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Experimental characterization and modeling of the
mechanical behavior of filled rubbers under cyclic

loading conditions
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Introduction

This thesis is part of a project named AMUFISE (Analyse MUltiéchelle de la FISsuration

des Elastomères chargés) that is supported by the French Agence Nationale de la Recherche. The
project aims at improving the quality and the design of tires, what means building lighter tires
and increasing their endurance and their safety. For this purpose a thorough understanding of
the fatigue damage mechanisms is required. We are interested in the filled rubber part of the tire.
Within such materials, the fatigue damage may be characterized by the crack growth. Currently,
fatigue crack growth is still not well understood and remains a critical issues. Therefore, the
project objective is to develop an experimental and theoretical understanding of multi-scale
damage mechanisms at the crack tip and their dependencies to the material microstructure.

Background and aims of this thesis

Up to now, numerous researches on rubber materials have been drawing their attention to
fatigue damage under cyclic loading conditions. However, its understanding is still an ongoing
issue and there is no general agreement about crack growth mechanisms. Most studies are based
on empirical and phenomenological approaches. They aim at capturing the major parameters
connected to the crack growth under cyclic loading conditions. The results put in light the main
factors driving the fatigue damage, such as the chemical nature of the rubber molecular network,
the crosslink density, the amount of fillers, the type of fillers,... However, these studies did not
assess the physical and chemical origins of the phenomenon. Currently, the model proposed 40
years ago by Lake and Thomas (1967) is the most reliable model able to relate the physical
nature of the rubber network to the fatigue failure properties. However, its use is limited. For
instance, the model is well suited for unfilled rubber networks, but it does not account for the
filler e↵ect. Let us note that fillers induce a significant reinforcement of the mechanical behavior.

The crack growth within rubber materials submitted to cyclic loading conditions may be
decomposed in two issues: the crack initiation and the crack propagation. Fatigue life in tires is
driven by propagation, therefore, the project focus on crack propagation. The crack propagation
during fatigue loading is characterized by submitting a pure shear sample with a single edge crack
to a cyclic loading. The crack propagates along the number of cycles. Experimental results
reported by Mzabi (2010) in his PhD thesis reveals that the zone near the crack tip is highly
strained and may undergo several hundred percent of strain. Under such a loading intensity, a
damage unrelated to the crack growth occurs. Therefore, the material behavior in the highly
strained local region changes before the crack propagates through. Currently, the size of the
local region impacted by the crack propagation and the mechanical behavior evolution within
this region are not clearly established.

Modeling the mechanical behavior of the material in the local highly strained region, in the
vicinity of the crack tip, may be a key ingredient in the crack propagation understanding. Basic
mechanical experiments at large strain illustrate the strongly non-linear stretch-stress responses
of filled rubber materials. Moreover, they highlight a significant damage occurring under cyclic
loading conditions. Experimental observations reveal two types of damage that may be studied

9
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independently.

• Filled rubbers materials undergo a significant change in their mechanical behavior when
first stretched. This property has been extensively studied by Mullins (1947, 1949, 1950,
1969) and is now referred to as the Mullins softening. The Mullins softening is a large
stress-softening. It develops a residual stretch and induces an anisotropy for the mechanical
behavior. Although it has been studied for more than six decades, it is still a major
di�culty for modeling and understanding the mechanical behavior of rubber materials.

• Once the Mullins softening has occurred during the first cycle, a rubber material submitted
to subsequent identical cycles undergo another type of damage. It evolves progressively
with the number of cycles and it develops a stress-softening and a residual stretch. Al-
though its evolution between two successive cycles may rapidly become unnoticeable, its
cumulative e↵ect when considering a large number of cycles cannot be neglected.

Contributions

The project contributors are the Manufacture Française des Pneumatiques Michelin, the Lab-

oratoire de Physico-chimie des Polymères et des Milieux Dispersés (Ecole Supèrieure de Physique

et Chimie Industrielle de Paris), The Laboratoire de Mécanique et de Technologie (Ecole Normale

Supérieure de Cachan) and the Laboratoire de Mécanique de Lille (Ecole Centrale de Lille). Each
contributors bring specific and complementary sets of skills. Our contributions to the project
is firstly to perform the experimental characterization of the mechanical behavior of filled rub-
ber material under cyclic loading conditions, and secondly, to develop constitutive equations in
order to capture the mechanical behavior of the material and its evolution under cyclic loading
conditions. This work will focus on the equilibrium responses, the issues of viscoelasticity are
beyond the scope of this study. It is to emphasize that the purpose is not to develop crack
growth models. It is rather to propose a model able to predict the mechanical behavior of the
material in the local highly strained region in the vicinity of the crack tip, before the crack
propagates through.

The requirements for the experimental characterization are now described.

• Perform cyclic tension tests according to various loading conditions in order to characterize
the phenomena of stress-softening, residual stretch and induced anisotropy. The experi-
mental work should allow to quantify the dependencies to the maximum loading intensity
and to the number of cycles.

• Assess the e↵ects of the material microstructure on the stress-softening phenomenon. For
this purpose, materials with various compositions will be considered.

• The region in the vicinity of the crack tip undergoes significant changes in loading condi-
tions. The multiaxiality of the loading path evolves while the crack propagates through
the sample. Therefore, experiments accounting for biaxial loading conditions should be
considered.

The experimental works should provide a complete experimental basis for the constitutive
model definition. The mechanical modeling of the material behavior should account for the
phenomena brought to light by the experiments (stress-softening, residual stretch, anisotropy)
and for the loading parameters (type of loading, loading intensity, number of cycles).

10
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Layout of this thesis

This thesis is organized as follows. Chapter 1 proposes a literature review on the mechanical
behavior of rubber-like materials submitted to cyclic loading conditions. During this review,
some modeling issues are highlighted. An experimental strategy is defined in order to assess
experimental evidences allowing to improve the constitutive equations. Finally, testing devices
and general experimental techniques are described within this chapter. Chapter 2 introduces
the materials studied during the thesis. In order to investigate the e↵ect of the material mi-
crostructure, several carbon-black filled styrene-butadiene rubbers with various compositions
are considered. Monotonic and cyclic uniaxial tension tests are performed in order to illustrate
few basic mechanical properties according to the material composition. Chapter 3 proposes
an original parameter to qualitatively characterize the Mullins softening occurring under cyclic
uniaxial loading conditions. The proposed parameter is used to study the e↵ect of the material
composition on the Mullins softening. Chapter 4 aims at providing a criterion for the Mullins
softening activation able to account for general loading conditions. Unconventional experimen-
tal procedures are used in order to apply cyclic non-proportional loadings. Then an original
experimental analysis is defined to assess the Mullins softening criterion. Chapter 5 proposed an
original constitutive modeling for filled rubber materials in order to capture the anisotropic soft-
ened behavior induced by general non-proportional loading histories. The constitutive equations
are grounded on a thorough analysis of original experimental data. The proposed framework is
built in order to provide a model versatile that applies for a wide range of materials. For this
purpose, the chapter also provided an identification procedure. In order to extend the under-
standing and to accurately predict mechanical behavior changes occurring during cyclic loading
conditions, Chapter 6 is addressing the cyclic softening that evolves with the number of cycles.
Firstly, an original method is proposed for the cyclic softening characterization and the e↵ects
of the material composition are studied. Secondly, the method is extended for modeling the
stress-softening of filled rubbers occurring during proportional cyclic tests.

Finally the next chapter concludes the thesis. We summarize the key-points of our works.
In addition, we discuss the results and we present few possible directions for future works.

Appendix A is addressing a side issue regarding the hyperelastic modeling for filled rubber
mechanical behavior accounting for an anisotropic damage. A full-network approach with di-
rectional damage is used. The framework is rewritten using spherical harmonics in order to
provide an e�cient numerical implementations. It is to be noticed that such a formalism may be
extended on the model proposed in Chapter 5. Such a work was not carried out during the thesis
because we chose to focus on the mechanical behavior modeling and the material understanding
instead on numerical issues. Nevertheless, this work was shown to perform well and to drive to
a publication.
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Chapter 1

Literature review and experimental
setup

This first chapter aims at providing basis for the entire thesis works developed
in subsequent chapters. Firstly, a literature review on rubber-like materials sub-
mitted to cyclic loading conditions is proposed. Three main topics are addressed
within this review: rubber-like materials, Mullins softening and cyclic softening.
Experimental observations, physical interpretations and mechanical modeling are
considered. It is to be noticed that works published after the beginning of the
thesis are not included in this first chapter. The review will highlight some in-
su�ciencies in the models currently used and a lack of experimental data within
the literature. Secondly, the experimental setup used to assess the needed data
is given. The testing devices and general experimental techniques are described
with details when needed.
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1.1. Introduction

1.1 Introduction

Rubber-like materials are commonly used in various industrial applications. Their complex
microstructures consist of long flexible molecular chains randomly arranged in space and linked
together to form large molecular networks. Such a microstructure gives to rubber-like materials
some extraordinary elastic properties. In order to increase their sti↵ness, fillers are usually
added to the rubber compounds. The main drawback of such reinforcements is to induce some
material stress-softening when submitted to cyclic loading conditions. The larger part of the
stress-softening occurs during the first loading and is known as the Mullins softening (Mullins,
1969). During subsequent cycles, the mechanical behavior evolves very slowly and becomes
rapidly unnoticeable between two successive cycles. However, when considering a large number
of cycles, this evolution cannot be neglected. The literature reports a significant amount of work
addressing the behavior of rubber-like materials under cyclic loading conditions. However, there
are still numerous major issues that need to be addressed. Building an e�cient constitutive
model for the behavior rubber-like materials with an account of the cyclic softening remains a
significant challenge.

The first objective of this chapter is to review and discuss the literature dedicated to the
topic. An analysis of the previous works will highlight some modeling insu�ciencies and a lack
of experimental data within the literature. Then an experimental strategy will be proposed in
order to assess the required data. The second objective is to introduce the experimental setup
and to provide details regarding testing devices, and experimental techniques and procedures
used in the sequel.

This chapter is organized as follows. The next section gives a basic description of rubber-like
material microstructure and mechanical modeling. Then, the literature dedicated to the Mullins
softening and to the cyclic softening is reviewed in Sections 1.3 and 1.4, respectively. Literature
reviews synthesis and analysis are given in the following section. Finally, the experimental setup
is introduced and concluding remarks close the chapter.

1.2 Rubber-like materials

1.2.1 Material description

Originally and for more than a hundred years, the only elastomer used for industrial applica-
tion was the natural rubber (NR). Natural rubber is extracted from latex produced by the Hevea
braxiliensis tree. Hevea commercial plantations are mainly located in India. During World War
II, the United States were cut o↵ from rubber-growing areas and developed synthetic alternates
for natural rubber applications. One of the most widely used synthetic rubbers is Styrene Buta-
diene Rubber (SBR). SBR is the type of gum used to manufacture the materials studied in this
thesis. Most of synthetic rubbers are processed from petroleum raw products, however, their
microstructure and mechanical properties are very comparable to natural rubber ones.

At a smaler scale, elastomers are made of very long macromolecular chains. The chain con-
sists into repeated units called monomers. The monomer is a specific arrangement of atoms
connected by covalent bonds. Due to thermal agitation, rotations along the macromolecular
chain backbone are free rendering easy the changes of chain configurations, which favors large
strains. Raw rubbers, consisting of uncrosslinked macromolecular chains, show very limited elas-
ticity due to unrestrained chain slipping. Within a raw rubber, long chains are only connected
by weak bonds and entanglements. Hence, when submitted to a mechanical solicitation chain
reptations occur and material flows like a highly viscous fluid. To reach mechanical properties
suitable for industrial applications, raw rubbers are submitted to a vulcanization process. Vul-
canization is a chemical process usually carrying out in a mold under high pressure and high
temperature. Raw rubber is mixed with sulfur and during the process atomic covalent bonds
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between polymer chains are created by sulfur atoms. Those bonds are usually called crosslinks.
A vulcanized rubber microstructure is shaped as a network, therefore chain reptations are no
longer possible and material can withstand large deformations.

Pure vulcanized rubber materials are able to undergo quasi-reversible large deformations.
However, other mechanical properties, such as sti↵ness, are too weak for practical use. In order
to significantly improve the mechanical properties, filler particles are incorporated within rubber
compounds to act as reinforcement. Even though the filler rubber interactions are still not well
understood, it is commonly known that adding fillers to rubbers increase their sti↵ness signifi-
cantly (Mullins and Tobin, 1965; Bergström and Boyce, 1999) and delay the crack propagation
(Auer et al., 1957; Mars and Fatemi, 2004a; Mzabi, 2010). Two main types of fillers are widely
used, carbon black and silica. Materials studied in this thesis are SBR compounds filled with
carbons black. Within a filled rubber, the elementary carbon black particles are aggregates.
Even for the same type of carbon black, aggregates may have numerous shape, their structure
can be more or less branched and some rubber gum, usually refer as occluded rubber, may be
trapped within aggregates (Medalia, 1970).

A filled rubber micrograph is shown in Figure 1.1a. This figure highlights aggregates formed
by grouped carbon black particles. The aggregates of various shapes are randomly dispersed. The
microstructure of filled rubbers is schematized in Figure 1.1b. Relevant and average dimensions
for filled rubber description are the following: a monomer size is 0.15 nm; a chain cross section
is 0.5 nm2; a crosslinks diameter is 3 nm; the elementary carbon black particle diameter is of 10
to 90 nm; the aggregate is composed by 10 to 100 particles reading a size between 100 to 500
nm (Leblanc, 2002).

(a)




(b)

Figure 1.1: Material physical description. (a) Micrograph of a SBR filled with 50 phr of N347
carbon black. (b) Schematic filled rubber microstructure.

1.2.2 Material behavior modeling

Rubber-like materials may undergo large elastic strains and strongly non-linear stretch-stress
responses. In order to accurately model the material mechanical behavior, large strain formalism
and the hyperelastic framework are prefered. Therefore, a strain energy density W is introduced
from which the constitutive equations devive. The deformation of a material from an initial
(undeformed) configuration to a current (deformed) configuration is described by the deformation
gradient tensor F . The strain is given by the right Cauchy-Green deformation tensors C = F

t

F

(superscript t denotes transposition). In what follows, two stress tensors are used. The second
Piola-Kircho↵ stress tensor S and the Cauchy stress tensor � defined on the initial and the
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current configurations, respectively. They are both related through

� = JFSF

t (1.1)

with J = det(F ) the Jacobian determinant. It is noteworthy that J = V/V

0

with V the current
volume and V

0

the initial volume. Therefore, for incompressible materials, J remains equal to
1. From the laws of thermodynamics, the Clausius Duhem inequality for an isothermal process
can be written as

1
2
S : Ċ � Ẇ > 0. (1.2)

The state of the material is assumed to be described by the strain energy density W expressed
in term of C. Then the Clausius Duhem inequality gives✓

1
2
S � @W

@C

◆
: Ċ > 0 (1.3)

hence, to satisfy any arbitrary deformation,

S = 2
@W
@C

. (1.4)

Taking into account the incompressibility assumption, the Cauchy stress tensor yields

� = 2F
@W
@C

F

t � pI (1.5)

where p is an arbitrary hydrostatic pressure.
It must be emphasized that proposing a relevant expression of W remains a major issue.

Some reviews about this topic were proposed by Boyce and Arruda (2000); Marckmann and
Verron (2006); Vahapoǧlu and Karadeniz (2006). There is currently no model reported in the
literature able to build a direct link between the filled rubber microstructure and its experimen-
tal stress-stretch responses. Therefore, in order to define the strain energy density, two main
approaches may be considered. One of them is based on a mathematical development of the
strain energy density without any physical considerations. Within this approach, proposed mod-
els are phenomenological, usually based on strain invariants and with parameters without any
physical meaning. A well-known phenomenological development has been proposed by Rivlin
(1948)

W =
1X

i,j=0

C

ij

(I
1

� 3)i(I
2

� 3)j (1.6)

with C

ij

defining the material parameters and I

1

and I

2

been the first and second invariants of
the right Cauchy–Green deformation tensor.

The second approach aims at proposing models built with a strain energy density grounded
on physical motivations. The material is considered as a network constituted of long molecular
chains randomly oriented in all directions of space. A unidirectional elementary strain energy
density w is defined for a single chain. A three-dimensional framework is obtained by consider-
ing elementary strain energy density contributions along several directions. Meyer et al. (1932);
Meyer and Ferri (1935) were first to consider rubber microstructure composed of flexible chain
rather than a rigid molecule and to propose a theory assuming that rubber elasticity is governed
by changes in configurational entropy. They also realized that internal rotation between succes-
sive monomers are free and random, therefore end-to-end chain distance is related to statistical
considerations. Using a statistical mechanics approach, the entropy of a single chain, s, is

s = k lnP (1.7)
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with k the Boltzmann’s constant and P the probability of end-to-end chain distance. Considering
both laws of thermodynamics and assuming that the internal energy is independent of the chain
extension (full details may be found in Treloar (1973, 1975)), the chain energy density, w, reads

dw = Tds (1.8)

with T the temperature. In order to account for molecular chain extensibility limit, the el-
ementary strain energy density proposed by Kuhn and Grün (1942) is mainly used. It is
based on a probability of end-to-end distance distribution P defined by the Langevin function,
L(x) = coth(x)� 1/x, and yields

w(⇤
chain

) = NkT


⇤

chainp
N

�

chain

+ ln
✓

�

chain

sinh �

chain

◆�
(1.9)

with �

chain

= L�1(⇤
chain

/

p
N), N the number of chain bonds and ⇤

chain

the chain elongation.
Finally, the global strain energy density W is the summation of all elementary contributions and
an idealized representation introduced by Treloar and Riding (1979) is the full-network model.
Considering a continuous spatial distribution of w, integration on the unite sphere leads to

W =
n

4⇡

Z
2⇡

'=0

Z
⇡

✓=0

w sin(✓)d✓d' (1.10)

with n the active chain density and (✓,') the polar angles. Let us note that the number of
considered directions may be limited, for instance a well-known ”8-chain” model was proposed
by Arruda and Boyce (1993).

Constitutive equations introduced in this section are able to capture a very idealized rubber
mechanical behaviors, i.e. a perfectly reversible and isotropic hyperelastic material response.
Unfortunately, actual filled rubber behaviors are far more complicated. Some experimental
observations putting in light this complexity are presented in the next section.

1.3 Review on the Mullins softening

1.3.1 Experimental observations of the Mullins softening

Filled rubbers exhibit highly non-linear and time-dependent mechanical responses. Moreover,
the material loading history induces some behavior changes. Among the latter, a significant
stress softening occurs when stretched for the first time. This phenomenon, first reported by
Bouasse and Carrière (1903) is now commonly referred to as the Mullins softening du to the
amount of work addressed on this specific issue by Mullins (1947, 1949, 1950, 1969). Over
the following decades numerous contributions investigated the Mullins softening, but it is well
known that there is still no general agreement on its experimental characterization, its physical
understanding or its mechanical modeling. Experimental observations are shown in this section,
then physical interpretations and modeling are discussed in subsequent sections. Further details
may be found in a recent review on the topic proposed by Diani et al. (2009).

In order to illustrate the Mullins softening main features, a filled rubber sample was sub-
mitted to a cyclic uniaxial tension. The stress-stretch response for a cyclic loading test with
increasing maximum stretch every 10 cycles is shown in Figure 1.2. This classic experiment
highlights the stress softening occurring when the material is first loaded to a level of stretch
never undergone. One may notice that when stretched beyond the maximum intensity previ-
ously applied, the stretch-stress response returns on the monotonous uniaxial tension response
path and the material softens significantly. To the contrary, once the Mullins softening is evac-
uated and during subsequent cycles, the material behavior evolves very slowly with respect to
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the number of cycles. Since changes between two successive cycles may rapidly become unno-
ticeable (Mullins, 1949), they are usually neglected. While material softens, one may notice a
residual stretch that increases and seems to mainly evolve with the applied maximal stretch.
Along with the softening, the residual stretch was intensively studied by Mullins (1947, 1949)
and very similar changes were observed for both phenomena. However, the residual stretch is
very dependent on the material viscoelasticity and it shows a significant and rapid recovery even
at room temperature (Mullins, 1949; Diani et al., 2006a). On the contrary the Mullins softening
is commonly reported in the literature as an irreversible damage phenomenon and, at least at
room temperature, no softening recovery was observed by Mullins (1947); Rigbi (1980); Hanson
et al. (2005); Diani et al. (2009). Let us note that a large softening recovery may occur at high
temperatures (in vacuo) or by swelling (Harwood and Payne, 1966a,b).
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Figure 1.2: Mullins softening: Stress-stretch response of a filled rubber under cyclic uniaxial
conditions.

The early experimental works aiming at studying the Mullins softening (Bouasse and Carrière,
1903; Mullins, 1947, 1949) were performed on filled natural rubbers. A Mullins softening was
also reported for unfilled natural rubber by Dannenberg and Brennan (1965); Harwood et al.
(1965); Harwood and Payne (1966a) for very high level of strains. However, natural rubber is
known to crystallize upon stretching and its mechanical response is significantly impacted by
this phenomenon. Recently Trabelsi et al. (2003a) showed that in natural rubbers, a major part
of hysteresis between the loading and the unloading responses may be related to crystallization
and melting. By measuring the amount of crystallinity Trabelsi et al. (2003b) showed that
crystallization is identical during the first and the second cycles while the softening evolves sig-
nificantly. Hence, behavior changes are not related to a crystallization decrease with the number
of cycles and strain-induced crystallization is not significantly a↵ected by the Mullins softening.
Mullins softening occurrence for synthetic filled rubbers has been reported many times in the
literature and for various type of gums. However, the dependence of the Mullins softening to the
type of gum or to the type of fillers is not clearly established. Nevertheless, it is clearly known
that the softening increases with the amount of fillers, one may cite Mullins and Tobin (1957);
Klüppel and Schramm (2000); Dorfmann and Ogden (2004); Luo et al. (2004) among others.
Finally, Mullins softening has never been observed in unfilled non-crystallizing rubber (see for
instance Meunier et al. (2008) for a silicone rubber).

Experimental contributions aiming at investigating the Mullins softening usually focus on
proportional loadings, i.e. successive loadings with the same multiaxial nature of the stretch-
ing and the same principal directions of stretching. Uniaxial tension tests are mostly used for
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technical simplicity, numerous references may be found in Diani et al. (2009) review. Only
few studies applied more complex loading conditions, for instance a Mullins softening has been
reported in pure shear (James and Green, 1975; Moreau et al., 1999; Machado et al., 2010),
biaxial tension (Johnson and Beatty, 1995; Li et al., 2008; Palmieri et al., 2009; Machado et al.,
2010), and uniaxial compression (Bergström and Boyce, 2000; Amin et al., 2002; Qi and Boyce,
2005; Webber et al., 2007), among others. All last-cited contributions highlight strong e↵ects of
loading conditions on rubber hyperelastic stress-stretch responses. But, since materials are only
submitted to proportional loadings, the Mullins softening features are similar to those presented
in Figure 1.2 for a simple uniaxial tension test. To the contrary, applying non-proportional load-
ings reveal another interesting Mullins softening feature. During his early work, Mullins (1947,
1949) brought to light the induced anisotropy of both the softening and the residual stretch by
submitting a material to successive non-proportional loadings. However, this particular aspect
was not investigated further until very recently (Laraba-Abbes et al., 2003; Hanson et al., 2005;
Diani et al., 2006a,b; Itskov et al., 2006; Dargazany and Itskov, 2009). The latter contributions
report considerable and coupled softening’s dependencies on the pre-loading intensity, the di-
rection and multiaxiality of the loadings, without reaching an understanding of the anisotropic
phenomenon and its evolution.

1.3.2 Physical interpretations of the Mullins softening

Assessing the physical origins of the Mullins softening is relevant in many aspects, like
providing a better understanding of the phenomenon in order to build ground for physically
motivated mechanical models. Along the last decades, many physical interpretations have been
proposed in order to explain the Mullins softening occurrence in rubber materials. However,
as previously pointed out, there is still no general agreement about this issue. An early review
about this topic was proposed by Mullins (1969) then more recently by Diani et al. (2009). Only
few of them are presented in the following.

In order to propose a physical interpretation, for the Mullins e↵ect, Blanchard and Parkin-
son (1952) attributed the softening to bond ruptures induced by stretching at rubber-particle
interfaces. A similar approach considering ruptures of the shorter chains linking two particles
when distance between particles expended was proposed by Bueche (1960). However, many
experimental observations disagree with such an interpretation. When chain ruptures occur,
the amount of carbon radicals increases within the material and carbon radicals may be mea-
sured by electron spin resonance. Using this method Suzuki et al. (2005) reported that chain
scissions happen either for filled or unfilled SBR and the latest does not exhibit any Mullins
softening. Therefore, even if chain scissions contribute to the Mullins softening, they are not
the main source. Another drawback of this interpretation has been put in light by Dannenberg
and Brennan (1965); Kraus et al. (1966). These authors carried out some swelling tests on pre-
stretched filled rubbers, they measured no significant changes in rubber networks and concluded
that bond ruptures cannot be the main source of the Mullins softening. Finally, the Mullins
softening recovery pointed out in the previous section (Harwood and Payne, 1966a,b) does not
agree with the bond rupture interpretation.

Another physical interpretation initially proposed by Houwink (1956), then supported by
Dannenberg and Brennan (1965); Clément et al. (2001), attributes the Mullins softening to
chains slipping on the surface of filler particles. Let us note that an earlier theory of breaking
and reforming adsorption bonds introduced by Alexendrov and Lazurkin (1944) is equivalent
to chain slipping. This interpretation could explain the observed recovery and the insignificant
change in the rubber network of stretched materials. However, the softening occurrence observed
for unfilled natural rubber (Dannenberg and Brennan, 1965; Harwood et al., 1965; Harwood and
Payne, 1966b) can not be justified.

A phenomenological interpretation proposed by Mullins and Tobin (1957) considers the ma-
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terial to be a two-phase composite with a soft phase and a hard phase. The Mullins softening is
acting like a rearrangement or a breakdown of the hard phase induced by localized high defor-
mations and changing some hard phase into soft phase. The authors suggested that breakages of
filler aggregates or rupture of polymer-filler bonds might be involved in this process. Kraus et al.
(1966) performed electrical conductivity measurements on pre-stretched filled rubber samples
and notice subsequent changes of material resistivity with the pre-stretch intensity. Therefore,
the authors followed the idea of Mullins and Tobin (1957) and also attributed the main source
of the stress-softening to ruptures of carbon-black aggregates. It is worth pointing out that
Mullins and Tobin (1958); Kraus et al. (1966) look at volume changes and measured a rather
small volume expansion for large stretch (usually less than 2 % for � = 2). Hence the authors
concluded that vacuoles formation could not be the main cause of the Mullins softening. Later,
Klüppel and Schramm (2000) used the same interpretation of filler cluster breakdowns for the
Mullins softening. Main drawbacks of this physical interpretation are the reversibility of the
process and its extension for unfilled crystallizing rubbers Mullins softening.

Harwood and Payne (1966a,b) studied the Mullins softening in filled and unfilled vulcan-
ized natural rubbers, respectively. They attributed the Mullins softening to a quasi-irreversible
rearrangement of the molecular network due to local non-a�ne deformations resulting from a
complete extension of the short chains. During the first extension, local non-a�ne deformations
within the material result in non-a�ne displacements of molecular network junctions from their
initial random state. Then when the material is stretched a second time, the network is already
in a ”preferred” configuration. Harwood and Payne (1966a,b) also addressed the issue of the
Mullins recovery in pure and filled natural rubbers. They observed a slow and limited recovery
of the stress softening at room temperature but a substantial and sometimes almost complete
recovery by heating or by swelling. Finally, the proposed interpretation of molecular network
rearrangements for the Mullins softening agrees with a possible recovery.

Let us notice that physical interpretations of the Mullins softening presented below are
very di↵erent (bond ruptures, chains slipping, ruptures of filler aggregates, rearrangement of
molecular networks). But they all have in common the idea that when a vulcanized filled rubber
(or unfilled natural rubber) is stretched, some regions of the material are highly strained even at
low extension. In any case, the phenomenona occurring within the highly strained zones leads
to the softening. The finite extensibility of molecular chains within those regions leads to the
rapid upturn of the material stress-stretch response for extensions approaching the maximum
previous extension (Mullins, 1969).

1.3.3 Modeling the Mullins softening

At room temperature, the Mullins softening is generally considered as an irreversible damage
and therefore is modelled by damage parameters and their evolutions. Many models reported
in the literature are designed to reproduce rubber-like material behaviors accounting for the
Mullins softening. Nevertheless, as for the physical interpretations, there is still no general
agreement on the modeling (Diani et al., 2009). In order to build a constitutive model for filled
rubbers behavior accounting for the Mullins softening, one may identified five major issues to
be addressed:

• Mullins softening features ! What are the material characteristics resulting form the
Mullins softening?

• Hyperelastic law ! What is the reference material behavior?

• Account for the Mullins softening ! How does the Mullins softening act?

• Mullins softening activation criterion ! When does the Mullins softening activate and
evolve?
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• Softening evolution rule ! How does the softening evolve?

The couple first questions were previously discussed in Section 1.3.1 and 1.2.2, respectively.
The current section focuses on the third and fourth issues, namely the account of the Mullins
softening and of the definition of a criterion. Finally, the Mullins softening evolution rule is
usually chosen in order to fit experimental data. In what follows, I review the Mullins softening
criterion already introduced in the literature. Then, three approaches relevant to account for
the Mullins softening are detailed.

Mullins softening activation criterion

In there early work on the Mullins softening, Mullins and co-workers (Harwood et al., 1965;
Harwood and Payne, 1966a; Mullins, 1969) noticed that when filled and unfilled natural rubber
were first loaded to the same stress1, materials experience various maximal stretches due to
di↵erent sti↵ness but undergone the same degree of softening between the first and the second
extension2. According to this observation, the authors attributed the softening to localized non-
a�ne deformations. Therefore, it seems relevant to relate the evolution of the Mullins softening
to the maximal stretch rather than to the maximal stress. This path is mostly followed ever
since.

Most Mullins softening activation criteria are proposed in order to develop an isotropic soft-
ening. One may find in the literature the maximum of the higher eigenvalue of the deformation
gradient tensor (Laiarinandrasana et al., 2003), the maximum of some deformation tensor invari-
ants (Lion, 1996; Krishnaswamy and Beatty, 2000; Chagnon et al., 2004; Eĺıas-Zúñiga, 2005),
the maximum free energy (Simo, 1987; Ogden and Roxburgh, 1999) or other scalar quantities ...
Only few models account for an anisotropic Mullins softening driven by an anisotropic crite-
rion. One may cite the maximum directional free energy (Göktepe and Miehe, 2005) and the
maximum directional stretch (Diani et al., 2006a,b).

All pre-cited criteria may be able to be used within three-dimensional frameworks considering
or not the observed anisotropy. The model will probably give good agreement with experimen-
tal data provided by proportional cyclic loadings. However, for such loading conditions, the
Mullins softening changes when the maximal loading intensity (whatever its definition) is over-
come. With such criteria the mechanical quantity driving the Mullins softening evolution under
non-proportional loading conditions remains unclear (Diani et al., 2009; Machado et al., 2010).
Therefore, many models are based on critical assumptions and, for most of them, predictive
capabilities for di↵erent and successive loading paths or loading directions can not be expected.

Accounting for the Mullins softening by strain energy density penalization

In order to account for the Mullins softening the concept of continuum damage variable
(Kachanov, 1958) was extended by Simo (1987) for rubber-like materials. Undamaged strain
energy density W

0

is penalized by a damage parameter D according to

W = (1�D)W
0

. (1.11)

Such an account for the Mullins softening has been widely used and many references may be
found in Diani et al. (2009) review. It is noteworthy that most proposed models based on this
approach are mainly phenomenological and any physical phenomena may be considering within
parameter D. Furthermore, the used strain energy densities W

0

are also usually phenomenologi-
cal and may for instance be based on constitutive equation similar to the development introduced
in Eq. (1.6). Let us note that the well-known concept of pseudo elasticity proposed by Ogden

1Notes that nominal (Piola) stress is used, i.e. not the Cauchy stress.
2Characterized by the di↵erence between stresses at the same stretch.
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and Roxburgh (1999), is part of this class of model. In order to increase experimental fitting
accuracy, the penalization method was improved by Ogden and Roxburgh (1999) considering
a strongly non linear form of damage parameter depending on both the current and the max-
imal loading states. The framework was later improved by Dorfmann and Ogden (2004) to
account for residual stretch, but the softening remains isotropic. Recently, Itskov et al. (2010)
proposed an anisotropic model accounting for the Mullins softening via a strain energy density
penalization. However, despite good agreement with experimental data for uniaxial proportional
loadings, such a general penalized strain energy densities fail at predicting uniaxial responses
after non-proportional uniaxial loading histories.

Accounting for the Mullins softening by strain amplification

A di↵erent class of models accounting for the Mullins softening is based on the early phe-
nomenological interpretation provided by Mullins and Tobin (1957). The authors observed that
uniaxial stress-stretch responses of materials submitted to various pre-loading stretches had the
same characteristic shapes and were able to collapse into a single master curve. They built a
constitutive model on this experimental observation. For this purpose, the material is described
as a two-phase composite made of a hard phase and a soft phase. The hard phase is assumed
rigid, therefore the strain in the soft phase ✏

soft is assumed to be the macroscopic (or applied)
strain ✏

macro magnified by a strain amplification factor X, leading to

✏

soft = X.✏

macro (1.12)

or equivalently to �

soft = 1 + X(�macro � 1) in term of stretches. The Mullins softening is
accounted for by considering a decrease of the hard phase volume fraction (i.e. an increase of X

from an undamaged state) with the maximum stretch. The strain amplification factor is applied
according to

�(✏macro) = �(✏soft). (1.13)

Later, the strain amplification factor concept was used by Klüppel and Schramm (2000)
and related to the physical interpretation that the Mullins softening results from an irreversible
breakdown of filler clusters. Such an account of the Mullins softening may be found in many
models proposed in the literature, for instance Johnson and Beatty (1993); Heinrich et al. (2002);
Klüppel (2003); Luo et al. (2004); Meissner and Matějka (2006, 2008). Then, the strain ampli-
fication concept was reviewed by Qi and Boyce (2004) and extended to directional models as
definded in Eq. (1.10). For this purpose, the strain amplification is applied to the elementary
strain energy densities w according to

w(✏macro) = w(✏soft). (1.14)

The model proposed by Qi and Boyce (2004) provides good approximation of experimental data,
nevertheless, it does not aim at reproducing either the material anisotropy or the residual stretch
induced by the Mullins softening. Let us note that the di↵erence between Eqs. (1.13) and (1.14)
is highlighted Eq. (1.5). When considering Eq. (1.14), F and F

t on both sides of @W/@C in
Eq. (1.5) are una↵ected by the amplification. On the contrary, they are both amplified when
using Eq. (1.13).

Accounting for the Mullins softening by strain energy density parameter alteration

Ideally, an hyperelastic model should be built with a strain energy density grounded from
physical motivations and a physical interpretation of the Mullins softening. Hence, the Mullins
softening can be accounted for by altering the strain energy density parameters. Many physically
based models are reported in the literature, but only few induce anisotropic softening. For
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Chapter 1. Literature review and experimental setup

instance, Govindjee and Simo (1991) interpreted the Mullins softening as the rupture of chains
links between particles. Killian et al. (1994) defined the Mullins softening by irreversible chain
slippages. Marckmann et al. (2002) assumed that the softening is caused by the breakage of
network crosslinks. All pre-cited models are isotropic and in order to reproduce the anisotropy
induced by the Mullins softening some improvements were initially proposed by Göktepe and
Miehe (2005); Diani et al. (2006b) and more recently used by Dargazany and Itskov (2009). In
the following, more details are given for the second one (Diani et al., 2006b).

In order to account for anisotropic Mullins softening, Diani et al. (2006b) proposed an ex-
tension of the isotropic physically-based model introduced by Marckmann et al. (2002). As a
starting point, a directional framework built from the statistical mechanics and a limited set of
m directions is used. Eqs. (1.9) and (1.10) combined in

W(F ) =
mX

i=1
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i
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i
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⇤

ip
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�
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(1.15)

where !

i

are the directional weights for numerical integration, �

i
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i

/

p
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i

) and ⇤
i

=p
u

i

.C.u

i

, the unit vector u

i

being oriented in chain i direction. At first, an isotropic approach
was proposed by Marckmann et al. (2002). The Mullins softening is accounted for by changing
the active chain densities n

i

and the number of bonds N

i

with the maximal applied stretch
intensity characterized by

p
I

1

/3 with the deformation invariant I

1

= C : I. According to
experimental observations, the initial sti↵ness (n

i

) decreases and the extension limit (N
i

) increase
with the maximal stretch increase. Moreover, assuming that the number of monomers remains
constant, the following condition is used

N

i

n

i

= constant. (1.16)

Hence only one damage evolution law needs to be defined for both parameters. It is worth
noticing that using an isotropic activation criterion, such as the maximum of

p
I

1

/3, leads to an
isotropic evolution of the Mullins softening. Therefore, n

i

and N

i

remain even over all material
directions and no anisotropic change occurs. In order to account for anisotropy, the material
parameters n

i

and N

i

are initially chosen even for all directions, then the parameters change
independently for each direction i according to the maximum stretch ⇤

i

applied along direction
u

i

. The anisotropic model proposed by Diani et al. (2006b) is able to induce both anisotropic
Mullins softening and residual stretch. The model provides fair estimate of experimental data
considering non-proportional stretching.

1.4 Review on the cyclic softening

The previous section, focused on the softening occurring during the first cycle and related
to the Mullins softening. However, experimental results presented in Figure 1.2 show that the
material behavior keeps softening when loading cycles are repeated at the same maximal stretch.
Throughout the thesis, this secondary softening is defined as ”cyclic softening”. This section
reviews the (short) literature dedicated to this topic.

1.4.1 Experimental observations of the cyclic softening

Once the Mullins softening evacuated during the first cycle, the softening occurring during
subsequent identical cycles is very small and decreases rapidly with the number of cycles (Mars
and Fatemi, 2004a). Therefore, the material behavior change may rapidly become unnoticeable
between two successive cycles (Mullins, 1949) and is usually neglected. Nevertheless, when
considering the cumulative softening induced by a large number of cycles, this change cannot
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1.4. Review on the cyclic softening

be neglected anymore. Contributions on rubbers-like materials submitted to a large number of
cycles address mostly the issues of fatigue life, lifetime criterion and crack propagation (Beatty,
1964; Lake and Thomas, 1967; Mars and Fatemi, 2002; Abraham et al., 2005; Kim and Jeong,
2005; Mars and Fatemi, 2006; Le Cam et al., 2008; Saintier et al., 2006; Harbour et al., 2008;
Verron and Andriyana, 2008; Andriyana et al., 2011; Mzabi et al., 2011; Saintier et al., 2011).
Actually, only few works have been drawing their attention to material mechanical behavior
changes under cyclic loading conditions (Derham and Thomas, 1977; Shen et al., 2001; Gentot
et al., 2004; Mars and Fatemi, 2004a; Yu et al., 2008; Brieu et al., 2010; Yan et al., 2010).
Figure 1.3a shows the stress-stretch response of a filled rubber submitted to a cyclic loading
with repeated cycles at the same maximal stretch. This figure illustrates the Mullins softening
during the first load characterized by a large hysteresis and a substantial residual stretch. It
also shows the very slow cyclic softening occurring during subsequent cycles. One may notice
also that the residual stretch slowly increases with respect to the number of cycles.
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Figure 1.3: Cyclic softening: (a) Stress-stretch response of a filled rubber to a uniaxial tensile
cyclic test of one thousand cycles at a constant maximum stretch. (b) The maximal
stress decreases with respect to the number of cycles.

In order to characterize the cyclic softening according to the number of cycles, a solution
commonly used in the literature, is to follow the decrease of the maximal stress with respect
to the number of cycles (see for instance Shen et al. (2001); Gentot et al. (2004); Mars and
Fatemi (2004b); Asare et al. (2009); Berrehili et al. (2010); Brieu et al. (2010); Yan et al. (2010);
Saintier et al. (2011) among others). Figure 1.3b shows the maximal stress evolution according
to the number of cycles for the stress-stretch experimental response illustrated in Figure 1.3a.
One may note that the evolution becomes linear with respect to the logarithm of the number
of cycles after a relatively low number of cycles. A similar observation has been reported by
Gentot et al. (2004); Mars and Fatemi (2004a); Brieu et al. (2010).

Mars and Fatemi (2004a); Brieu et al. (2010) showed that the cyclic softening is strongly
a↵ected by an initial overload (i.e. few pre-loading cycles applied at larger stretch before the
cyclic loading). After an overload, the maximal stress does not decrease anymore with the
number of cycles, but remains constant. Moreover, Brieu et al. (2010) reported that for non-
crystallizing rubbers the cyclic softening evolution changes with the maximal stretch but does
not change with the stretching amplitude3. These observations suggest that both the Mullins
softening and the cyclic softening are strongly dependent to the maximal stretch ever applied.

3Di↵erence between maximal and minimal cycle stretches.
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1.4.2 Modeling the cyclic softening

As discussed in Section 1.3.2, many physical interpretations have been proposed for the
Mullins softening, but, very few exists for the cyclic softening. Moreover, the few existing
interpretation conclude that both stress-softening are related to the same physical mechanisms,
the cyclic softening being a residual part of the first cycle Mullins softening. Such a suggestion
was initially proposed by Derham and Thomas (1977) and the authors suggest the bond ruptures
mechanism. Later, this explanation was supported by Mars and Fatemi (2004a). More recently,
Brieu et al. (2010) studied the e↵ect of an overload and showed that a very small overload is
su�cient to ”freeze” the cyclic softening. The authors concluded that such an experimental
observation proves that both softening have the same physical origin.

Bear in mind that Mullins softening physical interpretations are still not clearly established,
so neither the cyclic softening ones. Therefore, physical motivations cannot be used to build a
cyclic softening model. Only few models accounting for the cyclic softening may be found in the
literature and they are all based on an amplification of the Mullins softening with the number
of cycles. A common method (Shen et al., 2001; Gentot et al., 2004) is to extend the stress
penalization initially proposed for the Mullins softening by Simo (1987), see Eq. (1.11), to the
cyclic softening. The stress �

N at the cycle N is related to the stress at the first cycle according
to

�

N = (1�D)�N=1 (1.17)

with D a phenomenological damage parameter evolving with the number of cycles.

1.5 Literature review

Hitherto, the thesis proposed a literature review aiming at providing all elementary basis
that will be useful in the sequel. Section 1.3 and Section 1.4 focus on the Mullins softening
and the cyclic softening, respectively. Those reviews highlight that for both phenomena, their
experimental characterizations, their physical interpretations and their mechanical modelings
present issues still to be solved.

The current section provides an outcome of the literature review in order to clearly identify
the insu�ciencies of the existing models. Then knowing those insu�ciencies, the related exper-
imental data lead to the definition of an experimental strategy and an experimental setup. At
this point, it worth emphasized that the thesis work focuses on equilibrium responses. Therefore
viscoelastic aspects are beyond the scope of this study.

1.5.1 Model insu�ciencies

Regarding modeling the filled rubber behavior, one may notice the large number of models
proposed in the literature and the current activity aiming at developing new models providing
a better and accurate representation of material behavior (see the reviews Muhr (2005); Diani
et al. (2009)). It appears that even basic and common assumptions such as the incompress-
ibility are questionable (Le Cam, 2010). In the author’s opinion, the goal is to find a balance
between complexity necessary to accurately feature the filled rubber’s stress-stretch responses
and simplicity required for parameter identification and numerical implementation.

This thesis aims at developing a constitutive model able to capture the behavior of rubber
resulting from a cyclic loading. In order to do so, it must account for the cyclic softening, the
Mullins softening and an hyperelastic framework. The modeling insu�ciencies regarding the
three aspects are now detailed (citations are voluntarily omitted).

• Cyclic softening: All existing models accounting for the cyclic softening define it as an
amplification of the Mullins softening by increasing either the governing parameter or the
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1.5. Literature review

softening evolution rule. Therefore, there is no specific model developed for the cyclic
softening. Some specific governing parameters, evolution rules are still needed.

• Mullins softening: There is still no general agreement on its modeling. A significant
drawback of most existing models is that they are built considering only material responses
to proportional loadings. As a first consequence, the material behavior and the Mullins
softening evolution may be assumed to be isotropic. There are now ample evidences for
the anisotropy induced by the Mullins softening. Therefore, constitutive equations capable
to capture the anisotropy are needed. As a second consequence, the Mullins softening is
observed to evolve with the maximal loading intensity, but any parameter may be used for
characterizing the loading intensity. The definition of a general Mullins softening activation
criterion has not been yet assessed.

Another problem is due to the di�culties for assessing the physical interpretations related
to the Mullins softening occurrence. Physically motivated models cannot be easily built.
Therefore, various assumed solutions for accounting for the Mullins softening are proposed
in the literature. A proper method needs to be defined still.

Finally, because the softening evolution rule is also related to physical interpretations, its
definition remains to be defined. Moreover, its rate should be dependent of the material
microstructure. Therefore, in order to provide constitutive equations suitable for a large
range of materials such a dependence should be studied.

• Hyperelastic framework: As a consequence of the isotropic Mullins softening assumption,
most hyperelastic constitutive equations were developed considering an isotropic behavior.
Therefore, anisotropic framework suitable for the Mullins softening account is needed.

Ideally, a hyperelastic model should be build with a strain energy density grounded from
physical motivations. Moreover, constitutive equations should be related to material mi-
crostructure. However, the relationship between the filled rubber microstructure and its
experimental stress-stretch responses is still an issue and demands further studies.

Few observations reported in the literature seem to significantly disagree with the in-
compressibility assumption commonly used for rubber materials. Therefore, this aspect
requires more investigation.

1.5.2 Experimental strategy

In order to provide a complete experimental basis necessary for the constitutive model defi-
nition, a global experimental strategy has been developed. It is now described.

• Material strategy: In order to study the e↵ect of the material microstructure on the hy-
perelastic response, on the Mullins softening, and on the cyclic softening, several materials
with various compositions were chosen. The material strategy was to vary the filler amount
and the crosslink density within carbon black filled SBRs.

• Uniaxial tensile loading: Basic monotonic or cyclic proportional tests are su�cient for
most issues that will be addressed. Uniaxial tensile loading was chosen for its simplicity
and its reliability.

• 3D deformation measurements: In order to investigate the material incompressibility upon
stretching and to study the material anisotropy, all three principle stretches are needed
during uniaxial tests. Therefore, an original experimental setup was established.

• Non-proportional loadings: Significant model insu�ciencies regarding the Mullins soft-
ening are due to the lack of experimental data resulting from non-proportional loadings.
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Therefore, an original experimental protocol was defined to acquire such data. For this pur-
pose, two di↵erent types of non-proportional loadings were used. The first one is composed
of two successive uniaxial tension experiments applied in two di↵erent material directions.
For the second one, biaxial tension tests are performed prior to an uniaxial loading. A
biaxial testing device has been built for this specific problem.

1.6 Experimental developments

The experimental strategy was previously established according to the literature review.
This section aims at introducing the experimental setup used throughout the thesis. In order to
perform experiments on rubber-like material, a particular experimental setup is required. The
main components are presented in what follows as well as specific experimental procedure used
in the sequel.

Experimental notations

For clarity, all notations used for experimental characterization are introduced here. Those
notations will be unchanged along the thesis. In order to characterized the loading, principal
components of the deformation gradient tensor F are used and organized such as F

11

in the main
tension direction, F

22

in the secondary or transverse direction and F

33

in the sample thickness
direction. For uniaxial loading, � may conveniently stand for the principal stretch in the tension
direction. The Cauchy stress � = F/S is mostly used for uniaxial tension responses, with F the
force and S the current sample cross-section. Let us note that incompressibility is commonly
assumed when computing the Cauchy stress and gives S = �

�1

S

0

with S

0

the initial sample
cross-section.

1.6.1 Deformation measurement

Because of the large extensibility and the low sti↵ness exhibited by our materials, the defor-
mation measurements is a key component demanding good accuracy for successful experiments.
In the following, the deformation measurement setup and the testing methods are detailed. Few
issues that can significantly alter the experimental results are also illustrated.

Deformation measurement setup

The deformation gradient tensor, F , is the link between the initial material configuration
and the current deformed material configuration. In order to acquire local measures and to avoid
any contact with the sample, strain measures are performed by video extensometry. The same
method, setup and image analysis algorithm are used for every experiment and every sample
geometry. Sample face is pinpointed with two or four painted marks. During test, mark motions
are captured by a CCD camera. Images are analyzed in real time using a homemade algorithm
programmed in C/C++ with OpenCV libraries for image processing. Tensor F components
are computed from mark barycenters considering image grey levels. Such a video extensometer
method may seemed obsolete with the wide development of digital image correlation (DIC) and
integrated digital image correlation (IDIC) to follow large strains as encountered for rubber-
like materials. However, only homogeneous strains are considered for experiments presented in
what follow and video extensometry is more convenient and reliable. Moreover, neither DIC nor
IDIC are currently able to be used for real time control testing devices due to image processing
duration. Strain computation is usually post-processed, hence cannot be used for accurately
control the experiment.
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1.6. Experimental developments

CCD Elphel NC353L cameras were used. Cameras capture 2592⇥ 1936 pixels images. How-
ever, the sensor size may be reduced to focus on a reduced zone, leading to smaller image and
higher number of frames per second (fps). 100 fps may easily be reached, which is very in-
teresting for real time control testing applications. According to the experimental setup, two
focal lengths were chosen, a Linos MeVis-C with a fixed focal length of 35 mm and a Zeiss
Makro-Planar T ZF with a fixed focal length of 50 mm. Both are high quality lenses designed
for no distortion across the full field. Note that optical distortions can induce significant errors
on deformation measurements. In order to illustrate optical distortion e↵ect, Figure 1.4a shows
a chessboard pattern captured by a low quality lens. Image barrel distortion appears to be very
important. It was tested that such distortion leads to a �� = 0.1 error for a � = 5 measure. The
chessboard pattern captured by the Linos MeVis-C lens is shown in Figure 1.4b. No significant
image distortion is observed, hence no correction is needed.

(a) (b)

Figure 1.4: Chessboard pattern used for controlling and eventually correcting the optical aber-
rations. (a) Low quality lens. (b) High quality lens.

Initial configuration

The Mullins softening evolves from the very beginning of the stretching. Therefore, its
experimental study requires an accurate measurement of stretches characterizing the state of
strain between the virgin material configuration and the current configuration. For this purpose,
initial configuration characterization is extremely important and might induce some critical
experimental data miscalculation because even a slight error in the initial state is amplified at
large strains by the stretching.

For instance, in uniaxial tension the stretch undergone by the material is � = l/l

0

The
di↵erence with the measured stretch is given by �� = �

meas � �. An error �l

0

= l

meas

0

� l

0

on the initial length measurement may be characterized by �

err

= 1 + �l

0

/l

0

. Such an error
acts as a factor on the stretch � undergone by the material and leads to a measured stretch
�

meas = � ⇥ �

err

. Therefore, even a small initial di↵erence, �l

0

, on the initial configuration
may become very significant at large stretches because �� = �⇥�l

0

/l

0

. Figure 1.5 illustrates
the stretch di↵erence, ��, according to the error on the initial configuration, �l

0

/l

0

, and the
applied stretch, �. Let us note that when performing uniaxial experiment on a soft material,
�l

0

/l

0

may easily reach 5% if the sample is clamped without care. This error is enlarged for a
plane biaxial experiment due to the four grids to clamp.

Experimental protocol has been developed to ensure initial configuration characterization ac-
curacy. The studied materials are very soft. Hence, sample clamping induces uncontrolled and
non-predictive deformations. To overcome this problem, initial material configuration character-
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Figure 1.5: Error �� induced by a mismeasurement �l

0

of the initial configuration for an
uniaxial tension test.

ization is performed while sample is only clamped to the upper grip. Then, once measurement
is acquired, sample is fully connected to the testing machine. It is noteworthy that suitable
sample grips are required to e�ciently test rubber-like materials. Such grips were engineered by
my own to improve ease of use and testing repeatability, they are described in Section 1.6.2.

Principal loading basis

Material deformation is characterized by the non-symmetric deformation gradient tensor F

and for its computation the symmetric right Cauchy-Green deformation tensor, C = F

t

F , is
used. In the sequel, experiments are performed with at least one sample plane face being free
of stress. Direction 3 being normal to this surface, it can reasonably be assumed that such a
direction is also a principal tensor C direction (C

13

= C

23

= 0 may be assumed because no
sample surface out of plan distortions are observed). Then C

11

, C

22

and C

12

components can be
computed from length and orientation changes of two vectors ”drawn” on the sample surface.
Thus, two vectors a and b with initial lengths a

0

and b

0

, and there current lengths a and b are
introduced. Initial and current angles between a and b are defined as ↵

0

and ↵, respectively.
For practical reasons, a is given by the upper and the lower marks, and b by the left and the
right marks. It is to be notice that vectors a and b are not necessarily orthogonal either in the
initial configuration or in the current one. At any time, ↵ read

↵ = arccos
✓

a.b

ab

◆
(1.18)

among other expressions. According to the right Cauchy-Green deformation tensor definition
(i.e. x.y = x

0

.C.y

0

with vectors x and y evolving from x

0

and y

0

, respectively), its components
expressed in an orthogonal material basis oriented according to direction 3 and vector a direction,
and labelled m read

m

C
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=
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a

a

0

◆
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, (1.19)
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Tensor C components in the principal loading basis are assessed by computing eigenvalues
through

C

ii

= m

C

11

+
m

C

22

±
p

(
m

C

11

�
m

C

22

)2 + 4
m

C

2

12

2
(no sum). (1.22)

Finally, the tensor deformation gradient F eigenvalues come as

F

ii

= U

ii

=
p

C

ii

(no sum) (1.23)

since in regard to the experiments performed during this thesis, the rigid rotation R defined by
the polar decomposition F = RU does not a↵ect the experimental results.

Figure 1.6 illustrates the importance of using relations Eq. (1.18) to Eq. (1.23) instead of
computing the normalized distances between marks to estimate the values of F

11

and F

22

. Four
mark positions are acquired during a cyclic uniaxial tension test and both methods are used to
compute stretches F

11

and F

22

. Results are compared in Figure 1.6a. It can be observed that
di↵erences along the loading direction are limited to few percent of strain even when � = 6,
therefore length ratio l/l

0

from a two mark measure provides a fairly good approximation for
machine controlling. On the contrary, it is to be stressed that di↵erences along the transverse
direction are significant. In order to explain such unrealistic results, a numerical sample is
presented in Figure 1.6b. The sample is computed with transverse marks oriented in a 5-
degree angle from the horizontal axis. The left sample shows the initial state, and then changes
induced by a perfect uniaxial tension are computed. During loading beginning, transverse marks
become closer due to incompressibility, see mid sample stretched up to � = 2.6. But for larger
stretching, the transverse marks vertical displacement becomes predominant and the distance
between the marks increases. That can be noticed for � = 6 on the right picture. Therefore,
stretches computed from length ratios may lead to erroneous strain characterization and should
be avoided.
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Figure 1.6: (a) Experimental stretch measurements and normalized distences between marks
during a cyclic uniaxial test. (b) Numerical (Matlab computing) samples in initial
configuration then uniaxialy stretched up to � = 2.5 and 6.

As a side issue, It is noteworthy that numerical samples showed in Figure 1.6b were origi-
nally computed to be compiled in a movie for testing and controlling each components of the
deformation measurement setup as well as the whole chain.
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1.6.2 Sample gripping

In addition to stretch measurements, the connexion between sample and testing machine is
a crucial component of the experimental setup. The design of such a connection is challenging
for rubber-like materials. As explained in the previous section, for soft materials, the sample
gripping is determinant regarding the initial material configuration characterization. Moreover,
studied materials are able to undergo very large strains (up to � = 8). Thus, during an experi-
ment, sample thickness decreases with the applied stretch. For instance, when � = 6 is reached
in uniaxial tension, sample thickness is divided by 2.4 when considering the material incompress-
ibility assumption. Therefore, using classical grips, sample need to be tight very strong to avoid
slippage. Hence material will be locally damage and out of plan sample deformations will occur.
Furthermore, initial configuration will not be accurately characterized and during a cyclic load-
ing, assessing the relaxed configuration, i.e. via F = 0 measurement will be inaccurate. Finally,
as a matter of fact, samples will slip anyways and stretch to failure will be unreachable.

In order to avoid such troubles, two main gripping solutions are available for plane samples.
Pneumatic action grips are the preferred solution for industrial application. They are very
e�cient, but expensive and an air compressor is required. As a value-priced e�cient alternate,
self-tightening grips can be used. Such self tightening grips suitable for the studied materials
were engineered. Figure 1.7 illustrates the pincer shape grips chosen design. The principle of
operation is basic and e�cient. The sample does not need any preparation and its insertion
is extremely easy. An initial clamping force is provided by springs action. Then the clamping
force increases with the loading tensile force. Moreover, the jaws tighten themselves when the
sample thickness decreases with stretching. Therefore, the sample cannot slip and do not need
to be strongly tight at the beginning of the test. Over time and experiments, such a design has
proved to be very e�cient and easy to use. Initially engineered for 150 mm large pure shear
samples, pincer shape grips were finally used of all uniaxial and biaxial experiments.

1.6.3 Uniaxial tests

The uniaxial tension tests were conducted on an Instron 5882 uniaxial testing machine op-
erating at room temperature. The force was measured by a 2 KN load cell. All tests were
run at constant crosshead speed and local stretches were used to control the loading. In order
to evaluate all three principal stretches, a second camera was added when needed, each one of
them positioned in front of one orthogonal sample free face. The two cameras setup is illus-
trated in Figure 1.8. Samples and machine are connected by two pincer shape self tightening
grips detailed in Figure 1.7a. Because only one grip is mobile and the other is fixed, substantial
displacement of the sample central zone used for deformation measurement occurs during a ten-
sion test. Therefore, the camera needs to be repositioned to avoid moveing out of the field view.
For this purpose, both cameras are fixed on a homemade vertical motorized adjustable support.
Vertical position is automatically adjusted and controlled by the video extensometer in order to
align the center field camera sensor with the mid length between upper and lower marks.

During the study, various sample geometries were used for uniaxial tension tests. Normalized
sample beeing dumbbell shape 30 mm long and 4 mm wide, punched in 2.5 mm tick sheets. Two
other specific sample geometries were necessary, a larger dumbbell 25 mm wide and 60 mm long,
and a smaller one 4 mm wide and 10 mm long.

1.6.4 Biaxial tests

According to the experimental strategy introduced Section 1.5.2, material samples submitted
to non-proportional loadings including biaxial loading paths are used. Biaxial experiments
were carried out on a house-built planar biaxial testing device built with four perpendicular
electromechanical actuators. The testing device is shown in Figure 1.9. It must be notice
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(a)

(b)

Figure 1.7: Pincer shape self tightening grips. (a) Design for uniaxial experiments. (b) Design
for biaxial testing device.

(a) (b)

Figure 1.8: Uniaxial testing. (a) Device with two cameras in front of two orthogonal sample
free faces. (b) Stretched sample with one sets of 4 paint marks on each free faces.
Initial sample cross-section is 4⇥ 2.5 mm2.

that the biaxial testing device has been designed and engineered from scratch within the thesis
duration. Cross shape biaxial samples were designed and optimized for a largest central zone
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with homogeneous strains (Brieu et al., 2007). Sample and machine are connected by four pincer
shape self tightening grips detailed in Figure 1.7b. Theses grips were designed in order to allow
them to be very close along the 4 directions as shown in Figure 1.9a and still permit an easiness
of use avoiding any local sample damage. Each grip is fixed to an electromechanical actuator.
An electromechanical actuators is composed of few elements, a linear table, a gearheads, a
servomotor and a servo drive. The linear positioning table has a mobile carriage guided along a
translation axis and controlled in motions by an integrated ball screw. Such a positioning table
ensures an accurate displacement for the grip (fixed to the carriage) along a 600 mm travel range.
For safety, adjustable limit sensors on each side of the travel range are used to prevent overtravel
of the carriage. The ball screw shaft is connected to a servomotor via an intermediate gearhead
for torque reduction (hence a lower motor capacity). The servomotor is a brushless motor. It
is commanded by a servo drive and command modes might be torque, velocity, position, among
others. The servo drive can be connected to a computer and be programmed via a standard serial
communication. Finally, once communication parameters have been setup, basic communication
instructions can be used to command the servo drive, hence the carriage (or grip) motion. More
importantly, such instructions can easily be incorporated within a C/C++ programming code.
Therefore, the four actuators are controlled independently using an algorithm programmed in
C/C++.

(a) (b)

Figure 1.9: Biaxial testing device (a) before and (b) during stretching. Both pictures are at
the same scale.

In order to accurately applied multiaxial loading paths, the servomotors are commanded
in velocity mode and control in real time by the stretches measured on the sample by video
extensometry (see Figure 1.9b). Image processing is performed in real time according to details
provided in Section 1.6.1. Both, the servo drive communication and the image processing are
performed on the same computer, using the same environment and the same programming code.
Therefore, using the local stretches measured from 4 paints marks to control the actuators is
not very challenging and do not required any additional hardware. Actuators are controlled by
pair for all experiments. Using this method, any biaxial tension condition is reachable and the
sample marked zone barely moves from the center of the camera sensor field. Therefore, there is
no need for an adjustable support, the camera can be fixed. For biaxial tests, a master direction
is chosen, usually the vertical direction, and tests are run at constant ”crosshead” or grip speed
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along this specific direction. To ensure that the desired loading path is accurately applied,
stretch along second direction is controlled in real time using video extensometry measurements.

1.6.5 Experimental procedure

In the sequel, an original experimental procedure will be used in order to investigate the
mechanical response of materials submitted to successive non-proportional loadings. This section
provides technical details and the procedure is synopsized in Figure 1.10.

Figure 1.10: Experimental procedure and configuration characterizations.

The developed experimental protocol aims at applying a complex stretching history to a
material and for this purpose, various sample geometries are required. Therefore, the first pre-
stretched sample need to be unclamped then a smaller sample will be punched in, before being
submitted to a uniaxial tension test. According to Mullins softening experimental observations
(see Section 1.3.1), the residual stretch evolves with the softening during the first stretching.
When applying a biaxial pre-loading, the sample is softened non-homogeneously and buckling
occurs. Figure 1.11 (left) shows a 2.5-equibiaxially pre-stretched sample and one may notice
the buckling. In order to allow the sample recovery towards an equilibrium state, the zone of
interest is cut apart from useless sample parts as illustrated in Figure 1.11.

After a 24 hours rest to ensure the viscoelastic quasi-stabilization, the remaining sample
part is clamped to the upper testing machine grip and a camera is used to acquire marks
positions. Deformation from material virgin configuration to the current residual configuration
is characterize by the tensor F

res

. Then all four paint marks are removed and two new marks are
painted along the next loading direction defined by the unit vector d

1

. The two mark positions
are measured via a camera acquisition and small uniaxial tension dumbbell is punched along d

1

(see Figure 1.11 on the left). It is to emphasized that punching a small sample with four marks
cannot be considered seriously. Two marks position before cutting is the initial configuration
used for the last uniaxial tension test and relation between the measured stretch �

meas and the
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Figure 1.11: Uniaxial dumbbell samples cut from biaxially stretched specimens.

overall stretch � expressed form material virgin configuration reads

� = �

meas

p
d

1

.C

res

.d

1

. (1.24)

When transverse stretch F

22

is also needed, an additional step is required. After the small
dumbbell punching, left and right marks are painted. The current four marks configuration is
characterized by video and at the same time, sample strains undergone during cutting, �

cut

res

,
are computed only from two marks assuming material incompressibility and transverse isotropy.
It is to be noted that �

cut

res

is very small, few percents only, hence errors induced by the latter
assumptions are very limited. Finally, F

22

expressed form material virgin configuration is given
by

F

22

= F

meas

22

s
d

2

.C

res

.d

2

�

cut

res

(1.25)

with unit vector d

2

normal to d

1

.
After pre-loading, the sample thickness varies due to the residual stretches F

11 res

and F

22 res

.
Assuming material incompressibility, i.e. det(F

res

) = 1, all principal F

res

components are known.
Therefore, the Cauchy stress during the last loading can be expressed as

� =
F

S

=
F�

meas

S

0

F

33 res

(1.26)

with S

0

, the cross-section if sample was punched in a virgin material (i.e. considering initial
sheet thickness).

1.7 Conclusion

This chapter aimed at providing basis and motivations on objectives for the entire thesis
works. For this purpose, a literature review on the mechanical behavior of rubber-like material
submitted to cyclic loading conditions was given. By analyzing the existing works, it was no-
ticed that significant modeling issues still needed to be addressed. Therefore, an experimental
strategy was established in order to assess the required experimental data. The experimental
strategy leaded to develop original testing procedures and setup for characterizing the mechanical
behavior of rubber-like materials.

Several experimental parts were engineered and built within the thesis duration. Therefore,
this chapter also aimed at illustrating some key components to successfully test rubber-like ma-
terials and to acquire reliable experimental data. The strain measurements, the sample gripping,
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1.7. Conclusion

the uniaxial testing machine and the biaxial testing device were described. An uncommon test-
ing procedure that will be used in subsequent chapters was also introduced in order to provide
data processing details.

During the following chapters, the experimental strategy is applied and results are analyzed
in order to provide answers to modeling issues highlighted by the literature review.
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Chapter 2

Materials

Some parts of this chapter have been published and can be found in reference:

- Yannick Merckel, Mathias Brieu, Julie Diani, Daniel Berghezan, 2011. E↵ect
of material and mechanical parameters on the stress-softening of carbon-black
filled rubbers submitted to cyclic loadings, Proceedings of the 7 th European
Conference on Constitutive Models for Rubber, ECCMR 2011, 253-257.

Several carbon-black filled styrene-butadiene rubbers (SBRs) were studied during
the thesis. They are introduced and their compositions are given in this chapter.
The material preparation is described and its initial anisotropy is studied. Uniax-
ial tension experiments were performed. Firstly, volume changes are shown to be
significant upon monotonic stretching, but material incompressibility assumption
remains consistent when considering cyclic uniaxial loading. Secondly, monotonic
tension were used in order to characterize few basic mechanical properties accord-
ing to the material composition. Finally, cyclic tensions were applied to illustrate
basic observations of the Mullins softening and the cyclic softening.
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2.1. Introduction

2.1 Introduction

The mechanical behavior of rubber-like materials depends strongly on its microstructure. A
wide variety of filled rubbers are used in industrial and research fields. The literature review
in Chapter 1 highlights that the three main mechanical characteristics addressed during the
thesis, i.e. hyperelastic response, Mullins softening and cyclic softening, are strongly impacted
by the material composition and microstructure. Moreover, the relationship between the rubber
composition and the mechanical response is not clearly established and remains an ongoing issue.
In order to study that, several materials with various compositions were chosen. The material
strategy was to vary the filler amount and the crosslink density. It is clearly established in the
literature that the filler amount has a significant e↵ect on the material behavior (see the review
of Kohls and Beaucage (2002)) and also on the softening (see the review of Diani et al. (2009)).
To the contrary, it is known that the crosslink density modifies the material behavior (sti↵ness,
stretch at failure, for instance), but its e↵ect on the softening is yet undetermined.

For a better understanding of the mechanical behavior of the chosen materials, a basic ex-
perimental characterization is performed. The first experimental objective of this chapter is
to investigate the incompressibility commonly assumed for rubber-like materials. Actually, it
appears that many contributions report significant volume changes within filled rubbers upon
stretching. A recent review on the topic was proposed by Le Cam (2010). Moreover, vol-
ume changes evolution with the applied stretch is not clearly established and they are some
disagreements between the few published experimental results. Therefore, volume changes are
studied in order to validate or invalidate the incompressibility assumption for specific materials
and loading conditions considered. The second experimental objective is to investigate the hy-
perelastic stress-stretch response dependencies to the material compositions. For this purpose,
samples were submitted to monotonic uniaxial tension loadings. The material sti↵ness and the
stretch to failure, were studied. Finally, the third experimental objective is to illustrate few basic
features of the material softening when samples are submitted to cyclic loading conditions. De-
pendencies to material composition will be discussed in order to introduce some works developed
in subsequent chapters.

This chapter is organized as follow. In the next section all materials used in the sequel
are introduced and described. Then, the material incompressibility is studied and discussed in
Section 2.3. Section 2.4 addresses material stress-stretch responses under monotonic loadings.
Section 2.5 illustrates basic experimental observations regarding the stress-softening induced by
cyclic loadings. Finally, concluding remarks close the chapter.

2.2 Materials

2.2.1 Material composition

For this study, several carbon black filled vulcanized rubbers were manufactured by the
french manufacture of tires Michelin. The material labelled NR is a natural rubber, the others
are synthetic styrene-butadiene rubbers (SBR). The SBR gum is a random copolymer with a 15%
styrene molar fraction. NR gum density is 0.91 g/cm3 and SBR gum density 0.94 g/cm3. N347
carbon-black fillers were used, which morphology is characterized by the fineness of elementary
particles and by the aggregate structure. Fineness corresponds to the specific surface area of
fillers, which was found close to 90 m2/g by nitrogen absorption using the Brunner Emmet Teller
(BET) analysis. Aggregate structure characterizes the branching of aggregates, and is measured
at 120 ml/100g by dibutyl-phthalate absorption (DBP absorption). Fillers density is 1.8 g/cm3.
A classical crosslinking system based on sulfur and CBS is used. Sulfur and CBS densities are
2.05 and 1.3 g/cm3, respectively. For material labeled R the crosslinking reaction is activated
by Struktol ZEH and for the other materials by zinc oxide and stearic acid. Struktol ZEH, zinc
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oxide and stearic acid densities are 1.2, 5.7 and 0.85 g/cm3, respectively. A 6PPD antioxidant
with a 1.07 g/cm3 density is added. All material compositions are listed in Table 2.1.

Ingredient R A4 B4 C1 C2 C3 C4 C5 C6 D4 E4 NR
SBR 100 100 100 100 100 100 100 100 100 100 100 -
NR - - - - - - - - - - - 100
Carbon-black (N347) 40 40 40 - 5 30 40 50 60 40 40 40
Antioxidant (6PPD) 1.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9
Stearic acid - 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Zinc oxyde - 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Struktol ZEH 3.0 - - - - - - - - - - -
Accelerator (CBS) 1.5 4.7 2.3 1.6 1.6 1.6 1.6 1.6 1.6 1.2 1.0 1.6
Sulfur 1.5 4.7 2.3 1.6 1.6 1.6 1.6 1.6 1.6 1.2 1.0 1.6

Table 2.1: Material compositions in parts per hundred rubber (phr).

The material labeled R is the study’s main material, it will be used to give grounds for
experimental procedures and for modeling frameworks. Material R contains 40 phr of fillers
which corresponds to a volume fraction � = 0.16. The crosslink density N

c

was measured by
Michelin by swelling using the Flory-Rehner theory and is N

c

= 5.08⇥ 10�5mol/cm3.
Several comparable materials were defined in order to investigate the relation between ma-

terial composition and mechanical behavior. The material strategy was to vary the filler volume
fraction � and the crosslink density N

c

. From a reference material C4, materials C1, C2, C3,
C5 and C6 were obtained by varying the filler amount from 40 phr to 0, 5, 30, 50 and 60 phr,
resulting in 0, 0.13, 0.16, 0.19 and 0.23 volume fractions, respectively. Materials A4, B4, D4
and E4 contain the same amount of fillers than material C4 but their crosslink densities vary.
Figure 2.1 illustrates the material strategy. The lists of filler volume fractions and of crosslink
densities appear in Table 2.2.

Finally, the natural rubber named NR is similar to material C4 in term of filler amount and
crosslink density but the resulting stress-stretch response exhibiting a substantial crystallization
during stretching. It was only used when a very di↵erent behavior from SBR is wanted.

R A4 B4 C1 C2 C3 C4 C5 C6 D4 E4 NR
� 16.71 16.18 16.54 0.00 2.43 13.03 16.65 19.98 23.06 16.72 16.75 16.23
N

c

5.08 15.53 10.55 7.00 6.53 8.16 7.38 8.26 7.71 5.42 3.63 7.03

Table 2.2: Filler volume fraction � in % and crosslink density Nc in 10�5mol/cm3 for each
material.

2.2.2 Material preparation

Compounds were mixed in two steps. The first step was performed in an internal mixer
with a mixing chamber of 7000 ml. The starting temperature was 50°C. Elastomer, fillers,
antioxidant and activator were introduced at the beginning and the dump temperature close to
165°C was chosen as the main parameter to release the compound. In a second step, curing
agents, i.e. accelerators and sulfur, were added using a two-roll mill. Once mixed and still
uncured the material is calendered and transformed into sheets of 2.8 mm thickness (typically
180 mm wide and 1 m long). Next, plates of 150 ⇥ 150 ⇥ 2.8 mm3 are punched out of these
sheets. They are finally put into a mold of dimensions 150⇥150⇥2.5 mm3, where they are cured
at 150°C under a 100 Bar pressure. Significant material amounts were used during the study
and mechanical properties repeatability between subsequent batches were ensure by Michelin
company knowledge.
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Figure 2.1: Material strategy.

2.2.3 Material anisotropy

All materials are sheet shape manufactured with a 2.5 mm thickness. In-plane isotropy was
verified by testing in uniaxial tension samples punched in various directions. Material R stress-
stretch responses in two orthogonal directions are shown in Figure 2.2a and are quasi-perfectly
superimposed. Therefore, no sample punching direction has to be privileged.

In order to study the material anisotropy along the thickness direction, deviations from
transverse isotropy may be used. During a uniaxial tension test in direction 1, boundary con-
ditions �

22

= �

33

= 0 are given by the stress free faces. Therefore, the in-plan (2,3) anisotropy
may be characterized by comparing stretches F

22

and F

33

, with F

22

= F

33

being the particular
transverse isotropy case. Material R ratio F

22

/F

33

evolution with � is presented in Figure 2.2b.
As expected because of the manufacturing process using a two-roll mill and a final curing in a
mold, material anisotropy is observed along the sheet thickness direction.
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Figure 2.2: Material R initial anisotropy. (a) Comparison between uniaxial tension stress-
stretch responses along two orthogonal directions. (b) F
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evolution during
monotonic uniaxial tension test.
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2.3 Material incompressibility

Incompressibility is widely used as an assumption for testing and modeling the mechanical
behavior of rubber-like materials. Nevertheless, substantial volume changes have been reported
within filled rubbers when stretched (see for instance Jones and Yiengst (1941)). These Volume
changes are attributed to decohesion at the rubber-filler interface and to vacuole formation in
the rubber matrix (Jones and Yiengst, 1941; Ramier et al., 2007). A review on the topic has
been recently proposed by Le Cam (2010).

This section aims at investigating the significance of volume changes upon stretching within
studied materials. Macroscopic measurements of material volume changes will provide true
Cauchy stress-stretch responses, which will highlight the error generated by the incompressibility
assumption when processing experimental data or when modeling the mechanical behavior.
Volume changes may also lead to a better understanding of the physical mechanisms related to
the Mullins softening.

2.3.1 Volume changes within stretched filled rubbers

Few methods have been used to assess at a macroscopic scale the volume changes within
rubbers upon stretching. They have been firstly carried out using dilatometry measurements
(Holt and McPherson, 1936; Jones and Yiengst, 1941; Gee et al., 1950; Mullins and Tobin, 1957;
Shinomura and Takahashi, 1970; Kumar et al., 2007). Such a technique consists in immersing
samples in a liquid (often water) which volume change is measured when the rubber is stretched.
An alternative is to place the sample in a gas chamber and to deduce the volume changes from
gas pressure measurements (Chenal et al., 2007; Ramier et al., 2007). The dilatometer measure-
ments seem to be very accurate, nonetheless several minutes are required for each measurement in
order to reach the dilatometer equilibrium rendering impossible dynamic measurements. Using
dilatometry technique, Jones and Yiengst (1941) measured volume expansions in filled natural
rubbers when stretched. They showed that volume changes are due to vacuoles forming at the
rubber-particle interface. To the contrary unfilled natural rubbers exhibit very small volume
changes for similar stretching conditions (Gee et al., 1950). The di�culty with natural rubber
is that both vacuoles formation and crystallization contribute with opposite e↵ects to volume
change, rendering any interpretation delicate. Shinomura and Takahashi (1970) measured vol-
ume change in filled butyl rubber and filled SBR during stretching. They studied the e↵ect of
the type of fillers, the filler amount and the curing. They reported an increase of volume changes
with the amount of fillers, 0.07 and 0.25 volume expansions for � = 4 stretched samples with 20
phr and 50 phr fillers amounts, respectively. More importantly they noticed stretch thresholds
of approximately 2.4 and 1.6 below which volume changes were unnoticeable for 20 phr and 50
phr filled samples, respectively.

Later, with the increase of video analysis for the local stretch measurements in stretched
rubber-like materials, the video extensometry technique was extended to volume variation mea-
surements (G’Sell et al., 1992; Wu and Liechti, 2000; Layouni et al., 2003; Addiego et al., 2006;
Starkova and Aniskevich, 2010) as well as digital image correlation techniques (Le Cam et al.,
2008; Le Cam and Toussaint, 2009). Nevertheless, for all pre-cited contribution longitudinal
and transverse stretches are measured on one face of the samples only. Then, volume changes
are estimated assuming material transverse isotropy. It is noteworthy that results obtained by
video analysis coupled to the transverse isotropy assumption are in disagreement with the earlier
dilatometry measurements. For instance, Le Cam and Toussaint (2009) used such a method to
assess volume changes in a 34 phr carbon black filled SBR submitted to a cyclic uniaxial tension
test. They reported a 0.09 volume expansion for � = 3 stretched samples. The measured volume
evolution is merely linear with respect to the applied stretch and no significant di↵erences in vol-
ume changes are observed between the first cycle and subsequent cycles. However, according to
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Shinomura and Takahashi (1970), for a SBR with such an amount of fillers, a material stretched
up to � = 3 should experience quasi-incompressibility at moderate stretches and the volume
expansion should appear for stretching above a threshold depending on the amount of fillers.
Moreover, it was shown by Mullins and Tobin (1957) that volume changes are di↵erent between
a virgin material and a pre-stretched material. Therefore, the transverse isotropy assumption
used by the previous authors is questionable. Bear in mind that, according to the results shown
in Figure 2.2b, the transverse isotropy assumption was not validated for our materials. In some
experimental works reported in the literature, cross-section changes are assessed during uniaxial
tension tests by video analysis avoiding the transverse anisotropy assumption (Gloaguen and
Lefebvre, 2001; Parsons et al., 2004, 2005; De Almeida et al., 2008; Fang et al., 2009; Grytten
et al., 2009). For this purpose, stretches are measured on two orthogonal sample free faces using
two cameras or using a single camera and a right-angle optical prism. However, these contri-
butions mainly addressed the issue of determining the true stress during necking, hence do not
focus on volume changes.

2.3.2 Materials and experiments

Mechanical tests were performed on the uniaxial testing machine described in Section 1.6.3.
Thanks to the use of two cameras (see Figure 1.8), every principle stretch is measured. F

11

,
or equivalently �, denotes the stretch in the tensile direction and F

22

and F

33

are the stretches
along both transverse directions. The volume change is defined by V/V

0

= det(F ), with V the
current volume and V

0

the initial volume. Because 2.5 mm is large enough for a set of 4 paint
marks, normalized dumbbell samples with a cross section of 4 ⇥ 2.5 mm2 and a 30 mm length
were considered. All tests were run in displacement control at a constant crosshead speed of 10
mm/min. Monotonic loadings up to failure and cyclic loadings with a maximal stretch increasing
at each cycle with a step of �� = 1 were applied.

In this study, the reference material R is used to illustrate the loading path e↵ect. Moreover,
in order to investigate the volume change dependence to the amount of fillers, materials C2 to
C6 with a filler amount ranging from 5 to 60 phr were chosen.

2.3.3 Results

Volume changes measured during uniaxial monotonic loadings are illustrated in Figure 2.3a
for materials C2 to C6. First of all, in agreement with the experimental observations reported in
the literature, this figure evidences that volume changes induced by stretching may be very large
within a filled rubber. The results illustrate the strong impact of the filler amount on volume
changes. It appears that the 5 phr filled material may fairly be considered as incompressible,
and the volume expansion increases with the amount of fillers. Maximal volume expansions
are very significant for materials with large amount of fillers. For instance, V/V

0

⇡ 1.2 is
undergone by the material filled with 60 phr. One may also notice that the volume does not
expand at all until the material stretching reaches a threshold �

t

which depends on the filler
amount. The stretching threshold decreases with increasing the filler amount. The values of
�

t

are approximately equal to 2.5, 3, 3.5 and 4 for materials filled with 60, 50, 40 and 30 phr,
respectively. These observations agree with earlier dilatometry results reported by Shinomura
and Takahashi (1970).

To access the uniaxial Cauchy stress, the current cross-section S has to be measured while
stretching the sample. The relation between current and initial sample cross-sections S

0

is given
by S = F

22

F

33

S

0

. In order to lighten the experimental setup, incompressibility is conventionally
assumed and leads to S = �

�1

S

0

. Cauchy stress responses computed with and without the
incompressibility assumption are compared in Figure 2.3b for materials C2 to C6. As expected,
di↵erences occur over the threshold �

t

and become very significant at large stretches for materials
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with the larger amount of fillers.
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Figure 2.3: Materials with similar crosslink densities Nc ⇡ 7 ⇥ 10�5 mol/cm3 and various
amounts of carbon-black. (a) Uniaxial monotonic tension volume changes. (b)
E↵ect of incompressibility lost on material Cauchy stress-stretch response to a
uniaxial monotonic tension test.

Figure 2.4a shows the volume changes occurring within material R (40 phr) during a cyclic
loading with an increasing maximal stretch. During the first cycles, no significant deviations
form the V/V

0

monotonic path may be notice. For a larger cycle, when the stretch pass �

t

for
the first time, volume changes expand during the loading and retract during the unloading with
a noticeable hysteresis. For subsequent cycles, results put in light that no significant volume
changes occur as far as the previous maximum stretch is not reached. It may be noticed that after
a volume expansion, all re-loading curves seem to follow the same V/V

0

path. Then, when the
previous maximal stretch is passed, volume expands significantly with a large hysteresis between
loading and unloading. Figure 2.4a reveals that for a given maximum stretch, the cumulative
volume expansion experienced by the material during a cyclic loading is comparable to the
volume expansion measured during a monotonic loading. Cauchy stress comparison is shown in
Figure 2.4b. One may notice that the di↵erence between stresses estimates is noticeable when
the load exceeds the maximum stretch previously applied, but may fairly be neglected during
unloadings or re-loadings responses as far as stretching remains below the maximum stretch ever
applied.

2.3.4 Discussion

First, it is to notice that the results presented here are among the first obtained by video
measurement that reproduce the volume changes measured by dilatometry reported in the liter-
ature. Results show that for a filled rubber submitted to uniaxial tension, volume expands when
the rubber is stretched above a stretch threshold. Moreover, it was noticed that this stretch
threshold decreases with the increase of fillers and for very low filler amount, sample failure oc-
curs before noticing any volume expansion. Very recently, most of the materials studied in this
thesis were submitted to monotonic uniaxial tension and probed by synchrotron X-ray radiation
for small angle X-ray scattering (SAXS). Experiments and results are reported by Zhang et al.
(2012). The authors showed that cavities appear above a similar stretch threshold for our ma-
terials filled with 30, 40, 50 and 60 phr, and that no cavity appear for the 5 phr filled material.
Moreover, the volume fraction of voids extracted from SAXS measurements corroborates the
macroscopic volume changes.

46



2.3. Material incompressibility

1.0 2.0 3.0 4.0 5.0 6.0
�

1.00

1.01

1.02

1.03

1.04

1.05
V

/
V

0

Load
Unload

Cyclic
Monotonic

(a)

1.0 2.0 3.0 4.0 5.0 6.0
�

0.0

30.0

60.0

90.0

120.0

150.0

C
au

ch
y

st
re

ss
(M

P
a)

Incompressible
True

(b)

Figure 2.4: Material R. (a) Uniaxial tension volume changes (data were smoothed for a clearer
reading). (b) E↵ect of incompressibility lost on material Cauchy stress-stretch
response to a uniaxial tension test.

Under cyclic uniaxial loading conditions, the full strain history plays an important role
on the volume changes. Results put in light that for moderately to highly filled rubbers, the
volume expands when the rubber is stretched beyond the maximum stretch ever applied but
remains insignificant while the rubber is stretched below this maximum stretch. The latest
observations are supported by SAXS analysis (not yet published), but up to now are not clearly
established in the literature. Mullins and Tobin (1957) performed similar measurement by
dilalometry on natural filled rubbers but crystallization induces a significant volume contraction.
It is noteworthy that Le Cam and Toussaint (2009) submitted a 34 phr filled SBR to cyclic
uniaxial tension and do not reported such observations, neither the stretch threshold before
volume expansion. However, the latest authors measured stretches on one face of the samples
only, and then estimate volume changes by assuming material transverse isotropy. Processing
our own data with the same assumption for the material C3 filled with 30 phr leads to changes
very similar to those reported by Le Cam and Toussaint (2009). That supports the experimental
setup presented Section 1.6.3 with two cameras in front of two orthogonal sample free faces.

Figure 2.4 illustrates few similar features between the volume change and the Mullins soft-
ening. Firstly, they are both triggered when the material is stretched above the maximal stretch
ever applied. Then, they both require a minimum amount of fillers to occur and both e↵ects are
amplified by the amount of fillers. However, Figures 2.3 and 2.4 show that a stretch threshold
must be reached before volume changes while the Mullins softening is observed for stretches well
below those thresholds. Therefore, one cannot draw a direct link between the appearance of
cavities and the Mullins softening. Even if cavitation might contribute to the Mullins softening,
it could not be the main cause. Such an observation was already reported by Mullins and Tobin
(1958); Kraus et al. (1966).

In terms of filled rubbers stress-stretch responses, the generally accepted incompressibility
assumption introduce an overestimate of the Cauchy stress. Nonetheless, results show that under
cyclic loading conditions, no significant volume changes occur as long as the stretching remains
below the maximum stretch ever applied. Therefore, while assuming incompressibility seems
unrealistic upon the first stretch, it shows to be a fair assumption for subsequent stretching
below the maximum stretch ever applied (Figure 2.4b). In what follows, cyclic loadings are
mainly used, hence the Cauchy stress resulting from uniaxial tension will be computed within
incompressibility assumption and models will be proposed within an incompressible framework.
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Chapter 2. Materials

2.4 Material behaviors under monotonic loading conditions

This section aims at illustrating basic properties of the filled rubber mechanical behavior
according to the material composition.

2.4.1 Materials and Experiments

For this study, all materials detailed in Figure 2.1 are considered in order to highlight the
e↵ects of the filler amount and the croslinking density on the mechanical behavior. Uniaxial
monotonic tension tests up to failure are performed at a constant low crosshead speed of 10
mm/min. Because a dispersion is expected, the experiment was performed on seven virgin
samples for each material composition. According to the results discussed in Section 2.3, the
incompressibility assumption cannot be used to compute the Cauchy stress at large strain during
a monotonic uniaxial tensile test. Therefore, the resulting stress used Figure 2.5 to illustrate the
materials responses is the nominal stress defined by F/S

0

.
The e↵ect of the filler volume fraction on the stress-stretch response is shown in Figure 2.5a

by comparing materials with similar crosslink densities, N

c

⇡ 7 ⇥ 10�5 mol/cm3, and various
filler amounts from 0 to 60 phr. The last one is equivalent to a � = 0.23 filler volume fraction.
One may notice the strong impact of the filler amount on the material sti↵ness. On the contrary,
the stretch to failure appears to significantly increase when fillers are added in the compound,
but the main changes seem to occurred when the amount of fillers is moderate. Moreover, this
figure illustrates that a substantial amount of fillers is required within the material to show
the stress-stretch response upturn classically observed for filled rubber materials. The e↵ect of
the crosslink density is evidenced in Figure 2.5b by comparing materials with the same filler
amount of 40 phr, equivalently � ⇡ 0.16, and a crosslink density ranging from 3 to 15 ⇥ 10�5

mol/cm3. Results show a strong e↵ect of the crosslink density on both the stretch to failure
and the sti↵ness. It is noteworthy that a large increase of the crosslink density leads to a
catastrophic fall of the mechanical properties. The material with N

c

= 15⇥ 10�5 mol/cm3 can
barley withstand any mechanical solicitations due to a very low stretch to failure.
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Figure 2.5: Materials stress-stretch responses to monotonic uniaxial tensile tests. (a) E↵ect
of the amount of fillers for materials with various amounts of carbon-black and
similar crosslink densities Nc ⇡ 7 ⇥ 10�5 mol/cm3. (b) E↵ect of crosslink density
for materials with various crosslink densities and similar filler volume fractions
� ⇡ 0.16 (40 phr).

In next sections, dependencies between material compositions and mechanical properties are
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2.4. Material behaviors under monotonic loading conditions

closely studied. Two mechanical properties are considered, the sti↵ness and the stretch to failure.

2.4.2 Sti↵ness and reinforcement

The sti↵ness is characterized at small strain by the Young modulus, E, defined by

E =
d�

d�

����
�=0

. (2.1)

The latest is estimated by computing the tangent modulus of the Cauchy stress-stretch response
for stresses below 0.2 MPa. Such a limit has been chosen to preserve the linearity of the
mechanical behavior and to provide enough experimental data for computation. It is worth
pointing out that E is computed assuming the material incompressibility. At small strain, such
an assumption is fair and is supported by the results discussed in Section 2.3.

Figure 2.6a illustrates the e↵ect of the filler volume fraction on the modulus by comparing
materials with similar crosslink densities (N

c

⇡ 7 ⇥ 10�5 mol/cm3). The modulus is strongly
dependent on �. The reinforcement of rubber materials when compounded with fillers is com-
monly known (Mullins and Tobin, 1965; Medalia, 1978; Bergström and Boyce, 1999; Heinrich
et al., 2002; Kohls and Beaucage, 2002; Bokobza, 2004, 2007; Chazeau et al., 2010; Gherib et al.,
2010). In order to capture such a dependence, an early quantitative approach has been proposed
by Guth and Gold (1938),

E

E

0

= 1 + 2.5�
e↵

+ 14.1�2

e↵

(2.2)

with E

0

the Young modulus of the pure gum and �
e↵

the e↵ective volume fraction of fillers in
the rubber gum. In order to account for the occluded rubber trapped in branched structure of
the filler aggregates, Medalia (1970) proposed the following relationship based on the absorption
of DBP measurement

�
e↵

=
�
2

✓
1 +

1 + 0.02139.DBP
1.46

◆
(2.3)

where � is the actual volume fraction of filler reported in Table 2.2. The reinforcement computed
with Eqs. (2.2) and (2.3) is illustrated in Figure 2.6a by the dashed line. The experimental
results are accurately predicted for the lower volume fractions, up to � ⇡ 0.16, but the filler
reinforcement is clearly underestimated for higher volume fractions. Such an observation is
expected. According to Medalia (1970), Eq. (2.3) provided an accurate estimate of �

e↵

up to a
maximal volume fraction � = 0.15. For higher �, additional e↵ects due to interactions between
aggregates may induce an increase of the reinforcement. Therefore, Eqs. (2.2) and (2.3) are not
suitable anymore and a model with a higher level of analytical sophistication must be used.

The e↵ect of the crosslink density on the modulus is shown in Figure 2.6b by comparing
materials with similar amount of fillers (40 phr). The modulus, E, increases with N

c

. Previous
studies have reported a similar observation (Smith, 1977; Diani et al., 2008; Dijkhuis et al.,
2009; Fukahori, 2010). However, it seems that an analytical relation for such a dependence is
not clearly established. According to the statistical theory of rubber elasticity (Treloar, 1973),
the elastic modulus of an unfilled rubber should be proportional to the number of bonds of
the chain. The latest being himself proportional to the crosslink density. Therefore, when
comparing materials with the same amount of fillers, one may expect E / N

c

. However, such a
linear relation between E and N

c

is not observed in Figure 2.6b.
In the next section, the e↵ects of the material composition on the stretch to failure are

discussed.

2.4.3 Stretch to failure

The e↵ect of the filler volume fraction on the stretch to failure, �

fail

, is shown in Figure
2.7a by comparing materials with similar N

c

. Results put in light that the stretch to failure
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Figure 2.6: Evolution of the Young modulus, E, according to the material composition. (a) De-
pendence to the filler volume fraction for Nc ⇡ 7⇥10�5 mol/cm3. (b) Dependence
to the crosslink density for � ⇡ 0.16.

exhibits an optimum according to �. For low amounts of fillers, �

fail

increases with the increase
of fillers. Such a phenomenon has been observed by Hamed (1994); Zhao and Ghebremeskel
(2001); Gauthier et al. (2005). The failure of a rubber material may be related to cracks growth
mechanisms. The failure occurs when a critical threshold condition, still not clearly identified,
is reached. The presence of fillers within the rubber gum acts as obstacles and stops or reduces
the crack growths. Therefore, they delay the threshold of failure for the material. However, this
phenomenon seems to be limited to the lower value of �. One may notice in Figure 2.7a that the
stretch to failure appears to pass through a maximum and then, for � > 0.12, decreases with the
increase of �. Similar observations have been reported by Krauss (1971); Bokobza (2007). For
significant filler volume fractions, the carbon black filler aggregates may agglomerate into large
clusters. They provide defects from which some cracks can more easily initiate and propagate
under stretching, leading to the material failure (Zhao and Ghebremeskel, 2001). Let us note
that a comparable observation is reported by Auer et al. (1957) for works addressing the fatigue
of rubbers under cyclic loading conditions. It appears that the resistance to crack growth is
maximal for an optimal amount of fillers.

Figure 2.7b illustrates the dependence of the stretch to failure with the crosslink density.
Results show that the stretch to failure is strongly impacted by N

c

. By increasing the crosslink
density, one significantly decreases �

fail

. This observation is in good agreement with several
results reported in the literature (Bueche, 1959; Smith and Magnusson, 1961; Fedors and Landel,
1966; Smith, 1977; Ortega et al., 2008; Dijkhuis et al., 2009; Wang et al., 2009). However, the
relationships between N

c

et �

fail

is not clearly established. For instance, Smith and Magnusson
(1961) proposed a quantitative proportional relation of the form �

fail

/ N

�1

c

, while adding that
in some cases, the exponent might be less than unity. Bueche and Halpin (1964) proposed the
proportional relation �

fail

/ N

�1/2

c

. The latest is also observed by Smith (1967). It is noteworthy
that such a relation is supported by the statistical theory of rubber elasticity according to which
the chain extensibility limit is proportional to the square root of the number of links in the chain
(Treloar, 1975). The dashed line in Figure 2.7b shows the approximate of the �

fail

dependence
to N

c

according to the proportional relation �

fail

/ N

�1/2

c

. It can be notice that such a relation
provides a very good fit of the �

fail

values over the whole studied range of crosslink densities.
Previously, it was noticed that the failure under monotonic loadings and the fatigue crack

growth under cyclic loading conditions undergo a comparable dependence to the amount of fillers.

50



2.5. Material behaviors under cyclic loading conditions

0.00 0.05 0.10 0.15 0.20 0.25
�

1.0

3.0

5.0

7.0

9.0
�

f
a
i
l

(a)

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
Nc

1.0

3.0

5.0

7.0

9.0

�

f
a
i
l

(b)

Figure 2.7: Evolution of the stretch to failure according to the material composition. (a) De-
pendence to the filler volume fraction for Nc ⇡ 7⇥10�5 mol/cm3. (b) Dependence
to the crosslink density for � ⇡ 0.16.

The strain energy release rate or tearing energy, G, proposed by Lake and Thomas (1967) is
usually used in order to study cracks propagations within rubber-like materials submitted to
cyclic loading conditions. It is established that G is substantially dependent to the crosslink
density and its threshold value, G

0

, below which the crack does not grow, may read

G

0

= KM

1/2

c

(2.4)

with K a parameter that depends on the bond rupture energy and M

c

the molar mass between
crosslinks (Lake and Thomas, 1967; Smith, 1977; Gent et al., 1994; Lake, 1995; Tsunoda et al.,
2000). According to Eq. (2.4), the relationship with the crosslink density is of the form G

0

/
N

�1/2

c

. Therefore, the results shown Figure 2.7 appears to support a significant correlation
between the fatigue crack growth and the stretch to failure.

2.5 Material behaviors under cyclic loading conditions

This thesis addresses the issue of material mechanical behavior changes under cyclic loading
conditions and in the following, only cyclic tests are considered. Hence, this section aims at
illustrating basic material response features under cyclic loadings. It is to be stressed that the
current section is restricted to basic experimental observations and does not attempt to produce
original results. Its purpose is to introduce and to illustrate dependencies between material
compositions and material behaviors during cyclic loading conditions.

All materials detailed in Figure 2.1 are considered as well as the natural rubber material
labeled NR in Section 2.2.1. The experimental setup is similar to the one used in the previous
section. The Cauchy stress, �, is computed assuming the material incompressibility. Section
2.5.1 aims at highlighting the Mullins softening and Section 2.5.2 the cyclic softening.

2.5.1 Basic experimental observations of the Mullins softening

In this section, a cyclic loading path is considered in order to highlight the Mullins softening.
Therefore, except when mentioned, samples were submitted to cyclic loadings with an increasing
maximal stretch of � log(�) = 0.1 at each cycle until failure. The minimum of cycles was set to
a null force. All tests were run at a constant crosshead speed of 10 mm/min.
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Pure gum

According to the literature reviewed in Chapter 1, until now, a Mullins softening has never
been reported for unfilled non-crystallizing rubbers. In this section, this particular aspect is
investigated. The pure gum material (0 phr of carbon black fillers) stress-stretch response to a
cyclic loading is shown in Figure 2.8a. One may notice that a small hysteresis appears between
loading and unloading curves as well as a small residual stretch increasing with the maximal
stretch applied. However, these changes are strongly a↵ected by the material viscoelasticity
(Diani et al., 2006b). In order to avoid such e↵ects, a first cycle is performed with a 2.5 maximal
stretch, and the sample is unclamped 24 hours in order to allow a viscoelastic recovery. Then,
the sample is submitted to a second cycle up to � = 2.5. Results shown in Figure 2.8b clearly
illustrates that both loading curves are quasi-perfectly superimposed. Therefore, no Mullins
softening has occurred during the first cycle.
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Figure 2.8: Pure SBR gum submitted to a cyclic loading. (a) Cycles with an increasing maximal
stretch. (b) Two cycles at a same maximal stretch with a 24 hours recovery at null
force in between.

Dependencies to filler amount

In the previous section it was shown that an unfilled SBR material behavior does not change
significantly during a cyclic loading. The influence of fillers on the material stretch-stress cyclic
response is now investigated. For this purpose, two SBR materials filled with 30 and 60 phr
are submitted to a cyclic loading. Stress-stretch responses are shown in Figure 2.9a and 2.9b,
respectively. Results highlight that the amount of fillers has a strong impact on the Mullins
softening. Hysteresis between loading and unloading curves significantly increases with the filler
amount as well as the residual stretch. The dependence of the Mullins softening to the amount
of fillers is well-known and has already been reported by Mullins and Tobin (1957); Klüppel and
Schramm (2000); Dorfmann and Ogden (2004); Luo et al. (2004) among others.

It is noteworthy that the Mullins softening dependence to the crosslink density is not as
obvious as its dependence to the filler amount. Moreover, it cannot be extrapolate from material
stress-stretch responses observation. A procedure, unavailable in the literature, is proposed in
Chapter 3.
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Figure 2.9: Stress-stretch response of filled SBR submitted to a cyclic loading with an increas-
ing maximal stretch. Materials filled with (a) 30 phr and (b) 60 phr of carbon
black (Nc ⇡ 7⇥ 10�5 mol/cm3).

Residual stretch

In order to easily compare behavior changes occurring for various materials, residual stretch
evolution with the maximal applied stretch may be used. Such a feature is usually associated
with the Mullins softening (as a matter of fact, no contribution proposing otherwise has been
found). Therefore, samples were submitted to cyclic loadings and the resulting residual stretch,
�

res

, was monitored at the end of each unloading.
Figure 2.10a shows the dependencies of �

res

to the filler amount by comparing material with
similar crosslink densities, N

c

⇡ 7⇥ 10�5 mol/cm3, and various filler amounts from 0 to 60 phr.
One may notice the strong impact of the filler amount on the residual stretch. �

res

increases
with the increase of the filler amount. This observation was already reported by Dorfmann and
Ogden (2004). It is worth noticing that material C1 with 0 phr of carbon black (pure gum) shows
a noticeable residual stretch increase, whereas, it was highlighted in Figure 2.8 that a pure gum
material does not undergo any Mullins softening. The �

res

induced by the cyclic loading entirely
vanished after a 24 hour recovery, evidencing its viscoelastic nature.

The dependence of the residual stretch to the crosslink density is shown in Figure 2.10b
by comparing material containing the same amount of fillers, 40 phr (� ⇡ 0.16), and di↵erent
crosslink densities from 3.65 to 10.55 ⇥10�5 mol/cm3. Figure 2.10b shows a minor e↵ect of N

c

compared to the e↵ect of the filler amount. It can be noticed that the e↵ect of N

c

is less obvious
than the e↵ect of the filler amount. For moderate maximal stretches (�

max

< 3), it appears that
for the high crosslink densities (N

c

> 7) the residual stretch does not depend of N

c

, but for low
crosslink densities, the residual stretch increases when N

c

decreases.

E↵ect of crystallization

This thesis does not address the issue of crystallization phenomenon occurring within natural
rubber upon stretching. Nevertheless, such a material labelled NR will be used in order to
extend the validity of some experimental procedures and some modeling aspects proposed in
the following chapters. Therefore, in order to emphasize significance of the crystallization e↵ect
influence on the material behavior, ”similar” SBR and NR materials (i.e. same amount of filler
and same crosslink density) are compared under identical cyclic loading conditions. Figure 2.11a
and 2.11b illustrate the material stress-stretch responses of the SBR and the NR, respectively.
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Figure 2.10: Residual stretch evolution during cyclic uniaxial loadings with an increasing max-
imal stretch. (a) E↵ect of the amount of fillers for materials with various amounts
of carbon-blacks and similar crosslink densities Nc ⇡ 7⇥10�5 mol/cm3. (b) E↵ect
of the crosslink density for materials with various crosslink densities and similar
filler volume fractions � ⇡ 0.16 (40 phr).

One may notice that in the case of natural rubber, certain Mullins features di↵er significantly
to those observed for the SBR materials. First of all, when the natural rubber is stretched
beyond the maximum stretch previously applied, the stress-stretch response does not return on
the monotonous response. Therefore, there is no obvious ”return point” on re-loading path when
the previous maximal stretch is reached. A second important di↵erence is a significant hysteresis
between loading and unloading curves even when the material has been already softened. Such
a feature is related to crystallization induced by stretching (Treloar, 1941). The crystallization
being una↵ected by the Mullins softening, it still occurs after the first cycle (Trabelsi et al.,
2003b).
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Figure 2.11: Stress-stretch responses to a cyclic loading. The loading appears in the inset
graph. (a) SBR gum and (b) NR gum filled with 40 phr of carbon-blacks and
Nc ⇡ 7⇥ 10�5 mol/cm3.
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2.5.2 Basic experimental observations of the cyclic softening

The Mullins softening occurring during the first cycle was previously discussed. This section
is addressing the cyclic softening evolving during subsequent cycles. For this purpose, cyclic
loadings with a thousand cycles from zero stress up to a maximum stretch of �

max

= 3 were
performed. In order to reduce test duration, all experiments were run at a constant crosshead
speed of 180 mm/min. The typical stress-stretch response of filled SBR materials under such a
loading condition was illustrated and discussed in Section 1.4.1 for the thesis reference material
R.

Evolution of the maximal stress

To characterize the softening during cyclic loadings, a method commonly used in the liter-
ature, is to follow the decrease of the maximal stress, �

max

, measured at the peak stretch with
respect to the number of cycles (Shen et al., 2001; Gentot et al., 2004; Mars and Fatemi, 2004b;
Asare et al., 2009; Berrehili et al., 2010; Brieu et al., 2010; Yan et al., 2010). To make easier the
comparison between materials, the maximal stress value at cycle N may be normalized by the
maximal stress at the first cycle. Figure 2.12 shows the evolution of the normalized maximal
stress with the number of cycles for every material. One may notice that plots become linear
with respect to the logarithm of the number of cycles after a relatively low number of cycles. A
similar trend has been reported by Gentot et al. (2004); Mars and Fatemi (2004b); Brieu et al.
(2010).

Figure 2.12a presents the change of the normalized maximal stress for materials with similar
crosslink densities, N

c

⇡ 7 ⇥ 10�5 mol/cm3, and di↵erent amounts of fillers. This figure shows
a significant impact of the amount of fillers on the stress-softening. Adding fillers significantly
increase the cyclic softening. Figure 2.12b shows the e↵ect of the crosslink densities by comparing
materials with similar filler amount, 40 phr, and di↵erent crosslink densities. It appears that
the crosslink density has a negligible influence on the maximal stress evolution.
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Figure 2.12: Evolution of the normalized maximal stress with respect to the number of cy-
cles N . (a) Materials with similar crosslink densities Nc ⇡ 7 ⇥ 10�5 mol/cm3

and varoius amounts of fillers. (b) 40 phr filled SBRs characterized by di↵erent
crosslink densities.
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Evolution of the residual stretch

As the cyclic softening evolves, the residual stretch increases with the number of cycles.
Therefore, the residual stretch may, as well as the maximal stress, be used to characterize the
cyclic softening. The residual stretch measured at the end of the cycle N can also be normalized
by the residual stretch at the first cycle end.

Figure 2.13a presents the normalized residual stretch evolution with respect to the number
of cycles for materials with similar N

c

and various amount of fillers. One may notice that
normalized residual stretch increases faster with the increase of filler amount. Therefore, such
results are consistent with those obtained by using the maximal stress (see Figure 2.12a). Figure
2.13b shows the evolution of the normalized residual stretch with respect to the number of cycles
for material filled with 40 phr of carbon black and di↵erent crosslink densities. It appears that
the normalized residual stretch increases when the crosslink density decreases for N

c

> 7⇥ 10�5

mol/cm3 only. This quantity seems insensitive to N

c

for higher values of N

c

. One may notice
that the later result does not agree with the previous observation obtained by using the maximal
stress and illustrated in Figure 2.12b.

As a consequence, characterizing mechanical behavior changes during cyclic loadings using
the maximal stress evolution is not satisfying. Therefore, in order to get a more accurate and
reliable representation of the material softening, an original characterization of the mechanical
behavior evolution during cyclic loadings will be proposed in Chapter 6.
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Figure 2.13: Evolution of the residual stretch with respect to the number of cycles N . (a)
materials with similar crosslink densities Nc ⇡ 7 ⇥ 10�5 mol/cm3 and di↵erent
amounts of fillers. (b) 40 phr filled SBRs characterized by di↵erent crosslink
densities.

2.6 Conclusion

This chapter aimed at introducing all materials used during the thesis work. At first, ma-
terial compositions were given and manufacturing process was detailed. Various materials were
compounded in order to assess the e↵ect of two microstructural parameters, the filler volume
fraction and the crosslink density. Then, material mechanical behaviors were characterized using
uniaxial tension tests.

The first characterization aimed at investigating the incompressibility assumption commonly
done for rubber-like materials. Volume changes are shown to be significant upon monotonic
stretching, but material incompressibility assumption remains consistent when considering cyclic
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loading conditions. Therefore, in what follows, the Cauchy stress resulting from cyclic uniax-
ial tension will be computed within incompressibility assumption and models will be proposed
within an incompressible framework. As a side issue, this investigation highlights that stretches
measurement on two orthogonal sample free faces is necessary to acquire volume changes.
Lighten the experimental setup by measuring stretches on one sample face and estimate vol-
ume changes by assuming material transverse isotropy leads to erroneous results.

In order to link the material compositions to basic mechanical properties, samples were
submitted to monotonic uniaxial tension tests up to failure. Results showed that the material
sti↵ness increases with the increase of the filler amount and of the crosslink density. The stretch
to failure increases with the crosslink density decrease and is barely a↵ected by the filler amount.

The material softening when samples are submitted to cyclic loading conditions was studied.
Regarding the Mullins softening, results showed that a pure SBR gum does not undergo any
stress-softening after a pre-loading cycle. To the contrary, Mullins softening was observed for
filled SBR. The ”softening intensity” increased significantly with the filler amount. Regarding the
cyclic softening, the maximal stress decrease and the residual stretch increase with the number of
cycles were used to characterize the softening evolution. Results showed a significant influence
of the filler amount on the softening. The e↵ect of the crosslink density remained unclear.
Therefore, validity of the softening parameter commonly used in the literature is questionable
and a more reliable softening characterization will be proposed in Chapter 6.

57



58



Chapter 3

Mullins softening characterization

Most of this chapter has been published and can be found in references:

- Yannick Merckel, Julie Diani, Mathias Brieu, Pierre Gilormini, Julien Caillard,
2011. Characterization of the Mullins e↵ect of filled rubbers, Rubber Chemistry
and Technology, 84(3), 402-414.

- Yannick Merckel, Julie Diani, Mathias Brieu, Pierre Gilormini, Julien Cail-
lard, 2011. E↵ect of the microstructure parameters on the Mullins softening in
carbon-black filled SBRs, Journal of Applied Polymer, 123(2), 1153-1161.

Several carbon-black filled styrene-butadiene rubbers showed di↵erent sensitivities
to the Mullins softening when submitted to cyclic uniaxial tension. In order to
quantify this softening, a damage parameter is introduced. It is defined by a classic
damage approach and it can be estimated by either the strain amplification factor
method or the tangent modulus at zero stress. The proposed parameter is used
to study the e↵ect of the crosslink density and of the filler amount on the Mullins
softening. The latter is shown to remain una↵ected by a change of crosslink density
and to increase with an increase of filler amount. The damage parameter exhibits
linear dependencies to the maximum Hencky strain applied and to the filler volume
fraction. Finally, the damage parameter provides a quantitative analysis of the
Mullins softening and a quantitative analysis of its physical understanding.
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3.1. Introduction

3.1 Introduction

Adding fillers in a non-crystallizing rubber changes its mechanical behavior in many ways
(Bergström, 1999). The fillers are understood to act as reinforcements at a continuum scale,
which explains the sti↵ening e↵ect (Kohls and Beaucage, 2002). At a molecular level, their
influence is still debated, but it is clear that they introduce a local evolution of the strain state
when the material is first stretched, which results in the development of the Mullins softening
(Mullins, 1969; Diani et al., 2009). According to Chapter 1, the literature reports a large amount
of experimental evidence of the phenomenon. Several mechanical modelings emerged during
the past three decades in order to reproduce the stress-strain responses of rubbers exhibiting
Mullins softening (Simo, 1987; Klüppel and Schramm, 2000; Marckmann et al., 2002; Dorfmann
and Ogden, 2004). Nonetheless, these contributions lack to define an objective quantitative
parameter that would allow the comparison of one material to others. Such a parameter would
also permit to study the influence of the material composition on the Mullins softening (see
Section 2.5.1 for some examples). The aim of the present chapter is to propose such an objective
parameter.

Mullins and Tobin (1965) introduced the concept of strain amplification in filled rubbers in
order to account for the reinforcement at large strains of an elastomer when filler particles and
particle clusters are included into the gum. The fillers and the gum are described as hard and
soft domains, respectively. The hard domains are assumed to remain undeformed, therefore the
soft ones undergo a larger strain than the average strain applied to the material. The strain
in the soft regions is then the applied strain amplified by a factor which is increasing with the
increase of filler volume fraction. This strain amplification concept has been widely used to
account for the filler reinforcement within the context of hyperelasticity (Mullins and Tobin,
1965; Govindjee and Simo, 1991; Bergström and Boyce, 1999; Dargazany and Itskov, 2009).
Later, the strain amplification factor was extended to the case of hyperelasticity with Mullins
softening, using an early idea suggested by Mullins and Tobin (1957), where the amount of hard
phase depends on the strain history. The Mullins softening is then understood as an irreversible
breakdown of filler-clusters, which results in a decrease of the ”active” volume fraction of fillers.
This physical interpretation of the Mullins softening was used in a number of contributions
(Johnson and Beatty, 1993; Klüppel and Schramm, 2000; Luo et al., 2004; Qi and Boyce, 2004;
Meissner and Matějka, 2006, 2008), where an amplification factor, decreasing with the maximum
applied strain, is defined.

In this chapter, we will extend and apply the amplification factor concept in order to propose
a damage parameter that quantifies the e↵ect of the microstructure on the Mullins softening. The
damage parameter will be proved to provide results that can be corroborated by the study of the
evolution of the Young’s modulus at small strain. Several carbon-black filled styrene butadiene
rubbers characterized by their crosslink densities and their carbon-black volume fractions were
submitted to cyclic uniaxial tension tests. The introduced damage parameter was estimated
for each material and showed a linear dependence on the maximum strain applied. This simple
dependence allows a direct comparison of the parameter for various materials.

The chapter is ordered as follows. The next section presents the material strategy and the
mechanical tests that were conducted. Then, in Section 3.3 the basic idea and the method
to estimate the Mullins softening are exposed. Results are reported and analyzed in Section
3.4. Finally, the reinforcing part of the strain amplification factor is discussed and concluding
remarks close the chapter.
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Chapter 3. Mullins softening characterization

3.2 Materials and Experiments

For this study, various carbon-black filled SBR, described in Section 2.2.1, were considered.
Material R was used to illustrate the experimental procedures. In order to identify the e↵ect
of the material composition on the Mullins softening, the material strategy was to vary the
amount of fillers and the crosslink density N

c

. According to Figure 2.1, from the reference
material C4, materials C3, C5, and C6 were obtained by changing the filler amount from 40 phr
to 30, 50, and 60 phr, respectively. Materials B4, D4, and E4 contain the same amount of fillers
than material C4 but their crosslink densities vary. Resulting fillers volume fractions, �, and
crosslink densities, N

c

, were given in Table 2.2.
Mechanical tests were performed on the uniaxial testing machine described Section 1.6.3.

Except when mentioned, tests were run in displacement control at a constant crosshead speed
of 18 mm/min. Samples were submitted to cyclic loading up to failure. At each cycle, the
maximum strain was increased with a step of �h = � log(�) = 0.1 (� being the sample uniaxial
stretch), the minimum of the cycles was set to a null force. Figure 3.1 illustrates the stress-strain
response of material R during the cyclic uniaxial tension test. As expected for filled rubbers,
the material shows a substantial stress softening when first loaded to an amount of strain never
applied before. The materials evidence a clear Mullins softening.
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Figure 3.1: Material R stress-strain response to a uniaxial tensile cyclic test with an increasing
maximum strain at each cycle.

The interest of such a loading as used in Figure 3.1 stands mainly in its simplicity. But the
resulting Mullins softening is di�cult to quantify and, worse, its quantitative comparison from
one material to another is almost impossible without processing the data.

3.3 Characterization of the Mullins softening

3.3.1 Basic idea

The e↵ects of adding fillers to a non-crystallizing rubber gum is first to increase its sti↵ness
and second to introduce some stress-softening when first loaded due to the Mullins e↵ect. One
way to account for both e↵ects is to compare the mechanical behavior of the actual material to
the mechanical behaviors of the pure gum and of a virtual composite of pure gum with fillers
that does not undergo any softening. This virtual composite is referenced as virgin material, and
the mechanical behavior of the actual composite results from the softening of the virgin material.
Many experimental contributions showed that, in uniaxial tension, the Mullins softening depends
mainly on the maximum strain ever applied to the material. Figure 3.2 gives a schematic
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3.3. Characterization of the Mullins softening

representation of the three mechanical behaviors (gun, virgin, composite) and how they relate
to each other. Our goal is to compare the mechanical behaviors of carbon-black filled rubbers
according to the maximum strain undergone and their compositions (filler volume fraction and
crosslink density).

Figure 3.2: Schematic representation of the stress-strain response of a filled rubber undergoing
Mullins softening (comp) in comparison with the idealistic behaviors of a filled
rubber without Mullins softening (virgin) and of the same rubber without fillers
(gum). On the right: magnified representation of the behaviors near the origin,
characterized by the initial tangent modulus.

At large strain, the reinforcing e↵ect of fillers may be accounted for by using the Mullins and
Tobin (1965) strain amplification factor concept, according to which the mechanical response of
the filled gum stretched to � is similar to the mechanical response of the pure gum stretched
to 1 + X(� � 1). Here, we extend the strain amplification factor concept to the Hencky strain
measurement, h = log(�). The strain experienced by the gum is assumed as being the strain in
the material virgin of any load magnified by a strain amplification factor X:

h

gum = X.h

virgin

. (3.1)

Since it is a reinforcing factor, X > 1. The parameter X is known to depend mainly on the
volume fraction of fillers �. It is commonly assumed that X = 1 when � = 0, which asserts that
the virgin material and the gum coincide when no filler is added. Adopting the model proposed
by Klüppel and Schramm (2000) based on a physical understanding of the Mullins softening
by an irreversible breakdown of filler clusters and chain desorption at the filler-gum interface,
the strain amplification factor is assumed to be altered by the maximum strain applied. These
authors defined the variable X as dependent on the maximum strain ever applied, X(hcomp

max

).
The problem with such a definition of X is that it is di�cult to isolate the softening e↵ect
from the reinforcing e↵ect. For this reason, we introduce a damage parameter D, depending
on the maximum strain and on the material parameters, acting as a penalization of the strain
amplification in the composite material due to the Mullins softening. This is expressed by the
relation

h

virgin = (1�D)hcomp

, (3.2)

the parameter D characterizes the Mullins softening intensity.
At small strain, the mechanical behavior resulting from a uniaxial tensile test is characterized

by the Young modulus E. The stress and strain measurements used in this study are the Cauchy
stress with incompressibility assumption � = F�/S

0

(F and S

0

being the force and the initial
cross-sectional area) and the Hencky strain h = ln(�), respectively. The modulus is defined by

� = E.h. (3.3)

A quantitative account of the sti↵ening e↵ect of rigid fillers in a rubber gum was first proposed by
Smallwood (1944) who extended the theoretical results obtained by Einstein (1911) regarding
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Chapter 3. Mullins softening characterization

the hydrodynamic e↵ect resulting from the addition of rigid particles in a fluid. The tensile
modulus of the filled gum is related to the tensile modulus of the pure gum through a factor X

depending on the amount of fillers,

E

virgin = X.E

gum

. (3.4)

One notes that within the small strain assumption, Eqs. (3.1) and (3.4) are strictly equivalent.
A short review of the various expressions of X applying in Eq. (3.4) may be found in Bergström
(1999).

The consequence of the Mullins softening on the Young modulus of filled rubbers was gen-
erally appraised from a qualitative point of view (Mullins, 1969). In order to precisely compare
the softening at large strain and at small strain, we introduce the damage variable D in the
very same way as previously done for the strain amplification factor Eq. (3.2). This damage
parameter depends on the maximum strain already applied to the material and on the mate-
rial parameters. It provides a link between the actual material sti↵ness E

comp and the virgin
composite sti↵ness E

virgin:
E

comp = (1�D)Evirgin

. (3.5)

At this point, Eqs. (3.2) and (3.5) define a similar parameter D, uniaxial tensile tests are
now used to determine the changes of D according to the maximum strain applied, the applied
strain rate or the material compositions (amount of fillers and crosslink density). Details of the
procedure determining D are provided in what follows.

3.3.2 Loading versus unloading stress-strain responses

During a cyclic loading-unloading-reloading, the viscoelastic e↵ect of the material is more
pronounced on the reloading path than on the unloading path, since most of the viscoelastic
stress contribution is evacuated at the beginning of the unloading observed in Figure 3.3a.
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Figure 3.3: (a) Material R stress-strain response during a cyclic test with a 30 min relaxation
step every 50% strain step. (b) Material R stress-strain response at the first few
cycles of the cyclic tensile test. Experimental data have been smoothed by a moving
window average for a clearer reading.

The viscoelastic e↵ect is even more critical at small strain, when the initial modulus is
estimated. Actually, when changing from the unloading to the loading, the loading strain rate
changes from negative to positive. The large change in the strain rate introduces a viscoelastic
contribution to the stress that a↵ects the measurement of the tensile modulus. Figure 3.3b shows
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3.3. Characterization of the Mullins softening

the stress-strain response of material R during the first few cycles. One recognizes a substantial
increase in the modulus at the very beginning of reloading. This increase does not appear at
the end of the unloading, since the strain rate is stabilized when the stress goes to zero. In
order to avoid the possible disturbance introduced by viscoelasticity, we adopt the unloading
stress-strain responses as the material softened responses in the next sections.

3.3.3 Estimate of the softening parameter D

We start with explaining how values of the parameter D defined in large strain by Eq. (3.2)
are extracted from the experimental data consisting of the unloading stress-strain responses
measured during cyclic uniaxial tension. These stress-strain responses are convenient because
fast to obtained during a cyclic test, but they do not picture the stress-strain responses that would
be measured by a user ignorant of the loading history. Actually, one may notice a substantial
residual stretch, �

res

, at the end of each unloading, which increases with the maximum strain
applied. This residual stretch lowers the actual strain undergone by the material. Therefore, in
order to reach the stress-strain response (�comp

, �), that a user unaware of the loading history
would measure experimentally, we need to change the data (�meas

, �) into (�comp

, �) using the
relation:

�

comp =
�

meas

�

res

. (3.6)

Let us note that when using the Hencky strain, the latter relation transforms into h

comp =
h

meas � h

res

. Therefore, accounting for the residual stretch simplifies into a mere horizontal
shift of the material unloading responses. Figure 3.4a illustrates the stress-strain responses of
material R that are finally used after the residual stretch horizontal shift has been applied on
the data reported in Figure 3.1.

According to Eq. (3.2), each softened stress-strain response is linked to the same virtual
virgin material behavior through the constant parameter D(hcomp

max

). The stress-strain response
of the virgin material defines a master curve that is obtained by superimposing the unloading
stress-strain responses thanks to Eq. (3.2). When the material is virgin h

comp

max

= 0 and D = 0;
for any other value of h

comp

max

, the values of D are computed by a superimposition fit using a
least squares minimization. Figure 3.4b shows the results of the superimposition method on the
stress-strain responses of material R (Figure 3.4a). First, one notes that good superimposition is
obtained, except near the maximum strain of the unloading responses. The observed discrepancy
is partly due to the large relaxation experienced at the beginning of the unloadings by materials
undergoing some Mullins softening. This discrepancy could be reduced by using the second cycle
unloading responses. The observed superimposition justifies the use of Eq. (3.2) and supports
the concept of a virtual virgin material behavior. Second, the inset figure in Figure 3.4b presents
the values of D versus h

comp

max

resulting from the fitting procedure. These values increase with
the maximum strain applied, and they show a linear trend that favors the use of the Hencky
strain as the strain measurement. This linear trend is in good agreement with previous results
(Klüppel and Schramm, 2000) that show an exponential evolution of D versus the maximum
stretch.

Another way to estimate D is to use the tangent modulus. The Young modulus defined by
Eq. (3.3) is estimated by calculating the initial tangent modulus,

E

comp =
d�

dh

comp

����
�=0

. (3.7)

Values of this modulus are obtained from the unloading stress-strain responses by determining
the slopes of the linear approximations as it is shown in Figure 3.5a for material R. The stress
upper limit was chosen to 0.2 MPa and it is materialized in Figure 3.5a by a dashed line. This
limit provides a good compromise between the need for having enough experimental data for
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Figure 3.4: (a) Stress-strain responses of material R softened by previous loadings to various
strain levels. (b) Material R master curve obtained by superimposition of the
stress-strain responses plotted in Figure 3.4a. In the inset figure, the values of the
damage parameter D that provide superimposition are shown.

an accurate estimate of the modulus and the need for preserving the linearity of the mechanical
behavior.
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Figure 3.5: (a) Plot of the material R stress-strain unloading responses at small strains and
their linear approximations used to estimate the initial tangent modulus. The
dashed line materializes the upper stress limit used for the linear approximation.
(b) Evolution of the tangent modulus at zero stress for the filled rubber R vs.

maximum strain applied.

Figure 3.5b presents the values of the initial tangent modulus for the unloading stress-
strain responses characterized by the maximum strain applied h

comp

max

. One notes that the initial
tangent modulus is linearly dependent of h

comp

max

except for the very few cycles corresponding to
low maximum strains. The discrepancy observed for the first few cycles may result from the
viscoelastic e↵ect which hardly stabilize due to the short duration of the unloading for these
short cycles. Therefore, we always neglected the first few cycles and assumed that the initial
tangent modulus is linearly dependent of h

comp

max

. The linear approximation of the evolution of
the initial tangent modulus of material R versus h

comp

max

is represented by a dashed line in Figure
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3.5b. This linear approximation provides an estimate for the tangent modulus of the virtual
virgin material, which is defined by E(hcomp

max

= 0). From this approximation and Eq. (3.5),
values of parameter D are computed according to

D = 1� E

comp

E

virgin

. (3.8)

3.3.4 Comparison of the estimates of the softening parameter D

In theory, considering Eqs (3.2) and (3.5), the damage parameter D values obtained from
both methods should coincide. In practice, both methods do not use the same data. The tangent
modulus is limited to the data covering a very limited range of the stress-strain response, while
the strain amplification factor method uses the entire stress-strain response, which covers several
hundred percent strain. Figure 3.6 shows a comparison of the values of parameter D for the
experimental data provided by the cyclic test conducted on material R. Due to the large amount
of data processed with the strain amplification factor method, results obtained by the latter
appear smoother but both methods display similar results. The values of parameter D show
similar linear changes versus the maximum strain applied when either the tangent modulus
method or the strain amplification factor method is used. Therefore, the softening parameter D

introduced here defines an objective mean to characterize the Mullins softening quantitatively.
We now use this parameter to examine how the Mullins softening of our materials evolves.
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Figure 3.6: Comparison of the damage parameter D vs. the maximum strain applied, obtained
by using either the strain amplification factor or the tangent modulus for material
R.

3.4 Results and analysis

3.4.1 E↵ect of Material Viscoelasticity

Filled rubbers are known to be viscoelastic materials. Previous contributions (Kraus et al.,
1966; Cheng and Chen, 2003; Amin et al., 2010) reported the strain rate e↵ect on the stress-
strain responses of filled rubbers but without proposing an objective comparison of the Mullins
softening. In this section we want to investigate the impact of the viscoelastic properties of
filled rubbers on the Mullins softening. For this purpose, we have submitted material C4 to
cyclic loading tensile tests at various constant crosshead speeds, 1.8 mm/min, 18 mm/min, and
180 mm/min that provided strain rates close to 10�3 s�1, 10�2 s�1, and 10�1 s�1, respectively.
The strain rate-dependent stress-strain responses appear in Figure 3.7a. The damage D was
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estimated according to the procedure described above and results are shown in Figure 3.7b. The
Mullins softening appears to be strain rate dependent at large strain, increasing with the strain
rate. In what follows, in order to study the impact of the amount of fillers and crosslink densities
on the Mullins softening of filled SBRs, we will set the crosshead speed to 18 mm/min for every
test.
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Figure 3.7: (a) E↵ect of strain rate on the stress-strain response of material C4 during cyclic
uniaxial tension. (b) Estimate of the Mullins softening according to the strain rate.

3.4.2 Comparing Materials of Di↵erent Compositions

The Mullins softening parameter, D, was estimated according to the maximum strain applied,
h

comp

max

, for materials B4, C4, D4, and E4, which contain the same amount of fillers (40 phr) but
have di↵erent crosslink densities (from 3.65 to 10.55⇥ 10�5 mol/cm3) and for materials C3, C4,
C5, and C6, which contains 30, 40, 50, and 60 phr of carbon-black, respectively, and similar
crosslink densities (N

c

⇡ 7 ⇥ 10�5 mol/cm3). Figures 3.8 and 3.9 present the change of D

computed by both methods for each material. As expected, both methods provide very similar
results.

One notes in Figure 3.8 that changing the crosslink density did not a↵ect significantly the
Mullins softening. This result might be due to the fact that, with the entanglement den-
sity (⇡ 42⇥ 10�5 mol/cm3) and the range of crosslink densities considered (between 3.63 and
10.55⇥10�5 mol/cm3), these networks are su�ciently crosslinked (physically and chemically) to
evidence a similar softening. Here, the softening is characterized by the initial tangent modulus,
which may be linked to the material crosslink density that may be measured by swelling and
to the material entanglement density. Bokobza and Rapoport (2002) carried out measurements
of swelling on pre-stretched filled rubbers and showed an increase of the swelling ratio with the
increase of the pre-stretch, which is equivalent to a decrease in the modulus. The decrease of the
Young modulus is due to a reduction of the number of active physical and/or chemical crosslink.
It is relevant to notice that the crosslink density was tuned by adding or withdrawing sulfur,
and therefore without a↵ecting the interface filler-matrix much.

In Figure 3.9, the amount of fillers is shown to have a considerable impact on the Mullins
softening. By increasing the amount of fillers, one increases drastically the Mullins softening.
This result is in good agreement with several qualitative data that appear in the literature
(Mullins and Tobin, 1957; Harwood et al., 1965; Harwood and Payne, 1966a; Luo et al., 2004;
Kar and Bhowmick, 1998; Bergström and Boyce, 1999; Klüppel and Schramm, 2000; Dorfmann
and Ogden, 2004). Let us notice that even though unfilled crystallizing rubbers like pure natural
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Figure 3.8: E↵ect of crosslink density on the Mullins softening: Evolution of the damage pa-
rameter D vs. h

comp

max

for materials with various crosslink densities and similar filler
volume fractions � ⇡ 0.16 (40 phr). (a) Results obtained by using the strain
amplification factor. (b) Results obtained by using the tangent modulus at zero
stress.

rubber gum may show a clear Mullins (Harwood et al., 1965), the softening is observed for a
substantially lower strain level when the material is filled. As shown Figure 2.8, non-crystallizing
rubbers like SBR break before Mullins softening appearance when unfilled (Harwood et al., 1965)
therefore, the presence of a rigid phase is a requirement to observe some Mullins softening.
Moreover, when uniformly dispersed in the rubber gum, fillers induce some Mullins softening
when added over a threshold. Tests conducted on our reference SBR gum filled with 5 phr
(� = 0.024) resulted in close to null Mullins softening (Figure 3.11). This threshold is lowered
when the rigid phase is structured, the structure increasing the strain heterogeneities (Coquelle
et al., 2006). Atomic Force Microscope (AFM) observations of the local strain in stretched
filled rubbers showed a highly heterogeneous strain field and higher strains in regions where
distances between aggregates are shorter (Lapra et al., 2003). Bokobza (2004) compared the
Mullins softening of SBR gums filled with silica with and without a silane coupling agent. Silane
builds strong covalent bonds at the silica-gum interface and one notes that a strong filler-gum
interface enhances the Mullins softening. Therefore, Mullins softening appears when the material
microstructure favors highly strained regions. Moreover, the fact that strong bonding creates
more Mullins softening than weak bonding shows that Mullins softening is not only due to the
rupture of bonds at the filler-gum interface since the rupture is expected to be substantially
larger for weak covalent bonds than strong ones. Bond ruptures at the gum-filler interface
probably occur but other changes must take place.

Another interesting aspect of the parameter D is that it also provides a quantitative access
to the phenomenon. Figures 3.8 and 3.9 show that for our materials, the softening parameter is
well approximated by

D = ↵.h

comp

max

(3.9)

where the parameter ↵ depends on the filler volume fraction only. Values of ↵ may be reached
from results reported in Figures 3.8 and 3.9, by a simple linear approximation. Results, in regard
to the filler fraction, appear in Figure 3.10. Interestingly, the values of ↵ versus the filler fraction
can be approximated by a linear law. The linear plot shown in Figure 3.10 corresponds to the
relation:

↵(�) = 2.25(�� 0.05). (3.10)
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Figure 3.9: E↵ect of the amount of filler on the Mullins softening: Evolution of the damage
parameter D vs. h
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for materials with various amounts of carbon-black and
similar crosslink densities Nc ⇡ 7 ⇥ 10�5 mol/cm3. (a) Results obtained by using
the strain amplification factor. (b) Results obtained by using the tangent modulus
at zero stress.
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Figure 3.10: Evolution of parameter ↵ vs. the filler volume fraction for all materials.

Such an approximation defines a filler volume fraction threshold �
0

⇡ 0.05, below which
the Mullins softening is expected to be negligible. We have not been able to access materials
containing this amount of fillers exactly, but we have checked that material C2 containing 5 phr,
or equivalently a volume fraction of 0.024, shows barely any Mullins softening (Figure 3.11).
Equations (3.9) and (3.10) combine into a surprisingly simple form for D,

D = �(�� �
0

)hcomp

max

. (3.11)

Let us note that parameters � and �
0

are probably dependent of the gum type, and of the
filler nature and geometry, but this aspect was not investigated here. Equation (3.11) closes our
quantitative estimate of the Mullins softening. Once its two parameters are determined, relation
(3.11) authorizes the prediction of the Mullins softening for mixes with amounts of fillers not
yet tested.
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Figure 3.11: Stress–strain responses of materials C2 to a cyclic uniaxial tensile test.

3.5 Dependence of strain amplification to filler reinforcement

In previous sections we studied how the strain amplification is evolving according to the
maximum stretching applied. This provided us with the evolution of the softening parameter
D (Section 3.4). This process involved a master curve, see Figure 3.4, which defined the stress-
strain behavior of the virgin material and was obtained for D = 0, for each material. In this
section, we are interested in how the behavior of the virgin material relates to the behavior of
the gum, which is disclosed by the reinforcement parameter X according to Eq. (3.1).

3.5.1 Method

The strain amplification factor X accounts for the initial reinforcing e↵ects of fillers and
filler aggregates embedded in the gum. As defined by Eq. (3.1), this factor relates the mechan-
ical behavior of a filled rubber without softening to the mechanical behavior of the gum. It
allows comparing the behavior of materials with a similar gum and various amounts of fillers,
corresponding to various fractions of hard domains, to the behavior of the soft domains, with-
out considering the induced damage. Reading the material strategy shown in Figure 2.1, one
distinguishes a set of materials C1, C2, C3, C4, C5 and C6 where crosslink density does not
vary. Therefore, in order to extend the filler volume fraction range for a gum characterized by a
crosslink density of 7⇥10�5 mol/cm3, materials C1 and C2 were also considered. These materi-
als have null or low (5 phr) filler contents that make them likely to exhibit a mechanical behavior
close to the mechanical behavior of the soft domain. They both present a very limited Mullins
softening as shown in Figures 2.8 and 3.11 for C1 and C2, respectively. Figure 3.12a shows the
master curves for the stress-strain responses of virgin materials corresponding to materials C1
to C6. As expected, adding carbon-black sti↵ens the materials.

For this set of materials, values of the amplification factor X are computed according to
Eq. (3.1) in order to obtain the best superimposition of the stress-strain responses of virgin
materials containing various amounts of fillers. This procedure is identical to the procedure
used in order to assess parameter D but instead of comparing the stress-strain responses of the
same material submitted to various levels of maximum strain, one compares the stress-strain
responses for D = 0 for materials made with the same crosslink density and with di↵erent filler
amounts. Figure 3.12b shows the superimposition of the mechanical behaviors of virgin virtual
materials C1 to C6. Results are fairly good and supply values of the strain amplification factor
X for all filler fractions.
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Figure 3.12: (a) Uniaxial tension stress–strain responses of virtual virgin materials compared
with material C1 to C6. (b) Superimposition of the virgin material master curves
onto the stress-strain behavior of the soft domains by using the strain amplification
factor X defined in Eq. (3.1).

3.5.2 Results and analysis

Figure 3.13 displays the values of X obtained when producing Fig. 3.12b for various filler
volume fractions �. It may be noted that X shows a quadratic dependence on �. This supports
former quadratic results from the literature (Bergström and Boyce, 1999; Qi and Boyce, 2004)
inspired by the Guth and Gold (1938) quadratic infinitesimal strain model. It is remarkable to
read in Figure 3.13 that a quadratic function defined as:

X(�) = 1 + a � + b �2 (3.12)

provides a good fit of the X values. The parameter a = 2.5 derives from a simple account of
spherical filler particles at low concentrations (Smallwood, 1944). In Figure 3.13, the dashed
line fit is obtained for b = 21.3.
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Figure 3.13: Evolution of parameter X with the filler volume fraction �.
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3.6 Conclusion

In this chapter, we have proposed a way to characterize the Mullins softening in order to
quantitatively compare this specific damage observed in filled rubbers according to the material
composition. For this purpose, we revisited the strain amplification concept and proposed a
decomposition of the strain amplification factor into a softening part D and a reinforcing part
X. The damage parameter D, which can be reached using the strain amplification factor by
considering the material stress-strain response over the entire strain range or equivalently using
the tangent modulus at zero stress, provides an objective quantity to estimate and compare the
Mullins softening. It was used to reflect the strain rate dependence of the Mullins softening and
to study the e↵ects of crosslink density and filler amount on the Mullins softening of SBR mixes.
The crosslink density displayed a negligible impact on the Mullins softening, while increasing
the filler fraction appeared to enhance the Mullins softening. Finally, the proposed softening
parameter was shown to exhibit a mere linear change according to the maximum strain applied
and also according to the filler volume fraction. This led to a simple expression of the softening
parameter that may predict the Mullins softening for other compounds that were not tested
experimentally. We have investigated the e↵ects of crosslink density and filler amount. But
one may consider, using the parameter D, to examine the consequences of changing the gum
nature or the filler type and geometry. The reinforcing character of the fillers was also evaluated
through the definition of suitable virgin virtual materials, which are assumed to behave like
equivalent filled rubbers without Mullins softening. Comparison between the various materials
showed that the reinforcing factor, X, depends quadratically on the filler volume fraction, which
corroborates former results of the literature.

Within this chapter, a method was proposed in order to characterize the Mullins softening.
One may notice that only uniaxial proportional tension tests were considered. For this type of
loading, it is clearly established that the Mullins softening is activated by the maximum stretch
�

max

(or any other strain measurement) ever undergone by the material. In order to propose
a general three-dimensional framework for modeling the material behavior, an ”equivalent” of
this �

max

for general loading remains to be defined. Therefore, this specific issue is addressed in
the next chapter.
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Chapter 4

Mullins softening criterion for
general loading conditions

Most of this chapter has been published and can be found in reference:

- Yannick Merckel, Mathias Brieu, Julie Diani, Julien Caillard, 2012. A Mullins
softening criterion for general loading conditions, Journal of the Mechanics and
Physics of Solids, In press.

Samples of carbon-black filled styrene butadiene rubbers were submitted to suc-
cessive non-proportional loadings in order to define a general criterion for the
Mullins softening. For this purpose, each sample was initially submitted to uni-
axial or biaxial pre-loadings followed by a cyclic uniaxial tension test. An original
experimental analysis aimed at defining the activation threshold for the Mullins
softening during cyclic uniaxial loadings. The experimental data provide substan-
tial evidences establishing the surface of the maximum directional stretch under-
gone by the material as a relevant Mullins softening criterion. The latter was used
to successfully predict the Mullins softening surfaces for additional loading cases.
Finally, it was shown to apply to crystallizing carbon-black filled natural rubbers
also.
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4.1. Introduction

4.1 Introduction

The literature reviewed in Chapter 1 highlights that despite numerous contributions on the
Mullins softening, no general agreement has been found yet on the activation criterion of this
phenomenon for general loading conditions. The objective of this chapter is to provide such a
criterion essential for filled rubber constitutive modeling.

Mullins (1947, 1949) conducted extensive experimental studies on filled rubbers softening
and residual stretch. The author revealed the anisotropy of both the Mullins softening and
the residual stretch by applying successive non-proportional loadings. Subsequent experimental
studies focused mainly on proportional loadings, and only a few authors (Laraba-Abbes et al.,
2003; Hanson et al., 2005; Diani et al., 2006a,b; Itskov et al., 2006; Dargazany and Itskov,
2009; Machado et al., 2009; Machado, 2011) conducted non-proportional loadings showing the
anisotropy induced by a preloading. Such a result is illustrated in Figure 4.1 for samples sub-
mitted to identical uniaxial tension pre-loadings and subsequent uniaxial stretchings according
to various directions.
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Figure 4.1: Evidence of uniaxial tension pre-loading induced anisotropy.

Most models proposed for the Mullins softening use an isotropic damage definition (see Di-
ani et al. (2009) for a review) and very few models deal with an anisotropic criterion. One
may cite Göktepe and Miehe (2005) accounting for directional damage parameters depending
on the maximum directional free energy, Diani et al. (2006a,b) considering directional maxi-
mum stretches as directional criterion of damage activation, and Itskov et al. (2010) using the
maximum stretches in the principal directions of the current deformation gradient tensor only.
In what follows, an original analysis of non-proportional loading tests provides experimental
evidences that the maximum directional stretch surface defines a relevant three-dimensional cri-
terion for the Mullins softening activation. The next section presents the experimental setup and
the mechanical tests that were conducted. Section 4.3 aims at describing the original method
used to detect the Mullins softening activation. This section also provides experimental results
obtained under non-proportional loading conditions. In section 4.4, the Mullins softening crite-
rion is defined, validated for additional loading cases and extended to crystallizing filled natural
rubber. Finally, concluding remarks close the chapter.
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4.2 Experiments

4.2.1 Experimental setup

For this study, we used the material R processed into final plates of 2.5 mm thickness. The
material in-plane isotropy was verified (Figure 2.2). In order to submit the material to uniaxial
and biaxial loading conditions, both testing machines detailed Sections 1.6.3 and 1.6.4 were used.
The uniaxial tension tests were conducted at a constant crosshead speed which was chosen in
order to reach an average strain rate close to 10�2 s�1. Biaxial tests were characterized by the
biaxial ratio R,

R =
F

22

� 1
F

11

� 1
(4.1)

with F

11

and F

22

the longitudinal and transverse stretchings, respectively. Biaxial tension con-
ditions were set such as F

11

� F

22

and R ranging from 0 (pure shear) to 1 (equi-biaxial tension)
(Figure 4.2). All biaxial tests were run at constant crosshead speed corresponding to an average
strain rate close to 10�2 s�1 in direction 1. They were used for pre-loadings only, and stresses
were not recorded.
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Figure 4.2: Biaxial loading paths

4.2.2 Mechanical test descriptions

When proportional loadings are considered, the Mullins softening is triggered when the
stretching exceeds the maximum stretch applied during the loading history. In order to extend
such a criterion to non-proportional loadings, a specific protocol was used consisting into applying
a tensile pre-loading varying in nature and intensity followed by a uniaxial tension applied on
a sample punched in the preloaded specimens. During the latter loading, the tensile stretch is
measured using two paint marks and is defined as � = l/l

0

, with l

0

being the initial distance
between the paint marks for the material virgin of any loading. In order to measure � properly,
the residual stretches were carefully tracked during the various steps of sample testing and
sample cuting. Protocol details are provided Section 1.6.5.

Former contributions studying the mechanical response of filled rubbers when submitted to
successive non-proportional loadings focused mainly on the induced anisotropy (Laraba-Abbes
et al., 2003; Hanson et al., 2005; Diani et al., 2006a; Itskov et al., 2006; Dargazany and Itskov,
2009; Machado, 2011). For this purpose, pre-loadings are followed by a monotonic uniaxial ten-
sion loadings in various directions. The resulting stress-stretch responses are always compared to
the response of a virgin material. Figure 4.1 illustrates such responses for a uniaxial pre-loading.
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Such an experimental procedure reveals the Mullins softening induced anisotropy and the soft-
ening dependence to the direction of pre-loadings. Figure 4.3 shows the stress-stretch responses
of pre-loaded samples uniaxially stretched in the direction of maximum pre-stretch according to
the pre-loading biaxiality. In this Figure one may notice the significant increase of softening with
the pre-loading biaxiality characterized by R. The stress-stretch response of the equi-biaxially
pre-loaded sample is a↵ected far beyond the maximum pre-stretch (F

11

= 2.5). Moreover, the
material stress-stretch response does not return on the virgin stress-stretch response necessarily,
and using such a criterion for the detection of the Mullins softening activation appears haz-
ardous. For this reason, instead of applying monotonous uniaxial tensions post pre-loading, we
propose to apply cyclic uniaxial tensions. Figure 4.4 brings to light the interest of such a cyclic
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Figure 4.3: Comparison between the stress-stretch response of a virgin sample and the stress-
stretch responses of samples previously submitted to pure shear (R = 0), R = 0.5
biaxial tension or equibiaxial tension (R = 1) with a F

11

= 2.5 loading intensity,
and cut in the maximal stretch direction.

loading.
In Figure 4.4, we compare the stress-stretch response of a virgin material submitted to a

cyclic uniaxial tension test (left) to the stress-stretch response of a material first stretched up to
�

pre

= 3.5 and then submitted to the same cyclic tension test (right). For the virgin material, the
Mullins softening evolves gradually at each cycle while for the pre-stretched sample the Mullins
softening is first triggered when the stretching exceeds the pre-stretch �

pre

only. Actually, the
comparison of the stress-stretch responses in between two successive cycles may provide an
objective criterion for the Mullins softening activation as it is demonstrated in the next section.

Let us clarify some notations that will be used along the study, biaxial pre-loadings are char-
acterized by the ratio R and the maximum value of stretching denoted F

11

, uniaxial pre-loadings
are characterized by the applied maximum pre-stretch �

pre

and each cycle of the subsequent
cyclic uniaxial tension loadings is characterized by the maximum stretch �

max

reached during
the latter.

4.3 Determination of the Mullins softening activation

4.3.1 Residual stretch

Along with Mullins softening materials show substantial residual stretch increasing with the
applied maximum stretch. Therefore, one may want to use the increase of residual stretch as
a Mullins threshold activation. Several samples were uniaxially pre-stretched to various values
�

pre

then submitted to cyclic uniaxial tension in the same direction. Figure 4.5a shows the
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Figure 4.4: Material stress-stretch response to a uniaxial tensile cyclic test. (a) Virgin sample.
(b) 3.5-uniaxialy pre-stretched sample.

evolution of the residual stretch during the cyclic tension. One notes that the residual stretch
remains fairly constant until reaching the pre-stretch �

pre

, then it increases with the maximum
applied stretch. According to this figure, the residual stretch could be a useful parameter for the
Mullins activation. Unfortunately, as evidenced by Mullins (1949) and Diani et al. (2006a) the
residual stretch is perturbed by the filled rubber viscoelasticity and shows partial rapid recovery
when samples are unclamped (see Figure 4.5b). For this reason, it is preferable to define an
indicator built on the entire stress-stretch material response.
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Figure 4.5: (a) Residual stretch evolution during cyclic uniaxial loadings for sample uniaxialy
pre-stretched up to �

pre

. (b) Residual stretch recovery vs. time during a creep test
at zero stress.

4.3.2 Parameter for the Mullins softening evolution

In this section, the stress-stretch responses of softened materials, measured during cyclic
uniaxial tension tests are analyzed in order to propose an original indicator for Mullins softening
activation.

In Figure 4.4, the material exhibits a significant hysteresis when loaded above the maximum
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4.3. Determination of the Mullins softening activation

stretch yet undergone. When loaded below the maximum stretch �

max

, the material shows
fairly close loading and unloading responses. Therefore any of these responses may be used
to characterize its softened behavior, and the loading responses were privileged in the sequel.
It was noticed that the Mullins softening introduces a residual stretch that is partly recovered
in between successive loadings when samples are unclamped (Figure 4.5b). In order to limit
interferences between the residual stretch and the material softening, it seems better to correct
the actual stretch � according to,

�

cor =
�

�

res

(4.2)

in order to withdraw the residual stretch contribution in the cyclic uniaxial tension stress-stretch
responses.

In order to illustrate the benefit of such a correction, the cyclic loading responses of a uniaxial
sample pre-stretched to �

pre

= 2.5 are plotted in terms of stress vs. amended stretch, �

cor , in
Figure 4.6a. One notes that the loading responses coincide as long as the Mullins e↵ect is not
re-activated. When the Mullins e↵ect is re-activated, the next loading response exhibits a clear
softening. As a consequence, one only needs to compare the di↵erence between two successive
loading responses to recognize a possible evolution of the Mullins softening. The gap between the
loading responses of cycle (i) and the previous one (cycle (i�1)) may be estimated by calculating
the di↵erence between the stresses for stretches ranging from 1 to (�

max

)
(i�1)

or reversely by
calculating the di↵erence between stretches for stresses ranging from 0 to (�(�

max

))
(i�1)

. In
order to remain consistent with Merckel et al. (2011c) (or Chapter 3, equivalently), we use the
latter option and we introduce the parameter ↵,

↵

(i)

= max
0�max(�

(i�1)

)

 
�

cor

(i)

(�)
�

cor

(i�1)

(�)

!
. (4.3)

quantifying the di↵erence between the stress-stretch responses of two successive cycles. Nonethe-
less, other mathematical forms characterizing the di↵erence between two successive cycles are
possible and would lead to the same results. Examining Eq. (4.3), one may notice that ↵ will
remain close to 1 as long as the Mullins softening is not activated and ↵ will be di↵erent from
1 when the Mullins softening occurs.

Figure 4.6b shows the evolution of ↵ according to the maximum stretch applied at each cycle
(i) for a virgin sample and for a sample already stretched up to �

pre

= 2.5. For the virgin sample,
↵ is above 1 for each cycle which shows the constant increase of the material softening. For the
pre-stretched sample, ↵ remains constant to 1 as long as the sample stretching remains below
the maximum pre-stretch, then ↵ evolves suddenly and return onto the ↵-curve provided by the
virgin sample. In this figure, the parameter ↵ appears as a relevant and obvious indicator of the
Mullins activation. In order to assess the interest of the parameter ↵ compared to the residual
stretch �

res

, we have submitted several samples to various uniaxial proportional tension loading
histories. The objective is to apply several loading histories characterized by the same maximum
pre-stretch (�

pre

= 2.5) and various resulting residual stretches. Therefore four loadings are
considered, the material is pre-stretched then (i) submitted to the cyclic uniaxial loading, (ii)
unclamped during 72 hours and submitted to the cyclic uniaxial loading, (iii) maintained at the
pre-stretch during 12 hours and submitted to the cyclic uniaxial loading, (iv) submitted to 100
successive cycles up to the pre-stretched followed by the cyclic uniaxial tension. Loading case
(ii) induces a recovery of �

res

, while loadings (iii) and (iv) result in an increase of �

res

. Figure
4.7a presents the residual stretch changes during the cyclic uniaxial tension tests for the four
pre-cited cases added of the residual stretch changes for a virgin sample submitted to the cyclic
uniaxial tension test only. One may notice that in every case the residual stretch returns to
the residual stretch curve provided by the virgin sample, nonetheless the point of return varies
according to the pre-loading histories. Figure 4.7b shows the evolutions of parameter ↵ during
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Figure 4.6: (a) (�cor

, �) cyclic uniaxial response of samples uniaxialy pre-stretched up to �

pre

=
2.5. (b) Parameter ↵ evolution during a cyclic uniaxial tension loading for a virgin
sample and for a 2.5-uniaxialy pre-stretched sample.

the cyclic uniaxial tension tests for the same loading cases. For all the pre-stretched samples,
the softening evolution parameter ↵ appears to diverge from the value 1 at the same maximum
stretch �

max

= �

pre

. Hence, the various loading histories are shown to change the residual
stretch without a↵ecting the softening activation threshold. This original result proves that
even though residual stretch and material softening occur simultaneously during the so-called
Mullins e↵ect, they are not necessarily correlated. The material residual stretch may evolve
while the Mullins softening remains constant. As a consequence, Figure 4.7 demonstrates the
relevance of computing ↵ on the amended stress-stretch responses (�cor

, �), to characterize the
threshold of Mullins softening activation.
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Figure 4.7: Estimate of the (a) residual stretch and (b) parameter ↵ during a cyclic unixial
tension loading for samples submitted to similar pre-loaded stretch �

pre

= 2.5 but
di↵erent loading histories.
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4.3. Determination of the Mullins softening activation

4.3.3 Results

The softening evolution parameter ↵ defined above is now applied to non-proportional load-
ings. First, large uniaxial dumbbell samples are submitted to a �

pre

= 2.5 pre-stretch and small
dumbbell uniaxial tension samples are punched in the large samples with a direction of 0, 45
and 90 degrees with respect to the pre-stretch direction. The small specimen are then submitted
to cyclic uniaxial tension tests. Figure 4.8 presents the parameter ↵ computed on the cyclic
uniaxial tension stress-stretch responses according to the angle of cut. One notices the strong
dependence of the Mullins softening evolution according to the direction of second loading. As
one could expect, for the sample cut along the direction of pre-stretch the Mullins softening
re-activates when the material is stretched beyond the pre-stretch, but for the other two sam-
ples, cut at 45 and 90 degrees with respect to the pre-stretch direction, the Mullins softening
is activated from the first cycle. It is also interesting to note, that for the sample stretched
in the direction of pre-stretching, once the maximum stretch passed the pre-stretch values, the
parameter ↵ returns instantaneously on the evolution of ↵ provided by the virgin sample. For
the other samples, during the first cycles, the softening evolves but at a lower rate than for
the virgin material, evidencing a softening evolution but from an already pre-damaged state.
Finally, the sample cut at 90 degrees and the virgin material show similar softening evolutions.
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Figure 4.8: Parameter ↵ evolution for uniaxially pre-stretched (F
11

= 2.5) samples submitted
to a cyclic uniaxial tensions in directions tilted of an angle 0, 45 or 90 degrees from
the first direction of stretching.

Biaxial samples were submitted to a biaxial tension pre-loading defined by R = 0.5 and
F

11

= 2.5, the resulting stretch in direction 2 being F

22

= 1.75. Uniaxial dumbbell samples were
cut along various directions. Figure 4.9a shows the evolutions of ↵ for samples cut in directions
displaying angles of 0, 45 and 90 degrees with respect to the direction 1. These evolutions are
progressive for every direction and even though it is not obvious to spot the accurate value of
�

max

exhibiting Mullins-softening re-activation due to 0.25 stretch steps in between the successive
cycles, directions 1 (0 degree) and 2 (90 degrees) stretch of Mullins activation seem close to the
pre-stretch applied in these directions.

Other biaxial samples were submitted to equi-biaxial tension (R = 1) stretching up to F

11

=
2.5. For these samples, it was verified that the cyclic uniaxial tension sample cutting direction
had no e↵ect on the softening evolution, the Mullins softening exhibiting in-plane isotropy.
Figure 4.9b compares the parameter ↵ for a virgin material sample, the uniaxially pre-stretched
sample cut along direction of pre-stretching and the equi-biaxially pre-stretched sample. Both
pre-stretched samples show the same threshold of softening activation which corresponds to the
pre-stretching. Nonetheless once this threshold passed, the return of ↵ on the virgin material
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Figure 4.9: Parameter ↵ evolution during cyclic unixial tension loadings according to the di-
rection of stretching (which compares to the direction of maximum pre-stretch)
for biaxially pre-stretched samples up to F

11

= 2.5. (a) R = 0.5. (b) Equibiaxial
(R = 1).

↵-curve is more gradual for the equi-biaxially pre-stretched sample.
These original results are now used to define a three-dimensional Mullins softening criterion.

4.4 Mullins softening criterion

4.4.1 Definition

Considering the directional dependence of the Mullins softening activation evidenced in the
previous section and its well-known dependence to the maximum stretching, we introduce direc-
tional stretching scalars along directions u according to,

⇤(u,C) =
p

u.C.u (4.4)

with C = F

t

F being the right Cauchy-Green tensor, F the deformation gradient tensor and
u = (cos(✓), sin(✓) cos('), sin(✓) sin(')) unit vectors characterized by their polar angles (✓,').
We observed that the Mullins softening was evolving when at least one direction was stretched
above its maximum stretch already undergone, therefore we propose the following criterion for
the activation of the Mullins softening,

9u(✓,') | (⇤� ⇤
max

) = 0 (4.5)

with ⇤
max

being the maximum stretch along direction u over the loading history, which writes:

⇤
max

(✓,') = max
0!t

⇥
⇤(✓,', C(t))

⇤
. (4.6)

Let us note that such a Mullins softening activation criterion has been already applied by Diani
et al. (2006a,b), Dargazany and Itskov (2009), Merckel et al. (2011e) and studied by Itskov et al.
(2010), though without any experimental evidences supporting its use.

According to Eq. (4.6), the Mullins criterion may be represented by the three-dimensional
surface defined by ⇤

max

. For proportional loadings, one may write analytical expressions specify-
ing the Mullins threshold surface. For non-proportional loadings, the surface contour is reached
through numerical computations. Figure 4.10 shows the three-dimensional representations of
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(a)
(b)

(c)

Figure 4.10: Three-dimensional representation of the surface defined by ⇤
max

(✓,') for a F

11

=
2.5 loading in (a) uniaxial tension, (b) R = 0.5 biaxial tension, and (c) equibiaxial
tension (R = 1).

the surfaces resulting from uniaxial, biaxial (R = 0.5) and equi-biaxial loading conditions, which
are the pre-loading conditions of our study.

The criterion proposed in Eq. (4.5) is now confronted to the experimental results.

4.4.2 Analysis

Figure 4.11 presents the evolution ⇤
max

(✓, ') with the applied loading for �

pre

= 2.5 uni-
axially pre-stretched samples cut in directions 0, 45 and 90 degrees and submitted to a cyclic
uniaxial tension with maximum stretch increasing of �� = 0.25 at each cycle. This figure corre-
sponds to the evolution of ⇤

max

for the Mullins softening progression experimentally studied in
Figure 4.8. In order to ease the understanding, the evolution of ⇤

max

is plotted in the specimen
stretching plane. The dashed line draws the pre-loading surface, the solid lines result from the
post uniaxial tension cycles when increase the dimension of the ⇤

max

surface.
Figure 4.11a, corresponding to proportional uniaxial tension loading, shows that the surface

defined by ⇤
max

evolves when the pre-stretched is passed only. Moreover, when evolving, a
substantial number of directions are a↵ected. For samples cut at 45 degrees (Figure 4.11b), the
maximum stretching surface evolves from the first cycle and the number of directions a↵ected
starts low and grows gradually at each cycle. The ⇤

max

surface corresponding to samples cut
at 90 degrees with respect to the pre-stretching direction, evolves from the very first cycle as
demonstrates Figure 4.11c.

Figure 4.12 shows the evolution of ⇤
max

for a biaxial pre-loading characterized by R = 0.5
and F

11

= 2.5, followed by a cyclic uniaxial tension at 0, 45 and 90 degrees with respect to
direction 1. This figure compares with Figure 4.9a. For this pre-loading, one may notice that
the ⇤

max

surface evolves after reaching direction-dependent values of stretching. For samples cut
at 0, 45 and 90 degrees, the surfaces evolve after cycle 6, 4 and 3 respectively (corresponding to
�

max

equals to 2.5, 2 and 1.75 respectively), which corroborates the Mullins softening activation
thresholds given by Figure 4.9a. A similar analysis worked well for the equi-biaxial pre-loading
case also.

The former qualitative analysis may be reinforced by a quantitative analysis of the surface
created at each cycle. For this purpose, we introduce the parameter

� =
1
4⇡

ZZ
S

�

u sin(✓)d'd✓ (4.7)

with �

u(✓,') = 1 when @⇤
max

/@t > 0 et �

u(✓,') = 0 when @⇤
max

/@t = 0, t being the time.
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Figure 4.11: Projection of the ⇤
max

(✓, ') surface in the sample plane. Dashed line: uniaxial
pre-stretch up to �

pre

= 2.5. Solid line: surface evolution during cyclic uniaxial
loadings performed in directions (a) 0, (b) 45 and (c) 90 degrees compared to
direction of pre-stretching.

-4.0 -2.0 0.0 2.0 4.0
⇤

max

.u

2

-4.0

-2.0

0.0

2.0

4.0

⇤
m

a
x

.
u

1

R = 0.5, F

11

= 2.5, 0�

(a)

-4.0 -2.0 0.0 2.0 4.0
⇤

max

.u

2

-4.0

-2.0

0.0

2.0

4.0

⇤
m

a
x

.
u

1

R = 0.5, F

11

= 2.5, 45�

(b)

-4.0 -2.0 0.0 2.0 4.0
⇤

max

.u

2

-4.0

-2.0

0.0

2.0

4.0

⇤
m

a
x

.
u

1

R = 0.5, F

11

= 2.5, 90�

(c)

Figure 4.12: Projection of the ⇤
max

(✓,') surface in the sample plane. Dashed line: R = 0.5
biaxial pre-stretch up to F

11

= 2.5. Solid line: surface evolution during cyclic
uniaxial loadings performed in direction (a) 0, (b) 45 and (c) 90 degrees compared
to direction of pre-stretching.

Parameter �, inspired by former work by Diani and Gilormini (2005), computes the fraction
of directions stretched above their maximum stretch already undergone. Figure 4.13 shows
values of � continuously computed for �

max

ranging from 1 to 5, for the loading histories studied
in Section 4.3.3. We marked by symbols each cycle of the actual cyclic uniaxial tension tests.
This figure is to be compared with Figures 4.8 and 4.9. These figures reveal a strong correlation
between ↵ and � characterizing the increase of material softening and the increase of the ⇤

max

surface respectively, and they provide solid evidences supporting the relevance of criterion Eq.
(4.5).

4.4.3 Validation

We presented a number of experimental results leading to the definition Eq. (4.5) of a
Mullins softening criterion. The criterion is now tested in other conditions. For this purpose,
biaxial samples were submitted to di↵erent loading histories leading to the same ⇤

max

surfaces.
Then uniaxial tension samples were cut at 0, 45 and 90 degrees and submitted to cyclic uniaxial
tension tests. During the latter tests, the Mullins softening activation was estimated with the
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Figure 4.13: Fraction of active elongated chains � evolution during cyclic uniaxial loadings
performed in di↵erent directions for pre-stretched samples with a F

11

= 2.5 loading
intensity. Pre-loading paths are grouped according to Figures 4.8 and 4.9.

parameter ↵ and compared according to the loading history.
The two loading histories are sketched in Figure 4.14a. The first one from A to B1, is

made of two successive perpendicular pure shear loadings. The second loading from A to B2
adds a biaxial compression-tension to the pure shear according to direction 1 (A). Both loading
paths cause the identical maximum stretch surface drawn in Figure 4.14b. These paths were
chosen specifically for several reasons. First, the resulting maximum stretch surface exhibit
an interesting change of convexity at 45 degrees, second, during pre-loading from A to B2,
direction 1 is first stretched and then quite severely compressed (F

11

= 0.62), which puts to test
the criterion when some directions are stretched and then compressed.
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Figure 4.14: (a) F
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plane schematic representation of two specific loading paths: A to
B1 and A to B2. (b) Projection of ⇤

max

(✓,') surfaces for both loading paths.

Figure 4.15 shows the parameter ↵ computed during the cyclic uniaxial tension for samples
cut at 0, 45 et 90 degrees for both pre-loading cases. One notices that both pre-loading cases lead
to the same evolution of the softening parameter ↵, therefore both pre-loading cases are identical
in terms of Mullins softening. Finally, Figure 4.15 shows that Mullins softening activates earlier
for samples cut at 45 degrees compare to samples cut in directions 1 and 2, and Figure 4.15b
illustrates that the post-stretching compression in direction 1 does not change the evolution of ↵
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which is similar for both directions 1 and 2. Both results reinforce the well-grounded of criterion
Eq. (4.5).
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Figure 4.15: Parameter ↵ evolution during cyclic uniaxial loadings for (a) path A to B1 and
(b) path A to B2 pre-loaded samples.

At last, in order to prove the general nature of the proposed criterion, we tested it on the
40 phr carbon-black filled natural rubber detailed and labelled NR in Section 2.2.1, exhibiting
substantial crystallization during stretching. Figure 4.16a illustrates the stress-stretch behavior
of the filled natural rubber. The stress-stretch responses of the natural rubber di↵er from the
SBR stress-stretch responses for the substantial hysteresis existing at any cycle (during and post
Mullins e↵ect) due to the crystallization. This material was submitted to the pre-loading A and
B1 (Figure 4.14a). The parameter ↵ was estimated for samples cut in directions 0, 45 and 90
degrees as it was done for the SBR. Figure 4.16b displays the evolution of ↵ with respect to the
the cyclic maximum stretch and the angle of cut. Results are very similar to the results obtained
on the SBR material in Figure 4.14a. As a consequence, the activation of the Mullins softening
is not a↵ected by the crystallization and its criterion extends to crystallizing natural rubber.

1.0 2.0 3.0 4.0 5.0 6.0
�

0.0

20.0

40.0

60.0

80.0

100.0

120.0

C
au

ch
y

st
re

ss
(M

P
a)

0 1 2 3
Time (h)

2.0
4.0
6.0

�

(a)

1.0 2.0 3.0 4.0 5.0 6.0 7.0
�

max

1.00

1.01

1.02

1.03

1.04

↵

Virgin
00�
45�
90�

(b)

Figure 4.16: (a) Stress-stretch response of a filled natural rubber under monotonic and cyclic
uniaxial conditions. (b) Parameter ↵ evolution during a cyclic unixial tension
loading for path A to B1 pre-loaded samples.
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4.5 Conclusion

This chapter aims at defining a Mullins softening activation criterion for filled rubbers submit-
ted to general loading conditions, including non-proportional loadings. The criterion is grounded
on an original analysis of unconventional experimental data. By comparing the stress-stretch
responses of successive uniaxial tension cycles with increasing maximum stretch, a softening
evolution parameter is defined. According to this softening parameter evolution, it is possible
to recognize the Mullins softening activation. The method applies for pre-loaded samples, and
allows the definition of the directional stretch necessary to re-activate the Mullins softening in
the direction of cyclic uniaxial stretching. The method has been applied to several samples uni-
axially or biaxially pre-loaded, including proportional and non-proportional post cyclic uniaxial
loadings. Results provide solid evidences for the definition of a Mullins softening activation
criterion as the three-dimensional surface of maximum directional stretch submitted to the ma-
terial along the loading history. Also, two specific loading cases involving di↵erent loading paths
with identical maximum direction stretch surfaces were considered in order to test the criterion
predictive ability. The Mullins softening activation threshold was well predicted by the criterion.
Finally, the criterion was shown to apply to crystallizing filled natural rubber. The definition
of such a valid experimentally-based criterion is a critical point for constitutive modeling of
the Mullins softening, it should open new perspectives in terms of mechanical modeling. The
next chapter will use the criterion in order to propose a constitutive model for filled rubbers
accounting for Mullins softening induced anisotropy.
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Chapter 5

Constitutive modeling of the
anisotropic behavior of Mullins
softened filled rubbers

Most of this chapter has been submitted for publishing within reference:

- Yannick Merckel, Julie Diani, Mathias Brieu, Julien Caillard, 2012. Consti-
tutive modeling of the anisotropic behavior of Mullins softened filled rubbers,
Submitted to Mechanics of Materials.

Original constitutive modeling is proposed for filled rubber materials in order to
capture the anisotropic softened behavior induced by general non-proportional
pre-loading histories. The hyperelastic framework is grounded on a thorough
analysis of cyclic experimental data. The strain energy density is based on a di-
rectional approach. The model leans on the strain amplification factor concept
applied over material directions according to the Mullins softening evolution. In
order to provide a model easily versatile that applies for a wide range of ma-
terials, the proposed framework does not require to postulate the mathematical
forms of the elementary directional strain energy density and of the Mullins soft-
ening evolution rule, and a computational procedure is defined to build both
functions incrementally from experimental data obtained during cyclic uniaxial
tensile tests. Successful comparisons between the model and the experiments
demonstrate the model abilities. Moreover, the model is shown to accurately
predict the non-proportional uniaxial stress-stretch responses for uniaxially and
biaxially pre-stretched samples. Finally, the model was e�ciently tested on several
materials and proves to provide a quantitative estimate of the anisotropy induced
by the Mullins softening for a wide range of filled rubbers.
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5.1 Introduction

In terms of modeling, one may find a significant number of models in the literature designed
to reproduce the behavior of Mullins softened rubber-like materials. However, most of them are
developed for idealized isotropic softening and very few aim at capturing the softening induced
anisotropy. A first representation for anisotropic hyperelastic behavior was proposed by Weiss
et al. (1979), based on a strain invariants which limits its applicability to simple anisotropies
(transverse isotropy or orthotropy) and excludes its extension to the Mullins softening. An alter-
native approach based on directional behavior laws was proposed by Pawelski (2001), Göktepe
and Miehe (2005) and Diani et al. (2006b). The directional laws were shown to capture the
Mullins softening induced anisotropy without major di�culties by considering that damage
evolves independently along each material direction. Nonetheless, in the existing directional
laws, the residual stretch is constrained by the anisotropy induced by the Mullins softening, and
this is not in complete agreement with the experimental observations. Actually, experimental
evidences detailed in the following section support a decoupling of the residual stretch with the
Mullins softening. Therefore, both should be accounted for independently.

The pre-cited directional models are based on a physical interpretation of the Mullins soft-
ening. They generally depend on physically motivated elementary strain energy densities and
the Mullins softening is accounted for by altering the strain energy density parameters. In or-
der to accurately fit original experimental data, the elementary strain energy density and the
Mullins softening evolution rule may require substantial modifications according to the material
behavior. Moreover, the strain energy density and the evolution rule must be guessed a priori,
and no general procedure has been proposed to do so.

In this study, our main motivation is to propose a general framework easily versatile for the
modeling of hyperelastic rubber-like material behavior with a realistic account of the anisotropic
induced Mullins softening. For this purpose, a directional approach is considered with an
anisotropic criterion for the Mullins softening activation. At first, according to experimental
evidences, Mullins softening and residual stretch evolutions are decoupled. Then, in order to
propose a modeling with the largest flexibility, the account for the Mullins softening is chosen
to avoid assumptions on the elementary strain energy density or the softening evolution rule.
This is made possible by using the strain amplification concept early proposed by Mullins and
Tobin (1957) and developed in Chapter 3. Finally, an identification procedure is proposed to as-
sess both the elementary strain energy density and the Mullins softening evolution rule without
postulating their mathematical forms.

The chapter is organized as follows. In the next section, the experimental setup and exper-
imental results are presented. The constitutive equations and the identification procedure are
detailed in Section 5.3. Results are shown and discussed in Section 5.4. Finally, concluding
remarks close the chapter.

5.2 Experiments

5.2.1 Experimental setup

The material labeled R is used as a reference material to illustrate experimental grounds
of the model and to validate the model and the identification procedure. Materials C3 to C6
will be used to assess the general aspect of the model and to test its interest for comparing
the mechanical behavior of various materials. Uniaxial and biaxial tension tests were conducted
according to the experimental details provided in Chapter 4. In what follows, the states of
stretch are characterized by the principal stretches which coincide with the eigenvalues F

ii

of
the deformation gradient F . The direction of larger stretching will be referenced as direction 1,
directions 2 and 3 are perpendicular to direction 1 and direction 3 lies along the sample thickness.
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For uniaxial loadings, � may conveniently denote the principal stretch in the tension direction.
The Cauchy stress �

11

= F/S is used for uniaxial tension responses, with F the force and S

the current sample cross-section. According to results shown in Section 2.3, the Cauchy stress
resulting from cyclic uniaxial tension will be computed within incompressibility assumption and
the model will be proposed within an incompressible framework.

5.2.2 Mullins softening and residual stretch

When a filled rubber is submitted to cyclic loading conditions, one may notice along with the
softening, a residual stretch that increases with the applied maximum stretch. Both features are
usually pointed out as consequences of the Mullins e↵ect. However, some experimental evidences
show otherwise. The softening occurring upon first stretch is an irreversible damage phenomenon
at room temperature (Mullins, 1947). To the contrary, the residual stretch is very dependent on
viscoelasticity and shows an important and rapid recovery at room temperature (Mullins, 1949;
Diani et al., 2006b). Other experimental observations prove that although residual stretch and
material softening usually occur simultaneously, their evolutions are not necessarily correlated.
Various loading histories with identical maximum stretch may result in substantial residual
stretch changes while the Mullins softening remains una↵ected. An example is presented in
Figure 5.1. A � = 2.5 uniaxialy pre-stretched sample is submitted to uniaxial cyclic loading
with an increasing maximum stretch of �� = 0.25 at each cycle after a 72 hours stress free
recovery. Figure 5.1a shows the loading responses resulting from the cyclic loading. One may
notice that the stress-stretch responses evolve at each cycle from the very first cycle. However,
while representing the loading stress-stretch responses applying a residual stretch correction,
according to �

cor

= �/�

res

, one notices that the loading responses are perfectly superimposed
until the maximum previous stretch (� = 2.5) is reached (Figure 5.1b). This demonstrates
that in Figure 5.1a, the mechanical behavior of the material does not evolve for cycles below
� = 2.5, except for the residual stretches, evidencing a significant residual stretch evolution and
a constant Mullins softening.
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Figure 5.1: Uniaxial tensile cyclic test performed after a 72-hour stress-free recovery on a 2.5-
uniaxialy pre-stretched material. (a) Stress-stretch (�, �) loading responses. (b)
Residual stretch corrected stress-stretch (�/�

res

, �) loading responses.

Other experimental evidences support the uncorrelation of the residual stretch and of the
Mullins softening. First, the Mullins softening and the residual stretch seem both quite de-
pendent to the material composition but with di↵erent sensitivities (Mullins, 1949; Dorfmann
and Ogden, 2004; Merckel et al., 2011b). Second, some materials may evidence some large
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Mullins softening with very little residual stretch. For instance, a silicone filled rubber studied
by Machado (2011) display significant Mullins softening and an unnoticeable residual stretch.

5.2.3 Anisotropy characterization

When submitting a sample to an uniaxial tension according to direction 1, its free faces are
submitted to the boundary conditions �

22

= �

33

= 0, and when the measured stretches satisfy to
F

22

= F

33

, the material shows transverse isotropy properties. Therefore in order to illustrate the
material anisotropy, the ratio F

22

/F

33

resulting from a cyclic proportional uniaxial tension test
is plotted with respect to the stretch � in Figure 5.2a. The ratio F

22

/F

33

appears di↵erent from
1, highlighting the material initial anisotropy resulting from the manufacturing process. The
material appears sti↵er along the plate thickness direction than in any in-plane direction (bear
in mind that the in-plane isotropy has been verified). More interestingly, the F

22

/F

33

evolution
seems to follow the same path for every cycle, evidencing the same anisotropy throughout the
test.
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Figure 5.2: In-plane (2,3) anisotropy changes. (a) Proportional cyclic uniaxial tension load-
ing. (b) Cyclic uniaxial tension loading performed on a 2.5-biaxially pre-stretched
sample.

The anisotropy characterization method is now applied to a small uniaxial dumbbell sample
punched in a � = 2.5 equi-biaxially pre-stretched specimen. Results are shown in Figure 5.2b.
The F

22

/F

33

evolution follows the same path as long as the sample is stretched below the
maximum stretch previously applied (� = 2.5). Then the anisotropy evolves at each cycle and
the ratio F

22

/F

33

slowly evolves toward a similar path than the path displayed by the virgin
material in Figure 5.2a. The introduced material anisotropy characterization will provide an
additional element to validate the relevance of the modeling.

5.2.4 Equilibrium response

In the current work, the material viscoelasticity is not considered and our focus is set on
the equilibrium responses only. Once the Mullins softening has been evacuated, the loading and
the unloading responses are fairly close and both responses may be used to characterize the
material softened behavior (Figure 5.3a). In order to remain consistent with previous modeling
works proposed by the authors (Diani et al., 2006a,b), the unloading responses are favored, and
the material mechanical behavior evolution due to the Mullins softening is illustrated by the
stress-stretch responses in Figure 5.3b.
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Figure 5.3: Material stress-stretch response to a uniaxial tensile cyclic test with maximum
stretch increasing at each cycle. (a) Entire response. (b) Unloading responses.

The next section presents the theoretical and the computational aspects of the modeling.

5.3 Modeling

5.3.1 Hyperelastic framework

Experimental observations reported in Section 5.2.2 support a decoupling of the residual
stretch from the Mullins softening. Therefore, we use a kinematic approach decomposing the
total deformation gradient F into an elastic part F

e

and an inelastic part F

p

,

F = F

e

F

p

. (5.1)

The inelastic deformation gradient tensor F

p

changes the initial reference configuration into a
stress-free intermediate configuration accounting for residual deformation, while the elastic de-
formation gradient tensor F

e

changes the stress-free configuration into the current configuration
and therefore accounts for the elastic deformation. It is assumed that F

p

does not evolve during
the unloading responses shown in Figure 5.3b.

In order to describe the material deformation, the right Cauchy-Green tensor C = F

t

F and
the left Cauchy-Green tensor B = FF

t are introduced. The state of the material is assumed
to be described by the strain energy W written in terms of C

e

and B

p

. Considering a strain
energy with decoupled e↵ects of the elastic and inelastic deformations leads to,

W(C
e

,B

p

) = W
e

(C
e

) +W
p

(B
p

). (5.2)

and the second Piola-Kirchho↵ stress tensor in the stress-free configuration derives from the
second law of thermodynamics,

S = 2
@W

e

(C
e

)
@C

e

. (5.3)

Elastomeric materials can be represented as three-dimensional networks of very long flexible
macromolecules randomly oriented in all directions of space. In directional approaches, the strain
energy density W

e

is evaluated from the summation of elementary strain energy contributions
w over all considered directions. An idealized representation introduced by Treloar and Riding
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(1979) is the full-network model, which considers a continuous spatial distribution of directions
leading to an integration over the unite sphere,

W
e

(C
e

) =
ZZ

S
w(u) dS (5.4)

with unit vectors u = (cos(✓), sin(✓) cos('), sin(✓) sin(')) characterized by the polar angles (✓,')
and dS = 1/4⇡ sin(✓)d'd✓.

In such a directional representation, anisotropy may be accounted for by considering uneven
elementary strain energy contributions w, according to the direction u. As previously noticed
by Diani et al. (2004); Göktepe and Miehe (2005); Diani et al. (2006b), such an account for
anisotropy may lead to uncontrolled residual stresses in the free strain state. Therefore, in
order to circumvent such residual stresses, and to satisfy to a stress-free undeformed state, the
constitutive equation, Eq. (5.3), is modified into (Diani et al., 2004),

S = 2
@W

e

(C
e

)
@C

e

� 2
@W

e

(C
e

)
@C

e

����
Ce=I

. (5.5)

The elastic elongation along each direction u, ⇤
e

, is obtained from the right elastic Cauchy-
Green tensor as,

⇤
e

=
p

u.C

e

.u. (5.6)

Let us note that @⇤
e

/@C

e

= (u ⌦ u)/2⇤
e

, hence the elastic energy density partial derivative
comes as

@W
e

@C

e

=
1
2

ZZ
S

u⌦ u

⇤
e

@w

@⇤
e

dS. (5.7)

The Cauchy stress tensor � is obtained by pushing forward the Piola Kirchho↵ stress tensor
S from the relaxed configuration to the current configuration via F

e

. Substituting Eq. (5.7)
in Eq. (5.5) and assuming material incompressibility yield to the following expression for the
Cauchy stress tensor,

� = F

e

✓ZZ
S

g(u) (u⌦ u) dS
◆

F

t

e

� pI (5.8)

where p is an arbitrary hydrostatic pressure introduced to account for incompressibility and g(u)
a directional scalar that writes,

g =
f(⇤

e

)
⇤

e

� f(1) (5.9)

with f the elementary force-elongation relation in the direction u defined as

f(⇤
e

) =
@w(⇤

e

)
@⇤

e

. (5.10)

While the full-network initially proposed by Treloar and Riding (1979) uses a specific inverse
Langevin function based form for f , the above formulation is not restricted and can be applied to
any directional force-elongation f(⇤

e

). Therefore, we are not assuming any specific mathematical
form for f since the latter will unfold upon experimental data fit.

The full-network framework is not e�cient for numerical implementations due to the nu-
merical integrations and in order to circumvent the time-consuming computational integration
task, discrete integrations are usually preferred. For this purpose, a finite number of directions
is considered. For instance, Göktepe and Miehe (2005) and Diani et al. (2006b) used sets of
42 and 32 directions respectively, based on Bazănt and Oh (1986) numerical integration. We
followed this path but many other methods may be found in the literature.

In the next section, account for the Mullins softening is introduced.
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5.3.2 Mullins softening

Recently, Merckel et al. (2012a) conducted an extensive experimental study on the Mullins
softening (see Chapter 4). It was shown that the latter evolves when at least one material
direction is stretched above its maximum stretch. Therefore, the criterion proposed by Diani
et al. (2006b) for anisotropic Mullins softening has been validated by Merckel et al. (2012a)’s
experimental work. It writes as,

8u(✓,') | (⇤� ⇤
max

) = 0 (5.11)

with ⇤ being the total elongation along direction u

⇤(u) =
p

u.C.u (5.12)

and ⇤
max

the maximum of ⇤ over the loading history

⇤
max

(u) = max
0!t

[⇤(u, t)] . (5.13)

It is noteworthy that the criterion Eq. (5.11) is based on the total elongation and not only on its
elastic component. This particular aspect of the criterion is supported by the fact that a softened
material may recover some of its residual stretch without recovering any of its Mullins softening
as shown in Section 5.2.2. Once the criterion defined, the damage variable which provides the
softening in the stress-strain responses remains to be introduced.

The strain amplification concept, early introduced by Mullins and Tobin (1957), and based on
experimental evidences reproduced by Klüppel and Schramm (2000) and Merckel et al. (2011c)
for instance, supports the idea that the stress-strain responses of softened filled rubbers evolve
due to the amplification of the strain undergone in softened materials compared to the strain a
virgin material would undergo at similar stress (see Chapter 3). This may be written as1,

log(⇤
e

) = X log(⇤virgin

e

) (5.14)

when the logarithmic strain is chosen. The strain amplification factor X satisfies to X(u) > 1
along each direction u. The stretches ⇤virgin

e

and ⇤
e

characterize the directional stretch in
the virgin material and the directional amplified stretch respectively. The strain amplification
factor concept is introduced within the hyperelastic framework proposed in Section 5.3.1 by
substituting ⇤

e

as a function of X and ⇤virgin

e

(Eq. (5.14)), in g (Eq. (5.9)). Such a concept was
already used in a similar fashion by Qi and Boyce (2004).

At this point, the model is fully defined. The residual stretches are captured by F

p

in the
decomposition Eq. (5.1). The Cauchy stress response, for a general full-network directional
framework, is given by Eq. (5.8). The Mullins criterion is a directional criterion, defined by Eq.
(5.11), providing possible induced anisotropy. Finally, the Mullins softening is accounted for by
substituting Eq. (5.14) in g (Eq. (5.9)), the enhanced directional stretches ⇤

e

depending on the
directional amplification factors X(u). In order to describe and predict the material softening
depending on the loading history, two material functions remain to be determined: X and f .
Therefore the next section draws attention to the identification procedure.

1It worth emphasize that within Chapter 3, the strain amplification concept has been used in order to charac-
terize the Mullins softening. For this purpose, we proposed a decomposition of the strain amplification factor into
a softening part D and a reinforcing part X. The parameter D was then used to quantified the softening. In the
current chapter, we do not pursue the same goal and we do not need to introduce the parameter D. Therefore,
the classical factor X is used for the strain amplification. However, the reader may notice that X in Eq. (5.14)
is equivalent to the definition of 1/(1�D) in Chapter 3.
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5.3.3 Identification of the elementary force-elongation function f and the
Mullins softening rule X

The elementary force-elongation function and the Mullins softening evolution rule are built
incrementally in order to obtain a good fit of the experimental unloading responses from a cyclic
uniaxial tension test with increasing maximum stretch at every cycle as shown in Figure 5.3.
Since for every mechanical test, the material stress-stretch response depends on both f and X,
an original method is defined guaranteeing simultaneous identification of both functions.

The main di�culty stands in the uneven evolution of the softening according to the spatial
directions. Actually, the maximum directional stretch ⇤

max

(u) depends on the direction consid-
ered ranging from 1 to �

max

(the maximum stretch in the uniaxial stretching direction). Figure
5.4 illustrates ⇤

max

directional evolution for uniaxial tension tests.
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Figure 5.4: Directional evolution of ⇤
max

during a cyclic uniaxial loading, projected in the
sample plane (u
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). The initial state is emphasized by dashed line.

When unloading the sample, the Mullins softening and the residual stretch evolutions are
both stabilized. The inelastic part F

p

(see Eq. (5.1)) coincides with the residual stretch �

res

and
the elastic part �

e

may be extracted from the measured stretch �

meas using,

�

e

=
�

meas

�

res

. (5.15)

The material anisotropy evolves upon stretching only. Therefore, when the incompressible
material is assumed as initially isotropic, the relation F

22

= F

33

= �

�0.5 is obtained for uniaxial
stretching in direction 1. Constitutive equations Eq. (5.8), simplify into:

�

11

=
ZZ

S
g

✓
u

2

1

�

2

e

� u

2

2

�

e

◆
dS (5.16)

with g(u) depending on ⇤
e

(u), X(u) and f (Eqs. (5.14) and (5.9)).
On one hand X increases with the increase of the maximum stretch submitted and remains

constant during unloadings. On the other hand, f is independent of the softening, and remains
the same for any cycle. The identification strategy is based on a resolution of the implicit
Eq. (5.16). From a given experimental couple (�

11

, �

e

) and knowing the Mullins softening
governing parameter spatial density ⇤

max

(u) illustrated in Figure 5.4, local values X and f may
be computed numerically. Therefore, discrete definitions for f and X may be built by putting
into practice the procedure synopsized in Figure 5.5.

The identification procedure starts from the first (and smallest) cycle. Initial conditions
X(1) = 1 and f(1) = 0 are naturally chosen, then X and f are progressively extended. In the
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Figure 5.5: Identification procedure.

first cycle (i = 1), the identification process is initialized according to the procedure reported
in Table 5.1 in order to compute X for ⇤

max

2 [1, �

(i=1)

max

] and f for �

e

2 [1, �

(i=1)
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]. It is worth
noting that a small cycle is advised for the initialization.
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Table 5.1: Identification procedure initialization

Once X and f have been initialized, they are extended by fitting each unloading response as
illustrated in Figure 5.5. At cycle (i), the beginning of functions X and f have previously been
determined, and the next identification action is performed in two steps. At first, the force-
elongation f is known for values of ⇤virgin

e

corresponding to macroscopic stretches ranging in 1 <

�

e

< �

(i�1)

e max

, and therefore is used to compute X(⇤(i)
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). In a second step, X(⇤
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) being defined
for the entire cycle (i), f is extended for values of ⇤virgin
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corresponding to �

e

2 [�(i�1)

e max

, �

(i)

e max

].
Computational details for both steps are provided in Tables 5.2 and 5.3 respectively. When both
X and f have been determined for cycles up to (i), the identification strategy is iterated for cycle
(i + 1). Let us note that intermediate values for f and X are given by a linear interpolation.

During the identification procedure described above, evolutions of X and f are defined by
experimental data only. However, it was noticed that the following restriction,

f(⇤virgin

e

6 1) = 0. (5.17)

100



5.3. Modeling

Experimental data Cycle i maximum stretch �

(i)

max

Couples (�
11

, �

e

) for �

e

< �

(i�1)

max

Initial conditions X(⇤
max

) known for ⇤
max

2 [1, �

(i�1)

max

]
f(⇤virgin

e

) known for �

e

2 [1, �

(i�1)

e max

]
Mullins criterion Compute the directional governing parameter ⇤

max

(u)

⇤
max

(u) =
q

u.C(�(i)

max

).u
Model Relationship between (�

11

, �

e

) and (X, f)
�

11

=
RR

S g

�
u

2

1

�

2

e

� u

2

2

/�

e

�
dS

with g = f(⇤
e

)/⇤
e

� f(1), and log(⇤
e

) = X log(⇤virgin

e

)
Numerical resolution Compute X(⇤

max

) for ⇤
max

= �

(i)

max

with a mean square minimiza-
tion of �

11

on the interval ⇤
max

2 [�(i�1)

max

, �

(i)

max

]

Table 5.2: First identification step at cycle i

Experimental data Couples (�
11

, �

e

) for �

e

> �

(i�1)

max

Initial conditions X(⇤
max

) known for ⇤
max

2 [1, �

(i)

max

]
f(⇤virgin

e

) known for �

e

2 [1, �

(i�1)

e max

]
Model Relationship between (�

11

, �

e

) and (X, f) using
�

11

=
RR

S g

�
u

2

1

�

2

e

� u

2

2

/�

e

�
dS

with g = f(⇤
e

)/⇤
e

� f(1), and log(⇤
e

) = X log(⇤virgin

e

)
Numerical resolution Compute few values of f(⇤virgin

e

) for �

e

2 [�(i�1)

e max

, �

(i)

e max

] with a
local square minimization of �

11

Table 5.3: Second identification step at cycle i

was favorable for a good comparison between the model and the experimental data in terms of
induced anisotropy. While proof of such a restriction will be discussed in the next section, it
may be noticed that this restriction may be interpreted as if directions in compression do not
sustain the stress and only stretched directions do. Anyhow, accounting for Eq. (5.17) within
the proposed framework does not lead to any adjustment in the constitutive equations or the
identification procedure previously presented.

The proposed identification procedure was tested on material R. A first cycle is performed
up to �

(i=1)

max

= 1.1, then for each cycle, the maximum stretch was increased with a step of
� log(�) = 0.1. The interest of such a loading stands in smaller first few cycles before the
di↵erence between two successive cycles becomes significant. Therefore, the loading is well
suited for the identification, with a short cycle for initialization (Table 5.1) and stretch intervals
increasing at each cycle for the computation of f (Table 5.3). Model fit of the experimental
unloading responses used for identification is shown in Figure 5.6. Experimental responses
appear to be successfully represented.

Figure 5.7a shows the elementary force-elongation relation, f(⇤virgin

e

), resulting from the
identification procedure. One may notice that f presents the classic features of a filled rubber
behavior, with a low sti↵ness and a quasi-linear response at small stretch, then a sharp upturn
followed by an asymptotic vertical at larger stretch when the material limit extensibility is
reached.

The Mullins softening rule, X(⇤
max

), is shown in Figure 5.7b. The dependence of X to the
maximum stretch is well approximated by,

X = ↵ log(⇤
max

) (5.18)

with ↵ a material parameter characterizing the softening evolution rate. For material R, one
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Figure 5.6: Model ability to fit the Mullins softened behavior of material R.
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Figure 5.7: Identification results for material R. (a) Elementary force-elongation relation. (b)
Mullins softening rule.

gets ↵ = 8.8. The logarithmic evolution of X with respect to the maximum elongation is
consistent with previous results aiming at characterizing the Mullins softening (shown Chapter
3 and reported by Merckel et al. (2011c)). Furthermore, softening evolution rules defined in
order to converge toward a saturation limit are used in other models, for instance Miehe and
Keck (2000); Klüppel and Schramm (2000); Qi and Boyce (2004) among others. Let us note
that models based on the Ogden and Roxburgh (1999) approach for the Mullins softening do
not agree with this observation.

5.4 Results and discussion

5.4.1 Prediction of non-proportional loading resulting behavior

This section aims at illustrating the model predictive capabilities. For this purpose, the force-
elongation relation, f(⇤virgin

e

), and the Mullins softening law, X(⇤
max

), previously identified for
the material R are used to represent the responses of material R when submitted to cyclic
uniaxial tension post non-proportional pre-stretchings.

Samples submitted to cyclic uniaxial tension tests are now small dumbbell samples punched
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in a larger sample already submitted to a uniaxial or biaxial pre-loading. Between both the
pre-loading and the loading experiments, an important residual stretch recovery induced by the
material viscoelasticity occurs. The material viscoelasticity is not accounted for here and the
experimental data are corrected according to Eq. (5.15) and the modeling condition F

p

= I is
set.

First, the experimental procedure is applied for � = 2.5-uniaxial stretch pre-loading, and
small dumbbell samples are cut at 45 and 90 degrees from the pre-loading stretching direction.
The cyclic uniaxial tension is performed with maximum stretches increasing of �� = 0.25 at each
cycle. According to criterion, Eq. (5.11), the Mullins softening is activated in some directions
from the very first cycle, and it evolves di↵erently according to the directions. Comparison
between the experimental unloading responses and the model predictions are shown in Figure
5.8. One may notice that the experimental unloading curves are well approximated for small
and large cycles and this without using any adjusting parameter or further identification but by
using the material function f and X identified earlier on a virgin sample only (Section 5.3.3).
Therefore, the model is able to capture the material anisotropy induced by the Mullins softening
resulting from a uniaxial pre-loading. Let us note that such a Mullins softening observed at the
very first cycles in Figures 5.8a and 5.8b, could not be represented with an isotropic Mullins
criterion, which would have predicted Mullins reactivation at � = 2.5 only.
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Figure 5.8: Model prediction for 2.5-uniaxially pre-stretched material. Sample cut in directions
(a) 45 and (b) 90 degrees compared to direction of pre-stretching.

Second, the same experimental procedure is applied to samples submitted to biaxial pre-
loads. Two pre-loading conditions were chosen, F

11

= F

22

= 2.5 equi-biaxial pre-stretching and
F

11

= 2.5 and F

22

= 1.75 biaxial pre-stretching (loading condition characterized by R = 0.5
in Chapter 4). The small dumbbell samples were cut in the direction of maximum stretching
(direction 1). According to criterion, Eq. (5.11), the Mullins softening will not activate until
� = 2.5 was reached. Experimental responses and model estimates are compared in Figure
5.9. Apart from the viscoelasticity exhibited by actual samples at the very beginning of the
unloadings that cannot be reproduced, the model predictions appear to be accurate below and
above the Mullins activation for both pre-loading conditions. The softening induced by a biaxial
loading appears to be also well captured by the model.

Results shown in Figure 5.9 yield to important consequences in terms of material behavior
modeling and identification. The mechanical tests performed in order to obtain the experimental
data involved a multiaxial loading path, but the Mullins softening evolution rule X(⇤

max

) was
chosen as dependent of the maximal directional stretch only. The prediction abilities shown by
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Figure 5.9: Model prediction of the uniaxial stress-stretch responses of samples biaxially pre-
stretched material up to (a) F

11

= F

22

= 2.5 and (b) F

11

= 2.5, F

22

= 1.75 and
cut along the the maximum pre-stretched direction.

the model proves that X does not require complex account of the loading multiaxiality and its
complete identification may be performed on a mere cyclic uniaxial tension test.

The following section aims at studying the actual material anisotropy evolution and its model
prediction. The anisotropy is then characterized by measuring and comparing the stretches
according to the principal stretching directions.

5.4.2 Estimate of the induced anisotropy

The ratio F

22

/F

33

evolution was introduced Section 5.2.3 to characterize the anisotropy
changes during cyclic uniaxial tests. Figure 5.10a shows the ratio F

22

/F

33

model prediction for
a cyclic uniaxial loading performed on a 2.5-equi-biaxially pre-stretched material. As long as
� = 2.5 is not reached, the Mullins softening does not evolve and F

22

/F

33

path remains identical.
Once the Mullins softening is re-activated, changes occurs and at each cycle, the path slowly
converges on a proportional uniaxial loading path (i.e. F

22

/F

33

= 1). This modeling result is to
be compared with experimental observations presented Figure 5.2b. Note that the discrepancies
between Figure 5.2a and Figure 5.10 are due to the model initial isotropy assumption, which
does not match the actual material initial anisotropy. Nonetheless, the trend of the material
anisotropy evolution is well captured by the model.

In the modeling section, the condition Eq. (5.17) was introduced for the elementary force-
elongation. When releasing this condition, the fitting procedure drives to a function f reaching
negative values for � < 1. The resulting ratio F

22

/F

33

computed with the function f obtained
without applying condition Eq. (5.17) is shown in Figure 5.10b. During the equi-biaxial pre-
loading, the material is softened in direction 2 while remaining virgin in direction 3. Since the
material sti↵ness is higher in direction 3, boundary conditions �

22

= �

33

= 0 should yield to
F

22

/F

33

> 1. This is obviously not the case in Figure 5.10b. Moreover, one may notice in Figure
5.10b that the anisotropy intensity increases with �

max

while it is expected to decrease. The
result is obviously unrealistic and validate the condition Eq. (5.17), which supports the physical
picture of directions in compression not sustaining the stresses.
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Figure 5.10: Model prediction for the anisotropy changes in-plane (2,3). (a) with Eq. (5.17)
condition. (b) without Eq. (5.17) condition.

5.4.3 Other model interest: Study of the e↵ect of filler amount

Hitherto, only the reference material labelled R was used to develop the mechanical behavior
model and the identification procedure. This section aims at applying the model on various
materials in order to validate the identification procedure and to investigate the e↵ect of the
filler amount on the Mullins softening. Materials C3, C4, C5 and C6 described in Table 2.1
were submitted to cyclic uniaxial loadings with a maximum stretch increasing at each cycle with
of a � log(�) = 0.1 step and up to failure. The evolution rules f and X were computed for
each material performing the identification procedure detailed in Section 5.3.3. The model re-
sponses and experimental data are favorably compared in Figure 5.11. Therefore, the model and
the identification procedure was successfully extended to several materials, exhibiting distinct
mechanical behaviors and distinct sensitivities to the Mullins softening.

In order to investigate dependencies to the filler amount, evolution rules f and X are com-
pared in Figure 5.12. Figure 5.12a shows the filler amount e↵ect on the identified elementary
force-elongation relations. Every material exhibits a quasi-linear virgin response followed by a
plateau ended by a sharp upturn. The main dependences of f to the filler amount are the initial
sti↵ness increase and the upturn stretch decrease with the filler amount. These observations are
consistent with former results from the literature. Actually, the reinforcing e↵ect of filler volume
fraction on the initial sti↵ness is well known (Einstein, 1906; Guth and Gold, 1938).

The e↵ect of the amount of fillers on X is illustrated Figure 5.12b. As expected, the Mullins
softening rate increases with the amount of fillers, see for instance Mullins and Tobin (1957);
Bergström and Boyce (1999); Klüppel and Schramm (2000); Dorfmann and Ogden (2004); Mer-
ckel et al. (2011c) among others. One may notice that for every material the evolution of X is
quasi-linear with respect to the logarithm of the maximum directional stretch ⇤

max

. The same
property was observed and shown in Figure 5.7b for material R, therefore the Mullins softening
evolution rule introduced Eq. (5.18) may well be general.

5.5 Conclusion

This chapter aimed at proposing a constitutive model for the mechanical behavior of filled
rubbers with Mullins softening. The constitutive equations were grounded on an thorough
analysis of original experimental data. Basic uniaxial tensile tests and unconventional non-
proportional tensile tests including uniaxial and biaxial loading paths were used to produce the
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Figure 5.11: Model prediction for material (a) C3, (b) C4, (c) C5, (d) C6
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Figure 5.12: Identification results for material with di↵erent amount of fillers. (a) Elementary
force-elongation functions. (b) Mullins softening rules.

necessary experimental data. The model was based on a directional approach in order to capture
the anisotropy induced by general non-proportional pre-loading histories. The Mullins softening
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was accounted for by the strain amplification concept and was activated by a directional criterion.
The framework was developed in order to avoid any a priori assumption of the mathematical
forms of the elementary strain energy density and of the Mullins softening evolution rule. An
original identification procedure was proposed in order to build both functions from a cyclic
tensile stress-stretch response. An accurate fit of the experimental data provided by a cyclic
proportional uniaxial tensile test illustrated the model ability to capture the material stress-
softening. Once identified on a proportional cyclic test, the model was shown to successfully and
accurately predict uniaxial stress-stretch responses of non-proportional uniaxially or biaxially
pre-stretched samples. Finally, the model and the identification procedure were applied on
various filled rubber materials evidencing di↵erent mechanical behaviors and sensitivities to the
Mullins softening. The results showed favorable comparisons and illustrated the model flexibility
to apply to a wide range of rubber-like materials.

This current chapter closed the investigations on the Mullins softening reported within the
thesis. In Chapter 3, a quantitative method to characterize the Mullins softening under uniaxial
tension loading conditions has been proposed. The mechanical quantity driving the Mullins
softening evolution under general loading conditions has been determined within Chapter 4.
Finally, the current Chapter 5 has provided constitutive equations to model the mechanical
behavior of filled rubbers accounting for the Mullins softening. In order to complete our study,
the next chapter is addressing the cyclic softening that evolves with the number of cycles.
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Chapter 6

Characterization and modeling of
the cyclic softening

Most of this chapter has been published and can be found in reference:

- Yannick Merckel, Julie Diani, Mathias Brieu, Daniel Berghezan, 2011. Exper-
imental characterization and modelling of the cyclic softening of carbon-black
filled rubbers, Materials Science and Engineering A, 528, 8651-8659.

Several carbon-black filled styrene-butadiene rubbers were submitted to uniaxial
tension cyclic tests at large strain to investigate filled rubbers cyclic softening.
In order to study the e↵ect of the material composition (amount of fillers and
crosslink density) and of the stretch intensity, an original method for cyclic soft-
ening characterization is proposed. The softening is seen as an amplification of the
stretch in the rubber gum, and a stretch amplification factor is then introduced
as the softening parameter. The latter is evaluated for various materials and sev-
eral levels of cyclic stretch intensity. Material softening is shown to increase with
the loading intensity, the amount of carbon-black fillers and the decrease of the
crosslink density. In terms of modeling, the introduced softening parameter pro-
vides access to the entire stress-stretch responses of the softened material for any
cycle. Therefore, a model is written for the description and the prediction of the
stress-stretch responses of filled rubbers during proportional cyclic tests.
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6.1. Introduction

6.1 Introduction

Rubber-like materials are used in various industrial applications. Elastomeric parts are
particularly suitable for engineering applications designed to be submitted to cyclic loading
conditions, like tires or vibration isolators. In order to increase their sti↵ness (Mullins and
Tobin, 1965; Kohls and Beaucage, 2002) and delay crack propagation (Auer et al., 1957; Mars
and Fatemi, 2004b; Mzabi, 2010), fillers are added to rubber compounds. Resulting from this
adjunction, rubbers show an undesired stress softening known as the Mullins e↵ect (Mullins,
1969) when first loaded. Considering proportional cyclic loadings, the Mullins softening may be
linked to the maximum stretch applied to the material along the loading history. Once the latter
softening occurred, the material softening evolves so slowly with respect to the number of cycles
(Mars and Fatemi, 2004a; Brieu et al., 2010) that the changes of the mechanical behavior between
two successive cycles may rapidly become unnoticeable. The stress softening occurring during the
first cycle and attributed to the Mullins e↵ect has been the focus of numerous contributions over
the past decades (see Diani et al. (2009) for a review) while contributions on rubbers submitted
to a large number of cycles usually aim at studying lifetime (see Mars and Fatemi (2002) for a
review). Actually, only few papers have been drawing their attention to the evolving mechanical
behavior of rubbers during cyclic loading conditions (Shen et al., 2001; Gentot et al., 2004; Mars
and Fatemi, 2004a; Brieu et al., 2010), and yet, when used as structural parts submitted to
cyclic loadings, one may be interested in rubber cumulative stress-softening induced by large
number of cycles.

Moderate (few percent of strain) cyclic uniaxial tests on notched samples reveal that close
to the crack, strains may reach several hundred percent (Mzabi, 2010; Mzabi et al., 2011).
In this highly strained local region, the material undergoes a relatively low number of cycles
(typically 1000) before the crack propagates through the highly strained region. Therefore, the
study of rubber softening at large strain during a moderately large number of cycles, may be
a key ingredient in the crack propagation understanding. In the current study, we will focus
on the secondary stress-softening that begins after the first cycle when the major part of the
Mullins softening had happened, at large strain and for a moderately large number of cycles.
For this purpose, an original approach for rubber softening characterization is proposed based
on the concept of stretch amplification due to material softening. Unlike the standard softening
characterization method based on the observation of the maximum stress change (resp. strain)
with respect to the number of applied cycles at constant maximum strain (resp. stress), this
original approach introduces a softening parameter identified on the entire material stress-stretch
responses. Such an approach provides an e↵ective parameter for the comparison of the softening
of materials of di↵erent compositions and for the prediction of the stress-stretch responses for
any number of cycles. Hence, we will first compare the softening of styrene-butadiene rubbers
according to the amount of fillers and the crosslink density, and second we will write constitutive
equations for modeling the cyclic softening of filled rubbers.

In the following section, the material strategy and the experimental procedure are presented.
Then in Section 6.3, we introduce the original softening parameter and highlight its interest.
Section 6.4 shows the e↵ect of mechanical and material parameters like the loading intensity, the
amount of fillers and the crosslink density on the softening of SBR materials. In Section 6.5 we
show how the introduced softening parameter provides a simple tool for modeling the softened
stress-stretch responses of rubbers for large strain proportional loadings. Finally, concluding
remarks close the chapter.
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6.2 Materials and experiments

6.2.1 Materials

For this study, several filled SBRs were considered in order to investigate the relation between
the material composition and the material cyclic softening. As in Chapter 3, the material
strategy was to vary the filler volume fraction � and the crosslink density N

c

. Therefore, we
considered materials C2 to C6 for � changes and materials B4, C4, D4 and E4 for N

c

changes.
See Chapter 2 for detailed composition.

6.2.2 Experiments

Mechanical tests were conducted on the uniaxial tensile machine. All tests were run at a
constant crosshead speed of 180 mm/min, which according to the sample dimensions is equivalent
to an average strain rate close to 10�1 s�1. For each test, a fresh sample was submitted to 1000
cycles from null force to a chosen maximum stretch measured locally. In order to illustrate the
e↵ect of the material compositions on their mechanical behavior, the material responses during
the first cycle are shown in Figure 6.1. One notices the strong e↵ect on the mechanical behavior
of both the amount of fillers and the crosslink density.
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Figure 6.1: Material stress-stretch responses during the first cycle. (a) Materials with similar
filler volume fraction � ⇡ 0.16 (40 phr) and di↵erent crosslink densities. (b)
Materials with similar crosslink densities Nc ⇡ 7 ⇥ 10�5 mol/cm3 and di↵erent
amounts of fillers.

6.2.3 Decoupling the Mullins e↵ect from the cyclic softening

Performing a cyclic loading with increasing the maximum stretch at each cycle highlights
the strong stress-softening occurring at the first cycle when reaching a level of stretch never
undergone by the material (Figure 6.2a). This softening is attributed to the Mullins e↵ect. Then,
performing cyclic loadings by repeating cycles with set constant maximum stretch, provides
evidences of a secondary cyclic softening that depends on the number of cycles (Figure 6.2b).
In order to isolate the cyclic softening, we limit our study to the mechanical responses after
the first cycle. Therefore, in the sequel, we designate the second loading-unloading as the cycle
(N = 1).

The following section presents an original characterization of cyclic softening for proportional
cyclic loadings.
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Figure 6.2: Material C4 stress-stretch responses to a uniaxial tensile cyclic tests. (a) With
the maximum stretch increasing at each cycle. (b) With the maximum stretch
remaining constant at each cycle.

6.3 Original characterization of cyclic softening

6.3.1 Softening standard parameter

Commonly used in continuum mechanics for metallic materials (Lemaitre and Chaboche,
1985), the concept of continuum damage variable (Kachanov, 1958), was extended to rubber-
like materials by Simo (1987). In order to account for the cyclic stress-softening, Simo (1987)
proposed a penalization of the initial elastic strain energy density W

0

by a damage parameter
D,

W = (1�D) W
0

(6.1)

Let us note that Eq. (6.1) leads to � = (1�D) �

0

. This kind of penalization has been used
many times to model the stress-softening occurring during the first cycle (Simo, 1987; Govindjee
and Simo, 1991; Miehe, 1995; Ogden and Roxburgh, 1999; Beatty and Krishnaswamy, 2000;
Chagnon et al., 2004; Eĺıas-Zúñiga, 2005; Guo and Sluys, 2006; Li et al., 2008) before being
extended to cyclic softening modeling (Shen et al., 2001; Gentot et al., 2004),

�

N = (1�D

N

) �

N=1 (6.2)

where N is the number of cycles.
In order to characterize the stress-softening according to the number of cycles, a method

based on the Eq. (6.2) is frequently used (Shen et al., 2001; Gentot et al., 2004; Mars and
Fatemi, 2004b; Asare et al., 2009; Berrehili et al., 2010; Brieu et al., 2010; Yan et al., 2010; Saintier
et al., 2011). The authors follow the decrease of the maximum stress �

max

, or equivalently of
the maximum force, measured at the peak stretch with respect to the number of cycles. The
softening parameter may be defined as,

D

N

= 1� �

N

max

�

N=1

max

(6.3)

Unfortunately, one may notice that such a parameter characterizes the material softening
by focusing on one point of the stress-stretch response only, which particular point concentrates
most of the viscoelastic response of the material (Diani et al., 2006b). Moreover, knowing that
the material response is nonlinear, using such a parameter will not provide access to an accurate
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Chapter 6. Characterization and modeling of the cyclic softening

estimate of the entire softened stress-stretch responses. Therefore, the next section introduces
an alternative softening parameter.

6.3.2 A new parameter for the estimate of the cyclic softening

As mentioned above, the material softening between two successive cycles may be charac-
terized by the comparison of the stress at a given stretch, an alternative way is to consider the
stretch for a given stress value. Thus a simple interpretation is that the softening is responsible
for an amplification of the stretch at a given stress. Moreover, looking at the similar stress-
stretch response shape curve for every cycle, we may expect the existence of a constant stretch
amplification factor, ↵, for the entire stress-stretch response. Defining the stress-stretch response
at cycle N for an applied maximum of stretch �

max

, by SN (�, �) the softening parameter ↵(N)
is expressed by

SN (�, �) = S1(↵�,�) (6.4)

with ↵ � 1. This parameter will prove to be valuable when every cyclic stress-stretch responses
collapse on the first cycle stress-stretch response with ↵(N) being constant. Therefore, let us
estimate ↵ for material C4.

Figures 6.1 and 6.2 show that every material exhibits a significant hysteresis during the
first cycle, but once the softening occurring during this cycle is evacuated, the loading and the
unloading responses are fairly close and both responses may be used to characterize the material
softening (Diani et al., 2006b). Figure 6.3a shows the loading responses corresponding to material
C4 submitted to a cyclic loading with a maximum stretch �

max

= 3. This Figure illustrates the
ability of the loading responses to capture the cyclic softening, and in the following, we limit our
study to the loading stress-stretch responses only. Let us notice that one could choose to use the
unloading stress-stretch responses without changing the result general trends and conclusions
that are presented in what follows.
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Figure 6.3: Material C4 softening parameter identification. (a) Loading stress-stretch responses
for 1000 uniaxial tension cycles from zero stress up to �

max

= 3. (b) Stress-stretch
loading responses superimposition; in the inset graph, values of ↵(N) providing the
displayed superimposition.

According to Eq. (6.4), the softening parameter ↵(N) relates the mechanical behavior at
the cycle N to the mechanical behavior at the first cycle. For each loading curve, its best
superimposition on the first loading curve (N = 1) provides a value for ↵(N), which is computed
by least squares minimization. Material C4 loading curves superimposition is shown in Figure
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6.3. The inset graph (Figure 6.3b) displays the values of ↵ with the number of cycles. A good
superimposition of every loading curve is obtained, which supports the concept of a stretch
amplification factor as introduced in Eq. (6.4). Moreover due to the nonlinear behavior of
our materials, the existence of the parameter ↵ entails the non existence of a dual parameter
defined by SN (�, �) = S1(�, �(N)�), and sustains the interest of characterizing the softening on
a change in stretch for a given stress rather than the opposite as defined in Eq. (6.2).

The major interest of the parameter ↵ stands in its ability to provide information on the
entire stress-stretch response of the material. Using the first loading response and the change
of ↵ according to the number of cycles, it is possible to estimate the stress-stretch response of
a material at any cycle. Therefore, it is also possible to access to the changes of the material
properties at the lower and the upper boundaries of the cyclic loading, which is equivalent
to estimate the resulting residual stretch and the parameter D

N

, respectively. The residual
stretch is obtained straightforward as �

N

res

= ↵ �

N=1

res

while D

N

is estimated by calculating the
ratio �(↵(N)�

max

)/�(�
max

). Figure 6.4 shows a comparison of �

res

and D

N

provided by the
experimental data and estimated thanks to the values of ↵ identified as Figure 6.3 shows. One
may notice that both quantities �

res

and D

N

are well estimated when considering the stress-
stretch softening on the entire stress-stretch responses as ↵ does. After all, the introduced
parameter ↵ seems to o↵er an attractive potential not only to study but also to model the cyclic
softening of filled rubbers.
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Figure 6.4: Comparison of the experimental data with the estimate given by using the stretch
amplification concept for material C4 with a �
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= 3 cyclic loading amplitude.
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In the next section, we compute and examine the values of ↵ for various maximum stretches
and for the various materials presented in Figure 2.1.

6.4 Experimental results and analysis

6.4.1 E↵ect of material viscoelasticity

We ran tests at a constant moderately high crosshead speed of 180 mm/min as a compromise
to reduce viscoelastic e↵ects without taking too long to conduct the tests. In order to assess the
impact of the viscoelasticity on our results, we have submitted material C4 to 100 cycles up to
�

max

= 3 at a slower constant crosshead speed of 18 mm/min. The parameter ↵ was computed
for both crosshead speed tests according to the procedure explained in the previous section and
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results are presented in Figure 6.5. The stretch amplification factor shows identical values for
both tests and therefore prove to be una↵ected by the viscoelasticity at the moderate crosshead
speed chosen in this study.
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Figure 6.5: E↵ect of material C4 viscoelasticity on the cyclic softening during a 100-cycle test
up to �

max

.

6.4.2 E↵ect of the cyclic stretch intensity on the cyclic softening

This section aims at investigating the impact of the chosen peak stretch on the cyclic soft-
ening. For this purpose, mechanical tests described in section 6.2.2 were conducted for several
maximal stretch �

max

= {2, 2.5, 3, 3.5, 4} on material C4 (� ⇡ 0.16 and N

c

⇡ 7 ⇥ 10�5

mol/cm3). Figure 6.6a shows the change of the softening parameter ↵ according to the number
of cycles N for various �

max

. For the highest peak stretch, �

max

= 4, the sample failure happened
before the end of the test.

First, one may notice that the stress-softening increases slowly and the evolution rate de-
creases rapidly with the number of cycles. Similar observations about the cyclic softening have
been reported in the literature (Gentot et al., 2004; Mars and Fatemi, 2004b; Brieu et al., 2010),
although noticed on parameter D

N

. Second, there is a noticeable impact of the maximum stretch
on the softening evolution and an increase of the softening rate with the maximum stretch. This
e↵ect was also reported by Brieu et al. (2010). In the latter study, the authors showed that the
cycle amplitude had no impact on the softening of non crystallizing rubbers and that the key
parameter was the maximum stretch. We challenged this result on material C4, and we observed
similar results, ↵ is not significantly a↵ected by the cycle amplitude but depends on the �

max

value.
Figure 6.6b is another illustration of the evolution of ↵ with respect to the number of cycles N

and to the maximum stretch. Interestingly, one may notice that the rate @↵/@�

max

is relatively
independent of N . Let us mention that similar results were obtained on materials C5 (� ⇡ 0.19
and N

c

identical to C4) and D4 (� identical to C4 and N

c

⇡ 5⇥ 10�5mol/cm3).

6.4.3 E↵ect of the material compositions on the cyclic softening

In order to study the e↵ect of the crosslink density N

c

and of the fillers volume fraction �,
cyclic tests were performed for each material at the same maximum stretch, �

max

= 3. First, we
compared the evolution of the softening parameters ↵ obtained for materials containing the same
amount of fillers, 40 phr (� ⇡ 0.16) and di↵erent crosslink densities from 3.65 to 10.55 ⇥ 10�5

mol/cm3 (see Tables 2.1 and 2.2). Results are shown in Figure 6.7a. Material B4 (highest N

c

)
failure occurred before the end of the test.
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Figure 6.6: E↵ect of the maximum stretch �

max

on the cyclic softening for the material C4. (a)
Evolution of the cyclic softening parameter ↵ with respect to the number of cycles.
(b) Evolution of the cyclic softening parameter ↵ with respect to the maximum
stretch.

The parameter ↵ appears to increase with the crosslink density decrease with reaching a
plateau for high crosslink densities. It seems that the material ability to soften delays its catas-
trophic failure which is consistent with previous results (Auer et al., 1957; Beatty, 1964; Zhao
and Ghebremeskel, 2001; Mars and Fatemi, 2004b). A physical interpretation of the softening
that may be proposed is a re-organization of the chain network, which is certainly easier when
chains are long (low N

c

) due to the enhancement of the chain mobility. Such an interpretation
would match with our experimental observations
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Figure 6.7: E↵ects of the material composition on the cyclic softening parameter ↵. (a) E↵ect
of the crosslink density for materials with various Nc and a similar filler volume
fraction � ⇡ 0.166 (40 phr). (b) E↵ect of the filler volume fraction for material
with a similar crosslink density Nc ⇡ 7 ⇥ 10�5 mol/cm3 and di↵erent amounts of
carbon-black.

We confronted materials with similar crosslink densities, approximately 7 ⇥ 10�5 mol/cm3,
and various filler volume fractions from 2 to 23%. One may notice the strong impact of the
amount of fillers on the rate of cyclic softening in Figure 6.7b.
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Results presented in Figure 6.7 are original and give access for the first time to the e↵ect
of some of the parameters characterizing the material physical properties on the mechanical
cyclic softening, the softening increasing with the increase of the amount of fillers. Actually,
the presence of fillers introduces strain field heterogeneities and creates highly stretched zones.
Damage develops more easily in these regions, therefore damage and damage rate should raise
in highly filled rubbers. In the present contribution, only the filler fraction and the crosslink
density varied. The cyclic softening of filled rubbers is probably also dependent of other material
parameters, like the nature of gum, the nature, geometry and distribution of fillers... and future
work remains to complete the microstructure impact on the cyclic softening.

6.5 Cyclic softening modeling

This section aims at proving the relevance of the parameter ↵ when modeling the stress-
stretch responses of filled rubbers submitted to proportional cyclic loadings at a constant maxi-
mum stretch. For this purpose, we are considering the stress-stretch responses of virgin samples
submitted to 1000 cycles from zero stress up to �

max

stretch. As previously, we will neglect
the filled rubbers viscoelasticity and assume that the loading stress-stretch responses are repre-
sentative of the material responses during the cyclic loadings. The material responses after the
first cycle are a↵ected by the maximum stretch intensity due to the Mullins softening. modeling
the Mullins softening is out of the scope of this chapter and therefore we will assume that the
maximum stretch dependent 2nd-cycle (N = 1) stress-stretch responses are known. Then, the
N

th-cycle stress-stretch response should be reproduced thanks to parameter ↵ for any value of
N .

6.5.1 General constitutive equations

Filled rubber loading responses are typically reproducible with a hyperelasticity framework
within the residual stretch correction. Filled rubbers may reasonably assumed incompressible
in uniaxial tension and hyperelastic constitutive equations writes as,

� =
@W(F )

@F

F

t � pI (6.5)

where � is the Cauchy stress, W the strain energy density, F the deformation gradient, and p

an arbitrary hydrostatic pressure. The material stress-stretch nonlinearity demands the use of
a phenomenological strain energy density for an accurate fit. A strain energy density dependent
of the right Cauchy green tensor (C = F

t

F ) first invariant I

1

and introduced by Lambert-Diani
and Rey (1999) is used for its ability to provide very good fits for a wide class of filled rubbers,
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In the case of uniaxial tension, Eqs. (6.5) and (6.6) combine into,
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with �, the e↵ective stretch which is defined by correcting the measured stretch by the residual
set (stretch at zero stress), � = �

N=1

/�

N=1

res

.
Once the material has undergone an initial loading cycle up to a given �

max

, the first softened
response (N = 1) is approximated by Eq. (6.7). Then the N

th-cycle stress-stretch response is
estimated using Eq. (6.4) where parameter ↵ still requires a mathematical expression. In the
next section such an expression is proposed with some interesting parameter analysis.
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6.5.2 Softening parameter equation

The analysis of Figures 6.6 and 6.7 shows that the parameter ↵ dependence to the number
of cycles N may be well reproduced by a simple mathematical expression of the form,

↵ = 1 + a

⇣
lnN

⌘
b

(6.8)

with parameters a and b depending on the material physics (type of gum, type and amount of
fillers, microstructure...) and on the loading intensity.

In order to better understand the contribution of each parameter a and b in the representation
of ↵, Figure 6.8 presents estimates of ↵ provided by Eq. (6.8) obtained for an identical parameter
b (b = 0.57) and a material-dependent parameter a. Such a procedure supplies relatively good
fits, that cannot be obtained by setting a constant and by varying b according to the material.
In the present study, all materials were made of the same type of gum, the same type of fillers
and using the same process, which certainly favor a weak dependence of ↵ to the parameter b,
but it cannot be expected that b remains constant for all filled rubbers. Setting b to a constant
value, the changes of the cyclic softening are captured by a only. Values of the latter parameter
are displayed in Figure 6.9 with respect to the crosslink density, the amount of fillers and the
stretch intensity.
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Figure 6.8: Fit of the cyclic softening parameter ↵ shown in Figure 6.7 by the mathematical
relation Eq. (6.8) with b = 0.57 and material-dependent values of a.

The parameter a trends are representative of the softening trends that were discussed earlier
in section 6.4, when a increases the softening (or equivalently the rate of ↵) increases. One may
notice in Figure 6.9 that a varies with the stretch intensity according to a similar trend for the
tested materials C4 (� = 0.16, N

c

= 7.38 ⇥ 10�5 mol/cm3), C5 (� = 0.19, N

c

= 8.26 ⇥ 10�5

mol/cm3) and D4 (� = 0.16, N

c

= 5.42 ⇥ 10�5 mol/cm3). Thus, it was shown here that in
a modeling e↵ort, b could be set to a constant value for the all set of materials and for any
maximum stretch �

max

.
In order to propose not only descriptive modeling but also predictive modeling, parameters a

and b were computed for each materials on a reduced set of data obtained on a limited number of
cycles. Then, the values of ↵ obtained with Eq. (6.8) and the fitting parameters were confronted
to the experimental data on 1000 cycles. When considering the first 50 cycles only, one obtains a
very good estimate of ↵ for the entire 1000-cycle test as it is shown in Figure 6.10. This reveals
the strong potential of monitoring cyclic softening by the combination of Eqs. (6.4) and (6.8),
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Figure 6.9: E↵ects on the cyclic softening of the crosslink density (left), the filler volume frac-
tion (center) and the peak stretch value of the cycles (right) as pictured by the
parameter a providing the fits presented in Figure 6.8.

such equations providing tools for predicting the material softening for a large number of cycles
(1000) while testing it for a relatively low number of cycles (50 here).

As mentioned in the introduction, our tests are representative of the high stretch during
a moderate number of cycles undergone by filled rubbers near a crack tip during the crack
propagation. Actually, at high stretches it is more likely that samples will break after a moderate
number of cycles, and some of our samples fractured before completing a thousand cycles (see
material C4 in Figure 6.6 or material B4 in Figure 6.7). Nonetheless, the modeling presented
here could probably applied over a larger number of cycles at moderate stretches. Additional
fatigue tests, di�cult to run in uniaxial tension due to the test duration required by such a
loading condition, would be interesting to carry in order to prove it.
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Figure 6.10: Fit of the cyclic softening parameter ↵ shown in Figure 6.7 by the mathematical
relation Eq. (6.8) using free parameters a and b. Fit obtained using the first 50
cycles (solid line) and fit obtained using all the cycles ( dashed line).

In the next section the modeling presented here and defined by Eqs. (6.7), (6.4), and (6.8)
is confronted to the cyclic stress-stretch representation.
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6.5.3 Comparison between the model and the experimental data

For each maximum stretch, the parameters �

i

from Eq. (6.7) are computed on the N = 1
loading responses by a least squares minimization. Values of these parameters appear in table
6.1 and the comparison of the model with the experimental data is shown in Figure 6.11. For
every �

max

, the entire stress-stretch responses (from � = 1.1 to �

max

) are estimated within an
average error of 5%, which is satisfactory for nonlinear large strain fits.

�

max

�

0

�

1

�

2

�

N=1

res

2.0 �2.24 .10�1 �4.49 .10�1 2.66 .10�1 1.052
2.5 �3.20 .10�1 �2.47 .10�1 1.04 .10�1 1.071
3.0 �4.22 .10�1 �1.58 .10�1 5.35 .10�2 1.085
3.5 �4.73 .10�1 �1.20 .10�1 3.22 .10�2 1.109

Table 6.1: Model parameters for the fit of the maximum stretch dependent stress-stretch re-
sponses of material C4 after one cycle at �

max

.
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Figure 6.11: Material C4 first maximum stretch dependent stress-stretch response at the N = 1
cycle and model fit using parameters in Table 6.1.

In order to estimate the N

th-cycle stress-stretch responses, parameters a and b from Eq.
(6.8), could be calculated for each cyclic tests. Nonetheless, we noticed in section 6.5.2 that b

could be chosen constant for every test (b = 0.57), then values of a may be optimized for each
�

max

. The limit of such a procedure stands in the necessity to test the material at every stretch
level before estimating its softening. Another interesting procedure is to test the material at
a mean maximum stretch, �

max

= 3 for instance, and estimate a and b on this test only. We
then expect to predict reasonably well the stress-stretch responses for any cycle and any �

max

knowing the stress-stretch response at cycle N = 1 for any �

max

. We have applied this procedure
to C4, the mean squares minimization resulting parameter is a = 0.0125. Then, estimates of the
N

th cycle stress-stretch responses for �

max

2 {2, 2.5, 3, 3.5} were computed with parameters
from table 6.1, and a = 0.0125 and b = 0.57. The mean error between the experimental data
and the model estimates ranged between 3% and 6%, which is similar to the error generated
by the hyperelasticity fit of cycle 1. A very satisfying comparison between the model and the
experimental data stress-stretch responses for the 10th and the 1000th cycle is shown in Figure
6.12. Similar results were obtained for materials C5 and D4 which were tested at various �

max

too.
Finally, for proportional loadings, we propose to account for filled rubbers cyclic softening

by introducing a stretch amplification factor Eq. (6.4) revealing the material softening occurring
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Figure 6.12: Material C4 10th-cycle and 1000th-cycle stress-stretch responses for cyclic loadings
at various maximum stretch and model estimates of the stress-stretch responses.

after an initial pre-loading cycle. This stretch amplification factor may be formulated by the
simple mathematical expression Eq. (6.8) and therefore may be characterized by two parameters
a and b. These parameters can be evaluated on a limited number of cycles and then successfully
extended to a larger number of cycles (Figure 6.10). In this study, we were able to set constant
the parameter b for all materials and all maximum stretch level. Then, parameter a was shown
to vary with the material composition and the loading conditions (Figure 6.9). Nonetheless,
when considering a single value of a for a given material composition, defined by the mean of
the best fit values obtained on the change of ↵ measured at various stretch intensities, we showed
a remarkable good prediction of entire stress-stretch responses measured after a large number
of cycles (Figure 6.12) and for a large range of stretch intensities.

6.6 Conclusion

This chapter aimed at studying the softening of carbon-black filled styrene butadiene rub-
bers during cyclic uniaxial tension loadings at large strain. We focused our interest on the
material mechanical responses once the first cycle already applied. In order to estimate how
these responses evolved with the loadings, we introduced an original parameter characterizing
the material softening with respect to the number of cycles applied. Unlike classic parameters
found in the literature, the introduced parameter is estimated on the entire stress-stretch re-
sponses of the softened material. It is defined as a stretch amplification factor, evidencing the
larger deformability of softened materials. This parameter was shown to provide a useful tool for
a quantitative comparison of the softening of di↵erent materials or of the same material at vari-
ous maximum cyclic stretches. The experimental results show that filled rubbers cyclic softening
increases when adding fillers, decreasing the crosslink density and increasing the loading stretch
intensity. In terms of modeling, the introduced parameter evolution with respect to the number
of cycles is easily formalized by a 2-parameter ln function. Combined with a classic hyperelastic
strain energy function, it was shown that testing the material during a limited number of cycles
could be su�cient to predict its responses for a quite larger number of cycles.
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Summary

Chapter 1 reports and analyzes a literature review on the mechanical behavior of rubber-like
material submitted to cyclic loading conditions. Significant modeling issues are noticed and the
experimental strategy is established to assess all necessary experimental data. Testing devices
and general experimental techniques, mostly developed within the thesis duration are also de-
scribed. Chapter 2 introduces the studied materials. Various compounds were considered with
changes in the filler amount and the crosslink density. Volume changes are investigated under
uniaxial stretching. Results show that material incompressibility assumption seems unrealistic
upon monotonous stretching but remains consistent when considering cyclic loading conditions.
Then, material mechanical behaviors were characterized using uniaxial tension tests. Under
monotonic loading conditions, the material sti↵ness increases with the increase of filler amount
and of crosslink density. The stretch to failure increases with the decrease of the crosslink density
but exhibits an optimum according to the amount of fillers. Basic features under cyclic loading
conditions are illustrated and discussed in order to introduce the subsequent chapters. Chapter
3 proposes a method to characterize and quantify the Mullins softening in order to compare
its dependence to the material composition. For this purpose, the strain amplification factor
concept is revisited. A decomposition of the factor into a softening parameter and a reinforc-
ing parameter is proposed. Samples were submitted to cyclic uniaxial tests and the softening
parameter is computed for each material. Results highlight that the crosslink density has a
negligible impact on the Mullins softening, and that increasing the filler amount increases the
Mullins softening. Chapter 4 defines a Mullins softening activation criterion for filled rubbers
submitted to general loading conditions. The criterion is grounded on an original analysis of un-
conventional experimental data. The experimental procedure aims at applying proportional and
non-proportional loadings paths including cyclic uniaxial and biaxial tension tests. A softening
evolution parameter is proposed in order to recognize the Mullins softening activation from a
cyclic stress-stretch response with an increase of the maximum stretch. Results provide solid
evidences for the definition of a Mullins softening activation criterion as the three-dimensional
surface of the maximum directional stretches undergone by the material along its loading history.
Chapter 5 proposes a constitutive model for the mechanical behavior of filled rubbers capturing
the Mullins softening. The constitutive equations are grounded on a thorough analysis of orig-
inal experimental data. The model is based on a directional approach. The Mullins softening
is accounted for by the strain amplification concept and is activated by a directional criterion.
The framework is developed in order to avoid any a priori assumption of the mathematical
forms of the elementary strain energy density and of the Mullins softening evolution rule. An
original identification procedure is proposed in order to build both functions from a cyclic tensile
stress-stretch response. An accurate fit of the experimental data provided by a cyclic propor-
tional uniaxial tensile test illustrates the model ability to capture the material stress-softening.
Once identified on a proportional cyclic test, the model is shown to successfully and accurately
predict uniaxial stress-stretch responses of non-proportional uniaxially or biaxially pre-stretched
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samples. Chapter 6 studies the cyclic softening that evolves with the number of cycles. A pa-
rameter is introduced in order to characterize and quantify the material softening with respect
to the number of cycles. It is defined as a stretch amplification factor. Proportional cyclic
uniaxial tensile tests are considered. The results show that the cyclic softening increases when
adding fillers, decreasing the crosslink density and increasing the loading stretch intensity. In
terms of modeling, the introduced parameter is extended to accurately predict the stress-stretch
responses of the softened material for any number of cycles.

Discussion

Many experimental developments were carried out during the thesis in order to apply the
experimental strategy. The most significant additions are introduced in Chapter 1.

• A video extensometer system including an automatically controlled vertical motorized ad-
justable support has been entirely redesigned and rebuilt. The objectives were to improve
the measurement of the strains and to increase the existing equipment versality and robust-
ness in order to allow unconventional experiments. Along the thesis, this system was used
for non-proportional loading paths, in order to study the material anisotropy evolution, to
measure the material volume changes,...

• A planar biaxial testing device has been entirely engineered. This device was built with
basic and standard technological components. Therefore, it was a value-priced e�cient
solution for applying complex loading conditions. A significant advantage of this device is
the control in real time of the stretching by measurements of the sample local stretches.
Such a control ensures accurate loading paths (di↵erences between the local stretches and
global strains estimated from the grip motions are large).

Both experimental solutions are currently in a finalization process in order to be easily
transferred to other laboratories or research teams. A first transfer of the video extensometer
system including the motorized adjustable support has already and successfully been performed
to the laboratory PIMM of the ENSAM Paris.

Some original experimental characterization methods have been developed in order to fulfill
the thesis objectives. These experimental methods may be extended for other analysis.

• The characterizations of the Mullins and the cyclic softening evolutions under proportional
loading conditions proposed in Chapters 3 and 6, were used to quantify the e↵ect of the
stretching intensity, the fillers amount and the crosslink density. They may be used for
studying other microstructure parameters such as the type of gum, the type and the nature
of fillers, the e↵ect of other additives,... They may also be extended for studying other
phenomena such as the crystallization, the dependencies to thermal history, the oxidation,
the e↵ect of environmental agents,...

• The method defined in order to recognize the Mullins softening activation in Chapter 4 was
used to study the e↵ect of a non-proportional pre-loading. It may be used for studying
other e↵ects or phenomena, for instance the Mullins softening recovery. Moreover, the
method may be used to assess the maximal loading history within a filled rubber structure
undergoing loading conditions that cannot be observed in situ. By studying material sam-
pled in various directions, the three-dimensional post-loading Mullins softening criterion
can be computed. Such an experimental characterization may be useful in order to verify
the results of complex structural analysis provided by finite element computation.
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In term of mechanical behavior modeling, some developments have been proposed for the
Mullins softening and for the cyclic softening in Chapters 5 and 6, respectively. Put together,
they provide a model able to capture the material hyperelasticity, the stress-softening, the resid-
ual stretch and the induced anisotropy. Dependencies to the type of loadings, the loading
intensity and to the number of cycles are accounted for. The model ability to accurately predict
the mechanical behavior of non-proportional uniaxially or biaxially pre-stretched materials has
been shown. Therefore, the main thesis objective, which is to provide a constitutive modeling
able to predict the mechanical behavior of the material in the vicinity of a crack tip, is fulfilled.

Future works

In the previous section, some possible directions for future works have been discussed. They
are based on a direct application of ”tools” developed during the thesis. These tools were used
in order to reach the thesis objective, but they may easily be extended for other purposes. This
section focus now on future works regarding the modeling of the material behavior.

The constitutive model proposed in this thesis is grounded on a thorough analysis of original
experimental data. However, the model is still phenomenological and the equations do not have
any physical meaning. The framework is developed in order to avoid any a priori assumption of
the mathematical forms of the elementary strain energy density, f , and of the Mullins softening
evolution rule. Both functions are built from the experimental data according to the identifica-
tion procedure proposed in Chapter 5. Let us note that the Mullins softening evolution rule is
in perfect agreement with the experimental results shown in Chapter 3.

A possible opportunity for future works is given by the identification of f . The evolution of f

is una↵ected by the damage or by the material anisotropy. It captures the mechanical behavior
of the virgin material along a single direction and Figure 5.12 illustrates its dependence to
the amount of fillers. Some complementary investigations aiming at developing physically-based
equations for f would be interesting. Moreover, once a satisfactory equation is built, the Mullins
softening might be accounted for using a physical interpretation. Such a formalism will allow to
relate the material behavior to its microstructure.

The large amount of experimental works performed during the thesis puts in light that
the cyclic softening and the residual stretch can be characterized by a stretch amplification
and accounted for in a tridimensional model by a decomposition of the deformation gradient
tensor (i.e. F = F

e

F

p

, see Chapter 5). Hence, the cyclic softening and the residual stretch are
interpreted as a material flow. It worth notices that for filled rubber materials, the viscoelasticity
is commonly accounted for with such a decomposition. Moreover, experimental evidences prove
that the F

p

flow is strongly dependent on viscoelasticity. Therefore, it seems interesting to
account for both phenomena in a similar manner, even if various criteria and driving parameters
may be expected.

The model develops during the thesis focus on the equilibrium responses only. Its e�ciency
has been demonstrated. It may now become essential to extend the constitutive equations in
order to account for the material viscoelasticity.

There is still a major issue that needs to be addressed. The evolution of F

p

(including
both the residual stretch and the cyclic softening) is quite well established under proportional
uniaxial tension loadings. However, the experimental evidences addressing the evolution of F

p

under non-proportional loading conditions are very limited (if any).
A future works, with relatively long term perspectives, is to assess the evolutions of F

p

valid for general loading conditions. For this purpose, significant experimental and numerical
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developments are necessary. It is worth noticing that the procedure proposed for the Mullins
softening criterion would not work for such a purpose due to the strong viscoelasticity depen-
dence of F

p

. An original experimental procedure needs to be defined. This procedure should
use the constitutive modeling introduced in Chapter 5 as a starting point. Then, evolution
rules for F

p

should be built by comparing the di↵erences between the model predictions and
the experimental data. However, modeling the mechanical behavior of a sample submitted to
successive non-proportional loading conditions is not straightforward. During the experiments,
the stresses and the stretches undergone by the samples are not homogeneous, since a structural
problem exists. For such a problem, the constitutive equations should be implemented into a
finite element code. The sample and the experimental boundary conditions should be modeled
and implemented in order to perform some computations. The experimental displacement fields
of the sample stress free face could be measured using digital image correlation. The experi-
mental measured displacement fields and the numerical computed displacement fields should be
compared. Finally, the dialogue between the experimental data and the model should be es-
tablished. Once the experimental and numerical developments are completed, building relevant
constitutive equations for F

p

remains an interesting challenge.
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Chapitre 1 : Revue de la littérature et méthodes expérimentales

Ce premier chapitre a pour objectif de fournir les bases qui seront utiles dans
l’ensemble des chapitres suivants. Dans un premier temps, il présente une revue
de la littérature sur le comportement mécanique des élastomères chargés lorsqu’ils
sont soumis à des conditions de chargement cycliques. Une analyse de cette re-
vue permet de mettre en évidence des lacunes dans les modèles de comportement
actuellement proposés ainsi qu’un manque de données expérimentales. Cela per-
met alors de définir une stratégie expérimentale. La seconde partie de ce chapitre
est consacrée à la présentation des méthodes expérimentales associées qui ont été
développées.

Du fait de longues châınes macromoléculaires réparties aléatoirement et réticulées, les élasto-
mères possèdent des propriétés élastiques remarquables. Dans le but d’améliorer certaines pro-
priétés mécaniques telles que la raideur ou la résistance à la propagation de fissures, des charges
sont ajoutées à la gomme élastomère. Cependant, l’ajout de ces charges induit un inconvénient
majeur, un adoucissement important de la contrainte suite au premier cycle de chargement. Cet
adoucissement est communément nommé adoucissement Mullins du fait de l’important travail
conduit sur le sujet par Mullins (1947, 1949, 1950, 1969). Les principales caractéristiques de
l’adoucissement Mullins sont mises en évidence sur la Figure 1.2. Suite à une première charge,
il se produit un adoucissement important de la contrainte. Quand des cycles sont répétés,
avec une amplitude maximale inférieure à la déformation maximale vue au cours de l’histoire
du chargement, alors l’évolution de l’adoucissement est très lente. Par contre, l’adoucissement
évolue de façon importante si cette déformation maximale est franchie. Avec l’adoucissement, il
se produit également une évolution de la déformation résiduelle à contrainte nulle. De plus, en
appliquant des chargements non proportionnels, il apparâıt que l’adoucissement Mullins induit
une anisotropie du comportement mécanique. A ce jour, il n’y a toujours pas d’accord général
sur la compréhension des phénomènes physiques conduisant à l’apparition de l’adoucissement
Mullins, ni sur sa caractérisation, ni sur sa modélisation (Diani et al., 2009).

Quand des cycles sont répétés avec la même déformation maximale, il se produit une évolution
de l’adoucissement avec le nombre de cycles. Cet adoucissement secondaire, mis en évidence sur
la Figure 1.3, est désigné sous le terme ”adoucissement cyclique” durant l’ensemble de cette thèse.
L’évolution de l’adoucissement cyclique est très lente et elle devient rapidement imperceptible
entre deux cycles successifs. Cependant, son e↵et ne peut pas être négligé si un grand nombre
de cycles est considéré. Actuellement les contributions sur le problème des élastomères soumis
à un grand nombre de cycles ont principalement pour objectif l’étude de la durée de vie ou de
la propagation de fissures. Très peu s’intéressent à l’évolution du comportement mécanique.

La modélisation du comportement cyclique des élastomères chargés reste un problème ma-
jeur. Une revue de la littérature sur le sujet met en évidence que les lois de comportement
actuellement proposées comportent des lacunes importantes. De plus, il apparâıt que ces la-
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cunes sont directement associées à un manque de données expérimentales rapportées. Afin
de pallier ce manque de données expérimentales, une stratégie expérimentale est définie. Des
moyens expérimentaux ainsi que des protocoles d’essais ont été développés dans ce but. Ils sont
présentés et détaillés Section 1.6.

Chapitre 2 : Matériaux

Plusieurs élastomères chargés ont été utilisés durant cette thèse. Ils sont présentés
et caractérisés dans ce chapitre. Tout d’abord, l’hypothèse d’incompressibilité est
investiguée par des chargements de traction uniaxiale puis sa validité est discutée.
Ensuite, l’e↵et de la microstructure sur les réponses en traction monotone est
étudié. Finalement, des chargements cycliques sont appliqués afin d’illustrer des
observations basiques de l’adoucissement Mullins et de l’adoucissement cyclique.
Une partie des travaux présentés dans ce chapitre a été publiée et peut être trouvée
dans la référence Merckel et al. (2011a).

Lors du Chapitre 1, une stratégie expérimentale a été définie. Ce second chapitre présente
la composante matériau de celle-ci, c’est-à-dire le plan matériau.

Le comportement mécanique d’un élastomère chargé dépend très fortement de sa compo-
sition. Il en va de même pour l’évolution de l’adoucissement qu’il développe sous chargement
cyclique. Dans le but d’étudier cette dépendance, plusieurs matériaux sont considérés et la
stratégie utilisée a consisté à faire varier la fraction de charge et la densité pontale de la gomme.
Comme l’anisotropie du comportement mécanique est un aspect majeur qui sera abordé dans la
suite de cette thèse, l’anisotropie induite par le procédé de fabrication est étudiée par des essais
de traction uniaxiale. Il apparâıt que les matériaux présentent une anisotropie transverse. Une
fois cette anisotropie mise en évidence, une caractérisation basique des matériaux est réalisée en
utilisant des essais de traction uniaxiale.

Le premier objectif expérimental de ce chapitre est de valider, ou d’invalider, l’hypothèse
d’incompressibilité qui est communément admise pour les matériaux élastomères. Cependant,
plusieurs contributions rapportent des variations de volume importantes se produisant lors de
chargements de traction (Le Cam, 2010). Des essais sont réalisés afin d’étudier la variation de
volume se produisant pour les matériaux choisis et les conditions de chargement utilisées dans la
suite. Les résultats mettent en évidence des variations de volumes importantes lors de charge-
ments monotones. Dans ce cas, l’hypothèse d’incompressibilité est très discutable. Cependant,
les résultats montrent également que cette hypothèse reste valide si des chargements cycliques
sont considérés. Donc, pour la suite, la contrainte de Cauchy résultante d’un chargement de
traction uniaxiale sera calculée en faisant l’hypothèse d’incompressibilité. Les modélisations du
comportement et de l’endommagement des élastomères seront faites en utilisant une formulation
incompressible.

Le second objectif expérimental est d’étudier les dépendances entre la réponse mécanique
contrainte-élongation et la composition du matériau. Pour cela, des essais de traction uniaxiale
monotone jusqu’à rupture sont réalisés. Les résultats mettent en évidence une forte dépendance
de la raideur vis-à-vis de la densité pontale et du taux de charge, celle-ci augmentant avec le
taux de charge et avec la densité pontale. Au contraire, il apparâıt que l’élongation à rupture
augmente fortement quand la densité pontale diminue alors qu’elle présente une valeur optimale
en fonction du taux de charge.

Finalement, le troisième objectif expérimental est d’illustrer quelques caractéristiques basiques
de l’adoucissement se produisant lorsqu’un matériau est soumis à un chargement cyclique. Les
dépendances de l’adoucissement Mullins et de l’adoucissement cyclique vis-à-vis de la compo-
sition du matériau sont également étudiées dans le but d’introduire les travaux présentés dans
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les chapitres suivants. Concernant tout d’abord l’adoucissement Mullins, les résultats mettent
en évidence qu’il ne se produit pas d’adoucissement pour une gomme de SBR non chargée. De
plus, il apparâıt que ”l’intensité” de l’adoucissement Mullins augmente fortement avec le taux
de charge, cependant, l’e↵et de la densité pontale est quant à lui moins évident. Actuellement,
il n’y a pas de méthode disponible dans la littérature permettant de quantifier cette ”intensité”
de l’adoucissement Mullins et donc de pouvoir comparer plusieurs mélanges. Ce problème sera
traité dans le Chapitre 3. En ce qui concerne l’adoucissement cyclique, la diminution de la con-
trainte maximale et l’augmentation de la déformation résiduelle sont utilisées pour caractériser
l’évolution de l’adoucissement avec le nombre de cycles. Les résultats mettent en évidence un
e↵et important de la fraction de charge, cependant, l’e↵et de la densité pontale ne peut pas être
clairement établi. Il semble donc que le paramètre couramment utilisé dans la littérature pour
caractériser l’adoucissement cyclique soit discutable. Une solution plus fiable apparâıt alors être
nécessaire. Ce problème sera abordé dans le Chapitre 6.

Chapitre 3 : Caractérisation de l’adoucissement Mullins

Plusieurs élastomères chargés présentant des sensibilités di↵érentes à
l’adoucissement Mullins sont soumis à des chargements cycliques. Dans le
but de quantifier l’adoucissement Mullins, un paramètre d’endommagement basé
sur le concept d’amplification de la déformation est introduit. Ce paramètre est
utilisé pour étudier l’e↵et de la composition des matériaux. Une grande partie
des travaux présentés dans ce chapitre a été publiée et peut être trouvée dans les
références Merckel et al. (2011c) et Merckel et al. (2011d).

En accord avec les résultats expérimentaux présentés Chapitre 2, l’introduction de charges
dans une gomme élastomère conduit à augmenter la raideur et à produire un adoucissement
Mullins. L’e↵et de renforcement induit par les charges est clairement établi, cependant, les
interprétations physiques conduisant à l’apparition de l’adoucissement Mullins sont toujours
débattues. D’après la revue de la littérature présentée Chapitre 1, les évidences expérimentales
de l’adoucissement Mullins sont nombreuses et un nombre important de modèles sont développés
dans le but de le prendre en considération. Cependant, il manque toujours un paramètre ob-
jectif permettant de quantifier l’adoucissement Mullins et donc de comparer l’influence de la
composition des matériaux. Ce chapitre a pour objectif de proposer un tel paramètre.

Le concept d’amplification de la déformation pour représenter l’e↵et de renforcement des
charges dans un élastomère a été introduit par Mullins and Tobin (1965). Pour cela, les charges
et la gomme sont respectivement représentées par des phases rigide et souple. La phase rigide est
supposée indéformable. La déformation dans la phase souple est égale à la déformation moyenne
appliquée sur le matériau amplifiée par un facteur qui augmente avec la fraction volumique de
phase rigide. Cette amplification de la déformation a été largement utilisée dans le contexte de
l’hyperélasticité pour le renforcement induit par la présence des charges. Par la suite, il a été
étendu pour représenter l’adoucissement Mullins en considérant une variation de la fraction de
phase rigide avec l’historique de chargement. L’adoucissement Mullins est alors associé à une
rupture irréversible des agrégats de charge conduisant à une diminution de la fraction ”active”
de charge. Cette représentation a également été largement utilisée dans la littérature avec un
facteur d’amplification de la déformation qui décrôıt avec la déformation maximale appliquée.

Dans ce chapitre, le concept d’amplification de la déformation est utilisé afin de proposer
un paramètre permettant de quantitativement caractériser l’adoucissement Mullins. Dans ce
but, le facteur d’amplification usuellement utilisé dans la littérature est décomposé en deux par-
ties afin de dissocier l’e↵et renforçant induit par les charges de celui associé à l’adoucissement
Mullins. Le paramètre ainsi défini permet alors de quantifier l’adoucissement Mullins et donc
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d’étudier sa dépendance à la microstructure du matériau en comparant di↵érents mélanges. Dans
ce but, des chargements cycliques de traction uniaxiale sont appliqués sur plusieurs matériaux
ayant des compositions di↵érentes afin d’étudier l’influence de la densité pontale et du taux de
charge. Les résultats mettent en évidence que la densité pontale a une influence négligeable sur
l’adoucissement Mullins alors que ce dernier augmente fortement avec le taux de charge. Finale-
ment, il apparâıt que le paramètre proposé présente une dépendance linéaire avec la fraction
volumique de charge ainsi qu’avec la déformation maximale appliquée. Cela conduit donc à une
expression très simple qui permet de prédire l’adoucissement Mullins se produisant pour des
mélanges qui ne sont pas étudiés expérimentalement.

Ce chapitre a proposé une méthode de caractérisation de l’adoucissement Mullins. Cepen-
dant, il peut être noté que seulement des chargements de traction uniaxiale sont considérés.
Pour ce type de chargement, il est clairement établi que l’adoucissement Mullins évolue avec
l’élongation maximale appliquée. Dans le but de proposer une formulation tridimensionnelle
pour modéliser le comportement mécanique, il est nécessaire de définir un ”équivalent” de cette
élongation maximale pour des conditions de chargement plus générales. Ce problème est traité
dans le chapitre suivant.

Chapitre 4 : Critère de l’adoucissement Mullins pour des condi-
tions générales de chargement

Afin de définir un critère général pour l’adoucissement Mullins, des échantillons
d’élastomère chargés sont soumis à des chargements non proportionnels. Chaque
échantillon est initialement soumis à un pré-chargement uniaxial ou biaxial suivi
par une traction uniaxiale cyclique. Une analyse expérimentale originale permet
de déterminer le seuil d’activation de l’adoucissement Mullins et conduit à la
validation d’un critère général pour l’adoucissement Mullins. Une grande partie
des travaux présentés dans ce chapitre a été publiée et peut être trouvée dans la
référence Merckel et al. (2012a).

La revue de la littérature présentée au Chapitre 1 met en évidence que malgré un nombre im-
portant de contributions sur l’adoucissement Mullins, un critère d’activation de l’adoucissement
Mullins valide pour des conditions de chargement générales n’est toujours pas clairement établi.
L’objectif de ce chapitre est de définir un tel critère qui est essentiel pour la modélisation du
comportement des élastomères chargés.

L’e↵et de l’adoucissement Mullins sur la réponse contrainte-élongation d’un élastomère chargé
lors d’un chargement de traction uniaxiale proportionnel est illustré Figure 1.2. Il peut être noté
sur cette figure que l’adoucissement Mullins et la déformation résiduelle augmentent conjoin-
tement avec la déformation maximale appliquée. Mullins (1947, 1949) a conduit une étude
approfondie de ces deux phénomènes. En appliquant des chargements de traction non pro-
portionnels, l’auteur a notamment mis en évidence l’anisotropie de l’adoucissement et de la
déformation résiduelle. Par la suite, la majorité des études se sont limitées à des chargements
proportionnels. Dans le cas d’un chargement proportionnel, l’adoucissement Mullins est piloté
par l’intensité maximale du chargement appliqué. Un grand nombre de solutions a été proposé
pour définir cette intensité (Diani et al., 2009). Jusqu’à maintenant, très peu de contributions ont
utilisé des chargements non proportionnels pour étudier l’adoucissement Mullins et l’anisotropie
qu’il induit. Cependant, de tels chargements sont nécessaires afin de produire les évidences
expérimentales permettant de définir un critère général pour l’activation de l’adoucissement
Mullins.

Ce chapitre propose la définition d’un critère d’activation de l’adoucissement Mullins pour des
élastomères chargés soumis à des conditions de chargement générales incluant des chargements
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non proportionnels. Le critère est fondé sur une analyse originale de données expérimentales non
conventionnelles. En comparant les réponses contrainte-élongation d’un chargement cyclique de
traction uniaxiale, un paramètre est défini afin de capturer l’évolution de l’adoucissement se pro-
duisant entre deux cycles. Ce paramètre permet de détecter une activation de l’adoucissement
Mullins et de déterminer l’élongation nécessaire suivant la direction de traction afin d’obtenir
une réactivation de l’adoucissement Mullins. La méthode est appliquée sur plusieurs échantillons
ayant subi un pré-chargement uniaxial ou biaxial suivi d’un chargement cyclique de traction
uniaxiale proportionnelle ou non proportionnelle. Les résultats permettre d’obtenir de solides
évidences pour définir le critère de l’adoucissement Mullins comme étant la surface tridimen-
sionnelle définie par l’élongation directionnelle maximale subie par le matériau au cours de son
historique de chargement. Deux cas de chargements spécifiques comportant di↵érents trajets
non proportionnels sont considérés afin d’éprouver la capacité prédictive du critère proposé. Les
prédictions du seuil d’activation de l’adoucissement Mullins sont satisfaisantes. La définition
et la validation expérimentale d’un tel critère sont un point critique dans la modélisation de
l’adoucissement Mullins et devraient ouvrir de nouvelles perspectives dans la modélisation du
comportement mécanique des élastomères chargés. Dans le chapitre suivant, des telles pers-
pectives sont exploitées afin de proposer une loi de comportement permettant de capturer
l’anisotropie induite par l’adoucissement Mullins.

Chapitre 5 : Modélisation du comportement anisotrope d’élasto-
mères chargés ayant subi un adoucissement Mullins

Un modèle original est proposé pour des élastomères chargés afin de capturer
le comportement anisotrope adouci induit par des historiques de chargement non
proportionnel. La formulation est fondée sur une analyse approfondie des données
expérimentales. Dans le but de fournir un modèle facilement applicable à une large
gamme de matériaux, le modèle proposé ne nécessite pas de postuler de formes
mathématiques pour la densité d’énergie élémentaire ou pour la loi d’évolution de
l’adoucissement Mullins. Une grande partie des travaux présentés dans ce chapitre
a été soumise pour publication sous la référence Merckel et al. (2012b).

Les études expérimentales menées à l’issue des travaux de Mullins (1947, 1949) se sont
focalisées sur des chargements proportionnels et l’anisotropie induite n’a pas été étudiée plus en
détail durant plusieurs décades. C’est seulement très récemment que plusieurs travaux se sont
à nouveau intéressés à l’anisotropie induite par l’adoucissement Mullins, qui ne peut s’observer
que lorsque des chargements non proportionnels sont appliqués.

En terme de modélisation, un nombre important de modèles de l’adoucissement Mullins
peuvent être trouvés dans la littérature. Cependant, la plupart d’entre eux sont proposés en
faisant l’hypothèse d’isotropie de l’adoucissement Mullins. Très peu ont pour but de capturer
l’anisotropie induite par l’adoucissement. Il apparâıt que les lois à directions permettent de
capturer une telle anisotropie sans grande di�culté et quelques modèles de ce type sont pro-
posés dans la littérature. Cependant, tous ces modèles représentent également une déformation
résiduelle qui est directement imposée et contrainte par la nature de l’anisotropie induite as-
sociée à l’adoucissement Mullins. Cela n’est pas en accord avec les observations expérimentales
qui supportent un découplage des évolutions de ces deux phénomènes. Les modèles directionnels
existants sont basés sur une interprétation physique de l’adoucissement Mullins. Généralement,
ils dépendent d’une densité d’énergie élémentaire fondée sur de la physique et l’adoucissement
Mullins est alors modélisé en considérant une altération des paramètres physiques de la densité
d’énergie élémentaire. Dans le but de représenter de nouvelles données expérimentales, la densité
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d’énergie élémentaire ainsi que la loi d’évolution de l’adoucissement Mullins doivent alors être
modifiées afin d’être adaptées au nouveau matériau.

Ce chapitre propose une formulation générale pour modéliser le comportement hyperélastique
des élastomères chargés avec une prise en considération réaliste de l’anisotropie induite par
l’adoucissement Mullins. Pour cela, une approche directionnelle est utilisée avec le critère
anisotrope d’activation de l’adoucissement Mullins présenté au Chapitre 4. Tout d’abord, en
accord avec les évidences expérimentales, les évolutions de l’adoucissement Mullins et de la
déformation résiduelle sont découplées. Ensuite, la prise en considération de l’adoucissement
Mullins est faite afin d’éviter des hypothèses vis-à-vis des formes de la densité élémentaire
d’énergie et de la loi d’évolution de l’adoucissement Mullins. Cela est possible en utilisant le
concept d’amplification de la déformation initialement proposé par Mullins and Tobin (1957). Fi-
nalement, une procédure d’identification est proposée afin de construire la densité élémentaire et
la loi d’évolution de l’adoucissement sans avoir besoin d’en postuler des formes mathématiques.
Cette procédure nécessite les données expérimentales produites par un chargement de trac-
tion proportionnelle cyclique avec des cycles croissants. La capacité du modèle à représenter
précisément les données expérimentales d’un chargement de traction uniaxiale proportionnelle
est démontrée. De plus, une fois identifié sur un chargement cyclique proportionnel, le modèle
permet de prédire avec succès les réponses contrainte-élongation en traction uniaxiale pour des
échantillons ayant subi des pré-chargements non proportionnels de tractions uniaxiales ou bi-
axiales. Finalement, le modèle et la procédure d’identification sont utilisés sur plusieurs mélanges
afin de mettre en évidence la flexibilité de la méthode proposée.

Ce chapitre met fin au travail sur l’adoucissement Mullins rapporté durant cette thèse. Le
Chapitre 3 a conduit à proposer un paramètre permettant de quantifier l’adoucissement Mullins.
La quantité mécanique pilotant l’évolution de l’adoucissement Mullins pour des conditions
générales de chargement a été déterminée dans le Chapitre 4. Finalement, le chapitre courant
propose des équations permettant de modéliser le comportement anisotrope d’un élastomère
chargé ayant subi un adoucissement Mullins. Dans le but de compléter notre étude, le chapitre
suivant s’intéresse à l’adoucissement cyclique qui évolue avec le nombre de cycles.

Chapitre 6 : Caractérisation et modélisation de l’adoucissement
cyclique

Plusieurs élastomères chargés sont soumis à des chargements cycliques de traction
uniaxiale afin d’étudier l’adoucissement cyclique. Dans le but de déterminer l’e↵et
de la composition du matériau et de l’intensité de la déformation appliquée, une
méthode originale de caractérisation de l’adoucissement cyclique est proposée et
un paramètre d’adoucissement est défini. Un modèle est écrit afin de prédire les
réponses contrainte-élongation d’un élastomère chargé durant un chargement pro-
portionnel de traction uniaxiale cyclique. Une grande partie des travaux présentés
dans ce chapitre a été publiée et peut être trouvée dans la référence Merckel et al.
(2011b).

Les élastomères sont utilisés dans un grand nombre d’applications industrielles et ils sont
particulièrement adaptés pour les éléments destinés à être soumis à des conditions de charge-
ments cycliques. Dans le but d’augmenter leur raideur et de ralentir la propagation de fissures,
des charges sont ajoutées à la gomme élastomère. Cependant, l’ajout de ces charges conduit
à produire l’adoucissement Mullins. Dans le cas d’un chargement proportionnel de traction
uniaxiale, l’évolution de l’adoucissement Mullins est associée à celle de l’élongation maximale
appliquée au cours de l’historique de chargement. Une fois que l’adoucissement Mullins s’est
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produit, l’adoucissement de la réponse mécanique du matériau continue à évoluer doucement
avec le nombre de cycles. Par contre, l’évolution du comportement entre deux cycles successifs
devient rapidement imperceptible. L’adoucissement se produisant durant le premier cycle a été
l’objet d’un nombre important de publications. Par contre, les contributions sur le sujet des
élastomères soumis à un grand nombre de cycles se concentrent généralement sur l’étude de
la durée de vie et très peu de travaux s’intéressent à l’évolution du comportement mécanique.
Cependant, l’adoucissement cumulé induit par un grand nombre de cycles peut nécessiter d’être
pris en considération dans le dimensionnement de structures soumises à des conditions de charge-
ment cyclique.

Ce chapitre a pour objectif d’étudier l’adoucissement cyclique qui commence après le pre-
mier cycle, une fois que l’adoucissement Mullins s’est produit. Pour cela, une approche originale
est proposée afin de caractériser l’e↵et de l’adoucissement cyclique sur les réponses contrainte-
élongation. Un paramètre d’adoucissement basé sur un concept d’amplification de l’élongation
est introduit afin de capturer l’évolution du comportement avec le nombre de cycles. Contraire-
ment aux paramètres d’adoucissement classiquement trouvés dans la littérature, celui qui est
introduit ici est défini sur la réponse contrainte-élongation complète. Une telle approche permet
alors de quantifier l’adoucissement cyclique et de comparer son évolution soit pour des matériaux
de composition di↵érente, soit pour un même matériau soumis à di↵érentes intensités de charge-
ment. Les résultats montrent que l’adoucissement cyclique d’un élastomère chargé augmente
avec le taux de charge, diminue quand la densité pontale augmente et augmente avec l’intensité
du chargement. En terme de modélisation, l’évolution du paramètre introduit en fonction du
nombre de cycles peut être représentée par une expression logarithmique et en le combinant avec
une densité d’énergie classique, il permet alors de prédire les réponses contrainte-élongation en
fonction du nombre de cycles.
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H. Luo, M. Klüppel, and H. Schneider. Study of filled sbr elastomers using nmr and mechanical
measurements. Macromolecules, 37:8000–8009, 2004. (Cited on pages 19, 23, 52, 61 and 68.)
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L. Meunier, G. Chagnon, D. Favier, L. Orgéas, and P. Vacher. Mechanical experimental charac-
terisation and numerical modelling of an unfilled silicone rubber. Polymer Testing, 27:765–777,
2008. (Cited on page 19.)
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K. H. Meyer, G. v. Susich, and E. Valkó. Die elastischen eigenschaften der organischen hoch-
polymeren und ihre kinetische deutung. Kolloidzsch, 59:208–216, 1932. (Cited on page 17.)

C. Miehe. Discontinuous and continuous damage evolution in ogden-type large-strain elastic
materials. Eur. J. Mech. A Solids, 14:697–720, 1995. (Cited on page 113.)

C. Miehe and J. Keck. Superimposed finite elastic-viscoelastic-plastoelastic stress response with
damage in filled rubbery polymers. experiments, modelling and algorithmic implementation.
J. Mech. Phys. Solids, 48:323–365, 2000. (Cited on page 102.)

143



Bibliography

C. Moreau, S. Thuillier, G. Rio, and V. Grolleau. The mechanical behavior of a slightly com-
pressible rubber-like material: correlation of simulations and experiments. Rubber Chem.
Technol., 72, 1999. (Cited on page 20.)

A. H. Muhr. Modeling the stress-strain behavior of rubber. Rubber Chem. Technol., 78:391–425,
2005. (Cited on page 26.)

L. Mullins. E↵ect of stretching on the properties of rubber. J. Rubber Res., 16(12):275–289,
1947. (Cited on pages 10, 18, 19, 20, 77, 94, 127, 130, 131 and 151.)

L. Mullins. Permanent set in vulcanized rubber. India Rubber World, 120:63–66, 1949. (Cited
on pages 10, 18, 19, 20, 24, 77, 80, 94, 127, 130, 131 and 151.)

L. Mullins. Thixotropic behavior of carbon black in rubber. J. Phys. and Col. Chem., 54(2):
239–251, 1950. (Cited on pages 10, 18 and 127.)

L. Mullins. Softening of rubber by deformation. Rubber Chem. Technol., 42:339–362, 1969.
(Cited on pages 10, 15, 18, 20, 21, 22, 61, 64, 111, 127 and 151.)

L. Mullins and N. Tobin. Theoretical model for the elastic behavior of filler-reinforced vulcanized
rubber. Rubber Chem. Technol., 30:555–571, 1957. (Cited on pages 19, 20, 21, 23, 44, 45, 47,
52, 61, 68, 93, 98, 105 and 132.)

L. Mullins and N. Tobin. Carbon-black loaded rubber vulcanizates: Volume changes in stretch-
ing. Rubber Chem. Technol., 31:505–512, 1958. (Cited on pages 21 and 47.)

L. Mullins and N. R. Tobin. Stress softening in natural rubber vulcanizates. Part 1. Use of a
strain amplification factor to describe elastic behavior of filler-reinforced vulcanized rubber.
J. Appl. Polym. Sci., 9:2993–3009, 1965. (Cited on pages 16, 49, 61, 63, 111 and 129.)

S. Mzabi. Caractérisation et analyse des mécanismes de fracture en fatigue des élastomères
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Appendix A

A simple framework for full-network
hyperelasticity and anisotropic
damage

This chapter has been published and can be found in reference:

- Yannick Merckel, Julie Diani, Stéphane Roux, Mathias Brieu, 2011. A simple
framework for full-network hyperelasticity and anisotropic damage, Journal of
the Mechanics and Physics of Solids, 59, 75-88.

A formulation of a constitutive behavior law is proposed for hyperelastic mate-
rials, such that damage induced anisotropy can be accounted for continuously.
The full-network approach with directional damage is adopted as a starting point.
The full-network law with elementary strain energy density based on the inverse
Langevin is chosen as a reference law which is cast into the proposed framework.
This continuum formalism is then rewritten using spherical harmonics to capture
damage directionality. The proposed formalism allows for an e�cient (and system-
atic) expansion of complex non-linear anisotropic constitutive laws. A low order
truncated expression of the resulting behavior is shown to reproduce accurately
the stress-strain curves of the exact behavior laws.

Contents
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.3 Full-network model with directional damage . . . . . . . . . . . . . . . . 152

A.3.1 Hyperelastic full-network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.3.2 Specific hyperelastic law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.3.3 Anisotropic damage law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.4 Spherical harmonic based damage definition . . . . . . . . . . . . . . . . 158
A.4.1 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.4.2 Convergence of the expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.5 Example of induced anisotropy . . . . . . . . . . . . . . . . . . . . . . . . 161
A.5.1 Evolution of the ⌫

�
lm parameters under loading . . . . . . . . . . . . . . . . 162

A.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

149



150



A.1. Introduction

A.1 Introduction

Particle filled rubber-like materials combine large elastic deformations due to the macro-
molecular network structure, and high strain at failure properties due to the filler contents.
These remarkable mechanical properties contribute to their extensive use in various applications
such as tires, shock absorbers, gaskets...

One of the main drawbacks to the use of filler-gum microstructures is the stress softening
occurring during the first loading and referred as the Mullins e↵ect (see reviews (Mullins, 1969;
Diani et al., 2009)). This damage is irreversible under current use conditions. Along with stress
softening, materials evidence induced anisotropy and residual strains, also known as permanent
set. First mentioned by Mullins (1947, 1949), experimental evidences of the induced anisotropy
were later reported (Laraba-Abbes et al., 2003; Hanson et al., 2005; Diani et al., 2006a; Kahraman
et al., 2010). In particular, small specimens cut out of large pre-stretched samples show a
direction-dependent behavior induced by the pre-stretch.

Among recent contributions on anisotropic hyperelasticity, let us cite Weiss et al. (1979), who
defined, implemented and tested a 4 invariant strain energy density for transversely isotropic
soft biological tissues. This density designed for transversely isotropic soft biological tissues,
depends on 4 invariants, instead of 3 for isotropic materials. Using the same invariant approach,
other strain energy densities were proposed serving the representation of transversely anisotropic
hyperelastic materials (Itskov and Aksel, 2004; Limbert and Middlenton, 2004; Lu and Zhang,
2005; Guo and Sluys, 2006; deBotton et al., 2006). Dorfmann and Ogden (2004) also defined a 4-
invariant strain energy density to model the Mullins induced anisotropy. The invariant approach
may be used for simple anisotropy like transverse isotropy or orthotropy, but becomes tedious
for general anisotropies such as the one induced by the Mullins e↵ect (Menzel and Steinmann,
2001). In order to circumvent this di�culty, Göktepe and Miehe (2005) and Diani et al. (2006a)
formulated a directional damage behaviour law, all directions of the space being approximated
by a discrete set of 42 and 32 directions respectively. Also, Dargazany and Itskov (2009) adopted
the same idea of directional damage with a partial 42-direction representation of the unity sphere,
to introduce an anisotropic hyperelastic strain energy which supports a physical interpretation
of the roles of the filler particles and the macromolecular chains (Govindjee and Simo, 1991,
1992).

Thus, there is now ample evidences, and a general consensus, for the need to resort to
anisotropic damage in order to realistically account for the mechanical behaviour of rubber with
fillers. However, the combined occurrence of various non-linearities, anisotropic damage and
hyperelasticity, calls for complex formulations of the constitutive law, and leads to practical
limitations in the identification of the constitutive law parameters and above all in numerical
modeling implementation. The present work proposes a general framework using systematic
series expansion for the previously introduced general directional damage law. Since the expan-
sion is tailored to the expression of second order tensors such as stress and strain, low order
truncations are expected to allow for an adjustable compromise between simplicity of the formu-
lation (aiming at numerical implementation) and fidelity to the complex observed mechanical
behaviour. This is our main motivation. In the current work, we will not account for the
viscoelastic aspect of the stress-strain response of filled rubbers. Actually, filled rubbers may
exhibit some hysteresis during the first cycle, even at moderate strain rates, but once the Mullins
softening evacuated, the unloading and the reloading responses are fairly close and the hysteresis
may be neglected. In such a case, the unloading stress-strain curve provides a good estimate
of the softened material hyperelastic behaviour (Diani et al., 2006b). Here we will focus on the
material behaviour after Mullins softening only.

Section A.2 defines the notations and basic concepts used in the sequel. The concept of
directional damage in all space directions is introduced into the full-network hyperelastic model in
Section A.3. This provides a continuous anisotropic hyperelastic behaviour whose strain energy
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involves quadratures over the unit sphere. In Section A.4, a spherical harmonics expansion is
adopted to circumvent the computation of those integrals, and gain e�ciency. The resulting
formulation is compact and explicit. Its convergence properties are illustrated over di↵erent
loadings (uniaxial and biaxial loadings as well as pure shear). It is shown in Section A.5 that a
very low order of expansion is required in order to match the stress-strain response of the chosen
reference law. Section A.6 summarizes the proposed approach.

A.2 Notations

For clarity, we introduce here the notations used in the sequel. As far as anisotropy and
directional dependencies will be a central issue, the polar angles (✓,') are introduced to represent
the orientation of unit vectors u,

u = (cos(✓), sin(✓) cos('), sin(✓) sin(')) (A.1)

The unit sphere is denoted as S, and a uniform measure over it, representing solid angle is
denoted as d2⌦ ⌘ sin(✓)d'd✓.

It will be useful to introduce the projection operator along u as the dyadic product, f

(2) =
u⌦ u. Similarly, higher order tensor products of u with itself, f

(n), will be used

f

(n) =
nO

i=1

u (A.2)

In order to describe the material deformation, the deformation gradient F and the right
Cauchy-Green deformation tensor, C = F

t

F , are introduced (superscript t denotes transposi-
tion). The elongation along direction u, �(u), is simply obtained from the right Cauchy-Green
tensor, C, as

�(u) =
p

u.C.u =
q

C : f

(2) (A.3)

In all the sequel, the elastomer is assumed to be incompressible. The Cauchy stress tensor
is obtained from the elastic energy density, W, through

� =
@W(F )

@F

F

t � pI (A.4)

where p is the hydrostatic pressure.
It is of interest to distinguish the intensity of the loading, and its multiaxiality. For this

aim, Henky tensor, h ⌘ 1

2

lnFF

t, is introduced and its sorted eigenvalues are denoted by h

i

(h
1

� h

2

� h

3

). The following invariants, ⇢ and h

eq

, are defined as

h

eq

⌘
r

2
3
�
h

2

1

+ h

2

2

+ h

2

3

�
and ⇢ ⌘ 3 h

2

h

3

� h

1

(A.5)

h

eq

� 0 is indicative of the intensity of the loading. In contrast �1  ⇢  1, is a dimensionless
parameter ranging from -1, for equibiaxial tension, to 1 for uniaxial tension. For pure shear,
⇢ = 0. Those notations are convenient to explore (and compare) di↵erent types of loadings.

A.3 Full-network model with directional damage

A.3.1 Hyperelastic full-network

An elastomer is a complex polymer network constituted of long macromolecules, spread in all
the directions of space, which contribute to the global elasticity of the material. A simple mean-
field idealized representation, initially proposed by Treloar and Riding (1979), is the full network
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model . At each spatial point, a continuous distribution of chain orientation is considered, with
a density n(u)d2⌦. The active chain density in the reference state, n

0

1 is obtained from a
summation over all directions,

n

0

=
ZZ

S
n(u)d2⌦ (A.6)

Along each direction, parameterized by u, a chain is assumed to be subjected to the elongation
�(u) (Eq. (A.3)), for a homogeneous deformation gradient, F . Introducing w(�), the elastic
energy of a single chain under an elongation �, the full elastic energy density, W(F ), is written

W(F ) =
ZZ

S
w(�(u)) n(u)d2⌦ (A.7)

By substitution of (A.3) in (A.7), the elastic energy density partial derivative comes as,

@W
@F

=
ZZ

S

@w(x)
@x

����
x=�(u)

1
2�(u)

@ (u.C.u)
@F

n(u) d2⌦ (A.8)

Then, one easily finds that
@ (u.C.u)

@F

= 2F (u⌦ u) (A.9)

and substituting (A.8) and (A.9) in (A.4), provides us with the following expression of the
Cauchy stress tensor

� = F

 ZZ
S

@w(x)
@x

����
x=�(u)

u⌦ u

�(u)
n(u)d2⌦

!
F

t � pI (A.10)

and simplifies into
� = FGF

T � p I (A.11)

with
G =

ZZ
S

@w(x)
@x

����
x=�(u)

u⌦ u

�(u)
n(u)d2⌦ (A.12)

A.3.2 Specific hyperelastic law

Most of the formalism that follows can be applied to an arbitrary non-linear w(�). However,
in order to illustrate the proposed methodology, a specific form of w introduced by Kuhn and
Grün (1942) is chosen. Let N be the number of bonds of the chain, k the Boltzman constant
and T the temperature. w reads

w(x) = NkT


�L(�) + ln

✓
�

sinh(�)

◆�
(A.13)

where
� = L�1

✓
xp
N

◆
(A.14)

and L(x) ⌘ coth(x)� 1/x is the Langevin function. The expression of the force-elongation law
takes a simple form

dw(x)
dx

=
p

NkT� (A.15)

1Let us note, that this parameter corresponds to ⌫/4⇡ in the usual full-network law notation, with ⌫ the active
chain density
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The inverse Langevin function can be Taylor-expanded to provide the following approxima-
tion at order m

L

L�1(x) = x

mLX
i=0

L

i

x

2i (A.16)

where the coe�cients L

i

are listed in Table A.1.
The above expansion gives the following force-elongation relationship

dw(x)
dx

= xkT

mLX
i=0

L

i

✓
x

2

N

◆
i

(A.17)

L

0

L

1

L

2

L

3

L

4

L

5

L

6

L

7

L

8

L

9

3 9

5

297

175

1539

875

126117

67375

43733439

21896875

231321177

109484375

20495009043

9306171875

1073585186448381

476522530859375

4387445039583

1944989921875

Table A.1: Taylor-expansion coe�cients for the inverse Langevin function

It is to be noted that the Taylor expansion by definition gives a strong weight to the be-
haviour of the function at the origin. Let us note that other simplifications may be preferred.
Cohen (1991) introduced a Padé approximant which is often used for its ability to reproduce
the divergence of the inverse Langevin function. The algebraic form of the Padé approximant
is however not the best suited to the following development and hence will not be used in the
sequel to keep integrations simple.

A.3.3 Anisotropic damage law

Damage induced by Mullins e↵ect might be mainly due to desorption of macromolecular
chains from reinforcements, disentanglement, few chain breakage... In order to account for the
Mullins e↵ect, Marckmann et al. (2002) introduced a damage model with a spherical symmetry
which was extended to the anisotropic case by Diani et al. (2006b). The main idea is to allow
chain length to grow under the maximum stretch that has been experienced along its history.
Such a damage essentially produces a merging of chains leading to fewer and/or longer chains.
Diani et al. (2006b) proposed to account for such an e↵ect by keeping the product n(u)N(u)
constant for all directions u. To apply this idea, a continuous distribution of the chain lengths is
considered in the same way as n(u) in Eq. (A.6). At each spatial point the density distribution
is N(u)d2⌦ and the reference state N

0

is obtained from a summation over all directions,

N

0

=
ZZ

S
N(u)d2⌦ (A.18)

Starting from an isotropic elastomer where the n(u)N(u) product is independent of the orien-
tation, the chain density in direction u can be written

n(u, �

max

(u)) =
n

0

N

0

N(u, �

max

(u))
(A.19)

where �

max

(u) is the maximum elongation encountered over the past in the direction u. Thus
under any load path other than a purely hydrostatic pressure, an anisotropy is induced in the
material by such an orientation dependent damage. The elastic energy density introduced in
Eq. (A.7) remains valid, and the directional damage is encoded in n(u) or equivalently in N(u).

A directional damage is defined here as

�(u, �

max

(u)) = 1� N

0

N(u, �

max

(u))
(A.20)
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leading to
n(u, �

max

(u)) = n

0

⇣
1� �(u, �

max

(u))
⌘

(A.21)

Note that albeit damage is here a non-dimensional variable varying from 0 (initial state) to 1
(fully damaged), it cannot be simply related to the reduction in free energy of the material, as
defined classically (Simo, 1987).

Introducing both the Taylor expansion for the inverse Langevin function Eq. (A.17) and the
damage Eq. (A.21) into Eq. (A.12) yields :

G = n

0

kTg (A.22)

with

g =
mLX
i=0

L

i

ZZ
S

✓
�

2

N

◆
i

(u⌦ u) (1� �(u)) d2⌦ (A.23)

Then, by substituting Eq. (A.20) and making use of the tensor f

(2) defined Eq. (A.2), g

transforms into,

g =
mLX
i=0

L

i

N

i

0

ZZ
S
(C : f

(2))i

f

(2)(1� �(u))i+1 d2⌦ (A.24)

In the latter equation, contributions of the deformation and of the directional damage can be
split

g = K

0

+ C : K

1

+ (C ⌦C) :: K

2

+ ... (A.25)

where
K

i

=
L

i

N

i

0

ZZ
S

f

(2i+2)(1� �(u))i+1 d2⌦ (A.26)

and where :: denotes the doubly contracted tensorial product defined by (A :: B)
ij

= A

ijklmn

B

klmn

.
When damage is not increasing, the tensors K of all orders remain constant and hence they do
not involve new computation. The behaviour law is completely characterized once the directional
damage evolution law is specified. In order to illustrate the above formalism on a documented
example which has been shown to account quite precisely for the softening induced by a uniaxial
tension, the damage law proposed by Diani et al. (2006a) will be used. It is written with the
above notations

�(u, �

max

(u)) =
↵(�

max

(u)� 1)2

1 + ↵(�
max

(u)� 1)2
(A.27)

↵ is a damage parameter and the evolution of � according to the maximum encountered elonga-
tion is shown in Figure A.1.

Up to now, no approximation has been introduced, and hence, provided the series is summed
up to a su�cient order, the exact law is obtained. However, the interest of the proposed approach
is its ability to account for the constitutive law for a low order truncation of the infinite series,
Eq. (A.24). Hence, a loading history exploring larger and larger �

max

is considered, and solved
by a classic numerical integration with an increasing number of terms in the series. Figure
A.2 shows the hyperelastic stress-strain responses of a material already submitted to various
maximum elongations in uniaxial tension. Note that for uniaxial tension, h

eq

= 1.3 corresponds
approximately to a 3.7 elongation along the tension direction.

It is observed that the convergence rate is quite fast. To quantify this rate the relative
di↵erence between consecutive orders of the truncated series approximation, �

(mL), is computed,
⌘

mL = h(�(mL)��

(mL�1))/�

(mL�1)i. This dimensionless di↵erence term is reported in Table A.2
and shown in Fig. A.2(right). An exponential convergence is observed. In the following the
maximum considered order will be limited to m

L

= 3.
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Figure A.1: Evolution of the directional damage � according to the maximum applied elonga-
tion in this direction. The parameter ↵ is set to 0.9.
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Figure A.2: E↵ect of the expansion order mL of the inverse Langevin function, L�1. Left:
Evolution of the stress-strain curves for uniaxial tension, following increasing values
of h

max

eq

. Right: Convergence as a function of the truncation order mL. The
quantity ⌘ is the mean absolute value of the relative di↵erence in Cauchy stress
for two consecutive truncation orders. The average is taken along the stress-strain
curve followed after h

max

eq

= 1.3. The used parameters are N

0

= 5, ↵ = 0.9 and
n

0

kT = 1.

m

L

1 2 3 4 5
⌘

mL (%) 15. 3.5 1.2 0.2 0.08

Table A.2: Relative error as a function of the truncation order, mL.

It is worth noting that the directional damage introduces a residual strain after unloading to
zero stress. At this rest state, a small strain approximation is valid as can be checked on Figure
A.2. Hence, the stress can be approximated by its 0th order expansion, and hence g ⇡ K

0

.
Exploiting the axisymmetry of the simple tension along the 1 axis, the diagonal components of
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g can easily be computed

g

11

= 2⇡L

0

R
1

�1

c

2

1+↵

“p
1/a+(a

2�1/a)c

2�1

”
2

dc

g

22

= g

33

= ⇡L

0

R
1

�1

(1�c

2

)

1+↵

“p
1/a+(a

2�1/a)c

2�1

”
2

dc

(A.28)

where a is the maximum elongation along the tensile axis.
At unloading, a zero stress implies that FgF

t is spherical. The residual strain is an isochoric
elongation along the tension axis, and the elongation along the 1-axis is called �

res

. A simple
computation yields

�

res

= 3

r
g

22

g

11

(A.29)

Figure A.3 shows the stress-strain response after a uniaxial tension of the same intensity
h

eq

= 1.3, for di↵erent values of ↵. The larger ↵ is, the more pronounced the softening and the
smaller the tangent modulus at zero stress are. Similarly, the residual deformation increases
with ↵ (Fig. A.3 right).
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Figure A.3: E↵ect of the damage parameter ↵. Left: Model stress-strain responses for various
values of ↵ and a maximum strain history reaching h

max

eq

= 1.3. Right: Evolutions
of the residual deformation and the linear modulus at zero stress as a function of
the maximum deformation intensity. The values of the model parameters are N

0

= 5, n

0

kT = 1, and the order of expansion of the inverse Langevin function is
mL = 3.

It is also of interest to compare the softening after di↵erent types of loading. The two extreme
cases in terms of the dimensionless parameter ⇢ (A.5) are chosen, i.e. uniaxial versus equibiaxial
tension. Figure A.4 shows the stress responses as a function of the loading intensity h

eq

, together
with the residual deformation h

res

eq

and the evolution of the tangent modulus at zero stress, E.
The presented approach thus allows to account precisely to a constitutive law which involves

di↵erent non-linearities through the computation of di↵erent tensors which depends only on the
maximum loading. However, the di�culty for its practical use is the computation of the di↵erent
tensors which have to be evaluated numerically. Even for simple loadings, the number of such
tensors increases quickly with the expansion order. The following section aims at reducing this
computation task.
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Figure A.4: Influence of loading type. Left: stress-strain curves after di↵erent maximum de-
formation characterized by the intensity h

eq

. Right: evolution of the residual
deformation and the linear modulus at zero stress, E, as a function of the maxi-
mum deformation intensity. The values of the parameters were N

0

= 5, n

0

kT = 1
and ↵ = 0.9, and the order of expansion of the inverse Langevin function is 3.

A.4 Spherical harmonic based damage definition

A.4.1 Constitutive equations

Spherical harmonics are the solution of the angular part of the Laplace equations in spherical
coordinates (Byerly, 1959) and allows for the decomposition of an arbitrary scalar field on the
surface of the unit sphere , S. They are written as a double index series of functions Y

m

l

(✓,')
where the indices (l,m) are respectively called “order” and “degree” (l > 0 and |m| 6 l). They
are conveniently expressed in terms of associated Legendre polynomials, P

m

l

,

P

m

l

(x) =
(�1)m

2l

l!
�
1� x

2

�
l/2

dl+m

dx

l+m

�
x

2 � 1
�
l (A.30)

and, as conventionally done in physics (Arfken, 1985), the following normalization is used

Y

m

l

(✓,') =

s
(2l + 1)(l �m)!

4⇡(l + m)!
P

m

l

(cos ✓) e

im' (A.31)

The spherical harmonics form an orthonormal basis of the Hilbert space of square-integrable
functions. On the unit sphere, any square-integrable function can thus be expanded in spherical
harmonic series. The expansion of (1��(u)) on spherical harmonics introduces the double index
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series of amplitudes ⌫

�

lm

1� �(u) =
1X
l=0

lX
m=�l

⌫

�

lm

Y

m

l

(✓,') (A.32)

where the amplitudes can be expressed as (Arfken, 1985)

⌫

�

lm

=
ZZ

S
(1� �(u))Y m

l

d2⌦ (A.33)

where Y

m

l

is the complex conjugate of Y

m

l

. For symmetry reasons, only real parts of the
coe�cients of even orders and degrees are non-zero.

A spherical harmonic expansion of orientation tensors f

(2n) is performed in a similar way
as in Eq. (A.33). This decomposition is finite and involves a maximum order of 2n, without
approximation. The amplitudes, denoted ⌫

f2n

lm

are tensors of order 2n,

f

(2n) =
2nX
l=0

lX
m=�l

⌫

f2n

lm

Y

m

l

(A.34)

The expression of f

(2) and f

(4) expansions are given explicitly in Merckel et al. (2011e).
Tensors Kp (Eq. A.26) are thus expressed as

K
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=
L

p

N

p

0

ZZ
S
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2p+2X
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mX
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#24 1X
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Following the previous section, the inverse Langevin function is expanded up to order
m

L

= 3. Similarly, � expansion is truncated at order p

max

. Hence 4 tensors, K

p

, are to
be determined.

The integration of the product of several spherical harmonics is straightforward for two terms
(spherical harmonics are orthonormal). For three terms, an analytical expression is available. A
larger number of terms is more tedious to compute. It is worth devoting some discussion to the
practical implementation of the above approach for low order elements. Let us emphasize that
this procedure is independent of the type of loading and of its intensity.

The first term is K

0

whose expression is

K

0

= L

0

X
0n2

�nmn

X
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�pqp

⌫

f2

nm
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where the orthogonality properties of the spherical harmonics can be used to simplifyZZ
S

Y

m

n

Y

q

p

d2⌦ = (�1)m

�

np

�

m(�q)

(A.37)

where the (�1)m factor can be dropped as only even values of m are to be considered. Finally,

K

0

= L

0

X
0n2

�nmn

⌫
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n(�m)
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�

nm

(A.38)

For higher order terms, it is useful to resort to the Gaunt series (Gaunt, 1929), G

Mmm

0
Lll

0 ,
which decomposes the product of two spherical harmonics into spherical harmonics

Y
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l

Y

m

0
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M
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0
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0 (A.39)
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where Gaunt coe�cients can be expressed as

G

Mmm

0
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0 =
ZZ

S
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Y
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0
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0 d2⌦ (A.40)

E�cient numerical implementations of the Gaunt coe�cient exist (see for instance Xu (1996)).
Based on the Gaunt series, it is convenient to define the following “product”, �,

(⌫ � ⌫)
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Let us note that
RR
S Y

m
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, and hence K
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can be written as
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Let us now consider the next order tensor, K
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or
K

1

=
p

4⇡

L
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N
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�)
⌘

00
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It is important to note that the inner “product” involves here squares (⌫� � ⌫

�). Similarly,
higher order tensors, K

n

, will be computed from higher “powers” of ⌫

�, which are to be con-
structed recursively from the operator A ! ⌫

� � A where A is a dummy spherical harmonic
amplitude series.

The following orders do not introduce any new di�culties. Their expressions are given in
Merckel et al. (2011e).

A.4.2 Convergence of the expansion

Figure A.5 shows the unloading responses of a body subjected to a uniaxial tension at
di↵erent maximal extensions, for various order of the expansion of the damage �. For a zeroth
order expansion, the only spherical harmonic which is activated is Y

0

0

, and hence damage is
isotropic. Henceforth, no residual strain results. Higher orders lead to a non-zero residual strain
as expected.

It is to be noted that the convergence is extremely fast. Expansions to order 2 and 4
are almost superimposed on the direct computation without spherical harmonics. In order to
estimate the impact of subsequent orders, the computation was carried out up to order 6. The
average of the absolute value of the di↵erence between consecutive expansion orders all along the
unloading path (from a maximum extension such that h

max

eq

= 1.3, gives evaluations of the error
⌘

p

which are reported in Table A.3 for uniaxial tension. The accurate reproduction of the chosen
law requires a fourth order expansion to reach a value less than 1%. However, in practice, the
actual constitutive law is not known, and the proposed framework is to be fed by experimental
observations in order to adjust the hyperelastic law and the damage growth law. Although such
a procedure is not investigated in the present work, presumably a truncation to second order,
p

max

= 2 should constitute a good compromise between sophistication of formulation and ease
of implementation.

Damage is now defined through parameters ⌫

�

lm

which are dependent on the intensity and
the type of loading. The next section is devoted to the comparison of these di↵erent loadings.
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Figure A.5: E↵ect of spherical harmonics expansion order for the directional damage �. Left:
Evolution of the stress-extension in uniaxial tension following di↵erent maximum
extensions h

max

eq

. The direct integration data is shown as a solid red curve. Right:
Convergence rate as a function of the maximum spherical harmonics expansion
order for � for di↵erent types of loading. The parameter values are N

0

= 5,
↵ = 0.9 and n

0

kT = 1, and the order of expansion of L�1 is mL = 3.

p

max

0 ! 2 2 ! 4 4 ! 6
⌘

p

(%) 69. 6.2 0.07

Table A.3: Relative error as a function of the truncation order p

max

.

A.5 Example of induced anisotropy

In order to illustrate the induced anisotropy as captured by the present framework, Fig-
ure A.6 shows the three dimensional surface of the spherical plot of 1 � � for three loadings
(uniaxial tension, pure shear and equibiaxial tension) spanning the entire accessible range of the
⇢ parameter, Eq. (A.5). These damage surfaces were obtained for the same intensity, h

eq

= 1.3
of loading, and a fourth order of the spherical harmonic expansion, p

max

= 4, was used.

These plots obtained with the spherical harmonic based damage model demonstrate the
high level of anisotropy induced by the loading. They also show the dependence of the induced
anisotropy on the type of loading. One notes that in terms of identification, the pure shear case
looks similar to the uniaxial tension case, and hence carrying out tests for which ⇢ lies between
0 and 1 may not reveal helpful to discriminate among di↵erent anisotropic damage laws. In
contrast, the equibiaxial loading appears to be significantly di↵erent.

In a similar spirit, one can evaluate the average value of 1�� over all directions, as a function
of the type and intensity of loading. The latter average is proportional to the amplitude of ⌫

�

00

since Y

0

0

= (4⇡)�1/2 is constant over the unite sphere S. Figure A.7 shows the progressive
decrease of this coe�cient with the intensity of loading, and compares di↵erent loading types
through their ⇢ values. As in the previous figure, no much changes is observed as ⇢ varies from
0 to 1, again pointing to the similarity of pure shear and uniaxial tension loadings (in terms of
the damage they induce). The ↵ parameter controls the amplitude of damage: the higher ↵,
the more damage for a given strain. Three values of ↵ are shown in Figure A.7, and the graph
shows that increasing ↵ has the same qualitative influence as increasing h

eq

.
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Figure A.6: 3D representation of 1� � where � is the directional damage for di↵erent types of
loadings, ⇢ = �1, 0, and 1 respectively from left to right. The meshed unit sphere
shows the initial (undamaged) state. The SH expansion order is limited to 4, and
the loading intensity is h

eq

= 1.3. The damage parameter ↵ is set to 0.9.
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Figure A.7: E↵ect of the type, ⇢, and intensity, h

eq

, of loading on the spherical average of
(1 � �), equal to (4⇡)�1/2

⌫

�
00

. The three plots shows the impact of the damage
parameter ↵ = 0.3, 0.9 and 1.5 respectively from left to right.

A.5.1 Evolution of the ⌫�

lm

parameters under loading

Figure A.8 shows for all types of loading, (indexed by ⇢), and intensities, h

eq

, ranging from
0 to 1.3, the evolution of all 10 non-zero amplitudes ⌫

�

lm

, for an expansion of � up to order six.
(At fourth order, the top 6 amplitudes ⌫

�

lm

would remain.)
Those graphs give the amplitude of variation of the amplitudes ⌫

�

lm

for realistic loadings.
They can easily be ranked according to their order of magnitude, and hence their respective
influence on the stress value. The amplitude ⌫

�

00

is the only one to be of order unity. The
following ⌫

�

20

, ⌫

�

22

and ⌫

�

40

are about a factor 10 smaller. All others ⌫

�

42

, ⌫

�

44

, and all sixth
order amplitudes are of order 10�2. These observations are useful guidelines for a practical
implementation when a minimum number of terms is sought.

A.6 Summary

Let us summarize the actual implementation of the above formulation for practical use.
First, the two truncation orders, m

L

and p

max

, are to be defined. Let us first assume that
the local damage state is known under its spherical harmonics form, ⌫

�

nm

. The tensors K are
computed recursively from the calculus of higher powers of ⌫

�, (
J

p

1

⌫

�), and of the corresponding
decomposition of f

(2n). The strain state being characterized by the right Cauchy-Green tensor,
C, the g tensor is obtained from Eq. (A.25). Hence the Cauchy stress, �, Eq. (A.11), is obtained
for any deformation state.
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Figure A.8: Evolution of all non-zero amplitudes ⌫

�
lm for an expansion of � at the 6th order.

The loading is parameterized in each graph by its type, ⇢, and its intensity, h

eq

.
The damage parameter ↵ is set to 0.9.

The only remaining di�culty is the updating of the damage. If all the information, �(u), had
been kept then this step would have been straightforward. Namely at time t+dt, the directional
damage is simply

�

t+dt(u) = max
�
�

t(u), �(u)
�

(A.45)

where �

t(u) is the actual damage in direction u at time t and �(u) is the instantaneous directional
damage along the same direction based on the deformation state at time t + dt. The di�culty
is that ⌫

� is now known only from its truncated spherical expansion. Hence, a weak form of the
above maximum law is needed. Note that a similar di�culty is present when ⌫

� over the unit
sphere is only characterized by a discrete set of directions. It is suggested to exploit the fact
that the function ��(u) = �

t+dt(u)� �

t(u) has to be positive over S. Since only the spherical
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harmonic decomposition is known, a possible weak form is that for any (l,m)ZZ
S

��(u)Y m

l

Y

m

l

d2⌦ � 0 (A.46)

This integral can be transformed using Gaunt’s coe�cients, so that for all pairs (l,m) (taken in
the same set of indices as the considered non-zero amplitudes of ⌫

�)X
pq

(�1)m

G

qm(�m)

pll

⌫

��

pq

� 0 (A.47)

where ⌫

��, the spherical harmonics amplitude of ��(u), is nothing but the di↵erence of the
spherical harmonics amplitude of �

t+dt(u) and �

t(u).
Those elements provide a consistent framework to work directly with the spherical harmonics

amplitudes ⌫

� without having to revert to real space.
Further simplifications occurs when additional assumptions are proposed such as fixed prin-

cipal axes (for strain and damage). In this case, a number of terms in the expansion cancel
exactly due to symmetry. A more general case is also of interest when tests are carried out on
thin rubber sheets. In this case, one principal axis (normal to the specimen), remains invariant.
An appropriate choice consists in choosing the 1-axis along the normal. In this case, a rotation
within the plane only a↵ect the ' angle, and in the spherical harmonics case, it corresponds to
a simple phase shift (for each ✓ angle, the SH transform is nothing but a Fourier transform).

A.7 Conclusion

Anisotropic damage and hyperelasticity related through an arbitrary directional law, have
been cast into a tensorial formalism, accounting for a continuous distribution of direction orien-
tations. Deformation and elastic properties are naturally split. This expansion which exploits a
polynomial development of the stress/strech relation can be truncated to any desired order, m

L

.
The di↵erent tensors K (to be contracted with C to form the tangent elastic properties) can be
further decomposed over a spherical harmonic basis, itself to be truncated to an arbitrary order,
p

max

. The resulting formalism allows for a compact representation of a class of constitutive law
which is intrinsically quite complex.

This representation has been applied to a specific law, already proposed in the literature, to
show that a low order expansion (for m

L

and p

max

) gives a very accurate account of stress-strain
laws up to large strains. In practice, the hyperelastic and damage laws are to be identified from
experimental tests, and hence it is important to have a given framework which can be either
restricted or expanded at will, depending on the available information, so that identification can
be treated as a well-posed problem. In particular, field measurements may provide the required
experimental data for this purpose.
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Caractérisation expérimentale et modélisation du
comportement mécanique d’élastomères chargés sous

conditions de chargement cycliques

Les applications pour lesquelles des élastomères sont soumis à des sollicitations cycliques sont
nombreuses. Des charges sont généralement utilisées afin d’améliorer leurs propriétés, cependant,
elles induisent également un adoucissement important de la contrainte lors de sollicitations
cycliques. A ce jour, les phénomènes physiques conduisant à l’apparition de cet adoucissement
ne sont pas clairement établis et sa modélisation demeure une di�culté majeure.

Afin d’étudier l’adoucissement, des élastomères chargés sont soumis à des chargements cy-
cliques. Des méthodes de caractérisations originales sont proposées afin de quantifier les e↵ets
de l’intensité du chargement et du nombre de cycles. Pour faire le lien avec la microstructure
du matériau, plusieurs mélanges de compositions di↵érentes sont utilisés.

Des chargements non proportionnels de traction uniaxiale et biaxiale sont appliqués afin de
mettre en évidence l’anisotropie induite par l’adoucissement. Ces données expérimentales non
conventionnelles sont utilisées afin de définir un critère général pour l’activation de l’adoucissement
Mullins. Une loi de comportement fondée sur une analyse approfondie des données expérimentales
est proposée. La modélisation est basée sur une approche directionnelle. L’adoucissement
Mullins est modélisé en utilisant le concept d’amplification de la déformation et son activa-
tion est pilotée par un critère directionnel. La capacité du modèle à prédire les réponses d’un
matériau ayant subi un historique de chargement non proportionnel est validée.

Mots clés : Elastomères chargés - Caractérisation expérimentale - Loi de comportement -
Hyperélasticité - Adoucissement Mullins - Adoucissement cyclique - Anisotropie induite

Experimental characterization and modeling of the
mechanical behavior of filled rubbers under cyclic

loading conditions

Rubber-like materials are submitted to cyclic loading conditions in various applications.
Fillers are always incorporated within rubber compounds. They improve the mechanical prop-
erties but induce a significant stress-softening under cyclic loadings. The physical source of the
softening is not yet established and its modeling remains a challenge.

For a better understanding of the softening, filled rubbers are submitted to cyclic loadings. In
order to quantify the e↵ects of the loading intensity and the number of cycles, original methods
are proposed to characterize the softening. To study the influence of the material microstructure
on the softening, compounds with various compositions are considered.

Non-proportional tensile tests including uniaxial and biaxial loading paths are applied in
order to highlight the softening induced anisotropy. Such unconventional experimental data are
used to provide a general criterion for the softening activation. A constitutive modeling grounded
on a thorough analysis of experimental data is proposed. The model is based on a directional
approach. The Mullins softening is accounted for by the strain amplification concept and is
activated by a directional criterion. The model ability to predict non-proportional softened
material responses is demonstrated.

Key words: Filled rubber - Experimental characterization - Constitutive modeling - Hypere-
lasticity - Mullins softening - Cyclic softening - Induced anisotropy
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