

i=0

ρS(L,i)ϕ(L,i) +

J−1∑

j=L

2j−1∑

i=0

1[0,+∞[

(
|ρ̃S(j,i)| −Θj

)
ρ̃S(j,i)ψ(j,i) (III.2.21)

where 1[0,+∞[ is the characteristic function of the interval [0,+∞[.

The remaining difficulty in the above procedure is its first step, to which we dedicate the
next section entirely. If steps (2-3) are omitted, we obtain a scheme which we call Linear
PIW (L-PIW), and that we will use below for comparison purposes. In that case, the value
of L has no influence, and we allow J to be chosen as a free parameter.

III.2.2.2 Approximation of empirical scaling function coefficients

To perform step (1) of the above WBDE algorithm, some approximate values ρSλ of the
coefficients ρδλ must be defined. According to (III.2.11) and (III.2.14), their exact values are:

ρδλ =
1

Np

Np∑

n=1

ϕλ(xn), (III.2.22)

which is difficult to compute because there is no analytical expression available for ϕλ. In
(Nguyen van yen et al., 2010a) we proposed to use the approximation

ρS(J,i) = 2−
J
2 ρH

(
2−Ji

)
,

where ρH is a histogram constructed over a grid of size 2J in each direction. To increase
the accuracy in the computation, we adopt here the following alternative. We known that
the scaling function ϕ is supported on the interval [0, S− 1], which can be discretized using
2JLT regularly spaced points

sk = 2−JLT (S − 1)k,
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at which we can compute approximations of the values of ϕ

ϕ̌k ≃ ϕ(sk)

using for example the iterative algorithm described in (Daubechies and Lagarias, 1991). The
ϕ̌k constitute a look-up table of approximations to the ϕ(sk), which needs to be computed
only once for any chosen wavelet basis. Now assume that a particle is located at position x
and that we want to approximate

ϕ(J,i)(x) = 2
j
2ϕ(2jx− i).

This can be nonzero only if 0 ≤ 2jx − i ≤ S − 1, that is, for S values of i. For each of
these values of i we find the unique integer k such that

sk ≤ 2jx− i < sk+1,

we let

α =
2jx− i− xk
xk+1 − xk

and we compute a linear interpolation from the values stored in the lookup table,

ϕ̌λ(x) = (1− α)ϕ̌k + αϕ̌k+1.

There remains to sum over all the particles to compute the scaling function coefficient
of the charge density which we use in the following:

ρSλ =
1

N

Np∑

n=1

ϕ̌λ(xn) (III.2.23)

For each particle, we need to make S lookup operations in the table, so that the overall
cost is proportional to SNp. For the size of the table, we have used JLT = 18. Note that
when generalizing this algorithm to d dimensions, the required lookup table will remain one
dimensional because the d-dimensional scaling functions are factorized into products of 1D
scaling functions. Therefore there will be no increase in memory requirements for this stage
of the algorithm.

III.2.2.3 Wavelet-Galerkin Poisson solver

Once the wavelet coefficients of the electron charge density ρ have been obtained by WBDE,
the electric potential needs to be computed by solving the Poisson equation (III.2.2). A
wavelet preconditioning technique has been previously developed to solve (III.2.2) in 3D using
finite differences in the context of a PIC code (Terzić et al., 2007). Here, we prefer to use a
full Galerkin discretization of (III.2.2) in the wavelet basis, as introduced in Section III.2.1.2:

l−2Lφ
S

= 1− ρW (III.2.24)

where φ
S

and ρW stand respectively for the column vectors (φ
S

λ) and (ρWµ ), φS stands for
the unknown electric potential, and the l−2 prefactor comes from the rescaling of the domain
(Eq. III.2.17).
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A such, this system is ill-conditioned and solving it directly using an iterative method
would be inefficient. Fortunately, there is a well known technique to improve the condition
number. The main idea is to solve for the wavelet coefficients instead of the scaling function
coefficients, and to use a diagonal preconditioner in wavelet space. First (III.2.24) is rewritten

l−2FLF †φ̃S = F(1− ρW ) (III.2.25)

where F is the matrix form of the wavelet transform operation, and ·† stands for transposi-
tion. Now (III.2.25) can be efficiently solved using the conjugate gradient method with the
diagonal preconditioner defined by:

Dλ,µ = δλµ2
jλ

The wavelet coefficients of the potential at the previous time step are used as initial guess
to speed-up the convergence. Once φ̃S has been obtained, an inverse wavelet transform is

applied to yield φ
S
.

Note that an alternative and non equivalent approach would be to write down a Galerkin
discretization of (III.2.2) in the basis made of the wavelets whose coefficients are non-zero
in the expansion (III.2.21) for ρW . We would thus obtain an approximation φW to the
potential which has the same support in wavelet space, allowing for an adaptive strategy. In
the present approach, φS has a priori a full support in wavelet space. As we will see below
this has an important consequence on the self-force.

III.2.2.4 Interpolation and particle push

Like in the standard PIC method, it is essential that the interpolation method be compatible
with the charge assignment scheme in order to avoid self-forces (Birdsall and Langdon, 1985).
The scaling function coefficients of the electric field can be obtained by Galerkin projection
of the gradient operator in the scaling function basis (see Sec. III.2.1.2):

E
S

λ =
(
ϕλ, ϕ

′
µ

)
φ
S

µ = lGφ
S

A natural first attempt is to directly interpolate ES at the particle positions to obtain the
forces exerted on the particles. For this purpose we could use the approximation:

ES(x) =
∑

λ∈Λ

E
S

λ ϕ̌λ(x) (III.2.26)

but as we now show this does not guarantee the vanishing of self-forces. Indeed, let us
assume for the rest of this section that there is a single particle located at position x.
From (III.2.23), we see that, prior to the nonlinear thresholding step, the approximation by
the scheme of the charge density is simply given by ρSλ = ϕ̌λ(x). Hence using the matrix
notations defined above we have

ES(x) = lρS†Gφ
S

= l−1ρS†GL−1ρW (III.2.27)

Now since G and L are both circulating matrices, they commute, and using the fact that
G is antisymmetric and L is symmetric, we obtain that GL−1 is also antisymmetric. If we
would replace ρW by ρS above, we would immediately get that ES(x) = 0, but in general
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ρW 6= ρS because of the nonlinear thresholding step. Fortunately a simple remedy exists
to enforce the vanishing of self-forces in all cases. Denote by M the matrix of the linear
operator defined diagonally in wavelet space by the mask corresponding to the thresholding
operation. By definition we have that

ρW = MρS

so that (III.2.27) is equivalent to

ES(x) = l−1ρS†GL−1MρS

which leads us to define a new candidate for the electric field reconstruction:

E
W

= lMGφ
S

(III.2.28)

that is, EW is obtained from ES by discarding the same wavelet coefficients that were
discarded when going from ρS to ρW . The self-force corresponding to EW is obtained as
before:

EW (x) = l−1ρS†MGL−1MρS

but now, using the fact that M is symmetric and GL−1 is antisymmetric, we obtain as
desired

EW (x) = 0.

Once we know how to interpolate the electric field at the particle positions, the advance-
ment in time of (III.2.7) is done using a classical Verlet integrator.

III.2.3 Numerical results

III.2.3.1 Landau damping

To begin with we consider a Landau damping test case, for which the initial condition is
given by

f0(x, v) = l−1 (1 + ε cos(kx))
1√
2π
e−

v2

2 ,

where k = 0.5, l = 4π, ε = 10−3. The small value of ε implies that the evolution is
dominated by the linear transport effect. The reference solution used for comparison was
obtained with the SL solver, using 4097 grid points in the x and v directions. The timestep
was δt = 0.025 for the reference solution, and δt = 0.05 for the others.

The time evolution of the electrostatic energy V(t) is shown in Fig. III.2.1 (left). Thanks
to the high order interpolation properties of the wavelets, the PIW solution matches the
decay of the electrostatic energy better than the PIC one. The time evolution of total
energy E(t) for the PIW and reference scheme is shown in Fig. III.2.1 (right). Note that
the kinetic energy appearing in E(t) is approximated by a discrete sum over the particles.
Variations remain small for the two schemes, and are especially low for the PIW scheme with
219 particles.

This classical test case serves to validate the PIW method, but since the solution remains
very smooth it is not very well suited to provide more insight into the effect of nonlinear
thresholding. We therefore move to the more challenging two streams instability.
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Figure III.2.1: Comparison of PIW, PIC and reference solvers for the Landau damping test
case. Left: electrostatic energy as a function of time. Right: kinetic energy as a function of
time.

Figure III.2.2: Two streams in stability test case. Particle distribution function obtained
using the reference solver at t = 10 (left) and t = 30 (right).

III.2.3.2 Two-streams instability

The initial condition for this test case is

f0(x, v) = l−1 (1 + ε cos(kx))
1√
2π

(
e−

(v−v0)2

2 + e−
(v+v0)2

2

)
,

where k = 0.2, l = 10π, ε = 10−2, and v0 = 2.4. The reference distribution function is
shown at t = 10 and t = 30 in Fig. III.2.2. It was obtained using the SL solver with 4097 grid
points in the x and v directions. The timestep was δt = 0.0125 for the reference solution,
and δt = 0.05 for the others.

For this test case the electrostatic energy (Fig. III.2.3, left) first oscillates for a few
periods, roughly up to t = 10, and then undergoes an exponential growth which leads to a
strongly nonlinear behavior. The PIC and PIW schemes with 219 particles allow for a good
approximation of the electrostatic energy up to t = 30.

To assess the quality of the approximations of the electric field in the PIC and PIW
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Figure III.2.3: Comparison of PIW, PIC and reference solvers for the two streams in stability
test case. Left: electrostatic energy as a function of time (Eq. III.2.5). Right: total energy
as a function of time (Eq. III.2.6).
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Figure III.2.4: Two streams instability test case. L2 error on the electric field at t = 30, as
a function of number of particles (left) and computing time (right).
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Figure III.2.5: Two streams in stability test case. Error on the electric field as a function of
space at t = 30.

schemes, we focus on the relative L2 error:

δE(t) =
‖E(x, t)−Eref (x, t)‖

‖Eref(x, t)‖
,

where Eref(x, t) is the electric field computed using the reference SL solver. To allow for
the computation of δE(t), E(x, t) is interpolated on the grid corresponding to Eref(x, t). In
the PIW case, E(x, t) is first reconstructed on a grid from its scaling function coefficients
using the methods presented in (Genovese et al., 2008).

δE(t) is shown in Fig. III.2.4 (left) at t = 30, as a function of the number of particles. For

all considered methods, the scaling lies between N−1
p and N

− 1
2

p . PIW offers an improvement
of roughly a factor 3 over PIC, over a wide range of particle numbers. Linear PIW with
J = 7 is a good candidate but starts to saturate for Np = 219, probably because the spatial
discretization error is reached. In contrast, nonlinear PIW remains uniformly better for any
number of particles, thanks to its adaptive properties. In the right panel of Fig. III.2.4,
δE(t) is plotted versus the total CPU time (in seconds) needed for the integration of the
equations on the time interval [0, 30]. The same computer was used in all cases, but the
comparison between the absolute values of the CPU time should be made with caution since
the languages that were used are different (FORTRAN for the PIC code, and C++ for the
PIW code). Anyway, an interesting observation which can be made is that the decrease
of the error with computing time for the PIW code is uniformly N−1

p over the whole range
of considered parameters. For the PIC and L-PIW methods, in contrast, a saturation is
observed when the number of particles is too low for a given spatial resolution.

To get a feeling of how the error we make on the electric field, we plot it as a function
of x for t = 30 (Fig. III.2.5). It seems that the error can be qualitatively decomposed into
the following three components:

(i) a large scale component, which is probably due to a phase shift between the PIW and
reference solutions,

(ii) localized peaks, where some sharp features in the electric field are not properly resolved,

(iii) noise spread out over the whole domain.
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Our goals with nonlinear thresholding was to preserve the sharp features that develop due
to nonlinear interactions.

III.2.4 Discussion

The PIW approach was proposed as an alternative to PIC for plasma simulation using par-
ticles, and successfully implemented to solve the simple one dimensional Vlasov-Poisson toy
model. The main conceptual difference between PIC and PIW is that the empirical distri-
bution of particles is convolved with a kernel for the former, whereas it is projected onto a
finite dimensional linear space for the latter. Thanks to the use of wavelets to generate the
projection space, the denoising step which can be included in PIW and which we have studied
is genuinely different from those that are developed for PIC schemes. Indeed, the wavelet
representation can adapt locally to the regularity of the density, whereas linear approaches
such as Krook operators (McMillan et al., 2008), Fourier filtering (Jolliet et al., 2007) or
coarse graining (Chen and Parker, 2007), cannot.

The adaptive denoising strategy is especially useful when the density develops sharp
features, which is known to occur generically as soon as nonlinear effects become important.
To better understand this effect, we have compared a linear Landau damping test case, where
the density remains homogeneously smooth, to a two stream instability test case. We have
shown that for the first, PIW behaves as a higher order PIC approach, offering a constant
improvement in terms of L2 error, but no improvement in rate of convergence. In contrast,
for the second test case, fine resolution was required to resolve sharp features developing in
the electric field.as a result of nonlinear effects. The PIW scheme is able to automatically
increase the resolution locally when the number of particles is sufficient to guarantee that
the estimation of the density will not get corrupted by noise. This adaptivity guarantees that
the error decays like the inverse square root of computing time over a wide range of particle
numbers. The topic of discretization error control using wavelets has been studied elsewhere,
see e.g. (Schneider and Vasilyev, 2010) for a review in the context of computational fluid
dynamics.

For the simple 1D case considered here, the improvement observed was roughly a factor
3 of precision. The increase in computational cost of the PIW scheme with respect to the
PIC scheme is proportional to the length of the wavelet filter, which we have fixed to 6 in
this study. Extending the full PIW scheme to more realistic 2D or 3D geometries is a much
more ambitious challenge. A first undertaking, complementary to the present study, could
be to interface wavelet denoising using WBDE in an existing production code in order to
further support the possible benefits of the approach.



The answer, my friend, is blowin’ in the wind.
The answer is blowin’ in the wind.

Bob Dylan

Une première salve, un long froissement d’étoffe, soutenu, cinglant, puis le
redoux des carresses pleines, lorsque le souffle se fait enveloppant et rond, jusqu’à
l’empâtement. Ça se hausse, seconde salve, dans la véhémence et presque
claquée. Un calme suit, qui aspire le corps vers l’avant. Puis troisième salve,
forte puis decrescendo, jusqu’à ne plus onduler qu’avec les nuances d’une brise.

Alain Damasio

La horde du contrevent
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IV.1 1D Burgers equation

This section is adapted from a published paper, see (Nguyen van yen et al., 2008).

IV.1.1 Introduction

The fully developed turbulent regime is described by solutions of the Navier–Stokes equations
for two or three-dimensional incompressible fluids, in the limit where the kinematic viscos-
ity becomes very small. By analogy, Burgulence is described by the solutions of Burgers
equations for a one–dimensional fluid in the same limit, as first proposed by Burgers (1939,
1948) and advocated by von Neumann (1963). This toy model for turbulence has been
extensively used since then (Kida, 1979; She et al., 1992; Vergassola et al., 1994; Avellaneda
and Weinan, 1995; Gurbatov et al., 1997); Frisch and Bec (2001) have proposed to name
it: Burgulence.

We consider the one-dimensional Burgers equation in a periodic domain of support x ∈
[−1, 1], which describes the space–time evolution of the velocity u(x, t) of a one–dimensional
fluid flow :

∂tu+
1

2
∂xu

2 = ν∂xxu , (IV.1.1)

where ν denotes the kinematic viscosity. The solutions of (IV.1.1) can be computed analyt-
ically using the Cole-Hopf transformation (Hopf, 1950; Cole, 1954; Burgers, 1954). When
ν → 0 the solutions of the viscous Burgers equation approach weak solutions of the invis-
cid problem. The uniqueness of these solutions stems from the condition that shocks have
negative jumps, which guarantees energy dissipation. For Burgers equation, this condition
is equivalent to an entropy condition (Germain and Bader, 1953; Lax, 1954; Oleinik, 1957;
Kruzhkov, 1970).

The wavelet representation has been proposed for studying turbulence (Farge et al.,
1992a), since it preserves both the spatial and spectral structures of the flow by realizing an
optimal compromise in regard of the uncertainty principle. We have found that projecting the
vorticity field onto a wavelet basis, and retaining only the strongest coefficients, extracts the
coherent structures out of fully developed turbulent flows (Farge et al., 1999, 2001). We have
then proposed a computational method for solving the Navier-Stokes equations in wavelet
space (Farge et al., 1999). We have shown that extracting the coherent contribution at each
time step preserves the nonlinear dynamics, whatever its scale of activity, while discarding the
incoherent contribution corresponding to turbulent dissipation (Schneider and Farge, 2005).
This is the principle of the CVS (Coherent Vortex Simulation) method we have proposed
(Farge et al., 1999; Farge and Schneider, 2001).

The aim of the present paper is to apply the CVS filter to the inviscid Burgers equation
and check if this is equivalent to solving the viscous Burgers equation. The outline is the
following. First we recall the principle of CVS filtering and its extension using complex-valued
translation-invariant wavelets. The numerical scheme is described briefly and the main part
presents results of several numerical experiments, considering either deterministic or random
initial conditions. Finally, we draw conclusions and propose some perspectives.
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IV.1.2 Numerical method

The Burgers equation (IV.1.1) is discretized on N grid points using a Fourier spectral collo-
cation method :

∂U

∂t
+

1

3
DN(U2) +

1

3
U ·DN (U)− νD2

N (U) = 0 , (IV.1.2)

where U approximates (u(x0, t), u(x1, t), ..., u(xN−1, t)), DN stands for the Fourier col-
location differentiation and · is the pointwise product of two vectors. The discretiza-
tion of the nonlinear term in (IV.1.2) is chosen in order to conserve the kinetic energy

E = 1
2

∫ 1

−1
u2(x, t)dx when ν = 0 (Canuto et al., 1988). For time integration a fourth-order

Runge-Kutta scheme is used.

At each time step, we will filter the solution using the CVS method which we now recall
briefly. Given orthogonal wavelets (ψji) and the associated scaling function at the largest
scale ϕ, the velocity can be expanded into :

u(x) = 〈u | ϕ〉ϕ(x) +

J−1∑

j=0

2j∑

i=1

〈u | ψji〉ψji(x) , (IV.1.3)

where j is the scale index, i is the position index and the inner product is 〈a | b〉 =∫ 1

−1
a(x) · b∗(x)dx with b∗ denoting the complex conjugate of b. Since location in orthogonal

wavelet space is sampled on a dyadic grid, this representation breaks the local translation
invariance of (IV.1.1) which may impair the stability of the numerical scheme. Therefore
we prefer using, instead of real-valued wavelets, complex valued wavelets (Kingsbury, 2001)
which very closely preserve translation invariance. In this case, (IV.1.3) still holds as long as
we replace the right hand side by its real part.

The CVS filter then consists in discarding the wavelet coefficients whose modulus is below
a threshold T . In addition, wavelets coefficients at the finest scale are systematically filtered
out. The resulting velocity uT is a nonlinear approximation of u.

Because the velocity field decays in time, the threshold has to be estimated at each
time step in a self-consistent way. To do this, we follow the iterative method introduced by
Azzalini et al. (2004), which consists in imposing the ratio between the standard deviation
of the discarded wavelet coefficients and the threshold itself:

T 2 =
5

NT

J−1∑

j=0

2j∑

i=1

|ũji|2H(T − |ũji|) , (IV.1.4)

where H is the Heaviside step function and NT is the number of wavelet coefficient below
the threshold. The solution of (IV.1.4) is determined numerically using a fixed point iterative
procedure (Azzalini et al., 2004), initialized with T0 = 5E/N , where E is the total energy.

IV.1.3 Deterministic initial condition

We consider Burgers equation (IV.1.1) with the deterministic initial condition u(t = 0, x) =
− sin(πx). We begin by comparing three computations: a Galerkin-truncated inviscid
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Figure IV.1.1: Deterministic initial conditions. Left: Time evolution of energy. Right:
Energy spectrum at t = 5. We compare the Galerkin-truncated inviscid (square), viscous
(triangle) and CVS-filtered inviscid (circle) cases. We observe that for the inviscid case
(right) the wavelet spectrum (white line) better exhibits the energy equipartition than the
Fourier spectrum (black line).

case (ν = 0), a viscous case (ν = 10−4), and an inviscid case with the CVS filter ap-
plied at each time step. The solutions are computed up to time t = 5, using N = 4096 grid
points.

By computing in the Galerkin-truncated inviscid case (ν = 0), we check that our numer-
ical scheme conserves energy (Fig. IV.1.1, left) as theoretically predicted. We observe that
the final solution at t = 5 exhibits energy equipartition (Fig. IV.1.1, right) with a Gaussian
velocity PDF, as expected. Notice that the the white line in Fig. IV.1.1 (right) corresponds
to the wavelet energy spectrum, i.e., the squared modulus of the wavelet coefficients com-
puted with a complex-valued Morlet wavelet. It better exhibits the k0 scaling, characteristic
of the energy equipartition, than the highly oscillatory Fourier energy spectrum (black line).
This illustrates the fact that the wavelet energy spectrum is more stable than the Fourier
energy spectrum when we analyze only one realization of a stochastic process (Farge et al.,
1992a).

For the viscous and CVS-filtered inviscid cases, the energy remains basically constant
until the shock forms at t = 1/π, but then decays with a t−2 law. In Fig. IV.1.1 (right) the
energy spectra of the viscous and CVS-filtered inviscid cases exhibit a power law behaviour
with slope −2.

Fig. IV.1.2 shows the velocity at three time instants for the viscous and CVS-filtered
inviscid cases. The CVS-filtered inviscid solution yields the same dynamics as the viscous
one except for the small overshoot we observe at x = 0 after the shock has formed. This
Gibbs phenomenon is stronger but less oscillatory for the CVS-filtered inviscid case than for
the viscous case (see the insets in Fig. IV.1.2).

The time evolution of the percentage of retained wavelet coefficients is presented in
Fig. IV.1.3 (left). It shows that with only relatively few coefficients (about 7%N) we are able
to track the nonlinear dynamics of the flow and this number remains almost constant after
the shock formation. At t = 5, the retained wavelet coefficients are located around x = 0,
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Figure IV.1.2: Deterministic initial conditions. Snapshots of velocity for the viscous (left)
and the CVS-Filtered inviscid (right) cases at t = 0 (dotted line), t = 0.5 (solid line) and
t = 5 (dashed line). The insets show the tip of the shock at t = 0.5.
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Figure IV.1.3: Deterministic initial conditions. Left: Time evolution of the percentage of
wavelet coefficients retained after filtering. Right: Dyadic tree of the wavelet coefficients
which are retained after filtering at t = 5. The crosses indicate the 7%N retained wavelet
coefficients, while the small dots correspond to the 93%N discarded wavelet coefficients.
The scale varies from coarse to fine, up the vertical axis.
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Figure IV.1.4: Deterministic initial conditions. Left: Time evolution of the relative mean
squared error ǫN at N = 4096. Right: Relative mean squared error ǫN at t = 5 for different
numerical resolutions, N = 128 to N = 8192. We compare the viscous (triangle) and
CVS-filtered inviscid (circle) cases.

the position of the shock, and span all scales there, as illustrated in Fig. IV.1.3 (right).

We now show that, when N increases, the filtered solutions converge towards the entropy
solution uref which solves the Burgers equation in the inviscid limit. For comparison we also
consider the viscous solutions with viscosity depending on N (ν = 0.4096N−1) which are
known to converge to uref everywhere, except at x = 0. The entropy solution uref is directly
calculated using the method of characteristics.

First, we consider a global error estimate, the relative mean square error, defined as:

ǫN (t) =
‖u− uref‖22
‖uref‖22

. (IV.1.5)

On Fig. IV.1.4 (left) we plot ǫN(t) for N = 4096. The error for the CVS-filtered inviscid
case is larger but saturates after t ≃ 2. In contrast, the error for the viscous case keeps
increasing because the finite viscosity smooths the shock away. Considering now t = 5 and
varying N , we find that for both the viscous and CVS-filtered inviscid cases ǫN decreases as
N−1 (Fig. IV.1.4, right).

We now study the behaviour of the oscillations in the neighborhood of the shock when
the resolution N is increased. The total variation of a function f on [−1, 1] is defined by:

‖f‖TV =

∫ 1

−1

|∂xf |dx . (IV.1.6)

To detect the presence of spurious oscillations, we compute the relative error on the total
variation:

ǫ′N (t) =
‖u(x, t)‖TV − ‖uref(x, t)‖TV

‖uref(x, t)‖TV
, (IV.1.7)

which is plotted as a function of N for t = 5 on Fig. IV.1.5 (left). For the viscous case,
ǫ′N is negative and converges towards zero when N increases. For the CVS-filtered inviscid
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Figure IV.1.5: Deterministic initial conditions. Error on the relative total variation ǫ′N (left),
and number of retained wavelet coefficients (right), as functions of N at t = 5, for the
viscous (triangle) and CVS-filtered inviscid (circle) solutions.

case, ǫ′N tends to a finite positive value close to 0.84. The overshoot that could be seen
on Fig. IV.1.2 persists but becomes more and more localized around the singularity when N
increases, thus ensuring mean square convergence.

Let us end this section by a short discussion on the evolution of the compression rate
when N increases. Fig. IV.1.5 (right) shows that the number of retained wavelet coefficients
increases roughly logarithmically as a function of N . As a consequence, notice that for the
filtered solution, the relative mean square error ǫN (t), if it is considered as a function of
the number of retained coefficients only, converges to zero exponentially fast. However, to
experience this promising rate of convergence in practice, we should compute the evolution
of u using only the wavelet coefficients whose modulus remains above the threshold.

IV.1.4 Random initial condition

In the previous section we have demonstrated that the CVS-filtered inviscid Burgers equation
exhibits an evolution similar to that of the viscous Burgers equation. We now would like to
check if this is still verified in the context of Burgulence for both white noise (Avellaneda
and Weinan, 1995) and Brownian motion (She et al., 1992).

White-noise initial condition We take as initial velocity one realization of a Gaussian
white noise computed at resolution N = 4096, which corresponds to a random non intermit-
tent initial condition. Since the CVS filter removes the non intermittent noisy contributions,
if applied to a Gaussian white noise the latter would be completely filtered out. Therefore
we first integrate the viscous equation with ν = 2 · 10−5 without filtering, and wait until
the flow intermittency has sufficiently developed before applying the filter. To check the
flow intermittency we monitor the flatness of velocity gradient until it reaches the value 20,
which happens at t = 0.017 for the realization described here. Then, we reset t = 0 and
integrate up to t = 5, both the viscous equation with ν = 2 · 10−5, and the CVS-filtered
inviscid equation.
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Figure IV.1.6: White noise initial conditions. Left: time evolution of energy. The inset
shows the t−2/3 decay in log-log coordinates. Right: energy spectrum at t = 5. We compare
the viscous (triangle) and CVS-filtered inviscid (circle) simulations. We observe that the
wavelet spectrum (white lines) better exhibits the k−2 scaling of energy than the Fourier
spectrum (black lines).

In Fig. IV.1.6 (left) we show that the energy, for both the CVS-filtered inviscid solution
and the viscous solution, decays with a t−2/3 law, as found by Burgers (Burgers, 1954; She
et al., 1992). In Fig. IV.1.6 (right) we observe at t = 5 that both energy spectra present the
same k−2 scaling. Notice that the two white lines in Fig. IV.1.6 (right) correspond to the
wavelet energy spectrum, which better exhibit the k−2 scaling of the energy than the highly
oscillatory Fourier energy spectrum (black lines).

Finally, we show on Fig. IV.1.7 that the viscous and CVS-filtered inviscid solutions are
almost identical in physical space, presenting a typical sawtooth profile as first noticed by
Burgers (1954).

Brownian motion initial condition We use the same resolution N = 4096 as above,
only the initial condition changes. Since we have chosen periodic boundary conditions we
approximate the Brownian motion by the Fourier series:

u(x, 0) =
∑

k

uke
ikx (IV.1.8)

where k = −N
2

+1,−N
2
, ..., N

2
− 1. We set u0 = 0 and, for k 6= 0, we take for uk a complex

Gaussian random variable with standard deviation 1/|k|.
The solution for the viscous case is computed with ν = 1.2 · 10−4. For the CVS-filtered

inviscid case, as we did for the white noise initial condition, we do not filter before enough
intermittency has developed. We thus integrate the viscous equation with ν = 1.2 · 10−4

for 0.05 time units and then switch viscosity off. This procedure provides the initial velocity
which by construction is the same for both methods (Fig. IV.1.8).

The energy decay matches well between the CVS-filtered inviscid and the viscous so-
lutions (Fig. IV.1.9, left). A k−2 power spectrum is also obtained for both at t =
5 (Fig. IV.1.9, right).
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Figure IV.1.9: Brownian initial condition. Left: Time evolution of energy. Right: Energy
spectrum at t = 5. We compare the viscous (triangle) and CVS-filtered inviscid (circle)
cases.
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At t = 0.1 numerous small shocks are present on the viscous solution (Fig. IV.1.10, top
left). All of them are correctly reproduced by the CVS-filtered inviscid solution (Fig. IV.1.10,
bottom left).

At t = 5 the single remaining shock that is still resolved in the viscous solution
(Fig. IV.1.10, top right) is correctly reproduced on the CVS-filtered inviscid solution
(Fig. IV.1.10, bottom right).

IV.1.5 Conclusion

We have shown that CVS-filtering at each time step the solution of the inviscid Burgers
equation gives the same evolution as the viscous Burgers equation, for both deterministic
and random initial conditions. As our contribution to Euler equation’s 250th anniversary
and Euler’s 300th birthday, we conjecture that CVS-filtering of the Euler equation may be
equivalent to solving the Navier–Stokes equation in the fully-developed turbulent regime, i.e.,
when dissipation has become independent of viscosity. We predict that the retained wavelet
coefficients would preserve Euler’s nonlinear dynamics, while discarding the weaker wavelet
coefficients would model turbulent dissipation and give Navier–Stokes solutions. Since in
the fully-developed turbulent regime turbulent dissipation strongly dominates molecular dis-
sipation, there is no reason to model turbulent dissipation by a Laplacian operator anymore.
Indeed, turbulent dissipation is a property of the flow, while molecular dissipation is a prop-
erty of the fluid and may no more play a role when turbulence is fully-developed. We think
that in this regime the CVS filter could be a better way to model dissipation, replacing global
by local smoothing while preserving nonlinear interactions. In this paper we have chosen the
simplest toy model to test this conjecture, although Burgers’ equation, in contrast to Euler’s
equation, is neither chaotic nor producive of randomness. Therefore we conjecture that the
CVS-filter would work better for Euler/Navier–Stokes than for Burgers equation since CVS
is based on denoising, which is justified when there is chaos and randomness.
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IV.2 Incompressible 2D Euler equations

This section is adapted from a published paper, see (Nguyen van yen et al., 2010a).

IV.2.1 Introduction

When they are dominated by nonlinear effects due to inertia, flows in Newtonian incompress-
ible fluids enter the turbulent regime, in which their motions are very disordered and involve
a wide range of scales. Nevertheless, they tend to possess certain robust phenomenological
properties, e.g. the average energy dissipation rate, that have lead to their study in a specific
framework known as the statistical theory of fully developed homegeneous isotropic turbu-
lence (Frisch, 1995). This theory is not directly derived from the basic equations of fluid
mechanics but requires additional statistical hypotheses that are difficult to check experi-
mentally. Moreover, it doesn’t take into account self-organization of the flow into coherent
structures. On the other hand, current numerical methods tend to reproduce observed
properties of turbulent flows. They offer rich opportunities for proposing new theoretical
approaches and confronting them quantitatively.

Despite the chaotic character of turbulent flows, it is commonly accepted that, if the
density is constant, their velocity field u(x, t) is well described by solutions of the Navier-
Stokes equations:





∂tuν + (uν · ∇)uν = −∇pν + ν∇2uν , x ∈ Td, t ∈]0,+∞[

∇ · uν = 0

uν(·, 0) = u0

(IV.2.1)

where ν is the kinematic viscosity of the fluid, t is time, and u0 is an initial flow on the
d-dimensional torus Td = ( R

2πZ
)d. Here, the pressure pν is determined by uν through the

divergence-free condition and cannot be chosen independently. The equations have been
written in dimensionless units, so that the Reynolds number can be simply defined by Re =
ν−1. Properly describing the behavior of solutions to (IV.2.1) when Re≫ 1 remains a central
problem for the understanding fully developed turbulence. A key mathematical difficulty is
that the limit ν → 0, i.e. Re→∞, is singular as the order of the equation changes. Indeed,
many wind tunnel experiments (Batchelor, 1953; Sreenivasan, 1984), as well as numerical
experiments (Kaneda et al., 2003), suggest that the limit u of uν when Re→∞ does not
satisfy Euler’s equations (IV.2.2),

∂tu + (u · ∇)u = −∇p (IV.2.2)

or at least not in the strong sense. This idea was elaborated upon by many authors following
the seminal work of Onsager, about which a nice historical review has been recently published
(Eyink and Sreenivasan, 2006).

When trying to approximate numerically turbulent flows, the traditional approach is to
solve the Navier-Stokes equations and make the viscosity as small as is allowed by numerical
discretization, which is ultimately limited by the available computational power (see e.g.
(Kaneda et al., 2003) for state of the art results obtained using 40963 degrees of freedom).
But if the dynamics in the inviscid limit, or at least some of its important features, become
strictly independent of Re, it is much more desirable to solve the Euler equations instead of
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the Navier-Stokes equations. A problem of parabolic type (eq. IV.2.1) is thereby replaced
by a problem of hyperbolic type (eq. IV.2.2), as the higher order derivative disappears. In
some cases, finite time singularities may then occur, and uniqueness of the solution is lost
(Lax, 1973). This happens for example for the Burgers equation, or for the compressible
Euler equation, and is conjectured to happen for the 3D incompressible Euler equations.
Admittedly, the 2D Euler equations, that we are going to consider below, do not give rise to
finite time singularities. Their solution remains smooth for all time, since we are considering
only domains without boundaries, and smooth initial data (Wolibner, 1933; Kato, 1967).
However, the vorticity gradients grow extremely fast in time. This phenomenon, which has
been described as “slow collapse“ (Yudovich, 2000), is almost as bad as finite time singularity
as far as numerical simulation is concerned.

Due to the roughness of the exact solutions to these problems, numerical methods for
solving hyperbolic partial differential equations must be accompanied by proper regularization
mechanisms. If the solution is not unique, the responsibility even falls upon the numerical
scheme to select the weak solution that it approximates. Physical considerations must hence
be taken into account when designing the scheme so that it yields the proper solution. Ex-
isting methods include upwind characteristic (Osher and Solomon, 1982) or total variation
diminishing (Harten, 1983) schemes, shock limiters (Sweby, 1984), spectral vanishing viscos-
ity (Tadmor, 1989; Gottlieb and Hesthaven, 2001), hyperdissipation (Basdevant et al., 1981),
and more recently inviscid regularization (Holm et al., 1998; Bardos et al., 2008; Khouider
and Titi, 2008). The latter stands aside from the rest since it was introduced mainly as
a tool for mathematical proofs. One may also refer to (Pulliam, 1986) for a comparison
between several schemes.

In this paper, we apply a regularization method based on wavelet filtering to solve the
2D Euler equations written in vorticity-velocity formulation:





∂tω + u · ∇ω = 0, t ∈]0,+∞[, x ∈ T2

ω = ∇× u

∇ · u = 0

ω(·, 0) = ω0

(IV.2.3)

where ω denotes the vorticity component perpendicular to the plane. We compare the results
with those obtained when the first equation is replaced by

∂tων,α + (uν,α · ∇)ων,α = −να(−∆)αων,α, α ≥ 1 (IV.2.4)

which corresponds to the 2D hyperdissipative Navier-Stokes equations with dissipativity α if
α > 1, or to the classical 2D Navier-Stokes equations if α = 1, in which case we drop the
index α.

Note that the physical relevance of the inviscid limit in 2D is questionable, since virtually
all known flows become three dimensional at high enough Reynolds number. Nevertheless,
the 2D case is chosen as a toy model to allow us access to high Reynolds number flows
at an affordable computational cost. Another unphysical aspect of our study resides in
the boundary conditions. Physically realistic flows are in contact with solid walls which
need to be taken into account by introducing no-slip boundary conditions in the modeling.
These boundary conditions cannot be satisfied in general by solutions of the Euler equations.
Taking them into account properly in the inviscid limit hence introduces new difficulties that
we reserve for future work. In the meantime, we use periodic boundary conditions.
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The main goal of this paper is to extend to the 2D Euler equations the study that we
did in a previous work (Nguyen van yen et al., 2008) concerning regularization of the 1D
Burgers equation:

{
∂tu+ u∂xu = 0, t ∈]0,+∞[, x ∈ [−1, 1],

u(·, 0) = u0.
(IV.2.5)

In the first part, we explain our numerical method, which consists in classical discretization
schemes and the original part of our work, namely, the wavelet filters. In the second part,
we present some new numerical results obtained for the 1D Burgers equation, and we then
study in detail the regularization method in the case of the 2D Euler equations. Finally,
we draw some conclusions relative to those two sets of results and outline perspectives for
extending the study to 3D flows.

IV.2.2 Numerical method

IV.2.2.1 Discretization

In (Nguyen van yen et al., 2008), the 1D Burgers equation was discretized by means of a
Fourier collocation method, with pseudo-spectral evaluation of the nonlinear term (Canuto
et al., 1988). In such schemes, the velocity is followed via its Fourier coefficients, which satisfy
a system of nonlinear ordinary differential equations. To efficiently compute the convolution
product that appears due to the quadratic nonlinear term, the solution is reconstructed on an
evenly spaced grid, hence the term ”pseudo-spectral“. Conservation of energy was enforced
thanks to a skew-symmetric formulation of the nonlinear term. A fourth order Runge-Kutta
time discretization and a small timestep allowed us to observe numerical dissipation of energy
remaining below 10−4 relative to the initial energy, even for zero viscosity.

Here, we use a slightly different approach which applies both to the 1D Burgers and
2D Euler equations. A Fourier expansion with pseudo-spectral evaluation of the nonlinear
term is still utilized, but the product in physical space is now fully dealiased. In other words,
the Fourier modes retained in the expansion of the solution are such that |k| ≤ kC , where
kC is the desired cut-off wavenumber, but the grid has N = 3kC points in each direction,
versus N = 2kC for a non-dealiased, critically sampled product. This dealiasing makes
the pseudo-spectral scheme equivalent to a Fourier-Galerkin scheme up to round-off errors
(Canuto et al., 1988), and thus conservative. For time discretization we stick to Runge-
Kutta schemes, of order 4 for the 1D Burgers equation and of order 3 with a low storage
formulation (Orlandi, 2000, page 20) for the 2D Euler equations.

All the required Fourier transforms are computed thanks to the FFTW library (Frigo
and Johnson, 2005). This allows us to exploit at the same time OpenMP and the Message
Passing Interface (MPI) for parallelization. To reach resolutions up to 8192× 8192, 8 cores
were utilized on a shared memory cluster node. For some of the simulations, we used 64
cores and 32 MPI processes on an IBM Regatta Power6 machine at the IDRIS-CNRS french
computing center.
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IV.2.2.2 Regularization

We call “filtering scheme” any operator that can be applied to the discrete numerical solution
at the end of each timestep, before advancing to the next timestep. In this subsection, we
attempt to describe the filtering algorithms for a generic solution f , knowing that they will
later be applied either to f = u for the 1D Burgers case or to f = ω for the 2D Euler case.
Since the filters that we are interested in are applied in the wavelet domain, we start by
computing the transform coefficients of the solution with respect to the space variable (see
the Appendix for technical details). Given orthogonal wavelets (ψλ)λ∈Λ and the associated
scaling function ϕ at the largest scale, the solution is thus expanded into (see e.g. (Mallat,
1999)):

f = 〈f | ϕ〉ϕ+
∑

λ∈Λ

〈u | ψλ〉ψλ , (IV.2.6)

where λ is a multi-index giving the scale, position, and, in 2D, direction of each wavelet.
Later we denote by f̃λ the wavelet coefficients 〈u | ψλ〉ψλ of f . The inner product is defined

in 1D by 〈a | b〉 =
∫ 1

−1
a(x) · b∗(x)dx, where ·∗ stands for complex conjugation, and in 2D

by 〈a | b〉 =
∫

T2 a(x) · b∗(x)dx.

We consider two wavelet families. The first one, well known to numerical analysts, is
the Coiflet orthonormal family with supports of length 12 (Daubechies, 1993), proposed in
(Farge et al., 1992a) to represent turbulent flows. The second one is the Qshift-B family
associated with the dual-tree complex wavelet transform (DTCWT) (Kingsbury, 2001), that
we propose to dub Kingslet. Although it was primarily designed for image processing, the
latter also offers many attractive features from a computational point of view. Its main
characteristics can be summarized as follows:

(i) the wavelets and scaling functions are complex-valued,

(ii) the family is not orthogonal, but it is a tight frame, which is a kind of overcomplete
basis, having in d dimensions 2d times more elements than an orthonormal basis at
the same resolution,

(iii) near translation invariance is built into the transform, despite its dyadic structure,

(iv) in two and more spatial dimensions, the wavelets have much better directional selec-
tivity than orthogonal wavelets.

Since the Kingslets constitute a tight frame, the reconstruction formula (IV.2.6) is still valid
(Kingsbury, 2001), as long as the right hand side is replaced by its real part, f being real-
valued.

Since this is the key point, let us explicit what we mean by translation invariance. Most
multiscale approximation schemes involve the design of some sort of recursive grid or sub-
division pattern. Normally these recursive structures depend on the choice of the origin
and therefore are not invariant by translation. This is in particular the case for orthogonal
wavelets, which are arranged as a dyadic tree. In most cases this tree has nothing to do
with the phenomenon or signal one wants to study, but since it is built into the transform it
tends to introduce some artifacts as soon as the coefficients are processed in some way. One
solution consists in averaging the results over all possible shifts of the tree with respect to
the signal. It is known as the undecimated wavelet transform (Coifman and Donoho, 1995).
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Kingslets offer a more elegant solution to the same problem, namely, to average only a fixed
number of trees (2d in d dimensions), but under the condition that the wavelets associated
to those trees are approximate Hilbert transform pairs. When this is done, the projectors on
each approximation subspace almost commute with all possible signal shifts.

Once the wavelet coefficients of the solution have been obtained, we consider two kinds
of filters: a linear one, and a nonlinear one. The linear filter consists in discarding only the
wavelet coefficients at the finest scale. For the Kingslets case, this linear filter is equivalent
to a simple convolution of the solution with the scaling function at the finest scale. It is
nothing more than a lowpass filter, but with a special transfer function that happens to
be the Fourier transform of a scaling function. This property does not hold for orthogonal
wavelets, because the downsampling operation applied to the scaling function coefficients at
the finest scale introduces aliasing effects (Kingsbury, 2001).

For the nonlinear filter, before discarding the wavelet coefficients at the finest scale, we
apply a threshold to all wavelet coefficients: those whose moduli are below a certain value Θ
are set to zero. The threshold Θ depends on the function itself and is computed by means
of an iterative method (Azzalini et al., 2004). The resulting value is characterized by the
following implicit relationship:

Θ2 =
5

NI(Θ)

∑

λ∈Λ

|f̃λ|2H(Θ− |f̃λ|) , (IV.2.7)

where H is the Heaviside step function and NI(Θ) =
∑

λ∈ΛH(Θ− |f̃λ|) is the number of
wavelet coefficients below the threshold. Formula (IV.2.7) simply means that the threshold
equals 5 times the standard deviation of the coefficients below it. Note that there is no
adjustable parameter. The nonlinear filter will be referred to as CVS filter, where CVS
stands for Coherent Vorticity Simulation (Farge et al., 1999). After applying either filter,
the solution is reconstructed by inverse wavelet transform, and its Fourier coefficients by fast
Fourier transform (FFT), so that the simulation can proceed with the next timestep.

The viscous or hyperviscous term, when present, is included in the computation without
loss of accuracy thanks to an integrating factor method (Trefethen, 2000, page 111). The
integrating factor is simply eνk

2t, with k the Fourier wavenumber modulus.

The six different regularization methods that we are going to compare are:

(i) Viscous: α = 1 and ν1 > 0 is chosen high enough so that all scales of motion are
resolved without applying any filter,

(ii) Hyperviscous: α = 4, and ν4 > 0 is defined by ν4 = ν1k
−6
C ,

(iii) Real linear: ν = 0, and we apply linear wavelet filtering of the finest scale using
Coiflets,

(iv) Complex linear: ν = 0, and we apply linear wavelet filtering of the finest scale using
Kingslets,

(v) Real CVS: ν = 0, and we apply nonlinear CVS filtering using Coiflets,

(vi) Complex CVS: ν = 0, and we apply nonlinear CVS filtering using Kingslets.
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Type α να Wavelet Filter
Viscous (i) 1 > 0 none none

Hyperviscous (ii) 4 > 0 none none
Real linear (iii) - = 0 Coiflet linear

Complex linear (iv) - = 0 Kingslet linear
Real CVS (v) - = 0 Coiflet nonlinear

Complex CVS (vi) - = 0 Kingslet nonlinear

Table IV.2.1: Summary of all employed regularization methods.

A summary is given in table IV.2.1. We shall also compare the regularized solutions to
the one obtained without any regularization mechanism, that is, by cautiouslessly applying
our numerical scheme to the inviscid equation. The solution does not blow up even in this
case since the numerical scheme is conservative. However, we are not claiming that it is the
genuine solution of the – non-truncated – 2D Euler equations, and in fact it cannot be, due
to the abrupt cut-off in Fourier space.

IV.2.2.3 Initial conditions

For the 1D Burgers equation, we choose the initial condition u0(x) = − sin(πx), which
induces the formation at t = 1

π
of a single shock located in the middle x = 0 of the interval

[−1, 1]. For the viscous simulations (i), we choose ν1 = 2N−1. A classical estimate says
that the shock width is proportional to ν1, hence ν1 has to be larger than a constant times
N−1 for the simulation to be properly resolved. The constant is adjusted by trial and errors.
The value of ν4 for all the hyperviscous simulations is given by ν4 = ν1k

−6
C , where kC = N

3
.

For the 2D Euler equations, we consider two kinds of initial conditions. The first one
is a vortex merger, made of two Gaussian vortices with positive circulation and one weaker
Gaussian vortex with negative circulation (Kevlahan and Farge, 1997). The formula giving
the initial vorticity is:

ω(t = 0, x, y) = π

(
e
−π2

“

(x− 3π
4 )

2
+(y−π)2

”

+ e
−π2

“

(x− 5π
4 )

2
+(y−π)2

”

− 1

2
e
−π2

„

(x− 5π
4 )

2
+

“

y−π
“

1+
√

2
4

””2
«)

(IV.2.8)
where (x, y) ∈ [0, 2π]2. For the viscous simulations starting from this initial condition, we
have used ν1 = 13.1072N−2.

The second initial condition is a correlated Gaussian noise. To generate it, we use the
Fourier representation:

ω(t = 0,x) =
∑

k∈N2,|k|≤kC

ω̂[k]eik·x where ω̂[k] =
1

4π2

∫

T2

ω(x)e−ik·xd2x (IV.2.9)
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and, defining k = |k|, we then let

ω̂[t = 0,k] =
1

24π2
×





keiθk if k ≤ 6
62k−1eiθk if 6 < k ≤ 42
0 otherwise

(IV.2.10)

where the θk are pseudo-random numbers uniformly and independently distributed in [0, 2π[.
The θk are drawn once using a Mersenne twister pseudo-random number generator (Mat-
sumoto and Nishimura, 1998), and the same values are then used for all cases studied below.
The initial isotropic enstrophy spectrum

Z[k] = 2π2
∑

k≤|k|<k+1

|ω̂[k]|2

is then approximately:

Z[t = 0, k] ≃ 1

144π
×





k3 if k ≤ 6
64k−1 if 6 < k ≤ 42
0 otherwise.

(IV.2.11)

The energy of this initial condition is E(t = 0) = 1
2
〈u0 | u0〉 ≃ 7.847 · 10−2 and its

enstrophy is
Z(t = 0) =

∑∞
k=0 Z[k] = 1

2
〈ω0 | ω0〉 ≃ 6.289. For the viscous simulations starting from

this initial condition, we have used ν1 = 6.5536N−2.

IV.2.3 Results

IV.2.3.1 1D Burgers

We first briefly recall the results for the 1D Burgers equation (Nguyen van yen et al., 2008),
which are now confirmed by using a fully dealiased code, as described above. Compared to
(Nguyen van yen et al., 2008), we thus have even less numerical dissipation. An upper bound
is estimated by performing simulations with ν = 0 without filtering, where we observe that
for N = 4096 the fraction of the initial energy that has been dissipated at t = 5

π
is less than

10−8.

Recall that for Burgers equation, it is possible to compute the entropy solution to (IV.2.5)
with a very high precision, using a Legendre transform method (Burgers, 1974). This proce-
dure is particularly straightforward for the simple initial condition leading to a single shock
that we have used. The obtained entropy solution will be our reference uref for this section.
Note that the entropy solution dissipates energy, contrary to the Galerkin-truncated one,
obtained by solving the inviscid Burgers equation using our conservative numerical scheme.

The solutions obtained with methods (i), (ii), (v) and (vi) for N = 4096 are shown in
Fig. IV.2.1 (left). We observe that (i) and (vi) are quite similar, whereas (v) has much more
pronounced oscillations. In Fig. IV.2.1 (right), the squared modulus of the Morlet wavelet
transform (Grossmann and Morlet, 1984) of each solution is also shown using a logarithmic
colorscale, which allows us to visualize the errors in space and scale. The artifacts due to
aliasing in the Coiflet CVS filtering (v) are clearly visible on this figure. They are much less
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Figure IV.2.1: Left column: numerical solution to the 1D Burgers equation for methods (i),
(ii), (v) and (vi) (top to bottom) with N = 4096. Dotted lines: t = 0, solid lines: t = 2

π
,

dashed lines: t = 5
π
. The insets show a zoom around x = 0. Right column: squared modulus

of the Morlet coefficients of each solution at t = 5
π
. The vertical scale is logarithmic and

indicates the wavelet scale factor, normalized by the distance between two grid points. Note
that the color scale is also logarithmic.
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pronounced in the Kingslet case (vi). The Gibbs phenomenon can also be noticed on the
viscous (i) and hyperviscous (ii) solutions.

Two error measures allow us to quantify the difference between a numerical solution uN
and the reference entropy solution uref . The first error measure is defined as:

ǫw =
2π

‖uref‖


∑

|k|≤64

|ûN [k]− ûref [k]|2



1
2

(IV.2.12)

where ‖·‖ stands for the L2 norm. This quantity is of practical interest, since it frequently oc-
curs that only the low wavenumber behavior of the solution needs to be accurately described.
From the mathematical point of view, it can be seen as an indicator of weak convergence.
The second error measure is the total L2 error:

ǫ =
‖uN − uref‖
‖uref‖

(IV.2.13)

which measures strong convergence to the entropy solution.

Our first result is that in these simulations, weak convergence of the Galerkin-truncated
inviscid simulations to the entropy solution does not occur (Fig. IV.2.2, left), in agreement
with a remark made by Tadmor in (Tadmor, 1989). This confirms, if need be, that regular-
ization is indispensable to solve Burgers equation with a spectral method. Post-processing
the result of an unregularized simulation does not yield a physically relevant solution. On the
contrary, the solutions given by all other methods appear to converge weakly to the entropy
solution with a rate O(N−1). The error associated to the viscous and Kingslets solutions is
about one order of magnitude smaller than the error associated to the Coiflet solution.

The solutions obtained with every considered regularization methods also converge
strongly towards the entropy solution with a rate O(N−1/2) (Fig. IV.2.2, middle). This
confirms the results of (Nguyen van yen et al., 2008) and extends them to several new
cases, namely real-valued wavelets and linear filtering. As a sidenote, we confirm that the
hyperdissipative 1D Burgers model does not improve in any way the results compared to the
viscous model (Frisch et al., 2008).

In Fig. IV.2.2 (right), we have plotted the compression rate, defined as follows:

ρ =
N

NC
(IV.2.14)

where NC = N − NI is the number of wavelet coefficients above the threshold. The
subscripts C and I stand respectively for coherent and incoherent. The higher the compression
rate, the better the compression.

The following conclusions may be drawn from the results in this section. To regularize the
1D inviscid Burgers equation, it is enough to filter out the wavelet coefficients at the finest
scale. The results are better for complex-valued wavelets because of their reduced aliasing
effects. The main advantage of CVS wavelet filtering compared to other regularization
methods is that they allow us to compress the information needed to represent the solution.
Here, we observe that the compression rate ρ is about 3 for N = 1024 and improves slowly
for higher resolutions, a fact that we will comment more on in the conclusion.
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Figure IV.2.2: Comparison between the six regularization methods to solve the 1D Burgers
equation. Left: normalized L2-error for the Fourier modes with |k| ≤ 64. Middle: total
normalized L2-error. Right: Compression rate ρ = N

NC
.

IV.2.3.2 2D Euler

As in the previous subsection, we study the results obtained with methods (i)-(vi), but this
time to solve the 2D Euler equations (IV.2.3). Five increasingly refined resolutions were used
in each case: N = 27, . . . , 211. Since we do not have an efficient way of computing the
solution to (IV.2.3) with high precision, we use the viscous simulation (i) with N2 = 81922

as a reference. Inviscid simulations at N2 = 20482 show that the fraction of the initial
enstrophy dissipated during the whole simulation is less than 5 · 10−2, and less than 10−5

for the energy. Note that the numerical dissipation is due to the error coming from the time
discretization of the equations, and should therefore be smaller in the viscous and filtered
simulations, since the corresponding solutions are smoother in time.

Deterministic initial condition In this subsection, we consider the vortex merger initial
condition (IV.2.8). The vorticity field at t = 50 for methods (i), (ii), (v) and (vi) are shown
in Fig. IV.2.3. The reference vorticity field (top, left) and the result of the inviscid simulation
(bottom, right) are also shown for comparison purposes. The gross dipolar structure of the
vorticity field is well preserved by all methods. The main differences have to do with sharp
gradients that are generated very rapidly during the merging of the two positively signed
vortices. Each positive vortex corresponds to a nonuniform velocity field that causes the
other positive vortex to rotate around it and deform, producing a spiral pattern that is still
visible in Fig. IV.2.3. These sharp gradients are clearly not very well handled by method (v),
since artifacts have been introduced even in quiet regions of the domain.

The different regularization mechanisms induce a different behavior of the solution in a
global sense, as can be seen on the time evolutions of energy and enstrophy, and on the
enstrophy spectra (Fig. IV.2.4).

We now examine the difference between all the solutions and the reference solution in a
quantitative manner. In Fig. IV.2.5 (left), we plot the truncated L2-error, which is defined by
(IV.2.12) with an additional 2π factor due to normalization. These curves illustrate that even
the low wavenumber dynamics are affected by the regularization mechanism. Nevertheless,
the error seems to converge to zero for all considered regularization methods. The rate is
O(N−2) for the viscous (i) simulations, consistent with known analytical results concerning
the inviscid limit of Navier-Stokes equations (Kato, 1972). The arguments in (Kato, 1972)



IV.2.3 - Results 153

Figure IV.2.3: Vorticity fields at t = 50 for the deterministic initial condition. Top left:
reference Navier-Stokes solution, N = 8192. Top middle: Navier-Stokes solution (i), N =
2048. Top right: Hyperdissipative Navier-Stokes solution (ii), N = 2048. Bottom left:
Coiflet CVS filtered Euler solution (v), N = 2048. Bottom middle: Kingslets CVS filtered
Euler solution (vi), N = 2048. Bottom right: Galerkin-truncated Euler solution, N = 2048.
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Figure IV.2.4: Deterministic initial condition: results for the different methods with N =
2048, and reference viscous solution with N = 8192. Left: time evolution of energy. Middle:
time evolution of enstrophy. Right: enstrophy spectra at t = 50.

apply equally well to the hyperviscous Navier-Stokes equations, and we accordingly observe
the same convergence rate for (ii). The rate is less easy to determine for the other methods,
but it seems to lie between O(N−2) and O(N−1).

Now the total L2-error, defined similarly to (IV.2.13) above, is represented in Fig. IV.2.5
(right). The results are strikingly close to the previous ones, indicating that most of the
L2-error in fact comes from low wavenumbers. The results concerning the inviscid Galerkin-
truncated Euler solution (square marker) are particularly interesting since they contrast with
those observed for the 1D Burgers equation above. It was previously observed in (Cichowlas
et al., 2005) “that the spectrally truncated [3d] Euler equations have long-lasting transients
behaving just like those of the dissipative [3d] Navier-Stokes equations”. This result is also
supported by calculations using the eddy-damped quasi-normal Markovian closure theory
(Bos and Bertoglio, 2006). Our results are unfortunately limited to two space dimensions,
but they are stronger, since they indicate that the solution to the Galerkin-truncated 2D
Euler equations converges to the solution of Euler equations in the L2 norm.

By looking at the numbers presented in this section, one could draw the hasty conclusion
that hyperviscous or even inviscid simulations do the job very well, so why bother with
wavelet filtering ? But as we have already seen for Burgers equation, the advantage of
wavelets has to do with compression. We now turn to random initial conditions, in order to
demonstrate this for Euler equations.

Random initial condition By computing the flow evolution starting from the randomly
generated initial condition (IV.2.10), we obtain the vorticity field at t = 50 for methods (i),
(ii), (v) and (vi), shown in Fig. IV.2.6. As above, the reference vorticity field (top, left)
and the result of the inviscid simulation (bottom, right) are also given. Only the subdomain
[π, 2π]× [π, 2π] is represented on the figure, in order to make the details more visible. The
first observation that can be put forward is that the positions of all vortices match pretty
well between all represented fields. Of course, this situation is bound not to last for long,
since fully developed 2D turbulence is sensitive to initial conditions: the different simulations
should separate sooner or later and end up having nothing left in common. But this occurs
on a longer time scale than the one we have considered here. Note that the initial eddy
turnover time τ := 1√

2Z(t=0)
is approximately 0.282 here.
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Figure IV.2.5: Left: truncated L2 error ǫw (IV.2.12) at t = 50.05 with respect to the
reference solution. Right: total L2 error ǫ (IV.2.13) at t = 50.05 with respect to the
reference solution.

We would like to outline two kinds of differences between the fields yielded by the different
methods. First, their high wavenumber behavior is quite different. This can be checked on
the enstrophy spectra (Fig. IV.2.8, right). In this respect, the similarity between the Kingslet-
filtered (vi) (bottom, middle) and viscous (top, middle) vorticity fields is striking. Due to its
better Fourier localization of the dissipation term, the hyperviscous simulation reproduces
even better the high wavenumber features of the reference simulation, as is highlighted by
the cuts in Fig. IV.2.7.

The second difference can be seen in Fig. IV.2.8 (left) and concerns only regularization
by CVS filtering using Coiflets (v), for which energy starts increasing again after t ≃ 60,
contrary to all other methods. This effect suggests that the flow has been affected by the
regularization method in an unphysical way, and was our main motivation for introducing
Kinsglets in this study as a better alternative.

The time evolution of enstrophy is shown in Fig. IV.2.8 (middle). Even the reference
simulation is still quite dissipative concerning enstrophy. This observation is consistent with a
very slow decay of the enstrophy dissipation rate as a function of Reynolds number (Dmitruk
and Montgomery, 2005; Tran and Dritschel, 2006; Lopes Filho et al., 2006), which implies a
slow convergence to the Euler solution in the H1 norm. Note that for the viscous solution,
convergence is known to occur at a rate O(ν) = O(N−2) in any norm Hm (Kato, 1972),
since the initial condition considered here consists in a finite number of Fourier modes and
is therefore analytic. We believe that this rate is impossible to observe numerically because
the constant in front of ν grows extremely fast in time. Although it would be interesting to
consider also the H1-error, we conclude that this quantity is out of our reach here. Indeed,
because of the slow convergence, the viscous solution at N = 8192 cannot be used as a
reference to compute the H1 norm error between (i)-(vi) and the Euler solution, nor can
any solution computed with current day methods and computational power.

In Fig. IV.2.8 (right), the enstrophy spectra of the different solutions are compared with
the one of the reference. They all agree well at low wavenumbers, as can be seen in the
inset.

Finally, we study the convergence in the inviscid limit, for fixed time and fixed initial
condition (Fig. IV.2.9). As in the case of the deterministic initial condition, the truncated
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Figure IV.2.6: Vorticity fields at t = 50 for the random initial condition, restricted to the
square [π, 2π] × [π, 2π]. Top, left: reference Navier-Stokes solution with N = 8192. Top,
middle: Navier-Stokes solution (i), N = 2048. Top, right: Hyperdissipative Navier-Stokes
solution (ii), N = 2048. Bottom, left: Coiflet CVS filtered Euler solution (v), N = 2048.
Bottom, middle: Kingslets CVS filtered Euler solution (vi), N = 2048. Bottom, right:
Galerkin-truncated Euler solution, N = 2048. The black dashed lines indicates the location
of the cuts shown in Fig. IV.2.7.

Figure IV.2.7: Cuts through the vorticity fields at x = 7π
5

and t = 50, for the different
methods with N = 2048, and for the reference viscous solution whith N = 8192. The
legend can be found in Fig. IV.2.8.
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Figure IV.2.8: Random initial condition, advanced with different methods for N = 2048,
and reference viscous solution for N = 8192. Left: time evolution of energy. Middle: time
evolution of enstrophy. Right: enstrophy spectra at t = 50. The inset shows the low
wavenumber part in lin-lin coordinates. The legend applies to all three graphs.

Figure IV.2.9: Random initial condition. Left: truncated L2-error ǫw (IV.2.12) with respect
to the reference solution. Middle: total L2-error ǫ (IV.2.13) with respect to the reference
solution. Right: compression rate (IV.2.14) achieved by nonlinear wavelet thresholding. The
legend applies to all three graphs.

L2-error ǫw and the total L2-error ǫ are represented. The error decay is less pronounced
in the considered range of Reynolds number than it was in the deterministic case above.
It seems that the Reynolds number at which the analytically predicted O(N−2) asymptotic
behavior manifests itself has not been reached yet.

We now comment on the compression rate ρ (IV.2.14), plotted in Fig. IV.2.9, right.
One can see that the CVS thresholding allows us to compress by a factor of about 3 using
Kingslets, and about 10 using Coiflets. The computations presented here do not benefit from
this compression, since the solution is reconstructed in Fourier space at each timestep. Nev-
ertheless, the measured compression rate remains a good indicator of what can be achieved
by adaptive wavelet-based solvers (Farge et al., 2001; Schneider and Vasilyev, 2010) using
the thresholding rule that we have defined earlier.

IV.2.4 Conclusion and Perspectives

We have used a classical Fourier-Galerkin method to solve the 2D Euler equations, and we
have proposed a new wavelet-based approach to regularize the solution, in order to obtain
a good numerical approximation of the Euler solution. We have compared our method
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with viscous and hyperviscous regularization, and also with the solution computed without
regularization. The ability of all regularization methods to approach the inviscid dynamics
was measured quantitatively by direct comparison with a high resolution viscous simulation.
High resolution numerical simulations were made possible thanks to parallel implementations
of the spectral code and of the wavelet transform.

The main findings concerning the 2D Euler equations can be summarized as follows:� linear wavelet filtering approaches the inviscid dynamics as well as viscous or hypervis-
cous dissipative terms,� nonlinear wavelet filtering with real-valued wavelets (Coiflets) introduces undesirable
artifacts in the solution,� nonlinear wavelet filtering with complex-valued wavelets (Kingslets) preserves the dy-
namics and offers at the same time a non negligible compression rate of about 3 for
fully developed turbulence,� there are strong indications that the solution to the Galerkin-truncated 2D Euler equa-
tions converges, at least in the weak sense, to the solution to the 2D Euler equations.

We can hence claim that the main goals of our wavelet regularization method have been
attained. Indeed, we have shown that CVS filtering with Kingslets allows us to regularize
the 2D Euler equations, and at the same time compress the solution. This is a strict
extension of the results obtained for the 1D Burgers equation. One possible explanation
for the disappointing results observed with Coiflets is the lack of a safety zone in wavelet
space (Schneider et al., 2006). Since the orthogonal wavelet transform is not translation
invariant, it cannot properly capture structures that are advected in a continuous fashion
by the flow. The rather low compression rates observed when filtering solutions of the 1D
Burgers equation should be seen as a limitation of the employed thresholding method, and
not of the wavelets themselves. Indeed, for a function as simple as single shock, wavelets are
in principle able to achieve much larger compression rates. Improving the threshold selection
algorithm is a priority goal of our ongoing research work.

We would now like to draw attention to the striking differences between the results
that we found for the 1D Burgers equation on the one hand and for the 2D incompressible
Euler equations on the other hand. Indeed, the Galerkin-truncated dynamics of these two
equations behave very differently in comparison to their non truncated counterparts: for
the 2D Euler equations we have shown weak convergence of the solution to the Galerkin-
truncated equations towards the inviscid solution5 , while for the 1D Burgers equation no such
convergence was observed, as Tadmor has shown using an elegant mathematical argument
(Tadmor, 1989). Therefore, one should be extremely cautious when using Burgers equation
as a toy model for understanding incompressible turbulence. One may argue that the 2D Euler
dynamics is pathological since it does not have finite time singularity (FTS), and that Burgers
is in this respect closer to 3D Euler. But even if the 3D Euler equations have FTS, these
singularities cannot be of the same nature than the shocks occuring in the solutions of Burgers
equation. The incompressibility condition plays a key role by introducing nonlocal effects
that are completely absent in the Burgers model. To illustrate these differences further,

5A rigorous proof of strong convergence has been obtained since this paper was published (C. Bardos
and E. Tadmor, private communication, 2010)
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consider the results obtained with hyperviscous regularization. In (Frisch et al., 2008), it
was argued that hyperviscosity introduces a quasi-thermalized range in the spectrum. As a
consquence, all that is gained by the better wavenumber localization of the dissipation term
is lost because of an enhanced bottleneck. These results were supported by 1D Burgers
direct numerical simulations, and by the eddy-damped quasi-normal Markovian (EDQNM)
closure for 3D turbulence. Our results are in agreement concerning 1D Burgers, but show
that hyperviscous regularization offers very good performance for 2D Euler, as suggested
by previous results (Kevlahan and Farge, 1997). It cannot be decided at present if the
discrepancy is due to a shortcoming of the EDQNM closure, or if the hyperviscous approach
breaks down when going from 2D to 3D. Checking this via direct numerical simulation in
the 3D case is an interesting topic for future research.

In future work, we would also like to undertake the same kind of study with an adaptive
wavelet-Galerkin solver instead of a Fourier-Galerkin solver. This will allow us to benefit at
the same time from the compression and from the regularization offered by the CVS wavelet
filter, and to measure the speed-up. Encouraging results concerning compression are already
available in the literature on adaptive wavelet methods, see e.g. (Schneider and Vasilyev,
2010) and references therein.
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IV.3 Remarks on Galerkin discretizations

For clarity we would like to make some remarks on the spatial discretization that we have
encountered in the previous section, namely the Fourier-Galerkin discretization applied to the
periodic Euler equations. The results are not new and serve only to bring attention to some
points that were not completely elucidated when the contents of the two previous sections
were published. We thank Professor Hammett for drawing our attention to these points.

Assuming that the spatial domain is Ω = Td, and that the initial condition is smooth,
the smooth solution u can be decomposed into its Fourier series:

u(x, t) =
∑

k∈Zd

ûk(t)e
2ιπk·x,

where the Fourier coefficients are given by

ûk(t) =

∫

Td

u(x, t)e−2ιπk·xdx.

The principle of the Fourier-Galerkin approach is to transform the equations for u into
equations for (ûk)k∈Zd , and to solve only those corresponding to |k| ≤ K, where K is
a fixed integer. The remaining equations are replaced by the condition that ûk = 0 for
|k| > K. The equation satisfied by the velocity field uK obtained from this system can be
rewritten in a more condensed manner as:

∂tuK + PK(uK ·∇uK) = 0 (IV.3.1)

where PK is the orthogonal projector defined in the Fourier basis by

PK(x→ γe2ιπk·x)(x) =

{(
γ − γ·k

|k|2k
)
e2ιπk·x if |k| ≤ K,

0 otherwise.

where the parenthesized term in the first case incorporates the incompressibility condition.
By dotting (IV.3.1) with uK and integrating on Td we get:

dt‖uK‖2 + 2

∫

Td

uK ·PK(uK ·∇uK).

Now since PK is orthogonal it is also self-adjoint, and by transfering it to the first uK factor
under the integral, we get PKuK . On the other hand, assuming that the initial condition
satisfies PKuK(0) = uK(0), this property is preserved by (IV.3.1), so that PKuK(t) = uK
for any t. Thanks to the fact that uK is divergence free, we thus have:

dt‖uK‖2 = 0,

which shows that the “energy” of the solution to the Galerkin-truncated system is constant.

Using the same algebra it is possible to show that for d = 2 the Fourier-Galerkin dis-
cretization also conserves enstrophy. Moreover, for d = 2, the conservation of enstrophy
holds for Galerkin discretization in any orthogonal family. Let us prove it, denoting (ψλ)Λ

the orthogonal family, PΛ the orthogonal projector on the corresponding subspace of L2(T2),
and ωΛ the discrete solution. By definition

∂tωΛ + PΛ(uΛ ·∇ωΛ) = 0,
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where uΛ = ∇
⊥∆−1ωΛ. Dotting this equation with ωΛ yields:

dt‖ωΛ‖2 + 2

∫

T2

ωΛPΛ(uΛ ·∇ωΛ),

but as above, PΛ being self-adjoint and uΛ being divergence free, the integral vanishes, and
‖ωΛ‖2 is thus conserved.

With this property in mind, the results of the two preceding sections must be interpreted
with a little bit of caution. Indeed, it was shown that wavelet filtering the discrete solution in a
Fourier-Galerkin discretization of the 2D incompressible Euler equations dissipates enstrophy
(and similarly for the energy in the inviscid 1D Burgers equation). But this dissipation of
enstrophy is tied to the fact that a Fourier projector and a wavelet projector are applied
alternatively, and that these two projectors do not commute. In fact the product of two such
projectors is not even a projector itself. Hence there is no contradiction with what we have
just shown, namely that a genuine Galerkin discretization of the 2D Euler equations over a
fixed wavelet family would conserve enstrophy.

Now if the set set Λ itself changes in time, as would be the case in an adaptive wavelet-
Galerkin solver, that could imply some change in the enstrophy. It could be of interest to
explore this issue, starting for example by the 1D inviscid Burgers equation as a toy-model.



Je ne vois donc pas, je l’avoue, comment on peut expliquer par la théorie, de
manière satisfaisante, la résistance des fluides. Il me parâıt au contraire que
cette théorie, traitée et approfondie avec toute la rigueur possible, donne, au
moins dans plusieurs cas, la résistance absolument nulle ; paradoxe singulier que
je laisse à éclaircir aux Géomètres.

Jean le Rond d’Alembert

Opuscules Mathématiques, vol. 5, chap. 34 (1768).
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V.1 Volume penalization

In this section, we introduce the volume penalization method for the enforcement of bound-
ary conditions in incompressible viscous flows, which we will use in the next section. The
method was first proposed by Arquis and Calgagirone (1984), in the context of porous me-
dia computations. Indeed is is based on the physical consideration that a solid wall can be
approximated by a porous wall with very small porosity. For that purpose, the fluid domain
Ω is first embedded into the torus Td, by resorting to a suitable rescaling if necessary. Then,
the following equation for a velocity field u(x, t), x ∈ T, t ∈ [0, T ] is considered:

∂tu + u ·∇u = −∇p + ν∇2u− 1

η
χ0u (V.1.1)

where χ0 is the indicator function of T\Ω, and the real η > 0 is called the penalization
parameter. The incompressibility condition is imposed as for the NSE. Any solution of
(V.1.1) satisfies the following energy equation:

dE

dt
= −2νZ − 1

η

∫

Td

χ0u
2. (V.1.2)

Angot et al. (1999) and Carbou and Fabrie (2003) showed that the solution uη to the initial
value problem for (V.1.1) converges in L2 to the solution u of the NSE with the same initial
data, and more precisely, that:

‖uη − u‖ ≤ C(ν, u0, χ0)
√
η,

where C does not depend on η. Note the important point that C depends on ν, and in fact
the best known estimates blow up exponentially when ν → 0.

The discretization of (V.1.1) is not an easy problem because χ0 is a discontinuous func-
tion. Various methods have been proposed, for example finite volumes (Sarthou et al., 2008)
and Fourier collocation (Schneider and Farge, 2005). Here we adopt a different approach,
which is however closely connected to the one of (Schneider and Farge, 2005). The idea is
to approximate χ0 by a smooth function χ prior to discretization using a Fourier-Galerkin
scheme. We look for χ with the following properties:

(i) the Fourier coefficients of χ satisfy χ̂k = 0 for |k| ≥ K,

(ii) χ ≥ 0,

(iii) χ is close to χ0 in L1(Td)

(iv) χ is of the order of the numerical round-off error inside Ω, except perhaps close to ∂Ω.

Condition (i) ensures that the product χu has only a finite number of nonzero Fourier
coefficients when u does, which is necessary for the Galerkin discretization, while (ii) preserves
the property deduced from (V.1.2) that the energy can only decrease and (iii) keeps the
solution close to the one of the original problem. Condition (iv) avoids oscillations of χ
inside Ω, which would imply an unacceptable perturbation of the solution.

To enforce (i), we look for χ as a convolution χ = χ0 ∗ Φ :=
∫

Rd
χ0(y − x)Φ(y)dy.

where Φ is in L2(Rd), and the Fourier transform of Φ vanishes for |k| ≥ K. In the following
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Figure V.1.1: Some putative mask smoothing filters, in physical space (left) and Fourier
space (right).

we denote the Fourier transform on Rd by Φ̂(k) with parenthetized argument, whereas k

appears as index to Fourier coefficients on Td. Condition (ii) implies that Φ should be

positive, and (iii) means that Φ̂ should be as close to 1 as possible. A first idea would be to

take Φ̂(k) = 1 if |k| ≤ K and 0 otherwise, but that would contradict (ii) and moreover the
resulting χ would have a very bad localization which enters in conflict with condition (iv).
In fact, condition (iv) imposes that Φ should decay fast at infinity. In (Ehm et al., 2004),
mollifiers having optimal localization (in the sense that their variance is minimal in a certain
class of functions) were constructed as follows. Let J0 be the zeroth order Bessel function
of the first kind, j0 its smallest positive root, and define

φ̂(k) =

{
J0(j0|k|) for |k| ≤ 1

0 for |k| > 1
.

By construction, the function φ is well localized in the sense that its variance
∫

Rd
|x|2φ(x)dx

is as small as possible, but φ decays quite slowly at infinity. Indeed, φ̂ is continuous on the
circle |k| = 1 but not C1, therefore φ(x) decays at best like |x|−1.5. Moreover, φ is not
positive. Both issues can be dealt with by taking

Φ(x) = Cφ

(
Kx

2b

)2b

where b > 1 and C is a normalization constant. Such a Φ satifies all the conditions that we
have imposed, as long as b is chosen properly. In the following, we call Φ a Bessel mollifier.

To choose b we resort to a qualitative judgement, based on Fig. V.1.1, which shows the
profiles of Φ and Φ̂ for b = 1 and b = 4. For simplicity K has been scaled to 1. We see
that b = 4 is a reasonnable choice, since Φ decays quickly below the round-off error. For
comparison, Gaussian filters are also shown, for which Φ(k) = exp

(
−1

2
σ2k2

)
. Gaussian

filters can be empoyed but their localization in physical space is not as good for a given
cut-off wavenumber.

In practice, the multiplication χu is computed is physical space by first reconstructing u

and χ on a grid. To avoid aliasing errors, this grid should have at least N = 3K points in
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each direction. From Fig. V.1.1 (left) it appears that the Bessel mollifier with b = 4 roughly
extends over 18 grid points. This procedure can therefore be applied only if K is sufficiently
large, as is the case in the next section.

V.2 Molecular dissipation in the presence of walls

The contents of this section have been submitted for publication in Physical Review Letters,
see (Nguyen van yen et al., 2010b).

V.2.1 Introduction

Flows whose energy dissipation rate is almost independent on small microscopic coupling
coefficients are of central interest in fluid dynamics. For example, they are observed with
Landau damping in collisionless plasmas, with reconnection in magnetized fluids or plasmas,
and with fully developed turbulence in incompressible neutral fluids. Despite its ubiquity,
the phenomenon is still often called “anomalous dissipation”. One way of approaching the
problem has been to look for generic structures whose existence in the flow is sufficient to
imply nonzero energy dissipation. Shocks in compressible flows are a relatively well under-
stood example of such energy dissipating structures, but their well established theory (Lax,
1973) is still an exception.

In this Letter, we focus on two-dimensional incompressible flows in contact with solid
boundaries, for which the understanding is, comparatively, at an embryonic stage. Working
with the inviscid potential flow equations, later generalized as the Euler equations, d’Alembert
came up in 1768 with the famous paradox bearing his name (le Rond d’Alembert, 1768) that
the flow would exert no drag force onto solid obstacles. The Navier-Stokes equations (NSE)
were then derived during the 19th century by including molecular friction effects. It was
gradually realized that the paradox came from the singular nature of the vanishing viscosity
limit, mostly due to the no-slip boundary condition imposed along the solid boundary. In
1904, Prandtl (Prandtl, 1904) resolved the paradox in the very special case of flows in which
the effects of viscosity are confined to a boundary layer of thickness proportional to Re−1/2

in the neighborhood of the wall, where Re is the Reynolds number. He was able to compute
a drag coefficient, and hence also an energy dissipation rate, which are both proportional to
Re−1/2 in the vanishing viscosity limit. Prandtl’s theory does not apply when the boundary
layer detaches from the wall, because the Euler equations can then no more be used to
describe the flow, even far from the solid boundary. In 1984 Kato (Kato, 1984) proved
mathematically that, in the vanishing viscosity limit, the energy dissipation rate tends to
zero if and only if the solution of the NSE converges to the solution of the Euler equations
with the same initial data. He also proved in the same paper that, for dissipation to occur
anywhere in the flow at any time, at least some dissipation had to occur within a very thin
boundary layer of thickness proportional to Re−1 in the neighborhood of the wall.
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V.2.2 Model and numerical method

The elementary event that we focus on in this Letter consists in the collision of a vorticity
dipole into a solid wall, a classical object of experimental studies (see e.g. (Flor and van Hei-
jst, 1994)), which has also been used for benchmarking several numerical methods (Orlandi,
1990; Clercx and Bruneau, 2006; Keetels et al., 2007; Kramer et al., 2007). A first specific
study of energy dissipation appeared in (Clercx and van Heijst, 2002), where the NSE with
no-slip boundary conditions were approximated using Galerkin discretization over a basis of
Chebychev polynomials, both in the wall parallel and wall normal directions. The numerical
solutions satisfied the no-slip boundary conditions to machine accuracy but it was later found
out (Clercx and Bruneau, 2006) that they were not converged beyond the collision time.

In contrast, we have focused on using a numerical scheme which resolves scales at least
as fine as Re−1, to cope with Kato’s theorem. This stringent requirement on resolution
has not been enforced, to our knowledge, in any previous numerical experiments at similar
Reynolds numbers. The best way that we have found to comply with it was to work with a
numerical model known as volume penalization. The counterpart, as we shall show in detail
below, is that the no-slip boundary conditions are replaced by Navier boundary conditions
with a slip length tending to zero when Re→∞.

The initial value problem for the NSE with volume penalization (PNSE) can be written
as follows (Arquis and Calgagirone, 1984):

{
∂tu + (u ·∇)u = −∇p + ν∇2u− 1

η
χu

∇ · u = 0, u(·, t = 0) = u0,
(V.2.1)

where u(x, t) and p(x, t) are respectively the velocity and pressure fields defined for x in the
unit torus T2 = (R/Z)2 and t ≥ 0, ν is the kinematic viscosity, χ is a mask function which
equals 0 in the fluid part Ω of T2 and 1 elsewhere, and η is the penalization parameter which
needs to be sufficiently small in order to impose that the velocity almost vanishes outside Ω.
In the following we shall take Ω =]0.05, 0.95[×T, thus modeling a periodic channel. To be
consistent with previous studies (Orlandi, 1990; Keetels et al., 2007), the Reynolds number
Re is defined as Re = UL

ν
, where L is the half-width of the channel (L = 0.45 in our units)

and U is the initial rms velocity. Note that both the NSE and PNSE are well posed in two
dimensions, see (Foiaš et al., 2001).

Our main quantity of interest will be the kinetic energy e(x, t) = 1
2
|u(x, t)|2 which

evolves pointwise according to

∂te+ ∇ · ((e+ p)u) = −ν|∇u|2 − 1

η
χu2 + ν∆e, (V.2.2)

where the term ν|∇u|2 will be called local energy dissipation rate, as in (Kato, 1984). The
total energy E =

∫
T2 e, satisfies

dE

dt
+ 2νZ +

1

η

∫

T2

χu2 = 0, (V.2.3)

where Z = 1
2

∫
T2 |∇u|2 is the enstrophy.

For η →∞, the PNSE reduces to the NSE, and the solution then satisfies the following
scaling for energy dissipation (Beale and Majda, 1981), which we call wall-less scaling:

E(t2)− E(t1) ∝ Re−1. (V.2.4)
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Re 985 1970 3940 7880
N 2048 4096 8192 16384
η 4 · 10−5 2 · 10−5 10−5 0.5 · 10−5

Table V.2.1: Parameters of numerical experiments.

For η → 0 and fixed Re, it has been proven mathematically (Angot et al., 1999; Carbou
and Fabrie, 2003) that the PNSE approaches the NSE in Ω with no-slip boundary conditions.
This convergence has been checked numerically (Keetels et al., 2007) for the dipole-wall
collision at Re = 1000.

Initial data that lead to a dipole-wall collision were introduced in (Orlandi, 1990). It is
conveniently defined by its vorticity field ω0 = ∇×u0, for which the analytical expression is

ω0(x) = ωe

1∑

i=0

(−1)i
(

1− |x− ai|2
r2

)
e−

|x−ai|2
r2 , (V.2.5)

where a0 = (0.445, 0.5), a1 = (0.555, 0.5), r = 0.045 and ωe = 299.5, so that U = 0.443.
Note that in addition to the numerical scheme, two things differ from (Clercx and van Heijst,
2002): the initial distance between the two vortices is slightly larger, and the domain is a
channel instead of a square container.

To benefit from optimal efficiency, we work with the vorticity formulation of the PNSE
in divergence form. But for our purpose, it is important to use a spatial discretization which
satisfies the energy balance equations (V.2.2) and (V.2.3) to round-off accuracy. Therefore,
we approximate χ by a positive function whose Fourier coefficients vanish for wave vectors
having their modulus higher than a given cut-off wavenumber K. The mask is thus mollified
over a scale proportional to K−1, which corresponds in practice to about 20 grid points. The
mollified equations are then discretized using a classical pseudo-spectral scheme (Schneider
and Farge, 2005). To avoid aliasing errors, the grid over which the products are evaluated
has N = 3K points in each direction. For time discretization we have used an explicit
third order low storage Runge-Kutta scheme, with an integrating factor method (Trefethen,
2000, page 111) to take into account the viscous term. The duration δt of each time step is
adjusted to ensure stability. The parameters of the four numerical experiments whose results
are reported in this Letter are listed in Table V.2.1. Our choices of resolution are dictated
by the requirement to resolve scales as fine as Re−1, and we take η as small as possible but
such that it does not constrain δt more than the CFL condition does.

V.2.3 Results

Fig. V.2.1 depicts the vorticity field in the subdomain [0.708, 0.962]×[0.5, 0.754], at t = 0.36,
0.4, 0.45 and 0.495, for Re = 7880, computed with N2 = 163842. Since the vorticity field is
antisymmetric with respect to x2 = 0.5, we need only describe its evolution in the upper half
of the domain. We observe that, as the positive vortex of the impinging dipole propagates
rightwards, a sheet of negative vorticity is created on the wall. The sheet starts to roll-up
after having reached an intensity of about 17 times the initial vorticity maximum, and a
strong vortex is hence produced. The produced vortex then pairs with the impinging vortex
to form a secondary dipole which bounces back from the wall.
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Figure V.2.1: Vorticity field in the subdomain [0.708, 0.962]× [0.5, 0.754] at t = 0.36, 0.4,
0.45 and 0.495 (left to right) for Re = 7880. The white dotted box at t = 0.495 frames
region B (see text). Black pixels correspond to ω = ±300 in all four pictures.
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Figure V.2.3: Left and middle: energy dissipation (respectively enstrophy increase) as a
function of Re for t ∈ [0, 0.2] and t ∈ [0.39, 0.495]. Right: instantaneous energy dissipation
as a function of Re at t = 0.495 in regions A and B (see text).

Before presenting further results we would like to dwell on the issue of boundary con-
ditions. We concentrate on the wall facing the impinging dipole and, to avoid grid effects,
we define its position as the isoline χ = 0.02 along which we interpolate the fields. The
value 0.02 is somewhat arbitrary, but its order of magnitude can be justified by balancing the
penalization term 1

η
χu with the viscous term ν∆u in the PNSE. With this definition, the

wall-normal velocity u1 is smaller than 10−3 independently of Re, so that to a good accuracy
there is no flow through the boundary, as expected. But the wall-parallel velocity u2 reaches
values of order 0.1, to be compared to the initial rms velocity U = 0.443. Plotting u2 as a
function of ∂1u2 for t = 0.495 along the wall (Fig. V.2.2, left) reveals a relationship of the
form:

u2 + α(Re, η, N)∂1u2 ≃ 0 (V.2.6)

with a correlation coefficient higher than 0.98 in all cases. Hence, restricted to the domain
χ < 0.02, u almost satisfies the NSE with Navier boundary conditions and with a slip length
α. Values of α obtained from least squares fits are shown in Fig. V.2.2 (right) as a function
of Re, where we observe that α is approximately proportional to Re−1.

We now come to our main results concerning energy dissipation. In Fig. V.2.3 (left),
E(0.2)–E(0) and E(0.495)–E(0.39) are plotted versus Re. During the time interval [0, 0.2],
the effect of the boundary is still negligible and the wall-less scaling (V.2.4) is recovered.
During [0.39, 0.495], we find that the Prandtl scaling E(0.495)–E(0.39) ∝ Re−1/2 nearly
holds. To give more weight to the effects of the boundary, we now compute the increase in
enstrophy between t = 0 and, respectively, t = 0.39 and t = 0.495 (Fig. V.2.3, middle). We
observe in both cases that Z(t)–Z(0) ∝ Re, suggesting that the global energy dissipation
rate 2ZRe−1 does not go to zero in the vanishing viscosity limit. This can not be seen on the
curve of E(0.495)–E(0.39) because the effect of the bulk dissipation is still dominant at the

Reynolds numbers considered here. However, since E(0.495)–E(0.39) ≈ 2ν
∫ 0.495

0.39
Z(t)dt,
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Figure V.2.4: Energy dissipation rate ν|∇u(x1(t), x2(t), t)|2 versus particle position
(x1(t), x2(t)) for t ∈ [0.3, 0.495] along three selected Lagrangian trajectories, at Re = 3940.
The circles indicate the positions at t = 0.3.

we expect that at higher Re, the dissipative scaling E(0.495)–E(0.39) ∝ Re0 holds. To
provide more conclusive evidence of this, we isolate two regions where energy is actually
dissipated: region A, a vertical slab of width 10N−1 inside the fluid domain along the isoline
χ = 0.02, and region B, a square box of side length 0.025 around the center of the main
structure that has detached from the wall at t = 0.495 (dotted box in Fig. V.2.1, right).
The energy dissipation rate, as defined by (V.2.2), is integrated respectively over the domain
A or B and plotted versus Re in Fig. V.2.3 (right). It can be seen that in both cases the
dependence on Re becomes weak for Re & 2000.

The understanding of these results is facilitated by following some Lagrangian particles in
the flow. Particles were advected using a bicubic interpolation of the velocity field and third
order Runge-Kutta time integration. We now describe the evolution of the energy dissipation
rate ν|∇u(x, t)|2 along three selected trajectories for Re = 3940 (Fig. V.2.4). The first
striking feature is that it displays a strong maximum for two particles which start from the
wall (green and red curves), occurring when they are still in region A. In contrast, there is
little dissipation along the third trajectory (blue curve), which starts away from the wall and
never enters region A. At later times, energy dissipation goes back to much smaller values
for one of the trajectories that approached the wall (red curve), while it is still one order of
magnitude larger for the other one (green curve), because the particle is trapped inside the
strong vortex produced at the wall (corresponding to region B at t = 0.495).

V.2.4 Conclusion

In summary, we have shown that the dipole-wall collision, a well known elementary event in
two-dimensional (2D) incompressible flows, is a good candidate for having nonzero energy
dissipation in the vanishing viscosity limit. We have imposed Navier boundary conditions
with a slip length roughly proportional to Re−1. Note that the convergence of solutions
to the NSE under Navier boundary conditions with a slip length varying as α = Re−γ to
solutions of the Euler equations has been proven mathematically for γ < 0.5 (Xin, 2010),
but that the case γ ≥ 0.5 is still open. Our results suggest that convergence does not
hold for γ ≈ 1, due to the same scenario that is implied by Kato’s theorem, namely, that
energy keeps being dissipated in a very thin boundary layer of thickness proportionnal to
Re−1, orders of magnitude thinner than the Prandtl boundary layer, and which was also
predicted by Burgers (Burgers, 1923) to explain the observed behavior of the drag force.
We propose to call it the Burgers-Kato boundary layer. In addition, we have shown that
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energy dissipation continues within spiral structures detaching from the boundary, and is
likely to occur only along Lagrangian trajectories that “crash” into the wall when Re→∞.
One should be aware that the perfect fluid model by itself is not sufficient to reproduce
this important physical effect. We argue further that energy dissipating structures may be
common in 2D wall-bounded flows, with slip or no-slip boundary conditions, as long as the
slip length is small enough. They could perhaps be observed in soap film experiments or in
oceanic flows. These structures cannot be described in the framework of classical statistical
theories of 2D flows (Onsager, 1949; Kraichnan, 1967; Batchelor, 1969). Understanding
the statistical properties of flows containing energy dissipating structures is thus an open
question of great relevance to a theory of 2D wall-bounded turbulence (Eyink, 2008).
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V.3 Turbulent dissipation in 2D homogeneous turbu-

lence

The contents of this section have been submitted for publication in Physica D, see
(Nguyen van yen et al., 2010c).

V.3.1 Introduction

Fluid flows are said to be in the fully developed turbulent regime when they are highly disor-
dered and dominated by nonlinear effects due to inertia, which occurs when their Reynolds
number Re is large. Competing tendencies to form and to dislocate coherent structures
then create motion over a wide range of spatial and temporal scales. In the special case of
periodic two dimensional (2D) decaying turbulence, on which we focus in this paper, merging
processes tend to win the game and the average size of structures increases. Kraichnan has
shown that this basic phenomenology could be understood with the help of a dual cascade
paradigm, in which enstrophy and energy are sent respectively towards scales finer and coarser
than the integral scale of the flow ((Kraichnan, 1967), hereafter K67). Within the simplified
setting where energy and enstrophy are injected around a characteristic wavenumber kI , he
established that the enstrophy cascade would occur between kI and a cut-off wavenumber

kD ∝ Re
1
2 , and that for large Re the energy spectrum would become Re-independent and

approach the universal scaling E(k) ∝ k−3. Such an energy spectrum is associated to a
k-independent enstrophy flux from small wavenumber modes to large wavenumber modes.
The range of k between kI and kD is called the inertial range, while wavenumbers k larger
than kD constitute the molecular dissipation range. The relevance of the enstrophy cascade
for the phenomenological description of decaying 2D turbulence is supported by numerical
experiments (Batchelor, 1969; Chasnov, 1997).

The K67 theory is completely statistical, in the sense that it does not claim to predict
anything about the time evolution of a flow, but invokes only generic features of all turbulent
flows satisfying certain hypotheses, that is, of all elements of a large ensemble. It may be
criticized on the grounds that realistic flows, such as a jet or the wake behind an obstacle,
typically do not satisfy its underlying assumptions. Even in the restricted setting where
the theory is approximately valid, one may be interested in the history of the flow and not
only in properties of a global attractor. Another shortcoming of the K67 theory is that it
is inconsistent with a mathematical theorem. Indeed, as pointed out in (Dritschel et al.,
2007), one of its essential hypotheses is that the enstrophy dissipation rate does not go to
zero in the limit Re→∞. But it is well known (Golovkin, 1966) that in the limit Re→∞,
smooth solutions of the 2D Navier-Stokes equations (NSE) with smooth forcing converge
in the enstrophy norm to smooth solutions of the 2D Euler equations (corresponding to
Re = ∞), which have constant enstrophy. This paradox, already predicted using a closure
model (Pouquet et al., 1975) and pointed out in (Vallis, 1985), was recently revisited by high
resolution direct numerical simulation (DNS) of the 2D NSE (Dmitruk and Montgomery,
2005; Tran and Dritschel, 2006). It was shown that even though the enstrophy dissipation
rate is bounded by C(t)Re−1 when Re→∞ (a mathematical theorem!), the decay with Re
that can be observed in practice is only logarithmic, because C(t) increases extremely fast.
The implications of this result on the statistical theory of 2D turbulence were discussed in
(Dritschel et al., 2007) (see also (Davidson, 2008) for a different viewpoint). It was argued
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that no Reynolds independent quantity was available to characterize dissipation, and that
the hope of a Reynolds independent description of 2D turbulence had to be given up.

This conclusion is somewhat disappointing, given the already mentioned convergence of
smooth solutions to the 2D Navier-Stokes equations in a periodic domain towards solutions
to the 2D Euler equations (Golovkin, 1966). Convergence occurs at a relatively fast rate
O(Re−1) in the energy norm, so that Re-dependent effects can be seen as perturbations on
top of the inviscid behavior. In the presence of walls imposing no-slip boundary conditions,
the 2D Euler equations are also well posed, but their solutions behave very differently from
those of the Navier-Stokes solutions even at large Re, and the problem is much more delicate,
see e.g. (Bardos and Titi, 2007) for a discussion. The 3D case also presents formidable
difficulties. But in the 2D wall-less case, on which we focus in this paper, the initial value
problem for the incompressible Euler equations is a solid foundation from which features of
2D turbulence should be deduced. In fact, the use of inviscid equations, sometimes along
with an ad-hoc regularization mechanism, is widespread in numerical models, for example
in geophysical fluid dynamics (Pedlosky, 1987). Hence the main obstacle may lie in our
inability to ask the right questions.

In the search for a reduced description of hydrodynamic turbulence, the detailed study
of reference solutions obtained from well validated numerical methods remains an important
ingredient. Therefore, although our long term goal is to build a reduced description of 2D
turbulence based on the wavelet representation, we limit ourselves in the present contribution
to the analysis of fully developed decaying 2D turbulent flows starting from first principles.
From this a priori analysis, we are able to study several wavelet-based models and to establish
their essential features. We hope that the resulting picture of 2D turbulence will provide a
way towards more predictive approaches.

In the first section, we recall the general notion of incomplete statistical equilibrium,
and explain how it was studied by Kraichnan and others in the context of turbulence. We
then describe the mathematical setting and the numerical tools that we have chosen for
our specific study of 2D decaying turbulence. After a brief reminder on wavelet theory, we
present a set of results about the statistics of 2D turbulence. We then recall the coherent
vorticity extraction procedure, which aims to split the degrees of freedom of a turbulent flow
into a noisy part and a deterministic part. Subsequently, we study the transfer of enstrophy
between these two parts, both from a Fourier view point and from a wavelet view point. In
the last section, we study the retroaction of the noisy vorticity component onto the rest of
the flow. Finally, we discuss the overall results and draw some conclusions.

V.3.2 Conditional statistical modelling

Predictable quantities in turbulent flows can only be defined in a statistical sense, as was
already remarked by Burgers (Burgers, 1923) and Taylor (Taylor, 1935). In the 2D case,
absolute statistical equilibria assuming only conservation of energy and enstrophy were de-
rived by Kraichnan (Kraichnan, 1967) and observed numerically by Basdevant and Sadourny
(Basdevant and Sadourny, 1975) after a long time in simulations of the Galerkin truncated
2D Euler equations. Solutions to the full 2D Euler equations never reach these absolute
equilibria, due to their lack of truncation at fine scales, which allows enstrophy to escape
towards infinitely high wavenumber regions of the spectrum. Instead, these solutions tend to
follow the phenomenology associated to the already introduced K67 theory, but no rigorous
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statistical ensemble has been constructed to explain this observation. In a stationary setting,
one may try to derive the K67 theory by studying the invariant measure of the dynamical
system associated to the Euler equations (see e.g. (Ruelle and Takens, 1971) and related
papers). But the fact that the same phenomenology can be observed in freely decaying
flows suggests that the stationarity hypothesis is superfluous. In any case, as argued by
many authors, even a detailed understanding of the invariant measure may yield little useful
information about the behavior of a particular solution, because of the slow and non-uniform
sampling of the attractor (see e.g. (Bradshaw, 1994)). However, if one considers a flow
that is evolving in time, we already know that it is a solution to the Navier-Stokes equation,
which are completely deterministic, and there is no objective way to introduce a statistical
ensemble (see (Bricmont, 1996) for more along this line).

To understand the difficulty, let us first consider the relatively easier case of classical
kinetic theory (Balian, 2006). In the fluid approximation, many-body systems are considered
to be in a state of local thermodynamic equilibrium and are described by a few macroscopic
fields, like velocity and temperature. The local Maxwellian distribution of particle velocities
can be recovered by maximizing entropy with the constraint that the macroscopic fields
takes their known value in each point. Therewith the statistical ensemble containing possi-
ble realizations of the microscopic degrees of freedom is defined as a direct product of local
ensembles corresponding to each fluid particle. As long as the hypothesis of local thermo-
dynamic equilibrium holds, the equations governing the evolution of macroscopic quantities
depend on the particular realization of the microscopic motion only through a stochastic
forcing term, which is neglected in practice. There is thus a perfect separation between mi-
croscopic and macroscopic motions. If one changes, by thought experiment, the sign of the
velocity of a single molecule in such a fluid, the microscopic motion soon takes an entirely dif-
ferent trajectory but there is no measurable influence on the macroscopic velocity field. The
only signatures of the microscopic properties of the system are the friction terms in the fluid
equations. When energy is transferred to microscopic motion, it is dissipated, or “thrown
away” according to the Latin etymology, evocative of an irreversible loss of information.

Now due to the apparent disorder of the macroscopic velocity field itself, it seems desirable
to refine the separation by distinguishing between two classes of macroscopic degrees of
freedom, those which we want to predict, and those which are to be replaced by statistical
distributions or, in other words, “thrown away” to join their microscopic comrades. Kraichnan
(Kraichnan, 1974) gave an intuitive argument in favor of such an intermediate description
over a fully statistical one. Comparing the characteristic time needed to spread energy in
space within a given scale, and the characteristic time needed to transfer energy between
scales, he noted that they were of the same order of magnitude. In other words, active flow
elements will not completely forget their location in space before they start getting distorted,
and, conversely, will not completely forget their shape before they move to another location
in space. These active flow elements may be amenable to a deterministic treatment, while
others call for a statistical description. Kraichnan and Chen (Kraichnan and Chen, 1989) went
further, asserting that “Turbulence [. . . ] is an interplay of order and disorder, associated
with strong departure from absolute statistical equilibrium”. They noted that advanced
statistical models such as the direct interaction approximation (DIA) (Kraichnan, 1958)
could not faithfully describe the dynamics of very simple dissipative systems. To develop a
better description, they proposed the concept of “constrained decimation”, which consists
in splitting the degrees of freedom of the flow into two parts:
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“explicit”, following (Kraichnan and Chen, 1989).

The notion of “degrees of freedom” is used here in a loose sense that will be made
more rigorous later on. What is important is that the split is not necessarily static, but
can depend on the instantaneous flow, or even on its history. Indeed, this approach, to
which we refer as conditional statistical modelling, is time-dependent by construction, and
in it no assumptions are made about the stationarity of the solution. To each definition of
the explicit flow corresponds a notion of dissipation, or transfer of energy (or enstrophy)
from explicit to dissipated degrees of freedom. The same idea was later elaborated by
several authors, see the review by Kraichnan (Kraichnan, 1988) and references therein. Due
to the nonlinear term, it is likely that, contrary to the microscopic degrees of freedom,
the dissipated flow retroacts strongly onto the explicit flow and cannot be neglected or even
treated perturbatively. Hence the frontier between the two can a priori be chosen subjectively,
but the strength and qualitative properties of the retroaction of the dissipated flow on the
explicit flow determines a posteriori the practical relevance of the split.

In fact the idea of extending the notion of dissipation to macroscopic degrees of freedom
in turbulent flows goes back at least to Richardson and Gaunt (Richardson and Gaunt,
1930). The classes they had in mind can be roughly termed “coarse scale motion” and “fine
scale motion”, and therefore the dissipation so defined was formally equivalent to an eddy
viscosity, for which Prandtl had given a formula five years earlier (Prandtl, 1925), and which
has remained the dominant paradigm ever since. More advanced methods have also been
developed based on the same splitting between coarse and fine scales, for example large
eddy simulation (LES) (Deardorff, 1970) and nonlinear Galerkin (Dubois et al., 1993). In
the last ten years, more advanced statistical physics concepts have been developed in this
context (Ellis et al., 2000), and applied for example to describe multiscale atmospheric flows
(Turkington et al., 2001) or solutions of dispersive nonlinear wave equations (Eisner and
Turkington, 2006). But from equilibrium statistical physics we know that the correctness of
the predictions depends highly on the choice of the right variables to describe the system.
It is therefore an important research topic to explore different concepts of dissipation in
turbulent flows. The goal of this paper is to explore two alternatives to the coarse scale/fine
scale split. They are both based on the wavelet representation of the vorticity field, which
has been advocated since the late 1980s as an improvement over the more classical Fourier
representation (Farge and Rabreau, 1988a; Meneveau, 1991; Farge et al., 1992a). Multiscale
expansions can be seen as a natural follow up on the wavenumber band expansions studied
by Kraichnan in (Kraichnan, 1974), with the essential improvement of maintaining some
space locality in the description. Interestingly, they were also encouraged by Jaynes (see the
remarks at the end of (Jaynes, 1985)).

On the long list of remaining issues, there is the matter of how to choose the statistical
model for the dissipated flow. By analogy with the Gibbs entropy of equilibrium statistical
mechanics, the entropy SF of the flow can be defined as the Shannon entropy (Shannon,
1948) computed from the statistical distribution of the dissipated degrees of freedom (see
section V.3.7.1). Following the ideas of Jaynes (Jaynes, 1957), the distribution that should
be chosen to make the most unbiased predictions about the future evolution of the flow is
the one that maximizes SF . We should keep in mind that the goal of entropy maximization
is to avoid biased results, and not to optimize the predictions of a model. Maximal entropy
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predictions are not necessarily good, in fact they may even be completely worthless if the
split between explicit and dissipated degrees of freedom has been ill chosen.

In the following, we want to consider a single solution to the initial value problem for the
Euler equation, and see how these ideas fit together to describe it.

V.3.3 Mathematical framework and numerical method

In any modelling effort there is, a priori, a phase of analysis, where information is gathered
either from experiments or from a well established underlying model, and, a posteriori, a
phase of synthesis, where the new model is validated. Although our long term goal is to
help improve existing statistical models and computational methods, we focus here on the
a priori analysis stage, having in mind the word of wisdom of Meneveau & Katz (Meneveau
and Katz, 2000): “a posteriori tests typically do not provide much insight into the detailed
physics of models and the reasons that they do or do not work”. Therefore we set out
to study numerical solutions to the 2D Navier-Stokes equations, an approach commonly
known as direct numerical simulation (DNS), and since we are interested in time dependent
properties of the flow and not only in stationary statistics, we work on the initial value
problem: {

∂tω + (u ·∇)ω + ν(−∆)αω = 0

∇ · u = 0, ω = ∇× u, ω(·, t0) = ω0

(V.3.1)

where the unknown vorticity ω(x, t) is a scalar field defined on T2× [t0, t1], T2 = (R/Z)2 is
the unit torus, t0 and t1 are respectively the initial and final time, u is the velocity field, ν is
the fluid viscosity, α ∈ N∗ and ω0 is a smooth initial vorticity field. Classical results guarantee
existence and uniqueness of a solution ω(x, t) to problem (V.3.1) in a suitable function space,
see (Ladyzhenskaya, 1963). These results extend to the case of the incompressible Euler
equations, corresponding to ν = 0 in (V.3.1), see (Bardos and Titi, 2007). When α = 1,
(V.3.1) are called the Navier-Stokes equations (NSE), and when α > 1 they are called
the hyperdissipative NSE (HNSE) (Basdevant et al., 1981). Hyperdissipation is an ad-hoc
regularization mechanisms for the incompressible Euler equations, which aims to approach
the inviscid dynamics better than classical dissipation (α = 1), for given computational
resources. Although its widespread use has been criticized (Frisch et al., 2008), we have
made a good case for it in the restricted context of the 2D NSE with periodic boundary
conditions in a previous paper (Nguyen van yen et al., 2009). Here, we shall consider only
two choices, namely α = 1 and α = 2.

In the following, 〈· | ·〉 is the classical scalar product in L2(T2), the space of square-
integrable functions on T2. ‖ · ‖ is the associated norm, and the Fourier transform of a field
f on T2 is defined by

f̂ [k] =

∫

T2

f(x) exp (−2ιπk · x) dx,

where ι =
√
−1 and k ∈ Z2. When ν = 0 and when the initial data are smooth, an infinity

of integral quantities are preserved by the flow, among which the energy E = 1
2
‖u‖2 and

the enstrophy Z = 1
2
‖ω‖2. When ν > 0, Z decays in time according to:

dZ

dt
+ 2νP = 0 (V.3.2)
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where P = 1
2
‖∇ω‖2 is called the palinstrophy.

To use as initial condition we construct a random vorticity field ωr by letting

ω̂r[k] =





|k|
6
eιθk if |k| ≤ 6

( |k|
6

)−1eιθk if 6 < |k| ≤ 42
0 otherwise

(V.3.3)

where the θk are pseudo-random numbers drawn uniformly in [0, 2π[. If E[k] denotes the
energy spectrum of the flow

E[k] =
1

2

∑

k≤|k|<k+1

|û[k]|2

we have for ωr

Er[k] ≃





πk
36

if |k| ≤ 6
36πk−3 if 6 < |k| ≤ 42
0 otherwise

(V.3.4)

which peaks at k = 6. Taking ωr as initial data for the HNSE (V.3.1), we shall consider the
family of solutions with the parameters mentioned in Table V.3.1 on the time interval [0, 200].
Since the initial spectrum slope is compatible with the K67 prediction, a quick development
of fine scales is favored, but at the same time dissipative effects do not start to play a role
too early. The initial vorticity field is the same for all runs, only ν and α are varied, so that
we approach a single solution to the Euler equations, which is our object of study for the rest
of this paper. Its initial energy is E(0) ≃ 2 · 10−3 and its initial enstrophy is Z(0) ≃ 0.16.

With that the initial eddy turnover time, defined by τ = Z(0)−
1
2 , is approximately 2.5. Since

the initial data is fixed, the only dimensionless parameter playing a role in the NSE is the
Reynolds number, which we choose to define by

Re =
Ul

ν
(V.3.5)

where l = 1
6

is the integral scale of the initial flow and U = l−1
√

2E(0) is the initial RMS
velocity. When α > 1, we do not attempt to define an equivalent Reynolds number.

The HNSE are discretized in space using a classical fully dealiased Fourier pseudo-spectral
method, which is equivalent to a Fourier-Galerkin scheme up to round-off accuracy (Canuto
et al., 1988). This ensures that (V.3.2) is satisfied by the semi-discrete solution up to round-
off accuracy. We denote by K the maximum wavenumber, and the necessary number of grid
points in each direction is then N = 3K. ν is chosen as small as possible with the constraint
that the solution remains well resolved, which in practice means that it should be proportional
to K−2α (see Table V.3.1). For time discretization we employ a third order Runge-Kutta
scheme (Orlandi, 2000, p.20), together with an integrating factor to accommodate the
viscous term. The duration of each timestep is adjusted according to the CFL condition.
Under these conditions, numerical dissipation due to time-discretization was shown to be
negligible in (Nguyen van yen et al., 2009). All computations are made in double precision,
and using OpenMP for parallelization.
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α 1 1 1 1 1 2
ν · 107 6.3 1.6 0.40 0.010 0.0025 8.4 · 10−11

Re · 10−3 17 66 266 1062 4248 HNSE
N 512 1024 2048 4096 8192 8192

Table V.3.1: Parameters of reference numerical experiments.
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Figure V.3.1: Time evolution of energy (left) and enstrophy (right) for solutions of the 2D
NSE equations at various Reynolds numbers.
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2D NSE equations at various Reynolds numbers.
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V.3.4 Statistical analysis

V.3.4.1 Classical statistics

For consistency with previous work, we check that our solutions behave as expected with
respect to classical diagnostics. Energy decays in time with a rate that goes to zero like
Re−1 (Fig. V.3.1, left), while the enstrophy dissipation rate has an apparent dependency on
Re which decays much more slowly when Re → ∞ (Fig. V.3.1, right), in conformity with
the results reported by (Dmitruk and Montgomery, 2005; Tran and Dritschel, 2006). We
note that at t = 50 the spectrum has a k−3 power law decay range (Fig. V.3.2, left), so
that we consider that a state of fully developed turbulence has been reached. In Fig. V.3.2
(right), we show also for t = 50 a histogram of the values taken by the vorticity field on the
collocation grid, which is commonly referred to as probability distribution function (PDF).
The PDFs have an exponential decay for large values of ω, and a relatively flat core region
around ω = 0. It is also noteworthy that both the energy spectrum and vorticity PDF appear
to converge to a limit when Re → ∞, which is consistent with the fact that the solution
converges.

V.3.4.2 Wavelet transform

In this section, we briefly introduce the wavelet representation, mostly for the sake of no-
tation. Details may be found in textbooks, see e.g. (Mallat, 1999). Let ψ be a 1-periodic
wavelet generating an orthogonal multiresolution analysis of L2(T), and ϕ be the associated
scaling function. A function f in L2(T2) can be expanded as follows:

f = f +
∑

λ∈Λ

f̃λψλ (V.3.6)

where f is the mean value of f on T2, f̃λ = 〈f | ψλ〉,

Λ =
{
λ = (j, i, µ) | j ∈ N, i ∈

{
0, . . . , 2j − 1

}2
, µ ∈ {1, 2, 3}

}

and

ψ(j,i,1)(x1, x2) = 2jψ(2jx1 − i1)ϕ(2jx2 − i2)
ψ(j,i,2)(x1, x2) = 2jϕ(2jx1 − i1)ψ(2jx2 − i2)
ψ(j,i,3)(x1, x2) = 2jψ(2jx1 − i1)ψ(2jx2 − i2).

The index j corresponds to the scale of the wavelet, with the convention that j = 0 is
the coarsest scale and j increases from coarse to fine scales. The multi-index i corresponds
to the position of the wavelet on the grid of size 2j × 2j which is associated to its scale.
Finally, the value of µ indicates the directions of oscillation of the wavelet, 1 for the x1

direction, 2 for the x2 direction, and 3 for both directions.

In order to approximate the wavelet coefficients of a function using its values at the
nodes of a Cartesian grid of size N × N = 2J × 2J , the classical fast wavelet transform
algorithm (Mallat, 1999) is utilized. The finest scale which is resolved in this manner is J−1.
Following earlier work (Farge et al., 2001), we work with Coiflet wavelets corresponding to
filters of length 12 (Daubechies, 1993).
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Figure V.3.3: Left: scale-wise PDFs for the HNSE reference solution for t = 50 and µ = 1.
The vertical dashed lines indicate the threshold determined by the scale-wise CVE algorithm,
see Sec. V.3.5.1. Right: scale-wise flatness for varying Reynolds number for t = 50 and
µ = 1. The dashed line indicates the value 3 which is the flatness of a Gaussian distribution.

V.3.4.3 Scale-wise statistics

In 3D turbulent flows, energy containing regions have a smaller and smaller area when
going from coarse to fine scales, a phenomenon known as intermittency. To quantify this
phenomenon, scale dependent statistics have often been used, in particular since Sandborn
introduced the scale dependent flatness (Sandborn, 1959). Wavelets offer a convenient way
of defining scale dependent statistics and of computing them efficiently. Such statistics have
been considered e.g. in (Bos et al., 2007) for analyzing fine scale intermittency in anisotropic
turbulence. Their relationship with previously introduced statistics that are constructed from
structure functions is well known (Farge et al., 1992a). Their computation for 2D flows
instead of 3D flows does not pose any particular technical difficulty, but their behavior,
as we recall below, is quite different. In the following, except otherwise noticed, by scale
dependent statistics we mean quantities that depend on µ and j, that is, they are also
direction dependent.

In an orthogonal wavelet representation, there is a separation between different scales of
the flow, so that we may legitimately speak of scale by scale — or scale-wise — statistics. The
main such object that we would like to focus on is the statistical distribution of the wavelet
coefficients of the vorticity field at a given scale and in a given direction. It is a generic scale-
wise statistical object, since many others can be recovered from it, for example all scale-wise
moments of the vorticity field. One way of approximating the scale-wise distribution is to
consider the PDF of wavelet coefficients within each scale and direction. Surprisingly, such
PDFs have not been considered in previous work. They are akin to the well known PDFs
of velocity increments (Kailasnath et al., 1992). However, the PDFs of velocity increments
pose some problems when the spectrum is steeper than k−3 (Babiano et al., 1985; Biferale
et al., 2003). Scale-wise PDFs do not suffer from the same shortcoming, provided that the
analyzing wavelet has enough vanishing moments (Schneider et al., 2004). Since we are
using a Coiflet with 4 vanishing moments, we would need to start worrying about seeing the
effects of the spectrum of the wavelet itself only if the field we are analyzing had a spectrum
steeper than k−9.

The results of the scale-wise analysis for the solutions we have at our disposal are re-
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Figure V.3.4: Wavelet coefficients PDFs in the direction µ = 1 for the reference solutions
at t = 50, for varying Reynolds number. Left: scale-wise PDF at j = 7. Right: global PDF
of wavelet coefficients.

grouped in Figs. V.3.3 and V.3.4. We focus on t = 50 and, since the setup is isotropic, we
restrict ourselves to one direction, µ = 1.

We first consider the scale-wise PDF for different scales at the maximum Reynolds number
reached by our data (Fig. V.3.3, left). The wavelet coefficients have been rescaled by their
standard deviation. All the PDFs have pronounced exponential tails. We notice that the
curves for j = 8, 9, 10, corresponding to the inertial range, almost superimpose, while the
PDFs corresponding to finer scales j = 11 and j = 12 have longer tails and a more concave
shape. We may therefore conclude that the vorticity field is close to being self-similar in the
inertial range of scales, while the behavior in the molecular dissipation range is distinct. This
conclusion is supported by the behavior of the scale-wise flatness (Fig. V.3.3, right), which
seems to approach a value lying between 6 and 7, independent on scale in the inertial range,
as Re increases, while it reaches much higher values in the molecular dissipation range.

We now fix the scale to j = 7 and look at the scale-wise PDF of ω̃ for various Reynolds
numbers (Fig. V.3.4, left). We observe convergence towards a limiting curve as Re increases,
consistent with our working hypothesis that 2D turbulence has a definite behavior when
Re→∞. On the contrary, the global PDFs of all wavelet coefficients (Fig. V.3.4, right) do
not have a limit when Re→∞. To understand this, recall that the global PDF can be seen
as a mixture of the scale-wise and direction-wise PDFs for all the active scales of motion,
each one being weighted by its contribution to the total number of resolved wavelets. Since
the finest scale j = J − 1 accounts for the majority of wavelet coefficients (75%), and since
its behavior is Re-dependent, it is not surprising that the global PDF inherits this property.

To push this last point further, one can even consider the global and scale-wise PDFs of
the same flow but seen at two different numerical resolutions. In Fig. V.3.5, vorticity wavelet
coefficients PDFs are compared for the reference flow computed at N = 4096 and Re ≃ 106,
and for the same flow upsampled on a grid with twice the resolution. The upsampling is
done in Fourier space, but it more or less boils down to the addition of a new scale j = 12 to
the flow with nearly vanishing wavelet coefficients. The change in the scale-wise PDFs for
j ≤ 11 are too little to be noticed on the graphs, and the curves overlap (Fig. V.3.5, left).
On the contrary, the change in the global PDF cannot be neglected (Fig. V.3.5, right).

The results that we have presented in this section are consistent with most earlier numer-
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Figure V.3.5: Comparison of vorticity wavelet coefficients PDFs for the reference flow at
Re ≃ 106 and t = 50 (computed with N = 4096), and for the same flow upsampled on a
grid of size 8192 in each direction. Left: scale-wise PDFs. Right: global PDFs.

ical studies and with experimental studies of flows in soap films, based mostly on structure
functions and on vorticity increments statistics, see e.g. the review (Tabeling, 2002) and
references therein. One may summarize the situation by stating that vorticity statistics are
non Gaussian but nearly self-similar in the inertial range, while intermittency is found in the
molecular dissipation range (Fig. V.3.3, left). The main advantage of wavelets over previ-
ously used tools is that they form an orthogonal basis: there is no mixing up of information
between different scales, and the entire flow can be reconstructed from its wavelet coeffi-
cients. The perspectives are appealing, both for computation (see (Schneider and Vasilyev,
2010)), and for physical modelling on which we focus in the remaining sections.

Concerning theory, the situation is much less clear. In (Dritschel et al., 2007), a correction
to the K67 energy spectrum was proposed, which consists in keeping the self-similar k−3 range
but multiplying it with a logarithmic Re-dependent factor. This stands in contradiction
with our numerical results, which indicate that the energy spectrum converges to a Re-
independent curve. Moreover, a deviation from exact self-similarity is unavoidable, because
the solution converges when Re → ∞ towards an analytic solution to the Euler equation,
which must have an exponentially decaying spectrum for large k. This is a further indication
that the important point is not to introduce Re-dependent effects, but instead, to change
the way our statistical model is built.

V.3.5 Scale-wise coherent vorticity extraction

V.3.5.1 Extraction algorithm

The definition of coherent structures in turbulence has been a matter of debate for decades.
In (Farge et al., 1999), it was proposed to define coherent structures as the part of the
flow which is not a noise, an approach now known as coherent vorticity extraction (CVE).
Such a minimal and negative definition of coherent structures was put forward in the hope
that it would be consensual, since it does not rely on the a priori choice of a template
for a coherent structure. It also falls neatly in line with the ideas of Kraichnan concerning
conditional statistical modelling of turbulence that were reviewed in section V.3.2. The noise
corresponds to information which has been dissipated, while coherent structures correspond
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to the explicit flow. The price of the approach is that hypotheses need to be made on the
noise. As a most simple guess, the noise was assumed to be stationary, additive, Gaussian
and uncorrelated (Farge et al., 1999), and it was shown that it could be separated from the
rest of the vorticity field using wavelet denoising techniques.

The idea behind the denoising algorithm used to single out the coherent part of the
vorticity field is as follows. Once ω has been expanded in an orthogonal wavelet basis
(Eq. V.3.6), the terms are split into two groups: coherent terms and incoherent terms. Each
coefficient gets attributed to one of the two groups depending on whether its modulus is
larger or smaller than a threshold, Θ. An iterative procedure was proposed in (Azzalini et al.,
2004) in order to find an optimal value of Θ under the assumption that the incoherent part
was uncorrelated, which implied in particular that Θ should not depend on scale. We shall
refer to such a Θ as a global threshold, and to the associated CVE algorithm as global CVE.
In previous work, global CVE has been applied to 2D (Farge et al., 1999; Schneider et al.,
2006) and 3D (Farge et al., 2001; Okamoto et al., 2007) turbulence.

In the previous section, we have outlined the fact that the statistics of the wavelet
coefficients of a turbulent vorticity field are scale dependent, and shown that over a certain
range of scales the scale-wise statistics are resolution independent and have a definite limit
when Re → ∞, while the global statistics enjoy neither of those two properties. Therefore
we would like to propose a modified CVE algorithm, called scale-wise CVE, which is based on
the idea that the threshold should be scale dependent. In the remaining part of this section,
the global CVE and scale-wise CVE algorithms are both thoroughly described. Then, in
the remaining sections of the paper, global CVE and scale-wise CVE will be compared from
several angles.

For Θ > 0, let 1Θ be the indicator function of the interval [−Θ,Θ], choose λ = (j, i, µ),
and denote by Iλ the set of all λ′ which share with λ the same scale j and the same direction
µ. Then define the two quantities:

Nλ(Θ) =
∑

λ′∈Iλ

1Θ (ω̃λ′) (V.3.7)

σλ(Θ)2 =
1

Nλ(Θ)

∑

λ′∈Iλ

1Θ (ω̃λ′) ω̃
2
λ′ (V.3.8)

which in fact depend only on scale j and direction µ (and not on i), but for which we keep
the multi-index λ for convenience of notation. Remark that Nλ(Θ) is the number of wavelet
coefficients at scale j and direction µ that are contained in the interval [−Θ,Θ], while σλ(Θ)
is their empirical standard deviation. Then construct by recurrence the sequence (Θn,λ)n∈N

such that {
Θ0,λ =∞
Θn+1,λ = qσλ (Θn,λ)

(V.3.9)

where q is a dimensionless constant. Iterating forward in the sequence of thresholds (Θn,λ)n∈N

gradually makes the interval [−Θ,Θ] tighten around the wavelet coefficients at scale j and
direction µ that are close to zero, while expelling those that are far from zero (Azzalini et al.,
2004). The latter are known in statistics as “outliers” .

The constant q controls how restrictive our definition of an outlier is. In the following
we have taken q = 2.8 for scale-wise CVE, so that for a standard Gaussian random variable,
the probability of falling outside the interval [−q, q] is about 0.5%. q can thus be interpreted
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as a quantile of the standard Gaussian distribution. For global CVE, we have taken a larger
value, q = 5, in order to get a compression rate of the same order of magnitude as for scale-
wise CVE. In previous publications on global CVE (Azzalini et al., 2004; Schneider et al.,
2006; Okamoto et al., 2007), the value q =

√
2 ln(N2) was enforced, which is known to

be asymptotically optimal for denoising a Gaussian white noise when N →∞ (Donoho and
Jonhstone, 1994), but has the disadvantage of being resolution-dependent. For comparison,
if N = 2048,

√
2 ln(N2) ≃ 5.52. We shall come back on the touchy issue of the choice of

q in the final discussion.

We should also mention that our definition (V.3.8) for σλ(Θ) slightly differs from the
one in (Azzalini et al., 2004), because we use Nλ(Θ) as denominator (which is the correct
denominator to use when computing a variance), while (Azzalini et al., 2004) used the
total number of wavelet coefficients. The price of this slight difference is that the proof of
convergence of the sequence (Θn,λ)n∈N

given in (Azzalini et al., 2004) does not apply to our
version of the algorithm. Nevertheless we observe experimentally that above a certain value
of n (less than 100), Θn,λ becomes constant with a value Θλ satisfying:

Θλ = qσλ (Θλ) (V.3.10)

Since the number of distinct wavelet coefficients within scale j and direction µ is 22j, the very
coarse scales of the flow contain too few wavelet coefficients for any statistical quantity to
be meaningful, and applying the above procedure to these scales would be quite hazardous.
Hence for j ≤ 4 we prefer to impose Θλ = 0 (everything is coherent).

Once Θλ has been obtained, wavelet coefficients whose modulus lies below Θλ, depending
on scale j and direction µ, are defined as incoherent, while the remaining ones are defined
as coherent. The wavelet coefficients index set Λ is thus split into a set of incoherent
coefficients, ΛI , and a set of coherent coefficients, ΛC . Note that a similar procedure was
independently proposed for data classification in (Hennig, 2003). To impose a regularizing
effect of the thresholding operation on the Euler equations (Nguyen van yen et al., 2009),
we always enforce that Θλ =∞ for the finest scale at the current resolution j = J−1. The
global CVE algorithm is obtained if one changes (V.3.7-V.3.8) by extending the sums to all
directions and to all scales except the finest one j = J − 1, for which we keep Θλ =∞, for
the reason already mentioned.

In either case we then define coherent vorticity ωC via its wavelet coefficients:

ω̃Cλ = 1Θλ (ω̃λ) ω̃λ =

{
ω̃λ if |ω̃λ| ≥ Θλ

0 otherwise
(V.3.11)

and incoherent vorticity is given by the difference with total vorticity:

ωI = ω − ωC (V.3.12)

Since the wavelet basis is orthogonal, the respective enstrophies ZC and ZI of the coherent
incoherent part are related to the total enstrophy Z by:

Z = ZC + ZI (V.3.13)

From ωC and ωI , coherent and incoherent velocity fields uC and uI can be reconstructed,
but they are in general not orthogonal, so that to define an analog split for the energy, a
cross term needs to be taken into account:

E =
1

2
‖uC‖2 +

1

2
‖uI‖2 + 〈uC | uI〉 = EC + EI + ECI (V.3.14)
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V.3.5.2 Results

Now that the global CVE and scale-wise CVE algorithms have been introduced, we apply
them to analyze the vorticity fields obtained after the computations described in section
V.3.3, and whose parameters are summarized in Table V.3.1. This section is a follow up on
previous results concerning 2D turbulence (Farge et al., 1999; Schneider et al., 2006), with
a strong focus on the two following aspects:� the dependency on Re in the limit Re→∞,� the interpretation in terms of turbulent dissipation.

In Fig. V.3.6, we show snapshots of the vorticity fields obtained by performing the split
for the HNSE reference solution at t = 50. The main structures visible by eye in the total
vorticity field are preserved in the coherent vorticity field for both methods (first column).
The difference between global and scale-wise CVE is better seen by looking at the incoherent
parts (third column): for scale-wise CVE it appears quite homogeneous, whereas for global
CVE the remnants of structures can still be glimpsed. Now since the resolution of the field
is N = 8192 in each direction, its snapshots lacks a lot of details, which may give us a
false impression. To check this, we look at zooms on small squares of size 1

16
located in the

top-bottom corners of each pictures (Fig. V.3.6, second and fourth row). We notice that
scale-wise CVE enhances most of the sharp features of the vorticity field, while the effect
of global CVE is not very pronounced. In fact, as was pointed out already in (Schneider
et al., 2006), for global CVE the coherent part looks very similar to the total vorticity field.
On the contrary the distinction is immediate for scale-wise CVE. Perhaps the most striking
difference is found on the zooms on the incoherent parts shown in the fourth column: for
scale-wise CVE we see a smooth and disorganized field, while for global CVE we see a rough
field containing the trace of fine scale filaments.

To increase the compression rate, it was proposed in (Schneider et al., 2006) to use
intermediate thresholds belonging to the sequence (Θn,λ) defined by (V.3.9), instead of the
limit n→∞. Different result may be obtained using this technique, but since compression
is not our central concern here, we have not considered it.

Now turning to more quantitative features of the coherent and incoherent flows, we
consider their vorticity PDFs (Fig. V.3.7) and energy spectra (Fig. V.3.8, left). For both
global and scale-wise CVE, the vorticity PDF is relatively well approximated by the coherent
vorticity PDF, and the extrema of the vorticity field are captured by its coherent part. The
incoherent vorticity PDFs are supported on a narrower interval and have a nearly Gaussian
shape. Quantile-quantile plots (Fig. V.3.7, right) allow us to enhance the deviation with
respect to Gaussiannity, which is seen to be more pronounced for global CVE than for
scale-wise CVE. The distinction between global and scale-wise CVE becomes more evident
when looking at the energy spectra (Fig. V.3.8, left). For global CVE, the coherent energy
spectrum closely follows the total energy spectrum except in the molecular dissipation range,
where incoherent energy becomes dominant, in agreement with earlier results (Schneider
et al., 2006). However the k−1 scaling of the incoherent energy spectrum (corresponding to
enstrophy equipartition) that was observed in (Schneider et al., 2006) can be seen here only
over a restricted range of wavenumbers, while the overall shape of the incoherent energy
spectrum seems better described by a k0 scaling. For scale-wise CVE, the total, coherent,
and incoherent energy spectra all have a k−3 scaling range. The incoherent spectrum falls
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Figure V.3.6: Snapshots of the total vorticity field (first row), and of its coherent (first and
second columns) and incoherent parts (third and fourth columns) for global CVE (middle row)
and scale-wise CVE (bottom row). The second (resp. fourth) column shows a restriction of
the coherent (resp. incoherent) part to the subdomain [ 1

16
, 1

16
] (corresponding to the lower

left corner of the full image). The absolute maxima of the respective fields are given in the
table on the top right, following the same arrangement as for the images of the fields. The
color table, shown at the bottom of the figure, varies from −max |ω| to + max |ω| for each
picture.
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Figure V.3.7: Analysis of total, coherent, and incoherent flows, as defined by scale-wise
CVE (full lines) and global CVE (dashed lines), for the HNSE reference solution at t = 50.
Left: vorticity PDFs. Right: quantile-quantile plots of the incoherent vorticities versus the
standard normal distribution. Linear fits corresponding to normal distributions with matching
means and standard deviations are shown for comparison.
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Figure V.3.8: Left: energy spectra of total, coherent, and incoherent flows, as defined by
scale-wise CVE (full lines) and global CVE (dashed lines), for the HNSE reference solution at
t = 50. Right: compression rate as a function of Reynolds number for global and scale-wise
CVE.
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Figure V.3.9: Euler invariants of total, coherent and incoherent flows, as defined by scale-
wise CVE (full lines) and global CVE (dashed lines), at t = 50, as functions of Reynolds
number. Left: enstrophy, normalized by the initial enstrophy Z(0). Right: energy, normalized
by the initial energy E(0), and plotted with a logarithmic vertical scale.

down more rapidly than the coherent one in the far inertial range, and therefore the coherent
part becomes dominant in the dissipative range, while in the inertial range coherent and
incoherent enstrophies are of the same order of magnitude. Recall that for scale-wise CVE
all wavelet coefficients at scales j ≤ 4 are automatically coherent. Therefore the behavior
of the incoherent spectrum for k ≤ 16 is just a byproduct of the spectrum of the analyzing
wavelet.

Since one of our goals is to compare global and scale-wise CVE, it is also important
to measure how much the amount of information contained in the flow is reduced if one
keeps track explicitly only of coherent vorticity instead of total vorticity. The measurement
of information is a difficult problem on which we shall come back in section V.3.7.1. Here,
we limit ourselves to a well known diagnostic, the compression rate R defined by:

R =
#Λ

#ΛC

where #· denotes the number of elements in a set. R is plotted as a function of Reynolds
number in Fig. V.3.8 (right). We observe that R is close to 20 for scale-wise CVE and
close to 80 for global CVE. The higher value, close to 130, reached for global CVE with
hyperdissipation can be explained by the fact that the global CVE is more sensitive to the
behavior of the wavelet coefficients in the dissipation range, which is quite different for the
hyperdissipative solution, as can be deduced from its scale-wise flatness (Fig. V.3.3, right).
Overall, an improvement in the compression rate when Re increases is observed neither for
global CVE nor for scale-wise CVE. Further study will be necessary to determine if this result
also applies to wall-bounded 2D turbulence or to 3D turbulence (see (Kevlahan et al., 2007;
Okamoto et al., 2007) for recent results along this line).

Based on the above results we would like to conjecture that for scale-wise CVE, in the
limit Re → ∞, the incoherent enstrophy and energy both converge to a nonzero limit.To
test this conjecture, consider the energy and enstrophy of the flow at t = 50, normalized
by their initial values, as functions of Reynolds number (Fig. V.3.9). In agreement with
the literature (Dmitruk and Montgomery, 2005; Tran and Dritschel, 2006), the molecular

enstrophy dissipation vanishes Re→ ∞, so that the ratio Z(t=50)
Z(t=0)

approaches 1. For global
CVE, the amount of incoherent enstrophy is small and nearly Re-independent, while for
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scale-wise CVE, it increases with Re. Unfortunately, a saturation regime for incoherent
enstrophy is not reached in the range of Re that we have been able to consider. However,
such a regime is reached for incoherent energy (Fig. V.3.9, right), albeit at a relatively low
fraction of about 2 · 10−3 of the initial energy. Hence the conjecture is valid at least for
energy, and is likely to be valid also for enstrophy. For global CVE, coherent energy goes
to zero like Re−1. Since the main difference between the HNSE and the NSE solutions is
the behavior in the dissipation range, the fact that the last points stand out on the curves
corresponding to global CVE suggests that the latter is most sensitive to this range of scales,
a property that we have already encountered earlier.

Now that we have established the statistical properties of the coherent and incoherent
parts, we would like to assess the practical relevance of the split as regards the 2D Euler
dynamics. As a first step in that direction, we consider the enstrophy transfers, both between
the coherent and incoherent parts, and between different scales of motion.

V.3.6 Interscale enstrophy transfers and production of incoherent
enstrophy

V.3.6.1 Transfers in Fourier space

In the regime that we are considering, enstrophy is transferred on average from low wavenum-
ber modes to large wavenumber modes. To quantify this process, it is convenient to introduce
the orthogonal projector Pk on modes with wavenumbers whose modulus is smaller than k:

Pk(f) =
∑

|k|≤k
f̂ [k] exp(2ιπk · x)

and the vorticity field can then be split as follows:

ω = Pkω + (1− Pk)ω
where the two terms are orthogonal to each other. Thanks to the Pythagore identity the
enstrophy can in turn be split into two terms: Z = Z≤ + Z> = 1

2
‖Pkω‖2 + 1

2
‖(1− Pk)ω‖2,

and the goal is to determine the transfer from Z≤ to Z>, or interscale enstrophy transfer.

The procedure is classic (see e.g. (Kraichnan, 1967)) but we would like to recall it in
detail here since it will serve as an introduction to the next paragraph where wavelet transfers
are to be considered. One first writes down the evolution equation for Z≤ by bracketing the
NSE with Pk(ω):

dZ≤
dt

+ 〈u ·∇ω | Pkω〉+ ν〈∆ω | Pkω〉 = 0 (V.3.15)

Then one may define a trilinear form a by

a(ω1,u, ω2) = 〈u ·∇ω1 | ω2〉 (V.3.16)

where u is a divergence free vector field, and ω1, ω2 are scalar fields. The essential property
of a is that it is antisymmetric with respect to its first and last variables (Foiaš et al., 2001):
a(ω1,u, ω2) = −a(ω2,u, ω1), and in particular for any u and ω1 we have a(ω1,u, ω1) = 0.
Using that property along with (V.3.15), one finally obtains the system

{
dZ≤
dt

+ a((1− Pk)ω,u, Pkω) + ν‖∇Pkω‖2 = 0
dZ>
dt
− a((1− Pk)ω,u, Pkω) + ν‖∇(1− Pk)ω‖2 = 0

(V.3.17)
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where Z≤ and Z> are now ostensibly coupled by the transfer term

Πk = a((1− Pk)ω,u, Pkω) (V.3.18)

Following (Okamoto et al., 2007), we would like to discriminate between the coherent
and incoherent contributions to Πk. Since it is trilinear, eight contributions can be pulled
out:

Παβγ [k] = a((1− Pk)ωα,uβ, Pkωγ) (V.3.19)

where (α, β, γ) ∈ {I, C}3. To make the distinction with the next section clear, let us insist
on the fact that for any choice of α, β and γ, Παβγ is just part of the transfer from Z≤ to
Z>, but contains no information about the production of incoherent enstrophy.

Παβγ [k] is plotted as a function of k in Fig. V.3.10, for the HNSE reference simulation
at t = 50. For global CVE (Fig. V.3.10, left), we find that the term ΠCCC dominates
the transfers in the inertial range, while some other terms become non negligible only in the
molecular dissipation range. This is not surprising given what we have learned in the previous
section, namely that the fraction of incoherent enstrophy is very low in the inertial range.
The four transfer terms associated to the incoherent velocity field, namely ΠαIγ (Fig. V.3.10,
dashed lines), are two to three orders of magnitude smaller than those associated to the
coherent velocity field (Fig. V.3.10, full lines). For scale-wise CVE, all terms of type ΠαCγ

are non-negligible throughout the inertial range, which means that both the coherent and
incoherent parts participate in the nonlinear transfer of enstrophy from low wavenumber
modes to large wavenumber modes. The term ΠCIC also participates to the transfer with a
share of up to 10%.

V.3.6.2 Transfers in wavelet space

The above procedure may be followed again, but this time starting from an orthogonal
wavelet basis instead of the Fourier basis (Meneveau, 1991). The projector Pk is replaced by

P̃j , the orthogonal projector on the subspace generated by wavelets whose scale is coarser

than j. One ends up with a wavelet interscale transfer term Π̃j which is the exact analog of
Πk defined by (V.3.18). Two main disadvantages have to be put up with when considering
transfers in wavelet space as opposed to Fourier space:� in addition to the effect of the nonlinear term, there can be an enstrophy transfer due

to the molecular dissipation term. Indeed, the nice decoupling observed in (V.3.17)
was possible because the projector Pk commutes with the Laplace operator, whereas
P̃j does not,� the wavelets are not as localized in Fourier space as the Fourier modes themselves.
This is a price to pay for the space localization of the wavelets.

The bright side is that wavelets allow us to refine the transfers analysis by looking
separately at the coherent and incoherent parts, as we now proceed to explain. Let us
assume that the set ΛC of coherent wavelet coefficients is chosen by applying one of the two
algorithms of the previous section, either global CVE, or scale-wise CVE. There are three
types of contributions to the enstrophy transfers between the coherent and the incoherent
parts:
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Figure V.3.10: Contributions to enstrophy transfer between Fourier modes. Left: global
CVE. Right: scale-wise CVE.
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Figure V.3.11: Top row: schematic view of the segmentation used in the wavelet transfer
analysis (Sec. V.3.6.2). On the left, only the distinction between coarse and fine scales
is made, while on the right coherent and incoherent coefficients are considered separately.
Bottom row: diagram showing the possible enstrophy transfer paths. Left: transfers in
Fourier space. Right: transfers in wavelet space.� the coupling by the nonlinear term,� the coupling by the molecular dissipation term,� the change in time of the sets ΛC and ΛI .

Here we shall leave out the second contribution, since we are mostly interested in nonlinear
transfers, and also the third contribution, by assuming that ΛC and ΛI are fixed.

Denoting by P̃C the projector on wavelets ψλ such that λ ∈ ΛC , and P̃ I = 1− P̃C, we
may thus split the enstrophy as follows:

Z =
1

2
‖P̃CP̃jω‖2 +

1

2
‖P̃ IP̃jω‖2 (V.3.20)

+
1

2
‖P̃C

(
1− P̃j

)
ω‖2 +

1

2
‖P̃ I

(
1− P̃j

)
ω‖2 (V.3.21)

= ZC
≤ + ZI

≤ + ZC
> + ZI

>, (V.3.22)

Given that P̃C and P̃j commute and are both orthogonal, a system of four equations similar
to (V.3.17) can be derived to describe the time evolution of the four terms. The difference
between the Fourier and wavelet viewpoints is summarized by the diagram in Fig. V.3.11.
A similar kind of diagram was introduced in (Goldstein and Vasilyev, 2004) to describe
the stochastic coherent adaptive large eddy simulation (SCALES) computational approach.
However the enstrophy transfers between the various components have not been measured
before.

The wavelet transfers are shown in Fig. V.3.12, for the HNSE reference solution at
t = 50. While reading the following discussion, keep in mind that we are analyzing a single
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Global Scale-wise
C≤ → C> 92.3% 48.4%
C≤ → I> 17.1% 15.9%
C> → I≤ −1.58% −20.2%
I≤ → I> 1.39% 24.8%
≤→> 100% 100%

C≤ → I≤ −4.4% 51.3%

Table V.3.2: Wavelet enstrophy transfers across j = 9 for global and scale-wise CVE applied
to the reference HNSE solution at t = 50. The numbers are expressed as percentages relative
to the total interscale transfer (≤→>).

realization at a single instant, and that we are not making any stationarity hypothesis. We
are not attempting to extract scaling laws, but rather we are focusing on understanding CVE
in relation to the time dependent Navier-Stokes dynamics.

The total enstrophy transfer from coarse to fine scales (≤→>) is in agreement with the
result obtained in the previous section using Fourier analysis. So is the molecular dissipation
effect. Key differences between global and scale-wise CVE are revealed by looking at the
other curves. For global CVE (Fig. V.3.12, left), the production of incoherent enstrophy
(C≤ → I≤ and C≤ → I>) occurs only at scales where molecular dissipation cannot be
neglected. At coarser scales, all the enstrophy transfers are dominated by C≤ → C>, that is,
the transfer of coherent enstrophy from coarse to fine scales, similarly to what was observed
for energy in 3D turbulence (Okamoto et al., 2007).

Since in the case of scale-wise CVE the dependency with j is quite complex, let us first
consider a single abscissa, j = 9. The transfers, expressed as percentages of the total
nonlinear transfer, are shown in Table V.3.2. The situation as a result of global CVE is also
shown for comparison purposes. The first important thing that we notice is that for scale-
wise CVE, and contrary to global CVE, the production of incoherent enstrophy (C≤ → I≤)
is of the same order of magnitude as the interscale transfer C≤ → C>. Recall the comment
of Kraichnan (Kraichnan, 1974): the processes which mix enstrophy at scales j ≤ 9 act
on the same time scale as the processes which send enstrophy from C≤ to C>. Next, we
should mention the transfer C> → I≤, which measures how much of the fine scale coherent
enstrophy is transferred to coarse scale incoherent enstrophy. From the point of view that we
have adopted, any transfer C → I is seen as a dissipation of enstrophy. Hence the fact that
the transfer C> → I≤ is negative and non negligible (−23%) raises the issue of negative
dissipation. Notice that the same property holds for global CVE, albeit with a smaller
amplitude. But we should not be scandalized by observing negative dissipation in turbulent
flows. Indeed, it is well known that organized structures do spontaneously emerge out of
initially random flows. The CVE approach has the merit of quantifying this phenomenon.

Now let us turn to Fig. V.3.12 (right) which shows the j-dependency of the transfers in
the case of scale-wise CVE. We consider only scales j ≥ 5 since below j = 4 everything was
assumed to be coherent in the definition of the algorithm. The first thing to note is that for
6 ≤ j ≤ 9 the dependency of the transfers on j is relatively benign, and the various terms
keep the same orders of magnitude. We thus recover the almost self-similar behavior that
could be deduced from the scale-wise statistics. But looking more closely, it appears that the
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transfer due to the coherent part tends to increase when going to finer scales. We interpret
this as a time-dependent effect: the initial condition consists only of coarse scale motion,
and it takes some time for incoherent enstrophy to build up and to start transferring energy
to fine scales. The behavior for j ≥ 10 is also worthy of some notice, especially since it is
highly counter-intuitive. Indeed, when molecular dissipation dominates, one may expect the
transfers to be mostly incoherent, as was the case for global CVE. But the situation is quite
the opposite: for j = 10 and j = 11, the transfer is actually dominated by the C≤ → C>
term.

We now come back to the overall picture, as it may be understood from the wavelet trans-
fer analysis. It appears that global CVE behaves in a manner which is similar to molecular
dissipation: indeed, the production of incoherent part occurs mostly in the dissipative range
of scales, while the nonlinear transfer in the inertial range is associated almost exclusively
to the coherent part. Scale-wise CVE offers a more radical view point on the inertial range
in 2D turbulence, by splitting the interscale transfer of enstrophy into two parallel channels,
one associated to the coherent part, and one associated to the incoherent part. The enstro-
phy transfers through both channels are of the same order of magnitude, although only a
few percent of the wavelet coefficients of the coherent vorticity field are nonzero. Since the
scale-wise PDFs do not depend much on j in the inertial range, there is a small fraction of
coherent coefficients within each scale. From the two previous sentences we may infer that
the transfer of enstrophy through the coherent channel is due to localized events, involving
few wavelet coefficients, while the transfer through the incoherent channel is much more
homogeneous in space. The dominant exchange between the two channels is the conversion
of coherent into incoherent enstrophy, C≤ → I≤, but there is also a non-negligible back-
wards conversion I≤ → C>, which is maximal in the far inertial range, i.e. just before the
dissipation range. This negative dissipation feeds the fine scale coherent part, and may act
as a source of flow intermittency in the dissipation range (Farge et al., 1992b). As a result,
in the dissipation range, the flow is intermittent, and the dominant channel is the coherent
one.

From the above discussion, we conjecture that simulation using global CVE does not need
a turbulence model, and can thus be considered as DNS. In contrast, a turbulence model
would be necessary for simulation based on scale-wise CVE in order to take into account the
retroaction of the incoherent part onto the coherent part. This will be the topic of the next
section.

V.3.7 Dynamical influence of the incoherent part

V.3.7.1 Randomization as dissipation

As pointed out in the introduction, it is said that a quantity is dissipated when the cor-
responding degrees of freedom are replaced by random variables. The remaining explicitly
computed degrees of freedom are then perturbed stochastically by the dissipated (e.g. in-
coherent) ones. We would like to find out more about this perturbation in the two specific
cases of global and scale-wise CVE.

When a wavelet coefficient indexed by λ is replaced by a random variable, we say that
it has been randomized, and we denote it W̃λ. We have already defined in section V.3.5.1
the index set of incoherent wavelet coefficients according to global CVE and to scale-wise
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CVE. There remains to choose a probability distribution for the random vector (W̃λ)λ∈ΛI . A
natural constraint that we would like to impose is that applying the randomization operator
twice in a row is equivalent to applying it only once, that is, that the operator is idempotent.
For this condition to hold exactly, the incoherent coefficients must stay below the threshold

W̃λ ∈ [−Θλ,Θλ] (V.3.23)

and the value of the threshold itself should stay invariant under randomization, implying that

E(W̃λ) = 0 (V.3.24)

and also, because of Eq. V.3.10:

1

Nλ(Θλ)

∑

λ′∈ΛI∩Iλ

W̃ 2
λ′ =

(
Θλ

q

)2

. (V.3.25a)

Under these three constraints, the most unbiased choice that we may make is the distribu-
tion which maximizes the Shannon entropy, that is, the uniform distribution on the manifold
defined by Eqs. (V.3.23) and (V.3.25a) in R#ΛI , that is, the intersection of a hypersphere
and of a hypercube. Unfortunately, we have not found an efficient way of generating pseudo-
random numbers distributed accordingly. Hence for practical reasons, we propose to replace
(V.3.25a) with the more tractable constraint that

E

(
W̃ 2
λ

)
=

(
Θλ

q

)2

(V.3.25b)

which ensures that enstrophy is conserved by the randomization operator in the ensemble
average sense. Note the analogy of (V.3.25a) with the conservation of internal energy char-
acterizing the microcanonical ensemble, and of (V.3.25b) with the temperature constraint
of the canonical ensemble.

We admit that the solution of the entropy maximization problem under the three con-
straints (V.3.23-V.3.24-V.3.25b) can be factorized into a product of univariate distributions
fλ. To maximize the entropy of fλ it is convenient to first rescale it by its standard deviation:

fλ(w) =
1

σλ
f0

(
w

σλ

)

and then solve the equivalent problem of maximizing the entropy of the rescaled distribution

S(f0) =

∫

R

f0 ln(f0)

under the constraints that f0 has variance 1 and is supported on [−q, q]. The solution turns
out to be a truncated Gaussian distribution, given by

f0(w) =

{
Z exp

(
− w2

2s20

)
if |w| ≤ q

0 otherwise

where Z is a normalization factor and the value of s0 has to be chosen so that

∫ q

−q
dww2f0(w) =

∫ q
−q w

2 exp
(
− w2

2s20

)
dw

∫ q
−q exp

(
− w2

2s20

)
dw

= 1 (V.3.26)
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Figure V.3.13: For the HNSE reference solution at t = 50, comparison between the empirical
PDFs of the coherent and incoherent vorticity wavelet coefficients at scale j = 8 (full red
and blue lines) and the analytical PDF (Eq. V.3.26) obtained after maximizing the entropy
(black dashed line). The vertical dotted lines indicate the interval [−Θ,Θ], where Θ is the
threshold.

which is imposed by Eq. V.3.10. s0 can be understood as a dilation factor which compensates
for the truncation of the wings of the Gaussian distribution by slightly dilating it in order to
preserve its variance. Provided that q >

√
3, (V.3.26) admits a unique real solution which

we approximate using a numerical solver. The entropy of fλ is then:

S(fλ) = S(f0) + ln(σλ) (V.3.27)

and the total entropy S of the flow is then by definition the entropy of the tensor product of
the fλ for λ ∈ ΛI , which is simply obtained from (V.3.27) by summation. In this framework,
the increase of incoherent enstrophy at a given scale implies an increase of entropy, which is
consistent with our interpretation in terms of dissipation.

In Fig. V.3.13, the truncated Gaussian PDF resulting from entropy maximization is shown
alongside the empirical PDF of vorticity wavelet coefficients at scale j = 8 and for t = 50,
as obtained from the HNSE reference solution. Notice that the truncated Gaussian PDF
does not approach the empirical PDF well, since it is much less peaked around zero.

V.3.7.2 Method

We would like to find out what are the consequences of the loss of information implied by
the statistical model that we have just built regarding our ability to predict the explicit flow.
To do this we adopt a Monte-Carlo approach. We start from the NSE reference solution at
t = 50 for N = 2048 and Re ≃ 2.66 · 105. Ten different realizations of the randomization
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Type of CVE Fate of incoherent part Shorthand
Global Discarded GD
Global Randomized GR

Scale-wise Discarded SD
Scale-wise Randomized SR

Table V.3.3: Four dissipation mechanisms considered in section V.3.7.

operators are applied to the vorticity field, and the NSE are then integrated separately up
to t = 100 for each one of them. In practice, normally distributed random numbers with
standard deviation sλ are generated using the Mersenne twister algorithm, and the W̃λ are
obtained by retaining only those that fall within the interval [−Θλ,Θλ]. For comparison,
we also consider the case where the incoherent part is completely discarded instead of being
randomized. The four cases that we are going to compare are summarized in Table V.3.3.
There remains to decide under what terms the comparison is to be performed.

Defining a meaningful way of comparing several turbulent flows is a research topic in
itself, closely connected to the chosen statistical framework. In the setting of complete
statistical modelling, only quantities characterizing the attractor of the dynamical system
corresponding to the turbulent flow may be meaningfully compared, since all other properties
are considered to be random. On the contrary, in a completely deterministic framework, one
wishes to compare two solutions of the Navier-Stokes equations point-wise in space and
in time, but that may yield little relevant information since the dynamics are known to be
chaotic, i. e. unstable to perturbations. Two solutions initially very close to each other will
always end up far away, even though it is not yet completely clear what influences the rate
of separation. As an intermediate between these two extreme approaches, we propose to
compare only the explicit flows, as defined within the framework of the conditional statistical
model we are working with.

Even within a given statistical framework, there remains the question of what features
of the flow are to be compared. On the one hand, we shall consider integral quantities,
namely enstrophy and palinstrophy, which we know to be predictable because they have
been stabilized by spatial averaging. But it is also important to assess to what extent local
properties of the flow can be predicted as well. Therefore, we shall consider the measure

δX(t) =
‖uCX(t)− uC(t)‖
‖uC(t)‖ (V.3.28)

where X stands for either one of the four dissipation mechanisms recalled in Table V.3.3,
uCX(t) is the coherent velocity field of the perturbed solution at time t, and uC(t) is the
coherent velocity field of the reference solution at time t.

V.3.7.3 Results

We observe that the enstrophy of the randomized flow (Fig. V.3.14, left) decays on average
faster than the one of the reference flow, while remaining close to it. The palinstrophy (Fig.
V.3.14, right) gets on average larger for the randomized vorticity field at at t = 50, but
comes back to the reference value after t = 75. For enstrophy, at t = 50, the fluctuation



V.3.7 - Dynamical influence of the incoherent part 199

50 55 60 65 70 75 80 85 90 95 100
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time

re
la

tiv
e 

er
ro

r 
on

 e
ns

tr
op

hy

 

 

Scale−wise randomized
Scale−wise filtered
Global randomized
Global filtered

50 55 60 65 70 75 80 85 90 95 100
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time

re
la

tiv
e 

er
ro

r 
on

 p
al

in
st

ro
ph

y

 

 

Scale−wise randomized
Scale−wise filtered
Global randomized
Global filtered

Figure V.3.14: Relative error on integral quantities as a function of time between the filtered
and randomized flows and the reference flow at N = 2048. The error is averaged over 10
realization of the randomization operator. The dashed lines are one standard deviation away
from the average. Left: enstrophy. Right: palinstrophy.

X GD GR SD SR
〈δX(0)〉 1.5 · 10−21 2.5 · 10−13 1.1 · 10−19 2.5 · 10−7

Table V.3.4: Initial value of δX for the four dissipation mechanisms, averaged over 10
realizations.
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Figure V.3.15: Left: time evolution of the average error between the reference and perturbed
solutions, as defined by Eq. V.3.28, on log-log scales. The dashed lines delimit an interval
of one standard deviation above and below the average error, as can be estimated from 10
realizations. The dashed-dotted lines indicate the scaling δ(t) ∝ (t − t0)

1
2 . Right: same

data, but represented using a linear scale for the horizontal axis.
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level among the ensemble of randomized solutions is a few percents, and for palinstrophy it
is goes up to 25%.

Let us now turn to the evolution in time of the difference between the perturbed and
reference solutions, as defined by Eq. V.3.28. As expected, the initial values of δ are close to
the round-off precision for SD and GD (Table V.3.4). They are also quite small for SR and
GR, thanks to the constraints imposed on the randomization algorithm as described in the
previous section. To lower δ(0) for SR and GR even more, we would need a microcanonical
randomization operator, which we have not achieved in the present work. The evolution in
time of δ (Fig. V.3.15) goes through two distinct phases which are the same for the four
operators:

(i) a power-law behavior for short times, which can be roughly described by the scaling

δ(t) ∝ (t− 50)
1
2 ,

(ii) an exponential growth for large times.

The ratio between the errors for global CVE and for scale-wise CVE keeps the same order of
magnitude 10−2 independent on time. Although scale-wise CVE initially attributes a larger
proportion of the energy and enstrophy to the dissipated flow than global CVE, and thereby
entails a bigger loss of information, the dissipated flows associated to global and to scale-wise
CVE retroact on the explicit flow in proportion to their initial amplitude, and can be seen as
equivalent in this respect. The singularity of δ(t) in t = 0 is also a property common to both
approaches, and is probably linked to the lack of regularity of their respective thresholding
operators.

V.3.8 Conclusion

In this paper, we have undertaken an extensive statistical analysis of 2D turbulence in the
enstrophy cascade regime, by numerical study of solutions of the Navier-Stokes equations
in the vanishing viscosity limit, and using the wavelet representation of the vorticity field
as the essential mathematical tool. We have shown that the classical enstrophy cascade
phenomenology could be recovered in the wavelet representation, by considering the scale-
wise statistics, and interscale enstrophy transfers. By computing the scale-wise PDFs of the
wavelet coefficients, we have been able to extract more information than the one contained
in the more classical energy spectrum and structure functions. From a practical point of
view, wavelet statistics are appealing because they can be obtained efficiently without com-
puting the Fourier transform of the vorticity field, and can be generalized to non-periodic
boundary conditions and adaptive grids. Another advantage which may become more and
more important is the scaling efficiency of the parallel wavelet transform, which is in theory
better than the one of the parallel Fourier transform.

We have introduced scale-wise coherent vorticity extraction (CVE) as a way to separate
extreme events and very probable events within each scale of the flow. Formally a simple
extension of the existing global CVE approach, scale-wise CVE has the advantages of being
much more robust in the limit Re→∞, and of being independent on numerical discretization
effects. Scale-wise CVE yields an incoherent part which contains a non negligible fraction
of the total enstrophy of the flow, and also a small fraction of the energy. There are good
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indications that both fractions may converge to a nonzero limit when Re→∞. We propose
that the productions of incoherent vorticity and energy are Re-independent measures of
dissipation for 2D turbulence. This dissipation should be understood in a “subjective” sense
(Richardson and Gaunt, 1930), as a transfer of enstrophy between degrees of freedom that
we choose to compute explicitly and degrees of freedom that we choose to model statistically.
Yet once it has been defined, this dissipation can be quantified in a fully rigorous way by
considering the transfers between various regions of wavelet space, as we have done in section
V.3.6.2. We have shown that, contrary to global CVE for which the intrascale transfer of
enstrophy in the inertial range is dominated by its coherent component, scale-wise CVE
entails a non-negligible intrascale transfer of incoherent enstrophy in the inertial range.

These findings shed a new light on earlier results that have shown how the 2D and 3D
Navier-Stokes (Schneider et al., 2006; Okamoto et al., 2007) and 2D Euler (Nguyen van yen
et al., 2009) dynamics were well preserved by discarding after each timestep the incoherent
part determined from global CVE. Our explanation is that global CVE acts mostly in the
dissipation range, and does not influence the inertial range. Thanks to its nonlinear character,
global CVE may stand as a more judicious choice than a classical, linear dissipation operator,
since it allows for a more economical representation of the flow in the dissipation range by
greatly reducing the number of necessary degrees of freedom. As a counterpart, we expect
the compression rate that can be attained by global CVE to be limited by the size of the
dissipation range. For example, taking the three finest scales as a rough estimate of the
dissipation range in a standard, well resolved turbulent flow, the compression rate for global
CVE can not raise much above 64 in 2D and 512 in 3D. Anyway, for 2D homogeneous
turbulence, we have shown here that neither global CVE nor scale-wise CVE induces the
pronounced increase of the compression rate with Re that would be necessary to make the
approach computationally competitive. We expect that the situation will be different for 3D
flows, or even for 2D flows with boundaries, which we propose to study in detail in future
work.

Turbulent dissipation entails a loss of information which affects our ability to predict
the explicit flow exactly. To estimate the error on the explicit flow, we have introduced
a statistical model for the dissipated flow. We have first defined an ensemble of flows
over which we have defined a probability measure by maximizing the entropy under minimal
realistic constraints. The elements of this ensemble are all the realizations of the total flow
that are compatible with the observed explicit flow, or in other words they are conditioned
by the explicit flow. Adopting a Monte-Carlo approach, we have picked from this ensemble
ten different perturbations of the reference flow, and we have integrated them in time. By
monitoring the time evolution of enstrophy and palinstrophy, we have checked that the global
properties of the ten flow realizations are close to those of the reference solution. This finding
is not very surprising, since integral quantities like enstrophy and palinstrophy are generally
thought to be quite stable to perturbations. To benefit from a more discriminating test, we
have then considered the time evolution of the error between the perturbed and reference
solutions. To measure the error, we have projected the perturbed solution using the same
filter as the one used to define the perturbation. We have shown that the L2 error on the
coherent flow velocity first undergoes a power-law growth, with an exponent close to 0.5,
and then a relatively slow exponential growth. The explicit flow is thus sufficient to partially
predict the time evolution of the total flow for more than 10 eddy turnover times, both for
global and scale-wise CVE. The performance is especially good for global CVE, for which
the relative L2 error remains below 1% on that same period.
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An important limitation of the present work is that our splitting algorithms, both global
CVE and scale-wise CVE, depend on the choice of a constant q (see Eq. V.3.9). We have
not studied the dependency of our results on this constant, and we have not been able to
provide a rigorous justification for the choice of q. We conjecture that q can be used as a
control parameter to enhance or degrade the faithfulness of the representation of the flow by
its coherent part. This remains an important subject for future research. More generally, one
should define an objective way of deciding when a split is better than another split, although
the choice of how accurate one wants the final results to be is likely to remain subjective.

An interesting perspective is to implement the split that we have proposed as a turbu-
lence model in a numerical code. Much work has already been done on adaptive codes in
wavelet bases (Schneider et al., 2006; Keetels et al., 2007; Schneider and Vasilyev, 2010),
and the novelty would be to include the stochastic terms modelling the incoherent part.
Our randomization technique could also benefit ensemble forecasting, whose performance
depends heavily on the way the ensemble of initial conditions is constructed.
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V.4 Analysis of 3D turbulent boundary layers

The contents of this section are reproduced from an article submitted for publication in the
Proceedings of the Center for Turbulence Research, see (Khujadze et al., 2010).

V.4.1 Introduction

The motivation for this study is the importance of turbulent boundary layers in many fields
of applied physics, for example, technical devices like flows around airplanes, cars or golf
balls, where determining the drag coefficient is directly related to this thin layer around the
obstacle. In geophysical flows, the atmospheric boundary layer also plays a prevailing role.
For a review on the subject we refer to the classical text book by (Schlichting, 1979). Model
free numerical simulations of turbulent boundary layers are still a tough problem and consti-
tutes a major challenge in computational fluid dynamics for both the numerical discretization
schemes and the computer resources. The stiffness is due to the very high resolution near the
wall which is required to resolve all dynamically active scales of the flow. (Spalart, 1988) did
the first numerical simulations of turbulent boundary layers. Over the past years a number
of simulations of such flows for higher Reynolds numbers became available, cf. (Skote, 2001;
Khujadze and Oberlack, 2004, 2007; Simens et al., 2009; Schlatter et al., 2009). One impor-
tant research subject is the identification and extraction of coherent structures in turbulent
boundary layers. This is inspired by the existence of horseshoe vortices first observed by
(Theodorsen, 1952). The observation of forests of horseshoe vortices in experimental data
by (Adrian et al., 2000) and in direct numerical simulations (DNS) recently performed by
(Wu and Moin, 2009) gave a second breath to this topic.

Wavelet techniques have been developed for more than 20 years (see, e.g., (Farge, 1992)
for an early review) to analyze, model and compute turbulent flows. The multiscale rep-
resentation obtained by wavelet decompositions is lucrative to understand the physics of
turbulent flows as locality in both space and scale is preserved. Thus localized features of
turbulent flows, like coherent structures and intermittency can be extracted and analyzed.
Coherent Vorticity Extraction (CVE) has been introduced for two- and three-dimensional
turbulent flows in (Farge et al., 1999) and (Farge et al., 2001), respectively. The underlying
idea is that coherent structures are defined as what remains after denoising and hence only
a hypothesis on the noise has to be made. In the present study we suppose the noise to be
Gaussian and white. Preliminary results of CVE applied to wall bounded flows, for a channel
flow, have been reported in (Weller et al., 2006). Scale dependent and directional statistics
in wavelet space have been presented in (Bos et al., 2007) to quantify the intermittency of
anisotropic flows. Sheared and rotating flows have been analyzed recently in (Jacobitz et al.,
2010). An up to date review on wavelet techniques in computational fluid dynamics can be
found in (Schneider and Vasilyev, 2010).

In the present paper we apply orthogonal wavelet analysis for the first time to DNS
data of turbulent boundary layers. Additional difficulties are encountered due to the non
equidistant grid in the wall normal direction. The aim of the paper is to extract coherent
structures out of high resolution DNS of zero pressure gradient turbulent boundary layer flow
at Reθ ≈ 1500. The total flow is decomposed into coherent and incoherent vorticities and
scale dependent statistics, i.e., variance, flatness and probability distribution functions, are
computed at different wall normal positions. The performed analyses are a first step as they
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Figure V.4.1: Two dimensional slices of ωy at z = 0; x ∈ [0, 200] (top) and for x ∈ [200, 400]
(bottom).

are in the present work limited to flow snapshots. A detailed investigation of the dynamics
of the coherent and incoherent flow contributions is left for future work.

The paper is organized as follows. Section 2 presents the flow configuration and the
computational approach. Some visualization and analyzes of the DNS data are also given.
CVE methodology is described in section 3, mentioning technical details like the required
interpolation on a dyadic adapted grid, the adaptive anisotropic wavelet transform and the
wavelet based statistics which are applied in the numerical results section 4. The latter
discusses the total, coherent and incoherent flows using both flow visualization and statistical
analyzes. The efficiency of CVE is also assessed. Finally, conclusions are drawn in section 5
and some perspectives for future investigations are given.

V.4.2 Flow configuration and parameters

The DNS code for solving the incompressible Navier–Stokes equations was developed at
KTH, Stockholm, we refer to (Lundbladh et al., 1999) for details. A spectral method with
a Fourier decomposition is used in the horizontal directions while a Chebyshev discretization
is applied in the wall normal direction. The time integration is performed using a third order
Runge-Kutta scheme for the advective and forcing terms and a Crank-Nicolson scheme for
the viscous terms. Since the boundary layer is developing in downstream direction the fringe
region (where the outflow is forced by a volume force to the laminar inflow Blasius profile)
has to be added to the physical domain to satisfy periodic boundary condition. A wall-normal
trip force is used to trigger the transition to turbulence.

The spectral method as a computational tool has evolved vigorously in the early 1970’s.
This strategy was also applied successfully for simulating zero pressure-gradient (ZPG) tur-
bulent boundary layers by (Spalart, 1988) where the growth of the boundary layer thickness
in the streamwise direction is small. Extensive studies of turbulent boundary layer flows were
performed by (Skote, 2001). Here we give some details about the simulations used in our
study. DNS of ZPG turbulent boundary layer flow was performed for two different number
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Figure V.4.2: Left plot: Mean velocity profile in lin-log scaling at Reθ = 1500.
1/κ log y+ + B with κ = 0.41 and B = 5.2; Right plot: Diagonal components of

Reynolds stress tensor for the present DNS ( ) and from (Simens et al., 2009) ( ) at
Re ≈ 1500.

of grid points Nx × Ny × Nz = 2048 × 513 × 256 at starting laminar Reynolds number

Reδ∗ |x=0 ≡ u∞δ∗|x=0

ν
= 600. All quantities were non-dimensionalized by the free-stream

velocity u∞ and the displacement thickness δ∗ at x = 0 where the flow is laminar. The size
of the computational box was Lx×Ly×Lz = 1000δ∗|x=0×30δ∗|x=0×34δ∗|x=0 (Fig. V.4.1
represents the part of computational box. x, y, z are axes correspondingly in streamwise, wall-
normal and spanwise directions). The simulations were run for a total of 11500 time units
(δ∗|x=0/u∞). The turbulent domain was Reθ ≈ 500− 1500 (Reynolds number Reθ = u∞θ

ν

where θ is the the momentum loss thickness). The grid resolution in viscous or plus units
(∆x+ ≡ ∆x/uτν, where uτ is the friction velocity) was ∆x+×∆y+

max×∆z+ = 12.8×5×3.5.

Fig. V.4.2 (left) shows the mean velocity profile in lin-log scaling. The dashed line
corresponds to the fit of the classical log-law. The solid line represents the present DNS at
Reθ = 1500. The right plot shows the comparison of Reynolds diagonal stresses from our
and (Simens et al., 2009) data.

V.4.3 Orthogonal wavelet decomposition of the turbulent boundary

layer flow

In the following we introduce a new anisotropic wavelet decomposition with an adaptive
grid in the wall normal direction which allows for the analysis of the DNS data. Then,
the coherent vorticity extraction is presented and different scale dependent wavelet based
statistics are described.

V.4.3.1 Adaptive anisotropic wavelet decomposition

From the velocity field u = (u1, u2, u3) we compute the vorticity field ω = (ω1, ω2, ω3) =
∇ × u. Both fields are given on discrete grid points (xi, yn, zk) for i = 1, ..., Nx, n =
1, ..., Ny and k = 1, ..., Nz. The grid is equidistant in the wall parallel directions x and
z, while in the wall normal direction y a Chebychev grid is used, i.e., yn = cos(πθn) with
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Figure V.4.3: Left plot: Adapted dyadic grid by the position of the corresponding wavelets.
Right plot: The result of the interpolation in wall-normal directions. Original/Chebyshev
grid, △ dyadic grid, × reinterpolated on Chebyshev grid.

θn = (n− 1)/Ny − 1 for n = 1, . . . , Ny.

Each component ωℓ of the vorticity vector is then decomposed into a two-dimensional
orthogonal wavelet series in the wall parallel directions x-z using a two-dimensional multires-
olution analysis. The number of scales Jxz is defined as the maximum integer such that
Nx = k2Jxz and Nz = k′2Jxz where k and k′ are any integers. For a fixed wall normal
position yn we thus obtain for ℓ = 1, 2, 3,

ωℓ(x, yn, z) =

Jxz−1∑

jxz=0

2Jxz−1∑

ix=0

2Jxz−1∑

iz=0

3∑

µ=1

〈ωℓ(yn), ψµjxz,ix,iz〉xz ψ
µ
jxz,ix,iz(x, z) (V.4.1)

with the wavelet

ψµjxz ,ix,iz(x, z) =





ψjxz,ix(x)φjxz,iz(z) for µ = 1
φjxz,ix(x)ψjxz ,iz(z) for µ = 2
ψjxz,ix(x)ψjxz ,iz(z) for µ = 3

(V.4.2)

where φ and ψ are the one-dimensional scaling function and wavelet, respectively and µ =
1, 2 and 3 corresponds to the direction of wavelets in the x, y and xy direction, respectively.
The scalar product is defined in the x-z plane, 〈f, g〉xz =

∫
f(x, z)g(x, z)dxdz. Here we

use Coiflet 12 (see, e.g. (Farge, 1992)) wavelets and the scaling coefficients on the finest
scale are identified with the grid point values.

Before performing a one-dimensional wavelet transform in the y-direction (while fixing
the x-z direction), the vorticity components ωℓ have to be interpolated from the Chebychev
grid onto a locally refined dyadic grid. For that a Lagrange interpolation of 4-th order is
used and a Haar wavelet transform is applied to the Chebychev grid arccos(yn) to define
the locally refined dyadic grid ỹn = iy/2

jy for jy = 0, ..., Jy − 1 and iy = 0, ..., 2jy − 1
using nonlinear approximation. The number of grid points in the y-direction is fixed, here to
Ñy = 1024. The maximal scale in y-direction, Jy, is then determined from the Haar wavelet
analysis retaining the Ny strongest coefficients. In the present case we obtain Jy = 13.
The resulting dyadic grid is shown in Fig. V.4.3, left which yields the best approximation of
the Chebychev grid using a dyadic grid with Ñy = 1024 grid points. The one-dimensional
vorticity cuts in the y-direction in Fig. V.4.3 show the original data on the Chebychev grid, the
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data interpolated onto the refined dyadic grid and after reinterpolation onto the Chebychev
grid. The agreement between the curves is satisfactory and thus we can conclude that the
interpolation between the different grids can be performed with little loss of information.

A wavelet decomposition using Daubechies 4 wavelets, (Farge, 1992) is then applied to
the data on the adaptive dyadic grid and the scaling coefficients on the finest scales are
computed using a quadrature rule. Thereafter an adaptive wavelet transform is performed
on the adaptive dyadic grid and we obtain a full wavelet decompositon in all three space
directions,

ωℓ(x, y, z) =
Jxz−1∑

jxz=0

Jy−1∑

jy=0

2Jxz−1∑

ix=0

2Jy−1∑

iy=0

2Jxz−1∑

iz=0

3∑

µ=1

ω̃ℓ,µjxz,jy,ix,iy,iz ψ
µ
jxz ,ix,iz

(x, z)ψjy ,iy(y)

(V.4.3)
for ℓ = 1, 2, 3. Note that the wavelet coefficients

ω̃ℓ,µjxz,jy,ix,iy,iz =

∫ ∫ ∫
ωℓ(x, y, z)ψ

µ
jxz,ix,iz

(x, z) dxdz ψjy,iy(y)dy

contain different scales in the wall parallel (x-z) and the wall normal (y) direction. This
property allows to take into account the anisotropy of the structures observed in the DNS
data.

V.4.3.2 Coherent vorticity extraction

The starting point of the coherent vorticity extraction is the wavelet representation of vorticity
in eq. (V.4.3). The underlying idea is to perform denoising of vorticity in wavelet coefficient
space.

Thresholding the wavelet coefficients then determines which coefficients belong to the
coherent and to the incoherent contributions. The latter are supposed to be noise like.

First we compute Ω =

(∑3
ℓ=1

(
ω̃ℓ,µjxz,jy,ix,iy,iz

)2
)1/2

and then we reconstruct the coherent

vorticity ωc from those wavelet coefficients for which Ω > ǫ using eq. (V.4.3). The incoherent
vorticity ωi is obtained from the remaining weak wavelet coefficients. In the first iteration
the threshold ǫ is determined from the total enstrophy Z = 1

2
〈ω · ω〉xyz and the total

number of grid points N = NxÑyNz, i.e., ǫ =
√

4Z lnN . Subsequently a new threshold is
determined using instead of the total enstrophy the incoherent enstrophy computed from the
weak wavelet coefficients. Then the thresholding is applied again and improved estimators
of the coherent and incoherent vorticities are obtained. For more details on the iterative
procedure we refer to (Farge et al., 1999). We note that thanks to the orthogonality of the
decomposition the enstrophy and thus the threshold can be directly computed in coefficient
space using Parseval’s relation. Only at the end of the iterative procedure the coherent and
incoherent vorticies are reconstructed by inverse wavelet transform in physical space, in x-z
direction on a regular grid and in y direction on the locally refined dyadic grid. After the
vorticity fields are reinterpolated in y-direction onto the Chebychev grid.

Finally, we thus obtain ω = ωc+ωi and by construction we also have Z = Zc +Zi. For
future work we anticipate that the corresponding velocity fields can also be reconstructed by
applying Biot-Savart’s kernel which necessitates the solution of three Poisson equations.
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V.4.3.3 Scale dependent statistics

The wavelet based scale dependent statistics are built on the two-dimensional wavelet rep-
resentation (V.4.1) for a fixed position in the wall normal direction yn. First we define scale
dependent p-th order moments of the three vorticity components ωℓ in wavelet coefficient
space by,

Mp,ℓ
jxz

(yn) =
2jxz−1∑

ix=0

2jxz−1∑

iz=0

(
〈ωℓ(yn), ψµjxz,ix,iz〉xz

)p
(V.4.4)

The scale dependent variance of the vorticity components corresponds to p = 2. Dividing it
by two the scalogram of enstrophy is obtained, which yields a scale distribution of enstrophy
for a given position yn.

Scale dependent flatness of each vorticity component ωℓ can be defined as

F ℓjxz(yn) =
M4,ℓ

jxz
(yn)(

M2,ℓ
jxz(yn)

)2 (V.4.5)

Note that for Gaussian statistics the flatness equals three on all scales. The flatness (V.4.5)
quantifies the intermittency of the flow and is directionly related to spatial fluctuations in
the x-z plane of the enstrophy, as shown in (Bos et al., 2007). Hence increasing flatness
values for finer scale are an indicator for intermittency.

Finally, we also consider the probability distribution functions (pdfs) of the wavelet coef-
ficients for a given scale jxz at a given position yn estimated by histograms using 128 bins.
As the number of wavelet coefficients decreases at each larger scale by a factor 4 we only
consider the last three scales jxz = 6, 7, 8 in order to have sufficient statistics.

V.4.4 Numerical results

Visualizations of two-dimensional cuts of the wall-normal vorticity component ωy are shown
in Fig. V.4.4 for the total (top), coherent (middle) and incoherent vorticity (bottom). It
can be observed that the coherent vorticities present in the total field are well preserved
in the coherent field using only 0.84 % of the total number of wavelet coefficients, which
retain 99.61 % of the total enstrophy of the flow. In contrast the incoherent one has weaker
amplitude and is almost structureless.

The statistics of the different flow contributions are quantified in Fig. V.4.5 by considering
the second order moments and the flatness as a function of scale of the vorticity component
ωz for the total, coherent and incoherent flows at two different wall distances, at y+ = 30
which is at the beginning of the log-layer and at y+ = 153 which is inside the log-layer.
The variance illustrates the good agreement between the total and coherent vorticity, while
the variance of the incoherent one is more than 3 orders of magnitude smaller. The latter
also only weakly depends on scales which indicates an equipartition of enstrophy and thus
confirms the incoherent part to be close to white noise. The flatness for both the total and
coherent vorticity increases with scale which is a signature of intermittency. The flatness
of the incoherent part features values around 3, which is characteristic for Gaussian noise.
The probability distribution functions of the wavelet coefficients at scales jxz = 6 and 7
are plotted in Fig. V.4.6 at two different wall distances. Close to the wall, for y+ = 30
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Figure V.4.4: Two dimensional slices of wall-normal vorticity (ωy) at z = 0: total (top),
coherent (meadle) and incoherent (bottom) parts.

we observe an algebraic decay of the pdf tails with slope −2, which is close to a Cauchy
distribution and corresponds to strong intermittency. For distances further away from the
wall (y+ = 153) the tails of the pdf become exponential which shows that the flow becomes
less intermittent. We can also observe that the pdfs do not differ much for the two scales
considered here.

V.4.5 Conclusions and perspectives

Zero pressure gradient turbulent boundary layer flows have been studied by means of high
resolution DNS. The flow data were shown to be in agreement with previous DNS results by
(Simens et al., 2009) and visualizations confirmed the existence of horseshoe vortices.

A new adaptive wavelet transform has been developed which accounts for the flow
anisotropy by using different scales in the wall normal and wall parallel directions. Coher-
ent vorticity extraction has been applied and the obtained results showed that few (< 1%)
wavelet coefficients are sufficient to retain the coherent flow structures, while the large ma-
jority of the coefficients corresponds to the incoherent background flow which is unstructured
and noise like. Scale dependent statistics quantified the total, coherent and incoherent flows
for different wall normal positions and showed that the statistics of the total and coherent
flows are in good agreement. The scale dependent flatness allowed to quantify the flow
intermittency at different wall distances.

The current work is limited to snapshots of vorticty. The reconstruction of the velocity
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Figure V.4.6: Probability distribution functions of the wavelet coefficients of ωz at scales
jxz = 6 and 7 estimated by histograms using 50 bins at two different wall distances, y+ = 30
(left) and y+ = 153 (right).
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fields from the total, coherent and incoherent vorticity is a prerequisite to perform dynamical
analyses of the flow, like determining the energy transfer between the different flow contribu-
tions. In future work we plan to rerun simulations initialized either with the total, coherent or
incoherent flow. At longer term perspective we also envisage to perform Coherent Vorticity
Simulation of turbulent boundary layer flows.
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Conclusion

In this thesis, we have presented numerical results on the topic of dissipation in fluid and
plasma flows, for the regimes where the microscopic coupling coefficients (respectively vis-
cosity and collisionality) tend to zero. In Chapter 1, we have outlined the many common
points between the two systems. However, some obstinate differences in the present for-
mulation of the problems have forced us to separate the results concerning plasma flows
(Chapter 3) and those concerning fluid flows (Chapters 4 and 5). To introduce necessary
concepts and tools, we have preceded the presentation with a technically oriented chapter
on wavelets (Chapter 2). The more unified version of the story that we aim at remains to be
written, and we do not have the elements to make a convincing case here. Instead, we would
like to rephrase the main results using a slightly subjective classification, between standalone
results that deserve to be extracted and become independent of the tools and approaches
that were used to obtain them, and result which remain too much tied to specific technical
tools and make sense only in the course of the ongoing research program.

In the category of standalone results, a first theme is the regularization of conservative
schemes for fluid flows. The behavior in the vanishing viscosity limit of solutions to the
viscous Burgers equation can be recovered by wavelet regularization of a Fourier-Galerkin
scheme applied to the inviscid Burgers equation (Sec. IV.1). Moreover, the solutions to
the regularized equations converge strongly to the exact solutions in the limit of infinite
resolution. The regularization can be achieved with real-valued orthogonal wavelets or with
complex-valued Kingsbury wavelets (Sec. IV.2.3.1), but the latter behave better thanks to
their translation invariance. These results fit nicely among the existings works concerning
regularization of the Burgers equation by various methods. Interestingly, analogous results
hold in the context of the 2D incompressible Euler equations (Sec. IV.2.3.2). However, in
that case the solution to the conservative Galerkin-truncated equations appear to converge
towards solutions to the full equations, in sharp contrast to what happens for the Burgers
equation. Very recently, Bardos and Tadmor (2010) have announced that they have obtained
a mathematical proof of this convergence, which sheds more light on the specific properties
of the incompressible Euler equations with respect to the Burgers equation.

The second theme is dissipation at vanishing viscosity. For the dipole-wall collision, a
generic event observed in turbulent two-dimensional incompressible flows in contact with
walls (Sec. V.2), there is numerical evidence that the molecular dissipation does not go
to zero in the vanishing viscosity limit, due to the production of a boundary layer with a
thickness scaling like Re−1, that we have called the Burgers-Kato layer. Moreover, energy
dissipation continues inside spiral like structures that detach from the wall. This gives some
hints on how to construct weak solutions to the Euler equations that dissipate energy, whose
existence was conjectured long ago by Onsager. In the very different, but also idealized, test
case of homogeneous isotropic 2D decaying turbulence (Sec. V.3), another kind of dissipation
is observed. Indeed, using wavelets, the flow can be split within each scale between coherent
and incoherent degrees of freedom, which correspond respectively to the tails and to the core
of the probability density functions of the wavelet coefficients of the vorticity field (scale-wise
PDFs). In the vanishing viscosity limit, the nonlinear interactions induce the transfer of a
non-zero fraction of the energy and of the enstrophy of the flow from the coherent to the
the incoherent part, a phenomenon which we have interpreted as a macroscopic dissipative
process. Moreover, the statistics of the vorticity field are well captured by its scale-wise PDFs,
which are nearly self-similar in the inertial range with a flatness close to 7, intermittent in
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the molecular dissipation range, and have pronounced exponential tails at all scales. These
precise features suggest that it is possible to construct statistical models of 2D homogeneous
turbulence based on the wavelet coefficients of the vorticity field.

We consider that the remaining results are still in the intermediate stage. This includes
in particular what we have obtained concerning plasma flows, namely the regularization
of the electric field in particle solvers for the Vlasov-Poisson equations, using the wavelet-
based density estimation method we have developed (Sec. III.1). Indeed, we have proven
that particles subject to the regularized electric field do not exert forces on themselves
(Sec. III.2), and we have demonstrated the convergence of the solution by direct comparison
with numerical solutions obtained using well established schemes (particle-in-cell and semi-
Lagrangian), but we have not yet adressed the key questions of entropy production and
macroscopic mixing in the vanishing collisionality limit of plasma flows, which would lead to
the plasmas counterparts of the results we have presented for fluid in Chapter 5. Concerning
the inversion of tokamak edge plasma light emission (Sec. II.4), we have presented a proof
of concept which seems encouraging, but which needs to be validated against alternative
edge plasma diagnostics before it can be used in practice. The method could then be
implemented to analyze the movies recorded by the fast cameras that have recently been
installed on several tokamaks in the world, in particular Tore Supra (CEA, Cadarache). In
the present configuration, the code can process movies where each frame contains up to
about 105 pixels, so that meaningful comparisons with other experimental diagnostics can
be envisaged in the near future.

At the end of Sec. III.1, we have proposed to model turbulent dissipation in 2D homo-
geneous fluid flow turbulence by replacing the incoherent part by a random process whose
probability distribution can be obtained by maximizing an entropy functional. Using this
model, the L2 error on the coherent flow velocity with respect to the exact flow first un-
dergoes a power-law growth, with an exponent close to 0.5, and then a relatively slow
exponential growth. This model needs to be explored further, both for the specific system
of 2D homogeneous turbulence, and in more general contexts, for example 3D homogeneous
turbulence. It would also be natural to extend it to plasma flows, but this remains a middle
term perspective. Finally, we have obtained very preliminary results towards an extension of
the results presented in Chapter 5 to the 3D case, by analyzing a 3D turbulent boundary
layer flow defined on an irregular grid (Sec. V.4). The completion of this project will however
require much more work, given the computational difficulty of the problem.

***

To arrive at these results we had to develop some new tools which we now summarize.
The parallel wavelet transform library, described in Chapter 2, was perhaps the most essential,
and moreover its range of applicability is quite wide. Indeed, it can be applied in any space
dimension, and with many wavelet families, including complex-valued Kingsbury wavelets.
Its portability and good parallel scalability ensure that it will benefit from future increase
in computer power. The adaptive version can be used to analyze flows defined on irregular
grids, even though at present the tool requires that the grid be irregular in at most one
direction, and homogeneous in all other directions. We have also derived an algorithm
to actively refine or coarsen the grid in order to optimize the representation of a given
function. This tool could be used in the future to develop adaptive solvers, which could
have a positive impact on various fields such as atmosphere modeling. At the moment the
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main obstacles on this path are the relatively poor performance, which could be tackled by
a more extensive optimization, and the extension of the adaptivity to several dimensions,
which requires advanced algorithms.

We have also brought some contributions to three existing wavelet thresholding algo-
rithms, namely wavelet-vaguelette decomposition (WVD), wavelet-based density estimation
(WBDE) and coherent vorticity extraction (CVE). WVD was implemented and tested in the
specific case of the helical Abel transform, a generalization of the Abel transform that we
have introduced to deal with the tokamak geometry (Sec. II.4). WBDE was extended to
several space dimensions, and we have provided specific values of the parameters by testing
it in the plasma context (Sec. III.1). CVE was parallelized and generalized into scale-wise
CVE in order to cope with the case where the incoherent noisy part is correlated instead of
white (Sec. V.3.5.1). Other, more specific tools were needed in some places. For example, in
order to solve the Navier-Stokes equations in the presence of walls at high Reynolds number,
we have modified the volume penalization method by using a mollified mask function, which
allows for a better control of energy dissipation by the discrete solution (Sec. V.1).

All these tools are interfaced with a C++ platform we have developed for solving the 1D
Burgers and 2D Navier-Stokes equations using parallel spectral methods, and the Vlasov-
Poisson equations using particle methods. Thanks to this unified platform, the data is
compatible, and many tools can be used in several places to avoid code redundancy. The
C++ platform is available to the community under an open source license at the following
address

http://justpmf.com/romain

and can be used in particular to reproduce all the results we have obtained. In the future
the documentation will be completed and the interface will be made more user-friendly.

***

Practical applications in broader contexts of the results we have obtained are possible
but will require non-trivial developments. Experimental tests for the existence of dissipative
structures in 2D flows with walls would be of very much interest, especially since their out-
come is highly uncertain given that the 2D approximation with no-slip boundary conditions
may not be accurate to describe realistic flows. One approach could be to follow tracer par-
ticles in soap films. Another, more hazardous approach, could be to analyze the trajectories
of drifting buoys in the oceans, but those are affected by the Earth’s rotation and gravity
waves, which were not taken into account in our study. Another range of application could
be ensemble weather forecast, for which the dissipation model we have proposed in Sec. V.3
could serve to generate initial conditions. More generally, it could be integrated in existing
approaches that aim to study the predictability of various types of turbulent flows.

Before the range of applications can be extended further, the remaining questions belong-
ing to the themes we have worked on should be adressed. With the tools we have developed,
it is already possible to apply scale-wise CVE to 3D homogeneous turbulence, and also to
analyze in detail its scale-wise statistics. This will provide insight into the macroscopic dis-
sipative processes playing an essential role in 3D turbulence. We know at a qualitative level
that in the 3D case, there is an interplay between these macroscopic processes and molecular



215

dissipation which has been shown experimentally to remain finite at vanishing viscosity. The
wavelet analysis, using the tools that we have developed during this thesis, could allow for a
more quantitative description of this interplay. In the 2D case, we could also bring together
the two ingredients that were studied separately up to now, namely the influence of walls
and the homogeneous turbulence. Finally, the matter of dissipation in the vanishing colli-
sionnality limit of plasma flows is very interesting. We expect that it is possible to isolate
dissipative structures and macroscopic entropy production, much like in the Navier-Stokes
case.

***
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R. Nguyen van yen, E. Sonnendrücker, K. Schneider, and M. Farge.
Particle-in-wavelets scheme for the 1D Vlasov-Poisson equations. Preprint submitted to
ESAIM:Proc, 2010d.

O. M. Nielsen and M. Hegland. Parallel performance of fast wavelet transforms. Int.
J. High Speed Comp., 11:55–73, 2000.

A. M. Obukhov. On the distribution of energy in the spectrum of a turbulent flow. Dokl.
Akad. Sci. Nauk SSSR, 32A:22–24, 1941.

N. Okamoto, K. Yoshimatsu, K. Schneider, M. Farge, and Y. Kaneda. Co-
herent vortices in high resolution direct numerical simulation of homogeneous isotropic
turbulence: A wavelet viewpoint. Phys. Fluids, 19(11):115109, 2007.

H. Okuda, A. T. Lin, C. C. Lin, and J. M. Dawson. Splines and high order inter-
polations in plasma simulations. Comput. Phys. Commun., 17(3):227 – 231, 1979.

O. A. Oleinik. Discontinuous solutions of nonlinear differential equations. Usp. Mat.
Nauk, 12(3):3–73, 1957. (Amer. Math. Transl., Series 2, 26, 95-172).

L. Onsager. Statistical hydrodynamics. Il Nuovo Cimento, 6(0):279–287, 1949.

P. Orlandi. Vortex dipole rebound from a wall. Phys. Fluids A, 2:1429–1436, 1990.

P. Orlandi. Fluid Flow Phenomena: A Numerical Toolkit. Springer, 2000.



232 References

S. A. Orszag. Analytical theories of turbulence. J. Fluid Mech., 41:363–386, 1970.

S. Osher and F. Solomon. Upwind difference schemes for hyperbolic systems of conser-
vation laws. Math. Comp., 38(158):339–374, 1982.

S. E. Parker and W. W. Lee. A fully nonlinear characteristic method for gyrokinetic
simulation. Phys. Fluids B, 5(1):77, 1993.

E. Parzen. On estimation of a probability density function and mode. Ann. Math. Stat.,
33(3):1065–1076, 1962.

J. Pedlosky. Geophysical fluid dynamics. Springer, 1987.

K. Pfaffelmoser. Global classical solutions of the Vlasov-Poisson system in three di-
mensions for general initial data. J. Diff. Eq., 95(2):281 – 303, 1992.
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