
HAL Id: tel-00707351
https://theses.hal.science/tel-00707351v1

Submitted on 12 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Approach for Automated Verification of
Product Line Models

Raul Mazo

To cite this version:
Raul Mazo. A Generic Approach for Automated Verification of Product Line Models. Software
Engineering [cs.SE]. Université Panthéon-Sorbonne - Paris I, 2011. English. �NNT : �. �tel-00707351�

https://theses.hal.science/tel-00707351v1
https://hal.archives-ouvertes.fr

A Generic Approach for Automated
Verification of Product Line Models

A thesis submitted by

Raúl Mazo Peña

in partial satisfaction of the requirements for the degree of

Doctor of Philosophy in Computer Science

Centre de Recherche en Informatique (CRI)

Paris 1 Panthéon – Sorbonne University, Paris, France.

Defended the 24 November 2011.

Members of the jury:

Dr. Patrick Heymans. Professor at University of Namur, Belgium. President

Dr. Camille Salinesi. Professor at Paris 1 Panthéon – Sorbonne
University, France.

Advisor/ Supervisor

Dr. Colette Rolland. Professor at Paris 1 Panthéon – Sorbonne
University, France.

Co-Advisor/ Supervisor

Dr. Régine Laleau. Professor at Paris-Est Créteil University, France. Reviewer

Dr. Peter Sawyer. Professor at the Lancaster University, United
Kingdom.

Reviewer

Dr. Daniel Diaz. Associate Professor at Paris 1 Panthéon –
Sorbonne University, France.

Examiner

This page intentionally left blank

Thèse de Doctorat de l‟Université
Paris 1 – Panthéon Sorbonne

Spécialité

Informatique

Présentée par

Raúl Mazo Peña

Pour l‟obtention du diplôme de Docteur de

l‟Université Paris 1 Panthéon – Sorbonne

Méthode Générique pour la Vérification
Automatique de Modèles de Lignes de

Produits

Soutenue publiquement le 24 novembre 2011 devant la commission d‟examen composée de :

Dr. Patrick Heymans. Professeur à l‟Université de Namur,
Belgique.

Président

Dr. Camille Salinesi. Professeur à l‟Université Paris 1 Panthéon
– Sorbonne, France.

Directeur de thèse

Dr. Colette Rolland. Professeur à l‟Université Paris 1 Panthéon
– Sorbonne, France.

Co-directeur de thèse

Dr. Régine Laleau. Professeur à l‟Université Paris-Est Créteil,
France.

Rapporteur

Dr. Peter Sawyer. Professeur à l‟Université de Lancaster,
Royaume Uni.

Rapporteur

Dr. Daniel Diaz. Maître de conférences à l‟Université Paris 1
Panthéon – Sorbonne, France.

Examinateur

This page intentionally left blank

A Generic Approach for Automated
Verification of Product Line Models

This thesis explores the subject of automatic verification of product line models. This

approach is based on the hypothesis that to automatically verify product line models, they

should first be transformed into a language that makes them computable. In this thesis,

product line models are transformed into constraint (logic) programs, then verified against a

typology of verification criteria. The typology enumerates, classifies and formalizes a

collection of generic verification criteria, i.e. criteria that can be applied (with or without

adaptation) to any product line formalism. The typology makes the distinction between two

categories of criteria: criteria that deal with the formalism in which models are represented,

and the formalism-independent criteria. To identify defects in the first category, the thesis

proposes a conformance checking approach directly related with verification of the abstract

syntactic aspects of a model. To identify defects in the second category, the thesis proposes a

domain-specific verification approach. An optimal algorithm is specified and implemented in

constraint logic program for each criterion in the typology. These can be used independently -

or in combination- to verify individual product line models. The thesis offers to support the

verification of multiple product line models using an integration approach. Besides, this

thesis proposes a series of integration strategies that can be used before applying the

verification as for individual models. The product line verification approach proposed in this

thesis is generic in the sense that it can be reused for any kind of product line model that

instantiates the generic meta model based on which it was developed. It is general in the

sense that it supports the verification of a comprehensive collection of criteria defined in the

typology. This approach was implemented in a prototype tool that supports the specification,

transformation, integration, configuration, analysis and verification of product line models

via constraints (logic) programming. A benchmark gathering a corpus of 54 product line

models was developed, then used in a series of experiments. The experiments showed that (i)

the implementation of the domain-specific verification approach is fast and scalable to

product line models up-to 2000 artefacts; (ii) the implementation of the conformance

checking approach is fast and scalable to product line models up-to 10000 artefacts; and (iii)

both approaches are correct and useful for industrial-size models.

Declaration

I declare that this thesis was written by myself and presents my own work developed in the

context of my PhD in the Centre de Recherche en Informatique at Paris 1 Panthéon-Sorbonne

University and a PhD internship in the Institute for Software Engineering and Automation

(SEA) at the Johannes Kepler University, Austria. The work reported in this thesis has not

been previously submitted for a degree, in this or any form.

This research was fully funded by the "Allocataire de recherche" fellowship of the French
Minister of Education and Research. The internship at the SEA laboratory was fully funded
by the “Bourse de Mobilité d‟Île de France” and the “Programme pour la mobilité des
doctorants: Aires culturelles” programs.

Remerciements/Agradecimientos

Je voudrais tout d‟abord exprimer mes vifs remerciements à Monsieur Camille Salinesi et

à Madame Colette Rolland, Professeurs à l‟Université Paris 1 Panthéon – Sorbonne, pour la

confiance qu‟ils m‟ont témoignée en m‟accueillant dans le Centre de Recherche en

Informatique et en acceptant la direction scientifique de mes travaux. Je leurs suis

reconnaissant aussi de m‟avoir encadré tout au long de ce travail avec une grande

compétence, efficacité et rigueur scientifique. Enfin, je les remercie aussi pour leurs précieux

conseils, leur soutien et de leur patience pendant ces trois années.

Je remercie sincèrement Madame Régine Laleau, Professeur à l‟Université Paris–Est

Créteil, et Monsieur Peter Sawyer, Professeur à l‟Université de Lancaster (UK), qui ont eu la

gentillesse d‟accepter les rôles de rapporteurs.

Je remercie également Monsieur Patrick Heymans, Professeur à l‟Université de Namur

(Belgique) et Monsieur Daniel Diaz, Maître de conférences à l‟Université Paris 1 Panthéon –

Sorbonne pour avoir accepté de faire partie du jury de cette thèse.

Je remercie tous les (ex-)membres de l‟équipe du Centre de Recherche en Informatique,

Mme. Gire, Mme. Souveyet, Mme. Nurcan, Rébecca, Manuele, Irina, Charlotte, Said, Farida,

Christophe, Yves-Royer, Islem, Adrian, Bruno, Assia, Salma, Sana, Elena, Olfa, Yves,

Kadan, Amina, Ramzy, Kahina, Cosmin, Hela, Hicham, Oumaima, Manuelle, Astrid et

Stéphane, ainsi que mes collègues de l‟AFIS, pour leur amitié, collaboration, gentillesse et

soutien.

A mis amigos: Alberto, Santiago, Padre Samuel, Germán, Judith, Nelly, Margarita,

Michelle, Serge, Laura y Aldrin. Y por supuesto a las familias amigas: De los Ríos, Marín,

Gualteros, Tabares, Tamayo, Giraldo, Mesa, López-Herrejón, Boulanger, Matos, Kutra,

Moreau, Douthe, Garcìa y Velandia. A todos mil gracias por la ayuda que me brindaron

durante estos años, por los consejos, y por la amistad que me han permitido construir con

ustedes.

A mi familia en Colombia y a la familia de mi esposa acá en Francia (Morizot y Chaise),

mis agradecimientos más sinceros por su ayuda, por sus ánimos y por su paciencia.

This page intentionally left blank

I would like to dedicate this thesis to my wife Marielle and my mother Alicia.

Je voudrais dédier cette thèse à mon épouse Marielle et à ma mère Alicia.

A mi esposa Marielle y mi mamá Alicia.

This page intentionally left blank

Contents

CHAPITRE 1 EN FRANÇAIS
Introduction 1
F.1.1 Problématique 3
F.1.2 Questions de recherche 4
F.1.3 Hypothèses de recherche 4
F.1.4 Méthode de recherche 4
F.1.5 Contributions 5

CHAPTER 1
Introduction 7
1.1 Problem Statement 11
1.2 Research Questions 12
1.3 Research Hypotheses 14
1.4 Research Method 15
1.5 Contributions 17
1.6 Thesis Organization 19

CHAPTER 2
State of the Art 21
2.1. Verification of Feature Models 22
2.1.1. Verification of FODA-like Feature Models 23
2.1.2. Verification of Extended Feature Models 27
2.2. Verification of Orthogonal Variability Models 31
2.3. Verification of Dopler Variability Models 33
2.4. Verification of Latice Structure Models 34
2.5. Formalism-independent Approaches to Verify Product Line Models 35
2.6. Conclusions 38

CHAPTER 3
Overview 43
3.1. Running Example 46
3.1.1 Representation of the Running Example with a Feature Notation 48
3.1.2 Representation of the Running Example with the Dopler Language 52
3.2. Transforming the Semantic of PLMs into Constraint Programs 54
3.2.1 Transforming Feature Models into Constraint Programs 55
3.2.2 Transforming Dopler Models into Constraint Programs 58
3.3. Implementing the Structure of PLMs into Constraint Logic Programs by
Transformation

61

3.3.1 Transforming Feature Models into Constraint Logic Programs 62
3.4. Multi-model Verification 65
3.4.1 Integration: the Case of Dopler Models 66
3.4.2 Integration: the Case of Feature Models 67
3.5. Discussion 68
3.6. Conclusion 70

CHAPTER 4
Typology of Verification Criteria 73
4.1 Conformance Checking Criteria 75
4.2 Domain-specific Criteria 82
4.2.1 Expressiveness 83

4.2.2 Error-free 84
4.2.3 Redundancy-free 86
4.3 Multi-model Verification Criteria 87
4.4 Summary 88

CHAPTER 5
Conformance Checking of Product Line Models 89
5.1 Generic Conformance Rules for Product Lines Models 90
5.2 The Case of Feature Models 102
5.3 Summary 114

CHAPTER 6
Domain-specific Verification of Product Line 115
6.1 Non-void PLMs Models 117
6.2 Non-false PLMs 118
6.3 Non-dead Artefacts 120
6.4 Non-false Optional Artefacts 123
6.5 Attainable Domains 126
6.6 Non-redundant Dependencies 128
6.7 Summary 131

CHAPTER 7
Verification of Multi-model Product Lines 133
7.1 Verification of Integrated Feature Models 133
7.1.1 Conformance Checking 150
7.1.2 Domain-specific Verification 152
7.2 Verification of Dopler Variability Models 154
7.3 Gaps and Challenges 156
7.4 Summary 160

CHAPTER 8
Evaluation 161
8.1 Hardware and Software 161
8.2 Benchmarks 161
8.2.1 Real Models 161
8.2.2 Automatically-Generated Models 164
8.3 Evaluating the Domain-specific Verification Approach 165
8.3.1 The Case of Feature Models 165
8.3.2 The Case of Dopler Variability Models 167
8.4 Evaluating the Conformance Checking 169
8.5 Tool Support 172
8.5.1 VariaMos 172
8.5.2. Conformance Checker of Feature Models 177
8.6 Comparison with FaMa 178
8.7 Summary 180

CHAPTER 9
Conclusions and Future Research 183
9.1. Conclusions 183
9.1.1 State of the art in verification of product line models 184
9.1.2 Typology of verification criteria 184
9.1.3 Conformance Checking, a Generic and Adaptable Verification Approach 185
9.1.4 Domain-specific Verification of PLMs, a Generic Verification Approach 185
9.1.5 Verification of Multi-model Product Lines 186
9.1.6 Automation and Validation of the Verification Approach 186

9.2. Future Research Agenda 187
9.2.1 Further Challenges in Verification of Product Line Models 187
9.2.2 Future Work in Conformance Checking 189
9.2.3 Future work in Domain-specific Verification 190
9.2.4 Future Work in Evaluation 190

Appendix A : Publications 193

Appendix B: Implementation Details
1 Representation of other variability languages as constraint programs 195
2 Parser to Transform the Semantic of Feature Models into Constraint Programs 202
3 Parser to Transform the Semantic of Feature Models into Constraint Programs using
ATL Rules

204

4. Parser to Transform the Semantics of Dopler Models into Constraint Programs 206
5. Parser to Transform the Syntax of Feature Models into Constraint Programs 208
6. Domain-specific Verification of Product Line Models 210
7. Conformance Checker of Feature Models 214

References 217

List of Figures

Figure F. 1.1. Instanciation de la méthodologie de recherche utilisée dans cette thèse dans la
méthode proposée par (Peffers et al. 2007)

5

Figure 1.1. Application of the design science process model for information system research
(Peffers et al. 2007) to the research carried out in this thesis

16

Figure 3.1. Overview of the verification process of product line models: the case of FMs. 44
Figure 3.2. Verification scenario for multi-model PLs: the case of Dopler models. 44
Figure 3.3. Verification scenario for multi-model product line models: the case of FMs. 45
Figure 3.4. Cardinality and attribute-based feature model metamodel. 48
Figure 3.5. Technical model of the UNIX operating system family of our running example 51
Figure 3.6. User model of the UNIX operating system family of our running example 51
Figure 3.7. The core meta-model of Dopler modeling language, taken from (Dhungana et al.
2010b).

52

Figure 3.8. Example of Dopler Model: Installation of a UNIX System 53
Figure 4.1. Typology of verification criteria on PLMs 74
Figure 4.2 UML class diagram representation of common elements of several PL metamodels 77
Figure 5.1. Generic conformance checking criteria 91
Figure 5.2. CC.1 highlighted in the generic PLM metamodel. 92
Figure 5.3. CC.2 highlighted in the generic PLM metamodel. 93
Figure 5.4. CC.3 highlighted in the generic PLM metamodel. 94
Figure 5.5. CC.4 highlighted in the generic PLM metamodel. 96
Figure 5.6. CC.5 highlighted in the generic PLM metamodel. 97
Figure 5.7. CC.6 highlighted in the generic PLM metamodel. 98
Figure 5.8. CC.7 highlighted in the generic PLM metamodel. 99
Figure 5.9. CC.8 highlighted in the generic PLM metamodel. 101
Figure 5.10. FM CC criterion 1 on the FM metamodel 103
Figure 5.11. FM CC Criterion 2 on the FM metamodel 105
Figure 5.12. FM CC Criterion 3 on the FM metamodel 106
Figure 5.13. FM CC Criterion 4 on the FM metamodel 108
Figure 5.14. FM CC Criterion 5 on the FM metamodel 110
Figure 5.15. FM CC Criterion 6 on the FM metamodel 111
Figure 5.16. FM CC Criterion 7 on the FM metamodel 113
Figure 6.1. Domain-specific verification criteria 116
Figure 7.1. Feature models of Figure 3.5 and 3.6 integrated by means of the ―conservative
strategy keeping features and attributes of the original models

136

Figure 7.2. Application of the disjunctive integration strategy on our running example. 148
Figure 8.1. Execution time of the six verification criteria, per number of features 167
Figure 8.2. Execution time, of the 7 FM conformance criteria, per number of features (in a
Log10 scale)

171

8.3. Communication chema of VariaMos with GNU Prolog. 173
Figure 8.4. Screenshot of the configuration tag for the connection of VariaMos with GNU
Prolog.

173

Figure 8.5. Architecture of the VariaMos Eclipse plug-in. 174
8.6. Packages diagram of VariaMos 175
Figure 8.7. Screenshot of the PLMs management interface provided by VariaMos. 176
Figure 8.8. Screenshot of the domain-specific verification functions provided by VariaMos. 177
Figure 8.9. Conformance Checker of Feature Models 178
Figure 8.10. FaMa versus VariaMos (X axis is in a Log10 scale). 180
Figure 8.11. General architecture of the transformation, integration and verification tools. 181

List of Tables

Table 2.1. Literature review of product line models verification 38
Table 7.1. Integration strategy N° 1. Rules for the restrictive strategy, keeping only
common features and attributes

134

Table 7.2. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy
N° 1

137

Table 7.3. Integration strategy N° 2. Rules for the restrictive strategy, keeping all
features and attributes.

138

Table 7.4. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy
N° 2

139

Table 7.5. Integration strategy N° 3. Rules for the conservative strategy, keeping only
common features and attributes.

141

Table 7.6. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy
N° 3

143

Table 7.7. Integration strategy N° 4. Rules for the conservative strategy, keeping all
features and attributes.

144

Table 7.8. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy
N° 4

146

Table 8.1. 16 FMs taken from the literature of software PLs and used in our
experiments

162

Table 8.2. Dopler variability models. 163
Table 8.3. Benchmark of PLMs represented from scratch as constraint programs. 163
Table 8.4. Five automatically-generated FMs taken from SPLOT (Mendonça et al.
2009b)

165

Table 8.5. Results of Dopler models verification: Execution time (in milliseconds)
and number of defects found with each verification operation.

168

Table 8.6. Correlation coefficients between ―number of features‖ and ―criteria
execution time‖ per each rule and over the 50 models.

172

Table 10.1. Compilation of the feature-based languages„ constructs and the
corresponding representation as CPs.

196

Table 10.2. Compilation of the OVM and TVL‟s constructs and the corresponding
representation as CPs.

197

Table 10.3. Compilation of the Class-based and Use case-based variability
languages„ constructs and the corresponding representation as CPs.

199

Table 10.4. Compilation of the Dopler and CEA variability languages„ constructs
and the corresponding representation as CPs.

200

Table 10.5. Compilation of the RDL and Latice variability languages„ constructs
and the corresponding representation as CPs.

201

This page intentionally left blank

1

Chapitre 1 en Français

Introduction

La production de masse n’est pas un phénomène nouveau: depuis le 12ème siècle à Venise,

jusqu’à nos jours, les industries du navire, du coton et de la voiture utilisent ce concept pour

accroître l'efficacité et réduire les pertes, deux facteurs clés pour améliorer les bénéfices.

Cependant, le consumérisme de nos jours rend la production de masse insuffisante pour

satisfaire les nouvelles exigences où la personnalisation est essentielle. Un nouveau

paradigme de production était nécessaire pour soutenir ces nouvelles exigences, en gardant

des coûts de production raisonnables, des besoins de main d’œuvre et des délais de

commercialisation. Comme réponse à ce besoin, l’ingénierie des lignes de produits surgit

comme un nouveau paradigme de développement conduit par la réutilisation qui permet la

gestion de composants réutilisables. Dans cette thèse, une ligne de produits est définie

comme un groupe d'applications similaires au sein d'un secteur de marché et qui partage un

ensemble commun d'exigences, mais aussi présente une variabilité importante des exigences

(Bosch 2000, Clements & Northrop 2001).

Le concept central pour traiter la réutilisation dans l'ingénierie des lignes de produits est

la définition de composants communs et variables dans un modèle de domaine ou Modèle de

Lignes de Produits (MLPs). Un MLP définit l'ensemble des combinaisons correctes de

composants réutilisables de la ligne de produits (Pohl et al. 2005) par le biais des relations

qu’il y a entre eux. Les composants communs font référence à des parties, des aspects, des

exigences (Sommerville & Sawyer 1997, Sawyer 2005) ou n'importe quel type de

caractéristiques de la ligne de produits qui font partie de tous les produits de la ligne de

produits. Les composants variables font référence aux éléments réutilisables qui font partie de

certains produits (mais pas tous) pouvant être construits à partir de la ligne de produits.

Pourquoi les lignes de produits sont-elles importantes?

Comme nous venons de le voir, la stratégie de production orientée lignes de produits a

plusieurs avantages. Selon l'étude réalisée par Clements & Northrop (2001) l'approche de

production orientée lignes de produits diminue non seulement le coût par produit (jusqu’à

2

60%), mais aussi le temps de mise sur le marché (jusqu’à 98%), le besoin en main d’œuvre

(jusqu’à 60%) et améliore la productivité (jusqu’à 10 fois), la qualité de chaque produit

dérivé (jusqu’à 10 fois) et augmente la taille du portefeuille, et ainsi, la possibilité de gagner

de nouveaux marchés.

Cependant, il peut aussi avoir des inconvénients. Par exemple, l'assurance qualité dans le

contexte des lignes de produits consistant à traiter les problèmes de qualité de chaque produit

est très coûteuse, sujette à l’erreur et irréalisable pour des très grandes lignes de produits

(Von der Massen & Lichter 2004, Benavides 2007). La contrepartie est qu’un défaut dans un

composant du domaine ou dans le MLP peut affecter de nombreux produits de la ligne de

produits et donc peut devenir coûteux à supprimer, puisque tous ces produits devraient être

corrigés (Lauenroth et al. 2010). Pour cette raison, assurer la qualité au tout début de

l’approche de production orientée ligne de produits doit être en soi un processus de haute

qualité afin de profiter des avantages qu’elle est sensée fournir.

Pourquoi les modèles des lignes de produits sont-ils importants?

L'histoire du développement de logiciels et de systèmes montre que l'abstraction joue un rôle

majeur dans la maitrise de la complexité (Bosch, 2000). Ainsi, abstraire des composants

communs et variables d'une collection indéfinie de produits et les organiser dans un modèle

peut être une bonne option pour gérer la complexité de la ligne de produits. Les modèles des

lignes de produits améliorent les processus de prise de décisions. En outre, la représentation

de MLPs dans plusieurs vues améliore la communication des acteurs participant à la gestion

des lignes de produits (Finkelstein et al. 1992). Nuseibeh et al. (1994) décrivent les vues

comme des représentations partielles d'un système et de son domaine.

Pourquoi l’assurance qualité des modèles de la ligne de produits est-elle importante?

L’Ingénierie des Lignes de Produits (ILP) est un nouveau paradigme de développement

conduit par la réutilisation qui a été appliqué avec succès dans l'ingénierie de systèmes (Bass

et al. 2000, Bosch 2000, Clements & Northrop 2001), dans l'ingénierie des processus métier

(Rolland et al. 2007, Rolland & Nurcan 2010) et dans d'autres domaines (Pohl et al.2005).

Cependant, le succès de ce nouveau paradigme de développement dépend fortement de la

qualité des MLPs. Bien qu'il ne soit pas possible de garantir la qualité totale de MLPs (Batory

2005), ni de prouver qu'un modèle est correct, la qualité peut être améliorée au moyen d'un

processus de vérification.

3

F.1.1 Problématique

Malgré le succès relatif des approches existants de vérification de MLPs (Von der Maßen &

Lichter 2004, Zhang et al. 2004, Batory 2005, Czarnecki & Pietroszek 2006, Benavides 2007,

Janota & Kiniry 2007, Lauenroth & Pohl 2007, Trinidad et al. 2008, Van den Broek &

Galvão 2009, Kim et al. 2011, Liu et al. 2011), il ya encore un certain nombre de questions

qui restent ouvertes et qui ont motivé la recherche présentée dans cette thèse:

a. Les techniques d'assurance de la qualité du développement des systèmes simples ne

peuvent pas être appliquées directement aux spécifications des lignes de produits car ces

spécifications contiennent de la variabilité. Comme l’exemple de Lauenroth et al. (2010)

le montre, une ligne de produit peut contenir des exigences E et ¬E en même temps.

L’utilisation d’une technique traditionnelle pour vérifier cette spécification soulèvera une

contradiction puisque les exigences E et ¬E ne peuvent pas être incluses dans le même

produit. Par conséquent, il est nécessaire de prendre en compte la variabilité de la ligne

de produits afin de vérifier que les exigences contradictoires ne peuvent pas faire partie

d'un même produit.

b. L'état de l'art sur la vérification spécifique au domaine des LPs est principalement axé

sur les modèles de caractéristiques (Kang et al. 1990). Seules les propriétés qui peuvent

être évaluées par rapport aux modèles de caractéristiques représentés comme expressions

booléennes sont pris en compte dans ces travaux. Ceci écarte les éléments non-booléens

des formalismes de spécification de lignes de produits les plus sophistiqués (par

exemple, cardinalités sur le domaine des entiers, attributs et contraintes complexes). La

raison sous-jacente est que la plupart des approches actuelles restreignent les opérations

de vérification à celles qui peuvent être résolues par des solveurs booléens. La

vérification est donc guidée par la technologie présélectionnée et non par les exigences

de vérification elles-mêmes. En conséquence, les techniques de vérification sont conçues

pour un nombre limité de formalismes. Ces techniques de vérification sont inadaptées

pour la plupart des formalismes existants, certains de ces formalismes sont déjà utilisés

dans l'industrie (Djebbi et al. 2007, Dhungana et al. 2010).

c. L'état de l'art du développement de lignes de produits montre un support inadéquat pour

la vérification de multi-modèles. La taille et la complexité de MLPs industriels motive le

développement des modèles par des équipes hétérogènes (Dhungana et al. 2006, Segura

et al. 2008). Néanmoins, les outils existants fournissent peu de support pour l'intégration

des modèles développés par différentes équipes, pour la vérification ultérieure du modèle

4

global et pour des configurations de produits à partir de ces modèles. Par exemple, un

modèle global qui intègre deux modèles doit lui-même ne pas présenter de défauts

résultant de l'intégration.

F.1.2 Questions de recherche

Cette thèse porte sur les trois problèmes précédents en proposant une approche qui guide la

vérification des modèles de lignes de produits indépendamment du langage et du nombre de modèles

dans lesquels la LP est spécifiée. De cette façon, l'approche proposée dans cette thèse peut être

réutilisée indépendamment du langage et du nombre de modèles de la ligne de produits. Par

conséquent, l'approche proposée est générique, ce qui permet une application directe ou une

adaptation sur les MLPs Ainsi, l'objectif principal de cette thèse est de répondre à la question de

recherche suivante:

Principale question de recherche: Comment des-modèles de ligne de produits peuvent-ils être

automatiquement vérifiés d'une manière générique et réutilisable?

F.1.3 Hypothèses de recherche

Les hypothèses de recherche sont les suivantes:

a. Une approche générique permettra de vérifier les propriétés des spécifications de lignes de

produits, indépendamment du langage dans laquelle ces spécifications sont modélisées;

b. Une approche adaptable permettra de vérifier les propriétés structurelles des modèles de lignes de

produits par l'adaptation de l'approche de vérification d'origine au langage particulier dans lequel

les modèles sont définis;

c. Une implémentation correcte et scalable des approches susmentionnées est possible et utile

pour vérifier les modèles de lignes de produits.

F.1.4 Méthode de recherche

Adoptant la stratégie Design Science, cette méthode de recherche est en accord avec le modèle de

processus de conception des sciences proposé par Peffers et al. (2007). La Figure F.1.1 présente, en

gris, le modèle de processus design science pour la recherche en systèmes d'information, et

l'application de ce procéssus aux recherches menées dans cette thèse.

5

Identification

du problème

et motivations

Définition d’objectives de
la solution proposée

Conception et le
développement

Démonstration Evaluation Communication

In
fé

re
nc

es

T
hé

or
ie

C
on

na
is

sa
nc

es

M
ét

riq
ue

s,
 A

na
ly

se
s

C
on

na
is

sa
nc

e

C
on

na
is

sa
nc

es

•Comment les

modèles de

lignes de

produits

peuvent être

vérifiés de

manière

générique?

Chapitre 1

•Proposer une méthode

générique et adaptable pour la

vérification de (multi-)modèles

de lignes de produits.

•Proposer une implémentation

correcte et escalable de

l’approche précédente.

Chapitre 1

•Typologie de critères

de vérification

(Chapitre 4)

•Critères de vérification

de la conformité

(Chapitre 5)

•Critères de vérification

spécifiques au

domaine(Chapitre 6)

•(Chapitre 7)

•Application de

l’approche de

vérification sur 54

modèles de

lignes de

produits.

•Implémentation

de l’approche de

vérification.

Chapitre 8

•Validation

et

comparaison

de

l’approche

de

vérification.

Chapitre 8

•17 publications

scientifiques

•Manuscrit de

thèse

Figure F. 1.1. Instanciation de la méthodologie de recherche proposée par (Peffers et al. 2007).

F.1.5 Contributions

Pour surmonter les limites présentées dans la Section 1, cette thèse propose une approche

indépendante du langage et entièrement automatisée pour la vérification de modèles de lignes de

produits. En particulier, les principales contributions de cette thèse sont les suivantes:

a. Spécification de modèles de lignes de produits dans programmes logiques de

contraintes. Dans cette approche, nous transformons (i) la structure des MLPs et ses

métamodèles associés par des faits de programmation logique par contraintes, et (ii) la

sémantique des MLPs dans des programmes par contraintes. Cette thèse propose une

collection de règles de transformation (Salinesi et al. 2011, Mazo et al. 2011E) et

deux stratégies (Mazo et al. 2011e) pour transformer les MLPs en programmes de contraintes.

b. Une fois que le modèle est représenté comme un programme logique de contraintes, la

vérification est guidée par une typologie de critères de vérification (Salinesi et al.

2010a, Salinesi & Mazo 2012). Cette typologie de critères de vérification permet de

trouver des défauts spécifiques au domaine et de conformité sur les modèles de ligne de

produits. Cette typologie n'est pas une contribution per se, bien au contraire, cette

typologie contient la collection des critères de vérification trouvée dans la littérature

(parfois avec des noms différents), classifie ces critères en fonction de leur nature et leur

impact dans un processus de vérification, et organise ces critères dans un ordre approprié

pour leur utilisation et leur implémentation.

c. Une approche générique pour vérifier les propriétés spécifiques au domaine des

LPs. Ces propriétés spécifiques au domaine sont associées à l'expressivité et l'absence

d'erreurs, d’incohérences et de redondances dans les MLPs. Cette approche est générique

car les MLPs sont représentés comme des programmes de contraintes et ensuite vérifiés

contre un ensemble de critères de vérification spécifique au domaine des LPs que tout

MLP devra respecter.

6

d. Une approche adaptable pour vérifier la conformité des MLPs avec leur métamodèle

correspondant. Dans le cas de la vérification de conformité, l'approche consiste à vérifier

si la syntaxe abstraite (Harel & Rumpe 2000, 2004) de MLPs est correcte par rapport au

métamodèle correspondant. L'approche de la vérification de la conformité proposée dans

cette thèse est basée sur une collection de contraintes prises à partir d'un métamodèle

générique. Le métamodèle générique concerne les concepts communs trouvés dans les

formalismes de LPs que nous avons étudié.

e. Une amélioration de la scalabilité des algorithmes de vérification de MLPs existants.

La validation de la démarche de vérification présentée dans cette thèse a été réalisée au

moyen de deux outils. Les deux implémentations ont été testées à partir d'un benchmark

constitué à partir de cas industriels et académiques. L'exactitude et la performance de

l’implémentation de la vérification spécifique au domaine ont été comparées à deux

outils connus (i.e. Fama et SPLOT). Les résultats sont prometteurs et l’implémentation

est exploitable pour des MLPs qui ont jusqu’à 2000 composants. L’implémentation de la

vérification de la conformité n’a pas été comparée avec d'autres implémentations, car

aucun autre outil pour vérifier la conformité des modèles de ligne de produits n’a été

trouvé dans la littérature; pourtant l'exactitude des résultats a été vérifiée manuellement.

La performance de l’implémentation proposée est prometteuse et exploitable pour les

modèles qui ont jusqu’à 10000 artefacts.

7

Chapter 1

Introduction

Mass-production is not new, from the 12th century in Venice to our days, ship, gold

extraction, cotton and car industries used this concept to increase efficiency and less waste,

two key factors to improve profit. However, the consumerism of our days makes mass-

production insufficient to satisfy the new requirements in which customization is essential. A

new production paradigm was needed to support these new requirements, keeping reasonable

production costs, labour needs and time to market. As an answer to this need, product line

engineering arises as a new reuse-driven development paradigm that permits the management

of reusable artefacts. In this thesis, a product line is defined as a group of similar applications

within a market segment and that shares a common set of requirements, but also exhibits

significant variability in requirements (Bosch 2000, Clements & Northrop 2001). According

to Clements & Northrop (2007) product line engineering differences from single-system

development with reuse in two aspects: First, building a product line implies the development

of a family of product with often “choices and options that are optimized from the beginning”

and not just one that evolves over time. And second, it implies a preplanned reuse strategy

that applies across the entire set of products rather than ad hoc or one-time-only reuse. Two

examples of product lines are (i) “the software for commercial avionics and the software for

military avionics” (Clements & Northrop 2007), each one serving different market segments

but being developed as a single product line by a software group; and (ii) the vehicle product

line of the French manufacturer Renault that can lead to 1021 configurations for the van

family “Traffic” (Dauron & Astesana 2010).

Product line engineering explicitly addresses reuse by differentiating between two kinds

of development processes (Pohl et al. 2005): domain engineering and application

engineering.

Definition 1.1: Domain Engineering. During domain engineering the requirements,

specifications, artefacts, domain tests and evolution of the product line are managed in a

coherent process.

8

The aim of the domain engineering process is to manage the reusable artefacts

participating in the PL and the dependencies among them (Stropky & Laforme 1995). The

reusable artefacts, called domain artefacts, are for instance: requirements, architectural

components, pieces of processes, methods, tests, etc.

Definition 1.2: Application Engineering. During application engineering the

requirements, architectures, specifications, tests and evolution of each application (or

product) of the product line are managed in a coherent process.

The aim of the application engineering process is to exploit the variability of the PL in

order to derive specific applications by reusing the domain artefacts.

The central concept for addressing reuse in product line engineering is the definition of

common and variable artefacts on the product line model. A Product Line Model (PLM)

defines all the legal combinations of reusable artefacts of the product line (Pohl et al. 2005)

by means of relationships among them. Common artefacts refer to parts, aspects,

requirements (Sommerville & Sawyer 1997, Sawyer 2005) or any kind of features of the

product line that are part of all the products of the product line. Variable artefacts refer to the

possible variations of the product line. In other words, variable artefacts refer to reusable

elements that are part of some, but not all, products that can be build from the product line.

Why are product lines important?

As discussed above, there are several advantages to the product line production strategy.

According to the study realized by Clements & Northrop (2001) the product line production

approach decreases not only the cost per product (by as much as 60%), but also the time to

market (by as much as 98%), the labour needs (by as much as 60%) and improves the

productivity (by as much as 10x), the quality of each derived product (by as much as 10x)

and increases the portfolio size and therefore the possibility to gain new markets.

However, there are also drawbacks. For example, quality assurance in the product line

context, which consists of assuring the quality of the domain artefacts instead of treating

quality issues in each product, is very expensive, error-prone and computationally infeasible

in very large product lines (Von der Maßen & Lichter 2004, Benavides 2007). The counter

part is that a defect in a domain artefact can affect many products of the product line and thus

can become costly to remove, as all those products might have to be corrected (Lauenroth et

al. 2010). For this reason, assuring quality from the very beginning of the product line

9

production approach must be itself a process of high quality in order to take advantage of the

benefits that it is expected to provide.

Why are product lines models important?

The history of software and system development shows that abstraction plays a major role in

making complexity manageable (Bosch 2000). Thus, abstracting the common and variable

artefacts of an undefined collection of products and organising them into a model may be a

good option to manage the complexity of the product line. Product line models improve

decision-making processes. In addition, the representation of PLMs in different views

improves communication of the actors participating in the product line management

(Finkelstein et al. 1992). Nuseibeh et al. (1994) describe views as partial representations of a

system and its domain.

Several approaches have been found in literature to represent commonality and variability

of a product line. Most of the approaches use features (Kang et al. 1990) as the central

concept of product line models. However, other modelling approaches exist like Orthogonal

Variability Models (OVM, cf. Pohl et al. 2005), Dopler variability models (Dhungana et al.

2010), Textual Variability Language (TVL, cf. Boucher et al. 2010 and Classen et al. 2011),

Extended KAOS (Semmak et al. 2009, 2010) and constraint-based product line language

(Salinesi et al. 2010b, Salinesi et al. 2011).

Why is quality-assurance of product line models important?

Product Line Engineering (PLE) is a reuse-driven development paradigm that has been

applied successfully in systems engineering (Bass et al. 2000, Bosch 2000, Clements &

Northrop 2001), business process engineering (Rolland et al. 2007, Rolland & Nurcan 2010)

and other domains (Pohl et al. 2005). However, the success of this development paradigm

highly depends on the quality of the PLMs. Although it is not possible to guarantee the total

quality of PLMs (Batory 2005), neither to prove that a model is correct, the quality can be

improved by means of a verification process.

Definition 1.3: PLM Verification. Verification of product line models, at the domain

engineering level, consists of finding defects in the product line model itself.

10

The verification process can be considered from two points of view: verification of

semantic-related criteria and verification of syntax-related criteria. This thesis refers to the

first category as domain-specific verification and to the second one as conformance checking.

 Definition 1.4: Domain-specific verification is about the identification of non-structural

defects on product line models.

Domain-specific verification is directly related with aspects of the domain of product

lines. Some of these aspects are common with other than PLMs, like the verification of

redundancies. Other aspects are specific to product lines domain, like the verification that a

model should permit several configurations.

Definition 1.5: Conformance Checking consists of verifying that a model satisfies the

constraints captured in the meta-model.

According to this definition of conformance checking, taken from Paige et al. (2007), it is

verified that the model is indeed a valid instance of its meta-model. Conformance checking is

directly related with the syntactic properties that a model should respect according to the

constraints defined in the corresponding metamodel. Some of these syntactic aspects are

generic to every PLM and other aspects are particular to each PLM metamodel. An example

of generic conformance criteria is that every PLM should be composed of at least one

dependency and at least two artefacts; i.e., there is no PLM with only one artefact since a

single artefact does not guarantee the minimal variability needed in a PLM. In this thesis,

each conformance criterion is automated be means of a conformance rule. The same

reasoning can be used for domain-specific verification, and then for verification in general

(cf. Definiton 1.6). Conformance rules can be compared to the negation of well-formedness

rules of Spanoudakis & Zisman (2001) and Heymans et al. (2008), structural rules of Van

Der Straeten et al. (2003), and syntactic rules of Elaasar & Brian (2004).

Definition 1.6: A verification rule is the automation of a verification criterion

In this thesis, to automate verification criteria, the model to be verified must be executed

in a solver. Then, one or several queries to the solver must be executed in order to gather the

information needed for the verification process.

11

Definition 1.7: A solver is a generic term indicating a piece of mathematical software

that 'solves' a mathematical problem. A solver takes problem descriptions in some sort of

generic form and calculates their solution.

Quality assurance of PLMs has recently been a prominent topic for researchers and

practitioners in the context of product lines. As aforementioned, identification and correction

of PLMs defects, is vital for efficient management and exploitation of the product line.

Defects that are not identified or not corrected will inevitably spread to the products created

from the product line or affect the evolution of the product line, which can drastically

diminish the benefits of the product line strategy (Von der Maßen & Lichter 2004, Benavides

2007). Besides, product line modeling is an error-prone activity. Indeed, a product line

specification represents not one, but a collection of products that are defined implicitely and

that may even include contradictory requirements (Lauenroth et al. 2010). The

aforementioned problems enforce the urgent need of early identification and correction of

defects in the context of product lines.

1.1 Problem Statement

Product line model quality has been an intensive research topic over the last decade (Von der

Maßen & Lichter 2004, Zhang et al. 2004, Batory 2005, Czarnecki & Pietroszek 2006,

Benavides 2007, Janota & Kiniry 2007, Lauenroth & Pohl 2007, Trinidad et al. 2008, Van

den Broek & Galvão 2009, Kim et al. 2011, Liu et al. 2011). Usually, to guarantee a certain

level of quality of a model, this one must be verified against a collection of criteria and then,

defects must be corrected. Verifying PLMs entails finding undesirable properties, such as

redundancies, anomalies or inconsistencies (Von der Maßen et al. 2004). It is widely

accepted that manual verification of single products is already tedious and error-prone

(Benavides et al. 2005). This is even worst when several (up to millions) products are

represented altogether in a single specification. Several approaches to automate PLM

verification have been proposed in order to overcome this limitation. However, despite the

relative success of these approaches, there are still a number of pending issues that have

motivated the research presented in this thesis:

a. Quality assurance techniques from the development of single systems cannot be directly

applied to product line specifications because these specifications contain variability. As

Lauenroth’s et al. (2010) example shows it, a product line may contain requirements R

12

and ¬R at the same time. Using a traditional technique for verifying this specification

will raise a contradiction since requirements R and ¬R cannot be fulfilled together due to

the fact that those requirements are not supposed to be included in the same product.

Therefore, it is necessary to take into account the variability of the product line to check

whether contradictory requirements can really be part of the same product.

b. The current state of the art on domain specific verification is mainly focused on feature

models (Kang et al. 1990). Only properties that can be evaluated over feature models

represented as Boolean expressions are considered in these works. This brushes aside

the non-Boolean elements of the more sophisticated product line specification

formalisms (e.g., Integer cardinalities, attributes and complex constraints). The

underlying reason is that most of current approaches restrict the verification operations

to those that can be solved by Boolean solvers. The verification is thus guided by the

pre-selected technology and not by the verification requirements themselves. As a

result, verification techniques are designed for a limited number of formalisms. These

verification techniques are inadequate for many of the existing formalisms, some of

these formalisms are already used in industry (Djebbi et al. 2007, Dhungana et al.

2010).

c. The current state of the art of product line development shows an inadequate support for

the verification of PLs specified with several models. The size and complexity of

industrial PLMs motivates the development of the product line by heterogeneous teams

(Dhungana et al. 2006, Segura et al. 2008). Nevertheless, existing tools only provide

little support for integrating the models developed by different teams and the subsequent

verification of the global model and configurations of products from that model. For

instance, a global model that integrates two models must itself have no defects resulting

from the integration.

1.2 Research Questions

The thesis addresses the three aforementioned problems by proposing an approach that guides

the verification of product line models independently of the language and the number of

models in which the PL is specified. In that way, the approach proposed in this thesis can be

reused independently of the language and the number of models of the product line.

Consequently, the proposed approach is generic, permitting a direct application or an

13

adaptation over PLMs. Thus, the main objective of this thesis is to answer the following

research question:

Main RQ: How can product line models be automatically verified in a generic and reusable

way?

To answer this main research question, several sub-problems must be solved too.

Resolution of each of the following four research questions is necessary to solve the main

research question of the thesis.

RQ1: How should product line models be formally represented?

To answer this research question this thesis proposes a language that permits the

representation of any product line model. There are two aspects of a PLM that can be

represented: its semantics and its structure. On the one hand, the semantics of a PLM is the

set of products that can be configured from the PLM. Thus, the semantic representation of a

PLM permits configuring, without ambiguity, the same products that can be configured from

the PLM itself. The semantic representation of PLMs will be used to verify the domain-

specific verification criteria that PLMs must respect. On the other hand, the representation of

the structure of a PLM permits representing the elements (or entities on the corresponding

metamodel) that constitute the model, the dependencies among them and the order in which

these elements are related in the PLM. The structure of PLMs will be used to verify the

criteria assuring the respect of the PLM with its corresponding language; i.e., the

conformance of the model with the corresponding meta-model. Consequently, both

representations are necessary to achieve verification of product line models from the semantic

and structural points of view.

RQ2: How should verification criteria be classified?

Some properties of PLMs are independent of the language while other ones are particular

to each language. This shows that not all criteria are equivalent and therefore several types of

defects can be checked in a verification process. Thus, one can be interested in executing one

or another verification criterion according to the impact of these criteria, or the expected level

of quality of a particular PLM. In addition, this question is about the order in which the

verification criteria should be executed in order to improve the performance and the quality

of the verification process.

14

RQ3: How should different models of a product line system be integrated?

An important challenge in PL domain engineering and application engineering is that

product lines are often, in practice, specified using several models at the same time (Djebbi et

al. 2007, Segura et al. 2008, Rosenmüller et al. 2011). This is due to the fact that size and

complexity of industrial product lines constrain the specification of PL models by

heterogeneous teams (Dhungana et al. 2006, Segura et al. 2008). In addition, different aspects

of the product line will be specified with different models, each one appropriated to the kind

of aspect to model. Besides, it is a fact of industrial life that product line models evolve over

time, for instance to reflect new marketing requirements, product level innovations that

should be capitalized at the PL level, or new design decisions about the PL architecture. The

problem is that any change in a model can impact other models too. For example, changes in

the architecture can make the corresponding model inconsistent with the technical solution

models, or with the PL models that represent the sales and marketing models. Thus, in the

absence of a global model, (i) requirements can get missed or misunderstood (Finkelstein et

al. 1992) both during domain and application engineering activities. Indeed, a particular

product line model can be correct when taken standalone and be incorrect when it is

integrated with other ones. (ii) Configuration, analysis and verification of the entire product

line will be unfeasible.

RQ4: Which kind of support can be offered to system engineers for improving quality of

product line models?

This question addresses the need of tool support for automatic, efficient and scalable

verification of product line models. It is well known that developing high quality systems

depends on developing high quality models (Paige et al. 2007). Verifying the quality of

models has recently been a prominent topic for many researchers in the community.

However, the literature review carried out in this thesis shows that scalable methods,

techniques and tools are needed to deal with this important issue (cf. Chapter 2). In that way

the answer of this question contributes to solve the main concern of this thesis: propose a

generic and reusable approach to automatically verify product line models.

1.3 Research Hypotheses

Two approaches can be adopted to accomplish the aforementioned objectives. The first

approach proposes a collection of generic verification criteria that will be applied on product

15

line models previously represented with a unique formalism. This approach has the advantage

that it makes verification independent of the original language in which the model is

represented. The second approach proposes a collection of generic verification criteria that

will be adapted to each formalism according to the language in which the model is

represented. This second approach is also somehow independent of the language in which the

product line specification is modeled. The idea is that verification criteria are adapted, to the

formalism at hand, from the original definition. Thus, we have chosen the first strategy for

the domain-specific verification criteria and the adaptable strategy to check structural

properties. To summarize, research hypotheses are the following:

a. A generic approach will allow verifying domain-specific properties of product line

specifications independently of the language in which these specifications are modeled;

b. An adaptable approach will allow verifying structural properties of product line models

by adaptation of the original verification approach to the particular language in which

the models are defined;

c. A correct and scalable implementation of the aforementioned approaches is possible and

useful to verify product line models.

1.4 Research Method

The research presented in this thesis, as most of the researches in computer science, is design

oriented. As defined by March & Smith (1995) and Hevner et al. (2004) design science is

about design and validation of solution proposals to practical problems. Hevner et al. (2004)

suggest that design science differs in two aspects from other branches of science: (a) it is

concerned with artefacts rather than facts of nature or social structure, and (b) it is concerned

with a search for prescriptive rules for design, rather than a search for descriptions,

explanations and predictions, as other branches of science are. Simons (1981) also proposes a

differentiation between natural science and design science. For him, natural science is about

the way things are and design science is concerned with how things ought to be. Being design

oriented, the research method used in this thesis intends to validate the research hypotheses

presented above by means of prototypes and several case studies. Karl Popper stated that “[a]

theory which is not refutable by any conceivable event is non-scientific” (Popper 1974). To

test the research hypotheses of this thesis, the following research strategy was implemented:

16

a. I conducted an investigation of the product line engineering production strategy, its

benefits, drawbacks and the modus operandi of this strategy from the point of view of

requirements engineering.

b. I conducted a survey of the state of the art in product line engineering. In particular on

the techniques, methods and tools for verification of product line specifications.

c. I conducted a state of the art in verification of product line specifications. In particular,

these verification techniques, methods and tools were classified according to the kind of

verification, the verification criteria proposed in each approach, the kind of

specifications in which the approach is applied and the technology used to implement

the approach.

d. I identified a collection of gaps and drawbacks of the existing approaches with regards

to the research question of this thesis. In particular, to examine how these solutions

could be used together to address the problem tackled by this thesis.

e. I proposed a language-independent and fully-automated approach to verify PLMs;

f. I evaluated the correctness of the proposed approach through three case studies. The

results of these case studies were intended to support or refute the hypothesis proposed

in this thesis (cf. Popperian falsification, Popper (1974));

g. I improved the verification approach initially proposed and at the same time I identified

new research directions. The results of the case studies, a follow-up the current

verification approaches and the feedback from the computer science community were

taken into account to improve the initial approach.

From the design science point of view, this research methodology matches perfectly with

the design science process model proposed by Peffers et al. (2007). Figure 1.1 presents, in

shadow, the design science process model for information system research, and the

application of this process to the research carried out in this thesis.

Identify

problem and

motivate

Define objectives of a

solution

Design and

development
Demonstration Evaluation Communication

In
fe

re
nc

e

T
he

or
y

H
ow

 to

K
no

w
le

dg
e

M
et

ric
s,

 A
na

ly
si

s

K
no

w
le

dg
e

D
is

ci
pl

in
ar

y

K
no

w
le

dg
e

•How can

product line

models be

automatically

verified in a

generic and

reusable way?

Chapter 1

•Propose a generic and

adaptable approach product

line specifications

independently of the language

in which these specifications

are modeled.

•Propose a correct and

scalable implementation of the

aforementioned approach.

Chapter 1

•Typology of verification

criteria (Chapter 4)

•Conformance checking

criteria (Chapter 5)

•Domain specific

verification criteria

(Chapter 6)

•Multi-model verification

approach (Chapter 7)

•Application of

the verification

approach to 54

PLMs.

•Implementation

of the verification

approach into 2

tools.

Chapter 8

•Validation

and

comparison

of the

verification

approach.

Chapter 8

•17 scientific

publications

•Thesis

Figure 1.1. Application of the design science process model for information system research (Peffers
et al. 2007) to the research carried out in this thesis.

17

From an epistemological point of view, this research method reflects Popper's view, in

which the advance of scientific knowledge is an evolutionary process characterized by the

formula (Popper 1994):

PS1 TT1 EE1 PS2

Following Popper’s formula, this thesis takes as a basis a problem situation (PS1). As an

attempt to solve this problem, a tentative theory (TT1) with conjectures and limitations is

proposed. The approach proposed in this thesis was then systematically subjected to the most

rigorous attempts at falsification possible during a limited period of time. However, it does

not mean that our approach is true. Nevertheless, as Popper holds, it is more applicable to the

problem situation at hand (PS1). Consequently, neither does rigorous testing protect a

scientific theory from refutation in the future. Continuing our research method, a particular

process of error elimination (EE1) will permit the improvement of our approach and will

permit the identification of more interesting problems (PS2).

1.5 Contributions

To overcome the limitations presented in Section 1, this thesis proposes a language-

independent and fully-automated approach to verify product line models. In particular, the

main contributions of this thesis are the following:

a. Specification of product line models into constraint logic programs. In this

approach, we translate (i) the structure of PLMs and its associated metamodels into

constraint logic programming facts, and (ii) the semantics of PLMs into constraint

programs. This thesis proposes a collection of transformation rules (Salinesi et al. 2011,

Mazo et al. 2011e) and two strategies (Mazo et al. 2011e) to transform product line

models into constraint programs.

b. Once the model is represented as a constraint logic program, the user’s verification is

guided by a typology of verification criteria (Salinesi et al. 2010a, Salinesi & Mazo

2012). This typology of verification criteria permits finding domain-specific and

conformance defects on product line models. This typology is not a contribution per se;

on the contrary, this typology contains the collection verification criteria found in

literature (sometimes with different names), classifies these criteria according to their

nature and impact in a verification process, and arranges these criteria in a convenient

18

order for their use and implementation. In that way, the results obtained from the

execution of a verification criterion can be reused in the succeeding executions to save

time and computational recourses, at a time that users choose the criteria to verify

according to the nature and the intended quality of the model at hand.

c. A generic approach to verify domain-specific properties in PLMs. These domain-

specific properties are associated with the expressiveness and the absence of errors,

inconsistencies and redundancies in PLMs. This approach is generic since PLMs are

represented as constraint programs and then verified against a collection of domain-

specific verification criteria that any PLM should respect. However, certain verification

criteria cannot be used in certain PLMs since the models do not contain the concepts

intended to be verified with these particular criteria. For instance, not all PLMs contain

the notion of optional artefacts; therefore, verification of false optional artefacts in these

models simply has no sense. This approach can also be used to verify domain-specific

properties on product lines specified by means of several models, even when models are

specified in different notations. To do that, this thesis uses the fact that all PLMs we

used can be represented as variables and constraints among these variables (Salinesi et

al. 2011b, Mazo et al. 2011c, 2011d), which allows the definition of a pivot language

(i.e., constraint programming) that allows the integration of the PL into a single model.

Once the models are integrated into a constraint program, the modus operandi to verify

multi-models product lines is similar to the one proposed for single-model product lines.

d. An adaptable approach to check conformance of PLMs with their corresponding

metamodel. In the case of conformance checking, the approach consists of verifying

whether the abstract syntax (Harel & Rumpe 2000, 2004) of PLMs is correct with

regards to the corresponding metamodel. The conformance checking approach proposed

in this thesis is based in a collection of constraints taken from a generic metamodel. The

generic metamodel relates the common concepts found in the PL formalisms that we

sensed. In that way, even if some verification criteria to check conformance of PLMs

are shared for several models, each one of the generic conformance rules should be

adapted to each particular formalism. Of course, since the generic metamodel proposed

in this thesis only relates common concepts of several PL formalisms, conformance

rules corresponding to concepts not present in our generic metamodel should be

generated according to the particular metamodel. However, the constraint logic

programming-based approach proposed in this thesis will remain being an option to

implement the new conformance criteria.

19

e. An improvement of the existing PLMs verification algorithms’ scalability. The

validation of the verification approach presented in this thesis was carried out by means

of two tools. Both implementations were tested with several industrial and academic

benchmarks and the correctness and performance of the domain-specific verification

implementation was compared with two popular tools (i.e. FaMa and SPLOT). The

results are promising and the implementation is scalable to PLMs up-to 2000 artefacts,

in the worst-case scenario. The conformance checking implementation was not be

compared with others implementation because no other implementation to check

conformance of product line models was found in literature; nevertheless the correctness

of the results were verified manually. The performance of the implementation proposed

is promising and scalable to models up-to 10000 artefacts.

1.6 Thesis Organization

This thesis is organized as follows.

Chapter 2 reviews related work presented in the literature and classifies them according

the product line modeling language in which each verification approach is applied. This

chapter presents five research questions about the state of the art on verification of product

line models (and even in other kind of models), the advancements, gaps and challenges found

in literature in this topic. These questions will be systematically answered throughout the

chapter.

Chapter 3 provides an overview of the verification approach presented in this thesis. In

addition, this chapter provides the background information necessary for reading this thesis

including a transformation and integration approaches, previous stages before verifying

product line models. This chapter we introduce also the motivating example that will be used

in the rest of the thesis to develop our approach.

Chapter 4 presents the first contribution of this thesis: a typology of verification criteria

developed from our experience with a large number of product line models and the

cooperation with industries and other research laboratories. This typology classifies the PLMs

verification criteria according to its nature (domain-specific and conformance checking

criteria) and its execution order in a verification process. Each criterion is introduced, then

formalized using first order logic, then illustrated through our running example.

Chapter 5 presents the conformance checking approach proposed in this thesis to verify

the abstract syntax of product line models. This approach is developed in a running example

20

and presented from two points of view: generic and metamodel-dependent, for single-models

product lines. In addition, generic algorithms and their implementations are also presented in

this chapter. References to algorithms found in literature to implement the criteria and a

discussion about the performance and scalability of these algorithms are provided.

Chapter 6 presents the constraint-based approach to automatically verify domain specific

criteria of product line models. This approach is centred on standalone product lines models

and developed in our running example. In addition, this chapter also presents generic

algorithms and their implementations.

Chapter 7 presents a multi-model verification approach based in the transformation and

the integration approaches presented in chapter 3. In addition, this chapter shows how the

approaches to verify stand alone models can be also used to verify multi-model product lines.

Chapter 8 provides details about the running environment we build in order to

implement and evaluate our verification approach and the empirical results obtained from this

evaluation. We discuss and compare the experimental results, its quality and scalability,

against one of the approaches existing in literature.

Finally, Chapter 9 concludes the thesis and proposes future research directions.

21

Chapter 2

State of the Art

This chapter carries out a literature review in order to examine studies proposing PLMs

verification approaches. This review follows the systematic method proposed by Kitchenham

(2004) and Webster & Watson (2002). The main aspects regarding the review process are

presented as follows.

Research questions

The aim of this review is to answer the following questions:

 Q1: What kind of product line modelling notations have been the subject of

verification techniques?

 Q2: What verification criteria on product line models have been proposed?

 Q3: What kind of automated support has been proposed?

 Q4: What kind of validation was made and what have been the results?

 Q5: What are the gaps and challenges to be faced in the future?

Question Q1 gives the structure to this chapter. Each section of this chapter tackles with a

product line modelling notation for which at least one verification technique has been applied.

There is also a section for the verification approaches independent of the product line

modelling notation. The product line modeling notations considered in this state of the art are:

FM, OVM, Dopler and Latice Structure.

Questions Q2, Q3 and Q4 have driven the analysis during the literature review presented in

this chapter. Some of the aspects discussed in order to solve questions Q2, Q3 and Q4 refer to

(a) the verification criteria; (b) scalability; and (c) applicability to large models. Question Q5

is discussed in the conclusion section, based on these aspects and a recapitulation table.

Source material

As recommended by Webster & Watson (2002), we used both manual and automated methods

to make a selection of candidate papers in leading journals and conferences and other related

events. This was augmented with a number of papers, reports and books that relate to product

22

line engineering. This state of the art presents the results of 40 research works. These 40 works

are referred as primary studies (Kitchenham 2004).

In the following, each section deals with a formalism. Then, the presentation is done

approach by approach. For each approach, (a) the list of criteria handled; (b) verification

criteria; (c) algorithms and implementations; (d) details about validation of the approach and;

(e) a critical analysis of each approach are presented.

This chapter is structured as follows:

Section 2.1 presents the state of the art related with verification of Feature Models.

Section 2.2 presents the state of the art related with verification of Orthogonal Variability

Models.

Section 2.3 presents the state of the art related with verification of Dopler Variability

Models.

Section 2.4 presents the state of the art related with verification of Latice Structure Models.

Section 2.5 presents the state of the art related with verification approaches that are not

entangled with a product line modelling language.

Finally, Section 2.6 reports a systematic analysis of the related works discussed all along

this chapter, in the light of the aforementioned research questions.

2.1. Verification of Feature Models

FMs were first introduced in 1990 as a part of the Feature-Oriented Domain Analysis

(FODA) method (Kang et al. 1990). Since then, feature modeling has become a de facto

standard adopted by the software product line community to model product lines. A feature

model is a compact representation of all the product of a product line in terms of features

(requirement, quality, or characteristic of a software system) and dependencies among them.

Since the appearance of FODA, several extensions have been proposed to improve and enrich

their expressiveness; for instance, cardinalities (Riebisch et al. 2002, Czarnecki et al. 2005),

and attributes (Streitferdt et al. 2003, Benavides et al. 2005c, White et al. 2009). Feature

Models (FMs) with these two extensions are called extended feature models. The reader can

refer to (Schobbens et al. 2007) for a detailed survey on the different feature modelling

dialects, and to Section 3.4 for the formal definition that is adopted in this thesis to handle the

feature modeling language.

23

2.1.1. Verification of FODA-like Feature Models

Seven approaches have been found in the literature to verify FODA-like models: Von der

Maßen & Lichter (2004), Van der Storm (2004), Batory (2005), Hemakumar (2008), Broek &

Galvão (2009), Salinesi et al. (2010a) and Mendonca et al. (2009).

A. Von der Maßen & Lichter (2004) present an approach to identify redundancies, anomalies

and inconsistencies. According to these authors, a feature model contains a redundancy “if

at least one semantic information is modeled in a multiple way”; contains anomalies “if

potential configurations are being lost, though these configurations should be possible”;

and contains inconsistencies “if the model includes contradictory information”.

(Verification criteria)

Redundancies identified in the approach are: (i) mandatory and requires relationships

between two features; (ii) exclusion of two features related in an alternative relationship;

(iii) a feature is required by multiple features F1,...,Fn whereas F1 is a parent of F2,...,Fn;

(iv) a feature excludes multiple features F1,...,Fn whereas F1 is a parent of F2,...,Fn; and

(v) transitive relationships among several features.

Anomalies identified in the approach are: (i) optional features required by full-mandatory

features; (ii) alternative-child features required by full-mandatory features; (iii) or-child

features required by full-mandatory features; (iv) optional features mutually exclusive with

full-mandatory features; (v) alternative-child features mutually exclusive with full-

mandatory features; and (vi) or-child features mutually exclusive with full-mandatory

features.

Inconsistencies identified in the approach are: (i) exclusion between full-mandatory

features; (ii) exclusion between relative-full mandatory features; (iii) requirement between

alternative child features; and (iv) mutual exclusion and requirement between two features.

(Implementation) Authors use RequiLine (Von der Maßen & Lichter 2003) to validate

the approach. Requiline is a tool that allows the detection of inconsistencies on the domain

level and on the application level.

(Validation) The approach was evaluated in “a small local software company” (Von der

Maßen & Lichter 2004) and “in a global player of the automotive industry” (Von der

Maßen & Lichter 2004). According to the authors, RequiLine helps to detect

inconsistencies in the domain model and in product models.

24

(Results) No information is given about how the automatic detection of redundancies and

anomalies is achieved. Neither author provides details about the size of the models or

about the technology used to automate the approach. The lack of results about the

evaluation experiment makes it difficult to compare or evaluate the approach according to

its performance, scalability or usability properties in large models.

B. Van der Storm (2004, 2007) proposes an approach to check consistency of feature

diagrams and dependency graphs connected with each other by requires-like dependencies.

Since graphical formalisms are not practical to perform the verification tasks in an

automated way, the author uses a textual version of feature diagrams, called Feature

Description Language (FDL) (Van Deursen & Klint 2002). FDL is used to represent the

hierarchical structure of feature diagram and cross-tree constraints between features.

(Implementation) On the technical level, Van der Storm (2004) proposes the use of

Binary Decision Diagram (BDD) solvers to make automatic consistency checking of

feature configurations.

(Verification criteria) The approach is able to check (i) if feature diagrams are consistent

(i.e., feature diagrams permit the generation of one or more products); and (ii) if a

configuration is consistent with the feature diagram.

(Validation) There is no case-study that shows how the approach works in practice.

(Results) Van der Storm does not discuss the conformance checking of feature diagrams

regarding his metamodel, or about the application of his work on anything other than

feature diagrams—all the consistency checking work is focused on the feature diagrams.

C. The proposal of Batory (2005) is to use grammars and propositional formulas to represent

basic FMs. Proposition formulas enable the verification process of FMs using truth

maintenance systems and SAT solvers.

(Verification criteria) Batory’s verification proposal identifies contradictory (or

inconsistency) predicates and verifying that a given combination of features effectively

defines a product.

(Implementation) Propositional formulae, in Conjunctive Normal Form (CNF), plus a

collection of constraints are derived from FMs represented as grammars. Formulae are not

directly derived from the FM. Indeed, the author holds that exclusion and inclusion

25

constraints of FMs are too simplistic and do not permit the specification of more complex

constraints, such as for example: F implies A or B or C.

(Validation) Once FMs are represented as CNF formulae, they are executed in a SAT

solver. By means of a query to the solver it is possible to determine whether there is a

valid solution (product) and whether sets of variable assignments satisfy the propositional

formulae.

(Results) There is no discussion about the application of this approach on anything other

than feature models, or about the performance and scalability of this approach on large

models.

D. As a continuation of the work of Batory, Hemakumar (2008) proposed a dynamic solution

to find contradictions on FMs. In this approach, errors can be detected while using FMs,

and then reported to domain designers.

(Verification criteria) The author proposes an incremental consistency algorithm that

verifies if FMs are contradiction-free or not. A FM is contradiction-free if it is k-

contradiction free for all k where 0 < k ≤ n. A FM is k-contradiction free if no

selection of k features exposes a contradiction. For example: dead features can be

identified when k=1. When k=n, where n is the number of user selectable features, the

model is proven to be contradiction-free.

(Implementation) Hemakumar holds that this approach, automated with a SAT solver, is

at least an order of magnitude faster than model checking.

(Validation) The incremental consistency algorithm has important practical limits due to

its poor scalability. Indeed, Hemakumar (2008) claims that his approach “can verify

contradiction freedom of models with about 20 or fewer features”.

(Results) Hemakumar (2008) claims that “static analysis to find contradictions in feature

models with large number of features may be very difficult”. This seems to confirm that

the proposed approach is not scalable.

E. Broek & Galvão (2009) analyze FODA models specified as generalized feature trees.

Their approach transforms FMs into feature trees together with additional constraints

specified in the Miranda language (Turner 1985).

(Verification criteria) Once FMs are represented in the functional programming language

Miranda, the translated FMs are verified against the following criteria: ability to configure

26

several products, no dead features, and absence of conflicting constraints. This last

criterion is used to provide an explanation to “dead features”. A dead feature is a feature

that does not appear in any product.

(Implementation) The approach, fully implemented in Miranda, shows that in cases

where there are no cross-tree constraints, the function to detect the existence of products

(by generating one of them) has a O(1) complexity and the function to find the number of

products O(N). If there are cross-tree constraints, the complexity of the function to find the

number of products is O(N*2
M

), where N is the number of features and M is the number of

cross-tree constraints.

(Validation) Unfortunately, these calculations of efficiency are purely theoretical. No

systemic empirical evaluation is reported in the paper.

(Results) Broek & Galvão (2009) claim that their approach is more efficient than other

approaches that require a transformation of the feature tree into another data structure like

BDDs. However, Broek & Galvão omit to count the time needed to transform features

trees into the Miranda language. The approach was validated with a feature tree of 13

features and two cross-tree constraints, which is not enough to demonstrate its scalability

and usability on industrial models.

F. Salinesi et al. (2009b) present a tool for the automatic verification of structural correctness

of feature models supporting group-cardinalities.

(Verification criteria) The verification operations implemented in this tool were the

identification of redundant features, inconsistent constraints, cyclic relationships, and

poorly defined cardinalities.

(Implementation) The approach uses graph navigation algorithms, implemented in C#, to

evaluate each verification criterion.

(Validation) A case study based in two FMs that contain 21 and 49 features was achieved

to validate the approach.

(Results) This preliminary experiment showed that the approach is effective. However, the

approach, proposed for FODA-like models supporting group-cardinalities, presents major

scalability issues related with the graph-based algorithms used to implement the approach.

G. SPLOT (Mendonca et al. 2009) is a Web-based reasoning and configuration system for

feature models supporting group-cardinalities instead of alternative and or-relations.

27

(Implementation) The system maps feature models into propositional logic formulas and

uses Boolean-based techniques, such as binary decision diagrams and SAT solvers, to

reason on feature models.

(Verification criteria) SPLOT supports two verification operations: detection of void

models and dead features.

(Validation and results) The approach presents promising results even with very large

models. However, the tool does not support conformance checking, and it only supports

feature models.

2.1.2. Verification of Extended Feature Models

Six approaches have been found in the literature to verify extended feature models: Zhang et

al. (2004), Benavides et al. (2005a), Benavides et al. (2005b, 2006), Janota & Kiniry (2007),

Trinidad et al. (2008) and Yan et al. (2009).

A. Zhang et al. (2004) propose an approach based on propositional logical expressions to

verify FMs.

(Verification criteria) The approach covers three criteria: (i) “consistency”; the model is

consistent (or not void) if there exists at least one collection of features that does not

violate any constraint in the feature model; (ii) “no dead features”; this occurs when each

feature in a feature model can be selected without violating any constraint in the feature

model; and (iii) each optional feature in a feature model can be removed without violating

any constraint in the feature model. The authors hold that by using feature sets, they can

reduce the computational complexity of the verification operations.

(Implementation) Zang et al. argue that these verification criteria can be automated by

using model checking techniques such as SMV1.

(Validation and results) However, they do not provide any evaluation to substantiate this

claim. No detail about the approach validation and its results are provided.

B. Benavides et al. (2005a) propose an approach to analyse FMs. Their approach consists of a

collection of analysis operations on feature models with attributes and arithmetic relations

among these attributes.

(Implementation) All these analysis operations are executed using OPL Studio, a

commercial Constraint Satisfaction Problem (CSP) solver.

1 http://www.cs.cmu.edu/~modelcheck/smv.html

28

(Verification criteria) Benavides et al’s approach computes the number of products that

can be configured from FMs. This operation can be used to verify if a given FM is void,

and to verify if the model is rich enough to be considered a product line model, as opposed

to just a product model.

(Validation) Authors have experimentally inferred that the implementation of the

operation to compute the number of products that can be configured from a FM has an

exponential behaviour with respect to the number of features. Benavides et al. claims that

their approach “has a good performance up to 25 features”.

(Results) The approach is not scalable to large models. The main problem is that real life

feature models are usually much larger than the models used to validate this approach.

C. Benavides et al. (2005b, 2006) present an approach for reasoning on FMs with individual

cardinalities and group cardinalities and with complex constraints on attributes.

(Verification criteria) Feature models are considered valid if at least one product can be

configured from it. Valid configurations are collections of features and attributes that

satisfy all the constraints of the corresponding FM.

(Implementation) The approach transforms FMs into constraint programs and then, uses

CPL Studio, a commercial Constraint Satisfaction Problem (CSP) solver, to check if a

given configuration is valid with regard to the FM from which it was configured. In this

approach each feature is represented as a CSP variable. The domain of these variables

depends on the cardinality associated to each variable. By default the domain is {0,1}.

The domain of variables (features) with individual cardinalities corresponds to the range of

values of the individual cardinality. As a consequence, it does not consider the possibility

to clone these features as determined by their individual cardinality. The relationships in

the FM are represented as ifThenElse CSP constrains, plus a constraint to express

the selection of the root feature (i.e., root = 1). The overall CSP that corresponds to an

entire FM is the conjunction of all the constraints.

(Validation) Authors performed a comparative test between two off the shelf Java

constraint solvers: JaCoP (Kuchcinski 2003) and Choco (Laburthe & Jussien 2005). The

tests show that JaCoP is faster than Choco except in finding the number of solutions. The

experiment was executed on five FMs with up to 52 features.

29

(Results) The time to get one solution seems to be linear and the time to get all solutions

seemed to be exponential. These results show that the approach suffers extensibility and

scalability issues. Besides, the problem with this approach is that the constraint

representing an individual cardinality (m,n) between the father feature A and its child B

(ifThenElse(A=0;B=0;B in {n,m})) does not consider the case when feature A

has itself a cardinality. Therefore, the semantics of individual cardinalities is not well

represented in the CSP.

D. Janota & Kiniry (2007) have formalized in higher-order logic (HOL, cf. Gordon &

Melham 1993) a feature based meta-model that integrates properties of several feature

modeling approaches such as attributes and cardinalities.

(Verification criteria) Once the model represented in HOL, expressions can be used to

evaluate root selectivity, the existence of a path from the root to a given feature, and group

cardinality satisfaction. Group cardinality satisfaction consists of verifying that the

boundaries of the group cardinality are correct with reference to the number of features

that that can be selected from the bundle of features grouped in the cardinality.

(Implementation) The approach has been implemented in the Mobius program

verification environment (Barthe et al. 2007), an Eclipse-based platform for designing,

testing, performing various kinds of static analyses, that was designed to automatically and

interactively formally verify Java programs and bytecode.

(Validation and results) The paper does not provide evidence about the efficiency of the

approach, its scalability, or its applicability to real life cases.

E. Trinidad et al. (2008) propose a CSP based approach to verify and diagnose FMs.

(Verification criteria) Trinidad et al’s approach handles three verification criteria: (i)

“dead features”; (ii) “false optional features”, i.e., features that in spite of being modeled

as optional, are always chosen whenever their parents are chosen; and (iii) “void models”,

i.e., models from which no product can be configured. The goal of Trinidad et al. is not

just to detect the above three errors but also to provide explanations for the cause of these

errors.

(Implementation) In order to achieve the first goal, the approach transforms the FM into a

CSP expression, then queries the Choco solver (by means of the FaMa tool) to find the

errors.

30

(Validation) The approach has been evaluated on five FMs up to 86 features.

(Results) Unfortunately, no details about the scalability and the efficiency of the approach

are provided.

F. Recently, Yan et al. (2009) proposed a method to (Verification criteria) find redundant

constraints and features in FMs. A redundant constraint in a constraint that does not

modify the semantics of the product line model and a redundant feature is a repeated

feature. This approach is motivated by the fact that the problem size of feature model

verification is exponential to the number of features and constraints in the model.

Therefore, eliminating verification-irrelevant features and constraints from FMs should

reduce the problem size of verification, and alleviates the state-space explosion problem.

(Implementation) The approach eliminates verification-irrelevant features and constraints

from feature models. The authors use a BDD solver to execute the non-optimized and the

optimized feature models in order to compute the difference of time executing both groups

of models.

(Validation) The authors carried out an experiment in which they generated three groups

of in-house random FMs. The first group had 9 FMs, all of them with 500 features and 50

explicit cross-tree constraints. In this first experiment, authors verified the consistency of

FMs without eliminating redundant features and constraints in 62.7 sec. The same

operation took 6.0 sec after 80% of the redundant features were eliminated. The second

group contained 7 FMs with 100 to 700 features, and from 10 to 70 cross-tree constraints.

In this second experiment, authors verified the consistency of the model with 600 features

in 60.5 sec (without eliminating verification-irrelevant features and constraints), and in

43.9 sec (after eliminating verification-irrelevant features and constraints). The third group

had 19 FMs with 100 to 1900 features and from 20 to 56 cross-tree constraints. The

authors verified the consistency of a model with 1200 features and 42 cross-tree

constraints without eliminating redundant features and constraints in 64 sec. The same

operation took 3.0 sec when the redundant features had been eliminated. Once redundant

features were eliminated the Yan et al’s approach allows the verification of consistency on

models with 1900 features in 64 sec.

(Results) These experiments show that the approach proposed by Yan et al. improves the

efficiency and the capability of the approach to FMs’ consistency verification when the

models contain a large number of redundancies. The problem with this approach is that it

only considers as redundant constraints these that contain redundant features. Typical

31

redundancies such as domain overlapping, or cyclic relationships (Salinesi et al. 2010a,

Mazo et al. 2011a) are therefore overlooked. Besides, the validation of the approach was

done with in-house and random build feature models. There is no guarantee that it works

with real world feature models. In particular, one can wonder how many redundancies a

real model typically contains, and what their severity is. Last, no detail is provided about

the formalisation and implementation of the approach.

2.2. Verification of Orthogonal Variability Models

In Orthogonal Variability Models (OVMs, cf. Pohl et al. 2005), a variation point describes

what varies between the products of a software product line. For each variation point, a

collection of variants is defined. Configuration consists of selecting among variants associated

with each variation point. Pohl et al. (2005) propose three types of dependencies to specify

configuration constraints:

(1) a mandatory variability dependency between a variation point and a variant indicates

that this variant must always be selected when the variation point is considered for the product

at hand. A mandatory variability dependency is drawn as a continuous line;

(2) an optional variability dependency between a variation point and a variant describes that

this variant can be selected but it does not need to. An optional variability dependency is

drawn as a dashed line;

(3) an alternative choice is a specialization of optional variability dependencies. An

alternative choice group comprises at least two variants which are related to a variation point

by optional variability dependencies. Min, max bounds define how many variants of the

alternative choice group must be selected at least (min) and how many variants can be selected

at most (max).

In addition to variability dependencies, the OVMs permit the definition of constraint

dependencies to document additional dependencies between variation points and variants, e.g.

to enforce that two variants of different variation points cannot be selected together.

Three approaches have been found in the literature to verify OVMs: Metzger et al. (2007),

Roos-Frantz et al. (2008) and Lauenroth et al. (2010).

A. Metzger et al. (2007) introduce a formalization of OVMs and propose to use a SAT solver

to automate verification of OVMs. In this approach, automated reasoning on OVMs is

supported using the VFD (Varied Feature Diagram) semantics. VFD is based on FFD

32

(Free Feature Diagrams) which is a parametric construct designed to provide the syntax

and semantics of FODA-like dialects in a generic way (Schobbens et al. 2006). Metzger et

al. propose to reuse this formalization of feature diagrams, to introduce a formalization of

OVMs. They introduce a formal version of OVM’s abstract syntax and describe a

translation from OVM to VFD, thereby they give OVM a formal semantics.

(Verification criteria) The approach deals with three verification criteria:

 Valid model: to check whether a VFD is consistent, i.e., whether it permits at least one

configuration.

 Product checking: to verify that a given product is a valid configuration of the VFD.

 Dead variables: those that do not appear in any product.

(Implementation) The approach was not implemented; however, Metzger et al.

propose to use SAT solvers to automate their verification approach.

(Validation and results) The approach was not validated. No details about its

applicability or scalability are provided.

B. Roos-Frantz et al. (2008) propose a tool to verify OVMs; however the development of the

tool is still future work.

(Verification criteria) The approach deals with:

 Valid product. Check whether a given product belongs to the set of products

represented by the OVM or not.

 Void OVM. Check whether an OVM is void or not, i.e. if it represents at least one

product.

 Dead nodes. To identify nodes that do not appear in any product. Dead nodes are

caused by a wrong usage of constraint dependencies and are the responsible for void

OVMs.

(Implementation) The approach proposes to transform OVMs into feature models, then to

use the FaMa tool to verify the models. Roos-Frantz et al. also proposes other alternatives

to verify OVMs: for instance, using a formal specification language like Z or B. However,

no details are provided about the alternative selected by the authors in order to implement

their approach. Besides, the approach that proposes the aforementioned verification criteria

was not implemented.

(Validation and results) Unfortunately, no detail is provided about the implementation of

these criteria, or about its validation, or about its scalability and performance.

33

C. Lauenroth et al. (2010) present a quality assurance approach that applies model checking

(Clarke et al. 1999) at the level of the PLM itself, and not product by product (authors call

this approach: comprehensive strategy) as presented by Metzger et al. (2007).

(Verification criteria) The approach considers the variability model to ensure that the

state space of individual products is valid with respect to the variability model.

 (Implementation) Lauenroth et al. (2010) focus on the next-time-operator (EX f1)

(Clarke et al. 1999), which can be verified for single systems and can be adapted for the

verification of PLMs. The next-time-operator over a variable f1 (EX f1) evaluates to

true, if there is one path starting at the initial state on which f1 holds on the next state.

The main idea of the Lauenroth et al.’s approach is to include the variability information

specified in the variability model, as Boolean variables, in the model checking algorithms.

 (Validation and results) No detail about the implementation or evaluation of the

approach is presented. The study of the applicability of the approach is presented as future

work.

2.3. Verification of Dopler Variability Models

In Decision-oriented (Dopler) variability models (Dhungana et al. 2010), the problem space is

defined using decision models whereas the solution space is specified using asset models. A

decision model consists of a set of decisions and dependencies between them. Assets provide

an abstract view of the solution space to the degree of detail needed for subsequent product

derivation. Decisions and assets are linked with inclusion conditions defining traceability from

the solution space to the problem space.

Vierhauser et al. (2010) proposes a framework to incrementally detect inconsistencies in

DOPLER models based in the approach presented by Egyed (2006) for UML models.

(Verification criteria) Finding inconsistencies like “assets on an asset model calling a

decision that is not defined in the decision model” are the scope of this framework.

(Implementation) In this approach inconsistency criteria are specified with OCL. Each

criterion is implemented by a rule that starts by identifying the model elements to analyze.

Then, all the model elements for which an inconsistency is detected are inserted in a “rule

scope” in order to keep track of them. The rule scope consists of a relation between an

inconsistency detection rule and the collection of model elements that need to be re-analyzed

after they have been corrected. Next time the rule is executed, the check is only made over the

34

elements in the “rule scope”, and not over the complete model which avoids repeating the

same verification over and over again.

(Validation and results) The approach reduces the execution time after the first checking.

Egyed presents very efficient performance charts for his approach even in UML models with

10000 classes. Vierhauser et al. (2010) applied the approach over Dopler models with up-to

121 reusable elements. However, they also observe that this approach may not be efficient for

all kinds of consistency rules due to the limitations of OCL constraints to compute certain

verification functions (e.g., verification functions that need computation efforts or that involve

multi-context data).

2.4. Verification of Latice Structure Models

In a product line model, the links between requirements are parent-child links so that

requirements can be modelled hierarchically in a lattice (Mannion 2002). In this Latice, a

requirement can have zero to many children and zero to many parents.

(Verification criteria) In this approach, PLMs are entirely represented as logical expressions

that can be tested to verify the following aspects.

 Validity of the PLM: A valid PLM is one in which it is possible to select at least one

set of requirements that satisfy the relationships between them in the model.

 A selected combination of requirements can also be tested using this expression in

order to know if it forms a valid product.

 Richness of the PLM: this operation computes the number of valid products that can

be built using a PLM. The result of this operation can be used to determine the

flexibility level of the model. A small number may mean that there is insufficient

resilience in the system for future markets. A large number may mean that there is

unnecessary resilience and that the model should be further constrained.

(Implementation) Mannion (2002) and Mannion & Kaindl (2007) use first order logic to

represent PLMs as logic expressions with the aim of verify them. In order to do that,

Mannion & Kaindl consider each requirement of the PLM as a Boolean variable and each

dependency between requirements as a logical expression. Indeed, true is assigned to those

requirements that are selected, and false is assigned to those not selected. These selection

values are substituted into the product line logical expression. A valid product is one for

which the product line logical expression evaluates to true. To implement this operation it

35

is enough to find the first product that causes the PLM logical expression to evaluate to

true.

Mannion & Kaindl (2007) represent the graph corresponding to the PLM as a Prolog

programme, which is used to verify the validity and richness of the PLM and the validity of a

configuration.

(Validation and results) No validation is provided to test the applicability, precision,

scalability and usability of the approach, which makes it difficult to compare this approach

with other ones according to these criteria. In addition, the proposal is not generic. Indeed, it

was proposed for the lattice notation of PLMs and therefore it does not consider cross-tree

constraints, or even more complex constraints such as for example constrains over attributes.

2.5. Formalism-independent Approaches to Verify

Product Line Models

Three formalism-independent approaches have been found in the literature to verify product

line models: Lauenroth & Pohl (2007), Kästner & Apel (2008) and Bruns et al (2011).

A. Lauenroth & Pohl (2007) propose a formal definition of the properties that a PLM must

offer in order to support contradiction checks in domain engineering, a formal

definition of contradiction, and an algorithm to detect possible contradictions on a

PLM.

(Verification criteria) To know if the reusable components (S) of the PLM expressed

in a language L contradict each other, the approach defines contradiction as a function

contradiction:S→ ℘(ܵ) with the following properties:

 contradiction(S) = C if the set S contains contradicting requirements.

The resulting set C = {C1,...,Cx} contains subsets of requirements (Ci ⊆

S), where each subset Ci contains a set of contradicting requirements.

 contradiction(S) = ∅ if the set S of requirements is free of

contradictions.

(Implementation) Two assumptions are made in order to implement their approach:

each requirement that is related to a variant is considered as a variable requirement and

each requirement that is not related to a variant is considered as a common

requirement. Next, the approach considers a PLM as a set of n variants V =

{v1,...,vn}, where each vi is represented by a Boolean variable. vi evaluates to

36

true if the variant vi is selected in a configuration and vi evaluates to false

otherwise. The dependencies of the PLM are codified as a Boolean function over the

variants V.

Lauenroth & Pohl (2007) use the law of contraposition (A⇒B ⇔ ¬B⇒¬A) to find

contradictions in PLMs. The central idea is that a contradiction in a PLM does not

matter as long as it is not possible that the contradicting requirements become part of

one single product. This requires a function that calculates whether a PLM satisfies—

with the help of a SAT solver—a given set of x preselected variants.

(Validation) Lauenroth & Pohl (2007) hold that the performance of the algorithm to

find contradictions among requirements in a PLM is superior to the brute force

approach because the search for possible contradictions in the variable requirements is

more efficient than the search for contradictions in all possible product models. The

main drawback of this approach is that the set of potential contradictions must be

known before the algorithm is executed. Thus, the algorithm cannot be used to

systematically identify the contradictions in a PLM, but only to check if given

contradictory requirements can be configurated in valid products of the PLM.

(Results) To the best of our knowledge, this approach was neither implemented, nor

evaluated with real models. Even if Lauenroth & Pohl claim that complexity of their

approach is NP-complete, they do not provide any detail about its scalability or

usability in real cases, which makes it difficult to compare this approach with other

ones according to non-subjective criteria.

B. Kästner & Apel (2008) extend the Featherweight Java (FJ, cf. Igarashi et al. 2001)

calculus with annotations to prove that a software product line is well typed at the level

of source code fragments. They have shown that this extension can be modeled on top

of FJ, extending only the typing rules and auxiliary functions with implications on pairs

of annotations.

(Verification criteria) The approach starts with an informal list of criteria specified as

annotation rules, then modeled formally in the extended FJ. It provides typing rules

such as: “a class L can only extend a class that is present” (Kästner & Apel 2008) or

even rules that deal with the removal process of children from their parent element: “if

a class is removed then also all methods therein must be removed, if a method is

removed then also its parameters and term must be removed” (Kästner & Apel 2008).

37

(Implementation) The rules are automated by propagating colours from parent to child

structures (e.g., if a class is ‘green’, then all its methods are automatically ‘green’ too).

Some rules (like: “a method is only present when the enclosing class is present” and “a

constructor parameter is only present when the enclosing class is present” (Kästner &

Apel 2008)) are automated by means of a function that descends recursively through

the product line and checks all code fragments that can be annotated. For those code

fragments the annotations that evaluate to false should be removed. Thus, the remaining

code fragments are stripped off their annotations. The approach is implemented in an

extension of the CIDE tool, an annotation checker for Java.

(Validation and results) Unfortunately, no details about the evaluation or the

implementation of the approach are provided.

C. Bruns et al. (2011) present delta-oriented slicing, an approach to reduce the deductive

verification effort on product lines where individual products are Java programs and

their relations are described by deltas.

(Verification criteria) The verification approach answers the question of which proofs

are influenced by a delta module. Proofs considered in the work look like: (i) for each

adds(C; I) prove that the invariant I is fulfilled by all relevant implementations;

and (ii) for each removes(C; I) invalidate all pre-existing proofs that assume the

invariant I.

(Implementation) In their approach, Bruns et al. (2011) analyze the product line model

to determine which parts of the original product change in the new product and do not

have to verify these parts again. When a new product is derived by delta application,

the implementation and the specification of the product change. However, from the

structural information available in the used delta modules, authors are able to infer

which specifications of the new product remain valid (i.e., the proofs done for the old

products are not affected by the change) and which parts have to be (re-)proven in order

to establish the specified properties. Authors call the latter delta-oriented slice. The

technologies used to implement the approach are the Java language for programming

single products, the JML language (Leavens et al. 2006) for formal specifications and

the KeY system (Beckert et al. 2007) for deductive verification.

(Validation and results) No details about the implementation of the verification

algorithm or even about its evaluation are provided by Bruns et al. (2011).

38

2.6. Conclusions

This chapter reported the collection of a series of works related with the verification of PLMs.

A first comment is that only some of these verification approaches (Van der Storm 2004,

Zhang et al. 2004, Batory 2005, Sun et al. 2005, Benavides et al. 2005a, Benavides et al.

2005b, Benavides et al. 2006, Benavides et al. 2007, Egyed 2006, Metzger et al. 2007, Janota

& Kiniry 2007, Van der Storm 2007, Lauenroth & Pohl 2007, Mannion & Kaindl 2007,

Trinidad et al. 2008, Broek & Galvão 2009, Lauenroth et al. 2009, Lauenroth et al. 2010,

Vierhauser et al. 2010, Kim et al. 2011, Liu et al. 2011) are formally described in the papers

in which they were presented. Other approaches such in (Von der Maßen & Lichter 2004,

Hemakumar 2008, Roos-Frantz et al. 2008), were not formally described. Formally described

or not, each of these verification approaches proposes a collection of verification operations

over a particular PLM formalism. The state of the art on PLM verification of PLMs is

summarized in Table 2.1. The columns of the table correspond to the product lime modelling

languages for which verification criteria have been found in literature. Each verification

criterion is presented in a different row. Cells indentify which approach handles the

corresponding criterion for the corresponding formalism. As a consequence, generic

approaches are not fixed to a particular column and comprehensive approaches are presented

over several rows. Empty cells in the table do not mean that there is no approach to handle the

criterion for the corresponding formalism, but that was not found in our literature review. The

question whether or not this is possible is of course an open issue.

Table 2.1. Literature review of product line models verification

Language

Ver. criteria

Independe

nt of the

language

Latice

Structure

Models

Feature Models OVM Dopler

variability

language

UML and

other

languages

Absence of
contradictions
on products.

(Lauenroth
& Pohl
2007)

Validity,
consistency or
satisfiability of
the product line
model: the PLM
allows generate
at leas one
product.

 (Mannion
2002)

(Zang et al.
2004;Benavides et

al. 2005b;
Benavides et al.
2006; Van der
Storm 2007;
Trinidad et al.
2008;Hemakumar
2008; Broek &
Galvão 2009;
Mendonca et al.
2009)

(Metzger et
al. 2007;
Roos-Frantz
et al. 2008)

Consistent or
satisfiable
configuration: a

 (Mannion
2002)

(Van der Storm
2004; Batory
2005; Benavides

(Metzger et
al. 2007;
Roos-Frantz

 (Bruns et al.
2011)

39

configuration
forms a valid
product or a
collection of
them.

et al. 2005b; Van
der Storm 2007)

et al. 2008;
Lauenroth et

al. 2009;
Lauenroth et

al. 2010)
Richness or
flexibility of the
product line
model.

 (Mannion
2002)

(Benavides et al.
2006; Broek &
Galvão 2009;
Mendonca et al.
2009)

Dead artefacts. (Von der Maßen
& Lichter 2004),
(Zang et al. 2004;
Trinidad et al.
2008;Hemakumar
2008; Broek &
Galvão 2009;
Mendonca et al.
2009; Kim et al.
2011)

(Metzger et

al. 2007;
Roos- Frantz
et al. 2008)

False optional
artefacts.

 (Von der Maßen
& Lichter 2004),
(Trinidad et al.
2008),

Non-removable
artefacts.

 (Zang et al. 2004 (Schaefer et

al. 2010)
Redundant
constraint and
artefacts.

 (Von der Maßen
& Lichter 2004),
(Yan et al. 2009)

Consistency
checking:
absence of
contradictions
or non-existent
elements in
PLMs.

 (Bruns et

al. 2011)
(Egyed 2006;
Kästner &
Apel 2008,
Vierhauser et

al. 2010)

Root selectivity. (Janota & Kiniry
2007, Salinesi et

al. 2009b)

Existence of a
path from a
selected artefact
to the root.

 (Janota & Kiniry
2007)

Cardinality
satisfaction

 (Janota & Kiniry
2007)

Circular
dependencies
(between the
features of a
given
configuration).

 (Liu et al. 2011)

Conformance
checking with
the
corresponding
metamodel.

40

The literature review carried out in this chapter permits answering the questions presented

at the beginning of the chapter as follows:

 Q1: What kind of product line modelling notations have been the subjects of

verification?

As our literature review shows, the formalisms handled by verification approaches are:

Feature-based models, OVMs, Latice Structure Models, Dopler variability models and

UML-based models. However, most of the approaches existing in the literature

focused in verification of feature models, as presented in Table 2.1. Of course, it is not

impossible that other works have been presented on other formalisms. Another

observation is that, in our literature review, there is no approach to verify multi-model

product lines.

 Q2: What verification criteria on product line models have been proposed?

Answer: (1) Consistency checking among the artefacts of the PLM. (2) Validity or

satisfiability of the product line model. (3) Consistent or satisfiable configuration: A

configuration forms a valid product or a collection of them. (4) Richness or flexibility

of the product line model. (5) Identification of dead artefacts. (6) Identification of false

optional artefacts. (7) Identification of non-removable artefacts (or core artefacts). (8)

Identification of redundant constraint and artefacts. (11) Root selectivity. (12)

Existence of a path from a selected artefact to the root. (13) Group cardinality

satisfaction. (14) Find circular dependencies between the features of a given

configuration.

It is worth noting that most of these criteria are overlapped. Sometimes, different

names are used to refer to the same criterion; for instance, the criteria 6 and 7 are

complementary, the first four criteria refer to the same thing. Criterion 5 contains 11,

and 8 contains 12. Besides, conformance checking (to verify if a PLM respects the

language in which the model is specified) was never handled so far in the context of

product lines, at least to the best of our knowledge.

Another observation is that there is no comprehensive approach, i.e., an approach that

handles all the criteria (or allows to do it) in a consistent way.

 Q3: What kind of automated support has been proposed?

All the techniques we found in the literature represent PLMs in another formalism:

sometimes a conjunctive normal form formula, at other times in an if-then-else

structure (i.e., BDD), constraint satisfaction problem (CSP), OCL and in-house

41

representations. The goal of these representations is to automate verification using the

supporting tools: Prolog solver (Mannion & Kaindl 2007), BDD solver (Van der Storm

2004, 2007; Trinidad et al. 2008) SAT solver (Batory 2005; Metzger et al. 2007,

Trinidad et al. 2008), Miranda (Broek & Galvão 2009), model checkers such as SMV

(Zhang et al. 2004), higher-order logic solvers (Janota & Kiniry 2007), CSP solvers

(Benavides et al. 2005a, 2005b, 2006, 2007, Tinidad et al. 2008) and OCL interpreters

(Egyed 2006, Vierhauser et al. 2010).

 Q4: What kind of validation was made and what have been the results?

Most of the approaches we found in literature were not evaluated. Other approaches

like (Kim et al. 2011, Benavides et al. 2005a, 2005b, 2006, 2007, Trinidad et al. 2008,

Lauenroth et al. 2009, Sun et al. 2005) have been evaluated against few and small

models with promising results. Authors like Yan et al. (2009) have evaluated the

scalability of their approach, by applying them against a large number of large models

generated at random. Egyed (2006) and (Vierhauser et al. 2010) validate the

correctness, scalability and usability of their approaches on real, large models. Our

literature review reveals that approaches’ validation is commonly handled in three

ways (i) by calculating theoretical complexity, (ii) by application to small life-like

models, (iii) by application to large collection of randomles generated models of

various sizes, and (iv) by application to large real life models.

 Q5: What are the gaps and challenges to be faced in the future?

Our analysis is as follows:

- Two interesting questions arise from the answer corresponding to Q1: can the

verification approaches originally created for FMs also be used on other notations?

And if it is possible, then, how to do that? To the best of our knowledge, there is

not yet an answer to these questions.

- This brings us to the question of generality: how to verify a PLM independently of

the language in which the model at hand is represented and for any verification

criteria? There is virtually generic approach to verify product lines models, and

generality is not actually demonstrated in a systematic way.

- A complementary question if that of comprehensiveness. Even if some approaches

try to deal with this by implementing several verification criteria, there is not yet an

approach covering all the verification criteria sensed from literature and from

42

industrial needs. This claim is supported by the last literature review on analysis

and verification of feature models presented by Benavides et al. (2010).

- How to verify PLMs in a scalable way? The state of the art presented in this

chapter shows that none of the techniques that we found in literature scales up to

large models (e.g., 10000 artefacts in less than one second). This last point is

important from an industrial point of view. A verification approach that does not

allow the verification of large models in acceptable times is useless for industrial

practitioners.

43

Chapter 3

Overview

This chapter provides the overview of the verification approach proposed in this thesis. The

chapter does not focus on verification itself, but on the process that we propose to make

product line models verifiable. Overall, the proposed approach is to transform PLMs, usually

represented graphically, into executable code in order to verify them. In the case of multi-

model product lines, the models in which the product line is represented should be integrated

in a rich-enough formalism that allows representing the input models and the relationships

among them in a homogeneous way. In addition, this pivot language should allow the

automatic verification of the product line model(s).

The transformation stage is a preparation step that must be applied to the input PLM in

order to make it verifiable by means of automatic tools. The automatic verification of PLMs

entails finding several undesirable properties, such as redundant or contradictory information,

or cases where the model does not respect the language in which it is specified. Automating

PLM verification has been the subject of intensive research in recent years. Each verification

approach usually focuses on one or two verification operations applied over a particular

product line modelling language. The focus has mostly been on properties that strictly map to

Boolean expressions. This thesis addresses these limitations by relying on Constraint Logic

Programming (CLP) and Constraint Programming (CP) over finite domains as a pivot

language to represent PLMs. Once PLMs are represented as constraint logic programs and

constraint programs, they can be verified in a generic way against a collection of verification

criteria. Generality is obtained by the transformation rules from different formalisms into CP

over finite domains. Comprehensiveness is obtained by exploiting a typology of verification

criteria. That is further explained and detailed in Chapter 4. This typology of verification

criteria takes into account the fact that a PLM, independently of the language used to express

it, must respect (i) certain properties associated with the domain of product lines; and (ii)

certain properties are associated with the fact that each PLM respects the syntax rules of the

language in which it is expressed. This typology has several advantages. First, from a

pragmatic point of view, it can be used to select the criteria against which one wants to verify

44

a PLM, e.g., according to the impact that these criteria have or the expected level of quality of

a particular PLM. Indeed not all the verification criteria have the same impact on the quality

level of the PLM. For instance, having a product line model that does not allow to configure

any product is much more critical than having a PLM with a redundant dependency. The

aforementioned PLM transformation and verification approach is graphically represented in

Figure 3.1 for the case of a stand-alone PLM like the feature models.

Feature Model

Verification

Constraint (Logic) Program

Transformation

Figure 3.1. Overview of the verification process of product line models: the case of FMs.

However, the product line can be represented by means of several models. Thus is the case

of Dopler models and product lines represented with multiple feature models. When the

product line is represented by means of different models, their semantics must be transformed

into CP as a previous stage to integrate and then verify them against the two categories of

verification criteria presented in this thesis. This process is graphically presented in Figure 3.2

for the case of Dopler models.

Decision Model Asset Model

Verification

Constraint (Logic) Program

TransformationTransformation

In
c

lu
si

o
n

 c
o

n
d

it
io

n

Figure 3.2. Verification scenario for multi-model product lines: the case of Dopler
models.

45

It is worth noting that certain multi-model formalisms consider in the models themselves

the integration mechanisms and therefore no new integration strategies are necessary. For

instance, an integration step is not necessary for the case of Dopler models. That is due to the

fact that the integration constraints are already considered in the Dopler’s asset model. On the

contrary, if the modelling formalisms do not consider any integration mechanism in the

formalisms themselves, the integration step is necessary. That is the case of PLMs that are

represented by means of several FMs, as in the running example presented in the next section,

for instance. The verification process of multiple FMs is presented in Figure 3.3.

Feature Model Feature Model

Constraint (Logic) Program

TransformationTransformation

Verification

Integration

Constraint (Logic) Program

Constraint (Logic) Program

Figure 3.3. Verification scenario for multi-model product lines: the case of FMs.

This chapter is organized as follows. Section 3.1 presents the running example that will be

used in the rest of the thesis to illustrate the proposed approach. The example refers to the

UNIX product line presented in (Mazo et al. 2011c). This product line is specified with two

FMs using the feature notation presented in Section 3.1.1, and a Dopler model (Dhungana et

al. 2010) presented in Section 3.1.2, each one representing a particular view of the product

line. Next, the chapter presents the background information necessary to read this thesis. This

background includes: (i) the notions of FMs; (ii) the notion of Dopler models; (iii) the

transformation process of FMs and Dopler models into constraint programs (cf. Section 3.2)

and constraint logic programs (cf. Section 3.3); and (iv) the integration process of FMs and

Dopler models (cf. Section 3.4). Section 3.5 presents a discussion about the issues of

transformation and integration of product line models, which are fundamental aspects of our

approach to handle generality, comprehensibility, ability to deal with multiple models,

automation and scalability. Finally, Section 3.6 concludes the chapter.

46

3.1. Running Example

The example taken in this thesis is the one of the UNIX operating system. UNIX was first

developed in the 1960s, and has been under constant development ever since. As other

operating systems, UNIX is a suite of programs that makes computers work. In particular,

UNIX is a stable, multi-user and multi-tasking system for many different types of computing

devices such as servers, desktops, laptops, down to embedded calculators, routers, or even

mobile phones. There are many different versions of UNIX, although they share common

similarities. The most popular varieties of UNIX are Sun Solaris, Berkeley (BSD),

GNU/Linux, and MacOS X.

The UNIX operating system is made up of three parts: the kernel, the shell and the

programs; and two constituent elements: files and processes. These three parts consist of a

collection of files and processes allowing interaction among the parts. The UNIX kernel is the

hub of the operating system: it allocates time and memory to programs and handles the file-

store and communications in response to system calls. The shell acts as an interface between

the user and the kernel, interprets the commands (programs) typed in by users, and arranges

for them to be carried out. As an illustration of the way the shell, the programs and the kernel

work together, suppose a user types rm myfile (which has the effect of removing the file

myfile). The shell searches the file-store for the file containing the program rm, and then

requests the kernel, through system calls, to execute the program rm on myfile. The process rm

removes myfile using a specific system-call. When the process rm myfile has finished running,

the shell gives the user the possibility to execute further commands.

As for any product line, our example emphasizes the common and variable elements of the

UNIX family and the constraints among these elements. This example is built from our

experience with UNIX operating systems and it does not pretend to be exhaustive, neither on

the constituent elements nor on the constraints among these elements (the purpose is to have a

realistic, easy to understand example to illustrate our approach). The example is presented

with two models. The first model deals with the technical aspects of UNIX; for instance, the

technical specification of the screen resolution according to the available types of interface.

The second view is the one of final users; for instance, it looks at which utility programs or

what kinds of interfaces are available for a particular user.

We have chosen a series of 12 important characteristics of the UNIX product line and

sorted them out in these two views.

47

Technical view:

Characteristic 1. UNIX has one KERNEL.

Characteristic 2. Some of the mandatory functions of the KERNEL are: ALLOCATING THE MACHINE'S MEMORY to each PROCESS SCHEDULING the PROCESSES ACCOMPLISHING THE TRANSFER OF DATA from one part of the machine to

another

Characteristic 3. UNIX can have several PROCESSES (or none) for each user. The

collection of PROCESSES varies even when the UNIX product is full-configured. For the
sake of presentation, this thesis will consider only five processes.

Characteristic 4. UNIX offers a logical view of the FILE SYSTEM. A FILE SYSTEM is

a logical method for organising and storing large amounts of information in a way that
makes its management easy.

Characteristic 5. The KERNEL is composed of static or dynamic software modules. If
the kernel was compiled for a specific hardware platform and cannot be changed, it is
called a static Kernel. If the Kernel has the ability to dynamically load modules so that it
can 'adapt' to a platform, it is called a dynamic Kernel. For instance, the modules
SUPPORT_USB, CDROM_ATECH, and PCMCIA_SUPPORT cannot be charged, can be
charged in a static way or can be charged in a dynamic way.

Characteristic 6. The SHELL is a command interpreter; it takes each command and
passes it to the KERNEL to be acted upon.

Characteristic 7. The GRAPHICAL interface is characterized by a WIDTH
RESOLUTION and a HEIGHT RESOLUTION that can have the following couples of
values [800,600], [1024,768] and [1366,768].

User view:

Characteristic 8. UNIX can be installed or not and the installation can be from a

CDROM, a USB device or from the NET.

Characteristic 9. UNIX provides several hundred UTILITY PROGRAMS for each user.
The collection of UTILITY PROGRAMS varies even when the UNIX product is full-
configured.

Characteristic 10. The SHELL is a kind of UTILITY PROGRAM. Different USERS may
use different SHELLS. Initially, each USER has a default shell, which can be overridden
or changed by users. Some common SHELLS are: Bourne shell (SH) TC Shell (TCSH) Bourne Again Shell (BASH)
For the sake of simplicity this thesis will consider only two users in this running example:
ROOT_USER and GUEST_USER.

Characteristic 11. Some functions accomplished by the UTILITY PROGRAMS are: EDITING (mandatory and requires USER INTERFACE)

48

 FILE MAINTENANCE (mandatory and requires USER INTERFACE) PROGRAMMING SUPPORT (optional and requires USER INTERFACE) ONLINE INFO (optional and requires USER INTERFACE)

Characteristic 12. The USER INTERFACE can be GRAPHICAL and/or TEXTUAL.

3.1.1 Representation of the Running Example with a Feature Notation

A FM defines the valid combinations of features in a PL, and is depicted as a graph-like

structure in which nodes represent features, and edges the relationships between them (Kang et

al. 2002). We use extended feature models, i.e., feature models with individual cardinality (cf.

Process in Figure 3.5), group cardinalities for bundles of features (cf. Cdrom, Usb and

Net in Figure 3.6) and attributes (cf. WithResolution in Figure 3.5). We use the

semantics of (Schobbens et al. 2007) combined with that of cardinality-based feature models

as proposed by (Michel et al. 2011). The resulting metamodel used in this thesis is depicted in

Figure 3.4 using the UML notation. According to this metamodel, a feature model is

composed of at least two features, one of them must be the root feature, and one or more

dependencies that relates two features in a given order (i.e., from to indicate the beginning of

the dependency and to to indicate the end of the dependency).

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*

1

0..*

1

2..*
1..*

2..*

0..1

{complete, disjoint}

Name : {unique}

featureCardinality

Min

Max

0..1
1

from

dependency
0..*to

Figure 3.4. Cardinality and attribute-based feature model metamodel.

Two instances of this metamodel are presented in Figures 3.5 and 3.6, which correspond to

the models of our UNIX running example presented above. The elements of the FM

metamodel of Figure 3.4 are presented and exemplified by means of the following definitions:

49

Definition 3.1: Feature

A feature is a prominent or distinctive user-visible aspect, quality, or characteristic of a

software system (Kang et al. 1990) and has a name (Name). For the sake of simplicity features

are usually identified in FMs, e.g. their name of the feature; for instance Kernel in Figure

3.5. Every FM must have one root, which is called root feature and identifies the product line;

for example UNIX in Figures 3.5 and 3.6. Feature names are unique in each model. However,

two models can have two different features with the same name.

Definition 3.2: Feature cardinality

Usually, a feature cardinality is represented as an interval [Min..Max], with Min as

lower bound and Max as upper bound limiting the number of instances of a particular feature

that can be part of a product. Each instance is called a clone. For instance in Figure 3.5, feature

Process is constrained by a [0..*] cardinality where * is an undefined Integer number

greater or equal than Min.

Definition 3.3: Attribute in feature models

Attributes in feature models are specific measurable characteristics of a feature. Although

there is no consensus on a notation to define attributes, most proposals agree that an attribute

is a variable with a name (Name), a domain (Domain), and a value (consistent with the

domain) at a given configuration time. For instance in Figure 3.5, WidthResolution and

HeightResolution are two attributes with a domain determined by the constraint at the

bottom of the model.

Definition 3.4: Mandatory dependency in feature models

Given two features F1 and F2, F1 father of F2, a mandatory relationship from F1 to F2

means that if the F1 is selected, then F2 must be selected too, and vice versa. For instance in

Figure 3.5, features UNIX and Kernel are related by a mandatory relationship.

Definition 3.5: Optional dependency in feature models

Given two features F1 and F2, F1 father of F2, an optional relationship from F1 to F2

means that if F1 is selected, then F2 can be selected or not. However, if F2 is selected, then

F1 must also be selected. For instance in Figure 3.5, features UNIX and UserInterface

are related by an optional relationship.

Definition 3.6: Requires dependency in feature models

50

 Given two features F1 and F2, F1 requires F2 means that if F1 is selected in product,

then F2 has to be selected too. Additionally, it means that F2 can be selected even when F1 is

not. For instance, Shell requires ExecutingInstructions (cf. Figure 3.5) and

Editing requires UserInterface (cf. Figure 3.6). The difference between a requires and

an optional dependency is that in the requirement, if F2 is selected, F1 must be selected too,

which is not the case in requirements.

Definition 3.7: Exclusion dependency in feature models

Given two features F1 and F2, F1 excludes F2 means that if F1 is selected then F2 cannot

be selected in the same product. This relationship is bi-directional: if F2 is selected, then F1

cannot be selected in the same product.

Definition 3.8: Group cardinality in feature models

Usually, a group cardinality is an interval denoted <n..m>, with n as lower bound and m

as upper bound and is associated with a collection of optional dependencies that originate from

the same features. Group cardinalities help limiting the number of child features that can be

part of a product when their common parent feature is selected. For instance in Figure 3.6,

Cdrom, Usb and Net are related in a <1..1> group cardinality, which means that only one

of these options can be selected in a UNIX configuration.

Figure 3.5 depicts the model of some technical aspects of a UNIX operating system family.

This model represents a UNIX product line in which each derived operating system must have

one kernel, one or several shell applications, one file system, a certain number of processes

and, optionally, one graphical user interface with a width and height resolution respecting the

constraint at the bottom of the model. The kernel must ensure certain operations related with

the machine’s processor scheduling, the interpretation and execution of instructions coming

from the shell, accomplishing the transfer or data and allocating the machine’s memory. The

objective of this model is not to be exhaustive in the reusable elements of an UNIX system,

but to provide a real and easy running example to develop the concepts of this thesis.

51

Kernel

UserInterface

Graphical

Process

[0..*]

UNIX

Graphical→ relation([WidthResolution, HeightResolution], {[800, 600], [1024,768], [1366,768]})

AllocatingTheMachine'sMemory

AccomplishingTheTransferOfData

Scheduling

InterpretingInstructions

ExecutingInstructions

Shell

WidthResolution

HeightResolutionCdrom_atech

Support_usb

FileSystem

Pcmacia_support

<0..3>

<m..n>

Mandatory Optional Requires Excludes

[m..n]

Feature cardinality Group cardinality

Figure 3.5. Technical model of the UNIX operating system family of our running example

Figure 3.6 provides the feature model that specifies the characteristics of our running

example that are related with the final-user view of a UNIX product line.

Cdrom

UserInterface

Graphical

Editing

UNIX

Shell

SH

Usb Net UtilityProgram

<1..1>

BASH
TCSH

File

Maintenance Programming

Support

OnlineInfo

<1..3>

<1..2>

Figure 3.6. User model of the UNIX operating system family of our running example

52

As shown in Figure 3.6, a user has the possibility to install a UNIX system from one of the

following supports: a CD ROM, a USB device or a network. In addition, users have the

possibility to install or not utility programs for file maintenance, editing, online access, and

user interface. The user interface may be graphical or command-line (Shell) based; there are

three options for the command-line interface: SH, TCSH and BASH. The utility programs for

the user interface, online information and programming support are specified with optional

features.

3.1.2 Representation of the Running Example with the Dopler Language

The Decision-oriented (Dopler) variability modeling language focuses on product derivation

and aims at supporting users configuring products. In Dopler variability models (Dhungana et

al. 2010a; 2010b), the product line’s problem space is defined using decision models whereas

the solution space is specified using asset models. Decisions can be of four types: Boolean,

Integer, String or Enumeration. Decisions (from the decision model) and assets (from the asset

model) are related by means of inclusion conditions. Decisions are related by means of

hierarchical and logical dependencies, and assets are related by means of functional and

structural dependencies. The most important concepts in the Dopler modeling language are

presented in (Dhungana et al. 2010b) and reproduced in Figure 3.7.

decision

integer

decision

boolean

decision

enumeration

decision

string

decision

Name

Question

Description

[domain-specific-

attributes]

asset

Name

Description

Inclusion

condition

Hierarchical

and logical

dependencies

Functional

and structural

dependencies1 1

*

*

Figure 3.7. The core meta-model of Dopler modeling language, taken from (Dhungana et al.
2010b).

An example of Dopler model is presented in Figure 3.8. This figure depicts the installation

of a UNIX operating system (decision model) and the associated packages (asset model) that

can be selected if the UNIX system is installed with a graphical interface. The decision model

53

is composed of four decisions. The first decision proposes to choose the three ways to install a

UNIX operating system (from a CD ROM, from a USB or from the Net). This decision

impacts the second decision, in which the user must select the utility programs to be installed

in the particular UNIX system. In that regard, five utility programs are proposed: editing tool,

file maintenance tool, programming tool, online information tool and shell. If the choice

contains the utility program for online information, the user must decide what kind of

graphical resolution will be configured and several choices are proposed: 800x600,

1024x768, 1366x768. The choice of width and height resolution has several decision

effects. For instance, Figure 3.8 indicates that if(GraphicalResolution==800x600)

then Width=800. To finish, the allocation of values for the width and height resolution

must respect a certain number of conditions, such as: Width ≥ 800 and Width ≤ 1366.

The asset model is composed of seven graphical user interfaces and libraries that can be used

in a UNIX graphical interface. The Tab Window Manager asset is available for all UNIX

implementations with a graphical interface and requires the asset Motif; the other assets are

optional. The IRIS 4d window manager is based on Mwm and Motif and therefore

requires all of them in order to work in the same way as the KDE asset requires the Qt

widget toolkit to work.

Decision model Asset model

Figure 3.8. Example of Dopler Model: Installation of a UNIX System

Tab Window Manager

(name: Twm; inclusion condition: inclusion(Utility program,

“OnlineInfo”))

Requires Contributes_to

Motif toolkit

(name: Motif)

Motif Window Manager

(name: Mwm)

IRIS 4d window manager

(name: 4dwm)

Qt widget toolkit

(name: Qt)

K Desktop Environment

(name: KDE)

GNU Network Object Model Environment

(name: GNOME)

How to install?

(name: Means of installation; expected val 1:1:

{“Cdrom”, “Usb”, “Net”})

Which utility programs?

(name: Utility program; expected val 1:5: {“Editing”,

“FileMaintenance”, “ProgrammingSupport”, “OnlineInfo”, “Shell”})

Default resolution?

(name: GraphicalResolution;

expected val 1:1: {“800x600”,

“1024x768”, “1366x768”})

isTaken(Means of installation)

Width?

(name: Width;

expected val: number)

Validity Cond. Visibility Cond. Decision Effect

if(GraphicalResolution==”800x600”)then Width=800

Width>=800 &&

Width<=1366

contains(Utility program,

“OnlineInfo”)

54

In Dopler, a decision model consists of a set of decisions of utility programs (e.g., Which

utility programs? with attributes, e.g. name and expected values) and dependencies

among them (the Visibility condition isTaken(Means of installation) forces to

make the decision Utility program if the decision Means of installation is

taken). The Assets model permit the definition of an abstract view of the solution space, to the

degree of details needed for subsequent product derivation. Decisions and assets are linked

with inclusion conditions defining traceability from the solution space to the problem space

(e.g., the asset Tab Window Manager must be included in the solution space if the option

OnlineInfo of the decision Utility program is selected in a particular configuration).

In our example, these inclusion conditions are specified as constraints that are added to the

collection of constraints representing the decision and asset models. Adding these constraints

integrates, both viewpoints of the PL, and the model is ready to be verified against the

typology of verification criteria presented in this chapter.

3.2. Transforming the Semantics of PLMs into Constraint

Programs

Constraint Programming (CP) emerged in the 1990’s as a successful paradigm to tackle

complex combinatorial problems in a declarative manner (Van Hentenryck 1989). It is at the

crossroads of combinatorial optimization (operations research), constraint satisfaction

problems (artificial intelligence), declarative programming language (logic and concurrent

programming) and satisfiability (SAT) problems (Boolean constraint solvers). CP extends

programming languages with the ability to deal with logical variables of different domains

(e.g. Integers, Reals, Booleans, ...) and specific declarative relations between these variables

called constraints (e.g. arithmetic constraints, symbolic constraints, …). A constraint is a

logical relationship among several variables, each one taking a value in a given domain of

possible values. A constraint thus restricts the possible values that variables can take. A

Constraint Satisfaction Problem (CSP) is defined as a triple (X, D, C), where X is a set of

variables, D is a set of domains, i.e. finite sets of possible values (one domain for each

variable), and C a set of constraints restricting the values that the variables can

simultaneously take. In modern CP languages (Diaz & Codognet 2001, Schulte & Stuckey

2008), many different types of constraints exist and are used to represent real-life problems:

arithmetic constraints (e.g. X + Y < Z), symbolic constraints e.g.

55

 atmost(N, [X1,X2,X3],V), meaning that at most N variables among [X1,

X2, X3] can take the value V),

 global constraints (e.g. all_different(X1, X2, ··· , Xn), meaning that

all variables should have different values),

 reified constraints allowing the user to reason about the truth-value of a constraint.

Solving constraints consists of reducing the variable domains by propagation techniques

(Bessiere 2006) and then finding values for each constrained variable in a labelling phase.

This is achieved by iteratively grounding variables (fixing a value for a variable) and

propagating its effect onto other variable domains (by applying again the same propagation-

based techniques).

This thesis uses the notion of CP in order to represent the semantics of product line models

with the purpose of verifying them by using an existing constraint solver or integrate different

models into a single program. The transformation of feature models and Dopler models into

constraint programs are presented in the following sections. Both cases are illustrated with the

corresponding models of our running example.

3.2.1 Transforming Feature Models into Constraint Programs

It has been shown that Feature-Oriented Domain Analysis (FODA, cf. Kang et al. 1990)

models can be represented as Boolean constraint programs through a series of Boolean

variables, where each variable corresponds to a feature (Benavides et al. 2005), (White et al.

2008). Literature review shows that most existing approaches transform existing PLMs into

Boolean constraint program. We believe that this approach hinders the full exploitation of the

versatility of CP; for instance, the possibility to specify more complex requirements than

select/de-select a feature, or to make more complex analyses and verification operations

(Salinesi et al. 2010a, 2010b, 2011, Mazo et al. 2011a). We recall that this thesis uses the

semantics of cardinality-based FMs proposed by Michel et al. (2011).

To fill that gap, our thesis is that the following rules can be used to transform FMs into

constraint programs over finite domains:

 Each feature is represented as a Boolean (0,1) CP variable.

 Each attribute is represented as a CP variable, the domain of the attribute belongs to the

domain of the CP variable.

 Each feature cardinality [m..n] determines (i) a collection of n variables associated

to the feature of which this cardinality belongs; and (ii) a constraint restricting the

56

minimum (m) and the maximum (n) number of variables that can belong to a product in

a certain moment.

 The domain of a variable is a finite collection of Integer values. When a variable takes

the value of zero, it means that the variable is not selected. When a variable takes

another value of its domain (different to zero), the variable is considered as selected.

 Every relationship is implemented as a constraint.

And the components of the FMs can be transformed by means of the following

transformation rules:

 Feature cardinality: let P be a feature with a feature cardinality [m, n], then we

create a CP variable P, a collection of n CP variables, one for each possible clone of P

and an association between P and each of its clones. It is: P ∈ {0,1} ∧ ∀i ∈ [1..݊] ∙ P୧ ∈
{0,1} ⋀(P୧ ⇒ P) . Which comes down to: m ∗ P ≤ ∑ P୧ୀଵ ≤ n ∗ P

 Mandatory: let P and C be two features, where P is the father of C in a mandatory

dependency. This constraint can be represented in a generic way (independently of the

domain of P and C) as follows:

P ⇔ C which, for P and C Boolean features, is equivalent to C = P
 Optional: let P and C be two features, where P is the father of C in an optional

dependency. This constraint can be represented in a generic way (independently of the

domain of P and C) as follows:

C ⇒ P which, for P and C Boolean features, is equivalent to C ≤ P
 Requires: let P and C be two features, where P requires C. If P has a feature cardinality

[m..n] with ∀୧ୀଵ୬ P୧ ∈ {0,1} clones of P, the constraint is: ⋀ୀଵ P୧ ⇒ C. If P does not

have feature cardinality, the equivalent constraint is: P ⇒ C, which means that if P is

selected, C has to be selected as well, but not vice versa.

 Exclusion: let P and C be two features, where P excludes C. If P has a feature

cardinality [m..n] with ∀୧ୀଵ୬ P୧ ∈ {0,1} clones of P, the constraint is: ⋀୧ୀଵ୬ P୧ ∗ C= 0.

If P does not have feature cardinality, the equivalent constraint is: P * C = 0. If P

and C are Boolean features, the equivalent constraint is: ⋀୧ୀଵ୬ P୧ + C ≤ 1. This means

that both P and C cannot be selected simultaneously.

 Group cardinality: let C1, C2,...,Ck be features with a non-negative integer

domain, with the same parent P, and <m, n> the group cardinality boundaries. The

equivalent constraint implies that each feature C1, C2,...,Ck set to one a Boolean

57

variable BoolC୧ ∈ {0,1} each time that the feature takes a value different to 0 (i.e. the

feature is selected) : ⋀୧ୀଵ୩ C୧ ⇔ BoolC୧ ∧ m ∗ P ≤ ∑ BoolC୧ ≤ n ∗ P୩୧ୀଵ .

When P, C1, C2,...,Ck are features with domain {0,1}, the CP representation of

the group cardinality dependency can be optimized as follows: m ∗ P ≤ ∑ C୧ ≤ n ∗ P୩୧ୀଵ

 It means that at least m and at most n children features must be selected. Note that the

dependencies of C1, C2,...,Ck with their parent are constrained by means of the

optional dependency, or by the feature cardinality constraint in cases where a child

feature has an individual cardinality.

The following CP corresponds to the first FM of our running example (cf. Figure 3.5). This

CP was obtained by means of the aforementioned transformation rules applied over the model

of Figure 3.5. A complete transformation of our running example of extended feature models

into CP is presented in Mazo et al. (2011e).

[UNIX, Kernel, Scheduling, ExecutingInstructions,
InterpretingInstructions, AccomplishingTheTransferOfData,
AllocatingTheMachinesMemory, Shell, FileSystem,
UserInterface, Graphical, Process] ∈ {0, 1} ⋀
[WidthResolution] ∈ {0, 800, 1024, 1366} ⋀
[HeightResolution] ∈ {0, 600, 768} ⋀
[Support_usb, Cdrom_atech, Pcmacia_support] ∈ {0,1,2} ⋀
[BoolSupport_usb, BoolCdrom_atech, BoolPcmacia_support] ∈
{0, 1} ⋀

UNIX = 1 ⋀
UNIX = Kernel ⋀

Kernel = AllocatingTheMachinesMemory ⋀
AllocatingTheMachinesMemory Process ⋀

Kernel = Scheduling ⋀
Scheduling Process ⋀
Kernel = AccomplishingTheTransferOfData ⋀
AccomplishingTheTransferOfData Process ⋀

Shell InterpretingInstructions ⋀
Kernel = InterpretingInstructions ⋀
Shell ExecutingInstructions ⋀
Kernel = ExecutingInstructions ⋀

Support_usb BoolSupport_usb ⋀
Cdrom_atech BoolCdrom_atech ⋀
Pcmacia_support BoolPcmacia_support ⋀
0 ≤ BoolSupport_usb + BoolCdrom_atech +
BoolPcmacia_support ≤ 3*Kernel ⋀

UNIX = Shell ⋀
UNIX = FileSystem ⋀
UNIX ≥ UserInterface ⋀

58

UserInterface = Graphical ⋀
Graphical=1 (WidthResolution=W1 ⋀ HeightResolution=H1)⋀
Graphical = 0 (WidthResolution=0 ⋀ HeightResolution=0)⋀
fd_relation([[800,600], [1024,768], [1366,768]], [W1,H1])⋀

UNIX ≥ Process ⋀
R1 = Process1 + Process2 + Process3 + Process4 + Process5⋀
Process ≤ R1 ≤ Process*5

The second FM of the running example, cf. Figure 3.6, was transformed into the following

CP by means of the aforementioned transformation rules applied over the model of Figure 3.6.

[UNIX, Cdrom, Usb, Net, UtilityProgram, FileMaintenance,
Editing, OnlineInfo, ProgrammingSupport, UserInterface,
Shell, SH, TCSH, BASH] ∈ {0, 1} ⋀

UNIX = 1 ⋀
UNIX = Cdrom + Usb + Net ⋀
UNIX ≥ UtilityProgram ⋀
UtilityProgram = FileMaintenance ⋀
FileMaintenance UserInterface ⋀
UtilityProgram = Editing ⋀
Editing UserInterface ⋀
UtilityProgram ≥ UserInterface ⋀
UtilityProgram ≥ OnlineInfo ⋀
OnlineInfo UserInterface ⋀
UtilityProgram ≥ ProgrammingSupport ⋀
ProgrammingSupport UserInterface ⋀
UserInterface ≤ Graphical + Shell ≤ UserInterface*2 ⋀
R2 = SH + TCSH + BASH ⋀
Shell ≤ R2 ≤ Shell*3

3.2.2 Transforming Dopler Models into Constraint Programs

To represent Dopler models as constraint programs, we first need to identify the Dopler model

elements defining the variability of a product line. For instance, attributes (such as the

description attribute of an asset or a decision) do not affect variability and can thus be ignored

in the constraint representation. The representation of Dopler models as constraint programs

hence has the following properties (Mazo et al. 2011a):

 Each decision is represented as a CP variable

 Each asset is represented as a CP variable.

The domain and semantics of variables that represent decisions is as follows:

 Let D be a decision with a visibility condition. If the visibility condition indicates that

the decision is not visible, the corresponding variable is assigned with zero (0). If the

visibility condition is a formula, the variable representing the decision is assigned with

that particular formula. If the visibility condition indicates that the decision is always

59

visible, the variable representing the decision is affected with one (1). If the visibility

condition of the decision D is not defined, its domain is {0,1}.

 For Number and String decisions the validity condition becomes the domain of

variables representing these decisions. The domains of all variables are finite and must

be composed of Integer values.

 The domain of Boolean and Enumeration decisions is mapped to a {0,1} domain. Zero

indicates that nothing is selected and 1 indicates the selection of the associated variable.

 The domain of assets is mapped to a {0, 1} domain. If the variable representing an asset

takes the value 0 in a configuration process it means that the asset is not included. If it

takes the value 1, the asset will be included in a derived product.

 Asset dependencies are described as constraints.

 Decisions, assets, and dependencies among them can be mapped into CPs by using the

following rules.

o Decision type and validity condition: Let D be a decision, type be its type and valc

its validity condition. If D.type = Boolean or Enumeration then the equivalent

constraint is D ∈ {0, 1}. If D.type = Number or String then the equivalent constraint

is D ∈ valc. Note that the validity condition of String decisions must be previously

represented as Integer values. For example, a String decision with validity condition

valc = {Sunday, Monday, Tuesday} can be represented as valc={1, 2, 3}, where 1

means Sunday, etc. If D.type = Enumeration, let <m, n> be its cardinality and

DOpt1, DOpt2, ..., DOpti, a set of i decision options grouped in cardinality <m, n>.

Then the corresponding constraint is: DOpt1 ∈ {0, 1} ⋀ DOpt2 ∈ {0, 1}⋀, ..., DOpti ∈ {0, 1} ⋀ D ⇔ m ≤ DOpt1 + DOpt2 + ...+ DOpti ≤ n. Which is equivalent to m*D ≤

 DOpti ≤ n*D

o Visibility condition: Let D be a decision and visc its visibility condition. If visc =

false then D = 0. If visc = true then D =1. If visc is a different expression, then the

corresponding constraint is: D ⇒ visc. Note that a visibility condition (i.e., visc) can

be true, false or depending on one or more decisions and their values (e.g.,

scope==“assemble yourself” or isTaken(scope)).

o Decision Effects: Let D be a decision and df its decision effect. The corresponding

constraint is: D ⇒ df.

o Asset Inclusion Conditions: Let A be an asset and ic its inclusion condition. The

corresponding constraint is: A ⇒ ic.

60

o Asset Dependencies: Let A be an asset, ad its dependency and type its type. If type

is “requires”, the corresponding constraint is: A ⇒ ad. If type is “excludes”, the

corresponding constraint is: A * ad = 0. This means that if A is selected (equal to 1),

ad must not be selected (must be equal to 0) and vice-versa. Currently, we do not

take into account other types of asset dependencies (like parent or child).

The Dopler model of the running example, cf. Figure 3.8, is formed into the following CP

by means of the aforementioned transformation rules.

Decision Model:

[MeansOfInstallation, Cdrom, Usb, Net, UtilityProgram,
FileMaintenance, Editing, OnlineInfo, ProgrammingSupport,
Shell, GraphicalResolution] ∈ {0, 1} ⋀
[Width] ∈ {0, 800, 1024, 1366} ⋀
[Height] ∈ {0, 600, 768} ⋀

MeansOfInstallation = Cdrom + Usb + Net ⋀
MeansOfInstallation UtilityProgram ⋀

R1 = Editing + FileMaintenance + ProgrammingSupport +
OnlineInfo + Shell ⋀
UtilityProgram ≤ R1 ≤ UtilityProgram*5 ⋀

OnlineInfo GraphicalResolution ⋀
GraphicalResolution = 1 (Width=W1 ⋀ Height=H1) ⋀
GraphicalResolution = 0 (Width=0 ⋀ Height=0) ⋀
fd_relation([[800,600], [1024,768], [1366,768]], [W1,H1])⋀

Asset Model:

[OnlineInfo, ATwm, A4dwm, AMwm, AMotif, AKDE, AQt, AGNOME] ∈
{0, 1} ⋀

OnlineInfo Twm ⋀
A4dwm ATwm ⋀
A4dwm AMotif ⋀
A4dwm AMwm ⋀
AMwm AMotif ⋀
AKDE ATwm ⋀
AKDE AQt ⋀
AGNOME ATwm

3.3. Implementing the Structure of PLMs into Constraint

Logic Programs by Transformation

Constraint Logic Programming (CLP, cf. Apt & Wallace 2006) represents a successful attempt

to merge the best features of logic programming and constraint programming. On the one

hand, logic programming is based on the idea that (a subset of) first order logic can be used

61

for computing. Logic programming is concerned with the correct statement of a problem, by

this reason the program should state what is true about the problem, not how to solve it

procedurally. On the other hand, constraint programming is a programming paradigm wherein

relations between variables are stated in the form of constraints. Constraint programming

differs from the imperative programming languages in that it does not specify a step or

sequence of steps to execute, but rather the properties of a solution to be found.

These two concepts allow the development of the CLP paradigm, where constraints are

embedded in the logic programming paradigm. The main goal is to maintain a declarative

programming paradigm while increasing expressivity and efficiency via the use of specific

constraint sorts and algorithms. In other words, a CLP clause is just like a logic programming

clause, except that its body may also contain constraints of the considered sort. For example, if

one can use linear inequations over Reals, a CLP clause could be:

p(X,Y) :-
 X < Y+1,
 q(X),
 r(X,Y,Z).

Logically speaking, this clause states that p(X,Y) is true if q(X) and r(X,Y,Z) are

true, and if the value of X is smaller than that of Y + 1.

Several notations exist to represent CLPs (Colmerauer 1982, Jaffar & Lassez 1987). In this

thesis, we use the CLP language GNU Prolog (Diaz & Codognet 2001) and its associated

solver, in order to represent and solve the constraint logic programs of this thesis, and then

reason over it.

Now, let us return to the subject of this thesis: verification or product line models, and

specifically to the transformation of PLMs into CLP, which is the subject of this section. It is

well known that a metamodel defines the abstract syntax of a language, i.e. concepts and the

nature of their relationships (constraints on the structure of its instances), therefore the

structure of a PLM is represented in its metamodel. Thus, from a syntax point of view, a PLM

is a set of variables and dependencies among them, which are each one instance of an element

defined in the corresponding metamodel (OMG 2003).

The particular aim of the abstract syntax transformation consists in verifying the

conformance of the transformed model with its corresponding metamodel. This process is

presented in the next section for the case of feature models.

3.3.1 Transforming Feature Models into Constraint Logic Programs

62

The FM metamodel that we use in this thesis is presented in Figure 3.4 as a UML class

diagram. Adopting this metamodel rather than other ones allowed us to validate our approach

against the FMs from the SPLOT benchmark (Mendonça et al. 2009a), which use the concepts

of cardinalities (Czarnecki et al. 2005) and attributes (Benavides et al. 2005b). The former

adaptation was also necessary to deal with FMs developed from our experience with industrial

partners. Due to the fact that a metamodel represents the abstract syntax of a language; the

instantiation process of models from the metamodel can be used to keep the syntax of the

language in each model. To automate this process we propose to represent the components of

the FM metamodel (cf Figure 3.4) as meta-facts as follows:

(1) feature(IdFeature, Name, IdAttributes).
(2) root(IdFeature).
(3) attribute(IdAttribute, Name, Domain).
(4) dependency(IdDependency, IdFeature1, IdFeature2).
(5) optional (IdDependency).
(6) mandatory (IdDependency).
(7) requires(IdDependency).
(8) excludes(IdDependency).
(9) groupCardinality(IdDependencies, Min, Max).
(10) featureCardinality(IdFeature, Min, Max).

In the metamodel depicted in Figure 3.4 FM’s elements are modeled by meta-classes, and

relationships between these elements are modelled by meta-associations. In CLP, FM’s

elements and its links are called meta-facts and are implemented as CLP facts. In other words,

a meta-fact is the CLP structure that represents a fact. In order to define a meta-fact; it is

necessary to define its name, its parameters and its arity (in case of equal names, the number

of parameters make two meta-facts different). For instance, the metafact of the line 1 has the

name: feature, and three parameters: IdFeature, Name, IdAttributes. The

mapping between the FM metamodel and the aforepresented meta-facts (lines 1 to 10) are

explained in the rest of this section. It is worth noting that each meta-fact has an identifier,

even if they make not part of the metamodel. This decision is purely technical; the aim is to

improve the implementation efficiency due to the fact that identifiers are numbers, which

allows more performant implementations (e.g., in Prolog, sorting a list of numbers is less time

consuming than sorting a list of words).

Each meta-fact has a parameter that uniquely identifies each instance of the meta-fact.

Identifiers are represented as strings (Prolog’s atoms) and the references to other FM’s entities

are represented as lists of identifiers; in both cases, the name of the corresponding variable is

preceded by the label Id.

Meta-fact 1: feature(IdFeature, Name, IdAttributes).

63

Name is a string representing the feature’s name and IdAttributes is a list of attribute

identifiers [IdAtt1,...,IdAttN], where [] represents an empty list.

Meta-fact 2: root(IdFeature).

The root feature (i.e., UNIX in Figures 3.5 and 3.6) identifies the product line. In this meta-

fact the attribute IdFeature references to the root feature.

Meta-fact 3: attribute(IdAttribute, Name, Domain).

An attribute has an identifier, a name and a domain. Name is a string representing the name

of the attribute instantiated with this meta-fact. Domain is a collection of values that the

attribute can take. For example [read] means that the value of the corresponding attribute

can only be read; [1..5] means that the value of the corresponding attribute can be an

Integer between 1 and 5; [integer] means that the value of the corresponding attribute

must be an integer.

Meta-fact 4: dependency(IdDependency,IdFeature1,IdFeature2).
Meta-fact 5: optional(IdDependency).
Meta-fact 6: mandatory(IdDependency).
Meta-fact 7: requires(IdDependency).
Meta-fact 8: excludes(IdDependency).

Dependencies between two features are represented by the meta-fact 4. In this meta-fact,

IdFeature1 and IdFeature2 respectively represent the identifiers of the initial and

target features involved in the dependency. Dependencies can be of four types: mandatory,

optional, requires, or excludes, respectively represented by meta-facts 5, 6, 7 and 8.

Each meta-fact from 5 to 8 references the corresponding dependency. For example, an

optional dependency references the corresponding dependency having the identifiers of the

parent and child features (IdFeature1 and IdFeature2 respectively) intervening in the

optional dependency. In requires dependencies IdFeature1 is the requiring feature and

IdFeature2 represents the required feature.

Meta-fact 9: groupCardinality(IdDependencies, Min, Max).

Group cardinality is a relationship between several features constrained by a Min and a Max

value. Group cardinalities can be represented by instantiation of meta-fact 9, where

IdDependencies is a list of dependency’s identifiers related in the group cardinality.

Meta-fact 10: featureCardinality(IdFeature, Min, Max).

Feature cardinality is represented as a sequence of intervals [Min..Max] determining the

lower (Min) and upper (Max) number of instances of a particular feature that can be part of a

64

product. In meta-fact 10, IdFeature is the identifier of the feature to which the individual

cardinality belongs.

The relationship between the meta-fact and the derived facts respects the basic principle of

meta-modeling. In our case, the instantiation of a meta-fact consists of giving constant values

to the parameters of this meta-fact. We show this instantiation with the user model of the

UNIX operating system family (cf. Figure 3.6). Note that in the following representation of

the UNIX systems as CLP facts, each feature, attribute and dependency, is identified by a

sequential number preceded by the prefix fea, att and dep, respectively.

(1) root(fea1).
(2) feature(fea1, 'UNIX',[]).
(3) feature(fea2, 'Cdrom', []).
(4) feature(fea3, 'Usb', []).
(5) feature(fea4, 'Net', []).
(6) feature(fea5, 'UtilityProgram', []).
(7) feature(fea6, 'FileMaintenance', []).
(8) feature(fea7, 'Editing', []).
(9) feature(fea8, 'UserInterface', []).
(10) feature(fea9, 'Graphical', []).
(11) feature(fea10, 'Shell', []).
(12) feature(fea11, 'SH', []).
(13) feature(fea12, 'TCSH', []).
(14) feature(fea13, 'BASH', []).
(15) feature(fea14, 'OnlineInfo', []).
(16) feature(fea15, 'ProgrammingSupport', []).
(17) dependency(dep1, fea1, fea2).
(18) dependency(dep2, fea1, fea3).
(19) dependency(dep3, fea1, fea4).
(20) dependency(dep4, fea1, fea5).
(21) dependency(dep5, fea5, fea6).
(22) dependency(dep6, fea5, fea7).
(23) dependency(dep7, fea5, fea8).
(24) dependency(dep8, fea8, fea9).
(25) dependency(dep9, fea8, fea10).
(26) dependency(dep10, fea10, fea11).
(27) dependency(dep11, fea10, fea12).
(28) dependency(dep12, fea10, fea13).
(29) dependency(dep13, fea5, fea14).
(30) dependency(dep14, fea5, fea15).
(31) dependency(dep15, fea8, fea16).
(32) dependency(dep16, fea8, fea17).
(33) dependency(dep17, fea8, fea18).
(34) dependency(dep18, fea8, fea8).
(35) optional(dep1).
(36) optional(dep2).
(37) optional(dep3).
(38) mandatory(dep4).
(39) mandatory(dep5).
(40) mandatory(dep6).
(41) optional(dep7).
(42) optional(dep8).
(43) optional(dep9).
(44) optional(dep10).
(45) optional(dep11).
(46) optional(dep12).
(47) optional(dep13).

65

(48) optional(dep14).
(49) requires(dep15)
(50) requires(dep16).
(51) requires(dep17).
(52) requires(dep18).
(53) groupCardinality([dep1,dep2, dep3], 1, 1).
(54) groupCardinality([dep8,dep9], 1, 2).
(55) groupCardinality([dep10,dep11, dep12], 1, 3).

Lines 1 and 2 define the root feature UNIX with no attributes. Lines 3 to 16 define the rest

of the features with no attributes. Lines 17 to 34 define the collection of dependencies on the

model. The nature of these dependencies is declared from lines 35 to 52. Line 53 defines the

group cardinality <1..1> for dependencies among the root feature UNIX and features Cdrom,

Usb and Net. Line 54 defines the group cardinality between the relationships identified by the

atoms dep8 and dep9, corresponding to the father-child pairs UserInterface–Gaphical

and UserInterface–Shell. Finally, line 55 corresponds to the group cardinality <1..3>

defining the number of shells that can have a system configured from the model of Figure 3.6.

3.4. Multi-model Verification

An important challenge in PL domain engineering and application engineering is that product

lines are, in practice, often specified using several models at the same time (Dhungana et al.

2006, Djebbi et al. 2007, Segura et al. 2008, Rosenmüller et al. 2011). This permits dealing

with various facets of the PL and products, and representing the viewpoints of various

stakeholders such as executives, developers, distributors, marketing, architects, testers, etc.

(Nuseibeh et al. 1994). For example, analysts may deliver a requirements model that specifies

user-oriented system functionality, while architects may deliver a feature-based model

focusing on the system structure from a more technical design-oriented point of view. In the

absence of a global model, and given the number of models in which the PL can be specified,

requirements can get missed or misunderstood (Finkelstein et al. 1992) both during domain

and application engineering activities, e.g., when the selection of an artefact in one model of

the product line depends of the selection of another artefact in another model of the product

line (Zhao et al. 2008, Hubaux et al. 2009, 2010).

Integration of PLMs is not new. Authors like Alves et al. (2006), Schobbens et al. (2006),

Liu et al. (2006), Dhungana et al. (2006), Fleurey et al. (2007b), Apel et al. (2007), Jayaraman

et al. (2007), Segura et al. (2008), Acher et al. (2010) and Rosenmüller et al. (2011) propose

different approaches to integrate PLMs. It is worth noting that our thesis to verify multi-model

product lines is to use an integration approach, in contrast to the priorisation of models

66

proposed by Zhao et al. (2008), or the constraint-based approach to define the order in which

models are configured (Hubaux et al. 2009, 2010).

CP can be exploited in the context of multi-model PL engineering to capture in a unified

way the various models, and to arrange them into a unique specification. As a result, domain

and application engineering activities such as PL analysis or product configuration are

facilitated. Indeed, the unique representation facilitates the propagation of constraints between

variables that belong to the different models. When configuration entails a variable in a model,

it entails the variable in all the other models to which the variable belongs. Another

considerable advantage is that having all the models of the PL integrated in a single CP

permits the specification of constraints between different variables that belong to different

models. Our literature survey did not reveal any interoperability meta-model that would have

permitted to define relationships among several PL models specified in different languages.

The constraint-based integration approach proposed in this thesis will be developed in two

cases: the Dopler models and the FMs. As explained in the next sections, the application of the

constraint-based integration approach is much simpler in Dopler models than in FMs due to

the fact that Dopler formalism is itself conceived as a multi-view product line formalist and

therefore the integration strategy is already defined in the formalism itself. On the contrary,

FMs are intended to be developed as standalone models, and to the best of our knowledge,

there are no formal integration mechanisms in this notation itself. Therefore, to integrate FMs,

this thesis proposes five different ways or integration strategies to do that.

3.4.1 Integration: the Case of Dopler Models

Decisions and assets are linked with inclusion conditions defining traceability from the

solution space to the problem space (e.g., the asset Tab Window Manager must be

included in the solution space if the option OnlineInfo of the decision Utility

program is selected in a particular configuration). In our integration approach, these

inclusion conditions are constraints that will be added to the collection of constraints

representing the decision and asset model. Once these constraints are added, both models of

the PL are integrated in a global program. This program is presented as follows:

[MeansOfInstallation, Cdrom, Usb, Net, UtilityProgram, FileMaintenance,

Editing, OnlineInfo, ProgrammingSupport, Shell, GraphicalResolution,

ATwm, A4dwm, AMwm, AMotif, AKDE, AQt, AGNOME] ∈ {0, 1} ⋀
fd_domain([Width] ∈ {0, 800, 1024, 1366} ⋀
fd_domain([Height] ∈ {0, 600, 768} ⋀

MeansOfInstallation = Cdrom + Usb + Net ⋀

67

MeansOfInstallation UtilityProgram ⋀

R1 = Editing + FileMaintenance + ProgrammingSupport + OnlineInfo +

Shell ⋀
UtilityProgram ≤ R1 ≤ UtilityProgram * 5 ⋀

OnlineInfo GraphicalResolution ⋀
GraphicalResolution = 1 (Width=W1 ⋀ Height=H1) ⋀
GraphicalResolution = 0 (Width=0 ⋀ Height=0) ⋀
fd_relation([[800,600], [1024,768], [1366,768]], [W1,H1])⋀

OnlineInfo Twm ⋀

A4dwm ATwm ⋀
A4dwm AMotif ⋀
A4dwm AMwm ⋀
AMwm AMotif ⋀
AKDE ATwm ⋀
AKDE AQt ⋀
AGNOME ATwm

3.4.2 Integration: the Case of Feature Models

In our process, integrating two PLMs consists of (i) integrating the variables that correspond

to reusable elements; (ii) integrating attributes and their domains; and (iii) integrating the

relationships among reusable elements. Integrating two models can be done in two steps:

matching and merging (Finkelstein et al. 1992, Fleurey et al. 2007b). The matching step

specifies which elements can match and how they can match. The merge step defines how two

model elements that match are merged, as well as a mechanism to handle the non-matching

elements of the input models. For example, if two feature models (Kang et al. 1990) that

specify a single PL own the same feature A, which is required by another feature in the first

model, and which is excluded by another feature in the second model, then the situation

matches because of the feature A. However, the decision to include or not feature A in the

resulting model depends on the integration strategy. In particular, one has to reason on the

dependencies between feature A and the other features in both models.

Integration strategies are about the ways in which models are merged. Indeed, there are

different ways to merge models, depending on how the models match and depending on the

expected outcome. Take the following example scenario: a company decides to lengthen the

production spectrum of the PL. Therefore, it integrates the FMs of two headquarters, and

keeps in the resulting FM the reusable elements and the production capacity of both

headquarters. This thesis exploits five different strategies that may be used to integrate FMs:

two restrictive strategies, two conservative strategies, and one disjunctive strategy.

68

We believe that handling multi-model verification calls for a rich integration approach, as

offered by the following five strategies:

Strategy N° 1 is restrictive in the sense that it allows representing in the resulting FM the

common products represented in both input models that can be configured with the common

features and attributes.

Strategy N° 2 is also restrictive but unlike the first strategy, the products can be configured

with all features and attributes available on both input models (Acher et al. 2010).

Strategy N° 3 is conservative in the sense that it is possible to configure from the resulting

FM the products represented in both input models by using only the common features and

attributes.

Strategy N° 4 is also conservative, but this time it is possible to configure products with all

features and attributes available in both input models (Segura et al. 2008, Acher et al. 2010).

Strategy N° 5 is disjunctive in the sense that the resulting model allows configuring the

products presented in one of the input models by using the features and attributes of this

particular model without considering the features and attributes of the other one.

Each one of the aforementioned integration strategies are further explained and exemplified

in Chapter 7.

3.5. Discussion

The main working hypothesis in this thesis consists of choosing a constraint language that can

be handled by a solver in order to execute PLMs and supports the verification approach

proposed in this thesis. The rest of the section presents some related works about the

transformation of PLM into other languages and some discussions and challenges in this topic.

Van Deursen & Klint (2002) proposes to reason about FODA models by translating them

into a logic program using predicates such as all, one-of, or more-of, that respectively

specify mandatory, mutually exclusive, and alternative features. For instance constraints: F1

= all(F2, F3, F4), F4 = one-of(F5, F6) specify that if F1 is included in a

configuration, then F2, F3, and F4, and therefore either F5 or F6 should be included too. The

use of CP to reason about feature model was extended by Batory (2005), who proposes an

approach to transform a feature model into propositional formula using the , , , and

operations of propositional logic. The advantage of using CP is that it enables, for example,

constraints of the form F A B (C ⋀ D), meaning that feature F needs features A, or

B, or C and D, which cannot be specified with FODA without creating an extra feature to

69

represent C ⋀ D. As in (Van Deursen & Klint 2002). In these constraints, features are

Boolean variables (either they are included or not in a configuration). The transformation

approach presented in this thesis goes a step further as (a) it does not consider Boolean models

only, but also models with arithmetic constraints, symbolic constraints and reified constraints

over finite-domain variables and (b) it supports the specification of constraints directly in CP,

and not just as the result of a transformation from another model.

In (Benavides et al. 2005a, Benavides et al. 2005b, Benavides et al. 2007) and (Trinidad et

al. 2008), the authors transform FODA models with and without attributes into Boolean

expressions. These expressions are executed on Constraint Satisfaction Problem (CSP),

Satisfiability (SAT) and Binary Decision Diagrams (BDD) solvers in order to execute analysis

and verification operations over feature models. In (Benavides et al. 2006), the authors show

how to transform a FM with feature and group cardinalities into a CSP. The approach consists

of representing each feature as a CSP variable. The domain of each variable depends on the

cardinality associated to each variable. By default the domain is {0,1}. If a feature has a

feature cardinality, then the domain of the variable is changed by the cardinality, disregarding

the possibility of this feature to be cloned in the number of features determined by the feature

cardinality. The relationships of the FM are represented as ifThenElse constrains on CPS and

the final CSP for a FM is the conjunction of all the constraints. Despite the originality of this

proposal, the constraint representing a feature cardinality (m,n) between the father feature A

and its child B (according to their notation: ifThenElse(A=0;B=0;B in {n,m})) does not

represent the fact that feature B can be cloned at last n and at most m times, neither consider

that the feature A can itself have a feature cardinality, and in this case the semantics of feature

cardinalities is not well represented in the constraint. The transformation approach of FMs into

CP proposed in this thesis (cf. Section 3.2.1) corrects the defects of the Benavides’s approach.

Recent work by Karataş et al. (2010) proposes a transformation from extended feature

models to CP. This work does not consider the real semantics of features’ attributes,

considering them as sub-features that can be selected or not. Additionally, the transformation

patterns used by Karataş et al. consider only Boolean formulas to represent extended feature

models, which reduce the richness of the constraint programming paradigm, a richness

necessary to represent complex feature models or to execute certain reasoning operations (e.g.

to detect the optimal product according to a cost criterion). Besides, Karataş et al.’s

representation of optional features permits the selection of child features without constraining

the selection of the father feature.

70

From the point of view of the optimal representation of constraints, we exploit the fact that

a PLMs can be represented in different CPs. For example: instead of representing the <1..1>

group cardinality of Figure 3.6 as UNIX * 1 ≤ Cdrom + Usb + Net ⋀ Cdrom +
Usb + Net ≤ UNIX * 3 we use the representation UNIX = Cdrom + Usb + Net,

which has the same semantics, but is more compact and less expensive from a computational

point of view. With this kind of optimization, verification operations proposed in this thesis

can be executed up to 25% faster. However further work is necessary in that direction to fully

understand all the possible optimizations. Additionally, further work is necessary in

multidirectional transformation, since the approach used in this thesis only considers

unidirectional transformations, i.e., transformation from different product line modelling

notations to CP but not inversely.

3.6. Conclusion

This chapter has presented an overview of the verification framework proposed in this thesis.

In particular, it focused in the initial stages before the verification of PLM against the typology

of verification criteria proposed in this thesis. Indeed, this chapter presents the following three

key concepts, vital for reading and understanding of this thesis:

1. A UNIX product line, the running example used in this thesis to explain our verification

approach. This running example is formulated as a collection of characteristics described in

natural language. These characteristics depict the commonality and the variability of a

UNIX product line from two points of view: technical point of view and end-user’s point of

view. From the technical point of view, they represent the components and the

dependencies among them, that a UNIX PL should respect. From the end-user’s point of

view, the constraints represent the choice that an end-user has when he/she is installing a

UNIX operating system. Both, the technical and the end-user characteristics are modeled

with the feature formalism adopted in this thesis (cf. Section 3.1.1). The end-user view is

modeled in the Dopler notation. The technical view is not modeled in the Dopler notation

due to the fact that this notation is decision-oriented and therefore less adequate for users’

views. Our thesis is that models specified with classical formalisms (FODA, OVM, Dopler,

etc) cannot be verified as such, and therefore, they should first be transformed into an

equivalent formalism that is more adequate for automating operations.

2. In our transformation approach, the PLM’s semantics is represented with a collection of

constraints and the PLM’s abstract syntax is represented with a collection of facts. The

71

transformation approach presented in this chapter was tested against a large collection of

product line models (cf. Chapter 8). The experiments showed that the approach is viable,

scalable to very large PLMs and correct – according to the comparison with the tools FaMa

(Trinidad et al. 2008b) and SPLOT (Mendonça et al. 2009).

3. The aim of the transformation and integration is to get product line models that are

verifiable in an automated way. In order to achieve this, we propose a typology of

verification criteria. This typology of verification criteria proposes two categories of

verification: the first one associated with the verification of the abstract syntax of the model

and other associated with the criteria that product line models should respect. This typology

is presented in depth in the next chapters.

The integration approach exploits the fact that the PLMs that we verify are first represented

as constraint programs. Once the models are represented as CPs, they can be integrated by

means of a number of integration rules that can be chosen depending on the situation (e.g.

integrate two views of a Dopler model vs. integrate two views specified with different

formalisms), and the intention (conservative, restrictive, etc).

72

73

Chapter 4

Typology of Verification Criteria

Verifying PLMs entails several aspects. Certain properties associated with the domain of

product lines and other properties are associated with the fact that each PLM respects the

syntactic rules of the language in which it is expressed. Therefore, some properties of PLMs

are associated with the language in which the model is represented, while other properties are

associated to the domain of product lines. Thus, product line models seem to be verifiable

from two different points of view. The first point of view is associated with the formalism.

The other one is independent of the formalism in which models are represented. At first

glance, it seems that the first category is specific to the formalism at hand, while the second

one is applicable to every PLM, in other words, it should be generic. Our experience with

various formalisms such as Dopler and several dialects of feature models showed us that the

PL meta-models share some common concepts. For instance, all the metamodels have one or

several start points from which the model should be navigated. They all provide concepts to

specify reusable artefacts, dependencies among them to specify the variability, and in some

cases properties to characterize these artefacts. Our thesis is that a generic approach can be

taken. The proposal is to group them in a metamodel and then defined as a collection of

generic criteria (Salinesi et al. 2004) that can be adapted to any PL meta-model in a fully

automatic way. To identify defects in the first category, we propose a conformance checking

approach directly related with verification of the abstract syntactic aspects of a model (cf.

Definition 1.5). To identify defects in the second category, our approach uses a domain-

specific verification approach (cf. Definition 1.4). Both categories of verification exploit

verification criteria classified in the typology of verification criteria depicted in Figure 4.1.

Each verification category is referenced under a unique number indicating the order in which

the verification criteria should be considered. The typology has the form of a tree in which

the nodes are categories of criteria, and edges generalization structures. The leaves of the

typology represent individual criteria that can be used to perform verification. Intermediate

nodes represent the category to which each criterion or sub-category belongs. For instance, in

order to verify the expressiveness of a PLM, two criteria should be evaluated: Non-void and

74

Non-false. In the same way, the expressiveness criteria are used in order to verify the

correctness of PLMs from a domain-specific point of view.

Figure 4.1. Typology of verification criteria on PLMs

The outcomes of the typology are multiple:

(a) the typology classifies the criteria from a semantic perspective, allowing the

identification of similarities and differences among the criteria;

(b) the typology makes easier the identification of some defects for which no verification

criterion is available in the literature. Redundancy of relationships among reusable elements

is an example of defect for which no verification criterion has been defined in the literature

(at least to our knowledge).

(c) the classification behind the typology produces a standard and reusable approach to

verify PLMs; and

(d) the typology can be used to select the criteria that one wants to use to verify a PLM

according to the impact that these criteria have or the expected quality level of a particular

PLM.

(e) due to the fact that not all the verification criteria have the same impact, they have

neither the same priority and consequently the same execution order. For instance, to check if

PLM Correctness

1. Conformance checking criteria

2.2 Error-free

2. Domain-specific criteria

2.1 Expressiveness

2.3 Redundancy-free

Non-void Non-false

Attainable
domains

Non-dead
artefacts

Non-false
optional
artefacts

Non-
redundant

dependencies

Root
uniqueness/
multiplicity

Reusable elements
uniqueness/
multiplicity

Non-overlap of
the artefact in a

same model

Dependency
completeness

Properties belonging
to a single reusable

element

Non-overlap of
the properties that

belong to the
same reusable

element

Association of
individual cardinalities

to artefacts

Optional
dependencies in

group cardinalities

75

a PLM is non-false (i.e., rich enough) it is preferable to verify before that the model is non-

void beforehand.

It is worth noting that the collection of verification criteria presented in Figure 4.1 could

be extended as far as other PL modelling languages are considered and other verification

criteria are identified. To guarantee that a PLM is defects-free, the typology of verification

criteria considered must be as exhaustive as possible. Nevertheless, even in such a situation,

(i) verification alone does not guarantee elimination of defects, and (ii) the correctness of a

model can only be guaranteed with regard to the criteria used to evaluate the model

(Finkelstein et al. 1996, Nuseibeh et al. 2000, Spanoudakis & Zisman 2001).

The following sections use the typology of verification criteria presented in Figure 4.1 to

develop the verification approach proposed in this thesis.

4.1 Conformance Checking Criteria

From the point of view of conformance checking, the aim of this thesis is to verify if PLMs

satisfy constraints captured from their respective metamodels. For the sake of generality, this

thesis abstracts in a UML model the most important elements of several product line

metamodels. This abstraction contains the common concepts of several product line

metamodels existing in the literature such as FMs (Kang et al. 1990, 1998, 2002) and Dopler

models (Dhungana et al. 2010). We decided to use these two formalisms to validate the

verification approach proposed in this thesis, nevertheless we believe that our approach is

applicable to other formalisms such as FODA, feature trees, OVMs, TVL, etc. We choose

these two formalisms due to the fact that the first formalism is a common way to represent

standalone PLMs and the second formalism is a common way to represent multi-model

product lines; other formalisms were not used due to time constraints of the thesis’ schedule.

This abstraction is represented in Figure 4.2 and can be used to infer a collection of eight

generic conformance criteria. For instance, the fact that every PLM should have one or

several start points (or “roots”), from which the product line model must start in a

configuration process. Of course, some aspects that directly relate with particular metamodels

will remain untreated by the generic conformance checking approach. This chapter focuses

on the generic criteria to verify PLMs; the particular criteria are then discussed in Chapter 5.

As Figure 4.2 shows, our view is that a PLM is composed of the description of at least

one reusable element and at least one root artefact. Artefacts and dependencies are considered

as reusable elements due to the fact that in a multi-stage configuration approach (Czarnecki et

76

al. 2004), not only artefacts are reused but also the dependencies among them. A PLM with

only one dependency, should have at least two artefacts (at least one of them a root) due to

the fact that a dependency relates to two or more artefacts. A PLM with only one artefact is

not permitted. Besides, artefacts are related among them by means of one or several

dependencies and each dependency relates at least two artefacts. Each artefact has a unique

name and a domain of values. A domain is represented as a list of values. Each value of the

domain has a specific meanning (e.g., the artefact PCMCIA_SUPPORT of our running

example, where the value 0 means that the artefact is not charged (selected) in a particular

UNIX system, 1 means that the artefact is charged in a static way, and 2 means that the

artefact is charged in a dynamic way). An artefact can have an individual cardinality (at most

one). In addition, optional dependencies can be grouped in a group cardinality (by two or

more). Both, individual and group cardinalities have two attributes; Min and Max, that

represent the minimum and maximum values of the cardinality. A reusable element can have

several properties, and the other way round a property belongs to one and only one reusable

element. Examples of properties of reusable elements are: the attribute of an artefact, or the

type of a dependency. An attribute such as for instance the price of an artefact, should have a

unique name, a type and the possible values that the attribute can take (its domain).

Dependencies are also reusable elements, and therefore they can have properties. For

instance, dependency properties should indicate the type of dependency, e.g requires or

excludes (which are usually represented by a special arrow), and the unique name or

identifier used to uniquely identify the dependency in the model. It is worth noting that in

Dopler and feature models, the name of dependencies is not explicitly visible in the models.

However, they are necessary when the models are merged, for instance. In addition, in Dopler

models, the type of each dependency is usually presented in the models.

Our approach in this thesis is to exploit the metamodel of Figure 4.2 to specify

verification criteria. In particular, this section will exploit the metamodel of Figure 4.2 in

order to derivate eight conformance checking criteria. The strategy to achieve this was similar

to business rules derived from a conceptual model: each constraint in this figure becomes a

conformance checking criterion and each criterion is implemented as a conformance rule (cf.

Definiton 1.6).

77

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Figure 4.2 UML class diagram representation of common elements of several product line
metamodels

Prior to formalizing the verification criteria in first order logic (FOL), a certain number of

predicates (Osman et al. 2008), derived from the metamodel of Figure 4.2, must be defined.

In order to do that, each class of the metamodel is defined as a predicate that evaluates if a

given variable corresponds to the type of element represented by the class. In addition, each

dependency of the metamodel is defined as a predicate, as follows:

 has_root: evaluates the fact that an artefact of type root is the root of a product line

model. For example, has_root(M, R) is a FOL predicate that evaluates if the product

line model M has a root artefact R.

 has_reusableElement: evaluates if there is a reusable element R in the product line

model M. For example, has_reusableElement(M, R) returns true if there is a reusable

element R in M.

 belongs_to: evalutes if there is a property P that belongs to a reusable element R. For

example, belongs_to(R, P) reuturns true if P is a property of R.

 is_a: evaluates if a given class B, of the metamodel represented in Figure 4.2, is a

subclass of another class A. For example, is_a(A, B) returns true if B is a subclass of

A, and false otherwise.

78

 relates: evaluates if there a list of artefacts [A1, A2, …, Ai] that are related to a

dependency D. For example, relates(D, [A1, A2]) returns true if there is a

dependency D that relates the artefacts A1 and A2.

 is_associated_to: evaluates if there is an individual cardinality IC associated to an

artefact A. For example, is_associated_to(A, IC).

 groups: evaluates if a collection of optional dependencies [O1, O2, …, Oi] belong to a

group cardinality GC. For example, groups(GC, [O1, O2]) returs true if the optional

dependencies O1 and O2 belong to the group cardinality GC.

And the following function:

 isPLMofOptional: this function returns, for a given dependeny of type optional, the

product line model to which the dependency belongs. For example,

isPLMofOptional(O).

The eight criteria are: Root uniqueness/multiplicity, Reusable elements

uniqueness/multiplicity, Dependency completeness, Non-overlap of properties for each

artefact, Association of individual cardinalities to artefacts, Optional dependencies in group

cardinalities, Non-overlap of the artefact in a same model and Properties belonging to a

single reusable element. Each of these criteria is defined, formalized in FOL according to

Bradley & Manna (2007 pp. 51) and illustrated with our running example (cf. Figures 3.5, 3.6

and 3.7) as follows.

A. Root uniqueness/multiplicity

Definition: a product line model is composed of one or several root elements, which are

special kinds of artefacts; even if some languages use other words to describe the same

concept as is the case in OVM or Dopler models.

Formalization: ∀ M, ∃ R . producLineModel(M) ⋀ root(R) ⋀ has_root(M, R)

Example: while the FODA metamodel (cf. Kang et al. 1990) constrains the existence of

one and only one root artefact, the FOPLE (Feature Oriented Product Line Software

Engineering, cf. Kang et al. 2002) metamodel considers the existence of several root

features. In our running example, UNIX is the root of both feature models (cf. Figures 3.5

and 3.6). In the same way, Means of installation is the root decision of the

Dopler model of Figure 3.8. Therefore the three models comply with this conformance

criterion.

79

B. Reusable elements uniqueness/multiplicity

Definition: a PLM is composed of one or several reusable elements. This criterion is a

necessary but not sufficient condition to enable the derivation of several products from a

product line model.

Formalization: ∀M, ∃R . producLineModel(M) ⋀ reusableElement(R) ⋀

has_reusableElement(M, R)

Example: the feature models of Figures 3.5 and 3.6 have 25 reusable elements (15

features and 20 dependencies) and 32 reusable elements (14 features and 18

dependencies), respectively. The Dopler running example shown in Figure 3.8 has 11

artefacts (i.e., 4 decisions and 7 assets) and 12 dependencies. Therefore the three models

comply with this conformance criterion.

C. Dependency completeness

Definition: in a PLM, each dependency relates two or several artefacts. Indeed, all

product line models have dependencies, at least one in order to represent the variability

and the commonality of the product line. It is worth noting that for the “classical”

dependencies (i.e., optional or mandatory or requires or excludes) the related artefacts

should be different; however, there are particular dependencies in some product line

formalisms in which an artefact can be related with itself (e.g., the validity condition that

relates the decision “Width?” with itself by means of the constraint “Width ≥ 800 &&

Width ≤ 1366”). Due to the fact that the most of dependencies in product line models are

optional, mandatory, requires and excludes dependencies (cf. Tables 10.1 to 10.5 on

Appendix), our formalization and implementation considers the case where each

dependency relates two or several different artefacts.

Formalization: for every PLM, and for each dependency D of M, there are two different

artefacts related by D:

∀M, ∀R1, ∀D, ∃R2, ∃R3, ∃A1, ∃A2 . producLineModel(M) ⋀
reusableElement(R1) ⋀ reusableElement(R2) ⋀ reusableElement(R3) ⋀

dependency(D) ⋀ has_reusableElement(M, R1) ⋀ has_reusableElement(M, R2) ⋀

has_reusableElement(M, R3) ⋀ is_a(R1, D) ⋀ artefact(A1) ⋀ artefact(A2) ⋀ is_a(R2,

A1) ⋀ is_a(R2, A2) ⋀ relates(D, [A1, A2]) ⋀ A1 ≠ A2.

It is also necessary to express that every PLM has at least one dependency:

80

∀M, ∃D, ∃R . producLineModel(M) ⋀ dependency(D) ⋀ reusableElement(R) ⋀

has_reusableElement(M, R) ⋀ is_a(R, D)

Example: Figure 3.6 has an optional dependency between the father feature UNIX and the

child feature UtilityProgram. The dependency contains(Utility program,

“OnlineInfo”) GraphicalResolution of the Dopler model depicted in

Figure 3.8 represents a requirement dependency. This dependency implies that if the user

chooses the utility program called OnlineInfo, he/she should also choose a

GraphicalResolution.

D. Non-overlap of the artefact in a same model

Definition: each artefact of a PLM should be identified in a unique manner. Most of the

time, the name of the artefact permits the identification of the artefact. Therefore, this

name should be unique (within each model) to avoid redundancies and evolutions

problems. However, this conformance criterion is not violated when two different models

contain artefacts with the same name.

Formalization: ∀M, ∀R1, ∀R2, ∀A1, ∀A2 . producLineModel(M) ⋀

has_reusableElement(M, R1) ⋀ has_reusableElement(M, R2) ⋀

reusableElement(R1) ⋀ reusableElement(R2) ⋀ artefact(A1) ⋀ artefact(A2) ⋀

is_a(R1, A1) ⋀ is_a(R2, A2) ⋀ (A1 ≠ A2) → (A1.Name ≠ A2.Name)
Example: in our running example, the artefacts of each model have a unique name in the

model. For example, the feature called UserInterface appears only one time in the

model of Figure 3.5 and only one time in the model of Figure 3.6.

E. Properties belonging to a single reusable element

Definition: a property belongs to one and only one reusable element.

Formalization: ∀P, ∀R1, ∀R2 . property(P) ⋀ reusableElement(R1) ⋀

reusableElement(R2) ⋀ belongs_to(R1, P) ⋀ belongs_to(R2, P) → R1 = R2

Example: in Figure 3.5, the artefact called Graphical has two properties:

WidthResolution and HeightResolution. Due to the fact that these properties

belong to only one artefact, the model of Figure 3.5 complies with this conformance

criterion. This criterion allows, for instance, distinguishing the property price of an

artefact A from the price of another artefact B.

81

F. Non-overlap of the properties that belong to the same reusable element

Definition: in a same product line model, a property has a unique name. Indeed, the name

of each property should be different from one another in order to avoid ambiguity

problems during product configuration, verification management (as presented in the

general frameworks proposed by Finkelstein et al. (1994, 1996), Nuseibeh et al. (2000)

and Spanoudakis & Zisman (2001)) and maintenance stages.

Formalization: ∀M, ∀R, ∀P1, ∀P2 . producLineModel(M) ⋀ reusableElement(R) ⋀

property(P1) ⋀ property(P2) ⋀ has_reusableElement(M, R) ⋀

belongs_to(R, P1) ⋀ belongs_to(R, P2) ⋀ P1 ≠ P2 → P1.Name ≠ P2.Name

Example: in Figure 3.5, the attributes WidthResolution and HeightResolution

have a unique name and a domain [800, 1024, 1366] and [600, 768] respectively. In

Figure 3.8, the dependency of type “Visibility condition” has the value “isTaken(Means

of installation)” and is identified with an artificial name, e.g. Depd01.

G. Association of individual cardinalities to artefacts

Definition: an individual cardinality is associated to one and only one artefact. Even if

two individual cardinalities have the same values, each one of them would be associated

to different artefacts. This conformance criterion is useful from the point of view of

maintenance since the elimination of an individual cardinality for a particular artefact

entails its elimination for the corresponding artefact, and this action does not affect the

other artefacts that have an identical cardinality.

Riebisch et al. (2002) propose to extend FMs with cardinalities similar to those found in

UML class diagrams. This kind of cardinality, called individual cardinality, is a concept

used in several feature metamodels (e.g., Riebisch et al. 2002, Sun et al. 2005, Czarnecki

et al. 2005, Michel et al. 2011); however, it is not used in most of product line

metamodels in literature, e.g., FODA (Kang et al. 1990), OVM (Pohl et al. 2005) and

Dopler (Dhungana et al. 2010).

Formalization: ∀C, ∀A1, ∀A2 . individualCardinality(C) ⋀ artefact(A1) ⋀

artefact(A2) ⋀ is_associated_to(A2, C) ⋀ is_associated_to(A1, C) → A1 = A2

Example: artefact Process in Figure 3.5 has an individual cardinality [0..*] indicating

that the artefact Process can be instantiated several times in a same product. Therefore

the model of Figure 3.5 complies with this conformance criterion.

82

H. Optional dependencies in group cardinalities

Definition: a group cardinality gathers two or more optional dependencies. By definition

3.8, a group cardinality is about the selection of a certain number of artefacts among a

collection of them. In this selection each artefact must have the same possibility to be

chosen as the others, which is why dependencies must be optional. This thesis considers

this conformance criterion, initially presented in (Czarnecki et al. 2005), as a good

practice. It is worth noting that this thesis relates group cardinalities and dependencies

(not artefacts). This choice is due to the fact that graphically a group cardinality groups

two or more dependencies and not two or more artefacts. This choice was also made to

improve the performance of the criterion implementation.

The following FOL formula represents the fact that for all groupCardinality there are two

optional dependencies, of the same product line model, associated to the

groupCardinality.

Formalization: ∀G, ∃X1, ∃X2 . groupCardinality(G) ⋀ optional(X1) ⋀ optional(X2) ⋀ X1 ≠ X2 ⋀ isPLMofOptional(X1) = isPLMofOptional(X2) ⋀ groups(G, [X1, X2])

Example: Figure 3.6 presents three group cardinalities: <1..1> that group dependencies

between the father feature UNIX and the child features Cdrom, Usb and Net, <1..2> that

group the dependencies between the father feature UserInterface and the child

features Graphical and Shell, and <1..3> grouping the dependencies between the

father feature Shell and the child features SH, TCSH and BASH.

4.2 Domain-specific Criteria

In the context of product lines, domain-specific verification criteria are properties that every

model has to respect in order to be a “real” PLM. In addition the model should correctly

represent the domain intended to be represented whit the PLM. This thesis, due to the fact

that all these verification criteria are related with the domain of the product lines, groups all

these verification criteria under the name of domain-specific verification.

This thesis proposes four groups of domain-specific verification criteria: expressiveness,

error-free, consistency and redundancy-free. Each group is composed of one or several

domain-specific verification criterion. Each one of these criterion is defined, formalized and

exemplified with our running example (cf. Figures 3.5, 3.6 and 3.7) as follows.

83

The formalization corresponds to FOL formulas that use the following predicates (Osman

et al. 2008). These predicates are implemented in the Analysis module of the tool VariaMos

(Mazo & Salinesi 2011).

 isOptional: this predicate evaluates if an artefact A of a product line model M is

modeled as an optional artefact (i.e., if the artefact is the child of an optional

dependency). For example, isOptional(M, A) returs true if the artefact A is modeled

as optional in the model M, or false otherwise.

 oneProduct: returns true if a given product line model M allows the configuration of

at least one product, and false otherwise. For example, oneProduct(M).

 oneProductWithConstraint: returns true if a given product line model M allows the

configuration of at least one product that respects a given constraint C, and false

otherwise. To be precise, constraints are mathematical expressions over variables,

representing Properties and Artefacts, and constants over a given domain. For

example, oneProductWithConstraint(M, C), where C is ‘Property1+Property2’.

 find: returns true if a certain number of different products can be derived from a

product line model M, and false otherwise. For example, find(M, 2) is true if the

product line model M allows the derivation of at least 2 products.

We also need to define the following functions, other than the function isPLMofOptional

defined in Section 4.1:

 semanticOf: retunrs the collection of products that are possible to be derivated from a

product line model M or false if no product can be derivated from the model. For

example, semanticOf(M).

 eraseOneDependency: this function takes a product line model M and a dependency

D, and returns the product line model whitout the dependency D. For example:

eraseOneDependency(M, D).

 isPLMofDependency(D): this function returns the product line model associated to the

dependency D.

4.2.1 Expressiveness

Every PLM should permit the configuration of more than one product, i.e., the model should

not be void, and be expressive enough to permit the configuration of more than one product

(Benavides et al. 2005). Indeed, the purpose of PLMs is to represent at least two products –

otherwise, there is no reuse. The former is called “non-void” and the latter “non-false”. Each

84

criterion can be used to verify the expressiveness of PLMs at its turn. It is however worth

noting that the latter includes the former: if a PLM is non-false, then it is non-void too.

A. Non-void PLMs

Definition: a void PLM is defined as a model that does not permit the configuration of

any product.

Formalization: to formalize this criterion, we define the following Boolean function:

nonVoidPLM(M) ≙ producLineModel(M) ∧ find(M,1)

Example: FMs of Figures 3.5 and 3.6 are not void. Dopler model of Figure 3.8 is not

void. Each of these models allows configuring at least one product.

B. Non-false PLMs

Definition: a false PLM is defined as a model that permits configuring one product only.

In this case, the model cannot be considered as a PLM, but as a product model. This

criterion can be automated by means of an operation that takes a PLM as input and

returns “False PLM” if at most one valid product can be configured with it. Although this

operation would also help to detect when PLMs are void (our precedent operation), the

converse is not true. The two criteria have then a separate definition.

Formalization: nonFalsePLM(M) ≙ producLineModel(M) ∧ find(M,2)

Example: FMs of Figures 3.5 and 3.6 are not false. Dopler model of Figure 3.8 is not

false. All these models permit the configuration of at least two products each one.

4.2.2 Error-free

The Dictionary of Computing defines an error as “A discrepancy between a computed,

observed, or measured value or condition, and the true, specified, or theoretically correct

value or condition” (Howe 2010). In PLMs, an error represents a discrepancy between what

the engineer wants to represent and the result obtained from the model. For instance, this is

the case when the engineer includes a new reusable element (in a given domain) in a PLM,

but this element never appears in a product. Our ontology proposes three criteria to identify

errors in PLMs: non-attainable domain values of PLM’s reusable artefacts, i.e. an artefacts A

with a domain [0, 1, 2, 3] but can never attain the values 1 and 2; dead artefacts, i.e. artefacts

of the PL that are never used in a product: this means that their value is all time 0; and the

third criterion permits the identification of the reusable elements modeled as optional but that

appear in all the products of the PL, i.e. an artefacts A with a domain [0, 1, 2, 3] but can never

attain de value 0. It is worth noting that the former criterion includes the second (artefacts

85

that can never attain non-cero values), and the third one, for optional artefacts (i.e., when the

domain of the artefact includes the 0 value). However, the opposite is not true.

C. Non-dead Artefacts

Definition: An artefact is dead if it cannot appear in any product of the product line. From

a mathematical point of vew, an artefact is dead if it is always setted to 0 in each one of

the products that can be derived from the product line model. Our formalization expresses

the fact that it should be possible to configure at least one product with each artefact of a

product line model.

Formalization: ∀M, ∀R, ∀A . producLineModel(M) ⋀ reusableElement(R) ⋀

artefact(A) ⋀ has_reusableElement(M, R) ⋀ is_a(R, A) ⋀

oneProductWithConstraint(M, ‘A> 0’)

Example: There are no dead artefacts in our running example. In other words, artefacts in

feature and Dopler models have the possibility to be selected almost one configuration.

D. Non-false Optional Artefacts

Definition: An optional artefact is an artefact playing the role of child in an optional

dependency. An artefact is false optional if it is included in all the products of the product

line despite being declared optional (Von der Maßen & Lichter 2004, Benavides et al.

2005, Trinidad et al. 2008). Our formalization expresses the fact that if an artefact is

optional, it should be possible to configure at least one product whitout this artefact (i.e.,

setted to 0).

Formalization: ∀M, ∀R, ∀A . producLineModel(M) ⋀ reusableElement(R) ⋀

artefact(A) ⋀ has_reusableElement(M, R) ⋀ is_a(R, A) ⋀ isOptional(M, A) →

oneProductWithConstraint(M, ‘A= 0’)

Example: Feature Process, in Figure 3.5, with individual cardinality [0..5] is included

by several futures bellowing to the core of the product line. Therefore, feature Process

is a false optional feature due to the fact that it appears in all the configurations of the

product line despite the zero value of its individual cardinality.

E. Attainable Domains

Definition: A non-attainable domain value is the value of an artefact, or a property, that

never appears in any product of the product line. For example, if an artefact A has the

domain [0,1], value 1 is non-attainable if A can never be integrated in a product line;

86

i.e., it never takes the value of 1. Non-attainable values are clearly undesired since they

give the user a wrong idea about domain of reusable elements.

Formalization: First, we evaluate each value Domaini of the artefacts’ domain:

∀M, ∀R, ∀A. Domaini . producLineModel(M) ⋀ reusableElement(R) ⋀ artefact(A) ⋀ has_reusableElement(M, R) ⋀ is_a(R, A) ⋀ oneProductWithConstraint(M, ‘A=

A.Domaini’)

Second, we evaluate each value Domaini of the propertie’s domain:

∀M, ∀R, ∀P.Domaini . producLineModel(M) ⋀ reusableElement(R) ⋀ Property(P) ⋀ has_reusableElement(M, R) ⋀ belongs_to(R, P) ⋀ oneProductWithConstraint(M,

‘P= P.Domaini’)

Example: In Figures 3.5 and 3.6 the feature UNIX can never take the value of 0 due to the

fact that this feature plays the role of root and therefore its value is constant to 1 even if it

is a Boolean feature. Indeed, all core features of each model take the constant value of 1.

In the Dopler model of Figure 3.8, the decision Means of installation that is the

root decision of the model only takes the value of 1; i.e., this decision must be considered

in all configurations.

4.2.3 Redundancy-free

According to the Oxford Dictionary, something redundant is something “able to be omitted

without loss of meaning or function” (Oxford University 2008). Therefore, redundancy in a

PLM is about the presence of reusable elements and variability constraints among them that

can be omitted from the PLM without loss of semantics on the PLM. Redundant

dependencies in FMs are undesired because, although they do not alter the space of solutions,

they may consume extra computational effort in derivation and analysis operations, as

demonstrated in (Yan et al. 2009), and they are likely to generate inconsistencies when the

PL evolves. For the sake of evolution, it is certainly better to detect and correct these

redundancies. However, and due to the fact that this thesis represents PLMs as constraint

programs, it is also worth noting that in constraint models the presence of redundant

dependencies is not necessarily undesired. While the space of solutions remains the same,

more propagation might occur. Quite frequently, particular redundant dependencies are added

explicitly to improve the solving performance and then removed to not affect the evolution of

the model, as presented in (Borrett & Tsang 2001). In order to detect redundant dependencies

in a PLM this thesis proposes an operation that takes a PLM and a constraint (and its

87

negation) as input and returns true if removing the constraint does not change the space of

solutions.

F. Non-redundant Dependencies

Definition: a redundant dependency is a dependency that does not reduce the semantics of

a PLM. In other words, the collection of products that can be generated with or without

the constraint are identical. It is worth noting that redundancy is not a bijection as a

dependency can in fact be subsumed by the conjunction of several other dependencies.

The following formalization corresponds to the redundantDependency function that

returns true if the dependency D is redundant and false otherwise.

Formalization: redundancyDependency(D) ≙ dependency(D) ⋀

(semanticOf(isPLMofDependency(D)) =

semanticOf(eraseOneDependency(isPLMofDependency(D), D))

Example: In Figure 3.5, the dependency Shell requires Executing Instructions

and the constraint Shell requires Interpreting Instructions are both redundant

due to the fact that features Executing Instructions and Interpreting

Instructions are included in all products and therefore they do not need to be included

by the feature Shell in order to be included in a particular product.

4.3 Multi-model Verification Criteria

Representing a PL with several models permits tackling various aspects of the product line.

This happens in particular, in the presence of multiple stakeholders with various viewpoints

(executives, developers, distributors, marketing, architects, testers, etc.; cf. Nuseibeh et al.

1994). For example, a UNIX product line can be composed of several models, each one

developed by a different team or developing a particular view of the PL. Thus, while the team

responsible for the kernel develops a model, the team responsible of the user interface

develops another model. Motivated by the fact that (a) this practice is current in industry

(Dhungana et al. 2010); (b) even if each individual model is consistent, once the models are

integrated, they can be inconsistent; and (c) current state of the art lacks proposals for multi-

model PL verification; this thesis proposes a method to verify multi-model PLs. Overall, the

approach is to integrate the models after having transformed them into a CP. The proposed

method is composed of three steps: (i) the base models are transformed into constraint

programs that grasp their semantics; (ii) the resulting CPs are integrated using a series of

88

different integration strategies and rules according to each language; and (iii) the collection of

verification criteria, initially proposed in this thesis for standalone models, are applied on the

integrated model in the same way as for standalone PLMs. From the point of view of

integration, it is worth noting that the case where the models come from different metamodels

was not considered in this thesis and instead, proposed as future work. The multi-model

verification approach is further explained in Chapter 7.

4.4 Summary

In order to verify models against the verification criteria classified in the typology presented

in this chapter, it is necessary to represent PLMs in an expressive-enough language to

represent both the semantics and the syntax of PLMs. Experience shows that the semantics of

PLMs can be represented as a collection of variables over different domains and constrains

among these variables. While the variables specify what can vary from a configuration to

another one, constraints expressed under the form of restrictions specify what combinations

of values are permitted in the products. This approach extends to the structure of a PLM,

which can be represented as a collection of logic facts with the elements of each PLM and a

collection of relationships among them to represent abstract syntax of the particular model.

The typology of verification criteria emphasizes the difference between domain-

specific and conformance defects. In the case of domain-specific verification, the defects are

associated with non-expressiveness, errors, inconsistencies and redundancies. In the case of

conformance checking, the purpose is to verify if the abstract syntax of a model is correct

with regards to the corresponding metamodel. Once the abstract syntax of the PLM is

translated into a constraint logic program, users can verify it against a collection of

conformance criteria. These criteria are generic due to the fact that they are derived from a

generic PL metamodel; then, they could be adapted to the particular metamodel at hand. For

example, if the metamodel specifies that PLMs can have only one root artefact, the user can

propose a conformance checking rule for this criterion. The implementation and evaluation of

the PLM verification approach presented in this chapter is presented in the remaining

chapters of this thesis.

89

Chapter 5

Conformance Checking of Product Line Models

In general, conformance checking, cf. Definition 1.5, is a kind of consistency checking

focused on verification of a model (a product line model in our case) against a collection of

conformance criteria generated from the corresponding metamodel. The difference between

conformance checking and consistency checking is that consistency checking consists of

“analyzing models to identify unwanted configurations defined by the inconsistency rules”

(Cabot & Teniente 2006), whereas conformance checking focuses on the verification of the

PLM itself and not on its potential configurations. The choice to deal with conformance

checking instead of consistency checking is supported by the fact that this thesis exclusively

focuses on verification of PLMs in the domain engineering stage (cf. Definition 1.1) and not

on finding inconsistent configurations.

Another issue in the context of product lines is that product verification should be

achieved at the level of product line models first. Indeed, product models are not instantiated

from their meta-models, but by configuration of PLMs. The assumption is that any product

model configured from a correct PLM is itself correct. On the semantic level, a product line

model is defined as the collection of all the product models that can be derived from it.

Therefore checking the conformance of the product line model is equivalent to checking the

conformance of all the possible product models (Djebbi & Salinesi 2007). However, we

would like to avoid verifying all the product models because of a scalability issue: their

number can be simply too high (Mendonça et al. 2009). The naïve approach that consists of

achieving product model verification by checking their conformance with the product line

meta-model is also not scalable to real world constraints: one does not want to deal at the

application engineering stage with errors that should have been detected during domain

engineering.

This chapter is structured as follows. Section 5.1 presents a generic approach to check

conformance of product line models, based in a generic product line metamodel. The generic

approach is based in a collection of verification criteria classified in the ontology of

verification criteria presented in the previous chapter. For each conformance checking

90

criterion, Section 5.1 provides an explanation with regards to the generic product line

metamodel and an algorithm to implement each criterion. Section 5.2 presents the

conformance checking approach applied to a particular formalism: feature models. This

specific approach specialises the generic conformance checking criteria presented in Section

5.1 to the feature model metamodel. Other criteria are particular to the FM metamodel and

therefore they are not present in the ontology of generic verification criteria. For each FM

conformance checking criteria, an explanation with regards to the FM metamodel, an

algorithm in pseudo-code, and its implementation in CP, is provided. Section 5.3 summarises

the chapter.

5.1 Generic Conformance Criteria for Product Lines

Models

The approach proposed in this thesis to check the conformance of PLMs exploits (i) a

collection of generic conformance criteria, as presented in Chapter 4, and (ii) a collection of

specific conformance criteria.

The generic conformance criteria are the ones generated from the generic product line

metamodel presented in Chapter 4 (cf. Figure 4.2).

The specific conformance criteria are directly related to specific aspects of each

metamodel, i.e. aspects that are not grasped by the generic metamodel. For instance, the FM

metamodel, presented in Figure 3.4, contains the notion of mandatory dependency. This

concept is not handled in the generic metamodel of Figure 4.2. It is therefore a specific

concept that requires specific verification criteria.

This section focuses on the generic conformance checking criteria highlighted in Figure

5.1. For each one of these generic conformance checking criteria, an algorithm is proposed. It

is worth noting that even if the conformance checking criteria are generic, they should be

adapted to each particular metamodel. Therefore the implementation of each criterion should

be specialized for each particular metamodel too. For instance, the generic criterion “Root

uniqueness/multiplicity”, which specifies that a PLM is composed of one or several root

artefacts, uses the concepts and constraints of the generic PL metamodel (cf. Figure 4.2). The

FM criterion “root uniqueness”, which specifies that a feature model is composed of one and

only one root feature, uses the concepts and constraints of the FM metamodel used in this

thesis (cf. Figure 3.4). As this example shows, there are no contradictions between both

criteria. Instead, the specific criterion is a particular instance of the generic criterion. In this

91

case, the specific conformance criterion uses the concepts and constraints of the FM

metamodel instead of the ones of the generic PL metamodel. Defining this criterion can be

simply done by specializing the concepts of the generic criterion:

Product Line Model Feature Model,

artefact feature,

root artefact root feature.

Figure 5.1. Generic conformance checking criteria

CC.1. Root uniqueness/multiplicity

This conformance checking criterion is highlighted in Figure 5.2, over the generic PLM

metamodel presented above in Figure 4.2. This criterion specifies that a PLM is composed of one or

several root artefacts.

PLM Correctness

1. Conformance checking criteria

2.2 Error-free

2. Domain-specific criteria

2.1 Expressiveness

2.3 Redundancy-free

Non-void Non-false

Attainable
domains

Non-dead
artefacts

Non-false
optional
artefacts

Non-
redundant

dependencies

Root uniqueness/
multiplicity

Reusable elements
uniqueness/
multiplicity Non-overlap of

the artefacts
Dependency
completeness

Properties
belonging to a
single reusable

element

Non-overlap of
the properties that

belong to the
same reusable

element

Association of individual
cardinalities to artefacts

Optional
dependencies in

group cardinalities

92

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Figure 5.2. CC.1 highlighted in the generic PLM metamodel.

Algorithm: The algorithm that implements this conformance criterion looks for root artefacts

in the PLM. Then, each root artefact found is kept in a list. Once all the artefacts of the PLM

are evaluated, the algorithm computes the number of elements in the list. If this number is

equal to 0, a conformance defect is raised. The algorithm of this conformance criterion is

specified as follows.

 For each productLineModel M
 {

RootArtefactList ='';
For each root artefact RA
{

RootArtefactList += RA;
}
N = length(RootArtefactList);
If (N = 0)
{

return 'defect found in model:' M;
}

}

A more interesting problem consists of determining the root artefacts among the

collection of artefacts of the product line model when the type of the root artefacts is not

known in advance. However, the root artefacts in the product line modelling formalism

referenced in this thesis uses a particular tag to indicate that an artefact is a root artefact, for

instance: in the Dopler formalism, even if the root concept does not exist in the Dopler

93

metamodel (cf. Figure 3.7), the visibility condition of certain decisions is set to true to

indicate that the decision is a root decision. In feature models the root concept is explicitly

presented in the FM metamodel (cf. Figure 3.4) and therefore the concept should be explicit

in the FMs. For this reason, the algorithm searches for the root artefacts assuming that there

are some criteria to define if the artefact is root or not.

CC.2. Reusable elements uniqueness/multiplicity

This conformance checking criterion is highlighted in Figure 5.3, over the generic PLM

metamodel shown in Figure 4.2. This criterion specifies that a PLM is composed of one or several

reusable elements.

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Figure 5.3. CC.2 highlighted in the generic PLM metamodel.

Algorithm: this algorithm looks for at least one reusable element. Once a reusable element is

found, the algorithm breaks. The break is because of the first reusable element is found and

therefore there is no conformance violation in the model at hand regarding this conformance

criterion. If no reusable element is found in the model, the algorithm shows a conformance

violation to the user.

For each productLineModel M
 {

fly = false;
For (each reusableElement R) {

 fly = true;
 break;

94

}
If (fly = false) {

returns ‘defect found in model:’ M;
}

}

The break avoids useless computations when a first reusable element is found in a given

model. If no reusable elements are found in a given model, the variable fly keeps its value

false and therefore at the end of each model the algorithm evaluates the value of this variable

and if the value is false violation of this conformance criterion is signalled to the user.

CC.3. Non-overlap of the artefacts that belong to the same model

This conformance checking criterion is highlighted in Figure 5.4, over the generic PLM

metamodel of Figure 4.2. This conformance criterion specifies that each artefact has a unique name in

the model to which the artefact belongs. However, another PLM can have another artefact with the

same name.

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Figure 5.4. CC.3 highlighted in the generic PLM metamodel.

Algorithm: The algorithm for this conformance criterion looks for pairs of different artefacts

that share the same name. Each time the algorithm identifies a pair of artefacts with the same

name, it returns to the user the identifiers and the name of both artefacts, and the model in

which the defect was found. The algorithm is as follows:

95

For each productLineModel M
 {

For (each artefact A1)
{

 If (there is an artefact A2 and A1≠A2 and A1.Name=A2.Name)
 {
 Return (A1, A2, Name, M);

}
}

}

Several algorithms are proposed in literature in order to detect overlaps (i.e., variables

that belong to a same model and sharing the same name). Several of these proposals are: (i)

unification algorithms (Knight 1989), where the unification algorithm performs a systematic

matching between the terms that they are given to unify. (ii) Shared anthologies, where

authors of the models should tag the elements with items in a shared ontology. The tag of a

model element is taken to denote its interpretation in the domain described by the ontology

and therefore it is used to identify overlaps between elements of different models. A total

overlap in this approach is assumed when two model elements are "tagged" with the same

item in the ontology (Leite & Freeman 1991, Robinson 1994, Robinson & Fickas 1994,

Boehm & In 1996). (iii) Similar analysis, which is an “approach that exploits the fact that

modelling languages incorporate constructs which imply or strongly suggest the existence of

overlap relations. For instance, the "Is-a" relation in various object-oriented modelling

languages is a statement of either an inclusive overlap or a total overlap” (Spanoudakis &

Zisman 2001). Due to the fact that the aforepresented algorithm looks for overlapping in each PLM,

the more inexpensive way to detect them is by unification of artefacts’ names.

CC.4. Dependency completeness

This conformance checking criterion is highlighted in Figure 5.5, over the generic PLM

metamodel of Figure 4.2. This conformance criterion makes reference to the fact that each

dependency relates two or several artefacts.

96

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*

2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Figure 5.5. CC.4 highlighted in the generic PLM metamodel.

Algorithm: The algorithm corresponding to this conformance criterion looks for a

dependency (i.e., optional or mandatory or requires or excludes) between two identical

artefacts. If such a situation is met, the artefact, its name and the PLM in which the defect

was found are returned. The algorithm to check this non-conform situation is presented as

follows:

For each productLineModel M
 {

For (each artefact A)
{
 If (there is a dependency D between A and A)
 {
 Return (A, A.Name, M);

}
}

}

This algorithm searches for wrong dependencies, i.e. dependencies that do not respect this

conformance criterion and therefore relate the same artefact. This algorithm evaluates if there

are dependencies among the same artefact. If some of these dependencies are found, the

elements intervening in the non-conformance are returned.

CC.5. Properties belonging to a single reusable element

This conformance checking criterion is highlighted in Figure 5.6, over the generic PLM

metamodel of Figure 4.2 This criterion refers to the fact that a property belongs to one and only

one reusable element.

97

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Figure 5.6. CC.5 highlighted in the generic PLM metamodel.

Algorithm: The algorithm that implements this conformance criterion looks for property

elements in the PLM. For each property, the algorithm puts into a list the reusable elements to

which the property is related. Once all the property elements of the PLM are evaluated, the

algorithm computes the number of elements in the list. If this number is different to 1, a non-

conformant situation regarding this conformance criterion is identified. For each non-

conformance detected in the model at hand, the list of reusable elements implied in the defect

is returned.

For each productLineModel M
 {

ReusableElementsList ='';
For each property P
{

reusableElement RE;
If (belongs_to(RE, P))
{

ReusableElementsList += RE;
}

}
N = length(ReusableElementsList);

If (N ≠ 1)
{

return ReusableElementsList;
}

}

98

For each product line model, this algorithm looks for properties instead of reusable

elements. This decision avoids the evaluation of reusable elements without artefacts, which

improves significantly the performance of the algorithm in product line models where only

few reusable elements have properties. If the model contains many properties, the

performance of the algorithm is in the worst of the cases, similar to the equivalent algorithm

that navigates through the reusable elements and of each one of them searches if there are

properties that belongs at the same time to other reusable element.

CC.6. Non-overlap of the properties that belong to the same reusable element

This conformance checking criterion is highlighted in Figure 5.7, over the generic PLM

metamodel of Figure 4.2. This criterion specifies that properties of the same reusable elements

cannot have the same name.

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Figure 5.7. CC.6 highlighted in the generic PLM metamodel.

Algorithm: The algorithm looks for artefacts with properties. Once an artefact with properties

is found, the algorithm looks for two different properties that share the same name. Each time

that a couple of different properties with the same name is found, the artefact to which they

belong to and the couple of properties are returned to the user. So on, the algorithm

recursively evaluates the other artefacts of the model, as follows.

For each productLineModel M
 {

99

For (each reusableElement E)
{

If (E has properties LProp)
{

 For (each {Prop1, Prop2} of LProp)
 {

 If ((Prop1 ≠ Prop2) and (Prop1.Name = Prop2.Name))
 {
 Return (Prop1, Prop2, E, M);
 }
 }

}
}

}

This algorithm can also be implemented by means of the overlap detection techniques

discussed in the conformance checking rule 3 (CC.3) and an extra constraint to guarantee that

the two elements under comparison are effectively different one each other. The

computational complexity of the implementation will depend on the technique used to find

the overlaps.

CC.7. Association of individual cardinalities to artefacts

This conformance checking criterion is highlighted in Figure 5.8, over the generic PLM

metamodel of Figure 4.2. This criterion specifies that an individual cardinality should be associated to

one and only one artefact.

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Min

Max

Figure 5.8. CC.7 highlighted in the generic PLM metamodel.

100

Algorithm: The algorithm looks for individual cardinalities in each PLM. For each one of the

individual cardinalities, the algorithm puts into a list the artefacts to which the individual

cardinality is related. Once all the individual cardinalities of the PLM are evaluated, the

algorithm computes the number of elements in the list. If this number is different to 1, one

conformance violation regarding this conformance criterion over the model at hand is

identified and the list of artefacts is returned to the user. The corresponding algorithm of this

conformance criterion is presented as follows.

For each productLineModel M
 {

ArtefactList ='';
For each indivualCardinality I
{

If (I is associated to an artefact A)
{

ArtefactList += A;
}

}
N = length(ArtefactList);

If (N ≠ 1)
{

return (ArtefactList, M);
}

}

This algorithm searches at first for the individual cardinalities and then, it evaluates if the

individual cardinality at hand is associated to more than one artefact. It is worth noting that

the algorithm avoids useless evaluations (i.e., evaluation of artefacts without individual

cardinalities).

CC.8. Optional dependencies in group cardinalities

This conformance checking criterion is highlighted in Figure 5.9, over the generic PLM

metamodel of Figure 4.2. This criterion specifies that a group cardinality should group two or more

optional dependencies.

101

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

Figure 5.9. CC.8 highlighted in the generic PLM metamodel.

Algorithm: The algorithm looks for group cardinalities with only one dependency. This

algorithm navigates through the group cardinalities of the PLM and for each one of them,

evaluates the number of dependencies belonging to the group cardinality. If this number is

equal to one, the algorithm returns the group cardinality and the model to which it belongs to,

as follows.

For each productLineModel M
 {

For each groupCardinality GC
{

 If (GC only contains one dependency)
 {
 return (GC, M);

}
}

}

This algorithm searches for the group cardinalities instead of optional dependencies,

based on the fact that in product line models there are fewer group cardinalities than optional

dependencies. This decision improves the execution time of the implementation avoiding

useless evaluations (evaluation of optional dependencies not associated in a group

cardinality).

102

5.2 The Case of Feature Models

This section presents the application of the aforementioned generic conformance checking

criteria, in the case of FMs and the implementation of these criteria according to the FM

metamodel depicted in Figure 3.4.

The purpose of this section is to show how a collection of conformance criteria (among

which several were adapted from the generic criteria, and others are specific as the deltas of

the FM metamodel with reference to the generic PL metamodel) can be extracted from the

FM metamodel and checked automatically. In this manner, one can extend the conformance

checking criteria according to particular requirements and depending on the metamodel at

hand. The implementation of each verification criterion is a verification rule (cf. Definition

1.6). Rules implementing FM conformance criteria can be seen as a queries that will be

executed over a FM represented as a CLP (cf. Chapter 3). If the rule is evaluated to true in a

model, its output is a set of elements that make true the evaluation of the rule. Note that in

each algorithm there are only instantiated the elements that need to be analyzed to evaluate

the corresponding rule, and each time that a case where the conformance rule is evaluated

true, the elements participating in the case are signalled to the user. Therefore, the approach

proposed in this thesis identifies not just the presence of conformance violations but also

theirs sources.

The following concepts of the FM metamodel are specializations of the concepts

presented in the generic metamodel (cf. Figure 4.2):

Product Line Model Feature Model,

artefact reusableElement feature,

dependency reusableElement dependency,

property attribute,

root artefact root feature,

individualCardinality featureCardinality,

optional dependency optional dependency, and

groupCardinality groupCardinality.

All the other concepts of the FM metamodel are specific to the FM formalism.

FM CC. Criterion 1. A feature model should have one and only one root

As defined by Kang et al. (1990), Griss et al. (1998), Matthias et al. (2002) and Czarnecki et

al. (2005), we consider that a FM should have only one root feature.

103

The application of this criterion has for consequence that when someone makes several

feature models for the different aspects of a same PL, the collection of feature models is

integrated with a single root representing the different aspects of the PL. In Figure 5.10, this

criterion is highlighted over the FM metamodel presented in Figure 3.4. Figure 5.10 depicts

the fact that a FM is composed of one and only one root feature and that the root is a kind of

feature. Thus, it is possible to find the elements that do not respect this conformance criterion.

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*

1

0..*

1

2..*
1..*

2..*

0..1

{complete, disjoint}

Name : {unique}

featureCardinality

Min

Max

0..1
1

from

dependency
0..*to

Figure 5.10. FM CC criterion 1 on the FM metamodel

Algorithm: The algorithm that implements this conformance criterion for FMs looks for root

features in the FMs; then, each root feature found is kept in a list. Once all the root features of

the FM at hand are evaluated, the algorithm computes the number of elements in the list. If

this number of different to 1, one defect regarding to this conformance criterion over the

model at hand is identified and the list of root features is returned to the user. The algorithm

is thus as follows.

RootFeatureList ='';
For each root feature RF
{

RootFeatureList += RF;
}
N = length(RootFeatureList);

If (N ≠ 1)
{

return RootFeatureList
}

104

Implementation: This algorithm is implemented in GNU Prolog as a constraint logic program

query as follows:

(1) conformance_rule_1(LRootId) :-

(2) findall(FeatureId, root(FeatureId), LRootId),

(3) length(LRootId, N),

(4) N \== 1.

Line 1 uses one output variable to return the list of identifiers of the FM only if the

number of elements of the list is different to one. The GNU Prolog built-in predicate

findall(FeatureId, root(FeatureId), LRootId) returns a list LRootId with all values

for the identifiers of features FeatureId corresponding to the identifier of a root feature

root(FeatureId). Then, the GNU Prolog built-in predicate length(LRootId, N)

calculates the length of the list returned by the predicate of line 2 and gives the result in the

variable N , which is constrained to be different to 1 (line 4) before return the result LRootId

in line 1.

FM CC. Criterion 2. Features intervening in a group cardinality relationship

should not be mandatory features

According to Definition 3.8, a group cardinality dependency is about the selection of a certain

number of features among a given set. In this selection, each feature should have the same

possibility to be chosen as the others. In this case, all the child features participating in a

group cardinality should be optional features. We consider this conformance criterion,

initially proposed by Czarnecki et al. (2005), as a good practice to avoid errors and

redundancies. Conversely, the application of this criterion does not have any negative

consequence over the group cardinality specification since it is enough to reduce in one the

boundaries of the group cardinality when a mandatory feature is erased from the

specification. Figure 5.11 highlights this criterion over the FM metamodel presented in

Figure 3.4. Figure 5.11 depicts the fact that two or several optional dependencies can or

cannot participate in a group cardinality. Likewise, an optional dependency relates two

features, where, by definition (cf. Kang et al. 1990), the last one is considered as optional

feature.

105

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*

1

0..*

1

2..*
1..*

2..*

0..1

{complete, disjoint}

Name : {unique}

featureCardinality

Min

Max

0..1
1

from

dependency
0..*to

Figure 5.11. FM CC Criterion 2 on the FM metamodel

Algorithm: The algorithm that corresponds to this conformance criterion looks for mandatory

dependencies participating in group cardinalities. This algorithm instantiates the group

cardinalities of the FM and for each one of them, evaluates if the dependency is optional or

not. Then, the algorithm returns each mandatory dependency found in the precedent stage, as

follows.

For each groupCardinality
{
 If (groupCardinality contains a mandatory dependency MD)

{
 Returns MD

}
}

Implementation: This algorithm is implemented as a constraint logic program query as

follows:

(1) conformance_rule_2(DepId, FeatureId) :-

(2) groupCardinality(LDepId, _, _),

(3) member(DepId, LDepId),

(4) dependency(DepId, _, FeatureId, mandatory).

Line 1 uses two output variables to return the identifiers of a dependency and its

associated mandatory child feature involved in a group cardinality. The detection of

inconsistencies consists of looking for mandatory dependencies (line 4) among the

dependencies that belong to a group cardinality (line 2). The built-in predicate of line 2

106

(member(DepId, LDepId)) takes, each time that the predicate is called, the last element

(DepId) from a list of elements (LDepId).

FM CC. Criterion 3. A feature should not have two attributes with the same

name

The attributes of the product line model should not only be uniquely identified but also they

should have different names to avoid redundancies and management issues in a PLM

evolution process. In the running example depicted in Figure 3.5, feature Graphical has two

attributes but they are not violating this conformance criterion because its two attributes have

different names (WidthResolution, HeightResolution). The other way round, two

different features may have attributes with the same name without this conformance criterion

be violated. Figure 5.12 highlights this conformance criterion over the FM metamodel

presented in Figure 3.4. Figure 5.12 depicts the fact that a feature may have zero or several

attributes and that each attribute should have a unique name.

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*

1

0..*

1

2..*
1..*

2..*

0..1

{complete, disjoint}

Name : {unique}

featureCardinality

Min

Max

0..1
1

from

dependency
0..*to

Figure 5.12. FM CC Criterion 3 on the FM metamodel

Algorithm: The algorithm that corresponds to this conformance criterion looks for features

with attributes. Once a feature with attributes is found, the algorithm looks for two different

attributes sharing the same name. Each time a couple of different attributes with the same

name is found, the feature to which they belong to and the couple of attributes is returned to

the user. Thus, the algorithm iteratively evaluates the other features of the model, as follows.

107

For (each feature F)
{

If (F has attributes LAtt)
{

 For (each {Att1, Att2} of LAtt)
 {

 If ((Att1 ≠ Att2) and (Att1.Name = Att2.Name))
 {
 Return (Att1, Att2, F)
 }
 }
}

}

Implementation: This algorithm is implemented by means of the next constraint logic

program query, which searches for two different attributes, of the same feature, with the same

name.

(1) conformance_rule_3(FeatureName,AttId1,AttId2,AttName) :-

(2) feature(_, FeatureName, LAttId),

(3) choose(LAttId, AttId1, LAttId1),

(4) member(AttId2, LAttId1),

(5) AttId1 \== AttId2,

(6) attribute(AttId1, AttName, _),

(7) attribute(AttId2, AttName, _).

Line 1 uses four output variables to return the name of the feature that has the repeated

attributes, their two identifiers and the name of the repeated attributes, if any feature where

these characteristics exists. These variables will take the values of one feature where two of

its attributes have the same name. Usually in CLP other solutions can be obtained thanks to

the underlying non-determinism mechanism. The source of non-determinism stands in line 2

that chooses one feature, line 3 that chooses an attribute associated with the feature at hand

and line 4 that chooses a second attribute of the feature. Then, line 5 constraints the fact that

both features must be different and lines 6 and 7 constraint the fact that the two attributes

must have the same name. It is worth noting the declarative formulation of this conformance

rule and the fact that we only use relevant elements for the conformance criterion. In this rule

we are interested in comparing attributes of a same feature. Therefore, we only consider

features with a list of attributes (LAttId) and do not use dependencies or cardinalities

because they are not relevant for this criterion. The research strategy we use in each

conformance rule is exhaustive because we do not avoid evaluating any case even if in our

research we only consider elements relevant to the scope of each conformance criterion.

108

FM CC. Criterion 4. Two features should not have the same name, in the same

model

The fact that several features share the same name can generate ambiguity problems in

product configuration and maintenance stages. In none of the models of our running example

(cf. Figure 3.5 and 3.6) have the same names been used for different features in the same

view. There are some features with the same name (e.g., Shell, UserInterface and

Graphical) but these are in different models. This criterion does not apply in this case as it

only considers one model at time as specified with the “Feature Model” entity. Figure 5.13

highlights this conformance criterion in the FM metamodel.

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*

1

0..*

1

2..*
1..*

2..*

0..1

{complete, disjoint}

Name : {unique}

featureCardinality

Min

Max

0..1
1

from

dependency
0..*to

Figure 5.13. FM CC Criterion 4 on the FM metamodel

Algorithm: The algorithm that corresponds to this conformance criterion looks for features

that although different from each other, share the same name. Once these features are

identified, the algorithm returns the identifiers of both features and the corresponding name to

the user. The algorithm is as follows:

For (each feature F1)
{

 If (there is another feature F2 and F1≠F2 and F1.Name=F2.Name)
 {
 Return (F1, F2, Name)

}
}

Implementation: This algorithm is implemented as follows.

(1) conformance_rule_4(FeatureId1, FeatureId2, FeatureName) :-

(2) findall(FName-FId, feature(FId, FName,_), LNameId),

109

(3) keysort(LNameId ,LNameId1),

(4) append(_,[FeatureName-FeatureId1, FeatureName-FeatureId2|_],

 LNameId1).

Line 1 uses three output variables to return the identifiers and the name of the pairs of

different features that have the same name. The GNU Prolog built-in predicate

findall(FName-FId, feature(FId, FName,_), LNameId) returns a list LNameId with all

values for the pair of values FName-FId corresponding to the name and identifier of a same

feature; i.e., that satisfied the predicate feature(FId, FName,_). Then, the GNU Prolog

built-in predicate keysort sorts the list LNameId (and puts the result in LNameId1) according

to the names of the features in the list. This way, if there are two features with the same

name, they are together in the list. Line 4 uses the GNU Prolog built-in predicate append to

search for two consecutive elements with the same name under the list LNameId1 obtained

from the line 3.

FM CC. Criterion 5. A child feature cannot be related in an optional and a

mandatory dependency at the same time

When a feature is involved as a child in an optional/mandatory relationship, this feature is

also referred to as optional/mandatory. By definition 3.5, a feature that is optional cannot be

mandatory at the same time and vice versa. In the metamodel, optional and mandatory are

complete and disjoint dependencies. This conformance criterion covers two cases. In the first

case, it evaluates if a feature is constrained two times by the same father by means of an

optional dependency and a mandatory dependency. In the second case, it evaluates if a

feature is mandatory towards one parent and optional towards another one, directly or

indirectly (through other features). Figure 5.14 highlights this conformance criterion in the

FM metamodel.

110

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*

1

0..*

1

2..*
1..*

2..*

0..1

{complete, disjoint}

Name : {unique}

featureCardinality

Min

Max

0..1
1

from

dependency
0..*to

Figure 5.14. FM CC criterion 5 on the FM metamodel

Algorithm: The algorithm corresponding to this conformance criterion takes the collection of

mandatory dependencies between features F1 (father) and F2 (child) and then looks for an

optional dependency in which F2 is again the child feature. If such cases are identified in the

FM, the dependencies and the child feature are returned to the user. The corresponding

algorithm is as follows:

For (each mandatory dependency D1 between features F1 and F2, in this
order)

{
 If (there is an optional dependency D2 between features F3 and

F2, in this order)
 {
 Return (D1, D2, F2)

}
}

Implementation: This algorithm is implemented as a constraint logic program query. This

program looks for features constrained at the same time by an optional and a mandatory

dependency.

(1) conformance_rule_5(FeatureId, DepId1, DepId2) :-

(2) bagof(TypeId-DepId, FId0^dependency(DepId, FId0, FeatureId,

 TypeId), L),

(3) % member(mandatory-DepId1, L), member(optional-DepId2,L).

(4) once((member(mandatory-DepId1, L), member(optional-DepId2, L))).

Line 1 uses three output variables to return the identifiers of the feature and its associated

dependencies that violate the conformance criterion. Then, the GNU Prolog built-in predicate

111

bagof groups by the variable FId0 (initial FeatureId) all the dependencies in which a given

feature is involved. For each FeatureId (by backtracking) this predicate returns a list L

consisting on elements of the form TypeId-DepId associated with each particular

FeatureId. Once this list is ready, the GNU Prolog built-in predicate once searches both a

mandatory and an optional dependency in each member of L. Thus, if this predicate finds

some results, then this means that a particular feature is involved in a mandatory and an

optional relationship at the same time. By means of the backtracking mechanism, another

group of TypeId-DepId, for other FeatureId is tested until the latest feature. Line 3 is

commented and can be used if we want all possibilities for a same FeatureId.

FM CC. Criterion 6. Two features cannot be required and mutually excluded at

the same time

If two features are related in requires and excludes relationships, the model is not-conform to

the FM metamodel (cf. Figure 3.4). This conformance criterion is applicable in the cases in

which features are related directly (i.e., F1 requires F2 and F1 excludes F2) and transitively

(i.e., F1 requires F2, F2 requires F3 and, F1 excludes F3) in mutual exclusion and

requirement. Figure 5.15 highlights this conformance criterion in the FM metamodel.

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*

1

0..*

1

2..*
1..*

2..*

0..1

{complete, disjoint}

Name : {unique}

featureCardinality

Min

Max

0..1
1

from

dependency
0..*to

Figure 5.15. FM CC criterion 6 on the FM metamodel

Algorithm: The algorithm that corresponds to this conformance criterion takes the collection

of requires dependencies between features F1 (requiring) and F2 (required) and then looks for

112

an exclusion dependency between these two features. If such cases are identified in the FM,

the features are returned to the user. The corresponding algorithm is as follows:

For (each requires dependency D1 between features F1 and F2)
{
 If (there is an excludes dependency D2 between F1 and F2)
 {
 Return (F1, F2)

}
}

It is worth noting that this algorithm does not consider the case in which features are

related transitively (i.e., F1 requires F2, F2 requires F3 and, F1 excludes F3) in mutual

exclusion and requires due to the fact that this case does not corresponds to a conformance

checking criterion but to a semantic criterion. The conformance criteria are directly deduced

from the metamodel at hand, and in the case of FM metamodel, requires and mandatory

dependencies relate two features. The case of transitivity is treated as a domain-specific

criterion (cf. Chapter 6).

Implementation: This algorithm is implemented as a CLP query in the following manner:

(1) conformance_rule_6(FeatureName1, FeatureName2) :-
(2) dependency(_, A, B, requires),
(3) order2(A, B, A1, B1),
(4) dependency(_, A1, B1, excludes),
(5) feature(A, FeatureName1, _),
(6) feature(B, FeatureName2, _).
(7) order2(A, B, A, B) :-
(8) A @=< B, !.
(9) order2(A, B, B, A).

Line 1 uses two output variables to return the names of features that are required and

mutually excluded at the same time in a same model. Line 2 instantiates a requires-type

dependency between features A and B. In requires dependencies there is a predefined order

for the identifiers of both features involved in the dependency (i.e., if A requires B, the

identifier of A should be placed before the identifier of B). On the contrary, in the data

structure defined to represent exclusion dependencies there is no predefined order to arrange

the identifiers. In line 3, the identifiers of features that will be used to instantiate exclusion

dependencies are ordered. This order is necessary to optimize the execution time of the

conformance rule. Once the identifiers or both features involved in an exclusion dependency

are ordered (lines 7 to 9), line 4 instantiates an exclusion dependency with the order of values

A and B (named A1 and B1), which can also be used in line 2 to instantiate a requires

dependency.

113

FM CC. Criterion 7. Each dependency relates two or several different features

According to the FM metamodel shown in Figure 3.4 every dependency should be set

between two different features. Figure 5.16 highlights this conformance criterion in the FM

metamodel.

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*

1

0..*

1

2..*
1..*

2..*

0..1

{complete, disjoint}

Name : {unique}

featureCardinality

Min

Max

0..1
1

from

dependency
0..*to

Figure 5.16. FM CC criterion 7 on the FM metamodel

Algorithm: The algorithm that implements this FM conformance criterion looks for a

dependency (i.e. optional or mandatory or requires or excludes) between two identical

features. If such a situation is found, the feature and its name are returned to the user. The

algorithm is as follows:

For (each feature F)
{

 If (there is an optional or mandatory or requires or excludes
dependency D between F and F)

 {
 Return (F, F.Name)

}
}

Implementation: This algorithm is implemented as a constraint logic program query in the

following manner:

(1) conformance_rule_7(FeaId, FeaName) :-

(2) (dependency(_, FeaId, FeaId, optional) ; dependency(_, FeaId,

FeaId, mandatory) ; dependency(_, FeaId, FeaId, excludes) ;

dependency(_, FeaId, FeaId, includes)),

(3) feature(FeaId, FeaName, _).

Line 1 is the clause that corresponds to this FM conformance criterion and returns to the

user the identification and the name of each feature that includes or excludes itself. In line 2

114

an optional or mandatory or requires or excludes dependency between the feature (FeaId)

and itself (FeaId) is instantiated. At line 3 FeaId is used in order to instantiate a feature and

save its name in the variable FeaName.

5.3 Summary

In the case of conformance checking, the purpose is to verify if the abstract syntax of a model

is correct with regards to the corresponding metamodel. Once a PLMs’ abstract syntax is

transformed into constraint logic programming, users can verify them against conformance

criteria derived from the corresponding meta-models (Mazo et al. 2011b).

Even if the approach presented in this chapter is generic, the algorithms corresponding to

each criterion should be adapted to the specific concepts and constraints of the metamodel at

hand. Besides, there will be several concepts and constraints in each specific metamodel that

are not included in the generic metamodel and therefore new conformance criteria for these

concepts and constraints should be defined by the engineer.

To summarize, this chapter proposes a generic conformance checker that uses

parameterizable criteria to detect non-conformance on product line models. This generic

conformance checking approach can be adapted to specific product line formalisms by (i)

means of specialization of the generic criteria, and (ii) implementation of the specific deltas

(deltas are concepts of the specific metamodels not considered in the generic metamodel). In

addition to this contribution, the generic algorithms can be implemented in different ways, we

proposed in this chapter its implementation in constraint programming using the GNU Prolog

language (Diaz & Codognet 2001).

115

Chapter 6

Domain-specific Verification of Product Line

Models

Looking for undesirable properties in PLMs is not a new subject and several works exist in

the literature (Von der Maßen & Lichter 2004, Batory 2005, Benavides et al. 2005, Lauenroth

& Pohl 2007, Trinidad et al. 2008, Mendonça et al. 2009). These works, among others, agree

with the fact that verification of PLMs consists of “finding undesirable properties, such as

redundant or contradictory information” (Trinidad et al. 2008). The approach presented in

this thesis classifies these undesirable properties in several sub-categories. As the typology

presented in Chapter 4 shows, these properties can be grouped in the class of domain-specific

verification criteria, under three categories: expressiveness, error-free and redundancy-free.

The expressiveness category intends to verify if PLMs are really PLMs. This is probably

the most important category due to the fact that a PLM that permits the configuration of no

products at all or permits the configuration of only one product is a useless model.

The error-free category is about the errors of the PLM, i.e. wrong representations of the

product line domain. This thesis identifies three types of errors widely studied in literature:

presence of domain values that cannot be attained (Trinidad et al. 2008), presence of useless

artefact (Von der Maßen & Lichter 2004, Trinidad et al. 2008, Van den Broek & Galvão

2009, Benavides et al. 2005, 2006, Elfaki et al. 2009) and presence of artefacts intended to

be optional but appearing in all the products of the PL (Von der Maßen & Lichter 2004,

Benavides et al. 2005, Trinidad et al. 2008). Even if the error criteria are not as crucial as the

expressiveness criteria, PLMs should be verified against them in order to identify and correct

all the errors before configuring any product. The longer an error goes unnoticed, the more

subsequent decisions and product configurations are based on it, and hence the more difficult

and expensive it will be to correct it (Boehm 1981).

The redundant-free category of verification criteria is about redundancies in PLMs.

Redundancies are not errors. However they are undesirable since they increase the

computational effort in configuration, analysis and configuration stages, and they undermine

the correct evolution of PLMs.

116

The domain-specific verification criteria considered in this thesis are highlighted in

Figure 6.1.

Figure 6.1. Domain-specific verification criteria

The rest of this chapter develops the domain-specific verification depicted in Figure 6.1.

For each criterion we present a generic algorithm, its application to our running example, its

comparison with other algorithms proposed in literature (if some exist) and the

implementation of the generic algorithm in java pseudo-code. It is worth noting that these

algorithms can also be presented as constraint programs. However, one of the aims of this

thesis is to propose optimized algorithms to implement each verification criterion. To this

end, we manipulate in java the CP queries and the answers obtained from the solver in order

to reuse these answers and avoid useless queries. We use java to implement certain

algorithms that are composed of several CP queries arranged in a given order, e.g. the

algorithm to check is composed of several CP queries that must be executed according to the

results obtained from the solver for each query. It is worth noting that even if the queries are

made in constraint programming, the traitement of the results of these queries are made in

java in order to reuse these results and avoid future useless queries.

PLM Correctness

1. Conformance checking criteria

2.2 Error-free

2. Domain-specific criteria

2.1 Expressiveness

2.3 Redundancy-free

Non-void Non-false

Attainable
domains

Non-dead
artefacts

Non-false
optional
artefacts

Non-
redundant

dependencies

Root uniqueness/
multiplicity

Reusable elements
uniqueness/
multiplicity

Non-overlap of
the artefacts Dependency

completeness

Properties
belonging to a
single reusable

element

Non-overlap of
the properties
that belong to

the same
reusable element

Association of individual
cardinalities to artefacts

Optional
dependencies in

group cardinalities

117

6.1 Non-void PLMs

A void PLM is defined as a model that does not permit the configuration of any product.

Algorithm:

The proposed approach determines if there is at least one product that can be generated by

means of a query to a CP solver. The model is passed to the solver, which is then

requested for a solution. If [V1, V2, ..., Vi] is the vector of variables in the CP

that implements the artefacts and properties of the PLM, then a solution is P1=[Vj1,

Vj2, ..., V
j
i] where Vjk is a possible value of Vk and all the values respects the

constraints of the PLM. If such a solution exists, the PLM is not void. The solver will

then return one valid product; false otherwise.

Void_PLM(PLM M, Solver S) {
Load the model M in the solver S;
Answer = S.getOneSolution();
If (Answer ≠ “false”) {

 Write (Answer);
}
Else {

 Write (“Void PLM”);
}

}

Application to the Running Example:

The application of this algorithm over the running example gives (within others) the

following product that can be configured from the FM of Figure 3.5.

P1 = [UNIX=1, Kernel=1, Scheduling=1, ExecutingInstructions=1,

InterpretingInstructions=1, AccomplishingTheTransferOfData=1,

AllocatingTheMachinesMemory=1, Shell=1, FileSystem=1, UserInterface=1,

Graphical=1, Process1=1, Process2=1, Process3=1, Process4=1, Process5=1,

WidthResolution=800, HeightResolution=600, Support_usb=0, Cdrom_atech=1,

Pcmacia_support=2].

An example of product that can be configured from the Dopler model of Figure 3.8 is:

P2 = [MeansOfInstallation=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1,

FileMaintenance=1, Editing=1, OnlineInfo=0, ProgrammingSupport=0,

Shell=1, GraphicalResolution=0, Width=0, Height=0, ATwm=0, A4dwm=0,

AMwm=0, AMotif=0, AKDE=0, AQt=0, AGNOME=0].

Therefore, both models are not void.

118

Discussion:

Two alternative techniques have been proposed so far to implement this operation: (i)

calculating the number of products (Van den Broek & Galvão 2009), and (ii) asking for a

product configuration that meets the constraints of a FM (Benavides et al. 2005, Trinidad

et al. 2008). The problem with the former approach is that it is unnecessarily

computational costly (if at all possible). Indeed, there is no need to compute all solutions

to prove that the model has at least one solution. The proposal of this thesis follows along

the lines of the latter alternative as presented above.

Implementation:

The Java pseudo-code and the queries to the GNU Prolog solver, corresponding to the

above algorithm are presented as follows:

(1) ConnectionProlog connection = new
ConnectionProlog("localhost",port);

(2) public String noVoid(String model, String listVariablesOfTheModel)
{

(3) String sol = connection.sendMessage("exec("+model+","+
listVariablesOfTheModel+").");

(4) if(sol.equals("false")){
(5) sol = "Void PLM");
(6) }
(7) return sol;
(8) }

Line 2 corresponds to the parameterizable function that automates the non-void

verification criterion. Line 3 executes in GNU Prolog the model at hand, and retrieves the

solution from the solver in the variable listVariablesOfTheModel, which is then

returned from the sendMessage function and saved into the variable sol. Line 7 returns

the solutions obtained from the solver, or the string “Void PLM” is there is no products

in the PLM at hand (model).

6.2 Non-false PLMs

A false PLM is defined as a model that permits the configuration of one product only.

Algorithm:

The approach proposed in this thesis asks the solver to generate two products in order to

decide if the PLM is false. The algorithm of our approach is as follows:

False_PLM(PLM M, Solver S) {
 Load the model M in the solver S;

Answer1 = S.getOneSolution();
If (Answer1 ≠ “false”) {

119

 Answer2 = S.getOneSolution();
If ((Answer1 ≠ Answer2) && (Answer2 ≠ “false”)) {

Write (Answer1, Answer2);
 }
 Else {

Write (“False PLM”);
}

}
Else {

Write (“False PLM”);
}

}

Application to the Running Example:

The application of this algorithm over the running example of Figure 3.5 gives two

products: P1 already presented in the previous section, and P3 = = [UNIX=1, Kernel=1,

Scheduling=1, ExecutingInstructions=1, InterpretingInstructions=1,

AccomplishingTheTransferOfData=1, AllocatingTheMachinesMemory=1,

Shell=1, FileSystem=1, UserInterface=0, Graphical=0, Process1=1,

Process2=1, Process3=1, Process4=1, Process5=1, WidthResolution=0,

HeightResolution=0, Support_usb=0, Cdrom_atech=1, Pcmacia_support=2].

In the same way, this algorithm applied over the Dopler model of the running example

(cf. Figure 3.8) gives two products: P2 already presented in the previous section and P4 =

[MeansOfInstallation=1, Cdrom=0, Usb=1, Net=0, UtilityProgram=1,

FileMaintenance=1, Editing=1, OnlineInfo=1, ProgrammingSupport=0,

Shell=1, GraphicalResolution=1, Width=800, Height=600, ATwm=1, A4dwm=0,

AMwm=0, AMotif=0, AKDE=1, AQt=1, AGNOME=0].

Discussion:

Although this operation could also help detecting when PLMs are void (our preceding

operation), the converse is not true. The two operations have then a separate

implementation.

Implementation:

The Java pseudo-code and queries to the GNU Prolog solver corresponding to the above

algorithm are presented as follows:

(1) ConnectionProlog connection = new
ConnectionProlog("localhost",port);

(2) public String FalsePLM(String model, String
listVariablesOfTheModel) {

(3) String sol1 = connection.sendMessage("exec("+model+","+
listVariablesOfTheModel+").");

(4) String result = "False PLM";
(5) if(!sol1.equals("false")){
(6) sol2 = nextSolution();
(7) if(!sol2.equals("false")){

120

(8) result = sol1 + sol2;
(9) }
(10) }
(11) return result;
(12) }
(13) public String nextSolution(){
(14) return connection.sendMessage("next.");
(15) }

Lines 2 to 12 represent the function to verify if the product line model model is false or

not. If the model allows generating two products (lines 3 and 6), both products are

returned to the user by means of the variable result (lines 8 and 11). If only one product

or no products can be generated from the PLM, the functions return “False PLM” (lines 4

and 11). Lines 13 to 15 represent the function to find the next product from the PLM.

6.3 Non-dead Artefacts

An artefact is dead if it cannot appear in any product of the product line.

Algorithm:

The approach presented in this thesis evaluates each non-zero value of each artefact’s

domain. If an artefact cannot attain any of its non-zero values, then the reusable element

is dead. The corresponding algorithm is presented as follows:

DeadArtefacts(PLM M, Solver S) {
 Load the model M in the solver S;
 DeadArtefactsList = all variables of M;

For (each variable V ∈ DeadArtefactsList) {
 Product = S.getOneSolution(“V > 0”);

 If (Product = “false”) {
 Write (“The artefact ” + V + “ is dead”);

}
Else {

 Erase V and all the other non-zero variables obtained in
Product from DeadArtefactsList;

}
 }

}

Application to the Running Example:

The application of the aforementioned algorithm in our running example is as follows.

The initial list of dead artefacts is composed of all the artefacts of the PLM:

deadArtefactsList=[UNIX, Kernel, Scheduling, ExecutingInstructions,

InterpretingInstructions, AccomplishingTheTransferOfData,

AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface,

Graphical, Process1, Process2, Process3, Process4, Process5,

WidthResolution, HeightResolution, Support_usb, Cdrom_atech,

Pcmacia_support].

121

Then, the algorithm queries for a configuration based on artefacts for which the algorithm

still ignores if they are dead or not, and sieves the selected (and thus alive) elements from

this list. For example, to know if Kernel is dead or not, it is sufficient to query the solver

for a product with Kernel=1, which provides a product:

P5 = [UNIX=1, Kernel=1, Scheduling=1, ExecutingInstructions=1,

InterpretingInstructions=1, AccomplishingTheTransferOfData=1,

AllocatingTheMachinesMemory=1, Shell=1, FileSystem=1, UserInterface=1,

Graphical=1, Process1=1, Process2=1, Process3=1, Process4=1, Process5=1,

WidthResolution=800, HeightResolution=600, Support_usb=0, Cdrom_atech=1,

Pcmacia_support=2].

This not only means that the artefact Kernel is not dead, but also that the other artefacts

with values different from 0 are not dead. According to the algorithm, these artefacts can

be sieved from the list of dead artefacts. Therefore, in the second iteration, the list of dead

artefacts is deadArtefactsList=[Support_usb]. The next step consists of querying for

products with Support_usb=1. As answer, the solver provides another product, which

means that the Support_usb artefact is not dead either. According to our algorithm, the

variable Support_usb must be erased from the list of dead artefacts. At this point the list

of dead artefacts is empty, which means that there are no dead artefacts in the PLM.

The purpose of the list deadArtefactsList is to reuse the information gathred from the

solver and then reduce the number of future queries. For instance, in this example only

two queries were necessary to evaluate all artefacts. In contrast, 21 queries would have

been required in the current state of the art algorithm (Broek & Galvão 2009). However,

it is not possible to calculate in advance how many queries would be needed, or even, to

guarantee that the minimal number of queries will be executed, as this depends on the

configuration generated by the solver.

Discussion:

Artefacts can be dead because: (i) they are excluded by an element that appears in all

products (also known as full-mandatory or core artefacts, c.f. Von der Maßen & Lichter

2004, Benavides et al. 2005, Trinidad et al. 2008, Van den Broek & Galvão 2009); and

(ii) they are wrongly constrained (e.g., an attribute of the feature is > 5 and < 3 at the

same time, or a group cardinality is wrong defined).

There are several approaches to detect dead artefacts. Elfaki et al. (2009) detect dead

features by searching only for predefined cases, i.e. defined dead features in the domain-

122

engineering process. This approach depends of the feature dialect used in Elfaki et al.

(2009), therefore this approach is not directly exploitable for other formalisms.

Trinidad et al. (2006, 2008) detect dead features by finding all products and then

searching for unused features. This approach is not scalable to large models.

Broek & Galvão (2009) detect dead features by transforming the FM into a generalized

feature tree, and then searching the feature occurrences that cannot be true. This approach

depends on the premise that the product line model should be representable as a

generalized feature tree, which has been identified as a problem when Roos-Frantz &

Segura (2008) tried to transform OVM models into feature trees without success. To the

best of our knowledge there is no detail in literature about the way in which this approach

and other ones existing in the literature (e.g. Mendonça et al. 2009) were implemented.

The algorithm proposed in this thesis evaluates each non-zero value of each reusable

element’s domain, and reuses each solution obtained from the solver in order to avoid

useless computations. Therefore, our approach is original, and scalable as the paragraph

above shows it.

It is worth noting that this algorithm can only be executed once the model at hand is

found to be non-void. Otherwise, if the model is void, all the artefacts of the PLM will be

dead and therefore every execution of the algorithm to detect dead artefacts will show that

the artefact at hand is dead. This observation shows how important it is to respect the

order proposed by our typology of verification criteria to identify in which sequence they

should be verified.

Implementation:

The Java pseudo-code and the queries to the GNU Prolog solver, corresponding to the

above algorithm are presented as follows:

(1) findDeadVariables(String[] dataModel, Vector variables){
(2) deadVariables = vector with all the variables of the PLM;
(3) while(j<deadVariables.size()){
(4) String[] value = domains.elementAt(j));
(5) String wrongValues = new String();
(6) String sol = new String();
(7) for(int i=0; i<value.length; i++){
(8) if(!value[i].equals("0")){
(9) String configuration =

utilities.makeConfiguration(feature,
(String)deadFeatures.elementAt(j), value[i]);

(10) String prolog = "("+dataModel[0]+"="+configuration;
(11) prolog = prolog.concat(", "+dataModel[1]+"),

"+dataModel[0]);
(12) sol = connection.sendMessage("exec("+prolog+").");
(13) if(sol.equals("fail.")){

123

(14) wrongValues = wrongValues + value[i]+", ";
(15) }
(16) else{
(17) break;
(18) }
(19) }
(20) }
(21) }

Line 1 corresponds to the function to find dead variables in a PLM (dataModel). Line 3

evaluates if there remain variables of the PLM, initially classified as dead variables (line

2), in the vector deadVariables. For each one of the variables of the PLM, line 4

retrieves all the values that the variable at hand can take, and line 6 saves in wrongValues

the values that the variable at hand cannot take. Line 8 evaluates each value of the

variables’ domain, except the value 0. If the domain’s value is different to 0, the program

creates a configuration with the value at hand, and requests the solver for one solution

with this configuration (lines 9 to 13). If the configuration does not generate any solution;

the program keeps the value that variables cannot take into the variable wrongValues

(lines 14 to 17). For each variable of the PLM, the program evaluates if there is at least

one solution with each one of the values of the variable’s domain in order to determine if

the variable is dead or not (lines 7 to 15). Since a solution is found for a given variable,

the program breaks the for cycle corresponding to the domain’s values of the variable at

hand in order to avoid useless computations (lines 16 to 18).

6.4 Non-false Optional Artefacts

An optional artefact is an artefact playing the role of child in an optional dependency. An

artefact is false optional if it is included in all the products of the product line despite being

declared optional (Von der Maßen & Lichter 2004, Benavides et al. 2005, Trinidad et al.

2008).

Algorithm:

To verify if an optional artefact is a false optional, this algorithm queries for a product

that does not contain the artefact at hand (setting the feature value to 0). If there is no

such product, then the artefact evaluated is indeed a false optional.

FalseOptionalReusableElements(PLM M, Solver S) {
 Load the model M in the solver S;

124

 FalseOptionalElementsList = all optional elements of M;

For (each variable V ∈ FalseOptionalElementsList) {
 Product = S.getOneSolution(“V = 0”);

 If (Product = “false”) {
 Write (V + “ is false optional”);

}
Else {

 Erase V and all the other variables with a Zero
affectation into Product, from DeadElementsList;

}
 }

}

Application to the running example:

If one wants to know whether the optional artefact Process is a false optional or not, it

is sufficient to request for a product without this artefact (Process=0). The solver, in

this case, returns “false”, which means that this optional artefact always take the value of

1; i.e., the artefact is false optional, as presented in Figure 3.5. This figure shows that

Process is included by Sheduling, AccomplishingTheTransferOfData and

AllocatingMachine’sMemory, which are part of the core artefacts of the UNIX

product line.

Discussion: The literature proposes two main approaches to detect false optional artefacts

in a PLM. Trinidad et al. (2006) detect false optional features in FM based on finding all

products, and then searching for common features among those which are supposed to be

optional. This technique is not scalable and sometimes even unfeasible due to the fact that

it requires to generate all possible products first.

Trinidad et al. (2008) present another technique to detect false optional features—they

call them full mandatory features—that tests the optional dependency instead of the

feature itself. Their technique, automated as a constraint satisfaction problem, sets to 0 the

optional feature at hand and sets to 1 its father.

The approach presented in this thesis evaluates that there exists one configuration without

each presumed optional feature. This approach does not try to check that the father

artefact must be set to 1. Indeed if the presumed optional artefact is set to 0 and there is a

solution (the model is consistent to this constraint), the father can or cannot take the value

1. Besides, this approach mixes up a structural issue in a semantic verification. In fact,

Trinidad et al. are evaluating at the same time that the presumed optional feature must be

optional and that its father in not a dead feature. This observation demonstrates again the

125

usefulness of the typology of our verification criteria, in this particular case to separate

concerns verification in the algorithm.

Implementation:

The Java pseudo-code and the queries to the GNU Prolog solver, corresponding to the

above algorithm are presented as follows:

(1) findFalseOptionalArtefacts(String[] dataModel, Vector variables){
(2) for(int i=0; i< variables.size(); i++){
(3) String[] valuesCardinality =

utilities.getCardinality(domains.elementAt(i));
(4) for(int j=0; j<valuesCardinality.length; j++){
(5) if(valuesCardinality[j].equals("0")){
(6) String configuration =

utilities.makeConfiguration(featureAll, (String)
OptionalElements.elementAt(i), valuesCardinality[j]);

(7) String sol =
connection.sendMessage("exec("+prolog+").");

(8) if(sol.equals("fail.")){
(9) textFeature = " The Feature "+

variables.elementAt(i)+" is a False Optional Variable.";
(10) }
(11) }
(12) }
(13) }
(14) }

Line 1 represents the function to find false optional artefacts on a PLM called dataModel

among the list of artefacts (called variables) of the PLM. In this implementation,

artefacts are represented as variables. For each one of the variables on the list variables

(line 2), the program takes all the values that the variable at hand can take (line 3). For

each of the values that is consistent with the variable’s domain (line 4), the program

verifies if the variable can take the 0 value. If the variable at hand can take the 0 value,

one product is requested from the solver with this variable setted to 0 (lines 5 to 7). If

there is no solution (i.e., the solver returns fail) for this configuration, the variable at hand

is false optional (lines 8 and 9).

6.5 Attainable Domains

A non-attainable domain value is the value of an artefact, or an artefact’s property, that can

never appear in any product of the product line.

Algorithm:

The algorithm proposed in this thesis to automate this verification criterion evaluates the

domain of each artefact and artefact’s property of the PLM. For each domain value, the

126

algorithm requests the solver at hand for a solution. A variable is defined by each artefact

and each property. If the solver gives a solution for all the values of the variable’s

domain, the variable is erased from the list of reusable elements with non-attainable

domains. Otherwise, the variable, representing a reusable element, is affected with the

non-attainable value(s) and kept in the list of artefacts and properties with non-attainable

domains. In each product obtained from the solver, all the artefacts and properties of the

PLM are affected with a particular value of the corresponding domain.

Thus, this algorithm reuses the information obtained from the solver and records that

information in order to avoid achieving useless requests, i.e., testing the attainability of

domain values that have already been obtained in precedent tests. The corresponding

algorithm is as follows:

NonAttainableDomains(PLM M, Solver S) {
Load the model M in the solver S;

For (each variable V ∈ M) {
 For(each Di ∈ domain of V AND not in {PrecedentProducts}){
 Product = S.getOneSolution(“V = Di”);

If (Product = “false”) {
Write (“The domain ” + Di + “ of ” + V + “ is non-

attainable”);
}
Else {

PrecedentProducts += Product;
}

 }
 }

}

Application to the Running Example:

For instance in the running example, if when asking for a product with

WidthResolution=800 we get a product:

P6 = [UNIX=1, Kernel=1, Scheduling=1, ExecutingInstructions=1,

InterpretingInstructions=1, AccomplishingTheTransferOfData=1,

AllocatingTheMachinesMemory=1, Shell=1, FileSystem=1, UserInterface=1,

Graphical=1, Process1=1, Process2=1, Process3=1, Process4=1, Process5=1,

WidthResolution=800, HeightResolution=600, Support_usb=0, Cdrom_atech=1,

Pcmacia_support=2].

This means both that:

o WidthResolution can attain the value of 800, and that

o the rest of variables can attain the values assigned by the solver.

Thus, it is not necessary to ask if the variable UNIX can attain those values, e.g. to test if

the variable Pcmacia_support can take the value of 2.

127

Discussion: The approach presented in this thesis can assesses the attainability of any

artefact or property, for all (or parts of) their domain values. This operation was also

implemented by Trinidad et al. (2008). However, the approach was specifically restricted

to the Boolean domains on FMs, which constitutes a limitation of the approach in terms

of reuse it in other notations such as extended FMs. In their approach, Trinidad et al try to

find a product with each value of the features’ domain, i.e, 0 and 1 (true and false).

Implementation:

This algorithm is implemented, as follows:

(1) findWrongDomain(String[] dataModel, Vector variables){
(2) String textVariable = "";
(3) for(int i=0; i<variables.size(); i++){
(4) String[] valuesDomain =

utilities.getDomain(domains.elementAt(i));
(5) boolean flag = false;
(6) String wrongValues = new String();
(7) //evaluate it there is a solution for each domain’s value
(8) for(int j=0; j<valuesDomain.length; j++){
(9) String configuration =

utilities.makeConfiguration(variables,
(String)variables.elementAt(i), valuesDomain[j]);

(10) String prolog = "("+dataModel[0]+"="+configuration;
(11) prolog = prolog.concat(", "+dataModel[1]+"),

"+dataModel[0]);
(12) String sol =

connection.sendMessage("exec("+prolog+").");
(13) if(sol.equals("fail.")){
(14) wrongValues=wrongValues+valuesDomain[j]+", ";
(15) flag=true;
(16) }
(17) }
(18) if(flag){
(19) textVariable = textVariable +

wrongValues.substring(0, wrongValues.length()-2)+".";
(20) }
(21) else{
(22) textVariable = "The Variable

"+features.elementAt(i)+" don't have wrong domain values";
(23) }
(24) }
(25) }

Line 1 specifies the function to find the non-attainable domain’s values of the variables

(variables) of a product line model (dataModel). The for cycle of line 3 retrieves the

domain of each variable and evaluates if the variable at hand can attain all the values of

its domain. This process creates a configuration with each domain’s value (lines 8 and 9)

and creating for each value, one configuration to be sent to the solver (lines 10 and 11). If

the answer from the solver (line 12) is a fail, the variable cannot take the value used in the

configuration (lines 13 to 16). Lines 18 to 20 are used to save the values that the variable

128

at hand cannot take, and lines 21 to 23 are used to inform the user that the variable at

hand has no wrong domain values.

6.6 Non-redundant Dependencies

A redundant constraint is a constraint that does not reduce the semantics of a PLM.

Algorithm:

The approach proposed in this thesis to check non redundant dependencies is based on the

fact that if a system is consistent, then the system plus a redundant constraint is consistent

too. Therefore, negating the allegedly redundant relation implies contradicting the

consistency of the system and thus rendering it inconsistent (Mazo et al. 2011a). This

approach is more efficient, and thus more scalable, when applied on large models. Our

algorithm is in two steps: first, it tries to obtain a solution with the set of constraints; then,

if a solution exists, the constraint to check is negated. In the case where no solution is

found, the inspected constraint turns out to be redundant. This algorithm to find redundant

constraints can be formalized as follows:

Non-redundantDependencies(PLM M, Solver S) {
Load the model M in the solver S;
If (at least one product can be configured from M under a collection
of constraints C = {C1,...,Ci})
{

Write (C ⊨ M);
Let take Cr ∈ C a constraint to be evaluated;

If (C without Cr ⊨ M AND C ∪ ¬Cr |≠ M)
{
 Write (Cr is redundant);
}
Else
{
 Write (Cr is not redundant);
}

}
}

Application on the running example:

To check if the constraint UNIX ≥ UserInterface is redundant or not, it is sufficient

to query the solver for a product. Then, if a product is found, the algorithm proceeds by

replacing the constraint by its negation (UNIX < UserInterface) and asks again for a

product. If the solver does not give a solution (as is the case for the running example

presented in Section 3.3), one can infer that the constraint (UNIX ≥ UserInterface) is

not redundant.

129

Discussion:

The literature offers two alternatives ways to check if a relationship is redundant or not.

The naïve algorithm consists of calculating all the products of the PLM with the

constraint to check; then, remove the constraint; and calculate all the solutions of the new

model. If both results are equal (i.e. exactly the same products can be configured with and

without the constraint), then the constraint is redundant. This approach is computationally

very expensive as it requires (a) to compute all configurations twice and (b) to perform an

intersection operation between two potentially very large sets (e.g. 1021 configurations for

the Renault PLM according to Dauron & Astesana (2010)). Not only is this algorithm not

scalable, but also it is typically unfeasible.

The element-oriented approach, proposed by Yan et al. (2009) defines a redundant

constraint of a PLM as a constraint in which a redundant reusable element takes part. This

approach calculates the redundant reusable elements on feature models —features

disconnected from the FM. Then the redundant constraints are those in which the

redundant features take part. Though it yields a solution, this algorithm is not sufficiently

general: indeed, only trivial cases of redundancy are considered. Many cases of redundant

dependencies cannot be discovered using this approach.

Implementation:

This algorithm is implemented in Java and using the following code:

(1) findRedudantDependencies(String[] dataModel, Vector dependencies){

(2) Vector constraints = (Vector) dependencies.elementAt(0);
(3) Vector negationConstraints = (Vector)

dependencies.elementAt(1);
(4) resultProlog =

connection.sendMessage("exec("+dataModel[1]+","+dataModel[0]+").")
;

(5) if(!resultProlog.equals("fail.")){
(6) for(int i=0; i < dependencies.size(); i++){
(7) String model = utilities.converToString(path,

(String)constraints.elementAt(i));
(8) int begin = model.indexOf("fd_labeling");
(9) String message = model.substring(0, begin);
(10) message += "\nfd_labeling("+dataModel[0]+")";
(11) String messageFinal = "(("+ message+"),

"+dataModel[1]+"),"+dataModel[0];
(12) resultProlog=

connection.sendMessage("exec("+messageFinal+").");
(13) if(!resultProlog.equals("fail.")){
(14) begin = model.indexOf("fd_labeling");
(15) message = model.substring(0, begin);
(16) message += negationConstraints.elementAt(i)

+",\n fd_labeling("+dataModel[0]+")";

130

(17) messageFinal = "(("+ message+"),
"+dataModel[1]+"),"+dataModel[0];

(18) resultProlog=
connection.sendMessage("exec("+messageFinal+").");

(19) if(!resultProlog.equals("fail.")){
(20) VerificationManagerView.txtResultats.append("

 The Relationships "+constraints.elementAt(i)+" is not
Redundant\n");

(21) }
(22) else{
(23) VerificationManagerView.txtResultats.append("

 The dependencies "+ dependencies.elementAt(i)+" is
Redundant\n");

(24) }
(25) }
(26) else{
(27) VerificationManagerView.txtResultats.append("

 The dependencies "+ dependencies.elementAt(i)+" is not
Redundant\n");

(28) }
(29) }
(30) }
(31) else{
(32) VerificationManagerView.txtResultats.append("The model is

inconsistent" + "\n");
(33) }
(34) }

Line 1 corresponds to the function to find the redundant dependencies from a vector with

a collection of dependencies and its corresponding negations (dependencies). Line 2

captures the vector with the dependencies to verify and line 3 captures the vector with the

dependency negations. The first step of the algorithm consists of verifying if the model is

consistent (line 4). If there is at least one solution (line 5), the model is consistent and can

be checked for non redundant dependencies.The for cycle of line 6 allows to consider

each dependency at its turn.

The second step of the algorithm consists of verifying the consistency of the model

without the dependency at hand. In order to do that, line 7 creates a model without the

constraint at hand, and line 12 executes the solver to check whether the new model has at

least one solution. If there is a solution, the new model (the model without the

dependency to verify) is consistent (line 13).

The third step of the algorithm consists of verifying the consistency of the model with the

negation of the dependency to verify instead of the dependency itself. The new version of

the model with the negated constraint is created at lines 15 and 16. Line 18 executes the

new model in the solver in order to get one solution. If there is a solution the dependency

at hand is not redundant (line 19). If there is no solution, this means that the dependency

at hand is redundant (lines 22 and 23).

131

If the model has at least one solution with the dependency to verify and has no solution

without the dependency to verify, this means that the dependency at hand is not redundant

(lines 26 and 27).

Lines 31 and 32 deal with the case where the model without modifications has no

solutions. Then the model is inconsistent, and therefore identification of redundant

dependencies with this technique is not possible.

6.7 Summary

Product line modeling is of crucial importance for the quality of product line engineering

(Salinesi et al. 2010a, Mazo et al. 2011c). Thus, it is vital to provide mechanisms to verify

that product line models respect certain properties or criteria against with these properties

should be verified. This chapter develops one of the two verification categories introduced in

Chapter 4. The verification approach developed in this chapter is called domain-specific

verification. The verification approach is based on constraint programming. This approach

represents PLMs as constraints programs and implements the verification criteria presented in

this chapter as queries on those models. These verification criteria are grouped in three

categories (i.e., expressiveness of the PLM, non-errors and non-redundancies) and are

arranged in a typology of PLM verification criteria. The domain-specific verification criteria

are: Non-void PLMs, Non-false PLMs, Non-dead Artefacts, Non-false Optional Artefacts,

Attainable Domains, Non-redundant Dependencies. This chapter also proposes algorithms to

implement each domain-specific verification criterion. A java pseudo code of each algorithm

is also presented to show the interactions with the GNU Prolog solver and the reuse of each

unswer obtained from the solver to avoid useless queries to the solver. The applicability of

each algorithm is shown using the running example. Scalability of our approach is

systematically discussed with regards to prior ones.

132

133

Chapter 7

Verification of Multi-model Product Lines

Multi-model representation of product lines permits tackling various models and aspects of a

system, in particular in the presence of stakeholders with multiple viewpoints (executives,

developers, distributors, marketing, architects, testers, etc.; cf. Nuseibeh et al. 1994). For

example, a UNIX product line can be composed of several models, each one developed by a

different team or developing a particular view of the PL. Motivated by the fact that (a) this

practice is current in industry (Dhungana et al. 2010); (b) even if each individual model is

consistent, once the models are integrated, they can easily be inconsistent; and (c) the

shortcomings of the current state of the art in multi-model product line verification, this thesis

proposes a method to verify multi-model product lines. This method uses the transformation

and integration approach presented in Chapter 3. Once models are integrated, the collection

of generic conformance checking and domain-specific verification criteria proposed in this

thesis for standalone models can be applied on the integrated model. This verification

approach can be applied on the integrated models in the same manner as for standalone

models. It is worth noting that to apply the conformance checking approach proposed in this

thesis, the resulting model should previously have a well defined metamodel.

This method applies in two different cases: when the integration mechanisms are not

defined in the metamodel and when the metamodel specifies the mechanism in which the

model should be integrated. Both cases are illustrated in the following sections: (a) by

integration of two feature models, and (b) by integration of the two views of a Dopler model.

7.1 Verification of Integrated Feature Models

Integrating two models that are individually without defects can generate a model with

several defects. For instance, if in a feature model FM1, feature C is an optional child of

feature A, and in another feature model FM2, feature C is an optional child of feature B, the

resulting FM will have two fathers of C (A and B). Even worse, if in FM1 feature B is an

optional child of feature A, and in FM2 feature A excludes feature B, the resulting FM will be

a void model.

134

To develop our integration approach we will consider two input FMs called Base Model 1

and Base Model 2, which, after integration, will produce a resulting model called Result.

Strategy N° 1: restrictive and keeping common features and attributes

This strategy is restrictive in the sense that it permits representing in the resulting FM the

common products represented in both input models that can be configured with the common

reusable elements and attributes. In the restrictive strategy we chose the constraints

corresponding to the most restrictive dependencies. For example:

Base model 1 Base model 2 Resulting model

A = B (A ≥ B) ⇒C A = B

We identify two categories to match common features of two FMs. The first category

consists of a perfect match of two features (each one bellowing to one input model) in name,

quantity and domain of each corresponding pair of attributes. In this case, the resulting feature

is exactly a copy of one of the input features. In the second category, this strategy gives

priority to the common features and attributes due to the fact that this strategy keeps only

common elements. The integration rules that formalize the application of this integration

strategy in feature models are presented in Table 7.1. Both categories (perfect and partial

match) are considered in the integration rules of Table 7.1.

Table 7.1. Integration strategy N° 1. Rules for the restrictive strategy, keeping only common
features and attributes

N Base1 – Feature
representation

Base2 – Feature
representation

Result – Feature
representation

Strong Result – CP representation

1

FeatureA ∈ {0,1} ⋀
Att2 ∈ {DomainA21}
∩{DomainA22} ⋀

FeatureA ⇔ Att2 > 0

2

FeatureB ∉ Features(Base2)

FeatureA ∈ {0,1}
3

 respectively

FeatureA = FeatureB
Or

FeatureA ≥ FeatureB
Or

FeatureA ⇒ FeatureB
Or

FeatureA * FeatureB = 0

respectively

4

FeatureA = FeatureB

5

(FeatureA = FeatureB) ⋀(FeatureA ≥FeatureB)
It is:

FeatureA = FeatureB

135

6

(FeatureA ≥ FeatureB) ⋀(FeatureA ⇒ FeatureB)
It is:

FeatureA ⇒FeatureB

7

(FeatureA = FeatureB) ⋀(FeatureA ⇒FeatureB)

It is:
FeatureA = FeatureB

8

Contradiction Contradiction to be solved
by a domain expert

9

Mismatch with FMs’
syntax

(FeatureA ≥ FeatureB) ⋀
(FeatureB ≥ FeatureA)

It is:
FeatureA = FeatureB

10

FeatureA = FeatureB

11

FeatureA = FeatureB

12

If features A and B are full-
mandatory:

If features A and B are full-mandatory:

FeatureA = FeatureC ⋀
FeatureB = FeatureC

13

If features A and B are full-
mandatory:

If features A and B are full-mandatory:

(FeatureA ≥ FeatureC)⋀
FeatureB = FeatureC

14

If there is a path between
features A and B, it is

necessary to determine the
hierarchical order among

features A, B and C.
Otherwise there is a
mismatch with FMs’

syntax

If features A and B are full
mandatory:

(FeatureA ≥ FeatureC) ⋀
(FeatureB ≥ FeatureC)

If only Feature A is full-
mandatory:

(FeatureA ≥ FeatureC)
If only Feature B:

(FeatureB ≥ FeatureC)

If none is full-mandatory
Feature C ∈ {0,1}

15

If Feature B is mandatory in
Base 1:

Otherwise:

If Feature B is full mandatory in Base 1:
FeatyreA = FeatureB

Otherwise:

FeatureA ≥ FeatyreB

16

FeatyreA = FeatureB

17

If Feature C is mandatory in
Base 1 or Base 2:

Otherwise:

If Feature C is full mandatory in Base 1:
FeatyreA = FeatureC

Otherwise:

FeatyreA ≥ FeatureC

136

This strategy can be used in multi-team development, that is, when the product line is

represented with several models, each one complementing the other ones. Besides, this

strategy is also useful in the case where two companies on the same market decide to offer

together a common portfolio, i.e., a portfolio with products that can be produced at the same

time for both companies. However, it is not possible to directly apply this strategy in two

FMs (e.g. Figures 3.5 and 3.6). Indeed this strategy keeps only the common features and

attributes of both base models. This implies eliminating some core features (e.g., Kernel,

FileSystem, Scheduling, ExecutingInstructions, InterpretingInstructions and

AccomplishingTheTransferOfData). With this loss, the resulting FM has no sense due to

the fact that a Unix system needs one kernel, for instance. In order to avoid that, we propose a

version of this strategy that consists of a restrictive strategy keeping only (i) common features

and attributes; and (ii) core features and the relationships among them. In order to identify the

core features (features that appear in all the products), one can use the corresponding

operation—fully automated in the VariaMos tool (Mazo & Salinesi 2010)—to get them. With

this modification, the resulting FM, presented in Figure7.1 and represented as a CP in Table

7.2, contains the core features of both base models and also the common features and

attributes integrated according to the rules of Table 7.1.

Kernel

UserInterface

Graphical

Process

[0..5]

UNIX

AllocatingTheMachine'sMemory

AccomplishingTheTransferOfData

Scheduling

InterpretingInstructions

ExecutingInstructions

Shell
FileSystem Cdrom

SH

Usb
Net

<1..1>

BASH

TCSH

<1..3>

Figure 7.1. Feature models of Figure 3.5 and 3.6 integrated by means of the “conservative strategy
keeping features and attributes of the original models”

137

Note that in case of features grouped in a cardinality where, for instance, at least one

feature must be selected (i.e., cardinalities <1..1>, <1..2> and <1..3> on Figure 3.6),

the intervention of the user is necessary in order to specify the feature(s) that she/he wants to

keep in the resulting model. In our case, we kept the two original group cardinalities (Shell

≤ SH + TCSH + BASH ≤ Shell * 3 and UNIX = Cdrom + Usb + Net).

Table 7.2. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy N° 1

Application
of Rule 1

[UNIX, Kernel, Scheduling, ExecutingInstructions,
InterpretingInstructions, AccomplishingTheTransferOfData,
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface,

Graphical, Process, Cdrom, Usb, Net, SH, TCSH, BASH] ∈ {0,1} ⋀
2 UNIX = Kernel ⋀
3 UNIX = Shell ⋀
2 with user
intervention

Shell ≤ SH + TCSH + BASH ≤ Shell * 3 ⋀
No
matching
with the
other model

Kernel1 = AllocatingTheMachinesMemory1 ⋀
AllocatingTheMachinesMemory1 Process ⋀
Kernel1 = Scheduling1 ⋀
Scheduling1 Process ⋀
Kernel1 = AccomplishingTheTransferOfData1 ⋀
AccomplishingTheTransferOfData1 Process ⋀
Shell1 InterpretingInstructions1 ⋀
Kernel1 = InterpretingInstructions1 ⋀
Shell1 ExecutingInstructions1 ⋀
Kernel1 = ExecutingInstructions1 ⋀

2 with user
intervention

Process ≤ Process1 + Process2 + Process3 + Process4 + Process5 ≤
Process * 5 ⋀
Process ≤ UNIX ⋀

2 Shell (Kernel=InterpretingInstructions) ⋀
2 Shell (Kernel = ExecutingInstructions) ⋀
2 keeping
full-
mandatory

UNIX = FileSystem ⋀
3 UNIX ≥ UserInterface ⋀

16 UserInterface = Graphical ⋀
2 with user
intervention

UNIX = Cdrom + Usb + Net

In this resulting model it is possible to configure products that do not exist in any of the

base models (cf. Figures 3.5 and 3.6). For example, the product {UNIX, Kernel,

ExecutingInstructions, InterpretingInstructions, Shell, FileSystem,

Process, Cdrom, SH} can be configured from the resulting model; however, it does not

exist in any of the base models. This is due to the fact that this strategy keeps the full

mandatory features of both models and some other features in group cardinalities according

to the criteria of the user. Therefore, the resulting model will represents the common features

of both input models but also the core features of each input model even if there is not a

138

corresponding feature in the other input model. The integrated model permits the

configuration of 43 different UNIX systems
2 (with five Processes at maximum).

Strategy N° 2: restrictive and keeping all features and attributes

This strategy is also restrictive; however, in contrast to the first strategy, products can be

configured with all reusable elements and attributes available on both input models (Acher et

al. 2010). In this strategy the idea is to keep the most restrictive relationships but keeping the

features and attributes presented in both base models. This integration strategy gives to the

domain expert the possibility to represent, in an integrated model, the products presented at the

same time on both input models and to enrich the expressivity power of the resulting PLM

with the reusable elements of both input models. For example:

Base model 1 Base model 2 Resulting model

A = B (A ≥ B) ⇒ C (A ≥ B) ⇒ C

Now we will integrate our running example by using the merging rules proposed in Table

7.3. In this case, we keep features and attributes of the original models and intersect the

domains of common attributes and the constraints of common features.

Table 7.3. Integration strategy N° 2. Rules for the restrictive strategy, keeping all
features and attributes.

N Base1 –
Feature representation

Base2 –
Feature representation

Result –
Feature representation

Weak Result –
CP representation

1

FeatureA ∈ {0,1},
Att1 ∈ {DomainA1},
Att2 ∈ {DomainA21}
∩{DomainA22},

Att3 ∈ {DomainA3},
FeatureA ⇔ Att1> 0,
FeatureA ⇔ Att2> 0,
FeatureA ⇔ Att3> 0

2

FeatureB ∉ Features(Base2)

respectively

FeatureA = FeatureB
Or

FeatureA ≥ FeatureB
Or

FeatureA ⇒ FeatureB
Or

FeatureA * FeatureB = 0

respectively
3

 respectively

FeatureA = FeatureB
Or

FeatureA ≥ FeatureB
Or

FeatureA ⇒ FeatureB
Or

FeatureA * FeatureB = 0

respectively
4

FeatureA = FeatureB

2 Calculated in GNU Prolog by means of the query: g_assign(cpt,0), productline(_), g_inc(cpt), fail;g_read(cpt,N). Where

productline is the fact that represents the product line model loaded into the solver, cpt is a counter variable and N the
number of products of the product line at the end of the query. g_assign, g_inc and g_read are predicates of GNU Prolog.

139

5

FeatureA = FeatureB

6

FeatureA ⇒ FeatureB
7

FeatureA = FeatureB

8

Contradiction Contradiction to be solved
by a domain expert

9

Mismatch with FMs’
syntax

(FeatureA ≥ FeatureB) ⋀
(FeatureB ≥ FeatureA)

It is:
FeatureA = FeatureB

10

FeatureA = FeatureB

11

FeatureA = FeatureB

12

FeatureA = FeatureC ⋀
FeatureB = FeatureC

13

(FeatureA ≥ FeatureC) ⋀
FeatureB = FeatureC

14

If there is a path between
features A and B, it is

necessary to determine the
hierarchical order among

features A, B and C.
Otherwise there would

be a mismatch with FMs’
syntax

(FeatureA ≥ FeatureC) ⋀
(FeatureB ≥ FeatureC)

15

FeatyreB ≤ FeatureA ⋀
(m1*FeatureA ≤ FeatyreB +

FeatyreC +
FeatyreD ≤ n1*FeatureA)

16

FeatyreA = FeatureB ⋀
 (m1-1)*FeatureA ≤ FeatyreC+
FeatyreD ≤ (n1-1)*FeatureA

17

 (m1*FeatureA ≤ FeatyreB +
FeatyreC ≤ n1*FeatureA) ⋀
(m2*FeatureA ≤ FeatyreC +
FeatyreD ≤ n2*FeatureA)

The application of these integration rules in our running example gives as result the

LINUX product line model presented as a constraint program in Table 7.4.

Table 7.4. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy N° 2

Application
of Rule 1

[UNIX, Kernel, Scheduling, ExecutingInstructions,
InterpretingInstructions, AccomplishingTheTransferOfData,
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface,

140

Graphical, Process1, Process2, Process3, Process4, Process5,
Cdrom, Usb, Net, UtilityProgram, FileMaintenance, Editing,

OnlineInfo, ProgrammingSupport, SH, TCSH, BASH] ∈ {0, 1} ⋀
[WidthResolution] ∈ {800, 1024, 1366]) ⋀
[HeightResolution] ∈ {600, 768} ⋀
[Support_usb, Cdrom_atech, Pcmacia_support] ∈ {0,1,2}⋀
[A, B, C] ∈ {0, 1} ⋀

2 UNIX = Kernel ⋀
No
matching
with the
other model

Kernel1 = AllocatingTheMachinesMemory1 ⋀
AllocatingTheMachinesMemory1 Process ⋀
Kernel1 = Scheduling1 ⋀
Scheduling1 Process ⋀
Kernel1 = AccomplishingTheTransferOfData1 ⋀
AccomplishingTheTransferOfData1 Process ⋀
Shell1 InterpretingInstructions1 ⋀
Kernel1 = InterpretingInstructions1 ⋀
Shell1 ExecutingInstructions1 ⋀
Kernel1 = ExecutingInstructions1 ⋀

2 Process ≤ Process1 + Process2 + Process3 + Process4 + Process5 ≤
Process * 5 ⋀
UNIX ≥ Process ⋀

2 FileSystem = UNIX ⋀
No
matching
with the
other model

Support_usb1 A ⋀
Cdrom_atech1 B ⋀
Pcmacia_support1 C ⋀
0 ≤ A + B + C ≤ 3 * Kernel1 ⋀

Rule 2 with
user
intervention
and
Rule 14

UNIX ≥ UtilityProgram ≥ UserInterface ⋀
16 UserInterface = Graphical ⋀

Graphical = 1 (WidthResolution= W1 ⋀ HeightResolution= H1) ⋀
Graphical = 0 (WidthResolution = 0 ⋀ HeightResolution = 0) ⋀
fd_relation([[800, 600], [1024, 768], [1366, 768]], [W1,H1]) ⋀
UserInterface ≥ Shell ⋀

2 Shell ≤ SH + TCSH + BASH ≤ Shell * 3 ⋀
2 UNIX = Cdrom + Usb + Net ⋀
2 UtilityProgram = Editing ⋀
2 UtilityProgram = FileMaintenance ⋀
2 UtilityProgram ≥ UserInterface ⋀
2 UtilityProgram ≥ OnlineInfo ⋀
2 UtilityProgram ≥ ProgrammingSupport

Note that some auxiliary variables are created, like R1 to record the result of the

computation Cdrom + Usb + Net. R1 is used in the constraint UNIX ≤ R1 ⋀ R1 ≤ UNIX.

In addition, we use the Boolean variables A, B and C in order to keep the state corresponding

to the selection of each kernel module. Thus, if the module Support_Usb is selected (set to 1

when it is changed in a static way, and set to 2 when it is charged in a dynamic way) the value

of A will be set to 1, if Cdrom_Atech is selected (set to 1 or 2 accordint to its mode of

charging) the variable B will be set to 1, and if Pcmcia_Support is selected (set to 1 or 2

141

accordint to its mode of charging), C will be set to 1. The resulting model still allows

configuring 244219 different products, which illustrates that even in a restrictive strategy; the

expressivity power of the resulting model significantly increases when all the features and

attributes of the input models are kept.

Strategy N° 3: Conservative and keeping only common features and attributes

This strategy is conservative in the sense that it permits configuring the products represented

in both input models by using only the common reusable elements and attributes. This strategy

represents in the resulting model a collection of products that are encompassed by the first

base model or by the second model, with the features and attributes that are common to both

base models. This integration strategy is for instance useful when a company wants to propose

a new series of products that can be produced on two different headquarters and that are

offered indistinctly by means of a Web site. A generic example of the application of this

strategy can be:

Base model 1 Base model 2 Resulting model

A = B (A ≥ B) ⇒ C A ≥ B

It is worth noting that our integration approach with constraint programs avoids using

artificial features to represent situations where the structure of the feature representation

forces their use (cf. rules 10, 11 and 12 in Table 7.5). However, these artificial features do not

contribute in anything from the semantic point of view because the collection of products that

can be generated with and without these artificial features is the same. On the contrary, they

increase the complexity of the product line and the time to be configured and analyzed. Thus,

with the Conservative strategy, keeping common features and attributes, it would be

necessary to keep the core features on the resulting model. In addition, the involvement of a

modeling expert would be necessary to determine unsolved situations, as on with the group

cardinality of Figure 3.6.

Table 7.5. Integration strategy N° 3. Rules for the conservative strategy, keeping only
common features and attributes.

 Base1 – Feature representation Base2 – Feature
representation

Result – Feature representation Result – Cp representation

1

FeatureA ∈ {0,1},
Att2 ∈ {DomainA21} ⋃{DomainA22},
FeatureA ⇔ Att2 > 0

2

FeatureB ∉ Features(Base2)

FeatureA ∈ {0,1}

Or

Keep the full mandatory
features and their

142

corresponding constraints

3

[FeatureA,FeaureB] ∈ {0,1}
4

Mismatch with de FMs’
syntax

(FeatureA ⇒ FeatureB) (FeatureB⇒FeatureA)

5

(FeatureA = FeatureB) (FeatureA
≥ FeatureB)

It is:
FeatureA ≥ FeatureB

6

(FeatureA ≥ FeatureB) (FeatureA ⇒FeatureB)

It is:
FeatureA ⇒ FeatureB

7

(FeatureA = FeatureB) (FeatureA ⇒FeatureB)

It is:
FeatureA ⇒ FeatureB

8

Contradiction Contradiction to be solved
by a domain expert

9

(FeatureA ≥
FeatureB)
(FeatureB ≥
FeatureA)

10

FeatureA =
FeatureB

11

Feature BFeature A

Artificial Feature C

(FeatureA≥FeatureB)
(FeatureB=FeatureA)

It is:
FeatureA ≥ FeatureB

12

If there is a path between
features A and B, it is

necessary to determine the
hierarchical order among

features A, B and C.
Otherwise there is a
mismatch with FMs’

syntax

If features A and B are full
mandatory:

(FeatureA = FeatureC)
(FeatureB = FeatureC)

If only Feature A is full-
mandatory:

(FeatureA = FeatureC)

If only Feature B:
(FeatureB = FeatureC)

If none is full-mandatory
Feature C ∈ {0,1}

13

If there is a path between
features A and B, it is

necessary to determine the
hierarchical order among

features A, B and C.
Otherwise there is a
mismatch with FMs’

syntax

 If features A and B are full
mandatory:

(FeatureA ≥ FeatureC)
(FeatureB = FeatureC)

If only Feature A is full-
mandatory:

(FeatureA ≥ FeatureC)
If only Feature B:

(FeatureB = FeatureC)

If none is full-mandatory
Feature C ∈ {0,1}

14

If there is a path between
features A and B, it is

necessary to determine the
hierarchical order among

features A, B and C.
Otherwise there is a
mismatch with FMs’

syntax

 If features A and B are full
mandatory:

(FeatureA ≥ FeatureC)
(FeatureB ≥ FeatureC)

If only Feature A is full-
mandatory:

(FeatureA ≥ FeatureC)
If only Feature B:

(FeatureB ≥ FeatureC)

If none is full-mandatory
Feature C ∈ {0,1}

143

15

FeatureA ≥ FeatureB

16

FeatureA ≥ FeatureB

17

FeatureA ≥ FeatureC

This strategy, applied to our running example, gives a PLM with the common features

and attributes where the conservative relationship prevails over the restrictive one. Besides,

we keep the group cardinalities (except the optional group cardinality <0..3> among

Support_usb, Cdrom_atech and Pcmacia_support) of the input models without

modifications and the core features with their respective relationships. The resulting model is

presented in Table 7.6.

Table 7.6. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy N° 3

Application
of Rule 1

[UNIX, Kernel, Scheduling, ExecutingInstructions,
InterpretingInstructions, AccomplishingTheTransferOfData,
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface,

Graphical, Process, Cdrom, Usb, Net, SH, TCSH, BASH] ∈ {0,1} ⋀
2 UNIX = Kernel ⋀
No
matching
with the
other model

Kernel1 = AllocatingTheMachinesMemory1 ⋀
AllocatingTheMachinesMemory1 Process ⋀
Kernel1 = Scheduling1 ⋀
Scheduling1 Process ⋀
Kernel1 = AccomplishingTheTransferOfData1 ⋀
AccomplishingTheTransferOfData1 Process ⋀
Shell1 InterpretingInstructions1 ⋀
Kernel1 = InterpretingInstructions1 ⋀
Shell1 ExecutingInstructions1 ⋀
Kernel1 = ExecutingInstructions1 ⋀

2 Process ≤ Process1 + Process2 + Process3 + Process4 + Process5 ≤
Process * 5 ⋀
UNIX ≥ Process ⋀

2 UNIX = FileSystem ⋀
12 (UNIX = Shell ∨ UserInterface ≥ Shell) ⋀
14 (UNIX ≥ UserInterface ∨ UtilityProgram ≥ UserInterface) ⋀
16 UserInterface ≥ Graphical ⋀
2 UNIX ≥ UtilityProgram ⋀
Rule 2 with
user
intervention

Shell ≤ SH + TCSH + BASH ≤ Shell * 3 ⋀
Rule 2 with
user
intervention

UNIX = Cdrom + Usb + Net ⋀

All features, except those that are common to the input models or core features in one of

the models, are not included in the resulting model. In contrast with the model resulting from

144

application of Strategy 1, which permits the configuration of 43 products, the resulting model

after application of Strategy 3 permits the configuration of 73 products. The difference is due

to the fact that this strategy intends to keep the maximum number of possible products with

the common reusable elements of both input models.

Strategy N° 4: Conservative and keeping all features and attributes

As strategy N° 3, this strategy is also conservative, but this time it permits the configuration of

products with all reusable elements and attributes available in both input models (Segura et al.

2008, Acher et al. 2010). When two elements of the input models match according to the rules

of Table 7.7, the conservative strategy keeps the constraint corresponding to the most general

relationship. In other words, this strategy keeps the construct that permits configuring the

products represented in both input models, for example:

Base model 1 Base model 2 Resulting model

A = B (A ≥ B) ⇒ C (A ≥ B) ⇒ C

Now, we use the rules of Table 7.7 to integrate our running example by means of the

conservative strategy keeping features and attributes of the original models. This strategy

seems to be one of the most appropriate ways to integrate FMs in a multi-team working

environment where each team models a particular aspect of the PL. This claim is supported

by the fact that the variability of each model complements the variability of the other models

and in that way the resulting model combines in a generative way the features and the

variability of the input models. Another context in which this strategy would be useful is

when two companies are merged and the new company uses the reusable components of the

legacy FMs to offer a larger portfolio of products that combine the products individually

offered by the original companies.

Table 7.7. Integration strategy N° 4. Rules for the conservative strategy, keeping all features
and attributes.

 Base1 – Feature representation Base2 – Feature

representation
Result – Feature representation Result – Cp representation

1

FeatureA ∈ {0,1},
Att1 ∈ {DomainA1},
Att2 ∈ {DomainA21} ⋃{DomainA22},
Att3 ∈ {DomainA3},

FeatureA ⇔ Att1 > 0,
FeatureA ⇔ Att2 > 0,
FeatureA ⇔ Att3 > 0

2 Feature A

Feature B

Feature A

Feature B

or

FeatureB ∉ Features(Base2)

FeatureA ≥ FeatureB

145

3

or

FeatureB ∉ Features(Base2)

[FeatureA,FeatureB]∈{0,1}
4

[FeatureA,FeatureB]∈{0,1}
5

Mismatch with de FMs’
syntax

(FeatureA ⇒ FeatureB)
(FeatureB ⇒FeatureA)

6

(FeatureA = FeatureB)
(FeatureA ≥FeatureB)

It is:
FeatureA ≥ FeatureB

7

Mismatch with de FMs’
syntax

(FeatureA ≥ FeatureB)
(FeatureA ⇒FeatureB)

8

(FeatureA = FeatureB)
(FeatureA ⇒FeatureB)

It is:
FeatureA ⇒ FeatureB

9

Contradiction Contradiction to be solved
by a domain expert

10

(FeatureA ≥
FeatureB)
(FeatureB ≥
FeatureA)

11

FeatureA = FeatureB

12

Feature BFeature A

Artificial Feature C

(FeatureA ≥
FeatureB)

(FeatureB=FeatureA)

13

If there is a path between
features A and B, it is

necessary to determine the
hierarchical order among

features A, B and C.
Otherwise there would be a

mismatch with FMs’
syntax

(FeatureA=FeatureC)
(FeatureB=FeatureC)

14

If there is a path between
features A and B, it is

necessary to determine the
hierarchical order among

features A, B and C.
Otherwise there would be a

mismatch with FMs’
syntax

(FeatureA ≥FeatureC)
(FeatureB=FeatureC)

15

If there is a path between
features A and B, it is

necessary to determine the
hierarchical order among

features A, B and C.
Otherwise there would be a

mismatch with FMs’
syntax

(FeatureA ≥ FeatureC)
(FeatureB ≥ FeatureC)

146

16

 (m1*FeatureA ≤ FeatureB +
FeatureC +

FeatureD ≤ n1*FeatureA)

17

 (m1*FeatureA ≤ FeatureB +
FeatureC +

FeatureD ≤ n1*FeatureA)

18

 (m1*FeatureA ≤ FeatureB +
FeatureC ≤ n1*FeatureA) ⋀
(m2*FeatureA ≤ FeatureC +
FeatureD ≤ n2*FeatureA)

The application of the matching and merging rules shown in Table 7.7 to the models

presented in Figures 3.5 and 3.6, results in the product line model presented in Table 7.8.

Table 7.8. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy N° 4

Application
of Rule 1

[UNIX, Kernel, Scheduling, ExecutingInstructions,
InterpretingInstructions, AccomplishingTheTransferOfData,
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface,
Graphical, Process1, Process2, Process3, Process4, Process5,
Cdrom, Usb, Net, UtilityProgram, FileMaintenance, Editing,

OnlineInfo, ProgrammingSupport, SH, TCSH, BASH] ∈ {0, 1} ⋀
[WidthResolution] ∈ {800, 1024, 1366} ⋀
[HeightResolution] ∈ {600, 768} ⋀
[Support_usb, Cdrom_atech, Pcmacia_support] ∈ {0,1,2}⋀
[A, B, C] ∈ {0, 1} ⋀

2 UNIX ≥ Kernel ⋀
No
matching
with the
other model

Kernel1 = AllocatingTheMachinesMemory1 ⋀
AllocatingTheMachinesMemory1 Process ⋀
Kernel1 = Scheduling1 ⋀
Scheduling1 Process ⋀
Kernel1 = AccomplishingTheTransferOfData1 ⋀
AccomplishingTheTransferOfData1 Process ⋀
Shell1 InterpretingInstructions1 ⋀
Kernel1 = InterpretingInstructions1 ⋀
Shell1 ExecutingInstructions1 ⋀
Kernel1 = ExecutingInstructions1 ⋀

2 Process ≤ Process1 + Process2 + Process3 + Process4 + Process5 ≤
Process * 5 ⋀
UNIX ≥ Process ⋀

2 UNIX ≥ FileSystem ⋀

No
matching
with the
other model

Support_usb1 A ⋀
Cdrom_atech1 B ⋀
Pcmacia_support1 C ⋀
0 ≤ A + B + C ≤ 3*Kernel1 ⋀

14 (UNIX = Shell ∨ UserInterface ≥ Shell) ⋀
15 (UNIX ≥UserInterface ∨ UtilityProgram ≥UserInterface)⋀

17 UserInterface ≥ Graphical ⋀
Graphical = 1 (WidthResolution= W1 ⋀ HeightResolution= H1) ⋀
Graphical = 0 (WidthResolution = 0 ⋀ HeightResolution = 0) ⋀
fd_relation([[800, 600], [1024, 768], [1366, 768]], [W1,H1]) ⋀

2 with user
intervention

Shell ≤ SH + TCSH + BASH ≤ Shell * 3 ⋀

147

2 with user
intervention

UNIX = Cdrom + Usb + Net ⋀
2 with user
intervention

UtilityProgram = FileMaintenance ⋀
2 with user
intervention

UtilityProgram = Editing ⋀
2 with user
intervention

UtilityProgram ≥ OnlineInfo ⋀
2 with user
intervention

UtilityProgram ≥ ProgrammingSupport

Note that the supplementary restrictions among features present in the resulting model

(e.g., FileMaintenance UserInterface, Editing UserInterface) are not

included in the resulting model in order to keep the essence of this strategy (i.e., to be the less

restrictive as possible). With this strategy, it is also worth noting that in Table 7.7

relationships conditioning the presence of features that are neither common nor core features

should be included in the resulting model unless the integrator engineer decides otherwise. In

the same way, the integrator engineer must decide how to integrate the features and the

constructs that belong to one of the base models but not to the other one; as the case of the

group cardinalities that have been kept without modifications on the resulting model.

The resulting model allows configuring 967221 different products, which shows the

expressivity of the resulting model when models are integrated with a conservative strategy.

Strategy N° 5: Disjunctive and keeping the features and attributes of the original models

This strategy is disjunctive in the sense that the resulting model permits configuring the

products presented on one of the input models by using the reusable elements and attributes of

one of the particular models but not those of the other model, for example:

Base model 1 Base model 2 Resulting model

A = B (A ≥ B) ⇒C (A = B) ⊕ ((A ≥ B) ⇒C)

This strategy can be justified by cases where two different companies, in progressive

merge, integrate their FMS but at the beginning they want to keep in the integrated PLM the

possibility to generate with only one model, the products of each company.

This integration strategy creates an artificial root feature that will be related to the root

features of each base model by means of an exclusion relationship. It is worth noting there is

not necessary any integration rule to implement this integration strategy. It is due to the fact

that the collection of products that this strategy is intended to allow in the resulting model is

composed of the union of both models, and then the cardinality of the resulting model is

mathematically represented by card(BaseModel1 BaseModel2) =

148

card(BaseModel1) + card(BaseModel2) - card(BaseModel1 BaseModel2).

This shows that there are no necessary integrations rules in order to apply this strategy and

that a simple disjunction between both models is enaught (the disjoction is represented as a

<1..1> group cardinality between the root features of both models, as presented in Figure

7.2). An example of the application of this strategy is presented in Figure 7.2 with our

running example (cf. Figures 3.5 and 3.6).

Kernel1

UserInterface1

Graphical1

Process1

[0..*]

UNIX1

Graphical→ relation([WidthResolution, HeightResolution], {[800, 600], [1024,768], [1366,768]})

AllocatingTheMachine'sMemory1

AccomplishingTheTransferOfData1

Scheduling1

InterpretingInstructions1

ExecutingInstructions1

Shell1

WidthResolution

HeightResolutionCdrom_atech1

Support_usb1

FileSystem1

Pcmacia_support1

<0..3>

Cdrom2

UserInterface2

Graphical2

Editing2

UNIX2

Shell2

SH2

Usb2
Net2 UtilityProgram2

<1..1>

BASH2
TCSH2

File

Maintenance2

Programming

Support2

OnlineInfo2

<1..3>

<1..2>

UNIX

<1..1>

Figure 7.2. Application of the disjunctive integration strategy on our running example.

Thus, the FMs of our running example can be integrated, following the disjunctive

strategy, as a CP as follows.

[UNIX, UNIX1, Kernel1, Scheduling1, ExecutingInstructions1,
InterpretingInstructions1, AccomplishingTheTransferOfData1,
AllocatingTheMachinesMemory1, Shell1, FileSystem1, UserInterface1,
Graphical1, Process1, Process2, Process3, Process4, Process5, UNIX2,
Cdrom2, Usb2, Net2, UtilityProgram2, FileMaintenance2, Editing2,
OnlineInfo2, ProgrammingSupport2, UserInterface2, Shell2, SH2, TCSH2,
BASH2] ∈ {0, 1} ⋀
[WidthResolution] ∈ {0, 800, 1024, 1366} ⋀
[HeightResolution] ∈ {0, 600, 768} ⋀
[Support_usb1, Cdrom_atech1, Pcmacia_support1] ∈ {0,1,2} ⋀
[A, B, C] ∈ {0, 1} ⋀

UNIX = 1 ⋀

%this is the disjunction:
UNIX = UNIX1 + UNIX2 ⋀

UNIX1 = Kernel1 ⋀
Kernel1 = AllocatingTheMachinesMemory1 ⋀
AllocatingTheMachinesMemory1 Process ⋀
Kernel1 = Scheduling1 ⋀
Scheduling1 Process ⋀

149

Kernel1 = AccomplishingTheTransferOfData1 ⋀
AccomplishingTheTransferOfData1 Process ⋀
Shell1 InterpretingInstructions1 ⋀
Kernel1 = InterpretingInstructions1 ⋀
Shell1 ExecutingInstructions1 ⋀
Kernel1 = ExecutingInstructions1 ⋀

Support_usb1 A ⋀
Cdrom_atech1 B ⋀
Pcmacia_support1 C ⋀
0 ≤ A + B + C ≤ 3 * Kernel1 ⋀
UNIX1 = Shell1 ⋀
UNIX1 = FileSystem1 ⋀

UNIX1 ≥ UserInterface1 ⋀
UserInterface1 = Graphical1 ⋀
Graphical1=1 (WidthResolution=W1 ⋀ HeightResolution=H1)⋀
Graphical1=0 (WidthResolution=0 ⋀ HeightResolution=0) ⋀
fd_relation([[800, 600], [1024, 768], [1366, 768]], [W1,H1]) ⋀

UNIX1 ≥ Process ⋀
R1 = Process1 + Process2 + Process3 + Process4 + Process5 ⋀
Process ≤ R1 ≤ Process * 5 ⋀

UNIX2 = Cdrom2 + Usb2 + Net2 ⋀
UNIX2 ≥ UtilityProgram2 ⋀

UtilityProgram2 = FileMaintenance2 ⋀
FileMaintenance2 UserInterface2 ⋀
UtilityProgram2 = Editing2 ⋀
Editing2 UserInterface2 ⋀
UtilityProgram2 ≥ UserInterface2 ⋀
UtilityProgram2 ≥ OnlineInfo2 ⋀
OnlineInfo2 UserInterface2 ⋀
UtilityProgram2 ≥ ProgrammingSupport2 ⋀
ProgrammingSupport2 UserInterface2 ⋀

UserInterface2 ≤ Graphical2 + Shell2 ≤ UserInterface2 * 2 ⋀
R2 = SH2 + TCSH2 + BASH2 ⋀
Shell2 ≤ R2 ≤ Shell2 * 3

This resulting model permits the configuration of 3324 different products. It is worth

noting that the null product (all the variables set to 0) present in both input FMs is counted

only one time in the resulting model. This fact explains the result 3324 = 3225 + 100 – 1;

where 3225 is the number of products of the base model presented in Figure 3.5, and 100 is

the number of products of the base model presented in Figure 3.6.

In order to develop our multi-model verification approach, we use the integration of the

two FMs of our running example by means of the “conservative strategy keeping features and

attributes of the original models” (also called Strategy N° 1).

7.1.1 Conformance Checking

150

The abstract syntax of the resulting model presented in Figure 7.1 can be represented as a

constraint logic program, by means on the approach presented in Chapter 3. The resulting

constraint program is as follows:

(1) root(fea1).
(2) feature(fea1, 'UNIX',[]).
(3) feature(fea2, 'Kernel', []).
(4) feature(fea3, 'Scheduling', []).
(5) feature(fea4, 'ExecutingInstructions', []).
(6) feature(fea5, 'InterpretingInstructions', []).
(7) feature(fea6, 'AccomplishingTheTransferOfData', []).
(8) feature(fea7, 'AllocatingTheMachinesMemory', []).
(9) feature(fea8, 'Shell', []).
(10) feature(fea9, 'SH', []).
(11) feature(fea10, 'TCSH', []).
(12) feature(fea11, 'BASH', []).
(13) feature(fea12, 'FileSystem', []).
(14) feature(fea13, 'UserInterface', []).
(15) feature(fea14, 'Graphical', []).
(16) feature(fea15, 'Process', []).
(17) feature(fea16, 'Cdrom', []).
(18) feature(fea17, 'Usb', []).
(19) feature(fea18, 'Net', []).
(20) dependency(dep1, fea1, fea2).
(21) dependency(dep2, fea2, fea3).
(22) dependency(dep3, fea2, fea4).
(23) dependency(dep4, fea2, fea5).
(24) dependency(dep5, fea2, fea6).
(25) dependency(dep6, fea2, fea7).
(26) dependency(dep7, fea1, fea8).
(27) dependency(dep8, fea8, fea9).
(28) dependency(dep9, fea8, fea10).
(29) dependency(dep10, fea8, fea11).
(30) dependency(dep11, fea1, fea12).
(31) dependency(dep12, fea1, fea13).
(32) dependency(dep13, fea13, fea14).
(33) dependency(dep14, fea1, fea15).
(34) dependency(dep15, fea1, fea16).
(35) dependency(dep16, fea1, fea17).
(36) dependency(dep17, fea1, fea18).
(37) dependency(dep18, fea8, fea4).
(38) dependency(dep19, fea8, fea5).
(39) dependency(dep20, fea3, fea14).
(40) dependency(dep21, fea6, fea14).
(41) dependency(dep22, fea7, fea14).
(42) mandatory(dep1).
(43) mandatory(dep2).
(44) mandatory(dep3).
(45) mandatory(dep4).
(46) mandatory(dep5).
(47) mandatory(dep6).
(48) mandatory(dep7).
(49) optional(dep8).
(50) optional(dep9).
(51) optional(dep10).
(52) mandatory(dep11).
(53) optional(dep12).
(54) mandatory(dep13).
(55) optional(dep14).
(56) optional(dep15)
(57) optional(dep16).
(58) optional(dep17).
(59) requires(dep18).

151

(60) requires(dep19).
(61) requires(dep20).
(62) requires(dep21).
(63) requires(dep22).
(64) groupCardinality([dep8, dep9, dep10], 1, 3).
(65) groupCardinality([dep15, dep16, dep17], 1, 1).
(66) individualCardinality(fea14, 0, 5)

Where lines 1 and 2 define the root feature, lines 3 to 19 define the rest of features, lines

20 to 41 defines the dependencies among features, lines 44 to 63 define the type of each

dependency, lines 64 and 65 define the two group cardinality of the model and line 66 defines

the individual cardinality of the feature Process (identified by the atom fea14).

The generic conformance checking approach presented in Chapter 5 can be adapted to the

feature dialect used in this thesis (cf. Figure 3.4) and used to check the conformance of the

FM depicted in Figure 7.1 against the FM metamodel depicted in Figure 3.4. The eight

generic conformance criteria (CC) to check conformance of PLM, adapted to the feature

dialect used in this thesis give the following results:

CC.1. A FM is composed of one or several root features: line 1 presents one instance

of a root feature.

CC.2. A FM is composed of one or several features and dependencies: lines 2 to 19

represent 18 instances of features and lines 20 to 41 represent 21 instances of

dependencies.

CC.3. Each feature has a unique name: logical facts of lines 2 to 19 have, each one,

three atoms (an atom is a general-purpose name with no inherent meaning); the

second atom of each fact corresponds to its name and is unique to each fact.

CC.4. Each dependency relates two or several different features: each fact

instantiating a dependency (cf. lines 20 to 41) has three atoms; the first atom

represents the identifier of each dependency and the second and third atoms represent

the features related by the corresponding dependency.

CC.5. An attribute belongs to one and only one feature: there is not attributes on the

model of Figure 7.1 and therefore there is not facts representing attributes in the

constraint logic program representation of the model.

CC.6. An attribute has a unique name: the model of Figure 7.1 has no attributes to be

evaluated.

CC.7. An individual cardinality is associated to one and only one feature: the

individual cardinality instantiated in line 66 has three atoms, the first atom represents

the name of the feature with a cardinality [0..5].

152

CC.8. A group cardinality groups two or more optional dependencies: lines 64 and

65 instantiate the two group cardinalities of the FM represented in Figure 7.1. The

first group cardinality has three atoms, the first atom is a list of features, and the

second and third atoms represent the lower and upper boundaries of the cardinality.

The list of features contains three atoms (i.e., dep8, dep9, dep10), each one of them

is the identifier of one optional (cf. lines 49, 50 and 51 respectively) dependency (cf.

lines 27, 28 and 29 respectively).

7.1.2 Domain-specific Verification

The semantics of the resulting model depicted in Figure 7.1 can be represented as a constraint

program by means of the approach presented in Chapter 3. The resulting constraint program

is presented below, where a coma between two constraints means an and.

(16) domain([UNIX, Kernel, Scheduling, ExecutingInstructions,
InterpretingInstructions, AccomplishingTheTransferOfData,
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface,
Graphical, Process, Cdrom, Usb, Net, SH, TCSH, BASH], 0, 1),

(17) UNIX = Kernel,
(18) UNIX = Shell,
(19) Shell ≤ SH + TCSH + BASH,
(20) SH + TCSH + BASH ≤ Shell * 3,
(21) Kernel = AllocatingTheMachinesMemory,

(22) AllocatingTheMachinesMemory Process,
(23) Kernel = Scheduling,

(24) Scheduling Process,
(25) Kernel = AccomplishingTheTransferOfData,

(26) AccomplishingTheTransferOfData Process,

(27) Shell InterpretingInstructions,
(28) Kernel = InterpretingInstructions,

(29) Shell ExecutingInstructions,
(30) Kernel = ExecutingInstructions,
(31) R1 = Process1 + Process2 + Process3 + Process4 + Process5,
(32) Process ≤ R1,
(33) R1 ≤ Process * 5,
(34) Process ≤ UNIX,
(35) UNIX = FileSystem,

(36) UserInterface ≤ UNIX,
(37) UserInterface = Graphical,
(38) UNIX = Cdrom + Usb + Net

Line 1 defines the domain of the variables of the product line, lines 2, 3, 6, 8, 10, 13, 15,

20 and 22 define the mandatory dependencies on the product line, lines 7, 9, 11, 12 and 14

define the requirement dependencies, lines 19 and 21 define the optional dependencies and

lines 4, 5 and 23 define the group cardinalities, and lines 16, 17 and 18 represent the

individual cardinality of the product line.

153

Now the domain-specific verification approach presented in Chapter 6 for standalone

models can also be applied on this integrated model. The application of the domain-specific

verification criteria depicted in the typology of Figure 4.1 gives the following results:

1. Non-void.

The integrated model presented above is not void and its semantic richness permits

the configuration of 12441600 different products. It is worth noting that the variable

UserInterface that was an optional feature in the models of Figures 3.3 and 3.4

becomes a mandatory feature in the integrated model. This is because of the

restrictive strategy in which, the requires dependencies with the feature

UserInterface in the model of Figure 3.6 and the direct dependency with the root

feature in Figure 3.5, makes this feature mandatory.

2. Non-false.

The integrated model is non-false. In fact, the base model of Figure 3.5 permits the

configuration of 3225 products, and the base model of Figure 3.6 permits the

configuration of 100 products; which means that even better, the expressiveness of the

resulting model was significantly increased.

3. Attainable domains.

No features, except the core features that can take the value of 0. All the features of

the integrated model can attain their domain.

4. Non-dead artefacts.

There are no dead features in the integrated model.

5. Non-false optional artefacts.

Feature Process is modeled as optional (because of its [0..5] individual cardinality);

however, Process appears in all the products of the PL due to the fact that this feature

is included by other core features like Scheduling.

6. Non-redundant constraints.

On the one hand UtilityProgram ≤ UNIX, and on the other hand UserInterface

≤ UtilityProgram. Therefore, the constraint: UserInterface ≤ UNIX is redundant.

This redundancy can be explained by the fact that the variable UserInterface is

already an optional variable of UNIX through UtilityProgram. The technique

presented in Section 5.2 verifies the consistency of the model with the redundant

constraints, and then changing the constraint by its negation (UserInterface >

154

UNIX) and proving the inconsistency of the new model was used to identify this

redundancy.

7.2 Verification of Dopler Variability Models

Decisions and assets are linked with inclusion conditions defining traceability from the

solution space to the problem space (e.g., the asset Tab Window Manager must be included in

the solution space if the option OnlineInfo of the decision Utility program is selected in a

particular configuration). In our integration approach, these inclusion conditions are

constraints that will be added to the collection of constraints representing the decision and

asset model. Once these constraints are added, both viewpoints of the PL are integrated, and

the model is ready to be verified against the criteria depicted in Section 5.2 with minor

variants in some criteria. The application of these verification criteria over the Dopler model

depicted in Figure 3.8 and the explanation regarding the minor variants are presented as

follows:

1. Void model.

This model is not a void because it permits the configuration of at least one product; for

instance C1 = {USB, Editing, ProgrammingSupport, Shell}

2. False model.

This model is not a false model because it permits the configuration of more than two

products; for instance: C2 = {Cdrom, Editing, OnlineInfo, Shell, Twm, KDE,

Qt, GraphicalResolution = “800x600”, Width = 800} and C3 = {USB, Editing}.

3. Non-attainable validity conditions’ and domains’ values.

This operation either (i) takes a collection of decisions as input and returns the decisions

that cannot attain one or more values of its validity condition; or (ii) takes a collection of

assets as input and returns the assets that cannot attain one of the values of its domain. A

non-attainable value of a validity condition or a domain is a value that can never be taken

by a decision or an asset in a valid product. Non-attainable values are undesired because

they give the user a wrong idea of the values that decisions and assets modeled in the

product line model can take. In our example (see Figure 3.8), the validity condition Width

≥ 800 && Width ≤ 1366 determines a very large range of values that can take the

variable Width, however this variable can really take three values: 800, 1024 and 1366

which means that values like 801, 802,..., 1023, 1025, ..., 1365 are not attainable values.

4. Dead reusable elements.

155

In the Dopler language, the reusable elements are Decisions and Assets. This operation

takes a collection of decisions and assets as input and returns the set of dead decisions and

assets (if some exist), or false otherwise. A decision is dead if it never becomes available

for answering it (Mazo et al. 2011a). An asset is dead if it cannot appear in any of the

products of the product line (Mazo et al. 2011a). The presence of dead decisions and

assets in PLMs indicates modeling errors and intended but unreachable options. A

decision can become dead (i) if its visibility condition can never evaluate to true (e.g., if

contradicting decisions are referenced in a condition); (ii) a decision value violates its

own visibility condition (e.g., when setting the decision to true will in turn make the

decision invisible); or (iii) its visibility condition is constrained in a wrong way (e.g., a

decision value is > 5 && < 3 at the same time). An asset can become dead (i) if its

inclusion depends on dead decisions, or (ii) if its inclusion condition is false and it is not

included by other assets (due to requires dependencies to it). Dead variables in CP are

variables than can never take a valid value (defined by the domain of the variable) in the

solution space. Thus, our approach evaluates each non-zero value of each variable’s

domain. If a variable cannot attain any of its non-zero values, the variable is considered

dead. For instance, in the Dopler model of Figure 3.8, there are not dead decisions or

assets.

5. Redundancy-free.

In the asset model (cf. the right of Figure 3.8) the asset 4dwn requires MwM, which at the

same time requires the asset Motif, therefore the dependency 4dwm requires Motif is

redundant according to the redundancy-free algorithm presented in Section 5.2.

It is worth noting that the domain-specific operation “false optional reusable elements” is

not applicable in Dopler models due to the fact that this language does not have explicitly the

concept of optional. Decisions and assets are optional in Dopler models according to the

evaluation of the visibility conditions (in the case of decisions) and inter-assets dependencies

in the case of assets.

7.3 Gaps and Challenges

The CP-based approach to verify multi-model product lines is a first step in this direction that

complements the related works found in literature. Some of these works are:

Alves et al. (2006) propose an approach to FM refactoring, which, in contrast to FM

specialization formalized by Czarnecki et al. (2005), is a transformation that either maintains

156

or increases the set of all FM configurations, whereas FM specialization is a transformation

that decreases the set of configurations. Both approaches propose a collection of operations

allowing, for example, merge optional and alternative relations of two FMs. Alves et al.

present the refactoring as a sequence of modification operations applied to both original FMs

separately; for example: change, add or remove a relationship, collapse two relationships and

pull up/push down a feature. Alves et al. can derive other refactorings between more than two

FMs by taking a base FM and applying on it a sequence of operations (corresponding to

relationships among the products configured from the other input models). The authors encode

FMs in the Prototype Verification System language (PVS) in order to prove the FM

refactorings proposed in their work. Unfortunately, this approach only considers one strategy

to merge features models. In addition, due to the fact that the merge operation of FMs is based

in the relationships among the features of the products derived from the input FM and not on

the FM themselves, this approach is not realizable in very large FMs because in some cases, it

is impossible derive all their products.

Schobbens et al. (2006) survey feature diagram variants and generalize the various

syntaxes through a generic artefact called Free Feature Diagrams (FFD). In their work, the

authors identify and define three kinds of merging strategies on FMs: intersection, union and

reduced product. To the best of our knowledge, they do not provide automated support for the

merging of FMs neither details about the implementation of these three strategies to deal with

problems of coherence, redundancies and situations difficult to integrate. One example of

these difficulties is when the resulting model needs a new concept to represent the correct

semantics of the input models with regard to the selected merging strategy. In this chapter we

consider these cases and complement their approach with two other integration strategies. In

this context, we presume that our proposal complements their work and offer some indications

about the implementation of FM integration strategies.

Liu et al. (2006) study PL refactoring at the code level and propose what they call Feature

Oriented Refactoring (FOR). They provide a semi-automatic refactoring process to enable the

decomposition of a program into features. The authors propose two operations on FOR. The

first is the so-called introduction sum: “a binary operation that aggregates base modules by

disjoint set union. A base module is a set of unique variables and methods that belong to one

or more classes”. The second operation is called function composition or weaving, a function

“used to weave the changes of a derivative module into a base module, yielding a woven base

module”. A derivative module is the collection of refinements that modify the methods of a

157

module. This approach complements our work, since it could be applied in our approach at the

code level in software product lines.

Fleurey et al. (2007) propose a generic framework for merging models. The framework is

independent from a modeling language and has been implemented in the tool Kompose

(Fleurey 2007a). The generic framework is specialized by decorating the metamodel of the

language with signatures (e.g., the type). These signatures permit capturing semantic elements

of the modeling language in order to produce a meaningful composition operator. The main

advantage of the proposed approach is that permits the definition of merging operators for new

modeling languages. The main limitation is that the framework relies on the structure of the

models to compose. The signatures are the only elements which can be used to take into

account semantics of models to compose. This is an issue in FMs due to the hierarchical

nature of this kind of model and the typical mismatch problems related with the structure of

the resulting model (as in Tables 7.1, 7.3, 7.5 and 7.7).

Apel et al. (2007) present an algebra for feature-oriented software development. The

authors present a procedure for composing (merging) feature trees using tree superimposition.

This recursive procedure, in the words of the authors, composes “two nodes to form a new

node (1) when their parents have been composed already (this is not required for composing

root nodes) and (2) when they have the same name and type. If two nodes have been

composed, their children are composed as well, if possible. If not, they are added as separate

child nodes to the composed parent node”. As in our work, they assume that nodes with the

same name refer to the same software artefacts and that the granularity levels of both FMs are

the same. Compared to our work, they explore only one strategy to compose FMs and do not

consider cross-tree constraints or feature attributes as we explore in our approach, or the

syntactical mismatches present on some composition situations as presented in Tables 7.1, 7.3,

7.5 and 7.7. In contrast, they explore the problem of superimposition of features, which is a

complement of the work presented in this chapter.

Jayaraman et al. (2007) propose an approach to integrate FMs by using graph

transformation rules. One year later, Segura et al. (2008) presented a similar approach. This

approach presents a catalogue of merge rules describing how to build a FM including all the

products represented by two given FMs (a conservative strategy) previously represented as

graphs. Both approaches use a free Java graphical tool for editing and transforming graphs

called Attributed Graph Grammar System (AGG). To do that, the authors of both works make

two assumptions: (i) “input FMs represent related products using a common catalogue of

features”; and (ii) “the parental relationship between features is equal in all the FMs”. In our

158

approach, we also assume that features with the same name refer to the same artefact and that

FMs to be integrated must have the same level of granularity. However, we present several

strategies to integrate FMs and not only the conservative one. As an improvement of

Jayaraman et al’s work, Segura et al. use FMs with attributes and two kinds of cross-tree

constraints (requires and excludes). In our approach we consider features with attributes, with

cardinalities and with external constraints (additional to requires/excludes) often presented in

industrial FMs (Salinesi et al. 2011). Our approach is inspired on Segura et al.’s work; in

addition, this Chapter provides a more complete scenario for integration of extended feature

models with the details of mismatches and contradictions omitted in (Segura et al. 2008).

Acher et al. (2010) propose two strategies to integrate the features of two FMs without

cross-tree relationships, attributes and cardinalities. The fist strategy makes an intersection

among the features of both input models. The second strategy unifies the features of both input

models and therefore the resulting model will contain the features of both input models. Achar

et al. hold that (i) the first strategy preserves the products that are represented in both input

models at the same time; and (ii) the second strategy preserve the products of both input

models. However, due to the fact that in this approach authors only consider the features of

both input models and not the relationships among them, the semantics of the resulting model

cannot be defined by the intersection/union of both input models. Unfortunately, their

approach does not provide details about how these two strategies have been implemented

neither about how to treat the contradictory and mismatch situations.

Rosenmüller et al. (2011) provide three alternative mechanisms to compose variability

models in order to improve composition. The three mechanisms are inheritance,

superimposition and aggregation. As in object-oriented programming, the authors use

inheritance to create a new variability model that extends an existing model with new features

and constraints. Indeed, Rosenmüller et al aim at deriving (i) the union of all features and (ii)

the union of all constraints. The first operation increases variability by permitting all feature

combinations of the merged models. The second operation limits variability by joining the

constraints of the models using conjunctions. In order to do that, they translate the models into

their Boolean propositional formula, merge these representations, and create a new feature

model from the merged formula. This approach is similar to ours, but unfortunately no details

about how to merge these propositional formulas are provided in their work. Besides, we

consider not only the union strategy but other four composition strategies and instead of

Boolean propositional formulas we use constraints, which can be used to merge not only

FODA models but others PLMs. A more restrictive mechanism is the superimposition, in

159

which the propositional formulas corresponding to each base model are preserved in the

resulting model. However, the authors do not provide details about the implementation of this

mechanism, or about how to deal with the contradictions and redundancies in the resulting

model. In contrast, inheritance and aggregation are more appropriate when input models have

different names for the same artefact due to the fact that these two mechanisms permit the

creation of new concepts when the names do not match. Unfortunately, these two mechanisms

do not scale, because the composition in these cases is done manually.

However, even with all these works and the increasing effort of the product line community

to allow the configuration of products from a multi-model product line, some questions still

remain unsolved, as for example:

1. How to deal with multi-model PLs where each model is represented in a different

language (i.e., where there is no a common metamodel)?

2. Is the constraint language enough expressive to represent the semantics of a multi-model

PL expressed with several variability languages? Is there a sort of “assembler language”

to compile every PLM independent of their metamodel?

3. Is the verification approach presented in this chapter valid for these kinds of multi-view

models where each view is represented in a different formalism?

4. The verification criteria proposed for standalone product line models is enough for

verifying multi-model product lines?

5. Is configuring a product from two models (of the same PL) equivalent to configuring a

product from an integrated model? How to avoid or to deal with the contradictions and

mismatches present on the resulting PLM even if the base models were correct

themselves?

6. How to guarantee that the resulting model represent the right semantics that the actor

wants to represent in the resulting model?

7. How to deal with the terminology and structural incoherencies and mismatches? How to

integrate PLMs where each structure of each PLM is very different from one another?

8. How to deal with base models in which the level of granularity of requirements specified

in them is different?

9. How to deal with addition of supplementary constraints specifying model inter-

dependencies? How to deal with specification of dependencies that cannot be defined in

any of the languages of the base models (e.g., constraints on Integer variables, or on 3 or

more variables) or definition of constraint preferences (e.g., Maximize (2 * C1 + C2))?

10. What is the formal semantics of each strategy to integrate FMs?

160

11. Is our collection of strategies to integrate FMs complete? Is the catalogue of integration

rules correct and complete according to the given semantics?

Even if this thesis does not have the answer to all these questions, the constraint-based

approach presented here is a step ahead for future works willing to solve these questions.

7.4 Summary

This chapter presents the extension of our verification approach to the context of multi-model

product lines. Our proposal way to handle this is the UNIX running example, represented by

means of a Dopler model and two FMs. The running example was transformed into constraint

logic programs in order to integrate them and make them automatically verifiable. Once the

models were transformed, they were individually verified against the typology of verification

criteria presented in Chapter 4. The results obtained from these two cases show the

applicability of this verification approach in at least these two product line modelling

languages. However, several research questions still remain unsolved, representing new

research topics for future works.

161

Chapter 8

Evaluation

This chapter reports the results of several empirical experiments carried out to evaluate the

ideas proposed in this thesis. In particular, this chapter’s goal is to evaluate:

 the implementability of our verification approach,

 its generality against different product lines, specified with different languages

and in different manners (stand alone and multi-model),

 the scalability of the proposed approach.

The performance results of the tool that was implemented is compared with one of the

most popular PLM verification tools of the literature. The verification operations related with

conformance checking could not be compared with other solutions due to the fact that, to the

best of our knowledge, there are not implementations in literature to be compared to.

This chapter provides details of the resources used in the experiments and report and

discuss the observed results.

8.1 Hardware and Software

Evaluation was made in the following environment: Laptop with Windows Vista of 32 bits,

processor AMD Turion 64 bits X2 Dual-Core Mobile RM-74 2,20 GHz, RAM memory of

4,00 GB, GNU Prolog 1.3.0 and Eclipse RPC Galileo-SR2-Win32.

8.2 Benchmarks

8.2.1 Real Models

We selected a large collection of feature models used in the field of software product lines to

construct the corpus of 34 FMs that served as basis for our experiments. Those models have

been used in a variety of ways by their proposers and served mostly as a mean to illustrate

approaches and techniques applied to software product lines. Table 8.1 presents the name, the

number of features and a small description of 16 of these models, sorted by the number of

features in the model.

162

Table 8.1. 16 FMs taken from the literature of software PLs and used in our experiments

Feature Models Taken From the
Literature

Number
of

Features
Description

TelecommunicationSystem 12

This model represents the functionalities of a
telecommunication switch, which can be extended by

installing additional software modules onto the
hardware component such as management software or

application packages for messaging and IP-services
(Felfernig et al. 2001)

James_fm 14

JAMES is a framework to develop web collaborative
systems with a particular kind of database, user

interface and one or several modules (Benavides et al.
2005)

CellPhone_fm 15
This model is a SPL for applications that

manipulate photo, music, and video on mobile devices,
such as mobile phones (Figueiredo et al. 2008)

GraphBatory_fm 20
This model is a family of graph applications where
each graph PL application implements one or more

graph algorithms (Batory 2005)

MobilePhone_fm 20
This model represents a mobile phone family with

several utility functions, settings, media facilities and
types of connectivity (Segura 2008)

Fame_dbms_fm 21

This model corresponds to a SPL of embedded
database management systems (DBMS) with different
types of index, access methods, statistics (e.g., buffer
hit, ratio, table size, etc.) and transactions (Kastner et

al. 2009)

Insurance_Product_fm 25

PL Model for Insurance Systems. This model proposes
several types of insurance objects, insurance options,

payment modes and insurance conditions
(Tekinerdogan & Aksit 2003)

KeyWordInContext_fm 25

This model represents the most important features of
the KeyWord in Context problem formulated by

Parnas (1972) to contrast different criteria for modular
software decomposition (Sun et al. 2005)

DigitalVideoSystem_fm 26
This model represents a Digital Video System that
need to be controlled remotely and optionally, by a

telephone or by a net (Streitferdt et al. 2003)

GraphMei_fm 30
This models represent the family of operation of a
graph editor tool such as adding, content moving,
outline moving, removing, etc (Mei et al. 2003)

WebPortal_fm 43
It is a feature model for a web portal product line with

persistency, security and performance features and
some services (Mendonca et al. 2008)

DocGen_fm 44

DocGen is the FM of a commercial documentation
generator. This documentation includes textual

summaries, overviews, control flow graphs,
architectural information, etc., at different levels of

abstraction (Van Deursen & Klint 2002)

Thread_fm 44

The thread FM represents indeed the decision model a
programmer has to go through when deciding which
kind of thread support his or her application really

needs (Beuche 2003)

163

HIS_fm 67
This is a FM of a Home Integration System (HIS)
product line constraining the services, controls and

quality attributes of a HIS (Kang et al. 2002)

ModelTransformationTaxonomy 88

This is FM representing the variation elements of a
model transformation process such as transformation

rules, rule application strategies, tracing, directionality
and source-target relationships (Czarnecki. & Helsen

2003)

EShopping_fm 287

This model corresponds to the product line
of Business-to-Consumer systems. Elements like the
catalogue of products, the characteristics of products,
payment options and customer services are related in

this model (Lau 2006)

In our experiments we also used two Dopler models provided by the authors of the

Dopler formalism (Dhungana et al. 2010). These models and the number of variables

presented in each one of them are presented in Table 8.2, sorted by the number of variables in

the model.

Table 8.2. Dopler variability models.

Dopler Models
Number

of
Variables

Description

Kamera8655 39

This model defines the variability of a fictitious product line of digital
cameras. This model has been created by analyzing datasheets of all

available digital cameras of a well-known digital camera manufacturer.
The model comprises 7 decisions and 32 assets (Mazo et al. 2011a).

DOPLER tool
suite model

121

This model represents the variability of the configurable DOPLER tool
suite and comprises 14 decisions, 40 decision options and 67 assets (Mazo

et al. 2011a). The model has been created by the developers of the
DOPLER tool suite.

Three product line models represented as constraints programs were developed by us,

based in our academic and industrial experiences. They were also used in our experiments

and are briefly presented in Table 8.3, sorted by the number of variables in the model.

Table 8.3. Benchmark of PLMs represented from scratch as constraint programs.

Constraint Program

Product Line Models
Number of
Variables Description

Vehicle movement
control systems

21
This model represents a vehicle movement control systems
product line with different kind of sensors (Salinesi et al.

2010b).

UNIX 37
Multi-model UNIX product line model used in this these;

cf. Figures 3.5 and 3.6.

Stago 49
This model represents a family of blood analysis

automatons fabricated by the company Stago (Djebbi &
Salinesi 2007), (Salinesi et al. 2010b).

164

Despite the number of models that we collected from literature, our academic partners

and our own models, it was extremely challenging to find larger models to be representatives

of the large-scale industrial product line models. For instance, Batory et al. (2006) points out

that product lines in the automotive industry can contain up to 10000 features. We are aware

that such models exist, however they are usually part of commercial projects that offer

limited access to their resources. Therefore, we used several automatically generated models.

They are used in well known benchmarks for the software PL community. These models are

presented in the next section.

8.2.2 Automatically-Generated Models

The automatically-generated FMs we used in this thesis were taken from the SPLOT tool

(Mendonça et al. 2009b), which provides a large collection of automatically-generated FMs

to support empirical studies on the performance and scalability of automated techniques for

reasoning on FMs. According to Mendonça et al. (2009a), in each automatically-generated

model, each type of mandatory, optional, inclusive-OR (<0..n> group cardinality) and

exclusive-OR (<0..1> group cardinality) feature was added with equal probability. The

branching factor (number of children per parent node) of the feature tree varied from 1 to 6.

The cross-tree constraints were generated as a single Random 3-CNF formula 3 over a subset

of features in the tree.

Each model in the benchmark corresponds to a random 3-CNF formula, depending on the

CTCR. Mendonça et al. (2009a) define Cross-Tree Constraint Ratio (CTCR) as the ratio of

the number of features in the cross-tree constraints to the number of features in the feature

tree. For instance, for a model with 1000 features and 30% CTCR, 300 distinct variables are

selected randomly from the model and combined randomly into ternary CNF clauses.

According to the Mendonça et al (2009a) description of the automatically-generated FMs,

variables are negated in each clause with a 0.5 probability and identical clauses were not

permitted. The number of clauses is controlled by clause density. For instance, given clause

density of 2.3 for a model of 1000 features, the tool generates 690 (= 2.3×300) random

ternary clauses. The clause density refers to the density of clauses in the cross-tree constraints

not in the formula induced by the entire feature model.

Five of the 15 automatically-generated FMs used in this thesis are presented in Table 8.4.

3 In Boolean logic, a formula is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses, where a clause is a

disjunction of literals. In a clause, a literal and its complement cannot appear in the same clause. In a Random 3-CNF

formula, at most 3 variables per clause are randomly combined to create a formula; for example, the formulas ¬AB and
(AB)(AC) are in 3-CNF; the formula A¬A is not in CNF and the formula (AB)(AC)D is not in 3-CNF.

165

Table 8.4. Five automatically-generated FMs taken from SPLOT (Mendonça et al. 2009b)

Some of the automatically-generated FMs with
SPLOT

Number
of

Features
Description

SPLOT-3CNF-FM-500-50-1.00-UNSAT-1 500
Number of 3-CNF Variables: 50 and 3-

CNF Clause Density: 1.0

SPLOT-3CNF-FM-1000-100-1.00-UNSAT-10 1000
Number of 3-CNF Variables: 100 and 3-

CNF Clause Density: 1.0

SPLOT-3CNF-FM-2000-200-1.00-UNSAT-1 2000
Number of 3-CNF Variables: 200 and 3-

CNF Clause Density: 1.0

SPLOT-3CNF-FM-5000-500-0.30-SAT-10 5000
Number of 3-CNF Variables: 500 and 3-

CNF Clause Density: 0.3

SPLOT-3CNF-FM-10000-1000-0.10-SAT-1 10000
Number of 3-CNF Variables: 1000 and

3-CNF Clause Density: 1.0

8.3 Evaluating the Domain-specific Verification

Approach

We performed a series of experiments to evaluate the domain-specific verification approach

proposed in this thesis. The goal was to measure:

 the effectiveness or precision of the defect’s detection,

 the computational scalability, and

 the usability of the approach to verify different kinds of product line models.

These measurements are presented in the next sections, grouped by the kind of product

line models against which they were measured.

8.3.1 The Case of Feature Models

We assessed the feasibility, precision and scalability of our approach with 46 models, out of

which 44 were taken from the SPLOT repository (Mendonca et al. 2009b) and the other two

models are the Vehicle movement control system and the Stago model (cf. Table 8.3). The

size of the models is distributed as follows:

32 models of sizes from 9 to 49 features,

4 from 50 to 99, 5 from 100 to 999 and

6 from 1000 to 2000 features.

The six feature models with sizes from 5000 to 10000 features were not considered in this

experiment due to the fact that the GNU Prolog solver (the used version) does not accept

more that 5000 variables. Note that SPLOT models do not have attributes, in contrast to our

two industrial models. Therefore artificial attributes were introduced in a random way, in

order to have models with 30%, 60% or 100% of their features with attributes. In order to do

166

that, we have created a simple tool4 that translates models from SPLOT format to constraint

programs. Then we integrated the artificial attributes. In order to test that the transformation

respects the semantics of each feature model, we have compared the results of our models

without attributes with the results obtained with the tools SPLOT (Mendonca et al. 2009b)

and FaMa (Trinidad et al. 2008b). In both comparisons we have obtained the same results in

all the shared functions: detection of void models, dead features, and false optional features.

These results show that our transformation algorithm respects the semantics of initial models.

Precision of the detection

Not only must the transformation of FMs into CPs be correct, but also the detection of

defects. As aforementioned, the results obtained with our tool VariaMos against the results

obtained with two other tools: SPLOT and FaMa, were compared. These comparisons were

made over models without attributes (the original models taken from SPLOT do not have

attributes) and with restricted group cardinalities, due to the fact that the group cardinalities

used in SPLOT and FaMa must be able to be transformed into OR, AND and XOR

operations. For example, a <0..3> group cardinality over three features can be represented

as an OR among the three features, but a <2..5> group cardinality cannot be represented

with an OR, AND or XOR operators. These comparisons show the same results, for the

common verification functions on the three tools, but due to the fact that our own models

contain attributes and group cardinalities <m..n>, for any m and n bellowing to non negative

Integer numbers, a manual inspection has been necessary. A manual inspection on two

samples of 28 and 56 features has shown that our approach identifies 100% of the anomalies

with 0% false positives.

Computational Scalability

The execution time of the verification criteria in our implementation shows that the

performance obtained with our approach is acceptable in realistic situations. In the worst

case, verification criteria were executed in less than 19 seconds for models up to 2000

features. Figure 8.1 shows the execution time of each one of the six verification criteria in the

50 models. Each plot in the figure corresponds to a verification criterion: Figure 8.1(1)

corresponds to criterion 1, Figure 8.1(2) corresponds to criterion 2 and so on. Times in the Y

axis are expressed in milliseconds (ms). The X axis corresponds to the number of features. It

4 parserSPLOTmodelsToCP.rar available at: https://sites.google.com/site/raulmazo/

167

is worth noting that most of the results overlap the other ones; we avoid the use of a

logarithmic scale in the X axis, to keep the real behaviour of the results.

0

5

10

15

20

0 500 1000 1500 2000

Not Void FMs - VariaMos
N° Features

(1)

ms

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000

False FMs - VariaMos N° Features

(2)

ms

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000

Non Attainable Domains - VariaMos

(3)

N° Features

ms

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

Dead Features - VariaMos N° Features

(4)

ms
0

10

20

30

40

0 500 1000 1500 2000

Redundant Relationships - VariaMos
N° Features

(5)

ms

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

False Optional Features - VariaMos N° Features

(6)

ms

Figure 8.1. Execution time of the six verification criteria, per number of features

Let us now present the results in more detail.

For the models with sizes between 9 and 100 features our approach verified all criteria in

less than 1 second on average.

For the models with sizes between 101 and 500 features, our apporach verified dead

features and false optional features in 0.4 seconds, took 1 second to calculate the non

attainable domains and 0 milliseconds in the rest of verification criteria. It is worth noting

that GNU Prolog does not provide time measures of microseconds (10-6 seconds); thus, 0

milliseconds (10-3 seconds) must be interpreted as less than 1 millisecond. In general, over

the 46 FMs, the execution time to detect dead features, false optional features and non

attainable domains was less than 8.679, 8.819 and 19.089 seconds respectively. For the

rest of verification criteria, the execution time is lower than 0.016 seconds even for the

largest models. We can only make projections to evaluate the behaviour of our approach with

larger models. Following the projection of our results, our approach is probably able to be

used in larger FMs with a quadratic increase. To finish, the verification operations like

redundant relationships, false feature models and void feature models are executed in less

than 0.03 seconds. According to the results of our experiment, we can conclude that our

domain-specific verification approach presented in Chapter 5 is scalable to large FMs.

8.3.2 The Case of Dopler Variability Models

168

The verification approach presented in this thesis was also tested with two Dopler models (cf.

Table 8.2) named “digital camera” and “DOPLER”. In both models, 33 defects in the

DOPLER model and 22 defects in the camera model were seeded. The defects cover

different types of problems to show the feasibility of the verification approach. For instance,

the decision Wizard_height cannot take the values 1200, 1050, 1024 and 768 and the

asset VAI_Configuration_DOPLER cannot take the value 1 (is never included for any

product), even if these values take part in the corresponding variables’ domain. Furthermore,

the execution time of applying the approach for both models, for the different verification

criteria, has been measured. The results of this experiment are presented below.

The DOPLER model was not void (it could generate 23016416 products). However, 18

defects related with non-attainable domain values and 15 dead decisions and assets (these

together are the 33 defects we have seeded before) have been discovered. The verification of

the digital camera model showed that the model is not void (it can generate 442368

products). In this model, 11 defects related with non-attainable domain values as well as 11

dead decisions and assets (these together are the 22 defects we have seeded before) have

been discovered. It is noteworthy that the same number of defects was identified in a manual

verification of both models. The automated verification found all of the seeded defects in the

DOPLER model and all of the seeded defects in the camera model.

Table 8.5. Results of Dopler models verification: Execution time (in milliseconds) and
number of defects found with each verification operation.

V
oi

d
m

od
el

F
al

se
 m

od
el

at
ta

in
ab

le

do
m

ai
ns

D

ec
is

io
ns

an
d

A
ss

et
s

R
ed

un
da

nt

re
la

ti
on

sh
ip

s

DOPLER

81 Variables

Defects No No 18 15 No

Time 0 0 125 47 0

Camera

39 Variables

Defects No No 11 11 No

Time 0 0 16 15 0

Table 8.5 shows the number of defects found and the execution time (in milliseconds)

corresponding to the verification operations on the models. No defects were found regarding

the “Void model”, “False model” and “Redundant relationships” operations and the execution

time was less than 1 millisecond for each one of these operations in each model. The model

169

transformations from Dopler models to constraint programs took about 1 second for each

model.

8.4 Evaluating the Conformance Checking Approach

We performed a series of experiments to evaluate the effectiveness or precision, the

scalability and the usability of the conformance checking approach proposed in this thesis. In

order to do so, we executed the approach presented in Chapter 5 over 50 feature models

taken from the SPLOT repository (Mendonça et al. 2009b).

The size of the models were distributed as follows: 30 models of sizes from 9 to 49

features, 4 from 50 to 99, 4 from 100 to 999, 9 from 1000 to 5000 and 3 of 10000

features.

Note that SPLOT models neither support attributes nor multi root features. Therefore

artificial attributes (a variable followed by a domain, for example A:String) were

introduced in a random way, in order to have models with 30%, 60% or 100% of their

features with attributes. Following the same logic, we introduced one artificial root on the

50% of the SPLOT models. In order to do that, we created a simple tool that transforms

models from SPLOT format to facts and automates the assignation of artificial attributes,

permiting repeated attributes inside each affected feature (between 1 and 5 features per

affected feature), and roots.

Precision of the detection

One example of the effectiveness of our approach is the 56 conformance anomalies of the

models taken from SPLOT, violating conformance criteria (CC) 4, 6 or 7. The list of

conformance criteria is:

FM CC. Criterion 1: A feature model should have one and only one root.

FM CC. Criterion 2: Features intervening in a group cardinality relationship should not be

mandatory features.

FM CC. Criterion 3: A feature should not have two attributes with the same name.

FM CC. Criterion 4: Two features should not have the same name, in the same model.

FM CC. Criterion 5. A child feature cannot be related in an optional and a

mandatory dependency at the same time.

FM CC. Criterion 6. Two features cannot be required and mutually excluded at the

same time.

170

FM CC. Criterion 7. Each dependency relates two or several different features.

For example, in the Model transformation taxonomy feature model (cf. Table 8.1),

features like Form, Semantically_typed, Interactive, Source,

Syntactically_typed, Target and Untyped appear twice. In addition, we found

1553 conformance defects with regards to criteria 1 and 3. These came from the attributes

and root features that were intentionally introduced in the SPLOT models. A manual

inspection on a sample of 56 conformance defects showed that the tool identified 100% of

the anomalies with 0% false positive. This confirms our belief that our tool has a 100%

precision and a 100% recall.

Computational Scalability

The execution times of our tool during the experiment show that our approach is able to

support a smooth interaction during a conformance checking process. Indeed, each

conformance rule was executed within milliseconds. Figure 8.2 shows the execution time of

each one of the seven conformance rules in the 50 models. In Figure 8.2 each plot

corresponds to a conformance rule: Figure 8.2 (1) corresponds to confornace criterion 1,

Figure 8.2 (2) corresponds to conformance criterion 2 and so on. Times in the Y axis are

expressed in milliseconds (ms) and X axis corresponds to the number of features in a Log10

scale to facilitate the distribution of the results and avoid the overlapping of results.

171

Figure 8.2. Execution time, of the 7 FM conformance criteria, per number of features (in a
Log10 scale)

Initial analyses indicated us that 74.2% of the queries take 0 ms. This actually means

that the execution time is less than 1 ms. In small models (9 to 100 features) the worst rule

execution time was 32 ms. In large models (100 to 10000 features), execution time of each

rule was less than 140 ms. The maximal time taken by the tool to execute all nine

conformance rules on complete models was 265 ms, which is still a ¼ of a second.

Table 8.6 shows the correlation coefficient (R²) between the number of features in the

models and the time that each rule takes to be executed. Of course, the R² does not prove

independency between these variables. However, it gives a good indication of their

dependency/independency. In the case of criteria 1, 2, 3, 4, and 6, the correlation coefficient

is next to 0. This means that, despite the NP complexity of verification of product line models

(Mendonça et al. 2009), (Yan et al. 2009), our tool seems to be scalable to large models when

cheking these criteria. It seems that every criterion can be checked in a linear (criteria 1, 2, 3,

4, and 7) and polynomial (criteria 5 and 6) time, according to the correlation coefficient of

Figure 8.2. As presented in Chapter 5, this good scalability is due to the fact that our

conformance checking approach was optimised so as to avoid evaluating whole models, but

only through series of queries combined in an appropried way.

172

Table 8.6. Correlation coefficients between “number of features” and “criteria execution
time” per each rule and over the 50 models.

Rule 1 2 3 4 5 6 7

R² 0.01 0.04 0.01 0.15 0.74 0.87 0.35

8.5 Tool Support

Several tools were developed in our research to support automated model transformation,

integration and verification. The tools were built on Java and Prolog.

To transform feature models into constraint logic programs we used the SPLOT

transformation API (Mendonca et al. 2009b). We have also built a tool based on ATL (Atlas

Transformation Language) to implement transformation rules. Both transformation strategies

are developed in Chapter 3 and details about the tools automating these strategies are

presented in (Mazo et al. 2011e).

To transform Dopler models into constraint programs we used a navigation API provided

by the developers of the Dopler language (Dhungana et al. 2010).

To check the conformance of feature models we used a tool developed in Prolog (cf.

Appendix), which was executed in GNU Prolog (Diaz & Codognet 2001).

To manage product line models and their integration, to configure the connection with

GNU Prolog and to implement the domain-specific verification algorithms proposed in this

thesis, we developed an eclipse plug-in. The resulting tool, called VariaMos (Variability

Models). VariaMos is can be accessed online at https://sites.google.com/site/raulmazo/

8.5.1. VariaMos

VariaMos uses the solver GNU Prolog as the executor engine of the verification operations.

This connection with GNU Prolog is made using a client-server architecture through a socket

connection as detailed in Figure 8.3. The architecture of VariaMos and its user interface to

manage, integrate and execute the domain-specific verification proposed in this thesis, are

presented in the next sections.

8.3. Communication chema of VariaMos with GNU Prolog.

173

As Figure 8.3 shows it, the VariaMos plug-in plays the role of client. Its goal is to:

 Control the flow of data and send the request to the GNU Prolog tool.

 Process the responses received from GNU-Prolog.

 Support the interaction with the end users by means of the user interface, in

particular to manipulate PLM, and call verification functions.

The GNU Prolog tool plays the role of server. It is intended to:

 Wait for any request. It plays a passive role in the communication.

 Once a request is received, process it and then send the result to the client.

 Be transparent to the end user. The end user does not interact directly with the

GNU Prolog server.

A screenshot of the user interface to configure the connection of VariaMos with the GNU

Prolog solver is presented in Figure 8.4.

Figure 8.4. Screenshot of the configuration tag for the connection of VariaMos with GNU
Prolog.

Technical Architecture

VariaMos is thus composed of two packages, the MANIFEST.MF with the business rules (or

Model) and VariaMos.jar with the classes that implement the view. The classes of these two

packages use other Eclipse packages like jdt.jar, jface.jar, resources.jar and ui.jar. An

overview of the relationships among these packages is presented in Figure 8.5.

174

Model View

VariaMos.jarMANIFEST.MF

VariaMos Plug-in

Figure 8.5. Architecture of the VariaMos Eclipse plug-in.

The functions of each VariaMos’s package are presented as follows:

jface.jar gives the collection of tools to create and manage the components that belong to

the user interface (UI). Jface works together with the Standard Widget Toolkit (SWT) library

in order to manage the functionalities of components like text areas, fonts, windows and all

the actions and objects provided by the library ui.jar. Jface and SWT are necessary in an

eclipse plug-in environment because they permit defining the location of each UI component

into the Eclipse workbench.

Ui.jar permits adding UI components and the corresponding set of actions into the plug-

in. In addition, Ui.jar adds particular actions to the action bar and adding the plug-in view to

the set of Eclipse’s views.

Jdt.jar, it is the acronym of Java Development Tools, which is a collection of plug-ins

that add the capabilities of a full-featured Java IDE to the Eclipse platform. Due to the fact

that VariaMos was developed in Java, we used some particular functions of the plug-ins

provided by the JDT library, especially jdtcore.jar, in order to create, debug, edit, compile,

execute and interface the collection of Java programs used in VariaMos.

175

Resource.jar: it provides the necessary elements in order to manage the relationship

between Eclipse and our plug-in VariaMos, as for example the position that the plug-in’s UI

will have in the Eclipse workspace.

Our plug-in, packaged in the file VariaMos.jar, contains 13 classes to manage the user

interface, the execution of the domain-specific verification operations proposed in this thesis

and the connection with GNU Prolog. The distribution of these classes in the corresponding

packages is presented in Figure 8.6.

8.6. Packages diagram of VariaMos

The Java classes included in the views package are responsible for interaction with the

menus package. This interaction shows to the user the changes made to the plug-in through

the actions added in the Eclipse menu bar. The view package also uses the prolog package

due to the fact that all the instructions that will be sent to the solver are generated in the

prolog package. These instructions are generated in the prolog package according to the

GNU Prolog syntax and then, they are sent to the solver by means of the methods provided

by the built-in classes in the connectionProlog package. The connectionProlog package also

executed the server file (server.pl) in the solver in order to establish a socket connection and

communicate with the server by means of the facts provided in the server.pl file (cf.

Appendix). The functions or facts, provided in the server.pl file, that the connectionProlog

176

package can execute in the solver are: server to assign a communication port, server_next to

read a next instruction from the socket, server_stop to close the socket connection,

server_loop to execute a collection of instruction passed as parameter and get the answers in

other parameter, server_exec to execute a goal passed as parameter and get the answer in

other parameter, server_msg to format a message, server_read to read a string from the

socket and server_write to write a string in the socket.

User Interface

Figure 8.7 presents a screenshot of the product line models management tag provided in

VariaMos. The left part shows the constraint programming representation of our UNIX

running example (cf. Chapter 3). The right side is the user interface to all functions to manage

the edition, transformation into CP and integration of product line models.

As the tabs show, other functions are available to support: verification, analysis,

requirement specifications, configuration.

Figure 8.7. Screenshot of the PLMs management interface provided by VariaMos.

Figure 8.8 presents a screenshot of the main window of the VariaMos tool, once the

verification operations “Richness or no false PLMs” and “dead variables” are executed over

the first model of our running example (cf. Chapter 3).

177

Figure 8.8. Screenshot of the domain-specific verification functions provided by VariaMos.

As the screenshot shows, the VariaMos tool allows to choose which verification to

perform and on which model to perform it. The results of verification are shown at the

bottom of the window together with the execution time. It is also possible to verify views on

models, which makes it possible to explore progressively the validity of sub-PLMs (i.e. from

a semantic point of view subspaces of the collections of products that can be generated from a

PLM).

8.5.2. Conformance Checker of Feature Models

The conformance checker of feature models developed to validate this thesis is a tool that

verifies if a feature model satisfies the constraints captured in the FMs metamodel. This tool

was constructed in the GNU Prolog language (Diaz & Codognet 2001) and executed in the

solver with the same name. The source code of this tool is presented in the Appendix section

of this thesis. A screenshot of the user interface, once executed in GNU Prolog over the FM

called CocheEcologico_94_fm (a feature model taken from SPLOT and corresponding

to the PL of an ecologic car with 94 features), is presented in Figure 8.9. This screenshot

shows how our FM conformance checker discovered six defects regarding the conformance

criterion “Two features should not have the same name” that correspond to the rule number

two in our tool. For instance, in this feature model, feature identified with numbers 17 and

61 have the same name “Blanco” and features identified with the numbers 19, 59 and 69

have the same name “Negro”.

178

Figure 8.9. Conformance Checker of Feature Models

8.6 Comparison with FaMa

The VariaMos tool was compared with the state-of-the-art implementation of domain-specific

verification. For this purpose, we selected FaMa, a Framework for AutoMated Analyses and

verification of feature models integrating some of the most commonly used logic

representations and solvers proposed in the literature such as BDD, SAT and CSP solvers

(Trinidad et al. 2008b).

We selected FaMa to be compared to, because it is the only tool, to the best of our

knowledge, that uses a constraint solver to execute the verification operations implemented in

the tool and it is the type of solver that we also used to implement our approach.

We did not compare the execution time of redundant relationships and false product line

models (or richness) operations because they are not implemented in FaMa. To make the

comparison as fair as possible, we set up FaMa to use the Choco solver as the reasoner used

because it is also based on Constraint Programming and FaMa implements, for this solver, all

the operations we are interested in. It is worth noting that the verification operations dead

features, false-optional features and wrong cardinalities are compared as a package and not

individually due to the fact that FaMa does not compute the time separatly. The VariaMos

versus FaMa comparison results is presented in Figure 8.10. The figure ares given with a

logarithmic scale in the X axis for the sake of presentation.

179

VariaMos shows quite extensive performance gains over FaMa. In our tool, the execution

time (CPU time) of operations dead features, false optional features and non attainable

domains, goes from 14 milliseconds (ms) in models up to 50 features to 64 ms in models up

to 100 features. As aforementioned, these operations are aggregated because they are

implemented that way in FaMa, in other words, it is not possible to measure their

performance separately. These same three functions are executed in 8829 ms in models up to

1000 features and 36587 ms in models up to 2000 features. In FaMa, the execution time of

these three operations goes from 151 ms in models up to 50 features to 596 ms in models up

to 100 features. The same three operations are executed in 28006 ms in models up to 500

features, in 192685 ms (3,2 minutes) in models up to 1000 features and in 1979458 ms (33

minutes) in models up to 2000 features. In the other operation (detection of void models) our

approach is constant and always gives times lower than 1 second. In contrast, for that

verification operation, the execution time in FaMa is linear. As we can see in Figure 8.10, the

difference between the execution time in FaMa and VariaMos grows with the size of models,

which means that our improvement increases more as larger are the feature models. In

summary, the gain, in terms of time, when we execute the first three verification operation in

FaMa and in Prolog is not in terms of number of times faster, but in computational

complexity. According to the results depicted in Figure 8.10(1), it seems that the

computational complexity to execute the first three verification operations is exponential in

FaMa and polynomial in VariaMos. In the same way, the time to execute the verification

operation void feature model seems to be polynomial in FaMa and linear in VariaMos as

presented in Figure 8.10(2). It must be noted that in terms of the precision and recall, both

approaches are equal, that is, both find exactly the same defects.

180

0

500000

1000000

1500000

2000000

2500000

9 90 900

Dead Features- False Optional Features- Wrong Cardinalities. VariaMos

Dead Features - False Optiona Features - Wrong Cardinalities. FaMa

N° Features

0

50

100

150

200

250

300

350

400

450

9 90 900

Void Feature Model. VariaMos

Void Feature Model. FaMa

N° Features

Log
Log

Time

(ms)
Time

(ms)

(1) (2)

Figure 8.10. FaMa versus VariaMos (X axis is in a Log10 scale).

8.7 Summary

This chapter has presented an evaluation of our verification approach using a corpus of 54

models specified in several languages and with sizes from 9 to 10000 artefacts. This chapter

shows how the application of the verification approach, presented in earlier chapters, in the

54 PLMs gives sufficient evidence to support the hypothesis of this thesis. In particular:

- The verification approach can be used to verify product line models specified in

different kind of languages and PL specified with only one or with several models.

- Our experiments show that the verification approach is correct, useful, and our tool

implementation is fast and scalable.

- To the best of our knowledge, our conformance checking approach offers the first

implementation of a FM conformance checker. The domain-specific verification

approach considers more verification criteria than each one of the works found in the

literature, offers an ordered way to verify FMs, and improves the computational

scalability of PLM verification: (i) passing from verification of PLMs with 1000

artefacts at maximum in 41.67 minutes (dead features, false optional and wrong

cardinalities in FaMa) to verification of PLMs up to 2000 artefacts (and even more) in

18 seconds in VariaMos for the same three verification criteria; and (ii) passing from

verification of the not void (consistency) PLMs with 1200 artefacts in 64 seconds

(before elimination of redundant artefacts) and 1900 artefacts in 64 seconds (after

181

elimination of redundant artefacts from the model) in Yan et al. (2009), to

identification of not void PLM with 2000 artefacts in 8 seconds in VariaMos.

The tools developed in this thesis are used together accordint to the architecture depicted

in Figure 8.11.

Integration

module

Transformation to Prolog Constraint Programs by

means of XPath

ATL

Engine or

owner

API

Transformati

on rules

Constraint

editor

Constraint

repository

FODA

Extended

FMs

Dopler

Verification Configuration Solver:

GNU

Prolog

ConformanceChecker & VariaMos

XMI

XMI

XMI

Analysis

Figure 8.11. General architecture of the transformation, integration and verification tools.

Figure 8.11 relates in a unified architecture the different tools developed to validate the

PLM verification approach proposed in this thesis. To verify PLMs, we first transform them

into constraint (logic) programs by means of ATL rules or in-house applications (Application

Programming Interfaces APIs) to navigate through the elements of PLMs. Once PLMs

transformed, they can be edited, integrated into a single model or formatted into the GNU

Prolog language. To format PLMs into GNU Prolog we used XPath to navigate through the

tags of each model, initially represented as XMI (XML Metadata Interchange) files. The

PLMs represented in the GNU Prolog language can be verified, analyzed and configured

using the GNU Prolog solver. Our tools are connected to GNU Prolog by means of a socket

that allows executing PLMs, executing verification rules and retrieving the results from the

solver. Then, answers retrieved from the solver are treated by our tools and presented to the

user.

182

183

Chapter 9

Conclusions and Future Research

The main objective of this thesis is to answer the research question: How can product line

models be automatically verified in a generic and reusable way? To answer this question,

this thesis proposes:

a. A state of the art in verification of product line models

b. A typology of verification criteria that classify and dispose the verification criteria

found in literature according to the nature of criteria, and inside of each category,

according to the order in which they should be executed. These two categories of

verification criteria are called “conformance checking” and “domain-specific

verification”. The order indicates the sequence in which verification criteria should be

executed according to their impact on the overall quality of the PLM and the logic

sequence of the verification process.

c. Verification criteria formalized in first order logic and generic algorithms to

implement them.

- In the case of conformance checking, the generic algorithms should be adapted to

particular metamodels.

- In the case of domain-specific verification the algorithms reuse the precedent

answers obtained from the solver in order to reduce the execution time of each

criterion.

d. An approach to verify multi-model product lines.

e. A tool to automate and validate the verification approach.

f. A benchmark of 54 product line models with size up-to 10000 artefacts.

g. An evaluation and comparison of our implementation with another tool.

9.1. Conclusions

The proposals used to the answer the research question of this thesis are summarized in the

next sub-sections.

184

9.1.1 State of the art in verification of product line models

As for as product line model verification, literature review shows:

a. Most of approaches existing in literature focus in verification of feature models, as

presented in Table 2.1.

b. Table 2.1 shows that there is no approach that covers all the verification criteria, or all

the PL formalisms.

c. Most of these criteria are overlapped, i.e., different names are used to refer to the

same criterion.

d. There is no approach to verify multi-model product lines.

e. There is no comprehensive approach, i.e., an approach that handles all the criteria in a

consistent way.

f. All the techniques we found in the literature transform PLMs in another formalism:

sometimes a conjunctive normal form formula, other times in an if-then-else structure

(i.e., BDD), also constraint satisfaction problem (CSP), OCL and in-house

representations.

The following challenges arise from our literature review:

g. Can the verification approaches originally created for FMs also be used on other

notations? And if it is possible, then, how to do that?

h. How to verify a PLM independently of the language in which the model at hand is

represented and for any verification criteria? There is no generic approach to verify

product lines models.

i. How to verify PLMs in a scalable way?

9.1.2 Typology of verification criteria

The typology of verification criteria emphasizes the difference between domain-specific and

conformance defects. The outcomes of the typology are multiple:

j. It classifies the criteria from a semantic perspective, allowing the identification of

similarities and differences among the criteria.

k. The typology helps the identification of some defects for which no verification

criterion is available in the literature.

l. The classification behind the typology produces a standard and reusable approach to

verify PLMs.

185

m. The typology can be used to select the criteria that one wants to use to verify a PLM

according to the impact that these criteria have or the expected quality level of a

particular PLM.

n. Due to the fact that not all the verification criteria have the same impact, they have

neither the same priority nor the same execution order; the typology can be used to

guide the verification process and to propose specific defects management strategies

and policies.

9.1.3 Conformance Checking, a Generic and Adaptable Verification

Approach

From the point of view of conformance checking, this thesis proposes a collection of

verification criteria to check conformance of product line models with their corresponding

metamodels. This approach is generic and adaptable. Genericity was obtained by developing

these criteria from a generic metamodel that entails common structures of several PL

metamodels. Adaptability is obtained by specialising the generic metamodel with a specific

metamodel. The conformance checking approach needs a transformation of the PLMs’

abstract syntax into constraint logic programs. Thus, the abstract syntax of PLMs, once

represented as a collection of logic facts, can be evaluated against a collection of

conformance criteria taken from the corresponding metamodel. It is worth noting that some

of these criteria are generic to several PLM metamodels and other criteria are particular to the

metamodel at hand. These conformance criteria are implemented as CLP queries over PLMs

and intend to find the elements of the PLMs not satisfying the conformance criteria.

The conformance checking approach is fully automated in a Prolog-based tool. This tool

is used to execute a series of experiments to test the feasibility, the performance and the

computational scalability of the conformance checking approach over feature models. As

presented in Chapter 8, the experiment supports the fact that the approach presented in this

thesis to check conformance is correct, useful, and our tool implementation is fast and

scalable to PLMs up-to 10000 variables.

9.1.4 Domain-specific Verification of PLMs, a Generic Verification

Approach

This thesis presents a generic and reusable approach to verify domain-specific properties of

PLMs against a collection of verification criteria. To use these verification criteria the

semantics of the PLM at hand should be represented as a constraint program. While the

186

variables of the constraint programs specify what can vary from one configuration to another

one, the constraints express, under the form of restrictions, what combinations of values are

permitted in the products. Once PLMs represented as CPs, this thesis proposes the use of CP

solvers in order to execute the verification criteria. The approach was applied to extended

feature models, Dopler models and constraint-based PLMs, which gives an idea of the

genericity of this approach.

The PLM verification approach proposed in this thesis is validated against a series of

experiments (cf. Chapter 8) to evaluate the hypotheses raised in Chapter 1. The experiment

supports the fact that the approach proposed in this thesis to verify domain-specific properties

of PLMs is correct, useful, and our tool implementation is fast and scalable to PLMs up-to

2000 variables.

9.1.5 Verification of Multi-model Product Lines

From the point of view of multi-model product line specification, this thesis proposes an

approach that captures in a unified representation the various models of the PL. As a result,

domain and application engineering activities such as PLM verification and analysis, or

product configuration will be facilitated. The multi-model verification approach presented in

this thesis consists of re-using the verification approach proposed for standalone PLM in

order to verify multi-model product line specifications. This approach was validated in the

case of feature models (where several FMs are used to specify a PL and they are integrated

by means of five integration strategies) and Dopler models (where a PL is specified by means

of a decision and an asset models integrated by inclusion rules). However, this thesis does not

consider the case where a PL is specified by several models, each one specified in a different

modelling notation. This case is proposed in Chapter 7 as a future work.

9.1.6 Automation and Validation of the Verification Approach

Several tools were developed in our research to support automated model transformation,

integration and verification. To transform feature models into constraint logic programs we

(i) used the SPLOT transformation API (Mendonca et al. 2009b), and (ii) we build a tool

based on ATL (Atlas Transformation Language) transformation rules. To transform Dopler

models into constraint programs we used a navigation API provided by the Software

Engineering and Automation Institute of the Johannes Kepler University, Austria. To check

the conformance of feature models we build a tool in GNU Prolog (Diaz & Codognet 2001).

To manage product line models, their integration, to configure the connection with GNU

187

Prolog and use the domain-specific verification criteria proposed in this thesis, we developed

a tool called VariaMos (Variability Models). The algorithms in which these tools are based

are presented in the Apendix.

The verification approach proposed in this thesis was evaluated with a collection of 54

product line models with sizes up-to 10000 artefacts. The verification approach can be used

to verify product line models specified in different kinds of languages and PLs specified with

only one or with several models.

Our experiments show that the verification approach is correct, useful, and our tool

implementation is fast and scalable. The conformance checking approach offers the first

implementation of a FM conformance checker. The domain-specific verification approach

considers more verification criteria than the works found in the literature, offers an ordered

way to verify FMs, and improves the computational scalability of PLM verification: (i)

passing from verification of PLMs with 1000 artefacts at maximum in 41.67 minutes (dead

features, false optional and wrong cardinalities in FaMa) to verification of PLMs up to 2000

artefacts (and even more) in 18 seconds in VariaMos for the same three verification criteria;

and (ii) passing from verification of the not void (consistency) PLMs with 1200 artefacts in

64 seconds (before elimination of redundant artefacts) and 1900 artefacts in 64 seconds (after

elimination of redundant artefacts from the model) in Yan et al. (2009), to identification of

not void PLM with 2000 artefacts in 8 seconds in VariaMos.

9.2. Future Research Agenda

A desirable aspect of any research is that in addition to providing solutions to initial issues or

questions, it should identify new research topics that would allow researchers to further work

to eventually produce more useful knowledge and progress. This section presents some

research directions and required additional work on verification of product line models and

also some particular research directions in conformance checking, domain specific

verification of PLMs and further validation of the approach presented in this thesis.

9.2.1 Further Challenges in Verification of Product Line Models

Two general frameworks (proposed by Finkelstein et al. 1996 and by Nuseibeh et al. 2000)

describe the process of “inconsistency management”. These processes can be adapted to the

context of PLM verification and in that way complement the verification approach presented

in this thesis. These approaches share the premise that the process of managing

inconsistencies includes activities for detecting, diagnosing and handling them. It is probably

188

that the generic PLM verification approach presented in this thesis (which deals with

detection of defects and, in the most of cases with identification of the defects’ source) would

evolve following the “inconsistency management process” proposed by Finkelstein et al.

(1996) and Nuseibeh et al. (2000). According to them, the verification management process,

after detection of defects, must be conducted as follows:

A. Diagnosis of defects

This activity is concerned with the identification of the source, the cause and the impact of

each defect found in the previous detection stage. Adapting the definitions of “source of an

inconsistency” given by Nuseibeh et al. (2000) and by Spanoudakis & Zisman (2001) to the

domain of product lines, the source of a PLM’s defect is the set of elements of the model

which have been used in the construction of the argument that shows that the models violate a

verification rule. In the same way, the cause of a PLM’s defect is defined as the conflict(s) in

the perspectives and/or the goals of the stakeholders which are expressed by the elements of

the models that give rise to the defect. The impact of a defect is defined as the consequences

that a defect has for a system, e.g., in terms of performance and evolvability.

The verification approach proposed in this thesis also deals with identification of defects’

source, except for three verification criteria: Non-redundant dependencies, Non-void and

Non-false PLMs. For all the other verification criteria, our approach identifies the elements

participating in the model’s construct that violates the corresponding verification rule. The

three cases where the source of defects is not known are part of the future work.

The source and the cause of a defect play an important role in the defect management

process since they can be used to determine what options are available for resolving or

ameliorating them and the cost and the benefits of the application of each of these options.

Establishing the impact of a defect category in qualitative or quantitative terms is also

necessary for deciding with what priority the category of defect has to be handled and for

evaluating the risks associated with the actions for handling each category. The classification

of the verification criteria by means of our typology, is a first effort to determine the impact

of each verification criterion.

B. Handling of defects

According to van Lamsweerde et al. (1998), Robinson (1997) and Spanoudakis & Zisman

(2001) “handling [defects] is a central stage in the process of [defect] management”. This

stage, adapted to the domain of product lines, concerns with the following activities:

189

(i) the identification of the possible actions for dealing with verification criteria,

(ii) the evaluation of the cost and the benefits that would arise from the application of

each these actions,

(iii) the evaluation of the risks that would arise from not resolving the defect and in

general, the verification criterion to with the defect is associated with, and

(iv) the selection of one of the actions to execute.

C. Specification and application of a defect management policy

To manage a defects’ detection and correction process in a coherent and effective way it is

necessary to have a policy about the defect management that should be applied to a particular

project (Finkelstein et al. 1996). According to Spanoudakis & Zisman (2001), this policy must

specify:

(i) the agent(s) that should be used to verify the product lines models (and for each

particular PLM in multi-model product lines).

(ii) the verification criteria that should be checked against the models

(iii) the circumstances that will trigger the execution of each verification criterion

(iv) the mechanisms that should be used for diagnosing each defect according to the

criterion to which it belongs and the circumstances in which the defect happened.

(v) the mechanisms that should be used for assessing the impact of each verification

criterion and the circumstances that should trigger this activity

(vi) the mechanisms that should be used for assessing the cost, benefits and risks

associated with different verification criteria handling options, and

(vii) the stakeholders who would have responsibility for handling defects and

responsible of the models’ quality.

D. A transversal tracking activity.

This activity is charged to record what happens in each stage and activity of the defect

management process. Keeping track of what has happened in the process makes the

understanding of the findings, the decisions and the actions taken by those who might need to

use or refer to the PLMs in subsequent stages of the development life-cycle of the PL easier.

9.2.2 Future Work in Conformance Checking

Future works in conformance checking of PLMs include the following items:

190

(i) Implement an incremental checker with rule scopes such as the one proposed by

Egyed (2006). It is expected that this improvement will reduce the execution time

of some of the conformance rules.

(ii) Devise the classification of conformance criteria according to their severity and

complexity.

(iii) Another important research direction is about man-machine interface and usability

of the results obtained from verification. This future work proposition is about

how to best present feedback to users and how improve the ergonomic of the

implementations developed in this thesis when it comes to dealing with dozens of

models that contain thousands of artefacts and dependencies. The efficiency of the

verification approach depends highly on how to navigate in models and

verification results.

(iv) Another future work consists of investigating how to automatically generate

specific conformance criteria and their associated implementation (conformance

rule, i.e., criteria that cannot be generated from the generic metamodel) and if

possible optimize them automatically.

9.2.3 Future work in Domain-specific Verification

Future works in domain-specific verification of PLMs include the following items.

(i) Extend the set of available verification criteria (e.g., regarding the evolution and

the temporal properties of PLMs). To guarantee defect-free product line models,

the collection of considered defects must be as exhaustive as possible.

(ii) Classify the verification criteria according to their severity, complexity and

implementability. With such a classification, it should be possible to guide the

verification stage, propose the corresponding fixing actions according to each

category of defect and improve the execution time of each verification operation.

(iii) Exploration of model-checking techniques, further to the ones developed by

Zhang et al. (2004) and Lauenroth et al. (2010), which are in an initial stage.

9.2.4 Future Work in Evaluation

Even if our experiments showed very promising results to usability, recall and scalability of

VariaMos, some important assumptions must be kept in mind and several questions still

remain open.

191

The most important assumption is that using our approach, engineers could verify product

line models specified in other languages. Genrality is not proven per se: we can only

guarantee that the proposed approach cover several formalisms (FODA, DOPLER, extended

feature models). In so far as generality is concerned, we cannot guarantee that users won’t

come up with their own verification criteria (and require to use other CP solvers than GNU

Prolog) Some of the future works that would improve the validation of our approach are:

 Address how to best visualize the defects found with our product line verification

approach. Much of this problem has to do with human-computer interaction and

further studies in this topic would be part of the future work.

 Another future work consists in adressing the downstream economic benefits of the

verification approach presented in this thesis. For example, one could raise the

question how does fast detection of defects really benefit software engineering at

large? How much does it cost to fix a defect early on as compared to later on? These

complex issues have yet to be investigated and measured from a socio-economical

perspective.

 Even if the performance and scalability of our experiment with Dopler models

indicate scalability and good performance of our verification approach,

complementary tests with larger real size models are necessary.

 How do the users explore models to verify them? It would be interesting to log

verification activities to learn which criteria are verified first, if there is a systematic

order, and even if verification is systematically complete. Such logs would also be

useful to build empirically a process model of PLM verification.

192

193

Appendix A: Publications

This appendix contains the titles and venues of the publications the PhD research has

produced so far:

Salinesi C, Mazo R. Defects in Product Line Models and how to Identify them. "Software
Product Lines - The Automated Analysis", edited by Abdelrahman Elfaki, InTech editions,
ISBN 979-953-307-700-9. To appear in January 2012.

Mazo R., Salinesi C, Djebbi O., Diaz D., Lora-Michiels A. Constraints: the Heard of Domain
and Application Engineering in the Product Lines Engineering Strategy. International Journal
of Information System Modeling and Design IJISMD (accepted). Sweden, July 2011.

Mazo R., Salinesi C., Diaz D. Abstract Constraints: A General Framework for Solver-
Independent Reasoning on Product Line Models. Accepted on INSIGHT - Journal of
International Council on Systems Engineering (INCOSE), November 2011.

Mazo R., Salinesi C., Diaz D., Lora-Michiels A. Transforming Attribute and Clone-Enabled
Feature Models Into Constraint Programs Over Finite Domains. 6th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE), Springer Press,
Beijing–China, 8-11 June 2011.

Mazo R., Lopez-Herrejon R., Salinesi C., Diaz D., Egyed A. Conformance Checking with
Constraint Logic Programming: The Case of Feature Models. In 35th Annual International
Computer Software and Applications Conference (COMPSAC), IEEE Press, Munich-
Germany, 18-22 July 2011. Best Paper Award.

Salinesi C., Mazo R., Djebbi O., Diaz D., Lora-Michiels A. Constraints: the Core of Product
Line Engineering. Fifth IEEE International Conference on Research Challenges in
Information Science (RCIS), IEEE Press, Guadeloupe-French West Indies, France, May 19-
21 2011. Best Paper Award.

Mazo R., Grünbacher P., Heider W., Rabiser R., Salinesi C., Diaz D. Using Constraint
Programming to Verify DOPLER Variability Models. 5th International Workshop on
Variability Modelling of Software-intensive Systems (VaMos'11), Namur-Belgium, January
27th-29th, 2011.

Salinesi C., Mazo R., Diaz D., Djebbi O. Solving Integer Constraint in Reuse Based
Requirements Engineering. 18th IEEE International Conference on Requirements
Engineering (RE'10). Sydney - Australia. September-October 2010.

Salinesi C., Mazo R., Diaz D. Criteria for the verification of feature models, In 28th
INFORSID Conference, Marseille - France, May 2010.

194

Lora-Michiels A., Salinesi C., Mazo R. A Method based on Association Rules to Construct
Product Line Model. 4th International Workshop on Variability Modelling of Software-
intensive Systems "Celebrating 20 Years of Feature Models". Linz-Austria, Janvier 2010.

Lora-Michiels A., Salinesi C., Mazo R. The Baxter Return of Experience on the Use of
Association Rules to Construct its Product Line Model. Journée SPL, Lignes de produits
logiciels et usines logicielles. Nantes-France. Octobre 2009.

Salinesi C., Rolland C., Mazo R. VMWare: Tool Support for Automatic Verification of
Structural and Semantic Correctness in Product Line Models, International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS), Sevilla-Spain, pp. 173 - 176,
January 2009.

Mazo R. Aperçu d’une Méthode Automatisée basée sur des Contraintes Génériques pour la
Vérification de Modèles Multi-vues de Lignes de Produits/ Overview of an Automated
Method based on Generic Constraints for Verifying Multi-View Product Line Models. Poster
in Forum Academie-industrie AFIS, Bordeux 2,3 Décembre 2010

Salinesi C, Diaz D., Mazo R., Djebbi O. Spécification d’Exigences dans le Contexte de
Lignes de Produits. Journée Action IDM - INFORSID “Exigence, Traçabilité et Co-
conception dans les processus de développement”. Paris-France. Octobre 2009.

Salinesi C., Diaz D., Djebbi O., Mazo R. Exploiting the Versatility of Constraint
Programming over Finite Domains to Integrate Product Line Models. Poster in 17th IEEE
International Conference on Requirements Engineering (RE'09). Atlanta-USA. Septembre
2009.

Salinesi C., Rolland C., Diaz D., Mazo R. Looking for Product Line Feature Models Defects:
Towards a Systematic Classification of Verification Criteria. Poster in 17th IEEE
International Requirements Engineering Conference (RE'09). Atlanta-USA, September 2009.

Mazo R. Processus pour la Vérification et Validation de Modèles de Lignes de Produits.
Porter in 27^th Francophone Conference on Information Systems and Data Bases
INFORSID, Toulouse-France. May 2009.

195

Appendix B: Implementation Details

Several tools were developed in this thesis in order to validate our approach and its associated

hypothesis. The most of these tools were presented along in this thesis. In the next section we

provide the algorithms or relevant code source of each one of these tools. The execution files

of each tool are available to download at https://sites.google.com/site/raulmazo/

1. Representation of other variability languages as

constraint programs

The semantics of a product line model can be specified as a constraint program (Salinesi et al.

2010b, Mazo et al. 2011a, 2011e) by means of: (i) a set of variables X={x1,...,xn}; (ii)

for each variable xi, a finite set Di of possible values (its domain); and (iii) a set of constraints

restricting the values that they can simultaneously assume. A variable in a PLM has a domain

of values, and the result of the configuration process is to provide it a value. This

representation of the semantics of a PLM is very similar to the representation of a Constraint

Satisfaction Problem (CSP), which is defined as a triple (X, D, C), where X is a set of

variables, D is a set of domains, and C a set of constraints restricting the values that the

variables can simultaneously take (cf. Section 1). Indeed, we have shown in Section 4-A how

to represent the syntax and the semantics of feature models as constraint logic programs and

constraint programs, respectively. However, not only feature models can be represented by

means of constraints. Our experience and related works (Kang et al. 2002, Riebisch et al.

2002, Mannion 2002, Von der Maßen & Lichter 2002, Czarnecki et al. 2005, Benavides et al.

2005c, Pohl et al. 2005, Ziadi 2004, Korherr & List 2007, White et al. 2009, Boucher et al.

2010, Dhungana et al. 2010) show that PLMs can also represented in other notations with the

aim of verify and analyse them. Thus, we proposed in this thesis a collection of representation

patterns of the semantics of PLMs into constraint programs. Tables 10.1 to 10.5 compile the

constructs, and its corresponding CP representations, of the most popular languages used to

specify PLMs.

Table 10.1. Compilation of the feature-based languages’ constructs and the corresponding
representation as CPs.

196

Constructor and

domains vs. Languages

FODA-like models (Kang et

al., 1990, 2002)
Feature models with

cardinalities (Riebisch et al.
2002, Czarnecki et al. 2005)
and attributes (Streitferdt et al.
2003, Benavides et al. 2005c,
White et al. 2009)

Root. The root element
must be selected in all the
configurations.

If {Root} ∈ {true, false} then
Root = true
If {Root} ∈ {0, 1} then
Root = 1

If {Root} ∈ {true, false} then
Root = true
If {Root} ∈ ℤ then Root ≥ 1

Optional. If the father
element is selected, the
child element can but
needs not be selected.
Otherwise, if the child
element is selected, the
father element must as
well be selected.

If {Father, Child} ∈ {true,
false} then Child ⇒ Father
If {Father, Child} ∈ {0, 1}
then Father ≥ Child

If {Father, Child} ∈ {true,
false} then Child ⇒ Father
If {Father, Child} ∈ {0, 1} then
Father ≥ Child
If {Father, Child} ∈ ℤ then
Child ≥ 1 ⇒ Father ≥ 1

Mandatory. If the father
element is selected, the
child element must be
selected as well and vice
versa.

If {Father, Child} ∈ {true,
false} then Father ⇔ Child
If {Father, Child} ∈ {0, 1}
then Father = Child

If {Father, Child} ∈ {true,
false} then Father ⇔ Child
If {Father, Child} ∈ {0, 1} then
Father = Child
If {Father, Child} ∈ ℤ then
Child ≥ 1 ⇔ Father ≥ 1

Requires (includes). If
the requiring element is
selected, the required
element(s) has(have) to be
selected as well, but not
vice-versa.

If {Requiring, Required} ∈
{true, false, 0, 1} then
Requiring ⇒ Required

If {Requiring, Required} ∈
{true, false, 0, 1} then
Requiring ⇒ Required
If {Requiring, Required} ∈ ℤ
then Requiring ≥ 1 ⇒ Required
≥ 1

Exclusion. Indicates that
both excluded elements
cannot be selected in one
product configuration.

If {Excluding, Excluded} ∈
{true, false} then Excluding ⊕ Excluded
If {Father, Child} ∈ {0, 1}
then Excluding + Excluded ≤
1

If {Excluding, Excluded} ∈
{true, false} then Excluding ⊕
Excluded
If {Father, Child} ∈ {0, 1} then
Excluding + Excluded ≤ 1
If {Father, Child} ∈ ℤ then
Excluding * Excluded = 0

Alternative/xor-
decomposition. A set of
child elements are defined
as alternative if only one
element can be selected
when its parent element is
part of the product.

If {Father, Child1, …,
ChildN} ∈ {true, false} then:
(Child1⇔(¬Child2 ⋀...⋀
¬ChildN ⋀ Father) ⋀ Child2 ⇔ (¬Child1 ⋀...⋀ ¬ChildN ⋀
Father) ⋀ ChildN ⇔ (¬Child1 ⋀...⋀ ¬ChildN-1 ⋀ Father))

Or-Relation. A set of
child elements are defined
as an or-relation if one or
more of them can be
included in the products in

If {Father, Child1, …,
ChildN} ∈ {true, false} then:
Father ⇔ Child1 ...
ChildN

197

which its parent element
appears.
Group cardinality.
Cardinality determines
how many variants (with
the same father) may be
chosen, at least M and at
most N of the group.
Besides, if one of the
children is selected, the
father element must be
selected as well.

 If {Father, Child1, …, ChildN} ∈ {0, 1} then
Father ≥ Child1 ⋀ …⋀ Father ≥
ChildN ⋀
M*Father ≤ Child1+...+ChildN
≤ N*Father

A feature cardinality is
represented as a sequence
of intervals [min..max]
determining the number of
instances of a particular
feature that can be part of
a product.

 If {Father, Clone1, …, CloneN} ∈ { 0, 1} then:
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒ Father ⋀
Father ⇒ (M ≤ Clone1 + … +
CloneN ≤ N)

Attribute. An attribute is
a variable associated to a
reusable element.

 value ∈ Domain ⋀ Attribute =
value ⋀
ReusableElement⇔Attribute >0

Table 10.2. Compilation of the OVM and TVL’s constructs and the corresponding representation
as CPs.

Constructor and

domains vs. Languages

Orthogonal Variability

Models (OVM) (Pohl et al.
2005)

Textual Variability Language

(TVL) (Boucher et al. 2010),
(Classen et al. 2011)

Root. The root element
must be selected in all the
configurations.

 root Element

Dependency/and-

decomposition: operator

allOf. The selection of the
children depends of the
selection of the father
element and vice versa

 Father ⇔ (Child1 ⋀…⋀
ChildN)

Optional. If the father
element is selected, the
child element can but
needs not be selected.
Otherwise, if the child
element is selected, the
father element must as
well be selected.

If {Element1, Element2} ∈
{true, false} then Element2 ⇒
Element1
if {Element1, Element2} ∈
{0, 1} then Element1 ≥
Element2
If {Element1, Element2} ∈ ℤ
then Element2 ≥ 1 ⇒
Element1 ≥ 1

Child ⇒ Father

Mandatory. If the father
element is selected, the
child element must be

If {Element1, Element2} ∈
{true, false} then Element1 ⇔ Element2

Father ⇔ Child

198

selected as well and vice
versa.

If {Element1t, Element2} ∈
{0, 1} then Element1 =
Element2
if {Element1, Element2} ∈ ℤ
then Element2 ≥ 1 ⇔
Element1 ≥ 1

Requires (includes). If
the requiring element is
selected, the required
element(s) has(have) to be
selected as well, but not
vice-versa.

If {Requiring, Required} ∈
{true, false, 0, 1} then
Requiring ⇒ Required
If {Requiring, Required} ∈ ℤ
then Requiring ≥ 1 ⇒
Required ≥ 1

If {Requiring, Required} ∈
{true, false, 0, 1} then
Requiring ⇒ Required

Exclusion. Indicates that
both excluded elements
cannot be selected in one
product configuration.

If {Excluding, Excluded} ∈
{true, false} then Excluding ⊕ Excluded
If {Father, Child} ∈ {0, 1}
then Excluding+Excluded ≤ 1
If {Father, Child} ∈ ℤ then
Excluding * Excluded = 0

Alternative/xor-

decomposition. A set of
child elements are defined
as alternative if only one
element can be selected
when its parent element is
part of the product.

 If {Father, Child1, …, ChildN} ∈ {0, 1} then:
(Child1⇔(¬Child2 ⋀...⋀
¬ChildN ⋀ Father) ⋀ Child2 ⇔
(¬Child1 ⋀...⋀ ¬ChildN ⋀
Father) ⋀ ChildN ⇔ (¬Child1 ⋀...⋀ ¬ChildN-1 ⋀ Father))

Or-Relation. A set of
child elements are defined
as an or-relation if one or
more of them can be
included in the products in
which its parent element
appears.

 If {Father, Child1, …, ChildN} ∈ {0, 1} then:
Father ⇔ Child1 ... ChildN

Group cardinality.
Cardinality determines
how many variants (with
the same father) may be
chosen, at least M and at
most N of the group.
Besides, if one of the
children is selected, the
father element must be
selected as well.

If {VariationPoint, Variant1,
…, VariantN} ∈ {0, 1} then
VariationPoint ≥ Variant1 ⋀
…⋀ VariationPoint ≥
VariantN ⋀
M*VariationPoint ≤
Variant1+...+ VariantN ≤
N*VariationPoint

If {Father, Child1, …, ChildN} ∈ {0, 1} then
Father ≥ Child1 ⋀ …⋀ Father ≥
ChildN ⋀
M*Father ≤ Child1+...+ChildN
≤ N*Father

Individual cardinality is
represented as a sequence
of intervals [min..max]
determining the number of
instances of a particular
feature that can be part of

If {Father, Clone1, …,
CloneN} ∈ { 0, 1} then:
Clone1 ⇒ Father ⋀ ...⋀
CloneN ⇒ Father ⋀
Father ⇒ (M ≤ Clone1 + … +
CloneN ≤ N)

If {Father, Clone1, …, CloneN} ∈ { 0, 1} then:
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒ Father ⋀
Father ⇒ (M ≤ Clone1 + … +
CloneN ≤ N)

199

a product.
Attribute. An attribute is
a variable associated to a
reusable element.

 Attribute ∈ { integer, real,
boolean, enumeration} ⋀
Attribute = value ⋀
ReusableElement ⇔Attribute>0

Table 10.3. Compilation of the Class-based and Use case-based variability languages’
constructs and the corresponding representation as CPs.

Constructor and

domains vs. Languages

Class-based PLMs (Ziadi
2004; Korherr & List 2007)

Use case-based PLMs (Van der
Maßen & Lichter 2002)

Optional. If the father
element is selected, the
child element can but
needs not be selected.
Otherwise, if the child
element is selected, the
father element must as
well be selected.

If {Element1, Element2} ∈
{true, false} then Element2 ⇒
Element1
If {Element1, Element2} ∈
{0, 1} then Element1 ≥
Element2

If {Element1, Element2} ∈
{true, false} then Element2 ⇒
Element1
If {Element1, Element2} ∈ {0,
1} then Element1 ≥ Element2

Mandatory. If the father
element is selected, the
child element must be
selected as well and vice
versa.

If {Element1, Element2} ∈
{true, false} then Element1 ⇔ Element2
If {Element1t, Element2} ∈
{0, 1} then Element1 =
Element2

If {Element1, Element2} ∈
{true, false} then Element1 ⇔
Element2
If {Element1t, Element2} ∈ {0,
1} then Element1 = Element2

Requires (includes). If
the requiring element is
selected, the required
element(s) has(have) to be
selected as well, but not
vice-versa.

If {Requiring, Required} ∈
{true, false, 0, 1} then
Requiring ⇒ Required
If {Requiring, Required} ∈ ℤ
then Requiring ≥ 1 ⇒
Required ≥ 1

If {Requiring, Required} ∈
{true, false, 0, 1} then
Requiring ⇒ Required
If {Requiring, Required} ∈ ℤ
then Requiring ≥ 1 ⇒ Required
≥ 1

Group cardinality.
Cardinality determines
how many variants (with
the same father) may be
chosen, at least M and at
most N of the group.
Besides, if one of the
children is selected, the
father element must be
selected as well.

 If {Father, Child1, …, ChildN} ∈ {0, 1} then
Father ≥ Child1 ⋀ …⋀ Father ≥
ChildN ⋀
M*Father ≤ Child1+...+ChildN
≤ N*Father

Individual cardinality is
represented as a sequence
of intervals [M..N]
determining the number of
instances of a particular
reusable element that can
be part of a product.

If {FatherClass, Clone1, …,
CloneN} ∈ { 0, 1} then:
Clone1 ⇒ FatherClass ⋀ ...⋀
CloneN ⇒ FatherClass ⋀
FatherClass ⇒ (M ≤ Clone1 +
… + CloneN ≤ N)

200

Table 10.4. Compilation of the Dopler and CEA variability languages’ constructs and the
corresponding representation as CPs.

Constructor and

domains vs. Languages

Dopler variability language
(Dhungana et al. 2010)

CEA - variability language

Root/Visibility

Condition. The root
decision must be solved in
all the configurations.

Decision = true ∨ Decision =
false

Mandatory. If the father
element is selected, the
child element must be
selected as well and vice
versa.

 If {Element1, Element2} ∈
{true, false} then Element1 ⇔
Element2
If {Element1, Element2} ∈ {0,
1} then Element1 = Element2

Requires/Decision

Effects/ Inclusion
Conditions. If the
requiring element is
selected, the required
element(s) has(have) to be
selected as well, but not
vice-versa.

Constraint1 ⇒ Constraint2;
Asset ⇒ Decision

Validity condition. RDL

equivalent: "sauf". The
Validity Condition
constrains the range of
possible values for a
particular reusable element

 If {Element1, Element2} ∈
{true, false, 0, 1} then Element1 ⇒ Element2
If {Element1, Element2} ∈ ℤ
then Element1 ≥ 1 ⇒ Element2
≥ 1

Or. Almost one of the
reusable elements related
in the OR dependency
must be selected in a
particular configuration.

 If {Element1, Element2, …,
ElementN} ∈ {true, false} then:
Element1 ∨...∨ ElementN = true
If {Element1, Element2, …,
ElementN} ∈ {1, 0} then:
Element1 + ...+ElementN ≥ 1

Group cardinality/

Enumeration Decision
Type/. Cardinality
determines how many
Decision options of the
same Decision may be
chosen in a configuration,
at least M and at most N of
the group.

Decision ∈ ValidityCondition ⋀
Decision ≥ DecisionOption1 ⋀ …⋀ Decision ≥
DecisionOptionN ⋀
M*Decision ≤
DecisionOption1+...+
DecisionOptionN ≤
N*Decision

Table 10.5. Compilation of the RDL and Latice variability languages’ constructs and the
corresponding representation as CPs.

Constructor and

domains vs. Languages

Renaul Documentary

Language (RDL)
Latice (Mannion 2002)

Root. The root element
must be selected in all the

root Projet_Vehicule

201

configurations.
Dependency. The
selection of the children
depends of the selection of
the father element and vice
versa

 Father ⋀ (Child1 ⋀…⋀ ChildN)

Optional. If the use case is
selected, the child element
can but needs not be
selected. Otherwise, if the
child element is selected,
the use case must as well
be selected.

if {Use_Case, Element} ∈
{true, false} then Element ⇒
Use_Case
if {Use_Case, Element} ∈ {0,
1} then Use_Case ≥ Element

Mandatory. If the father
element is selected, the
child element must be
selected as well and vice
versa.

if {Use_Case, Element} ∈
{true, false} then Use_Case ⇔ Element
if {Use_Case, Element} ∈ {0,
1} then Use_Case = Element

Father ⇔ Child

Requires (includes). If
the requiring element is
selected, the required
element(s) has(have) to be
selected as well, but not
vice versa.

if {Requiring, Required} ∈
{true, false, 0, 1} then
Requiring ⇒ Required
If {Requiring, Required} ∈ ℤ
then Requiring ≥ 1 ⇒
Required ≥ 1

Exclusion. Indicates that
both excluded elements
cannot be selected in one
product configuration.

if {Excluding, Excluded} ∈
{true, false} then Excluding ⇒ ¬Excluded
if {Excluding, Excluding} ∈
{0, 1} then Excluding -
Excluded ≥ 1

Excluding ⊕ Excluded

Alternative/xor-
decomposition. A set of
child elements are defined
as alternative if only one
element can be selected
when its parent element is
part of the product.

if {Use_Case, Element1, …,
ElementN} ∈ {true, false}
then:
(Element1⇔(¬Element2 ⋀...⋀ ¬ElementN ⋀ Father) ⋀
Element2 ⇔ (¬Element1 ⋀...⋀ ¬ElementN ⋀
Use_Case) ⋀ ElementN ⇔
(¬Element1 ⋀...⋀
¬ElementN-1 ⋀ Use_Case))
if {Use_Case, Element1, …,
ElementN} ∈ℤ then:
Use_Case - (Element1 + ...+
ElementN) = 0

Or-Relation. A set of
child elements are defined
as an or-relation if one or
more of them can be
included in the products in

if {Father, Child1, …,
ChildN} ∈ {true, false} then:
Father ⇔ Child1 ∨...∨ ChildN
if {Use_Case, Element1, …,
ElementN} ∈ℤ then:

Father ⇔ Child1 ∨...∨ ChildN

202

which its parent element
appears.

Use_Case - (Element1 + ...+
ElementN) ≥ 0

Validity condition. RDL
equivalent: "sauf". It
constrains the range of
possible values for a
particular use case.

if {Relation1, Use_Case} ∈
{true, false} then Relation1 ⇒
Use_Case
if {Relation1, Use_Case} ∈
{0, 1} then Use_Case -
Relation1 ≥ 0

Conjunction of
subgraphs. If Gi and Gj
are the logical expressions
for two different
subgraphs of a lattice, the
PLM is con conjunction of
Gi and Gj

 Gi ⋀ Gj

2. Parser to Transform the Semantics of Feature Models

into Constraint Programs

The next algorithm uses the SPLOT API to transform the semantics FMs represented in XML

files into CPs. This algorithm navigates the XML file and creates, for each element of the

feature model, the corresponding representation on constraints. For each FM, two important

sub-sets must be transformed: the feature tree and the set of constraints. The algorithm starts

at the root feature in depth first search in order to transform the feature tree. Next, the

solitaire features (optional and mandatory) and its corresponding father are transformed into

constraints according to the rules proposed in Table 10.1. Then, the features grouped in a

cardinality and the corresponding father are transformed into constraints. Once the current

transformation is made, the algorithm uses the current feature to recursively call the function

to traverse the feature tree in depth first search, until the end of the tree. Then, the next

algorithm transforms the set of constraints, represented as Conjunctive Normal Form (CNF)

formulas, into constraint programs. There are two kind of constrains: requires and excludes.

The algorithm transforms each CNF constraint into a CP consisting on a sum of variables

being greater than 0 (e.g., Feature1 +...+ FeatureN > 0). To finish, features

without negation are transformed into CP variables and features with a negation (e.g.,

¬Feature) are transformed into the features’ complement, it is: 1-Feature.

203

Algorithm 10.1 Parser to Transform the Semantics of Feature Models into Constraint
Programs using the SPLOT API

TransformationOfFMsSemanticIntoCPs(Feature Model FM){
node = FM.GetRoot();
traverseDFS(node);
traverseConstraints(FM);

}

traverseDFS(FeatureTreeNode node){

if (node instanceof RootNode) {
transform node into a root constraint;

}
else if (node instanceof SolitaireFeature) {

 // Optional Feature
 if(node.isOptional()){

transform optional dependency into CP
}
// Mandatory Feature
else{

transform mandatory dependency into CP
}

 }
 // Feature Group
 else if (node instanceof FeatureGroup) {
 transform group cardinality dependency into CP
 }
 //we call the method traverseDFS for each children in a recursive way
 for(int i = 0 ; i < node.getChildCount() ; i++) {
 traverseDFS(node.getChildAt(i));
 }
}

traverseConstraints(FeatureModel FM) {
 for(PropositionalFormula formula : FM.getConstraints()) {
 Iterator iter = formula.getVariables().iterator();
 while(iter.hasNext()){
 artefact = iter.next();
 if(artefact.isPositive()){
 constraint += artefact.getName()+" + ";
 }
 else{
 constraint += "(1-"+artefact.getName()+") + ";
 }
 }

}
}

3. Parser to Transform the Semantics of Feature Models

into Constraint Programs using ATL Rules

The next ATL (Atlas Transformation Language) rules allows transforming features into CP

variables, group cardinality boundaries into CP constants, and neutral, optional, mandatory,

requires and excludes dependencies into constraints. For instance, the Feature2Variable

204

rule takes each source feature and transforms it into a variable. In the modus operandi of this

rule, the feature’s name is affected to the variable’s name and the haveDomain variables’

relationship is the collection of the haveCardinality features’ relationship. If the feature

to be transformed has a cardinality, then the subordinated rule (lazy rule)

Cardinality2Domain is called to represent the corresponding cardinality as a domain of

the feature.

Source code 10.1 Parser to Transform the Semantics of Feature Models into Constraint
Programs using ATL Rules

module Features2CP;

create OUT: CPs from IN: Features;

--function to get the source of a Neutral dependency
helper context Features!Neutral def: getSourceN(): String =
 self.source.name;

--function to get the target of a Neutral dependency
helper context Features!Neutral def: getTargetN(): String =
 self.target.name;

--function to get the source of an Optional dependency
helper context Features!Optional def: getSourceO(): String =
self.source.name;

--function to get the target of an Optional dependency
helper context Features!Optional def: getTargetO(): String =
self.target.name;

--function to get the source of a Mandatory dependency
helper context Features!Mandatory def: getSourceM(): String =
self.source.name;

--function to get the target of a Mandatory dependency
helper context Features!Mandatory def: getTargetM(): String =
self.target.name;

--function to get the source of a Requires dependency
helper context Features!Require def: getSourceR(): String =
 self.source.name;

--function to get the target of a Requires dependency
helper context Features!Require def: getTargetR(): String =
 self.target.name;

--function to get the source of an Excludes dependency
helper context Features!Exclude def: getSourceE(): String =
 self.source.name;

--function to get the target of an Excludes dependency
helper context Features!Exclude def: getTargetE(): String =
 self.target.name;

205

--function to concatenate with the symbol + a sequence of strings
helper def: concatenateStrings(strings: Sequence(String), before: String,
after: String): String = strings->iterate(s; acc: String = '' | acc +
before + s + after);

--function to get the first element of a sequence of strings
helper def: firstOfSequence(strings: Sequence(String)): String = strings-
>first();

rule Feature2Variable {
 from s : Features!Feature

 to t1 : CPs!Variable (
 name <- s.name,
 haveDomain <- s.haveCardinality-> collect(e |
thisModule.Cardinality2Domain(e))
)
 }

lazy rule Cardinality2Domain {
 from s : Features!Cardinality

 to cardi : CPs!Domain (
 min <- s.min,
 max <- s.max
)
 }

rule GroupCardinality2Constraint{
 from s: Features!GroupCardinality

 to t1: CPs!Constraint (
 constraint <-
thisModule.firstOfSequence(s.haveRelationship->collect(e | e.getSourceN()))
+ ' >= 1 <==> ' + thisModule.concatenateStrings(s.haveRelationship-
>collect(e | e.getTargetN()), '', '+') + ' >= ' + s.min
),
 t2: CPs!Constraint (
 constraint <-
thisModule.firstOfSequence(s.haveRelationship->collect(e | e.getSourceN()))
+ ' >= 1 <==> ' + thisModule.concatenateStrings(s.haveRelationship-
>collect(e | e.getTargetN()), '', '+') + ' <= ' + s.max
)
 }

rule Neutral2Constraint{
 from s: Features!Neutral

 to t: CPs!Constraint (
 constraint <- s.getSourceN() + ' >= ' + s.getTargetN()
)
 }

rule Optional2Constraint{
 from s: Features!Optional

 to t: CPs!Constraint (
 constraint <- s.getSourceO() + ' >= 1 <==> ' + s.getTargetO() +
' >= 0'
)

206

 }

rule Mandatory2Constraint{
 from s: Features!Mandatory

 to t: CPs!Constraint (
 constraint <- s.getSourceM() + ' >= 1 <==> ' + s.getTargetM() +
' >= 1'
)
 }

rule Require2Constraint{
 from s: Features!Require

 to t: CPs!Constraint (
 constraint <- s.getSourceR() + ' >= 1 ==> ' + s.getTargetR() +
' >= 1'
)
 }

rule Exclude2Constraint{
 from s: Features!Exclude

 to t: CPs!Constraint (
 constraint <- s.getSourceE() + ' != 0 <==> ' + s.getTargetE() +
' == 0'
)
 }

4. Parser to Transform the Semantics of Dopler Models

into Constraint Programs

The conversion algorithm has two main phases presented in the following pseudo-code. First,

the algorithm navigates through the decision model and then through the asset model. In both

cases, we gather the relevant information of decisions and assets and translate them into

constraints in CP. Relevant information means information affecting the variability as

described above; for example, a description attribute does not affect the variability of the

product line model. Our algorithm for converting Dopler variability models is implemented

as an Eclipse plug-in that uses the API of the DOPLER tool suite. In the next algorithm, the

variable DM represents the Dopler model to be transformed and the variable CP accumulates

the results of each transformation. CP is the resulting constraint program representing DM.

Algorithm 10.2 Parser to Transform the Semantics of Dopler Models into Constraint
Programs using the API of the DOPLER tool suite

CP = "";

for each decision D in DM{

 if D.type == Boolean {

 CP += "D ∈ {0, 1}";

207

 visc = D.getVisibilityCondition();

 if visc == false { CP += "D = 0";}

 else if visc == true {CP += "D = 1";}

 else { CP += "D ⇒ visc";}

 df = D.getDecisionEffect();

 CP += "D ⇒ df";

 }

 else if D.type == Enumeration {

 CP += "D ∈ {0, 1}";
 m, n = D.getCardinality();

 DOpt1, DOpt2,...,DOpti=D.getDecOptions();

 CP += "DOpt1, DOpt2,...,DOpti ∈ {0, 1}";
 CP += "D ⇔ m≤DOpt1+DOpt2+...+DOpti≤n";
 visc = D.getVisibilityCondition();

 if visc == false { CP += "D = 0";}

 else if visc == true {CP += "D = 1";}

 else { CP += "D ⇒ visc";}

 df = D.getDecisionEffect();

 CP += "D ⇒ df";

 }

 else if D.type == Number {

 val = representValidityConditionAsCP();

 CP += "D ∈ val";
 visc = D.getVisibilityCondition();

 if visc == false { CP += "D = 0";}

 else if visc == true {CP += "D = 1";}

 else { CP += "D ⇒ visc";}

 df = D.getDecisionEffect();

 CP += "D ⇒ df";

 }

 else if D.type == String {

 valc = representValidityConditionAsCP();

 CP += "D ∈ valc";
 visc = D.getVisibilityCondition();

 if visc == false { CP += "D = 0";}

 else if visc == true {CP += "D = 1";}

 else { CP += "D ⇒ visc";}

 df = D.getDecisionEffect();

 CP += "D ⇒ df";

 }

}

for each asset A in DM{

 CP += "A ∈ {0, 1}";
 ic = A.getInclusionCondition();

208

 if ic is not null {

 CP += "A ⇒ ic";

 }

 ad = A.getDependency();

 if A.type == requires {

 CP += "A ⇒ ad";

 }

 else if A.type == excludes {

 CP += "A * ad = 0";

 }

}

Write ("The constraint program representation of the DOPLER model DM is:

" + CP);

5. Parser to Transform the Syntax of Feature Models

into Constraint Programs

The next algorithm uses the Mendonça’s API for navigation over SPLOT’s XML-based

feature models. The algorithm to transform the syntax of FMs into constraint logic programs

navigates the XML file and creates, for each element of the feature model, the corresponding

representation on facts. For each FM, two important sub-sets must be transformed: the feature

tree and the set of constraints. We start at the root feature in depth first search in order to

transform the feature tree. Next, the solitaire features (optional and mandatory) and its

corresponding father are transformed into facts as presented in Chapter 3. Then, the features

grouped in a group cardinality and the corresponding father are transformed into facts. Once

the current transformation is made, the algorithm uses the current feature to recursively call

the function to traverse the feature tree in depth first search, until the end of the tree. Then,

the algorithm transforms the set of constraints, represented as Conjunctive Normal Form

(CNF) formulas, into facts. There are two kind of constrains: requires and excludes. Thus,

each CNF formula, corresponding to an exclusion dependency, is transformed into two facts

(one dependency fact and one fact excludes) and each CNF formula corresponding to a

requirement dependency is transformed into two facts (one dependency fact and one requires

fact) as we explained in Chapter 3.

Algorithm 10.3 Parser to Transform the Syntax of Feature Models into Constraint
Programs using the SPLOT API

209

TransformationOfFMsSyntaxIntoCPs(Feature Model FM){
node = FM.GetRoot();
traverseDFS(node);
traverseConstraints(FM);

}

traverseDFS(FeatureTreeNode node){

if (node instanceof RootNode) {
transform node into a root constraint;

}
else if (node instanceof SolitaireFeature) {

 // Optional Feature
 if(node.isOptional()){

transform optional dependency into CP
}
// Mandatory Feature
else{

transform mandatory dependency into CP
}

 }
 // Feature Group
 else if (node instanceof FeatureGroup) {
 transform group cardinality dependency into CP
 }
 //we call the method traverseDFS for each children in a recursive way
 for(int i = 0 ; i < node.getChildCount() ; i++) {
 traverseDFS(node.getChildAt(i));
 }
}

traverseConstraints(FeatureModel FM) {
 for(PropositionalFormula formula : FM.getConstraints()) {

relationType="excludes";
Iterator iter = formula.getVariables().iterator();

 while(iter.hasNext()){
 var[i] = iter.next();
 //if one artefact > 0 ==> requires
 if(var[i].isPositive()){

relationType="requires";
 }

i++;
 }
 Build a fact according to relationType for variables in var[]

}
}

6. Domain-specific Verification of Product Line Models

In order to execute the domain-specific verification operations proposed in this thesis, we

developed a tool called VariaMos. VariaMos is an Eclipse plug-in presented in Chapter 7. In

this section we present the algorithm in Java of each verification operation implemented in

VariaMos.

Algorithm 10.4 Find a valid solution

210

giveOneSolution(String model, String listVariables){

 //obtain a valid solution
String sol =

connection.sendMessage("exec("+model+","+listVariables+").");
 return sol;
}

Algorithm 10.5 Get the next solution

public String nextSolution(){
 return connection.sendMessage("next.");

 }

Algorithm 10.6 Non void PLM

private ConnectionProlog connection = new
ConnectionProlog("localhost",port);
public String noVoid(String model, String
listVariablesOfTheModel) {

String sol = connection.sendMessage("exec("+model+","+
listVariablesOfTheModel+").");

 if(sol.equals("false")){
 sol = "Void PLM");

}
return sol;

}

Algorithm 10.7 Non false PLM

private ConnectionProlog connection = new
ConnectionProlog("localhost",port);

public String FalsePLM(String model, String
listVariablesOfTheModel) {

String sol1 = connection.sendMessage("exec("+model+","+
listVariablesOfTheModel+").");
String result = "False PLM";

 if(!sol1.equals("false")){
 sol2 = nextSolution();
 if(!sol2.equals("false")){
 result = sol1 + sol2;

}
}
return result;

}

Algorithm 10.8 Non-attainable domains

findWrongDomain(String[] dataModel, Vector variables){
 String textVariable = "";
 //in order to evaluate each variable selected by the user
 for(int i=0; i<variables.size(); i++){
 //get the domain of each variable
 String[] valuesDomain =
utilities.getDomain(domains.elementAt(i));

 //flag to identify fails
 boolean flag = false;

211

 String wrongValues = new String();
 //evaluate it there is a solution for each domain’s value
 for(int j=0; j<valuesDomain.length; j++){
 //configuration with each domain’s value
 String configuration =
utilities.makeConfiguration(variables,
(String)variables.elementAt(i), valuesDomain[j]);
 //create the configuration to be send to GNU Prolog
 String prolog = "("+dataModel[0]+"="+configuration;
 prolog = prolog.concat(", "+dataModel[1]+"),
"+dataModel[0]);
 //to execute the instruction
 String sol =
connection.sendMessage("exec("+prolog+").");
 //if there is a fail,the vairiable cannot take this
value
 if(sol.equals("fail.")){
 wrongValues=wrongValues+valuesDomain[j]+", ";
 flag=true;
 }
 }
 //save the values that the variable cannot take
 if(flag){
 textVariable = textVariable +
wrongValues.substring(0, wrongValues.length()-2)+".";
 }
 //the variable has not wrong domain’s values
 else{
 textVariable = "The Variable
"+features.elementAt(i)+" don't has wrong domain's values";
 }
 }
}

Algorithm 10.9 Dead reusable elements

findDeadVariables(String[] dataModel, Vector variables){
 deadVariables = vector with all the variables of the PLM;
 //for each one of the variables in deadVariables
 while(j<deadVariables.size()){
 //get all the values that the current variable can take
 String[] value = domains.elementAt(j));
 //identify when we have a solution or a fail from Prolog
 boolean flag = false;
 //save the values that the variables cannot take
 String wrongValues = new String();
 String sol = new String();
 //evaluate each value of the domain(except 0)
 for(int i=0; i< value.length; i++){
 if(!value[i].equals("0")){
 //create a configuration with the variables’ domain
values
 String configuration =
utilities.makeConfiguration(feature,
(String)deadFeatures.elementAt(j), value[i]);
 //create the instruction to be executed in Gnu-
Prolog
 String prolog = "("+dataModel[0]+"="+configuration;
 //send the instruction to GNU Prolog

212

 prolog = prolog.concat(", "+dataModel[1]+"),
"+dataModel[0]);
 sol = connection.sendMessage("exec("+prolog+").");
 //if the configuration does not generate any
solution; we kept the value that the variables cannot take
 if(sol.equals("fail.")){
 wrongValues = wrongValues + value[i]+", ";
 flag=true;
 }

//it is not necessary to evaluate all the values of
each domain, with the first product obtained we know that
the variables is not dead

 else{
 break;
 }
 }

}
 }

Algorithm 10.10 False optional reusable elements

findFalseOptionalFeatures(String[] dataModel, Vector
OptionalElements){
 //for each one of the variables to be verified
 for(int i=0; i< OptionalElements.size(); i++){
 //take all the values that this variable can take
 String[] valuesCardinality =
utilities.getCardinality(domains.elementAt(i));
 for(int j=0; j<valuesCardinality.length; j++){
 //verify if the variable can take the 0 value
 if(valuesCardinality[j].equals("0")){
 //create a configuration with the variable=0
 String configuration =
utilities.makeConfiguration(featureAll, (String)
OptionalElements.elementAt(i), valuesCardinality[j]);
 //get a sol. from GNU Prolog with this conf
 String sol =
connection.sendMessage("exec("+prolog+").");
 //if there is not solution, the variable is
false optional
 if(sol.equals("fail.")){
 textFeature = " The Feature "+
OptionalElements.elementAt(i)+" is a False Optional Variable.";
 }
 }
 }
 }
}

Algorithm 10.11 Redundancy-free

findRedudantRelatioships(String[] dataModel, Vector relatonships){
 //vector with the variables to verify
 Vector constraints = (Vector)relatonships.elementAt(0);
 //vector with the negations of the variables to verify
 Vector negationConstraints = (Vector)relatonships.elementAt(1);

 //1. Verify if the model is consistent
 resultProlog =
connection.sendMessage("exec("+dataModel[1]+","+dataModel[0]+").");

213

 //if there is a solution, the model is consistent
 if(!resultProlog.equals("fail.")){
 //Verify each one of the constraints selected by the user
 for(int i=0; i<constraints.size(); i++){
 //2.verify the consistency of the model without the const
 //create a string with the model without the constraint
 String model = utilities.converToString(path,
(String)constraints.elementAt(i));
 int begin = model.indexOf("fd_labeling");
 String message = model.substring(0, begin);
 message += "\nfd_labeling("+dataModel[0]+")";
 String messageFinal = "(("+ message+"),
"+dataModel[1]+"),"+dataModel[0];
 //execute the model to get a solution
 resultProlog=
connection.sendMessage("exec("+messageFinal+").");

 //if there is a solution the model without the constraint
at hand is consistent
 if(!resultProlog.equals("fail.")){

 //3.consistenty of the model with the negation
 begin = model.indexOf("fd_labeling");
 message = model.substring(0, begin);
 message += negationConstraints.elementAt(i) +",\n
fd_labeling("+dataModel[0]+")";
 messageFinal = "(("+ message+"),
"+dataModel[1]+"),"+dataModel[0];
 //execution of the sentence to get one solution
 resultProlog=
connection.sendMessage("exec("+messageFinal+").");
 //if there is a solution the const is not redundant
 if(!resultProlog.equals("fail.")){
 VerificationManagerView.txtResultats.append("
 The Relationships "+constraints.elementAt(i)+" is not Redundant\n");
 }
 //if there is not solutions the const is redundant
 else{
 VerificationManagerView.txtResultats.append("
 The Relationships "+constraints.elementAt(i)+" is Redundant\n");
 }
 }
 //if without the constr there is no solts: not redundant
 else{
 VerificationManagerView.txtResultats.append(" The
Relationships "+constraints.elementAt(i)+" is not Redundant\n");
 }
 }
 }
 //the model is not consistent because there is no valid solutions
 else{
 VerificationManagerView.txtResultats.append("The model is
inconsistent" + "\n");
 }
}

7. Conformance Checker of Feature Models

214

A conformance checker is a tool that verifies if a certain model is a correct instance of its

metamodel, it is, verify if the model respects the syntax rules of the metamodel. The next

program check the conformance of Feature Models with the metamodel presented in Chapter

3. Detailed explanations about each line of code below are also provided in Chapter 3.

Source code 10.2 Conformance Checker of Feature Models

/* Format of Feature Model Files
root(FeatureId) - defines a root feature. NB: root Id(s) should be the
lowest feature Id(s)

feature(FeatureId, FeatureName, LAttId) - defines a feature with a unique
Id, a name and a list of attributes. NB: LAttId is ascending sorted

attribute(AttId, AttName, LAttDomain, AttValue) - defines an attribute with
a unique Id, a name a list of domain values, and a value

dependency(DepId, FeatureId1, FeatureId2, DepType) - defines a dependency
between the source FeatureId1 and the target FeatureId2 whose type is
DepType = mandatory / optional / requires / excludes. NB: for excludes
(which is commutative) it is expected FeatureId1 < FeatureId2.

groupCardinality(LDepId, Min, Max) - defines a cardinality for a set of
dependencies LDepId to be between Min and Max.
*/

load_fm(File) :-
 '$remove_predicate'(root, 1),
 '$remove_predicate'(feature, 3),
 '$remove_predicate'(attribute, 3),
 '$remove_predicate'(dependency, 4),
 '$remove_predicate'(groupCardinality, 3),
 consult(File),
 mk_index.

:- dynamic(inclusion_dep/2).

mk_index :-
 retractall(inclusion_dep(_, _)),
 dependency(_, Id1, Id2, Type),
 inclusion_type(Type), % this is used by rule 10
 assertz(inclusion_dep(Id1, Id2)),
 fail.

mk_index.

inclusion_type(mandatory).
inclusion_type(optional).
inclusion_type(requires).

/* run all rules */

do_all :-
 user_time(T),
 g_assign(t, T),
 write('\n*** testing rule 1'), nl,
 conformance_1(FeatureName, AttId1, AttId2, AttName),

215

 write(conformance_1(FeatureName, AttId1, AttId2, AttName)), nl,
 fail.

do_all :-
 disp_time,
 write('\n*** testing rule 2'), nl,
 conformance_2(FeatureId1, FeatureId2, FeatureName),
 write(conformance_2(FeatureId1, FeatureId2, FeatureName)), nl,
 fail.

do_all :-
 disp_time,
 write('\n*** testing rule 3'), nl,
 conformance_3(LRootId),
 write(conformance_3(LRootId)), nl,
 fail.

do_all :-
 disp_time,
 write('\n*** testing rule 4'), nl,
 conformance_4(DepId, FeatureId),
 write(conformance_4(DepId, FeatureId)), nl,
 fail.

do_all :-
 disp_time,
 write('\n*** testing rule 5'), nl,
 conformance_5(FeatureId, DepId1, DepId2),
 write(conformance_5(FeatureId, DepId1, DepId2)), nl,
 fail.

do_all :-
 disp_time,
 write('\n*** testing rule 6'), nl,
 conformance_6(LDepId, Min, Max),
 write(conformance_6(LDepId, Min, Max)), nl,
 fail.

do_all :-
 disp_time,
 write('\n*** testing rule 7'), nl,
 inconsistecy_7(FeatureName1, FeatureName2),
 write(inconsistecy_7(FeatureName1, FeatureName2)), nl,
 fail.

do_all :-
 disp_time,
 write('\n*** testing rule 8'), nl,
 conformance_8(RootName, FeatureName),
 write(conformance_8(RootName, FeatureName)), nl,
 fail.

do_all :-
 disp_time,
 write('\n*** testing rule 9'), nl,
 conformance_9(ChildName, AncName),
 write(conformance_9(ChildName, AncName)), nl,
 fail.

do_all :-
 disp_time,

216

 write('\n*** done !'), nl.

disp_time :-
 user_time(T2),
 g_read(t, T1),
 T is T2 - T1,
 g_assign(t, T2),
 format(' in ~w msec~n', [T]).

217

References

Acher M., Collet P., Lahire P, France R. Comparing Approaches to Implement Feature Model Composition. In

6th European Conference on Modelling Foundations and Applications (ECMFA), vol. 6136, pages 3--19,

Springer, France, 2010.

Alves V., Gheyi R., Massoni T., Kulesza U., Borba P., Lucena C. Refactoring product lines. In: GPCE’06,

ACM pp. 201–210, 2006.

Apel S., Kastner C., Lengauer C. FeatureHouse: Language-Independent, Automatic Software Composition. In

Proc. Int'l. Conf. Software Engineering (ICSE), pages 221-231. IEEE CS, 2009.

Apel S., Lengauer C., Batory D., Moller B., Kastner C. An algebra for feature-oriented software development.

Technical Report MIP-0706, Department of Informatics and Mathematics, University of Passau, Germany,

2007.

Apt K.R., Wallace M.G. Constraint Logic Programming Using ECLiPSe. Cambridge University Press,

Cambridge, 2006.

Barthe G., Beringer L., Cregut P., Gregoire B., Hofmann M., MÄuller P., Poll E., Puebla G., Stark I., Vetillard

E. Mobius: Mobility, ubiquity, security: Objectives and progress report. In Trustworthy Global

Computing'06, LNCS, 2007.

Bass L., Clements P., Donohoe P., McGregor J., Northrop L. Fourth Product Line Practice Workshop Report.

Technical report CMU/SEI-2000-TR-002 ESC-TR-2000-002

Batory D. Feature Models, Grammars, and Propositional Formulas. In 9th International Software Product Lines

Conference Rennes, France, volume 3714 of Lecture Notes in Computer Sciences. Springer–Verlag 2005.

Batory D., Benavides D., Ruiz-Cortes A. Automated analysis of feature models: challenges ahead.

Communications of ACM 49, 12, December 2006.

Beckert B., Hahnle R., Schmitt P.H., editors. Verification of Object-Oriented Software: The KeY Approach,

volume 4334 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

Benavides D. On the Automated Analysis of Software Product Lines Using Feature Models. A Framework for

Developing Automated Tool Support. University of Seville, Spain, PhD Thesis, June 2007.

Benavides D., Trinidad P., Ruiz-Cortés A. Automated Reasoning on Feature Models. In: Pastor, Ó., Falcão e

Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503. Springer, Heidelberg, 2005.

Benavides D., Ruiz-Cortés A., and Trinidad P.: Using constraint programming to reason on feature models. In

The Seventeenth International Conference on Software Engineering and Knowledge Engineering, SEKE

2005, pages 677–682, 2005

Benavides D., Trujillo S., Trinidad P. On the modularization of feature models. In First European Workshop on

Model Transformation, September 2005.

Benavides, D., Segura, S., Trinidad, P., and Ruiz-Cortés, A. Using Java CSP solvers in the automated analyses

of feature models. In Post-Proceedings of The Summer School on Generative and Transformational

Techniques in Software Engineering (GTTSE). LNCS 4143, 2006.

218

Benavides D., Segura S., Ruiz-Cortés A. Automated Analysis of Feature Models 20 Years Later: A Literature

Review. Information Systems . Elsevier, 2010.

Bessiere Ch. Constraint propagation. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, Handbook

of Constraint Programming. Elsevier, 2006.

Beuche D. Composition and Construction of Embedded Software Families. PhD thesis, Otto-von-Guericke-

Universitat Magdeburg, Germany, December 2003.

Blanc X., Mougenot A., Mounier I., Mens T. Incremental Detection of Model Inconsistencies Based on Model

Operations. In CAiSE’09, pages 32-46, 2009.

Boehm B. Software Engineering Economics. Englewood Cliffs, New Jersey: Prentice-Hall, ISBN 0-13-822122-

7. 1981.

Boehm B., In H. Identifying Quality Requirements Conflicts. IEEE Software, , pp. 25-35. March 1996

Borrett J . E., Tsang E. P. K.. A Context for Constraint Satisfaction Problem Formulation Selection. Constraints

6, no. 4, pp. 299-327, October 2001.

Bosch J. Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach, Addison-

Wesley, Boston, 2000.

Boucher Q., Classen A., Faber P., Heymans P. Introducing TVL, a text-based feature modelling language. In

Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems

(VaMoS'10), Linz, Austria, January 27-29. University of Duisburg-Essen, January 2010.

Bradley A., Manna Z. The Calculus of Computation - Decision Procedures with Applications to Verification.

ISBN 978-3-540-74112-1 Springer Berlin Heidelberg New York, 2007.

Broek P., Galvão I. Analysis of Feature Models using Generalised Feature Trees, Third Int. Workshop VaMoS,

2009.

Bruns D., Klebanov V., Schaefer I. Verification of software product lines with delta-oriented slicing. On the

2010 Int. Conf. on Formal verification of object-oriented software Springer-Verlag Press 2011.

Cabot J., Teniente E. Incremental evaluation of OCL constraints. In: Dubois, E., Pohl, K. (eds.) CAiSE’06.

LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg, 2006.

Clarke E., Grumberg O. Peled D. Model Checking. The MIT Press, 1999.

Classen A., Boucher Q., Heymans. A text-based approach to feature modelling: Syntax and semantics of TVL.

Sci. Comput. Program. 76(12): pages 1130-1143, 2011.

Clements P., Northrop L. Software Product Lines: Practices and Patterns, Addison Wesley, Reading, MA, USA,

2001.

Colmerauer, A. Prolog II reference manual and theoretical model. Technical report, Groupe Intelligence

Artificielle, Universit`e Aix-Mareseille II, October 1982.

Czarnecki K. Helsen S. Classification of model transformation approaches. In Online Proceedings of the 2nd

OOPSLA03 Workshop on Generative Techniques in the Context of MDA, Anaheim, October 2003.

Czarnecki K., Helsen S., Eisenecker U. Staged Configuration Using Feature Models. Software Product Lines:

Third International Conference, SPLC 2004, Boston, MA, USA, August 30-September 2, 2004.

219

Czarnecki K., Helsen S., Eisenecker U. W. Formalizing cardinality-based feature models and their

specialization, Software Process: Improvement and Practice, 10 (1) pages 7–29, 2005.

Czarnecki K., Pietroszek K. Verifying Feature-Based Model Templates Against Well-Formedness OCL

Constraints, 5th Int. Conference on Generative Programming and Component Engineering, 2006.

Dauron A., Astesana J-M. Spécification et configuration de la ligne de produits véhicule de Renault. Journée

Lignes de Produits. Université Pantéon Sorbonne, Paris, France. October 2010.

Dhungana D., Grünbacher P., Rabiser R. The DOPLER Meta-Tool for Decision-Oriented Variability Modeling:

A Multiple Case Study. Automated Software Engineering, 2010 (in press; doi: 10.1007/s10515-010-0076-6).

Dhungana D., Heymans P., Rabiser R. A Formal Semantics for Decision-oriented Variability Modeling with

DOPLER, Proc. of the 4th International Workshop on Variability Modelling of Software-intensive Systems

(VaMoS 2010), Linz, Austria, ICB-Research Report No. 37, University of Duisburg Essen, pp. 29-35. 2010.

Dhungana D., Rabiser R., Grünbacher P. Coordinating Multi-Team Variability Modeling in Product Line

Engineering. In 2nd International Workshop on Supporting Knowledge Collaboration in Software

Development (KCSD2006), Tokyo, Japan, 2006.

Dhungana, P. Grünbacher, and R. Rabiser, "The DOPLER Meta-Tool for Decision-Oriented Variability

Modeling: A Multiple Case Study," Automated Software Engineering, 2010.

Diaz D., Codognet Ph. Design and implementation of the GNU Prolog System. Journal of Functional and Logic

Programming (2001). http://www.gprolog.org.

Djebbi O., Salinesi C. RED-PL, a Method for Deriving Product Requirements from a Product Line

Requirements Model. In: CAISE’07, Norway, 2007.

Djebbi O., Salinesi C. RED-PL, a Method for Deriving Product Requirements from a Product Line

Requirements Model. International Conference on Advances in Information Systems Engineering,

CAISE07. Norway, 2007.

Djebbi O., Salinesi C., Fanmuy G. Industry Survey of Product Lines Management Tools: Requirements,

Qualities and Open Issues, International Conference on Requirement Engineering (RE), IEEE Computer

Society, New Delhi, India, October 2007.

Egyed A. Instant consistency checking for UML. In: International Conf. Software Engineering (ICSE06), pp.

381–390. ACM Press, New York, 2006.

Elaasar, M., Brian, L.: An overview of UML consistency management. Technical Report SCE-04-18, August

2004.

Elfaki A., Phon-Amnuaisuk S., Kuan Ho C. Using First Order Logic to Validate Feature Model. Third Int.

Workshop VaMoS, 2009.

Felfernig A., Friedrich G., Jannach D., Zanker M. Towards distributed configuration. In KI '01: Proceedings of

the Joint German/Austrian Conference on AI, London, UK, 2001.

Figueiredo E., Cacho N., Sant'Anna C., Monteiro M., Kulesza U, Garcia A., Soares S., Cutigi-Ferrari F., Shakil-

Khan S., Castor-Filho F., Dantas F. Evolving software product lines with aspects: an empirical study on

design stability. ICSE 2008.

220

Finkelstein, A. & Sommerville I. The Viewpoints FAQ. Software Engineering Journal, Vol. 11, No. 1, pp. 2-4,

1996.

Finkelstein A.C.W., Gabbay D., Hunter A., Kramer J., Nuseibeh B. Inconsistency handling in

multiperspective specifications. IEEE Transactions on Software Engineering, pages 569–578, 1994.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: A framework for

integrating multiple perspectives in system development. International Journal of Software Engineering and

Knowledge Engineering 2(1), 1992.

Fleurey F. Kompose: a generic model composition tool. 2007. Available from:

http://www.kermeta.org/kompose/.

Fleurey, F., Baudry, B., France, R.B., Ghosh, S.: A generic approach for automatic model composition. In

Giese, H., ed.: MoDELS Workshops, Springer, pp. 7–15

Gordon M. J. C., Melham T. F. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic.

Cambridge University Press, 1993.

Griss M., Favaro J., d’Alessandro M. Integrating feature modeling with the RSEB, in: Proceedings of the Fifth

International Conference on Software Reuse, Vancouver, BC, Canada, June 1998.

Harel D., Rumpe B. Meaningful modeling: what’s the semantics of ‘semantics’?, IEEE Computation, 37, (10),

pp. 64–72, 2004.

Harel D., Rumpe B. Modeling languages: syntax, semantics and all that stuff, part I: the basic stuff, Technical

Report MCS00-16, Faculty of Mathematics and Computer Science, The Weizmann Institute of Science,

2000.

Hemakumar A. Finding Contradictions in Feature Models. Workshop on the Analysis of Software Product Lines

(ASPL), September 2008.

Hevner A.R., March S.T., Park J., Ram S. Design science in information system research. MIS Quarterly,

28(1):75-105, March 2004.

Heymans P., Schobbens P.-Y., Trigaux J.-C., Bontemps Y., Matulevicius R., Classen A. Evaluating formal

properties of feature diagram languages. IET Software (IEE) 2(3):281-302, 2008.

Howe D. The Free On-line Dictionary of Computing, 2010 http://foldoc.org

Hubaux, A., Classen, A., Heymans, P.: Formal modelling of feature configuration workflow. In: SPLC 2009,

San Francisco, CA, USA (2009)

Hubaux A., Heymans P., Schobbens P.Y., Deridder D. Towards Multi-view Feature-Based Configuration. R.

Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 106–112, Springer-Verlag Berlin

Heidelberg (2010).

Igarashi A., Pierce B., Wadler P. Featherweight Java: A minimal core calculus for Java and GJ. In ACM Trans.

Program. Lang. Syst., vol. 23, no. 3, 2001.

Jaffar, J., Lassez, J.-L.: Constraint logic programming. In: Proc. 14th symp. On Principles of programming

languages. ACM, New York, 1987.

Janota M., Kiniry J. Reasoning about Feature Models in Higher-Order Logic, in 11th Int. Software Product Line

Conference (SPLC07), 2007.

221

Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.: Model Composition in Product Lines and Feature

Interaction Detection Using Critical Pair Analysis. In: MoDELS, 2007.

Kang K., Cohen S., Hess J., Novak W., Peterson S. Feature-Oriented Domain Analysis (FODA) Feasibility

Study, Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University,

November 1990.

Kang K., Lee J., Donohoe P. Feature-oriented product line engineering. Software, IEEE, 19(4), July-August

2002.

Kang K, Kim S., Lee J., Kim K., Shin E., Huh M. FORM: A Feature-Oriented Reuse Method with Domain-

Specific Reference Architectures. Ann. Software Eng. (ANSOFT)5:143-168, 1998.

Karataş A., Oğuztüzün H., Doğru A. Mapping Extended Feature Models to Constraint Logic Programming over

Finite Domains. SPLC, Korea (2010).

Kastner Ch., Apel S., Rahman S. S., Rosenmuller M., Batory D., Saake G. On the Impact of the Optional

Feature Problem: Analysis and Case Studies, SPLC’09, San Francisco, USA, 2009.

Kästner, C., Apel, S. Type-checking Software Product Lines – a Formal Approach. In Proc. of ASE08 , 2008,

pp. 258-267.

Kim C.H.P., Batory D., Khurshid S. Reducing Combinatorics in Testing Product Lines. Aspect Oriented

Software Development (AOSD), March 2011.

Kitchenham B. Procedures for performing systematic reviews. Technical report, Keele University and NICTA,

2004.

Korherr B., List B. A UML 2 Profile for Variability Models and their Dependency to Business Processes. 1st

International Workshop on Enterprise Information Systems Engineering (WEISE 07), September 2007,

Regensburg, Germany, IEEE Press, 2007.

Kowalski R.A., Sadri F., Soper P. Integrity checking in deductive databases. In: Proc. International Conference

on Very Large Data Bases (VLDB), pp. 61–69. Morgan Kaufmann, San Francisco (1987).

Kuchcinski K. Constraints-driven scheduling and resource assignment. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 8(3):355–383, July 2003.

Laburthe F., Jussien N. Choco constraint programming system. Available at http://choco.sourceforge.net/

(2005).

Lauenroth K., Metzger A., Pohl K. Quality Assurance in the Presence of Variability. S. Nurcan et al. (eds.),

Intentional Perspectives on Information Systems Engineering, Springer-Verlag, Berlin Heidelberg 2010.

Lauenroth K., Pohl K. Towards automated consistency checks of product line requirements specifications,

Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering,

Atlanta, Georgia, USA, November 2007.

Lauenroth K., Pohl K., Toehning S. Model Checking of Domain Artifacts in Product Line Engineering,

Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering, p.269-

280, November 16-20, 2009.

Leavens G. T., Baker A. L., Ruby C. Preliminary design of JML: a behavioral interface specification language

for Java. SIGSOFT Softw. Eng. Notes, 31(3):1-38, 2006.

222

Leite J., Freeman P.A. Requirements Validation through Viewpoint Resolution. IEEE Transactions on Software

Engineering, Vol. 12, No. 12, pp. 1253-1269. 1991.

Liu J., Batory D., Lengauer C. Feature Oriented Refactoring of Legacy Applications, ICSE, 2006.

Liu J., Basu S., Lutz R. R. Compositional model checking of software product lines using variation point

obligations. Journal Automated Software Engineering, Volume 18 Issue 1, 2011.

Mannion M, Kaindl H. Using Parameters and Discriminants for Product Line Requirements. Published in Wiley

InterScience, 21 December 2007.

Mannion M. Using first-order logic for product line model validation. In Proceedings of the Second SPLC,

LNCS 2379, San Diego, CA, Springer (2002).

March A.T., Smith G.F. Design and natural science research on information technology. Decision Support

Systems, 15(4):251-266, December 1995.

Matthias R., Kai B., Detlef S., Ilka P. Extending feature diagrams with UML multiplicities. Proceedings of the

Sixth Conference on Integrated Design and Process Technology, Pasadena, CA, 2002.

Mazo R., Salinesi C. Variability Models (VariaMos) eclipse Plug-in, 2011. Available to download at

https://sites.google.com/site/raulmazo/

Mazo R., Grünbacher P., Heider W., Rabiser R., Salinesi C., Diaz D. Using Constraint Programming to Verify

DOPLER Variability Models. Proceedings of the VaMos Workshop, ACM Press, Belgium, January 2011.

(a)

Mazo R., Lopez-Herrejon R., Salinesi C., Diaz D., Egyed A. A Constraint Programming Approach for Checking

Conformance in Feature Models. In 35th International Computer Software and Applications Conference

(COMPSAC), IEEE Press, Germany, 2011. (b)

Mazo R., Salinesi C, Djebbi O, Diaz D, Lora-Michiels A. Constraints: the Heart of Domain and Application

Engineering in the Product Lines Engineering Strategy. International Journal of Information System

Modeling and Design IJISMD. Sweden, November 2011. (c)

Mazo R., Salinesi C., Diaz D. Abstract Constraints: A General Framework for Solver-Independent Reasoning on

Product Line Models. Accepted on INSIGHT - Journal of International Council on Systems Engineering

(INCOSE), to be released the 15 October 2011. (d)

Mazo R., Salinesi C., Diaz D., Lora-Michiels A. Transforming Attribute and Clone-Enabled Feature Models

Into Constraint Programs Over Finite Domains. 6th International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE), Springer Press, China, 2011. (e)

Mendonça, M., Branco, M., Cowan, D. S.P.L.O.T.: software product lines online tools. In OOPSLA

Companion. ACM, (2009) http://www.splot-research.org.

Mendonça, M., Wasowski, A., Czarnecki, K. SAT–based analysis of feature models is easy. In Proceedings of

the Sofware Product Line Conference (2009).

Metzger A., Pohl K., Heymans P., Schobbens P.-Y., Saval G. Disambiguating the documentation of variability

in software product lines: A separation of concerns, formalization and automated analysis. In 15th IEEE

International Requirements Engineering Conference, RE ’07. 2007.

223

Michel R., Classen A., Hubaux A., Boucher Q. A Formal Semantics for Feature Cardinalities in Feature Diagrams. 5th

International Workshop on Variability Modelling of Software-intensive Systems (VaMos'11), Namur-Belgium, 2011.

Nuseibeh, B., Easterbrook, S., and Russo, A., 2000. "Leveraging Inconsistency in Software Development".

IEEE Computer, April.

Nuseibeh B., Kramer J., Finkelstein A. A framework for expressing the relationships between multiple views in

requirements specification. IEEE Trans. Software Eng. 20(10) (1994) 760–773.

Olivé A. Integrity Constraints Checking in Deductive Databases, Proceedings of the 17th International

Conference on Very Large Data Bases, p.513-523, September 03-06, (1991).

OMG. UML 2.0 Object Constraint Language (OCL) Final Adopted specification. 2003. Available from:

http://www.omg.org/cgibin/doc?ptc/2003-10-14.

Oxford University. Concise Oxford English Dictionary. Oxford University Press, 2008.

Paige R. F., Brooke P. J., Ostro J. S. Metamodel-based model conformance and multiview consistency

checking. ACM Transactions on Software Engineering and Methodology, (2007).

Parnas D. L. On the Criteria to be Used in Decomposing Systems into Modules. Communications of the ACM,

December 1972.

Peffers, K., Tuunanen T., Chatterjee M.A, Rothenberger S. A design science research methodology for

information systems research. Journal of Management Information Systems 24, n° 3 pp. 45--77. (2007)

Pohl K, Böckle G; van der Linden F. Software Product Line Engineering – Foundations, Principles, and

Techniques. Springer, Heidelberg (2005)

Popper, K.R. All Life is Problem Solving. Collection of essays republished by Piper Berlang in “Alles Leben ist

Problemlösen” (Munich, 1994); translated as All Life is Problem Solving by Patrick Camiller, 1994.

Popper, K.R. Conjectures and refutations : the growth of scientific knowledge. Routledge and Kegan Paul, 5th

edition, 1974.

Riebisch M., Bollert K., Streitferdt D., Philippow I. Extending feature diagrams with UML multiplicities, in:

Proceedings of the Sixth Conference on Integrated Design and Process Technology (IDPT2002), Pasadena,

CA, June 2002.

Robinson W. Interactive Decision Support for Requirements Negotiation. In Concurrent Engineering: Research

& Applications, 2, pp. 237-252. 1994.

Robinson W., Fickas S. Supporting Multiple Perspective Requirements Engineering. Proceedings of the 1st

International Conference on Requirements Engineering (ICRE 94), IEEE Computer Society Press, pp.206-

215. 1994.

Rolland C, Nurcan S (2010) Business Process Lines to deal with the Variability. In Proc. Of the Hawaii

International Conference on System Sciences (HICSS), Hawaii, USA

Rolland C, Prakash N, Kaabi R (2007): Variability in Business Process Families. Information Resources

Management Association (IRMA)

Rosenmüller M., Siegmund N., Thüm T., Saake G. Multi-Dimensional Variability Modeling. Proceedings of the

VAMOS Workshop, Belgium, 2011.

224

Roos-Frantz F., Segura S. Automated Analysis of Orthogonal Variability Models. A First Step. In: 1st. SPLC

Workshop on Analysis of Software Product Lines (ASPL 2008). Limerick, Ireland; 2008.

Salinesi C., Diaz D., Djebbi O., Mazo R. Exploiting the Versatility of Constraint Programming over Finite

Domains to Integrate Product Line Models. Poster in 17th IEEE International Conference on Requirements

Engineering (RE'09). Atlanta-USA. Septembre 2009.

Salinesi C., Etien A., Zoukar I. A Systematic Approach to Express IS Evolution Requirements Using Gap

Modelling and Similarity Modelling Techniques, International Conference on Advanced information

Systems Engineering (CAISE), Springer Verlag, Riga, Latvia, 2004.

Salinesi C, Mazo R. Defects in Product Line Models and how to Identify them. "Software Product Lines - The

Automated Analysis", edited by Abdelrahman Elfaki, InTech editions, ISBN 979-953-307-700-9. to appear

in January 2012.

Salinesi C., Mazo R., Diaz D. Criteria for the verification of feature models, In 28th INFORSID Conference,

Marseille, France, 2010.

Salinesi C., Mazo R., Diaz D., Djebbi O. Solving Integer Constraint in Reuse Based Requirements Engineering.

18th IEEE Int. Conference on Requirements Engineering (RE'10). Sydney, Australia, 2010.

Salinesi C., Mazo R., Djebbi O., Diaz D., Lora-Michiels A. Constraints: the Core of Product Line Engineering.

Fifth IEEE International Conference on Research Challenges in Information Science (RCIS), IEEE Press,

France, May 2011.

Salinesi C., Rolland C., Mazo R. VMWare: Tool support for automatic verification of structural and semantic

correctness in product line models. In Third International Workshop on Variability Modelling of Software-

intensive Systems (VaMos), pages 173–176, 2009.

Sawyer P. Software Requirements. In R. Thayer (Ed), Software Engineering: Vol 1: The Development Process,

IEEE Press, September 2005.

Schaefer I., Bettini L., Bono V., Damiani F., Tanzarella N. Delta-oriented programming of software product

lines. In Proceedings, 14th International Software Product Line Conference, Lecture Notes in Computer

Science, Jeju, South Korea, 2010.

Schobbens P., Heymans P., Trigaux J., Bontemps Y. Feature diagrams: A survey and a formal semantics. In

Proceedings of the 14th IEEE International Requirements Engineering Conference (RE’06), Minneapolis,

Minnesota, USA, September 2006. IEEE Computer Society

Schobbens P., Heymans P., Trigaux J.C, Bontemps Y. Generic semantics of feature diagrams. Journal of

Computer Networks. 2007 Feb; 51(2):456–479.

Schulte Ch., Stuckey P. J. Efficient constraint propagation engines. ACM Trans. Program. Lang. Syst., 31(1),

(2008).

Segura S. Automated Analysis of Feature Models using Atomic Sets. First Workshop on Analyses of Software

Product Lines (ASPL'08), SPLC'08. Limerick, Ireland, 2008.

Segura S., Benavides D., Ruiz-Cortés A., Trinidad P. Automated merging of feature models using graph

transformations. In: GTTSE ’07. Volume 5235 of LNCS., Springer-Verlag, 2008.

225

Semmak F., Gnaho Ch., Laleau R. Extended KAOS Method to Model Variability in Requirements.

Communications in Computer and Information Science, 69:193-205, 2010

Semmak F., Laleau R., Gnaho Ch. Supporting Variability in Goal-based Requirements. Proceedings of the IEEE

International Conference on Research Challenges in Information Science (RCIS), pp. 271-280, 2009.

Simon H.A. The Sciences of the Artificial. The MIT Press, 1981. Second edition.

Sommerville I., Sawyer P. Requirements Engineering - A Good Practice Guide. John Wiley, April 1997.

Spanoudakis G., Zisman A. Inconsistency management in software engineering: Survey and open research

issues. Handbook of Software Engineering and Knowledge Engineering, 329–380. 2001.

Stahl T., Völter M., Czarnecki K. Model-Driven Software Development: Technology, Engineering,

Management. San Francisco, Wiley, June 2006.

Streitferdt D., Riebisch M., Philippow I. Details of formalized relations in feature models using OCL. In

Proceedings of 10th IEEE International Conference on Engineering of Computer–Based Systems (ECBS),

Huntsville, USA. IEEE Computer Society, pages 45–54, 2003.

Stropky, M.E., Laforme, D.. An automated mechanism for effectively applying domain engineering in reuse

activities. In International Conference on Ada, pp. 332-340, California,USA. (1995)

Sun J., Zhang H., Wang H. Formal semantics and verification for feature modeling. In Proceedings of the 10th

IEEE International Conference on Engineering of Complex Computer Systems, pages 303-312, Washington,

DC, USA, 2005.

Tekinerdogan B., Aksit M. Managing variability in product line scoping using design space models.

Proceedings of Software Variability Management Workshop, Groningen, The Netherlands, 2003.

Trinidad P., Benavides D., Ruiz-Cortés A. A first step detecting inconsistencies in feature models. In CAiSE

Short Paper Proceedings, Advanced Information Systems Engineering, 18th International Conference, CAiSE

2006, Luxembourg, Luxembourg, 2006.

Trinidad P., Benavides D., Durán A., Ruiz-Cortés A., Toro M. Automated error analysis for the agilization of

feature modeling, Journal of Systems & Software – Elsevier, 2008.

Trinidad P., Ruiz-Cortés A., Benavides D., Segura S., Jimenez A. FAMA Framework. 12th International

Software Product Line Conference (SPLC 2008), Limerick, Ireland, (2008).

Turner D. Miranda: a non-strict functional language with polymorphic types, in: Functional Programming

Languages and Computer Architecture, Lecture Notes in Computer Science Vol 201, J.-P. Jouannaud (ed.),

Springer-Verlag, Berlin, Heidelberg, 1985.

Van den Broek P., Galvão I. Analysis of Feature Models using Generalised Feature Trees, Third Int. Workshop

VaMoS, 2009.

Van der Storm T. Variability and Component Composition, in: Proceedings of the 8th International Conference

on Software Reuse (ICSR-8), 2004.

Van der Storm T. Generic Feature-Based Composition. In: M. Lumpe and W. Vandeperren, editors, Proceedings

of the Workshop on Software Composition (SC'07), volume 4829 of LNCS, pp. 66-80, Springer, 2007.

226

Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logics to maintain consistency

between UML models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–

340. Springer, Heidelberg (2003)

Van Deursen A., Klint P. Domain-specific language design requires feature descriptions. Journal of Computing

and Information Technology, 10(1):1–18, March 2002.

Van Hentenryck P. Constraint Satisfaction in Logic Programming. The MIT Press, (1989).

Vierhauser M., Grünbacher P., Egyed A., Rabiser R., Heider W. Flexible and Scalable Consistency Checking on

Product Line Variability Models. Proceedings of the 25th IEEE/ACM International Conference on

Automated Software Engineering (ASE), Antwerp, Belgium, ACM (2010).

Von der Maßen T., Lichter H. Deficiencies in feature models. In Tomi Mannisto and Jan Bosch, editors,

Workshop on Software Variability Management for Product Derivation - Towards Tool Support (2004).

Von der Maßen T., Lichter H. Modeling Variability by UML Use Case Diagrams. International Workshop on

Requirements Engineering for Product Lines. Avaya Labs Report series editors, (pp. 18-26). Essen,

Germany, 2002.

Von der Maßen T., Lichter H. RequiLine: A requirements engineering tool for software product lines,

Proceedings of International Workshop on Product Family Engineering PFE-5, Springer LNCS 3014, Siena,

Italy, November 2003.

Webster J., Watson R. Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly,

26(2):xiii–xxiii, 2002.

White J., Doughtery B., Schmidt D. Selecting highly optimal architectural feature sets with filtered cartesian

flattening. Journal of Systems and Software, 82(8):1268–1284, 2009.

White J., Schmidt D., Benavides D., Trinidad P., and Ruiz-Cortes A. Automated diagnosis of product-line

configuration errors in feature models. In Proceedings of the SPLC (2008).

Yan H., Zhang W., Zhao H., Mei H. An optimization strategy to feature models’ verification by eliminating

verification-irrelevant features and constraints. In ICSR, pages 65–75, 2009.

Zhang, W., Zhao, H., Mei, H. A Propositional Logic-Based Method for Verification of Feature Models. In:

Proceedings of 6th International Conference on Formal Engineering Methods, pp. 115–130 (2004).

Zhao, H., Zhang, W., Mei, H. Multi-view based customization of feature models. Journal of Frontiers of

Computer Science and Technology 2(3), 260–273, 2008.

Ziadi, T. Manipulation de Lignes de Produits en UML. Unpublished doctoral dissertation, IRISA-TRISKELL,

Université de Rennes 1, France, 2004.

