
HAL Id: tel-00752569
https://theses.hal.science/tel-00752569v1

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reproducible research, software quality, online interfaces
and publishing for image processing

Nicolas Limare

To cite this version:
Nicolas Limare. Reproducible research, software quality, online interfaces and publishing for image
processing. Other [cs.OH]. École normale supérieure de Cachan - ENS Cachan, 2012. English. �NNT :
2012DENS0026�. �tel-00752569�

https://theses.hal.science/tel-00752569v1
https://hal.archives-ouvertes.fr

ÉCOLE NORMALE SUPÉRIEURE DE CACHAN
Écode Doctorale de Sciences Pratiques

T H È S E

présentée par

Nicolas Limare

pour l’obtention du titre de

Docteur de l’École Normale Supérieure de Cachan
spécialité mathématiques appliquées

Recherche reproductible, qualité logicielle,
publication et interfaces en ligne pour le

traitement d’image
—

Reproducible Research, Software Quality,
Online Interfaces and Publishing for Image

Processing

présentée et soutenue le 21 juin 2012 à Cachan

devant le jury composé de

Rapporteurs Konrad Hinsen - Centre de Biophysique Moléculaire, Orléans, FR
Patrick Vandewalle - Philips Research, Eindhoven, NL

Directeurs Jean-Michel Morel - ENS de Cachan, Cachan, FR
Jacques Froment - Université de Bretagne Sud, Vannes, FR
Lionel Moisan - Université Paris Descartes, Paris, FR

Examinateurs Guillermo Sapiro - University of Minnesota, USA
Gregory Randall - Universidad de la República, Montevideo, UY
Thierry Géraud - EPITA, Kremlin-Bicêtre, FR
Friedrich Leisch - Universität für Bodenkultur, Wien, AT

Centre de Mathématiques et de Leurs Applications — CMLA UMR 8536
École Nationale Supérieure de Cachan
61 Avenue du Président Wilson, 94235 Cachan Cedex, France

In addition to institutional repositories, this work is available, with future updates, from

http://nicolas.limare.net/phd/. The author can be reached at nicolas@limare.net.

This work is distributed under a CC-BY-NC-SA license : Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License. See http://creativecommons.org/licenses/by-nc-sa/3.0/ for details.

This work includes references to online resources. Permanent URLs were provided when possible and

the availability of these resources was verified in May 2012, but the progressive obsolescence of these references

is inevitable.

version 1/registered

revision 4eb11a3e - 2012-06-12 18:47:05 +0200

produced on June 12, 2012 with LATEX and pandoc

http://nicolas.limare.net/phd/
nicolas@limare.net
http://creativecommons.org/licenses/by-nc-sa/3.0/

Résumé

Cette thèse est basée sur une étude des problèmes de reproductibilité rencontrés dans la
recherche en traitement d’image, et de manière générale dans les sciences appliquées et in-
formatiques. Partant du constat du manque de vérifiabilité des publications scientifiques et
de implémentations associées aux algorithmes publiés, nous avons conçu, créé et développé
un journal scientifique, Image Processing On Line1 (IPOL), dans lequel nous proposons un
nouveau mode d’évaluation et de publication de la recherche en traitement d’image afin
d’atteindre une meilleure fiabilité des logiciels et algorithmes issus de la recherche.

Les articles publiés dans IPOL incluent une implémentation complète des algorithmes
décrits; cette implémentation est publiée, après validation par les rapporteurs qui s’assurent
également que les algorithmes sont décrits complètement et avec précision. Un service web
de démonstration des algorithmes publiés est joint aux articles, permettant aux utilisateurs
de les tester sur des données libres avec le choix des paramètres et de consulter l’historique
des expériences précédemment effectuées sur ce service. Ces extensions de la publication
contribuent à plus d’échanges entre les équipes de recherche en favorisant la validation et la
comparaison des résultats, la réutilisation des implémentations, et la constitution progressive
d’un état de l’art vérifiable.

Pour cela, nous avons tout d’abord étudié la faisabilité d’un système de publication et
d’expérimentation basé sur l’environnement web, ajoutant aux principes d’évaluation par
les pairs d’un journal de recherche des contenus logiciels et des composantes interactives. Le
choix de l’environnement web nous semble naturel compte tenu de l’évolution des réseaux et
de leurs usages au cours des décennies précédentes, mais il limite l’interactivité qu’on peut
attendre des services de démonstration des algorithmes et la précision de l’affichage des doc-
uments publiés. Il nous place de plus dans un contexte où les normes, standards et langages
sont multiples et ne suffisent pas à définir complètement l’environnement logiciel dans lequel
IPOL est utilisé via les navigateurs web des visiteurs.

La publication de logiciel nous a aussi amené à une tentative de synthèse du corpus législatif
appliquable aux programmes informatiques, du point de vue du droit d’auteur et du droit des
inventions. Il apparâıt essentiellement que cette réglementation est nationale et hétérogène,
et que l’association de manuscrits et logiciels en un produit unique de la recherche ne semble
pas aisée tant ces deux entités disposent de statuts juridiques différents. Nous proposons
dans ce contexte une politique de droits d’auteur et licences destinée à faciliter la diffusion
des travaux de recherche et leur réutilisation pour des travaux ultérieurs.

La publication de logiciel est un objectif récent pour les journaux académiques, et on ne
dispose pas pour le code source informatique de l’équivalent des règles qui, appliquées aux
articles de recherche, définissent ce qui est publiable, et sous quelle forme. Nous proposons
donc des règles en ce sens, visant à guider les rapporteurs dans leur évaluation du logiciel
et contribuant à garantir qu’une implémentation sera utilisable par le plus grand nombre,
qu’elle produira des résultats identiques dans divers environnements informatiques, et qu’elle
est compréhensible et vérifiable, comme un manuscrit mathématique doit l’être. Ces règles
d’évaluation du logiciel sont complétées par un projet de procédure automatisée de traitement

1http://www.ipol.im/

i

http://www.ipol.im/

des implémentations avant publication, complétant l’évaluation manuelle des codes source par
des tests systématiques.

Les travaux de mise en place d’IPOL ont été menés dans trois directions: la définition des
critères et des procédures de validation et publication adapté à ces nouveaux types d’articles, le
développement d’outils logiciels génériques nécessaires à l’intégration des algorithmes publiés
dans des services web de démonstration, et la mise en place et l’administration de ces services
et outils sur une infrastructure de ressources informatiques. Après un peu plus d’une année
d’activité, le projet scientifique que constitue IPOL nous apparâıt très bénéfique à la recherche
en traitement d’image. Malgré la charge de traitement manuel qui subsiste en raison de la
nouveauté du sujet et du manque d’expérience et d’outils pour une gestion plus automatisée
des articles et logiciels, plus de vingt contributions ont pu être publiées, et une cinquantaine
de nouveaux articles sont en préparation. La fréquentation d’IPOL montre par son volume,
son origine internationale et la diversité des expériences faites avec le service de démonstration
des algorithmes que ce journal est utile au-delà de la communauté de ses auteurs. Les auteurs
sont globalement satisfaits de leur expérience et estiment que le travail supplémentaire que
cette forme de publication nécessite est compensé par les avantages obtenus en terme de
compréhension des algorithmes, de qualité des logiciels produits, de diffusion de leurs travaux
et d’opportunités de collaboration.

À la lumière de cette expérience, on peut établir un programme de recherche ambitieux en
traitement et analyse d’images adapté à cette forme de validation et diffusion de la recherche.
Disposant de définitions claires des objets et méthodes, et d’implémentations validées, il
devient possible de construire des châınes complexes et fiables de traitement des images. On
peut également souhaiter que d’autres journaux scientifiques et groupes de recherche adoptent
des méthodologies similaires.

ii

Abstract

This thesis is based on a study of reproducibility issues in images processing and computa-
tional research. From a constatation of the unverifiability of scientific publications and of the
implementations associated with published algorithms, we designed, created and developed
a scientific journal, Image Processing On Line2 (IPOL), in which we propose a new method
for the evaluation and publication of research in image processing, in order to improve the
reliability of research algorithms and software.

Articles published in IPOL include a complete implementation of the algorithms. This im-
plementation is published, after a validation by the reviewers, who shall also ensure that
the description of the algorithms is complete and detailed. A demonstration web service is
attached to every article, allowing users to test the algorithms on their data with their choice
of parameters. The full history of the experiments previously performed with this service is
also publicly available. These principles lead to further exchanges between research groups
working on image processing, they promote the validation and comparison of the algorithms,
the reuse of implementations, and the progressive compilation of a verifiable state of the art.

To this end, we first studied the feasibility of a publication and test system based on a web
environment, adding software and interactivity to the traditional peer-review principles of
research journals. The choice of the web environment seems natural given the evolution
of networks and their uses in previous decades, but it also limits the interactivity of the
demonstration services the rendering accuracy of the published documents, and in this context
multiple norms, standards, and languages are not sufficient to define the software environment
in which IPOL is used via the web browsers of visitors.

To publish software, we also reviewed the copyright and patent laws that apply to computer
programs. It appears that this regulation is heterogenous, based on national laws, and that
the combination of software and manuscripts in a single product of the research activity seems
difficult because of the different legal status of these two items. In this context, we propose
a copyright and license policy to facilitate the dissemination of research and its reuse for
subsequent works.

Publishing software is a recent goal for academic journals, and there is no equivalent for the
source code to the rules governing, for research papers, what is publishable, and in what
form. We therefore propose our software guidelines, to facilitate the production and review of
verifiable and usable software for reproducible research. These guidelines are completed by a
procedure proposed for automated testing of a software implementation before its publication.

Establishing IPOL required some work in three directions: the definition of criteria and
procedures to validate and publish these new types of articles, the development of generic
software tools used for the integration of the algorithms into demonstration web services, and
the setup and administration of these services and tools on an infrastructure of IT resources.
After more than one year of operation, the IPOL scientific project seems very useful to
research in image processing. Despite the need for manual processing that remains because of
the novelty of the subject and the lack of experience and tools for an automated management

2http://www.ipol.im/

iii

http://www.ipol.im/

of articles and software, more than twenty contributions have been published, and fifty new
articles are in preparation. The usage of IPOL shows by its volume, its international origin
and the diversity of the experiences with the demo service that this journal is useful beyond
the community of its authors. The authors are usually satisfied with their experience and
they feel that the extra work that this form of publication requires is offset by the benefits
obtained in terms of understanding of the algorithms, software quality, exposure of their work
and opportunities for collaboration.

In light of this experience, we can establish an ambitious research program in image processing
and analysis adapted to this procedure to validate and distribute the research. With clear and
reliable definitions of the objects and methods, with verified and trusted implementations, it
becomes possible to build complex image processing chains. One can also hope that other
journals and research groups adopt similar methodologies.

iv

Contents

1 Introduction 1

1.1 Context and Previous Works . 2

1.2 Software and Reproducibility . 8

1.3 Thesis Summary . 9

2 IPOL Project Overview 11

2.1 Why Image Processing On Line? . 12

2.2 How IPOL Works . 15

2.3 Current Activity . 19

2.4 The Scientific Program . 23

3 Online Demos and Software Journals 25

3.1 From Hypertext Microfilms to Web Services 26

3.2 Online Demos . 29

3.3 Reproducibility by Virtual Machines . 36

3.4 Implementations and the Scientific Method 40

4 Software for Reproducible Research 43

4.1 The Need for Software Quality . 44

4.2 Software Guidelines 1.00 . 45

4.3 Automated Processing . 61

5 Copyright, Patents, Licenses and Network Laws 71

5.1 Software Copyright and Patents . 72

5.2 Copyright and License Policies . 78

5.3 Online Publishing and the Law . 86

v

CONTENTS

6 A Short Survey of Image Processing and Computer Vision 93

6.1 The Universality of Image Processing . 94

6.2 A Rewriting of 2000 Keywords . 96

6.3 A Scientific Program for IPOL . 103

6.4 Image Analysis and Understanding . 116

6.5 Conclusion: Journal Methodology . 120

7 Examples 123

7.1 Retinex Poisson Equation: a Model for Color Perception 124

7.2 Simplest Color Balance . 143

8 Usage and Feeback 169

8.1 Authors Survey . 170

8.2 Usage Statistics . 176

A Software Guidelines 181

A.1 In Brief: Check List, Check Service and Examples 182

A.2 About this Document . 183

A.3 Guidelines . 183

A.4 Annexes . 191

B Feedback Survey 195

B.1 Author Feedback . 196

B.2 General Information . 199

B.3 Supplement Survey . 200

C References 201

vi

CONTENTS

Basically, software is the specification for how the software is supposed
to work. And anything less than the specification doesn’t really tell
you anything about how it’s ultimately going to behave. And that
just makes software really, really hard.

— Douglas Crockford

I don’t think a program is finished until you’ve written some
reasonable documentation. And I quite like a specification. I think
it’s unprofessional these people who say, “What it does? Read the
code.” The code shows me what it does. It doesn’t show me what
it’s supposed to do.

— Joe Armstrong

in Peter Seibel, Coders at Work: Reflections on the Craft of Programming

vii

CONTENTS

viii

Chapter 1

Introduction

Contents

1.1 Context and Previous Works . 2

1.1.1 Web Services . 4

1.1.2 Literate Programming Revisited . 5

1.1.3 Structured Documents and Active Documents 6

1.1.4 Software Journals . 6

1.1.5 Portable Executable Programs . 7

1.2 Software and Reproducibility . 8

1.2.1 Potential Articles and Authors . 8

1.2.2 Long Term Perspectives . 9

1.3 Thesis Summary . 9

1

CHAPTER 1. INTRODUCTION

1.1 Context and Previous Works

For computational sciences, detailed algorithms and implementations are an integral part of
the research results and should therefore be published extensively. This has been continu-
ously pointed out in the literature about reproducible research, from the seminal papers by
Claerbout [80] and Buckeit and Donoho [67] to recent columns about software quality, or the
lack of, in computational sciences [32, 243]. This goal is far from attained in the image and
signal processing community, where a study bu Vandewalle et al. in 2009 [349] observed that
only 12% of the published articles include the implementation details and 9% provide a source
code.

Indeed, image processing and computer vision are young sciences which emerged at the end
of the seventies. Their publication system is far from mature. Algorithmic exchange in this
community faces serious obstacles: multiple software developing environments have grown
in each research group without interoperability. Source code is subject to portability issues
and depends on local tools to process or exploit the result. And software maintenance is
a costly issue. Accordinf to Brook’s rule of thumb [?], a tested, reliable implementation is
estimated to require three times more resources than a working prototype, and integrating
different implementations together requires again three times more. Most labs have not the
permanent workforce to finalize and maintain a software and to adapt it to the changing
computing environment. Next to missing software engineering skills of scientists, software
maintenance and consolidation is therefore one of the main problems in this field.

In these conditions, research groups are unable to communicate efficiently by software and
are therefore limited to paper journals and conferences. Image processing libraries and devel-
opment environments are not a sufficient response, because in the absence of a common base
they reinforce the software fragmentation. Existing software journals, when they only publish
codes, lack the precise scientific evaluation and specification of the implemented algorithms
and a discussion about their properties, qualities and limits. When an implementation is
provided by the authors of a research article, it is usually available as-is on their personal
research web pages. Out of the peer-reviewed scientific publishing process, there is no control
that the provided source code exactly implements the described algorithm, there is no guaran-
tee on the correctness and usability of this implementation, or on its long-term availability.
We have systematically observed that the proposed code differs significantly from the paper
publication, that the paper publication is not enough to characterize an algorithm, and that
conversely the disclosed code contains parts that are not documented or explained in the
paper.

Multiple recent tentatives to address the vast problems od conservation, exchange and vali-
dation of computational science software material (code, executable programs, data and re-
sults) shows an increasing concern about the reliability of the computational science corpus.
Some of them were presented in workshops related to the reproducible research methodology,
such as the Executable Paper Grand Challenge [111, 138], Reproducible Research: Tools and
Strategies for Scientific Computing [216], and Rencontre de réflexion autour de la recherche
reproductible [87] in 2011 and 2012, others were independently developed and match some of
our needs for a reproducible computational research methodology. We present different tools
and solutions hereafter, summarized for comparison in table 1.1.

2

1.1. CONTEXT AND PREVIOUS WORKS

a
lg
o
ri
th
m
ic

d
es
cr
ip
ti
o
n

so
u
rc
e
co
d
e
av
a
il
a
b
le

ex
ec
u
ta
b
le

p
ro
g
ra
m

av
a
il
a
b
le

li
n
k
ed

d
es
cr
ip
ti
o
n
a
n
d
co
d
e

so
u
rc
e
co
d
e
re
v
ie
w
ed

lo
ca
l
ex
ec
u
ti
o
n

se
rv
er
-s
id
e
ex
ec
u
ti
o
n

ex
ec
u
ti
o
n
a
rc
h
iv
e

web services

Rolf Henkel’s “Web-based Image Processing” ◦ • •

EPFL Biomedical Imaging Group online demos ◦ • •

Tomas Pajdla’s “CMP SfM Web Service” • •

RunMyCode ◦ ◦ · •

Verifiable Computational Result • • •

Flash image editors: Photoshop Express Editor • •

Web image editors: Phixr •

literate programming

Sweave, Lepton • • • ◦

R2 • • • ◦ •

structured and active documents

Amrita ◦ • • •

IODA, Planetary ◦ •

Collage Authoring Environment • • •

software journals

Mathematical Programming Computation • •

Insight Journal • • • ◦

Open Research Computation • • • •

portable programs

CDE •

ActivePaper ◦ • •

SHARE, Papier Mâché ◦ ◦ • •

IPOL • • • • • •

Table 1.1: Comparison of algorithm, software and demo publishing solutions.
(•: yes, ◦: sometimes or partially)

3

CHAPTER 1. INTRODUCTION

1.1.1 Web Services

The first example we found of online demos for image processing is Rolf Henkel’s “Web-
based Image Processing”1, with 14 demos of stereo algorithms, segmentation, edge detection,
texture analysis and color transformation. This set of demos was available from 1994 to
2002 and processed more than 40000 requests. The author claims they were “among the first
interactive pages available on the internet”. The archives of these web pages, retrieved from
the Internet Archive project2 show, for each demo, a short explanation of the algorithm with
examples and references to published articles, and a list of the data processed. Although our
demos were developed before we knew of Rolf Henkel’s previous work, the similarity of the
concepts and content is striking, and we understand it as a confirmation that to be complete,
an online demo project must include the documentation about the demonstrated algorithm,
academic references, and an archive of demo activity.

The EPFL Biomedical Imaging Group also publishes online demos3, developed between 2001
and 2012. These demos are organized in three categories: 12 research demos, with recent
results in image processing, 9 teaching demos used to illustrate an image processing course,
and 12 student demos probably designed during internships. Most of these demos are executed
in the browser, as Java applets. A few ones only distribute a MATLAB or Java code, and
should not be labeled as “demos”. With the Java technology, we get a more interactive
experience with the program run locally. On the other side, without a server-side support,
everyone using these demos is isolated, and no information is available from the usage of
the demos by other people. Moreover, the Java technology is still problematic, 25% of the
web visitors have no Java support in their browser4 and this solution failed to gain a large
momentum since its first release fifteen years ago.

More early online demos certainly existed. Anyone with a working knowledge about web
technologies could propose interactive web pages involving some transformations of an image.
However, the two aforementioned examples are the only ones with an academic research
background we could trace back to more than 10 years ago, and still available online. Other
examples of web demos have been used in recent years, such as Tomas Pajdla’s non-interactive
web service for his “structure from motion” algorithm5 where users upload a set of several
images and receive later an email with the result of the algorithm. Web interfaces are also
commonly used for benchmarks and challenges in the image processing community.

RunMycode6 is a recent example of web-based online demos, focusing on the demo web service.
RunMyCode allows “people to run computer codes associated with a scientific publication
(articles and working papers) using their own data and parameter values” [83]. When they
publish an article, researchers can create a “companion website” on RunMyCode, where they
upload their R or MATLAB code and describe the input and output of their software. Then,
people interested in these articles will have to possibility to process their own data with the
authors code. This service is provided on a best-effort basis, and the usability of the MATLAB
demos in the future depends on the availability of the MATLAB computing environment for

1http://axon.physik.uni-bremen.de/online_calc/
2http://wayback.archive.org/web/*/http://axon.physik.uni-bremen.de/online_calc/storage/*
3http://bigwww.epfl.ch/demo/
4http://riastats.com/
5http://ptak.felk.cvut.cz/sfmservice/
6http://www.runmycode.org/

4

http://axon.physik.uni-bremen.de/online_calc/
http://wayback.archive.org/web/*/http://axon.physik.uni-bremen.de/online_calc/storage/*
http://bigwww.epfl.ch/demo/
http://riastats.com/
http://ptak.felk.cvut.cz/sfmservice/
http://www.runmycode.org/

1.1. CONTEXT AND PREVIOUS WORKS

future computing system, for which the RunMyCode administrators rely on vendor’s goodwill.

Another project specializes in the storage and indexation of the results of software research
experiments. A Verifiable Computational Result web service7 receives, identifies and archives
on demand the input and output of a program [140]. The code itself can be archived with
the data, and this system is well adapted to scripting languages like Python or MATLAB.

Our project, Image Processing On Line (IPOL) [225] merges these demo and archive services
with the online journal model. Web interfaces to run research codes are made available with
the archive of their usage, and this is linked to the preprints and articles (manuscript, data and
software) published in the journal. In IPOL, articles and demos are available online together
but can be split and still be useful and relevant. They are two different online contents:
not being on the same page, they are not submitted to the same editorial rules and may be
developed, in collaboration, by different authors. Article and demo are published together
because they support each other: the article explains the demo, and the demo illustrates
the article. But they are two different objects with incompatible properties. The article
is a static, immutable, reviewed set of documents that can be distributed, duplicated, and
archived. The demo in only an online interface to a remote software execution facility, based
on the software published in the article. It only exists in one place, the demo server, collects
the usage of the research software and can be updated according to the evolutions of the web
technologies.

These three examples of online demo services use standard, classic web technologies. The
novelty is in the application of these technologies to a scientific workflow in which the static
research article is completed with dynamic software services.

We can also cite web-based image edition tools, such as Photoshop Express Editor8, Splashup9

or Sumopaint10. These services aim at replacing desktop-based image edition software, but
they only provide basic and unscientific functions. Moreover, those three services use the
Flash technology, which means they are executed locally, as a portable software rather than
a real server-based service. Phixr11 is another website with image edition function, this time
with a real server-side processing architecture. Finally, Tineye12 for reverse image search and
Photosynth13 for image matching and 3D recomposition show how research algorithms can
be used for full-featured web services for the general public.

1.1.2 Literate Programming Revisited

The first group of developments is a variation on literate programming, a method to write a
program together with an explanation of the algorithm, by focusing on explaining the pro-
gram to an human reader. The author writes the code and its description together in a
single structured document, and uses specialized tools to transform it into two products, the
software and its documentation. Donald Knuth designed the original literate programming

7http://vcr.stanford.edu/
8http://www.photoshop.com/tools/expresseditor
9http://www.splashup.com/

10http://www.sumopaint.com/
11http://www.phixr.com/
12http://www.tineye.com/
13http://www.photosynth.net/

5

http://vcr.stanford.edu/
http://www.photoshop.com/tools/expresseditor
http://www.splashup.com/
http://www.sumopaint.com/
http://www.phixr.com/
http://www.tineye.com/
http://www.photosynth.net/

CHAPTER 1. INTRODUCTION

environment, WEB, for the LaTeX and Pascal languages [198, 199]. The subsequent gen-
erations of literate programming tools added support for HTML documentation and other
programming languages (C, C++, Perl, Caml, . . .).

This concept was later revisited for research articles in computational science. Instead of
the association of a program and its documentation, one could weave the text of a research
article with the code and data used to produce the tables and figures included in the article.
This procedure guarantees that the code and data are available with the article, and that the
content of the article is really obtained from this code and data.

Statistics researchers use this system, Sweave, with LaTeX and the R programming lan-
guage [212]; as of 2012, a new environment, Lepton, is also available with similar goals but
support for more languages [220]. The last iteration of the concept, R2, integrate these tools
in a web service to automatically build, test and validate the articles to be published [214].

These tools add automation to the reproducible research principles, as expressed by Claer-
bout [80] and Donoho [67]: a research article is not complete without all the software ma-
terial needed to reproduce its claims.. Once the execution of the software is automated on
the publishing servers for the production of the articles, we can imagine the possibility of a
re-execution of this code, close to an online demo.

1.1.3 Structured Documents and Active Documents

Research articles are usually published as a monolithic and static electronic document, a PDF
file reproducing a paper medium. The Sweave and Lepton tools enhance the PDF production
chain by building and inserting the results of the computations, with references to the code.
Other works like Amrita are exploring the possibilities of interactive PDF and the use of the
PDF viewer as an interactive computing environment [290].

An alternative direction is to publish research articles as native web documents, add interac-
tivity, and use the result as online demos structured as interactive articles. The first step is to
model the electronic article document. The Interactive Open Document Architecture (IODA)
is a multi-layered representation of such document, in which each article component can be
identified, queried and modified [315]. Planetary is another long-term effort to develop the
representations, languages, ontologies and tools for rich and active web documents [204]. On
the viewer side, the lack of correct rendering of math content in web browsers is supplemented
by JavaScript layers in JSMath or MathJax [76,77].

The interaction in executable articles is covered by works like the Collage Authoring Envi-
ronment, used to produce a web document an the infrastructure supporting the on-demand
re-computation of the content of the articles with a web user interface and the server-side
execution of code snippets [264].

All these projects share the idea that the research article is the natural environment for the
execution of the research code.

1.1.4 Software Journals

Some research journals consider software a primary material. The Mathematical Pro-
gramming Computation journal includes accompanying data and software with the

6

1.1. CONTEXT AND PREVIOUS WORKS

manuscripts [255]. This software is evaluated and tested during the review process, and
when possible the results included in the article are verified. However, there are no formal
criteria for software quality, and no requirement for the software to be portable.

The Insight Journal publishes software contributions in the fields of medical image processing
and visualization. This journal does not follow the usual review process with a scientific
committee choosing reviewers; instead, the articles are available for public review and feed-
back [178].

Finally, the Open Research Computation journalpublishes articles about software used by
researchers [280]. The software is required to be available under a open source license, and is
reviewed and tested during the publishing process.

1.1.5 Portable Executable Programs

A program usable and valid in a given computing environment may not be usable or give
the same results in other environments. The hardware (CPU instruction set, floating-point
model) and software (operating system calls, libraries, compilation tool chain, interpreters,
interfaces) define this environment. It varies over the computing landscape with a variety of
machines and systems, and over time with new software versions and computing platforms.

There are plenty of examples illustrating these incompatibilities and obsolescence. ARM
processors used on mobile computing tools, x86 processors on desktops and SPARC proces-
sors on supercomputers have different instruction sets [22, 137, 183]. Windows and Linux
systems have different programming interfaces. Nvidia GPU-assisted computing does not
handle floating-point numbers the way other processors do [265]. Every new version of the
MATLAB environment has some incompatibilities with previous releases [180]. The program-
ming interface of the FFTW library version 3 is not compatible with the version 2 of this
library [240]. Python 3 cannot interpret some code written for Python 2 [347]. These situa-
tions can happen everyday in a computer scientist’s life. And when a program includes details
tied to an environments, it is not usable on others, therefore not testable and verifiable. This
defeats reproducibility.

System Images and Virtual Machines

One strategy to achieve portable software execution is to save a system image of the exper-
imental computing environment when a computational science result is obtained, shared or
published, and use a system virtual machine to replay the computations or explore the com-
puting tools. This has been used by Van Gorp et al. for workshops with the SHARE system
and is proposed by Brammer et al. for publishing the Papier Mâché system [59,345,346].

Virtual machine tools are appropriate for collaboration and archival of computing environ-
ments, but we consider they are not adapted to the publication of reproducible research, for
reasons detailed later.

7

CHAPTER 1. INTRODUCTION

Process Virtual Machines

Another possibility is to use a process-level compatibility layer. A program compiled for a
process virtual machine target is not tied to the operating system or hardware architecture.
The binary program is made of virtual machine bytecode instead of processor instructions,
and the program is not run by the operating system kernel, but by the virtual machine
manager. With this abstraction layer, only the virtual machine manager needs to be adapted
to the computing environment and programs are written for a generic abstract machine.
The Java Virtual Machine (JVM) is a popular process virtual machine, created for the Java
programming language but expanded since to support other languages (Pascal, Python, Ruby,
Lua, . . .) and new languages created for the JVM target (Clojure, Scala, . . .) [227]. The
ActivePaper proposal packages (with the HDF514 format), research programs computed for
the JVM platform to avoid portability issues, with their data and documentation [172]. This
direction could be explored, to replace or complement the centralized server-size online demo
model with a decentralized, downloadable and executable system of locally executable demos.

Yet another possible direction is the automated packaging of a binary compiled program with
all its dependencies, as done with CDE. This doesn’t allow real portability over different
hardware,but it can solve the problems of dependencies and missing libraries and contribute
to the distribution of locally executable research programs without the JVM requirement [162,
163].

Finally, IPOL chose to benefit from the portability of source code and enforce a restrictive
software guideline, adhere to standards and APIs, and distribute the programs in source form.

1.2 Software and Reproducibility

Xin Li’s web directory of Reproducible Research in Computational Science (RRCS) contains
800 entries, gathered between 2007 and 2012, linking to image processing research code and
tools available online [219]. From this list, we can estimate the potential for growth and
adoption of the reproducible methodologies in the image processing research community and
plans for IPOL.

1.2.1 Potential Articles and Authors

The RRCS repository is divided into 27 topics, from “image denoising” to “machine learning”.
IPOL already contains articles or preprints in 12 of these topics, with recent state of the art
algorithms. Moreover, some topics covered in IPOL are not included in Xin Li’s list (color,
contrast and camera calibration).

The directory covers most of the computational image processing. After careful evaluation
of all these entries, we can count about 400 different interesting algorithms worth a full
publication with online demo, forty topics with ten important algorithm per topic.

14HDF5 is a data model, library, and file format for storing and managing data (http://www.hdfgroup.
org/HDF5/).

8

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

1.3. THESIS SUMMARY

As of early 2012, IPOL has thirty articles published or close to the publication, and forty
other papers being prepared, after little more than one year of full activity. If this cadence is
maintained, we can expect to cover most of state of the art of the discipline.

The authors featured in the directory are successful and highly ranked researchers, as shown
by their web pages, prizes and publications. But the inclusion of their codes in the RRCS list
only means that they felt comfortable enough with their work to make it publicly available;
only a fraction of these codes will be usable by other researchers and for an online demo. This
shows that the requirements for reproducible research as enforced by the IPOL policies are
very selective.

A research journal needs 100 to 300 regular contributors, three to ten times more than the
current number of IPOL authors. A few hundred potential authors are suggested by the
RRCS directory.

1.2.2 Long Term Perspectives

The codes proposed in the RRCS repository implement a single algorithm or a small set of
algorithms with their environment. Each of these algorithms are atomic, they perform one
single action on an image. For the best scientific output, the research community would
only need to publish these strong, reliable atoms. But for the moment the codes are only
bonus supplementary materials made available at the initiative of the authors. The research
community is not organized to produce implementations, it does not consider software its
primary production and software is not valued in publications. Hence the low number of
codes published in one form or another, compared with the number of image processing
articles; the ratio is around 1/100 or 1/1000.

Without recognition and consolidation of these software building blocks, researchers always
start from scratch and are unable to combine the algorithmic atoms into software molecules.
A few processing chains have been built, but their authors often admit that they are complex
kludges with no building block completely mastered.

In this perspective, the main task for IPOL is to analyze and provide solid building blocks.
Researchers will be able to use these blocks to build more ambitious processing chains, and
acquire good habits, such as using correct interpolation methods, always estimate the noise
to adjust the parameters, etc. If this plan succeeds, a new kind of research article should
appear, focusing on the analysis of building blocks or on discussed and proven incremental
improvements, then a more ambitious step with real processing chains.

1.3 Thesis Summary

In chapter 2, we begin with an overview of Image Processing On Line (IPOL), the framework
project in which most of our research was implemented. IPOL is a research journal and facility.
As a journal, IPOL publishes image processing and image analysis algorithms, described
in accurate literary form, coupled with software implementations. The implementation is
reviewed and published, like a “traditional” manuscript. Moreover, IPOL provides an online
demo interface to freely try and test published algorithms on user-submitted data, with a

9

CHAPTER 1. INTRODUCTION

public archive used to assess the behavior of the program on a large collection of input data
and settings.

In chapter 3, after a short history of the Web from the computer science point of view,
we discuss its use as an interface for image processing research software, and its technical
merits and constraints. On the issue of portability, we compare two solutions, one based on
source code and standard compliance, and another using a virtualization technology. We close
this chapter with a discussion about the importance of software implementations in applied
mathematics.

Chapter 4 focuses on software quality. We present a set of software guidelines in use for
IPOL and explain them. They cover three aspects of a software as a published material: its
packaging, its reliability and its documentation. These guidelines are expanded with future
plans for automated quality testing and compilation.

Then, in chapter 5, we explore the legal conditions and consequences of publishing research
articles with software, demos and archives. The fist part of the chapter summarizes two
important but disjoint legal concepts, applied to software: copyright and patents. Then we
propose a complete copyright and license policy for an online research journal with software
material, maximizing the usefulness of the publications for authors and readers. We close the
chapter with a review of the regulation of the Internet in France, and its consequences on the
operation of a journal as a web site.

In chapter 6, we review the image processing and computer vision terminology, and use it
to draw a scientific program for IPOL. The chapter continues with the decomposition of this
research program and logical groups linked to every step of the image acquisition process.

Chapter 7 contains two examples of articles published in IPOL. One is an implementation of
the Retinex algorithm by means of a Poisson equation, the other is an extremely basic method
to achieve a simple color balance, used for comparisons with more sophisticated methods.
These two examples are completed with explanations about the software and online demos
design.

Finally, we show in chapter 8 the results of a survey performed on the IPOL authors after
the first year of activity. This survey shows the interest of the project for authors and the
priorities for future developments. Usage statistics are also collected and summarized, and
they provide an estimation of the popularity and usefulness of the project for users.

The thesis ends with two documents included in annexes (the official IPOL Software Guide-
lines, and the text of the author survey) and the list of references used for this work.

10

Chapter 2

IPOL Project Overview

Contents

2.1 Why Image Processing On Line? 12

2.1.1 Online Testing and Experiment Sharing 12

2.1.2 The IPOL Publishing Model . 13

2.1.3 The Potential Impact on the Field 15

2.2 How IPOL Works . 15

2.2.1 Native Web Content . 15

2.2.2 Standard-Compliant Portable Compiled Code 16

2.2.3 Web Execution Interface . 17

2.2.4 Open Access and Free Licenses . 18

2.2.5 Security and Legal Context . 19

2.3 Current Activity . 19

2.3.1 Published Algorithms . 20

2.4 The Scientific Program . 23

11

CHAPTER 2. IPOL PROJECT OVERVIEW

Abstract

Image Processing On Line (IPOL) publishes image processing and image analysis
algorithms, described in accurate literary form, coupled with code. It allows scientists to
check directly the published algorithms online by providing a web execution interface on
any uploaded image.

This installation acts the universality of image science. It permits to transcend the
artificial segmentation of the research community in groups using this or that image
software, or working on dedicated incompatible image formats. It promotes reproducible
research, and the establishment of a state of the art verifiable by all, and on any image.

In this chapter, we describe the technical challenges raised by the foundation of this
new kind of journal and its scientific evaluation issues. We finally analyze the first publi-
cations, to demonstrate its potential impact on the development of image science.

This chapter is adapted from the article submitted to the Elsevier Executable Paper
Grand Challenge [110] and published in the proceedings of the ICCS conference 2011 [225].

2.1 Why Image Processing On Line?

The goal of the “Image Processing On Line” (IPOL) initiative is to publish complete and
certified implementations together with the precise algorithm description, submitted to a
peer-review [184]. This should enable performance and quality evaluations and comparisons
between algorithms, a task difficult to achieve today because implementations are often miss-
ing or unreliable. Making implementations into reviewed and published material will reward
the software quality, which otherwise is neglected by paper publications.

2.1.1 Online Testing and Experiment Sharing

Despite the availability of a reliable source code, an algorithm may not be immediately usable
because its compilation, installation and use is not straightforward. Many researchers are
reluctant to get into a compilation procedure to check an algorithm. Most would prefer
a quick test before they consider spending some more time to study the article in depth.
Our proposed solution is to provide an experimental environment directly accessible over the
network.

Despite various individual initiatives for web-based image processing, some as early as 19941,
dozens of on-line photo editing and sharing services demonstrating the availability of the
tools, industrial solutions being developed by large organizations for remote data analysis2,
and recent projects ensuring a reliable experimental environment via a cloud computing infras-
tructure [281], experimental resources accessed over the network still is a burgeoning concept
in the image processing research community.

The Middlebury initiative is an attempt to compare stereo vision and optical algorithms [27].
Multiple codes process identical datasets and measures are collected from the results to com-
pare the algorithms. The computer vision community has also made some effort to create
experimental databases in “challenges” open to all researchers: the Berkeley Segmentation

1See Rolf Henkel’s “Online Imageprocessing Pages” in chapter 1.
2The European Space Agency (ESA) develops KAOS as part of an infrastructure used for the analysis of

satellite data using remote servers (http://keo-karisma.esrin.esa.int/keo-home/KAOS.html).

12

http://keo-karisma.esrin.esa.int/keo-home/KAOS.html

2.1. WHY IMAGE PROCESSING ON LINE?

Dataset and Benchmark3 and the PASCAL Visual Object Classes4, otherwise called the Pas-
cal Object Recognition challenge, are initiatives structuring the vision research [119,237]. But
these initiatives do not contemplate the free interactive online execution of algorithms.

Some initiatives propose an online execution of the code, in particular in stereo vision, like
Minh Nguyen’s Web-Based Stereo Vision5, but they are isolated projects from one researcher
and do not provide the possibility to compare algorithms and, like previously cited bench-
marks and challenges, there is no peer review policy to validate the implementations as a
scientific work [261]. Out of the image processing community, the Mathematical Program-
ming Computation journal requires the authors to provide the code with their article, and
technical editors will try to reproduce the results announced in the paper, but the imple-
mentation is only archived and not distributed with the article [255]. A new journal, Open
Research Computation, is promising: it explicitly focuses on the documentation and testing
of open source research software [280]. But this recent initiative has not released its first issue
yet. Nevertheless, this is far behind other research fields such as the large on-line databases
and research tools used in genetics6.

We intend to remedy to this and the consequent lack of experiment sharing in computational
sciences by providing a web-based test interface for all the algorithms published on IPOL,
allowing any researcher to freely test any implementation on any data. The experimental data
is archived and publicly accessible. This archive can be used to share experiments between
researchers, and it is an efficient mean to assess the performances of an algorithm over a large
collection of input images.

2.1.2 The IPOL Publishing Model

We devised a new model to evaluate, preserve and disseminate research. IPOL is now a
solution for reproducible research, executable algorithms and experiment sharing, publicly
available on http://www.ipol.im/:

documentation
Articles are published as web pages with embedded formulas and figures, attached data
and a portable minimal implementation. Their main content is the precise description
of an algorithm.

implementation
The implementation is used to evaluate the algorithm by careful examination of the
source code and careful testing.

demonstration
An on-line demonstration system is proposed to run the algorithm on a server over a
web interface, with freely uploaded input data.

3http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
4http://pascallin.ecs.soton.ac.uk/challenges/VOC/
5http://www.cs.auckland.ac.nz/~mngu012/stereoapplication/
6The National Center for Biotechnology Information (NCBI) maintains various databases and tools (http:

//www.ncbi.nlm.nih.gov/). The Science Commons project develops knowledge management systems for
biomedical research. (http://sciencecommons.org/).

13

http://www.ipol.im/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://www.cs.auckland.ac.nz/~mngu012/stereoapplication/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://sciencecommons.org/

CHAPTER 2. IPOL PROJECT OVERVIEW

archive
The experiments conducted with the on-line demonstration system are collected into a
publicly available archive.

Figure 2.1: IPOL content and evaluation process.

Similar in its form to a classic research article but focused on the implementation, the pre-
cise description of the algorithm at IPOL is the main part of the publication. It must be
detailed enough to allow any specialist to implement it in their own programming language
and environment and validate it by comparison with the IPOL code and demo. IPOL aims at
publishing the most accurate descriptions of existing or new algorithms, with implementations
as generic and as reliable as possible. The implementation is guaranteed by the peer-reviewed
evaluation to match accurately the mathematical description of the algorithm. It runs on line
to grant researchers immediate testing.

The role of referees is different from (and complementary to) to a classic journal. An IPOL
article evaluation runs in two steps. At the first stage, an editor only has to read the submitted
web page, which must contain an accurate algorithm description and the most significant
experiments. If the editor is positive the article is “conditionally accepted” and the authors
are invited to submit a code, carefully commented and linked to the algorithmic description.

The “conditional acceptation” criterion is not the novelty of the algorithm: in many cases
the submission develops an already published algorithm, or an algorithm simultaneously sub-
mitted to a classic paper journal. The acceptation criterion is merely the interest for the
community to have the proposed algorithm specified, implemented and available on line. The
second phase of the evaluation is more technical and concludes with a certification by the
reviewers. The algorithm must be completely described, in such a way that it is reproducible.
The code and online demo must implement exactly the algorithm.

The on-line demonstration system and its archive are maintained by the IPOL editorial board,
and each new demonstration is created and installed by the board according to the specifica-
tions given by the algorithm author, using the exact same implementation published with in
the article.

14

2.2. HOW IPOL WORKS

2.1.3 The Potential Impact on the Field

There are some twenty image processing and image analysis journals and an equivalent number
of international conferences with more than 4000 articles every year in the community. There
is therefore a desperate need to compare and evaluate the methods. The goal of IPOL is not
only to favor a fair evaluation of new methods, but also to establish a comparative state of
the art by publishing in this new form all relevant algorithms of the field. Thus, all relevant
algorithms will be republished in IPOL.

The potential impact of IPOL on future image processing and computer vision research can
be summarized in the following points:

1. Establish a state of the art with benchmarks comparing the major algorithms.

2. Certify a correspondence between manuscript and software.

3. Publish benchmark data with certified properties.

4. Fix the form of classic algorithms, diminishing the time wasted by researchers on repro-
gramming them.

5. Reward the authors for this invaluable service by a peer reviewed publication.

2.2 How IPOL Works

2.2.1 Native Web Content

Most scientific publishers produce electronic versions of printed articles (generally PDF files),
distributed via the network. This still limits the authors to the model of printed articles
and implies that any non-printable content such as data and source code is handled aside,
sometimes in an on-line repository provided by the publisher, often simply on the authors’
personal web space.

We prefer to publish articles in the network as native web pages including all the material,
source code, data, files and figures required for the full evaluation of an algorithm. The
Word Wide Web as a publishing and documentation model provides means to distribute a
document with structured text, tables, figures and any attached file, without the artificial
size limits imposed in printed journals [44]. Document layout and interaction support is
reliable across major browsers for all the base technologies (content, presentation, interaction,
identification) and new standards are actively developed and adopted (video, math formula,
vector graphics)7. As of 2012, IPOL uses the Ikiwiki8 software as a document publishing

7Internet Explorer 7 (released in October 2006), Mozilla Firefox 2 (released in October 2006), Opera 9
(released in June 2006) and Safari 2 (released in April 2005) all had at least a reasonable support for the content
description (HTML4), presentation (Cascaded Style Sheets – CSS) and user-side interaction (JavaScript)
standards. This is expanding since with native video (HTML5 <video> tag), math formula (MathML), vector
graphics (Scalable Vector Graphics – SVG, HTML5 <canvas> tag) and 3D rendering (webGL) standardized
or expected soon. All this content lives in the same document space (Document Object Model – DOM) and
can be interconnected for a rich interactive experience. The article and its components can be identified by
unique identifiers (Digital Object Identifiers – DOI) for reliable references, citations and interlinks.

8http://ikiwiki.info/

15

http://ikiwiki.info/

CHAPTER 2. IPOL PROJECT OVERVIEW

system. Other solutions are possible, from generic web content management systems to
industry-grade publishing chains. The document publishing system for IPOL was chosen to
be a simple and immediately available solution without in-house development.

In the close future, however, we will probably transition to a process based on LaTeX and PDF
documents. This reorientation was needed because the authors are used to base their work on
LaTeX documents and they should not need to get used to a new medium in order to access
to IPOL as authors. It was also motivated by the unsatisfying quality of the typesetting and
rendering of scientific documents over the web interface. Some interactivity and integration
will be lost in the transition, but we hope to achieve a better publishing quality in exchange.
We will try to maintain an HTML version of the articles in the web pages of the journal and
we will still publish non-text materials (code, datasets, . . .) together with the article text.

2.2.2 Standard-Compliant Portable Compiled Code

Algorithms implemented for IPOL must be usable on any major computing system. Cross-
platform compatibility is required at least for the Windows, Mac OS X and Linux/Unix
families of operating systems, and with 32 and 64 bits variants of the x386 processor line.
This is a bare minimum, and in fact we don’t expect the implementations to be tied to any
operating system or hardware architecture.

Process virtual machines (Java, .NET) or interpreted languages (Perl, Python) could be a
mean to achieve this portability, but this solution is not realistic because it would imply
sub-efficient implementations, as shown by programming language benchmarks on computa-
tionally intensive algorithms9. Moreover, such programming languages would be an obstacle
to practical exchange and re-use of the implementations because they would not be eas-
ily merged with other code without sacrificing performance. The same compatibility issues
would be faced with proprietary scientific computing environments, which in addition don’t
provide any assurance of the future usability of the implementations. For these reasons, we
consider that the only way to ensure efficient portability is to require the algorithms to be
implemented in a low-level compiled language. C, C++, Fortran are some examples of pro-
gramming languages widely used in the research community, adapted to intensive numerical
computations, and supported on all common computing architectures and operating systems.

Algorithms exposed in IPOL articles must still be usable many years later to ensure long-term
verifiability of the scientific results. For this reason, implementations are required to follow
an established standardized language specification (ANSI C89, C99, ISO C++98, Fortran 90,
. . .). We use static code analysis and strict compilation as a “best effort” procedure to test
source code for future compatibility. The portability applies to all the code: no OS specific
feature can be expected from the standard library and the programs will only interact via
the only portable interface, the command line interface. For the same reasons, a perfect
implementation would require no external library and include all the source code needed
to produce the executable program. For practical reasons, exceptions are granted for well-
known reliable and portable software libraries: IPOL currently allows the Libpng and Libtiff
libraries to handle the image file input/output, the FFTW library for Fourier transforms, and

9The “Computer Language Benchmarks Game” is an exhaustive and constantly updated benchmark over
many languages and typical algorithms (http://shootout.alioth.debian.org/).

16

http://shootout.alioth.debian.org/

2.2. HOW IPOL WORKS

the BLAS API and LAPACK library for linear algebra10.

This may seem very restrictive but so far all the algorithms published or in the publishing
process have been able to follow these rules or to find workarounds. Many interesting and
powerful image processing algorithms can be implemented without requiring the support of
external libraries, but this may not be the case in other research fields where this policy would
need to be revised and adapted.

2.2.3 Web Execution Interface

IPOL also provides a demonstration system for every algorithm. Client-side models were
excluded because, as discussed before, the solutions for a portable executable program are
currently not efficient and would not show the best performances of the algorithms11. We
preferred server-side hosted demonstrations to avoid compatibility problems and ensure con-
sistent optimal performance in a controlled experimental environment with high-performance
hardware resources. We chose to make this system accessible over a web interface because
of the ubiquity of web browsers and their use as a flexible interface to any resource over the
networks, with web-based applications existing since 199312.

This interface is not optimal for our needs. Among other problems, we can cite the lack of
a built-in persistence mechanism in the HTTP protocol to keep track of the history of the
user interactions and provide an “undo” option, and the very limited feature set of XHTML
controls (buttons, text fields, . . .) compared to what is offered from any desktop graphical
user interface [126, 356]. On the other side, a web interface has the immense advantage over
other client-server models to be immediately usable for anyone with a computer connected to
the network and a browser. It also is a well tested model with a 20 years history and a large
collection of tools, servers, frameworks and libraries.

The typical IPOL experiment work-flow is:

1. Upload an input image or select one from a default list. The uploaded images are converted
from any common format into the file format and image type expected by the algorithm
implementation.

2. Set some parameters and/or perform some pre-processing. The pre-processing tools cur-
rently available include some image editing, cropping/zooming and adding noise.

3. Execute the algorithm on the server and visualize the results. Experiments conducted with
original uploaded images are archived and publicly available if agreed by the uploader.

10libpng is the reference implementation of the PNG image file format (http://www.libpng.org/pub/
png/libpng.html). libtiff is the de facto reference implementation of the TIFF image file format (http:
//www.remotesensing.org/libtiff/). FFTW is a high-performance and portable library for discrete Fourier
transforms (http://www.fftw.org/). BLAS (Basic Linear Algebra Subsystem) is the specification of ele-
mentary linear algebra libraries (http://www.netlib.org/blas/). LAPACK (Linear Algebra PACKage) is a
library for linear algebra built on BLAS (http://www.netlib.org/lapack/).

11An increasing part of the network traffic comes now from mobile and handheld devices with a very limited
processing power.

12See chapter 3 for a short history of web interfaces.

17

http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/
http://www.fftw.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/

CHAPTER 2. IPOL PROJECT OVERVIEW

IPOL uses native HTTP server mechanisms for data transfer, user authentication, logging and
usage statistics tracking. An “experiment key” is used to identify the data set and provide
continuity across the successive pages required to run the experiment. Simple XHTML form
controls are sufficient for most of the demonstration interfaces and some JavaScript tools have
been developed to support a better usability.

We chose to use the Python language and CherryPy framework13 to implement the server-
side back-end system whose tasks are to receive and store the input images and then execute
the algorithm using the implementation with some optional pre-processing dialogs. The
communication between users and the server is made of HTTP requests sent by the web
browser as a result of their local actions and the answers received from the server, formatted
as XHTML pages. Our current system can be extended for new algorithms by reusing common
building blocks from an application library. Once this young software stabilizes, it will be
released to help the creation of other similar initiatives.

So far, network capacity and file size are not an issue, mainly because image files are relatively
light and because a limit is imposed on the execution time. A web user is usually not ready
to wait for more than 10 seconds until a page is available [263, chapter 5]. In our context,
we estimate that researchers can wait for 30 seconds during the execution of an algorithm
if they receive a correct feedback. In order to keep the execution time under 30 seconds,
the size of the input images is limited by cropped or resized large images, depending on the
kind of algorithm. This effectively limits the volume of data exchanged and the bandwidth
requirements. We expect the situation to keep balanced in the future with network capacity
to grow together with hardware performances and typical file sizes.

Larger data or more computationally demanding algorithms could also be processed on the
server in a non-interactive processing queue, as it is currently done by some other demonstra-
tion tools:

1. Upload some data or provide a way to retrieve it from the server and set the execution
parameters.

2. The data is enqueued with instructions about how to process it.

3. The algorithm is run when some processing resources are available.

4. A notification email is sent to the user with the instructions needed to access the result of
the algorithm.

2.2.4 Open Access and Free Licenses

IPOL subscribes to the Open Access principles and all its content is freely accessible. The
copyright is kept by the authors on all their contributed content, allowing them to re-use
their works at will. In accordance with Stodden’s Principle of Scientific Licensing, dissemi-
nation, sharing, use, and re-use of the scientific research published by IPOL is facilitated by

13http://www.cherrypy.org/

18

http://www.cherrypy.org/

2.3. CURRENT ACTIVITY

the use of Creative Commons licenses14 for the articles and Free Software licenses15 for the
implementations when possible [323].

2.2.5 Security and Legal Context

IPOL publishes articles in the form of web pages and as such, the published content must
be moderated to avoid an abuse of the service. This is achieved by identifying the authors
by their name, institution and a verified contact address. The creation of any new article
on IPOL requires a manual confirmation by the editorial board, and new articles are not
publicly accessible until they have been reviewed and “conditionally accepted”. IPOL authors
are required to credit the authors republished algorithms and the origin of all the software
components they re-use. Potential plagiarism issues are the same as for any scientific journal.
IPOL as a web site can also be the target of external attacks, but this can be handled by
generic system and network administration measures.

The demonstration system is more exposed because it provides server resources to the public
by running software provided by the authors with data coming from the users. Different
attacks are possible: the algorithm implementations could use all the computing resources,
they could be malicious or have remotely exploitable bugs16 and damage the server or permit
its use it to attack other servers. This exposure is reduced by the careful examination of
the source code during the review process, the restriction of the rights of the demonstration
system on the server and of the total execution time a program can use. Virtual machines
and operating system containers are considered to execute the demonstrations in an isolated
environment without noticeable performance penalties.

Experiment archives could also be abused and unlawful images inserted. So far this has not
been an issue, and the use of the demonstrations could be rate-limited or require a preliminary
identification. The French law [3] (so far, IPOL operates from France) exempts IPOL as the
on-line editor from liability for the archive content if it is explicitly not moderated and if
unlawful content is promptly removed after notification.

2.3 Current Activity

The first IPOL prototypes were put online in December 2008 and the current version dates
from December 2009 for the web publishing part and September 2010 for the demonstration
server. The first article was reviewed, approved and published in July 2010. IPOL had in
March 2011 a dozen algorithms published or in the final review stages and twice more in
the pipeline. More than 50 international academic experts compose the scientific committee
responsible for the review process, and the editorial board handling the new algorithms. A
recent agreement between IPOL and the SIAM Journal of Imaging Sciences (SIIMS) [316] en-
courages authors to submit simultaneously algorithm and code to IPOL and the corresponding

14Creative Commons licenses allow the licensed content to be re-used as long as the original author is credited
(http://creativecommons.org).

15Free Software licenses allow unrestricted use, study and modification of a software with minimal restric-
tions. IPOL encourages the use of the GPL or BSD licenses.

16For example, a bug in the image reading library used by some demonstrations could be exploited by
uploading specially crafted images to execute arbitrary code on the server.

19

http://creativecommons.org

CHAPTER 2. IPOL PROJECT OVERVIEW

theory to SIIMS. As of January 2012, every month, the algorithm demonstrations are used
for more than 3000 experiments. 33500 original experimental data have been collected so far
in the archives.

At this point IPOL is still experimental, and faces new challenges with almost every new
algorithm publication. The delicate question of how an image processing algorithm can be
explained, specified and illustrated online is the object of many trials before some satisfactory
solution is reached. Once a satisfactory online demo solution is found for a particular image
processing problem, it is replicated for all further submissions dealing with the same problem.
Thus, the editing workload seems to be controllable. It has led to the constitution of a fifteen
members editorial board, distinct from the scientific board, to assist the authors. Exposing an
algorithm to the public and allowing it to be applied on any data is not a small challenge. It
often requires from the authors a serious rethinking, rewriting and many trials. This explains
why the publication of even classic algorithms ends up in authentic and innovative research.

2.3.1 Published Algorithms

We briefly present hereafter some of the algorithms available in IPOL. These are only seeds
of what IPOL can become if the research community subscribes to this publishing model.

Figure 2.2: Algebraic Lens Distortion Model Estimation.

Algebraic Lens Distortion Model Estimation
This algorithm presents a new method for correcting optical camera distortion (fig. 2.2).
It is the first article evaluated and published by IPOL. The corresponding paper article
was previously published in a 2009 article and counts so far eight known citations as of
January 2012 [207]. In contrast, its IPOL archive shows 1400 on line experiments with
original data between May 2010 and January 2012. Its source code was downloaded 350
times in the same period of time [21].

Non-local Means Denoising
Any digital image taken by a camera needs a sequence of restoration operations before it
is delivered in visible form. Denoising is the key operation which conditions the quality
of the other ones. Non-local means (fig 2.3) was proposed in a 2005 article , referenced
550 times until January 2012 [18]. From its appearance in IPOL in November 2009 to

20

2.3. CURRENT ACTIVITY

Figure 2.3: Non-local Means Denoising.

21

CHAPTER 2. IPOL PROJECT OVERVIEW

Figure 2.4: ASIFT: An Algorithm for Fully Affine Invariant Comparison.

Figure 2.5: LSD: a Line Segment Detector.

22

2.4. THE SCIENTIFIC PROGRAM

January 2012, the algorithm has been tested on 3000 uploaded images and the code has
been downloaded more than 550 times [63].

ASIFT: An Algorithm for Fully Affine Invariant Comparison
This on-line article is the flagship of IPOL, with 13500 on line experiments on original
image pairs (fig. 2.4) as of January 2012. The reason for the interest is obvious: ASIFT
is an improvement of the classic SIFT method published in 2004 used to detect whether
two digital images have objects in common or not [232]. This problem is the core of the
image retrieval problem, it is the first stage of many robotic and scene reconstruction
projects, and it is systematically used for photo stitching. Hence the need for a standard
and rigorous reference implementation. Although ASIFT only is a first approximation
to that, the code has been downloaded more that 2000 times in two years between its
publication and January 2012 [373].

LSD: a Line Segment Detector
Probably the most puzzling publication is this one (fig. 2.5), because of its obvious im-
pact demonstrated by 6500 on-line experiments in 18 months and more than 300 code
downloads as of January 2012. In contrast, the 2009 journal paper is so far cited 47
times [158]. One explanation is that, while detecting segments or edges in an image has
been a hot topic in the eighties and nineties, it is not currently considered a research
subject in the computer vision community, and no new paper appears on it. Neverthe-
less, most scientific and technical imaging techniques require reliable segment detectors.
The immense variety of the on-line experiments proves it. This also demonstrates that
an on-line demo can characterize much better the impact on technology and society of
a research than citation indexes do [159].

2.4 The Scientific Program

The hypothesis underlying IPOL is the universality of image science. Images currently created
by mankind are incredibly diverse. They can be snapshots of current life and artworks for the
wide public. Astronomers and geographers produce images of the universe, the Sun, the Earth
and other planets in many wavelengths and resolutions. Material science and physics have an
immense diversity of scientific samples. Last but not least medicine and biology create images
of all living organisms in an almost infinite scale from organs to proteins. Human perception
is prepared to this diversity, and seems to be able to adapt quickly to any new kind of
image. The existence of universal visual primitives, of “perception atoms” is hypothesized in
neurophysiology (where it leads to a cartography of visual areas by their geometric retinotopic
primitives), in psychophysics, where it leads to experiments with abstract images exciting
these visual primitives, and finally in computer vision where the goal is to emulate them
numerically.

In this universal context of imaging science the existence of incompatible image formats
and software is highly counterproductive. While some very specific imaging tasks might
indeed require peculiar dedicated algorithms, computer vision and image processing are highly
successful in designing algorithms valid for any kind of images. This is the case for two of the
first published algorithms in IPOL, LSD (which extracts segments in any image) and ASIFT
(which can recognize any solid shape, from galaxies to logos.)

23

CHAPTER 2. IPOL PROJECT OVERVIEW

This is why IPOL will encourage researchers to publish and confront systematically exist-
ing generic image processing algorithms to new ones. In 2011-2012 at least four benchmark
publications should appear in IPOL. One will deal with image denoising and will confront
the state of the art methods. Other benchmarks will deal with operations as universal and
basic as zooms in and out, color demosaicking, contrast adjustment, camera blur estimation.
If everything goes according to plan, all researchers using images, not necessarily image pro-
cessing specialists, should soon be able to test most state of the art algorithms on their own
images.

24

Chapter 3

Online Demos and Software
Journals

Contents

3.1 From Hypertext Microfilms to Web Services 26

3.1.1 Hypertext . 26

3.1.2 Artificial Intelligence . 26

3.1.3 Networks . 27

3.1.4 Internet and the Web . 27

3.1.5 Web User Interface . 28

3.2 Online Demos . 29

3.2.1 Use Cases . 29

3.2.2 Interface . 30

3.2.3 Web Demos . 31

3.2.4 IPOL Demos . 34

3.2.5 Online Demos and Software Journals 35

3.3 Reproducibility by Virtual Machines 36

3.3.1 Heavy Monolithic Backup . 36

3.3.2 Quantity vs Quality . 38

3.3.3 Portability . 38

3.3.4 Other Concerns: Licenses, System Updates and Reusability 39

3.3.5 An Experimental Tool . 39

3.4 Implementations and the Scientific Method 40

25

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

Abstract

This chapter starts with a recap of the evolution of computer networks, until the
WorldWideWeb was invented and usable to publish a collection of interlinked and struc-
tured documents, and to query remote computer resources and services. Then we review
how an usable interface to image processing research programs can be built into a web en-
vironment, and where this environment imposes some restrictions of what can be achieved.
An alternative model, based on virtual machines, is also presented with its advantages
and drawbacks. We end with a discussion about how computational sciences are neither
deductive nor experimental sciences, and why the availability of usable software imple-
mentations of this research is important for the validation of research results.

3.1 From Hypertext Microfilms to Web Services

Early communication networks were built and developed for the needs of state administration
and business organization [174, 319], but the computer networks and applications we know
today as the Internet and the Web were created by and for academic and scientific uses [19,
152,164,308]. We briefly retrace hereafter this history of computer networks during the 20th
century and their evolution as a medium for academic communication and as an interface to
computing resources.

3.1.1 Hypertext

In 1945, Vannevar Bush describes what he believes the future can be for scientists [70]. He
extrapolates from the technology available at this time, facsimile, photocells, television, mi-
crophotography, vocoders, early computing and information processing machines, and draws
the picture of a future system to archive, index and share the scientific knowledge. This is
the description of an information database with hypertext navigation in and between doc-
uments, using analog technology, mechanical actuators and physical medium. He describes
this system as a possible revolution of the methods of transmitting and reviewing the results
of research, a solution to the unacceptable delays imposed to scientific communication by
printing technology and economy.

3.1.2 Artificial Intelligence

Fifteen years later, in 1960, the computer science and industry had expanded and research
on artificial intelligence was burgeoning with high hopes. The updated vision, carried by
Joseph Licklider, was to let computers help men think and model problems. In this dynamic
cooperation, efficient but constrained computers would do the repetitive tasks and assist slow
but flexible men in taking technical and scientific decisions [222].

Towards the end of the decade, in 1967, studies of the man-computer interaction assumed
the use of a computer to test a model in a scientific application. The author of the studies
described this interaction as a succession of tests to validate or infirm hypotheses, a process
similar to the experimental method involved in testing a scientific theory [74].

26

3.1. FROM HYPERTEXT MICROFILMS TO WEB SERVICES

In 1968, Douglas Engelbart and his team presented their oN-Line System collaborative com-
puter environment [112]. With the famous first use of a mouse, the historic demo included
the first working hypertext system, a word processing used to produce a conference paper via
collaborative edition. These developments aimed at enhancing the knowledge, productivity,
and, ultimately, the human intellect by computer-assisted collaboration tools.

At this time, the only networked computing experience was still limited to distant operation
of mainframe computers from a remote terminal. The user interface (keyboard and display)
could be kilometers away from the computer and different users could use a computer si-
multaneously, but each mainframe/terminal set had its own idiosyncrasies and there was no
machine-to-machine network.

3.1.3 Networks

The first computer interconnection tests appear in 19681 and the ARPANET experiments
would start from 1969 [164, 165, 376]. In addition to its previous function, the computer
is now a communication device. From the beginning of the transition, computer-assisted
communication is more than the consultation of some distant documentation. The vision
of future networks is interactive, creative information processing systems linking people to
people and people to resources [223].

The ARPANET is built, and two of the first four connected nodes were research centers
working on image processing and interactive graphics [164], and later five of the fifteen nodes
of ARPANET were doing research on graphics [19]. During one decade, this network expands,
other networks are created with other goals, other technologies and in other countries, and
from 1982 they gradually interconnect2 and adopt a common standard, the Internet Protocol
Suite. From now, there is one global worldwide computer network, the base resource required
to realize knowledge society described by Bush, Licklider and Engelbart.

3.1.4 Internet and the Web

In 1988, the National Research Council report “Towards a National Research Network” shows
how scientists use the network and how they intend to expand this usage [196]. Distant collab-
orators access a shared software or sensor, and work in a common experimental environment
from different remote locations. Computing tasks are distributed between the local work-
station front-end and the remote supercomputer for the heavy computations. Researchers
expect electronic transmission of text, images, and movies to replace the physical distribution
of scientific journals. And image processing researchers want to transfer large files in a short
time.

The next report “Realizing the Information Future” confirms in 1994 the realization of these
ambitions [197]. In addition to the usages already described, independent electronic preprint

1The first packet-switching networks were probably built for the UK National Physical Laboratories and
for the Société Internationale de Télécommunications Aéronautiques. By design, they were horizontal com-
munication between peer machines, instead of the vertical client/server model of the terminal and mainframe
connection.

2Interconnections happened before 1982, but they used different protocols and were gradually replaced by
the Internet model.

27

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

repositories are developed and used as an alternative to expensive journals. Interactive inter-
faces are available to query genetic or satellite image databases. Forecasts include distributed
research teams, and computing grids. It is now clear that this is just the beginning of the
revolutionary impact on knowledge societies of what Brian Kernighan will describe 15 years
later as “the universals of digital technology”: a universal binary representation of the in-
formation, universal (reprogrammable) information processing machines, and the universal
(ubiquitous and content-agnostic) network [193].

Between those two reports, the invention of the WorldWideWeb took the Internet by storm
in 1991. This invention aims at merging different kinds of information stored on a collection
of machines into a single unified model and interface [42, 44]. In the early catalogs and
usage guides of the Internet published as books at this time [192,206], we can see long lists of
network resources, such as multiple FTP servers to visit and to retrieve specialized documents
or numerous telnet servers to be used for interactive services and databases, and all these
servers came with their own characteristics, syntax and usage models. With an identifier (the
URL), a network protocol (the Hypertext Transport Protocol, HTTP), a document language
(the Hypertext Modeling Language, HTML) and a user interface (the browser), the Web
“converts every information system so that it looks like part of some imaginary information
system which everyone can read” [41]. It was the environment needed to publish and organize
all the information available on the network, including all the scientific knowledge to be shared.
Once the browser gained graphical abilities and a critical mass was attained, the Wed started
its exponential growth from 1995 [259].

3.1.5 Web User Interface

But one brick was still missing. Internet usages were still split between the retrieval and
consultation of static documents, via the Web, and the usage of dynamic services accessed
via Telnet connexions. Early definitions of the HTML language in 1993 [38,39] only contains
tags related to the document structure and provide no support for on-demand information
processing.

In 1995, the first official definition of HTML introduces the <form> tags, used to used to “ac-
cess an information service as a function of the action and method” [40]. This, together with
the Common Gateway Interface (CGI) specification [242], marks the beginning of dynamic
web services.

CGI are programs used to create a Web page on demand, from the parameters provided by
the visitor. Without CGI, the Web was a system to publish organized but static documents.
With CGI, the web server becomes a pluggable dynamic tool to process user requests into
web pages. The Web becomes a new computing environment model, where the user interface
is the browser and the computing power is on a remote server. Graphical user interfaces
existed before, but only for local programs. And remote services were accessed via a console,
text-based telnet link. The Web User Interface (WUI) adds a cross-platform and lightweight
graphical user interface to remote computing.

Since its invention, the CGI technique evolved into more efficient models like the FastCGI
variant [62], scripting language, modules and frameworks3, and the web page design standards

3PHP, Coldfusion or Active Server Pages are programming languages developed for dynamic web applica-

28

3.2. ONLINE DEMOS

were updated and enriched, but the principles remain the same: the users actions are HTTP
requests submitted via HTML forms [40,108] and the server answers are web pages composed
from these requests. This implies three major restrictions to this programming model: the
user interface is limited to the content viewable in a web browser, two network transfers
and one server-side computation happen between every user request and its result, and the
user-server communication uses the HTTP protocol.

An alternative to server-side processing appeared from the 2000s: client-side portable pro-
grams distributed via web pages and executed in the web browser, such as Java applets and
Flash plugins, and more recently JavaScript programs. The major difference between this
approach and the previous CGI model is that the performances and reliability of client-side
web programs depend on the client configuration, both hardware (computer class and gen-
eration) and software (operating system and browser models and versions), notwithstanding
the intrinsic performances and capacities of Adobe Flash, Java and JavaScript programs.

3.2 Online Demos

In our context, the generic concept of an online demo is a web page or a set of web pages
where one can interactively specify the input data and some options and obtain the result of
this input after some server-side processing.

Sometimes, the “demo” term is also used for examples of the action or result of an algorithm,
distributed as images or video. These are just examples, chosen by the authors. These
examples may be useful to communicate about the algorithm, but they are not more than
advertisement and do not contribute much to the understanding of the algorithm.

3.2.1 Use Cases

Online demos, using the Web or another network technology to provide the interactive ex-
perience of a program for testing and exploration, can be useful for collaborative research,
development and debugging, for journal reviews, easy access to the program, and as a refer-
ence for comparisons.

Workshops When investigating a given topic in computational research, we may want to
try different algorithms with different settings and data and compare the results obtained.
When this research is conducted by a geographically distributed group, the information needs
to be shared through network tools. Instead of exchanging multiple versions of their source
code, programs and data, researchers can use a private online demo to conduct their tests
and experiments and collect the results in a single location.

Debugging Between the first working version and the public release of an algorithm, a code
usually needs to be stress-tested to find and correct defects and unexpected behaviors triggered
by rare data. With an online demo, a researcher can propose a program to its collaborators

tions. Perl, Python, and Ruby are general-purpose scripting languages popular for web applications.

29

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

without needing, at this early stage, to worry about the code quality, portability or version
management.

Reviews In the limited time they have for the task, academic reviewers will not always
be able to get, compile, install and use the implementation provided by an author with a
submitted article. With an online demo, and with the appropriate provisions for anonymity,
the reviewers can validate the author’s claims, reproduce the results included in the article
and try counter-examples.

Easy Access If an online demo is published together with a research article, then the
readers can immediately try and see the demo as a complement to the article. Nothing has to
be installed, compiled or even downloaded, a demo is immediately accessible. This is useful
for the readers, and informing their research community is easier for the authors.

Reference Famous algorithms can suffer from approximations and mistakes made by others
in its description or implementation. With an online demo, the original authors can publish
their reference implementation and have it used in comparisons and benchmarks.

3.2.2 Interface

The interface of a demo is critical, because it defines what can and cannot be achieved in
term of user interaction. We can consider three models for the network access of an online
demo: remote console, batch processing and client/server.

Remote Console The first possible architecture would be based on the old Telnet model:
with a light software console and a network link, one connects to a remote server where the
online demo lives. The local console only provides an mean to access the demo, used via
command-line or text mode interface.

The advantage of this system is the simple implementation and deployment, because it only
requires a console access to already existing programs. However, it is rather limited: the
text medium is too poor for demos on image processing, there is no file upload once we are
connected to the remote console, and few people are used to the console environment.

Batch Processing Another possibility is to send some data and requests to a demo server,
and receive later the results of the execution of the algorithm. This could be achieved,
for example, with e-mail messages containing instructions (input, parameters) encoded in a
defined syntax in the message body, and input data as attachments.

Batch processing is good to control the load of the server: a request is only handled when some
processing resources are available. With this system, we can consider heavy tasks and long
processing time. Batch processing is a standard procedure when the resources are scarce, for
example in high-performance computing. But this model lacks interactivity. The exploration
of a demo by trials and errors will not be possible with this system, and when most queries
are very quickly processed, as it is the case for image processing.

30

3.2. ONLINE DEMOS

Client/Server With a client-server architecture, a user runs a local program (the “client”),
and this program will connect to the server, submit the input, trigger the execution of the
algorithms, get their results and display them to the user. This implies a communication
protocol between the client and the server; various standards exist, such as XML-RPC, Java
RMI, REST or SOAP. The client can be a specific software developed for this demo system
and similar to any desktop application, or a generic light network client (like the web browser),
with all the interface transmitted from the server.

With this model, we get a real interactivity, and there are few limits on the flexibility of
the user interface; different client software can even coexist, with different use cases and
capacities, and connect to the same server. The drawback is that, unlike the previous models,
it requires more work: the client/server protocol must be defined, and the client interface and
the server functions must be developed.

3.2.3 Web Demos

The client/server model seems to provide the best user experience for image processing demos
in research. With a careful design, it is also possible to reuse the server side of this demo
system for batch processing and use the best of these two models for different talks.

One possibility for client/server systems is to base the system on the web model : in that
case, the base client is the web browser and the base server is a web server. On top of it, the
interface is built into HTML documents displayed by the browser, and the demo controller is
a program connected to the server, to perform the demo actions upon request (see figure 3.1
for a simplified schema).

Figure 3.1: Simplified client-server schema for web applications.

31

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

The Web has the immense advantage to be widely accessible, for almost any connected user,
any computer, any system. Modern web browsers are freely available for major systems
(Windows, Mac OS X, Linux) and very specific targets (mobile, for example). On the other
side, the Web is made of multiple layered techniques and standards with unequal level of
vendor support, and what can be achieved with web browsers depends on the browser models
and versions. But a base feature set is available: since a few years (October 2006, IE7), all
the major browsers support the basic web layout and interaction standards (HTML 4.01, CSS
1, ECMAScript 3, DOM 1), and this compliance has improved since and gradually includes
new versions of the standards.

Despite this risk of cross-browser issues, the ubiquitous HTTP/HTML server/browser seems
a truly accessible system. Moreover, the development of the Web during the last 10 years
stimulated the development of many languages, techniques and software usable for a demo
project.

HTTP

The HTTP protocol was designed to handle data transfer for the Web. A consequence of this
origin is its stateless design: the server is not supposed to retain any information about the
client between two requests, the answer to each request is unrelated to any previous request,
most requests are idempotent, the answer must be completely defined by all the information
provided in the request and identical requests will result in identical answers [43, 126].

But most online demos involve multiple steps, which need to be connected in some way for
a continuous interactive experience: once a file has been uploaded or chosen, demo users will
process this file without needing to upload or select it again. A workaround is needed to
connect these steps. It can be a unique identifier, maintained from the beginning to the end
of the demo procedure.

HTML

The user-side display interface is a different matter. Visual web is made of a collection of
techniques and standards, all interconnected via the HTML family of document description
languages. We highlight hereafter some aspects of HTML relevant for online demos.

Bitmap Images HTML standards do not specify which image file format should be sup-
ported by graphical web browsers, but a consensus on the essential formats exists: JPEG,
GIF and PNG.

JPEG files can contain color images encoded in 8 bits per channel, with three RGB channels.
JPEG compression is efficient for photographic images but performs a lossy compression, even
with the highest quality settings4. The compression errors would affect the precision of the
demo output, so JPEG is not adapted to online demos.

4Even with the maximum quality level, JPEG encoding involves a chroma downsampling and some rounding
errors during the DCT compression.

32

3.2. ONLINE DEMOS

GIF files are compressed without loss, but can only contain 256 different colors, a limita-
tion usually solved by quantization and dithering. For this reason, the GIF format is not
recommended for online demos.

PNG files can contain color images encoded with three RGB channel, each with up to 16
bits per pixel. Most important, PNG compression is lossless: the pixels values of an image
encoded into a PNG file are perfectly restored when the file is read. This property is essential,
PNG should the main image format for online demos.

So far, no floating-point image file format (such as TIFF or OpenEXR) can be used in an
HTML interface, probably because HTML is made for visual display devices, and screens only
handle integer precision, usually with 8 bits per channel.

Vector Images The vector formats commonly used by the scientific community, PostScript
(PS) and Portable Document Format (PDF), are not natively embeddable in a web interface.
A native alternative is the Scalable Vector Format (SVG), whose browser support is improv-
ing. Our tests in December 2012 showed that SVG files are displayed by almost every browser,
and that an alternative PNG bitmap can be used for the few ones without SVG capability5.

Movies, Sound, 3D Current HTML standards don’t include a mechanism to embed
movies, sound or 3D data. Movies and sounds are usually displayed via an external plug-in
software, often Adobe Flash, sometimes Java. The VRML and X3D standards have been
developed for 3D scenes, but failed to gain wide adoption. Here again, Flash or Java plug-ins
are sometimes used.

It is worth noting that the next version of the HTML standard, HTML5, should solve most
of these issues: it includes native audio, video and 3D media in a web page. But as of early
2012, HTML5 support is still very partial and experimental.

Forms and Actions The HTML language provides native interaction controls with the
HTML forms. They can be used to upload files, submit a free text option, select between
predefined choices, toggle options, and transmit some coordinates selected in an image. Their
browser support is very robust and reliable. On the other side, HTML forms are passive:
nothing happens until the form is submitted and a new HTML document is requested, pro-
duced by the server, transmitted, and displayed by the browser. And they are rather simple:
the only action is the mouse clicks. This is a problem when we want, for example, to select
an image area: we need to use multiple click, ie multiple client-server requests and answers.

JavaScript Adding JavaScript scripts to the web documents can enhance the HTML user
interface. With this programming language, interpreted and executed in the browser, one can

5SVG files in an HTML <object> tag can be viewed on Windows XP systems with Firefox 3.6 and 6.0,
Opera 11, Chrome 13, Chromium 8, Safari 5, Konqueror 4 and Amaya 11. On Linux systems, they were
successfully tested with Chromium 11, Firefox 3.5 and Netsurf 2.7. Safari 5 and Chrome 13 on Mac OSX,
and Safari on iOS, could also display the SVG image. Only these browsers needed a PNG bitmap alternative:
Internet Explorer 8 on Windows XP, Internet Explorer 8 and 9 on Windows Vista, Links 2.3 and Dillo 3.0 on
Linux.

33

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

connect different elements of the user interface, and user input devices can include keyboard,
multiple mouse buttons and mouse gestures.

3.2.4 IPOL Demos

In the IPOL journal, the image processing demo system was built on these priorities:

❼ simplicity : avoid unnecessary technology layers and software dependencies;

❼ flexibility : we do not know yet which interface feature will be needed for future demos;

❼ openness : integrate demo designs from authors and editors;

❼ accessibility : no one should be barred from using demos.

The user interface is made of classic HTML documents. We use JavaScript to enrich some
HTML forms, but this is essentially sugar coating and JavaScript is not needed to use IPOL,
because we want to stay accessible and because we do not want to invest in more development
to evaluate the impact of JavaScript on accessibility and on the long-term maintenance of
the service, as long as it is not absolutely needed. Flash and Java are not used, and we hope
HTML5 adoption will be sufficient when we need to handle audio or video data.

The base workflow of an IPOL demo is always the same:

1. Users select or upload one or more images.

2. The image is preprocessed, its size is checked and it is converted to the image file format
expected by the research software shown in the demo.

3. Users can modify the input images, choose some algorithm parameters, or both.

4. The input images are processed by the research software.

5. The result is shown.

6. If the input was submitted by the user, this experiment is archived. The user can go back
to step 1 or 2.

Variations between demos are changes in the steps 4 (how the input data can be prepared,
which options are available), 5 (how the data is processed) and 6 (how the result is displayed).

The first backend was a simple Python CGI program, we used it for our early experiments
on online demos. It was rewritten as a modular web application using the Python CherryPy
web framework6, chosen for its simplicity and minimalism: we were discovering web service
development, starting small was important. This version is still a work in progress, so there is
not much interest in describing the implementation in details. Until a stable state is reached
and documented in future research literature, the current code is available online7.

6http://www.cherrypy.org/
7http://dev.ipol.im/git/?p=nil/ipol_demo.git

34

http://www.cherrypy.org/
http://dev.ipol.im/git/?p=nil/ipol_demo.git

3.2. ONLINE DEMOS

The IPOL demo system is currently modular in the sense that it can easily accept new demos
based on existing ones or with a largely different workflow. However, it is still monolithic with
a single backend to build the research programs, run them on user-submitted data, provide
the user interface, feed the archives and display the archive content, everything on a single
server.

The next step will probably be splitting these functions into different services which could be
managed by different machines and with the possibility to grow and accept more traffic by
replicating the servers. This will be the opportunity to add functions missing in the current
system: source code validation and strict build procedure, monitoring of the program execu-
tion and error reports, program isolation via the virtualization of the system environment,
and batch processing for large input or heavy algorithms.

3.2.5 Online Demos and Software Journals

Image processing is well adapted to a web interface because most image-related algorithms
are faster than those of other computational science fields, such as fluid mechanics simulation
or financial analysis. This is important because a web demo interface requires an interactive
user experience. One will not start a computation on Friday and retrieve the result after
the week-end, this would not be an online demo but a completely different object, a batch
processing service accessible over the Web.

Moreover, unlike video, sound or 3D volumes, images have always been integrated in the
HTML language as a native component of the web interface. Even today, the only non-text
medium supported in HTML is the images. Everything else requires add-on programs and
browser plugins. 2D images are the perfect match for web interfaces because the Web was
conceived to be used via a computer display, an still is. This display is a flat visual human-
machine interface, and there is no time dimension in a web page. Only with the future
HTML5 norms will we be able to correctly manipulate audio, video and 3D data in a web
page with the audio, video and canvas objects and WebGL API [359, 369]. Then audio,
video and volume processing will become truly possible in online demos.

Compared with the distribution as a program, the outstanding benefit of an online demo is the
resolution of most compatibility issues. Online demos only rely on the web standards, which
are formally defined and published and whose correct implementation depends on a single
(albeit complex) piece of software, the browser. There are some real issues with the respect
of these standards and some cross-browser inconsistencies, but this cannot be compared with
the portability problems on cross-platform GUI programming. Moreover, the algorithms can
be tried and used immediately by the web users who do not need to compile or install the
program, a task that some of them are not able or willing to do. Finally, when an image is
processed on the server, each remote user gets the same results after the same delay, even if
their local computing environments have different performances.

Another advantage of online demos is their integration in the global Web documentation
system: they are better indexed, referred and exposed than files and programs distributed to
everyone’s individual computer, like a web page is more visible than a manuscript distributed
by postal mail. This online integration can also be used to enrich the demo with two other
materials: the algorithm can be described and documented as a web page, which becomes an

35

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

academic article when integrated in an editorial process, and the usage of the demo can also
be archived and all the past experiences, input, output and parameters, made available online
to explore the effect of the demo program on more data than what one person can submit.

But there are drawbacks too. The web interface is poor if compared with the graphical
interfaces available on any desktop. The network architecture is another issue. A service
provided from one server to multiple users is fragile since this server is a single point of
failure; any problem on the server affects the availability of the service. This architecture
contradicts the resilience design of the Internet [164], the peer status of machines in an end-
to-end network [305] and the non-centralization of the Web [42]. This can be mitigated,
but not solved, by redundancy and distribution over multiple servers, with a financial and
workload cost.

Finally, online demos are obviously not usable without a fast reliable network link. This is
taken for granted in the research institutions of developed countries, but the network resource
is still unavailable or rare in developing countries, rural and isolated areas and for mobile users.
In contrast, a downloadable program is usable in all these situations. One should not consider
that an online solution “in the cloud” replaces an executable program.

3.3 Reproducibility by Virtual Machines

The SHARE system uses complete system images with system virtual machines to preserve a
computing environment and avoid compatibility problems [346]. This system-level virtualiza-
tion uses an emulation or abstraction container for the whole operating system, as opposed
to process-level virtualization using emulation or abstraction container for a process.

Strictly speaking, a virtual machine is not needed to benefit from the saved system image.
Such an image contains the whole filesystem used by the computing system, and could be
copied and reused as the main filesystem on other real (non-virtual) computers. But with the
recent advances in system virtualization technologies, we can easily store, transfer, duplicate
and update the system images for use with various virtual computing environments via flexible
distant access interfaces. These system images can also be used in combination with hardware
emulation when an hardware architecture is not available.

3.3.1 Heavy Monolithic Backup

Saving the whole computing environment implies to keep a copy of everything that can be
saved. Hardware cannot yet be cloned, so only the software part is saved. We usually store a
copy of all the data available from the permanent storage devices and launch virtual machines
from boot on this complete clone of the filesystem. It would also be possible with current
virtualization technology to store a copy of the volatile memory content at a given time and
launch virtual machines from this state, but this is not relevant in the reproducible research
context: we want at least to be able to use the saved software after a reboot cycle, hence from
fresh memory.

The saved filesystem contains everything needed to boot the virtual machine to a user session
and usually a graphical desktop interface. None of the proposals for reproducible research used

36

3.3. REPRODUCIBILITY BY VIRTUAL MACHINES

a text-only console access to the virtual machine. This is the base computing environment,
and includes the operating system kernel, system configuration, programs and support files
for all the default system services launched until the graphical user interface and for all the
programs available from this interface. The disk space requirements for a fresh operating
system installation is between 5 GiB and 20 GiB8 and even if some parts of the default
operating system can be removed, the size of the filesystem to save will be in the gigabytes.

Then we need to save the program whose environment has to be preserved, and everything
needed to use it. If the program is saved as an executable, we probably need some support
libraries (file format and linear algebra are common examples, visualization is likely to be used
too). If the program is kept as source code, we also need the compiler and runtime library. For
bytecode-compiled language, we need the run-time system (like the Java Virtual Machine).
Script languages (like R or Python) need an interpreter and interactive scripting languages
will also require the interactive environment (MATLAB, IDL, Scilab). This programming
environment is not as heavy as the base system, but still in tens to hundreds of megabytes,
or more9.

As these numbers show, the computing environment to preserve can be many orders of magni-
tude larger than the program we are interested in. The issue is not the cost of storage which,
as proponents of the virtual machine solution already wrote, is inexpensive and decreasing.
But many GiB of data are still heavy to transfer, and this limits practical usage of the virtual
machine disk images to a distant server accessed via a remote desktop client.

And it lacks focus. Once the virtual machine environment has been saved as a large disk
image, we can refer to it as the archived content of a computer, but the interesting files are
only a fragment of this computer content, not directly accessible by this reference. Referring
to the preserved software in a useful way requires:

❼ the reference of the virtual machine image;

❼ an explanation about how this machine image is to be used or accessed, with the tools
involved (remote desktop or virtualization monitor);

❼ a documentation of the graphical desktop interface provided by this virtual machine
because current desktop metaphors will eventually be obsolete;

❼ the detailed procedure to access the software preserved in this virtual machine, to use
it, and to reproduce the intended experimental results.

Finally, because the complete filesystem is saved, any update of the software to be preserved
will require a whole new copy of the environment, leading to lots of duplication and redun-
dancy. Attempts to avoid this redundancy would imply the use of de-duplicating filesystems
like ZFS [51, 295], only supported by a few operating systems, or disk image incremental
snapshots, tied to a specific storage abstraction layer like a logical volume manager or Copy-
on-Write disk image, which may conflict with some virtualization manager requirements.

85 Gb are required for Red Hat Enterprise Linux 6 [293] and Debian GNU/Linux 6.0 [334], 7 Gb for
Mac OS X 10.7 [23] and between 16 Gb and 20 GiB for Windows 7 [246].

9Compressed installers for Windows 7 weight 16 MiB for Java 6.29 (32bits version), 19 MiB for Python 2.7.2
and NumPy 1.6.5, 38 MiB for R 2.13.2. The Debian 6.0 packages for the gcc-4.4 compiler and its dependencies
on amd64 platforms weight 80 MiB. IDL 7.0 on Windows used more than 400MiB and a typical installation
of Matlab 7.10 on Linux 64bits uses 1.6 GiB of disk space.

37

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

3.3.2 Quantity vs Quality

Chemists don’t need to keep a duplicate of the full laboratory with the equipment, supplies
and clones of the staff for every experiment they want to reproduce. Instead, they keep a log
of their work in the lab notebook, detail the experimental process in academic publications
and refer to an established nomenclature [86]. Reproducibility is composed here by the
traceability of the research process, a complete documentation of the experimental setup and
reliable references to common knowledge.

This could also be attained in computational sciences:

❼ traceability of the source code, the compiled program and the data produced by this
program can be provided by source version control and automated build tools;

❼ documentation can be composed of the usual academic publication (what the program
should do), systematic comments and explanations of every logic part of the source code
(what the program does) and a user manual (how to use the program);

❼ the common knowledge here is the set of published and recognized standards defining
the programming languages, data formats and communication protocols.

Archiving a disk image is a desperate brute force strategy : “save all the static data available
in the computing environment, keep a copy of everything, and hope it will include all the in-
variants needed to reproduce a result”. We think that the identification of these invariants and
the conservation of all the information that defines the computing process without ambiguity,
and only this information, is more rational and more interesting.

3.3.3 Portability

The proposals for reproducible science by means of a virtual machine cited the promi-
nent current virtualization tools Xen [30, 179], VMWare [181, 328], VirtualBox [88, 358] and
OpenVZ [279]. All these technologies are based on the same model: they read a disk image
and use this content to define and execute a virtualized operating system.

The three major desktop operating system families in 2011 are Windows, Linux and
Mac OS X10 with usage share varying across communities. These three systems are used
as platforms for computational research, so they all need to be supported by a virtualization
system if it is to be used to publish and exchange research content.

But the virtualization support is limited: OpenVZ only accepts Linux as a guest operating
system, Xen only supports Windows and Linux, VirtualBox and VmWare will only virtualize
recent versions of Mac OS X on Apple hardware and when using Mac OS X as a host operating
system, because of restrictions imposed in the end-user license agreement [24,25]. Practically,
this means that researchers using Mac OS X as their primary work environment would be
excluded from publication tools based on virtualization.

10The exact figures are difficult to collect [367]. Wikimedia report 79% of its traffic fromWindows web clients,
8% from Mac OS X, 5% from iOs and 3% from Linux [366]. The research community probably has higher
Linux figures: IPOL observes 73% of its visits from Windows, 16% from Linux, 11% from Mac OS X [185].

38

3.3. REPRODUCIBILITY BY VIRTUAL MACHINES

And each virtual machine technology details its guest operating system compatibility per OS,
version and/or distribution. This means that they provide limited support for old operating
systems, which could be a concern when current systems will be considered old, 15 years
later. And this compatibility list means virtualization tools do not provide a neutral hardware
abstractions on which any operating system could be run. Moreover, these virtual machine
tools can all read raw copies of the storage medium, but they all define their preferred and
incompatible format [368] that no other virtual machine monitor can read.

In spite of some unification efforts at the API level [221], virtualization is still fragmented
across technology vendors and operating systems, and this endangers any attempt to base a
reproducible research publication platform on this model. All the portability issues can be
solved by ad-hoc measures, conversions and migrations, but the absence of a generic solution
is a serious scalability issue if virtualization had to be provided for thousands of computational
science articles every hear, each of them storing gigabytes of data as seen previously.

3.3.4 Other Concerns: Licenses, System Updates and Reusability

The Microsoft or Apple End-User License Agreements for the Windows or Mac OS X only
allow a limited number of instances of the operating system to be simultaneously installed
and/or used. With this restriction, if these operating systems must be accepted, then storing
virtual machine environments for reproducible research will require some provisions for bulk
licensing or will need some sort of on-demand license accounting every time someone want
to use a virtual machine archive. The same problems will arise for computing environments
bound by similar license terms, like MATLAB.

Over time, defects and security issues are discovered in operating systems and software. Some
of these may put the user data, user privacy, or the computing resources at risk by exposing
them to unauthorized users. But these defects cannot be fixed by software updates, because
this would modify the computing environment and defeat the conservation goal.

Finally, with these preserved system images, one gets a closed box. The box may be func-
tioning, always produce the same output in a predictable way, and provide a reproducible
computational result, but there are no provisions to reuse it. Scientific collaborations and
developments are achieved by the exchange and recycling of successful ideas, and a software
is an idea expressed in a programming language. So the correct place for this software seems
to be among other published, discussed and exchanged research works, not embedded and
locked in a freezed computing environment. If the program needs the preserved environment
to function correctly, then it will loose its pertinence once the preserved environment is obso-
lete, and its scientific interest is rather poor. On the other hand, if the program can function
correctly out of this preserved environment, then the virtual machine infrastructure is not
needed to achieve reproducibility and harms reusability.

3.3.5 An Experimental Tool

In conclusion, virtual machines technologies are great for experiment and collaboration, but
they are not a good solution for publishing and reusing. Instead, we propose with IPOL the
conservation of the minimum set of readable information defining the computation: the source

39

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

code, expressed in a unambiguous standardized language syntax; external computing tools can
be used by means of a public stable API, or included with the program as source code; some
attached data files, subject to the same standard unambiguous formatting requirements. Then
virtual machines can still be used as a backup, a solution to archive a computing environment
and keep a software somehow accessible when everything it depends on is obsolete.

3.4 Implementations and the Scientific Method

Online demos only differ from standard implementations by their distributed, network-based
properties, and their compared advantages and drawbacks have been presented. But since
most of the research articles in signal processing are released without code [349], we need
to explain the interest of implementations in research, to justify the development and use of
online demos.

Theoretical sciences are based on logic and deduction and do not require implementations. For
example, a typical math article will focus on demonstrating a new theorem. The scientific
content of the paper is the demonstration of the theorem, the set of logically connected
assertions such that if the conditions are met and the axioms accepted, then the conclusion is
right. The subject matter of this science is the abstract concepts and properties represented
by the mathematical notations. No program is needed there, and established standards of
the mathematics community ensure that a published proof is replicable, well defined and
verifiable by every researcher of the field.

Experimental sciences are based on hypothesis and deduction, and do not need implementa-
tions either. A biology article will propose an hypothesis and a method to test it, in the form
of an experiment. This experiment will be described with enough details for other researchers
of the field to independently reproduce it and verify the published conclusions. Here, the
subject matter is the hypothesis and the procedure to test it, and they are accepted until a
new experiment brings a contradiction or a new hypothesis refines the previous one.

Theoretical or experimental sciences may use software, but this software is a research tool.
If it is the subject of the research, then this research is not theoretical nor experimental
anymore.

Depending on the local academic culture, image processing is categorized as applied mathe-
matics, computer science or electrical engineering11. Some image processing research qualifies
as theoretical science when only abstract objects and properties are manipulated, but these

11According to the 2009 IEEE Taxonomy (http://www.ieee.org/documents/2009Taxonomy_v101.pdf) and
2009 IEEE Thesaurus (http://www.ieee.org/documents/pdfieeethes05nov09.pdf), image processing is a
branch of computers and information processing, but biomedical image processing is a sub-branch of engi-
neering in medicine and biology and stereo image processing is a sub-branch of imaging. The 2010 Mathe-
matics Subject Classification of the AMS (http://www.ams.org/mathscinet/msc/msc2010.html) places image
processing in the computer science / computing methodologies and applications and information and commu-
nication, circuits / communication, information categories and the computer graphics, image analysis, and
computational geometry in numerical analysis / numerical approximation and computational geometry. The
1998 ACM Computing Classification System (http://www.acm.org/about/class/1998) considers image pro-
cessing and computer vision as a branch of computing methodologies. In the Dewey Decimal Classification
(http://www.oclc.org/dewey/resources/summaries/), image processing can be found in the 000 – Com-
puter science, information and general works, 500 – Science (including mathematics) and 600 – Technology
and applied science classes.

40

http://www.ieee.org/documents/2009Taxonomy_v101.pdf
http://www.ieee.org/documents/pdfieeethes05nov09.pdf
http://www.acm.org/about/class/1998
http://www.oclc.org/dewey/resources/summaries/

3.4. IMPLEMENTATIONS AND THE SCIENTIFIC METHOD

are not the works we are interested in. Image processing can also be involved in other sciences
like biology, astronomy or geography, but this does not imply that image processing belongs to
these domains, not more than database management, often needed for computational genetic
research, is a branch of genetics. For a large proportion of digital image processing research,
the subject matter is algorithms, ie numerical procedures applied on images to achieve a goal
expressed in term of image properties.

Some algorithms can be demonstrated: one can prove that a sequence of manipulations on
a numerical array will sort the array, or perform a discrete Fourier transform, or invert a
matrix. This is theoretical, deductive research, and while these algorithms may be useful for
image processing, the elaboration and study of these algorithms is not image processing as
long as the algorithms operate on abstract numerical data.

Image processing algorithms are not software, but they can be expressed as software and
this is needed to apply them to digital images. This unavoidable presence of software in
applied digital image processing makes it a branch of the computational sciences branch,
neither theoretical (computers are not abstract concepts) nor experimental (software do not
test hypotheses on the laws of nature).

Application cannot be avoided in image processing when we claim to solve a problem with
an algorithm. In that case, the subject matter of the research is not the properties of the
algorithm, but its usefulness, performance and robustness. These are not well-defined proper-
ties when an algorithm is claimed to “match features”, “remove the noise”, “correct the color
balance” or “interpolate an image” because we are interested in algorithms solving these prob-
lems on natural images, not on any abstract pixel array. We do not have theoretical tools
to demonstrate that, for example, for any digital image obtained from a natural scene, an
algorithm corrects the color better than any other color balance algorithm, and there are no
reliable automatic quality assessment measures for images. Thus, readers and users of the
research litterature should judge by themselves the results of algorithms.

In the absence of deductive methods, one solution is to build trustworthy implementations of
the algorithm, use them to process images and be convinced, after thorough exploration of the
range of typical images and possible special cases, that the algorithm performs as expected,
until a better one is proposed or failure cases are discovered12.

In experimental sciences, the experiments are built to test an hypothesis on the laws of nature.
In computational sciences, experiments are conducted to test an hypothesis on the properties
of an algorithm. Image processing software are engineering tools to process images according
to an algorithm, and image processing science is involved in the design of the algorithms and
their software realization and in the empirical verification of the qualities of the algorithms
via those of their implementations.

We can see now why research articles contribute less to the field if the authors do not provide
a publicly available implementation or a complete, very detailed description of the algorithm
sufficient to write a software implementation. Based on these implementations, online demos
are tools for the scientific method: they simplify the use of the implementations and they

12This is obvious when we look at the series of contributions to a research domain, like “intelligent image
resizing” for example, where every yearly conference has a paper whose authors claim to solve the question
and provide a video with a set of chosen examples, until the next authors exhibit other images where all the
previous methods failed badly.

41

CHAPTER 3. ONLINE DEMOS AND SOFTWARE JOURNALS

collect in their archives all the intelligent testing effort of the community to validate the
algorithm properties.

42

Chapter 4

Software for Reproducible Research

Contents

4.1 The Need for Software Quality . 44

4.2 Software Guidelines 1.00 . 45

4.2.1 Packaging and Content . 45

4.2.2 Implementation . 47

4.2.3 Copyright, License and Patents . 53

4.2.4 Documentation . 56

4.3 Automated Processing . 61

4.3.1 Automated Identification . 61

4.3.2 Automated Build . 62

4.3.3 Towards Automated Tests . 65

43

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

Abstract

Publishing some software in a scholarly journal implies that this material is reviewed,
and that the journal readers can expect some level of quality standard for the software
as well as for other kinds of research papers. Such a software should be usable and
have predictable effects across a reasonable diversity of present and future computing
environments. The source code should be available — otherwise no one can say what the
software is really doing — and it must be readable and documented, just like the math
demonstrations in a paper are readable and explained. We propose to establish these
quality expectations as a Software Guidelines document composed of requirements and
recommendations, similar to the Article Guidelines frequently used in text-only journals.
We also propose an automated testing procedure to help the reviewers verify the quality of
the code. In addition, these guidelines are a good place to mention the copyright, license
and patent policies in place for the software publications.

4.1 The Need for Software Quality

To publish a research article in mathematics, the author’s working notes are rewritten into
a form suitable for a research journal. During this rewriting the author’s mnemonic short-
cuts are replaced by standard and widely used notations. The text is edited for grammatical
correctness and clear style [327]. The work is structured according to recognized composi-
tion rules [272, 341], and assembled into a printable matter with the help of a typesetting
environment [200,208].

All this work in rewriting makes the research readable, understandable, useful and unam-
biguous. The scientific content of a paper ready for publication is arguably not more than
the original ideas scribbled on the author’s blackboard, but the presentation efforts made by
the author in writing a research paper will help convey the ideas expressed in the text to its
multiple readers.

Scholarly journals provide their “Author Guidelines” about how articles should be written.
We think that some software guidelines are also needed when a journal expects to receive,
review and publish a computer program. Code is read much more often than it is written,
and the source code is read directly, without being processed by typesetting solution, so
its readability is worth some efforts from the authors. Moreover, a source code is not only
expected to be read but also reused, so care has to be taken for the usability of the code in
addition to its clarity. Conversely, compiling and running a program is not sufficient if we
cannot understand what is done with the program.

Various coding style guides have been written and used to enforce a unified visual style and
improve the quality of the code since the original Indian Hill Recommended C Style and
Coding Standards1 and the Elements of Programming Style [195].

The guidelines hereafter were developed as an attempt to guide the authors of implementations
submitted to IPOL. Their goal is to increase the readability and usability of the programs

1Many C and C++ style guides have been collected and archived by Chris Lott (http://www.maultech.com/
chrislott/resources/cstyle/). An example of recent and exhaustive coding style reference is used for C99
code by the EPITA computer engineering school (http://tsunanet.net/~tsuna/codingstyle/codingstyle.
html).

44

http://www.maultech.com/chrislott/resources/cstyle/
http://www.maultech.com/chrislott/resources/cstyle/
http://tsunanet.net/~tsuna/codingstyle/codingstyle.html
http://tsunanet.net/~tsuna/codingstyle/codingstyle.html

4.2. SOFTWARE GUIDELINES 1.00

published in the journal, with a set of requirements and recommendations for an article to be
accepted.

They do not cover topics like the logical correctness of the implementations or the architecture
of the software, which are expected to be evaluated directly by the reviewers. Another
document could provide some advice on these topics, but the matter is wide and requires
hundreds of pages to be completely covered [194, 241], not counting the additional matter of
security risks in software and how to avoid unintended abuse of the program [307, 363]. The
current guidelines only focus on the priority: readable and usable programs.

We believe that these guidelines are relevant for other computational science research com-
munities, after some adaptation of the domain-specific items like data file formats, common
software libraries, or essential languages.

4.2 Software Guidelines 1.00

The first version of the IPOL Software Guidelines was adopted in December 2011. Abridged
guidelines are reproduced and commented hereafter; the full text is available in annex A and
on the IPOL web site2. They will probably be revised in future versions with the experience
collected from their usage.

As a normative document, the guidelines need to be expressed without ambiguity. The
vocabulary described in IETF RFC2119 was chosen for its concise yet clear expression of the
requirements, recommendations and options [58]. For reference, the guidelines are publicly
available online and every guideline item is numbered.

The notion of “standard and documented implementation” was not sufficient to guide the
authors, editors and reviewers. The adoption of these guidelines establishes a clear and
shared understanding of what is expected from the authors, but their application depends on
how they can be understood and verified. To help authors, editors and reviewers, a set of
simple algorithms implemented by following these guidelines are provided as examples.

A test tool has also been developed to check a program against some of these guidelines. It is
available via a web interface3 and a downloadable command-line tool4. Authors and reviewers
can use it to perform all the automatic tests on the file content and metrics, and focus on
high-level analysis of the code once this filter is passed.

4.2.1 Packaging and Content

The first set of guidelines defines how a program is distributed and what it contains. Their
goal is to ensure that the program can be easily identified, transmitted and evaluated, and
that it can be manipulated by everyone.

2https://tools.ipol.im/wiki/ref/software_guidelines/
3https://tools.ipol.im/swg_check/
4http://dev.ipol.im/git/?p=nil/ipol_tools.git

45

https://tools.ipol.im/wiki/ref/software_guidelines/
https://tools.ipol.im/swg_check/
http://dev.ipol.im/git/?p=nil/ipol_tools.git

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

1.1. Compressed Archive

“An IPOL program must be packaged as a compressed archive file, either a single
volume .ZIP compressed archive or a GZIP compressed tar archive.
The size of the compressed archive file should be less than 2 MB.”

Programs are a set of files, but manipulating them as a single atomic item is more convenient,
so we require them be merged in a single archive file and compressed for easier exchange. Zip
is the default archiving format on Windows systems and tar/gzip the default in Linux, so
both formats are allowed.

These archive formats are formally defined5 but examples of programs usually available or
easy to obtain for most systems (Tar, Gzip, Zip 7zip) are provided to guide the authors.

Large and multiple data files, such as large uncompressed images or video, could lead to
arbitrarily large archives, difficult to store and exchange with little or no benefit. This is
avoided by setting a size limit on the program packaged as a compressed archive to 2 MB.
This arbitrary size was chosen because it fits all the software already published in the platform
before the adoption of the guidelines.

1.2. Archive Name, Program Name and Version

“The compressed archive file of an IPOL program must be named according to
the name version.extension pattern, where: name and version must consist
only of lower case letters, digits, minus and period signs, name must be at least
two characters long and start with a letter, version must start with a digit, and
extension is zip for zip archives and tgz for tar/gz archives .”

The program needs to be identified and this identification must allow the distinction between
successive revisions of the program, ie a program must have a name and a version number.
To access this information without decompressing the archive package of the program, the
name and version are encoded in the file name of the archive and define it. It requires a
separator, “ ”, and a restricted set of characters compatible with all common filesystems and
text processing utilities. The name should be pronounceable, and start with a letter; the
version number should be sortable, and starts with a number.

Unique program names and strictly increasing version numbers are desirable, but this is
left for later versions of the guidelines because it requires some tools to be developed and
maintained for this purpose.

1.3. File and Folder Names

“All the files and folders extracted from the compressed archive must be located
inside a base folder named name version, where name and version are identical

5The .ZIP compressed archive format is defined by the PKZIP APPNOTE documentation [191], the tar
archive format is defined by the POSIX.1 ustar standard [337], and the GZIP compression is defined by the
IETF RFC1952 [99].

46

4.2. SOFTWARE GUIDELINES 1.00

to those used for the compressed archive file name.
The name of all files and folders composing the IPOL program must consist only
of lower or upper case letters, digits, minus, underscore and period signs.”

The extraction of the content of an archive may overwrite existing files, mix them with other
files in the working directory or create them in unusual locations. To avoid this undesirable
effect, all the content is required to be located, after extraction, in a subfolder named after
the compressed archive file. The archive is a single compressed folder containing all the files
included in the program.

The files extracted from the program archive must be usable and comfortable on all systems,
filesystems and localizations, so the file names are required to be written in the ASCII char-
acter set without any path separator (slash, backslash, colon), command separator (space,
comma, semicolon), wildcard sign (asterisk, question mark), comment marker (pound sign,
percent sign),. . .

1.4. Hidden and Useless Files

“An IPOL program should not include hidden files or folders or by-products of
the tools used by the authors, such as (but not limited to) files inserted by file
managers, folders inserted by version control managers, backup versions.
The program should not be distributed with files not useful to build, use or study
the implementation of the algorithm published in IPOL.”

If a file is not useful, it has no reason to be included and distributed with it. This rule reflects
the desire to distribute the final versions of programs, not working drafts.

4.2.2 Implementation

The second group of guidelines takes care of the portability of the software. No guideline can
guarantee than a program will be usable on any present and future computing system, but
known sources of incompatibilities can be avoided.

2.1. Source Code

“An IPOL program must include all the material necessary to build one or more
executable program files implementing the algorithm published in IPOL. This ma-
terial must be provided in human-readable source code form.”

The first source of incompatibilities is the binary executable format. When a program has
been compiled for a computing system and hardware platform, it is not executable in other
environments6. The distribution of the program in source code format preserves the possibility
to recompile it into executable form on other present and future environments.

6Hardware emulators and operating system compatibility layers can be a solution to execute a program
built for one system and platform in another, but these partial solutions imply a performance penalty and may
not be maintained in the future.

47

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

Binary versions of the program may be useful for some users and can be distributed by the
authors in a software journal, but we know that these versions will eventually be obsolete.
For this reason, they must be clearly distinguished from the reference implementations of the
published algorithms, and not distributed via the compressed archive of the program.

The source code format also allows the review, validation and documentation of the imple-
mentation; these aspects are covered by later guidelines.

2.2. Programming Language

“The source code of an IPOL program must follow the published standard syntax
of one or more compiled programming languages. IPOL can currently only process
C89 (ANSI C), C99, and C++98 (ISO C++).
The source code may use the OpenMP 3.0 API for shared multiprocessing program-
ming but it must also compile and provide the same results without OpenMP.”

To retain the possibility to reuse the software, the language used to express it must be
understandable on various present and future systems. Nothing can guarantee that a language
will be usable forever, but some languages and dialects are known to be only usable on a
limited set of computing environments or to have a limited lifetime, and should be avoided.
Languages implemented by a single vendor are always menaced by possible issues with the
vendor company and discontinuation of the support for this language.

The MATLAB, IDL and similar programming languages lack a public and formal specification
and are tied to a single vendor, and we cannot hope implementations expressed in these
languages to be usable for a long time7.

The Java, Python or Ruby languages are well defined with public specifications, but we chose
to refuse implementations in interpreted languages because they usually (but not always) have
worse performances than compiled ones. Another issue with languages like Java, Python and
Ruby is that the execution environment of these languages must be available to use these
programs. Java needs a Java Virtual Machine [227] to execute the Java bytecode. Python
and Ruby need the language interpreter to be available at run-time to execute the scripts.
Programs written in a compiled language only need to be processed by a compiler once, at
build time; then the compiled programs contain instructions directly understandable by the
processor and at run time and they are directly processed by the operating system without
the need for any external virtual machine or interpreter. Moreover, more combinations and
code reuse is possible between compiled programs than between interpreted ones8.

7The MATLAB language is only defined de facto as the language implemented by the Matlab computing
environment. New versions of this environment are released every six months, and with every release the
syntax or effect of some functions are modified and some functions are added or removed [180].

8C, C++, Fortran and Ada source code and object code (the compiled programs) can be combined on
the basis of the C application binary interface. They are all compiled using the same instruction set and
data primitives, into binary program files following the same format. In contrast, Java, Python and Ruby
sources are translated into three different and incompatible representations of a program (Java, Python and
Ruby bytecode), then these hardware-independent representations are processed by three different run-time
environment. In-depth explanations can be found on the Wikipedia pages about interpreters (http://en.
wikipedia.org/wiki/Interpreter_(computing)) and process virtual machines (http://en.wikipedia.org/
wiki/Virtual_machine).

48

http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine

4.2. SOFTWARE GUIDELINES 1.00

Our solution is to only accept compiled languages defined by a publicly available specifi-
cation, such as C89, C99 and C++98 [84, 130, 278]. Other languages, such as Fortran 90,
are well defined and could be accepted, but a survey among our early authors suggests that
this language is not very represented in the image processing community; C and C++ are
the main or only programming languages of almost all our current authors. Of course, the
situation would probably be very different for numerical analysis and simulation research.
An alternative could be to publish MATLAB, Java, Python or Ruby codes and expect the
authors to maintain their implementations if the language changes. These codes written in a
high-level language would be more compact than C/C++ codes, more readable and closer to
a pseudo-code.

We are not aware of tools to strictly validate the conformance of a source code with the
standard definition of a language. Instead of pursuing formal purity goals, we prefer a “best
effort” pragmatic approach: the code should be tested by the authors and reviewers with strict
compilation options9, but this can not be a strict requirement as long as different compilers or
different compiler versions produce different warnings. Automated testing tools are planned
with compilations with different compilers in a controlled minimal environment and tests with
static and dynamic check tools (such as Splint, Clang, or Valgrind10).

Parallel computing is needed to achieve the best possible performances on modern architec-
tures, but this form of computation is not covered by the C and C++ language standards. We
chose to allow the authors to use the OpenMP model11 because it is standardized, portable
and available with every major compiler. OpenMP only implements shared-memory paral-
lel computing, but this model is sufficient and we see no need for distributed computing or
cluster architectures in our image processing environment in the coming years. But we also
recognize that OpenMP is not available neither relevant on all computing environments. For
this reason, the programs must also be usable without parallel computing and provide the
same results, albeit possibly slower.

OpenCL12 is another framework for parallel processing, with support for GPU hardware and
heterogenous systems. This open and cross-platform standard could be allowed too, once it
is supported by enough compilers.

2.3. Portability

“The source code of an IPOL program must not require any extension of the lan-
guage or its standard library, or any resource specific to a hardware environment,
operating system or compiler. These extensions and resources may be used to
achieve better performances if they are available but their availability must be
detected during the compilation or execution and an alternative portable imple-
mentation must be used in their absence.”

9As a preliminary test, authors are instructed to test their implementation with the GCC compiler using
the gcc -std=xxx -Wall -Wextra -Werror options where xxx is c89, c99 or c++98.

10Splint is a static code checking tool (http://splint.org/), Clang is a C/C++ frontend to the LLVM
compiler with code analysis features (http://clang.llvm.org/) Valgrind is a framework of dynamic analysis
tools with a memory error detector (http://valgrind.org/).

11http://openmp.org/
12http://www.khronos.org/opencl/

49

http://splint.org/
http://clang.llvm.org/
http://valgrind.org/
http://openmp.org/
http://www.khronos.org/opencl/

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

This section enhances the requirement for a standard-compliant source code. Implementations
targeting a specific compiler, operating system or machine do not benefit users of other com-
puting environments, and become completely useless once the target environment is obsolete
(and every piece of hardware and software eventually becomes obsolete13).

The goal of reproducible research is not to obtain implementations for one or a few sys-
tems14, but implementations that should be usable on any real or virtual computing envi-
ronment implementing the aforementioned system-agnostic language standards. This means
that language dialects specific to a compiler, standard library functions specific to an imple-
mentation, assembler code or “intrinsic functions” mapped to a processor instruction, code
tied to a specific hardware component (GPU), operating system calls, file system locations
and code specific to a memory model must be avoided.

This guideline does not imply that a program following these guidelines will be usable in the
standard default environment of Windows, Mac OS X and Linux systems. For example C99
code cannot be compiled with the default Microsoft Compiler [47]. Installing and using an
appropriate compiler, for example, can be needed. But using another operating system must
not be required, and any compiler correctly implementing the published language standard
should be sufficient.

We recognize that the performance of the implementation can benefit from the use of some
features specific to a hardware or system environment, such as data parallelism with vector
instructions. These features can be used in the implementation for the benefit of the users,
but the code must not depend on it and alternative implementations must be available, with
the same computational results.

2.4. Dependencies

“An IPOL program must not use external software components except for the
libraries and APIs listed hereafter: LibTIFF, LibPNG, LibJPEG, Zlib, FFTW,
CBLAS and CLAPACK.”

According to the previous guidelines, a good program should include the complete imple-
mentation of the published algorithms. This is theoretically feasible but neither realistic nor
appropriate because it would imply lots of work for every algorithm, with some duplicated and
sub-optimal implementations. Moreover, file management, numerical analysis, optimization
and linear algebra solvers (among others) are not in the area of expertise of image processing
researchers and they should not have to spend time on these tasks.

We need to set attainable goals and assist the authors in their efforts, so we allow so far
the use of a few external libraries: LibTIFF and LibPNG to read and write image files,

13The Windows 32bits and Intel x86 backward compatibility history is an exception in the computer world.
Apple systems went through two architecture and one major operating system change. Architectures once
prominent in high-performance computing, such as DEC Alpha or PA-RISC, are now extinct. ARM is now
the architecture deployed on the largest number of computing units and used on almost every mobile platform.

14An implementation with variants for Win32 and POSIX systems is not sufficient, because operating systems
are not limited to this alternative.

50

4.2. SOFTWARE GUIDELINES 1.00

with their dependencies LibJPEG and Zlib15 and FFTW, BLAS and LAPACK16 for Fourier
transforms and linear algebra operations. These libraries were selected on four criteria: they
are useful, widely used, portable (at least Linux, Mac OS X and Win32 systems) and have
a stable programming interface17. The GNU Scientific Library18 has been examined, but
its usability on Windows systems needs to be confirmed before it is allowed as an external
dependency. Moreover, we provide some code samples and tools19 to help authors start with
their implementation and access external libraries via simplified interfaces.

This restriction only applies to software components used by the program but not distributed
in source form with the program. The program may include some code from other software
projects, programs and libraries, and this is encouraged when it helps improving the quality
of the implementation, as long as all the source code follows the same guidelines, regardless
of its origin.

A common objection is that no serious implementation is possible without external libraries.
Our answers are that many interesting image processing algorithms do not require any com-
plex software component, that essential building-blocks are available in the C++ standard
template library and reusable software collections20, and that is always possible to include
a library in source form with the implementation of an algorithm. If such a library is not
available in source form, or if its compilation process is too complex, or if it is not made
of standard and portable source code, then one cannot expect it to be usable in the long
term. And finally, one can greatly reduce the library needs by focusing on the essential, the
algorithm; we do not need to support many image file formats, to have a graphical user inter-
face or numerous options and variants to implement and demonstrate an algorithm. Simpler
implementations are smaller, have less bugs, are easier to use, test, analyze and reuse.

2.5. Compilation

“An IPOL program must be compiled by an automated non-interactive build pro-
cedure with Make or CMake. This build tool must not be configured to use any
special compiler. The default build procedure must use standard compiler options
only.”

15These image libraries are available at http://www.remotesensing.org/libtiff/, http://libpng.org/
pub/png/libpng.html, http://www.ijg.org/ and http://zlib.net/.

16These numerical libraries are available at http://www.fftw.org/, http://www.netlib.org/blas/, http:
//www.netlib.org/lapack/ and http://www.gnu.org/software/gsl/.

17libfftw 3.0 was released in 2003, libfftw 2.0 was released in 1998 and this branch is still maintained. libpng
1.2 was released in 2001 and is still maintained, in parallel with the recent 1.4 and 1.5 branches. LAPACK 3.0
was released in 2000 and is still in development. The BLAS interface has not changed since its release thirty
years ago.

18These numerical libraries are available at http://www.fftw.org/, http://www.netlib.org/blas/, http:
//www.netlib.org/lapack/ and http://www.gnu.org/software/gsl/.

19The IPOL wiki has simplified interfaces to libpng, libtiff and a portable high-quality random number
generator (http://tools.ipol.im/wiki/author/code/tools/) and a collection of contributions from authors
willing to share their work (http://tools.ipol.im/wiki/author/code/hatchery/).

20Even if it is not yet allowed as an external library in these guidelines, the GNU Scientific Library is
designed in a modular way allowing for extraction and reuse of only the needed parts. Daniel Atkinson’s
ccmath (http://freecode.com/projects/ccmath) is another example of a math library in which a single
component can be isolated and reused.

51

http://www.remotesensing.org/libtiff/
http://libpng.org/pub/png/libpng.html
http://libpng.org/pub/png/libpng.html
http://www.ijg.org/
http://zlib.net/
http://www.fftw.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.gnu.org/software/gsl/
http://www.fftw.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.gnu.org/software/gsl/
http://tools.ipol.im/wiki/author/code/tools/
http://tools.ipol.im/wiki/author/code/hatchery/
http://freecode.com/projects/ccmath

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

The automated compilation tools provide a unified interface and syntax to build any program,
and the users do not need to know any detail of the implementation to be able to compile
it. Moreover, the Make and CMake tools are so common that every programmer knows how
to use them when they notice a Makefile or CMakeLists.txt file. It also prepares future
developments for an automated build and test tool.

Here again, we want to maximize the chances of a portable implementation, including its
build procedure. We do not want the name of the compiler to be hardcoded in the build
configuration (Make should use the generic ✩(CC) and ✩(CXX) variables for the C and C++
compilers) and we only want to use standard compiler options.

The closest thing we could find to “standard compiler options” are the options defined by the
the POSIX c99 specification [338] which happen to be valid options for all the C compilers
we know on POSIX systems. The Microsoft Visual C compiler understands most of these
options [245], with the Windows /x syntax instead of the UNIX -x. The only POSIX-specific
options are -g, -l, -o, -s. the first two ones can be ignored because debugging symbols and
stripping are not crucial for a default compilation. However, -o and -l cannot be avoided,
and the latter is closely tied to the UNIX shared library model, very different from the Win32
DLL system. A Makefile with only POSIX compiler options should work with any compiler
on a POSIX system, and the true portability is attained with CMake, which determines the
compiler options once the compiler is known.

This guideline shouldn’t be interpreted as the interdiction to use any compiler-specific com-
pilation option, such as optimized compilation flags. These options can be useful for some
users and generate programs with better performances. However, they must not be active in
the default build procedure, and should explicitly be invoked21.

2.6. Usage and Input/Output

“An IPOL program should be minimal and only perform the algorithm published
in IPOL. It must be usable from the command line environment without any user
interaction, taking all its parameters from the command line.
An IPOL program must be able to read the input data and write the final output
data in at least one of these formats: PNG, TIFF or PNM for raster images, EPS
or SVG for vector images, VRML or PLY for meshes, and plain text for other
data.”

Any feature of the program that is not needed to implement the algorithm implies more source
code, more software bugs, more need for documentation, more effort to read and review the
code, more effort to isolate and reuse the algorithm for further reuse. We particularly do not
want the algorithms to be implemented as one module or function in a large application or
library.

The command-line interface is the universal interactive user environment, available on any
interactive computing system22, the only one that needs to be provided by any published

21make optimized or make -f Makefile.gcc can be two means to explicitly invoke non-standard build
procedures, by choosing a specific build target or configuration file.

22A historic and cultural account of the importance of the command-line can be found in “In the Begin-
ning. . . was the Command Line” [322]. It predates the apparition of mobile computing devices (iPhone, iPad)

52

4.2. SOFTWARE GUIDELINES 1.00

program. It is natively supported by the standard C and C++ libraries and completely
portable. Its support is built in the operating systems23. The demo interface combines the
command-line execution of the programs with a web front-end.

The input/output part of this guideline item ensures that anyone can prepare some input
data for the program and read and understand the output data via a list of well-defined,
well-known and largely supported file formats24. Other formats can be added later to this list
when the need arises. And we would like to see the end of the multitude of poory designed
and documented file formats used for every new local image processing project while other
ones, standard, carefully designed and implemented, could be chosen.

2.7. Computing Resources

“In the demo environment, the program must not need more than 30 seconds to
process typical data. For slow algorithms, this limit may be achieved with parallel
processing or a limit on input size. An IPOL program should not use more than
1 GB of memory and must not use more than 8 MB of stack memory space.”

It is a consistency requirement that only one version of the implementation of an algorithm
is reviewed, distributed and used for the demo. Without that, one cannot know if objections
made to the reviewed code are relevant for the people who download the code, or if the
results observable in the demo are really achieved by the implementation of the algorithm as
described.

This also means that the time and resource constraints of the demo environment have to be
taken into account for the implementation.
To maintain an interactive feeling, the web users should not wait for more than 30 seconds
to get the results of an algorithm. Slow algorithms can be accelerated by parallel processing.
If this is not enough the input size can be limited.

The memory limits are here to preserve the coexistence of several demonstrations invoked
simultaneously on the same machine, and to inform the authors of technical limits on the
demo server.

4.2.3 Copyright, License and Patents

The third category of guidelines ensures that the rights of the authors, contributors, inventors,
readers and users are clearly mentioned and respected. These are the legal guidelines.

where the command-line interface has been deliberately hidden and is there, but locked out, inaccessible to
the users by a questionable design choice.

23Operating systems can launch any program with command-line options with system calls like the POSIX
execvp() without any terminal or command shell interpreter.

24PNG is defined by the IETF RFC2083, TIFF is defined by the Adobe TIFF 6.0 Specification, PNM
(PBM, PGM and PPM) is defined by the netpbm documentation, EPS is defined by the Adobe Encapsulated
PostScript 3.0 Specification, SVG is defined by the W3C Scalable Vector Graphics 1.0 Specification and VRML
is defined by the ISO/IEC Virtual Reality Modeling Language Specification [34, 55, 125, 288, 330, 331]. There
is no formal published specification of PLY, but this simple format introduced by the Stanford 3D Scanning
Repository is documented on Paul Bourke’s site [54].

53

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

3.1. Copyright Attribution

“Every source code file in an IPOL program must mention its authors in a copy-
right attribution line at the top of the file. This mention may be omitted in very
simple files such as header code.
Every person whose contribution to this file is not trivial and implies some creative
work must be credited.”

According to international copyright conventions, software has the status of literary work and
its copyright automatically belongs to the authors25. Mentioning this information in every file
clearly conveys the copyright information, the minimum credit due to the software authors.
The obligation to mention it in every file avoids omissions and code of obscure origin.

The copyright attribution must include the years of production of the work, the full name
and an e-mail address for contributor. It may also include other relevant information such as
the employer, affiliation or a web site.

The copyrights are attributed to every author whose creative work was involved in the source
code file, so successive authors are added while the code evolves, as shown in figure 4.1.

Copyright (C) 1998-2003, Taro Yamada <taro.yamada@example.jp>

Copyright (C) 2005-2011, Juan Perez <juan.perez@example.es>

Copyright (C) 2011, Marie Untel, ENS Cachan

<marie.untel@ens-cachan.fr>

Figure 4.1: Copyright attribution for multiple authors.

3.2. Patent Warning

“When the authors are aware or suspect that a source code file implements an
algorithm which might be linked to a patent (the main algorithm published on
IPOL or another algorithm used for this implementation), a patent warning must
be inserted after the copyright attribution, in every file potentially linked to this
patent.”

In some jurisdictions, patents on inventions involving a software component can result in the
interdiction to distribute, compile or use an implementation of the patented invention. This
patent restriction depends on local laws and changes as the laws change and the patents
expire. The editor of a software journal cannot determine the rights of the software users
in these various situations and cannot anticipate which patents will be enforced and which
patents will stand in court.

Due to the nature of a software publication as a mean for experimentation and research, we
consider that any algorithm can be distributed as source code. When the authors are aware

25Different countries have different local regulations, and may handle the economic rights in different man-
ners, but the moral rights (exclusive right to claim authorship of a work) are consistently attributed to the
authors.

54

4.2. SOFTWARE GUIDELINES 1.00

of the existence of patents, they are required to inform the readers by the insertion of a patent
warning. The exact determination of the rights of the readers and users is their responsibility,
and any other rights conveyed to the users by subsequent software licenses are conditioned to
the absence of conflicting patents. This recommended wording for this warning is shown in
figure 4.2.

This file implements an algorithm possibly linked to the patent

<REFERENCE OF THE PATENT>.

This file is made available for the exclusive aim of serving as

scientific tool to verify the soundness and completeness of the

algorithm description. Compilation, execution and redistribution

of this file may violate patents rights in certain countries.

The situation being different for every country and changing

over time, it is your responsibility to determine which patent

rights restrictions apply to you before you compile, use,

modify, or redistribute this file. A patent lawyer is qualified

to make this determination.

If and only if they don’t conflict with any patent terms, you

can benefit from the following license terms attached to this

file.

Figure 4.2: Recommended wording for the patent warning.

3.3. License

“Every source code file must mention a usage and redistribution license after the
copyright attribution (and patent warning for algorithms potentially linked to a
patent): GPL/LGPL/AGPL or BSD when no patent risk is known, BSD when a
patent is registered and the code authors are not the patent inventors, ‘for research
and education only’ when a patent is registered by the code authors.”

In the absence of a software license, the authors of the source code retain all the rights
attached to the program. One may suppose that, because the source program is available
online, everyone is allowed to download it, but modification and redistribution in source or
compiled form are forbidden unless explicitly allowed.

The source code is published for the benefit of the readers and users, who should be allowed to
download, read, use, modify, reuse and redistribute it. These rights match the Free Software
principles [134, 335], so to guarantee these right for the users the authors are required to
distribute their code under a free software license.

To avoid license proliferation and keep things simple, we propose the GPL/LGPL/AGPL and
BSD licenses, which are expected to cover all the use cases with various levels of restrictions
and freedoms. GPL licenses are known to conflict with patent rights [378], so in case of a
patented algorithm, we require the implementation to be distributed under the BSD license.
A special case is when the patent inventors are the copyright holders of the implementation: in
that case, they cannot simultaneously assert their patent rights to be the exclusive distributors
of the invention and distribute the code under a free software license granting unlimited

55

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

redistribution rights. We consider this exception and allow the code, in that case, to be
distributed under a “research and education only license” because this matches the patent
exceptions in most jurisdictions. The recommended wording for these license terms is shown
in figure 4.3; The full license terms should be provided in a separate file.

This program is free software: you can use, modify and/or

redistribute it under the terms of the GNU General Public

License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later

version. You should have received a copy of this license along

this program. If not, see <http://www.gnu.org/licenses/>.

This program is free software: you can use, modify and/or

redistribute it under the terms of the simplified BSD

License. You should have received a copy of this license along

this program. If not, see

<http://www.opensource.org/licenses/bsd-license.html>.

This program is provided for research and education only: you can

use and/or modify it for these purposes, but you are not allowed

to redistribute this work or derivative works in source or

executable form. A license must be obtained from the patent right

holders for any other use.

Figure 4.3: Three recommended wordings for the license information.

Finally, as exact copyright and license regulations depend on the countries and professional
environments, the authors are encouraged to verify that these copyright and license terms are
adapted to their personal situation.

4.2.4 Documentation

The last set of guidelines covers the documentation, and has provisions to guarantee that the
reviewers and readers of the published implementations will have all the information they
would need about the software. This includes generic information such as references to the
article and usage instructions. But the source code itself is considered a published material
and is expected to be read, so some rules are added to guarantee that the implementation is
readable and understandable.

4.1. README.txt

“Every IPOL program must provide a file named README.txt in the base folder
and written in plain text and in English. This README.txt file must include the
following essential information, in any order: name and brief description of the
program, reference to the IPOL article, authors and contact information, version
number and release date, location of future releases and updates, copyright, patent
and license information, tools and libraries needed to compile and use the program,

56

4.2. SOFTWARE GUIDELINES 1.00

compilation instructions, usage instructions and example, changes in the program
since it was first published in IPOL”

The README.txt is the basic information file traditionally distributed with programs. In
simple text format, it is universally readable and does not require any special software to be
read. Some authors may wish to provide extensive documentation in a visual format like PDF
or HTML, but such documentation will complement the simple README.txt file, not replace
it.

Software packages will be downloaded, stored and archived by the readers, and might be
redistributed. It is important for the completeness of this package to maintain the link with
the original article, and that is why the articles and authors must be referenced.

A single version of the software is published, validated by the peer-review process. Future
updates and improvements will not be hosted and distributed by the journal, so the authors
must mention the location of future revisions.

The copyright, patent and license information provided in this file is an overview of the legal
status of the code; it should be completed by reading the header of each source code file. An
example for a complex case (multiple authors, patents and licenses) is shown in figure 4.4.

This program is written by Taro Yamada <taro.yamada@example.jp>

and Juan Perez <juan.perez@example.es> with contributions from

Marie Untel, ENS Cachan <marie.untel@ens-cachan.fr>.

- mmatch.c and rot_tree.c may be linked to the pending EU patent

123.456 by Taro Yamada and Juan Perez and are provided for

scientific and education only.

- demoz.c may be linked to the US patent 65.43.21 by Jane Doe;

see the file for license terms.

- eizo.c and linalg_lib.c are distributed under the terms

of the BSD license.

- All the other files are distributed under the terms of the

LGPLv3 license.

Figure 4.4: Example of copyright, patent and license information.

4.2. Readability

“The authors must take care of the clarity of their program. It must be consistently
indented and spaced. Lines should be limited to 80 characters and should not end
with blank characters (spaces, tabs, . . .). Files should not have more than 1000
lines. The line terminations should be the same (DOS/Windows CR+LF or UNIX
CR style) for all the files of the program.
Functions should be grouped by abstraction level in different source code files: the
main() function, command-line processing and input/output calls in one file, the
implementation of the algorithm described and reviewed in the IPOL article in one
or more other files, and the implementation of auxiliary and external routines in
one or more other files.”

57

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

The source code is a text, both understandable by human readers and software compilers. It
is the intermediate between the human-readable high-level description of an algorithm and
the machine-readable compiled instructions.

The source code is written once and read many times. The original authors will re-read their
code when they need to update it; the reviewers will read the code to analyze it; multiple other
researchers will read the code when they need to use it, understand the algorithm internal
details or modify it to produce another program. Because of this “written once, read many
times” asymmetry, the authors must take care of the comfort of the readers and the time and
effort they will spend to improve the visual quality of their code will be balanced by the time
and effort saved by multiple readers.

In a published program, the source code is a primary material for the publication. It will be
reviewed, published and read like any other part of the article. The text part of an article is
generated by a text processing system into a visually clear and attractive document, and one
usually only reads the final document, in PDF or HTML format. But the source code is read
directly, the source code is the final document, so good layout rules must be applied to the
code and it is the responsibility of the authors to take care of its clarity and readability.

The visual comfort one experiences when reading a source code is directly related to the
indentation and spacing, and this aspect of the code layout directly influences how easily the
code can be understood. The indentation of the instruction blocks visually conveys the high-
level structure and control flow of the program [195]. Different indentation styles exist, are a
matter of personal taste and are equally acceptable [321]; one can adapt to any indentation
style chosen by the author of a code, but inconsistent styles are visually disturbing and
uncomfortable.

Dense code without spaces is visually correct but difficult to read because we are used to read
alphabetic languages by text segmentation, identifying words separated by spaces.

The 80 characters per line limit is not only a historic limit based on old console sizes, it is
also good for the reading comfort. Modern consoles, editors and screens can display longer
lines, but the ideal line length is based on the reader experience, not the ever-expanding
screen capacities. Long lines are uncomfortable because the reader needs to move the eye or
head to follow the line and looses the track of the current line when switching to the next
line. That is why journals (newspapers and scientific journals) use a multi-column layout
instead of long lines on the whole paper width. The “ideal line length” has 12 words for web
designers26 and 66 characters for typographers27. This matches the standard 80 characters
limit for source code with reserves for the indentation, as enforced by many major software

26“The ideal line length for text layout is based on the physiology of the human eye. . . At normal reading
distance the arc of the visual field is only a few inches – about the width of a well-designed column of text,
or about 12 words per line. Research shows that reading slows and retention rates fall as line length begins
to exceed the ideal width, because the reader then needs to use the muscles of the eye and neck to track from
the end of one line to the beginning of the next line. If the eye must traverse great distances on the page, the
reader is easily lost and must hunt for the beginning of the next line. Quantitative studies show that moderate
line lengths significantly increase the legibility of text.” in Web Style Guide [234].

27“Anything from 45 to 75 characters is widely-regarded as a satisfactory length of line for a single-column
page set in a serifed text face in a text size. The 66-character line (counting both letters and spaces) is widely
regarded as ideal.” in The Elements of Typographic Style [60].

58

4.2. SOFTWARE GUIDELINES 1.00

projects and conventions28.

The 1000 lines per file is another recommendation for the comfort of the reader. When a file
is too long, scrolling back and forth becomes cumbersome and some time is needed to find
the desired location in a file if it is too far from the current one. That is why web newspaper
articles are split in many pages. Moreover, long files contain too many first-level objects for
someone (other than the author) to keep everything in memory and have an understanding
of what this code unit is about29. The 1000 lines limit encourages the reorganization of the
code with more granularity.

But the line length or file length limits should never be enforced if they don’t make sense
programmatically. The priority is the quality and readability of the code, not some artificial
metrics.

Maintaining a good and consistent indentation and spacing policy can be achieved with few
efforts by automated code beautifiers, such as the Indent, Uncrustify or Astyle programs30.

4.3. Implementation and Comments

“The source code of an IPOL program must be commented precisely and exhaus-
tively. Authors should target the ‘1/8 comment/instruction ratio’, but the quality
of the comments is more important than the quantity. The source code must be
written in English, including all variables, functions names and comments.
Authors must ensure that the code is understandable, to the satisfaction of the
editor and reviewers, so that consistency between the description of the algorithm
and its implementation can be verified.
Authors should apply simpler implementations when available, follow the conven-
tions of the programming language, and use comments to explain implementation
choices and every complicated or subtle point in the program. Clarity is more
important than virtuosity.”

The authors have an global understanding of the program because they wrote it and spent
many hours in its development. For them, at least while they are developing it or shortly
after, the code is always clear and easy to understand. But readers explore it one file, one
function at a time and nothing is obvious in the code for them. They need to be guided by
abundant comments explaining what the program is doing and how this is achieved.

Variables and functions are as important as the comments because they refer to the concepts,
mathematical or computational components of the algorithm, and this link should be clearly
conveyed by their names. One-letter names mapped to mathematical variable names are

28This 80 characters line length is mentioned in the Linux kernel coding style [231] , the Google C++ Style
Guide [361], the Code Conventions for the Java Programming Language [329] and the Style Guide for Python
Code [348].

29Cognitive psychology experiments suggest that one cannot efficiently process more than seven new infor-
mation items at a time [247]. Recent research suggests even less capacity with three or four items efficiently
handled in the general non-trained case [121].

30Indent (http://www.gnu.org/software/indent/), Uncrustify (http://uncrustify.sourceforge.net/)
and Astyle (http://astyle.sourceforge.net/) beautify a source code file by applying consistent indenta-
tion and spacing rules.

59

http://www.gnu.org/software/indent/
http://uncrustify.sourceforge.net/
http://astyle.sourceforge.net/

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

only meaningful when one has the mathematical text in mind, and should be avoided in the
implementation, or at least explained.

One of the goals of the peer-review process in a software journal is to certify that the algorithm
implementation matches its description, that the same parameters are used, that the same
processing steps are involved. To facilitate this manual review, the authors need to explicitly
mention the correspondence between each step of the implementation and its description.

We also require every function to be documented with at least one line explaining what the
function is doing, and the meaning of its parameters and return value. This is sometimes
superfluous on trivial functions, but this general obligation is simpler to enforce than ad-hoc
considerations about the simplicity of a function. With this rule, all the code can be prepared
for documentation generators like Doxygen31.

Tools like Cloc, Ohcount and Sloccount32 can be used to count the comments, instructions
and blank lines and evaluate the comment/instruction ratio, but this ratio should be a hint,
not a rule. Simple comment metrics are artificial and can be abused. A long line could be
split in five short lines without any added value. A ten line comment can be obscure while
a single line may clearly provide all the information one needs. A wrong comment is worse
than no comment at all. The “1/8 comment/instruction ratio” is only an order of magnitude
of how much comment is expected. Less comments, good and useful, are preferred to more
bad and useless ones.

Finally, our goal in publishing reproducible research is not to collect high-performance code
but useful implementations understandable by other researchers. When the quest for better
efficiency results in more complexity and obfuscation of the algorithm, it defeats the purpose
of a source level publication. When a choice has to be done between efficiency and clarity, the
authors should always choose clarity because it will benefit the other researchers. However,
high-performance is welcome if it is well commented and achieved without obscuring the code.
The distinction is subjective and left to the appreciation of the reviewers, who are the first
ones who need to understand the implementation.

4.4. Example Data

“The authors should provide an example of input file to test the IPOL program
and the result to expect when this input file is processed by the program.”

Example input and output data serve three purposes. They are a concrete example of what
the algorithm does, and contribute to its documentation. They are a mean to verify that the
program performs as expected by the authors and is not affected by some properties of the
local environment. And they provide an input data suitable to the algorithm for the first
tests performed by the users.

31http://www.doxygen.org/
32Cloc (http://cloc.sourceforge.net/), Ohcount (http://ohcount.sourceforge.net/) and Sloccount

(http://sloccount.sourceforge.net/) compute metrics from source code files.

60

http://www.doxygen.org/
http://cloc.sourceforge.net/
http://ohcount.sourceforge.net/
http://sloccount.sourceforge.net/

4.3. AUTOMATED PROCESSING

4.3 Automated Processing

All the previous guidelines items have been expressed for IPOL needs, but can be followed
for any software distributed in source format to improve its usability. We can extend these
guidelines to an automated identification, build and test procedure, needed for a software
journal where multiple programs are regularly submitted and updated. With an automated
procedure, the demonstration tools and the code documentation can be kept updated with
minimum effort, and the reviewers can be assisted in verifying the code quality.

As of January 2012, the items detailed hereafter are only preliminary drafts and have not
been proposed for adoption yet. We describe both sides of the automation: the configuration
and support files needed in the program package, and the principles of automated building
and testing used for the IPOL services.

The automated processing of IPOL packages is inspired from the deb format and tools of
the Debian package management system [296, 336], which address similar automation needs.
Our design is simpler because some usages of the deb packaging format, such as dependency
handling and the notion of binary packages, are not relevant for a software journal like IPOL.
When it made sense, we tried to maintain the Debian vocabulary and keywords.

These guideline items are only relevant for programs packaged for IPOL or similar systems.
Unlike the previous guideline items, all the files supporting automated software build and
test are designed to be machine-readable and processed by programs. They are stored in a
special subfolder of the base name version folder: the ipol folder. This folder contains two
files, and nothing else: ipol/control and ipol/rules.

4.3.1 Automated Identification

The ipol/control file contains some global information about the program. It is an ASCII
text file composed of a series of fields expressed in one line as the field name, a colon (:) and
the field value. White space (spaces or tabs) can be inserted immediately after the colon;
a single space here increases the readability of the file. Every field name detailed hereafter
must occur exactly once in the control file:

❼ Standards-Version

The version of the guidelines the package follows.

❼ Maintainer

The name of the person who prepared the package, ie who wrote the content of the
ipol folder, followed by their email address in angle brackets (<>). The maintainer
will usually be the main author of the IPOL article, but we can see situations when this
will not be the case, for example when an editor assists the authors in packaging their
program.

❼ Package

The name of the software package, as already defined in section 1.2 of the guidelines.

❼ Version

The version of the software package, as already defined in section 1.2 of the guidelines.

61

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

❼ Homepage

The address of the reference web page for this package, where the current version can
be downloaded. It is a single URL without any surrounding character, and should be
the DOI33 URL for published articles.

The Standards-Version field is needed to process the package according to the correct
specification, which could change in the future. The Maintainer information provides a
contact in case of issues with this package. And the Package, Version and Homepage fields
can be used to display accurate information about the algorithm implementation used in
the online demonstrations and their archives. A possible ipol/control file for the axpb

package example is proposed in figure 4.5. Parsing these name-value pairs is an easy task
with every scripting language. For example, the Python one-liner in figure 4.6 will read the
ipol/control file into a dictionary structure.

Standards-Version: 1.00

Maintainer: Nicolas Limare <nicolas.limare@cmla.ens-cachan.fr>

Package: axpb

Version: 1.3

Homepage: http://tools.ipol.im/pkg/examples/

Figure 4.5: A possible ipol/control file for the axpb package.

dict([(name.lower(), value.strip())

for (name, value) in [field.split(":", 1)

for field in open("ipol/control")]])

Figure 4.6: Python code to read an ipol/control file into a dictionary structure.

4.3.2 Automated Build

The building script is ipol/rules: a Makefile containing all the instructions to build the
executable programs and documentation from the source. This Makefile is different from the
one that may be provided with the source code, as mentioned in section 2.5 of the guidelines.
The ipol/rules is only used for automated build and test of the program, and is not expected
to be called manually or by normal users of the program. It is marked as executable and starts
with the special line #!/usr/bin/make -f, so that it can be called directly by ./ipol/rules

<target>. This Makefile implements the following targets, executed by a non-privileged
user from the base package folder:

❼ default

required — This target must be the first one and its invocation must result in no action.

33A Digital Object Identifier (DOI) is a globally unique identifier attributed to a work available in digital
form. An URL, associated to this DOI, is a persistent network address usable to retrieve the work. Among
other things, these identifiers are used to index and track research articles and to provide long-term means to
access them (http://www.doi.org/).

62

http://www.doi.org/

4.3. AUTOMATED PROCESSING

❼ bin

required — This target compiles the package and places the resulting executable files
in the ipol/tmp/bin folder, created first if needed. It should use the compilation
procedure provided with the source code, as already mentioned in section 2.5 of the
guidelines with standard cross-platform and cross-compiler options.

❼ bin-amd64-linux-gcc

optional — This target compiles the package with options optimized for the GCC com-
piler in a Linux operating system running on an amd64 hardware platform.

❼ doc

required — This target prepares the package documentation and places the resulting
files in the ipol/tmp/doc folder, created first if needed.

❼ clean

required — This target deletes every file and folder created by other Makefile targets.

The bin target aims at maximum future-proof portability. It can only invoke the POSIX shell
and utilities34, and standard compiler flags (this excludes OpenMP support, whose syntax
varies across compilers). If a build-time test is available, it should be run in this target to
verify that correct programs are produced.

With less portability, the bin-amd64-linux-gcc achieves better performances allowed by
compiler optimizations and other tuning, including parallel processing with OpenMP. The
demo system will first try to build the executable programs with this target, and fall back to
the generic bin target if an error occurs. As the name of the target suggests, the same pattern
may be used in the future with other hardware platforms, operating systems and compilers.

The documentation produced by the doc target includes, at least, the README.txt file men-
tioned in section 4.1 of the guidelines, and can also include a source documentation generated
with Doxygen. HTML documentation should be in an ipol/tmp/doc/html subfolder. This
target will be used to produce the documentation provided with the source code, on the IPOL
article web pages.

All these Makefile targets must be non-interactive and multiple invocations must not trigger
errors. As showed by the files proposed for the axpb and imgdiff package examples in Annex
B, ipol/rules should use the Make or CMake build procedure already available with the
source code. Other Makefile targets and custom variables are allowed, but must start with
an underscore ; this name space is reserved to avoid conflicts between freely defined targets
and future updates of the guidelines.

The Makefile syntax is used for the build rules because, in this restricted context, ipol/rules
is only a list of shell commands to be run for each target, plus the possibility of local definitions
and variables. Any other solution would either be more complex or introduce a new ad hoc
syntax.

34The 2008 version of the POSIX specification includes a list of the standard shell and utilities and their
expected behaviour (http://pubs.opengroup.org/onlinepubs/9699919799/utilities/contents.html).

63

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/contents.html

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

Build Environment

The ipol/rules file is intended for use with a chroot tree, a set of files and folders replicating
the file hierarchy of a computing environment. With a wrapper like the chroot, fakechroot
or lxc commands35 on Linux systems, programs are executed in this view of the filesystem,
called a chroot environment and cannot access other files.

A chroot environment has three advantages for us. Its file tree is a stable reference filesystem
which can be replicated on different computers to achieve reproducible code compilation. It
restricts the local resources available to programs executed inside the environment and ensures
that only explicitly allowed dependencies are used to compile and execute a program. And it
protects the host system against resource abuses and accidental or hostile actions that may
happen during the build procedure.

A chroot environment is not comparable to the virtual machine model used by some repro-
ducible research initiatives to distribute, execute and archive a program. In our context, it
will only be used to build the packages from source in a controlled environment, and the
chroot content will be continuously updated.

The standard chroot tree for IPOL packages contains all the basic POSIX utilities36 used to
build a program, a C/C++ compiler and the libraries whose use is allowed. In addition, the
Doxygen and Dot programs are available to compile the source documentation. Everything
is in a FHS-compliant37 layout. No use of this chroot environment is expected to require
administrator privileges, so all the files can be owned by non-privileged users, which means
that a standard chroot tree can be archived, transferred and deployed without requiring
administrator rights.

Packages will be built as follows:

1. a pristine standard chroot tree is deployed and the package archive is extracted inside this
tree;

2. via chroot or a similar wrapper, the ipol/rules are used to build the binary programs
or the documentation; the bin-amd64-linux-gcc target is invoked first and if it fails, the
bin target is used instead;

3. the ipol/tmp subfolders are copied to their destination, ie the location of the demo exe-
cutable programs or the online documentation pages;

4. the chroot tree is discarded.

35The chroot command (http://www.freebsd.org/cgi/man.cgi?query=chroot) and system call are avail-
able in UNIX systems to restrict a process to a subset of the filesystem. The fakechroot command
(https://github.com/fakechroot) adds the possibility for a non-privileged user to run the chroot command,
with less isolation. The lxc virtualization layer for Linux (http://lxc.sourceforge.net/) adds some proces-
sor, memory and network resource restrictions to the basic filesystem containment.

36The 2008 version of the POSIX specification includes a list of the standard shell and utilities and their
expected behaviour (http://pubs.opengroup.org/onlinepubs/9699919799/utilities/contents.html).

37The File Hierarchy Standard is the reference specification of the location of file resources in the filesystem
of Linux (and some other UNIX) systems (https://wiki.linuxfoundation.org/en/FHS).

64

http://www.freebsd.org/cgi/man.cgi?query=chroot
https://github.com/fakechroot
http://lxc.sourceforge.net/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/contents.html
https://wiki.linuxfoundation.org/en/FHS

4.3. AUTOMATED PROCESSING

With all the compilers, libraries and build tools needed to compile an IPOL program in ad-
dition to the standard management and system tools, a base Debian system image weights
350MB38 (75MB compressed). This includes many unnecessary files, such as the system and
network tools, a Perl interpreter with libraries, localization support files and all the documen-
tation. After trimming, a lighter chroot tree based on this Debian version can be obtained
around 200MB (40MB compressed), and most of this size is used by the gcc compiler and lin-
ear algebra libraries. Further downsizing could be achieved by using lightweight alternatives,
such as BusyBox39 for most of the command-line utilities, if not all of them, in 500KB, or al-
ternative compilers. The relatively small size of a chroot tree means that it can be published,
regularly updated and distributed as a reference computing environment for a programming
community, such as the IPOL authors. But as the guidelines already stated, this computing
environment should not be mistaken for a portability standard; portable implementations
must be usable with other hardware, operating systems and compilers.

The goal of the implementation guidelines detailed before is to help the authors avoid porta-
bility issues with their implementations. A reference environment has a different function: for
IPOL, it provides a precise definition of how the program will be compiled and helps the au-
thors get the best performances for their online demo. Moreover, the demonstration platform
being similar to the typical computers used by many researchers (amd64 hardware, Linux op-
erating system, GCC compiler), achieving good performances on the reference environment
will usually mean that these performances are available for the general user.

The ipol/rules files in figures 4.7 and 4.8 are adapted to the axpb and imgdiff example
packages40. They use Make and CMake to compile the implementations of the algorithms.

4.3.3 Towards Automated Tests

A software journal like IPOL asks that the published source code meets some quality criteria,
chosen to maximize the present and future usefulness of the code. Some of these criteria
are a matter of software design and documentation and we believe it can only be evaluated
by the reviewers. Another criterion is the exact implementation of the algorithm as defined
mathematically in the article. Such a property could be formally proved with the help of proof
assistant systems41, but this requires some understanding of lambda-calculus and formal proof
tools, unlikely to be available in the image processing community [151]. Moreover, authors
are asked to provide a correct implementation, but not yet to prove that the implementation
is correct.

A less ambitious but more realistic goal is the correctness and robustness of the code, roughly
defined as following the programming language grammar, syntax and conventions, and pro-
ducing the same results on any compliant computing environment. We cannot prove the code
correctness without the formal proof model already mentioned, but we can submit the code

38This size was obtained from a standard Debian 6.0 Squeeze distribution with the cdebootstrap installer,
with the additional packages binutils, gcc, g++, make, cmake, libpng12-dev, libtiff4-dev, libfftw3-dev,
libatlas-dev, liblapack-dev and their dependencies. The chroot tree was compressed with xzip.

39BusyBox combines tiny versions of many common UNIX utilities into a single small executable for use in
resource-constrained computing environments (http://www.busybox.net/).

40http://tools.ipol.im/pkg/examples/
41Coq (http://coq.inria.fr/) and Isabelle (http://isabelle.in.tum.de/) are two possible tools to

achieve the formal proof of the correspondence between the specification and the implementation of a program.

65

http://www.busybox.net/
http://tools.ipol.im/pkg/examples/
http://coq.inria.fr/
http://isabelle.in.tum.de/

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

#!/usr/bin/make -f

folder locations

TMPDIR = ipol/tmp

BINDIR = $(TMPDIR)/bin

DOCDIR = $(TMPDIR)/doc

build the program

bin :

make axpb

mkdir -p $(BINDIR)

cp axpb $(BINDIR)

compilation options for amd64/linux/gcc

CFLAGS = -O3 -ffast-math -march=native -funroll-loops -fopenmp

build optimized programs

bin-amd64-linux-gcc :

make CFLAGS="$(CFLAGS)" axpb

mkdir -p $(BINDIR)

cp axpb $(BINDIR)

build the documentation

doc :

make doc

mkdir -p $(DOCDIR)

cp README.txt $(DOCDIR)

cp -a doc/html $(DOCDIR)

cleanup the build files

clean :

make distclean

rm -rf $(TMPDIR)

.PHONY : default bin bin-amd64-linux-gcc doc clean

Figure 4.7: A possible ipol/rules for the axpb package.

66

4.3. AUTOMATED PROCESSING

#!/usr/bin/make -f

folder locations

TMPDIR = ipol/tmp

BINDIR = $(TMPDIR)/bin

DOCDIR = $(TMPDIR)/doc

BUILDDIR = build

build the program

bin :

mkdir -p $(BUILDDIR)

cd $(BUILDDIR); cmake ../

make -C $(BUILDDIR)

mkdir -p $(BINDIR)

cp $(BUILDDIR)/imgdiff $(BINDIR)

compilation options for amd64/linux/gcc

CFLAGS = -O3 -ffast-math -march=native -funroll-loops -fopenmp

optimized build for the imgdiff package, using cmake

bin-amd64-linux-gcc :

mkdir -p $(BUILDDIR)

cd $(BUILDDIR); CFLAGS="$(CFLAGS)" cmake ../

make -C $(BUILDDIR)

mkdir -p $(BINDIR)

cp $(BUILDDIR)/imgdiff $(BINDIR)

build the documentation

doc :

mkdir -p $(DOCDIR)

cp README.txt $(DOCDIR)

cleanup the build files

clean :

rm -rf $(BUILDDIR)

rm -rf $(TMPDIR)

.PHONY : default bin bin-amd64-linux-gcc doc clean

Figure 4.8: A possible ipol/rules for the imgdiff package.

67

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

to a suite of tests to detect some implementation errors. We present hereafter a collection of
possible test strategies to detect the presence of known bugs.

Compilation Test

The compilation is the first test of the code. If it doesn’t compile, or if the compiler throws
some error or warning messages, then something is wrong with the implementation. With
the automated compilation rules previously introduced, one can verify that every version of
every program package can be compiled in the reference environment.

This build environment can be customized to override the compiler, for example by replacing
it by a wrapper script, in order to use another compiler. Different compilers have different
warning options and perform different tests on the code. Trying to compile the code with
different compilers helps detect bugs which would not have been spotted otherwise.

If a build-time execution test is provided with the building script, we can verify that, at least
with some input data and parameters, the implementation produces a correct program with
every compiler tested.

Every individual source code file can also be compiled into object code, with options restricting
the compiler to a programming language standard version. For such file-level compilation, one
needs to know the compilation flags needed (inclusion path, preprocessor variable) and the
code standard claimed to be followed by the authors (C89, C99, C++98). This information
could be provided as a tag in the source code or an ipol/fileinfo file, or maybe collected
from the cmake build environment. The question is not decided yet.

These cross-compiler strict compilation tests can be completed with a cross-platform battery.
With different build environments, one tests the code compilation in other operating systems
or variants of the same operating system. Then these environments can be used on other
machines with different hardware platforms or emulated architectures to verify the portability
of the code.

Static Analysis

Static analysis is another category of tests, performed without compiling the program. The
source code is parsed and the result is used to detect common error patterns. In addition to
commercial products and services of the software industry, a collection of static analysis tools
are freely available42. These tools differ by which programming language they can process
and which errors can be found:

❼ Splint checks C programs for security risks and coding errors: invalid pointers, undefined
values, type mismatch, memory management, inconsistent function interfaces, infinite
loops, dead code, and buffer overflows;

42Splint (http://splint.org/), Cppcheck (http://cppcheck.sourceforge.net/) Clang (http://
clang.llvm.org/), Uno (http://spinroot.com/uno/), RATS (https://www.fortify.com/ssa-elements/
threat-intelligence/rats.html) ans Flawfinder (http://www.dwheeler.com/flawfinder/) are or include
static source code analysis tools. The SunStudio has been renamed Oracle Solaris Studio, and is distributed
free of charge from the Oracle web site (http://www.oracle.com/).

68

http://splint.org/
http://cppcheck.sourceforge.net/
http://clang.llvm.org/
http://clang.llvm.org/
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html
http://www.dwheeler.com/flawfinder/
http://www.oracle.com/

4.3. AUTOMATED PROCESSING

❼ Lint, distributed with the SunStudio C/C++ compiler, detects patterns in a C code
that are likely to be bugs, non-portable, or wasteful: type mismatch and overflow, dead
code, unused or uninitialized variables, flawed conditions, inconsistent function calls
and return values, unused inclusions, usage of deallocated memory or deallocation of
non-allocated memory;

❼ Clang is a C/C++ compiler with static analysis: it checks the correctness of the standard
function calls, the consistency of interface functions, divisions by zero, NULL pointer
dereferences, and uninitialized values;

❼ Cppcheck performs static analysis on C and C++ code: it looks for array boundary
errors, memory leaks, and uninitialized variables;

❼ Uno, Rats and Flawfinder are a simple C/C++ code analyzers, looking for uninitialized
variables, invalid pointers, array boundary violations, dangerous code patterns and
potential security risks.

Each one of these tools comes with its own usage model, call syntax and output format and
we cannot expect every contributor to use them. Instead, a service can be provided to authors
and reviewers, where the code is tested with the aforementioned tools and their reports are
combined to automatically produce an assessment of the code quality. This service would
help improve the quality of the implementation before it is submitted and perform some
bug screening during the review. Like the compilation tests described before, accurate static
analysis may require file-level information such as the programming language standard and
compilation flags.

Runtime Tests

After the compilation and static analysis, a third kind of tests can take place during the
execution of the compiled program. With some tools like Valgrind43 or Electric Fence44, one
can detect memory management problems such as uninitialized or unreleased memory and
access to wrong memory locations. The advantage of tools like Valgrind over other memory
debuggers45 is that no modification of the source code is required, and the program is compiled
as usual, but executed under the supervision of the memory debugger, which reports all the
problems detected.

Such debuggers will not find all the possible memory management errors in a program. They
will only spot the errors happening to a given execution of the program. If some errors
are only triggered when some parameters are used or some unusual data is processed, they
will probably not be found in automated tests. Nevertheless, finding common error bugs

43Valgrind (http://valgrind.org/) is a framework for dynamic analysis tools. The tools available include
call, cache and heap profilers and memory and thread debuggers.

44Electric Fence (http://perens.com/FreeSoftware/ElectricFence/) and its variant DUMA (http://
duma.sourceforge.net/) redefine the memory management functions, to ease the detection of wrong memory
access.

45Dmalloc is a popular memory debugging library (http://dmalloc.com/). Mtrace is another memory
debugger, built in the GNU C library. Both require some modification of the source code, at least to activate
the debugging functions.

69

http://valgrind.org/
http://perens.com/FreeSoftware/ElectricFence/
http://duma.sourceforge.net/
http://duma.sourceforge.net/
http://dmalloc.com/

CHAPTER 4. SOFTWARE FOR REPRODUCIBLE RESEARCH

happening during a typical execution of the program is an improvement and should not be
overlooked.

To perform such runtime tests, we need the authors to provide some examples of the usage
of their program. This could be combined with the build-time execution tests that may be
provided in the automated build procedure.

Finally, if the program can be used via a public web interface with free input, this can be
another way to test it processing unexpected and unusual data submitted by random users
of this service. Unfortunately, the performance cost of a memory debugger like Valgrind is
currently too prohibitive (×10) to be used in a realistic web demonstration interface. But with
a simple monitoring of the exit status of the program, and archive of the input, parameters
and output, and the debugging information provided by the operating system on memory
segmentation errors, we can collect a fairly good assessment, over time, of the robustness of
the program.

On Tests

Software testing is a rich discipline, with plenty of free and commercial tools and many tech-
niques. In addition to the compilation, static analysis and runtime tests, we could for example
cite unit tests, whose function is to ensure that every function in the code performs the ex-
pected actions, fuzzing, which is used to assess the robustness of the program against invalid
or unexpected data, or the systematic declaration and verification of invariant properties
expected on the data at the function boundaries.

As Dijkstra famously remarked, “testing can be used to show the presence of bugs but never to
show their absence” [105]; the software testing task is endless and we can always add another
layer of tests to catch rare but possible programming errors. Trying to find as many bugs as
possible is like pursuing the myth of an absolutely safe program. But the essential question
is not how to test but what to test, and it defines how much effort one wants to invest in the
testing procedures and how intrusive it can be on developer’s work.

The three categories of tests presented before can be used to build a flexible and extensible
testing procedure. First, the compilation tests only require an automated compilation proce-
dure, which is already required as soon as we want to automatically build the programs, for
an online demo system or example. And with some infrastructure work, these compilation
test can catch most portability issues. Then, if the author provides some information about
how each source file is to be compiled, static analysis can detect erroneous or suspicious con-
structs dangerous in the code. A static analysis service can start with one analysis tool, and
be gradually expanded to a collection of these tools. And finally, if the authors provide some
usage examples for their code, memory errors can be found with dynamic analysis tools in
real usage cases.

We can hope that, in the coming decades, computer scientists will be required to prove the
correctness of their programs, like mathematicians today are expected to provide a proof
of their theorems. Until adequate tools and abstractions are available to assist us in these
requirements, software tests can help us detect and avoid common programming pitfalls.

70

Chapter 5

Copyright, Patents, Licenses and
Network Laws

Contents

5.1 Software Copyright and Patents 72

5.1.1 Copyright . 72

5.1.2 Patents . 74

5.1.3 Conclusion . 77

5.2 Copyright and License Policies . 78

5.2.1 An Open Policy . 79

5.2.2 Copyright and License Agreement 80

5.2.3 Copyright . 81

5.2.4 License . 82

5.3 Online Publishing and the Law . 86

5.3.1 Online Demos in Research Journals 86

5.3.2 Retrospective on French Law and Internet 87

5.3.3 Consequences for Online Journals . 89

71

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

Abstract

In this chapter, we try to collect and summarize how copyright and patents apply to
computer programs in a computational science research context. Copyright and patents
are governed by distinct laws, treaties and jurisprudence, with national and international
regulations. We only explored the situation in the United States, the European Union
and France.

Then we propose a policy for journals publishing articles with software and datasets,
based on the Open Access, Open Source and Open Data guidelines. Unlike the usual
policies in use in the academic publishing industry, this one is designed to facilitate the
dissemination of the research works and the developments based on this research.

The chapter ends with a review of the laws and regulations applicable to the operation
of a journal as a web site in the French jurisdiction, including the consequences of an online
demo service with user-submitted content and archives.

5.1 Software Copyright and Patents

Copyright and patents are two distinct legal protections systems: the former attributes moral
and economic rights to the author of a creative work and the latter provides an exclusive
exploitation right in exchange for the publication of an invention. Both can be involved and
may conflict in the implementation of an algorithm, and these legal considerations must be
understood to publish a software.

This is not the work of a lawyer. It only tries to build a usable overview of this topic from a
practical researcher perspective. Further details on the complex question of software copyright
and patents can be found in jurist reviews1 [26, 187,355,357].

5.1.1 Copyright

The Berne Convention for the Protection of Literary and Artistic Works [37] protects “every
production in the literary, scientific and artistic domain, whatever may be the mode or form
of its expression” since the beginning of the 20th century [36]. Computer programs were
explicitly included to the list of protected works during the 80s and 90s in most national
laws, with the development of the computer industry.

United States courts [266] and laws [343] attributed to software the copyright status of literary
works. In the European Union, the Computer Programs Directive [118] states that a computer
program can be protected as literary and artistic work. The French Intellectual Property Code
(Code de la propriété intellectuelle) [133, article 112-2] includes computer software in the list
of intellectual works (œuvres de l’esprit) submitted to copyright regulations.

All of these laws have similar provisions: a program can be copyrighted if it is the author’s own
creation. All the forms are protected, including the source code (human and machine read-
able form) and object code (machine readable form). The copyrighted materials include the
documentation, and preparatory and design documents. The ideas and principles underlying
the program are not copyrighted.

1The works of Lawence Lessig [215] and Richard Stallman [318] also provide a detailed critical analysis of
the copyright and patent system at the Internet era.

72

5.1. SOFTWARE COPYRIGHT AND PATENTS

Moral and Economic Rights

As defined by the Berne convention, the author of a copyrighted work owns two kinds of rights:
moral rights and economic rights. Moral rights on a computer program include the right to
claim authorship and to protect the reputation of the author against prejudicial modifications
of the program. Economic rights include the rights of distribution and reproduction of the
program, and licensing its usage. In the European Union countries, these two categories
are governed by the same body of laws. In the United States, moral rights are covered by
defamation laws rather than copyright laws, but this technical distinction has no impact on
the regulation and protection of these rights.

In France, a computer program is a special exception in the Intellectual Property Code [133,
article 113-9]: the economic rights are not owned by the author of the software, but automat-
ically transferred to the employer. The author-employee only retains the moral rights. Thus,
the economic right on software developed by researchers in the course of their work belongs
to the research institution [81,153,154].

We are not aware of a similar exception for software in United States laws, but computer
programs can be considered “work made for hire” [343] and, as such, belong to the employer.
Software developed for reaearch and all the associated rights would then belong to the research
institution.

Article vs Software in France

Research articles are qualified for copyright protection as intellectual work and the authors
own moral and economic rights attached to their articles2. For this reason, the publication
of research articles is often subject to a copyright agreement between the authors and the
editor.

But the nature of software is hybrid. It can be considered as an intellectual work, and as an
industrial and commercial product. The exceptions and provisions for computer software in
copyright laws are adapted to the requirements of the software industry but create a copyright
dissonance for computational research: researchers own all the rights of the articles they
write to describe their programs, but not the rights of the programs they write to implement,
illustrate, verify or prove their article [155].

This dissonance becomes obvious when a pair of research articles and software, by the same
researcher, include exactly the content written twice, one in human-readable natural language
and one in human and computer-readable programming language. These two different pre-
sentations of the same concepts can even be created and distributed as a single document
with the article and the software texts interleaved in a continuous and intelligible document,
a method known as literate programming [199] and widely used in the statistics research com-
munity [213]. And the distinction between article and software is blurred when the editorial
policy of a journal is to integrate computer programs in the articles they publish [184, 280].
Deciding who owns the economic rights of a work which is a research article and a research
software would probably be a difficult case, which has not hit courts yet.

2This was confirmed for French public agents, in an exception for science and technology institutions by
the DADVSI law [11]. See also Veni, Vidi, Libri : Les contraintes contractuelles / L’auteur fonctionnaire [fr]
(http://www.venividilibri.org/fr/Les+contraintes+contractuelles#L-auteur_fonctionnaire).

73

http://www.venividilibri.org/fr/Les+contraintes+contractuelles#L-auteur_fonctionnaire

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

Other problems hinder the acceptability of research software as a product owned by the
employer, such as the questionable qualification of students and interns as employees [81,153].
This leads to the conclusion that the software industry needs for computer program copyright
are not adapted to research. In our opinion, copyright laws should be revised to exclude
research software from the software exceptions. A research software is a by-product of the
research activity among others, like data sets, algorithms, articles and books, and all these
intellectual works should be governed by the same unified copyright regime.

5.1.2 Patents

Patents are exclusive exploitation rights granted to inventors on their inventions during a
limited period of time. This exclusivity includes the rights to make, have make, sell, offer
or license their invention. The patent system was created to stimulate the exchange of ideas
and creativity, as an incentive to publicly disclose inventions in exchange for this temporary
exclusivity. To be patentable, an invention must be new, useful, non-obvious and susceptible
of an industrial application.

And anyone competing with the exclusive rights, with or without a commercial activity, is
infringing the patent regulation. Encouraging or providing assistance to the infringement of
a patent is also a source of patent infringement liability.

National Regulations and Software Patents

The Patent Cooperation Treaty was an international agreement on patent applications. The
recent Patent Law Treaty was an harmonization of the procedures. But patents are a national
prerogative, delivered by national patent offices under the control of national courts. There
is no international patent, nor international patent jurisdiction. The exclusive exploitation of
a patent is only granted to an inventor in the countries where the patent was delivered, and
this exclusive right is defended or challenged in national courts.

Moreover, there is no international agreement on what is patentable. There is a general
agreement on the conditions of patentability (novelty, originality, utility and applicability)
and on the exclusive right granted to the inventor. It is also generally recognized that an
idea is not patentable, neither are theories and mathematics, and that patented inventions
must provide a technical mean to achieve an effect. But the meaning of these words is
debated, and there is no agreement on the patentable subject matter. The patentability of
computer programs is a hot question and different courts, laws, patent offices, industries and
communities have different opinions.

In the European Union Since the European Patent Convention [116], patent applications
in Europe follow a unified framework and are managed by the European Patent Office. But
the unification only covers the procedure to deliver a portfolio of national patents, and it
does not replace national patent offices. Recent attempts to reform the European Patent
Convention and create a common concept of patents backfired, and have been rejected by the
European Parliament, in part because of the issue of software patents.

74

5.1. SOFTWARE COPYRIGHT AND PATENTS

In the current situation, the European Patent Convention describes a framework used by each
member country and the European Patent Office to define their patent policy. But patents
remain a national prerogative, with different interpretations across the European countries.
The European Patent Office and national courts sometimes disagree on what is patentable. In
that case, the European Patent Office is not binding on national courts and only the national
court rulings matter because in the absence of an European patent, inventions are protected
and challenged at the national level.

On the patentability of computer programs in computational sciences, the European Patent
Convention, article 52, says that patents shall be granted to new, inventive and applicable
inventions, but not for discoveries, scientific theories, mathematics or computer programs
as such3. This “as such” and its interpretation are the source of most of the debate. A
program cannot be patented but it may be possible for inventions involving software, such as
computer-controlled devices and processes.

The central question, still not resolved, is “when is a software the subject-matter of the patent
and when is it only a part of the invention?” In the context of computational sciences, the
difficulty may be to find a place for the definition of “a computer program” between the
mathematics (not patentable, excluded by the EPC) and the implementation (copyrightable
but not patentable either). One could argue that there is a continuum between the description
of an algorithm as a mathematical method and its expression in a computer program, a
continuum of successive refinements from a high-level description in natural language to a
low-level detailed expression in a form understandable by a computer.

In France, as early as 1968, “programs or series of instructions for the operations of a calcu-
lating machine”4 were explicitly not to be considered as industrial invention in the Law 68-1
on inventions and patents [17, article 7]. The current Intellectual Property Code (Code de
la propriété intellectuelle)5 [133, article 611-10] is a close translation of the European Patent
Convention article 52.

In 2003, French courts denied the patentability of processes only involving computer programs
in the SAGEM case [89]. The United Kingdom Patent Office took similar decisions in 1997
in Fujitsu’s application [113] and later in 2006 in Aerotel v. Telco and Macrossan [114], as
well as the German Patent and Trade Mark Office in 2004 with Rentabilitätsermittlung [68]
and 2007 in Informationsübermittlungsverfahren [69].

We conclude from this jurisprudence that, notwithstanding the European Patent Office po-
sition on patentability of some computer programs, software patents are currently not recog-
nized by the European national jurisdictions. But the multiple legal initiatives in the recent

3“1- European patents shall be granted for any inventions which are susceptible of industrial application,
which are new and which involve an inventive step. 2- The following in particular shall not be regarded as
inventions within the meaning of paragraph 1: discoveries, scientific theories and mathematical methods [. . .]
and programs for computers [. . .]. 3- The provisions of paragraph 2 shall exclude patentability of the subject-
matter or activities referred to in that provision only to the extent to which a European patent application or
European patent relates to such subject-matter or activities as such.”

4“les programmes ou séries d’instructions pour le déroulement des opérations d’une machine calculatrice”
5“1- Sont brevetables les inventions nouvelles impliquant une activité inventive et susceptibles d’application

industrielle. 2- Ne sont pas considérées comme des inventions au sens du premier alinéa du présent article
notamment [. . .] les découvertes ainsi que les théories scientifiques et les méthodes mathématiques [. . .], ainsi
que les programmes d’ordinateurs; 3- Les dispositions du 2 du présent article n’excluent la brevetabilité des
éléments énumérés auxdites dispositions que dans la mesure où la demande de brevet ou le brevet ne concerne
que l’un de ces éléments considéré en tant que tel.”

75

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

years calling for unification and enlarged patentability at the European (European Patent
Litigation Agreement, Unitary Patent) and international (Trade-Related Aspects of Intellec-
tual Property Rights - TRIPs) levels suggest this situation may be challenged. Meanwhile,
the software development and distribution by computational science researchers seems safe
from patent infringement in Europe.

In the United States In 1952, the United States Patent Act stated that “any new and
useful process, machine, manufacture, or composition of matter” [344] could be patented. In
the United States legal system and tradition, the Patent Act only provides a general principle,
to be refined by court decisions in case law.

In 1994, a patent for using a smoothing algorithm in a measure and display device was
approved in In re Alappat [267] by the Unites States Court of Appeals. This court also ruled
in 1998 that an invention only needs to produce an useful, concrete and tangible result to
be patentable in State Street v. Signature [269]. These decisions prompted a sudden increase
of software patents claims, and the United States Patent and Trademark Office adjusted its
guidelines: mathematical theories and algorithms are confirmed not to be patentable, but
their particular practical use in an invention can be patented [283].

However, recent decisions of the Court of Appeals are reverting the tendency, and restricting
the patentable subject-matter:

❼ In 2008, the court in In re Bilski [270], confirmed by the Supreme Court in Bilski v. Kap-
pos [277], refused a patent for a method to process and transform abstract information
(financial data). However, inventions to process signals representing physical objects
were not excluded.

❼ In 2011, the court ruled in Cybersource v. Retail Decisions [271] that if an invention
is based on simple calculations, it is not more than a mental process and cannot be
patented [211].

Three United States Supreme Court decisions are now considered the canon on which future
decisions are to be built:

❼ In 1972, the court ruled in Gottschalk v. Benson [274] that a numerical algorithm
was not patentable and confirmed a Supreme Court decision from 1852 in Le Roy
v. Tatham [273] that abstract ideas and scientific principles were not patentable be-
cause they were universal truth.However, this decision did not prevent any computer
program to be patented.

❼ In 1978, the court ruled in Parker v. Flook [275] that an invention using a mathematical
algorithm is not patentable if its only innovation is the use of the algorithm.

❼ In 1981, the court ruled in Diamond v. Diehr [276] that a patent on an invention with
a physical effect could not be refused on the sole reason that a computer program was
involved in the process. Meanwhile, the impossibility to patent mathematical formulas
was confirmed.

76

5.1. SOFTWARE COPYRIGHT AND PATENTS

Recent decisions confirm a new tendency to restrict the patentable subject-matter, but soft-
ware patents are still currently delivered in the United States. Under the hypothesis that
computer programs and algorithm could be patented, what is a patent infringement? The
patent holder has the exclusive right to produce distribute or license the invention, so any
non-licensed usage of a compiled program implementing the patented algorithm could be an
infraction, because it involves a prejudice to the commercial exploitation of the invention.
Implementing the patented algorithm in source code from existing documentation of the in-
vention, including the patent description, is allowed, but if this implementation is distributed,
even in source code form, it can be considered inducing patent infringement by others, by
distribution of means.

And even the definition of a computer program by United States courts is not clear enough
to consider safely that a binary machine code executable file is a program and a source code
file is not [91]. However, the United States Court of Appeals ruled in Bernstein v. the United
States [268] that source code of computer programs are free speech and protected by the
First Amendment. This could be sufficient to allow safe distribution of the implementation
of patented algorithms in source code form, but this has not yet been tested in a patent
litigation.

Exceptions for Research

The original goal of the patent system was to stimulate innovation and the circulation of
ideas, by providing an incentive for inventors to disclose their inventions, in exchange for a
limited exclusivity. For this reason, patents are publicly available and patent laws have an
exception: it is allowed to create, test and use the patented inventions as long as it is only
for “research and experimentation” and does not conflict with the commercial exploitation of
the invention.

In the French Intellectual Property Code [133, article L613-5], the exclusivity granted to the
inventor does not include experimentation on the invention6. A similar provision in the Ger-
man patent law is used for the development and distribution of a source code implementing
sound decoding algorithms [332] in spite of patents pending on this algorithm [56] and en-
forced by the patent holders [177]. And as early as 1813, in Whittemore v. Cutter [238], an
United States court decision stated that the intent of the patent system was not to punish
someone who infringes “merely for [scientific] experiments, or for the purpose of ascertaining
the sufficiency of the machine to produce its described effects.”

5.1.3 Conclusion

We have seen that copyright and patents are two distinct, legal concepts. These two may
sometimes be conflicting, for example if the distribution license of a software claims to allow
the usage of a program for any purpose, while a patent attributes this exclusive right to
the inventor. Moreover, the exact definitions and consequences of software parents are not
the same in every country, and changing with the public understanding of software matters.

6“Les droits conférés par le brevet ne s’étendent pas [. . .] aux actes accomplis à titre expérimental qui
portent sur l’objet de l’invention brevetée”

77

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

Researchers are used to universal, perpetual science truth, not national regulations with
changing interpretations.

The scientific project of the IPOL journal requires the public availability of computer programs
for every algorithm published, in order to enable the validation of the scientific results and
reuse of this work to build new algorithms. We address these goals and the complexity of
patent and copyright regulation as follows:

❼ If a patent is known by the authors to be related to the implemented algorithm, then
a patent warning is inserted in the source code. Neither IPOL nor the authors claim
that the program implements a patented algorithm, as only a lawyer may be qualified.
Moreover, the validity of such a statement and its consequences on the usage of the
program depend on the jurisdiction, so IPOL and the authors only provide a warning,
to the best of their knowledge.

❼ No copyright agreement requires the transfer of the economic rights from the authors
to the editor. The authors keep free to re-distribute or re-license their software. IPOL
always distributes the implementations in source code form. If the authors of the al-
gorithm are the patent holders for the algorithm implemented, then the source code is
distributed “for research only”. Otherwise, a free software license is used.

Two possible objections are that the web interface to the execution of the algorithm provided
by IPOL competes with the commercial exploitation of the patent, and that the distribution
of the source code of patented algorithms helps others infringe on the patent.

For the first point, only functions accessible via the web interfaces of a journal like IPOL are
the execution of a mathematical algorithm. But the case law has a tendency to protect the
industrial applications of inventions and deny the patent protection for “pure algorithms”.
The online tools provided by a journal only have a demonstration value and do not compete
with complex industrial systems. They can only process data of a modest size and do not
compose a complex processing chain or compete with a commercial image processing software.

For the second point, IPOL does not allow any use of the source code to circumvent a patent
regulation: the patent warning clearly mentions that the free license terms are only valid if
they do not conflict with patent regulations in the local jurisdiction. Moreover, we consider
that the implementation of an algorithm is the only complete description of such an algorithm.
The patent system already requires the complete description of an invention to be publicly
available in the patent documents, so one can argue that a third-party implementation does
not provide any information not already available in the patent record. Finally, the vocation
of a computational science journal is the study of algorithms, so we expect IPOL works to be
covered by the patent infringement exception for research. The patent system was created as
an incentive for public disclosure of inventions, and that disclosure is practiced by the public
research community and its scientific journals.

5.2 Copyright and License Policies

The rights retained by the author of a scholarly journal, those transferred to the publisher,
and those exercisable by the readers of the journal, are defined by the copyright and license

78

5.2. COPYRIGHT AND LICENSE POLICIES

policy of the journal, agreed by the author and publisher.

5.2.1 An Open Policy

We based our policy on the following established successful practices for manuscripts, software
and datasets:

❼ Open Access publishing allows unrestricted access and redistribution of a work. This
policy has been adopted by 7500 journals, registered in the Directory of Open Access
Journals [106] in early 2012. According to the Scholarly Publishing and Academic
Resources Coalition — Europe (SPARC Europe), over 10% of the research journals
have an open access policy [317], and some open access publishing initiatives such as
the Public Library of Science (PLoS) and BioMed Central proved successful with highly
regarded content. 58% of the computational science journals have an Open Access
policy7.

❼ Open Source licensing allows anyone to use, study, redistribute and modify a software.
These licenses have revolutionized the software development and distribution since the
first efforts led by Richard Stallman and the Free Software Foundation from 1985. With
the advent of the Internet, Free Software is a fundamental building block of vibrant,
innovative and successful development communities and a major vector of technical
innovation in leading commercial or research projects8 [173,364,365].

❼ Open Data means that anyone can use and redistribute the data data without finan-
cial or legal restrictions. This has been a common practice for a long time, from the
Evaluated Nuclear Data File (ENDF), GENBANK and Cambridge Crystallographic
Database in the 1980s [196], to the genetic databases currently managed by the Na-
tional Center for Biotechnology Information (NCBI) [129]. Many datasets in image
processing are freely shared, like the Kodak video benchmark dataset [370] or the SFU
color constancy dataset [31]. Our policy only adds an explicit license to clarify the usage
and redistribution rights.

In addition, we avoid the unnecessary transfer of the copyright to the publisher and we add
some measures to avoid exploitation of the research work by third parties without benefits
for the research community. The result is very close to the Reproducible Research Standard9

legal framework proposed by Victoria Stodden [323,324].

7Unpublished study by Stodden and Guo, preliminary results [326].
8The SourceForge service (http://sourceforge.net/) hosts more than 300000 open source software

projects; the Ohloh software directory (http://www.ohloh.net/) references more than 500000 open source
projects (circa February 2012). Firefox, OpenOffice, VLC are well-known free software products for the gen-
eral public. GCC, R, OpenCV, Scilab, TeX, FFTW are other free software tools used by scientists.

9“The Reproducible Research Standard is a way for scientists to publicly mark their work as reproducible,
meaning that certain conditions are satisfied:
1. The full compendium is available on the Internet,
2. The media components, including the original selection and arrangement of the data, are licensed under CC
BY or released to the public domain under CC0,
3. The code components are licensed under one of Apache 2.0, the MIT License, or the Modified BSD license,
or released to the public domain under CC0,
4. The data have been released into the public domain according to the Science Commons Open Data Protocol.”

79

http://sourceforge.net/
http://www.ohloh.net/

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

With a permissive copyright and license management, this policy removes any unnecessary
barrier to creative research collaboration, yet confirms the authorship, requires the attribution
of the works to their authors, and make these works accessible to the research community.

5.2.2 Copyright and License Agreement

As an example of possible copyright and license agreement between an academic journal
publishing software and datasets and its authors, we propose the following terms. Written
for the IPOL journal, they define what the authors and the publisher are allowed to with the
published works.

Authors who publish with this journal agree to the following terms:
- manuscript. Authors retain copyright and grant the journal right of publication
with the manuscript simultaneously licensed under a Creative Commons Attribu-
tion Noncommercial Share Alike License. This license allows others to share and
reuse the manuscript for noncommercial purposes with an acknowledgment of the
work’s authorship and initial publication in this journal.
- software. Authors retain copyright and grant the journal right of publication
with the software licensed under a Free Software license as specified by the Soft-
ware Guidelines. This license allows others to use, study, redistribute and modify
the software. Some conditions can be added depending on the license chosen.
- dataset. Authors retain copyright and grant the journal right of publication with
the dataset licensed under a Creative Commons Attribution License. This license
allows others to use, redistribute and modify the dataset with an acknowledgment
of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for
the non-exclusive distribution of the journal’s published version of the work (e.g.,
post it to an institutional repository or publish it in a book), with an acknowledg-
ment of its publication in this journal. They are also able to redistribute their code
under other licenses at their will, including via commercial contracts and partner-
ships.
- Authors are permitted and encouraged to post their work online (e.g., in institu-
tional repositories or on their website) prior to, during and after the submission
process, with an acknowledgment of its publication in this journal.

With this agreement, and unlike usual publishing terms10, the journal receives the bare min-
imum rights necessary to perform its function, i.e. to receive, review, validate and publish
the research articles. Our goal is to enhance the rights of the authors and readers, in order

10Three major publishing organizations in computational science and applied mathematics have similar re-
strictive policies: the IEEE “requires that prior to publication all authors or their employers must transfer to the
IEEE in writing any copyright they hold for their individual papers” (http://www.ieee.org/publications_
standards/publications/rights/copyrightmain.html), the ACM “requires authors to assign their copyrights
to ACM as a condition of publishing the work” (http://www.acm.org/publications/policies/copyright_
policy#Requirement), and Elsevier requires the authors to transfer the copyright in “the manuscript [. . .] and
any supplemental tables, illustrations or other information submitted therewith that are intended for publica-
tion” (http://www.elsevier.com/copyright).

80

http://www.ieee.org/publications_standards/publications/rights/copyrightmain.html
http://www.ieee.org/publications_standards/publications/rights/copyrightmain.html
http://www.acm.org/publications/policies/copyright_policy#Requirement
http://www.acm.org/publications/policies/copyright_policy#Requirement
http://www.elsevier.com/copyright

5.2. COPYRIGHT AND LICENSE POLICIES

to ease collaborative research. Similar agreements are already used by some other journals11,
and this shows the viability of this model. We do not know, however, of a single copyright
and license policy covering manuscript, software and dataset.

5.2.3 Copyright

Every article distributed by IPOL is the creative work of its authors, and as such covered
by the copyright laws. By default, the authors own the exclusive moral rights (the right to
claim authorship) and patrimonial rights (rights to a commercial exploitation) attached to
their works. Most academic journals require the authors to transfer the patrimonial rights to
the publisher. Others, like the current example, let the authors retain their full copyright and
only require them to grant a non-exclusive right to publish their works, i.e. the manuscript,
implementations and datasets.

This agreement secures the right for the journal to distribute the article. The authors keep
the right to any other usage of their work: publication in other venues, like other journals and
books, with other agreements with other publishers, redistribution of the software with other
licenses, negotiation of the commercial exploitation of their inventions, etc. The only restric-
tion is that future usage of their work in other conditions cannot obliterate the distribution
rights granted to the journal, which cannot be barred from publishing the article under the
agreed licenses. This means that the authors cannot grant an exclusive publishing right for
their article or an exclusive usage right for their software or data to another party. They can,
however, enter such agreements on future and updated versions, as long as it does not affect
the rights granted for the version published in this journal.

The authors must comply with copyright rules too. Every material to be published with
the article, including all the images, text and source code, must either be the work of the
article authors or be distributed by their creators under a license compatible with the journal
policy. The origin of all these external materials must be explicitly mentioned in the article.
This requirement is detailed in the Software Guidelines for the source code, and should be
mentioned in the Manuscript Guidelines, yet to be written, for other materials reused in the
manuscript.

Finally, this agreement reminds the authors of their right to self-archiving, and encourages
this practice. The right to self-archive the preprint version of an article is a matter of jour-
nal policy, not of copyright regulation because it happens before any copyright transfer can
exist [117]. This is the base of the successful model of preprint repositories widely used with
large repositories like arXiv, RePEc or HAL12. Our agreement also reminds the authors that,

11The EURASIP Journal on Image and Video Processing (http://jivp.eurasipjournals.com/) has an
Open Access Policy; under the SpringerOpen copyright and license agreement (http://www.springeropen.
com/authors/license, the authors retain the copyright of their work. Open Research Computation (http:
//www.openresearchcomputation.com/) is a new Open Access journal with a software focus; it requires the
software to be available under on Open source License. The Public Library of Science published seven peer-
reviewed journals on life and health sciences under a Creative Commons Attribution License (http://www.
plos.org/about/open-access/). Some data published by BioMed Central journals are released under an
Open Data license (http://www.biomedcentral.com/about/access).

12In 1994, the “Realizing the Information Future” report from the National Academy of Science on the
future of the Internet [197] mentions that “physicist [have] developed and used electronic archives in areas such
as high-energy physics [. . .] as an alternative to buying journals that cost hundred to thousands of dollars

81

http://jivp.eurasipjournals.com/
http://www.springeropen.com/authors/license
http://www.springeropen.com/authors/license
http://www.openresearchcomputation.com/
http://www.openresearchcomputation.com/
http://www.plos.org/about/open-access/
http://www.plos.org/about/open-access/
http://www.biomedcentral.com/about/access

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

because no copyright transfer occurs and the journal claims no copyright on the value added
to the article at the edition and layout step, they are allowed to archive the final version
of the article. Contrarily to a preprint, the final version uses the same pagination as the
one distributed by the journal and mentions the copyright, the license, and the information
needed to properly refer to this article.

5.2.4 License

The proposed agreement is between authors and publishers, and states their rights and mutual
obligations involved in the publication. This agreement also mentions the licenses attached
to the published works. These licenses establish the rights of a third party: the recipients
of the works, the journal readers. Article manuscript, software and dataset have different
properties and usage and need different licenses. They have been chosen to allow the research
community to reuse and build on the published material and to acknowledge the paternity of
the authors on their work in the form of standard academic citations. Together, they compose
the public policy of the journal, summarized by the “Open Access, Open Source, Open Data”
trilogy and detailed later in this chapter.

One can also see the licenses as a balancing factor in the author-publisher relation; they both
relinquish some of their exclusive rights, for the benefit of the research community:

❼ The authors allow the publisher to distribute their work if and only if the readers have
some right to access and use the published materials. The publisher cannot distribute
the works without mentioning the rights granted to the journal readers via the licenses.

❼ The publisher lets the authors keep the patrimonial rights of their works if and only if
the authors allow others to use, modify and redistribute the published works.

Without such licenses, the usual scheme is that the publisher has exclusive rights on the
manuscript and the authors maintain their exclusive rights on the software and dataset, while
the readers are only allowed to access and read the article and attached material.

Manuscript

The manuscript is published under a “Creative Commons Attribution Noncommercial Share
Alike” (CC-BY-NC-SA) license. A summary of this license13 is:

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

per year for subscriptions”. Circa February 2012, the arXiv repository (http://arxiv.org/), operated by
the Cornell University Library, hosts 750000 preprint papers in mathematics, physics, and biology; RePEc
(http://repec.org/) has almost 700000 articles in economy; HAL (http://hal.archives-ouvertes.fr/), a
CNRS initiative, hosts almost 200000 science papers.

13The full text of the license is written and promoted by the Creative Commons organization (http://
creativecommons.org/licenses/by-nc-sa/3.0/).

82

http://arxiv.org/
http://repec.org/
http://hal.archives-ouvertes.fr/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

5.2. COPYRIGHT AND LICENSE POLICIES

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author
or licensor (but not in any way that suggests that they endorse you or your use of
the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same or similar license to this one.

Like every Creative Commons license, the CC-BY-NC-SA license maintains the moral rights of
the copyright holder but allows the free distribution of the copyrighted works. We expect this
to facilitate the work of the research community by disseminating the manuscripts. Reaching
more potential readers, we hope to increase the visibility, impact and usefulness of the article,
and this should benefit ultimately the authors with more citations14.

The attribution condition of the license is detailed in the journal by requiring any usage of
this work for a scientific publication to cite the article with the standard citation metadata
provided with the article. To ensure a stable and reliable access to the cited articles, the
journal uses Digital Object Identifiers (DOIs). These identifiers are persistent identifiers of
materials published online. They help guarantee the validity of a citation and access to the
article over time, and they associate an unique identifier to every published article, which
simplifies the automated processing of scientific literature databases. With this standardized
citation model coupled to the attribution requirements of the license, we follow the practice
of the research community and integrate in global bibliometric systems and practices.

The free redistribution model associated with a Creative Commons license implies an unre-
stricted access to the article: any restriction on accessing the article would be circumvented
by a single reader lawfully making the article available in a location not controlled by the
publisher. This places the journal in the category of Open Access journals [49], who make
their content “freely available without charge to the users or their institutions”. The articles
are immediately and permanently available online and users are “allowed to read, download,
copy, distribute, print, search, or link to the full texts of the articles in this journal without
asking prior permission from the publisher or the authors”. This policy is expected to be
more adapted to the collaborative nature of the research than expensive and restricted access
to the articles as is common with mainstream commercial publishers. Moreover, this should
also benefit the authors: some studies showed that articles published in Open Access get more
citations from other researchers [93, 166].

Moreover, other researchers are not only allowed to access and redistribute the manuscript.
Reusing it to elaborate one’s own research is also explicitly allowed. This is the common
academic practice, but rarely mentioned in the copyright statements of other journals.

In the competitive academic edition market, one wants to avoid other publishers to benefit
from the selection, edition, peer review and proofreading work invested before the first pub-
lication of the articles at the expense of the original publisher, for example by reusing the
articles in a compilation book. For this reason, the commercial exploitation of the work is
forbidden unless explicitly negotiated with the author. We expect that the original publisher

14The works of Lawence Lessig [215] and Richard Stallman [318] also provide a detailed critical analysis of
the copyright and patent system at the Internet era.

83

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

will be in the best position to develop commercial re-edition projects with the authors if it is
their intention.

Software

If the article includes a software part, typically the implementation of the algorithm presented
in the manuscript, the software must be published under one of the Free Software licenses
listed in the Software Guidelines. The 1.00 version of these guidelines mentions the “GNU
General Public License” (GPL)15, the “GNU Lesser General Public License” (LGPL)16, the
“Affero General Public License” (AGPL)17 and the “BSD License” (BSD)18.

All these licenses are Free Software licenses19. They guarantee the same four essential rights
to the recipients of the software:

❼ the right to run the program;

❼ the right to study how the program works;

❼ the right to redistribute copies of the program;

❼ the right to modify the program, and redistribute the modified versions.

These licenses differ in the additional rights the authors want to guarantee to the users of the
program and its modified versions and how it can be combined with non-free software. They
are adapted to different kinds of software and different strategies of their authors, as shown
in table 5.1.

Many other Free Software licenses exist, but the short list in the Software Guidelines aims
at simplifying the choice of a license and reducing the complexity of the license management
in a journal, while being adapted to all major use cases. To be complete, the list should
also include a very permissive license such as the “GNU All-Permissive License” (APL)20,
suitable for trivial works (the similar Public Domain terms are not recognized in European
jurisdictions).

We chose this free software license policy because we consider it promotes collaborative re-
search. Free software is the programming equivalent of the publication of research papers21.
Like the article manuscript, the source code is expected to be read, used and tested by other
researchers. They will build their own research publications on the results exposed in the
article, and they will build their software tools by reusing parts of the source code published
in the article. And the license terms require the copyright attribution to be conserved in

15http://www.gnu.org/licenses/gpl.html
16http://www.gnu.org/licenses/lgpl.html
17http://www.gnu.org/licenses/agpl.html
18http://www.opensource.org/licenses/bsd-license.php
19Similar definitions of Free Software are given by the Free Software Foundation [131], the Open Source

Initiative [182] and the Debian project [289].
20http://www.gnu.org/licenses/license-list.html#GNUAllPermissive
21This affirmation is taken from a chapter about “software for rent” and the benefits and free software in

“Confessions d’un voleur — Internet : la liberté confisquée” [79].

84

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/agpl.html
http://www.opensource.org/licenses/bsd-license.php
http://www.gnu.org/licenses/license-list.html#GNUAllPermissive

5.2. COPYRIGHT AND LICENSE POLICIES

GPL LGPL AGPL APL BSD

four essential rights for recipients of the code • • • • •

authorship must be acknowledged in source distribution • • • • •

authorship must be acknowledged in binary distribution • • • •

modified versions must be released under the same license • • •

source must be distributed with compiled versions • • •

must only be linked with codes under a compatible license • •

source must be provided with application services using it •

Table 5.1: Brief comparison of five software licenses: GPL, LGPL, AGPL, APL, BSD.

software works derived from the published code, to acknowledge the work’s authorship. This
is similar to the requirement for a correct citation of the manuscript in academic journals,
but adapted to the habits of software development and collaboration.

Unlike the manuscript, however, we do not consider that a restriction to noncommercial use
is adapted to research software because commercial and industrial applications will want to
reuse the ideas, inventions and algorithm, not the experimental implementation published
in the journal. The copyright and software licenses only cover the source code, not the
algorithm expressed in the source code. Instead, inventions are covered by trade secrets and
patents. As the current patent regulation excludes the mathematics and scientific discoveries
from patentability, it seems that an algorithm could only be “protected” by secrecy, which
is not applicable when the inventors choose to publish their algorithm in a scientific journal.
For these reasons, there is no justification to restricting the software part of an article to
non-commercial use only22.

Finally, it is worth repeating that the free software license used to distribute a source code
via the journal does not prevent the authors to use other licenses when they redistribute their
works, or enter commercial agreements to sell a right to use their software or future versions
to a third party. This will especially be useful when an industrial partner does not want
to be bound to the GPL license terms. These terms require anyone reusing a GPL licensed
software in their own program to release the whole source code under GPL-compatible license
terms. Most industrial partners would prefer to negotiate a commercial arrangement with
the authors for a non-GPL license to reuse their code.

Dataset

If the article includes a dataset part, this dataset must be published under a “Creative
Commons Attribution” (CC-BY) license. A summary of this license23 is:

You are free:
- to Share — to copy, distribute and transmit the work

22In fact, some patent jurisdictions, principally the United States one, recognize some patents on inventions
involving the use of a program, and these patents cover the algorithm implemented by the program as a part
of the wider invention. To accommodate for this situation, we require a patent warning to be included in the
source code when the algorithm is covered by such patents, and we accept ad-hoc “research only” license terms
when the source code author is the patent inventor.

23The full text of the license is written and promoted by the Creative Commons organization (http://
creativecommons.org/licenses/by/3.0/).

85

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

- to Remix — to adapt the work
Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author
or licensor (but not in any way that suggests that they endorse you or your use of
the work).

Like every Creative Commons license, the CC-BY license maintains the moral rights of the
copyright holder. Like for the manuscript part of the article, the attribution condition of the
license is detailed in the journal by requiring any usage of this work for a scientific publication
to cite the article with the standard citation metadata provided with the article, including
the Digital Object Identifier reference.

The datasets are freely available on the Internet permitting any user to download, copy,
redistribute, analyze, process, or use them for any other purpose without financial, legal,
or technical barriers. We think that a very permissive license like this one is adapted to
datasets because such works gain value by being reused and integrated in comparisons and
benchmarks. Without a free access to the data, one cannot reproduce the experiences and
compare the published algorithm with another one. This license policy is compatible with
the Open Data definition [132]: “Anyone is free to use, reuse, and redistribute it — subject
only, at most, to the requirement to attribute and share-alike. ”

The only condition is to mention the authors of the work and refer to its original publication
as the non-ambiguous location where this dataset is available. A reliable and unique location
is especially important for datasets. In its absence, one may refer to different data by the
same name and variations of the same initial data would result in biased measures. This
happens, for example, with the well-known “Lenna” image, available from different places on
the Internet with different resolutions and alterations and no clear way to know which is the
standard Lenna picture [339].

Reliable indexation and storage of such scientific datasets is necessary. Research cannot rely
on lab websites for the availability and identification of important datasets. Among the few
initiatives to tackle this important issue, we can cite 3TU.Datacentrum [16], a joint project
by the universities of Delft, Eindhoven and Twente, and DANS [92], an institute of the
Royal Netherlands Academy of Arts and Sciences and the Dutch Organization for Scientific
Research. More efforts are needed, especially out of the biomedical fields, probably to be led
by research agencies at the national or international levels.

Finally, we must say that a dataset, even published under a permissive license, is useless if
the data format is not documented or if the software tools needed to read and use the data
are not available. To publish useful datasets, one must use open and standardized formats.
This should be covered by appropriate Dataset Guidelines, yet to be written.

5.3 Online Publishing and the Law

5.3.1 Online Demos in Research Journals

Online research demos provide a web interface to process user-submitted data with a research
programs, in order to try and compare different algorithms. They are developed and proposed

86

5.3. ONLINE PUBLISHING AND THE LAW

by individual researchers, research groups or laboratories, or journals.

One major difference between such demos and articles, software and datasets is in their
nature: online demos are a service, not a product. They may be reviewed like articles, but
instead of being edited, published and distributed, demos are maintained and continuously
kept available online. Moreover, if these demos include a public archive of the experiments,
their online content includes the data submitted by the users, not by authors or editors.

This difference in nature has legal consequences. A demo is another program, with a web
user interface and networked input and output, and as such the creative code expressed in its
code, like any program code, is copyrighted. But the copyright does not apply to the service
provided with this code. When visitors use a demo, they do not receive the demo, they only
interact with it. The demo program stays out of their reach, on the demo server.

Instead of the copyright regulation, one may attempt to invoke patent protection on the demo
service. But such patents on web service are only recognized in few jurisdictions, and the idea
of an interaction with distant computers via a web service is at least as old as the Common
Gateway Interface (CGI) introduction in 1993.

On the other side, the data processed by a demo has an author, a copyright protection, and
its availability in the demo archive is a redistribution of this material. But the author and
copyright status of most of this data is unknown to the demo administrators. We may also
wonder who is responsible for the use and possible abuse of this archive.

The answer is to be found in the law. After an overview of the legal coverage of publishing and
communications, we will detail how an online journal, including online demos with archives,
can be operated and used. This analysis only covers French law because of the location of
our IPOL project. The situation would be different in other countries with other local laws
on press regulation, copyright protection and free speech.

5.3.2 Retrospective on French Law and Internet

Press and Freedom

Introduced in 1881, the Law on the freedom of the press [1] is the foundation of the freedom
of the press and freedom of expression in France and defines the regulation of publications
and media. This law went through several amendments but remains in force today and one
century later, its framework governs electronic publishing on the Internet.

For every publication, the publisher (“directeur de publication”) and printer (“imprimeur”)
must be publicly identified. This obligation has been maintained and adapted for electronic
publications in recent laws. We detail later their respective responsibilities.

The publisher is responsible for all the published material and may be condemned for libel,
insult and defamation. The 1881 law also introduces heavy punishments for inducing dis-
crimination, hate or violence against races, nations and religions. These “press offenses” are
still enforced today on Internet publications, from the web version of paper newspapers to
personal blogs.

87

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

Computers and Data

In 1978, before the advent of personal computers and while networking was still in a pre-
Internet state, the Law on the computers, databases and liberties [2] is the first regulation
of the possible privacy issues foreseen in automatic data processing. This law creates an
independent administrative authority (“Commission Nationale Informatique et Libertés” —
CNIL), mandated to monitor collection, storage and use of personal data. Since 1978, any
collection of personal data has to be declared to the CNIL with details on what is collected
and how it is processed, and users have the right to access and request modification of their
information. This obligation naturally extended to the Internet; it applies for example to the
user accounts or web usage statistics and tracking implemented in a website.

Electronic Communications and Crime

In 1982 with the Law on the audiovisual communication [3] and in 1986 with the Law on
the communication freedom [4], the laws on press are transposed to the context of electronic
communication. With the radio and television regulation, the Internet is introduced in the
French law with other “means of communications not using hertzian waves”. These laws state
that electronic communication is free and its usage by the citizen a privacy matter. They
also require a publisher to be identified for every electronic communication service, a parallel
with the press laws. The equivalent of the printer role, however, will only be defined 10 years
later.

In 1988, the Law on the computer fraud [5] adds to these regulations of electronic communica-
tions as mass media the first legal definition of computer crimes and punishes the unauthorized
access to an automated data processing system — generic definition of a computer — and the
deletion or alteration of data on this system. This is completed in 2000 with the recognition
of electronic documents as valid legal material and acceptable evidence, at par with paper
documents, in the Law on the evidences, information technologies and electronic signature [6].

Trust and Security

With the 21st century, Internet becomes a major communication medium. In 2004, the
Law on the trust in digital economy (LCEN law, from the French acronym) [10] details the
regulations on Internet communications that were missing from previous early texts.

It defines the roles and responsibilities of the publisher (“éditeur”) and hosting provider
(“hébergeur”) of an electronic publication, inherited from the paper press world. Publishers
have editorial control of the published content; they order, select, correct and approve every
piece of information distributed via their media. As such, they are responsible of this content
and its compliance with the laws. On the other side, the hosting providers are only technical
service operators; they have no a priori knowledge of the information they make available
online. They are not responsible and do not have to monitor it, but must promptly take it
offline when notified of an illegal content24.

24“Les personnes physiques ou morales qui assurent [. . .] le stockage de signaux, d’écrits, d’images, de sons
ou de messages de toute nature fournis par des destinataires de ces services ne peuvent pas voir leur respon-
sabilité civile engagée du fait des activités ou des informations stockées à la demande d’un destinataire de

88

5.3. ONLINE PUBLISHING AND THE LAW

The law recognizes that every website does not necessarily have a clearly defined editor. Most
of the web content is published by their author rather than as a publication. Some websites are
also open to free contributions, like wiki sites, forums, and blog comments. All these situations
form the majority of the Internet publication. This ability to broadcast one’s message to the
world was the novelty of the Web after centuries of printed mass communication. For all
these situations the hosting providers, which can usually be identified by technical means,
are required to keep a record sufficient to identify the authors of every content they store and
distribute via the networks25.

During the same decade, the legislators adopt five laws including electronic communications
in texts focusing on security issues: the Law on the daily security [7] and Framework law on
the internal security [8] in 2003, the Law on the internal security [9] in 2003, the Law on the
terrorism [12] in 2006, and finally the Law on the performance of internal security” [15] in
2011. These texts detail how identification databases, wiretaps and filtering can be used by
the police and justice administration. They also refine the definitions of the responsibilities
involved in electronic communications, which identification data has to be kept, how long,
and who can access this information.

Copyright

At the end of the decade, the latest set of laws so far deal with copyright regulation and
file sharing, in 2006 with the Law on copyright in the information society [11] and 2009 with
the Law on creation and Internet [13] completed by the Law on the copyright protection and
Internet [14]. These texts punish the unauthorized publication of copyrighted works, with
an exception when this is solely done for education and research without commercial use.
They also introduce various measures to monitor network communications, detect copyright
infringement and suspend the offenders’ Internet connection.

5.3.3 Consequences for Online Journals

From this timeline, we can identify three categories of legal obligations on electronic publish-
ing:

❼ the generic regulation applying to anyone managing a website: identify the people
involved in the service, respect the privacy of the users

❼ regulations on web publishers and authors: do not put illegal material online

❼ regulations on web hosting providers: identify the authors, remove illegal content on
notice

ces services si elles n’avaient pas effectivement connaissance de leur caractère illicite ou de faits et circon-
stances faisant apparâıtre ce caractère ou si, dès le moment où elles en ont eu cette connaissance, elles ont
agi promptement pour retirer ces données ou en rendre l’accès impossible. [Elles] ne sont pas soumises à une
obligation générale de surveiller les informations qu’elles transmettent ou stockent, ni à une obligation générale
de rechercher des faits ou des circonstances révélant des activités illicites.” — LCEN Art. 6

25“Les [hébergeurs] détiennent et conservent les données de nature à permettre l’identification de quiconque a
contribué à la création du contenu ou de l’un des contenus des services dont [ils] sont prestataires.” — LCEN
Art. 6

89

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

We will see hereafter how this translates for an online research journal with demos and
archives.

General Website Operation

Like any website, an online research journal is required to identify its publisher and host-
ing provider. For self-published independent journals, the publisher will be the person who
chooses, selects or writes the content included in the journal or oversees this process, ie the
editor in chief. The publisher is also usually identified when the journal requests an ISSN
registration.

The definition of the hosting provider is more subtle, because this function may be decomposed
into different layers: who administers the server, who owns the machine and who controls its
connection to the Internet. If these roles are handled by different entities, the simple solution
is to mention them all.

Finally, users must be informed of the data collected from their usage of the service. Even if
there is no user account and no user is identified by their name, a simple web usage statistics
tool collects personal information: IP addresses of the visitors, with the time and date of
every page they accessed. This usage of an online communication service is a private matter,
so such usage monitoring must be declared to the CNIL, mentioned on the website and the
visitors must have the possibility to access and correct this information.

Edited Material: Manuscripts, Software and Datasets

The journal editors propose, select, review and validate every article to appear in the journal
issues. This is unchanged from the traditional press and publisher model to the electronic
medium transition. The publisher — usually the editor in chief — has the legal responsibility
to ensure that every published material is legal.

Due to the nature of a research journal, few articles, if any, present the risk to include unlawful
content such as libel, defamation and hateful messages. The major concern is copyright
infringement, in any of its forms: abusive copy/paste of external sources and other articles,
plagiarism, disregarding the copyright status and restrictions of data included in an article,
such as images and figures, of redistributing a software without being allowed to do so or
without crediting the original authors.

But the editor in chief cannot perform a complete inquiry for every article to be published.
Instead, in the IPOL journal, the rules are simply mentioned to the authors via a copyright
agreement and some author guidelines. Researchers contributing to the journal are asked to
mention the origin and respect the authorship of every non-original content included in their
submission. These agreement and guidelines are acknowledged by the authors when they
propose a new article, and unless a misconduct is signaled the editor relies on their integrity.

Contributed Material: Demo Archives

The public archives of an online demo are another matter. First, the mere volume of such
a service (more than 50 new images per day for a small journal like IPOL) means that

90

5.3. ONLINE PUBLISHING AND THE LAW

monitoring the content of the archives is no small effort. Then, if the archives are moderated,
every image publicly available in the archives has been approved by a moderator, and the
publisher is liable for every possible illegal content, any identifiable face, any recycled image,
and so on.

Another possibility, chosen for IPOL, is to automatically publish this content without a priori
filtering. If the archives are not moderated, the journal is only hosting content contributed by
the demo users. The publisher does not condone this content and the journal only provides
a technical mean to put it online, and acts as a mere hosting provider. This approach is
based on the similar situation of non-moderated web forums, whose administrators have been
qualified as hosting providers, not editors, by case law from 2002 [71,96,115,254].

In order to support this qualification of simple host, the online demo users and visitors must
be clearly informed of the non-moderation of the archives, and all the information necessary
to notify illegal or suspicious content must be available in the archive. Moreover, the origin of
every material inserted in the demo and redistributed via the public archives must be recorded
and kept for one year, as required by the LCEN decree26. This is easily achieved via the IP
address and file identifiers found in the default web server logs.

One may wonder if such online archives would not be flooded by illegal material. After two
years operating the IPOL services, our answer is no. There has been some abuses, but very
few: about one per month, less than 0.1% of the archive volume. And these abuses were
always with questionable and obviously not scientific content such as nudity pictures, but
never with obviously illegal material. The explanation may be that such archives are not very
convenient: inserting the images in the system takes some time to go through the processing
chain, and their size is limited. There probably are lots of more efficient channels to distribute
unlawful content.

Acceptable Input The archives are not moderated, but the users are informed of which
input data they should not feed in the system, to avoid copyright infringement, privacy
violation and press offenses.

Copyright The copyright status of the images processed by the online service and publicly
archived must not conflict with this usage; the copyright owners must allow this processing and
the redistribution of their works via the archive. To avoid copyright infringement, online users
must only upload images for which no copyright applies (public domain), or the copyright is
theirs (personal photos), or when the copyright owner explicitly allows derivative works and
redistribution for free without any restriction.

This implies that images “found on the Internet” cannot be inserted in the public archive of
a demo, because unless stated differently all the rights, including the right to redistribute the
works and to modify them, are reserved to the authors. But copyleft image databases provide
a useful and rich alternative. Via the Creative Commons search portal27, one can search for
images, video or sounds in the Flickr, Google, Jamendo, Wikimedia, Youtube or Europeana
databases and restrict the search results to materials we can reuse and redistribute.

26LCEN application decree, 24 February 2011 (http://www.legifrance.gouv.fr/affichTexte.do?
cidTexte=JORFTEXT000023646013)

27http://search.creativecommons.org/

91

http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000023646013
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000023646013
http://search.creativecommons.org/

CHAPTER 5. COPYRIGHT, PATENTS, LICENSES AND NETWORK LAWS

Privacy Photos redistributed via the demo archives should not infringe on the right to self
image and privacy. No person should be recognizable on these photos unless they have given
their consent for publishing. Precisely, online users must not upload images of human beings
if the persons displayed in the images did not explicitly give their written consent or are not
mentally healthy (and not able to give an informed consent); for children, the parents must
have given this consent.

To avoid unnecessary paperwork, we suggest the online demo users to use photos of themselves
if faces are useful in the processed images. For photographs of persons included in published
journal articles, an authorization letter is required and kept at the office of the editor.

Other Illegal Content All other generic press offenses and illegal material per free speech
regulation are obviously forbidden too. This includes encouraging hate, discrimination and
racism, child pornography, attack against human dignity, counterfeiting, apology of crimes
against humanity, apology and incitement to terrorism and negationism.

Output Usage Conditions Finally, no copyright policy can be established on the output
of the online demos because the copyright status of the input images is unknown to the demo
administrators. In particular, for their own articles, researchers should only reuse the output
obtained after processing data they submitted themselves to the algorithms and for which
they know the origin and the modification and distribution terms. They are also asked to
cite the article linked to the demo if they use this demo in their works, but this can only be
a courtesy matter, not a license condition.

92

Chapter 6

A Short Survey of Image
Processing and Computer Vision

Contents

6.1 The Universality of Image Processing 94

6.2 A Rewriting of 2000 Keywords . 96

6.2.1 Main goals of Computer Vision and Image Processing 96

6.2.2 The Concepts of Image Processing and Computer Vision 99

6.2.3 Mathematical Tools of CVIP . 100

6.3 A Scientific Program for IPOL . 103

6.3.1 Definition of Image Processing and Basic Computer Vision 103

6.3.2 Single Image and Video Processing 104

6.3.3 Multi-images processing . 112

6.4 Image Analysis and Understanding 116

6.4.1 Single Image Analysis: Geometric Features and the Gestalt Program 116

6.4.2 Object Recognition (Learning Methods) 118

6.4.3 Graphics . 119

6.5 Conclusion: Journal Methodology 120

93

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

Abstract

This chapter starts with a review of image processing and computer vision terminol-
ogy extracted from well frequented web sources. The goal of this review is to make sure
that few aspects of the subject as it exists escape the discussion. The ultimate goal is
to be able to sketch a scientific and algorithmic program adapted to IPOL, this program
being thought in terms of algorithms, or of algorithmic questions. The chapter contin-
ues with the proposition to deduce a sizeable part of the necessary algorithms from the
imaging system itself. Cameras and the other imaging systems have a number of fixed
mathematical and physical characteristics that literally define the image structure and its
potential defects. Other algorithms are rendered necessary by the structure of the visual
world, and by the structure of our perception. The chapter starts by establishing lists
of algorithms that are required for any image processing or any image analysis project.
Although it would be ridiculous to pretend that such lists could be complete, there is
some return on investment for this effort. For example, the list of envisaged algorithms,
while being rather detailed, does not exceed a couple of hundreds. It includes of course
many of the algorithms that have been already acclaimed, but also several unnoticed
ones, despite their obvious importance. The moderate number of necessary algorithms
raises the hope that a journal like IPOL can reach soon a usable size, where a majority
of the essential algorithms or questions will be represented by at least one first article.
This would enable IPOL to establish the basis for a new sort of algorithm dialog, where
each new algorithm could be confronted to the others by its results on any image, and
by its detailed description and comparison to others, in the spirit of Hermann Hesse’s
Glassperlenspiel [171].

6.1 The Universality of Image Processing

The existence of a fully autonomous image and movie processing chain is a biological fact. Our
visual system is completely adaptable and robust to the physical changes of the environment
and of the optical system itself. It is able to synthesize a better quality view from several
ones. The binocular fusion of two retina images into a cyclopean vision1 not only recreates
depth, but also significantly enhances the visual acuity of each eye.

Since imaging is invading all crucial aspects of our all-day life, and in particular of our
scientific life, it is crucial for image science to deliver universal image analysis and processing
algorithms to the immense group of users.

Furthermore, most researchers, engineers, doctors, and other users have no easy access to
the internal parameters of their own imaging tools. In consequence, image processing labs
are overwhelmed by a growing demand from biologists, doctors, physicists or physicians who
request them to make the best of their observations, be it for noise, blur, color, contrast,
stability, image comparison, image registration, and so on.

The creation of universal image and video processing algorithms is so much more important
that, contrarily to intuition, most high level image analysis tasks essentially rely on low level
automatic mathematical primitives. This fact was discovered and illustrated in the past cen-
tury by the Gestalt school, from the founding paper by Wertheimer [362] to the books of
Metzger [244] and Kanizsa [190] [189]. Metzger’s book summarized in 1975 fifty years of
Gestalt theory research demonstrating that the visual perception of 3D information, color,

1Term due to the psychophysicist Bela Julesz

94

6.1. THE UNIVERSALITY OF IMAGE PROCESSING

texture, shadows, geometric structure, perspective, motion, and causality is a low level pro-
cess, automatic, universal and definable in geometric terms analogous to physical principles.

However, every image process is not a single algorithm, but rather a complex chain of atomic
algorithms, each one requiring the presence of the others to make the result visible. A crucial
question for an image processing journal is whether universal image processing atomic algo-
rithms can be made available to all. They must generally be combined with others to make
them testable on line. Thus, the difficulty is that such algorithmic chains should integrate
very diverse interlaced tools, each requiring a specific mathematical theory and its algorithms.
So far the knowledge in image processing, when existing, is partial. Many case-dependent
competing algorithms are proposed. The main image processing and analysis journals (IEEE
Image Processing, International Journal of Computer Vision, Journal of Mathematical Imag-
ing and Vision,. . .) reflect this babel situation by publishing large numbers of papers on each
given problem without disposing of a proper comparison methodology.

The other main difficulty is that in the literature most algorithms depend on several super-
vised parameters. Eliminating these parameters is a crucial requirement to have algorithms
usable by all, and demonstrable on line. The main difficulty is probably the variety of mathe-
matical and computational theories that have to be adapted or developed for each one of the
algorithms. The fact that our vision integrates smoothly all aspects of image formation gives
a sense of easiness that is fully illusory. To give a few examples, sampling theory relies on
harmonic analysis with a subtle interlacing of discrete and continuous aspects. Color theory
relies on PDE’s. Denoising relies on nonlocal mathematical processes of a new form, unknown
until they were introduced for that scope. Image matching relies on a multiscale theory, scale
space, that is also specific of image analysis and computes scale invariants in a very clever
way.

In this chapter we shall try to recast the typical image formation chain and therefore to deduce
the typical image algorithmic atoms and chains, as they should be elaborated in IPOL. We
shall start with an attempt of synopsis of the whole field, obtained by concatenating in the
right order the 2000 most frequent key words or expressions of computer vision and image
processing. This synthesis in chapter 6.2 will show the overwhelming variety of the goals of
Computer Vision and Image Processing. Nevertheless, we shall discuss in chapter 6.3 whether
there is an underlying general model for this material, and how a systematic scientific and
reproducible methodology might cover it. We shall see that, in fact, most questions of Image
Processing and many problems of Computer Vision stem directly from the image formation
model. This will allow us to end with a development program for the development of the
discipline, and therefore orientations for the IPOL journal, which must expand on the subjects
which seem to be crucial.

Of course, this synthetic attempt permits a broad coverage, but does not bring in the necessary
analysis. Thus in a second section we shall try to deduce as much as possible of the Computer
Vision and Image Processing program from the mere model of cameras. This deduction works
well for image processing and the parts of computer vision which are close to image processing,
in particular all questions related to the 3D reconstruction of the environment.

As for the question of Computer Vision that are related to our human world and our human
quests in it (mostly related to object recognition and scene understanding), the research pro-
gram is more focused on Machine Learning than on vision itself, so that a rational deduction
of the main topics would request a thorough discussion of the Machine learning program.

95

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

This goes beyond our scope. Furthermore, we see so far no way to actually execute efficiently
online learning algorithms, which request the upload of very large databases and a sophisti-
cated benchmark method. Thus only ad hoc computer vision tasks will be discussed and the
main learning algorithms will nevertheless be mentioned.

Needless to be said, research creates constantly unexpected new fields of investigation. Thus,
the present discussion only reflects an ephemeral view on the state of the art of the discipline.

6.2 A Rewriting of 2000 Keywords

Computer Vision (CV) and Image Processing (IP) are two twin disciplines (CVIP) dealing
with the processing and analysis of digital images. They interact directly with Imaging,
Neurobiology, Psychophysics, Robotics, and Photogrammetry. Indeed, they handle the digital
part (algorithms and data) of these five disciplines. This section presents a synthesis of the
list of 2000 most frequent key words in Computer Vision, taken from The Microsoft Academic
Search database2. This recent list is completely unstructured and sometimes redundant. In
the following text, we commit ourselves to eliminate only the redundant or synonym terms
and to organize all of the other ones. The goal is to get a faithful and complete coverage of
the discipline in its current state. It seemed to us that the 2000 key words could be at first
classified in three “robust” categories:

End-goals those dealing with the end goals or applications of CVIP, such as image compres-
sion, video surveillance, image retrieval, urban modeling;

Concepts of CVIP those which represent a specific conceptualization, of a more philosoph-
ical nature. They characterize the lines of thoughts and emerging theories: for example
learning, multiscale analysis, pattern formation, visual grouping, or image representa-
tion;

Mathematical tools and algorithms: the most numerous terms depict the mathematical
theories and techniques used (and changed) by CVIP. They stem from projective geom-
etry, topology, Fourier analysis, parametric and nonparametric statistics, probability,
optimization, partial differential equations and variational methods.

6.2.1 Main goals of Computer Vision and Image Processing

According to the exhaustive list of 2000 key words which we shall simply reorder in the
ensuing text, the main goals of Image Processing and Computer Vision can be classified in
not less than sixteen categories. Because they are not our main focus, the goals related to the
conception of imaging systems will be listed at the end. For the rest, the logic leads us to go
progressively from “low level” to “high level”, namely from image formation, to the “medium
level” extraction of cues and reconstruction of a 3D environment, and finally to the high level
image and video interpretation tasks. We give now the list of the CVIP goals:

2http://academic.research.microsoft.com/

96

http://academic.research.microsoft.com/

6.2. A REWRITING OF 2000 KEYWORDS

Compression to encode and compress by lossy or lossless coding or sparse representation
images, video, and 3D point set data;

Single image processing to define, control and improve the quality of digital images and
video by developing mathematical theories and algorithms for raw image sampling,
demosaicking, interpolation, denoising, deblurring, super-resolution, color balance, con-
trast enhancement, histogram manipulations, motion compensation, motion deblurring;

Multiimage processing to perform the same operations when several images of the same
scene are available, in which case the correspondence problem, also called image match-
ing, or image alignment, or image registration, or non rigid registration must be solved
first, followed by a joint demosaicking, denoising and super-resolution strategies, a joint
histogram equalization, followed by the same color balance or contrast enhancement.
This joint restoration and equalization can end up in the fusion of the images, for a
higher resolution image, an image mosaic, or a panoramic image;

Video processing to perform the same operations as above from video, in which case the
motion compensation and optical flow techniques replace the registration;

Camera calibration and pose to deduce a complete mathematical model for each camera
from photographs taken by the camera of specific patterns, or of multiple solid scenes:
this permits to give accurate models for the charged coupled device (CCD), for the
point spread function (modeling camera blur), the lens optical distortion, the chromatic
aberration and the vignetting effects. Likewise from multiple views or video the whole
camera geometric model including its focal length and pose or motion can also be
estimated. This calibration can be extended to camera networks surveying a scene.
The precision of these measurements is a key to digital photogrammetry;

Illumination to model, detect or compensate the effects of light on the photographed scenes
such as shadows, reflectance, highlights, specular reflections, structured light. In par-
ticular certain algorithms tend to minimize the effects of changing light on images by
manipulating the color histograms, and applying color constancy strategies;

Image and video low level analysis to extract cues, otherwise called features which are
universal and can be a common denominator to any image and video processing and
analysis: color and texture segmentation, feature grouping, extraction of interest points
or key points, shape descriptors, detection of the main aspect graph features (triple
junctions, corners, edges), line detection, saliency maps, Harris points, similarity invari-
ant features, bags of visual words. In video, this feature set is complemented by motion
estimation, motion segmentation and feature tracking;

3D recovery: to recover the 3D shape of objects from one, from two, from several images,
or from a video stream. Already with one image partial depth information can be
recovered by shape from shading, shape from silhouette, shape from texture, depth
from focus, geometric perspective (vanishing points), atmospheric perspective and local
occlusion cues such as T-junctions. Recovering the 3D depth map from two or more
images is the classic stereo vision problem, and recovering 3D from video is made by
the structure from motion method. Nevertheless, the creation of 3D scenes from images
or video brings on the 3D point sets similar problems as for images: first to triangulate

97

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

or mesh the 3D point cloud, to analyze it, segment it, extract its meaningful features,
recognize and align several meshes, etc. The urban scenes and digital elevation models
are sometimes also obtained directly from 3D imaging system like range images or
sometimes by remote sensing (radar or optical aerial and satellite images);

Object modeling, detecting, tracking, and recognition: to model, detect, track,
align, and recognize in images or video any kind of solid or moving or deformable
object, or event, or action, and to determine their pose. This recognition problem ap-
plies to the images and videos themselves as object to be recognized. But also to shapes,
patterns, and more specifically, for example in video surveillance and remote sensing, to
foreground and background, buildings, roads, communication networks, targets, vehi-
cles, human motion, human activity, human actions, events. Also to people, characters,
faces, heads, facial emotions, facial expressions, facial features (lips, skin colors, eyes,
eye directions, eye movements), gait, gestures, hands motions. In images of printed
material the question is to recognize and read text, handwriting, logos, line drawings.
In industrial material, to detect and classify cracks, defaults, anomalies, fibers, surface
roughness, etc.

Scene understanding and control still more generally, to understand and classify filmed
scenes, with such goals as quality control by automated visual inspection, video surveil-
lance of building or public places, road traffic control or intelligent video conferencing;

Content based data organization and mining to organize databases of images and
video by their visual content information, thus permitting to index them, to anno-
tate them, to summarize them, to search them by content (data mining) basing this
search on a query. In particular, to make these operations on the web, organizing global
photo or video sharing;

Man machine interaction to devise new camera based man-machine interactive environ-
ment using eye and gaze tracking, gestural interface, pose estimation;

Medical diagnosis and action to explore the human body and perform image based med-
ical actions such as the exploration of anatomical variation, or the brain mapping. To
perform computer aided diagnosis of (e.g.) breast cancer by mammography, of cardio-
vascular diseases by vessel segmentation. To make surgical planning and perform image
guided surgery. To explore all layers of life by Biomedical Imaging from proteins, cells
to organs. To obtain cell genealogies from videos of embryos;

Computer Graphics to create artificial images and video and virtual environment for elec-
tronic games and the movie industry and to develop editing and augmented reality
techniques for images and video, including for example texture synthesis and mapping,
ray tracing, inpainting, view interpolation, and 3D animation of artificial scenes and
humans. These operations represent a complete fusion of image processing, computer
vision and computer graphics techniques. They aim at a faithful scene reconstruction
that recreates new images and video from acquired images and video in which artificial
objects can be inserted.

Robotics to conceive vision tools for intelligent autonomous vehicles or robots endowed with
navigation, path planning, obstacle detection and avoidance, detection and tracking
capabilities;

98

6.2. A REWRITING OF 2000 KEYWORDS

Imaging systems last but not least, to conceive imaging systems specially conceived to
model, detect, extract, observe, track or count certain objects of interest. Thus, there is
a loop between imaging systems and the image processing and analysis tools. The list of
imaging techniques is constantly expanding. The list here is far from exhaustive. Optical
cameras based on the pinhole principle can be panoramic, fish eye, thermal, infrared,
multi-spectral, push-broom (in scanners or satellites). They can have high dynamic
range or an augmented light system, and can have any size, up to telescopes. Active
imaging systems emit and catch reflected or absorbed waves: structured light scanner,
laser range scanner, laser triangulation scanner, synthetic aperture or laser radar, sonar,
ultrasound. To this we must the add the whole series of X-ray based imagery, X-ray
tomography, electrical impedance tomography, emission tomography, angular resolution
diffusion imaging, positron emission tomography (PET) magnetic resonance imaging
(MRI), functional MRI, diffusion tensor MRI, scanning electron microscopes, single
photon emission tomography, etc.

6.2.2 The Concepts of Image Processing and Computer Vision

IP and CV use relatively traditional applied mathematics : probability, statistics, topology,
linear transforms, variational methods and partial differential equations. Nonetheless, they
have introduced a series of new concepts which perfuse the whole discipline. Several of these
concepts refer to a global apprehension of the end goals, according to which computer vision
aims at building up vision systems, ending with shape, image and scene perceptions and
representations. Certain authors such as Grenander [157] or Mumford and Desolneux [256]
go as far as to consider that to recognize patterns, shapes, objects, scenes, one must be able
to simulate them. Thus they envision a fusion of pattern classification and pattern formation
theories.

Is CVIP ill-posed or well-posed? There is a rift between those who envision computer
vision as an ill posed problem, and those for which it can become well posed by collecting
enough information from redundant data, obtained for example by an active vision strategy.

Nevertheless there are uncertainty principles due to the necessary presence of noise and blur.
A priori performance bounds for every vision task depending on the signal to noise ratio are
unavoidable. Notorious examples of an uncertainty requiring some sort of a priori model
are the ambiguity of apparent motion in video, also called “aperture problem”, and the
illusory contours discovered by the Gestalt school, which demonstrate the necessity of top
down strategies for detecting certain low level features. Likewise, the segmentation problem
is generally formulated as a variational problem with a regularity term signaling its ill-posed
character. Therefore there are recent tendencies to reformulate segmentation as a man-
computer interactive process.

For those who consider computer vision an ill-posed problem, the curse of dimensionality is
often invoked. It is the difficulty of learning high dimensional probability densities from very
few samples. The missing information is recovered by supervised Machine Learning strategies,
using as much a priori knowledge as possible, complemented by a ground truth. The a priori
knowledge can also be endowed in a parametric or neural model of the objects, like in the

99

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

Bayesian models. A priori models can also be obtained from natural image statistics of indoor
and outdoor scenes.

Multiscale representation There is a general agreement since the founding Marr
book [236] that the visual representation resulting from an image or video analysis must
be hierarchical, from local features to higher level groups. This hierarchy is built by a multi-
scale analysis that can be linear (steerable filters, wavelets, Gabor functions), nonlinear local
(PDE’s, scale space), or non local like in Gestalt theory, which sustains the existence of
perceptual nonlocal feature grouping mechanisms. The gestalt perceptual grouping, when
emulated in computer vision, is based on similar color, similar texture, similar disparity, sim-
ilar motion, parallelism, similar shape, and more generally on what gestaltists call “common
destiny law” (Gesetz des gemeinsamen Schicksals). The gestalt grouping principle gives the
framework for bottom up strategies starting from local cues up to perceptual groups, comple-
mented by top down inference. Technically, as we shall see, it boils down to a clustering in
the “feature space”. Some researchers have also attempted to formalize hierarchical grouping
as some sort of shape grammar. The simplest and earliest such grouping strategy seems to
the be the Hough transform, grouping aligned points. The SIFT transform (scale invariant
feature transform) has been the first method to give an achieved and efficient scale invariant
representation. It computes features that are local, translation, rotation and scale invariant,
and insensitive to illumination changes.

6.2.3 Mathematical Tools of CVIP

It is more and more apparent that computer vision and image processing are leading to a
thorough reformulation and many innovations in all fields of applied mathematics.

Linear transforms Linear transforms, Hilbert bases, in particular Fourier bases, wavelet
bases, Gabor frames, the cosine transform, steerable filters and their fast versions
(DCT, FFT, DWT) have received strong backing from neurophysiology since the Hubel-
Wiesel discovery of retino-topic orientation and scale selective neurons in the V1 area
of cats [176]. These transforms are used to compress images and video, and to build
redundant multi-scale representations for textures and images, inspired from the V1
architecture. The Wiener filter, attenuating transform coefficients caused by noise, has
been adapted successfully to DCT and various wavelet transforms for image denoising
and deblurring.

Projective geometry Projective geometry has been completely renewed by the multi-view
geometry [123], [169], namely the interaction of multiple cameras and therefore of mul-
tiple perspective structures, with the introduction of geometric concepts such as the
fundamental and essential matrix, the epipolar geometry, the extensive use of homo-
graphies to model camera rotations, the importance of detecting vanishing points in
images, and the relevance of affine invariance to model projective local deformation of
flat surface patches.

Information theory Shannon’s entropy [313] and the minimum description length
model [294] are the main attempts to measure the amount of information contained

100

6.2. A REWRITING OF 2000 KEYWORDS

in an image. As a consequence of Shannon’s theory, mutual information, relative en-
tropy and the Kullback-Leibler distance have been used as natural measurements of how
much difference there is between two images. Likewise, the maximum entropy principle
is used to select the best solution in variational formulations.

Topology Being functions, images have a natural topology given by their topographic map
defined as the inclusion tree set of level lines [250], [29], (or alternatively the tree of
upper and lower level sets). Other neighborhoods systems in the image can be obtained
by multi-scale segmentations, often obtained by region growing, region merging [203],
or the watershed method in mathematical morphology [142, 353]. Other neighborhood
systems turn out useful, like those given by making a Delaunay triangulation of detected
key points.

Probability Probabilistic inference is inherent to the stochastic nature of most image or
texture models (Markov random fields, hidden Markov models for patterns). Noise and
texture models are often Gaussian random fields or Markov Random fields [141]. Using
Grenander’s principle, they can be both estimated and simulated (sampled). Given a
data and a Markov chain model, possibly depending on hidden variables, the principle
is to estimate the parameters by expectation maximization, or mean field techniques.
The maximization can be accelerated by Markov chain Monte Carlo techniques, Gibbs
sampling, simulated annealing, particle filters, or belief propagation [258].

Variational models Because of the ill-posed assumption of the computer vision reconstruc-
tion problems, variational formulations are frequent and use a Tikhonov regularization.
They minimize an energy combining a fidelity term replacing the ill posed equation
and a smoothing term controlling the uncertainty by imposing some smoothness prin-
ciple. This is for example the case for the following energies: the bundle adjustment in
multiple view stereo vision [340], the block matching and the Potts model for dispar-
ity estimation in binocular vision [57], geodesic active contours or snakes in boundary
detection [75], the deformable templates, for patterns, shape or surface matching, the
thin plate splines or radial basis functions for surface interpolation and regularization,
the Mumford-Shah functional in image segmentation [257], the optical flow regulariz-
ing terms to resolve the aperture problem in video analysis [175], the total variation
of the image in the deblurring and denoising problems [302], the earth mover distance
for several matching problems, the geodesic distance for deformable shapes. Most of
these variational models have actually a Bayesian interpretation where the minimized
energy corresponds to a maximum likelihood expectation maximization or a maximum
a posteriori estimation.

Non parametric statistics For those who consider computer vision an ill-posed problem
where humans must intervene to fabricate or dictate “ground truths”, the non paramet-
ric data analysis tools are adequate. The method always starts by building up for each
image or set of images a “feature space”, made of vectors containing feature invariant
characteristics or moments of shapes, textures, patterns, images, etc. To some of the
vectors is associated a ground truth giving the class they belong to. The question is to
segment the feature space into meaningful classes consistent with the ground truth, and
therefore to be able to classify correctly other existing or new incoming data. This is
always done by a sort of dimension reduction, trying to find the relevant classification

101

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

parameters and the relevant clusters that they separate in a large learning data set.
Machine Learning sees this process as an open loop. The first learning tools are as old
as the Perceptron [297], which has now become multi-layer, and as simple as principal
component analysis, which is the simplest dimension reducer, followed by independent
component analysis [85]. Clustering tools take raw data sets and intend to segment
them into meaningful clusters. The most classic clustering (or classification) tools are
vector quantization, linear classifiers like Fisher’s discriminant analysis, the K-nearest
neighbor search, the K-means clustering, the mean shift (Nadaraya-Watson estimator),
the EM algorithm, and support vector machines. Probably the main difficulty remains
how to do it multiscale and to find hierarchical cluster structures.

PDE’s Partial differential equations appear as a natural tool in computer vision for several
reasons: first, local filters, actually any adaptive smoothing, like the bilateral or the
median filter can be modeled by an anisotropic diffusion [285]. Second, the zoom out
operation is modeled by a Gaussian convolution [201] and therefore by the heat equation.
The Laplace equation is used for the periodic + smooth image decomposition [248], and
the Poisson equation has become a standard tool for performing copy-paste (editing)
operations on images [284]. Then, the gradient descent of many energy methods (like the
optical flow or geodesic active contours) ends up being a PDE related to mean curvature
motion or to the Laplace Beltrami operator. Also shape derivatives in energy functional
give image evolution PDEs. Curve intrinsic smoothing of image level lines (the curvature
scale space) leads to the curvature motion, which by the level set method [312] becomes
a non linear PDE on the image. Hamilton-Jacobi equations like the eikonal equation
also play a role to model shape evolution as a front propagation, particularly for the
mathematical morphology operations (erosion, dilation) [311]. Most of the mentioned
evolution PDE’s are well posed in the viscosity solution sense. Fluid dynamics and the
Navier Stokes equation have also been invoked for image inpainting and shape matching.

Statistics Since most image analysis tasks involve some sort of decision based on the ob-
served samples, classical statistics has been widely used. Hence the use of multivariate
statistics estimating the parameters of observed density distributions like Gaussian mix-
tures, the Bayes rule for pattern recognition, the computation of confidence intervals,
and hypothesis testing or error analysis strategies. Co-occurrence matrices have been
used to model local pixel dependence in textures, invariant moments of local neighbor-
hoods are used in many image matching methods, the normalized cross correlation is
the basic tool for performing block matching in stereo vision. In general, well posed
pattern recognition uses robust statistics because there are always outliers. In detec-
tion algorithms, false positive and false negative rates and the ROC curves are natural
measurements of a detection method efficiency.

Computational tools Last but not least, computer vision and image processing need fast,
if possible parallel algorithms and fast and efficient optimization methods. Acceleration
tools such as dynamic programming (for stereo vision, used on the epipolar lines), the
Levenberg-Marquardt method, multi-grid methods (for PDE’s), graph cuts (for segmen-
tation and stereovision), fast marching methods, and of course parallel and distributed
computing are in the horizon and must be kept in mind for every new algorithm.

102

6.3. A SCIENTIFIC PROGRAM FOR IPOL

6.3 A Scientific Program for IPOL

In this section we shall try to deduce many problems and elementary questions in Computer
vision and image processing from a general formulation of image acquisition. This deduction
will confirm that a big chunk of the techniques, methods and concepts considered in the
preceding section stem naturally from a consideration of the image formation process.

6.3.1 Definition of Image Processing and Basic Computer Vision

The matrix of all image processing and computer vision tasks is the following formula, which
summarizes image formation for most biological and technological image capture devices.

u = g((S1 ·D ·G) ∗Au0) + n. (6.1)

In this formula, where · denotes the composition of operators, u = u(i, j) is the digital image
(a matrix of discrete values, usually called pixels), g is a contrast change (local or global)
adapted to the image, S1 is the sampling operator that picks the image values on the discrete
image grid, D is the optical deformation caused by the optical focalization device, G is the
optical kernel, A is the projective transform associated with the six parameters of the camera
position, u0 is the original photon emission of a physical surface covered by the camera. For
a flat physical surface, u0 can be conceived as an infinite resolution image, in which case the
above formula is global instead of being local. The +n term is the CCD’s white noise. The
additive model is actually a slight simplification. The observed intensity in each captor is a
Poisson variable whose intensity is G ∗u0. For decent exposure times, the difference between
the intensity and the observed value is close to a Gaussian variable.

Formula (6.1) describes in the simplest possible way image formation. According to the
founders of image processing and image analysis in the sixties and seventies of the past
century, the ultimate goal of image processing and image analysis is to get back from the
digital image u to u0, the original landscape, and its 3D physical shape. But to do this,
there are six operators to inverse! All steps of this inversion interact strongly. This inversion
cannot possibly be complete with just one image. Fortunately, the theory indicates that with
a few images of the same scene the inversion becomes feasible, and a whole 3D map of the
surrounding world reconstructible.

Finally, A contains the scene geometry. It gives the relative position of the camera A observing
the patch u0. Thus, A is defined by six position parameters (translation, rotation). To
this must be added the camera parameters which define the distortion model D, a smooth
deformation of the image plane.

One can define the main goal of basic image processing as to recover the real image patch u0

from the digital image u.

A definition of basic computer vision is to recover everything about the image formation
operators, which permits in principle an arbitrarily accurate visual reconstruction of the 3D
surrounding world.

103

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

For both image processing and computer vision, we must distinguish the case where only one
image is available and the case where multiple snapshots of the same scene are available. The
main goal in all cases is to process optimally each image knowing the other ones.

To provide a visible image from a single raw image an automatic image chain must estimate
automatically the noise and blur. The optical distortion can also be corrected when straight
segments are available, or a distortion model.

From the image processing viewpoint, there is little difference between single image and video
processing, the main difference being that all operators and u0 may depend on a time variable
t. The simultaneous processing of several images of the same scene and video processing are
almost equivalent problems. In the video case, the use of the time arrow leads to a slightly
different implementation, though. On the other hand having several images of a same scene
opens the way to a 3D reconstruction.

6.3.2 Single Image and Video Processing

In this section we deduce all processing operations implied by the image formation formula if
one wants to recover the native image (or video) u0. Thus, each paragraph below deals with
one of the image formation operators and its inversion.

Dealing With S1: Interpolation and Sampling Theory

There is a single universal theory for signal or image sampling, based on the physical fact that
only band-limited signals can be acquired by any physical device because of the uncertainty
principle. We shall in the sequel take the assumption that the image is sampled on a regular
grid. Then the Shannon-Whittaker formula [313] gives the exact ways to pass from samples
to the continuous image and vice-versa. Unfortunately this theory is not exactly realizable
because it requires infinitely many samples. Thus, the discrete version is based on the false
but necessary assumption that the image is periodic. Once this bias is accepted, however, the
Shannon-Whittaker theory can be exactly transposed to a rigorous finite discrete framework
treating images as trigonometric polynomials sampled on rectangular grids. Then exact DFT
and DCT formulas permit to interpolate and to re-sample the image. This first approximation
actually raises the questions that any scientific community on imaging should have resolved.
The basic image processing tasks therefore deal with the manipulations of image samples to
interpolate, and re-sample, therefore performing all classic geometric deformations: transla-
tion, rotation, zooms in and out, homographic deformation. Also must be raised the choice
of a convolution kernel to maintain an aliasing free image. Last but not least, compression
strategies should be discussed thoroughly on line with evaluation of the resulting image qual-
ity. This leads to the following list of algorithms and questions that any image processing
software must consider. For most of the algorithms, references are given to seminal papers
and when available to a corresponding IPOL article.

❼ Given a band-limited image, how far is its DCT interpolation on a rectangular grid
(thus ignoring the samples outside the rectangle) from its exact Shannon-Whittaker in-
terpolate? The error caused by the ignorance of outside samples must be experimentally
and theoretically quantified.

104

6.3. A SCIENTIFIC PROGRAM FOR IPOL

❼ Almost exact spline-based [342] algorithms for re-interpolating the digital image on
other grids (translation, rotation, zoom-in, zoom-out, homographies) [146, in IPOL].

❼ Yaroslavsky’s clever resampling algorithms for rotation, and their extension to any fast
implementation of affine maps [371]

❼ Aliasing error: to quantify in theory and in practice the aliasing error caused by image
under-sampling, as a function of the point spread function (PSF) standard deviation

❼ Show in theory and in practice the best choice for the Gaussian kernel standard deviation
required before sampling with minimal aliasing [253]. Compare with other optimal blurs
(the prolate functions)

❼ Compare all linear zoom-in algorithms, in a hierarchy from zero order spline to Shannon-
Whittaker [146, in IPOL]

❼ Discuss smart zoom-ins, which violate Shannon’s conditions, but give sharp images, at
least in appearance aliasing-free [144,145,148, in IPOL]

❼ Desaliasing or super-resolution: compare the strategies to reinsert missing samples in
an aliased image [350]

❼ Image compression: a comprehensive review of Lempel-Ziv coding, Huffman coding,
JPEG 1991, JPEG 2000, Lossless compression algorithms like LOCO, geometric com-
pression algorithms, graphic compression algorithms

❼ A thorough explanation and analysis of image classic formats.

Of course compressed sensing promises new forms of cameras (not yet existing, though) for
which clearly the above plans might request someday a full reexaximination. Nevertheless,
compressed sensing simulators, typically by minimization of an L1 norm, are of immediate
interest and some are already submitted to IPOL [209].

Dealing With +n: Denoising

This is probably the second operation to consider in image processing after sampling, because
it is the main perturbation of the sampling operation: the acquired sample is a sample of a
Poisson noise whose intensity is the “real” image, with some thermal or electronic noise added
from the CCD itself. Estimating the noise from the raw image itself can be done on special
patterns if the camera is at hand. Otherwise the noise is estimated from robust statistics in
an image or a set of images. The noise being signal dependent, the estimation must be signal
dependent, and permit to retrieve the noise model for the raw image. If the acquired image
is not raw, and has undergone transforms (typically compression and contrast changes), the
resulting noise is no more white. It is signal dependent and also scale dependent. For example
compression usually performs a sort of denoising at the finest scale. Thus noise estimation
must give noise curves that are signal and scale dependent. The Anscombe transform and
its generalizations can be used to recreate an image with white noise from an image with
structured noise. A denoising benchmark needs a method to create noiseless images. The best
method seems to be to take high resolution images and to apply a Shannon zoom by a large

105

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

factor, of the order of 8 or 16, to ensure a very low noise level. In other terms, the image can
be convolved by a Gaussian filter of standard deviation 6.4, to ensure that almost no aliasing
is present by a 1/8 subsampling. Such data and methods should be published at IPOL. There
are many kinds of colored signal dependent noise, but an Anscombe transform and a diagonal
filter on the Fourier coefficients permit usually to whiten the noise. Nevertheless, impulse
noise and thermal line multiplicative noise require a completely different treatment. Because
most images have undergone a compression, the observed noise is generally not white. Its
estimate at the first scale can become very imprecise. Thus denoising JPEG images is a
different and more complicated topic than denoising raw images. These considerations lead
us to the following list of algorithms and problems, each being a potential IPOL article.

Figure 6.1: Comparing NL-means and wavelet thresholding. Exp: Gabriel Peyré

Figure 6.2: Denoising an old photograph by nonlocal means.

106

6.3. A SCIENTIFIC PROGRAM FOR IPOL

❼ Estimate signal and frequency dependent noise from any given image [230]

❼ Anscombe transform: apply the Anscombe transform to recreate an image with white
noise from an image with structured noise [320]

❼ Publish noiseless images and the method to create them. Based on them, a denoising
benchmark is easy. It can be restricted to white noise only and compute sound error
distances, like the RMSE or the PSNR.

❼ Wiener ideal denoising filter

❼ Wavelet thresholding [82]

❼ Wavelet coefficient correlation based denoising [287]

❼ DCT denoising [374, in IPOL]

❼ Total variation denoising [302]

❼ Patch based method: NL-means [63, in IPOL]

❼ Patch based methods with fixed basis: BM3D [90]

❼ Patch based with dictionary learning: KSVD [235], LPE [372]

❼ Patch based Bayesian: Non local Bayes

❼ Make a denoising benchmark on: small noise σ = 2 to 5, medium σ = 10 to 40, high
σ = 50 to 100

❼ Algorithm removing impulse noise: conditional median filters and others, filters remov-
ing high curvatures caused by impulses (typically mean curvature motion)

❼ Infrared or thermal camera line multiplicative noise: total variation denoising (Moisan
method)

❼ Infrared or thermal camera line multiplicative noise: the midway technique [333]

❼ “JPEG Noise clinic”: multiscale denoising combined with multiscale signal dependent
noise estimation. This noise clinic can be applied with any denoising algorithm working
initially on white noise

❼ Extensions of all these algorithms to video denoising.

Dealing With S1 and G: Demosaicking and Super-resolution

Demosaicking A raw image is an image recorded by a digital camera (or an image scanner),
before any processing. Most reflex cameras and more and more compact cameras provide this
raw data. The camera contains a CCD or a CMOS matrix that simply records a number
proportional to the number of photons hitting each CCD. These pixels have color filters and
are specialized in the red, green and blue colors. Thus, the raw image is not visible ; each
pixel contains only one of the three colors. The operation to infer the other three colors at

107

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

each pixel is a tricky and challenging interpolation method called demosaicking. Previously
to demosaicking, the image has to be denoised because noise is not interpolable. For off
the shelf optical cameras, demosaicking is the first or second operation performed on the
raw image: in principle denoising must be applied first. Demosaicking is a super-resolution,
or antialiasing operation by which missing samples are recreated from existing ones. The
difference with super-resolution is that in super-resolution only one channel is available while
in demosaicking the channels exchange information. Thus super-resolution algorithms must
be considered first, and they actually are used to initialize the green channel in the Bayer
configuration, where one out of two pixels is green. A demosaicking benchmark is relatively
easy. Indeed, there are two well defined criteria: the RMSE and a zipper effect measurement.
However, the choice of the benchmark database is still problematic, certain databases favoring
certain kinds of algorithms. Thus the results may depend strongly on the database. It is very
easy to create a ground-truth, since test images can be original images that are first mosaicked
by retaining a single color at each channel. Last but not least, compressed sensing, a recent
theory initiated by Emmanuel Candès, Terence Tao and DAvid Donoho, proposes to take
advantage of the image sparsity in some Hilbert bases to capture directly the image by a tiny
number of linear tests.

❼ Blind point-spread function estimation from several digital images

❼ Pattern based point-spread function estimation

❼ Super-resolution algorithms [282]

❼ Hamilton Adams demosaicking [64, in IPOL]

❼ Zhang Wu demosaicking [149, in IPOL]

❼ Self Similarity driven demosaicking [64, in IPOL]

❼ Malvar, He, Cutler, Lin demosaicking [147, in IPOL]

❼ Getreuer demosaicking with contour stencils [150, in IPOL]

❼ Gunturk demosaicking [143, in IPOL] }

❼ Learning based demosaicking (KSVD) [372]

❼ To create and enrich a demosaicking database of many challenging patches and to
conceive a demosaicking benchmark

❼ Compressed sensing: reconstruction algorithms from sparse samples [72].

Dealing With g: Color and Contrast

Color balance and color contrast adjustment are linked. In both cases some histogram ma-
nipulation is performed, typically monotonous on each channel, and more or less coordinated.
Its goal is to simulate the “Retinex” capability of human perception to enhance contrast in
shadows, and to perceive the relations of colors independently of ambient light and shadows.

108

6.3. A SCIENTIFIC PROGRAM FOR IPOL

Figure 6.3: Left: Original image, center: Retinex partial differential equation with t = 10,
right: Retinex with t = 15. Colors are enhanced and the background clutter eliminated.

The goal of white balance is to restore colors as independent of possible of the physical light-
ing conditions. Here again the work forks depending on whether we have at hand the camera
or not. If we have the camera, a color matrix estimating how wavelengths have been mixed
in the color pixels can be devised. Otherwise, white balance simply weights the colors so that
image extrema are white. A fast implementation of the Land Retinex based on a new PDE,
∆u = div(δ(Du0)), has been devised recently3. This surprising Poisson equation manages
to reconstruct from a given image u0 an image that has exactly the same singularities, but
eliminates all small gradients (δ(s) = s if |s| ≥ δ, = 0 otherwise.)

❼ 3D color cube visualization [229, in IPOL]

❼ Histogram equalization (by channels or only the grey level) [286]

❼ Simplest color balance [224, in IPOL]

❼ Color spaces, their meaning, and the conversions between them

❼ Retinex algorithm based on Poisson equation [226, in IPOL]

❼ Multiscale Retinex [186]

❼ Screened Poisson equation as smooth background subtraction [46]

❼ Blind gamma correction [120]

❼ Contrast control by Poisson editing: concave function of gradient on lower level set [284]

❼ Local color correction (HP method) [156, in IPOL]

❼ Invariant to g: level set tree transforms [250]

❼ Invariant to g: level line tree transforms (FLST) [228]

❼ Shape extraction based on meaningful level lines [97]

❼ Contrast invariant FLST based restoration: elimination of small shapes [352]

3Morel, J.M. and Petro, A.B. and Sbert, C., Fast implementation of color constancy algorithms, Proceedings
of SPIE, 7241 (724106), 2009.

109

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

Figure 6.4: The Retinex PDE adjusting contrast and color.

❼ Granulometry [351]

❼ Level line processing: curvature equations [252, in IPOL]

Dealing With the Convolution Kernel G: Deblurring

This subject is extremely challenging. The cases where an image is blurry, well sampled,
and where the blur kernel is known are rare. In general the blind estimation of the blur
from a single image is rarely possible. Thus deblurring must be considered as a serious
problem only when the camera calibration is well known and its blur completely modeled.
Nevertheless classic deblurring algorithms can be compared for simulated data, in which case
Gaussian blur or motion blur are the most obvious candidates for a benchmark of deblurring
algorithm. Needless to say, the deblurring performance depends on the amount of noise. If
there were no noise, a Gaussian blur could be completely eliminated by a simple division in
the Fourier domain. But if there is noise, the division blows up the noise high frequencies.
Thus, deblurring Gaussian blur is equivalent to the denoising of a colored noise.

The “digital revolution” leads to a thorough revision of the very concept of camera blur. See
the recent works of Ramesh Raskar at MIT media labs. Frédéric Guichard’s 2005 invention
permits to extend the camera depth of field by numerical means, taking the best advantage
of an optical defect, the chromatic aberration4. The mathematical design changes the camera
architecture.

4http://www.dxo.com/var/dxo/storage/fckeditor/File/embedded/2009_EI_EDOF.pdf

110

http://www.dxo.com/var/dxo/storage/fckeditor/File/embedded/2009_EI_EDOF.pdf

6.3. A SCIENTIFIC PROGRAM FOR IPOL

❼ Blur simulation (gaussian, motion) and Wiener deblurring filter (under a noise assump-
tion)

❼ Total variation deblurring [301]

❼ Invertible blurs: the flutter shutter theory [292]

❼ Invertible blurs: motion invariant photography [217]

❼ Blind deblurring methods [78]

❼ Psf estimation from photographs of patterns [94, in IPOL]

❼ Psf estimation from one or several photographs of the environment

❼ link to super-resolution [262]

❼ methods that increase the depth of field by combining photographs taken with different
depths of field [260]

Dealing With the Camera Distortion D: Internal Camera Calibration

The camera model (for each given ISO, aperture and focal length) can be estimated from a
small set of arbitrary images, and even often from a single photograph. One of its innovations
is to use systematically the images themselves as camera mires. A pioneering work in that
direction (but that was left unfinished) is the camera self-calibration project [100]. Projective
geometry tells us that distortion is eliminated when a straight line remains straight, and
that a flat image undergoes a homography. These properties can be used for two different
distortion correction methods. The following list gives some hints of the major algorithms
that should be discussed in IPOL.

❼ Distortion estimation and correction by plumb line methods [161]

❼ Blind distortion correction [21, in IPOL]

❼ Distortion correction by matching a flat pattern [52]

❼ Devernay-Faugeras blind distortion correction [100]

❼ Lavest global calibration method [218], extension of the Zhang technique [377]

❼ Bundle adjustment [340]

❼ Camera self-calibration [122]

❼ Correction of chromatic aberration (differential distortion between color channels) [53]

❼ Parametric distortion models: theory and comparison

❼ Nonparametric distortion models: polynomial, thin plates, rational, etc. [160].

111

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

6.3.3 Multi-images processing

As soon as we have more than one image of a given scene, particularly if the images are taken
by the same camera and almost simultaneously and if the position of the camera varied little,
new possibilities open up that completely change the panorama for most image processing
tasks. Most will be said on two images, but the generalization to an arbitrary number of
images will be implicit. We will first review what can be done from the image processing view
point, and then pass to 3D reconstruction issues. The now-classic Hartley-Zissermann [169]
and Faugeras [123] books explain how to identify A, therefore fixing the camera position and
permitting a 3D reconstruction by triangulation from two or more photographs of the same
scene.

Image matching

The impact of online non-parametric algorithms can be immense. Probably the most influ-
ential recent computer vision algorithm is the zero-parameter SIFT method [233] published
in 2004, already quoted by more that 5000 papers, and used in all domains of imaging and
robotics. This method can be applied with closed eyes to any image pair. Its mathematical
analysis [253] shows that it is perfectly rigorous. This is a clever method: Recognizing objects
at different distances implies identifying and compensating different blur kernels.

Although it is perfectly scale invariant, SIFT is, however, only partially invariant to perspec-
tive. In general image descriptors under geometric and contrast invariance have been recently
playing a central role in computer vision, for image comparison and indexing, in particular
since the SIFT descriptor was proposed by David Lowe. Since then, many attempts to ex-
tend Lowe’s work to larger invariance groups have been made, specially to the affine group
(Hessian-Affine, Harris-Affine, LLD or MSER). None of them have proved performing enough,
and in practice, people still prefer to use SIFT. However the ASIFT method, by an adapted
sampling of the affine space, shows that the cost of extending SIFT to the affine framework
is not prohibitive at all.

Fig. 6.5 shows what perspective invariance means in practice: the same object seen under
various angles can undergo strong geometric distortions by factors (the so-called transition
tilts) that can be as large as 40. In the example of the figure, the same object has a 36
transition tilt, and is still recognized very reliably (116 features match correctly).

On the other extremity of deformation spectrum, the images to be registered can be very
similar. This happens with successive frames in a video or in small baseline stereovision.
Then one can envisage optical flow techniques, that find a dense registration field.

❼ SIFT (scale invariant recognition) [233]

❼ ASIFT (makes SIFT affine invariant) [373, in IPOL]

❼ MSER (not exactly affine invariant but shape based image recognition) [233]

❼ RANSAC and variants eliminating wrong matches by scene coherence (ORSA) [249]

❼ SURF (fast approximate SIFT) [33]

112

6.3. A SCIENTIFIC PROGRAM FOR IPOL

Figure 6.5: In this pair, ASIFT finds 116 correct matches and 4 wrong matches.

Figure 6.6: Projective invariant image comparison: ASIFT method

113

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

❼ Discussion of all steps in the SIFT method: heat equation and scale sampling, key point
accuracy [66], right thresholds deduced from noise estimator for the key point detector,
orientation histogram peaks, Orientation histogram mode detection [95], histogram dis-
tances [291], the problem of multiple shapes, classification of different coherent groups
with respect to a geometric transform (homographies), similar shape grouping (link to
gestalt theory) [314].

❼ Optical flow, Horn and Schunck [175], TV-L1 Optical flow [375], . . .

Stereovision from Multiple Views or Video

Surprisingly, 3D reconstruction from multiple view and “structure from motion” have been
often considered as separate topics, while they are in fact extremely similar and almost indis-
tinguishable techniques. The following list gives the very basic algorithmic lines that should
be represented at IPOL. Starting from two or more images, they attempt to go back to a 3D
information, starting often with a stereo rectification and the computation of a disparity map.
This first step, namely local image matching, is fundamental. It is divided between dense
methods, which have regularizing terms because of the ill-posed nature of the problem, and
non-dense methods working with local block matching. The main problems for computing the
disparity map are: the fattening effect occurring with block-matching, the still overwhelm-
ing complexity of dense variational methods, and the false matches caused by noise, image
self-similarities and occlusions. Thus there are hundreds of titles proposing stereo algorithms.
What follows is just a sample.

❼ epipolar stereorectification: several theories [168], [251, in IPOL]

❼ bundle adjustment [340]

❼ multiscale block matching

❼ subpixel block matching [304]

❼ projective invariant block matching (after stereorectification)

❼ a contrario block matching [303]

❼ Coherence of block matching: left-right coherence, noise threshold criterion, min filter,
bilateral matching, adaptive windows to elevation model, Coherence of block matching:
3D coherence analysis [310]

❼ Fattening free block matching [48]

❼ Interpolation of disparity maps

❼ Detection of occlusions

❼ variational matching methods (graph cuts [205], belief propagation, dynamic program-
ming,. . .) [306]

❼ The epipolar geometry of a motion [50]

114

6.3. A SCIENTIFIC PROGRAM FOR IPOL

❼ Camera navigation from a movie

❼ Structure from motion [202].

3D Data Point Sets Processing and Rendering

For the sake of concision, we write “point cloud” or “cloud” for a data point set cloud. Point
cloud processing is an integrant part of computer vision because such clouds can be acquired
by imaging methods, such as binocular or multiimages stereo, or “structure from motion”.
Furthermore such clouds can be obtained by active lighting stereo setups. Once they are
obtained the clouds must be oriented (being the skin of objects with interior and exterior),
they must be triangulated, and several clouds obtained for camera views must be merged into
one. The surfaces must be segmented, registered, and recognized. This leads to a relatively
standard list of questions that are only recently being resolved with numerical efficient and
mathematically sound algorithms.

❼ Point cloud fast neighbor search

❼ Database of multiscan raw point clouds with high precision [104, in IPOL]

❼ Raw cloud scale space meshing and orientation [103]

❼ Raw cloud triangulation (pivoting ball algorithm) [35]

❼ Computation of local moments and local orientations (and principal curvatures and
principal directions which are linked to them)

❼ Cloud multiscale segmentation (in ridges and hollows)

❼ Scale space merging of multiple scans, super-resolution and fusion of matched point
clouds [101]

❼ MSER applied to the mean curvature or another scalar function [102]

❼ Construction of local patches and SIFT for cloud matching

❼ Tritangent cloud matching [300]

❼ Non rigid registration algorithms

❼ Fusion of photographs and triangulated point clouds: texture projection

❼ Fast 3D visualization algorithms

❼ Stereo by active lighting and registration

115

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

Figure 6.7: Wrong and good demosaicking: Nikon NX and Buades, Coll, Morel Algorithm
(in DxO OPv5).

6.4 Image Analysis and Understanding

Image understanding is this part of computer vision delivering end results, namely semantic
detections of any kind on an image. However a part of it still can deal with low level features,
which can in turn possibly be used for a final semantic understanding. Thus, we shall first
mention the many feature extraction algorithms, and then move on to mention briefly semantic
algorithms, which are by far more challenging.

6.4.1 Single Image Analysis: Geometric Features and the Gestalt Program

Having reliable feature detectors on images is crucial. Since their main use is in the very
first steps of an image analysis chain, they must by all means be automatic. Nevertheless,
surprisingly, to the best of our knowledge there are very few fully automatic, parameterless
feature detectors. We can mention the SIFT transform [233], the MSER method [239], and
the Line Segment Detector (LSD) [158]. Since SIFT and MSER are always used in the context
of image matching, we have considered them in the corresponding section. Thus we shall list
here single image detectors. Again, no parameterless detector should start without knowledge
of the noise level, which can cause many false detection (while if the noise level is very low,
almost every detection is right). Thus all of the mentioned detectors should be preceded by an
accurate noise estimator. In essence, most detectors proposed in the literature correspond to
features mentioned as basic geometric features (or gestalts) in the Gestalt program. Many of
them involve a 1D histogram analysis providing a meaningful mode detector. Most of them
actually analyze angles, parallelism, alignments, convexity, curve smoothness, singularities
linked to segments or curves (angles, junctions). The final goal of these partial detector
should be a complete image indexing in regions, boundaries, and various groups linked by
their common color, orientation, texture, etc.

❼ On line gestalt games predicting the perceptual thresholds in alignment and cluster
detection

116

6.4. IMAGE ANALYSIS AND UNDERSTANDING

❼ On line games evaluating learning capabilities of structured perceptual organization (for
example the game proposed by Fleuret, Geman, et al. [127])

❼ Edge detectors (Canny and variants) [73]

❼ Hough transforms for lines, circles, etc. [28]

❼ Edge detectors with a contrario models [97]

❼ Line segment detectors with a contrario model [158] [159, in IPOL]

❼ Segment alignment detector

❼ Point detector

❼ cluster detector (against a uniform background assumption) [98]

❼ Point set alignment detector

❼ Corners, T-junctions, X-junctions detectors

❼ Curve detectors (the good continuation gestalt)

❼ Amodal and modal contour completion algorithms (Kanizsa) [190]

❼ Shape group detectors

❼ Segmentation methods: variational methods [203]

❼ Segmentation a contrario methods [97]

❼ Histogram mode detector (against a flat background assumption)

❼ Histogram mode detector (against a decreasing background histogram assumption) [95]

❼ Group of parallel segments detector (on histograms of segments detector) and more
generally vanishing point detector [20]

❼ Constant width detector (on histograms of distances parallel segments in front of each
other)

❼ Constant length detector (on histogram of segment lengths, background model decreas-
ing)

❼ Curvy edge detector (by good continuation on meaningful edge pieces)

❼ Alignment of dots (for extremities of segments that are not aligned)

❼ Constant angle detector (for chained segments, constant curvature), in particular regular
polygon detector (squares, polygons)

❼ Vanishing point detector [20]

❼ Harris point detector [167]

❼ Group of similar shapes detector (can be based on SIFT or similar) [233]

117

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

❼ Image variational segmentation: grey level, color, texture

❼ Image grouping algorithms: contrarily to segmentation, a point can have various indexes
and they can be nonlocal.

The zero-parameter requirement is easy to understand: Most of our visual perceptions are
sure. Of course nothing is ever absolutely sure but, still, certainty can be evaluated with
probabilities. The line segment detector due to Rafael Grompone [158] is a good example
of a many-times-solved problem that has been revisited, to finally get a fast zero-parameter
detection working on any digital image. Fig. 6.8 illustrates one result of these automatic
algorithms.

Figure 6.8: Result of the zero parameter line segment detector [158].

6.4.2 Object Recognition (Learning Methods)

It is not clear if this discipline is mature for online display. Indeed, it requires the build
up of a very large learning database, of a subset used for learning and of a subset used for
testing. The learning requires a ground truth, usually made manually by low-skilled workforce,
and whose scientific value is discussable. Above all, it remains difficult to demonstrate such
learning algorithms on line, since they depend so much on big databases and subjective
characters. Nevertheless some machine learning algorithms have had a strong impact and
machine learning by itself is an absolutely legitimate problem, in spite of its Achilles heel of a
manual human ground truth. Probably its most striking success has been with face detection
algorithms, which are by now operational in most digital cameras. Thus the following kinds
of algorithms can definitely be published on line and tested on line by uploading images:

❼ Face detection algorithms [354]

❼ Generic object recognition learning algorithms (Viola-Jones)

118

6.4. IMAGE ANALYSIS AND UNDERSTANDING

❼ Character recognition algorithms [107]

❼ Cursive writing recognition algorithms

❼ Recognition of other objects by learning? (vehicles, animals, etc.) [124]

❼ Human detection

❼ Gait analysis [210]

6.4.3 Graphics

There are several close links between Computer Graphics and CVIP, although the goals are
obviously different. Computer Graphics aims at recreating realistic or imaginary scenes by
3D modeling and rendering techniques. Nothing opposes a publication in IPOL of rendering
algorithms. Taking a set of geometric objects (whose skin is usually triangulated) along with
their colors, reflectance properties and motion properties, given also a set of light sources,
rendering algorithms perform accelerated variants of ray tracing methods.

Second, ray tracing creates the same kind of perturbations present in real images, in particular
noise and aliasing. However the noise and aliasing are of a special kind and there is additional
information in the G-buffer which should permit to boost image restoration techniques on
synthetic images.

Hybrid computer graphics mixes 3D information and images taken in a real scene with im-
plants of synthetic objects. Thus a handy representation of 3D point clouds acquired from
real scenes by computer vision techniques is necessary. The insertion of images or movies in
each other is often called “editing” and involves a series of copy-paste operations, be it to
insert or remove an object in an image or a movie. The removal and replacement by another
texture is called “inpainting”.

Finally, the modeling of surface aspect relies often on procedural texture synthesis algorithms,
able to “paint” quickly the geometric objects. In that context, texture analysis and synthesis
(from examples) is a clear meeting point between computer graphics and image analysis.

❼ Rendering algorithms (given geometry and light sources) a key algorithm founded
by [188]

❼ Image restoration of rendered images (for the noise and aliasing)

❼ Insertion of new parts in images or movies : this operation is called “editing”. The key
algorithm is Poisson editing [284]

❼ Image inpainting algorithms [45]

❼ Random phase texture synthesis from examples [139, in IPOL]

❼ Efros Leung [109] texture synthesis from examples

❼ Wei Levoy [360] texture synthesis from examples

❼ Steerable Filters (used for texture synthesis)

119

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

❼ Heeger Bergen [170] texture synthesis from examples

❼ Cartoon+texture decomposition [65, in IPOL]

❼ Inpainting algorithms [45,372],. . .

6.5 Conclusion: Journal Methodology

We have revised in section 6.2 all key notions (from the 2000 most used key words) in Com-
puter Vision and Image Processing (CVIP). These key words cover probably most research
topics, but give little deductive indication on how the discipline has emerged and should
evolve. In section 6.3 we have proposed a organization of the topics based on the main image
formation model. This model permits to categorize most operations in image processing by
their inherent invariance requirements, and by the inverse problems they are linked to. When
it comes, however, to image analysis, the main source of inspiration for understanding the
work done or to be done has a phenomenological inspiration, in particular Gestalt theory for
the geometric features, and psychophysics for texture analysis. Finally, when image forma-
tion, geometric modeling and psychophysics are mute, one has to recur to machine learning,
where the features and objects are not modeled anymore, but simply pointed out by humans.
This is a strong methodological limitation, which probably hinders online publication, unless
some fixed learning and test databases are given and the focus is on comparing learning algo-
rithms. All in all, the IPOL program, namely the kind of algorithms that should have a prior
focus, comes from image processing and computer vision (feature detection, 3D vision). In-
deed, these topics allow for the upload of one or a few images (or a short video sequence), and
focused operations on the data: one restoration, one detection. Nevertheless, each restoration
interacts with others, each detection interacts with others and with image processing issues.

Therefore, even in this restricted context, it is unavoidable to put up a strict requirement of
making non-parametric algorithms. No building block on any image analysis or processing
chain should depend on any parameter. The obvious consequence, if they did, would be an
complexity explosion for chains composed of more than two operations. Thus, the IPOL
requirement that algorithms should be expressed without needing parameters, as much as
possible, is also the obvious technical requirement to build up an imaging science capable of
elaborate processing chains.

It turns out that almost no well known algorithm match these requirements. Rethinking
well known algorithms in this perspective is thus a legitimate research topic. Experience has
shown that the “republication” in IPOL of a well known algorithm raises non trivial questions
which make this republication legitimate. So much that in general this gives a second chance
to the topic that was only apparently solved, and also often lead to fully reconsider the general
opinion on the state of the art.

For example the study of denoising algorithms that will lead to the (re)publication of seven
algorithms shows that the hierarchy of algorithms given in the past ten years was illusory.
As shown in by ”{O}ktem and Yaroslavsky [379], translation invariant DCT-denoising has a
performance equivalent, or sometimes even better than later more sophisticated propositions
such as translation invariant wavelet thresholding. Furthermore, this study uncovers the fact
that all algorithms fail with very low noise (σ < 2) and with large noise (σ > 40), creating

120

6.5. CONCLUSION: JOURNAL METHODOLOGY

in the latter case unacceptable artifacts. Testing these algorithms on large datasets reveals
many flaws or limitations that were not apparent in the original publications. On other very
successful algorithms, like SIFT, many questions open up with a closer analysis, such as the
problem of repetitive shape matching, or the question of whether SIFT really is scale invariant
as claimed with its sparse scale sampling.

121

CHAPTER 6. A SHORT SURVEY OF IMAGE PROCESSING AND COMPUTER VISION

122

Chapter 7

Examples

Contents

7.1 Retinex Poisson Equation: a Model for Color Perception 124

7.1.1 Overview . 124

7.1.2 References . 126

7.1.3 Online Demo . 126

7.1.4 The PDE-Retinex Model . 127

7.1.5 The Algorithm . 127

7.1.6 Implementation . 129

7.1.7 Examples . 129

7.1.8 Acknowledgment . 135

7.1.9 Credits . 136

7.1.10 Software and Demo Design . 136

7.2 Simplest Color Balance . 143

7.2.1 Overview . 143

7.2.2 References . 145

7.2.3 Algorithm . 145

7.2.4 Implementation . 145

7.2.5 Color images . 148

7.2.6 Online Demo . 149

7.2.7 Source Code . 150

7.2.8 Examples . 150

7.2.9 Credits . 160

7.2.10 Software and Demo Design . 163

123

CHAPTER 7. EXAMPLES

Abstract

This chapter contains two articles adapted from their original online version published
in IPOL [224,226], with supplements about the design of the code and online demo.

The algorithm proposed in the second article is extremely basic, and probably known
for a long time, and we do not claim any novelty or any subtle color theory. It was
nevertheless proposed for publication at IPOL and accepted. Indeed, the image quality
improvement obtained by many recently proposed sophisticated color correction methods
seems to rely essentially on a (not explicit) final color balance. Thus, it seemed important
to make the research community aware of this alternative. Color balance can be used as a
sanity check against uselessly complicated color perception and color correction theories.

7.1 Retinex Poisson Equation: a Model for Color Perception

7.1.1 Overview

In 1964 Edwin H. Land (ref. 4) formulated the Retinex theory, the first attempt to simulate
and explain how the human visual system perceives color. His theory and an extension,
the “reset Retinex” (ref. 5) were further formalized by Land and McCann in 1971. Several
Retinex algorithms have been developed ever since. These color constancy algorithms modify
the RGB values at each pixel to give an estimate of the physical color independent of the
shading.

The Retinex original method was complex and imprecise. Indeed, this algorithm computes
at each pixel an average of a very large and unspecified set of paths on the image. For this
reason, Retinex has received several interpretations and implementations which, among other
aims, attempt to tune down its excessive complexity.

But, as shown in ref. 1, the original Retinex algorithm can be formalized as a (discrete)
partial differential equation. More precisely, it can be shown that if the Retinex paths are
interpreted as symmetric random walks, then Retinex is equivalent to a Neumann problem
for a Poisson equation. This result gives a fast algorithm involving just one parameter, also
present in the original theory.

The Retinex Poisson equation (given below) is very similar to Horn’s (ref. 6) and Blake’s (ref.
7) equations, which were proposed as alternatives to Retinex. It also is one of the “Poisson
editing” equations proposed in Perez et al. (ref. 3). The final principle of the algorithm is
extremely simple. Given a color image I, its small gradients (those with magnitude lower
than a threshold t) in each channel are replaced by zero. The resulting vector field is no more
the gradient of a function, but the Poisson equation reconstructs an image whose gradient is
close for the quadratic distance t to this vector field. Thus, a new image is obtained, where
small details and shades of the original have been eliminated. The elimination of the shades
creates more homogeneous colors. This fact, according to Land and McCann, models the
property of our perception to perceive constant colors regardless of their shading.

The formalization proved in ref. 1 yields a fast implementation of the Land-McCann original
theory using only two DFT’s. You can test the theory on line on your own color images1.

1http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/

124

http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

Overview
References
Online Demo
The PDE-Retinex Model
The Algorithm
Implementation
Examples
Acknowledgment

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Retinex Poisson Equation: a Model for Color Perception
Nicolas Limare, Ana Belén Petro, Catalina Sbert, Jean-Michel Morel
article demo archive

Nicolas Limare nicolas.limare@cmla.ens-cachan.fr, CMLA, ENS Cachan
Ana Belén Petro anabelen.petro@uib.es, TAMI, Universitat de les Illes Balears
Catalina Sbert catalina.sbert@uib.es, TAMI, Universitat de les Illes Balears
Jean-Michel Morel morel@cmla.ens-cachan.fr, CMLA, ENS Cachan

Communicated by Vicent Caselles vicent.caselles@upf.edu, Universitat Pompeu
Fabra
Edited by Jose-Luis Lisani joseluis.lisani@uib.es, TAMI, Universitat de les Illes
Balears and Nicolas Limare nicolas.limare@cmla.ens-cachan.fr, CMLA, ENS
Cachan

Overview
In 1964 Edwin H. Land (ref. 4) formulated the Retinex theory, the first attempt to simulate and explain how the
human visual system perceives color. His theory and an extension, the ``reset Retinex'' (ref. 5) were further
formalized by Land and McCann in 1971. Several Retinex algorithms have been developed ever since. These
color constancy algorithms modify the RGB values at each pixel to give an estimate of the physical color
independent of the shading.
The Retinex original method was complex and imprecise. Indeed, this algorithm computes at each pixel an
average of a very large and unspecified set of paths on the image. For this reason, Retinex has received several
interpretations and implementations which, among other aims, attempt to tune down its excessive complexity.
But, as shown in ref. 1, the original Retinex algorithm can be formalized as a (discrete) partial differential
equation. More precisely, it can be shown that if the Retinex paths are interpreted as symmetric random walks,
then Retinex is equivalent to a Neumann problem for a Poisson equation. This result gives a fast algorithm
involving just one parameter, also present in the original theory.
The Retinex Poisson equation (given below) is very similar to Horn’s (ref. 6) and Blake’s (ref. 7) equations, which
were proposed as alternatives to Retinex. It also is one of the “Poisson editing” equations proposed in Perez et al.
(ref. 3). The final principle of the algorithm is extremely simple. Given a color image I, its small gradients (those
with magnitude lower than a threshold t) in each channel are replaced by zero. The resulting vector field is no
more the gradient of a function, but the Poisson equation reconstructs an image whose gradient is closes for the
quadratic distance t to this vector field. Thus, a new image is obtained, where small details and shades of the
original have been eliminated. The elimination of the shades creates more homogeneous colors. This fact,
according to Land and McCann, models the property of our perception to perceive constant colors regardless of
their shading.
The formalization proved in ref. 1 yields a fast implementation of the Land-McCann original theory using only two
DFT's. You can test the theory on line on your own color images.

References
1. Jean-Michel Morel, Ana Belén Petro and Catalina Sbert, A PDE Formalization of the Retinex Theory IEEE

Transactions on Image Processing (2010). DOI:10.1109/TIP.2010.2049239 preprint
2. Jean-Michel Morel, Ana Belén Petro and Catalina Sbert, [Fast Implementation of color constancy

algorithms] Color Imaging XIV: Displaying, Processing, Hardcopy and Application . Proc. of Electronic
Imaging SPIE, vol 7241. (January 2009). DOI:10.1117/12.805474 preprint

3. P. Pérez, M. Gangnet and A. Blake, Poisson Image Editing. ACM Transactions on Image Processing . Proc.
of ACM SIGGRAPH 2003, vol 22, Issue 3 Pages: 313 - 318 (July 2003). DOI:10.1145/882262.882269

4. Edwin H. Land, The retinex. American Scientist 52(2): 247-64. (1964).

published
reference

2011-04-05
Nicolas Limare, Ana Belén Petro, Catalina Sbert, Jean-Michel Morel, Retinex Poisson Equation: a Model for Color
Perception, Image Processing On Line, 2011.
DOI : http://dx.doi.org/10.5201/ipol.2011.lmps_rpe

→ BibTeX

Content

Figure 7.1: Online published version of “Retinex Poisson Equation: a Model for Color Per-
ception” (first page).

125

CHAPTER 7. EXAMPLES

7.1.2 References

1. Jean-Michel Morel, Ana Belén Petro and Catalina Sbert. A PDE Formalization of the
Retinex Theory. IEEE Transactions on Image Processing, 2010.
doi: http://dx.doi.org/10.1109/TIP.2010.2049239.

2. Jean-Michel Morel, Ana Belén Petro and Catalina Sbert. Fast Implementation of color
constancy algorithms. Color Imaging XIV: Displaying, Processing, Hardcopy and Appli-
cation, Proceedings of Electronic Imaging SPIE, volume 7241, 2009.
doi: http://dx.doi.org/10.1117/12.805474.

3. P. Pérez, M. Gangnet and A. Blake. Poisson Image Editing. ACM Transactions on Image
Processing, Proceedings of ACM SIGGRAPH 2003, volume 22, issue 3 pages 313 - 318,
2003.
doi: http://doi.acm.org/10.1145/882262.882269

4. Edwin H. Land. The retinex. American Scientist 52(2): 247-64, 1964.

5. Edwin H. Land and John J. McCann. Lightness and Retinex Theory. Journal of the
Optical Society of America 61, 1-11, 1971.

6. Berthold K. Horn, Determining lightness from an image. Computer Graphics and Image
Processing 3, 277-299, 1974.
doi: http://dx.doi.org/10.1016/0146-664X(74)90022-7.

7. Andrew Blake. Boundary conditions of lightness computation in Mondrian world. Com-
puter Vision Graphics and Image Processing 32, 314–327, 1985.
doi: http://dx.doi.org/10.1016/0734-189X(85)90054-4.

8. Marcelo Bertalmio, Vicent Caselles, Edoardo Provenzi and Alessandro Rizzi. Perceptual
Color Correction Through Variational Techniques. IEEE Transactions on Image Process-
ing volume 16(4), 1058-1072, 2007.
doi: http://dx.doi.org/10.1109/TIP.2007.891777.

7.1.3 Online Demo

An online demo2 allows you to try Retinex with your own images. The demo has only one
parameter, the contrast threshold t present in the original theory.

The uploaded images will be converted to color PNG format and may be resized for an efficient
Fourier transform. The images dimensions are kept under 1024 and adjusted to the nearest
multiple of 2, 3, 5 and 7 to avoid large primes, and the image is resampled using a cubic spline
interpolation. The original non resized images are kept and available in the demo archive.
This pre-processing is not in the implementation, it is only added to the demo to ensure fast
results.

The aim of the Retinex algorithm is to simulate and explain how the human visual system
perceives color, it is not to improve the image quality. In the last decade, the “Retinex”

2http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/

126

http://dx.doi.org/10.1109/TIP.2010.2049239
http://dx.doi.org/10.1117/12.805474
http://doi.acm.org/10.1145/882262.882269
http://dx.doi.org/10.1016/0146-664X(74)90022-7
http://dx.doi.org/10.1016/0734-189X(85)90054-4
http://dx.doi.org/10.1109/TIP.2007.891777
http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

trademark has been extended to many color contrast algorithms which actually deviate from
the initial Retinex scope. These algorithms successfully enhance the local image contrast and
also perform a color balance. See for example (ref. 8) for a fast color enhancement algorithms.
You can use the “Simplest Color Balance”3 algorithm previously to Retinex, for improving
the contrast of your image.

The result image, after the Retinex algorithm, is normalized using the mean and the variance
of the original image. Thus, the output image and the original image have the same mean
and variance and therefore the same global contrast.

7.1.4 The PDE-Retinex Model

In ref. 1 it is proven that the output of the Retinex algorithm proposed by Land and McCann
is the solution of the discrete partial differential equation with Neumann boundary conditions

−∆du(i, j) = F (i, j)

where

∆du(i, j) = u(i+ 1, j) + u(i− 1, j) + u(i, j + 1) + u(i, j − 1)− 4u(i, j)

is the discrete Laplacian,

F (i, j) = f(I(i, j)− I(i+ 1, j)) + f(I(i, j)− I(i− 1, j))
+f(I(i, j)− I(i, j + 1)) + f(I(i, j)− I(i, j − 1))

and f(x) is a threshold function, whose value is zero if |x| < t and the identity in other case
and I is the image to process. This function f eliminates the small variations of the intensity
image I.

The parameter t (the threshold) is by default t = 4 but you can choose the value depending
of the variations you want to eliminate. When I is a gray level image, the algorithm applies
to I. When I is a color image, the algorithm is applied to each scalar channel separately.

7.1.5 The Algorithm

The output of the algorithm is an image which is the result of the Retinex PDE applied
separately to the three channels of the color image, completed by a normalization using the
mean and the variance of the original image.

The discrete partial differential equation is easily solved by Fourier transform. To enforce
the Neumann boundary condition, the image is first mirrored across its right and bottom
sides to obtain an image four times larger, which is symmetric with respect to its vertical and
horizontal medial axes.

3http://dx.doi.org/10.5201/ipol.2011.llmps-scb

127

http://dx.doi.org/10.5201/ipol.2011.llmps-scb

CHAPTER 7. EXAMPLES

The discrete Fourier transform of a two-dimensional function u(n,m) defined on a N × M
grid is defined for (k, l) in {0, . . . ,M − 1} × {0, . . . , N − 1} by

û(k, l) =
1

NM

N−1∑

n=0

M−1∑

m=0

u(n,m)e−i
2πkn

N e−i
2πlm

M

and the discrete inverse Fourier transform for (m,n) in {0, . . . ,M − 1} × {0, . . . , N − 1} by

u(n,m) =

N−1∑

k=0

M−1∑

l=0

û(k, l)ei
2πkn

N ei
2πlm

M .

The discrete Fourier transform has the following property

u(n− n0,m−m0) =

N−1∑

k=0

M−1∑

l=0

ĝ(k, l)ei
2πkn

N ei
2πlm

M ,

where

ĝ(k, l) = û(k, l)e−i
2πkn0

N e−i
2πlm0

M

Applying the discrete Fourier transform to the discrete Poisson equation and using this last
property yields

û(k, l)

(
4− 2 cos

2πk

N
− 2 cos

2πl

M

)
= F̂ (k, l)

which entails

û(k, l) =
F̂ (k, l)

4− 2 cos 2πk

N
− 2 cos 2πl

M

, for (k, l) 6= (0, 0)

Using the inverse Fourier transform we obtain the value of u at each point of the grid, defined
up to a constant since the constant Fourier coefficient is arbitrary. The values of u are
finally normalized and receive the mean and the variance of the original image. After this
normalization some values may fall outside the interval [0, 255]. These values are saturated
to 0 or 255.

All of the above computations are performed on the extended symmetric image F defined
on the 2N × 2M grid. F being symmetric, its Fourier coefficients are real. This property is
transferred by the equation to the Fourier coefficients of u, and u is therefore also symmetric
and verifies the Neumann boundary condition. All of these operations are performed for each
channel of the color image, u being in turn the red, green and blue channel.

The algorithm (applied to each channel) therefore is

1. Compute F (i, j);

128

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

2. Compute the Fourier transform of F by DFT (symmetrization is handled by the fftw
library);

3. Deduce the Fourier transform of u using the formula above;

4. Compute the final solution u by the inverse DFT and apply the normalization.

7.1.6 Implementation

The retinex pde implementation and documentation are available on the article web page4.

It should compile on any system since it is only ANSI C. This implementation is used in the
online demo5.

This code requires libpng6 for PNG file input/output and libfftw37 to process the Fourier
transforms8.

Compilation and usage instructions are provided in the README.txt file.

Implementation notes: The fftw3 library supports several Fourier transform types, in par-
ticular discrete Fourier transforms of input real data with even/odd symmetry (i.e. cosine/
sine transform). With this kind of mirror symmetries across the boundary there is no need for
complex input/output. Moreover, one gains a factor of two in computational time and space.
Because of the discrete sampling, this library permits to choose the type of symmetry. The
mirror symmetry can be alternatively made with respect to the boundary sample points, or
with respect to the points obtained by shifting a half pixel toward the exterior the boundary
samples. In our implementation we use this second symmetry, which duplicates exactly the
image size. After this mirror symmetry the cosine transform implements our equation.

Note from the editor : The source code and its history are available online in a version control
browser9. The “IPOL” tag is attached to the version published in IPOL. Future improvements
will be available there.

7.1.7 Examples

Here are some examples. Note that Retinex is not a model conceived for image enhancement
or image improvement; it is only an algorithm to mimic our color perception. Thus, Retinex
will enhance an effect that our perception does anyway.

The role of the t threshold is to eliminate the small intensity variations due to shading. Thus
t cannot be too large (less than 10 typically) to avoid removing significant details. But is

4http://dx.doi,org/10.5201/ipol.2011.lmps_rpe
5http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/
6http://www.libpng.org/pub/png/libpng.html
7http://www.fftw.org/
8Linux: you can install libpng and libfftw3 with your package manager; Mac OS X: you can get libpng

and libfftw3 from the Fink project (http://www.finkproject.org/); Windows: precompiled DLLs are avail-
able online for libfftw3 (http://www.fftw.org/install/windows.html) and libpng (http://gnuwin32.
sourceforge.net/packages/libpng.htm); note that libpng requires zlib (http://gnuwin32.sourceforge.
net/packages/zlib.htm).

9http://dev.ipol.im/git/?p=nil/retinex_pde.git

129

http://www.libpng.org/pub/png/libpng.html
http://www.fftw.org/
http://dx.doi,org/10.5201/ipol.2011.lmps_rpe
http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/
http://www.libpng.org/pub/png/libpng.html
http://www.fftw.org/
http://www.finkproject.org/
http://www.fftw.org/install/windows.html
http://gnuwin32.sourceforge.net/packages/libpng.htm
http://gnuwin32.sourceforge.net/packages/libpng.htm
http://gnuwin32.sourceforge.net/packages/zlib.htm
http://gnuwin32.sourceforge.net/packages/zlib.htm
http://dev.ipol.im/git/?p=nil/retinex_pde.git

CHAPTER 7. EXAMPLES

must be large enough to eliminate light shading effects. This is not always possible, since
shadows can be very contrasted.

Adelson’s Checker

A first classic example (figure 7.2) shows the effect of Retinex on the Adelson’s checker shadow
illusion. In the left image a green cylinder standing on a black and white checker-board casts
a diagonal shadow across the board.

The image has been so constructed that the white squares in the shadow, one of which is
labeled “B,” have actually the very same gray value as the black squares outside the shadow,
one of which is labeled “A.”

If Retinex is faithful to human perception, it should make B much brighter than A, and it
does.

original image Retinex result with t = 3
(A and B have a gray value of 120) (A has a gray value of 120 and B of 160)

Figure 7.2: Adelson’s checker.

Circles on a Gradient

Simultaneous contrast is a name for the fact that the appearance of a color depends on the
colors surrounding it. The original image (figure 7.3) shows a background with a smooth, but
intense, variation and two circles with the same gray value (170). One of them is placed in
the darker part of the image, and the other one in the brighter part.

The usual perception is that the circle in the darker part looks conspicuously brighter than
the other. If we use a threshold t = 3 larger than the background variation, the result is an
image with nearly constant background (from 105 to 140). The left circle gets a 0 gray value
and the right circle a 255 gray value, which predicts well our perception.

130

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

original image, white balanced Retinex result

Figure 7.3: Circles on a gradient.

Noisy Image

To understand the effect of the threshold t the figure 7.4 shows a noisy original and the result
of Retinex with increasing threshold values t = 1, t = 3 and t = 5.

The background clutter and the shades are progressively filtered out when t increases, but
the main edges are kept. At t = 5, however, edges start loosing contrast and low contrasted
details start disappearing.

original image Retinex result with t = 1

Retinex result with t = 3 Retinex result with t = 5

Figure 7.4: Noisy image.

As we have mentioned before, the Retinex method is not a model for image enhancement
or image improvement. We could apply other methods for image enhancement, previously
to Retinex, to obtain better results. For example, to the previous image, we can apply the
“Simplest Color Balance”10 algorithm and we can observe the better results (figure 7.5).

10http://dx.doi.org/10.5201/ipol.2011.llmps-scb

131

http://dx.doi.org/10.5201/ipol.2011.llmps-scb

CHAPTER 7. EXAMPLES

white balanced image Retinex result with t = 3

Retinex result with t = 5 Retinex result with t = 10

Figure 7.5: Noisy image preprocessed with “Simplest color Balance” before applying Retinex.

Shadows Removal

The figures 7.6 and 7.7 demonstrate how Retinex can be used for removing shadows. This is
not always effective, but here are two good examples. The shadow removal works only if the
boundary of the shadow is blurry, and therefore has a small gradient.

Lena

Application to Lena (figure 7.8): the smooth shading variations on the shoulder or the face
and in the background fade out when the threshold t increases.

Limitations of the method

The Retinex method has been used by several authors as a model for image enhancement
or image improvement, but this apparant improvement, when it occurs is simply due to the
image normalization or color restoration applied as post-processing steps after the Retinex
algorithm. Thus, the very same contrast improvement can be obtained by a simple color
balance algorithm. To avoid mixing up any color balance effect with the Retinex effect, our
algorithm always applies a normalization post-processing, to maintain in the Retinex result
the mean and variance of the original image. Retinex should never improve the contrast of
the image; its perpetual effect is “color constancy”: it simply flattens the color in low gradient
regions, nothing else.

Thus, dark images or bad quality images should not improve with the mere application of
the Retinex method. An example of these effects can be observed in the figure 7.9. The

132

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

original image Retinex result with t = 3

Retinex result with t = 5 Retinex result with t = 10

Figure 7.6: Shadows removal

original image Retinex result with t = 3

Retinex result with t = 5 Retinex result with t = 10

Figure 7.7: Shadows removal.

133

CHAPTER 7. EXAMPLES

original image Retinex result with t = 3

Retinex result with t = 5 Retinex result with t = 10

Figure 7.8: Lena.

134

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

application of Retinex only “flattens” the image. On the other hand, the simplest color
balance algorithm yields a significant improvement of the image.

original image Retinex result with t = 3 white balance image

Figure 7.9: comparison with “Simplest Color Balance”.

The figure 7.10 is another example with a dark image. There is no significant difference
between the original image and the Retinex result. The result of the simplest color balance
algorithm instead is a serious improvement of the image quality.

original image Retinex result with t = 3 white balance image

Figure 7.10: Effect on a dark image.

Since it only alters small non zero gradients, the Retinex algorithm does not produce any
change in images having only completely flat areas. The figure 7.11 shows this phenomenon
on a synthetic image. Observe that the original image is identical to the Retinex result.

7.1.8 Acknowledgment

The authors thank the referees, Gabriele Facciolo and Vicent Caselles, for their very valuable
corrections and comments.

135

CHAPTER 7. EXAMPLES

original image Retinex result with t = 4

Figure 7.11: Effect on a synthetic image with flat areas.

7.1.9 Credits

Edward H. Adelson11

the authors, CC-BY

courtesy Philip Greenspun12

standard test image

7.1.10 Software and Demo Design

These additional sections about the implementation design and the online demonstration were
not in the online version.

Implementation

External Libraries The “Retinex Poisson Equation” algorithm was first implemented
while we were exploring the idea of a web-based image processing interface, which eventually
became a part of IPOL. One critical condition of the feasibility of these web experiments is
the execution time: how long does the algorithm take, and how large the data can be while
still being processed in less than 30 seconds? These questions led to a performance profiling
of the code and, unsurprisingly, the computation time was dominated by the discrete Fourier
transforms.

11http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
12http://philip.greenspun.com/

136

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
http://philip.greenspun.com/

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

Early versions of the code were based on the MegaWave framework [136] and its fft2d()13

implementation of the discrete Fourier transform on images. A short research for a high-
performance alternative, free, stale, usable with a C code, hinted at the FFTW14 library as
the leading portable, free and fast implementation. Its performance was compared15 with
the MegaWave code and the measurements, visible in figure 7.12, confirmed that the FFTW
library was significantly faster.

This is naturally explained by the research and efforts devoted to build a library like FFTW:
different algorithms are available and selected depending on the array properties; some nu-
merical values are precomputed for usual input sizes; the code is optimized to the lowest level,
with provisions for the characteristics of various families and models of processors, data local-
ity, vector instructions and cache efficiency; and a code generation tool is used to compose the
high-level library from many special-purpose low-level code fragments, each highly optimized
for one array size, DFT algorithm or hardware capacity [135]. In contrast, the MegaWave
code is a straightforward implementation of the classic Cooley-Tuckey FFT algorithm.

The lesson is clear: when the performance of an algorithm depends on some classic numerical
components, fast programs require specialized software tools instead of simple, straightforward
implementations. Another advantage of specialized libraries, not illustrated in this Retinex
example, is that they usually are more tested, better maintained and have better numerical
stability and accuracy than custom code.

To achieve a better performance, the Retinex implementation was rewritten out of the
MegaWave environment, with the FFTW library. For a complete implementation, we needed
the image file input/output layer, previously handle internally by MegaWave. This was done
by using PNG images and the libpng library, and this layer evolved later into the io png

light interface to libpng, now proposed to the IPOL authors as an easy way to use PNG
image files.

Code Design The implementation of this algorithm was an opportunity to show how a
code could be designed to facilitate review and reuse. There is no innovation there, but these
standard design rules are too often ignored in research code. The retinex pde program is
modest, with only 600 lines of code split into four files described hereafter. The function calls
and file dependencies are represented in figure 7.13.

❼ retinex pde lib.c contains the actual implementation of the algorithm, isolated in
a single source code file reusable in other software projects. This file is the one the
reviewers should focus on, because it contains the software implementation of the algo-
rithm described in the IPOL article. Only one entity is exported from the compilation
of this file: the retinex pde() function, used to apply the Retinex transform to an im-
age. Retinex makes sense for images but is described in the article in terms of Fourier
transforms, Laplacian and Poisson equation, which make sense for any 2D array. So
the retinex pde() function is generic and processes numeric arrays, without any image

13http://megawave.cmla.ens-cachan.fr/stuff/guid3/node165.html
14http://fftw.org/
15For every size from 128 to 1024, a two-dimension array was filled with random single-precision floating-

point values and transformed by discrete Fourier transform. This operation was repeated 10 times, without
parallel processing options, on an Intel Core Duo L2300 processor (2M Cache, 1.50 GHz).

137

http://megawave.cmla.ens-cachan.fr/stuff/guid3/node165.html
http://fftw.org/

CHAPTER 7. EXAMPLES

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1
2
8
×

1
2
8

2
5
6
×

2
5
6

3
8
4
×

3
8
4

5
1
2
×

5
1
2

6
4
0
×

6
4
0

7
6
8
×

7
6
8

8
9
6
×

8
9
6

1
0
2
4
×

1
0
2
4

c
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

megawave3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1
2
8
×

1
2
8

2
5
6
×

2
5
6

3
8
4
×

3
8
4

5
1
2
×

5
1
2

6
4
0
×

6
4
0

7
6
8
×

7
6
8

8
9
6
×

8
9
6

1
0
2
4
×

1
0
2
4

c
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

fftw3

Figure 7.12: Compared performances of two implementations of the discrete Fourier trans-
form. The vertical scales are different.

138

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

retinex_pde.c

io_png.c

retinex_pde_lib.c

norm.c

libfftw

libpng

main()

read_png_f32()

write_png_f32()

retinex_pde()

normalize_mean_dt()

read_png_raw()

png_read_png()

png_get_rows()

write_png_raw()
png_write_image()

png_write_info()

discrete_laplacian_threshold()

retinex_poisson_dct()

fftwf_plan_r2r_2d()

fftwf_execute()

cos_table()

mean_dt()

Figure 7.13: Function calls and file dependencies for the “Retinex Poisson Equation” imple-
mentation. Minor functions have been omitted for clarity.

139

CHAPTER 7. EXAMPLES

model or custom structure. The function either succeeds, and returns a pointer to the
transformed array, or fails and returns an invalid pointer that can be detected from
the calling context. This function uses libfftw, but the Fourier transform part of the
code could be modified to use another library without impacting the call syntax of the
function.

❼ norm.c implements the post-processing normalization step. Here again, this file is self-
sufficient. One function computes the mean and covariance of an array and another
function normalizes an array; these functions are expressed in term of one-dimension
vectors as they don’t need the concepts of images or even two dimension arrays.

❼ retinex pde.c contains the main() function and is responsible for all the tasks only
relevant to the execution environment: processing the command-line parameters, read-
ing the input file and writing the output; calling the Retinex function and the post-
processing normalization function. This is the only source code file with assumptions
about how the program will be used, and as such this code is not reusable and not
expected to be reused.

❼ io png.c has the simplified interface to libpng, with routines to read image files into
arrays or write them with a single function call. It lets the programmer choose which
kind of image is to be processed (grayscale or color, integer or floating-point) and
internally converts the PNG image to the expected format.

Optimization Performance profiling of the program with Valgrind16 revealed that most of
the computation time was devoted to the Fourier transforms. The speed of the program was
improved by using the “advanced” FFTW interface to compute directly the cosine transform
from real arrays instead of obtaining this result from complex values after a symmetry. This
saves some CPU instructions, memory space, data transfer and cache misses, and leads to a
faster execution.

The other optimizations, applied to the Laplacian computation and Poisson transform in the
Fourier space, were deliberately kept simple to preserve the portability and readability of the
source code. These two functions consist in applying a local operation to every component of
a 2D array. We tried to avoid redundant costly operations like the computation of the sine and
cosine factors, to keep reusable values in memory, to use simpler operations (multiplications
by 1/x instead of divisions by x), to limit cache miss by processing the arrays in their memory
order, and reduce the number of temporary variables.

Two other optimizations are possible but were not carried out in the published version of the
program because the performances were already sufficient. One would be to ease the use of
SIMD instructions by the automatic vectorization features of the compilers. The other one
would be to leverage the CPU pipelining efficiency by avoiding branching instructions in the
loops; this may be achieved in the Laplacian computation by using bit-twiddling instructions
instead of if branches and by handling the array border out of the main loop.

16Valgrind (http://valgrind.org/) is a collection of dynamic code analysis tools, including a memory error
detector.

140

http://valgrind.org/

7.1. RETINEX POISSON EQUATION: A MODEL FOR COLOR PERCEPTION

Quality Control The program is a standard C89 source code. It only needs a C compiler
and the two aforementioned external libraries and should be compilable and usable in any
computing environment. The standard compliance was tested by using strict compilation
options17 and the source code quality was further checked by static code analysis with Splint18.
These tests do not guarantee the quality of the code, but they can be used to detect and fix
known dangerous patterns and abuses of the language.

After the publication of this code in IPOL19, these tests were further improved with the usage
of other static code analysis tools (Clang and Cppcheck20) and by compiling the program with
various C and C++ compilers21 and fixing the compiler warnings. Finally, functional tests
were added to verify that the exact same results are obtained with all these compilers and all
the successive versions of the code.

This quality control is routinely performed via tests integrated in the build procedure, and
automatically performed every time a new version is recorded:

❼ the code is built by the default C compiler, with cross-compiler compatible options and
the possibility to specify the compiler at build time;

❼ the pseudo-target lint checks all the source code with static checking tools and compiles
it with strict compiler options;

❼ the pseudo-target beautify maintains the indentation by processing all the source code
with a code reformatting tool;

❼ the pseudo-target test builds the program with various compilers, runs functional tests
and executes the program in a dynamic memory checking environment.

Demonstration

Workflow The demonstration of this algorithm proposed in IPOL [298] follows a basic
workflow, illustrated in the chart 7.14 and screen captures 7.15.

❼ The start page proposes a few input images for the algorithm. With these images, demo
users can reproduce the results published in the article. They can also upload their own
images to try the algorithm.

❼ On the parameter page, one can choose the threshold to be used, and launch the algo-
rithm.

❼ The result page is displayed after a few seconds, with the output of the algorithm. Then
one chooses to restart the demo with another threshold parameter, or a new input image.

17The basic set of compilation options was gcc -ansi -pedantic -Wall -Wextra -Werror.
18Splint (http://www.splint.org/) is a static code analysis tool.
19http://dev.ipol.im/git/?p=nil/retinex_pde.git
20The Clang compiler (http://clang.llvm.org/) has static analysis functions. Cppcheck (http://

cppcheck.sourceforge.net/) is another code analysis tool for C and C++ programs.
21We use the following compilers: GNU gcc and mingw, LLVM clang, Intel icc, Sun suncc, tcc, and nwcc.

141

http://www.splint.org/
http://dev.ipol.im/git/?p=nil/retinex_pde.git
http://clang.llvm.org/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/

CHAPTER 7. EXAMPLES

start
page

input
selection

input
upload

algorithm
options

algorithm
execution

parameter
selection

algorithm
result

redirection

restart with
new data

restart with
new options algorithm

archive

input
conversion

Figure 7.14: Typical IPOL demo flow chart, applicable to the “Retinex Poisson Equation”
case.

Adelson Crosses Dolphin Lena Noisy

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Retinex Poisson Equation: a Model for Color Perception
article demo archive

Please cite this article if you publish results obtained with this online demo.

Select Data
Click on an image to use it as the algorithm input.

image credits

Upload Data
Upload your own image files to use as the algorithm input.

input image No file selectedChoose File upload

Images larger than 490000 pixels will be resized. Upload size is limited to 10MB per image file .
TIFF, JPEG, PNG, GIF, PNM (and other standard formats) are supported. The uploaded files may be re-used for further analysis.
Only upload suitable images. See the copyright and legal conditions for details.

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol
 feeds • sitemap • contact • privacy policy • supported by CMLA, ENS Cachan

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Retinex Poisson Equation: a Model for Color Perception
article demo archive

Please cite this article if you publish results obtained with this online demo.

Algorithm Parameters
t(range: [0.0, 255.0])= 4.0

run

Input Image

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol
 feeds • sitemap • contact • privacy policy • supported by CMLA, ENS Cachan

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Retinex Poisson Equation: a Model for Color Perception
article demo archive

Please cite this article if you publish results obtained with this online demo.

The algorithm result is displayed hereafter. It ran in 0.32s.
You can run again this algorithm with new data.
Restart with new input data or different parameters: new input different parameters

Results (t=4.0)

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol
 feeds • sitemap • contact • privacy policy • supported by CMLA, ENS Cachan

Original
Processed

Figure 7.15: Input selection, parameters and result of the IPOL demo for “Retinex Poisson
Equation: a Model for Color Perception”.

142

7.2. SIMPLEST COLOR BALANCE

Input Filtering To keep the demo fast and avoid too large images difficult to display
properly in a web interface, the input is limited to a maximum width or height of 1024 pixels,
and larger images are zoomed out before processing.

But the performance of the algorithm depends on the speed of the Fourier transforms, which
is faster when the size of the image is divisible by low prime numbers. For example, in the
conditions of the speed performance comparison already mentioned, the Fourier transform of
a 509×509 array takes 38 ms, while a 512×512 array only takes 4 ms. The demo avoids large
prime numbers by resizing the input images to the closest multiple of 2, 3, 5 and 7. This
preprocessing changes the image size by 3%, and is acceptable for this algorithm because it
preserves the important input properties, lightness and contrast. It would not be possible for
an algorithm focusing on the pixel level, such as denoising methods.

One must note that, as explained in the article, this preprocessing step is built in the online
demo code layer, not in the compiled implementation of the algorithm. This is important
because the implementation of the algorithm must be reusable in a processing chain, and as
such only the operations described as the algorithm must be performed. The demo could
probably be improved by making this resizing optional for users who prefer to obtain the
exact result of the algorithm even if it is slower.

Usage From its first public release on April 27th, 2009, to December 31st, 2011, this demo
has been used more than 2000 times with original input images; 1500 of these experiments
are publicly available in the archive22. Based on recent statistics, we can estimate that the
algorithm has been tested more than 5500 times by IPOL visitors and collaborators with this
demonstration interface during the same period.

7.2 Simplest Color Balance

7.2.1 Overview

Color balance algorithms attempt to correct underexposed images, or images taken in artificial
lights or special natural lights, such as sunset.

There are many sophisticated algorithms in the literature performing color balance or other
color contrast adjustments. The performance of these many color correction algorithms can be
evaluated by comparing their result to the simplest possible color balance algorithm proposed
here. The assumption underlying this algorithm is that the highest values of R, G, B observed
in the image must correspond to white, and the lowest values to obscurity. If the photograph
is taken in darkness, the highest values can be significantly smaller than 255. By stretching
the color scales, the image becomes brighter. If there was a colored ambient light, for example
electric light where R and G dominate, the color balance will enhance the B channel. Thus
the ambient light will lose its yellowish hue. Although it does not necessarily improve the
image, the simplest color balance always increases its readability.

The algorithm simply stretches, as much as it can, the values of the three channels Red,
Green, Blue (R, G, B), so that they occupy the maximal possible range [0, 255]. The simplest

22http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/

143

http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/

CHAPTER 7. EXAMPLES

Overview
References
Algorithm
Implementation
Color images
Online Demo
Source Code
Examples

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Simplest Color Balance
Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert
article demo archive

Nicolas Limare nicolas.limare@cmla.ens-cachan.fr, CMLA, ENS Cachan
Jose-Luis Lisani joseluis.lisani@uib.es, TAMI, Universitat de les Illes Balears
Jean-Michel Morel morel@cmla.ens-cachan.fr, CMLA, ENS Cachan
Ana Belén Petro anabelen.petro@uib.es, TAMI, Universitat de les Illes Balears
Catalina Sbert catalina.sbert@uib.es, TAMI, Universitat de les Illes Balears

Edited by Jose-Luis Lisani joseluis.lisani@uib.es

Overview
Color balance algorithms attempt to correct underexposed images, or images taken in
artificial lights or special natural lights, such as sunset.
There are many sophisticated algorithms in the literature performing color balance or other color contrast
adjustments. The performance of these many color correction algorithms can be evaluated by comparing their
result to the simplest possible color balance algorithm proposed here. The assumption underlying this algorithm
is that the highest values of R, G, B observed in the image must correspond to white, and the lowest values to
obscurity. If the photograph is taken in darkness, the highest values can be significantly smaller than 255. By
stretching the color scales, the image becomes brighter. If there was a colored ambient light, for example electric
light where R and G dominate, the color balance will enhance the B channel. Thus the ambient light will lose its
yellowish hue. Although it does not necessarily improve the image, the simplest color balance always increases
its readability.
The algorithm simply stretches, as much as it can, the values of the three channels Red, Green, Blue (R, G, B),
so that they occupy the maximal possible range [0, 255]. The simplest way to do so is to apply an affine transform
ax+b to each channel, computing a and b so that the maximal value in the channel becomes 255 and the minimal
value 0.
However, many images contain a few aberrant pixels that already occupy the 0 and 255 values. Thus, an often
spectacular image color improvement is obtained by "clipping" a small percentage of the pixels with the highest
values to 255 and a small percentage of the pixels with the lowest values to 0, before applying the affine
transform. Notice that this saturation can create flat white regions or flat black regions that may look unnatural.
Thus, the percentage of saturated pixels must be as small as possible.
The proposed algorithm therefore provides both a white balance and a contrast enhancement. However, note
that this algorithm is not a real physical white balance: It won't correct the color distortions of the capture device
or restore the colors or the real-world scene captured as a photography. Such corrections would require a
captured sample of known real-world colors or a model of the lighting conditions.

References
1. Wikipedia contributors, "Color balance", Wikipedia, The Free Encyclopedia (accessed January 14, 2010).
2. Marc Ebner, "Color Constancy", John Wiley & Sons, 2007, p. 104.

Algorithm
The naive color balance is a simple pixel-wise affine transform mapping the input minimum and maximum
measured pixel values to the output space extrema. As we explained before, a potential problem with this
approach is that two aberrant pixel colors reaching the color interval extrema are enough to inhibit any image
transform by this naive color balance.

published
reference

2011-10-24
Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, Catalina Sbert, Simplest Color Balance, Image
Processing On Line, 2011.
DOI : http://dx.doi.org/10.5201/ipol.2011.llmps-scb

→ BibTeX

Content

Figure 7.16: Online published version of “Simplest Color Balance” (first page).

144

7.2. SIMPLEST COLOR BALANCE

way to do so is to apply an affine transform ax + b to each channel, computing a and b so
that the maximal value in the channel becomes 255 and the minimal value 0.

However, many images contain a few aberrant pixels that already occupy the 0 and 255
values. Thus, an often spectacular image color improvement is obtained by “clipping” a
small percentage of the pixels with the highest values to 255 and a small percentage of the
pixels with the lowest values to 0, before applying the affine transform. Notice that this
saturation can create flat white regions or flat black regions that may look unnatural. Thus,
the percentage of saturated pixels must be as small as possible.

The proposed algorithm therefore provides both a white balance and a contrast enhancement.
However, note that this algorithm is not a real physical white balance: It won’t correct the
color distortions of the capture device or restore the colors or the real-world scene captured as
a photography. Such corrections would require a captured sample of known real-world colors
or a model of the lighting conditions.

7.2.2 References

1. Wikipedia contributors.
Color Balance.
Wikipedia, The Free Encyclopedia (accessed January 14, 2010)
url: http://en.wikipedia.org/w/index.php?title=Color_balance&oldid=

336334367

2. Marc Ebner.
Color Constancy, p. 104, 2007.
John Wiley & Sons
doi: http://dx.doi.org/10.1002/9780470510490

7.2.3 Algorithm

The naive color balance is a simple pixel-wise affine transform mapping the input minimum
and maximum measured pixel values to the output space extrema. As we explained before,
a potential problem with this approach is that two aberrant pixel colors reaching the color
interval extrema are enough to inhibit any image transform by this naive color balance.

A more robust approach consists in mapping two values Vmin and Vmax to the output space
extrema, Vmin and Vmax being defined so that a small user-defined proportion of the pixels
get values out of the [Vmin, Vmax] interval.

7.2.4 Implementation

Our input image is an array of N numeric values in the [min,max] interval. The output is
a corrected array of the N updated numeric values. Multiple channel images are processed
independently on each channel with the same method.

We will perform a color balance on this data where we have saturated a percentage smin% of
the pixels on the left side of the histogram, and a percentage smax% of pixels on the right side;

145

http://en.wikipedia.org/w/index.php?title=Color_balance&oldid=336334367
http://en.wikipedia.org/w/index.php?title=Color_balance&oldid=336334367
http://dx.doi.org/10.1002/9780470510490

CHAPTER 7. EXAMPLES

for example, smin = 0 and smax = 3 means that this balance will saturate no pixels at the
beginning and will saturate at most N × 3/100 at the end of the histogram. We can’t ensure
that exactly N × (smin + smax)/100 pixels are saturated because the pixel value distribution
is discrete.

Sorting Method

Vmin and Vmax, the saturation extrema, can be seen as quantiles of the pixel values distribu-
tion, e.g. first and 99th centiles for a 2% saturation.

Thus, an easy way to compute Vmin and Vmax is to sort the pixel values, and pick the quantiles
from the sorted array. This algorithm would be described as follow:

1. sort the pixel values
The original values must be kept for further transformation by the bounded affine function,
so the N pixels must first be copied before sorting.

2. pick the quantiles from the sorted pixels
With a saturation level s = smin + smax in [0, 100[, we want to saturate N × s/100 pixels,
so Vmin and Vmax are taken from the sorted array at positions N × smin/100 and N × (1−
smax/100)− 1.

3. saturate the pixels
According to the previous definitions of Vmin and Vmax, the number of pixels with values
lower than Vmin or higher than Vmax is at most N × s/100. The pixels (in the origi-
nal unsorted array) are updated to Vmin (resp. Vmax) if their value is lower than Vmin

(resp. higher than Vmax).

4. affine transform
The image is scaled to [min,max] with a transformation of the pixel values by the function
f such that f(x) = (x−Vmin)×(max−min)/(Vmax−Vmin)+min. For 8-bit representations
of an image, min = 0 and max = 255.

Histogram Method

Sorting the N pixel values requires O(Nlog(N)) operations and a temporary copy of these
N pixels. A more efficient implementation is achieved by a histogram-based variant, faster
(O(N) complexity) and requiring less memory (O(max−min) vs. O(N)).

1. build a cumulative histogram of the pixel values
The cumulative histogram bucket labeled i contains the number of pixels with value lower
or equal to i.

2. pick the quantiles from the histogram
Vmin is the lowest histogram label with a value higher than N ×smin/100, and the number
of pixels with values lower than Vmin is at most N × smin/100. If smin = 0 then Vmin is
the lowest histogram label, i.e. the minimum pixel value of the input image. Vmax is the

146

7.2. SIMPLEST COLOR BALANCE

label immediately following the highest histogram label with a value lower than or equal
to N × (1− smax/100), and the number of pixels with values higher than Vmax is at most
N × smax/100. If smax = 0 then Vmax is the highest histogram label, i.e. the maximum
pixel value of the input image.

3. saturate the pixels

4. affine transform
Same as for the sorting method.

Pseudo-code

The following steps are presented for images with pixel values in the 8-bit integer space
(min = 0, max = 255) with one color channel only. See the following remarks for higher-
precision images. The basic implementation is shown in figure 7.17, refinements are available
in the proposed source code.

// build the cumulative histogram

for i from 0 to N-1

// fill the histogram

histo[image[i]] := histo[image[i]] + 1

for i from 1 to 255

// convert to a cumulative histogram

histo[i] := histo[i] + histo[i - 1]

// search vmin and vmax

vmin := 0

while histo[vmin + 1] <= N * smin / 100

vmin := vmin + 1

vmax := 255 - 1

while histo[vmax - 1] > N * (1 - smax / 100)

vmax := vmax - 1

if vmax < 255 - 1

vmax := vmax + 1

// saturate the pixels

for i from 0 to N - 1

if image[i] < vmin

image[i] := vmin

if image[i] > vmax

image[i] := vmax

// rescale the pixels

for i from 0 to N-1

image[i] := (image[i] - vmin) * 255 / (vmax - vmin)

Figure 7.17: Pseudo-code for 8-bit integer images. image[i] are the pixel values, N is the
number of pixels, histo is an array of 256 unsigned integers, with a data type large enough
to store N, initially filled with zeros. The arrays indexes start at 0.

147

CHAPTER 7. EXAMPLES

Higher Precision

For 16-bit integer pixel values, the histogram array method can be used, and needs 65.536
buckets (256 Kb on a 32-bit system, 512 Kb on a 64-bit system, to be compared with the 128
Kb used for a 256×256 image). But the determination of vmin and vmax would benefit of a
faster search method, like bisection.

For 32-bit integer pixel values, the histogram size (4.294.967.296 buckets) becomes a problem
and can’t be properly handled in memory. We can switch to a multi-step process:

❼ build a histogram with buckets containing more than one single pixel value, such that
the histogram size is limited (256 buckets for example, each for a pixel value interval);

❼ search for the buckets containing vmin and vmax;

❼ restart the histogram construction and search on a subdivision of these buckets.

If an exact precision isn’t required, the latest refinements can be skipped.

For floating-point data, the pixel value can no more be used as an array index, and we must
use either a sorting method, or a multi-step method with an histogram containing intervals
(not values), then a sorting method on the buckets containing vmin and vmax.

Note that the proposed pseudo-code can also be used for images with integer pixel values
(as produced by common image capture devices and found in common image formats) stored
as floating-point data (often desired for image processing), by converting the pixel value
image[i] to its integer equivalent while filling the histogram.

Special Cases

If the image is constant (all pixels have the same value v), then, according to the described
implementation and pseudo-code, the histogram values are 0 for labels lower than v, and N
for labels higher or equal to v, and then for any value of smin and smax , Vmin = v, Vmax = v.

This (Vmin = Vmax) can also happen for non-constant image, the general case being images
with less than N × smin/100 pixels with values below or with more than N × smax/100 above
a median value v. This case can be handled by setting all the pixels to the value v.

7.2.5 Color images

RGB Color Balance

For RGB color images we can apply the algorithm independently on each channel. We call
this algorithm RGB color balance. The color of the pixels is modified in the process because
each RGB channel is transformed by an affine function with different parameters and the
saturation does not occur on the three RGB channels together. This can be desirable to
correct the color of a light source or filter, but in some applications we may want to maintain
the colors of the input image.

148

7.2. SIMPLEST COLOR BALANCE

In that case, many solutions are possible, depending on how we define the “color” to be
maintained (hue, chroma, R/G/B ratio) and what we want to correct with this algorithm
(lightness, brightness, intensity, luma, . . .). A discussion about these color correction variants
will be published in a later article, and we present hereafter the simplest version.

IRGB Intensity Balance

The goal of IRGB intensity balance is to correct the intensity of a color image without
modifying the R/G/B ratio of the pixels. We first compute the gray level intensity (I = (R+
G+B)/3), then this intensity is balanced and transformed into I ′ by the affine transformation
with saturation. Finally, for each pixel, the three color channels are multiplied by I ′/I.

But the RGB color cube is not stable by this transformation. Multiplied by I ′/I, some RGB
components will be larger than the maximum value. This is corrected in a post-processing
step by a projection on the RGB cube while maintaining the R/G/B ratio, ie replacing pixels
out of the RGB cube by the intersection of the RGB cube surface and the segment connecting
the (0,0,0) point and the pixels to be corrected. This projection has three consequences :

❼ commutativity : computing the intensity I of an image after correction by this algorithm
doesn’t give the same result as computing the intensity of an image and correcting this
intensity by the affine balance algorithm with saturation described at the beginning of
this article;

❼ monotonicity : some pixels with intensities I1 < I2 can be be transformed into pixels
with intensities I1 > I ′

2
if the pixel with initial intensity I2 has to be corrected by

projection;

❼ precision : because the projection step is darkening the projected pixels, less than
smax% of the pixels will have their final intensity saturated to the maximum value.

Moreover, adjusting the saturation on the average I of the three RGB channels means that,
unless the three channels are equal (gray image), before the projection less than smax% of
the pixels are saturated to the maximum value on the three RGB channels while more than
smax% of the pixels are saturated to the maximum value on at least one of the RGB channels.

Better solutions to achieve a balance of a color image without these problems require the use
of other color spaces and are beyond the scope of this article.

7.2.6 Online Demo

With the online demonstration23, you can try this algorithm on your own images and set the
desired percentage of saturated pixels. This demo presents the algorithm applied indepen-
dently to the R, G and B channels (RGB color balance), and to the intensity channel while
maintaining the R/G/B ratio (IRGB intensity balance).

For gray-scale images, these two versions are identical to applying the simple algorithm to
the gray level.

23http://www.ipol.im/pub/demo/lmps_simplest_color_balance/

149

http://www.ipol.im/pub/demo/lmps_simplest_color_balance/
http://www.ipol.im/pub/demo/lmps_simplest_color_balance/

CHAPTER 7. EXAMPLES

7.2.7 Source Code

An ANSI C implementation is provided and distributed under the GPL24 license. Source
code and documentation are available on the article web page25.

Basic compilation and usage instructions are included in the README.txt file. This code
requires the libpng library2627.

This source code includes two implementations of the color balance: an 8-bit integer imple-
mentation based on the histogram algorithm with O(N) complexity and a lookup table for
fast affine transform is used for the RGB color balance, and a generic floating-point imple-
mentation based on qsort(), with O(Nlog(N)) algorithmic complexity is used for the IRGB
intensity balance.

The histogram code is used for the online demo28. The source code history and future releases
are available on an external page29.

7.2.8 Examples

We show from left to right the original image, and its result by RGB color balance with 0%,
1%, 2% and 3% of the pixels saturated, half at the beginning of the histogram and half at
the end of the histogram. In these examples, the algorithm has been applied independently
on each color channel. It is quite apparent that some saturation is almost always necessary,
but that the needed percentage is variable.

In the figure 7.18, the 0% saturation already gives a result, and 1% is optimal. Notice how
the orange ambient light has been corrected to more daylight image.

A white thin rim surrounds the image in the figure 7.19. This rim occupies more than 2% of
the image. Hence, the 3% threshold is the right one.

Like the preceding ones, the image in figure 7.20 in completely unnatural blue light is often
used to illustrate color balance, or color contrast adjustment algorithms. A trivial affine
transform corrects it adequately by removing the bluish effect. A still more contrasted result
is obtained by saturating only 1%.

The same remarks as for the preceding one apply to the figure 7.21.

Even a good quality image can benefit from a moderate 1% color balance (figure 7.22). A
contrast improvement is noticeable when switching between the 0% and 1% versions.

There is no real good solution for the sunset image (figure 7.23). The colors are strongly
blue/orange and will stay so. By pushing too far the saturation (3%), the orange pixels
diminish and a completely unnatural blue color is created.

24http://www.gnu.org/licenses/gpl.html
25http://dx.doi.org/10.5201/ipol.2011.llmps-scb
26http://www.libpng.org/pub/png/libpng.html
27Linux: you can install libpng with your package manager; Mac OS X: you can get libpng from the

Fink project (http://www.finkproject.org/); Windows: precompiled DLLs are available online for libpng

(http://gnuwin32.sourceforge.net/packages/libpng.htm).
28http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/
29http://dev.ipol.im/git/?p=nil/simplest_color_balance.git

150

http://www.gnu.org/licenses/gpl.html
http://www.libpng.org/pub/png/libpng.html
http://www.gnu.org/licenses/gpl.html
http://dx.doi.org/10.5201/ipol.2011.llmps-scb
http://www.libpng.org/pub/png/libpng.html
http://www.finkproject.org/
http://gnuwin32.sourceforge.net/packages/libpng.htm
http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/
http://dev.ipol.im/git/?p=nil/simplest_color_balance.git

7.2. SIMPLEST COLOR BALANCE

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.18: Museum in orange ambient light.

151

CHAPTER 7. EXAMPLES

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.19: Face with a white rim.

152

7.2. SIMPLEST COLOR BALANCE

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.20: Flowers in blue light.

153

CHAPTER 7. EXAMPLES

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.21: Ball in blue light.

154

7.2. SIMPLEST COLOR BALANCE

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.22: Good original image improved by a 1% balance.

155

CHAPTER 7. EXAMPLES

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.23: Sunset.

156

7.2. SIMPLEST COLOR BALANCE

The images in figures 7.24, 7.25 and 7.26 have been used in recent papers on color perception
theory (Retinex).

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.24: Child with a dog.

Examples on Gray-scale Images

We present two examples on grayscale images. The algorithm is the same, since the three
channels are equal. In the figure 7.27 we observe a small improvement of the image. In the
figure 7.28, the improvement is more significant, but we lose the little details in the image.

Examples with Little or no Improvement

In the figure 7.29, it is probably best not to apply any color balance: the colors become
quickly unearthly.

The figures 7.30 and 7.31 with back-lighting have no simple solution.

157

CHAPTER 7. EXAMPLES

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.25: Merchants.

158

7.2. SIMPLEST COLOR BALANCE

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.26: Books.

original image balanced 3%

Figure 7.27: Young girl in gray-scale.

159

CHAPTER 7. EXAMPLES

original image balanced 1% balanced 3%

Figure 7.28: Cathedral in gray-scale.

7.2.9 Credits

courtesy Philip Greenspun30

Kobus Barnard, SFU Computational Vision Laboratory31

Noclip, Wikimedia Commons, public domain32

Ana Belén Petro

Daniel Schwen, Wikimedia Commons, GFDL/CC-BY-SA33

Drew Streib, Flickr, CC-BY-NC34

30http://philip.greenspun.com/
31http://www.cs.sfu.ca/~colour/data/
32http://commons.wikimedia.org/wiki/File:National_Cathedral_Sanctuary_Panorama.png
33http://commons.wikimedia.org/wiki/File:Staten_Island_Ferry_terminal_crop.png
34http://www.flickr.com/photos/dtype/145118964/

160

http://philip.greenspun.com/
http://www.cs.sfu.ca/~colour/data/
http://commons.wikimedia.org/wiki/File:National_Cathedral_Sanctuary_Panorama.png
http://commons.wikimedia.org/wiki/File:Staten_Island_Ferry_terminal_crop.png
http://www.flickr.com/photos/dtype/145118964/

7.2. SIMPLEST COLOR BALANCE

original image balanced 0%

balanced 1% balanced 2% balanced 3%

Figure 7.29: Cathedral in high dynamic range color.

161

CHAPTER 7. EXAMPLES

original image balanced 3%

Figure 7.30: Horse in back-lighting.

original image balanced 3%

Figure 7.31: Group in back-lighting.

162

7.2. SIMPLEST COLOR BALANCE

7.2.10 Software and Demo Design

These additional sections about the implementation design and the online demonstration were
not in the online version.

Implementation

The “Simplest Color Balance” is probably the simplest algorithm published in IPOL, only
composed of a quantile computation and an affine transform. However, even such a simple
algorithm can be implemented with care for efficiency and reusability.

Code Design In fact two algorithms are implemented: the “RGB color balance” and the
“IRGB intensity balance”. These two variants are similar, but while the former can be applied
to images expressed as unsigned 8-bit integers, the latter cannot because of the RGB/I
conversion step. The “IRGB” variant could have been implemented with integer arithmetic,
with 3I ∈ [0..3Vmax], but we preferred to use floating-point values in a straight forward code
demonstrating an alternative to efficient but integer-only methods.

The two variants are thus implemented with different functions but follow the same design.
The function calls and file dependencies are represented in figure 7.32.

❼ balance.c contains the main() function and is responsible for all the tasks only relevant
to the execution environment: processing the command-line parameters, reading the
input file, calling the color balance functions and writing the output file. The image data
format (integer or floating-point) and the algorithm variant to be applied are determined
by a command-line parameter. This is the only source code file with assumptions about
how the program will be used, and as such this code is not reusable and not expected
to be reused.

❼ colorbalance lib.c contains the high-level implementation of the color balance algo-
rithms, isolated in a single source code file reusable in other software projects via two
functions, colorbalance rgb u8() and colorbalance irgb f32(). These functions
process color vectors, without any need for the notions of images or two-dimension
arrays.

❼ balance lib.c contains the low-level routines used by the color balance functions:
quantile computation and affine transforms for integer and floating-point. These generic
functions do not need any color information, they only process generic vector data.

❼ io png.c has the simplified interface to libpng, with routines to read image files into
arrays or writes them with a single function call. It lets the programmer choose which
kind of image is to be processed (grayscale or color, integer or floating-point) and
internally converts the PNG image to the expected format.

163

CHAPTER 7. EXAMPLES

balance_lib.c

io_png.c

colorbalance_lib.c
balance_lib.c

libpng

main()

io_png_read_u8_rgb()

io_png_write_u8()

io_png_read_f32_rgb()

io_png_write_f32()

colorbalance_rgb_u8()

colorbalance_irgb_f32()

io_png_read_raw()

io_png_write_raw()

png_read_png()

png_get_rows()

png_write_image()

png_write_info()

balance_u8()

balance_f32()

minmax_u8()

quantiles_u8()

rescale_u8()

minmax_f32()

quantiles_f32()

rescale_f32()

Figure 7.32: Function calls and file dependencies for the “Simplest Color Balance” implemen-
tation. Minor functions have been omitted for clarity.

164

7.2. SIMPLEST COLOR BALANCE

Optimization First, the quantile computation can be avoided if the color balance is to be
done without saturation. In that case, an early test replaces the quantiles with the minimum
and maximum of the array.

Then, for 8-bit integer data, the quantiles are computed by a histogram method. This method
has many advantages: is is very simple, computes in linear time and uses a fixed memory space
for every image size. Floating-point data, however, cannot be processed into an histogram. A
quickselect algorithm [128] would probably be the best solution with fast computation in
linear time, but was not chosen for the implementation published in IPOL in order to minimize
the amount of code to be reviewed, and because the performances were good enough with a
simple sorting algorithm using qsort().

The quantiles are then used in an affine transform applied to the image values. For integer
images, a lookup table is used. For every of the 256 possible input values, the result of
the color balance transform is precalculated and stored. Then these values are retrieved
instead of re-computing them for every pixel. This is efficient because few input values can
be encountered, and the table is small enough to be efficiently stored in the processor cache.
This method is not adapted to floating-point values, which are handled instead by a simple
affine transformation loop. The performances of this loop could probably be improved: the
branching instructions could be avoided in the loop by using bit-twiddling code, and the use
of vector SIMD instructions by the compiler could be facilitated.

Quality Control The program is a standard C89 source code. It only needs a C compiler
and the libpng external library and should be compilable and usable in any computing
environment. The standard compliance was tested by using strict compilation options35 and
the source code quality was further checked by static code analysis with Splint and Clang36.
These tests do not guarantee the quality of the code, but they can be used to detect and fix
known dangerous patterns and abuses of the language.

After the publication of this code in IPOL37, these tests were further improved with the
usage of other static code analysis tools (Cppcheck38) and by compiling the program with
various C and C++ compilers39 and fixing the compiler warnings. Finally, functional tests
were added to verify that the exact same results are obtained with all these compilers and all
the successive versions of the code.

This quality control is routinely performed via tests integrated in the build procedure, and
automatically performed every time a new version is recorded:

❼ the code is built by the default C compiler, with cross-compiler compatible options and
the possibility to specify the compiler at build time;

❼ the pseudo-target lint checks all the source code with static checking tools and compiles
it with strict compiler options;

35The basic set of compilation options was gcc -ansi -pedantic -Wall -Wextra -Werror.
36Splint (http://www.splint.org/) is a static code analysis tool. The Clang compiler (http://clang.llvm.

org/) has static analysis functions.
37http://dev.ipol.im/git/?p=nil/retinex_pde.git
38Cppcheck (http://cppcheck.sourceforge.net/) is a code analysis tool for C and C++ programs.
39We use the following compilers: GNU gcc and mingw, LLVM clang, Intel icc, Sun suncc, tcc, and nwcc.

165

http://www.splint.org/
http://clang.llvm.org/
http://clang.llvm.org/
http://dev.ipol.im/git/?p=nil/retinex_pde.git
http://cppcheck.sourceforge.net/

CHAPTER 7. EXAMPLES

❼ the pseudo-target beautify maintains the indentation by processing all the source code
with a code reformatting tool;

❼ the pseudo-target test builds the program with various compilers, runs functional tests
and executes the program in a dynamic memory checking environment.

Demonstration

Workflow The demonstration of this algorithm proposed in IPOL [299] follows a basic
workflow, illustrated in the chart 7.33 and screen captures 7.34.

start
page

input
selection

input
upload

algorithm
options

algorithm
execution

parameter
selection

algorithm
result

redirection

restart with
new data

restart with
new options

algorithm
archive

input
conversion

Figure 7.33: Typical IPOL demo flow chart, applicable to the “Simplest Color Balance” case.

❼ The start page proposes a few input images for the algorithm. With these images, demo
users can reproduce the results published in the article. They can also upload their own
images to try the algorithm.

❼ On the parameter page, one can choose the saturation levels, and launch the algorithm.

❼ The result page is displayed after a few seconds, with the output of the algorithm.
Then one chooses to restart the demo with another threshold parameter, or an new
input image.

Usage From its first public release on August 28th, 2009, to December 31st, 2011, this demo
has been used more than 1300 times with original input images; 1000 of these experiments
are publicly available in the archive40. Based on recent statistics, we can estimate that the
algorithm has been tested more than 4500 times by IPOL visitors and collaborators with this
demonstration interface during the same period.

40http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/

166

http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/

7.2. SIMPLEST COLOR BALANCE

Airfield Airfield Es Canonge Ceiling Dog

Ferrari Fruits House Lena Lily

Living room Manhattan Math books Red woman

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Simplest Color Balance
article demo archive

Please cite this article if you publish results obtained with this online demo.

Select Data
Click on an image to use it as the algorithm input.

image credits

Upload Data
Upload your own image files to use as the algorithm input.

input image No file selectedChoose File upload

Images larger than 490000 pixels will be resized. Upload size is limited to 10MB per image file .
TIFF, JPEG, PNG, GIF, PNM (and other standard formats) are supported. The uploaded files may be re-used for further analysis.
Only upload suitable images. See the copyright and legal conditions for details.

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol
 feeds • sitemap • contact • privacy policy • supported by CMLA, ENS Cachan

s1: 1.5

s2: 1.5

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Simplest Color Balance
article demo archive

Please cite this article if you publish results obtained with this online demo.

Algorithm Parameters
Choose the percentage of pixels saturated to black (s1) and white (s2). For example, if you choose s1=1% and
s2=2% then the 1% darker pixels in each channel will be saturated to black, and the 2% brightest pixels to white.

run

Input Image

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol
 feeds • sitemap • contact • privacy policy • supported by CMLA, ENS Cachan

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Simplest Color Balance
article demo archive

Please cite this article if you publish results obtained with this online demo.

The algorithm result is displayed hereafter, with the RGB color balance and IRGB intensity balance variants. It ran
in 0.28s.
You can run again this algorithm with new data.
Restart with new input data or different parameter: new input different parameters

Results (s1=1.5, s2=1.5)
Histogram scale is set to the histogram size of the input image. Dark colors indicate overflows and truncated bins.

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol
 feeds • sitemap • contact • privacy policy • supported by CMLA, ENS Cachan

input
RGB
IRGB

Figure 7.34: Input selection, parameters and results of the IPOL demo for “Simplest Color
Balance”.

167

CHAPTER 7. EXAMPLES

168

Chapter 8

Usage and Feeback

Contents

8.1 Authors Survey . 170

8.1.1 Profile of the Authors . 170

8.1.2 Writing an Article . 171

8.1.3 Priorities . 173

8.1.4 Satisfaction . 174

8.1.5 Conclusions . 175

8.2 Usage Statistics . 176

8.2.1 Visits and Actions . 176

8.2.2 Origin . 177

8.2.3 Settings . 179

169

CHAPTER 8. USAGE AND FEEBACK

Abstract

Some authors answered a survey about their experience in publishing an article in
IPOL. These answers show their enthousiasm for this new form of publication and the
feasibility and interest of an online journal with a software component, but some specific
tools and interfaces are needed to assist the authors.

On the other side, usage statistics collected from the visits of the journal provide an
estimation of how the articles are accessed and used, and this popularity index can be
used as a complement to the traditional citation index.

8.1 Authors Survey

53 authors of IPOL articles, published or in process, were invited to answer a survey in
November 2011. 24 answers were collected and analyzed with the LimeSurvey1 web survey
software. When the authors were involved in more than one article, they were asked to
consider the article most representative of their IPOL experience when answering. We present
a synthesis of these answers hereafter.

8.1.1 Profile of the Authors

Half of the authors who answered the survey were tenured researchers, and the other half
were post-doc researchers or PhD students (table 8.1). They were involved in three kinds
of articles (table 8.2). 40% of the articles are implementations and analysis of a classic
algorithm previously presented by other authors in another paper. 30% of the articles are
the implementations and analysis of algorithms previously presented by the same authors in
another paper, and the remaining 30% are the implementation and analysis of an original
algorithm.

author

master student 2
PhD student 7
post-doc 2
junior researcher 2
senior researcher 10

Table 8.1: Categories of authors.

article

original algorithm 7
re-publication 7
classic algorithm 10

Table 8.2: Categories of articles.

1http://www.limesurvey.org/

170

http://www.limesurvey.org/

8.1. AUTHORS SURVEY

The majority of the authors use the Linux operating system for their research tasks. Mac OS X
could be merged with Linux in a POSIX category which is clearly the main computing envi-
ronment for the authors, but Windows counts for 25% and cannot be ignored (table 8.3).

operating system

Windows 6
Mac OS X 6
Linux 12

Table 8.3: Usage share of operating systems.

The C and C++ languages are the main programming environments for the authors (ta-
ble 8.4). Others (20%) use MATLAB and Python. As seen in later survey items, MATLAB
and Python users could adapt to the requirement of a C/C++ source implementation of the
algorithm. This ranking matches the programming languages observed in the industry2 and
Open Source3 communities where C/C++ is the most common programming platform, with
the exception of Java, notably absent from scientific computing projects.

programming language

C 8
C++ 10
Python 1
MATLAB 4
other 0

Table 8.4: Usage share of programming languages.

No author uses the Internet Explorer browser (table 8.5). This is interesting, because this
browser has some issues with standard compliance and some web technologies have been
deliberately avoided in IPOL to be accessible from Internet Explorer users. If this tendency
is confirmed in a larger survey, we could consider the essential visitors of the IPOL web site do
not use Internet Explorer or can switch to another browser, and we could use more advanced
web techniques supported by Firefox and Chrome4.

However, there is a bias in these last three results because only IPOL authors were asked to
answer. A larger survey targeting image processing researchers is needed to confirm these
statistics.

8.1.2 Writing an Article

The redaction of an IPOL article seems to require as much work as writing an article for
a “classic” journal (table 8.6), and adapting a software to the IPOL requirement seems to

2TIOBE Programming Community Index for April 2012 (http://www.tiobe.com/index.php/content/
paperinfo/tpci/).

3Ohloh language comparisons (http://www.ohloh.net/languages/compare).
4Users of “other” browsers were asked for details. They use the Rekonq and Epiphany browsers, both based

on the standard-compliant rendering engine Webkit.

171

http://www.tiobe.com/index.php/content/paperinfo/tpci/
http://www.tiobe.com/index.php/content/paperinfo/tpci/
http://www.ohloh.net/languages/compare

CHAPTER 8. USAGE AND FEEBACK

web browser

Internet Explorer 0
Firefox 8
Chrome 12
Opera 0
other 3

Table 8.5: Usage share of web browsers.

double on average the time required for development (table 8.7), but we can observe large
deviations in this table, probably connected to the individual proficiency of the authors in
software development and the origin and characteristics of every software5.

× 0.25 5
× 0.5 5
× 1 8
× 2 2
× 4 2

Table 8.6: Redaction time for an IPOL article, compared with a ”classic” article.

× 1 2
× 1.5 9
× 2 6
× 4 6

Table 8.7: Development time for an IPOL program, compared with a ”classic” article.

None of the requirements for the implementation of algorithms seems to be a serious issue for
the authors (table 8.8). These requirements usually are no problem at all, or can be fulfilled
with a small additional work. The two authors who felt the C/C++ requirement had an
heavy impact on their work were used to develop in MATLAB or in the MegaWave [136]
environment. Overall, the portability, library and file format restrictions seem to have the
most noticeable impact, but it appears to be manageable for most of the authors.

All the authors chose to publish their code under the GPL family of software licenses (GPL/L-
GPL/AGPL). Three authors declared that they have registered a patent for the algorithm
they implemented and published.

5It is interesting to observe that this overhead is compatible with the “rule of thumb” ×3 overhead estimated
by Frederick P. Brooks for passing from a debugged program to a “programming product”, usable, testable
and modifiable by anybody [61].

172

8.1. AUTHORS SURVEY

A B C D E

usable in command-line 0 0 1 9 14
source code 0 0 5 5 14
detailed documentation 1 0 5 10 8
implementation in C/C++ 1 1 3 2 17
portable implementation 0 2 6 11 5
restrictions on file formats 1 2 1 10 10
restrictions on libraries 1 3 3 10 6

Table 8.8: Impact of the IPOL software guidelines on software development; A: lot of extra
work, B: some extra work, C: not an obstacle, D: minor impact, E: no impact

8.1.3 Priorities

All the authors declared they would cite an IPOL article in a research paper and suggest
colleagues to read IPOL materials, and more than 90% of them would write another article
in IPOL and suggest colleagues to do the same.

Respondents were also asked to order a list of nine possible improvements, and their prefer-
ences were aggregated into a list of priorities6 (table 8.9).

1 a better interface to edit the articles
2 a better indexation in academic journals databases
3 some source code tools and libraries
4 a better system for the web demos
5 a better archive for the web demos
- a better interface to handle the reviews of the articles
- get some feedback from the readers for every article
- improving the design of the IPOL web site
- support for other kinds of data (sound, video)

Table 8.9: Priorities for IPOL developments (the last 4 items were ranked too low for a
meaningful order).

The first priority is the improvement of the interface used to edit the articles. Other questions
showed that the authors were dissatisfied with the wiki-like edition environment and the
Markdown7 syntax currently used for the articles, and they would prefer to send their articles
instead, using LaTeX (tables 8.10 and 8.11).

However, there was a positive feedback on the principle of publishing the articles as HTML
pages, and not much enthusiasm with the proposition to switch to a PDF format. The good
option seems to receive the articles written in LaTeX and produce an HTML version from it.

We expected some criticism of the current review system, but its improvement is ranked
low in the priority list. The majority of the authors are satisfied or very satisfied with the

6The winning choice was selected with a Condorcet method, then removed from the ballots, and the process
was repeated to elect the next choices.

7http://daringfireball.net/projects/markdown/

173

http://daringfireball.net/projects/markdown/

CHAPTER 8. USAGE AND FEEBACK

are you satisfied with. . . Yes No

the edition interface 7 1 4 6 6
the edition language 3 4 4 9 4
the article web format 11 10 2 1 0
the information about the review process 6 7 5 4 0
the speed of the review process 7 4 6 1 1

Table 8.10: Satisfaction with the edition environment and review process.

would you prefer. . . Yes Uncertain No

a submission system 12 2 9
to use LaTeX 19 3 2
to publish as PDF 5 9 8
a web review interfaces 9 11 3

Table 8.11: Propositions of alternative edition options and review tools.

current documentation and speed of the review process. They would prefer a web-based
review interface, but the demand is not as clear as for a new edition interface, with many
uncertain respondents (tables 8.10 and 8.11).

8.1.4 Satisfaction

All the authors declared they would cite an IPOL article in a research paper and suggest
colleagues to read IPOL materials, and more than 90% of them would write another article
in IPOL and suggest colleagues to do the same.

No author had a bad impression of IPOL and almost all rated their experience positive or
very positive. When asked to detail the reasons for this satisfaction in a supplement survey,
they cited the use of IPOL as a complete archive of all the materials related to an algorithm.

“For the first time I have been able to show to my colleagues what I do, and exactly
how I do it.”
“Being forced to wrap-up implementation in a usable and documented way is useful
as a future self-reference (not forgetting what you made yourself), for teaching,
for reference to other colleagues, and as a way to obtain feedback.”
“It is a very convenient way to demonstrate my work without having to remember
where my program is, its arguments, find appropriate images, etc. Associating a
complete description with a fixed version of the algorithm avoids forgetting ‘what
are the features and limitations of this version of the code?’.”

The web demonstration tools are useful to get a better understanding of the algorithms, for
the authors and for the readers.

“It’s easy to prove that the author’s algorithm works using the online demo. The
online demo allows the public to understand better the algorithms.”

174

8.1. AUTHORS SURVEY

“IPOL allows to make a lot of experiments and better understand the models.”
“I have learned a lot from the archive of my article.”

The publication of the implementation is appreciated as a motivation to produce a better
program.

“It gave me the opportunity to show my work (not only the mathematics, but also
the code) to the image processing groups around the world”
“Exposing the code to everybody makes me work harder to have source code I could
be satisfied with and not stop at the ‘it works’ point.”
“It drove me to change the way I will code for future publications.”
“It is an opportunity to write a complete and debugged code and this work is
valued.”

And by publishing in IPOL, the authors re-evaluate the importance and usefulness of academic
papers.

“It made me re-think the way results are shown, particularly from the visualiza-
tion point of view. In addition, it made me also re-think what are the important
contributions of a scientific publication, i.e. the value of re-publishing a previously
published paper for instance.”
“My work is more useful for the academic community than a normal paper.”

These reasons for the satisfaction of the author match the main reasons to share code and
data, as observed in the machine learning research community [325]: set a standard for the
scientific method in computational sciences and improve the visibility of one’s work and its
usefulness for the authors and for others8. We think that the requirement to provide the
code and its inclusion as a primary reviewed, published and referenced material instead of
the usual “supplementary materials” section helps mitigate some of the reasons not to share
observed in the same study.

8.1.5 Conclusions

We can draw the following conclusions from this short survey. However, due to the small
number of answers, they would need to be confirmed by further studies, and a survey on
image processing researchers out of the IPOL community.

❼ the IPOL software requirements are not a serious obstacle for publication among the
current authors;

❼ more work is needed to publish in IPOL than to publish elsewhere, mainly for the
software part, but this doesn’t affect the author’s overall satisfaction;

8In the aforementioned study, The top reasons to share code and data were: - Encourage scientific advance-
ment - Encourage sharing in others - Be a good community member - Set a standard for the field - Improve
the caliber of research - Get others to work on the problem - Increase in publicity - Opportunity for feedback
- Finding collaborators

175

CHAPTER 8. USAGE AND FEEBACK

❼ the priority must be a reform of the edition/submission process to accept LaTeX input
and abandon the wiki-like model, but publishing the articles in PDF is not enough;

❼ IPOL needs to be actively inserted in academic publication databases.

Despite the improvements needed in the IPOL tools and process, the idea of publishing algo-
rithms online with their implementation and demonstration is very appreciated by researchers.

8.2 Usage Statistics

Visits of the IPOL website are tracked with the Piwik9 web statistics software. This informa-
tion is completed with our own measures of the web activity, including the web demonstrations
of the algorithms and their archives, and external information from Google Webmaster10. The
results for the one year period between December 2010 and November 2011 are presented
hereafter.

8.2.1 Visits and Actions

IPOL received 85000 visits during this year, an average of 7000 visits/month or 230 visits/day.
We define a visit as a succession of web page accesses without an interruption of more than
30 minutes between 2 successive page views. Half of the visits came from returning visitors,
defined as people who visited IPOL with the same computer and browser during the last 3
months. One third of the visits were long visits, with more than one page view (table 8.12).

event per year

visit 85370
returning visit 42657
long visit 30733
run demo 41472
original data 14978
download 5447

Table 8.12: Visits and actions between December 1st, 2010 and November 30th, 2011.

12% of the visits included the usage of the web demos to test the algorithms, and the visitors
who use the demos run them between three and four times per visit on average, for a total
41000 demo executions/year, or 3500 executions/month. One third of these tests are done with
original data uploaded by the visitors and the results are archived with 15000 new archives
during the last year. 6% of the visitors downloaded a source code or dataset attached to an
article, for 5500 downloads/year or 450 downloads/month.

Detailed statistics were compiled in November for all the articles published before (table 8.13)
and show the heterogeneity of the IPOL usage. The most popular article received 1563 unique

9http://www.piwik.org/
10http://www.google.com/webmasters/

176

http://www.piwik.org/
http://www.google.com/webmasters/

8.2. USAGE STATISTICS

page views, the least exposed article was viewed 64 times. On average, articles are viewed
298 times per month. This can be compared to other journals; SIIMS11, for example, had
812 downloads per months in 2011 for articles published during the previous year.

The most popular demo was used 1149 times, including 871 times with original data; the least
used one processed 13 images, never on original data. Some algorithms, like the interpolation
methods, show very consistent results on all sorts of input images, and they are not tested a
lot on original data. Other algorithms are very sensible to the characteristics of the input or
the demo provides few input examples, so most of the experiments are done on original data.

article views demo (orig.)

my affine sift 1563 1149 (871)
bcm non local means denoising 833 406 (147)
lmps simplest color balance 529 235 (72)
ys dct denoising 439 233 (80)
g linear methods for image interpolation 434 127 (33)
ags algebraic lens distortion estimation 421 138 (11)
blmv nonlinear cartoon texture decomposition 371 198 (116)
lmps retinex poisson equation 319 213 (77)
ggm random phase texture synthesis 171 102 (38)
m quasi euclidean epipolar rectification 164 32 (12)
gl localcolorcorrection 144 31 (2)
blm color dimensional filtering 122 13 (2)
g malvar he cutler linear image demosaicking 111 16 (1)
bcms self similarity driven demosaicking 107 21 (0)
g image interpolation with contour stencils 97 27 (9)
d point cloud data 92 - (-)
cm fds mcm amss 82 14 (1)
g gunturk ap demosaicking 67 21 (0)
g interpolation geometric contour stencils 66 41 (21)
g roussos diffusion interpolation 66 12 (0)
g zhang wu lmmse image demosaicking 64 13 (0)

Table 8.13: Usage of published articles in November 2011: unique page views, demo exe-
cutions, and demo executions with original data in parenthesis; ”-” denotes the absence of
demo.

8.2.2 Origin

The geolocalization of the visitors from their network address with the MaxMind12 database
indicates that they come from 152 different countries. Almost half of the visits are coming
from France, United States and China (table 8.14). With a geolocalization at the city level,
we can evaluate the impact of the visits from very active contributor groups, IPOL insiders.
Cachan (FR), Palma (ES), Montevideo (UY) and Nagoya (JP) count, together, for 5% of

11SIAM Journal on Imaging Sciences (http://epubs.siam.org/siims/).
12MaxMind Geolite City geolocalization database (http://www.maxmind.com/app/geolitecity).

177

http://epubs.siam.org/siims/
http://www.maxmind.com/app/geolitecity

CHAPTER 8. USAGE AND FEEBACK

the visits. This shows that the influence of the IPOL authors and developers on the usage
statistics is marginal.

country %

France 15
United States 14
China 12
India 5
Germany 5
Japan 4
Spain 3
Russia 3
United Kingdom 3
Taiwan 2
Italy 2
Korea 2
Brazil 2
Canada 2

Table 8.14: Geolocalization of the visitors.

A list of more than 850 science, research and education institutions could be recognized in
the network provenance of the visitors. This list was extracted by looking for keywords in the
reverse names of the visiting IP addresses. There probably are some duplicate denominations,
and some locations count for hundreds of visits while some others only generated one page
view, but this shows the accessibility of IPOL in the research community.

Half of the visitors access IPOL directly (table 8.15). These direct entries happen when the
visitor enters the address directly in the browser or uses a bookmark. This usually means
that the visitor knows IPOL and often visits the web site.

origin %

direct entry 46
website 31
search engines 23

Table 8.15: Origin of the visits.

Google identified 446 different domains with a total of 5700 links to http://www.ipol.

im/, but an important part of these links come from “content farms”. These content farms
duplicate Wikipedia pages or research papers, including the links to IPOL included in these
documents. However, when the incoming links are counted by the number of visits they
generate, 537 websites with links followed to IPOL can be observed. Most of the visitors
follow a link from Wikipedia. They also come from university, labs and researcher pages, and
various technical forums, blogs and indexes related to image processing and computer vision
(table 8.16).

178

http://www.ipol.im/
http://www.ipol.im/

8.2. USAGE STATISTICS

website %

wikipedia.org 42
polytechnique.fr 15
ens-cachan.fr 9
stackoverflow.com 3
cvpapers.com 2
inspirit.ru 1
siam.com 1
visual-experiments.com 1
cvchina.com 1
parisdescartes.fr 1
graphicon.ru 1
csdn.net 1

Table 8.16: Domain share of the visits following a link (websites counting for less than 1%
have been ignored).

8.2.3 Settings

We find interesting to compare the technical profile of the visitors with the average Internet
users and our knowledge about the IPOL authors. Windows is the operating system of 70% of
the visitors (table 8.17), less than the proportion found in global Internet statistics but more
than in our group of authors. The Internet Explorer browser is also much less represented
than in global statistics with only 19% of the IPOL visitors (table 8.18), but this is to be
compared with 0% for the authors.

These statistics make sense when we consider that a large portion of the IPOL visitors come
from the research, education, software development and image communities. Linux has more
penetration in these groups than in the general computer market, and so do alternative and
innovative browsers.

Finally, the browser profile of the visitors can be completed with an evaluation of the sup-
port for some web technologies13 (table 8.19). This information can guide the development
decisions of IPOL by avoiding technologies unavailable to a large percentage of the visitors.

OS %

Windows 71
Linux 16
Mac OS X 11

Table 8.17: Operating systems, all versions aggregated.

13JavaScript support is only measured since October 2011. Other technologies are only measured on non-IE
browsers.

179

CHAPTER 8. USAGE AND FEEBACK

browser %

Firefox 42
Chrome 26
Internet Explorer 19
Safari 7
Opera 5

Table 8.18: Browser share, all versions aggregated.

technology %

JavaScript 97
cookies 95
Flash plugin 90
Java plugin 77
PDF plugin 70

Table 8.19: Browser features available.

180

Appendix A

Software Guidelines

Contents

A.1 In Brief: Check List, Check Service and Examples 182

A.2 About this Document . 183

A.2.1 Status . 183

A.2.2 Revisions . 183

A.2.3 Vocabulary . 183

A.3 Guidelines . 183

A.3.1 1. Packaging and Content . 183

A.3.2 2. Implementation . 185

A.3.3 3. Copyright, License and Patents 187

A.3.4 4. Documentation . 189

A.4 Annexes . 191

A.4.1 A. Key Words . 192

A.4.2 B. Compression and Archive Tools 192

A.4.3 C. Coding Help . 193

A.4.4 D. Source Code Tools . 193

181

APPENDIX A. SOFTWARE GUIDELINES

IPOL reviews, uses, publishes and distributes some software provided by the authors. With
the requirements and recommendations expressed in these guidelines, we intend to facilitate
the production and review of verifiable and usable software for reproducible research.

A.1 In Brief: Check List, Check Service and Examples

The list hereafter is a summary of the guidelines, to quickly check an IPOL program. Some
are requirements, others are only recommendations. The guidelines are detailed and explained
later in this document.

❼ zip or tar/gzip archive name version.{zip,tar.gz,tgz}, less than 2 MB

❼ everything into a name version/ folder

❼ file names with a-z,A-Z,0-9,-, ,.

❼ no hidden file, backup or useless file, no binary

❼ C89, C99 or C++98 code tested with gcc -std=xxx -Wall -Wextra -Werror

❼ portable code, 32/64-bits, nothing specific to an operating system

❼ only libtiff, libjpeg, libpng, zlib, fftw, cblas and clapack external libraries

❼ compilation with make or cmake, only standard options, make uses ✩(CC) or ✩(CXX)

❼ command-line non-interactive interface

❼ max 1 GB memory, max 30 s computation in the demo environment

❼ can read/write in PNG, TIFF, PNM, EPS, SVG, VRML or PLY format

❼ copyright attribution and GPL/BSD license info in every source file

❼ patent warning if needed

❼ README.txt essential information

❼ correct, clean code in English

❼ max 80 characters per line, max 1000 lines per file

❼ main(), algorithmic and auxiliary code in different files

❼ detailed comments for every function and every implementation step

❼ example input data and result

A service to check an IPOL program against some of these guidelines is available with examples
of programs following the guidelines at http://tools.ipol.im/pkg/. This service can be
used by IPOL authors to verify their code before submission, and by reviewers as a preliminary
validation of the software1.

1The absence of error reported by this service doesn’t imply that all the guidelines are correctly followed.
Some guidelines need a human review.

182

http://tools.ipol.im/pkg/

A.2. ABOUT THIS DOCUMENT

A.2 About this Document

A.2.1 Status

This document is the official IPOL software guidelines, version 1.00, published on December
20th, 2011. It is immediately applicable and obsoletes previous versions. The reference version
is available on line at http://tools.ipol.im/wiki/ref/software_guidelines/.

A.2.2 Revisions

When needed, future versions of this document will be published and will replace the current
version. The current version will be kept and a summary of the differences will be provided.
This revision will be announced on the IPOL website2 and the IPOL discussion list3.

A.2.3 Vocabulary

In this document, the term “IPOL program” is used to designate the reference program
implementation of an algorithm submitted for publication in an IPOL article. An IPOL
article may publish more than one program, an IPOL demo may use more than one program.

In this document, the words must, must not, should, should not, recommended, and
may are used to express required, recommended, and optional items. Their interpretation is
described in IETF RFC21194 and detailed in the context of these guidelines in Annex A.

A.3 Guidelines

A.3.1 1. Packaging and Content

1.1. Compressed Archive

An IPOL program must be packaged as a compressed archive file. This file archive can either
be a single volume .ZIP compressed archive or a GZIP compressed tar archive5. The size of
the compressed archive file should be less than 2 MB. In the remainder of this document,
we will use the terms “zip archive” and “tar/gzip archive” for convenience.

Annex B of this document provides some examples of programs that can be used to produce
such compressed archives.

2http://www.ipol.im/
3http://tools.ipol.im/mailman/listinfo/discuss
4http://tools.ietf.org/html/rfc2119
5These file formats are defined by the PKZIP APPNOTE specification6, version 6.3.2, for the .ZIP com-

pressed archive format, the IETF RFC19527 for the GZIP compressed format, and the POSIX.1 ustar defini-
tion8 for the tar archive format.

183

http://tools.ipol.im/wiki/ref/software_guidelines/
http://www.ipol.im/
http://tools.ipol.im/mailman/listinfo/discuss
http://tools.ietf.org/html/rfc2119
http://www.ipol.im/
http://tools.ipol.im/mailman/listinfo/discuss
http://tools.ietf.org/html/rfc2119
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://tools.ietf.org/html/rfc1952
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06

APPENDIX A. SOFTWARE GUIDELINES

1.2. Archive Name, Program Name and Version

The compressed archive file of an IPOL program must be named according to the
name version.extension pattern, where:

❼ name and version must consist only of lower case letters (a-z), digits (0-9), minus (-)
and period (.) signs;

❼ name must be at least two characters long and start with a letter; it must indicate
the name of the program; this name can be the name of the executable program file, or
another name, at the author’s will;

❼ version must start with a digit; it must indicate a version number for the program,
in the sense that two different releases of the program must have two different version
numbers; if no version numbering scheme is established for the program, the YYYYMMDD
pattern based on the year, month and day of the release date may be used;

❼ extension must be zip for zip archives and tar.gz or tgz for tar/gzip archives.

1.3. File and Folder Names

All the files and folders extracted from the compressed archive must be located inside a base
folder named name version, where name and version are identical to those used for the
compressed archive file name. Absolute path must not be used for files and folders extracted
from the archive.

The name of all files and folders composing the IPOL program must consist only of lower
or upper case letters (a-z, A-Z), digits (0-9), minus (-), underscore () and period (.) signs.
They should start with a letter.

The names should provide a meaningful hint of the content of these files and folders.

1.4. Hidden and Useless Files

An IPOL program should not include hidden files or folders or by-products of the tools used
by the authors, such as (but not limited to):

❼ files inserted by file managers (.DS Store, .directory);

❼ folders inserted by version control managers (.svn, .git);

❼ backup versions (filename~, filename.bak).

The program should not be distributed with files not useful to build, use or study the
implementation of the algorithm published in IPOL.

184

A.3. GUIDELINES

A.3.2 2. Implementation

2.1. Source Code

An IPOL program must include all the material necessary to build one or more executable
program files implementing the algorithm published in IPOL. This materialmust be provided
in human-readable source code form. An IPOL program must not be distributed with binary
precompiled files if these files can be obtained from source code9.

Annex C provides some information for IPOL authors to help them perform various frequent
implementation tasks.

2.2. Programming Language

The source code of an IPOL program must follow the published standard syntax of one or
more compiled programming languages. IPOL can currently only process C89 (ANSI C),
C99, and C++98 (ISO C++)10. If the authors want to publish their program with another
well-known and standardized compiled language (such as Fortran 90), they should contact
the editorial board to investigate the possibilities.

IPOL authors should test their C and C++ source code with the gcc compiler in strict
compilation mode14 before submitting it to IPOL.

The source code may use the OpenMP 3.015 API for shared multiprocessing programming
(parallel programming) but it must also compile and provide the same results (albeit slower)
without OpenMP. Usage of OpenMP must not be tied to a specific number of processors
and must only rely on the OpenMP standard, not on any vendor implementation.

2.3. Portability

The source code of an IPOL program must not require any extension of the language or
its standard library, or any resource specific to a hardware environment, operating system or
compiler. These extensions and resources may be used to achieve better performances if they
are available but their availability must be detected during the compilation or execution and
an alternative portable implementation must be used in their absence. This includes (but is
not limited to)

❼ language dialects specific to a compiler (GNU C, Microsoft C);

❼ standard library functions specific to an implementation (drand48());

9If the authors want to distribute binary versions, they can do it in IPOL but not via the compressed
archive of the IPOL program.

10C89 is defined by the ANSI X3.159-1989 Programming Language C standard11, C99 is defined by
the ISO/IEC 9899:1999 Programming languages — C standard12, and C++98 is defined by the ISO/IEC
14882:1998 Programming languages — C++ standard13.

14C89, C99 and C++98 code can be tested with gcc -std=xxx -Wall -Wextra -Werror where xxx is c89,
c99 or c++98.

15http://www.openmp.org/mp-documents/spec30.pdf

185

http://www.openmp.org/mp-documents/spec30.pdf
http://flash-gordon.me.uk/ansi.c.txt
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.kuzbass.ru:8086/docs/isocpp/
http://www.kuzbass.ru:8086/docs/isocpp/
http://www.openmp.org/mp-documents/spec30.pdf

APPENDIX A. SOFTWARE GUIDELINES

❼ assembler code or “intrinsic functions” mapped to a processor instruction (mulps,
builtin ia32 mulps());

❼ operating system calls (Win32 GetSystemTime(), POSIX gettimeofday());

❼ file system locations (C:\Documents and Settings, /tmp);

❼ code specific to a memory model environment (32-bits, 64-bits).

Special attention will be given to the Linux 64-bit environment because it is currently the
primary environment for IPOL demonstrations. But the programmust also be usable in other
environments and this portability must not be limited to the Win32/POSIX alternative.

2.4. Dependencies

An IPOL program must not use external software components except for the libraries and
APIs listed hereafter. The program may expect these software components to be correctly
installed and configured during the compilation and execution:

❼ libtiff16 version 3.x and libpng17 version 1.4.x to read and write files, with their
dependencies libjpeg18 version 8.x, zlib19 version 1.2.x;

❼ fftw20 version 3.x (single and double precision) for Fourier transforms;

❼ cblas21 and clapack22 for linear algebra.

Other libraries can be examined and may be added to this list on request, if they are portable,
widely used, with a stable API.

This restriction only applies to software components used by the IPOL program but not
distributed in source form with the program. Annex C has more details about how some
external code, including external library code, can be used in the IPOL program.

2.5. Compilation

An IPOL program must be compiled by an automated non-interactive build procedure with
make or cmake. This build tool must not be configured to use any special compiler.

For example, make must not call gcc or g++ but must use the ✩(CC) and ✩(CXX) variables
instead. The default build procedure must use standard compiler options only23 : -c, -D,
-E, -I, -L, -l, -O, -o and -U.

16http://www.remotesensing.org/libtiff/
17http://libpng.org/pub/png/libpng.html
18http://www.ijg.org/
19http://zlib.net/
20http://www.fftw.org/
21http://www.netlib.org/blas/
22http://www.netlib.org/lapack/
23Standard compiler options are defined by the POSIX c99 specification24. Other options depending on

the environment (hardware, operating system, compiler) may also be provided, for example for an optimized
compilation, but they must not be used in the default build procedure.

186

http://www.remotesensing.org/libtiff/
http://libpng.org/pub/png/libpng.html
http://www.ijg.org/
http://zlib.net/
http://www.fftw.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.remotesensing.org/libtiff/
http://libpng.org/pub/png/libpng.html
http://www.ijg.org/
http://zlib.net/
http://www.fftw.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/c99.html

A.3. GUIDELINES

2.6. Usage and Input/Output

An IPOL program should be minimal and only perform the algorithm published in IPOL.
It must be usable from the command line environment without any user interaction, taking
all its parameters from the command line.

An IPOL program must be able to read the input data and write the final output data in at
least one of these formats25: PNG, TIFF or PNM for raster images, EPS or SVG for vector
images, VRML or PLY for meshes, and plain text for other data. Other file formats can be
added to this list on request, if they are clearly defined and widely used.

Annex C provides some information for IPOL authors to help them use external libraries to
read and write images.

2.7. Computing Resources

In the demo environment, an IPOL program should not use more than 1 GB of memory
and must not use more than 8 MB of stack memory space (for recursion, local variables
and variable-length arrays). The program must not need more than 30 seconds to process
typical data. For slow algorithms, this limit may be achieved with parallel processing or a
limit on input size.

Annex C provides some information for IPOL authors to help them improve the performance
of their implementation.

A.3.3 3. Copyright, License and Patents

3.1. Copyright Attribution

Every source code file in an IPOL programmustmention its authors in a copyright attribution
line at the top of the file. This mention may be omitted in very simple files such as header
code.

Every person whose contribution to this file is not trivial and implies some creative workmust
be credited. Of course, if the authors use or modify a file previously written by other persons,
the copyright attribution to the previous authors must not be removed. The copyright
attribution must include the years of production of the work, the full name and an e-mail
address for contributor. It may also include other relevant information such as the employer,
affiliation or web site.

An simple example for a single author can be:

25PNG is defined by the IETF RFC208326, TIFF is defined by the Adobe TIFF 6.0 Specification27, PNM
(PBM, PGM and PPM) is defined by the netpbm documentation28, EPS is defined by the Adobe Encapsulated
PostScript 3.0 Specification29, SVG is defined by the W3C Scalable Vector Graphics 1.0 Specification30, and
VRML is defined by the ISO/IEC Virtual Reality Modeling Language Specification31. There is no formal
published specification of PLY, but this simple format introduced by the Standford 3D Scanning Repository32

is documented on Paul Bourke’s site33. Plain text output should be understandable by a human reader and
easy to parse with a software.

187

http://tools.ietf.org/html/rfc2083
http://partners.adobe.com/public/developer/tiff/
http://netpbm.sourceforge.net/doc/#formats
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://www.w3.org/TR/SVG10/
http://www.web3d.org/x3d/specifications/vrml/
http://graphics.stanford.edu/data/3Dscanrep/
http://paulbourke.net/dataformats/ply/

APPENDIX A. SOFTWARE GUIDELINES

Copyright (C) 2011, Jane Doe <jane.doe@example.org>

A complex example with many contributors can be:

Copyright (C) 1998-2003, Taro Yamada <taro.yamada@example.jp>

Copyright (C) 2005-2011, Juan Perez <juan.perez@example.es>

Copyright (C) 2011, Marie Untel, ENS Cachan

<marie.untel@ens-cachan.fr>

3.2. Patent Warning

When the authors are aware or suspect that a source code file implements an algorithm which
might be linked to a patent (the main algorithm published on IPOL or another algorithm used
for this implementation), a patent warning must be inserted after the copyright attribution,
in every file potentially linked to this patent. This wording is recommended:

This file implements an algorithm possibly linked to the patent

<REFERENCE OF THE PATENT>.

This file is made available for the exclusive aim of serving as

scientific tool to verify the soundness and completeness of the

algorithm description. Compilation, execution and redistribution

of this file may violate patents rights in certain countries.

The situation being different for every country and changing

over time, it is your responsibility to determine which patent

rights restrictions apply to you before you compile, use,

modify, or redistribute this file. A patent lawyer is qualified

to make this determination.

If and only if they don’t conflict with any patent terms, you

can benefit from the following license terms attached to this

file.

3.3. License

Every source code file must mention a usage and redistribution license after the copyright
attribution (and patent warning for algorithms potentially linked to a patent). Of course, if
the authors use or modify a file previously written by other persons, the license chosen by
the previous authors must not be modified.

❼ When the authors are not aware of a possible patent issue, the license must be a free
software license of the GPL34/LGPL35/AGPL36 or BSD37 type.

❼ When a source code file can be linked to a patented algorithm and the source code
authors are not the patent inventors, the filemust be distributed under the BSD license.

34http://www.gnu.org/licenses/gpl.html
35http://www.gnu.org/licenses/lgpl.html
36http://www.gnu.org/licenses/agpl.html
37http://www.opensource.org/licenses/bsd-license.php

188

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/agpl.html
http://www.opensource.org/licenses/bsd-license.php
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/agpl.html
http://www.opensource.org/licenses/bsd-license.php

A.3. GUIDELINES

❼ When a source code file can be linked to a patented algorithm and the authors of the
source code are the patent inventors, the file must be distributed either under the BSD
license or “for research and education only”38.

These wordings are recommended:

This program is free software: you can use, modify and/or

redistribute it under the terms of the GNU General Public

License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later

version. You should have received a copy of this license along

this program. If not, see <http://www.gnu.org/licenses/>.

This program is free software: you can use, modify and/or

redistribute it under the terms of the simplified BSD

License. You should have received a copy of this license along

this program. If not, see

<http://www.opensource.org/licenses/bsd-license.html>.

This program is provided for research and education only: you can

use and/or modify it for these purposes, but you are not allowed

to redistribute this work or derivative works in source or

executable form. A license must be obtained from the patent right

holders for any other use.

The exact terms can differ, for example when a different GPL/LGPL/AGPL license version
is chosen. The full text of the license must be included in a separate file with the source
code.

IPOL authors should verify that the usage of these licenses for their software publications
complies with their employer policy and local situation and jurisdiction.

A.3.4 4. Documentation

4.1. README.txt

Every IPOL program must provide a file named README.txt in the base folder and written
in plain text and in English. This README.txt file must include the following essential
information, in any order:

❼ name and brief description of the program

❼ reference to the IPOL article

❼ authors and contact information

38Distribution “for research and education” can help avoid conflicts between patent rights and software
license when the patent inventors are the source code authors. It is not needed in other situations because the
validity of the license will depend on the local patent regulations, as stated in the last sentence of the patent
warning.

189

APPENDIX A. SOFTWARE GUIDELINES

❼ version number and release date

❼ location of future releases and updates

❼ copyright, patent and license information

❼ tools and libraries needed to compile and use the program

❼ compilation instructions

❼ usage instructions and example

❼ changes in the program since it was first published in IPOL

This README.txt file may contain other information, and may also be completed by another
documentation, possibly with more details, in text, PDF, HTML or any other format.

For a simple code, the license information in README.txt can be

This program is written by Jane Doe <jane.doe@example.org> and

distributed under the terms of the GPLv3 license.

A complex case (multiple authors, patents and licenses) can be:

This program is written by Taro Yamada <taro.yamada@example.jp>

and Juan Perez <juan.perez@example.es> with contributions from

Marie Untel, ENS Cachan <marie.untel@ens-cachan.fr>.

- mmatch.c and rot_tree.c may be linked to the pending EU patent

123.456 by Taro Yamada and Juan Perez and are provided for

scientific and education only.

- demoz.c may be linked to the US patent 65.43.21 by Jane Doe;

see the file for license terms.

- eizo.c and linalg_lib.c are distributed under the terms

of the BSD license.

- All the other files are distributed under the terms of the

LGPLv3 license.

4.2. Readability

In an IPOL program, the source code is a primary material for the publication. It will be
reviewed, published and read like any other part of the article. The authors must take care
of the clarity of their program.

The source code of an IPOL program must be consistently indented and spaced. Lines
should be limited to 80 characters and should not end with blank characters (spaces, tabs,
. . .). Files should not have more than 1000 lines. The line terminations should be the same
(DOS/Windows CRLF or UNIX CR style) for all the files of the program.

Functions should be grouped by abstraction level in different source code files:

❼ the main() function, command-line processing and input/output calls in one file,

190

A.4. ANNEXES

❼ the implementation of the algorithm described and reviewed in the IPOL article in one
or more other files,

❼ and the implementation of auxiliary and external routines in one or more other files.

Annex D provides some examples of programs that can be used to improve the indentation,
spacing and presentation of a source code.

4.3. Implementation and Comments

The source code of an IPOL program must be commented precisely and exhaustively. Au-
thors should target the “1/8 comment/instruction ratio”, but the quality of the comments
is more important than the quantity. The source code must be written in English, including
all variables, functions names and comments.

Authors must ensure that the code is understandable, to the satisfaction of the editor and
reviewers, so that consistency between the description of the algorithm and its implementation
can be verified. The relation between each part of the implementation and the respective part
of the description of the algorithm must be explained in the comments.

Authors should apply simpler implementations when available, follow the conventions of
the programming language, and use comments to explain implementation choices and every
complicated or subtle point in the program. Clarity is more important than virtuosity.

Every function must be documented with at least one line explaining what the function is
doing, and the meaning of its parameters and return value.

The Doxygen39 source code documentation format is recommended for every IPOL Pro-
gram.

Annex D provides some examples of programs that can be used to count the comment,
instruction and blank lines.

4.4. Example Data

The authors should provide an example of input file to test the IPOL program and the result
to expect when this input file is processed by the program.

A.4 Annexes

The annexes are not part of the guidelines. They are provided to help authors and editors
follow the guidelines.

39http://www.stack.nl/~dimitri/doxygen/

191

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

APPENDIX A. SOFTWARE GUIDELINES

A.4.1 A. Key Words

The key words must, must not, required, shall, shall not, should, should not, recom-
mended, may, and optional in this document are to be interpreted as described in IETF
RFC211940.

must This word, or the terms required or shall, mean that the definition is an absolute
requirement.

must not This phrase, or the phrase shall not, mean that the definition is an absolute
prohibition.

No article will be published in IPOL if a program included in this article doesn’t follow such
requirements or prohibitions.

should This word, or the adjective recommended, mean that there may exist valid reasons
in particular circumstances to ignore a particular item, but the full implications must
be understood and carefully weighed before choosing a different course.

should not This phrase, or the phrase not recommended mean that there may exist valid
reasons in particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed
before implementing any behavior described with this label.

The rationale for not following such recommendations must be agreed by the authors, re-
viewers and editor before an article is accepted for publication.

may This word, or the adjective optional, mean that an item is truly optional. One author
may choose to include the item because a particular article requires it or because the
author feels that it enhances the software while another author may omit the same item.

A.4.2 B. Compression and Archive Tools

IPOL authors can consider that the files produced by the following tools are correct zip and
tar/gzip archives:

❼ on Linux systems, the tar (usually “GNU tar”), zip (usually “Info-Zip zip”) and gzip

programs;

❼ on Mac OS X systems, the “Create Archive” feature of the graphical interface and the
tar (usually “BSD tar”) and gzip programs;

❼ on Windows systems, the “Compressed Folder” feature of the graphical interface and
the 7-zip41 program.

40http://tools.ietf.org/html/rfc2119
41http://www.7-zip.org/

192

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.7-zip.org/
http://tools.ietf.org/html/rfc2119
http://www.7-zip.org/

A.4. ANNEXES

A.4.3 C. Coding Help

The authors of the IPOL article do not need to be the authors of all the implementation of
their algorithm. They can use their own code or code from other IPOL programs or other
software projects and libraries, or a combination of these options. This is encouraged when
it helps improve the quality of the implementation. All the source code must follow the
guidelines (be standard, portable, readable and documented), regardless of its origin. The
original copyrights and licenses of the reused code parts must of course be respected.

Some help to read and write image files is provided in the IPOL wiki42 with simplified inter-
faces to libpng and libtiff and some examples. IPOL authors can also find in this wiki a
list of contributions and tools43 from IPOL authors willing to share.

The IPOL editorial board can provide some help to the authors to accelerate their code and
guide them for performance profiling and parallel programming. The IPOL discussion list44

is the good place for any questions related to IPOL, including the implementation work.

A.4.4 D. Source Code Tools

IPOL authors can use these programs to improve the presentation and clarity of their source
code: indent45 (C, Linux), uncrustify46 (C/C++, Linux andWindows), astyle47 (C/C++,
Linux, Mac OS X and Windows) and UniversalIndentGUI48 (cross-platform graphical fron-
tend).

Tools like cloc49, ohcount50 and sloccount51 can be used to count the comments, instruc-
tions and blank lines and evaluate the comment/instruction ratio.

42http://tools.ipol.im/wiki/author/code/tools/
43http://tools.ipol.im/wiki/author/code/hatchery/
44http://tools.ipol.im/mailman/listinfo/discuss
45http://www.gnu.org/software/indent/
46http://uncrustify.sourceforge.net/
47http://astyle.sourceforge.net/
48http://universalindent.sourceforge.net/
49http://cloc.sourceforge.net/
50http://ohcount.sourceforge.net/
51http://sloccount.sourceforge.net/

193

http://tools.ipol.im/wiki/author/code/tools/
http://tools.ipol.im/wiki/author/code/hatchery/
http://tools.ipol.im/mailman/listinfo/discuss
http://www.gnu.org/software/indent/
http://uncrustify.sourceforge.net/
http://astyle.sourceforge.net/
http://universalindent.sourceforge.net/
http://cloc.sourceforge.net/
http://ohcount.sourceforge.net/
http://sloccount.sourceforge.net/
http://tools.ipol.im/wiki/author/code/tools/
http://tools.ipol.im/wiki/author/code/hatchery/
http://tools.ipol.im/mailman/listinfo/discuss
http://www.gnu.org/software/indent/
http://uncrustify.sourceforge.net/
http://astyle.sourceforge.net/
http://universalindent.sourceforge.net/
http://cloc.sourceforge.net/
http://ohcount.sourceforge.net/
http://sloccount.sourceforge.net/

APPENDIX A. SOFTWARE GUIDELINES

194

Appendix B

Feedback Survey

Contents

B.1 Author Feedback . 196

B.1.1 Are you publishing in IPOL . 196

B.1.2 How much work is needed to write an article for IPOL, if compared
with an article for a “traditional” journal? 196

B.1.3 How much work is needed to produce an implementation adapted to
the IPOL requirements, if compared with a development only target-
ing “classic” publications? . 197

B.1.4 Are these restrictions on IPOL software a problem for you? 197

B.1.5 Which license did you use for your IPOL software? 197

B.1.6 Is your IPOL article linked to a patented algrithm? 198

B.1.7 About the demo archive of your IPOL article. 198

B.1.8 Are you satisfied with . 198

B.1.9 Would you prefer. 198

B.1.10 Would you. 199

B.1.11 Please order these propositions of IPOL developments, the highest
priority first . 199

B.1.12 How would you qualify your IPOL experience as an author? 199

B.2 General Information . 199

B.2.1 What is your current status? . 199

B.2.2 What is the main operating system you use for tasks related to your
research activity? . 200

B.2.3 What is the main programming language you use for tasks related to
your research activity? . 200

B.2.4 What is the main browser you use for tasks related to your research
activity? . 200

B.3 Supplement Survey . 200

B.3.1 Almost every author rated their IPOL experience “positive” to “very
positive” in the feedback survey. We would like to know more. . . . 200

195

APPENDIX B. FEEDBACK SURVEY

The questions of the IPOL author survey are reproduced hereafter, after adaptation into a
printable form. A supplement survey, with only one question addded after the analysis of the
results of the main survey, in in the Annex B.

B.1 Author Feedback

If you have been involved in more than one IPOL article, please refer to most representative
one to answer the questions.

B.1.1 Are you publishing in IPOL . . .

❼ an original algorithm, never published before

❼ an algorithm you already published in a “classic” journal

❼ an algorithm already described in a “classic” journal by other authors, with your im-
plementation

❼ an algorithm already described in a “classic” journal by other authors, with their im-
plementation

For each item, answer “yes” or “no”.

B.1.2 How much work is needed to write an article for IPOL, if compared
with an article for a “traditional” journal?

This only includes the redaction of the text of the article, not the work on the software.

❼ < ×0.25

❼ ×0.25

❼ ×0.5

❼ ×1

❼ ×2

❼ ×4

❼ > ×4

If writing an article for a traditional journal takes 1 week and writing an article on the same
subject for IPOL takes 2 week, then the answer is ×2.

196

B.1. AUTHOR FEEDBACK

B.1.3 How much work is needed to produce an implementation adapted
to the IPOL requirements, if compared with a development only
targeting “classic” publications?

❼ ×1

❼ ×1.5

❼ ×2

❼ ×4

❼ > ×4

If a software was developed in 2 weeks and needed 1 more week to be adapted to IPOL, then
the answer is “×1.5”.

B.1.4 Are these restrictions on IPOL software a problem for you?

❼ code in standard C/C++

❼ complete code required

❼ portable (Win/Mac/Linux) implementation

❼ limited list of libraries

❼ usable in command-line

❼ few file formats allowed

❼ documentation and comments requirements

For each item, chose an answer in the following list:

1. yes, it is a big problem and requires a lot of extra work

2. yes, it is a problem

3. it has an impact on my work, but it is not an obstacle

4. no, I can adapt, I don’t mind

5. no, absolutely no impact on my software

B.1.5 Which license did you use for your IPOL software?

❼ GPL/LGPL/AGPL

❼ BSD

❼ for research only

197

APPENDIX B. FEEDBACK SURVEY

B.1.6 Is your IPOL article linked to a patented algrithm?

❼ yes, and I am the patent holder

❼ yes, but I am not the patent holder

❼ no, I have not heard of such patent

B.1.7 About the demo archive of your IPOL article. . .

❼ Do you regularly look at the archive?

❼ Did it reveal some properties of the algorithm?

For each item, answer “yes” or “no”.

B.1.8 Are you satisfied with . . .

❼ the edition interface for the articles (wiki-style web system)?

❼ the edition language for the articles (markdown)?

❼ the article format (web page)?

❼ the documentation and information about the review process?

❼ the speed of the review process?

For each item, choose an answer in a 1-5 scale between “1 - yes, very satisfied” and “5 - no,
very dissatisfied”.

B.1.9 Would you prefer. . .

❼ a web review interface instead of mails?

❼ a system to send your article instead of editing directly IPOL?

❼ to use LaTeX to write your IPOL articles?

❼ to publish the articles as PDF files?

For each item, answer “yes” or “no” or “uncertain”.

198

B.2. GENERAL INFORMATION

B.1.10 Would you. . .

❼ cite an IPOL article in your research papers?

❼ suggest a colleague to visit IPOL?

❼ publish another article in IPOL?

❼ suggest a colleague to publish an article in IPOL?

For each item, answer “yes” or “no”.

B.1.11 Please order these propositions of IPOL developments, the highest
priority first

❼ better demonstration system and tools

❼ better demonstration archives

❼ better design of the ipol web site

❼ better edition interface

❼ better tools for the review process

❼ source code tools and libraries

❼ other data types (sound, video, . . .)

❼ better indexation in scientific journal databases

❼ reader feedback (comments, forum) for every article

B.1.12 How would you qualify your IPOL experience as an author?

Choose an answer in a 1-5 scale between “1 - very positive” and “5 - very negative”.

B.2 General Information

B.2.1 What is your current status?

❼ Master Student

❼ PhD Student

❼ Post-doc

❼ Junior Researcher

❼ Senior Researcher

❼ Other

199

APPENDIX B. FEEDBACK SURVEY

B.2.2 What is the main operating system you use for tasks related to your
research activity?

❼ Windows

❼ Mac OS X

❼ Linux

❼ Other

B.2.3 What is the main programming language you use for tasks related
to your research activity?

❼ Java

❼ C

❼ C++

❼ Python

❼ MATLAB

❼ Fortran

❼ Other

B.2.4 What is the main browser you use for tasks related to your research
activity?

❼ Internet Explorer

❼ Firefox

❼ Chrome

❼ Opera

❼ Other

B.3 Supplement Survey

This is a supplement to the “IPOL Author Feedback 2011” survey.

B.3.1 Almost every author rated their IPOL experience “positive” to “very
positive” in the feedback survey. We would like to know more.

Why are you satisfied with IPOL? Why is it positive, and not just “more work than a normal
paper”? What were the benefits of working on an IPOL paper? And if your experience is not
positive, you can comment too.

200

Appendix C

References

201

APPENDIX C. REFERENCES

202

Bibliography

[1] Loi sur la liberté de la presse, 1881.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000006070722.

[2] Loi relative à l’informatique, aux fichiers et aux libertés, 1978.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000006068624.

[3] Loi sur la communication audiovisuelle, 1982.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000880222.

[4] Loi relative à la liberté de comommunication, 1986.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000006068930.

[5] Loi sur la fraude informatique, 1988.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000875419.

[6] Loi portant adaptation du droit de la preuve aux technologies de l’information et relative
à la signature électronique, 2000.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000005629200.

[7] Loi relative à la sécurité quotidienne, 2001.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000222052.

[8] Loi d’orientation et de programmation pour la sécurité intérieure, 2002.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000780288.

[9] Loi sur la sécurité intérieure, 2003.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000005634107.

[10] Loi pour la confiance dans l’économie numérique, 2004.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000005789847.

[11] Loi relative au droit d’auteur et aux droits voisins dans la société de l’information
(dadvsi), 2006.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000266350.

[12] Loi relative à la lutte contre le terrorisme et portant dispositions diverses relatives à la
sécurité et aux contrôles frontaliers, 2006.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000454124.

[13] Loi favorisant la diffusion et la protection de la création sur internet, 2009.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000020735432.

203

http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000006070722
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000006068624
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000880222
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000006068930
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000875419
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000005629200
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000222052
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000780288
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000005634107
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000005789847
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000266350
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000454124
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000020735432

BIBLIOGRAPHY

[14] Loi relative à la protection pénale de la propriété littéraire et artistique sur internet,
2009.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000021208046.

[15] Loi d’orientation et de programmation pour la performance de la sécurité intérieure,
2011.
url: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000023707312.

[16] 3tu.datacentrum.
url: http://datacentrum.3tu.nl/.

[17] Loi tendant à valoriser l’activité inventive et à modifier le régime des brevets d’invention,
1968.
url: http://legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000317285.

[18] A. Buades, B. Coll and J.-M. Morel. A review of image denoising algorithms, with a
new one. Multiscale Modeling and Simulation, 2006.
doi: http://dx.doi.org/10.1137/040616024.

[19] Janet Abbate. Inventing the Internet. MIT Press, 1999.
isbn: 0262511150.

[20] A. Almansa, A. Desolneux, and S. Vamech. Vanishing point detection without any a
priori information. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
2003.

[21] Luis Alvarez, Luis Gomez, and J. Rafael Sendra. Algebraic Lens Distortion Model
Estimation. Image Processing on Line, 2010.
doi: http://dx.doi.org/10.5201/ipol.2010.ags-alde.

[22] Apple Inc. iOS ABI Function Call Guide, 2010.
url: http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/

iPhoneOSABIReference/iPhoneOSABIReference.pdf.

[23] Apple Inc. OS X Lion Technical Specifications, 2011.
url: http://www.apple.com/macosx/specs.html.

[24] Apple Inc. Software License Agreement for Mac OS X [Lion], 2011.
url: http://images.apple.com/legal/sla/docs/macosx107.pdf.

[25] Apple Inc. Software License Agreement for Mac OS X Lion Server, 2011.
url: http://images.apple.com/legal/sla/docs/macosxserver107.pdf.

[26] Antoine Aubert and Frank Macrez. ”Brevet de logiciel” : quelle portée ?, 2001.
url: http://www.droit-ntic.com/pdf/brevetlog.pdf.

[27] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael Black Black, and
Richard Szeliski. Flow accuracy and interpolation evaluation.
url: http://vision.middlebury.edu/flow/eval/.

[28] D.H. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern
recognition, 1981.

204

http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000021208046
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000023707312
http://datacentrum.3tu.nl/
http://legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000317285
http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.5201/ipol.2010.ags-alde
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
http://www.apple.com/macosx/specs.html
http://images.apple.com/legal/sla/docs/macosx107.pdf
http://images.apple.com/legal/sla/docs/macosxserver107.pdf
http://www.droit-ntic.com/pdf/brevetlog.pdf
http://vision.middlebury.edu/flow/eval/

BIBLIOGRAPHY

[29] C. Ballester, V. Caselles, and P. Monasse. The tree of shapes of an image. ESAIM:
Control, Optimisation and Calculus of Variations, 2003.

[30] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
SIGOPS Operating Systems Review, 2003.
doi: http://dx.doi.org/10.1145/1165389.945462.

[31] Kobus Barnard, Brian Funt, and Adam Coath. A data set for colour research. Color
Research and Application, 2002.
doi: http://dx.doi.org/10.1002/col.10049,
url: http://www.cs.sfu.ca/~colour/data/colour_constancy_test_images/.

[32] N. Barnes. Publish your computer code: it is good enough. Nature, 2010.
doi: http://dx.doi.org/10.1038/467753a.

[33] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. Computer
Vision–ECCV 2006, 2006.

[34] Gavin Bell, Anthony Parisi, and Mark Pesce. The Virtual Reality Modeling Language
— Version 1.0 Specification, 1995.
url: http://www.web3d.org/x3d/specifications/vrml/.

[35] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting
algorithm for surface reconstruction. Visualization and Computer Graphics, IEEE
Transactions on, 1999.

[36] Berne Convention for the Protection of Literary and Artistic Works, 1886. 1908 Berlin
Revision, archived by the Internet Archive.
url: http://www.archive.org/details/internationalco00offigoog.

[37] Berne Convention for the Protection of Literary and Artistic Works, 1886. 1971 Paris
revision, archived by the Cornell University Legal Information Institute.
url: http://www.law.cornell.edu/treaties/berne/overview.html.

[38] T. Berners-Lee. Tags used in html, 1992. archived by the World Wide Web Consortium.

url: http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html.

[39] T. Berners-Lee and D. Connolly. IETF draft: Hypertext Markup Language (HTML),
1993. archived by the World Wide Web Consortium.
url: http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt.

[40] T. Berners-Lee and D. Connolly. IETF RFC1866 — Hypertext Markup Language - 2.0,
1995.
url: http://tools.ietf.org/html/rfc1866.

[41] Tim Berners-Lee. Answers to young people — What made you think of the WWW?,
2012.
url: http://www.w3.org/People/Berners-Lee/Kids.html.

205

http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1002/col.10049
http://www.cs.sfu.ca/~colour/data/colour_constancy_test_images/
http://dx.doi.org/10.1038/467753a
http://www.web3d.org/x3d/specifications/vrml/
http://www.archive.org/details/internationalco00offigoog
http://www.law.cornell.edu/treaties/berne/overview.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://tools.ietf.org/html/rfc1866
http://www.w3.org/People/Berners-Lee/Kids.html

BIBLIOGRAPHY

[42] Timothy Berners-Lee. Information management: a proposal. Technical Report CERN-
DD-89-001-OC, CERN, 1989.
url: http://www.w3.org/History/1989/proposal.html.

[43] Timothy Berners-Lee. The original http as defined in 1991, 1991.
url: http://www.w3.org/Protocols/HTTP/AsImplemented.html.

[44] Timothy Berners-Lee and Robert Cailliau. WorldWideWeb: Proposal for a hypertexts
Project, 1990.
url: http://www.w3.org/Proposal.html.

[45] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Proceedings
of the 27th annual conference on Computer graphics and interactive techniques, 2000.

[46] P. Bhat, B. Curless, M. Cohen, and C. Zitnick. Fourier analysis of the 2d screened
poisson equation for gradient domain problems. Computer Vision–ECCV 2008, 2008.

[47] Andrew Binstock. Interview with Herb Sutter. Dr. Dobb’s, 2011.
url: http://drdobbs.com/cpp/231900562.

[48] G. Blanchet, A. Buades, B. Coll, JM Morel, and B. Rouge. Fattening free block match-
ing. Journal of Mathematical Imaging and Vision, 2011.

[49] Budapest open access initiative.
url: http://www.soros.org/openaccess/read.

[50] R.C. Bolles, H.H. Baker, and D.H. Marimont. Epipolar-plane image analysis: An
approach to determining structure from motion. International Journal of Computer
Vision, 1987.

[51] Jeff Bonwick. ZFS Deduplication. Jeff Bonwick’s Blog at Oracle, 2009.
url: http://blogs.oracle.com/bonwick/en_US/entry/zfs_dedup.

[52] J.Y. Bouguet. Camera calibration toolbox for matlab, 2004.
url: http://www.vision.caltech.edu/bouguetj/calib_doc/.

[53] T.E. Boult and G. Wolberg. Correcting chromatic aberrations using image warping. In
Computer Vision and Pattern Recognition, 1992. Proceedings CVPR’92., 1992 IEEE
Computer Society Conference on, 1992.

[54] Paul Bourke. PLY - Polygon File Format.
url: http://paulbourke.net/dataformats/ply/.

[55] T. Boutell. IETF RFC2083 — PNG (Portable Network Graphics) Specification Version
1.0, 1997.
url: http://tools.ietf.org/html/rfc2083.

[56] Gabriel Bouvigne. Patents and mp3, 2002.
url: http://www.mp3-tech.org/patents.html.

[57] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow al-
gorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 2004.

206

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.w3.org/Proposal.html
http://drdobbs.com/cpp/231900562
http://www.soros.org/openaccess/read
http://blogs.oracle.com/bonwick/en_US/entry/zfs_dedup
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://paulbourke.net/dataformats/ply/
http://tools.ietf.org/html/rfc2083
http://www.mp3-tech.org/patents.html

BIBLIOGRAPHY

[58] S. Bradner. IETF RFC2119 — Key words for use in RFCs to Indicate Requirement
Levels, 1997.
url: http://tools.ietf.org/html/rfc2119.

[59] Grant R. Brammer, Ralph W. Crosby, Suzanne J. Matthews, and TiffaniL. Williams.
Paper Mâché: Creating Dynamic Reproducible Science. In Proceedings of the Interna-
tional Conference on Computational Science, 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.069.

[60] Robert Bringhurst. The Elements of Typographic Style. Hartley & Marks, 2nd edition,
2002.
isbn: 0881791326.

[61] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering, An-
niversary Edition. Addison-Wesley Professional, 2nd edition, 1995.
isbn: 0201835959.

[62] Mark Brown. Fastcgi specification, 1996.
url: http://www.fastcgi.com/devkit/doc/fcgi-spec.html.

[63] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. Non-local Means Denoising.
Image Processing On Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.bcm_nlm.

[64] Antoni Buades, Bartomeu Coll, Jean-Michel Morel, and Catalina Sbert. Self-Similarity
Driven Demosaicking. Image Processing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.bcms-ssdd.

[65] Antoni Buades, Triet Le, Jean-Michel Morel, and Luminita Vese. Cartoon+Texture
Image Decomposition. Image Processing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.blmv_ct.

[66] T. Buades, Y. Lou, JM Morel, and Z. Tang. A note on multi-image denoising. In Local
and Non-Local Approximation in Image Processing, 2009. LNLA 2009. International
Workshop on, 2009.

[67] Jonathan B. Buckheit and David L. Donoho. Wavelab and reproducible research. Tech-
nical Report 474, Department of Statistics, Stanford University, 1995.
url: http://www-stat.stanford.edu/~donoho/Reports/1995/wavelab.pdf.

[68] Bundesgerichtshof. Rentabilitätsermittlung, 2004. BGH X ZB 34/03.

[69] Bundesgerichtshof. Informationsübermittlungsverfahren, 2007. BGH X ZB 9/06.

[70] Vannevar Bush. As we may think. The Atlantic Monthly, 1945.
url: http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/4/.

[71] Murielle Cahen. Responsabilité des forums de discussion.
url: http://www.murielle-cahen.com/publications/p_forum.asp.

[72] E.J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal re-
construction from highly incomplete frequency information. Information Theory, IEEE
Transactions on, 2006.

207

http://tools.ietf.org/html/rfc2119
http://dx.doi.org/10.1016/j.procs.2011.04.069
http://www.fastcgi.com/devkit/doc/fcgi-spec.html
http://dx.doi.org/10.5201/ipol.2011.bcm_nlm
http://dx.doi.org/10.5201/ipol.2011.bcms-ssdd
http://dx.doi.org/10.5201/ipol.2011.blmv_ct
http://www-stat.stanford.edu/~donoho/Reports/1995/wavelab.pdf
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/4/
http://www.murielle-cahen.com/publications/p_forum.asp

BIBLIOGRAPHY

[73] J. Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 1986.

[74] Jaime Carbonell. On man-computer interaction: A model and some related issues.
Scientific Report No. 1, DARPA Project 8668, 1967.
url: http://handle.dtic.mil/100.2/AD0666666.

[75] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International journal
of computer vision, 1997.

[76] Davide P. Cervone. jsmath: A method of including mathematics in web pages, 2007.
url: http://www.math.union.edu/~dpvc/jsMath/.

[77] Davide P. Cervone. Mathjax: a javascript-based engine for including tex and mathml
in html, 2010.
url: http://www.math.union.edu/~dpvc/talks/2010-01-15.mathjax/.

[78] T.F. Chan and C.K. Wong. Total variation blind deconvolution. Image Processing,
IEEE Transactions on, 1998.

[79] Laurent Chemla. Confessions d’un Voleur. Denoël, 2002.
isbn: 2207252167,
url: http://www.confessions-voleur.net/.

[80] Jon Claerbout and Martin Karrenbach. Electronic documents give reproducible research
a new meaning. 1992. Proceedings of the 62nd Annual International Meeting of the
Society of Exploration Geophysics.

[81] CNRS. Propriété intellectuelle - Logiciels, 2010.
url: http://www.dgdr.cnrs.fr/daj/propriete/logiciels/logiciels.htm.

[82] R.R. Coifman and D.L. Donoho. Translation-invariant de-noising. Lecture Notes in
Statistics, 1995.

[83] Gilbert Colletaz, Christophe Hurlin, Christophe Pérignon, and Yvan Stroppa. Runmy-
code — la recherche académique en économie et gestion à portée de clic. La lettre de
l’INHSH, 2012.
url: http://www.cnrs.fr/inshs/Lettres-information-INSHS/lettre_infoINSHS_15.pdf.

[84] ISO/IEC JTC1/SC22/WG21 The C++ Standards Committee. 14882:1998 Program-
ming languages — C++, 1998. unofficial archive.
url: http://www.kuzbass.ru:8086/docs/isocpp/.

[85] P. Comon. Independent component analysis, a new concept? Signal processing, 1994.

[86] Neil G. Connelly, Ture Damhus, Hartshorn Richard M., and Alan T. Hutton, editors.
Nomenclature of Inorganic Chemistry: Recommendations 2005. Royal Society of Chem-
istry, 2005.
isbn: 0854044388,
url: http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf.

208

http://handle.dtic.mil/100.2/AD0666666
http://www.math.union.edu/~dpvc/jsMath/
http://www.math.union.edu/~dpvc/talks/2010-01-15.mathjax/
http://www.confessions-voleur.net/
http://www.dgdr.cnrs.fr/daj/propriete/logiciels/logiciels.htm
http://www.cnrs.fr/inshs/Lettres-information-INSHS/lettre_infoINSHS_15.pdf
http://www.kuzbass.ru:8086/docs/isocpp/
http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf

BIBLIOGRAPHY

[87] Stéphane Cordier, Konrad Hinsen, Christophe Hurlin, and Frédéric Loulergue. Rencon-
tre de réflexion autour de la recherche reproductible, 2012.
url: http://www.fdpoisson.fr/cascimodot/doc/RRRR/R4-050412.php.

[88] Oracle Corporation. Virtualbox website, 2011.
url: https://www.virtualbox.org/.

[89] Cour d’appel de Paris. S.A. SAGEM c./ M. le directeur de l’INPI, 2003.
url: http://www.softwarepatentnews.de/pdf/ca_paris_1.pdf.

[90] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-
D transform-domain collaborative filtering. Image Processing, IEEE Transactions on,
2007.

[91] Ronald S. Laurie Daniel Lin, Matthew Sag. Source code versus object code: Patent
implications for the open source community. Santa Clara Computer & High Technology
Law Journal, 2002.
url: http://www.chtlj.org/sites/default/files/media/articles/v018/v018.i2.Lin.pdf.

[92] Data archiving and networked services.
url: http://www.dans.knaw.nl/.

[93] Philip M. Davis. Does open access lead to increased readership and citations? A
randomized controlled trial of articles published in APS journals. The Physiologist,
2010.
url: http://view.ncbi.nlm.nih.gov/pubmed/21473414.

[94] Pablo Delbracio, Mauricio anmd Musé and Andrès Almansa. Non-parametric sub-pixel
local point spread function estimation. Image Processing on Line, 2012.
doi: http://dx.doi.org/10.5201/ipol.2012.admm-nppsf.

[95] J. Delon, A. Desolneux, J.L. Lisani, and A.B. Petro. A nonparametric approach for
histogram segmentation. Image Processing, IEEE Transactions on, 2007.

[96] Forum des droits sur l’internet. Pas de cadeaux pour les opposants au père-noël, 2002.
url: http://www.foruminternet.org/specialistes/veille-juridique/actualites/

pas-de-cadeaux-pour-les-opposants-au-pere-noel.html.

[97] A. Desolneux, L. Moisan, and J.M. Morel. Edge detection by helmholtz principle.
Journal of Mathematical Imaging and Vision, 2001.

[98] Agnès Desolneux, Lionel Moisan, and Jean-Michel Morel. From Gestalt Theory to Image
Analysis: A Probabilistic Approach. Springer-Verlag, 2008.
isbn: 0387726357.

[99] P. Deutsch. IETF RFC1952 — GZIP file format specification version 4.3, 1996.
url: http://tools.ietf.org/html/rfc1952.

[100] F. Devernay and O. Faugeras. Straight lines have to be straight. Machine Vision and
Applications, 2001.

209

http://www.fdpoisson.fr/cascimodot/doc/RRRR/R4-050412.php
https://www.virtualbox.org/
http://www.softwarepatentnews.de/pdf/ca_paris_1.pdf
http://www.chtlj.org/sites/default/files/media/articles/v018/v018.i2.Lin.pdf
http://www.dans.knaw.nl/
http://view.ncbi.nlm.nih.gov/pubmed/21473414
http://dx.doi.org/10.5201/ipol.2012.admm-nppsf
http://www.foruminternet.org/specialistes/veille-juridique/actualites/pas-de-cadeaux-pour-les-opposants-au-pere-noel.html
http://www.foruminternet.org/specialistes/veille-juridique/actualites/pas-de-cadeaux-pour-les-opposants-au-pere-noel.html
http://tools.ietf.org/html/rfc1952

BIBLIOGRAPHY

[101] J. Digne, J.M. Morel, N. Audfray, and C. Lartigue. High fidelity scan merging. In
Computer Graphics Forum, 2010.

[102] J. Digne, J.M. Morel, N. Audfray, and C. Mehdi-Souzani. The level set tree on meshes.
In Proceedings of the Fifth International Symposium on. 3D Data Processing, Visual-
ization and Transmission, Paris, France, 2010.

[103] J. Digne, J.M. Morel, C.M. Souzani, and C. Lartigue. Scale space meshing of raw data
point sets. In Computer Graphics Forum, 2011.

[104] Julie Digne, Nicolas Audfray, Claire Lartigue, Charyar Mehdi-Souzani, and Jean-Michel
Morel. Farman Institute 3D Point Sets - High Precision 3D Data Sets. Image Processing
on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.dalmm_ps.

[105] Dijkstra, Edsger W. Notes on Structured Programming. 1972.

[106] Directory of open access journals.
url: http://www.doaj.org/.

[107] Ø. Due Trier, A.K. Jain, and T. Taxt. Feature extraction methods for character
recognition-a survey. Pattern recognition, 1996.

[108] Nebel E. and Masinter L. IETF RFC1867 — Form-based File Upload in HTML, 1995.
url: http://tools.ietf.org/html/rfc1867.

[109] A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sampling. In Com-
puter Vision, 1999. The Proceedings of the Seventh IEEE International Conference on,
1999.

[110] Elsevier. Executable paper grand challenge.
url: http://www.executablepapers.com/.

[111] Elsevier. Executable paper grand challenge — knowledge enhancement in the compu-
tational sciences, 2011.
url: http://www.executablepapers.com/.

[112] Douglas Engelbart, William English, et al. A research center for augmenting human
intellect. In AFIPS Fall Joint Computer Conference, 1968.
url: http://sloan.stanford.edu/mousesite/1968Demo.html.

[113] England and Wales Court of Appeal. Fujitsu’s Application, 1997. EWCA Civ 1174.
url: http://www.bailii.org/ew/cases/EWCA/Civ/1997/1174.html.

[114] England and Wales Court of Appeal. Aerotel Ltd v Telco Holding Ltd and others, and
Neal William Macrossan’s application, 2006. EWCA Civ 1371at para. 16.
url: http://www.bailii.org/ew/cases/EWCA/Civ/2006/1371.html#para16.

[115] Mâıtre Eolas. Blogueurs et responsabilité reloaded, 2008.
url: http://www.maitre-eolas.fr/post/2008/03/24/905-blogueurs-et-responsabilite-reloaded.

[116] European Patent Convention, 1973. revised in 1991 and 2000.
url: http://www.epo.org/law-practice/legal-texts/epc.html.

210

http://dx.doi.org/10.5201/ipol.2011.dalmm_ps
http://www.doaj.org/
http://tools.ietf.org/html/rfc1867
http://www.executablepapers.com/
http://www.executablepapers.com/
http://sloan.stanford.edu/mousesite/1968Demo.html
http://www.bailii.org/ew/cases/EWCA/Civ/1997/1174.html
http://www.bailii.org/ew/cases/EWCA/Civ/2006/1371.html#para16
http://www.maitre-eolas.fr/post/2008/03/24/905-blogueurs-et-responsabilite-reloaded
http://www.epo.org/law-practice/legal-texts/epc.html

BIBLIOGRAPHY

[117] University of Southampton eprints. What if the publisher forbids preprint self-
archiving?
url: http://www.eprints.org/openaccess/self-faq/#publisher-forbids.

[118] European Council Directive on the Legal Protection of Computer Programs, 1991.
url: http://ec.europa.eu/internal_market/copyright/docs/docs/1991-250_en.pdf.

[119] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer
Vision, 2010.
doi: http://dx.doi.org/10.1007/s11263-009-0275-4.

[120] H. Farid. Blind inverse gamma correction. Image Processing, IEEE Transactions on,
2001.

[121] Jeanne Farrington. Seven plus or minus two. Performance Improvement Quarterly,
2011.
doi: http://dx.doi.org/10.1002/piq.20099.

[122] O. Faugeras, Q.T. Luong, and S. Maybank. Camera self-calibration: Theory and ex-
periments. In ECCV 92, 1992.

[123] Olivier Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT
Press, 1994.
isbn: 0262061589.

[124] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-
invariant learning. In Computer Vision and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on, 2003.

[125] John Ferraiolo et al. Scalable Vector Graphics 1.0 Specification, 2001.
url: http://www.w3.org/TR/SVG10/.

[126] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Ietf rfc2616 — hypertext transfer protocol – http/1.1, 1999.
url: http://tools.ietf.org/html/rfc2616.

[127] F. Fleuret, T. Li, C. Dubout, E.K. Wampler, S. Yantis, and D. Geman. Comparing
machines and humans on a visual categorization test. Proceedings of the National
Academy of Sciences, 2011.

[128] Robert W. Floyd and Ronald L. Rivest. Algorithm 489: the algorithm select - for
finding the ith smallest of n elements. Communications of the ACM, 1975.
doi: http://dx.doi.org/10.1145/360680.360694.

[129] National Center for Biotechnology Information. All resources.
url: http://www.ncbi.nlm.nih.gov/guide/all/.

[130] ISO/IEC JTC1/SC22/WG14 Working Group for the programming language C.
9899:1999 Programming languages — C, 1999. public draft archive.
url: http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf.

211

http://www.eprints.org/openaccess/self-faq/#publisher-forbids
http://ec.europa.eu/internal_market/copyright/docs/docs/1991-250_en.pdf
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1002/piq.20099
http://www.w3.org/TR/SVG10/
http://tools.ietf.org/html/rfc2616
http://dx.doi.org/10.1145/360680.360694
http://www.ncbi.nlm.nih.gov/guide/all/
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

BIBLIOGRAPHY

[131] Free Software Foundation. What is free software?
url: http://www.gnu.org/philosophy/free-sw.html.

[132] Open Knowledge Foundation. Open definition.
url: http://opendefinition.org/.

[133] Code de la propriété intellectuelle, 1992.
url: http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006069414.

[134] Free Software Foundation. What is free software?
url: http://www.gnu.org/philosophy/free-sw.html.

[135] Matteo Frigo and Steven G. Johnson. The Design and Implementation of FFTW3.
Proceedings of the IEEE 93, 2005.
doi: http://dx.doi.org/10.1109/JPROC.2004.840301.

[136] Jacques Froment, Lionel Moisan, Jean-Michel Morel, et al. MegaWave, 2011.
url: http://megawave.cmla.ens-cachan.fr/.

[137] Fujitsu. SPARC64TM VIIIfx Extensions, 2010.
url: http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf.

[138] Ann Gabriel and Rebecca CApone. Executable Paper Grand Challenge Workshop. In
Proceedings of the International Conference on Computational Science, 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.060.

[139] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. Micro-Texture Synthesis by
Phase Randomization. Image Processing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.ggm_rpn.

[140] Matan Gavish and David Donoho. A Universal Identifier for Computational Results.
Procedia Computer Science, 2011. Proceedings of the International Conference on Com-
putational Science, ICCS 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.067.

[141] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions
on.

[142] Thierry Géraud, Pierre-Yves Strub, and Jérô Darbon. Color image segmentation based
on automatic morphological clustering.

[143] Pascal Getreuer. Gunturk-Altunbasak-Mersereau Alternating Projections Image Demo-
saicking. Image Processing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.g_gapd.

[144] Pascal Getreuer. Image Interpolation with Contour Stencils. Image Processing on Line,
2011.
doi: http://dx.doi.org/10.5201/ipol.2011.g_iics.

[145] Pascal Getreuer. Image Interpolation with Geometric Contour Stencils. Image Process-
ing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.g_igcs.

212

http://www.gnu.org/philosophy/free-sw.html
http://opendefinition.org/
http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006069414
http://www.gnu.org/philosophy/free-sw.html
http://dx.doi.org/10.1109/JPROC.2004.840301
http://megawave.cmla.ens-cachan.fr/
http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf
http://dx.doi.org/10.1016/j.procs.2011.04.060
http://dx.doi.org/10.5201/ipol.2011.ggm_rpn
http://dx.doi.org/10.1016/j.procs.2011.04.067
http://dx.doi.org/10.5201/ipol.2011.g_gapd
http://dx.doi.org/10.5201/ipol.2011.g_iics
http://dx.doi.org/10.5201/ipol.2011.g_igcs

BIBLIOGRAPHY

[146] Pascal Getreuer. Linear Methods for Image Interpolation. Image Processing on Line,
2011.
doi: http://dx.doi.org/10.5201/ipol.2011.g_lmii.

[147] Pascal Getreuer. Malvar-He-Cutler Linear Image Demosaicking. Image Processing on
Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.g_mhcd.

[148] Pascal Getreuer. Roussos-Maragos Tensor-Driven Diffusion for Image Interpolation.
Image Processing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.g_rmdi.

[149] Pascal Getreuer. Zhang-Wu Directional LMMSE Image Demosaicking. Image Process-
ing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.g_zwld.

[150] Pascal Getreuer. Image Demosaicking with Contour Stencils. Image Processing on Line,
2012.
doi: http://dx.doi.org/10.5201/ipol.2012.g-dwcs.

[151] Herman Geuvers. Proof assistants: History, ideas and future. Sadhana, 2009.
doi: http://dx.doi.org/10.1007/s12046-009-0001-5.

[152] James Gillies and Robert Cailliau. How the Web was Born: The Story of the World
Wide Web. Oxford University Press, 2000.
isbn: 0192862073.

[153] Gomez-Diaz, Teresa. FAQ : licence & copyright pour les développements de logiciels
libres de laboratoires de recherche. Plume, 2009.
url: http://www.projet-plume.org/fr/ressource/faq-licence-copyright.

[154] Gomez-Diaz, Teresa. Diffuser un logiciel de laboratoire : recommandations juridiques
et administratives. Plume, 2010.
url: http://www.projet-plume.org/ressource/diffuser-logiciel-recomm-juridiques-admin.

[155] Gomez-Diaz, Teresa. Article vs. Logiciel : questions juridiques et de politique scien-
tifique dans la production de logiciels. Plume, 2011.
url: http://www.projet-plume.org/ressource/article-vs-logiciel.

[156] Juan Gabriel Gomila Salas and Jose-Luis Lisani. Local Color Correction. Image Pro-
cessing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.gl_lcc.

[157] Ulf Grenander. General Pattern Theory: A Mathematical Study of Regular Structures.
Clarendon Press, 1993.
isbn: 0198536712.

[158] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel, and Gregory Ran-
dall. Lsd: A fast line segment detector with a false detection control. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2010.

213

http://dx.doi.org/10.5201/ipol.2011.g_lmii
http://dx.doi.org/10.5201/ipol.2011.g_mhcd
http://dx.doi.org/10.5201/ipol.2011.g_rmdi
http://dx.doi.org/10.5201/ipol.2011.g_zwld
http://dx.doi.org/10.5201/ipol.2012.g-dwcs
http://dx.doi.org/10.1007/s12046-009-0001-5
http://www.projet-plume.org/fr/ressource/faq-licence-copyright
http://www.projet-plume.org/ressource/diffuser-logiciel-recomm-juridiques-admin
http://www.projet-plume.org/ressource/article-vs-logiciel
http://dx.doi.org/10.5201/ipol.2011.gl_lcc

BIBLIOGRAPHY

[159] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel, and Gregory Ran-
dall. LSD: a Line Segment Detector. Image Processing on Line, 2012.
doi: http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd.

[160] Rafael Grompone von Gioi, Pascal Monasse, Jean-Michel Morel, and Zhongwei Tang.
Self-consistency and universality of camera lens distortion models. CMLA Preprint,
ENS-Cachan, 2010.

[161] Rafael Grompone von Gioi, Pascal Monasse, Jean-Michel Morel, and Zhongwei Tang.
Lens distortion correction with a calibration harp. In Image Processing (ICIP), 2011
18th IEEE International Conference on, 2011.

[162] Philip J. Guo. CDE: Run Any Linux Application On-Demand Without Installation,
2011. Proceedings of the 2011 USENIX Large Installation System Administration Con-
ference (LISA).
url: http://www.usenix.org/events/lisa11/tech/full_papers/Guo.pdf.

[163] Philip J. Guo and Dawson Engler. Cde: Using system call interposition to automatically
create portable software packages, 2011. Proceedings of the 2011 USENIX Annual
Technical Conference.
url: http://www.stanford.edu/~pgbovine/projects/pubs/guo_usenix11_camera_ready.pdf.

[164] Katie Hafner and Matthew Lyon. When Wizards Stay Up Late — The Origina Of The
Internet. Touchstone, 1998.
isbn: 0684812010.

[165] Henry Edward Hardy. The history of the net. Master’s thesis, Grand Valley State
University, 1993.
url: https://w2.eff.org/Net_culture/net.history.txt.

[166] S. Harnad and T. Brody. Comparing the impact of open access (oa) vs. non-oa articles
in the same journals. D-lib Magazine, 2004.
url: http://eprints.ecs.soton.ac.uk/10207/.

[167] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision
conference, 1988.

[168] R.I. Hartley. Theory and practice of projective rectification. International Journal of
Computer Vision, 1999.

[169] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2004.
isbn: 0521540518.

[170] D.J. Heeger and J.R. Bergen. Pyramid-based texture analysis/synthesis. In Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques, 1995.

[171] Hermann Hesse. Das Glasperlenspiel. Suhrkamp, 2002.
isbn: 351841335X.

214

http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd
http://www.usenix.org/events/lisa11/tech/full_papers/Guo.pdf
http://www.stanford.edu/~pgbovine/projects/pubs/guo_usenix11_camera_ready.pdf
https://w2.eff.org/Net_culture/net.history.txt
http://eprints.ecs.soton.ac.uk/10207/

BIBLIOGRAPHY

[172] Konrad Hinsen. A data and code model for reproducible research and executable pa-
pers. Procedia Computer Science, 2011. Proceedings of the International Conference on
Computational Science, ICCS 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.061.

[173] Jan Hoffman. Free software, big business? Deutsche Bank Research, 2002.
url: http://www.dbresearch.de/PROD/999/PROD0000000000047931.pdf.

[174] Gerard J. Holzmann. The Early History of Data Networks. Wiley - IEEE Computer
Society Press, 1994.
isbn: 0818667826.

[175] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial intelligence, 1981.

[176] D.H. Hubel and T.N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 1962.

[177] Fraunhofer IIS-A. Early MP3 Patent Enforcement, 1998.
url: http://www.chillingeffects.org/N/464.

[178] The Insight Journal.
url: http://www.insight-journal.com/.

[179] Citrix Systems Inc. Xen hypervisor website, 2011.
url: http://www.xen.org/.

[180] The MathWorks Inc. Compatibility Summary for MATLAB Software, 2011.
url: http://www.mathworks.co.jp/help/techdoc/rn/bqsrae0.html.

[181] VMWare Inc. Vmware virtualization products website, 2011.
url: http://www.vmware.com/virtualization/.

[182] Open Source Initiative. The open source definition.
url: <http://opensource.org/docs/osd.

[183] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, 2012. Volume 2
(2A, 2B & 2C): Instruction Set Reference, A-Z.
url: http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.

html.

[184] Image Processing On Line (IPOL).
issn: 2105-1232,
doi: http://dx.doi.org/10.5201/ipol,
url: http://www.ipol.im/.

[185] IPOL usage report for 2010/09 - 2011/08, 2011.
url: http://www.ipol.im/news/20110923_stats/.

[186] D.J. Jobson, Z. Rahman, and G.A. Woodell. A multiscale retinex for bridging the gap
between color images and the human observation of scenes. Image Processing, IEEE
Transactions on, 1997.

215

http://dx.doi.org/10.1016/j.procs.2011.04.061
http://www.dbresearch.de/PROD/999/PROD0000000000047931.pdf
http://www.chillingeffects.org/N/464
http://www.insight-journal.com/
http://www.xen.org/
http://www.mathworks.co.jp/help/techdoc/rn/bqsrae0.html
http://www.vmware.com/virtualization/
<http://opensource.org/docs/osd
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://dx.doi.org/10.5201/ipol
http://www.ipol.im/
http://www.ipol.im/news/20110923_stats/

BIBLIOGRAPHY

[187] Aurélie Jung. La brevetabilité des logiciels. Master’s thesis, Université Robert Schuman
de Strasbourg, 2006.
url: http://www.ceipi.edu/pdf/memoires/M%C3%A9moire_Jung.pdf.

[188] J.T. Kajiya. The rendering equation. ACM SIGGRAPH Computer Graphics, 1986.

[189] Gaetano Kanizsa. Vedere e pensare. il Mulino, 1991.
isbn: 9788815029218.

[190] Gaetano Kanizsa. Grammatica del vedere : saggi su percezione e gestalt. il Mulino,
1997.
isbn: 9788815060907.

[191] Phillip Katz et al. .ZIP File Format Specification, 2007. version 6.3.2.
url: http://www.pkware.com/documents/casestudies/APPNOTE.TXT.

[192] Brendan Kehoe. Zen and the Art of the Internet: A Beginnerś Guide. Prentice Hall,
1992.
isbn: 0130107786,
url: http://www.cs.indiana.edu/docproject/zen/zen-1.0_toc.html.

[193] Brian W. Kernighan. D is for Digital. DisforDigital.net, 2011.
isbn: 1463733895.

[194] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley,
1999.
isbn: 020161586X.

[195] Brian W. Kernighan and Phillip J. Plauger. The Elements of Programming Style.
McGraw-Hill, 2nd edition, 1978.
isbn: 0070342075.

[196] Leonard Kleinrock, Robert Kahn, David Clark, et al. Toward a National Research
Network. National Academy Press, 1988.
isbn: 6610260524,
url: http://books.nap.edu/openbook.php?isbn=NI000393.

[197] Leonard Kleinrock, Robert Kahn, David Clark, and other. Realizing the Information
Future. National Academy Press, 1994.
isbn: 0309050448.

[198] Donald Knuth. Literate programming. The Computer Journal, 1984.
doi: http://dx.doi.org/10.1093/comjnl/27.2.97.

[199] Donald Knuth. Literate Programming. Stanford University Center for the Study of
Language and Information, 1992.
isbn: 0937073806.

[200] Donald E. Knuth. The TeXbook. Addison-Wesley, 1984.
isbn: 0201134470.

[201] J.J. Koenderink. The structure of images. Biological cybernetics, 1984.

216

http://www.ceipi.edu/pdf/memoires/M%C3%A9moire_Jung.pdf
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.cs.indiana.edu/docproject/zen/zen-1.0_toc.html
http://books.nap.edu/openbook.php?isbn=NI000393
http://dx.doi.org/10.1093/comjnl/27.2.97

BIBLIOGRAPHY

[202] J.J. Koenderink, A.J. Van Doorn, et al. Affine structure from motion. JOSA A, 1991.

[203] G. Koepfler, C. Lopez, and J.M. Morel. A multiscale algorithm for image segmentation
by variational method. SIAM journal on numerical analysis, 1994.

[204] Michael Kohlhase, Joseph Corneli, Catalin David, Deyan Ginev, et al. The planetary
system: Web 3.0 & active documents for stem. Procedia Computer Science, 2011.
Proceedings of the International Conference on Computational Science, ICCS 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.063.

[205] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions using
graph cuts. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE Inter-
national Conference on, 2001.

[206] Ed Krol. The Whole Internet User’s Guide & Catalog — Academic Edition. OŔeilly,
1996.
isbn: 0534506747.

[207] L. Alvarez, L. Gomez and J. R. Sendra. An algebraic approach to lens distortion by
line rectification. Journal of Mathematical Imaging and Vision, 2009.
doi: http://dx.doi.org/10.1007/s10851-009-0153-2.

[208] Leslie Lamport. LaTeX: A Document Preparation System : user’s guide and reference
manual. Addison-Wesley, 2nd edition, 1994.
isbn: 0201529831.

[209] Arthur Leclaire and Marc Lebrun. An implementation and detailed analysis of the
K-SVD image denoising algorithm. preprint, accessed March 23, 2012.

[210] L. Lee and WEL Grimson. Gait analysis for recognition and classification. In Automatic
Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference
on, 2002.

[211] Timothy B. Lee. Does not compute: court says only hard math is patentable. Ars
Technica, 2011.
url: http://arst.ch/qlf.

[212] Friedrich Leisch. Sweave: Dynamic generation of statistical reports using literate data
analysis. In Proceedings in Computational Statistics, 2002.
url: http://www.ci.tuwien.ac.at/~leisch/sweave.

[213] Friedrich Leisch. Sweave: Dynamic generation of statistical reports using literate data
analysis. In Compstat 2002 - Proceedings in Computational Statistics, 2002.
isbn: 3-7908-1517-9.

[214] Friedrich Leisch, Manuel Eugster, and Torsten Hothorn. Executable papers for the r
community: The r2 platform for reproducible research. Procedia Computer Science,
2011. Proceedings of the International Conference on Computational Science, ICCS
2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.065.

217

http://dx.doi.org/10.1016/j.procs.2011.04.063
http://dx.doi.org/10.1007/s10851-009-0153-2
http://arst.ch/qlf
http://www.ci.tuwien.ac.at/~leisch/sweave
http://dx.doi.org/10.1016/j.procs.2011.04.065

BIBLIOGRAPHY

[215] Lawrence Lessig. The Future of Ideas. Vintage Books, 2002.
isbn: 0375726446.

[216] Randy Leveque, Ian Mitchell, and Victoria Stodden. Reproducible research: Tools and
strategies for scientific computing, 2011.
url: http://www.stodden.net/AMP2011/.

[217] A. Levin, P. Sand, T.S. Cho, F. Durand, and W.T. Freeman. Motion-invariant photog-
raphy. In ACM Transactions on Graphics (TOG), 2008.

[218] M. Li and J.M. Lavest. Some aspects of zoom lens camera calibration. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 1996.

[219] Xin Li. Reproducible research in computational science.
url: http://www.csee.wvu.edu/~xinl/source.html.

[220] Sébastien Li-Thiao-Té. The lepton project, 2012.
url: http://www.math.univ-paris13.fr/~lithiao/ResearchLepton/Lepton.html.

[221] Libvirt website, 2011.
url: http://libvirt.org/.

[222] Joseph C. R. Licklider. Man-computer symbiosis. IRE Transactions on Human Factors
in Electronics, 1960.

[223] Joseph C. R. Licklider and Robert W. Taylor. The computer as a communication device.
Science and Technology, 1968.

[224] Nicolas Limare, Jose-Luis Lisani, Jean-Michel Morel, Ana Belén Petro, and Catalina
Sbert. Simplest Color Balance. Image Processing On Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.llmps-scb.

[225] Nicolas Limare and Jean-Michel Morel. The ipol initiative: Publishing and testing
algorithms on line for reproducible research in image processing. Procedia Computer
Science, 2011. Proceedings of the International Conference on Computational Science,
ICCS 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.075.

[226] Nicolas Limare, Ana Belén Petro, Catalina Sbert, and Jean-Michel Morel. Retinex
Poisson Equation: a Model for Color Perception. Image Processing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.lmps_rpe.

[227] Tim Lindholm and Franck Yellin. The Java Virtual Machine Specification. Prentice
Hall, 2nd edition, 1999.
isbn: 0201432943,
url: http://java.sun.com/docs/books/jvms/.

[228] JL Lisani, L. Moisan, P. Monasse, and JM Morel. On the theory of planar shape. SIAM
Multiscale Modeling and Simulation, 2003.

[229] Jose Luis Lisani, Antoni Buades, and Jean-Michel Morel. Image Color Cube Dimen-
sional Filtering and Visualization. Image Processing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.blm-cdf.

218

http://www.stodden.net/AMP2011/
http://www.csee.wvu.edu/~xinl/source.html
http://www.math.univ-paris13.fr/~lithiao/ResearchLepton/Lepton.html
http://libvirt.org/
http://dx.doi.org/10.5201/ipol.2011.llmps-scb
http://dx.doi.org/10.1016/j.procs.2011.04.075
http://dx.doi.org/10.5201/ipol.2011.lmps_rpe
http://java.sun.com/docs/books/jvms/
http://dx.doi.org/10.5201/ipol.2011.blm-cdf

BIBLIOGRAPHY

[230] C. Liu, W.T. Freeman, R. Szeliski, and S.B. Kang. Noise estimation from a single
image. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, 2006.

[231] Linux kernel coding style. Chapter 2: Breaking long lines and strings.
url: http://www.kernel.org/doc/Documentation/CodingStyle.

[232] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 2004.
doi: http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94.

[233] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 2004.

[234] Patrick J. Lynch and Sarah Horton. Web Style Guide. Yale University Press, 3rd
edition, 2009.
isbn: 0300137370.

[235] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for
image restoration. In Computer Vision, 2009 IEEE 12th International Conference on,
2009.

[236] D. Marr. Vision: A computational approach, 1982.

[237] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented nat-
ural images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In Proceedings of the 8th International Conference on Computer
Vision, 2001.
doi: http://dx.doi.org/10.1109/ICCV.2001.937655.

[238] C.C.D. Massachusetts. Whittemore v. Cutter, 1813. Fed. Cas. 1120.

[239] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from max-
imally stable extremal regions. Image and Vision Computing, 2004.

[240] Matteo Frigo. Upgrading from FFTW version 2, 2004.
url: http://fftw.org/fftw3_doc/Upgrading-from-FFTW-version-2.html.

[241] Steve McConnell. Code Complete. Microsoft Press, 2nd edition, 2004.
isbn: 0735619670.

[242] Rob McCool, John Franks, Ari Luotonen, George Phillips, and Tony Sanders. The
Common Gateway Interface, 1993. archived by the Internet Archive.
url: http://web.archive.org/web/1993/http://hoohoo.ncsa.uiuc.edu/cgi/.

[243] Z. Merali. Computational science: ...error. Nature, 2010.
doi: http://dx.doi.org/10.1038/467775a.

[244] W. Metzger. Gesetze des sehens (die lehre vom sehen der formen und dinge des raumes
und der bewegung). Frankfurt/M.: Kramer, 1975.

[245] Microsoft. Compiler options listed alphabetically.
url: http://msdn.microsoft.com/en-us/library/fwkeyyhe.aspx.

219

http://www.kernel.org/doc/Documentation/CodingStyle
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/ICCV.2001.937655
http://fftw.org/fftw3_doc/Upgrading-from-FFTW-version-2.html
http://web.archive.org/web/1993/http://hoohoo.ncsa.uiuc.edu/cgi/
http://dx.doi.org/10.1038/467775a
http://msdn.microsoft.com/en-us/library/fwkeyyhe.aspx

BIBLIOGRAPHY

[246] Microsoft Corporation. Windows 7 system requirements, 2011.
url: http://windows.microsoft.com/en-US/windows7/products/system-requirements.

[247] George A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review, 1956.
url: http://cogprints.org/730/1/miller.html.

[248] L. Moisan. Periodic plus smooth image decomposition. Journal of Mathematical Imag-
ing and Vision, 2011.

[249] L. Moisan and B. Stival. A probabilistic criterion to detect rigid point matches between
two images and estimate the fundamental matrix. International Journal of Computer
Vision, 2004.

[250] P. Monasse and F. Guichard. Fast computation of a contrast-invariant image represen-
tation. Image Processing, IEEE Transactions on, 2000.

[251] Pascal Monasse. Quasi-Euclidean Epipolar Rectification. Image Processing on Line,
2011.
doi: http://dx.doi.org/10.5201/ipol.2011.m_qer.

[252] Marco Mondelli and Adina Ciomaga. Finite Difference Schemes for MCM and AMSS.
Image Processing on Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.cm_fds.

[253] J.M. Morel and G. Yu. Is sift scale invariant? Inverse Problems and Imaging, 2011.

[254] Pierre Mounier. Diffamation dans les forums de discussion : quelle responsabilité pour
les webmestres ?, 2002.
url: http://homo-numericus.net/spip.php?article169.

[255] Mathematical Programming Computation.
url: http://mpc.zib.de/.

[256] D. Mumford and A.Ã. Desolneux. Pattern theory: The stochastic analysis of real-world
signals (applying mathematics). 2010.

[257] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and
associated variational problems. Communications on pure and applied mathematics,
1989.

[258] K.P. Murphy, Y. Weiss, and M.I. Jordan. Loopy belief propagation for approximate
inference: An empirical study. In Proceedings of the Fifteenth conference on Uncertainty
in artificial intelligence, 1999.

[259] Nicholas Negroponte. Being Digital. Vintage, 1996.
isbn: 0679762906.

[260] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan. Light field
photography with a hand-held plenoptic camera. Computer Science Technical Report
CSTR, 2005.

220

http://windows.microsoft.com/en-US/windows7/products/system-requirements
http://cogprints.org/730/1/miller.html
http://dx.doi.org/10.5201/ipol.2011.m_qer
http://dx.doi.org/10.5201/ipol.2011.cm_fds
http://homo-numericus.net/spip.php?article169
http://mpc.zib.de/

BIBLIOGRAPHY

[261] M. Nguyen, G. Gimel’farb, and P. Delmas. Web-based on-line computational stereo
vision. In Proceedings of the 23rd International Conference on Image and Vision Com-
puting, 2008.
doi: http://dx.doi.org/10.1109/IVCNZ.2008.4762147.

[262] N. Nguyen, P. Milanfar, and G. Golub. A computationally efficient superresolution
image reconstruction algorithm. Image Processing, IEEE Transactions on, 2001.

[263] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993.
isbn: 0125184069.

[264] Piotr Nowakowski, Eryk Ciepiela, Daniel Harezlak, Joanna Kocot, et al. The collage
authoring environment. Procedia Computer Science, 2011. Proceedings of the Interna-
tional Conference on Computational Science, ICCS 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.064.

[265] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide, version 1.1, 2007.
url: http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_

Guide_1.1.pdf.

[266] United States Court of Appeals. Apple Computer, Inc. v. Franklin Computer Corp.,
1983. 714 F. 2d 1240.

[267] United States Court of Appeals. In re Kuriappan P. Alappat, Edward E. Averill and
James G. Larsen, 1994. 33 F.3d 1526.

[268] United States Court of Appeals. Bernstein v. United States Dept. of Justice, 1997. 176
F.3d 1132.

[269] United States Court of Appeals. State Street Bank & Trust Co., Plaintiff-Appellee, v.
Signature Financial Group, Inc., Defendant-Appellant, 1998. 149 F.3d 1368.

[270] United States Court of Appeals. In re Bernard L. Bilski and Rand A. Warsaw, 2008.
545 F.3d 943.

[271] United States Court of Appeals. Cybersource Corp. v. Retail Decisions Inc., 2011. 620
F. Supp. 2d 1068.

[272] University of Chicago Press Staff. The Chicago Manual of Style. University of Chicago
Press, 16th edition, 2010.
isbn: 0226104206.

[273] Supreme Court of the United States. Le Roy v. Tatham, 1852. 55 U.S. 156.

[274] Supreme Court of the United States. Gottschalk, Acting Commissioner of Patents v.
Benson, et al., 1972. 409 U.S. 63.

[275] Supreme Court of the United States. Parker, Acting Commissioner of Patents and
Trademarks v. Flook, 1978. 437 U.S. 584.

[276] Supreme Court of the United States. Diamond, Commissioner of Patents and Trade-
marks v. Diehr, et al., 1981. 450 U.S. 175.

221

http://dx.doi.org/10.1109/IVCNZ.2008.4762147
http://dx.doi.org/10.1016/j.procs.2011.04.064
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf

BIBLIOGRAPHY

[277] Supreme Court of the United States. Bernard L. Bilski and Rand A. Warsaw v. David
J. Kappos, Under Secretary of Commerce for Intellectual Property and Director, Patent
and Trademark Office, 2010. 130 S. Ct. 3218.

[278] ANSI X3J11 Technical Committee on the C Programming Language. ANSI X3.159-
1989 Programming Language C, 1989. unofficial archive.
url: http://flash-gordon.me.uk/ansi.c.txt.

[279] Openvz website, 2011.
url: http://www.openvz.org/.

[280] Open Research Computation.
issn: 2042-5767,
url: http://www.openresearchcomputation.com/.

[281] P. Van Gorp and P. Grefen. Supporting the internet-based evaluation of research soft-
ware with cloud infrastructure. Software and Systems Modeling, 2010.
doi: http://dx.doi.org/10.1007/s10270-010-0163-y.

[282] S.C. Park, M.K. Park, and M.G. Kang. Super-resolution image reconstruction: a tech-
nical overview. Signal Processing Magazine, IEEE, 2003.

[283] United States Patent and Trademark Office. Interim Examination Instructions for
Evaluating Subject Matter Eligibility Under 35 U.S.C. ➜ 101, 2009.
url: http://www.uspto.gov/web/offices/pac/dapp/opla/2009-08-25_interim_101_instructions.

pdf.

[284] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM Transactions on
Graphics (TOG), 2003.

[285] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1990.

[286] S.M. Pizer, E.P. Amburn, J.D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter
Haar Romeny, J.B. Zimmerman, and K. Zuiderveld. Adaptive histogram equalization
and its variations. Computer vision, graphics, and image processing, 1987.

[287] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli. Image denoising using scale
mixtures of gaussians in the wavelet domain. Image Processing, IEEE Transactions on,
2003.

[288] Jef Poskanzer and Bryan et al. Henderson. Netpbm — The Netpbm Formats, 2009.
url: http://netpbm.sourceforge.net/doc/#formats.

[289] Debian Project. The debian free software guidelines.
url: http://www.debian.org/social_contract#guidelines.

[290] James J. Quirk. Amrita ebook, 2011.
url: http://www.amrita-ebook.org/.

[291] J. Rabin, J. Delon, and Y. Gousseau. A contrario matching of sift-like descriptors. In
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, 2008.

222

http://flash-gordon.me.uk/ansi.c.txt
http://www.openvz.org/
http://www.openresearchcomputation.com/
http://dx.doi.org/10.1007/s10270-010-0163-y
http://www.uspto.gov/web/offices/pac/dapp/opla/2009-08-25_interim_101_instructions.pdf
http://www.uspto.gov/web/offices/pac/dapp/opla/2009-08-25_interim_101_instructions.pdf
http://netpbm.sourceforge.net/doc/#formats
http://www.debian.org/social_contract#guidelines
http://www.amrita-ebook.org/

BIBLIOGRAPHY

[292] R. Raskar, A. Agrawal, and J. Tumblin. Coded exposure photography: motion deblur-
ring using fluttered shutter. ACM Transactions on Graphics, 2006.

[293] Red Hat Inc. Red Hat Enterprise Linux Technology capabilities and limits, 2011.
url: http://www.redhat.com/rhel/compare/.

[294] J. Rissanen. A universal prior for integers and estimation by minimum description
length. The Annals of statistics, 1983.

[295] O. Rodeh and A. Teperman. zfs - a scalable distributed file system using object disks.
In Proceedings. 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems
and Technologies, 2003.
doi: http://dx.doi.org/10.1109/MASS.2003.1194858.

[296] Rodin, Josip and Aoki, Osamu and. Debian New Maintainers’ Guide, 2011.
url: http://www.debian.org/doc/manuals/maint-guide/.

[297] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological review, 1958.

[298] Retinex Poisson Equation: a Model for Color Perception, 2011. IPOL demo.
url: http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/.

[299] Simplest Color Balance, 2011. IPOL demo.
url: http://www.ipol.im/pub/demo/lmps_simplest_color_balance/.

[300] L.I. Rudin, J.L. Lisani, and J.M. Morel. Registration and comparison of three dimen-
sional objects, 2010. WO Patent WO/2010/093,824.

[301] L.I. Rudin and S. Osher. Total variation based image restoration with free local con-
straints. In Image Processing, 1994. Proceedings. ICIP-94., IEEE International Con-
ference, 1994.

[302] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 1992.

[303] N. Sabater, A. Almansa, and J.M. Morel. Rejecting wrong matches in stereovision.
preprint, 2008.

[304] N. Sabater, J.M. Morel, A. Almansa, et al. How accurate can block matches be in stereo
vision? SIAM Journal on Imaging Sciences, 2011.

[305] Reed Saltzer and Clark. End-to-end arguments in system design. ACM Transactions
on Computer Systems, 1984.
doi: http://dx.doi.org/10.1145/357401.357402.

[306] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International journal of computer vision, 2002.

[307] Robert C. Seacord. The CERT C Secure Coding Standard. Addison-Wesley, 2008.
isbn: 0321563212,
url: https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+

Standard.

223

http://www.redhat.com/rhel/compare/
http://dx.doi.org/10.1109/MASS.2003.1194858
http://www.debian.org/doc/manuals/maint-guide/
http://www.ipol.im/pub/demo/lmps_retinex_poisson_equation/
http://www.ipol.im/pub/demo/lmps_simplest_color_balance/
http://dx.doi.org/10.1145/357401.357402
https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard

BIBLIOGRAPHY

[308] Stephen Segaller. Nerds 2.0.1: A Brief History of the Internet. TV Books, 1999.
isbn: 1575000881.

[309] Peter Seibel. Coders at Work: Reflections on the Craft of Programming. Apress, 2009.
isbn: 1430219483,
url: http://www.codersatwork.com/.

[310] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and
evaluation of multi-view stereo reconstruction algorithms. In Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006.

[311] Jean Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.
isbn: 0126372403.

[312] James A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.
Cambridge University Press, 1999.
isbn: 0521645573.

[313] C.E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 2001.

[314] E. Shechtman and M. Irani. Matching local self-similarities across images and videos.
In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on,
2007.

[315] J. Siciarek and B. Wiszniewski. Ioda - an interactive open document architecture. Pro-
cedia Computer Science, 2011. Proceedings of the International Conference on Compu-
tational Science, ICCS 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.070.

[316] SIAM Journal on Imaging Sciences (SIIMS).
issn: 1936-4954,
url: http://www.siam.org/journals/siims.php.

[317] Sparc europe.
url: http://www.sparceurope.org/resources/hot-topics/open-journals.

[318] Richard M. Stallman. Free Software, Free Society. Createspace, 2009.
isbn: 1441436855.

[319] Tom Standage. The Victorian Internet: The Remarkable Story of the Telegraph and
the Nineteenth Century’s On-line Pioneers. Walker & Company, 2007.
isbn: 0802716040.

[320] J.L. Starck and F. Murtagh. Automatic noise estimation from the multiresolution
support. Publications of the Astronomical Society of the Pacific, 1998.

[321] Guy L. Steele and Eric S. Raymond. The New Hacker’s Dictionary. 3rd edition, 1996.
isbn: 0262680920,
url: http://catb.org/jargon/html/I/indent-style.html.

224

http://www.codersatwork.com/
http://dx.doi.org/10.1016/j.procs.2011.04.070
http://www.siam.org/journals/siims.php
http://www.sparceurope.org/resources/hot-topics/open-journals
http://catb.org/jargon/html/I/indent-style.html

BIBLIOGRAPHY

[322] Neal Stephenson. In the Beginning...was the Command Line. William Morrow Paper-
backs, 1999.
isbn: 0380815931,
url: http://www.cryptonomicon.com/beginning.html.

[323] Victoria Stodden. Enabling reproducible research: Open licensing for scientific innova-
tion. International Journal of Communications Law and Policy, 2009.
url: http://www.ijclp.net/files/ijclp_web-doc_1-13-2009.pdf.

[324] Victoria Stodden. The legal framework for reproducible research in the sciences: Li-
censing and copyright. IEEE Computing in Science and Engineering, 2009.
doi: http://dx.doi.org/10.1109/MCSE.2009.19.

[325] Victoria Stodden. The scientific method in practice: Reproducibility in the computa-
tional sciences, 2010. MIT Sloan Research Paper No. 4773-10.
doi: http://dx.doi.org/10.2139/ssrn.1550193.

[326] Victoria Stodden. The credibility crisis in computational science: An information issue,
2012. Dean’s Lecture, UC Berkeley School of Information, Berkeley, CA.
url: http://www.stanford.edu/~vcs/talks/BerkeleyFeb2012-STODDEN.pdf.

[327] William Jr. Strunk and E. B. White. The Elements of Style. Longman, 4th edition,
1999.
isbn: 0205313426.

[328] Jeremy Sugarman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Monitor. In Proceedings of
the 2001 USENIX Annual Technical Conference, 2001.
url: http://www.usenix.org./publications/library/proceedings/usenix01/sugerman/sugerman.

pdf.

[329] Sun Microsystems. Code Conventions for the Java Programming Language. Section
4.1: Line Length.
url: http://www.oracle.com/technetwork/java/codeconventions-136091.html#313.

[330] Adobe Systems. Encapsulated PostScript 3.0 Specification, 1992.
url: http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf.

[331] Adobe Systems. TIFF 6.0 Specification, 1992.
url: http://partners.adobe.com/public/developer/tiff/.

[332] Mark Taylor. Lame technical faq, 2000. [online; accessed 19-October-2011].
url: http://lame.sourceforge.net/tech-FAQ.txt.

[333] Y. Tendero, J. Gilles, S. Landeau, and JM Morel. Efficient single image non-uniformity
correction algorithm. In Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, 2010.

[334] the Debian Installer team. Meeting Minimum Hardware Requirements, 2010.
url: http://www.debian.org/releases/stable/i386/ch03s04.html.en.

225

http://www.cryptonomicon.com/beginning.html
http://www.ijclp.net/files/ijclp_web-doc_1-13-2009.pdf
http://dx.doi.org/10.1109/MCSE.2009.19
http://dx.doi.org/10.2139/ssrn.1550193
http://www.stanford.edu/~vcs/talks/BerkeleyFeb2012-STODDEN.pdf
http://www.usenix.org./publications/library/proceedings/usenix01/sugerman/sugerman.pdf
http://www.usenix.org./publications/library/proceedings/usenix01/sugerman/sugerman.pdf
http://www.oracle.com/technetwork/java/codeconventions-136091.html#313
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://partners.adobe.com/public/developer/tiff/
http://lame.sourceforge.net/tech-FAQ.txt
http://www.debian.org/releases/stable/i386/ch03s04.html.en

BIBLIOGRAPHY

[335] The Debian Project. The debian free software guidelines.
url: http://www.debian.org/social_contract#guidelines.

[336] The Debian Project. Debian Policy Manual, 2011.
url: http://www.debian.org/doc/debian-policy/.

[337] The IEEE and The Open Group. The Open Group Base Specifications Issue 7, IEEE
Std 1003.1-2008, 2008. POSIX.1-2008, section utilities/pax/ustar.
url: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06.

[338] The IEEE and The Open Group. The Open Group Base Specifications Issue 7, IEEE
Std 1003.1-2008, 2008. POSIX.1-2008, section utilities/c99.
url: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/c99.html.

[339] the comp.compression Usenet group users. Where can i find lenna and other images?
url: http://www.faqs.org/faqs/compression-faq/part1/section-30.html.

[340] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment-a modern
synthesis. Vision algorithms: theory and practice, 2000.

[341] Kate L. Turabian. A Manual for Writers of Research Papers, Theses and Dissertations.
University of Chicago Press, 7th edition, 2007.
isbn: 0226823377.

[342] M. Unser, A. Aldroubi, and M. Eden. Fast b-spline transforms for continuous image
representation and interpolation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1991.

[343] United States Code - Title 17. Chapter 1 - Subject Matter And Scope of Copyright.
url: http://www.law.cornell.edu/uscode/17/usc_sup_01_17_10_1.html.

[344] United States Code - Title 35. Chapter 2 - Patentability of Inventions and Grant of
Patents.
url: http://www.law.cornell.edu/uscode/35/usc_sup_01_35_10_II.html.

[345] Pieter Van Gorp and Paul Grefen. Supporting the internet-based evaluation of research
software with cloud infrastructure. Software and Systems Modeling, 2009.
doi: http://dx.doi.org/10.1007/s10270-010-0163-y.

[346] Pieter van Gorp and Steffen Mazanek. SHARE A Web Portal for Creating and Sharing
Executable Research Papers. 2011.
doi: http://dx.doi.org/10.1016/j.procs.2011.04.062.

[347] van Rossum, Guido. Python 3000, 2006.
url: http://www.python.org/dev/peps/pep-3000/.

[348] van Rossum, Guido and Warsaw, Barry. Style Guide for Python Code. Section: Maxi-
mum Line Length.
url: http://www.python.org/dev/peps/pep-0008/.

[349] Patrick Vandewalle, Jelena Kovacevic, and Martin Vetterli. Reproducible research in
signal processing — what, why and how? IEEE Signal Processing Magazine, 2009.
doi: http://dx.doi.org/10.1109/MSP.2009.932122.

226

http://www.debian.org/social_contract#guidelines
http://www.debian.org/doc/debian-policy/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/c99.html
http://www.faqs.org/faqs/compression-faq/part1/section-30.html
http://www.law.cornell.edu/uscode/17/usc_sup_01_17_10_1.html
http://www.law.cornell.edu/uscode/35/usc_sup_01_35_10_II.html
http://dx.doi.org/10.1007/s10270-010-0163-y
http://dx.doi.org/10.1016/j.procs.2011.04.062
http://www.python.org/dev/peps/pep-3000/
http://www.python.org/dev/peps/pep-0008/
http://dx.doi.org/10.1109/MSP.2009.932122

BIBLIOGRAPHY

[350] Patrick Vandewalle, Sabine Süsstrunk, and Martin Vetterli. A frequency domain ap-
proach to registration of aliased images with application to super-resolution. EURASIP
Journal of Applied Signal Processing, 2006.
doi: http://dx.doi.org/10.1155/ASP/2006/71459.

[351] L. Vincent. Fast grayscale granulometry algorithms. In EURASIP Workshop ISMM,
1994.

[352] L. Vincent. Morphological area openings and closings for grey-scale images. NATO ASI
Series F Computer and Systems Sciences, 1994.

[353] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on
immersion simulations. IEEE transactions on pattern analysis and machine intelligence,
1991.

[354] P. Viola and M.J. Jones. Robust real-time face detection. International journal of
computer vision, 2004.

[355] Virtanen, Perttu. Latest Software Patent Law Developments in the US and EU. script-
ed, 2010.
doi: http://dx.doi.org/10.2966/scrip.070310.562,
url: http://www.law.ed.ac.uk/ahrc/script-ed/vol7-3/virtanen.asp.

[356] W3C HTML Working Group. Xhtml 1.0 the extensible hypertext markup language
(second edition).
url: http://www.w3.org/TR/xhtml1/.

[357] Bertrand Warusfel. La brevetabilité des inventions logicielles dans les jurisprudences
européenne et américaine. In Actes du colloque de l’AFDIT, 2002.
url: http://www.droit.univ-paris5.fr/warusfel/articles/JurInvLog_warusfel03.pdf.

[358] Jon Watson. Virtualbox: bits and bytes masquerading as machines. Linux Journal,
2008.
url: http://www.linuxjournal.com/article/9941.

[359] Web Hypertext Application Technology Working Group (WHATWG). HTML Living
Standard, 2012.
url: http://www.whatwg.org/specs/web-apps/current-work/multipage/.

[360] L.Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quantization.
In Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, 2000.

[361] Weinberger, Benjy and Silverstein, Craig and Eitzmann, Gregory and Mentovai, Mark
and Landray, Tashana. Google C++ Style Guide. Section: Line Length.
url: http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line_Length.

[362] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt. II. Psychological Research,
1923.

[363] David A. Wheeler. Secure programming for linux and unix howto, 2003.
url: http://www.dwheeler.com/secure-programs/.

227

http://dx.doi.org/10.1155/ASP/2006/71459
http://dx.doi.org/10.2966/scrip.070310.562
http://www.law.ed.ac.uk/ahrc/script-ed/vol7-3/virtanen.asp
http://www.w3.org/TR/xhtml1/
http://www.droit.univ-paris5.fr/warusfel/articles/JurInvLog_warusfel03.pdf
http://www.linuxjournal.com/article/9941
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line_Length
http://www.dwheeler.com/secure-programs/

BIBLIOGRAPHY

[364] David A. Wheeler. Free-libre / open source software (floss) is commercial software,
2006.
url: http://www.dwheeler.com/essays/commercial-floss.html.

[365] David A. Wheeler. Why open source software / free software (oss/fs, floss, or foss)?
look at the numbers!, 2007.
url: http://www.dwheeler.com/oss_fs_why.html.

[366] Wikimedia. Wikimedia Traffic Analysis Report - Operating Systems - September 2011,
2011.
url: http://stats.wikimedia.org/archive/squid_reports/2011-09/

SquidReportOperatingSystems.htm.

[367] Wikipedia. Usage share of operating systems — wikipedia, the free encyclopedia, 2011.
[Online; accessed 31-October-2011].
url: http://en.wikipedia.org/w/index.php?title=Usage_share_of_operating_systems&oldid=

458256172.

[368] Wikipedia. Virtual disk image - wikipedia, the free encyclopedia, 2011. [Online; accessed
20-October-2011].
url: http://en.wikipedia.org/w/index.php?title=Virtual_disk_image&oldid=447383468.

[369] World Wide Web Consortium (W3C). Html5, 2012.
url: http://www.w3.org/TR/html5/.

[370] Akira Yanagawa, Alexander C. Loui, Jiebo Luo, Shih-Fu Chang, Dan Ellis, Wan Jiang,
Lyndon Kennedy, and Keansub Lee. Kodak consumer video benckmark data set: con-
cept definition and annotation. Technical Report 246-2008-4, Columbia University AD-
VENT, 2008.
url: http://www.ee.columbia.edu/ln/dvmm/consumervideo/.

[371] L.P. Yaroslavsky. Digital picture processing. an introduction. Springer Series in Infor-
mation Sciences, 1985.

[372] G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear esti-
mators: from gaussian mixture models to structured sparsity. Image Processing, IEEE
Transactions on, 2010.

[373] Guoshen Yu and Jean-Michel Morel. ASIFT: An Algorithm for Fully Affine Invariant
Comparison. Image Processing On Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.my-asift.

[374] Guoshen Yu and Guillermo Sapiro. DCT image denoising: a simple and effective image
denoising algorithm. Image Processing On Line, 2011.
doi: http://dx.doi.org/10.5201/ipol.2011.ys-dct.

[375] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l 1 optical
flow. Pattern Recognition, 2007.

[376] Robert Hobbes Zakon. Hobbes’ internet timeline, 2011.
url: http://www.zakon.org/robert/internet/timeline/.

228

http://www.dwheeler.com/essays/commercial-floss.html
http://www.dwheeler.com/oss_fs_why.html
http://stats.wikimedia.org/archive/squid_reports/2011-09/SquidReportOperatingSystems.htm
http://stats.wikimedia.org/archive/squid_reports/2011-09/SquidReportOperatingSystems.htm
http://en.wikipedia.org/w/index.php?title=Usage_share_of_operating_systems&oldid=458256172
http://en.wikipedia.org/w/index.php?title=Usage_share_of_operating_systems&oldid=458256172
http://en.wikipedia.org/w/index.php?title=Virtual_disk_image&oldid=447383468
http://www.w3.org/TR/html5/
http://www.ee.columbia.edu/ln/dvmm/consumervideo/
http://dx.doi.org/10.5201/ipol.2011.my-asift
http://dx.doi.org/10.5201/ipol.2011.ys-dct
http://www.zakon.org/robert/internet/timeline/

BIBLIOGRAPHY

[377] Z. Zhang. A flexible new technique for camera calibration. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 2000.

[378] Shaobin Zhu Zhu. Patent Rights Under FOSS Licensing Schemes. Shidler Journal of
Law, Commerce & Technology, 2007.
url: http://www.lctjournal.washington.edu/Vol4/a04zhu.html.

[379] Rusen Öktem, Leonid Yaroslavsky, Karen Egiazarian, and Jaakko Astola. Transform
based denoising algorithms: Comparative study, 1999.
url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.5616.

229

http://www.lctjournal.washington.edu/Vol4/a04zhu.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.5616

	Introduction
	Context and Previous Works
	Software and Reproducibility
	Thesis Summary

	IPOL Project Overview
	Why Image Processing On Line?
	How IPOL Works
	Current Activity
	The Scientific Program

	Online Demos and Software Journals
	From Hypertext Microfilms to Web Services
	Online Demos
	Reproducibility by Virtual Machines
	Implementations and the Scientific Method

	Software for Reproducible Research
	The Need for Software Quality
	Software Guidelines 1.00
	Automated Processing

	Copyright, Patents, Licenses and Network Laws
	Software Copyright and Patents
	Copyright and License Policies
	Online Publishing and the Law

	A Short Survey of Image Processing and Computer Vision
	The Universality of Image Processing
	A Rewriting of 2000 Keywords
	A Scientific Program for IPOL
	Image Analysis and Understanding
	Conclusion: Journal Methodology

	Examples
	Retinex Poisson Equation: a Model for Color Perception
	Simplest Color Balance

	Usage and Feeback
	Authors Survey
	Usage Statistics

	Software Guidelines
	In Brief: Check List, Check Service and Examples
	About this Document
	Guidelines
	Annexes

	Feedback Survey
	Author Feedback
	General Information
	Supplement Survey

	References

