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Michael Moore Rapporteur

Pascal Viot Examinateur



2



General introduction

Statistical physics aims to understand the behavior of systems composed of many interact-
ing elements. These systems display interesting collective phenomena, even if interactions
are local. The solid state of matter is an example of such a phenomenon: the particles are
correlated up to infinite distances, and the system moves as a single block. Sometimes,
this behavior can be understood analytically. For example, some phase transitions are
well described by mean-field theories [1], or by renormalization-group theory [2]. How-
ever, for other systems, the analytic methods fail to give correct results. In these cases,
the system can be studied by the means of numerical approaches, and among them, the
Monte Carlo method [3, 4].

The Monte Carlo method was developed in the late 1940s in order to study nuclear
reactions. This method, and especially the Markov-chain Monte Carlo method, allows
efficient computation of high-dimensional integrals. It is now used in several domains, in-
cluding mathematics, economy, biology, and physics. In the context of statistical physics,
the Monte Carlo method aims to reproduce the statistical behavior of a system at the
thermodynamic equilibrium. To that purpose, an algorithm randomly samples configura-
tions of the system with the appropriate probability distribution. These configurations are
then used to compute the statistical properties of the system, that is, its thermodynamic
properties. The Monte Carlo method is an important tool of statistical physics.

This PhD thesis concerns the conception and the study of Monte Carlo algorithms, as
well as their applications to fundamental problems. It reviews the work achieved between
September 2008 and September 2011 at the Ecole Normale Supérieure under the direction
of Werner Krauth. During these three years, I collaborated with Werner Krauth, David
B. Wilson, Cédric Chanal and Manon Michel. The thesis is divided in two parts. The
work of Part I is the object of two publications [5, 6] (see Section 7.1 and Section 7.3),
and the work of Part II is the object of one publication [7] (see Section 7.2) (another one
is in preparation [8]).

Part I concerns the solid-liquid (that is, the melting) transitions in two dimensions,
and is the main work of this thesis. These phase transitions have been heavily studied by
the Monte Carlo method but they are still poorly understood. This part focuses on the
simplest particle system: the hard-disk model. The nature of the melting transition in
this model has been debated since 1962 [9]. With Werner Krauth and David B. Wilson,
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I designed the “event-chain” algorithm [5] which outperforms previous methods for dense
hard-disk systems. I then used this algorithm with Werner Krauth to perform large-scale
simulations of the hard-disk system in order to study the melting transition. The results
provide a clear answer about the nature of the transition [6].

The study of the hard-disk melting transition in Part I exposes to the thermalization
problems of Markov chains. In systems such as hard disks or spin glasses, it is difficult to
ensure that the Markov-chain Monte Carlo simulations have reached the thermodynamic
equilibrium. Part II concerns this fundamental problem of the Monte Carlo method. A
possible solution is studied: the coupling-from-the-past (CFTP) method. This method,
developed by Propp and Wilson [10], is a “perfect-sampling” Monte Carlo method. The
configurations (samples) which are generated from the algorithm are distributed according
to the exact desired distribution. The CFTP method is hard to apply to most interesting
physical systems. In Part II of this thesis, I analyze the applications of the CFTP method
in systems such as hard disks or spin glasses. With Werner Krauth and Cédric Chanal,
I showed that the limitation of this method is related to the chaotic properties of the
Markov chains, the so-called “damage spreading” [7]. The CFTP method might lead to
important progress in statistical physics, as it would provide rigorous statistical results
in fundamental problems.
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Two-dimensional melting
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Introduction

Although nature is composed of three spatial dimensions, two-dimensional (2D) systems
are frequently observed. Surfaces, interfaces or membranes are examples of such systems.
Physics in 2D unveils fascinating behavior, which strongly differ from three-dimensional
(3D) ones. For example, in a particle system, the diffusion coefficient of a particle is
infinite [11]. Another example is given by the properties of 2D solids: These solids are
oriented like crystals, however, the position of their particles show infinite fluctuations
with respect to the crystal lattice [12]. In a general way, 2D systems show larger fluctua-
tions than in 3D. This can lead to phases where correlations extend over infinite distances
but without a global ordering of the system. These phases are similar to critical phases
in second-order phase transitions: they are characterized by power-law (also called alge-
braic) correlation functions, and are thus scale free. Along with these phases, 2D systems
display a specific phase transition: the Kosterlitz-Thouless (KT) transition [13, 14]. This
transition has found many applications in superfluids and superconducting films, or in
2D melting for example [15, 16]. 2D physics is an extremely active field of research in
Soft matter [17, 18], hard condensed matter [19, 20], quantum gases [21], or even fluid
mechanics [22] for example.

An interesting topic of 2D physics concerns the properties of phase transitions in
these systems. A phase transition occurs when, under the change of an external param-
eter (pressure or temperature for example), a system is transformed into a qualitatively
different phase. For example, we consider water (in three dimensions) at a pressure
P = 100kPa and at a temperature T = 20◦C. Under these conditions, the molecules of
water are little correlated to each other, and they can easily move. Therefore, the state of
the system is disordered: it is liquid. As the temperature is decreased, molecules become
correlated to each other on larger scales. At T = 0◦C, the correlations extend over the
whole system, the system is ordered: it is a crystal and thus a solid. The scenario of this
transition is well understood: at T = 0◦C, a block of ice appears. Then, the block grows
as the system is cooled, until all the water is turned into ice. During the transformation,
the temperature is constant at T = 0◦C. This phase transition is of the first-order type.
A transition is said to be first order when the transformation is discontinuous. Here,
the ice and the water at T = 0◦C are the limiting phases. In other systems (such as
the ferromagnetic Ising model), the transition is continuous. In three dimensions, the
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liquid-solid transition is generally of the first-order type.
We now consider molecules of water in 2D, that is, molecules lying in a planar box. At

high temperature, the system is disordered: it is liquid. At low temperature, the systems
gets ordered: it is solid. An important question is to know how this two phases connect.
For example, this transition could be discontinuous as in the 3D case. But it could also be
continuous, or it could even follow a scenario in several steps. This unanswered question
is investigated in this thesis for the fundamental model of hard disks.

The nature of the hard-disk melting transition is hardly studied by analytic analysis,
but it can be studied by numerical methods such as the Monte Carlo method. In Chap-
ter 1, I introduce to the problem of 2D melting, and summarize principal theories. In
Chapter 2, I describe the event-chain Monte Carlo algorithm [5] (see Section 7.1). I show
the particularities of the algorithm and compare its efficiency to previous algorithms.
Chapter 3 and Chapter 4 concern the application of the event-chain algorithm to the
hard-disk melting transition. In Chapter 3, I describe the methods used to study the
transition. Finally, in Chapter 4, I present the results obtained . The transition is found
to follow an unexpected scenario [6] (see Section 7.3).
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1
Transitions in two dimensions

In this chapter, I discuss the paradoxical properties of 2D particle systems, which cannot
crystallize yet may form solids. I then introduce the KT transition through the example
of the 2D XY model, and show that transitions in 2D are not universal. Finally, I address
the question of the nature of the melting transition of 2D solids.

1.1 Two-dimensional solids

2D solids were first thought to be thermodynamically unstable [23, 1]. It is now known
that these solids exist, yet with a weaker ordering than 3D solids. The nature of their
melting transition has been controversial and was still recently debated [24, 25] (see
[17, 18] for reviews). I will present a solution in Chapter 4.

1.1.1 Existence of the two-dimensional solid

A solid is defined as a material possessing a non-zero shear modulus [26]. For many
systems, the solid state is also defined by the long-range order of their structure, and
is called a crystal [27]. A crystal is a periodic structure whose particles are located at
the nodes of a lattice. In a 3D crystal, the mean square of the thermal displacement ~ui

of an atom i from its lattice position is finite, and the solid is said to show long-range
“positional order”. This property is experimentally observed by the diffraction pattern of
elastic scattering experiments (a Fourier analysis of the periodicity of the system). For
an atomic density

ρ(~r) =
N

∑
i=1

δ(~r −~ri), (1.1)

the intensity of the diffraction pattern is given by the structure factor

S(~k) =
1

N

∣

∣

∣

∣

∫

ρ(~r) exp i~k ·~r ddr

∣

∣

∣

∣

2

(1.2)

where~k is the momentum transfer, N is the number of particles, and d is the dimension of
the system. Due to the atoms’ finite displacement from their respective lattice positions,
the structure factor of a 3D solid is a lattice of δ−functions, called Bragg peaks.
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In 3D, the crystalline state is possible because the system is highly connected. In-
deed, the number of paths connecting two distant particles is large enough to prevent
fluctuations from disrupting the order. In one dimension (1D), the system is less con-
nected. This leads to strong fluctuations, and to the absence of a long-range order. A
simple example is given by the 1D elastic chain, where atoms of mass m are connected to
their nearest neighbors by elastic springs. The thermal fluctuations of each spring con-
tribute independently, and lead to strong displacements of the atoms from their lattice
position,

〈

(ui − uj)
2
〉

∝ |ri − rj|. The order is thus short ranged (see Fig. 1.0). In 2D,
the possibility of an order has been an important question.

∝√L

L

Figure 1.1: 1D elastic chain. The undeformed positions are shown in dashed lines. The
positional order is short ranged.

Peierls, in 1934 [23, 28], studied the ordering of the harmonic solid (a solid with linear
elasticity and fixed connectivity, see Section 1.1.2) in various dimensions. Peierls showed
that in 2D, the mean square atoms’ displacement from their lattice position fluctuates
as

〈

(~ui − ~uj)
2
〉

∝ log |~ri −~rj|. Therefore, this system possesses no long-range positional
order. This result was assumed to extend to non-harmonic solids, and was interpreted as
proving that 2D solids cannot exist. Thirty years later, Alder and Wainwright [9] found,
by numerical simulations, that the hard-disk system undergoes a phase transition. These
results indicated that a 2D solid exists and initially put doubt on the generalization of
Peierls’ result to non-harmonic solids. Following the landmark work on 2D ordering by
Mermin and Wagner [29], Mermin [12] analytically proved that atoms interacting with
any finite-ranged continuous potential cannot show long-range positional order in 2D.
This result, known as the Mermin-Wagner theorem, extended Peierls’ result and ended
the debate on the existence of a solid with a classic crystalline order. Nevertheless, the
theorem does not exclude the possibility for another kind of 2D solid: Mermin [12] noted
that the harmonic solid shows an “orientational” long-range order, and that this could
provide an interpretation for the solid seen in hard disks.

It is now understood that 2D solids do exist, although they do not show the same
crystalline order as 3D solids. Studies of electrons [30] or colloids [31] confined to a surface
are experimental proof of their existence.

1.1.2 The harmonic solid

Solids under stress exhibit deformations which, in the limit of small deformations, are
proportional to the applied stress. In this limit, the harmonic approximation can be
made. The solid can then be seen as atoms connected together by classic springs having
a quadratic potential: the discrete equivalent of the elasticity theory [26]. At large scales,
the thermal deformations are small, and therefore a solid (under no stress) can always be
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considered as harmonic. The harmonic-solid model, which can be solved analytically, is
a key model for the ordering of solids.

At zero deformation, the atoms are located on their respective lattice positions ~R.
The thermal energy displaces the atoms, and their new position is ~r(t) = ~R + ~u(~R, t).

The displacement field ~u(~R, t) can be expanded in planar waves (phonons)

~u(~R, t) =
∫

~uk(t) exp i~k · ~R ddk , (1.3)

with ~uk(t) = ~ak exp iωkt +~bk exp−iωkt.

In Eq. (1.3), ωk is the angular frequency associated to the wave vector~k. The sum on~k
extends over the first Brillouin zone and ~u−k = ~u∗

k as ~u is real. In the harmonic solid, the
linear elasticity approximation is exact. Phonons are independent and the solid can be
seen as a gas of thermally excited non-interacting phonons. The equipartition of energy
in this gas gives

〈

|uk|2
〉

∝ kBT
1

ω2
k

, (1.4)

also the density of state depends upon the dimension d of the system by D(k) ∝ kd−1,
and for small k phonons ωk ∝ k (constant sound velocity). The weight of all phonons with

small |~k| = k is therefore ∝ kd−3; for d ≤ 2 the weight diverges at k = 0. Consequently,
long-wavelength phonons destroy long-range order. Indeed, using Eq. (1.3) and Eq. (1.4),

the quadratic displacement of the atoms ~∆r
2

= [~u(~R)− ~u(~0)]2 satisfies

〈

~∆r
2
〉

∝ kBT
∫

1 − cos~k · ~R
ω2

k

ddk, (1.5)

which gives, for R larger than the microscopic cut-off a,

〈

~∆r
2
〉

∝
R≫a

kBT
∫ k<1/a

k>1/R

1

k2
ddk, (1.6)

and thus at large distances

〈

~∆r
2
〉

∝ kBT.











R for d = 1

ln R for d = 2

const. for d ≥ 3

. (1.7)

As predicted by the weight of long-wavelength phonons, fluctuations of positions are
finite only for d ≥ 3. This rules out the possibility of a stable 1D or 2D crystal. However,
in 2D the fluctuations scale only logarithmically with the distance (see Eq. (1.7) and
Fig. 1.1). As shown below, this shows that the positions are correlated over the whole
system. As a consequence, it is not possible to apply a shear strain without stressing
the system [32]. Therefore the system shows a non-zero shear modulus, and is a solid.
Furthermore, the harmonic solid shows a different kind of long-range order as pointed
by Mermin [12]. The field ~r(~R +~a) −~r(~R) corresponds to the relative position of two
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cte

L

L

∝√ln L

Figure 1.2: Crystals with a triangular lattice under thermal fluctuations. The black lines
represent the positions of the undeformed borders. Left: Crystal with long-range positional
order: the fluctuations about the lattice are finite. Right: 2D harmonic lattice: the fluctuations
about the lattice are logarithmic with the distance, yet the orientation is conserved.

neighboring atoms, and can define a local orientation of the system. Its spatial correlation
can be computed using Eq. (1.3) and Eq. (1.4),

〈

[~r(~R +~a) −~r(~R)] · [~r(~a)−~r(~0)]
〉

= a2 +
〈

[~u(~R +~a)− ~u(~R)] · [~u(~a)− ~u(~0)]
〉

→
r→∞

a2. (1.8)

The orientation of the solid is then correlated across infinite distances, that is, the 2D
harmonic solid shows long-range orientational order.

The harmonic solid lacks positional order, as shown. It is possible to quantify the
decay of the correlations by

C~K(r) =
〈

exp
(

i~K · ~∆r
)〉

|~∆r|=r
(1.9)

where ~K is the first Bragg peak of the lattice. In the harmonic approximation

C~K(r) =
〈

exp
(

i~K · ~∆r
)〉

= exp
[

−1/2
〈

(~K · ~∆r)2
〉]

, (1.10)

and as
〈

(~K · ~∆r)2
〉

∝ kBT ln R (Eq. (1.7)), the correlation function at large distance

satisfies 1

C~K(r) ∼ r−νK with νK ∝ kBT. (1.11)

The positional order decays algebraically, rather than exponentially (as in 1D). This scale-
free behavior is typical of low-dimensional systems. The positional order of this system
is said to be quasi-long ranged. As a consequence, the peaks of the structure factor are
infinite [33, 34], although not δ−functions as for the 3D case. For long-range positional

1Logarithmic corrections are ignored.
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order, the first Bragg peak in a system of size L behaves as S(~K) ∝ L2 and has a width
∝ 1/L. For the 2D harmonic solid, Eq. (1.11) and Eq. (1.2) yield

S(~K) ∼ L2−νK , (1.12)

and the peak has a specific shape [35]

S(~k) ∼ 1/
∣

∣

∣

~k − ~K
∣

∣

∣

2−νK
. (1.13)

For νK ≥ 2, the Bragg peaks remain finite. However, this should not be interpreted as
a transition (contrary to what was suggested in [33]). Indeed, the correlation function is
still algebraic and no qualitative changes occur in the thermodynamic properties of the
system.

Algebraic correlation functions are usually associated with critical phases at continu-
ous transitions [36]. These phases are affected by critical slowing down. Indeed, as the
correlation length is infinite, the dynamics of the system is slow and the thermalization
is time large. For local dynamics this phenomenon can also occur in the solid phase
as the correlations are algebraic. This has important consequences for simulations (see
Section 1.3.3).

The harmonic solid is thus characterized by its long-range orientational order and
quasi-long-range positional order. As the relative deformations at large scale are small,
the qualitative results obtained in the elastic description are also valid for generic 2D
systems in their ordered phase.

1.1.3 Graphene and buckling

Graphene, discovered in 2004 [37], is a flat monolayer of carbon packed in a honeycomb
pattern. This material was first obtained by exfoliating a single layer of graphite. Because
of its unique electric properties, graphene is now a intensely explored topic of research.

The above results for the ordering of 2D solids are valid for solids strictly confined in
2D. For 2D solids which are allowed to bend into the third dimension, the results hold
if the atomic bonds cannot break. If atomic bonds are allowed to break, the system
reduces its free energy by the formation of defects (dislocations and disclinations, see
Section 1.3.2) whose energies are lowered by the possibility of buckling the system into
the third dimension [38, 39, 40]. This causes the solid to melt. For this reason, free-
standing solids, such as graphene, should not exist. However, as the covalent bonds of
graphene are strong, the melting process is very slow. Graphene is thus metastable, with
a extremely long life time.

The apparent long-range positional order (shown by the fact that the charge carriers
travel long distances without being scattered) has been said to contradict the Mermin-
Wagner theorem. One solution to this contradiction was that this 2D material was stand-
ing on a 3D substrate. However, free-standing graphene [41] exists and exhibits the same
properties. In fact, as 2D solids exhibit quasi-long-range positional order, it can be diffi-
cult to distinguish a true long-range order from a quasi-long-range order in a finite-size
system.

The decay of positional order in graphene can be estimated as follows. In the har-
monic approximation, graphene is a triangular lattice with two atoms per cell, forming
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a hexagonal pattern. In the linear elasticity approximation, graphene can be considered
isotropic [42] and the values of its elastic coefficients agree in simulations [42] and experi-
ments [43]. The Young modulus is E ≃ 300N.m−1 while the Poisson ratio is σ ≃ 0.3. The
strong covalent bonds of carbon make this material stiff. If graphene layers are added
with an inter-layer spacing of h = 0.335nm (as for graphite), the Young modulus would
be E ≃ 1000 GPa while E ≃ 200 GPa for steel. The positional correlation function for
an elastic triangular lattice is given by (see Section 1.3.2)

C~K(r) ∼ r−νK with νK =
kBT4π

3a2
0

(1 + σ)(3 − σ)

E , (1.14)

for a temperature of T = 293K and a lattice spacing of a0 = 0.246nm the exponent is
found to be νK ≃ 0.003. The correlation function decays then very slowly, (r/a0)

−νK =
0.1 giving r ∼ 10300a0. It is therefore impossible to distinguish this quasi-long-range
order from a long-range order in experimental samples.

The example of graphene illustrates the slow decay of algebraic functions arising in
low dimensional physics, and the importance of finite-size effects.

1.1.4 The hard-disk solid

Hard-sphere systems are simple models of short-range interacting particles. Particles
are spheres of radius σ which do not interact but cannot overlap. Hard spheres, in 3D
and in 2D (hard disks), occupy a special place in statistical mechanics. Indeed, many
fundamental concepts, from the virial expansion (by van der Waals [44] and Boltzmann
[45]), to long-time tails [11], to 2D melting [9], were first discussed in these extraordinarily
rich physical systems. These models have also played a crucial role in the history of
computation: both the Metropolis algorithm [46] and molecular dynamics [47] were first
implemented for monodisperse hard disks in a box.

Because of the absence of energy, the phase diagram of hard-sphere systems is identical
at all temperatures T = 1/kbβ (only the velocities vary). Therefore the phase diagram
depends upon only one parameter. For N hard disks in a box of volume V (constant-
density ensemble), this parameter is the packing fraction η = Nπσ2/V (also called the
density). For hard disks in a constant-pressure ensemble, this parameter is the rescaled
pressure βPσ2. In these models, the absence of attractive part does not allow for a
liquid-gas transition, the generic term of liquid is thus given to the disordered phase. At
low density, the hard-sphere liquid is well described by effective theories [48], and easily
simulated because of its essentially local nature.

The purely repulsive interaction does not prevent the system from being ordered.
Correlations increase with density, both for the positions and the orientations. In 3D,
the system shows an ordered phase at high densities [49]. This transition results from an
“order from disorder” phenomenon: At high density, ordered configurations can allow for
larger fluctuations, and thus higher entropy, than the disordered liquid. The hard-sphere
systems are examples showing that collective behavior also arises from purely entropic
systems.

Alder and Wainwright [9] performed molecular-dynamics simulations of hard disks,
in the constant-density ensemble. They found that for a density η ≃ 0.7, much lower

than the close packing density ηcp = π/(2
√

3) ≃ 0.907, the equation of state (pressure
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Figure 1.3: Configurations of 162 hard disks in a square box with periodic boundary conditions.
Left : At the packing fraction η = 0.5, the system is not ordered, it is thus liquid. Right : At
η = 0.72, the system is packed in an approximately triangular lattice whose orientation is
correlated up to infinite distances, it is thus solid.

over volume) showed two distinct branches connected by a loop. This behavior, though
obtained from small system sizes, hints at the existence of a phase transition, and therefore
of a hard-disk solid (see Fig. 1.2). This discovery helped to realize that Peierls’ argument
[23, 28] does not rule out the existence of 2D solids, and motivated the work of Mermin
and Wagner [29, 12].

It is interesting to note that the Mermin-Wagner theorem has only been proved for
continuous potentials; it does not apply to hard disks and this system could therefore show
a long-range positional order in principle. Although not rigorously proved, it is clear that
the hard-disk system cannot show a long-range order, as for the other 2D solids. Indeed,
as noted in Section 1.1.2, the harmonic approximation is valid at low temperature and
large scale. Therefore, the hard-disk solid satisfies the same qualitative properties as the
harmonic solid: long-range orientational order and quasi-long-range positional order.

It can be surprising that hard disks, which have no attractive parts, can be seen as
an elastic medium. A way to understand this is to look at how the system reacts to a
perturbation. If two neighboring disks are displaced apart from a small quantity, the
others disks would hit harder on the outer faces of the two disks, which would cause them
to get closer. The two disks actually see an effective continuous and attractive potential
created by the rest of the system. This interaction can also be interpreted as a depletion
interaction [50]: when two disks are close, the available space for the other disks increases,
and so does the total entropy. One should note that the absence of potential energy does
not prohibit an elastic behavior. Indeed, elasticity is caused by a change of free energy
(and thus both energy and entropy) toward deformation. Therefore the hard-disk system
can show an elastic behavior, the origin of elasticity being only entropic.
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1.2 Transitions in 2D XY models

Before analyzing the melting of particle systems, we examine simpler lattice models: the
2D XY models. As for the melting transition now, the nature of transitions in these
models has been debated, and especially for the principal one, the 2D rotor XY model
[51, 52]. The debate ended with the progress of Monte Carlo algorithms in these systems
[53, 54]. The transition in the 2D rotor XY model follows a KT transition [13]. The
study of this simple model helps understand 2D melting.

1.2.1 2D XY models

2D XY models are systems of bi-dimensional spins interacting on a 2D lattice, and are
invariant under a global rotation. A spin i is defined through its angle θi by ~Si =
(cos θi, sin θi), and the interaction is a function of differences θj − θi of the spins.

The principal 2D XY model with short-range interactions is the rotor model, which
is defined by the Hamiltonian

H = −J ∑
<i,j>

~Si · ~Sj. (1.15)

J is the spin stiffness, and the sum extends over the nearest neighbors. Let θ(~r) be the
continuous field given by the coarse-grained spins. At low temperature and large scale,
the small variation of θ(~r) allows the expansion of the Hamiltonian to be done at the
first non-zero order. This corresponds to the harmonic approximation. The renormalized
Hamiltonian becomes

HR =
1

2
JR

∫

[~∇θ(~r)]2d2r , (1.16)

JR is the renormalized spin stiffness. As for the harmonic solid, the field is Gaussian,
therefore analytically solvable. The fluctuations of θ(~r)− θ(~0) satisfy

〈

(θ(~r)− θ(~0))2
〉

=
2

βJR

∫

d2k

(2π)2

1 − cos~k ·~r
k2

(1.17)

∼
∞
− 1

πβJR
ln

r

a
, (1.18)

where a is the microscopic cut-off, and the correlation function

C(r) =
〈

~S(~0).~S(~r)
〉

= exp
[

−1/2
〈

(θ(~r)− θ(~0))2
〉]

. (1.19)

Again, the fluctuations are logarithmic, and the correlation function tends to decay alge-
braically at large distances 2,

C(r) ∼ r−ν with ν =
1

2πβJR
. (1.20)

In agreement with the Mermin-Wagner theorem, the system lacks long-range order, but
shows quasi-long-range order. No length scale is present in this system, and the correlation

2Logarithmic terms are ignored.
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length is infinite; the system can be seen as a critical phase of a second-order phase
transition. As the fluctuations occur even at large scale, this phase shows critical slowing
down.

As for the 2D solid, the harmonic approximation holds for the 2D XY model at low
temperatures and large length scales. The aforementioned results are thus valid for any 2D
XY models, thus the low-temperature phase is always algebraic. At high temperatures,
the system is disordered. The nature of the transition between the two phases is not
easily obtained through renormalization, and actually depends on the microscopic model.
We discuss the KT transition, which is seen in the 2D rotor XY model and is also seen
in the melting of 2D particle systems.

1.2.2 The Kosterlitz-Thouless transition

Kosterlitz and Thouless [13, 14], as well as Berezinsky independently [55, 56], showed
that an original phase transition could occur in 2D systems. This continuous transition,
referred to as the KT transition, connects a phase whose order is quasi-long ranged (the
correlation function is algebraic) to a phase whose order is short ranged. The transition
is ruled by the formation of topological defects, such as dislocations for a solid, or vortices
in spin systems with continuous symmetry. This theory successfully describes many 2D
transitions, such as the transition in XY models, or the transition toward superfluidity in
bi-dimensional quantum systems for example [57]. This transition is also at the basis of
the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory for the melting of 2D
solids (see Section 1.3.2). In a heuristic approach, the mechanism and important results
of this transition are given in the formalism of the rotor XY model.

The solution of the Hamiltonian of Eq. (1.16) in the low temperature phase (Eq. (1.20))
does not exhibit any phase transition. This result is due to the harmonic approximation
which does not account for the invariance under the local transformation θi → θi ± 2π.
This assumption is correct at low temperatures, and at a scale large enough, the topology
of the field for any closed path C satisfies

∮

C
~∇θ(~r) · d~l = 0. (1.21)

This assumption is however not satisfied at higher temperatures. This can be interpreted
by the presence of defects, called vortices. A vortex is a topological defect in which the
orientation winds by ±2π (see Fig. 1.3). For a closed path C surrounding a vortex

∮

C
~∇θ(~r) · d~l = 2πq , (1.22)

where q is called the winding number of the vortex, and q = ±1 for simple vortices.
The appearance of vortices at low temperature can be shown by the famous free-energy
argument of Kosterlitz and Thouless [13, 14]. At a large distance r from the center of the
vortex

∣

∣

∣

~∇θ(~r)
∣

∣

∣
=

1

r
, (1.23)
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Figure 1.4: Vortices in the XY model, the orientation winds by 2π for a path around the
vortex. Left : Positive vortex, the winding number is q = 1 (see Eq. (1.22)). Right : Negative
vortex, the winding number is q = −1 (see Eq. (1.22) again).
The winding number is zero for a superposition of a q=1 and a q=-1 vortex.

in a system of size L, the total energy of a single vortex is then

Ev =
1

2
JR

∫ L

a
2πr

1

r2
dr + Ec (1.24)

= π JR ln
L

a
+ Ec (1.25)

where Ec is the core energy of the vortex. The vortex can be placed at any position, and
therefore the entropy added by the presence of a single vortex is

Sv ∼
∞

kB ln
L2

a2
, (1.26)

which scales in the same way as the energy. The free energy cost due to the presence of
a single vortex is therefore

Fv = Ev − TSv

∼
∞

(π JR − 2

β
) ln

L

a
. (1.27)

For βJR > 2/π, Fv → ∞ as the system size is increased, the presence of a single vortex
is therefore not possible (confirming the hypothesis of Eq. (1.21)). The phase thus shows
an algebraic correlation function, as expected. For βJR < 2/π, Fv → −∞ as the system
size is increased, therefore the vortices are present and disrupt the orientation. As a
consequence, the phase shows short-range order. Therefore, a phase transition takes
place at3

βKT JR =
2

π
. (1.28)

3This relation explains the universal jump of the superfluid density (ρ(TKT)/TKT = 2m2/πh̄2) at
the transition seen in 2D superfluids [58].
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This result does not give the exact value of the transition temperature, as the renormalized
spin stiffness JR is not known. However, it yields the exponent ν of the correlation
function: Eq. (1.20) and Eq. (1.28) show that for T = TKT,

C(r) ∼ r−ν , with ν = 1/4. (1.29)

As this value does not depend on JR, and therefore not on the microscopic model, it is
universal. This value is important as it can, in principle, be measured in simulations [52]
or experiments [57]. However, it should be stressed that this behavior is only exact at
large distances. At shorter distances, logarithmic corrections should be included [59].

The behavior of the system near the transition is understood by the analysis of the
system of interacting vortices. Two vortices of winding number qi and qj interact through
a logarithmic potential

Uij(rij) = −π JRqiqj ln

(

rij

a

)

+ 2Ec (1.30)

where rij is the distance between the vortices. Vortices with opposite winding numbers
are attracted while those with the same repel each other. This potential is identical to
the electrostatic interaction in 2D. The interacting vortices thus behave as a 2D Coulomb
gas. The Hamiltonian of the system has two parts. The first is due to the harmonic
fluctuations of the orientation (spin waves), and the second is due to the interaction
between the vortices,

H =
1

2
JR

∫

[~∇θ(~r)]2d2r + ∑
i,j

Uij(rij). (1.31)

Kosterlitz and Thouless [13, 14] analyzed this Hamiltonian near the transition with a
renormalization method, which compute the evolution of JR as the scale is increased.
The main results are presented below.

Low-temperature phase

For T < TKT, the presence of a single vortex is prohibited as shown by the free-energy
argument of Eq. (1.27). However, two vortices with opposite charge do not disrupt the
orientation (see Fig. 1.3), the presence of vortices bound in pairs is therefore possible.
A pair of vortices disrupts the orientation on a scale of the order of their distance of
separation, the interaction between two vortices is therefore logarithmic with this distance
and satisfies Eq. (1.30). The pairs of vortices are thermally created with a typical distance
of separation given by a Boltzmann factor exp−βEpair. At scales above the typical
distance of separation, the field is defect free, and the pairs only renormalize JR. A
renormalization treatment [13, 14] gives that in the vicinity of the transition, the spin
stiffness at the largest scales shows a cusp: for T . TKT,

JR(T) = JR(T−
KT)[1 + const.(TKT − T)1/2]. (1.32)

This yields for the correlation function at large distances

C(r) ∼ r−ν with ν =
1

4
[1 − const.(TKT − T)1/2]. (1.33)
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As for the exponent ν = 1/4, the behavior of the correlation function near the transition,
for example the value of the exponent 1/2 of (TKT − T)1/2, can be studied in simulations
[52]. However, the temperature range and length scales in which Eq. (1.32) and Eq. (1.33)
hold are not clear.

High-temperature phase

For T > TKT, free vortices are present, their density n f increases from zero at the transi-
tion to a finite value at a higher temperature. As vortices destroy the orientational order,
the correlation function decays exponentially with a correlation length corresponding to
the typical distance between the free vortices:

C(r) ∼
∞

exp−r/ξ with ξ =
1

√
n f

. (1.34)

The phase is thus disordered. The renormalization treatment [13, 14] shows that for
T & TKT,

ξ ∝ exp
(

const.|T − TKT|−1/2
)

. (1.35)

The correlation length in the disordered phase increases exponentially as the transition
temperature is approached, which is faster than for any second order transition [36]. The
behavior of the correlation length near the transition can be used in simulations [52, 24]
or experiments [60]. However, the temperature range in which this behavior is valid is
not clear.

As the system is short ranged, subsystems separated from a distance larger than the
correlation length can be considered independent of each other. Therefore, the renormal-
ized spin stiffness JR goes to zero at large scales. Thus, JR changes discontinuously at the
transition from JR(T−

KT) = 2kBTKT/π to JR(T+
KT) = 0. This should not be interpreted

as a first order transition since the correlation lengths at the transition are infinite.
The KT transition is a continuous transition which occurs in 2D systems. This theory

relies on the assumption that the low-temperature phase stays ordered up to the unbinding
of vortices. The transition temperature TKT therefore constitutes an upper bound for the
transition. This point is explained in Section 1.2.4 and is important to understand when
studying the melting of hard disks in Chapter 4.

The assumption of vortex unbinding is correct for the 2D rotor XY model, and a KT
transition occurs in this system [61]. The correlation length at the transition (and at
lower temperatures) is infinite. Therefore, the system is prone to critical slowing down
and finite-size effects. Moreover, the theoretical predictions give asymptotic behavior. In
order to study the KT transition in a real finite-size system, we perform simulations on
the 2D rotor XY model. This work intends to understand the typical phenomena that
could be observed in the melting of hard disks (see Chapter 4).

1.2.3 Simulations of the 2D rotor XY model

As shown later in Section 1.3.2, the melting of 2D particle systems is possibly related to
KT transitions. The 2D rotor XY model constitutes a toy model in order to study the
properties of this transition in a real system.
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As for the melting of 2D solids, the nature of the transition of the 2D rotor XY model
has long been debated [51, 52]. The transition was expected to be either first order or of
the KT type. Monte Carlo simulations allow one to numerically study the thermodynam-
ics of a system by sampling configurations with the appropriate Boltzmann distribution
(see Section 2.1.2). However, this sampling can be slow to achieve for systems with large
correlation lengths, as is often the case in 2D. The debate ended with the discovery of a
set of new algorithms [53, 54], referred to as spin-cluster algorithms, which are able to
flip large clusters of spins in the same time, reaching thermodynamic equilibrium much
faster than with previous algorithms. It is now agreed that the transition follows a KT
scenario. The inverse transition temperature of βKT J = 1.1199(1) is known precisely
[62].

To illustrate the finite-size effects in this model, we performed simulations in a system
of N spins on a square lattice of size L =

√
N with periodic boundary conditions at a

constant temperature. We used the Wolff algorithm [54] as it is the fastest algorithm for
this system. Fig. 1.4 shows a method to visualize a snapshot of the system, inspired by
what is done in Ising systems. The direction of the total orientation (magnetization) was
computed through

~M =
N

∑
i=1

~Si. (1.36)

The spins were then colored depending on their orientation toward the total orientation,
which was computed by cos α, α = angle(~Si, ~M). Spins pointing toward the main orien-
tation are colored in white, whereas spins pointing in the opposite direction are colored
in black. By using this visualizing method, the output is easy to interpret, despite not
being able to differentiate between two directions which are symmetric toward the main
direction. The vortices were then localized by computing the winding number around
each inter-space of the lattice. The negative vortices are shown in blue while the positive
ones are shown in red.

In the low-temperature phase, the system is oriented (see Fig. 1.4). Given an infinite
system, this orientation would tend to zero. In practice however, the system is oriented
in a finite sample. This is shown by the slow algebraic decay of the correlation function
(see Fig. 1.5). As predicted, the vortices are tightly bound in pairs (see Fig. 1.4). The
system is scale free, therefore the size of the largest clusters scale in the same way as the
system size. The value of the exponent ν can be fitted from the correlation function.

In the high-temperature phase, the total orientation is M = 0 for a system larger than
the size of the largest clusters (see Fig. 1.4). The short-range order is confirmed by the
correlation function, which decays exponentially. The correlation length can be extracted
from a fit in the pure exponential part seen at large distances (see Fig. 1.5). The size of
the largest clusters is related to the correlation length. At βJ = 0.9, the largest clusters of
the same orientation have a size ≃ 10a, which agrees with the correlation length measured
on the correlation function (see Fig. 1.4 and Fig. 1.6). Because of the periodic boundary
conditions, the total winding number is always zero. However, at βJ = 0.9 for example,
vortices are not bound in close pairs. One way to show that vortices are free is to compute
the vorticity (winding number) on a path of increasing size l. In the case of bound pairs,

the path breaks ∝ l pairs, therefore, the total vorticity behaves as w ∝
√

l. On the other
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Figure 1.5: Two 2D rotor XY-model configurations of 642 spins near the transition. Spins
pointing in the main direction are printed in white, while spins in the opposite direction are
printed in black. Positive vortices are shown by a red dot, and negative vortices by a blue dot.
Left : βKT = 1.12 (T ≃ TKT), the system is oriented. Pairs of vortices are all closely bound.
Right : βKT = 0.9 (T > TKT), the total orientation is zero. Some vortices are free, and the
largest clusters have a typical size ξ ≃ 10a which corresponds to the correlation length.
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Figure 1.6: Correlation functions of the 2D rotor XY model for T > TKT and T ≃ TKT in the
planar rotor XY model. Left : Log-log view. At βJ = 1.12, the system shows a quasi-long-range
order with a coefficient close to 1/4, although different. This is due to neglected logarithmic
corrections as well as finite-size effects. Right : Semi-log view. At βJ = 1.00 the system shows
a short-range order with a correlation length ξ/a ≃ 36

hand, in the case of free vortices, the number of vortices inside the closed path is ∝ l2,
giving a vorticity w ∝ l.
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Figure 1.7: Behavior near the transition for the 2D rotor XY model computed in a system
of 40962 spins. Left : Temperature dependence of the coefficient of the algebraic correlation
function. A cusp can be seen. The transition exponent is νKT ≃ 0.23, which is close to 1/4,
although different. The difference is due to neglected logarithmic corrections. Right : Tem-
perature dependence of the correlation length. The behavior predicted by the KT theory is
seen.

Determination of the temperature transition

The temperature transition of the 2D rotor XY model is precisely known. Hasenbusch
[62]showed, by mapping the XY model on the body-centered-solid-on-solid (BCSOS)
model, which is analytically solvable, and using a Monte Carlo renormalization group
method, that βKT = 1.1199(1). Although this result was obtained with small lattice
sizes (L < 256), this method avoided the problem of the logarithmic corrections [59].
The extremely precise results obtained with this method have been confirmed by standard
finite-size scaling analysis [61].

The method used to precisely determine the value of βKT J = 1.12 is not easily trans-
portable to 2D melting. The behavior of the correlation length near the transition is
surprisingly close to what is predicted by the theory (see Fig. 1.6). However, other values
of βKT and of the constant b also give good fit. Therefore, the behavior of the correlation
length is hardly useful to determine the transition value.

Near the transition, the exponent ν of the algebraic correlation function seems to
show a cusp, as predicted by the theory. However, the finite size of the system smooths
the cusp, and a fit is therefore not relevant. At the transition, the exponent is found
to be νKT = 0.23, which is close to the expected value 1/4, although different. This
difference in due to neglected logarithmic corrections [59] and to finite-size effects. The
1/4 exponent can therefore only be used to approximately locate the transition.

Finite-size effects

Most numerical simulations are performed in finite systems. In order to obtain the prop-
erty of the system at the thermodynamic limit (N → ∞), one must account for the
finite-size effects. In the perspective of studying the melting transition (see Chapter 4),
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it is interesting to observe the behavior of finite-size effects in this model, and especially
for a temperature below the transition where the correlation length is infinite.

In the high-temperature phase, the correlation length ξ corresponds to the maximum
length scale of the system. For a system whose size L is larger than ξ, an observable O
typically reaches its thermodynamic-limit value O∞ exponentially with L:

OL −O∞ ∼
L≫ξ

const. exp−L/ξ . (1.37)

Fig. 1.7 shows the correlation function at a temperature above TKT for different system
sizes. The finite-size effects can be seen at the end of the function in a region of length
∼ 40a which corresponds to the correlation length. Also, the finite-size effects are small
as the size is increased. In this phase, the thermodynamic-limit behavior is reached, for
all practical purpose, in systems a few times larger than the correlation length.
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Figure 1.8: Finite-size effect on the correlation function of the 2D rotor XY model for T > TKT

and T ≃ TKT. Left : At βJ = 1.00, the effect is localized on a scale of ∼ 40a ≃ ξ, and decreases
exponentially with system size. Simulations must be larger than the correlation length. Right :
At βJ = 1.12, the finite-size effect is scale free. It is seen on region for r > L/4 and is well
understood by the selection of modes.

In the low-temperature phase, the correlation length is infinite. Therefore, it is es-
sential to understand finite-size effects. As shown in Fig. 1.7, the finite size in the low
temperature region affects the correlation function for r > L/4 (that is, half of the func-
tion computed), and the effect is independent of the system size. This shows that little
information is lost by reducing the system size. A naive finite-size model for the cor-
relation function confirms this assumption. Let CL(~r) be the correlation function in a
square box of size L under periodic boundary conditions. CL can be expanded in Fourier
components

CL(~r) =
1

L2 ∑
~k

C̃L(~k) exp
(

i~k ·~r
)

with ki = ni
2π

L
, ni ∈ Z, (1.38)
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which gives, in the infinite limit, the Fourier transform

C∞(~r) =
1

(2π)2

∫

C̃∞(~k) exp
(

i~k ·~r
)

d2k. (1.39)

We assume that the finite box selects the allowed modes without changing their weights,
that is C̃L = C̃∞ (except for the ~k = ~0 mode which is determined by CL(~0) = 1). This
assumption is strictly equivalent to assuming that CL is the sum of all images of C∞ in
the periodic space:

CL(~r) = ∑
~N

C∞(~r − ~N) + const. with Ni = ni L, ni ∈ Z. (1.40)

This gives a relation between the correlation function in a system of size L and a system
of size L/2:

CL/2(~r) = ∑
~N

CL(~r − ~N) + const. with Ni = {0, L}. (1.41)

A way to test the naive finite-size model is therefore, as in Eq. (1.41), to “fold” CL on
itself and compare it to C L

2
. In the low-temperature region, the folded CL almost matches

C L
2
, whereas this is not the case in the high-temperature region (see Fig. 1.7). This

assumption of mode selection is therefore a good approximation for finite-size effects in
the XY model but only in the low-temperature (harmonic) phase. This result shows that
properties of a phase whose correlation length is infinite can be obtained from a finite-size
simulation. This is of interest for the study of the melting transition in Chapter 4.

1.2.4 Non-universality of the transition

In higher spatial dimensions, renormalization theory [2] suggests that the nature of the
transition in spins systems does not depend upon the microscopic model. Rather, it
depends solely upon the dimension and the degree of symmetry of the system. This
property is called strong universality. In 2D systems, the strong universality is broken,
as can be seen in the different XY models.

As discussed in Section 1.2, it was not expected that the transition in the 2D rotor XY
model was necessarily of the KT type, the transition could have been first order [51]. A
phase transition is said to be first order (see Section 1.3.1) when the system changes from
one phase to the another discontinuously. This transition has the particularity that the
phase in the disordered region has a finite correlation length at the transition point. In a
continuous transition (as the KT transition or a second-order transition), the correlation
length becomes infinite at the transition. A first-order transition is therefore referred to
as “weak” when the correlation lengths (in unit of lattice spacing) are large, and “strong”
when they are comparable to the atomic dimensions.

In order to understand the validity of the KT theory, we examine its assumptions. The
KT theory predicts a transition mechanism between a phase whose correlation function
is algebraic and a disordered phase. The existence of the algebraic phase is not debated
as the harmonic approximation becomes exact for any microscopic model in the limit of
low temperatures. Under the condition that the harmonic approximation is still valid
up to the vortices unbinding, the renormalization treatment of the transition is correct
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and does not introduce any other assumptions. The KT theory is thus built on the
assumption that the low-temperature phase remains stable up to the vortex-unbinding
transition. While the temperature TKT yields an upper limit for the stability of the
algebraic low-temperature phase, a transition at a lower temperature can preempt the
KT transition.
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Figure 1.9: Interactions of neighboring spins i and j as a function of ∆θ = θj − θi for different
2D XY models. For the rotor model (red curve), the low-temperature phase is stable up to the
vortex unbinding: the transition is of the KT type. For potentials with a narrow well around
0 (blue dashed curve), the stiffness at large scales is high enough for the KT transition to be
preempted by a first-order transition.

Indeed, Domany et al. [63] showed that the KT theory breaks down in the XY model
for specific interactions. In XY models, two neighboring spins i and j, whose angles are θi

and θj, interact through a 2π-periodic potential V(∆θ), where ∆θ = θj − θi. In the case
of the 2D rotor model, the potential is V(∆θ) = J(1 − cos(∆θ)), which shows a large
well around ∆θ = 0 (see Fig. 1.8). Domany et al. performed simulations on potentials
with a narrow well around ∆θ = 0 (see Fig. 1.8 again), and found that the transition was
not of the KT type, rather it was first order.

This result can be understood as follows: The depth of the potentials in Fig. 1.8 fixes
an energy scale ∼ 2J. For a temperature kBT ≫ J, the phase is necessarily disordered
as the thermal energy of a spin is higher than this energy scale. This ensures that if the
phase is still ordered, a discontinuous transition toward disorder occurs around kBT1st ∝ J.
Moreover, in the KT theory the vortex-unbinding transition occurs at kBTKT = JRπ/2.
Therefore, there is competition between

TKT ∝ JR and T1st ∝ J. (1.42)

In the “narrow-well” potential of Fig. 1.8, neighboring spins are strongly attracted for
short fluctuations of θ, the rigidity of the system at low temperature is thus increased.
As the width of the well goes to zero, one has JR ≫ J, and therefore TKT ≫ T1st. This
behavior is similar to the crossover from second-order to first-order transition in the q-
state Potts model as the number of state q is increased, this can be interpreted as a
vacancy condensation [64].
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Following this argument, it is even possible that two successive transitions occur in
this system. First, a KT transition where the quasi-long-range ordered phase continuously
changes into a short-range ordered phase. Second, a first-order transition where the short-
range ordered phase discontinuously turns into another short-range ordered phase (as in
liquid-gas transition). A similar first-order transition between two short-ranged ordered
phases has been observed in the 2D Heisenberg model (0(3) symmetry) [65] and confirmed
[66]. The absence of strong universality is thus observed in 2D systems, and in 2002, van
Enter and Shlosman [66] proved it for the 2D Heisenberg model. This result for lattice
systems suggests that the melting transition in 2D particle systems is also not universal,
and that KT transitions can be preempted by first-order transitions. This is the case in
the melting of hard disks in Chapter 4 (see Section 4.1).

1.3 Scenarios for two-dimensional melting

We now examine the case of 2D particle systems. The melting transition in these systems
is more complex that for lattice systems, and it is the subject of a long-standing debate
[17, 18]. In this section, the principal theories are presented. One is a classic first-order
transition, and the other one follows the ideas of Kosterlitz and Thouless. This section
exposes elements needed to understand the results of the hard-disk model in Chapter 4.

1.3.1 First-order transition

A transition is said to be first order when the system changes from one phase to another
discontinuously. In 3D and higher, solids generally melt through a first-order transition.
In two dimensions, the question is open. In hard disks, the loop seen in the equation of
state of Alder and Wainwright was first interpreted as a classic first-order transition. In
Chapter 4, we will see that a first-order transition indeed occurs in the melting of hard
disk, between a liquid and a “hexatic” phase (see Section 4.1).

A first-order transition has the particularity to show a phase coexistence given an
appropriate thermodynamic ensemble. For example, a first-order transition in a XY
model shows a phase separation in the microcanonical (N, E) ensemble. This is a result
of the energy per particle of both phases being different. For 3D hard spheres [49], the
system is phase-separated at the transition in the constant-density ensemble (N, V, T).
Indeed, the densities of both phases are different. This phenomenon is understood by
the concavity of the free energy Fpure(V) that a scenario without phase separation would
have (see Fig. 1.9).

For a specific volume v = V/N between two limiting values v1 and v2 (as in Fig. 1.9),
the free energy per particle f = F/N is lowered through a phase coexistence:

f∞(v) = f (v1) + n2[ f (v2)− f (v1)] < fpure(v), n2 =
v − v1

v2 − v1
∈ [0, 1] (1.43)

where n2 = N2/N is the proportion of phase 2, and n1 = N1/N = 1 − n2 is the
proportion of phase 1.
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Figure 1.10: Left : Schematic free energy as a function of the specific volume for a particle
system underlying a first-order transition. The concavity of the energy induces a phase separa-
tion. Right : Pressure vs. specific volume obtained by integration of f (v). For v1 < v < v2 two
phases coexist. The dashed loop is thermodynamically unstable.

The pressure, defined as P = −∂ f /∂v, would show a loop only if the system was kept
pure 4. This is known as a“van der Waals loop”. This loop is thermodynamically unstable
as shown by minimization of the free energy. The pressure takes instead a constant value
P∗ in the coexistence region. P∗ can be determined directly from the P(v) curve by
equalizing the areas of the loop below and above P∗ (dashed areas in Fig. 1.9) as P(v)
must satisfy

∫ v2

v1

P(v) dv = f (v1) − f (v2) = const. (1.44)

This is known as the “Maxwell construction”. This construction allows computation of
the value of the pressure at the transition P∗ as well as the densities of the coexisting
phases. This method has been used in Chapter 4 to study a first-order transition (see
Section 4.1.2).

In a constant-pressure ensemble (N, P, T), the system shows no phase coexistence in
equilibrium, it jumps directly from a phase to the other at P = P∗. However, if P ≃ P∗,
the time needed to switch from one phase to the other can be large because of the free
energy needed to form an interface during the switch. As a consequence, the pure-phase
branches are metastable: a constant-pressure simulation would explore them, and an
hysteresis around P∗ would be found as the pressure is increased or decreased.

The above results for a first-order transition (finite correlation length, phase coex-
istence, and hysteresis) can be obtained in computer simulations and are specific to a
first-order transition. The finite-size effects can however make discriminating between a
weak first-order transition (large correlation length) and a continuous transition difficult
in practice. Alder and Wainwrigth [9], and many authors since them, observed a pres-

4The loop is not necessarily continuous as the two phase can show different symmetries for example.
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sure loop in constant-density simulations. This has been interpreted as the existence of
a first-order transition. This loop, which does not correspond to a van der Waals loop,
has been theoretically explained by Mayer and Wood [67] as the effect of the interface
tension (see Section 4.1.2). The transition in 2D systems was considered as a classic first
order up until Kosterlitz and Thouless presented their continuous scenario.

1.3.2 The KTHNY theory

The KT theory of Kosterlitz and Thouless described for the XY model in Section 1.2.2
has also been originally developed for the melting of 2D solids [13]. In this case, the solid-
liquid transition is ruled by unbinding of the topological defect of the positional order:
the dislocations. This theory was completed by Nelson and Halperin [32, 68], as well as
Young [69]. They noticed that the unbinding of dislocations did not lead to the disordered
liquid phase but to a new phase, called hexatic. In the hexatic phase the positional order
is short ranged and the orientational order is quasi-long ranged. The transition from the
hexatic to the liquid is again a KT transition, ruled by the unbinding of the topological
defects of the orientation: the disclinations. This two-stage melting theory is referred
to as the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory. Later, various
first-order scenarios, based on unbinding of grain boundary, vacancies condensation, or
simultaneous unbinding of dislocation and disclination, were considered [70, 71, 72, 73].

In Chapter 4, we show that the melting transition for hard disks follows a two-stage
scenario with a hexatic phase. The solid-hexatic transition is of the KT type, and the
liquid-hexatic transition is first order. The following reviews the principal results of the
KTHNY theory, which are similar to the results of the KT transition developed in the
XY model.

Solid Hexatic Liquid
Position Quasi-long Short Short

Orientation Long Quasi-long Short

Table 1.1: Positional and orientational ordering in the KTHNY theory.

The solid phase

In the low-temperature phase of the 2D solid, the harmonic approximation can be made.
The solid phase has then the same property as the harmonic solid: long-range orienta-
tional order and quasi-long-range orientational order. The qualitative argument given for
the harmonic solid is quantitatively developed with the theory of elasticity [26] for an
isotropic medium, whose lattice is triangular (the most common lattice of 2D solids).

Let ~u(~r) be the displacement field of the solid. The strain tensor is given by

uij(~r) =
1

2
(∂iuj + ∂jui) i, j ∈ {1, 2}, (1.45)

which is linearly related to the stress tensor. In an isotropic medium, the stress and strain
tensors are related by two elastic coefficients λ and µ:

σij = 2µuij + λδij(u11 + u22). (1.46)
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λ and µ are the Lamé elastic coefficients, and µ is the shear modulus. The Hamiltonian
is then

Hsol =
1

2

∫

∑
i,j

(2µu2
ij + λu2

ii) d2r. (1.47)

The positional correlation function of Eq. (1.9) can be computed for a triangular lattice
in the limit of large distances [32],

C~K(r) ∝ r−νK with νK =
kBT|K|2

4π

3µ + λ

µ(2µ + λ)
, (1.48)

where ~K is a vector of the reciprocal lattice. The correlation function is again algebraic,
its coefficient is principally determined by the shear modulus. The first Bragg peak of a

triangular lattice satisfies |K| =
4π

a0

√
3
, a0 being the lattice spacing. The coefficient νK is

then

νK =
kBT4π

3a2
0

(1 + σ)(3 − σ)

E , (1.49)

where E and σ are the 2D Young’s modulus and Poisson’s ratio, respectively.5

As for the harmonic solid, the orientation is long-range ordered. The structure factor
at a Bragg peak shows

S(~K) ∝ L2−νK and S(~k) ∝ 1/
∣

∣

∣

~k − ~K
∣

∣

∣

2−νK
, (1.50)

the diffraction pattern is then a lattice of Bragg peaks whose shape is a power law instead
of δ-functions for long-range-ordered solids.

Solid hexatic transition

This solution of Eq. (1.48) does not exhibit a phase transition, as the bonds between the
atoms are supposed not to break. A lower temperature, this assumption is not valid and
defects such as dislocations appear. The scenario of vortex unbinding in the XY model
or 2D-superfluid can be transferred directly to the melting of the solid phase with the
dislocations playing the role of the vortices. A dislocation is a topological defect of the
lattice. It can be interpreted as a missing or an extra row of disks starting from the
defect. This defect is defined by its Burgers vector. Let us consider a path around the
defect which would be closed in a perfect lattice. The Burgers vector is defined as the
vector by which this path fails to close (see Fig. 1.10).

The same free-energy argument of Section 1.2.2 is developed with the dislocations
instead of the vortices. A dislocation deforms the system; it requires elastic energy. At a
distance r, the deformation is uij ∝ 1/r, a similar calculus to the vortex energy gives the

energy of a single dislocation (with a Burgers vector |~b| = a0) in a system of size L [74],

Edisloc =
a2

0

16π
E ln

L2

a2
0

+ Ec. (1.51)

5In an isotropic 2D system, these moduli can be expressed through the elastic constants as E =

4µ
λ + µ

λ + 2µ
and σ =

λ

λ + 2µ
.
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Figure 1.11: Dislocations in hard disks. Disks with five and seven neighbors are in red and
blue respectively (neighbors are defined by the Voronoi construction (see Section 3.3.1) the local
orientation is shown by vectors which represents Ψ (see Eq. (1.65) and Section 3.3.1 again) Left :
A free dislocation. A path around the defect, which would be closed in a perfect lattice, fails to
close by~b. The deformation field spreads over the entire system, and an infinite elastic energy
is necessary to create a single dislocation. The orientation is not disrupted. Right : A bound
pair of dislocations, the lattice is only locally stressed, the elastic energy is finite.

where Ec is the core energy. As for the vortices again, the dislocation can be placed at
any position, the entropy added by its presence is then

Sdisloc ∼
∞

kB ln
L2

a2
0

, (1.52)

which scales in the same way as the energy. The free energy cost due to the presence of
a single dislocation for a large system is therefore

Fdisloc ∼
∞

(
a2

0

16π
E − kBT) ln

L2

a2
0

. (1.53)

The solid then melts at

kBTm =
a2

0

16π
E . (1.54)

Below this temperature, the dislocations are bound in pairs (or other structures with a
zero Burgers vector) which does not disrupt the positional order (see Fig. 1.10). Above
Tm, the dislocations are free, and thus disrupt the positional order.

The argument developed here can be extended to hard disks, even though temperature
plays no role in this system. Indeed, Young’s modulus E depends upon temperature and
density (or pressure). As there is no energy in the hard disk system, the two competing
terms are both entropic,

Fhd
disloc ∼

∞
kBT(

a2
0

16π
E ′(η) − 1) ln

L2

a2
0

, (1.55)
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and the density plays the role of the temperature.
As for the universal jump of the spin stiffness, the above melting temperature gives a

universal value for the dimensionless Young’s modulus at the transition:

a2
0

kBTm
E = 16π. (1.56)

This universal value can be used in Monte Carlo simulations to localize the transition
by measuring the elastic coefficients [75, 76, 77]. As there are two elastic coefficients,
the exponent νKm of the correlation function at the transition is therefore not universal.
However, Eq. (1.49) and Eq. (1.56) show that νKm is only function of the Poisson’s ratio

νKm =
1

3
− (σ − 1)2

12
, (1.57)

and as σ ∈ [0, 1], the exponent at the transition satisfies the inequality

1

4
≤ νKm ≤ 1

3
. (1.58)

As for the 1/4 exponent in the XY model (see Section 1.2.2), this inequality can be tested
in simulations [78] and experiments [79].

In the solid, the bound dislocations interact logarithmically through the elastic media
6 , the analysis by renormalization theory of this gas of dislocations gives the behavior of
the elastic modulus near the transition, which shows a similar cusp to the spin stiffness
of the XY model. The shear modulus for T . Tm satisfies

µ(T) = µ(Tm)[1 + const.(Tm − T)0.36963..] , (1.60)

and as the positional order is short ranged above the melting temperature, µ(T+
m ) =

0. Free dislocations destroy the positional order, the correlation length of the system
thus corresponds to the typical distance between the dislocations. If the free-dislocation
density is ndisloc, the positional correlation function is

C~K(r) ∼
∞

exp (r/ξp) with ξp =
1√

ndisloc
, (1.61)

and for T & Tm,

ξp ∝ exp
(

const.|T − Tm|−0.36963..
)

. (1.62)

As for the XY model, this transition is realized if the solid phase remains stable up to
the dislocation-unbinding temperature (or density). The melting temperature obtained
is therefore an upper limit for the stability of the solid phase. This KT transition could
be preempted by a first-order transition. In Chapter 4, we show by numerical simulations
that this phase transition is indeed of the KT type for hard disks.

6Plus a term of orientation which has no qualitative consequences in the solid, the Hamiltonian is

Hdisloc =
−E
8π

∫

~b(~r).~b(~r′) ln
|~r −~r′|

a0
−

~b(~r).(~r −~r′)~b(~r′).(~r −~r′)
|~r −~r′|2 d2rd2r′ + Ec

∫

|~b(~r)|2d2r (1.59)
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The hexatic phase

Nelson and Halperin [32, 68] showed that the unbinding of dislocations, which destroys
positional order, results in a thermodynamic phase which does not completely disrupt
the orientation of the system. Indeed, the system passes from long-range ordered to
quasi-long-range ordered. This phase is called hexatic.

The free dislocations destroy positional order, and as a consequence the shear modulus
is zero [68], the system is thus not solid anymore. However, the dislocations do not disrupt
the orientation (as is seen in Fig. 1.10). We define the orientation field

θ(~r) =
1

2
(∂iuj − ∂jui) (1.63)

which on large length scales is described by the Hamiltonian

Hhex =
1

2
KA

∫

|~∇θ(~r)|2 d2r, (1.64)

KA being the Frank constant (as in liquid crystals) and satisfies KA ∝ ξ2
p. This Hamilto-

nian is similar to the one of the low-temperature phase of the XY model with KA playing
the role of the renormalized spin stiffness. As the lattice is triangular, the angles θi and
θi ± π/3 represent the same orientation of the system, and one may define the local
orientation with the complex valued order parameter

ψ(~r) = exp i6θ(~r) . (1.65)

This order parameter is easily computed in a simulation (see Section 3.3.1). The analogy

with the XY model is then complete with ~S(~r) = (Re(ψ), Im(ψ)) and KA = JR/36. The
orientational correlation function, defined by

Co(r) =

〈

ψ∗(~r)ψ(~0)
〉

〈|ψ|2〉 , (1.66)

shows therefore an algebraic decay at large distances:

Co(r) ∼
∞

r−νo with νo =
18

πβKA
. (1.67)

As the correlation of the orientation goes to zero, an infinite sample shows no orien-
tation. Its diffraction pattern (structure factor) should thus be constituted of isotropic
rings, as for a liquid. However, as the loss of orientation is algebraic, there is always an
orientation in a finite sample. This can be seen by computing the “total” orientation

Ψ =
1

V

∫

ψ(~r)d2r, (1.68)

which is directly related to the correlation function and scales with the system size L as

〈|Ψ|〉 ∼
∞

r−νo/2. (1.69)
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The rings are therefore always modulated and show six brighter spots (for a triangular
lattice). The angular width of the spots is determined by the angular fluctuations and
increases with system size. The radial part is determined by the positional correlation
length ξp. The structure factor at the first ring (or spot) takes a finite value and the
radial part is expected to be a Lorentzian shape

S(k) ∝
ξ2
p

1 + [(k − K)ξp]2
(1.70)

where K is the radius of the ring (as in a liquid). However, the correlation between
density fluctuation and order parameter in the hexatic can turn this shape into more of
the square-root Lorentzian shape [80]. In any case, the width of the ring is ∝ 1/ξp, which
gives a simple way to measure the positional correlation length.

While dislocations are free in an infinite system, a finite system with periodic boundary
conditions will set the total Burgers vector to zero. The freedom of dislocations can still
be tested on closed paths of increasing size below the system size as is explained in
Section 1.2.3.

Hexatic-liquid transition

In the KTHNY theory, another KT transition occurs between the hexatic and the liquid
by unbinding of the topological defect of the orientation: the disclinations. A disclina-
tion corresponds to a particle having five or seven neighbors (instead of six in a regular
triangular lattice, see Fig. 1.11). As a consequence, the orientation defined by ψ winds
by ±2π for a closed path around the defect. This defect is similar to a vortex in the
XY model7. Disclinations are bound in the hexatic phase, which forms dislocations (see
Fig. 1.10), and do not disrupt the orientation, they unbind at a given temperature (or
density) to form the liquid.

The results of the KT transition in the XY model are then directly transferable using
KA = JR/36. The transition thus occurs at

kBTi =
72KA

π
, (1.71)

and the correlation function at the transition is

Co(r) ∼
∞

r−νo with νo = 1/4. (1.72)

KA jumps to zero above the transition temperature, and for T . Ti,

KA(T) = KA(T−
i )[1 + const.(Ti − T)1/2]. (1.73)

This gives for the correlation function

Co(r) ∼
∞

r−νo with νo =
1

4
[1 − const.(Ti − T)1/2]. (1.74)

7The only difference is the asymmetry in the core energy between a positive and negative disclination
[40] (as a vacancy has a lower energy than an interstitial, a positive disclination has a lower core energy
than a negative one).
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Figure 1.12: Schematic disclinations in hard disks. The local orientation is shown by the
arrows (see Eq. (1.65) and Section 3.3.1), disks with five and seven neighbors are in red and blue,
respectively. Left : A “negative” disclination, the core disk has seven neighbors, the orientation
winds by −2π as for an anti-vortex. Right : A “positive” disclination, the core disk has five
neighbors, the orientation winds by 2π as for a vortex. Two bound opposite disclinations do
not disrupt the orientation, their unbinding leads to the liquid phase.

In the liquid phase, the orientational correlation function is short ranged with a correlation
length ξo given by the typical distance between disclinations,

Co(r) ∼
∞

exp−r/ξo with ξo =
1√

ndisclin
, (1.75)

and shows for T & Ti,

ξo ∝ exp
(

const.|T − Ti|−1/2
)

. (1.76)

In the liquid, the structure factor shows isotropic rings, whose radial shape are Lorentzians
of width 1/ξp.

Other defects

The two successive KT transitions of the KTHNY theory are ruled by the behavior of
topological defects of the system. Other defects also exist but do not change the topology
of the system. The simplest ones are vacancies and interstices which correspond to a
missing or an extra particle in the lattice. These defects require a finite elastic energy,
and thus they will always be present at a given density (especially the vacancies), but
do not change the qualitative behavior of the system. They can also be understood as
closely bound dislocations.
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1.3.3 Experiments and simulations

Many experiments and simulations have been performed in order to understand the 2D
melting transition (see [17, 18] for a complete review), here is a short summary.

A way to form a 2D solid, and study its melting, is to create monolayers of an element
adsorbed on a crystalline substrate [81]. The substrate is generally graphite, which shows
large planar surfaces. The adsorbed gas can be of different type: helium, xenon, ethylene
for example. This system does not show any thermalization problem, or finite-size effect.
Also, its structure can be studied by X-ray diffraction. In order for the substrate to
have little influence, the phase studied has to be incommensurable with it. However, the
crystalline substrate always interacts directionally, and this departs this system from an
ideal 2D system. No clear conclusions can be obtained from these experiments [17].

Another 2D system is constituted of electrons confined at the surface of liquid helium
by an electric field. This is an ideal 2D system as there is no substrate. However, it is
difficult to analyze the structure of this system by a diffraction experiment; only dynamic
and elastic measurements can be done. The results are compatible with the KTHNY
theory but no definitive conclusion can be drawn without knowing the structure of the
system [30].

Experiments have also been performed on thin liquid-crystal films [82, 83]. Liquid-
crystals are composed of large non-isotropic molecules whose shape leads to a rich phase
diagram. The smectic phase of liquid-crystal is composed of layers that weakly interact
together, and is therefore close to a 2D system. By reducing the number of layers, it is
possible to create thin suspended films of few layers which approach ideal 2D systems.
These systems do not suffer from thermalization problems or finite-size effects. More-
over, their elastic property can be determined (with a torsion oscillator), as well as their
internal structure with X-ray diffraction. The KTHNY scenario has been observed in
these systems [83]. This constitutes the only experimental evidence of the existence of
the hexatic phase, and of the validity of the KTHNY theory.

Other experiments have studied the behavior of colloidal suspensions [31, 79, 84].
Colloids are constituted of large spherical molecules of size ∼ µm dispersed in a liquid. In
order for the system to be bi-dimensional, the colloid particles are confined at an interface
or between two plates. The particles can interact electrically if they are charged, or just
as hard spheres. Due to the large size of the particles, it is relatively easy to observe
the system and compute observables using video-microscopy for example. In that sense,
colloids are the crossover between experiments and simulations. These systems can be set
up almost perfectly bi-dimensional. However, even if the particles are light enough to be
displaced by thermal motion, the thermalization time is much higher than for atomistic
systems, and especially in highly correlated 2D phases. Another problem is to reach
systems of size large enough. Therefore, colloids experiments share the same problem as
simulations: large thermalization time and limited-size system.

An important body of simulations has been performed to study the 2D melting tran-
sition since the first one by Alder and Wainwright [9]. Most simulations have been
performed in the constant-density or constant-pressure ensemble (see Section 3.1), using
either the Markov-chain Monte Carlo method, or the molecular dynamics8 (see Chap-
ter 2). Different systems have been studied, such as soft spheres [85, 78, 86], Lennard-

8A mix of both methods, referred to as hybrid Monte Carlo, is also used.
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Jones gas [87, 88], Coulomb repulsion [89, 90], but most of the studies focused on the
simplest of the model: the hard-disk model [9, 91, 92, 93, 24, 25]. The algorithms used are
local and prone to critical slowing down. Therefore, the simulations, as for the colloids
experiments, require long thermalization time, and this prevents reaching the system size
needed to properly study the transition. In this thesis, we study the phase transition for
hard disks (see Chapter 4) with the use of a new Monte Carlo algorithm (see Chapter 2).

Conclusion

2D systems display rich and interesting behavior, as for example, the KT transition
[13, 14]. The way 2D solids melt is still not completely understood. The KTHNY theory
predicts that these solids melt through two successive KT transitions. However, these
transitions could be preempted by first-order transitions as shown in XY models. The
XY models also show that the nature of 2D transitions can be obtained through Monte
Carlo simulations in finite-size systems. Therefore, as for the study of the XY models, an
efficient Monte Carlo algorithm could be a solution to access the nature of the melting
transitions. Chapter 2 focuses on Monte Carlo algorithm for hard disks with in the
objective to efficiently study the melting transition in this model.
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2
Event-chain Monte Carlo algorithms for hard spheres

In this chapter, I introduce numerical methods which can be used to compute the ther-
modynamic properties of hard-sphere systems, that is, the molecular dynamics and the
Monte Carlo methods. I then expose the event-chain algorithm, a simple yet power-
ful Monte Carlo algorithm for hard-core systems. The event-chain algorithm has been
presented in the first publication [5] (see Section 7.1), and we used it to perform the
large-scale simulations needed to access the nature of the hard-disk melting transition
(see Chapter 4).

2.1 Hard-sphere simulations

2.1.1 Molecular dynamics

Molecular-dynamics simulation is the direct integration of Newton’s laws of motion, which
describe the time evolution of particle systems. Usually, the equations are solved by
discretizing the time in time step δt. For each time step, interactions between particles are
computed and velocities updated. This discretization induces an error that is negligible
if δt is small enough.

The hard-disk system is composed of elastic disks of mass m, and the state of the
system is fully determined by the disks positions and velocities (see Fig. 2.0). In this
system, molecular dynamics can be achieved without discretization. The time of the next
collision (the next “event”) is computed, and the velocities after a collision are updated
by momentum and energy conservation:

~v′1 +~v′2 = ~v1 +~v2 and v′21 + v′22 = v2
1 + v2

2 , (2.1)

where (~v1, ~v2) and (~v′1, ~v′2) are the velocities of the disks involve in the collisions before
and after the collision, respectively.1

The molecular-dynamics method was first implemented for hard spheres [47], and was
the first method used to show the existence of the hard-disk solid [9]. In order to estimate
the efficiency of this method, we simply analyze the behavior of particles’ motion. The

1The same“event-driven”algorithms can be used on“stepped”approximation of continuous potentials
[94].
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Figure 2.1: Snapshot of a molecular-dynamics simulation of hard disks. The arrows represent
disks’ velocities.

same analysis is done for the Monte Carlo methods in Section 2.2 and Section 2.1.3. In
3D and higher, the particles under molecular dynamics perform a Brownian motion. If
~r(t) is the position of a particle, the displacement of the particle from t = 0 to a time t
satisfies

〈

[~r(t) −~r(0)]2
〉

= Dt , (2.2)

where D is the diffusion coefficient2. In 1D and 2D, the particles do not satisfy a Brownian
motion, they are superdiffusive. This property, showed by the “long-time tail” of the
velocity auto-correlation function [11], is due to the conservation of momentum. Indeed,
let us consider that at t = 0, a particle has a momentum m~v(0). This particle exchanges
momentum with neighboring particles by interacting with them. The initial momentum
is then (statistically) spread by diffusion in a sphere of radius R ∝

√
t. The knowledge

of the initial velocity ~v(0) gives then information about the scaling of the velocity: for a
large time t,

〈~v(t)〉 ∝
~v(0)

Rd
. (2.3)

Therefore, the velocity auto-correlation function satisfies for large t

〈~v(0).~v(t)〉 ∝ t−d/2, (2.4)

and the quadratic displacement can then be computed

〈

[~r(t) −~r(0)]2
〉

=
∫ t

0

∫ t

0

〈

~v(t′).~v(t′′)
〉

dt′ dt′′ (2.5)

∼
∞

2t
∫ t

0

〈

~v(0).~v(t′)
〉

dt′. (2.6)

2Other definitions of D can be used. D is then multiplied by a constant factor.
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Eq. (2.6) and Eq. (2.4) give for large t:

〈

[~r(t) −~r(0)]2
〉

∝











t
√

t for d = 1

t ln t for d = 2

t for d ≥ 3

. (2.7)

The motion of particles is therefore diffusive for d ≥ 3 and superdiffusive for d = 1 or
d = 2. However, in finite-size system, the radius R of the sphere in which the initial
momentum is spread cannot exceed the length L of the system. Therefore, tmax ∝ L2 in
the integral of Eq. (2.6). For d = 2, the diffusion coefficient thus satisfies 3 DL ∝ ln L for
large systems. As a consequence, the thermalization time (in number of collisions) for the
molecular dynamics is expected to be faster than for diffusive processes (such as reversible
Markov chains) by a factor O(ln N). As molecular dynamics in 2D is superdiffusive, this
method seems a good choice for simulations. However, the factor O(ln N) increases slowly
with system size. A good implementation is needed in order to outperform Markov-chain
Monte Carlo methods.

The naive implementation has a complexity of O(N2) per collision as there are ∝ N2

collisions to compute for each event. The implementation of a cell scheme to store particle
positions reduces this complexity to O(N) per collision. Another improvement consists in
avoiding to compute the same collision many times. To do so, a list of collisions to come
is stored, chronologically sorted, and updated during the simulation. This corresponds
to a classic problem of priority queues [95]. The implementation of priority queues can
be achieved with various types of binary trees in order to reach a complexity of O(ln N)
per collision [96]. Finally, additional information about molecular dynamics of hard
spheres enables a priority queue of O(1) per collision to be reached [97]. The fastest
current implementations are still with a priority queue O(ln N), which for 322 disks at
η ∼ 0.7 reaches about 1.7 × 109 collisions per hour on a 2.6GHz workstation [98]4. The
parallelization is also an important feature of an algorithm. A speed-up factor of ∝

√
NP

is obtained for molecular dynamics, where NP is the number of CPU [100, 101].
Molecular dynamics integrate the equation of motion. Therefore, this method gives

both thermodynamic and dynamic information about the system. The thermodynamics
properties of the system can be obtained by other methods. Statistical physics shows
that, as positions and velocities are independent in the Hamiltonian of the system, the
distribution of velocities is independent of the distribution of positions. The distribution
πv for the velocity ~v = (vx, vy) of a particle (identical for each particle) follows a Maxwell
distribution

πv(vx , vy) ∝ exp−β
1

2
m(v2

x + v2
y), (2.8)

which can be directly sampled. This is not the case of the distribution of positions. Each
valid configuration of the hard-disk system has the same energy. Therefore, the distri-
bution of positions is uniform, that is, each valid configuration has the same probability.
This property comes from the very nature of the molecular dynamics which conserves

3With periodic boundary conditions, the positions of particles have to be computed with respect of
the mass center to find this result, as the total system has a non-zero momentum.

4The fastest implementation with a priority queue O(1) is 2.5 × 108 collisions per hour for 3D hard
spheres on a similar CPU [99].
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phase-space volume5 and is time reversible6. This ensures that for hard spheres, the
uniform distribution is stationary through molecular dynamics. Moreover, ergodicity has
been rigorously proved for hard spheres [102, 103], which show that the hard-sphere
system indeed converges toward this stationary distribution.

It is possible to reproduce the same statistical properties with other methods than
molecular dynamics, such as stochastic processes. A large freedom is given in the choice
of these “unphysical” processes, and this can lead to an increase of the efficiency. The
following concerns these algorithms.

2.1.2 The Monte Carlo method

The statistical properties of hard spheres can be obtained by randomly sampling con-
figurations. The samples are then used to compute distributions as well as mean values
of observables, and therefore access the thermodynamics of the system. This is known
as the Monte Carlo method [3, 4]. In Part II of this thesis, I describe the Monte Carlo
method in further detail, and discuss a method to solve the problem of thermalization.

A computer is able to generate independent random numbers γ ∈ [0, 1] with a uniform
distribution. The generation of hard-disk configurations is however not straightforward.
A naive method is to place disks at random positions sampled uniformly in the box, and to
reject the configurations which show overlaps. This direct sampling gives the appropriate
distribution for the configurations, but the rejection rate is prohibitive at high density.

One possibility to overcome this difficulty is to start from an initial valid configuration,
then to “mix” the system. The mixing process is achieved by performing small changes
while ensuring that the configuration stays valid during the process (see Fig. 2.1). When
the process has been run for a time long enough, that is, when the system is decorrelated
from the initial configuration, a sample can be extracted. This process is then performed
again in order to extract other samples. The time needed to decorrelate from the initial
configuration (that is, when the system reached the thermodynamic equilibrium) is called
the thermalization time, or the correlation time. This method is known as the Markov-
chain Monte Carlo method [46]. A Markov chain is a random walk without memory (each
step is independent) in the configuration space.

Let Ω be the configuration space. The stochastic process performed by a Markov chain
is fully determined by the probability of P(i → j) to move from a configuration i ∈ Ω to
another configuration j ∈ Ω, called the transition probabilities. In a discrete configuration
space (P(i → j))i,j is called the transfer matrix. In a continuous configuration space (as
for hard disks) this transfer matrix is a continuous operator. In this thesis, the discrete
notation is adopted for simplicity, and it is valid because most algorithms conserve the
configuration-phase volume. In the general case, a continuous analysis is however needed
(see Section 2.2.2).

The transition probabilities are chosen in order for the stationary distribution (that
is, the steady state of the transfer matrix) to be the required distribution π ∝ exp−βE.
For hard disks this distribution is uniform, restricted to the valid configurations.

The distribution π is stationary under the application of the transfer matrix, that
is, π is a fixed point of the Markov chain. This property is expressed by the balance

5Louiville’s theorem.
6This property is closely related to the detailed-balance condition in Markov-chain processes.
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Figure 2.2: Initial and thermalized configurations with the Markov-chain Monte Carlo method
for 322 disks at η = 0.710. Left: The initial configuration is a triangular lattice. Right:

Configuration after thermalization, each disk has been displaced 5 × 109 times.

condition. Let φ(A → B) be the probability flux from A toward B, two subsets of the
configuration space. For the stationary distribution π, the flux φ satisfies

∀A ⊂ Ω φ(A → Ω) = φ(Ω → A) , (2.9)

which expresses the balance of the probability fluxes in and out of each subset of the
configuration space at the stationary distribution. In a discrete configuration space, this
equality can be written as

∀ i ∈ Ω π(i) ∑
j∈Ω

P(i → j) = ∑
j∈Ω

π(j)P(j → i) . (2.10)

For simplicity, most Markov chains satisfy a stronger condition, the detailed-balance
condition, which itself implies the balance condition. The detailed-balance condition is
given by

∀A, B ⊂ Ω φ(A → B) = φ(B → A) , (2.11)

and it expresses the equality of probability fluxes between each pair of subsets at the
stationary distribution. This condition is related to the time reversibility of molecular
dynamics, and is sometimes known as micro-reversibility. In a discrete configuration
space, the above equality becomes

∀ i, j ∈ Ω π(i)P(i → j) = π(j)P(j → i). (2.12)

This condition implies that the Markov chain and its probability distribution are diffusive.
For hard disks, as the distribution is uniform, the detailed-balance condition is expressed
by P(i → j) = P(j → i) (between valid configurations) which is referred to as the
reversibility of the algorithm.

In Section 2.2, we will see that the event-chain algorithm allows the detailed-balance
condition to be broken, that is, only the balance condition of Eq. (2.9) is satisfied. This
property is not common for Monte Carlo algorithms, and it allows speeding-up of the
equilibration.
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The second condition in order for the Markov chain to reach the stationary distribution
π is that the dynamic indeed converges toward this fixed point. This convergence is
ensured by the stochastic nature of the dynamics and by the ergodicity of the Markov
chain. Here, the ergodicity is defined by the possibility for the chain to eventually reach
any part of the configuration space.

2.1.3 The local Metropolis algorithm

The Metropolis algorithm [46] is the historically first proposal for satisfying the detailed-
balance condition of Eq. (2.12). In this algorithm, moves are attempted with the tran-
sition probabilities A(i → j). The moves are then accepted with a suitable probability
pacc(i → j) given by

pacc(i → j) = min

(

1,
πj

πi
× A(j → i)

A(i → j)

)

. (2.13)

The transition probabilities P(i → j) = A(i → j)× pacc(i → j) then satisfy the detailed-
balance condition. In the canonical ensemble, the distribution satisfies π(i) ∝ exp−βEi ,
where Ei is the energy of the configuration i. If the trial probability is reversible (A(i →
j) = A(j → i)), the Metropolis algorithm becomes

∀ i, j ∈ Ω pacc(i → j) = min(1, exp−β(Ej − Ei)), (2.14)

and for hard disks

∀ i, j ∈ Ω pacc(i → j) =

{

1 if j is a valid configuration

0 if j shows overlaps
. (2.15)

The first simulations with the local Metropolis algorithm were performed on the hard-
disk system in the 1950s [46]. At each step of this algorithm, a disk k at position ~rk is

randomly sampled among the N disks of the system. A displacement vector ~δk is then
sampled with a distribution satisfying πd(~δk) = πd(−~δk). The disk k is displaced toward

~r′k =~rk +~δk if it does not induce an overlap, and is kept at its initial position otherwise
(the move is then said to be rejected, see Fig. 2.2). Each step of the algorithm, whether
it is an accepted or a rejected move, constitutes one move. The discrete time t of the
chain is the number of move.

The efficiency of the local Metropolis algorithm depends only on the distribution
πd(~δk). The detailed-balance condition requires πd(~δk) = πd(−~δk). The most important
parameter of the distribution πd is its range, and we consider an isotropic and constant
choice for ~δk: |~δk| = δ. Other choices for πd(~δk) do not influence the efficiency of the
algorithm.

In order to understand the performance of the local Metropolis algorithm, we analyze
the behavior of single particle displacements. Because of the detailed-balance condition,
each disk moves diffusively, characterized by a diffusion coefficient D (Eq. (2.2)). The
diffusion of a disk at a high density is the result of a N-body interaction and has several
time scales. At short times, the disk is trapped into a “cage” formed by its neighbors.
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t t + 1 t t + 1
Figure 2.3: Moves of the local Metropolis algorithm. Left: Accepted move. Right: Rejected
move. (Ref [5], cf. Section 7.1).

The diffusion coefficient is therefore higher at short times than at large times. Only the
long-time behavior is interesting for thermalization, the diffusion coefficient is defined as

D = lim
t→∞

〈

[~r(t) −~r(0)]2
〉

t
. (2.16)
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Figure 2.4: Left : Histogram π f (λ/λ0) of the free path λ for 322 disks at density η = 0.71.
The distribution is close to an exponential even in the solid phase. (Ref [5], cf. Section 7.1).
Right : δ-dependence of the diffusion coefficient of a disk in the local Metropolis algorithm for
322 disks at density η = 0.71. The length unit is λ0 and the time is counted in attempted move
per disks. The optimal value of the step length is δopt ≃ 2λ0 as expected by the short-time
diffusion argument.

One might expect that the diffusion coefficient at large times is related to the diffusion
coefficient at short times. The disks are displaced by a distance δ, and accepted with
a probability pacc. The short-time diffusion coefficient is therefore given by Dloc =
δ2pacc(δ). In order to determine pacc(δ), we define the “free path” λ of a disk as the
distance it must move in a given direction to strike another disk. The ensemble average
of λ yields the mean-free path λ0. The distribution of the free path π f (λ/λ0) is an
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exponential in the low-density limit, but even at high density it is well approximated by
an exponential

π f (λ/λ0) ≃ exp (−λ/λ0) (2.17)

(see Fig. 2.3). This ansatz gives that pacc(δ) = exp (−δ/λ0), and that the short-time
diffusion coefficient is

Dloc(δ) = δ2 exp (−δ/λ0) . (2.18)

The result of the competition between the step length and the acceptance rate gives thus
an optimal value of δopt = 2λ0 for the step length. The short-time diffusion coefficient is
then Dloc(δopt) = 4λ2

0/e2 and the acceptance rate is only pacc ≃ 14%.

The long-time diffusion coefficient is related to the behavior of the short-time diffusion
coefficient. For small values of δ, and up to a few unities, D ≃ 0.015× Dloc (see Fig. 2.3).
The optimal value is then δopt ≃ 2λ0 as predicted by the short-time analysis. The
proportionality between both coefficient breaks down for higher values of δ (see Fig. 2.3).
The proportionality between Dloc and D for small δ is explained by a simple argument:
During the Markov process, the configuration diffuses in the 2N-dimensional configuration
space. The valid subset of the configuration space is complex and can be seen as a 2N-
dimensional porous media, with a typical length of λ0. For δ ≪ λ0, the diffusion is not
influenced by the “walls” of the configuration space; the increase of δ can be seen as an
increase in temperature for this diffusion process. It is therefore expected that D ∝ δ2.
This proportionality stays valid up to a few λ0 by adding the acceptance rate. For larger
values of δ this simple picture is however not valid.

The local Metropolis algorithm converges toward the appropriate distribution and is
easy to implement. One can expect more than ∼ 1010 displacements per hour for a
well optimized implementation on a single 3Ghz CPU. This algorithm can also be easily
parallelized with a speed-up factor ∝ Np, the number of CPU. However, a move with
this algorithm is not equivalent to a molecular-dynamics collision for the thermalization.
In CPU time, the fastest implementation of molecular dynamics is faster to thermalize
than a well optimized local Metropolis algorithm, but by only by a small factor (about
∼ 10, see Section 2.2.3). Because of its simplicity, the hard-disk melting transition has
been mostly studied with this algorithm. The thermalization time is however important
at high densities, preventing simulations to reach system sizes large enough to conclude
on the nature of the hard-disk melting transition.

The local Metropolis algorithm can be also implemented in spin systems. For these
systems, the cluster (non-local) algorithms are much more efficient [53, 54]. It is with these
algorithms that the nature of the transition in the 2D XY model has been understood.
For hard disks, the local Metropolis algorithm has been the most efficient Monte Carlo
algorithm at high densities for 50 years.

2.2 The event-chain algorithm

The following introduces a Markov-chain Monte Carlo algorithm developed in collab-
oration with Werner Krauth and David B. Wilson: the event-chain algorithm [5] (see
Section 7.1). The event-chain algorithm is a rejection-free Markov-chain Monte Carlo
algorithm designed for hard-core interactions. In a single move, it displaces an arbitrary
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long chain of particle in a long-range coherent motion. This algorithm has the particular-
ity that it can be set up “irreversible”, (that is, without the detailed-balance condition).
This property, which is usually seen in simple Markov chains [104], increases the efficiency
of the thermalization. This algorithm is the first algorithm that clearly outperforms the
local Metropolis algorithm.

2.2.1 Straight event-chain algorithm

The simplest version of the event-chain algorithm is the “straight event-chain” (SEC)
algorithm. A move of this algorithm starts by the sampling of an initial disk k and an
angle θ. The disk k is displaced straight in the direction θ until it collides with another
disk k′. The latter is then displaced in the same direction until it collides with yet another
disk and so on (see Fig. 2.4). The move stops when all displacements add up to a total
length parameter ℓ.

initial
disk

θ

initial
disk

ℓ

Figure 2.5: Left: A move of the event-chain algorithm from a configuration a (left panel) to a
configuration b (right panel). Disks are displaced individually in the same direction until they
collide with another disk or the total length ℓ is used up (red arrow). Right: Event-chain move
from the configuration b with the angle θ + π starting with the last displaced disk of the move
shown in the left panel. The algorithm is reversible. (Ref [6], cf. Section 7.3)

The move is reversible and thus the algorithm can be set up to satisfy the detailed-
balance condition for the uniform distribution. Indeed, let us consider a move in the
direction given by θ which changes the system from a configuration a to a configuration
b. In the configuration b, the move starting with the last displaced disk of the a → b
move, and with the angle θ + π, gives the configuration a (see Fig. 2.4). Therefore, if
the distribution of the angle satisfies πd(θ) = πd(θ + π), the transition probabilities
satisfy P(a → b) = P(b → a) ∀a, b. Moreover, the volume of the configuration space is
conserved through this dynamics (see Section 2.2.2). The detailed-balance condition in
this continuous space is therefore satisfied and the stationary distribution of this Markov
chain is uniform.
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For each move, the total length ℓ can be sampled from a distribution. If the distri-
bution allows infinitely small values of ℓ, the ergodicity is rigorously proved. Indeed, the
whole configuration space can be accessed through infinitely small displacements of single
disks.

This algorithm improves the local Metropolis in three respects: First, this algorithm
is rejection-free, which naturally increases its efficiency. Second, it displaces long chains
of particles in the same direction (see Section 2.2.3). Third, it allows the detailed balance
condition to be broken, while preserving the balance condition of Eq. (2.9). Indeed, with
periodic boundary conditions, the distribution of angles can be set up such as πd(θ) 6=
πd(θ + π), the chain then breaks the detailed-balance condition but preserves the balance
condition of Eq. (2.9).

Figure 2.6: Balance of probability flux for one disk in a box with periodic boundary conditions.
For each angle θ, the configuration a (gray disk) reaches only one configuration (red disk), and
is reached by only one configuration (blue disk). The balance condition is satisfied for the
movements restricted to the angle θ. This argument can be generalized to an N-particle system.

To illustrate this property, we compute the balance of the probability fluxes in and
out of a given configuration a. In the case of a single disk in a box with periodic boundary
conditions, this is easily done. For any given angle θ, one move is possible for the con-
figuration a. Moreover, the incoming probability flux comes from only one configuration:
the configuration obtained by applying a θ + π move to the configuration a. For any
angle θ, the probability fluxes in and out of the configuration a are then balanced (see
Fig. 2.5). This argument can be generalized to N disks. For any given angle θ, there
are N possible moves, corresponding to the N possible initial disks. Moreover, there are
N configurations which “fill” the configuration a, each of them obtained by performing a
θ + π move with one of the N disks as initial disk. The balance condition is then satis-
fied for the movements restricted to any angle θ. The stationary distribution is therefore
uniform for any distribution πd(θ) (as long as the ergodicity is not broken).

The angle can be chosen, say θ ∈ [0, π]. The Markov chain is then irreversible
as moves have no “return” moves. The hard-disk system shows a global translation,
however the distribution of positions is uniform. Other choices for πd are possible, but at
least two independent directions are needed in order to preserve ergodicity. The fastest
implementation alternates moves in the +x and +y directions (θ = 0, π/2), and is called
the “xy version” (see Section 2.3).

The irreversible Markov chains, known as “lifted” Markov chains, have been studied
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in mathematics [104] but only for simple discrete systems. The lifting of Markov chain
can be adapted to generic reversible Metropolis algorithm by splitting the system in
two irreversible replicas, and computing the appropriate probability to switch between
replicas [105, 106]. These Markov chains mix generally faster than the classic reversible
chains as they induce probability flows in the configuration space.

2.2.2 Other versions

The SEC algorithm is the simplest version of the event-chain algorithm, and is the fastest
to thermalize (in CPU time). Other versions of the algorithm, where disks are not
displaced along straight trajectories, can also be considered.

A simple modification of the SEC algorithm is done by changing the direction of
displacement of the disks after each collision. This process must however preserve the
configuration-space volume. This constraint leaves only two possibilities: the collided
disk (see Fig. 2.7) may be displaced either in the original direction (SEC algorithm) or
in the direction reflected with respect to the collision axis. The latter choice is called the
“reflected event-chain” (REC ) algorithm (see Fig. 2.6).

Figure 2.7: Left two panels: A move of the straight event-chain (SEC) algorithm. Right two

panels: A move of the reflected event-chain (REC) algorithm. (Ref [5], cf. Section 7.1).

Let a be a configuration, and ǫa a small subset of the configuration space centered
around a. Let b be the configuration obtained by a move starting with the disk k and
the angle θ, and ǫb the resulting subset obtained by application of this move (k, θ) to ǫa.
The configuration-space volume is conserved if the volumes of ǫa and of ǫb are equal.

Between two collisions, the displacements are straight, the configuration-space volume
is conserved. During a collision, the change in configuration-space volume is limited to
the two disks involved in the collision, referred to as the“incoming”and the“collided”disk
(see Fig. 2.7). We compute this volume variation in the frame of the collided disk. In the
limit of an infinitely small subset ǫa, the circular collision surface is flat. The computation
of the change of volume is therefore reduced to the variation of configuration-space volume
for a collision against a wall (the collision line). Let α1 and α2 be the angles between the
initial direction and the collision line before and after the collision. The ratio µ of the
volumes before and after the collision is given by

µ =
sin α2

sin α1
, (2.19)

which differs from one unless α1 = α2 or α1 = π − α2 (see Fig. 2.7). In general, for a
move consisting of n collisions, the volume ratio is µtot = µ1 × · · · × µn. An acceptance
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collision
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Figure 2.8: Left: An event-chain collision in the reference frame of the collided disk. In the
limit of an infinitely small ǫa, the circular collision surface is flat (the collision line). Center:

Transformation of a small subset of the configuration space during the collision: its volume is
not conserved. Right: The volume is conserved only for the values α1 = α2 (upper panel) or
α1 = π − α2 (lower panel).

probability of pacc = min(1, µtot) is therefore necessary to preserve the balance condition
7 The choice α1 = π − α2 for each collision corresponds to the SEC algorithm, and
the choice α1 = α2 corresponds to the REC algorithm (see Fig. 2.7 and Fig. 2.6). A
combination of the two types of collision is also possible. It is interesting to note that
α1 = α2 corresponds to the angles of molecular dynamics. As shown in Section 2.2.3, the
REC algorithm is less efficient than the SEC algorithm.

Versions of the algorithm where disks do not move straight are also possible. For
example the disks can be displaced with a constant-curvature trajectory (circular trajec-
tory) between collision, and collide as in Fig. 2.7. More exotic versions can be designed,
for example with disks that rotate toward a given fixed point. These version were found
not to outperform the irreversible version of the SEC algorithm. In the following, the per-
formance of the SEC algorithm is analyzed and compared to those of the local Metropolis
and of the REC algorithms.

2.2.3 Efficiency analysis

The analysis of the convergence of Markov chains efficiency, related to the time needed
to decorrelate from the initial configuration, is a vast topic [107]. As a first indication,
one may again compute (cf. Section 2.1.3) the short-time diffusion coefficient Dloc of the
event-chain dynamics. To that purpose, let us suppose that the lengths of subsequent
displacements in the chain are independent. In that case, the expected number of particles
in the chain is 〈M(ℓ)〉 = ℓ/λ0 + 1. We index the displacement during one event-chain
move through a time-like variable t with 0 ≤ t ≤ ℓ. The mean-square displacement of an
event-chain move (the expected sum of the squares of the individual displacements) can
be expressed through the probability π(t, t′) that both times t and t′ belong to the same

7This acceptance rate was tested on simple algorithms which do not preserve the configuration-space
volume (as θt+1 = θt + const.). The stationary distribution is uniform only with the use of this acceptance
probability.
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particle displacement:
〈

∆x
2(ℓ)

〉

=
∫ ℓ

0

∫ ℓ

0
π(t, t′) dt dt′. (2.20)

The ansatz of Eq. (2.17) gives π(t, t′) = exp (−|t − t′|/λ0). This yields the short-time
diffusion coefficient of the event-chain dynamics in an infinite system:

D∞
loc(ℓ) =

〈

∆x
2(ℓ)

〉

〈M(ℓ)〉 = 2λ2
0

exp(−ℓ/λ0) + ℓ/λ0 − 1

ℓ/λ0 + 1
. (2.21)

For small ℓ/λ0, D∞
loc(ℓ) ∼

0
ℓ2, as for the local Metropolis algorithm. For large ℓ/λ0,

D∞
loc(ℓ) →∞ 2λ2

0 , which is e2/2 ∼ 4 times larger than in Eq. (2.18) for the local Metropolis

algorithm. This factor corresponds to the efficiency gain expected for a generic event-chain
algorithm with large ℓ/λ0, even though it is significantly larger for the SEC algorithm.

In a finite system, Eq. (2.21) must be corrected for the center-of-mass displacement.
For the SEC algorithm, the corrected short-time diffusion coefficient Dloc(ℓ) drops to
zero for ℓ/λ0 → ∞ because in a finite box, all disks then participate in the chain,
and the system moves as a solid block. The REC algorithm, in contrast, saturates to
a constant short-time diffusion coefficient for large chains as the center of mass is not
linearly displaced during a move.

In order to compute the efficiency of the event-chain algorithm, one could, as for the
Metropolis algorithm, compute the long-time diffusion coefficient of a disk. However, this
value might not be relevant as it is related to the behavior of single particle, and does
not necessarily capture N-body effects. In order to compute the thermalization time of
an observable, it is better to study the auto-correlation of a thermodynamic observable.

Empirically, one can compute the auto-correlation function of a given observable O
defined by

C(∆t) ∝ 〈[O(t + ∆t) − 〈O〉][O(t) − 〈O〉]〉 (2.22)

and normalized so that C(0) = 1. The auto-correlation function has many time scales
(τ > τ1 ≥ . . . ) which are given by the eigenvalues of the transfer operator of the Markov
chain (see Part II, Section 5.1.2)

C(t) = a0 exp (−t/τ) + a1 exp (−t/τ1) + . . . (2.23)

The objective is to compute the largest of these time scales τ referred to as the“correlation
time”. All observables are in principle equivalent as the time scales of the transfer operator
are the same, however the weights (a0, a1, ...) associated with these time scales are
different according to the observable. It is difficult to compute τ with an observable
whose value of a0 is small as it is difficult to be sure that the largest time is reached (see
Section 4.3.1). A global observable, which is slow to decorrelate, should be used.

We define the orientational order parameter Ψ by

Ψ =
1

N

N

∑
j=1

ψj (2.24)

with

ψj =
1

nj
∑
〈k,j〉

exp
(

i6θj,k

)

. (2.25)
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Figure 2.9: Left : Distribution of Ψ for 162 disks in a periodic square box at density η = 0.71.
The distribution is anisotropic but symmetric towards both axes. The diagonal squares show
the orientation of the system for different values of the order parameter. Right : Auto-correlation
function of Ψ for this system. The correlation time is obtained from an exponential fit. (Ref
[5], cf. Section 7.1).

The sum extends over the nj neighbors of the disk j, and θj,k is the angle of the bond
between the disk j and its neighbor k (see Section 3.3.1). This observable has also been
chosen in order to compute the validity of the implementations in Section 2.3.3, and in
view of applications in Chapter 4. Ψ is the slowest observable that we found in this system.
Indeed, the argument of this complex-valued observable defines the global orientation of
the system. The correlation time associated to this observable is therefore related to
the time needed for the system to perform a complete rotation in the box. This is a
slow process at high densities (see Fig. 2.9). Probable values of Ψ form an irregular ring
around the origin. The square box implies that π(Ψ), the probability distribution of Ψ,
is symmetric by reflection over the real and imaginary axes, and therefore that 〈Ψ〉 = 0
(see the scatter plot in Fig. 2.8). The knowledge of the full distribution π(Ψ) would
be needed to ensure that the system is thermalized. This is not the case, but the fact
that 〈Ψ〉 = 0 partly prevents to miss a high time scale. The correlation function is then
simply computed by the ensemble average

C(∆t) = 〈Ψ(t)Ψ∗(t + ∆t)〉 / 〈ΨΨ∗〉 . (2.26)

This function decays to zero exponentially for large ∆t (see Fig. 2.8). The decay constant
τ and the “speed” of the algorithm 1/τ are obtained by a fit, from one single long
simulation with t ≫ τ.

The correlation times are long in the transition region (see Fig. 2.9), the efficiency
tests are therefore performed on small systems with up to 322 disks. The global rotation
of the system has no physical sense, and one can be tempted to use the observable |Ψ|
instead. However, as shown in Section 4.3.1, one can miss the largest time scale with this
choice. For the purpose of this study, it is safer to use the observable which decorrelates
the slowest, that is, Ψ.
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Figure 2.10: Density dependence of the correlation time for the local Metropolis algorithm
(in displacement per disks) for 322 disks. The correlation time increases strongly (but remains
finite) for densities η & 0.7 as the system hardly rotates inside the square box.
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Figure 2.11: Left : Efficiency of the SEC and the REC algorithms for 322 disks at η = 0.71.
The speeds are normalized by the speed of the reversible SEC algorithm at ℓ/λ0 = 1. The
speed of the local Metropolis algorithm (with δ = ℓ) and the mean-square displacement per
particle from Eq. (2.21) are also shown. Right : Density dependence of the optimal speed-up
factor. The efficiency of the SEC algorithms increases at the transition. The same behavior is
observed for molecular dynamics. (Ref [5], cf. Section 7.1).

The event-chain algorithms with ℓ/λ0 = 1 is as fast as the local Metropolis algorithm
for its optimal step size δ = 2λ0. This well-defined value is chosen as a reference for the
different algorithms. The time is measured in number of displaced disks for the event-
chain algorithm and in number of attempted moves for the local Metropolis algorithm.
In implementation, the time needed for a disk displacement in the event-chain algorithm
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is however found to be smaller than the time needed for a move attempt in the local
Metropolis algorithm.

For small total displacements ℓ/λ0 ≪ 1, the speeds of all the algorithms (reversible
and irreversible SEC, REC, and local Metropolis algorithm) are equal and, as expected,
proportional to the short-time diffusion coefficient D∞

loc(ℓ) ∼0 ℓ2 (see Fig. 2.10). For larger

ℓ/λ0, the event-chain algorithm realizes a considerable speed-up compared to the local
Metropolis algorithm (also in Fig. 2.10). The speed of the REC algorithm globally follows
the behavior of D∞

loc(ℓ) and reaches a speed-up factor of ∼ 6 toward the local Metropolis
algorithm. This behavior can be understood as the dynamics increases D∞

loc(ℓ) but the
move is not correlated over large distance. Both versions of the SEC algorithm (reversible
and irreversible) outperform the REC algorithm, illustrating the usefulness of straight
trajectories. The speeds of both algorithms follow the behavior of Dloc, and they go to
zero for large ℓ.

For large ℓ/λ0, the irreversible SEC algorithm is faster than the reversible version.
This speed-up is however limited (up to ∼ 2 times for 642 disks at η = 0.710). A similar
speed-up is obtained by an irreversible Monte Carlo algorithm in a Ising model [106].
Unlike the REC algorithm, the SEC algorithm becomes more efficient (as compared to
the local Metropolis algorithm) as one approaches the transition from the liquid phase
(at density η ∼ 0.710). This property is shared with molecular dynamics (see Fig. 2.10).

The speed-up of the SEC algorithm over the local Metropolis algorithm can be under-
stood by a simple argument. First, as explained before, the short-time diffusion coefficient
is larger, which gives a factor ∼ 4. However, this simple picture should be corrected by
N-body effects (the reaction of the system), which are different in both dynamics. In
the local Metropolis algorithm, when a disk is displaced, it increases the density at the
new position, and reduces the density at the old position. As a consequence, the system
suppresses this density fluctuation by diffusion; the disk tends to go back in its original
position. This effect, which can also be seen as an elastic reaction of the system to the
stress imposed by the move, gives a negative long-time tail to the velocity (displacement
here) auto-correlation function Cv(t) [108, 109]

Cv(t) ∼ −t−d/2−1. (2.27)

In the SEC algorithm, any disk that undergoes a collision is in turn displaced in the same
direction. Consequently, the move only creates a density fluctuation at the extremity of
the chain of particles. The system is not stressed by this more “physical” move, therefore,
the disks do not tend to go back in their original position. This property is confirmed by
the analysis of the displacement auto-correlation function.

For 642 disks at η = 0.710, the optimal speed-up obtained is ∼ 6 for the REC algo-
rithm, ∼ 10 for the reversible version of the SEC algorithm, and ∼ 20 for its irreversible
version (see Table 2.0). Analysis on larger systems show that the speed-up is not much
further increased 8. The optimal speeds up are reached for ℓ larger than a constant value,
about ℓ > 100λ0.

In term of displaced disks, the maximal speed-up factor is equal to ∼ 20 for the best
algorithm, and does not increase much with the system size. In term of CPU time, a

8However, the simulations performed in Fig. 4.18 of Section 4.3.1 show that the event-chain algorithm
can reach speed-ups of ∼ 100 in an non-equilibrium dynamics.

56



Optimal speed-up
N Reversible Irreversible
64 ∼ 6 ∼ 8

256 ∼ 8 ∼ 11
1024 ∼ 9 ∼ 15
4096 ∼ 10 ∼ 20

Table 2.1: Optimal speed-up reached by the SEC algorithm (with respect to the local Metropo-
lis algorithm) at density η = 0.71 as a function of particle number.

move attempt with the local Metropolis algorithm is more time-consuming than a disk
displacement with the event-chain algorithm (as it requires only a few random numbers
for example), which gives another factor ∼ 2. The effective speed-up brought by the
irreversible SEC algorithm is therefore ∼ 40 in CPU time. In number of collision, molec-
ular dynamics has been found to be ∼ 60 times more efficient than the local Metropolis
algorithm, a collision is however time consuming. The effective speed-up brought by the
molecular dynamics for the fastest implementation (see Section 2.1.1) is therefore ∼ 10
compared to the local Metropolis algorithm. The event-chain algorithm is thus more
efficient than the molecular dynamics but by a small factor only (∼ 4). The event-chain
algorithm is however easy to implement and safe from rounding errors (see Section 2.3).

2.2.4 Extensions of the algorithm

The number of CPUs per computer system is increasing. It is therefore interesting to
analyze the possibilities of parallelization for the event-chain algorithm. The algorithm
does not increase its performance for ℓ > 100λ0, it can then be used with ℓ = 100λ0. The
algorithm is then local for systems of size N ≫ 1002 disks, and thus easily parallelizable.
A way to achieve such a parallelization is to split the system in subsystems of size Nsub &
1002 disks, each subsystem being controlled by a single CPU. This basic parallelization
would give a speed-up ∝ Np where Np is the number of CPU.

As for molecular dynamics [94], the event-chain algorithm can be extended to stepped
potentials which mimic continuous potentials. For example, the interaction potential can
be discretized by constant energy steps δE. The energy landscape seen by a particle
is then discrete with an energy step δE. Let E be the energy of a configuration, a
movement similar to the event-chain algorithm can be performed: A particle is displaced
straightly until it collides with a “wall” at the energy level E. The “wall” corresponds to a
collision with another particle, and the collision is reversible. ℓ can then be chosen as the
sum of the displacements in the energy level E. This constitutes an algorithm sampling
configurations whose potential energy is E. On can sample the canonical ensemble by
coupling this algorithm with a local Metropolis algorithm for example. This algorithm
represents an efficient, simple, and parallelizable algorithm for generic particle systems.

2.3 Implementation of the algorithm

In order to perform the large-scale simulation needed in this thesis, the event-chain al-
gorithm must be carefully implemented and optimized. The algorithm used is the ir-
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reversible “xy” version of the event-chain algorithm, which is the fastest version (see
Section 2.2.3).

2.3.1 Optimization of the algorithm

The total displacement ℓ is the only tunable parameter of the event-chain algorithm. As
shown in Section 2.2.3, the efficiency saturates for ℓ larger that a value which does not
increase with the system size (a few hundreds of displaced disks). The efficiency decays
only for ℓ ∼ N. The value of ℓ is therefore not crucial as long as 1 ≪ ℓ ≪ N. We chose
ℓ ∝

√
N.

A number of algorithmic techniques allow us to optimize the algorithm. Let Lcoll be
the collision length of two disks, that is, the distance that a disk can be displaced in a
given direction before it collides with the other disk (see Fig. 2.11). Lcoll should only
be computed for neighboring disks. To that purpose, the disks positions are stored in a
cell scheme. The CPU time needed to perform a displacement is therefore O(1). The
computation of the collision length Lcoll, as well as the update of positions and of the
cell scheme, are the most time consuming part of the program. In the xy version, disks
only move horizontally to the right (+x direction) or vertically to the top (+y direction)
(see Fig. 2.11). These restrictions have several advantages which reduce the computation
time. First, positions are updated along one coordinate only, and if a particle crosses a
cell boundary, the new cell to which the particle belongs is known. Second, the direction
of the movement allows to only explore 6 cells for possible collisions (see Fig. 2.11 again).
Third, the collision length Lcoll is computed without using time-consuming trigonometric
functions: For a +x movement, the collision length between a disk i at position~ri and a
disk j at position~rj is given by

Lcoll = ∆x −
√

(2σ)2 − ∆y2 (2.28)

where (∆x, ∆y) =~rj −~ri.
As the precise value of ℓ is not crucial, the only parameter to optimize for the imple-

mentation of the algorithm is the size of the cells in which particle positions are stored.
Too large cells increase the number of collision tests, while too small cells suppress long
displacements. The optimal size of cells corresponds to about one disk per cell (as in
Fig. 2.11).

2.3.2 Optimization of the code

The CPU time per collision can be used through judicious choice of programming lan-
guage, compiler, and optimization of programming. The algorithm was coded in For-
tran90, which is well adapted to the scientific computation. Fortran90 allows perfect
control of the computation such as the random number generation or the precision of the
variables for example. The compiler used was Gfortran, the computer used is a cluster of
128 CPUs which are 64bytes Intel Xeon E5540 running at 2.53GHz with 8MB of cache
memory.

As individual simulations in this project were running for several months, an important
effort to optimize the code was profitable. Memory requirements can be reduced through
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Lcoll

∆x

∆y

Figure 2.12: Event-chain move in the +x direction. The cell scheme is shown in red. Left:

A single displacement, only 6 cells is explored for a possible collision. Lcoll can be computed
in a simple way without trigonometric functions. If the displaced particle is crossing its cell
boundary, the new cell is necessarily the one on the right. Right: A complete move during the
thermalization of 642 disks at η = 0.706. The displaced disks are colored in dark gray. The
length of the move is chosen to be ℓ ∝

√
N. The only parameter to optimize is the size of the

cells.

a lower precision of the numbers. In a 64 bytes processor, the CPU time needed to
perform a computation with simple (32 bytes) or double-precision (64 bytes) is identical.
However the allocation of the memory is important in the optimization. Indeed, it takes
roughly ∼ 1 CPU cycle to access the registers memory, ∼ 10 cycles to access cache
memory, ∼ 100 cycles to access RAM memory, and ∼ 1000 cycles to access hard-drive
memory. The goal is to store the maximum amount of data in the fastest, but smallest,
memory level. In that sense, the precision of numbers is reduced to single precision.

Other improvements were achieved by optimizing each computation. This was done
by exploring the program with a profiler which computes the exact time spent in each
part of the program. This “fine-tuning”proved efficient. The last step was to find the best
optimization option for the compiler, the simplest one “-O2” for Gfortran being already
very efficient.

The optimized code performs more than 3.1010 displaced disks for systems up to
N = 2562. For larger systems, this speed drops to 1010 displaced disks per hour for a
N = 20482 system. This speed roughly corresponds to one displacement per 100 CPU
cycles, a value that could be still improved by coding the time-consuming subroutines
in assembly language, the code would then be CPU specific. This would allow one to
allocate memory in a precise way; the disks which are likely to be part of the move could,
for example, be already stored in registers or cache memory.
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2.3.3 Stability and verifications

For long runs (up to 1014 displacements), rare events, such as rounding errors due to finite
precision, can occur and disrupt the simulations. In order to prevent such an event, a
simple addition was made to the algorithm: the collision length was taken as max(Lcoll, 0).
In that way, if the collision length is Lcoll < 0 (meaning that the moving disk and collided
disk are overlapping), the (backward) displacement is not accepted. The result is that
the incoming disk does not move, and the collided overlapping disk is displaced forward:
this reduces the overlapped region. As a global consequence, a starting configuration
with many overlapping disks quickly “heals” by itself and becomes a valid configuration:
the algorithm is stable and runs with more than 1014 displacements can be performed
without trouble.

The implementation was carefully tested by comparing the distribution of a given
observable obtained with the event-chain algorithm and with an independent algorithm
such as the local Metropolis algorithm. To that purpose the orientational order parameter
Ψ of Eq. (2.24) is used. In order to increase the efficiency of this test, the simulations
are performed in the transition region (η ∼ 0.7), where a small violation of the balance
condition has large consequences on the stationary distribution. The distribution for
all the algorithms were found to be identical, confirming the validity of their stationary
distribution (see Fig. 2.12).
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Figure 2.13: Comparison of the distribution of |Ψ| (see Eq. (2.24)). Left: Integrated distribu-
tion of |Ψ| for 322 disks at η = 0.71. The irreversible SEC algorithm, the molecular dynamics,
and the local Metropolis algorithm are compared. The distributions are identical. (Ref [5], cf.
Section 7.1). Right: Distribution of |Ψ| plotted for 2562 disks at η = 0.706 with both the local
Metropolis algorithm and the event-chain xy optimized algorithm. The distributions agree well
for 64.106 displacement per particles. (Ref [6], cf. Section 7.3).

Conclusion

The event-chain Monte Carlo algorithm provides an efficient method in order to simulate
hard-core systems. For hard disks, the algorithm was found to be up to ∼ 40 times faster
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than the local Metropolis algorithm (in CPU time), and up to ∼ 4 times faster than the
molecular dynamics (in CPU time again). This speed-up is in part explained by the fact
that the movement does not induce local compression in the system. In the SEC version,
the constant direction also increases the efficiency. Finally, the irreversible SEC version
further increases the speed-up. This provides an example of the benefits of breaking the
detailed-balance condition in Monte Carlo algorithms going beyond the lifted Markov
chains [104].

The event-chain algorithm is easy to implement, parallelizable, safe from rounding
errors, and it can be extended to stepped potentials. This algorithm is thus an interesting
alternative to the local Metropolis algorithm or to molecular dynamics. The event-chain
algorithm has been chosen in this thesis to perform the large-scale simulations of hard
disks in order to study the melting transition (see Chapter 3 and Chapter 4).
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3
Simulation method

In this chapter, I detail the methods used to study the hard-disk melting transition
(see Chapter 4 and Section 7.3). I discuss the choice of the thermodynamic ensemble,
and discuss the statistical error of observables. I then describe the different observables
computed during the simulations.

3.1 Choice of ensemble

Away from a phase transition, thermodynamic ensembles are equivalent in the limit of
large systems. A transition can however break this equivalence. For example, the first-
order transition of hard spheres shows a phase coexistence only in a constant-density
ensemble. Moreover, in finite-size systems, the fluctuations and finite-size effects depend
on the ensemble. These physical effects are complemented by the non-equivalence of
the thermalization time of algorithms, and by technical difficulties of implementation.
The choice of the thermodynamic ensemble is therefore important. The use of different
ensembles would allow one to get complementary information. Nevertheless, the constant-
density ensemble will prove sufficient in Chapter 4 to draw conclusions on the nature of
the hard-disk melting transition.

3.1.1 Constant-density ensemble

In the canonical constant-density (or NVT) ensemble, the volume V and the number of
particles N of radius σ are kept constant. For hard spheres, the temperature T has no
influence on the statistics of the positions; it only affects the velocity distribution. The
system is then fully determined by N and the packing fraction (or density)

η =
Nπσ2

V
, (3.1)

the ratio of the occupied volume over the total volume. The partition function for the
hard-disk system is defined as

QN,V =
1

N!

∫

π(~r1, ...,~rN) dr2N (3.2)
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where π(~r1, ...,~rN) = exp(−βE) equals 1 if there is no overlap and 0 otherwise.

Near a first-order transition, this ensemble shows neither metastability nor hystere-
sis, but rather allows for the phenomenon of thermodynamic phase coexistence which,
itself, is absent in the constant-pressure ensemble. The phase coexistence shows large
thermalization time. Indeed, the coarsening process to separate the phases is slow, about
O(N

√
N) per particle in 2D for a local dynamic [110] (see Section 4.3.1). Another prob-

lem of this ensemble arises in the solid phase. As the length of the box is constant, the
box tends to impose a lattice spacing which commensurate with the box. This can induce
large finite-size effects.

This ensemble is the simplest to implement, as it requires only particle moves. More-
over, algorithms in this ensemble are fast: with the use of a cell scheme, they require a
time O(1) to move one particle. Because of its simplicity and speed, the main simulations
presented in Chapter 4 are performed in this ensemble.

3.1.2 Constant-pressure ensemble

In the constant-pressure (or NPT) ensemble, the pressure P as well as N and T are kept
constant. The volume is then free to fluctuate. For hard spheres, P ∝ T, the system is
therefore totally determined by N and the reduced pressure βP (in order for the pressure
to be dimensionless we use βP(2σ)2 as pressure parameter in the following). The partition
function for hard disks becomes

ZN,βP =
∫

QN,V exp (−βPV) dV. (3.3)

The behavior in this ensemble is similar to the constant-density ensemble near a
continuous transition. At a first-order transition however (see Section 1.3.1), the NPT
ensemble does not show a phase coexistence, the system directly jumps from one phase
to the other.

This ensemble requires particle moves and volume changes. Volume changes are gener-
ally done by the classic Wood algorithm [111], which performs homothetic transformations
in order to change the volume. An efficient method has been developed to discriminate
between a continuous and a first-order transition in this ensemble [112], and is used for
hard disks [91]: The volume distribution in a finite system shows two overlapping peaks
around the transition, corresponding to the two phases which are alternatively explored
(see Fig. 3.0). In the thermodynamic limit, the peaks become infinite and do not overlap
as the creation of an interface would cost free energy. The scaling of the free-energy bar-
rier with system size can be extracted from the double-peak structure and is predicted
to scales as ∆F ∝

√
N at a first-order transition.

This method has two main problems. First, the free-energy barrier increases with
system size. Therefore, the time needed to switch from a phase to another, and thus the
thermalization time, becomes large1. Second, the classic constant-pressure algorithm for
hard disks [111] is slow (see Section 4.4.1), a CPU time of O(N) per particle is needed
to thermalize, and this problem has not yet been overcome.

1This issue can be overcome by an external field allowing regions which have a low probability to be
crossed. The samples have then to be re-weighted [113, 114]
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Figure 3.1: Density distribution in a constant-pressure simulation for a system of 322 particles
at βP(2σ)2 = 9.13. The interface free energy can be computed from the ratio between the
heights of the two peaks and of the height of the minimum between them. Wood’s classic
algorithm was run for a few days, but the datas are still noisy.

The main simulations presented here have not been performed in this ensemble, how-
ever a few simulations in the Gibbs ensemble (which requires volume changes, see Sec-
tion 4.4.1) were performed to obtain qualitative results.

3.1.3 Grand-canonical ensemble

The last main ensemble is the grand-canonical (or µVT) ensemble, where the chemical
potential µ, as well as V and T are kept constant. The number of particles then fluctuates
around its mean value. As for the pressure, µ ∝ T for hard spheres, the system is therefore
totally determined by V and the parameter βµ. The partition function for hard disk can
be defined as

Zβµ,V = ∑
N

QN,V exp (−βµN) . (3.4)

This ensemble is similar to the constant-pressure ensemble and shows a similar behavior
at a first-order transition.

This ensemble requires moves as well as insertions and removals of particles. The
removal of a particle is straightforward, however the insertion of particle requires free
space in the system. Particles can be inserted randomly in the whole system and rejected
when they overlap. This sampling can be slow at high densities, however it has the same
complexity of O(1) per inserted particle (see Section 4.4.1).

The little CPU time needed to sample the number of particles renders the grand-
canonical ensemble a better choice than the constant-pressure ensemble. This ensemble
is however not used in the main simulations of this thesis.
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3.2 Statistical errors

The samples generated by the Markov chain allow one to compute averages of observables.
These samples are correlated and therefore two main questions arise. The first concerns
the sampling rate in the chain, and the second concerns the estimation of the statistical
error.

3.2.1 Sampling rate

Let tsim be the total simulation time of a Markov-chain Monte Carlo simulation. tsim
is the total number of step of the Markov chain, and is taken continuous for simplicity.
An observable O with finite variance is extracted from the Markov chain after ∆t time
steps. For a large number n = tsim/∆t of uncorrelated samples, the statistical error on
the mean value of O whose standard deviation is σ =

√

〈(O − 〈O〉)2〉 is given by

Err(n) =
σ√
n

. (3.5)

Let τ be the correlation time, that is, the typical time needed for the chain to reach
the thermodynamic equilibrium. For ∆t ≪ τ, the samples are correlated and Eq. (3.5)
underestimates the error. Also, the large number n of data requires memory and CPU
time. In contrast, for ∆t ≫ τ, data are uncorrelated (and Eq. (3.5) is correct), but the
number n of data is small. The objective is to increase ∆t to an optimal value.

In the limit of ∆t → 0, and for an initial condition already thermalized, the error
can be computed through the auto-correlation function C(t). With x = O − 〈O〉 and
σ2 =

〈

x2
〉

, C(t) is given by

C(t) =
〈x(0)x(t)〉

σ2
. (3.6)

The mean value of x is then

M(tsim) =
1

tsim

∫ tsim

0
x(t) dt. (3.7)

The error, defined as the standard deviation of the mean value, satisfies then

Err(tsim)2 =
〈

M(tsim)2
〉

=
1

t2
sim

∫ tsim

0

∫ tsim

0

〈

x(t)x(t′)
〉

dt dt′ (3.8)

=
2σ2

t2
sim

∫ tsim

0

∫ t

0
C(t′ − t) dt dt′, (3.9)

which for tsim larger that the largest time scale τ of C(t) becomes

Err(t) ∼
∞

√

2σ2De

tsim
with De =

∫ ∞

0
C(t) dt. (3.10)

The statistical error is then ∝ 1/
√

tsim, which was expected as for a chain where tsim ≫ τ,
the chain can be cut into independents parts of size ∼ τ. The error thus behaves as a

66



diffusion process and the diffusion constant De is given by the integrated correlation
function.

The error in Eq. (3.10) is the minimal error given by a simulation time tsim. For a
finite time step ∆t, the discretization of the integral in Eq. (3.10) leads to the expression

Err(t) ∼
∞

√

2σ2D′
e

tsim
with D′

e =
∞

∑
i=0

C(i∆t)∆t. (3.11)

For a simple exponentially decaying function C(t) = exp (−t/τ), the discretization error
satisfies

D′
e − De

De
≤ exp (∆t/τ) − 1 , (3.12)

it is therefore sufficient to choose ∆t only a few times smaller than τ. The case is more
complex when the auto-correlation function has many time scales. If C(t) is a sum of
exponentials

C(t) =
1

σ2 ∑
i

σ2
i exp−t/τi with ∑

i

σ2
i = σ2, (3.13)

the diffusion coefficient satisfies σ2De = ∑ σ2
i τi, and one has then

D′
e − De

De
≤ ∑ σ2

i τi(exp ∆t/τi − 1)

∑ σ2
i τi

. (3.14)

We see in Eq. (3.14) that even a small τi can lead to a large discretization error if σi is
large. In that case, it would be necessary to sample with ∆t ≪ τi. In practice, the method
consists of sampling with the shortest time step in the limit of memory and computer
time. In the simulations of this thesis, the extraction time steps are different for each
observable, in order to lose little information.

3.2.2 Error estimation

The discussion above explained how to obtain the smallest error possible. Here, we
describe how to compute this error. The estimation of the error on a given observable is
an important topic of the Markov-chain Monte Carlo method. There are two problems
related to the error estimation in a Markov chain. First, the chain has to be longer than
the largest time scale of the system (the thermalization or correlation time). Second, the
chain has to be long enough in order to estimate the standard deviation of the computed
observable. If both conditions are satisfied, the auto-correlation function can then be
computed, and the error is obtained through Eq. (3.11).

However, there are no rigorous arguments to validate if the chain has been run longer
than the thermalization time. This problem is a major aspect of the Markov-chain Monte
Carlo method and is the subject of Part II. In practice, long simulations are performed on
small systems, then the system size is increased while the thermalization time behavior
is computed. In a general way, the simulations give information about the physics of the
system, which in return gives information about the thermalization time. This method
is not rigorous and has to be used carefully.
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In this thesis, we estimated the error by a more simple and robust method than
computing the auto-correlation function. A Markov chain was run for a long time (one
year of computation), its only purpose being to compute the thermalization time of the
system and extract a few independent configurations. These configurations are the initial
conditions of independent short runs used to compute the observables. The number of
initial configurations have to be large enough in order to estimate the standard deviation
σ of the observable. In this thesis, n = 64 configuration were always used.
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Figure 3.2: Example of error estimation for the orientational correlation function of 10242

particles at η = 0.700. Each of the 64 simulations are independents, allowing a safe computation
of the standard deviation. (Ref [6], cf. Section 7.3).

The value of an observable O is then directly computed by averaging over the n runs
(see Fig. 3.1),

〈O〉 =
1

n ∑
runs

〈O〉single run . (3.15)

The standard deviation is given by

σ =
√

〈(O − 〈O〉)2〉, (3.16)

and the statistical error by

Err = σ/
√

n. (3.17)

This method is simpler, safer, and more adapted to parallel computing than the compu-
tation of the integrated auto-correlation function of Eq. (3.11) only.

3.3 Computation of observables

Monte Carlo simulations give access to any observable. Here we discuss the order param-
eter and control variables relevant for the melting transition in hard disks.
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3.3.1 Orientational order parameter

The orientation defined in Section 1.3.2 with the displacement field ~u(~r) can be defined
in a particle system as the angle θj,k of a bond ~rk −~rj connecting two neighboring disks
j and k with respect to a given axis (see Fig. 3.2). As the lattice in the hard-disk solid is
triangular, the angles θj,k and θj,k ±π/3 represent the same orientation of the system. An
appropriate orientation of the system in order to have only one value of the orientation
per disk is then 6θj,k. Therefore, the local orientational order parameter ψj of the disk j
is defined by

ψj =
1

nj
∑
〈k,j〉

exp
(

i6θj,k

)

, (3.18)

where the sum goes over the nj neighbors of disk j (see Fig. 3.2 again). For a perfect

θj,k

Figure 3.3: Left : Local orientational bond-order parameter ψj of the disk j. The argument
of the parameter corresponds to 6 times the angle of a bond, and it defines the orientation of
the local hexagonal neighborhood. Right : Orientation field of a hard-disk configuration at a
density η = 0.7. (Ref [6], cf. Section 7.3).

hexagonal neighborhood around the disk j, the angle of this complex-valued order param-
eter corresponds to 6 times the angle of a bond. Moreover, the magnitude of ψj measured
the degree of local order: |ψj| = 1 for a perfect hexagon while |ψj| ∼ 0 for a disordered
neighborhood. The vector (Re(ψj), Im(ψj)) is the analogue of a spin in the XY model.
This order parameter requires a definition of neighboring disks, which is done in this
thesis through the Voronoi tessellation (Delaunay triangulation [115]): the disk j and k
are neighbors if the midpoint of the line connecting their centers is closer to j and k than
to any other disk.

It has proved helpful to directly visualize the field. This can be done in the same
way as for XY spins (see Section 1.2.3). The local orientations are colored depending
on the argument of the local orientational parameter. The color follows a red-green-
blue colorbar going from blue for orientations pointing in the projection axis, to red for
the opposite direction. This visualizing method does not differentiate two orientations
symmetric toward the projection axis, it is however easy to interpret (see Section 4.1).

The global orientational order parameter of a configuration can then be computed by
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a b c d

cos α = -1 0 1

Figure 3.4: Close view of the construction for the visualization of the orientational field. a:
Hard disks b: Voronoi construction, the arrows represent the local orientations. c: Coloration
of the orientation depending on their projection toward a given axis. d: The Voronoi cells are
colored. (Ref [6], cf. Section 7.3).

averaging the local orientation on the N disks

Ψ =
1

N

N

∑
j=1

ψj. (3.19)

In an infinite system, Ψ is finite in the solid phase and zero otherwise. However, Ψ

is also finite in a hexatic (or in a liquid) because of the finite size of the sample. A
finite-size analysis is then required. Information of further interest is given by the spatial
orientational correlation function. The orientational correlation between two disks i and
j is given by ψ∗

i ψj/
〈

|ψ|2
〉

. The orientational correlation function Co(r) at a distance

r is obtained by averaging the correlations of pairs whose distance satisfies r − δr/2 <
|~rj −~ri| < r + δr/2. The discretization step δr of Co(r) is chosen to be δr ∼ σ. In a
sample it is not necessary to chose the N(N − 1)/2 pairs, a number of pairs ∝ N leads to
little loss of information. The extraction rate is chosen to be 10 × N pairs each 103 × N
displacements.

3.3.2 Defects and density

The KTHNY theory is based on defect unbinding. A disk with five neighbors is identified
as a positive disclination, while a disk with seven neighbors as a negative disclination.
The dislocation are seen as a pair of five and seven disclinations (see Section 1.3.2). A
view of these defects is seen on Fig. 3.4.

The number of defects can give insights about the nature of the phase. A more relevant
observation is to determine whether the defects are bound or not. In a system with
periodic boundary conditions, the number of opposite defects are always equal (the total
Burgers vector is zero as well as the total winding number). The strategy to distinguish
between bound pairs and free defects is then (as for vortices, see Section 1.2.3) to compute
the Burgers vector (or winding-number) on a subsystem of increasing size l. In the case of

bound pairs, the total Burgers vector (or winding number) behaves as ∝
√

l, while in the
case of free defects, the Burgers vector (or winding number) is ∝ l. This procedure is hard
to apply in practice (and is not applied in this thesis) as the density of free defects is much
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lower than the density of bound defects; it requires large subsystems to get significant
results.

cos α = -1 0 1 η = 0.6 0.7 0.8

Figure 3.5: Close view of the defect and local density visualization Left: Disks with seven
neighbors (negative disclinations) are colored in black while disks with five neighbors (positive
disclination) are colored in gray. Right: To visualize the local density, the Voronoi cells are
colored depending on their area. The large local fluctuations impose a coarse-graining in order
to visualize large-scale density fluctuations (see Section 4.1 and Section 7.3).

The local density of the system is directly computed with the area of the Voronoi cell
of each disk (see Fig. 3.4), and colored as for the orientation field. However, the local
fluctuations of density are large, and this prevents distinguishing between two phases
of slightly different densities. The density of a cell is thus replaced by the averaged
density ηcg of the neighboring cells up to a distance of 50σ. This coarse-graining allows
visualization of large-scale density fluctuations (see Fig. 4.1).

3.3.3 Positional order

The positional order is defined by the structure factor S(~K) at the first Bragg peak ~K.
For N → ∞,

S(~K) =
1

N

∣

∣

∣

∣

∣

∑
n

exp i~K ·~rn

∣

∣

∣

∣

∣

2

(3.20)

=
1

N ∑
n,m

exp i~K · (~rm −~rn). (3.21)

As the computing time is O(N) for the evaluation of Eq. (3.20) and O(N2) for Eq. (3.21),
the former choice has been widely used [78, 25]. However, Eq. (3.21) should be used.
Indeed, the relevant quantity is exp i~K · (~rm −~rn), and in a finite system with periodic
boundary conditions, the vector~rm −~rn should be the shortest one. In the first definition
(Eq. (3.20)), this choice is not possible, and nearby disks (n, m) separated by a boundary
count as being distant and thus enhance the positional order. Moreover, Eq. (3.21) can
be computed in O(N) by random sampling without loss of information.

The behavior of the structure factor with system size reveals the positional ordering
of the system. One can also compute the positional correlation function defined as

C~K(r) =
〈

exp i~K · (~rm −~rn)
〉

d(i,j)=r
. (3.22)
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The above observables can be computed by extracting the value~rm −~rn of pairs of disks
(n, m), and computing ~K · (~rm −~rn). However, this method requires knowledge of the

position of the first Bragg peak ~K before the simulation. This problem could be solved
under the approximation that the peak’s position is at the same position as the peak
given by the perfect triangular lattice ~kperf [78, 25]. The absolute value |~kperf| = kperf

could then be computed with the density of the system only,

kperf =
2π

a0

√
3/2

with a0 =

√

V

N
√

3/2
, (3.23)

the only varying parameter being the orientation which can be computed through the
global orientational order parameter Ψ. However, this approximation is incorrect in the
hard-disk system, as the value of kperf differs from the value of kpeak, even at high densities
(see Fig. 3.5). This difference is explained by the defects in the system, and especially by
the vacancies: their density is always finite as their elastic energy is finite. This difference
in the value of ~K leads to incorrect positional order for a distance L ≫ 1/|kpeak − kperf|.
For η = 0.720, |kpeak − kperf| ≃ 0.005/σ. The correlation function computed with kperf is
therefore not valid at a distance larger than r ∼ 1/(0.005/σ) = 200σ. It is thus crucial

to use the appropriate value of ~K in order to access the long-distance behavior of the
positional order.
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η
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(r
)

r/σ
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Figure 3.6: Left: First Bragg peak for 10242 disks at η = 0.718, the position kpeak of the
maximum of the peak is not the perfect triangular lattice position kperf. Center: Bragg peak
kpeak vs. density for different system sizes. Even at high density, kpeak − kperf ≃ 0.005/σ because
of the finite concentration of defects. Right: Positional correlation function at η = 0.720 with the
two values of |~K|: the correlation computed with kperf is underestimated for distances r > 200σ.
(Ref [6], cf. Section 7.3).

In order to avoid the problem of knowing |~K|, the values of ~rm −~rn are stored in a
2D histogram. This corresponds to computing the 2D pair-correlation function g(~r). Let
ρd(~r) be the average density seen by a disk. The pair-correlation function is defined by
g(~r) = ρd(~r)/ρ0 where ρ0 is the density of the system. By definition, g(~r) corresponds
to the above histogram normalized in order to have 〈g(~r)〉 = 1.
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As the system performs global rotations, the vectors~rm −~rn are rotated by the total
orientation of the system arg Ψ. This allows the averaging of g(~r) on many samples. In
order for the first Bragg peak to be properly computed, the resolution of the histogram
has to be δr ≪ σ. g(~r) requires then a large amount of memory, which is however not
prohibitive. First, the symmetry of the triangular lattice allows storage of the values of
g(r, θ) for only θ ∈ [0, π/6] without information loss. Second, a resolution of δr = σ/5
is enough. For the largest system of 10242 disks, there is therefore only ∼ 107 values to
store for the histogram.

The structure factor is computed with a Fourier transform of g(~r)2:

S(~k) = 1 + ρ0

∫

g(~r) exp i~k ·~r d2r , (3.24)

which allows the value of ~kpeak to be determined. The positional correlation function is
then computed through g(r, θ) in polar coordinates

C~kpeak
(r) =

1

2πg(r)

∫

g(r, θ) exp i~kpeak ·~r dθ. (3.25)

C~kpeak
(r) shows oscillations, and this can prevent the determination of the positional or-

der. These oscillations are removed by using g(r, θ)− 1 instead of g(r, θ), or by averaging
with a Gaussian window as

Cav
~k

(r) = const.

∫

C~k
(r′)g(r′) exp−[(r′ − r)/(2σ)]2 dr′. (3.26)

When g(~r) is known, there is however a simpler way to access the positional correla-
tions which does not require any Fourier transform. Near the solid, g(~r) is a lattice of
peaks. The decay of these peaks with distance gives the positional correlation function.
A cut along a given axis can be performed in order to look at the decay (see Fig. 3.6 and
Fig. 4.13).

In the liquid or hexatic phase, the positional correlation function is not defined as
these phases are not oriented in the thermodynamic limit. In practice, ξp is computed
only in the hexatic phase, where the system is always oriented in a finite system. However,
we note that the correlation length ξp is not rigorously defined. As for the orientation,
the extraction rate is 10 × N pairs each 103 × N displacements.

3.3.4 Pressure and chemical potential

In the constant-density ensemble, where the volume V is a control parameter, the pressure
is an observable which enters the equation of state. The canonical pressure is given by:

P = −∂F(N, V, T)

∂V
, (3.27)

where F(N, V, T) = −kBT ln QN,V and QN,V is given by Eq. (3.2). This value can be
computed in a simulation using the virial theorem:

P =
NkBT

V
+

1

2

〈

∑
i,j

~f (~ri −~rj) · (~ri −~rj)

〉

. (3.28)

2g(~r) − 1 can also be used in order to remove the central peak.
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Figure 3.7: Pair-correlation function g(~r) for different densities. Left: η = 0.696, the system
is not oriented, g(~r) is isotropic (a slight anisotropy is observed due to the residual orientation
in a finite-size system). Right: η = 0.720, the system is oriented, g(~r) is a lattice. The structure
factor as well as the positional correlation function can be computed. The decay of the peaks
along an axis (white line) is a direct way to access the positional order without a Fourier
transform.

For hard disks, the potential is discontinuous, the virial pressure [116] can be computed
through:

P =
N

V
kBT + 2πσ2

(

N

V

)2

g(2σ+)kBT (3.29)

where g(2σ+) is the contact value of the isotropic pair correlation function. The dimen-
sionless pressure βP(2σ)2 is then

βP(2σ)2 =
4

π
η[1 + 2ηg(2σ+)]. (3.30)

The isotropic pair-correlation function is computed with high precision near r = 2σ. The
contact value g(2σ+) is then obtained through a fit of this function with a polynomial
(see Fig. 3.7). In order to compute the statistical error, the fits are performed on each of
the 64 independent runs. The high-precision computation of g(r) is done by extracting
each pair of neighboring disks (O(N)) each 50 × N displacements.

The chemical potential µ as a function of volume is also an equation of state of the
canonical ensemble. If the equation of state P(v) is already known, the computation of
the chemical potential is not needed as P and µ are related through the Gibbs-Duhem
relation

Ndµ = VdP. (3.31)

However, µ(V) can be used to confirm the results obtained through the virial pressure.
The chemical potential is defined in the constant-density ensemble by

µ =
∂F(N, V, T)

∂N
. (3.32)
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Figure 3.8: Isotropic pair-correlation function g(r) near the contact value 2σ for one of the
64 runs at η = 0.708, N = 10242. A polynomial fit is performed in order to extract the contact
value g(2σ+) which yields the pressure.

Other definitions of QN,V can be used to turn it dimensionless, with the single consequence
of adding a constant to µ, a non-issue as only differences in µ are relevant. µ can be
computed by the Widom insertion method [117]: An extra disk is randomly inserted
(with a uniform distribution) in the system. If the disk does not overlap other disks the
attempt is successful, and failed otherwise. The probability for successful insertion pi is
computed. Direct computation of Eq. (3.32) gives

βµ = ln
N

Vpi
, (3.33)

and as additive constants are irrelevant, the chemical potential is computed in this thesis
through

βµ = ln
η

pi
. (3.34)

The probability of insertion is low at high densities (pi ≃ 2.5 × 10−6 for η ∼ 0.7, see
Section 4.1.2), and a large number of trials are performed, of the order of N each 5 × N
displacements.

Conclusion

The Monte Carlo method in the constant-density ensemble, with the use of the event-chain
algorithm, provides a simple yet efficient method to study the hard-disk system. The tools
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discussed in the present chapter will allow us to study the hard-disk melting transition
in Chapter 4. The direct visualization will reveal to be as useful as the quantitative
computation of observables.
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4
Hard-disk melting transition

In this chapter, I present the results obtained for the melting transition of the hard-disk
system. The simulations were obtained with the event-chain algorithm (see Chapter 2).
The system displays a phase-coexistence region, and thus undergoes a first-order transi-
tion. I then show that the coexisting phases are liquid and hexatic. The hexatic-solid
transition is found to be of the KT type. I finally address the question of thermalization
and finite-size effects. These results have been published in [6] (see Section 7.3).

4.1 Phase coexistence

As seen in Chapter 1 (see Section 1.3.1), a first-order transition in a constant-density
ensemble (for a particle system) shows a region of phase coexistence. This property is
not shared with continuous transitions. The hard-disk system displays such a coexistence,
and therefore undergoes a first-order transition.

4.1.1 Direct visualization

A simple and convincing way to evidence the phase coexistence is to visualize the orien-
tation field of a large thermalized configuration. The projection of the orientation field
on the main orientation (see Section 3.3.1) for a configuration at η = 0.708 shows that
the system is separated into two distinct phases. In the first phase, the orientation is
maintained over the whole system, and few defects are present. In the second phase, the
orientation is disordered, and many defects are present (see Fig. 4.0).

The coexistence of the two phases in the constant-density ensemble is due to their
different densities at the transition. The distribution of the local density ηcg (coarse
grained on a radius of 50σ) is bimodal (see Fig. 4.0 e), and the two peaks correspond
to ηcg ∼ 0.700 and ηcg ∼ 0.716. In principle, the system could still be composed of
patches at these two densities. However, the orientation does not confirm this picture.
The visualization of the density field (see Fig. 4.1) at different densities confirms the
phase separation: the oriented phase matches the high-density region η ∼ 0.716, and the
disordered phase matches the low-density region η ∼ 0.700.

77



b

c

d

e

0

20

40

60

80

100

120

0.69 0.7 0.71 0.72 0.73

π(
η c

g)

ηcg

conf. a
η=0.700

0.708
0.716

a -1 0 1

500 σ : projection axis (sample orientation)

Figure 4.1: Visualization of the phase coexistence at η = 0.708 for 10242 disks. a: Projection
of the orientation on the main orientation. The system shows an oriented phase with a few
defects (blue part, see detailed view b and c), which coexists with a disordered phase with
many defects (multicolor part, see d). The two interfaces close onto themselves via the periodic
boundary conditions. A free dislocation is seen in the ordered phase (b) which hints at the
hexatic nature of the ordered phase. e: Distribution of the coarse-grained local density ηcg.
The density is bimodal, with a peak at ηcg ∼ 0.700 and another one at ηcg ∼ 0.716.(Ref [6], cf.
Section 7.3).
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Figure 4.2: Synopsis of the orientation (upper panels) and coarse-grained local density ηcg

(lower panels) of configurations of 10242 disks at different densities. The disordered phase has a
low density (η ∼ 0.700), while the ordered phase has a high density (η ∼ 0.716). The interface
minimizes its length in the periodic box: a (circular) bubble or a (flat) stripe depending of the
density and system size. (Ref [6], cf. Section 7.3).
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The evolution of the system with density follows what is expected for a first-order
transition. At a density higher than η = 0.700 (η ∼ 0.704), a “bubble” of the high-
density phase appears in the system. The phase separation brings an extra free energy to
the system ∆F = γℓ where γ is the interface tension and ℓ is the length of the interface.
The interface therefore minimizes its length, and this explains the bubble shape. The
bubble would become asymptotically circular in the thermodynamic limit (N → ∞). At
an intermediate density (η ∼ 0.708), the two phases have the same volume; each phase
has a “stripe” shape. The two interfaces close onto themselves via the periodic boundary
conditions, and would become flat in the thermodynamic limit. At a higher density
(η ∼ 0.712), a bubble of the low-density phase is surrounded by the high-density phase.
The bubble finally disappears at η ∼ 0.716 (see Fig. 4.1).

These direct observations indicate that for N = 10242, the hard-disk system displays
a phase coexistence in the region η ∈ [0.700, 0.716]. This signals a first-order transition.
The correlation lengths of these phases are smaller than the system size, therefore the
first-order nature of the transition remains in the thermodynamic limit (see Section 4.3.2).

4.1.2 Equation of state

In order to quantitatively confirm the above observations, the equation of state (pressure
or chemical potential over volume) is computed in the vicinity of the transition.

Pressure in a finite-size system

As seen in Chapter 1 (see Section 1.3.1), the first-order nature of the transition is the
result of enforcing - for an infinite system - the convexity of the free energy (see Eq. (1.43)).
The pressure takes a constant value P∗ during the phase transformation. This result is
valid for an infinite system as the interface free energy ∆F = γℓ between the two phases
can be neglected. Indeed, the length of the interface scales as ℓ ∝

√
N whereas the bulk

free energy scales as F ∝ N.
In a finite system, the interface free energy ∆F cannot be neglected, and the total free

energy of the system is not necessarily convex. As ∆F ∝ ℓ, P(v) shows a loop, which is
thermodynamically stable (see Fig. 4.2). This loop, and the negative compressibility it
implies, is in agreement with thermodynamics.

As for the van der Waals loop, the behavior of the system at the thermodynamic limit
can be obtained through the Maxwell construction. The extra free energy per particle
∆ f = ∆F/N for a system of size L =

√
N at a specific volume v can be computed by

integrating P(v) with respect to P∗: as P = −∂ f /∂v,

∆ f (v) = fL − f∞ =
∫ v

v1

[P∗ − P(v′)] dv′. (4.1)

For v such as P(v) = P∗, this corresponds to the hatched area of Fig. 4.2. This allows
computation of the interface tension γ for this system. The fact that ∆ f → 0 for an
infinite system confirms that the loop vanishes in the thermodynamic limit.

A continuous transition can also give a loop in a finite-size system [118], however the
scaling of the interface free energy ∆ f would be different [112]. The finite-size scaling
of ∆ f discriminates between a first-order and a continuous transition: ∆ f ∝ 1/L in a
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Figure 4.3: Qualitative behavior of the free energy and pressure in a constant-density ensemble
for a first-order transition in the thermodynamic limit (red curve) and in a finite-size system
(blue curve). Left: The interface tension brings an additional free energy ∆F to the system
which scales as ∆F ∝

√
N. Right: The extra free energy induces a stable loop in the equation

of state, the loop vanishes in the thermodynamic limit.

first-order transition while ∆ f decreases faster for a continuous transition. This method
works for the q-state Potts model. It is known as the Lee-Kosterlitz method [112].

The behavior of an interface depends on its dimension [119]. A 1D interface with an

interface tension γ 6= 0 is “rough”, in the sense that its width scales as
√

ℓ (see Fig. 4.3).
However, the interface is“oriented”: the orientation is kept constant at large distances (see
Fig. 4.3 again). This behavior justifies the assumption that ℓ ∝

√
N for large systems.

L

√L

Figure 4.4: Schematic 1D interface with a tension γ 6= 0, the width is ∝
√

L but the orientation
is kept constant. The total length of the interface for large distances is ℓ ∝ L.

Hard-disk equation of state

The equation of state (computed through the virial pressure, see Section 3.3.4) for hard
disks confirms the picture of a first-order transition (see Fig. 4.4). A loop in the transition
region is observed, and reduces with system size. The Maxwell construction confirms the
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limiting values of η ∼ 0.700 and η ∼ 0.716.
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Figure 4.5: Equation of state P(v) (or P(η), upper scale) for different system sizes. The
results for each size are fitted by a 5th order polynomial. The observed vanishing loop is due to
interface effects. The Maxwell construction confirms the value of the two coexisting densities
η ∼ 0.700 and η ∼ 0.716. The N = 10242 and N = 5122 pure-phase branches are identical, the
thermodynamic-limit behavior is reached for these densities. (Ref [6], cf. Section 7.3).

The hatched area of Fig. 4.4 corresponds to the dimensionless free energy per particle
β∆ f of the interface at η = 0.708. It is then possible to apply the Lee-Kosterlitz method

[112] in this ensemble. Clearly, β∆ f ∝ 1/
√

N. This again confirms the first-order nature
of the transition (see Fig. 4.5).

The interface tension γ is computed from the free energy difference ∆ f through

∆F = γℓ. (4.2)

The system at η = 0.708 has two interfaces of length equal to the system size. This gives
ℓ = 2σ

√

Nπ/η, and therefore the dimensionless interface tension is

γβ2σ = β∆ f
√

η/π. (4.3)
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Figure 4.6: Left: Interface free energy per particle β∆ f as function of system size. The scaling
is consistent with the presence of an interface. Right: Interface tension measured with β∆ f .
For N = 10242, γβ2σ ≃ 0.0094.

For N = 10242, the interface tension is γβ2σ ≃ 0.0094. The interface tension is some-
times seen as a consequence of energetic interactions between particles. This is actually
a consequence of both entropy and energy. In the case of hard disks, its origin is only
entropic: at the interface, the disks are neither from a phase nor from the other, the ac-
cessible space for both phases is therefore reduced. γβ2σ roughly corresponds to the free
energy needed to add an extra disk to the interface. This value can be compared to the
typical kinetic energy of a disk βek = 1, which is two orders of magnitude higher. It can
also be compared to a system with attractive interactions as water. The energy needed to
add an extra atom to a liquid-gas water interface at T = 20◦C is roughly βγwatera2

0 ∼ 0.2.
The tension of the interface between the coexisting phase of hard disks is then twenty
times smaller, and therefore, the interface exhibits large fluctuations in small systems.
This makes the two-phase state difficult to observe and implies large thermalization times
(see Section 4.3).

The finite-size effects outside of the coexistence phase are small for the largest systems.
This is shown by the collapse of the pure-phase branches for 5122 and 10242 disks (see
Fig. 4.4). The pressure P∗ computed by the Maxwell construction reaches a plateau for
the largest systems. For 10242 disks, the pressure is β(2σ)2P∗ ≃ 9.185 (see Fig. 4.6).
The densities of the coexisting phases, ηL and ηH, also reach a plateau for the largest
systems (see Fig. 4.6). For 10242 disks, their values are ηL ≃ 0.6999 and ηL ≃ 0.7165.

These limiting densities and pressure allow computation of the latent heat of this
transition. The specific latent heat in a first-order transition is defined as the energy
needed to transform a particle of phase 1 in a particle of phase 2 in a (N, P, E) ensemble.
This corresponds to the difference of specific enthalpy ∆h = h2 − h1 (h = H/N with
H = E + PV). As P is constant in this ensemble,

∆h = P∆v + ∆e (4.4)

where e is the specific internal energy of the system. Moreover, P/T = const. in the
transition region, therefore T = const. and ∆e = 0 for hard disks (as the internal energy
is only kinetic). The dimensionless specific latent heat thus becomes

β∆h = βP∗ × (v2 − v1). (4.5)
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Figure 4.7: System-size dependence of observables at the transition Left: Pressure P∗ obtained
by the Maxwell construction. P∗ reaches a plateau at β(2σ)2β(2σ)2P∗ = 9.185. Center: Low
(ηL) and high (ηH) densities of the coexisting phases. The two quantities converge toward
ηL = 0.7000 and ηH = 0.7165. Right: Specific latent heat, the value of β∆h = 0.238 is reached
for the largest system.

For 10242 disks, β∆h ≃ 0.238 (see Fig. 4.6) (the latent heat of the liquid-solid water
transition, at T = 0◦C and P = 100kPa, is β∆h ∼ 2.5).

The plateau reached by the observables is a sign that the relevant correlation lengths
are smaller than the system size, and thus that the results are valid in the thermodynamic
limit. This is confirmed in Section 4.2.

Shape of the loop

As seen in this section, the equation of state in a finite-size system shows a loop vanishing
in the thermodynamic limit. This loop is indeed seen in Fig. 4.4. Another observation of
the equation of state is that for 10242 disks, the shape of P(v) is qualitatively different
from the one of the smaller systems. The equation-of-state loop in this very specific
system was first studied by Mayer and Wood in 1965 [67], and also more generally for
first-order transitions [120, 121]. In order to understand the shape of the loop, we solve
the model of Mayer and Wood in the limit of large systems.

We consider the system of N particles in a volume V (specific volume v = V/N)
in a square box with periodic boundary conditions. P is the pressure of the system. In
the system, two phase coexist. Their number of particles, volume, pressure, and chemical
potential are N1, V1, P1, µ1 respectively for the phase 1, and N2, V2, P2, µ2 respectively for
the phase 2. The specific volumes of this phases are noted v1 and v2. The above quantities
in the thermodynamic limit are labeled by a ∗. The model assumes that the pressure
in the pure-phase branches are proportional to the volume: P1(v1) = −K × (v1 − v1∗).
This assumption is valid in the limit of large systems. For simplicity, it is assumed that
the branches are symmetric. The equation for the chemical potential is directly obtained
from Eq. (3.31).

The interface between the two phases has a free energy ∆F = γℓ and thus mini-
mizes its length in the thermodynamic limit. For a square box with periodic boundary
conditions, two types of interface are competing: a circular interface of size ℓb (bubble
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configuration), or two flat interfaces of size ℓs (stripe configuration). As ℓb = 2
√

πV1

and ℓb = 2
√

V, a bubble configuration is expected for V1 < V/π and V2 < V/π, while
a stripe configuration is expected for V/π < V1 < V − V/π.

In the stripe configuration, the interface is flat. This gives P1 = P2 = P∗. A flat
region in the equation of state is therefore expected (see Fig. 4.7).
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Figure 4.8: Asymptotic shape of the equation of state for the value of K and γ computed
for 10242 disks. The flat part and the peak are qualitatively seen for 10242 disks. The large
fluctuations of the interface, as well as the size dependence of the interface tension, prevent the
system from showing an asymptotic shape. This shape would be seen for larger systems.

In the bubble configuration where V1 < V2, the equations are






































P1 = −Kδv1 + P∗ with δv1 = v1 − v∗1
P2 = −Kδv2 + P∗ with δv2 = v2 − v∗2
P2 − P1 = γ/R with R =

√
πV1

µ1 = µ2 which gives δv1(v1 + v∗1) = δv2(v2 + v∗2)
V1 + V2 = V

N1 + N2 = N

. (4.6)

Mayer and Wood solved these equations by a Taylor expansion assuming that v2 − v1 ≪
v. This does not converge to the exact result in the thermodynamic limit. In the limit
of large systems δv1 ≪ v1 and δv2 ≪ v2, it is thus preferable to perform an expansion
over these small values. Let Pb be the total pressure in the bubble configuration. At the
first order, the above equations give

Pb(x) = P∗ − 1√
N

1√
x

γ

√

πv∗2
v∗2 − v∗1

+ o(N−1/2). (4.7)
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This result is not valid for x → 0 as the pressure in the bubble would be infinite. Near
x ∼ 0, there is a competition between a pure-phase state and a bubble state.

The free energy per particle for a bubble state fb is from Eq. (4.7)

fb(x) =
1√
N

√

x

v∗2 − v∗1
2γ

√

πv∗2 − P∗x + f (0) + o(N−1/2). (4.8)

This actually corresponds to the free energy given by the length of the interface for the
phases in the thermodynamic-limit proportion. However, it does not mean that δv1 = 0
or δv2 = 0 in this approximation. Eq. (4.6) gives the free energy in the pure phase

fp(x) =
1

2
Kx2 − P∗x + f (0). (4.9)

The bubble appears for x = xn when fb(xn) = fp(xn). This gives

xn = N−1/3

(

πv∗2
v∗2 − v∗1

)1/3 (

4γ

K

)2/3

+ o(N−1/3). (4.10)

The nucleation point scales as N−1/3, which induces peaks in the pressure curve near
the boundaries of the coexistence region (see Fig. 4.7). However, the nucleation point
does not change the ∝ 1/

√
N scaling of the area of the loop (β∆ f ). In d-dimensions,

the same calculus for the nucleation point gives xn ∝ N−1/(d+1). The equation of state
is then completely determined (the part where V2 > V1 is completed by symmetry).
The equation of state shows discontinuities due to the nucleation of a bubble (with a
size ∝ N2/3 at the nucleation point) or to the discontinuous change of the interface shape
(bubble to stripe). This is allowed by thermodynamics, and the free energy is continuous.

This simple model yields the asymptotically correct equation of state for hard disks,
given the input parameters γ, v∗1, v∗2, K, and it interprets the data seen in Fig. 4.7. The

system for 10242 disks satisfies γ ≃ 0.0094/(2σβ) and K ≃ 5/β(2σ)4. The asymptotic
shape (see Fig. 4.7) qualitatively explains the numerical results for 10242 disks: a flat
part at the center and two peaks at the boundary of the coexistence region. However,
there is still a difference between the model and the numerical results. This difference is
in part due to the large fluctuations of the interface because the interface tension is low.
Moreover, the interface tension at small scales is different from the one at large scales1,
which explains the small size of the peaks.

Chemical potential

The equation of state is also obtained from the chemical potential µ computed with the
Widom particle insertion method (see Section 3.3.4). The error on this observable is
somewhat higher than for the pressure. Indeed, the low insertion probability of a disk
around the transition (pi ≃ 2.5 × 10−6, see Fig. 4.8) leads to large fluctuations for 〈pi〉.

1As shown by the phenomenological behavior proposed by Tolmann [122] for small droplets

γ(R) =
γ∞

1 + 2δ/R
. (4.11)
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Figure 4.9: Left: Chemical-potential equation of state µ(v). The behavior is equivalent to the
pressure equation of state. µ is computed both by particle insertion and from P(v). The two
results are in good agreement, the Gibbs-Duhem relation is satisfied. Right: Density dependence
of the insertion probability of a disk pi for 10242 disks.

The equation of state µ(v) shows the same behavior as P(v) 2 (see Fig. 4.8). A loop
is observed at the same densities, and vanishes with increasing system size. The flat
part at the center, as well as the two peaks, are also observed for 10242 disks. The
computation of the coexisting densities and interface free energy (not performed by the
Maxwell construction as V 6= const.) give the same result as for P(v). µ is related to the
pressure by the Gibbs-Duhem relation Ndµ = VdP, which gives

µ(v) =
∫

vP′(v) dv + const. (4.12)

The chemical potential computed by the particle insertion method and from P(v) are in
good agreement (see Fig. 4.8).

4.2 Nature of the phases

The phase coexistence is established by direct visualization and confirmed by the equa-
tion of state, the transition is thus first order. The following shows that the nature
of the coexisting phases is liquid and hexatic. Moreover, the hexatic-solid transition is
continuous.

2As µ = ∂F/∂N, µ(v) should have been plotted with V = const. instead of N = const. in order
to have the analogy of P(v). However, since the differences in density are small, this effect has not
important consequences.
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4.2.1 Low-density phase: liquid

The nature of the low-density phase is determined by analyzing the pure phase at η ≃
0.700. The system is ordered in clusters of maximum size ∼ 100σ − 200σ and disordered
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Figure 4.10: Identification of the low-density phase at η = 0.700 Left: Projection of the local
orientation on the main orientation for 10242 disks. The system is ordered in clusters of size ∼
100σ − 200σ and disordered above this scale. Right: Sample-averaged orientational correlation
function at η = 0.700. The decay is exponential with a correlation length of ξo ∼ 100σ.

above this scale; the phase is therefore liquid (see Fig. 4.9). The correlation length is
more precisely computed through the orientational correlation function which behaves
as Co(r) ∝ exp−x/ξo at large distances. This gives a correlation length of ξo ∼ 100σ
(see Fig. 4.9 again). This large value partly explains the difficulty for small systems to
discriminate between a first-order and a continuous transition. The correlation length is
one order of magnitude larger than the disks, yet much shorter than the size of the system
for 5122 and 10242 disks. This point is crucial for the validity of the results, and explains
the collapse of P(v) for 5122 and 10242 disks in the pure-liquid branch (see Fig. 4.4).
Therefore, the behavior of an infinite system is obtained with these system sizes.

The behavior of the correlation length at lower densities shows an important increase
for η < 0.700 (see Fig. 4.10). This behavior can be wrongly interpreted as evidence
for a KT transition. This behavior is consistent with the view that a KT transition is
preempted by a first-order transition, and that for other microscopic models the transition
could be continuous, as is seen in XY models (see Section 1.2.4). For “small” systems, the
decay of the correlation function in the coexistence region can be wrongly interpreted as
algebraic (see Fig. 4.10). It is the result of a two-phase region where the interface shows
large fluctuations. At η = 0.708, it necessary to reach 10242 disk in order to see the
two-phase behavior (see Fig. 4.10 again).
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Figure 4.11: Left: Density dependence of the orientational correlation length ξo. Right:

Orientational correlation function at η = 0.708. The decay seems algebraic for “small” systems
( N = 2562 and N = 5122). For larger systems (N = 10242), a change of behavior is seen at a
distance of half the system size, due to the phase coexistence.

4.2.2 High-density phase: hexatic

The nature of the high-density phase is determined by analyzing the pure phase at η ∼
0.718, which is clearly out of the transition region (see Fig. 4.4). The orientation at this
density is conserved along the whole system (see Fig. 4.11 and Fig. 4.12). This does not
indicate that the phase is solid as a cut of g(~r) along an axis shows that the positional
order at this density is short ranged (see Fig. 4.11 again). The short-range positional
order imposes that the shear modulus is zero [68], this phase can therefore not be a solid.
Moreover, in the absence of a shear modulus, the next term in the small-deformation
development of the Hamiltonian is [32, 68]

Hhex =
1

2
KA

∫

|~∇θ(~r)|2 d2r , (4.13)

KA being the Frank constant (see Chapter 1, Section 1.3.2). This shows that a phase
with a short-range positional order cannot possesses a long-range orientational order. The
orientational order is therefore quasi-long ranged, and the phase at η = 0.718 is hexatic.
The high-density phase in the coexistence region (η ∼ 0.716) shows the same property as
for η = 0.718, it is therefore also hexatic. The analysis of η = 0.718 instead of η = 0.716
is motivated by the fact that η = 0.718 is clearly above the coexistence region.

The positional correlation length ξp is extracted from the decay of the peaks of g(~r)−
1. This decay is exponential at large distances and the correlation length is found to be
ξp ∼ 100σ (see Fig. 4.11 and Fig. 4.13). The correlation length at the coexisting hexatic
η ∼ 0.716 is thus lower than this value. This result shows that the system size for 5122

and 10242 disks are much larger than the correlation length. As the orientation is quasi-
long ranged, it is not possible to reach a size larger than the orientational correlation
length. However, the exponent νo of Co(r) ∼ r−νo is small, and the finite-size effects are
small (see Fig. 4.12). These results explain the collapse of P(v) for 5122 and 10242 disks
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Figure 4.13: Size dependence of the orientational correlation functions at η = 0.718 (left) and
η = 0.720 (right). The orientation seems to be long ranged for both densities. However, at
η = 0.718, the short-range positional order implies that Co(r) is quasi-long ranged. The small
value of the exponent νo near the transition explains this behavior. The orientation is not the
appropriate observable to locate the hexatic-solid transition. (Ref [6], cf. Section 7.3).

in the pure-hexatic branch (see Fig. 4.4). The fact that νo is small at η = 0.718 (and as
well at η = 0.716) shows that the system is far from a KT instability (where the exponent
is νo = 1/4). Also the orientational correlation length increases fast near η = 0.700 (see
Fig. 4.10). It is likely that a KT transition would occur for η & 0.700 if the system was
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forced to be pure.

4.2.3 Hexatic-solid transition
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Figure 4.14: Positional correlations for η = 0.718 and η = 0.720 given by the decay of the
peaks of g(r) − 1. Left: Semi-log view. The positional order for η = 0.718 is short ranged
with a correlation length ξp ∼ 100σ Right: Log-log view. The positional order for η = 0.720 is
algebraic with an exponent νK ∼ 1/3. η = 0.720 is either in the solid phase or in the hexatic
very close to the solid-hexatic transition. (Ref [6], cf. Section 7.3).

For η > 0.718, the positional correlation length increases with density, and shows
an algebraic behavior at η = 0.720 (see Fig. 4.13). At a solid-hexatic KT instability,
the exponent of the positional correlation satisfies 1/3 < νK < 1/4 (see Chapter 1,
Section 1.3.2). The value of the exponent at η = 0.720 is νK ∼ 1/3, which shows that
the system is solid, or close to be. These results are confirmed by a finite-size behavior of
the correlation functions (see Fig. 4.14) and by the finite-size behavior of the first Bragg
peak of the structure factor (see Fig. 4.15): For η = 0.718, the maximum of the peak
stops increasing for systems larger than 1282 disks. The positional order is therefore short
ranged (see Section 1.3.2). The width of the peak for N = 10242 gives the positional
correlation length, ξp ∼ 100σ. For η = 0.720, the maximum of the peak increases with
the system size up to the largest systems. Around η = 0.720, the system does not show
any loop in the equation of state. Moreover, no coexistence region is observed. These
observations show that the hexatic-solid transition is not first order, it is therefore a
continuous transition, of the KT type.

The exact value of the transition density is difficult to determine because of finite-
size effects, as well as thermalization artifacts (see Section 4.3). Nevertheless, the strong
increase of the positional order, as well as the qualitative algebraic decay at η = 0.720,
shows that the hexatic-solid transition takes place for η & 0.720. This value corresponds
to a pressure βP(2σ)2 & 9.233 and a chemical potential βµ = ln η/pi & 12.62. The
hexatic phase extends on a density region of ∆η & 0.004, which is narrow compared to
the liquid-hexatic coexistence (see Fig. 4.16).
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Figure 4.15: Size dependence of the positional correlation functions at η = 0.718 and η =
0.720. Left: η = 0.718, the positional order gets shorter as the system size is increased. The
system is thus short ranged in the thermodynamic limit. Right: η = 0.720, the positional order
shows an algebraic behavior with an exponent close to 1/3, the stability limit of the solid, for
all system sizes. The results shows that the hexatic-solid phase transition occurs at η & 0.720.
(Ref [6], cf. Section 7.3).
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Figure 4.16: Size dependence of the first Bragg peak (radial view) of the structure factor at
η = 0.718 and η = 0.720. Left: η = 0.718, the maximum of the peak stops increasing for
systems larger than 1282 disks: the positional order is short ranged. The width of the peak for
N = 10242 gives ξp ∼ 100σ. Right: η = 0.720, the maximum of the peak increases with system
size up to the largest system.

4.3 Thermalization and finite-size effects

The hard disk system at high densities is strongly correlated. It is thus important to show
that simulations have reached the thermodynamic equilibrium and that the systems are
large enough to capture the thermodynamic-limit behavior.
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Figure 4.17: Phase diagram of the hard-disk system in the constant-density ensemble. The
melting transition is in two steps with an intermediate hexatic phase. The liquid-hexatic tran-
sition is first order, with a coexistence region for η ∈ [0.700, 0.716]. The hexatic-solid transition
is of the KT type, and occurs at a density η & 0.720.

4.3.1 Thermalization time

One of the main issue of the Markov-chain Monte Carlo method is to ensure that ther-
malization is reached in the system studied. The rigorous methods developed in Part II
for the hard-disk system are not practicable at these densities. However many strategies
can be used.

As explained in Section 2.2.3, the naive method consists of running a simulation for
a long time and computing the auto-correlation function C(t) of an observable O. The
auto-correlation function has many time scales (τ > τ1 ≥ . . . ) which are related to the
eigenvalues of the transfer operator of the Markov chain (see Part II, Section 5.1.2). To
compute the correlation time τ, a global observable, which is slow to decorrelate, should
be used. For that purpose, the absolute value of the total orientation |Ψ| is commonly
used. However, this observable easily underestimates the value of the correlation time.
For 10242 disks at η = 0.708, a simulation run for 6.107 displacement per disks gives a
correlation time τ ∼ 4.104 displacement per disks (see Fig. 4.17). This value does not
correspond to the largest time scale, which is covered by the error on C(t) (see Fig. 4.17
and Fig. 4.18). In order not to miss the largest time scale, a better observable should be
used. Another method is to perform long simulations on small systems, assuming that
the largest time scale is reached there, and then to increase the system size by small steps
while following the behavior of the correlation time. Again, this method is limited as the
properties of a system can undergo important changes as the system size is increased,
especially around a phase transition.

In this thesis, a simple yet efficient strategy is used in order to prove that at η = 0.708,
the phase-separated state is thermalized. Two simulations were performed starting with
very different initial configurations. In the first simulation, the initial configuration was
ordered, obtained from a high-density solid. The system underwent a coarsening process,
meaning that bubbles of liquid appear and grow with time. The system eventually reached
a phase-separated state for ∼ 106 displaced disks (see Fig. 4.18). In the second simulation,
the initial configuration was disordered, obtained by a quench from a low-density liquid
(the radius of the disks were increased with only a few displacements). At short times,
the system crystallized in random directions, leading to a poly-crystalline state. For
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Figure 4.18: Auto-correlation function of |Ψ| for 10242 disks at η = 0.708 computed for
a long simulation (6.107 displacement per disks). The apparent largest time scale is ∼ 4.104

displacement per disks. The error on the auto-correlation function is too large to capture the
actual largest time scale of ∼ 106 displacement per disks.

larger times, the crystals rotated to agree on their orientation, then melted. The system
eventually reached the phase-separated state again, at a time of ∼ 106 displacement per
disks (see Fig. 4.18 again). The fact that these two very different initial configurations
led to the same final state is strong evidence for the thermalization of the system. The
thermalization time was found to be large, of the order of ∼ 106 displacement per disks
for 10242 disks. This was achieved in a few days of simulation. The longest simulations,
whose purpose was to extract the 64 initial configurations, were run for ∼ 64 × 106

displacement per disks (almost one year of computation).

The large value of the thermalization time is not due to the correlations in the system,
but to the slow coarsening process. For a local dynamic starting from the ordered state,
the size of the bubbles is expected to follow a power-law behavior with time l(t) ∝ t1/3

[110], which is compatible with the results obtained. The scaling of the thermalization
time for this system is therefore ∝ N2

√
N (in total displaced disks) which means a

simulation time of ∼ 3 month for 20482 disks (which was indeed observed, see Fig. 4.19)
and ∼ 10 years for 40962 disks on a single CPU at 3Ghz. The correlation time in the
phase-separated state is also expected to be large as the interface shows large fluctuations.

The same simulations were performed with the local Metropolis algorithm. These
simulations were found to be ∼ 20 times slower for the disordered initial configuration,
and ∼ 100 times slower for the ordered initial configuration. This shows that the event-
chain algorithm is more efficient than the local Metropolis algorithm, and that simulation
times much larger than what has been performed before [25, 123] are needed to see the
phase separation at this size with the local Metropolis algorithm.

For densities lower than the coexistence region (η < 0.700), the thermalization is
easily reached as the system is liquid with a correlation length of ξo ∼ 100σ. Just
above the coexistence (η & 0.716), the thermalization is also easily reached. Indeed, the
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configurations with 10242 disks at η = 0.708. Left upper panel: The initial configuration is
ordered. The system undergoes a coarsening process up to the phase separation. Left lower

panel: The initial configuration is disordered. A poly-crystalline state is first observed. Later,
the system reaches the phase-separated state. Right: Time evolution of the total orientation
|Ψ| for both quenches for the event-chain algorithm (blue and green curve) and for the local
Metropolis algorithm (red curves). (Ref [6], cf. Section 7.3).

positional correlation length is ξp ∼ 100σ, and the fluctuation of the orientational field
are small because the orientation is almost long ranged.

For densities around the hexatic-solid transition, the positional correlation length ξp

is higher than the size of the box. This induces both a problem of finite-size effect and
of thermalization. Indeed, because of the anisotropy of the box, the properties of the
system change with the orientation of the solid (or the hexatic). Rigorously, the system
should perform a complete rotation in the box. This process is very slow and can only be
achieved for small systems (up to 2562 disks) 3. As a consequence, the results obtained
at these densities are only qualitative. It is not possible to determine with precision the
density at the hexatic-solid transition. However, the absence of a loop in the pressure for
each system size is sufficient to rule out a first-order hexatic-solid transition.

4.3.2 Finite-size effects

An other issue of simulation methods is to predict the behavior of the system in the ther-
modynamic limit N → ∞ with finite-size simulations. The arguments already mentioned
before are reviewed and discussed in further detailed.

In the pure-liquid region (η < 0.700), the orientational correlation length satisfies
ξo < 100σ. The system behaves as independents subsystems of size ∼ ξo × ξo. For a
system whose size L is larger than ξo, an observable typically reaches its thermodynamic-
limit value exponentially with L (see Section 1.2.3 and Eq. (1.37)). A system only a few
times larger than this length is thus enough to suppress finite-size effects. The system
size of the largest system (10242 disks) is 10 times larger than this length. The results
obtained are therefore not concerned with finite-size effects. An experimental evidence
of this statement is given by the collapse of the equation of state (see Fig. 4.4) in this

3However it is not very useful to perform the complete rotation as the finite size effects are not
understood.
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density region for 5122 and 10242 disks.
In the pure-hexatic region, the orientational correlations are algebraic, the system is

therefore concerned by finite-size effects (see Chapter 1, Section 1.2.3). However, the
exponent νo of Co(r) ∝ r−νo is small, this phase is close to the solid phase where the
correlation length of the fluctuations of the orientation is ∼ 10σ. The same observation as
for the pure-liquid phase can then be made: as the positional correlation length ξp ∼ 100σ
is smaller than the system size, the results are not concerned with finite-size effects. Again,
the equation of state (see Fig. 4.4) collapses in this density region for 5122 and 10242

disks.

N = 642 1282 2562 5122 10242 20482

Figure 4.20: Snapshots of the orientation field at η = 0.708 for different system sizes. The
phase coexistence is clearly identified for N ≥ 5122. For N = 20482, a simulation time of ∼ 107

displacements per disk was required to reach the equilibrium.

The main finite-size effects in the coexistence region are due to the interface, and are
well understood (see Section 4.1.2). The interface fluctuations vanish in the thermody-
namic limit, but are large at small scales. The phase separation is therefore difficult to see
in systems with N ≤ 2562 (see Fig. 4.19). As the Maxwell construction removes interface
effects, the observables P∗, ηL and ηH) reach a plateau (as for the observables in the
pure-phase branches). Their values can be estimated at β(2σ)2P∗ ≃ 9.185, ηL ≃ 0.7000
and ηH ≃ 0.7165.

As mentioned in Section 4.2.2, finite-size effects around the hexatic-solid transition are
important because positional correlations are large. The shape of the box is a square, and
the density is constant: this induces finite-size effects due to commensuration problems
of the triangular lattice. The precise value of the transition density is therefore difficult
to be determined from these results. Nevertheless, the strong increase of the positional
order, as well as the qualitative algebraic decay at η = 0.720, shows that the hexatic-solid
transition takes place for η & 0.720.

Beyond the discussion about correlation lengths, a finite-size system shows fluctuations
in its observables (P or µ for example). The hexatic phase is narrow (∆η & 4 × 10−3),
and a system with a size large enough is therefore needed to explore it. To estimate the
fluctuations obtained in the constant-density ensemble, one can compute the pressure
fluctuations. An equivalent method (for a pure phase) is to compute density fluctuations
in a constant-pressure ensemble. These fluctuations are directly related to the compress-
ibility of the system by the relation

〈

V2
〉

− 〈V〉2 = − ∂V

∂βP
, (4.14)

which can be computed through the equation of state. In the hexatic phase, the fluc-
tuations are found to be δη ∼ 0.2/

√
N. This gives for N = 10242 a fluctuation of
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δη ∼ 2 × 10−4. The fluctuations for the largest system are therefore one order of mag-
nitude smaller than the density extension of the hexatic phase. The properties of the
hexatic phase are thus well captured.

4.4 Other simulations

The choice of the method used to study the transition is influenced by the nature of the
transition. We performed simulations in the “Gibbs ensemble”. The different possibilities
to study the transition in further details are then discussed.

4.4.1 Gibbs ensemble

The Gibbs ensemble [124] has been designed to study first-order transitions. As for the
constant-density ensemble, the total number of particles N and the volume V of the
system are constant. However, the system is composed of two separated subsystems
which exchange volume and particles. Each subsystem, labeled 1 and 2, is chosen to be a
square box with periodic boundary conditions. The number of particles and the volume
of these boxes satisfy N1 + N2 = N and V1 + V2 = V. The exchanges of particles and
volumes are set up in order for the pressure (P1, P2) and the chemical-potential (µ1, µ2)
in the two boxes to equalize. In a coexistence region, each phase should be present in
only one box, in order for the interface free energy to be removed. As a consequence, it
is easy to analyze the properties of each phase.

The simulation involves three kinds of moves: displacements of particles, exchange of
particles, and exchange of volume. The displacements of particles were performed with
the event-chain algorithm. For the exchange of particles, one of the N particles of the
system was picked with a uniform distribution, and was then inserted uniformly into the
total volume. If the particle overlapped other disks, the move was rejected, otherwise
the move was accepted. This process gives directly 〈η1/pi1〉 = 〈η2/pi2〉, the chemical
potential in both boxes are thus equalized. The speed of this process is limited by the
rejection rate as in the vicinity of the transition pi ≃ 2.5 × 10−6 (see Fig. 4.8). In the
pure-phase branches, the density fluctuations, computed through the equation of state,
are δη ∼ 0.2/

√
N. Assuming that positions are uniformly sampled between two insertion

attempts, the density follows a random walk without memory with a step δη = 1/N each
δt = 1/pi attempts. The time needed to sample the total fluctuation of the system is
then

τ =

(

∆η

δη

)2

δt ∼ 2 × 104N. (4.15)

For 10242 disks, this requires only a few hours of computer time. The Gibbs ensemble is
therefore not limited by the density fluctuations.

The sampling of volume fluctuations is however much slower to achieve. Indeed, the
classic algorithms [111, 125] perform homothetic transformations in order to change the
volume. These moves require a long simulation time. As there are N particles in the
system, the maximal volume change by an homothetic transformation without overlaps
is δV/V ∝ 1/N. Moreover, the amount of time required to perform such a movement is
δt ∝ N. As the fluctuations are of the order ∆V/V ∝ 1/

√
N, the time needed to sample
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Figure 4.21: Snapshot of a simulation in the Gibbs ensemble for a system of N = 2 × 2562

at η = 0.708. The system is phase-separated, each of the phase is located in a box. The low-
density phase (left) is disordered while the high-density phase (right) is ordered. The volume of
the low-density phase is higher than the volume of the high-density phase as the overall density
is η < (η2 − η1)/2.

the total fluctuation of the system is

τ =

(

∆V

δv

)2

δt ∝ N2. (4.16)

This time is therefore extremely long for large systems. This argument holds for any
continuous short-range potential. An algorithm [126] is claimed to achieve a complexity
O(N) instead of O(N2). However, a simple scaling argument shows that this is not the
case, the algorithm is still O(N2).

In order to reduce this sampling time, a new algorithm was used to perform volume
changes. As for the constant-density algorithm (see Section 2.3), the particle positions in
this algorithm are stored in cells. A volume change is performed by modifying the width
of one of the lines or columns of this cell scheme. In order to keep the square shape,
a line and a column are re-sized simultaneously. At each step of the algorithm a line
and column are sampled with a uniform distribution for each box. A re-size parameter
δV ∈ [−δm, δm] is sampled uniformly. The widths of the column-line pairs of the box 1
and 2 are changed in order for the volume to become V ′

1 = V1 + δV and V ′
2 = V2 − δV.

The movement is rejected if there is an overlap and accepted otherwise. This algorithm
satisfies the detailed balance and thus equalizes the pressure in the two boxes. The
volume change δV satisfies, as for the homothetic transformation, δV ∝ 1/N. However,
the time needed to ensure the absence of overlaps is δt ∝

√
N. The algorithm is therefore

O(N
√

N) instead of O(N2). This algorithm is however not fast enough to reach system
sizes larger than 2 × 2562 disks.

For 2 × 2562 disks at η = 0.708, the system shows two phases, each of them located
in a single box (see Fig. 4.20). One of the phases has a disordered orientation and a
density η ∼ 0.700, while the other one is ordered and has a higher density η ∼ 0.716 (see
Fig. 4.20 and Fig. 4.21). Moreover, the size of the low-density box is higher than the size
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of the high-density box; this was expected as the overall density is η < (η2 − η1)/2. The
pressure obtained is β(2σ)2P ≃ 9.18, and the chemical potential is µ = ln η/pi ≃ 12.57.
These results are consistent with the results obtained in the constant-density ensemble.
However, the fluctuations of volume are slow to be sampled(see Fig. 4.21), and thus the
total number of decorrelated configurations is not sufficient to give precise quantitative
results with this ensemble.
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Figure 4.22: Gibbs simulation for a system of N = 2 × 2562 at η = 0.708. The expected
thermodynamic-limit value from the constant-density ensemble are shown in dashed line. Left :
Time evolution of η1 and η2. The result of the constant-density simulations are confirmed.
Right : Time evolution of the volume V1 and V2, the volume of the low-density box increases as
expected. The fluctuations show a very long time scale.

4.4.2 Future simulations for hard disks

The first-order nature of the liquid-hexatic transition is well established. Other ensembles
can however explore this transition in further detail. In the constant-density ensemble,
the coarsening leads to a long thermalization time of complexity O(N2

√
N) for large

systems. Even when the phase separation is reached, the large interface fluctuations are
slow to sample. Therefore, this ensemble should not be used on larger systems than
10242 disks. The constant-pressure ensemble has no interfaces, however the time needed
to sample the volume fluctuations is also long, with a complexity O(N2) (or O(N

√
N)

with the improved algorithm). This ensemble, as well as the Gibbs ensemble, should not
be used either.

The next simulation in order to study the liquid-hexatic transition should be achieved
in the grand-canonical ensemble. Simulations in this ensemble have a complexity O(N)
and are simple to implement. The particle movement in this ensemble should either be
performed with the event-chain algorithm or with a well-implemented molecular dynam-
ics. An interesting work would be to explore the metastable branches, and show that
they differ from the loop due to interface tension. In the picture of a KT transition
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preempted by a first-order transition, it would be interesting to study the KT transition
in the metastable low-density branch (for η & 0.700).

We now consider possible simulations to study the hexatic-solid transition. As shown
before, the nature of this transition clearly seems to be continuous. Again the constant-
pressure algorithm is slow to thermalize. A good way to study this transition should
therefore be to perform simulations in the grand-canonical ensemble again. The shape of
the box should fit a triangular lattice to avoid commensurability problems, as it is done
with a rectangular box of size L × L

√
3/2. The positional correlation function, as well

as the elastic shear modulus, could then be computed and compared with the KTHNY
theory.
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Conclusion

After 50 years of debate, it becomes clear that the hard-disk melting transition follows
a two-step scenario with an intermediate hexatic phase. The solid-hexatic transition is
continuous, as predicted by the KTHNY theory, while the hexatic-liquid transition is
of the first-order type. The liquid phase appears (by formation of grain boundaries for
example) at a density higher than the disclinations-unbinding density. The KT transition
is thus preempted by this discontinuous transition. This result is specific to the hard-disk
model and does not invalidate the KTHNY theory for other 2D systems.

The conclusion obtained regarding the nature of the hard-disk melting transition has
been possible through the use of the event-chain algorithm (see Chapter 2), as well as
a careful analysis (see Chapter 3). The solution of the melting problem presented in
Part I of this thesis provides a starting point for the understanding of melting in films,
suspensions, and other soft-condensed-matter systems. The solution developed here can
help to study related problems such as the crossover from 2D to 3D melting as it is
realized experimentally with spheres under different confinement conditions [84], or the
influence of polydispersity for example [127]. Hard disks are a fundamental and simple
model of particle systems. Theoretical, computational, and experimental research on
more complex microscopic models should build on the hard-disk solution obtained here.
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Part II

Perfect sampling
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Introduction

The Monte Carlo method in statistical physics allows the study of the thermodynamics
of systems. This method can also be used to solve optimization problems, which are
frequently observed in the industry or in computer sciences for example.

As seen in Part I of this thesis, the Markov-chain Monte Carlo method consists in
randomly sampling a configuration of the system. To that purpose, a Markov chain
explores the configuration space by random moves. For some complex configuration
spaces, it can be difficult for the chain to explore them. The dynamics of the chain is
then very slow, as in glassy systems for example, and it takes a long time for the system to
reach the thermodynamic equilibrium. Moreover, the time needed to reach thermalization
can be difficult to access. This is major problem. Indeed, it is crucial that the equilibrium
is reached in order to study the statistical properties of the system. Therefore, without
the knowledge of the thermalization time, it is impossible to obtain reliable results. This
problem has been experienced in the study of the hard-disk melting transition (see Part I
and Section 4.3.1), and is present in disordered systems such as spin glasses. This issue
prevents important problems, such as the relationship between the glass transition and
the thermodynamic transition in 3D Ising spin glasses, from being solved [128].

In 1996, Propp and Wilson developed a method to overcome the thermalization prob-
lem; a“perfect sampling”method. This method is called“Coupling from the past”(CFTP)
[10]. The CFTP method is based on the coupling of Markov chains, and had an large
impact in mathematics. However, this method has been found to only be applicable to
specific systems, and it still fails to bring a major result in modern statistical physics. The
limitation of the method was first thought to come from the “survey” problem. Indeed,
this method requires to simultaneously follow a prohibitive number of Markov chains.
However, Chanal and Krauth recently solved the survey problem for local Markov chains
[129]. The true obstacle to the application of the CFTP method is actually due to the
chaotic properties of the Markov chain, that is, the “damage-spreading” [7]. This is the
principal result of this part.

For a N-element system, the classic Hamiltonian dynamics is generally chaotic. This
means that two nearby initial conditions quickly separate with time. The same definition
of chaos can be used for discrete random processes such as Markov chains. The chaoticity
of a Markov chain is referred to as damage spreading [130]. As shown in this part,
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the CFTP method cannot be applied to a chaotic dynamics. In order to apply the
method, it is necessary to build a regular dynamics, that is, a dynamic where two different
initial conditions get closer with time. These dynamics exist and examples are given in
Chapter 6.
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5
The coupling-from-the-past method

In this chapter, I first introduce the Monte Carlo method. I then present the CFTP
method and explain the survey problem. I finally present the patch algorithm of Chanal
and Krauth [129], which solves the survey problem for local dynamics.

5.1 The Monte Carlo method

The Monte Carlo method is a powerful numerical method in order to compute the value
of integrals in high dimensions. This method was originally developed in order to study
nuclear reactions and is now used in various domains and particularly in statistical physics
[3, 4].

5.1.1 Direct sampling

Let Ω be the state space of a physical system. In a heuristic approach, we first assume
that Ω is a hypercube of size L and dimension d (thus Ω = [0, L]d). For a particle system,
L would be the size of the cubic box, and d = ND, where N is the number of particles and
D is the spatial dimension of the system1. Let x be a state (also called a configuration)
of this space. At the thermodynamic equilibrium, the probability distribution of the
configurations is noted π(x). In order to access the thermodynamic properties of the
system, one may compute the mean value of observables. Let O be an observable of the
system. The mean value of this observable is given by

〈O〉 =
∫

[0,L]d
π(x)O(x) ddx. (5.1)

The Monte Carlo method aims at efficiently computing this integral.
We first compute 〈O〉 with the classic Riemann integration method. This method

approximates π(x)O(x) by a stepped function: the space is discretized in a regular way
by steps of size δL. The value of the integral is then

〈O〉R = ∑
x

π(x)O(x)δLd with x ∈ {δL, 2δL, . . . , L}d. (5.2)

1Only the positions are stored here.
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Let n = (L/δL)d be the total number of discrete value used to compute the integral. If
π(x)O(x) is smooth at the scale δL (which is generally the case for δL small enough),
the numerical error induced by this method is ErrR ∝ δL2 and therefore

ErrR ∝
1

n2/d
. (5.3)

For large values of d (corresponding to large N for particle systems), the number of
discretization points required to compute the integral is large as it grows as Ld. Therefore,
the Riemann integration method cannot be applied in high dimensions.

We now compute 〈O〉 by the direct Monte Carlo method. This method adopts a
different sampling strategy: the space is randomly sampled instead of regularly. Let
{x1, . . . , xn} ∈ [0, L]d be n configurations randomly sampled. If the sampling distribu-
tion is uniform, the integral is computed by

〈O〉DMC =
Ld

n

n

∑
i=1

π(xi)O(xi). (5.4)

As the samples are independent, the error on this integral satisfies

ErrDMC ∝
1√
n

. (5.5)

The behavior of the error with the number of samples does not depend on the dimension
of the space. For d ≥ 5, in the limit of large n, ErrR ≫ ErrMC. This simple method is
therefore much more efficient than the Riemann integration method in order to compute
this integral.

For a uniform sampling distribution, the error is given by

ErrDMC =
σDMC√

n
with σDMC =

√

Ld

∫

[π(x)O(x)]2 ddx −
[

∫

π(x)O(x) ddx

]2

.

(5.6)
In practice, the distribution π(x)O(x) shows strong variations. The choice of a uniform
distribution in order to sample the system is then not adequate, as it leads to a very
large standard deviation σDMC. For a N-element system, the time needed to sample a
configuration of the system is ∝ exp (const.N). A good example of this phenomenon
is given by the direct sampling of hard spheres, which is impossible to achieve for large
systems (see Part I, Section 2.1.2). An alternative is to sample the system with a dis-
tribution following the variation of π(x)O(x), such as π(x) for example. This choice of

distribution gives an error Err = σ/
√

n with σ =
√

〈(O − 〈O〉)2〉. However, even if the
distribution π is properly defined, its structure can be complex; it is generally impossible
to sample random configurations with this distribution. The Markov-chain Monte Carlo
method is a solution to this problem.

5.1.2 The Markov-chain Monte Carlo Method

As describe in Section 2.1.2, a Markov chain is a memoryless stochastic process in the con-
figuration space Ω, that is, a random walk without memory. The chain starts at an initial
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configuration x0, then randomly explores the configurations of the system (see Fig. 5.0).
The next configuration of the chain only depends upon the current configuration. The
Markov-chain Monte Carlo method uses a Markov chain whose stationary distribution
(that is, the probability distribution of configurations for t → ∞) is the distribution π.
It is therefore an indirect way to sample configurations from the distribution π. This
method is generally much more efficient than the direct approach.

1

2

3

4

5

t0 t

Figure 5.1: Random walk in 1D for a discrete system with periodic boundary conditions.
The transition probabilities are 1/3 to go up, 1/3 to go down, and 1/3 to stay at the same
configuration. (Ref [131]).

Let P(x → y) be the transition probability of the Markov chain from a configuration
x ∈ Ω to another configuration y ∈ Ω, and A = (P(x → y))x,y the transfer matrix.
The chain starts from an initial configuration x0, the initial probability distribution of
the chain is therefore π0 = δx,x0. If the distribution at a (discrete) time t is represented

by the vector πt ∈ [0, 1]card(Ω), the distribution at a time t + 1 is πt+1 = Aπt. πt is
therefore given by

πt = Atπ0. (5.7)

In the case of a Markov chain satisfying the detailed balance condition, the operator A is
symmetric and therefore diagonalizable in an orthogonal basis. Moreover, its eigenvalues
satisfy |λ| < 1 except for one of them λ0 = 1. Let {Π0, Π1, Π2, . . . } be the eigenvectors
of A of respective eigenvalues {λ0 = 1 > |λ1| ≥ |λ2| ≥ . . . }. The distribution πt can be
expanded on these eigenvectors and satisfies

πt = Π0 + a1λt
1Π1 + a2λt

2Π2 + . . . . (5.8)

Therefore, each eigenvector Πi with i > 0 displays a time scales τi = −1/ ln |λi| and
τ1 ≥ τ2 ≥ . . . .

Eq. (5.8) shows that the probability distribution of the chain converges toward the
ground state Π0 of the transfer matrix. The transition probabilities must therefore be
designed in order that Π0 = π. This can be done by ensuring that the balance condi-
tion (see Section 2.1.2 Eq. (2.9)) or the more restrictive detailed-balance condition (see
Section 2.1.2 Eq. (2.11)). A way to satisfy the detailed-balance condition is given by the
Metropolis algorithm [46] (see Section 2.1.2).
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For a time t ≫ τ1, the distribution πt is very close to the distribution π. A way to
compute the mean value 〈O〉 is to extract the configuration of the chain each time step
∆t. Let {x1, . . . , xn} be the n configurations extracted. 〈O〉 is computed by

〈O〉MCMC =
1

n

n

∑
i=1

O(xi). (5.9)

Under the condition that ∆t ≫ τ1, the error on O is

ErrMCMC ≃ σ√
n

with σ =
√

〈(O − 〈O〉)2〉 , (5.10)

the equality would be strictly valid in the limit ∆t → ∞. This constitutes the Markov-
chain Monte Carlo method.

5.1.3 Standard deviation and correlation time

The Markov-chain Monte Carlo method is powerful as it allows access to the distribution
π. However, in order to estimate the error on an observable, the method faces two
challenges.

First, the standard deviation σ of the observable has to be estimated. This problem
is also present in the direct Monte Carlo method. σ would be perfectly known in the
limit of an infinitely large number of sample. In most systems, only a small number of
samples are required to obtain a good estimation. However, in other systems, this task
can require a large - and unknown - number of samples. Such systems can be constructed
by attributing a large value to O in regions where π(x) is very small. A solution to
this problem can be to sample the system with a distribution ∝ π(x)O(x) instead of
π(x). Therefore, even if there is no rigorous method to estimate the value of σ, the
standard-deviation problem is not the main obstacle to the Markov-Chain Monte Carlo
method.

The second problem is to know when the distribution has reached its steady state,
that is, the amount of time needed for the system to lose the memory of its initial
configuration x0 (the thermodynamic equilibrium). This constitutes the main issue of
the method. The study of the convergence of Markov chains is an entire mathematical
topic [132, 107]. Eq. (5.8) shows how the distribution converges toward its steady state.
In a simple view, one can say that τ = τ1 is the typical time of convergence. This time
corresponds to the asymptotic convergence of the chain, and is called the correlation time.

The correlation time can be computed by direct diagonalization of the transfer matrix
A. However, it is in practice impossible as the size of A is very large. τ is generally
computed by the study of the asymptotic behavior of the auto-correlation function of
an observable O as shown in Section 2.2.3. The asymptotic behavior is however hard
to access in interesting physical systems. An example of this difficulty is given by the
hard-disk model; even for this simple model, it is difficult to ensure that the system is
thermalized. As a consequence, many works on the hard-disk meting transition obtained
doubtful and contradicting results as the systems studied were not decorrelated from their
initial configuration (see Section 4.3.1). Another famous example is given by disordered
systems such as spin glasses [133]. These systems show a complex energy landscape,
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with many local minima. As a consequence, the Markov chain can be trapped in a local
minimum, and the auto-correlation analysis would underestimate the correlation time.
Many theoretical questions concern these systems, such as the relationship between the
glass transition and the thermodynamic transition [128] in the 3D spin-glass model.

In order to solve these important problems, it would be useful to know the correlation
time of the Markov chain. Algorithms have been developed which are able to sample
configurations of the system with the exact desired distribution π. These sampling algo-
rithms are referred to as perfect-sampling algorithms.

5.1.4 Perfect-sampling methods

The direct sampling of Section 5.1.1 constitutes the most simple perfect-sampling method.
This method is however inefficient as the distributions which can be directly sampled are
generally far from the desired distribution π. In specific problems, this problem can
be overcome. For example, it is possible to obtain perfect sample of the 2D Ising spin-
glass model efficiently [134, 135]. These methods use combinatorial techniques originally
developed for the ferromagnetic case [136], and they cannot be extended to the 3D case. A
more general scheme, the “Randomness recycler” [137], has been developed. This method
applies to a variety of systems such as lattice hard spheres. This algorithm is however
not yet applicable to hard disks or to the 3D Ising spin glass at low temperatures.

The following concerns a general perfect-sampling method which uses Markov chains:
the CFTP method [10]. With the classic utilization of Markov chains, it seems impossible
to obtain a perfect sample. Indeed, the system is always correlated (even slightly) to its
initial configuration (see Eq. (5.8)). This fact can be changed under the condition that
the run time is random. Simple examples of such processes are the card shuffling of
Aldous and Diaconis [138] and the “dead-leaves” model [139]. In the more general CFTP
method, the simulation time is also random.

5.2 Coupling from the past

The CFTP method [10] is a general scheme which turns a classic Markov chain into a
perfect sampling process. This method uses the“coupling”phenomenon of Markov chains,
where two Markov chains, starting from different initial configuration, eventually reach
the same configuration.

5.2.1 Forward coupling

Let us consider two simultaneous Markov chains xt and yt, satisfying the same transition
probabilities, but starting with different initial conditions, say x0 and y0. We also assume
that the transition probabilities do not depend upon the chain (x or y) but only upon
the configuration2. One can therefore build the “random maps” { f0, f1, . . . } where
ft : Ω → Ω stores the transitions for each possible configuration of Ω at a time t (see
the arrows in Fig. 5.1 for example). The chains are then said to be coupled if at a time t

2This is, for example, done by choosing the same random number sequence in both chains.
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they occupy the same configuration. Once the chains are coupled, they follow the same
path, that is,

xt = yt ⇒ xt′ = yt′ ∀t′ > t. (5.11)

The coupling of Markov chains is commonly used in mathematics to prove various prop-
erties of the chains, such as ergodicity [140].

The coupling of Markov chains goes along with a loss of memory. Indeed, after the
coupling, it is impossible to tell whether the initial configuration of the chain was x0 or
y0. This property can be used to design a perfect-sampling method. Let us start the
coupling process with as many Markov chains as possible, that is, with chains starting
from each possible initial configurations. The chains show several couplings until only
one chain remains for t ≥ τcoup (see Fig. 5.1). The time τcoup when the global coupling
occurs is called the “coupling time”. This coupling process is called a “forward coupling”.

1

2

3

4

5

0 tτcoup

Figure 5.2: Example of forward coupling with the system in Fig. 5.0. The transition maps are
represented by the gray arrows. After τcoup = 10, all Markov chains (red lines) follow the same
path; the memory of the initial configuration is lost. (Ref [131]).

As the chains start from each possible configuration, the remaining chain after the time
τcoup has no memory of any initial configuration. A“memoryless” algorithm can therefore
be designed: the sample is extracted at t = τcoup after a forward coupling. This sampling
is indeed memoryless, but its distribution differs from the stationary distribution π of the
underlying Markov chain. This can be shown in a simple example. We consider a system
constituted of two configurations, labeled 1 and 2, and a Markov chain whose transition
probabilities are P(1 → 2) = 0.5 and P(2 → 1) = 1 (see Fig. 5.2). The stationary
distribution of the chain is π(1) = 2/3 and π(2) = 1/3. However, the coupling only
occurs on the configuration 1. The stationary distribution of this process is thus π(1) = 1
and π(2) = 0. A modification can turn the sampling both memoryless and satisfying the
probability distribution π, that is, turning it perfect: the CFTP method.

5.2.2 Coupling from the past

We consider a forward coupling starting at an initial time tinit → −∞. The process
generates the transition maps { f≃−∞, . . . , f−2, f−1}. At t = 0, the chains are necessarily

112



1 2
0.5

1

0.5

1

2

τcoup0 t

Figure 5.3: Left: A Markov chain for a two-state system. The arrows represent the transition
probabilities. The stationary distribution is π(1) = 2/3 and π(2) = 1/3. Right: The coupling
can only occur on the configuration 1.

coupled. Moreover, as it corresponds to an infinite simulation time, the resulting unique
configuration xp at t = 0 is distributed according to π. Because of the coupling, it is
not necessary to run the process from tinit → −∞. Indeed, let us imagine that a forward
coupling, starting from t < 0, couples before t = 0. Then, a forward coupling, starting
from t′ < t (with the same random maps), gives the same configuration xp at t = 0 (see
Fig. 5.3). The configuration xp is therefore the result of the infinite simulations; it forms
a perfect sample distributed according to π. In order to find xp, the transition maps can
be explored backward (t = 0, then t = −1, etc.) until a forward coupling takes place
before t = 0. This constitutes the CFTP method.
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t≃−∞ t’ t
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Figure 5.4: Example of a CFTP process with the system of Fig. 5.0. The configuration xp at
t = 0 is determined by a coupling forward starting at t = −4. The same value for xp is obtained
from an earlier forward coupling (at t′) and thus also from the infinite simulation (t ≃ ∞). xp

is perfectly sampled. (Ref [131]).

In practice, the random maps { f−T, . . . , f−1} are generated, and T is a finite pa-
rameter of the algorithm. If the forward coupling, starting from t = −T, couples before
t = 0, the sample xp is then extracted. Otherwise, additional maps { f−2T, . . . , f−T−1}
are generated and so on. The process stops when the unique state xp is determined.

The CFTP method is not limited to discrete systems, and it can for example be applied
to hard spheres (see Section 6.3). In systems with N elements (spins, hard spheres, etc),
the configuration space generally grows exponentially with N. The CFTP thus faces two
distinct challenges. First, it must survey the entire configuration space in order to prove
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coupling. Second, it must ensure that the coupling time does not become much larger
than the correlation time. The first problem has been solved for local Markov chains by
the use of a patch algorithm [129, 131]. The second problem is related to the damage
spreading of the Markov chain [7] (see Chapter 6).

5.3 Survey problem

The CFTP method requires to follow Markov chains starting from all possible initial
configurations. The number of configurations in a system with N elements is very large.
For example, a 2D Ising spin system with 64 spins has 2N ≃ 101233 configurations. It is
therefore impossible to track each Markov chain individually, because of limited computer
time and memory.

5.3.1 Partial order

In specific systems, a “partial order” allows to track only two initial configurations. In
these systems, the partial order “�”between configurations of the system is conserved by
the random maps f :

xt � yt ⇒ xt+1 � yt+1. (5.12)

If two extrema for this order exists, xmin and xmax, the coupling of the chains starting
from xmin and xmax implies the coupling of all chains. Therefore, only these two chains
have to be followed in order to prove global coupling.

For example, a partial order is preserved in the Ising model with ferromagnetic interac-
tions under heat-bath dynamics [10], or in a model of directed polymers under heat-bath
dynamics again [131]. For these systems, the CFTP is thus easily applicable. The partial
order also gives an indication about the coupling time τcoup. If τcorr is the correlation
time, and N is the number of elements in the system, a theorem [10] states that the
partial order implies

τcoup/τcorr ≤ O(ln N). (5.13)

In the example of the ferromagnetic Ising model under heat-bath dynamics, the two
extrema for the partial order are the configurations of magnetization M = N and M =
−N. The partial order implies that the magnetization M+(t) and M−(t) of these initial
configurations satisfy M+(t) ≥ M−(t). In the paramagnetic phase, these magnetizations
converge toward zero with a typical time scale of τcorr: M+(t) ∼ N exp (−t/τcorr)
and M−(t) ∼ −N exp (−t/τcorr). This gives that the chains couple for approximately
N exp (−τcoup/τcorr) ∼ 1 and thus τcoup ∼ τcorr ln N. The partial order is however
absent in most systems.

5.3.2 Patch algorithm

The patch algorithm [129, 131] is a general method which solves the survey problem for
local Markov-chain dynamics. Instead of following the configurations individually, this
algorithm follows the configurations from parts of them (the patches). The total set of
configurations followed at a time t is larger than the actual set of remaining configurations.
Therefore, this method gives an upper bound for the coupling time τcoup. The upper
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bound is generally close to the real value of τcoup, and the extra computer time needed
to perform this survey is not prohibitive. We describe this algorithm in the 2D Ising
spin-glass model under heat-bath dynamics. The idea is however applicable to general
systems (such as hard spheres) [131].

A configuration x of the 2D square-lattice Ising model is defined by the value of its
N spins x = {s1, s2, . . . , sN} where si ∈ {−1, 1}. The energy of this configuration is
given by

Ex = − ∑
〈i,j〉

Jijsisj. (5.14)

The sum extends over the nearest neighbors (with periodic boundary conditions). For the
spin-glass version, the interactions are Jij = ±1 with equal probability. In the canonical
ensemble, the distribution of the configurations satisfies π(x) ∝ exp (−βEx) where β =
1/kBT is the inverse temperature. Heat-bath dynamics consists in choosing at each step
one spin sk, and updating it with probabilities

π(sk = ±1) =
1

1 + exp (∓2hkβ)
. (5.15)

The field on site k is given by hk = ∑l Jklsl. As a coupling process, the same random
numbers are used for each configuration. The same spin is therefore selected for each
configuration, and updated with the same random number γ. γ ∈ [0, 1] is uniformly
sampled, and the update is done by

sk =

{

1 if γ < π(sk = 1)

−1 if γ > π(sk = 1)
. (5.16)

In this system, it is impossible to individually store the 2N initial configurations.
We first consider a simple way to follow the set of configurations by the use of patches
1 × 1, that is, single spins. Each configuration can be constructed by the assembly of
single spins. Therefore, the spins constitute the standard basis of the initial set Ω0 =
{−1, 1}N. During the simulation, configurations couple, and the set Ωt of remaining
configurations at a time t reduces. As already mentioned, the exact tracking of Ωt is
impossible. However, let us suppose that for a given spin update, the random number
is γ ≃ 0. As a consequence, the field hk does not influence the update (see Eq. (5.15)
and Eq. (5.16)), and the resulting spin will be sk = 1 ∀x ∈ Ωt. The element sk = 1 can
then be removed out of the basis. The new basis generates a superset Ω̃t ⊃ Ωt, which
is smaller than the initial set. For other updates, one might have to add a new element
to the basis. Therefore, a method to ensure coupling can be to follow this superset by
removing (or adding) elements to the basis when possible (or necessary). If the superset
Ω̃t reduces to a single configuration, the coupling is ensured. This is the“summary states”
method [141, 142, 143]. This method is only applicable at high temperatures. Indeed,
if the temperature is too low, the amount of removed and added element of the basis
equalizes and the superset takes an infinite time to reduce to a single configuration (while
the actual set of remaining configurations Ωt does).

In order to ensure the coupling at lower temperature, the summary state strategy
is used but with a different basis. Instead of storing configurations in a basis of single
spins, the patch algorithm stores the configurations on a pseudo-basis made of rectangular
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patches. We consider for example patches of size 3 × 3. The pseudo-basis is constituted
of N sets {S1, S2, . . . , SN}, Sk being a set of patches 3 × 3 centered around the spin k.
At the initial state, each set Sk is composed of 23×3 = 512 patches. A superset of the
configuration can be recovered by an assembly of these patches

Ω̃t = S1 ⊗ S2 ⊗ · · · ⊗ SN (5.17)

(see Fig. 5.4). The patch algorithm uses three subroutines: the “update” of the patches,
the “pruning” of the patches, and the “merging” of the patches.

Let sk be the spin to update through heat-bath dynamics. The patches containing the
spin sk have to be updated. There are two different updates: If sk is not at the border
of the patch, the update is direct as the local field hk can be computed within the patch.
In this process, two patches of the same set Sk can become identical, one of them is thus
removed out of the set. If sk is at the border of the patch, the update has to assume each
possible field hk for each possible combination of the unknown spins. As a consequence,
new patches might have to be included in the set.

The pruning process ensures the compatibility between patches. Indeed, as the patches
are overlapping (see Fig. 5.4), a given patch of the set Sk can be incompatible with all
patches of the neighboring set Sk′ . The incompatible patches are then removed.
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Figure 5.5: Left: The set of configurations is stored in patches. Each configuration can be
made by an assembly of patches. Right: Number of patches per set Sk as function of time for
the 32 × 32 spin glass at β = 0.5. A simulation with 3 × 3 patches is compared to a simulation
with patches of increasing size. (Ref [7], see Section 7.2).

In this method, the number of patches per set decreases (see Fig. 5.4). If the temper-
ature is high enough, the superset Ω̃t eventually reduces to a single configuration. At a
lower temperature (as for the 1 × 1 patches), the number of configuration in Ω̃t reaches
a stationary value higher than 1. In order to avoid that, the patches are merged during
the simulation in larger patches 4 × 4, 5 × 5, and so on. This allows the superset Ω̃t

to be reduced even further, eventually reaching a single-configuration state. Moreover,
this merging process reduces the time needed to reach the single-configuration state (see
Fig. 5.4).

As Ω̃t is a superset of Ωt, the time when Ω̃t is singular is an upper bound of the real
coupling time τcoup. This upper bound is what is needed in order to apply the CFTP

116



method. This method applies to most local algorithms, such as the heat-bath algorithm
in 3D Ising models, or the birth-and-death algorithm in hard spheres (see Section 6.3).

With this method, Chanal and Krauth [129] obtained perfect samples of the 2D Ising
spin glass for a system of 64 × 64 spins at a temperature β = 0.5. For 3D spin glass,
they obtained perfect samples down to the temperature of β = 0.3. They also obtained
[131] perfect sample of ∼ 60 hard disks at a density η = 0.28. These temperatures (and
densities) are lower (higher) than what was reached previously. These values are however
still far from the phase transitions (βc ≃ 0.9 [128] for 3D spin glass, and η ≃ 0.7 for hard
disks). At lower temperatures (or higher densities), the method fails to reach a single
configuration.

Conclusion

The CFTP method overcomes the problem of the initialization bias. This method could
be helpful in physical systems where the correlation time is hard to access. However,
the CFTP method encounters difficulties in these systems. Even the patch algorithm
fails to sample 2D spin glasses at a temperature lower than β ≃ 0.5, or hard disks at a
density higher than η ≃ 0.3. It is interesting to know if these difficulties are due to a
failure of the tracking method, or merely the coupling time has a value much larger than
the correlation time. This question is answered by the analysis of the coupling time as
function of temperature (or density) and system size for spin glasses and hard disks. The
results show that the tracking system is not responsible for these difficulties.
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6
Damage spreading and coupling in Markov chains

In this chapter, I show that the limitation of the CFTP method is due to the damage-
spreading transitions of Markov chains, already studied in the literature [130, 144, 145].
I then discuss the behavior of these dynamical transitions in spin glasses and hard disks
for various algorithms and coupling schemes. The transition temperatures and densities
are found to depend on the coupling scheme. These results have been published in [7]
(see Section 7.2).

6.1 Chaos in Markov chains

Chaos manifests itself in Hamiltonian dynamical systems when nearby initial configu-
rations drift apart with time. Chaos can also be defined for cellular automata and for
Markov chain algorithms. In these systems, following Kauffman [130], the drifting-apart
of configurations is termed “damage spreading”. In contrast, for “regular” dynamics,
two nearby initial configurations become identical after a finite time, and remain indis-
tinguishable from then on. This behavior is closely related to the coupling of Markov
chains. In systems with N elements (spins, hard spheres, etc), the configuration space
generally grows exponentially with N. A chaotic dynamics would cause the coupling time
to explode: it would become much larger than the correlation time as any two config-
urations have a very small probability for finding each other in a large space. Damage
spreading has been studied in many physical systems, in particular spin glasses [144].
In several spin glass models with heat-bath dynamics, it is now well established that a
dynamical damage-spreading transition occurs at a critical temperature, βds, located in
the paramagnetic phase [145]. The dynamic is regular at temperatures higher than 1/βds

and chaotic at lower temperatures. Even for the 2D ±J Ising spin glass, whose thermody-
namic phase transition is at T = 0 [146, 147], the transition to chaos takes place at finite
temperature [145]. In the following, the behavior of the coupling time τcoup is studied for
different algorithms, temperature (or density), and system size. To that purpose forward
couplings are realized and averaged.
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6.1.1 Partial survey

The patch algorithm of Section 5.3.2 gives an upper bound for the coupling time τcoup.
A simple method allows a lower bound to be reached: the “partial survey”. In the partial
survey, only a few initial configurations are individually followed until they couple. The
knowledge of both bounds allows one to study the behavior of the coupling time at
different temperatures (or densities) as function of system size.

In practice, only a small number of initial configurations Ninit is needed to obtain
a good lower bound of τcoup. Indeed, with increasing Ninit, the coupling time is found
to quickly saturate at its final value. This is called the “saturation” phenomenon (see
Fig. 6.0). Moreover, this lower bound for τcoup is generally found to be equal to the upper
bound found by the patch algorithm. This can be understood with a simple argument:
Just before the coupling (of all initial configurations) only two Markov chains, x and y,
remain. Under the assumption that about half of the initial chains are merged into x, and
that the other half are merged into y, the probability that the partial-survey coupling time
is lower than the actual coupling time τcoup is p = 1/2Ninit. This probability becomes
very low for large values of Ninit. Of course, the assumption of equal weight for the two
last-remaining Markov chains can be broken in specifically designed systems. However,
in the systems studied (Ising spin glass, hard spheres), the saturation property is always
observed. In this thesis, the partial surveys are performed with a number of Ninit = 10
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Figure 6.1: Independent partial survey with Ninit initial configurations for the 2D Ising spin
glass with 642 spins under heat-bath dynamics. Left: β = 0.5, the coupling time saturates at
τcoup = 389 (for this sample) even with Ninit = 10. The patch algorithm gives the same value
for the upper bound. Right: β = 0.6, the coupling time saturates at τcoup = 15402. Again,
the patch algorithm gives the same value for the upper bound. (The strong increase of τcoup

between the two densities hints the change of behavior at β ∼ 0.6.)

initial configurations.

6.1.2 Random walks in high dimensions

Before analyzing 2D spin glasses and hard spheres, we illustrate the coupling and the
damage spreading in a simple Markov-chain algorithm. This algorithm can be interpreted
either as a random walk in an N-dimensional hypercubic lattice, as the dynamics of
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N distinguishable non-interacting particles in a 1D lattice of length L, or as N non-
interacting Potts spins with L configurations. For the random walk (see Fig. 6.1), each
N-dimensional lattice site i = {i0, . . . , iN−1} is described by integers ik ∈ {0, . . . , L − 1}
with periodic boundary conditions. The particle can hop from site i to one of i’s nearest
neighbors in direction k, j = i ± δk, with δk = {0, . . . , 1, 0, . . . } (periodic boundary
conditions are again understood). The probability for moving from i to j is

P(i → j) =











1
3N for j = i ± δk
1
3 for j = i

0 otherwise

. (6.1)

τcoup

t

i1
0

L i20
L

Figure 6.2: Coupling of two random walks in a periodic N-dimensional hypercubic lattice of
length L. After the time τcoup, the two random walks evolve identically. The chaotic coupling
of Eq. (6.2) is shown. For the regular coupling of Eq. (6.3), the displacement at time t is in the
same dimension k, and it is a function of ik only. (Ref [131]).

The simulation thus samples at each time step one dimension, k, among the N available
ones (it moves in“x”, or “y”or “z”, etc). In dimension k, it then hops with probability 1/3
each to the left or to the right, or remains on the same site. Eq. (6.1) also describes N
distinguishable non-interacting particles on a 1D lattice of length L, again with periodic
boundary conditions. At time t, a randomly chosen particle k hops to the left or to the
right, or it remains on the same site, each with probability 1/3, as above.

A two-configuration coupling is a random process P̃(i → j, i′ → j′) for the joint
evolution of two random walks such that integrating over one of them yields the original
random walk of Eq. (6.1) for the other. After they meet, the two configurations evolve
in the same way. The simplest choice for a coupling is the product ansatz,

P̃(i → j, i′ → j′) =











P(i → j)P(i′ → j′) if i 6= i′

P(i → j) if i = i′, j = j′

0 otherwise

, (6.2)

where the two random walks evolve independently from each other if they are on different
sites i and i′, but stay together once they have met (j = j′ if i = i′). To implement this
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coupling for any number of configurations, one samples at each time step independent
random moves at each site, so that particles on the same site experience the same ran-
domness. In the above-mentioned representation of particles on the 1D line, we consider
the coupling of two N-particle systems, again described by Eq. (6.2), as the indepen-
dent evolution, at time t, of the LN possible configurations of the system. Naturally, the
coupling time behaves as τcoup ∝ LN whereas the correlation time (in displacements per
particle) behaves as τcorr/N ∝ L2.
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Figure 6.3: Left: Chaotic and regular couplings for the random walk in a N-dimensional hy-
percubic lattice of length L = 5 (see Eq. (6.2) and Eq. (6.3), respectively). The random process
for a single random walk is defined by Eq. (6.1) in both cases. (Ref [7], see Section 7.2). Right:

Number of configurations vs. time as a function of the number Ninit of initial configurations,
for N = 7, L = 5, with the chaotic coupling. The number of configurations slowly decays in a
power-law function.

An alternative coupling consists in sampling, at time t, one dimension k common to
all random walks. The two-configurations coupling scheme is then

P̃(ik → jk, i′k → j′k) =











P(ik → jk)P(i′k → j′k) if ik 6= i′k
P(ik → jk) if ik = i′k, jk = j′k
0 otherwise

(6.3)

so that two configurations i and j with ik = i′k will preserve this common coordinate
(jk = j′k). In the representation of N particles on a 1D lattice, the same particle k is
selected for each configuration, and for two different configurations, the particles labeled
k stay together once they have met on the same site. The dynamics is then regular
and the coupling time is τcoup/N ∼ a log N (see Fig. 6.2). The logarithmic behavior is
explained by the fact that particles move independently from each other. The coupling
time for the entire system is thus the maximum of the N coupling times for each particle.

In conclusion, we see that the same N-dimensional random walk of Eq. (6.1), with a
correlation time of order L2, allows for two very different couplings, one chaotic and the
other regular. In spin glasses and hard spheres, these regimes are realized for the same
coupling at different temperatures.
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6.2 Spin glass

6.2.1 Heat-bath dynamics

The random walk considered previously can also be considered as an L-state Potts
model at infinite temperature evolving under heat-bath dynamics. The product ansatz
of Eq. (6.2) would correspond to the independent evolution of the spin configurations,
and it is chaotic. With the coupling of Eq. (6.3), in contrast, all spins evolve and cou-
ple independently at β = 0, and the global coupling time is again the maximum of the
coupling times of the individual spins. The Monte Carlo dynamics is thus regular, and
the diagram of Fig. 6.2 carries over to the general case with L ≥ 2. We first consider
heat-bath dynamics, and the coupling is defined by the use of the same random numbers
for each configuration (see Section 5.3.2).

As shown in Section 5.3.1, for the 2D ferromagnetic Ising model (all Jij = 1, L = 2),
the dynamics remains regular at all temperatures. Below the Curie temperature, τcoup

is very large, but so is the correlation time τcorr, and the partial order implies that the
complexity of τcoup/τcorr ≤ O(log N) (see Section 5.3.1). The partial order is preserved
in the disordered Ising model with ferromagnetic interactions Jij = Jji ≥ 0, and in this
model also, the theorem of Propp and Wilson guarantees that τcoup is, up to logarithms,
of the same order as τcorr.

Frustrated models, for example spin glasses, do not exhibit partial order, and can
thus undergo a damage-spreading transition. In the 2D ±J Ising spin glass, the quenched
random interactions satisfy Jij = Jji = ±1 with equal probability. Although this model
is paramagnetic for all finite temperatures, Campbell and de Arcangelis [145] found a
damage-spreading transition for the heat-bath algorithm at βds ≃ 0.59.
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Figure 6.4: Disorder-averaged coupling time for the heat-bath algorithm of the 2D ±J Ising
spin glass. Left: Size dependence for different densities. A dynamical phase transition is seen at
the damage-spreading temperature βds ≃ 0.58. (Ref [7], see Section 7.2). Right: Temperature
dependence for different system sizes. The transition is seen for the largest systems.

In Fig. 6.3, we show the coupling time as a function of N and β. A dynamical phase
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transition is seen at the damage-spreading temperature βds ≃ 0.58. In the chaotic phase,
τcoup/N grows exponentially with N, but only logarithmically in the regular phase. The
dynamical phase transition in this model (without a spin-glass phase at finite β), although
not mathematically proved, appears firmly established. It is without influence on single-
particle properties. To illustrate this point, we verify that the correlation time τcorr/N,
computed with the auto-correlation function

C(t) =
1

N

N

∑
i=0

〈si(0)si(t)〉 , (6.4)

remains constant in the chaotic phase and only τcoup/τcorr diverges with N → ∞.

6.2.2 Local Metropolis algorithm

After the heat-bath algorithm, we discuss the local Metropolis algorithm, where individ-
ual spins sk are flipped with a probability depending on their local field. In the standard
implementation, spin flips are accepted with a probability equal to 1 at infinite temper-
ature, and this prevents the coupling from occurring. To allow coupling at any β we
use

P(sk → −sk) =
2

3
min(1, exp(−2βskh)). (6.5)

At each step, the same spin k is updated for all copies of the system. For these dynamics,
several coupling schemes can be set up. If the same random number γ is used for each
configuration, the coupling does not take place, as two opposite configurations will always
stay opposite. We adapt the regular coupling of Eq. (6.3) and use two independent
random numbers, γ1 for “up” spins and γ2 for “down” spins. The coupling time is again
logarithmic at high temperatures and exponential at low temperatures, with a critical
temperature βds ≃ 0.33 (see Fig. 6.4).

The Metropolis algorithm, with this coupling scheme, has thus a higher dynamical
critical temperature than the heat-bath algorithm, with which it shares all the qualitative
features. This confirms that the dynamic damage-spreading transition is algorithm de-
pendent and can, in particular, not be explained by thermodynamic properties. One may
also choose the random numbers in the Metropolis algorithm using γ for sk = 1 and 1−γ
for sk = −1. This scheme correlates opposite spins better and the critical temperature is
found to be βds ≃ 0.52 (see Fig. 6.4). This result shows that, like the previous random
walk, the same Markov chain allows for qualitatively different couplings.

6.3 Hard spheres

After spin glasses, we consider the hard-sphere model (see Part I). In this section, three
Monte Carlo algorithms for hard spheres are presented, which allow for coupling of the
entire configuration space. Two of the algorithms remain regular below a finite critical
packing fraction, ηds, in the limit N → ∞, while the latter is chaotic at all densities.
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Figure 6.5: Size dependence of the coupling time for the Metropolis algorithm in the 2D ±J
Ising spin glass. Two different coupling schemes are used Left: The random numbers γ1 for
“up” spins and γ2 for “down” spins are independent. The damage-spreading transition occurs
at βds ≃ 0.33. Right: The random numbers are γ for sk = 1 and 1 − γ for sk = −1. The
damage-spreading transition occurs at βds ≃ 0.52.

6.3.1 Birth-and-death and ”Labeled displacement” algorithm

In the grand-canonical birth-and-death Monte Carlo algorithm [148, 149], particles are
placed inside a box at random positions~r = (xk, yk) at rate λ if no overlaps with previ-
ously placed disks are generated. The life time of each disk is sampled from an exponential
distribution with rate 1. One realization of the algorithm is represented in the diagram
of Fig. 6.5. The mean number 〈N〉 of particles in this system is controlled by the activity
λ.

This model’s configuration space is infinite, but the survey of all possible initial con-
ditions is nevertheless feasible [150, 151, 131]. For any realization of the algorithm, the
possible configurations at time t are a subset of the finite set produced from a horizontal
cut in the diagram of Fig. 6.5. The patch algorithm again yields sharp upper bounds
for τcoup [131]. Surprisingly, this algorithm for hard disks remains regular below a finite
density ηds in the limit N → ∞ [151, 150].

We again study damage spreading in this model by applying the same Monte Carlo
dynamics (same choice of~ri, ti, τi) to Ninit random hard-sphere initial conditions at time
t = 0 with life times sampled from an exponential distribution. The data shown in
Fig. 6.6 again indicate a dynamical phase transition between the regular regime at packing
fractions η < ηds ≃ 0.29 and the chaotic regime above ηds. This density corresponds to
the limiting density found with the patch algorithm [131].

A canonical version of the birth-and-death algorithm is the “labeled displacement”
algorithm where, at times t = 0, 1, 2, . . . , a randomly chosen particle k is moved to a
random position~rk, if this move creates no overlaps. We see clear evidence of a dynamical
phase transition at a critical density ηds ≃ 0.13 (see Fig. 6.6), which is smaller than for
the closely related birth-and-death algorithm.

125



x y

t

0

LL

Figure 6.6: Grand-canonical birth-and-death algorithm for hard disks. Disk i appears at time
ti, at position~ri = (xi, yi), and it disappears at time ti + τi. In time, disk i describes a cylinder.
Disks (cylinders) which are accepted, because they create no overlaps with earlier disks, are
drawn in dark gray. The rejected disks are drawn in light gray. The configuration space of this
system is infinite, yet the possible configurations at time t are a subset of the finite set (of dark
and light cylinders) produced from a horizontal cut in this diagram. (Ref [7], see Section 7.2).
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Figure 6.7: Left: Coupling time of the birth-and-death algorithm of Fig. 6.5 for 2D hard
spheres. The damage spreading transition occurs at a packing fraction ηds ≃ 0.29. Right:

Coupling time for the labeled displacement algorithm. The dynamical transition to chaos occurs
at a lower density (ηds ≃ 0.13) than for the birth-and-death algorithm. (Ref [7], see Section 7.2).
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6.3.2 Spot algorithm

We finally study the coupling for a Markov chain similar to the Metropolis algorithm:
the spot algorithm.

t = 0 t = 1 τcoup = 2

 : spot

Figure 6.8: Spot algorithm for hard spheres: The randomly chosen spot position defines the
attempted move of a disk inside the spot. The spot radius satisfies σspot ≤ σ, and, at most,
one disk is moved at time t. An example with N = 1 and σspot = σ is shown. (Ref [7], see
Section 7.2).

The Metropolis algorithm for N hard spheres consists of moving, at time t, a particle
k by a random vector ~δ = (δx, δy). As the configuration space is continuous, the coupling
probability is zero if one uses a naive coupling scheme. The following spot algorithm is
more successful (although its coupling is chaotic at all densities): at time t, it places a
spot, a disk-shaped region with radius σspot ≤ σ, at a random position~rs.
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Figure 6.9: Coupling time τcoup of the spot algorithm Left: Size dependence of τcoup for
different packing fraction η. For all η, the coupling time is exponential in N. Right: Packing
fraction dependence for different system size. For N = 25, the coupling time is similar at all
densities in the region η ∈ [0.1, 0.7]. (Ref [7], see Section 7.2).
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The spot contains at most one disk center, and the move consists in placing this disk
at ~rs, if this creates no overlap with other particles (see Fig. 6.7). The spot algorithm
satisfies the detailed-balance condition, and it generates the same moves as the Metropolis
algorithm. Moreover, as illustrated in Fig. 6.7, it succeeds in coupling. However, as shown
in Fig. 6.8, the coupling time of the spot algorithm is an exponential function of N for
all densities: the coupling is always chaotic.

6.4 Griffeath’s coupling

As seen in this chapter, the coupling time depends on the coupling scheme. Griffeath
[152] designed a coupling scheme which is always regular. We consider two Markov chains

x and y under a coupling process. We define p
(n)
xk as the probability for the chains x to

be at the configuration k after n steps, and p
(n)
yk the equivalent for the chain y. We also

define Pxy(k, n) as the probability for the chains x and y to both be at the configuration
k at the time n (and therefore to have coupled at τcoup ≤ n). For any coupling scheme,

Pxy(k, n) ≤ min(p
(n)
xk , p

(n)
yk ). (6.6)

The algorithm of Griffeath [152] is maximal, that is, it satisfies

Pxy(k, n) = min(p
(n)
xk , p

(n)
yk ). (6.7)

Therefore, this coupling is always regular, and τcoup ∼ τcorr. This scheme, which is
designed for the coupling of two chains, can be extended to an arbitrary number of Markov
chains [8]. However, Griffeath’s coupling is non-Markovian: the transition probabilities
of the chains depend on the previous configurations. As a consequence, this algorithm is
difficult to implement in practice. Nevertheless, its existence shows that regular coupling
do exist, and it could be an inspiration for the realization of better coupling scheme.

Conclusion

In this chapter, we studied the relationship between the coupling of Markov chains, which
is of critical importance for the subject of perfect sampling, and damage spreading.

For the 2D ±J Ising spin glass, which lacks an equilibrium phase transition at finite
temperatures, we found a dynamical phase transition at βds ≃ 0.58 for the heat-bath al-
gorithm, corresponding to the damage-spreading transition [145]. For lower temperatures
the coupling time explodes. The Metropolis algorithm has the same damage-spreading
behavior but with higher critical temperatures: βds ≃ 0.33 or βds ≃ 0.52 for two simple
coupling schemes. All damage-spreading transitions for this system are deeply inside the
paramagnetic phase.

For the hard-disk system, we analyzed three local Monte Carlo algorithms, the birth-
and-death algorithm, inspired from Poisson point processes, its canonical version (the
“labeled displacement” algorithm), and the spot algorithm, a straightforward adaptation
of the Metropolis algorithm. The first algorithm shows a regular regime only for packing
densities below ηds ≃ 0.29, the coupling time was then of the same order of magnitude
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as the correlation time. The canonical version of the birth-and-death algorithm had a
critical density of ηds ≃ 0.13. These transition densities are again deeply inside the liquid
phase.

The application of perfect sampling methods to these challenging problems is there-
fore not so much limited by the survey problem, as the patch algorithm allows to track
the evolution of the entire configuration space, but rather by damage spreading, the
underlying chaotic nature of the Monte Carlo dynamics.
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Conclusion

The Monte Carlo method, with the use of Markov chains, has revolutionized the computa-
tion of high-dimensional integrals, and therefore the understanding of N-element systems.
This widely used method encounters its limitation in the lack of rigorous method to en-
sure the convergence of Markov chains. The coupling-from-the-past method is designed to
overcome this problem of convergence, and could provide a sampling method which com-
bines the efficiency of Markov chains with the rigor of direct-sampling methods. Part II
of this thesis showed that the limitation of this method was due to damage spreading,
the underlying chaotic nature of the Markov chains. Moreover, this limitation depends
on the coupling scheme. The application of coupling-from-the-past methods thus hinges
on the design of coupling schemes which remain regular even for complicated many-body
systems. Such scheme exist, as is shown by Griffeath’s coupling [152], which is never
chaotic although difficult to construct in practice. The discovery of efficient coupling
schemes would have important consequences for the physics of disordered systems, and
more generally for the countless applications of the Markov-chain Monte Carlo method.
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This article presents the event-chain algorithm (see Chapter 2), which has been designed
and used to study the melting transition. The article describes the different versions of
the algorithm, and it analyzes their performances.

141



Event-chain Monte Carlo algorithms for hard-sphere systems

Etienne P. Bernard,
1,* Werner Krauth,

1,†
and David B. Wilson

2,‡

1
CNRS–Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

2
Microsoft Research, One Microsoft Way, Redmond, Washington 98052, USA

�Received 19 March 2009; revised manuscript received 15 October 2009; published 18 November 2009�

In this paper we present the event-chain algorithms, which are fast Markov-chain Monte Carlo methods for

hard spheres and related systems. In a single move of these rejection-free methods, an arbitrarily long chain of

particles is displaced, and long-range coherent motion can be induced. Numerical simulations show that

event-chain algorithms clearly outperform the conventional Metropolis method. Irreversible versions of the

algorithms, which violate detailed balance, improve the speed of the method even further. We also compare our

method with a recent implementations of the molecular-dynamics algorithm.
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Hard spheres in three and in two dimensions �hard disks�
occupy a special place in statistical mechanics. Indeed, many
fundamental concepts, from the virial expansion �by van der
Waals and Boltzmann�, to two-dimensional melting �1�, to
long-time tails �2�, were first discussed in these extraordinar-

ily rich physical systems. These models have also played a

crucial role in the history of computation: both the Metropo-

lis algorithm �3� and molecular dynamics �4� were first

implemented for monodisperse hard disks in a box. In con-

trast with the spectacular algorithmic developments for lat-

tice spin models �5,6�, Monte Carlo algorithms for hard

spheres have changed little since the 1950s, especially for

high densities. Recent sophisticated implementation have re-

duced the complexity of the molecular-dynamics algorithm

to a value comparable to that of the Monte Carlo method.

Nevertheless, one can today still not equilibrate sufficiently

large systems �7� to clarify whether the melting transition in

two-dimensional hard disks, at density �occupied volume

fraction� ��0.70, is weakly first order, or whether it is of

the Kosterlitz-Thouless type �8�, with a narrow hexatic phase

in between the liquid and the solid.

In this paper, we propose a class of Monte Carlo algo-

rithms for hard-sphere systems: the ‘‘event-chain’’ algo-

rithms. In contrast to the Metropolis algorithm, these meth-

ods are rejection-free. In a single move, they displace an

arbitrary long chain of spheres, each advancing until it

strikes the next one. Event-chain algorithms are generically

faster than other Markov-chain algorithms, in part because

the mean-square displacements of individual particles are

larger. In addition, one of the event-chain algorithms moves

coherently over long distances. This further improves equili-

bration times. Finally, the absence of rejections allows us to

consider irreversible versions, which violate detailed bal-

ance, but preserve the correct stationary distribution. These

versions accelerate the algorithm even further. The event-

chain algorithms clearly outperform the traditional Metropo-

lis algorithm for hard-disk and hard-sphere systems.

In the local Metropolis algorithm, the move of a sphere is

accepted if it induces no overlaps, and is rejected otherwise

�see Fig. 1�. This algorithm is notoriously slow at high den-

sity because, although a particle can move back and forth in

the “cage” formed by its neighbors, it cannot easily escape

from it �9�.
To overcome the limitations of the local Metropolis algo-

rithm, coordinated particle moves have been considered:

When the displacement of one sphere generates overlaps

with other spheres, the latter are in turn moved out of the

way. The rejection-free pivot cluster algorithm �10�, for ex-

ample, works extremely well for binary �11� or for polydis-

perse �12� mixtures, but it breaks down for the high densities

of interest in two-dimensional melting. In Jaster’s algorithm

�13�, overlapping spheres forming a chain are displaced, all

of them by a fixed vector, until a configuration without over-

laps is obtained �see Fig. 1�. If a sphere branches out to more

than one other sphere during the chain construction, the

move is rejected �see Fig. 1�. This happens frequently, so the

expected chain length is short and Jaster’s algorithm barely

faster than the local Metropolis algorithm.

In the algorithms presented here, each move consists in a

deterministic chain of “events:” a disk advances until it

strikes another one, which then in turn is displaced. The

move starts with a randomly chosen disk, and stops when the

lengths of all displacements add up to a total-displacement

parameter � �see Fig. 2�. This parameter allows the move to

be reversible without rejections. To satisfy detailed balance,

the move must also conserve configuration-space volume.

This implies that when a disk strikes a neighbor, the latter

*etienne.bernard@ens.fr
†
werner.krauth@ens.fr

‡
http://dbwilson.com
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ti tf = ti + 4 ti tf = ti + 2

FIG. 1. Upper panels: Accepted �left� and rejected �right� local

Metropolis moves of a disk in the cage formed by its neighbors.

Lower panels: Accepted and rejected moves in Jaster’s chain

algorithm.
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may be displaced either in the original direction �“straight
event-chain” �SEC� algorithm� or in the direction reflected

with respect to the symmetry axis of the collision �“reflected
event-chain” �REC� algorithm� �see Fig. 2�. In a periodic

box, and with the initial direction � sampled uniformly in

�0,2��, both versions, which we call “reversible,” preserve

the uniform measure because of detailed balance.

The detailed balance condition is allowed to be broken in

the SEC algorithm. Indeed, for a given direction �, a con-

figuration � of N disks can reach N other configurations in

one move. By applying to � the N possible moves in direc-

tion �, one finds the N configurations that reach �. Therefore,
the SEC algorithm satisfies global balance for any distribu-

tion of �. Algorithms breaking detailed balance induce prob-

ability flows in the configuration space and potentially

speed-up equilibration �18�. We study such an irreversible

version of the SEC algorithm where � is uniformly distrib-

uted in �0,��. To preserve ergodicity, at least two indepen-

dent directions are needed. By far our fastest implementation

�the “xy version” of the SEC algorithm� alternates moves in

the positive x and y directions ��=0,� /2�. A version of the

SEC algorithm, but with rejections and which cannot break

detailed balance, was also mentioned in �13�.
In Fig. 3 we show the integrated distribution of ��� of Eq.

�5�,

�
0

x

������d��� , �1�

for the xy version of the SEC algorithm, for the Metropolis

algorithm, and for molecular dynamics in the same system.

They are found to be equal. This demonstrates the correct-

ness of our implementations.

As a first step to analyze the performance of the event-

chain algorithms, we consider the mean-square displacement

��
x

2� of individual disks, both in the local Metropolis and in

the event-chain algorithms. As mentioned, event-chain algo-

rithms generically outperform the Metropolis algorithm in

part because they take larger steps on average. In order to

compare the two methods, we measure time in units of at-

tempted one-particle displacements.

Let us define the “free path” �=���� of a disk as the

distance it must move in direction � to strike another particle.

The ensemble average of � yields the mean-free path �0. The

distribution of the free path ��� /�0� is well approximated by

an exponential

���/�0� 	 exp�− �/�0� , �2�

even in the solid phase �see Fig. 4�. This exponential ansatz
allows us to estimate the mean-square displacement for the

local Metropolis algorithm, supposing, for simplicity, that the

proposed moves have fixed step size � in random directions.

The acceptance probability pacc���=exp�−� /�0� yields

��
x

2����=�
2 exp�−� /�0�, which is maximized when �=2�0,

max
�

��
x

2���� = ��
x

2�2�0�� = 4�0
2
/e2. �3�

To estimate the mean-square displacement for the event-

chain algorithms, we suppose that the lengths of subsequent

displacements in the chain are independent. In this case, the

expected number of particles in the chain equals � /�0+1. We

index the displacement during one event-chain move through

a timelike variable s with 0�s��. The mean-square dis-

placement of an event-chain move �the expected sum of the

squares of the individual displacements� can be expressed

through the probability ��s ,s�� that two times s and s� be-

long to the same particle movement,

��
x

2���� = �
0

� �
0

�

dsds���s,s�� .

With the ansatz of Eq. �2�, we have ��s ,s��
=exp�−�s−s�� /�0�. This yields the mean-square displacement

per particle, which can be viewed as a short-time �local�
diffusion coefficient,

ti tf = ti + 3 ti tf = ti + 4

FIG. 2. Left two panels: Move of the straight event-chain �SEC�
algorithm. The individual displacements add up to a distance �.

Right two panels: Reflected event-chain �REC� move.
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Dloc
� ��� =

��
x

2����

�M����
= 2�0

2exp�− �/�0� + �/�0 − 1

�/�0 + 1

→1 for �/�0→� �4�

This tends to 2�0
2 for large � /�0, that is, to a value e2 /2

�4 times larger than what we found in Eq. �3�, for the local
Metropolis algorithm. This factor corresponds to the effi-

ciency gain we might expect for a generic event-chain algo-

rithm with large � /�0, even though we will obtain consider-

ably larger factors for the SEC algorithm.

In a finite system, the expressions in Eq. �4� must be

corrected for the center-of-mass displacement. For the SEC

algorithm, the corrected mean-square displacement per par-

ticle, Dloc���, drops to zero for � /�0→� because in that

limit, for a finite box, all disks participate in the chain, and

the system ends up moving as a solid block. The REC algo-

rithm, in contrast, saturates to a constant mean-square dis-

placement per particle for large chains.

To further analyze the event-chain algorithms, we deter-

mined the autocorrelation time of the orientational order pa-

rameter � �14� for hard-disk systems at densities near the

melting transition. The orientational order parameter � av-

erages the complex-valued local bond order � j for each disk

j, where

� = 1/N�
j

� j �5�

and

� j =
1

n j
�
�k,j�

exp�i6� j,k� . �6�

In Eq. �6�, the sum is over the n j neighbors of j, and � j,k is

the angle of the shortest vector equivalent to xk−x j �14�.
Probable values of � form an irregular ring around the ori-

gin �see the scatter plot in Fig. 5; the �→�+� symmetry in

a square box imposes ���t��=0�.
We suppose that the correlation time of this system is

proportional to the time the order parameter takes to wander

around the ring, that is, the autocorrelation time of �. This

global measure of the overall speed of a Monte Carlo simu-

lation is more appropriate than, for example, single-particle

diffusion constants. However � is very long to decorrelate at

the interesting densities �see Fig. 7�, and we have to limit

ourselves to small systems. The autocorrelation function

C��t� of the orientational order parameter is defined by the

ensemble average

C��t� � ���t����t + �t�� ,

normalized so that C�0�=1. In our square box, this function

decays to zero exponentially for large �t �see Fig. 5�, and the

decay constant 	 and the speed 1 /	 are obtained by a fit, for

each value of the parameters �N ,
 ,��, from one single very

long simulation �with t�	�. The local Metropolis algorithm,

for its optimal step size, is as fast as the event-chain algo-

rithms with � /�0	1. �Our implementation moves 3�1010

particles per hour on a 2.8 GHz single-processor workstation

for N=4096.�
For small total displacements � /�0
1, the speed of all

the algorithms �reversible and irreversible SEC, REC, and

local Metropolis algorithm� is proportional to Dloc
� ���, as

given by Eq. �4�, that is, they all follow the single-particle

behavior �see Fig. 6�. For larger � /�0, the event-chain algo-

rithms realize a considerable speed-up compared to the local

Metropolis algorithm �also in Fig. 6�. Moreover, both ver-

sions of the SEC algorithm set up coherent motion across the

system and are clearly better than the REC algorithm, whose

particle chains meander through the system �as shown in Fig.

2�, so that the disks move incoherently. For large � /�0, the

irreversible SEC algorithm is faster than the reversible ver-

sion: it is of advantage to break detailed balance. Figure 6

also illustrates that the SEC algorithm becomes more effi-

cient �as compared to the local Metropolis algorithm� as one
approaches the transition from the liquid phase �at density

�0.708�. The optimal speed-up increases with the system

size, as shown in Table I. This suggests that the speed-up of

the SEC algorithm may well increase with the correlation

length of the system, and may, in the transition region, have

a more favorable scaling than the local Metropolis algorithm.

Let us finally discuss the relationship between the Monte

Carlo method and the molecular-dynamics algorithm. All

these approaches describe the same equilibrium state. Unlike

the Monte Carlo method, the molecular dynamics follows the

physical time-evolution of the system. The first implementa-
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FIG. 5. Left: Order-parameter distribution for 256 disks in a

periodic square box for 
=0.71. Right: Correlation function C��t�

for this system. The correlation time is obtained from an exponen-

tial fit, as shown.
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tions of the molecular-dynamics algorithm �4� were very

time consuming, with a complexity of O�N� per event �col-
lision�, slower than the Metropolis algorithm �O�1� per

move�. The complexity of modern implementations has im-

proved to O�log N� �15� per event and even O�1� �16�. A
closer look is thus needed to choose between the two meth-

ods.

We used a simple version of the molecular dynamics to

compute the decorrelation time of � in the same way as in

Fig. 5. In number of events, molecular dynamics is found to

be about three times faster than the irreversible version of

SEC for ��0.7 and N=64–1024. It is very interesting to

notice that molecular dynamics shows, unlike REC, the same

density dependence of its speed as SEC around the transition

region. We then determined the CPU time per collision of

one of the most rapid current implementations of the hard-

disk molecular-dynamics algorithm �15�. For the 32�32

system at ��0.7, this implementation reaches about 1.7

�109 collisions per hour on a 2.6 GHz workstation �17�. Our
xy implementation of the SEC algorithm reaches 3�1010

collisions per hour on similar hardware. Our implementation

is thus about 5 times faster in CPU time to reach thermody-

namic equilibrium than the best molecular-dynamics imple-

mentation. We should also note that SEC is much easier to

implement. A synopsis of these relative and absolute timing

issues is presented in Fig. 7. For clarity, we give times in

terms of “equivalent Metropolis moves;” this means that one

event of the molecular-dynamics algorithm corresponds to

�3 SEC events and to �60 Metropolis moves. The horizon-

tal lines indicate what can be achieved in approximately one

hour with our implementation of the Metropolis algorithm,

irreversible SEC, and the implementation of the molecular-

dynamics algorithm of �15�.
In conclusion, we have in this paper proposed a class of

algorithms for hard spheres and related systems, which

clearly outperform the local Metropolis algorithm. We dis-

cussed three aspects of our algorithms, which all contributed

to improve their speed. First, we showed that event-chain

algorithms have a larger effective step size than the local

Metropolis algorithm, because spheres move until they strike

one of their neighbors. We computed mean-square displace-

ments per particle �local diffusion constants� to quantify this

point. Nevertheless, local diffusion constants are not clearly

related to the speed of the algorithm: they merely describe

the short-time rattling of a particle in its cage �only for small

� /�0 is the local diffusion constant directly proportional to

the algorithm’s speed�. Second, we performed numerical

simulations of two variants of the method, and carefully ana-

lyzed the autocorrelation function of the orientational order

parameter. One of them, the SEC algorithm, induces coher-

ent motion of a long chain of spheres, and it allows the

different parts of the system to communicate with each other.

We witnessed considerable performance gains of this algo-

rithm in the critical region, in the same way than the molecu-

lar dynamics. This suggests the exciting possibility that the

speed-up of the event-chain algorithm grows with the corre-

lation length of the system, and may have a more favorable

scaling than the local Metropolis algorithm in the critical

region. This speed-up, which is shared by both the

molecular-dynamics algorithm and the SEC algorithm, is not

understood and should be further investigated. Third, we no-

ticed that the absence of rejections permitted to conceive an

irreversible version of the SEC algorithm which improves

the performances.

Our implementation of the SEC algorithm approaches

equilibrium �for large systems at ��0.70� about 40 times

faster than our local Metropolis algorithm, not only because

of the speed-up evidenced in Fig. 6 but also because the xy

version of the algorithm computes no scalar products and

uses very few random numbers. It also equilibrates about

five times faster than the best molecular-dynamics imple-

mentation and preserves certainly a large potential for im-

provement.

Nevertheless, CPU times needed for convergence remain

extremely large, and even with our algorithm, full conver-

gence of systems with 106 particles at high densities comes

barely into reach. The irreversible SEC algorithm not only

appears to be the fastest currently known simulation method

for dense hard-disk and hard-sphere systems, but it also pro-

vides a telling example of the benefits of breaking detailed

balance in Monte Carlo algorithms going beyond the “lift-

ing” Markov chains �18�.
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TABLE I. Optimal speed-up reached by the SEC algorithm

�with respect to the reversible SEC algorithm for � /�0=1� at den-

sity �=0.71 as a function of particle number.

Optimal speed-up

N Reversible Irreversible

64 �6 �8

256 �8 �11

1024 �9 �15

4096 �10 �20
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7.2 Publication II

Etienne P. Bernard, Cédric Chanal and Werner Krauth
Damage spreading and coupling in Markov chains

Europhysics Letters 92 60004 (2010)

This article addresses the problem posed by damage-spreading transitions in the appli-
cation of perfect-sampling methods (see Chapter 6). It shows, through the analysis of
algorithms in hard disks and spin glasses, that this problem is the main obstacle to the
realization of efficient perfect-sampling method.
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Abstract – In this paper, we relate the coupling of Markov chains, at the basis of perfect sampling
methods, with damage spreading, which captures the chaotic nature of stochastic dynamics. For
two-dimensional spin glasses and hard spheres we point out that the obstacle to the application
of perfect-sampling schemes is posed by damage spreading rather than by the survey problem of
the entire configuration space. We find dynamical damage-spreading transitions deeply inside
the paramagnetic and liquid phases, and we show that the critical values of the transition
temperatures and densities depend on the coupling scheme. We discuss our findings in the light
of a classic proof that for arbitrary Monte Carlo algorithms damage spreading can be avoided
through non-Markovian coupling schemes.

Copyright c� EPLA� 2010

Introduction
 – Chaos manifests itself in Hamiltonian
dynamical systems when any two nearby initial configu-
rations drift apart with time. Chaos can also be defined
for cellular automata and for Markov-chain algorithms.
In these dynamical systems, following Kauffman [1], the
drifting-apart of configurations is termed “damage spread-
ing”. In contrast, for “regular” dynamics, two nearby
initial configurations become identical after a finite time,
and remain indistinguishable from then on. For Markov-
chain Monte Carlo algorithms, the closely related case
where the entire space of initial configurations becomes
identical is termed “coupling”. Once it has coupled, the
Markov chain has lost all correlations with the initial
configuration. The coupling of Markov chains has risen
to great prominence when Propp and Wilson used it
for a perfect sampling method for Markov chains named
“Coupling From The Past” 1CFTP) [2]. When applica-
ble, this method overcomes the problem of estimating
the correlation time of a Monte Carlo calculation. In the
present article, we shall discuss the fruitful connection
between damage spreading and coupling [3].

In systems with N elements 1spins, hard spheres, etc.),
the configuration space generally grows exponentially with
N , and CFTP thus faces two distinct challenges. First,
it must survey the entire configuration space in order to

�a)E-mail: etienne�bernard@ens�fr
�b)E-mail: werner�krauth@ens�fr

prove coupling. Second, it must avoid damage spreading
which would cause the coupling time to explode: it would
become much larger than the correlation time as any two
configurations have a very small probability for finding
each other in a large space.

The surveying problem is avoided in systems with a
special property called “partial order”, as for example the
ferromagnetic Ising model under heat-bath dynamics [2,4].
For more general systems 1without partial order, but with
local update algorithms), such as spin glasses and hard
spheres, a recent “patch” algorithm inspired by numerical
block scaling ideas [3,5] allows us to rigorously follow
a superset of all initial conditions until it couples. This
algorithm generates only modest overheads of memory
and CPU time [3]. It was found that the coupling can
be established after a time evolution very close to the
coupling time.

The second problem, the explosion of the coupling
time related to damage spreading, poses the veritable
obstacle to the application of CFTP ideas. Damage
spreading has been studied in many physical systems, in
particular spin glasses [6]. In several spin glass models
with heat-bath dynamics, it is now well established that
a dynamical damage-spreading transition occurs at a
critical temperature, βds, located in the paramagnetic
phase [7]: the dynamic is regular at temperatures higher
than 1/βds and chaotic at lower temperatures. Even for
the two-dimensional ±J Ising spin glass, which has a
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τcoup

t

i1

0

L i20
L

Fig. 1: Coupling of two random walks in a periodic
N -dimensional hypercubic lattice of length L. After the time
τcoup, the two random walks evolve identically. The chaotic
coupling of eq. !2) is shown. For the regular coupling of eq. !3),
the displacement at time t is in the same direction k, and it is
a function of ik only.

thermodynamic phase transition at T = 0 [8–11], the
transition to chaos takes place at finite temperature [7].
We study in this paper the damage spreading of spin
glasses and hard spheres, the divergence of the ratio of
the coupling time and the correlation time, for different
algorithms.

Random walks in high dimensions� – Before
analyzing two-dimensional spin glasses and hard spheres,
we illustrate coupling and damage spreading in a simple
Markov-chain algorithm that can be interpreted either as
a random walk in an N -dimensional hypercubic lattice,
as the dynamics of N distinguishable non-interacting
particles in a one-dimensional lattice of length L, or
as N non-interacting Potts spins with L states. For
the random walk +see fig. 1), each N -dimensional
lattice site i= �i0� . . . � iN�1} is described by integers
ik ∈ �0� . . . � L− 1} with periodic boundary conditions
in the ik. The particle can hop from site i to one of
the i’s nearest neighbors in direction k, j = i± δk, with
δk = �0� . . . � 1� 0� . . .} +periodic boundary conditions are
again understood). The probability for moving from i to
j is

p+i→ j) =

�

























1

3N
� for j = i± δk�

1

3
� for j = i�

0� otherwise.

+1)

The simulation thus samples at each time step one
dimension, k, among the N available ones +it moves in
“x”, or “y” or “z”, etc). In dimension k, it then hops with
probabilities 1/3 each to the left or to the right, or remains
on the same site. Equation +1) also describes N distin-
guishable non-interacting particles on a one-dimensional
lattice of length L, again with periodic boundary condi-
tions: At time t, a randomly chosen particle k hops to the
left or to the right, or it remains on the same site, each
with probability 1/3, as above.

A two-configuration coupling is a random process
p̃+i→ j� i�→ j�) for the joint evolution of two random
walks such that integrating over one of them yields the
original random walk of eq. +1) for the other. After they
meet, the two configurations evolve in the same way. The
simplest choice for a coupling is the product ansatz,

p̃+i→ j� i�→ j�) =

�









p+i→ j)p+i�→ j�)� if i �= i��

p+i→ j)� if i= i�� j = j�

0� otherwise�

�

+2)
where the two random walks evolve independently of each
other if they are on different sites i and i�, but stay
together once they have met +j = j� if i= i�). To imple-
ment this coupling for any number of configurations, one
samples at each time step independent random moves at
each site, so that particles on the same site experience the
same randomness. In the above-mentioned representation
of particles on the one-dimensional line, we consider the
coupling of two N -particle systems, again described by
eq. +2), as the independent evolution, at time t, of the
LN possible configurations of the system. Naturally, the
coupling time scales as LN whereas the correlation time
+in sweeps) behaves as L2.
An alternative coupling consists in sampling, at time t,
one dimension k common to all random walks. The two-
configurations coupling scheme is then

p̃+ik → jk� i
�

k
→ j�

k
) =

�









p+ik→ jk)p+i
�

k
→ j�

k
)� if ik �= i

�

k
�

p+ik→ jk)� if ik = i
�

k
� jk = j

�

k
�

0� otherwise�

+3)

so that two configurations i and j with ik = i
�

k
will preserve

this common coordinate +jk = j
�

k
). In the representation of

N particles on a one-dimensional lattice, the same particle
k is selected for each configuration, and for two different
configurations, the particles labelled k stay together once
they have met on the same site. The dynamics is then
regular and the coupling time is τcoup/N ∼ a logN +see
fig. 2). The logarithmic behaviour is explained by the
fact that particles move independently of each other, the
coupling time for the entire system is thus the maximum
of the N coupling times for each particle.
In conclusion, we see that the same N -dimensional
random walk of eq. +1), with a correlation time of order
L2, allows two very different coupling, chaotic and regular.
In spin glasses and hard spheres, these regimes are realized
for the same coupling at different temperatures.

Spin glass� – The random walk considered previously
can also be considered as an L-state Potts model at infinite
temperature evolving under heat-bath dynamics.
The product ansatz of eq. +2) would correspond to the
independent evolution of the spin configurations, and it is
clearly chaotic. With the coupling of eq. +3), in contrast,
all spins evolve and couple independently at β = 0, and the
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Fig. 2: Chaotic and regular couplings for the random walk
in an N -dimensional hypercubic lattice of length L= 5 �see
eqs. �2) and �3), respectively). The random process for a single
random walk is defined by eq. �1) in both cases. Inset: number
of configurations vs� time as a function of the number Ninit of
initial configurations, for N = 6, L= 5 for the chaotic coupling.
The same realization of the coupling of eq. �3) is used for all
runs.

global coupling time is again the maximum of the coupling
times of the individual spins. The Monte Carlo dynamics
is thus regular, and the diagram of fig. 2 carries over to
the general case with L� 2. At finite temperatures β, the
energy of a spin configuration is given by

E =−
�

�i�j�

Jijsisj .

We first consider heat-bath dynamics, which consists in
choosing one spin sk and updating it with probabilities

π$sk =±1) =
1

1+ exp$∓2hkβ)
	 $4)

where the field on site k is given by hk =
�
l Jklsl. The

coupling is defined by the use of the same random numbers
for each configurations.
For the two-dimensional ferromagnetic Ising model

$all Jij = 1	 L= 2), the dynamics remains regular at all
temperatures. Below the Curie temperature, τcoup is
very large, but so is the correlation time τcorr, and the
partial order implies that the complexity of τcoup/τcorr
�O$logN) [2]. The partial order is preserved in the
disordered Ising model with ferromagnetic interactions
Jij = Jji � 0, and in this model also, the theorem of Propp
and Wilson guarantees that τcoup is, up to logarithms, of
the same order as τcorr.
Frustrated models, as for example spin glasses, do

not exhibit partial order, and can thus undergo a
damage-spreading transition. In the two-dimensional
±J Ising spin glass, the quenched random interactions
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Fig. 3: Disorder-averaged coupling time for the heat-bath
algorithm of the two-dimensional �J Ising spin glass.
A dynamical phase transition is seen at the damage-spreading
temperature βds � 0.58. Inset: saturation phenomenon for N =
642 spins at β = 0.56.

satisfy Jij = Jji =±1 with equal probability. Although
this model is paramagnetic for all finite temperatures,
Campbell and de Arcangelis [7] found a damage-spreading
transition for the heat-bath algorithm at βds � 0.59. In
previous work [3,5], we succeeded in coupling large
systems down to this temperature using the patch
algorithm. We showed that the patch algorithm’s upper
bound on the coupling times agrees well with the lower
bound obtained from a partial-coupling approach, where
one checks coupling for a finite number Ninit of random
initial conditions rather than for the entire configuration
space $Ninit = 2

N ). As shown in the inset of fig. 3, for one
realization of the random process, the coupling time does
not vary if Ninit � 10, and for Ninit = 1000 it equals the
coupling time for the entire configuration space.
In the main graph of fig. 3, we show the coupling time

as a function of N at constant temperature. A dynamical
phase transition is seen at the damage-spreading temper-
ature βds � 0.58. In the chaotic phase, τcoup/N grows
exponentially with N , but only logarithmically in the
regular phase. The dynamical phase transition in this
model $without a spin glass phase at finite β), although
not mathematically proven, appears firmly established.
It is without influence on single-particle properties. To
illustrate this point, we verify that the correlation time
τcorr/N , computed with the autocorrelation function

q$t) =
1

N

N�

i=0

�si$0)si$t)� 	 $5)
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remains constant in the chaotic phase and only τcoup/τcorr
diverges with N →∞.

After the heat-bath algorithm, we now discuss the
Metropolis algorithm, where individual spins sk are flipped
with a probability depending on their local field. In the
standard implementation, spin flips are accepted with a
probability equal to 1 at infinite temperature. To allow
coupling at any β we use

p$sk→−sk) =
2

3
min$1� exp$−2βskh)). $6)

At each step the same spin k is updated for all copies of
the system. For this dynamics, several coupling schemes
can be set up. If the same random number γ is used for
each configuration, the coupling does not take place, as
two opposite configurations will always stay opposite. We
adapt the regular coupling of eq. $3) and use two indepen-
dent random numbers, γ1 for “up” spins and γ2 for “down”
spins. The coupling time has then the same qualitative
behaviour as in fig. 3, logarithmic at high temperatures
and exponential at low temperatures, but with a critical
temperature βds � 0.33. The Metropolis algorithm, with
this coupling scheme, has thus a higher dynamical critical
temperature than the heat-bath algorithm, with which it
shares all the qualitative features. This confirms that the
dynamic damage-spreading transition is algorithm depen-
dent. One may also choose the random numbers in the
Metropolis algorithm using γ for sk = 1 and 1− γ for
sk =−1. This scheme correlates opposite spins better and
the critical temperature is found to be βds � 0.52. This
results shows that, like for the previous random walk,
the same Markov-chain allows for qualitatively different
coupling.

Hard spheres	 – After spin glasses, we now consider
another key model in statistical physics, namely hard
spheres. This model’s Hamiltonian dynamics, realized in
the event-driven molecular dynamics algorithm [4,12], is
chaotic for all densities and for all N [4,13,14]. In this
section, we will present several Monte Carlo algorithms
for hard spheres, which allow for coupling of the entire
configuration space. Two of the algorithms remain regular
below a finite critical packing fraction, ηds, in the limit
N →∞. In the following discussion we are not concerned
with algorithmic efficiency of the implementation, and
only concentrate on the coupling properties.

Birth-and-death algorithm. In the grand-canonical
birth-and-death Monte Carlo algorithm, particles are
placed inside the box at random positions x= $xk� yk)
at rate λ if no overlaps with previously placed disks are
generated. The life time of each disk is sampled from an
exponential distribution with rate 1. One realization of
the algorithm is represented in the diagram of fig. 4. The
mean number �N� of particles in this system is controlled
by the activity λ.

This model’s state space is infinite, but the survey of all
possible initial conditions is nevertheless feasible [5,15].

x y

t

0

LL

Fig. 4: Grand-canonical birth-and-death algorithm for hard
disks. Disk i appears at time t�, at position x� = �x�� y�), and it
disappears at time t�+ τ�. In time, disk i describes a cylinder.
Disks �cylinders) which are accepted, because they create no
overlaps with earlier disks, are drawn in dark gray, while
rejected disks are drawn in light gray. The configuration space
of this system is infinite, yet the possible configurations at time
t are a subset of the finite set �of dark and light cylinders)
produced from a horizontal cut in this diagram.

For any realization of the algorithm, the possible config-
urations at time t are a subset of the finite set produced
from a horizontal cut in the diagram of fig. 4. The patch
algorithm again yields sharp upper bounds for τcoup [5].
Surprisingly, this algorithm for hard disks remains regular
below a finite density ηds in the limit N →∞ [15,16].

We again study damage spreading in this model by
applying the same Monte Carlo dynamics $same choice
of xi� ti� τi) to Ninit random hard-sphere initial conditions
at time t= 0 with life times sampled from an exponential
distribution. The data shown in fig. 5 again indicate a
dynamical phase transition between the regular regime
at packing fractions η < ηds � 0.29 and the chaotic regime
above ηds. This density corresponds to the limiting density
found with the patch algorithm [5].

“Labelled displacement” algorithm. A canonical
version of the birth-and-death algorithm is the “labelled
displacement” algorithm where, at times t= 0� 1� 2� . . .,
a randomly chosen particle k is moved to a random
position xk, if this move creates no overlaps. We see clear
evidence of a dynamical phase transition at a critical
density ηds � 0.13 $see fig. 6), which is smaller than for
the closely related birth-and-death algorithm.

Spot algorithm. We finally study the coupling for a
Markov chain similar to the Metropolis algorithm: the
spot algorithm. The Metropolis algorithm for N hard
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Fig. 5: Coupling time of the birth-and-death algorithm of fig. 4
for two-dimensional hard spheres �estimated with Ninit = 100).
The damage spreading transition occurs at a packing fraction
ηds � 0.29.
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Fig. 6: Coupling time for the labelled displacement algorithm.
The dynamical transition to chaos occurs at a lower density
�ηds � 0.13) than for the birth-and-death algorithm of fig. 5.

spheres consists in moving, at time t, a particle k by a
random vector �= �δx� δy). As the configuration space is
continuous, the coupling probability is zero if one uses
a naive coupling scheme. The following spot algorithm
is more successful �although we will show its coupling
is chaotic at all densities): at time t, it places a spot,
a disk-shaped region with radius σspot � σ, at a random
position xs. The spot contains at most one disk center,

t = 0 t = 1 �coup = 2

 : spot

Fig. 7: Spot algorithm for hard spheres: The randomly chosen
spot position defines the attempted move of a disk inside the
spot. The spot radius satisfies σspot � σ, and at most one disk
is moved at time t. An example with N = 1 and σspot = σ is
shown.
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Fig. 8: Coupling time τcorr of the spot algorithm for N hard
disks �estimated with Ninit = 100) as a function of packing
fraction η. For all η, the coupling time is exponential in N ,
and we conjecture the coupling to be chaotic.

and the move consists in placing this disk at xs, if this
creates no overlap with other particles �see fig. 7). The
spot algorithm satisfies detailed balance, and it generates
the same moves as the Metropolis algorithm. Moreover, as
illustrated in fig. 7, it succeeds in coupling. However, as
shown in fig. 8, the coupling time of the spot algorithm is
an exponential function of N for all densities: the coupling
is always chaotic.

Conclusion
 – In conclusion, we have in this paper
studied the relationship between the coupling of Markov
chains, which is of critical importance for the subject of
perfect sampling, and damage spreading, which exposes
the chaotic nature of the Monte Carlo dynamics.
For the two-dimensional ±J Ising spin glass, which lacks

an equilibrium phase transition at finite temperatures,
we confirm the existence of a dynamical phase transition
at βds � 0.58 [7] for the heat-bath algorithm. For lower
temperatures the coupling time explodes. The Metropolis
algorithm has the same damage spreading behaviour but
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with higher critical temperatures: βds � 0.33 or βds � 0.52
for two simple coupling schemes. All damage-spreading
transitions for this system are deeply inside the paramag-
netic phase.

For the two-dimensional hard-sphere system, we
analyzed three local Monte Carlo algorithms, the
birth-and-death algorithm, inspired from Poisson point
processes, its canonical version &the “labelled displace-
ment” algorithm), and the spot algorithm, a straight-
forward adaptation of the Metropolis algorithm. The
first algorithm shows a regular regime only for packing
densities below ηds � 0.29, the coupling time was then of
the same order of magnitude as the correlation time. The
canonical version of the birth-and-death algorithm had a
critical density of ηds � 0.13. These transition densities
are again deeply in the liquid phase.

Both for spin glasses and for hard spheres, the rigorous
survey of the configuration space [3] remains feasible for
all temperatures and densities. The application of perfect
sampling methods to these challenging problems is thus
not so much limited by the surveying problem, as the
patch algorithm allows to track the evolution of the entire
configuration space, but more by damage spreading, the
underlying chaotic nature of the Monte Carlo dynamics.

In this context, it is of great interest that Griffeath [17]
has constructed a coupling that always remains regular:
It realizes the coupling at time t and at position Xt
of two Markov chains that have started at time t= 0
at configurations X0 and X �0 with the minimum of the
probabilities to go from X0 or from X �

t
to Xt. Griffeath’s

coupling is non-Markovian and very difficult to construct
in practice, but it may point the way to couplings that
remain regular at lower temperatures and higher densities
than the naive couplings we discussed in this paper.

∗ ∗ ∗

We thank A. Sinclair for helpful correspondence.
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7.3 Publication III

Phys. Rev. Lett. 107, 155704 (2011) Etienne P. Bernard and Werner Krauth
Two-step melting in two dimensions: First-order liquid-hexatic transition

Physical Review Letters 107 155704 (2011)

This article studies the nature of the hard-disk melting transition (see Chapter 1, Chap-
ter 3 and Chapter 4). The correlation functions, thermodynamic quantities, as well as
direct visualization are computed for large-scale systems. The nature of the transition
is found to be first order for the liquid-hexatic transition, and KT for the hexatic-solid
transition.
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Melting in two spatial dimensions, as realized in thin films or at interfaces, represents one of
the most fascinating phase transitions in nature, but it remains poorly understood. Even for the
fundamental hard-disk model, the melting mechanism has not been agreed on after fifty years of
studies. A recent Monte Carlo algorithm allows us to thermalize systems large enough to access the
thermodynamic regime. We show that melting in hard disks proceeds in two steps with a liquid
phase, a hexatic phase, and a solid. The hexatic-solid transition is continuous while, surprisingly,
the liquid-hexatic transition is of first-order. This melting scenario solves one of the fundamental
statistical-physics models, which is at the root of a large body of theoretical, computational and
experimental research.

Generic two-dimensional particle systems cannot crys-
tallize at finite temperature[1–3] because of the impor-
tance of fluctuations, yet they may form solids[4]. This
paradox has provided the motivation for elucidating the
fundamental melting transition in two spatial dimen-
sions. A crystal is characterized by particle positions
which fluctuate about the sites of an infinite regular lat-
tice. It has long-range positional order. Bond orienta-
tions are also the same throughout the lattice. A crystal
thus possesses long-range orientational order. The po-
sitional correlations of a two-dimensional solid decay to
zero as a power law at large distances. Because of the
absence of a scale, one speaks of “quasi-long range” or-
der. In a two-dimensional solid, the lattice distortions
preserve long-range orientational order[5], while in a liq-
uid, both the positional and the orientational correlations
decay exponentially.

Besides the solid and the liquid, a third phase, called
“hexatic”, has been discussed but never clearly identified
in particle systems. The hexatic phase is characterized by
exponential positional but quasi-long range orientational
correlations. It has long been discussed whether the melt-
ing transition follows a one-step first-order scenario be-
tween the liquid and the solid (without the hexatic) as in
three spatial dimensions[6]), or whether it agrees with the
celebrated Kosterlitz, Thouless[7], Halperin, Nelson[8]
and Young[9] (KTHNY) two-step scenario with a hex-
atic phase separated by continuous transitions from the
liquid and the solid[10–18].

Two-dimensional melting was discovered [4] in the sim-
plest particle system, the hard-disk model. Hard disks (of
radius σ) are structureless and all configurations of non-
overlapping disks have zero potential energy. Two iso-
lated disks only feel the hard-core repulsion, but the other
disks mediate an entropic “depletion” interaction (see,
e.g., [19]). Phase transitions result from an “order from
disorder” phenomenon: At high density, ordered configu-
rations can allow for larger local fluctuations, thus higher
entropy, than the disordered liquid. For hard disks, no

difference exists between the liquid and the gas. At fixed
density η, the phase diagram is independent of tempera-
ture T = 1/kBβ, and the pressure is proportional to T ,
as discovered by D. Bernoulli in 1738. Even for this basic
model, the nature of the melting transition has not been
agreed on.

The hard-disk model has been simulated with the
local Monte Carlo algorithm since the original work
by Metropolis et al. [20]. A faster collective-move
“event-chain” Monte Carlo algorithm was developed only
recently[21] (see [22]). We will use it to show that the
melting transition neither follows the one-step first-order
nor the two-step continuous KTHNY scenario.

To quantify orientational order, we express the local
orientation of disk k through the complex vector Ψk =
〈exp(6iφkl)〉, with 〈〉 the average over all the neighbors l
of k. The angle φkl describes the orientation of the bond
kl with respect to a fixed axis. The sample orientation
is defined as Ψ = 1/N

∑

k Ψk. For a perfect triangular
lattice, all the angles 6φkl are the same and |Ψk| = |Ψ| =
1 (see [22]).

In Fig. 1, the local orientations of a configuration with
N = 10242 disks at density η = Nπσ2/V = 0.708 in
a square box of volume V are projected onto the sam-
ple orientation and represented using a color code (see
[22]). Inside this configuration, a vertical stripe with
density ∼ 0.716 preserving orientational order over long
distances coexists with a stripe of disordered liquid of
lower density ∼ 0.700. Each stripe corresponds to a dif-
ferent phase. The two interfaces of length ≃

√
N close on

themselves via the periodic boundary conditions. Stripe-
shaped phases as in Fig. 1a are found in the center of a
coexistence interval η ∈ [0.700, 0.716], whereas close to
its endpoints, a “bubble” of the minority phase is present
inside the majority phase for η & 0.700 and η . 0.716
(see Fig. 2). This phase coexistence is the hallmark of a
first-order transition.

The first-order transition shows up in the equilib-
rium equation of state P (V ) (see Fig. 2). At finite N ,
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FIG. 1. Phase-coexistence for 10242 thermalized hard disks at density η = 0.708. a: Color-coded local orientations Ψk

showing long orientational correlations (blue region, see b,c) coexisting with short-range correlations (see d). e: Local densities
(averaged over a radius of 50σ), demonstrating the connection between density and local orientation (see [22]). In b, c, d, disks
with five (seven) neighbors are colored in gray (black).

the free energy is not necessarily convex (as it would
be in an infinite system) and the equilibrium pressure
P (V ) = −∂F/∂V can form a thermodynamically stable
loop due to the interface free energy. The pressure loop
in the coexistence window of a finite system is caused by
the curved interface between a bubble of minority phase
and the surrounding majority phase (see Fig. 2b,d)). In
a system with periodic boundary conditions, the pres-
sure loop contains a horizontal piece corresponding to
the “stripe” regime, where the interfaces are flat. This is
visible near η ∼ 0.708 for the largest systems in Fig. 2. In
a finite system, the Maxwell construction suppresses the
interface effects. For the equation of state of Fig. 2a, this
construction confirms the boundary densities η = 0.700
and η = 0.716 of Fig. 1 for the coexistence interval, with
very small finite-size effects. The interface free energy per
disk, the hatched area in Fig. 2, depends on the length
∝

√
N of the interface in the “stripe” regime so that

∆f = ∆F/N ∝ 1/
√

N (see Fig. 2f).

The first-order nature of the transition involving the
liquid is thus established by i): The visual evidence of
phase coexistence in Fig. 1, ii): The ∝ 1/

√
N scaling

of the interface free energy per disk[23], and iii): The
characteristic shape of the equation of state in a finite
periodic system [24–26]. We stress that the system size
is larger than the physical length scales so that the results
hold in the thermodynamic limit (see [22]).

In the coexistence interval, the individual phases are
difficult to analyze at large length scales because of the
fluctuating interface, and only the low-density coexisting

phase is identified as a liquid with orientational corre-
lations below a scale of ∼ 100σ (see Fig. 1a,d). Un-
like constant NV simulations, Gibbs ensemble simula-
tions can have phase coexistence without interfaces, but
these simulations are very slow at large N (see [22]). The
single-phase system at density η = 0.718, is above the co-
existence window for all N (see Fig. 2), and it allows us
to characterize the high-density coexisting phase.

Positional order can be studied in the two-dimensional
pair correlation g(∆r), the high-resolution histogram of
periodic pair distances ∆rij = ri − rj sampled from all
N(N − 1)/2 pairs i, j of disks. To average this two-
dimensional histogram over configurations (as in Fig. 3)
the latter are oriented such that the ∆x axis points in the
direction of the sample orientation Ψ. At short distances,
hexagonal order is evident at η = 0.718 (see Fig. 3a). The
excellent contrast between peaks and valleys of g(∆r) at
small |∆r| & 2σ underlines the single-phase nature of the
system at this density. The cut of the histogram along the
positive ∆x axis leaves no doubt that the system has ex-
ponentially decaying positional order on a length scale of
∼ 100σ and cannot be a solid. The (one-dimensional) po-
sitional correlation function ck(r), computed by Fourier
transform of g(∆r), fully confirms these statements (see
[22]).

The orientational correlations at density η = 0.718 de-
cay extremely slowly and do not allow us to distinguish
between quasi-long range and long-range order (see [22]).
However, short-ranged positional correlation is inconsis-
tent with long-ranged orientational order. It follows that
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FIG. 2. Equilibrium equation of state for hard disks. The
pressure is plotted vs. volume per particle (v = V/N) (lower
scale) and density η (upper scale)). In the coexistence region,
the strong system-size dependence stems from the interface
free energy. The Maxwell constructions (horizontal lines) sup-
press the interface effects (with a convex free energy) for each
N . “Stripe” (c, for N = 10242) and “bubble” configurations
(b,d) are shown in the coexistence region, together with two
single-phase configurations (a,e). The interface free energy

per disk β∆f (hatched area) scales as 1/
√

N (f).

the orientation must be quasi-long ranged with a small
exponent . 0, and that the system at η = 0.718 and the
high-density coexisting phase are both hexatic.

The two-dimensional pair correlation g(∆r) − 1 of
Fig. 3b allows us to follow the transition from the hexatic
to the solid: The positional order increases continuously
with density and crosses over into power-law behavior at
density η ∼ 0.720, with an exponent ≃ −1/3 which cor-
responds to the stability limit of the solid phase in the
KTHNY scenario. The hexatic-solid transition thus takes
place at η & 0.720. At this density, the positional correla-
tion function at large distances r, displays the finite-size
effects characteristic of a continuous transition, but up
to a few hundred σ, ck is well stabilized with system size
(see [22]). Moreover, no pressure loop is observed in the
equation of state, and the compressibility remains very
small. The system is clearly in a single phase. Unlike
the liquid-hexatic transition, the hexatic-solid transition
therefore follows the KTHNY scenario, and is continu-

ous.
The single-phase hexatic regime is confined to a den-

sity interval η ∈ [0.716, 0.720]. Although narrow, it is an
order of magnitude larger than the scale set by density
fluctuations for our largest systems and can be be easily
resolved (see [22]). In the hexatic phase, the orientational
correlations decay extremely slowly. The exponent of the
orientational correlations is close to zero and negative. It
remains far from the lower limit of −1/4 at the contin-
uous KTHNY transition, as this transition is preempted
by a first-order instability.

The event-chain algorithm is about two orders of mag-
nitude faster than the local Monte Carlo used up to now,
allowing us to thermalize for the first time dense sys-
tems with up to 10242 disks. To illustrate convergence
toward thermal equilibrium and to check that hard disks
in the window of densities η ∈ [0.700, 0.716] are indeed
phase-separated, we show in Fig. 4 two one-week simula-
tions of our largest systems after quenches from radically
different initial conditions, namely the (unstable) crys-
tal, with |Ψ| = 1, and the liquid, for which |Ψ| ≃ 0. For
both initial conditions, a slow process of coarsening takes
place (see Fig. 4a,b). Phase separation is observed after
∼ 106 displacements per disk, and the sample orienta-
tion takes on similar absolute values (see Fig. 4c). Ef-
fective simulation times of many earlier calculations were
much shorter[14, 15], and the simulations remained in an
out-of-equilibrium state which is homogeneous on large
length scales, whereas the thermalized system is phase-
separated and therefore inhomogeneous. The production
runs for N = 10242 were obtained from Markov chains
with running times of nine months, 30 times larger than
those of Fig. 4a,b.

The solution of the melting problem presented in this
work provides the starting point for the understanding of
melting in films, suspensions, and other soft-condensed-
matter systems. The insights obtained combine thermo-
dynamic reasoning with powerful tools: advanced simula-
tion algorithms, direct visualization, and a failsafe anal-
ysis of correlations. These tools will all be widely ap-
plicable, for example to study the cross-over from two to
three-dimensional melting as it is realized experimentally
with spheres under different confinement conditions[17].

In simple systems such as hard disks and spheres, en-
tropic and elastic effects have the same origin: elastic
forces are entropically induced. For general interaction
potentials, entropy and elasticity are no longer strictly
linked and order-disorder transitions, which can then
take place as a function of temperature or of density,
might realize other melting scenarios[27]. Theoretical,
computational and experimental research on more com-
plex microscopic models will build on the hard-disk so-
lution obtained in this work.

We are indebted to K. Binder and D. R. Nelson for
helpful discussions and correspondence. We thank J.
Dalibard and G. Bastard for a critical reading of the
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conditions (time in attempted displacements per disk). The correlation time of the event-chain algorithm, on the order of 106

displacements per disk, estimated from c, agrees with the correlation time estimated in our production runs with 6× 107 total
displacements per disk.

manuscript.

∗ etienne.bernard@lps.ens.fr
† werner.krauth@ens.fr

[1] R. Peierls, Helv. Phys. Acta Suppl. 7, 81 (1934)
[2] R. Peierls, Annales de l’IHP 5 177 (1935)
[3] N. D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
[4] B. J. Alder, T. E. Wainwright, Phys. Rev. 127, 359 (1962)

[5] N. D. Mermin, Phys. Rev. 176, 250 (1968)
[6] W. G. Hoover, F. H. Ree, J. Chem. Phys. 49, 3609 (1968).
[7] J. M. Kosterlitz, D. J. Thouless, J. Phys. C 6, 1181

(1973).
[8] B. I. Halperin, D. R. Nelson, Phys. Rev. Lett. 41, 121

(1978).
[9] A. P. Young, Phys. Rev. B 19, 1855 (1979).

[10] K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).
[11] J. Y. Lee, K. J. Strandburg, Phys. Rev. B 46, 11190

(1992).
[12] J. A. Zollweg, G. V. Chester, Phys. Rev. B 46, 11186

(1992).

158



5

[13] H. Weber, D. Marx, K. Binder, Phys. Rev. B 51 14636
(1995).

[14] A. Jaster, Phys. Lett. A 330, 120 (2004).
[15] C. H. Mak, Phys. Rev. E 73, 065104(R) (2006).
[16] K. Zahn, R. Lenke, G. Maret, Phys. Rev. Lett. 82, 2721

(1999).
[17] Y. Peng, Z. Wang Z., A. M. Alsayed, A. G. Yodh,, Y.

Han, Phys. Rev. Lett. 104, 205703 (2010).
[18] K. Bagchi, H. C. Andersen, W. Swope, Phys. Rev. Lett.

76 255 (1996).
[19] W. Krauth, Statistical Mechanics: Algorithms and Com-

putations. Oxford University Press (2006)
[20] N. Metropolis,, A. W. Rosenbluth, M. N. Rosenbluth, A.

H. Teller, E. Teller, J. Chem. Phys. 21 1087 (1953).
[21] E. P. Bernard, W. Krauth, D. B. Wilson, Phys. Rev. E

80 056704 (2009).
[22] See Supplemental Material at [URL will be inserted by

publisher].
[23] J. Lee, J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 (1990).
[24] J. E. Mayer, W. W. Wood, J. Chem. Phys. 42, 4268

(1965)
[25] H. Furukawa, K. Binder, Phys. Rev A 26, 556 (1982)
[26] M. Schrader, P. Virnau, K. Binder, Phys Rev E 79,

061104 (2009)
[27] A. C. D. van Enter, S. B. Shlosman, Phys. Rev. Lett. 89

285702 (2002).

159



Résumé

Cette thèse porte sur la méthode de Monte-Carlo ainsi que sur des applications de cette méthode
à la physique statistique.

La première partie concerne l’étude de la transition de phase liquide-solide à deux dimen-
sions. La nature de cette transition est un problème de la physique statistique qui a longtemps
été débattu, et en particulier pour le modèle fondamental des disques durs. Dans le but de
traiter ce problème, nous avons développé l’algorithme de Monte-Carlo dit “event-chain”. Notre
analyse numérique montre que la transition se déroule en deux étapes: en augmentant la den-
sité, le système passe de manière discontinue d’une phase liquide à une phase dite hexatique,
puis de manière continue à une phase solide par une transition de type Kosterlitz-Thouless. Ces
résultats posent une nouvelle base théorique aux expériences sur les solides bidimensionnels.

La deuxième partie concerne les algorithmes d’échantillonage parfait utilisant la méthode
“Coupling from the past”. Ces algorithmes de Monte-Carlo permettent d’échantillonner des
systèmes selon la distribution exacte désirée, ce qui supprime le problème de la connaissance du
temps de thermalisation d’une châıne de Markov. Cette méthode s’est avérée inefficace pour des
systèmes physiques où elle serait utile: les verres de spins à basse température, ou les sphères
dures à haute densité par exemple. Nous avons étudié différents algorithmes exacts pour ces sys-
tèmes. Les résultats obtenus montrent que cette limitation est due aux transitions vers le chaos
des châınes de Markov, ces transitions étant d’origine dynamique et non thermodynamique.

Mots clés: algorithme de Monte-Carlo - systèmes à deux dimensions - sphères

dures - transition de phase - châıne de Markov - systèmes désordonnés.

Abstract

This thesis deals with the Monte Carlo method and some of its applications to statistical physics.
The first part concerns the study of the melting transition in two dimensions. The nature of

this transition is an old problem of statistical physics, and especially for the fundamental model
of hard disks. A Monte Carlo algorithm, called “event-chain”, is developed for this model and
is used to study the melting transition. The results show that the transition follows a two-step
scenario with a hexatic phase between the liquid and the solid. The solid-hexatic transition is
continuous of the Kosterlitz-Thouless type, and the hexatic-liquid transition is discontinuous.
These results confirm the existence of the hexatic phase, and pose a new theoretical basis for
experiments on two-dimensional melting transitions.

The second part concerns perfect sampling algorithms using the “coupling-from-the-past”
approach. This paradigm of the Markov-chain Monte Carlo method allows to sample config-
urations from the exact desired distribution, and this suppresses the long-standing problem
of accessing the mixing time of a Markov chain. This method is however difficult to apply
to physical systems such as spin glasses at low temperature or hard spheres at high density.
Perfect-sampling algorithms are studied for these systems. The results show that the limita-
tion of this method is related to transitions toward chaos of Markov chains. These dynamical
transitions are not caused by thermodynamical changes.

Keywords: Monte Carlo algorithm - two-dimensional systems - hard spheres -

melting transition - Markov chain - disordered systems.


	General introduction
	I Two-dimensional melting
	Introduction
	Transitions in two dimensions
	Two-dimensional solids
	Transitions in 2D XY models
	Scenarios for two-dimensional melting

	Event-chain Monte Carlo algorithms for hard spheres
	Hard-sphere simulations
	The event-chain algorithm
	Implementation of the algorithm

	Simulation method
	Choice of ensemble
	Statistical errors
	Computation of observables

	Hard-disk melting transition
	Phase coexistence
	Nature of the phases
	Thermalization and finite-size effects
	Other simulations

	Conclusion

	II Perfect sampling
	Introduction
	The coupling-from-the-past method
	The Monte Carlo method
	Coupling from the past
	Survey problem

	Damage spreading and coupling in Markov chains
	Chaos in Markov chains
	Spin glass
	Hard spheres
	Griffeath's coupling

	Conclusion
	Publications
	Publication I
	Publication II
	Publication III



