
HAL Id: tel-00768416
https://theses.hal.science/tel-00768416v1

Submitted on 21 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizations of XQuery in peer-to-peer distributed
XML databases

Bogdan Butnaru

To cite this version:
Bogdan Butnaru. Optimizations of XQuery in peer-to-peer distributed XML databases. Databases
[cs.DB]. Université de Versailles-Saint Quentin en Yvelines, 2012. English. �NNT : �. �tel-00768416�

https://theses.hal.science/tel-00768416v1
https://hal.archives-ouvertes.fr

THÈSE
de

Doctorat de l’Université de Versailles
Saint-Quentin-en-Yvelines

Présentée et soutenue publiquement par

Bogdan BUTNARU

Pour obtenir le grade de

Docteur en Informatique de l’Université de Versailles Saint-Quentin-en-Yvelines

Titre de la thèse :

Optimisation de requêtes XQuery dans des bases
de données XML distribuées sur des réseaux

pair-à-pair

Rapporteurs :
Dario Colazzo, MCF, HDR, Laboratoire de Recherches en Informatique,

UMR 8623, Université de Paris Sud et INRIA, projet LEO
Talel Abdessalem, MCF, HDR, Laboratoire Traitement et Communication de

l’Information, UMR 5141, Telecom ParisTech
Examinateurs :
Dan Vodislav, Pr., Laboratoire Equipes Traitement de l’Information et Systèmes,

UMR 8051, Université de Cergy-Pontoise
Emmanuel Bruno, MCF, Laboratoire des Sciences de l’Information et des Sys-

tèmes, UMR 6168, Université Sud-Toulon-Var
Directeur :
Georges Gardarin, Pr. Émérite, PRiSM, UMR 8144, Université de Versailles

Saint-Quentin-en-Yvelines
Encadrant :
Benjamin Nguyen, MCF, PRiSM, UMR 8144, Université de Versailles Saint-

Quentin-en-Yvelines et INRIA, projet SMIS

Sommaire
Dans cette thèse nous proposons une architecture pour les bases de données

XML distribuées basées sur les réseaux pair-à-pair. Notre approche est unique
parce qu’elle est axée sur le traitement global du langage XQuery plutôt que
l’étude d’un langage réduit spécifique aux index utilisés.

Le système XQ2P présenté dans cette thèse intègre cette architecture ; il se
présente comme une collection complète de blocs de logiciels fondamentaux
pour développer des applications similaires. L’aspect pair-à-pair est fourni par
P2PTester, un « framework » fournissant des modules pour les fonctionnalités
P2P de base et un système distribué pour des tests et simulations.

Une version de l’algorithme TwigStack adapté au P2P, utilisant un index
structurel basé sur le numérotage des nœuds, y est intégré. Avec le concours
d’un système de pré-traitement des requêtes il permet à XQ2P l’évaluation ef-
ficace des requêtes structurelles sur la base de données distribuée. Une version
alternative du même algorithme est aussi utilisée pour l’évaluation efficace de
la plupart des requêtes en langage XQuery.

L’une des nouveautés majeures de XQuery 3.0 est l’étude des séries tempo-
relles. Nous avons défini un modèle pour traiter ce type de données, utilisant
le modèle XML comme représentation des valeurs et des requêtes XQuery 3.0
pour les manipuler. Nous ajoutons à XQ2P un index adapté à ce modèle ; le par-
titionnement horizontal des longues séries de données chronologiques, des opé-
rateurs optimisés et une technique d’évaluation parallèle des sous-expressions
permettent l’exécution efficace d’opérations avec des volumes de données im-
portants.

3

DISSERTATION

Submitted by

Bogdan BUTNARU

In support of candidature for the degree of

Doctor of Informatics of the University of Versailles Saint-Quentin-en-Yvelines

Title:

Optimizations of XQuery in peer-to-peer
distributed XML databases

Thesis committee:
Dario Colazzo, MCF, HDR, Laboratoire de Recherches en Informatique, UMR

8623, Université de Paris Sud and INRIA, projet LEO
Talel Abdessalem, MCF, HDR, Laboratoire Traitement et Communication de

l’Information, UMR 5141, Telecom ParisTech
Examining comittee:
Dan Vodislav, Pr., Laboratoire Equipes Traitement de l’Information et Systèmes,

UMR 8051, Université de Cergy-Pontoise
Emmanuel Bruno, MCF, Laboratoire des Sciences de l’Information et des Sys-

tèmes, UMR 6168, Université Sud-Toulon-Var
Thesis supervisor:
Georges Gardarin, Pr.emer., PRiSM, UMR 8144, Université de Versailles Saint-

Quentin-en-Yvelines
Thesis advisor:
Benjamin Nguyen, MCF, PRiSM, UMR 8144, Université de Versailles Saint-

Quentin-en-Yvelines and INRIA, projet SMIS

Contents

Contents 7

1 Introduction 9

2 Peer-to-Peer XML Databases 13
2.1 XML . 13

Modeling Data in XML . 15
2.2 The XQuery Language . 18
2.3 P2P and KBR Systems . 21

Overlay Networks . 23
Structured P2P networks . 25
Key-Based Routing . 26
KBR with Chord . 26
Distributed Hash Tables . 29

2.4 Testing and Simulating P2P Applications 31

3 XQ2P 33
3.1 Introduction . 33
3.2 Architectural Overview . 35
3.3 XML Document Handling . 36
3.4 The XQuery Processing Kernel 37

Architecture . 39
Data structures . 40
XQuery parsing . 51
Static analysis . 54
Processing Operators . 56

3.5 P2PTester . 57
Applications . 58
The Tester and Test Scenarios 70

3.6 Use for XQ2P . 77

7

8 CONTENTS

4 Distributed XQuery Processing with Structural Indexing 81
4.1 The XQ2P Overlay Network 82
4.2 Structural Join Algorithms . 83

The TwigStack Algorithm . 84
4.3 Document Indexing . 86

Publishing documents . 88
Modification of indexed documents 90

4.4 The TwigStack operators . 91
Query plan transformation . 91
Query formulation . 93
Stages of processing . 94

4.5 Indexed document retrieval . 97

5 Processing Time Series Efficiently with Value Indexing 101
5.1 The Time Series Model . 102
5.2 Stock Selection and Strategy Evaluation 103
5.3 Time-Series in XQuery . 104
5.4 Time-Series over a DHT . 105
5.5 Distributed Computation . 108

6 Related Work 111
6.1 Data and Querying Models . 111
6.2 Indexing and Retrieval Schemes 114
6.3 Structural Indexes for XML 118
6.4 KBR and DHT protocols . 119
6.5 Testers and Simulators for P2P Systems 125

7 Conclusion 131

List of Figures 135

Bibliography 137

Chapter 1

Introduction
Today’s applications rely increasingly on the peer-to-peer model when ex-
changing information. This trend is sustained by many factors: Growth
in the number of people with Internet access, and in their Internet con-
sumption, makes centralized services ever harder to maintain.1 Proliferation
of Internet-enabled devices—desktop computers, laptops, TVs, game con-
soles, smart-phones, tablets, e-book readers and even digital cameras and
thermostats—leads even to individual users having to rely on some self-
organization of their increasingly complex personal networks. Such devices
become ever more powerful; at the same time, ever more of the world’s
information is produced, rather than only consumed, by users. The edges of
Internet become denser, more powerful, and increasingly sources rather than
only sinks of information. All these trends push ever further away from the
client-server model of communication. Even services that maintain use of the
client-server model use peer-to-peer techniques in the ever-larger clusters that
implement their “servers”.

A parallel and related trend is the increasing dependence on XML as a for-
mat for storing and especially exchanging information. The growing impor-
tance of ease of interoperability, implied by the diversity of the devices at the
network edge as well as that of the services offered to them, as well as its ver-
satility, are key causes of this trend. The development of peer-to-peer tech-
niques such as distributed hash tables added powerful and scalable primitives
for organizing and locating information in peer to peer networks. However,
most widely distributed applications are often limited to keyword search, and
sometimes restricted, application-specific languages. There is a growing need

1Note that the growth in the number of services offered does not compensate for
this; on the contrary, all new services need to be able to support the ever-growing
number of users.

9

10 CHAPTER 1. INTRODUCTION

for widespread support of a versatile, powerful language such as XQuery in
peer-to-peer distributed systems.

The topic of this work is to study the efficient evaluation of queries ex-
pressed in the XQuery language on XML databases distributed over peer-to-
peer networks. We present XQ2P, an extensible XQuery evaluation engine
oriented towards exploiting Distributed Hash Tables and XML indexing tech-
niques adapted to DHTs for efficient processing. In contrast to most related
research, where a new indexing algorithm is introduced and a query language
is developed depending on the constructs the index can evaluate efficiently,
XQ2P was designed in a top-down fashion: it attempts to support, as much
as possible, the entire XQuery language with a simple though unoptimized
implementation, and then extend this by adding indexing and efficient query
algorithms to optimize select operations. We believe this approach is more fa-
vorable to widespread adoption of XQuery, with desirable effects such as better
interoperability and increased competition.

In Chapter 2 we present a summary of each of the fundamental concepts
used in the rest of this work: First, the XML language and data model, used by
XQ2P to represent the data it manages. Following that, we describe XQuery,
the language used for querying an XQ2P database. We then introduce the
peer-to-peer approach to distributed applications, followed by a description of
overlay networks and key-based-routing protocols and distributed hash tables
based on the latter. XQ2P uses key-based-routing in a fashion analogous to
DHTs to publish distributed indexes and answer queries. Finally, several com-
mon practical issues encountered while developing peer-to-peer applications
and protocols are presented, pointing out the necessity and complexities of
testing throughout each phase of development.

Chapter 3 introduces XQ2P, the main contribution of this work. XQ2P is
a peer-to-peer–distributed XML/XQuery database system intended to support
research through simplicity and extensibility. We adopt a generic architecture
for distributed databases, in which the following steps are followed to support
novel indexing and querying methods: first, documents are published by dis-
tributing among participating nodes indexed information; then, at query exe-
cution time, data relevant to the query is located using the index and retrieved
from the nodes that own it; finally, the query is evaluated over the retrieved
data to produce an answer.

We supply a complete suite of software modules to support this approach:
A parsing module offers a complete parser for XQuery 1.02 and a type-safe
parsed representation of queries. An implementation of the XPath/XQuery

2Partial support for window queries using the XQuery 3.0 syntax is also included
as an optional extension.

11

type hierarchy, including nodes, values, sequences, and types3 composes the
data model. We supply a static analyzer which performs all the mandatory
and some of the optional static analysis required by conforming XQuery im-
plementation, easily extended thanks to use of the visitor pattern.

XQuery evaluation is supported by a set of operators derived from the se-
mantics of each XQuery construct. A tree-shaped execution plan composed
of such operators is generated after static analysis; the execution plan can be
supplied with a dynamic context (containing, among other things, accessors
for XML data) for immediate execution. Alternatively, it is possible to trans-
form the execution plan, for example to apply reordering optimizations or to
replace specific parts of it with index-based operators. The suite is completed
by implementations of all standard XPath and XQuery functions and opera-
tors; adding user-defined functions, implemented either in Java or in XQuery,
is also supported.

Peer-to-peer development is supplied by P2PTester, a framework for P2P
applications which is not limited to XQ2P. P2PTester includes standardized
interfaces for fundamental peer-to-peer services to support modularity. Mas-
ter/slave tester programs allow running tests and simulations of P2P applica-
tions, including single-process, single-machine, and network-distributed tests
controlled from a single workstation, with or without user interaction. Test
scenarios can be written in Java for maximum expressivity and control over
tested application nodes. Finally, a suite of ready-built modules for function-
ality such as network communication, event tracing and logging, as well as
key-based routing and DHT protocols allows the development of higher-level
peer-to-peer applications without needing to spend time on low-level details,
and encourages code reuse.

In Chapter 4 we adopt a pre-post node numbering scheme to construct
structural indexes of XML documents. Indexes are published over a Chord-
like key-based routing layer. We adapt the TwigStack holistic join algorithm
to KBR-distributed indexes, and we augment the XQ2P kernel described in
Chapter 3 with TwigStack-based operators, which provide efficient execution
of structural queries over local data, and also allow execution of queries with
structural components over distributed data published on the overlay.

We then introduce in Chapter 5 a model for processing time-series data
expressed in XML, and describe a value-based index system that supports the
efficient execution of some useful queries on such data, again as extensions
to XQ2P. The index partitions large time-series horizontally among peers; in
most cases, operations can be performed directly on the index data, without
needing to contact the peers holding the original documents. An important

3Notable exceptions, however, are support for XML Schema and user types.

12 CHAPTER 1. INTRODUCTION

distinction from the techniques of Chapter 4 is that some important but ex-
pensive operations on time-series can be executed in a distributed manner, by
subdividing the task among peers.

Chapter 6 describes related work, mirroring the structure of Chapter 2. We
conclude in Chapter 7.

In summary, we highlight the contributions of this thesis:

(i) A generic architecture for P2P-distributed XML databases, focused on
supporting XQuery as a query language rather than more limited index-
specific queries. (See Chapter 3.)

(ii) XQ2P, an open-source application using the above architecture, intended
both as a proof of the architecture’s suitability and as a complete collec-
tion of fundamental software building-blocks for developing similar ap-
plications. Supporting the peer-to-peer end is P2PTester, a framework
providing pluggable modules for lower-level P2P functionality and a dis-
tributed testing and simulation system. (See Chapter 3.)

(iii) An version of the TwigStack algorithm adapted to P2P using a KBR-based
node-labeling indexing scheme. A query preprocessing scheme which en-
ables XQ2P to efficiently evaluate structural queries over the distributed
database using this type of structural indexing. The optimized algorithm
is integrated with XQ2P’s local processing to allow support of most of
the XQuery language for user queries. (See Chapter 4.)

(iv) An model for processing time-series data using the XML model with
XQuery expressions. An implementation of a value-based index for hor-
izontal partitioning of large time-series data over a DHT-like overlay. A
further addition to XQ2P which enables it to efficiently evaluate many
useful time-series operations distributedly. (See Chapter 5.)

Chapter 2

Peer-to-Peer XML Databases
XQ2P is an XML/XQuery–based database distributed over a peer-to-peer over-
lay network. This chapter presents in some detail each of the domains on the
intersection of which XQ2P stands.

The first section below summarizes the XML language and describes in
some detail the XML data model, used by XQ2P to represent the data it man-
ages. Following that, The XQuery Language describes XQuery, the dominant
language for processing XML data, used to query an XQ2P database.

Section 2.3, P2P and KBR Systems, introduces the peer-to-peer approach
to distributed applications, overlay networks, key-based-routing protocols and
distributed hash tables based on the latter. XQ2P uses key-based-routing in a
fashion analogous to DHTs to publish distributed indexes and answer queries.

Finally, Section 2.4, Testing and Simulating P2P Applications, presents sev-
eral common practical issues encountered while developing peer-to-peer appli-
cations and protocols related to the necessity of testing throughout each phase
of development. To address these issues we developed XQ2P using P2PTester.
Both XQ2P and P2PTester are described in the next chapter.

2.1 XML
As its name—eXtensible Markup Language—suggests, XML originated as a
standard for encoding mostly textual documents with markup added on sec-
tions of text, in a format that is both machine-readable and easily human-
readable. Similar to HTML (and other, more powerful markup languages like
SGML), XML defined a precise method for embedding structured or semi-
structured “tags” in a text. In very simple terms, transforming simple text in
XML entails surrounding (or “marking”) fragments of the text with labeled
tags (called very generally “markup”); these tags represent properties of the

13

14 CHAPTER 2. PEER-TO-PEER XML DATABASES

<document type='article'>
<metadata>

<title>An example of XML</title>
<author>A. Person</author>
<author>J. Doe</author>

</metadata>
<section title='Introduction'>

The first paragraph...
</section>
<!-- some other sections may follow -->

</document>

Figure 2.1: Example of a document-like XML tree.
Elements are delineated by tags surrounded by angle brackets; the word fol-
lowing the opening bracket is the name or type of tag; tags beginning with
</ mark the end of an element. Name/value pairs following the element
name in opening tags are attributes. The node delineated by <!-- and -->
is a comment.

text they surround (in other words, they “tag” the parts of text they surround
with meaning).

XML also became very popular as a format for encoding data in general,
not only text-oriented documents. A variety of associated standards were de-
veloped: The XML data model defines its logical representation, basically of
a tree of labeled nodes with data-bearing leaves; The XPath and XQuery stan-
dards define powerful, expressive languages for querying and manipulating this
data model; XML Schema provides a standard way to define XML-based for-
mats and data types; DOM (Document Object Model) and other APIs for ma-
nipulating XML are available in most popular programming languages. Many
successful implementations of these standards, and the great ease of ensuring
compatibility and interoperability of applications that use XML for data repre-
sentation, as well as its flexibility, have led to XML being increasingly popular.

Given such powerful tools, it is already possible to have entire application
stacks built from XML-based elements. An XML database stores the data,
XQuery can manipulate the data, and the results can be presented to users with
in XML format via web browsers (assisted by such standardized technologies
as CSS, XSLT and XSL-FO for styling and AJAX for interactivity) and XML-
based UI widgets and toolkits.

2.1. XML 15

A central element of this powerful model for building applications is the
XML database, the engine that stores and manipulates XML-structured data.
This is the central focus of this work; to support the presentation of our con-
tribution, the following sections will present the XML data model,1 XQuery,
XML databases, and XML indexing.

Modeling Data in XML
As discussed above, XML can be used as a model for representing data, inde-
pendent of its textual format. Very briefly, the model is that of a tree of nodes;
the tree’s leaves contain data (e.g., numbers, text strings), and the structure of
the tree defines relationships between them.

The complete XML standard however is slightly more complex. This sec-
tion describes in more detail its elements. Note that [79] defines very precisely
the data model used by the XPath and XQuery languages. We adhere to this
model, but the presentation below will use the term “XML data model”, or
even “data model” for brevity. Not all features and details are mentioned here;
the reader is invited to read the relevant standards for more details.

Nodes andAtomic Values The datamodelmakes a basic distinction between
nodes and atomic values. Atomic values, as the name implies, encode data ele-
ments. Nodes in general have a parent and a list of children; the structure of
the document is defined via these parent-child relationships and those derived
from them (like descendant-ancestor, or sibling).

Sequences Data is modeled as sequences of items. A sequence is simply an
ordered list of nodes and/or atomic values. All operations are described as
operating on, and returning, such sequences. Sequences have an item type and
a cardinality.

A sequence may contain no items at all; if so, it is referred to as the “empty
sequence”. In general, an operation that has no result (but that is correct, in
the sense that no errors are encountered), will return the empty sequence.2

A single item and the sequence containing that item (be it node or atomic
value) are treated at equivalent. Common terminology makes use of this fact

1The textual representation of XML—i.e., the standard way of encoding XML data
as text—is irrelevant to this work; consult [74] for details.

2The empty sequence behaves similarly to how a NULL value or a NaN floating-point
value behaves in some programming languages. For example, many operations, e.g.,
comparison, will return the empty sequence when one of their operands is the empty
sequence.

16 CHAPTER 2. PEER-TO-PEER XML DATABASES

often: An operation will commonly be said to return an item when the logical
result is a single value (for example, a comparison results in a boolean value);
this is understood as equivalent to a sequence containing exactly one element.

The item type of a sequence denotes the kinds of items it may contain. The
most general is sequence of “items”, meaning any kind of node or value, but
some sequences may contain only nodes (or even nodes of a certain type), or
only atomic values of some kind (e.g., only numbers). The languages using
this model (e.g., XQuery or XPath) have syntax for declaring the type and
cardinality of sequences, but we need not describe it here.

The document node The root of an XML document tree is always a
document node. As such, document nodes never have a parent. The docu-
ment node may have any number of children nodes; however, it must have
exactly one element node as a child.3

Document nodes have a document-uri property, denoting the location of
the document (as the name implies, this is an atomic value of the URI type),
but this may be empty (e.g., for documents constructed in memory).

The element nodes define the structure of the document. All element
nodes have exactly one parent node. Their parent may be the document node
or another element node. They may have any number of children, of any
node type except document.4

All element nodes have a name. In general, the name is a string denot-
ing the kind of element; its contents are restricted to specific characters (e.g.,
it must start with a letter, it contains no whitespaces nor most punctuation
marks), similar to the syntactic restrictions on identifiers in most program-
ming languages. A description of the mechanism is beyond the scope of this
document, but a very short summary is that any element may declare a default
namespace with an xmlns attribute, and associate other namespaces with a pre-
fix with attributes named xmlns:<PREFIX>; default and prefixed namespaces
are scoped to that element and its descendants (but descendants may re-declare
both); unprefixed names encountered in a document are interpreted as belong-

3All element nodes in a document are either the unique element child of the
document node, or a descendant thereof. As such, this element node is sometimes
regarded as the “root” of the tree of elements; the reader is cautioned to be aware
of the distinction between the “root of the element tree” and the “root of the XML
document”.

4However, mechanisms like DTD or XML Schemamay restrict the kind and num-
ber of children of specific element types.

2.1. XML 17

ing to the default namespace, names of the form <PREFIX>:<NAME> are inter-
preted as name <NAME> in the namespace associated with prefix <PREFIX>. For
details the reader is referred to the relevant standards.[74][75]

The attribute nodes Attributes can be seen as “lightweight element”. Sim-
ilar to element nodes, attributes have a name. They differ in structured, how-
ever: First, the parent of an attribute node is always an element node. Second,
the content of attribute nodes is always a string (though possibly zero-length).
The data model formally treats this content as a property of the attribute, and
attributes never have child nodes, i.e., they are always leaves of the XML tree.
(However, it is sometimes useful to regard the content of an attribute as the
unique text node child of the attribute.)

Due to their particular restrictions, attributes of an element are considered
separate from its other children. Languages for processing XML have specific
syntax for referring to such nodes separately from the other descendants.

The text nodes These are unlabeled nodes that contain text. They can be
children of document, element or attribute nodes, and have no descendants.
Text nodes are thus always leaves of the XML tree. The text contained in text
nodes may be interpreted as a sequence of values (with the empty sequence and
singleton sequences as special cases), for example as a number, or a list of dates.

Other node types In addition to the above there exist comment nodes and
processing instruction nodes. These are used to annotate parts of the
document (as their names imply, the former is destined for humans, and the
latter for programs). Such nodes may have only document or element nodes
as parent, and they don’t have children.

XML fragment When processing XML-formatted data, there is often the
need to manipulate nodes that are not part of a document. (For example, one
may copy an element, with all its descendants, from a document, manipulate
it for a while, then perhaps attach it to a newly-constructed document.) Such
nodes, together with their descendants, are called “XML fragments”. Such
fragments respect the general rules described above in the sense that they have
the same properties described above, except that they do not have a parent
node.

Document order The data model regards the XML tree as ordered. The chil-
dren for element and document nodes (the only node kinds that have children)

18 CHAPTER 2. PEER-TO-PEER XML DATABASES

Figure 2.2: Tree model of the document in Figure 2.1.
Black rectangles represent elements, rounded boxes attributes, dashed
boxes text nodes. The box with a folded corner is the document node,
and the gray box to the right is a comment node. The arrows go from par-
ent to children nodes.
Document order is top-down and left-to-right, beginning with the doc-
ument node, the document element, type attribute, metadata element,
title element, and so on.

and the attributes for elements form an ordered list rather than a generic col-
lection. The XML data model extends this to total ordering for nodes: within
a document, a node is defined to precede all its descendants, and follow its an-
cestors. Between documents nodes (or, when necessary, the roots of XML
fragments) the data model requires that there be a strict ordering, but the exact
order is implementation-defined.

2.2 The XQuery Language
XQuery is functional language designed for querying, processing and gener-
ating XML documents. XQuery is a superset of XPath, a smaller language

2.2. THE XQUERY LANGUAGE 19

A verbose path expression:
/descendant-or-self::element(e)/child::b[./

child::c]/attribute::a

An equivalent abbreviated path expression:
//e/b[c]/@a

Figure 2.3: Typical XPath syntax. In the first expression, the first step
selects all elements with tag name e; the second step selects all their children
with tag name b; the predicate eliminates those that do not have a c child;
the final step selects the a attribute of remaining nodes.
The second expression is an equivalent showing typical abbreviations: the
default axis is child::, @ is used to denote the attribute axis, and //means
descendant-or-self::.

intended primarily for retrieving parts of XML documents or collections.5
The main way of accessing XML content in XPath (and XQuery) is the use

of path expressions. Path expressions consist of a series of steps, and operate on
sequences of nodes (see the previous section). Axis steps applied to a sequence
of nodes result in the sequence of all nodes of a certain kind reachable from any
in the input sequence by traversing the XML tree on a certain axis. Examples
of axes are parent::, descendant:: or attribute:: (the double-colon is
XPath syntax separating axis names from the rest of the path expression). The
kind of nodes retrieved by the step is chosen by a node test, which discrim-
inates, for example, between text nodes or different types of element nodes.
Each step may contain one or more predicates; predicates filter out of the re-
sulting expression the items6 for which they evaluate to false. Axis steps are
separated by a forward-slash; syntactic sugar ensures common kinds of paths
can be written quickly.

Besides path expressions, XPath also allows expressing familiar program-

5XPath is deliberately kept simpler, and is intended to be embedded in applications
or larger languages; web browsers are examples of the former; XQuery is the canonical
example of the latter. Note that through the several released versions some features
have passed from one language to the other.

6Note that the last step of a path expression may result in values rather than nodes.

20 CHAPTER 2. PEER-TO-PEER XML DATABASES

for $book:=//book , $auth:=//author
let $aid:=$auth/author-id
where some $id in $aid satisfies $id = $auth/@id
order by $auth/@name

return <result author='{$auth/@name}'
title='{$book}/@title}' />

Figure 2.4: Example of FLWOR expression.
The for clause iterates over all pairs of books and authors; for each author
let binds its ID to name $aid; the where clause joins the $book and $auth
sequences to pair each book with all of its authors. The pairs are ordered
by author name and a sequence of result elements is returned holding
the book title and author name as attributes. The XML-like expression
following return uses direct constructors.

ming constructs like literals, conditional expressions and arithmetic opera-
tions, sequence manipulation and function calls.

XQuery augments XPath with the FLWOR expression, an XML-specific
analog of SQL’s “select ... from ... where”, and other features like syntax for
defining functions, modules and output formatting.

FLWOR expressions are primarily used to execute joins between sequences.
The abbreviation reflects the clauses that may form such an expression: for,
let, where, order by, and return.

Aspects of XQuery
It is very important to observe that XQuery, despite its origins and name,
is not only a query language, but a Turing-complete programming language.
Although its syntax is designed for easily expressing queries on XML data,
it also allows expressing arbitrary programs, even completely unrelated to
XML. There are vast opportunities to apply programming language and com-
piler–related research to the subject.7

7Note that other database query languages, for example SQL, usually provide
rather complex features for manipulating queried data, and compiler research applies
to them too. However, in general they do not allow expressing arbitrary programs;
language extensions or related languages like PL/SQL are needed in those cases.

2.3. P2P AND KBR SYSTEMS 21

However, the focus of our research is querying XML data. Accordingly,
this work examines and contributes to querying techniques; matters related to
XQuery’s general programming features will only be discussed, briefly, when
necessary to provide context.

A query expressed as XQuery (as opposed to any XQuery program in
general) can be considered to express two conceptually distinct operations:
First, to filter and retrieve one or several sets of data items from a collec-
tion of XML documents. Second, to manipulate the retrieved data in various
ways—aggregating, transforming, or formatting it. In the same spirit as the
previous paragraph, we focus on the first of these operations.8 We will often
refer to it simply as querying.

Querying XML data consists in retrieving some particular nodes from a
collection of XML trees. XQuery often refers to this as “filtering”: the se-
mantic of many XQuery operations is usually defined in terms of receiving a
sequence of nodes as input (starting with the entire collection), and removing
(“filtering out”) those that do not satisfy a particular condition. Based on the
kind of conditions used to filter nodes, queries are typically divided further:

Structural queries filter nodes based on their properties related to the structure
of the XML tree, seen as an ordered and labeled tree. These are the ele-
ment types (expressed by their names, or labels), their positional relation-
ships in the tree (parent/child, ancestor/descendant, sibling, attribute),
and document order.

Value queries filter nodes based on their other properties, their “values”. Values
are represented by leaf nodes; because of the origins of XML as a (text)
document markup language, these can be seen as text nodes. However,
they can be interpreted as numbers, dates or other data types, not just as
strings of characters, either explicitly (at the user’s demand) or implicitly
via automatic conversions or schema definitions.

2.3 P2P and KBR Systems
The traditional model of distributed applications is client-server: The server
owns, controls and manages a certain set of resources—storage capacity, pro-
cessing capability, data—which it makes available to multiple clients. This

8Note that it is not possible in general to separate the two based on syntactic no-
tions. Most of XQuery’s syntax can participate in both stages. Needless to say, this
flexibility is advantageous to the user, but does complicate matters a bit for the re-
searcher and developer.

22 CHAPTER 2. PEER-TO-PEER XML DATABASES

model is in general applicable to any situation where resources need to be
shared by several processes; the clients and servers may all coexist on a single
machine, or may run on separate hosts, communicating via network connec-
tions (it is this latter case that concerns us). In such a system, all communication
happens between the server and a client. Information that needs to go from a
client to another, if any, will pass through the server.

Despite its usefulness and popularity, the client-server model cannot be
used when its central assumption—that the control of the shared resource can
be separated from its users and reside in a single entity, the server—does not
apply. An alternative for such cases is the peer-to-peer, or P2P, model.

In a peer-to-peer system, each host is at the same time a supplier and a
consumer of the shared resource. Logically all peers have the same capabilities9
and responsibilities; each peer makes some of its resources available for the
others, and peers coordinate with each other without any central entity to
arbitrate. A few examples:

The problem that initially led to the popularity of the peer-to-peer model
was file-sharing. In the client-server model, shared files reside on the server,
and clients connect to the server and download the files they are interested in
from it; this describes the structure of the extremely popularWorldWideWeb.
However, this necessitates that the server have enough storage capacity to hold
all the files, and enough bandwidth to deliver them to the clients. Systems like
Napster[87] and Direct Connect[86] address this problem by having each peer
share the files it holds; if a peer desires a file it doesn’t own, it locates one of the
peers that owns it and downloads it from there. In some systems—for example
BitTorrent[57]—a peer can simultaneously download pieces of the same file
from many peers at the same time, including peers that are still downloading
that file at the same time; thus, a file can be downloaded from a single source by
several peers, while the source only spends the bandwidth necessary to send the
file once: the source sends a different piece to each peer that needs the file, and
the peers then exchange pieces among themselves until each has the complete
file.10

In other systems the resource that cannot be centralized is trust: Systems
like Tor[23, 72] route messages through several hosts between the peers so as to
hide who communicates with whom, even from the peers that intermediate the
communication. Freenet[21] extends the anonymity to storage: as in other file-

9Qualitatively, not quantitatively. Peers can (and usually do) have very different
amounts of the shared resource.

10Note that these systems are not pure peer-to-peer systems: although the peers
share their resources, they don’t manage them strictly by coordination among them-
selves; instead, a centralized server is used to arbitrate between them.

2.3. P2P AND KBR SYSTEMS 23

sharing systems, peers hold (pieces of) the shared files, but encrypted such that
a peer doesn’t knowwhat files it hosts; only peers that know the necessary keys
and assemble the files can determine their content.11 (Note that even though
these systems also implicitly share storage and bandwidth, it is the distribution
of trust that is the reason for their existence.)

Overlay Networks
In any distributed system, a host intending to make use of a resource must
communicate with the host that controls that resource; in general, this means
finding its network address. In the client-server model all resources reside on
the single server; clients can be safely assumed to know how to contact it.12

In a peer-to-peer system this assumption no longer holds: Indeed, a typical
peer-to-peer system has a very large number of peers; a participant would need
to hold a very large list in order to know all other peers. More importantly,
peer-to-peer networks are very dynamic; peers join and leave the network very
often, and notifying each peer of one’s arrival or leaving would require a pro-
hibitive amount of communication.13

For this reason most peer-to-peer systems organize themselves into an over-
lay network, distinct from the physical network used to communicate. All
peers participating are nodes in the overlay network, and peers that know each
other are said to be linked in the overlay. (Note that all peers are linked in the
physical network, in the sense that each peer can communicate with any other
peer. Depending on the system, a peer needing to communicate with another
peer it doesn’t know—that is, one that it isn’t connected to in the overlay—will
use the overlay network to either find its address or to relay its message to it;
the answer is usually direct, which is made possible by attaching the “return”
address to the initial message.)

11This feature is intended to provide, among other things, plausible deniability: a
client hosting a piece of the file cannot be shown to know what it contains, and thus
might argued it is free from responsibility for its contents. Furthermore, due to the
particular way Freenet splits files into fragments and distributes them through the net-
work, a popular file is very difficult to remove; this is intended to prevent censorship.

12The use of, e.g., the Domain Name System does not contradict this. DNS is
needed for identifying a server among many; the client-server model concerns inter-
actions with each server individually, i.e., what happens after the server is found.

13The clients of a client-server system are also very dynamic, but they don’t need to
communicate among themselves; a server only communicates with a client when the
client requests it. Thus, a client needs to communicate its presence only to one server,
but a peer would need to communicate it to all other peers.

24 CHAPTER 2. PEER-TO-PEER XML DATABASES

Although conceptually distinct, the organization of peers into overlay net-
works is intricately connected to the problem of resource discovery: the way
peers are connected dictates how they can find the resources they need, or,
more precisely, how they find a peer that controls a particular resource. Ac-
cordingly, peer-to-peer systems are classified according to the type of overlay
network they use:

Structured P2P networks organize their peers (or the links between them) ac-
cording to precise rules, allowing specific algorithms to find required informa-
tion with certain performance guarantees. These are discussed in more detail
in the next section.

Unstructured P2P networks do not impose or require a precise organization
on their overlay. While usually not completely arbitrary, the topology of un-
structured networks doesn’t depend on the precise properties of the nodes or
their resources.

A subtly different classification can be made according to the homogeneity
of the peer roles: In pure P2P networks, all nodes have the same status; they par-
ticipate equally and identically in all operations. In a hybrid P2P network, some
nodes (often dubbed supernodes) are distinguished; “ordinary” nodes are always
connected to a supernode, and the supernode intermediates contact between
its subordinates, and between its subordinates and those of other supernodes.
Usually, such hybrid networks are hierarchical, with the supernodes themselves
being connected to and managed by higher-level supernodes. Finally, a central-
ized P2P network uses a separate host, analogous to a server, to manage and
intermediate contact between the peers.14 Note that this second classification
usually applies only to unstructured P2P networks: structured overlays are
almost universally purely peer-to-peer.

Some overlay networks, regardless as how they are classified above, allow
the topology of the underlying physical network to influence that of their over-
lay: links are established preferentially between nodes that are “close” in some
sense, e.g., by having high bandwidth or low latency links between them. Nev-
ertheless, such preferential links do not in themselves confer “structuredness”
to the overlay that use them; peer-to-peer networks are considered structured
if their overlay has structure by itself, not if they just imitate that of the under-

14Note that a centralized peer-to-peer system is distinguished from a client-server
system by the fact that the peers communicate and cooperate between themselves,
albeit with the help of the “central node”. Compare a P2P system like BitTorrent,
where peers exchange files between themselves under the direction of a tracker, with
a distributed computing system like SETI@Home. In the latter case, although indi-
vidual computing nodes do work “for the group”, they do so individually, without
communicating between themselves.

2.3. P2P AND KBR SYSTEMS 25

lying structure.

Structured P2P networks
A mechanism for connecting to peers and sharing resources with them is gen-
erally not sufficient for a peer-to-peer application.15 The different participants
are usually interested in specific resources—for example, in a peer-to-peer file-
sharing network, each peer is interested in downloading specific files, which
often are not under the control of its immediate neighbors in the overlay—so
it is usually necessary to have a mechanism for locating resources based on
their characteristics (e.g., their name), and implicitly the peers controlling the
needed resources.16

Early peer-to-peer networks were mostly unstructured. The choice of
mechanisms for resource location was very restricted. A centralized system
can make use of a server that indexes all shared resources (e.g., in a file-sharing
network, a list of file names, perhaps with other meta-data like size and modi-
fication date), and that answers queries from peers. But in many cases the cen-
tralized solution is not available—often for non-technical reasons—and an un-
structured network offers no other solution than simply broadcasting a query
from peer to peer, hoping that it will eventually reach a peer owning the re-
quested resource. This practice is usually termed “flooding” in this context; the
metaphor is quite appropriate, and though the technique does work it is quite
inefficient for many purposes. For example, rare content is harder (and usu-
ally much slower) to find than common content.17 In the worst case, searching
for content that does not exist, a common situation, would cause the query to
propagate to the largest amount of peers. Even the basic problem of avoiding
to send the same query repeatedly to the same peer (since an unstructured net-
work may have multiple multi-hop paths between any two peers) is not easy.

15Although exceptions do exist. If the shared resource has high liquidity, i.e., re-
sources shared by different peers are interchangeable for the general purpose of the
network, then a peer needs only find a certain amount of resources, not specific ones,
so they can just pick the first it finds.

16Once a resource and its controlling peer are located, the network’s structure is no
longer relevant: the two peers can communicate directly.

17Finding rare content is usually the more interesting feature to research; for exam-
ple, a file-sharing application for content that is widespread is less interesting, because
it is implicit in being widespread that a solution already exists for distributing it. That
said, some peer-to-peer applications are intended specifically to aid the distribution of
very popular content, with BitTorrent as an obvious example.

26 CHAPTER 2. PEER-TO-PEER XML DATABASES

Key-Based Routing
Though many solutions to the problem described above are possible, one of
the most fertile has been the concept of Key-Based Routing, often abbreviated
KBR. Very generally:

In a KBR system there is a set of keys (details vary considerably, but, for
illustration purposes, a popular choice would be a large set of consecutive in-
tegers, e.g., the set of 160-bit numbers).

The keys are logically distributed among peers in a certain way (again, de-
tails vary, but for our example each peer might “own” a 1/N -long interval of
the key space, with N being the number of peers).

The network then maintains the links between the peers—the overlay—in
such a way that an algorithm (the routing algorithm) exists that allows any peer
to contact the “owner” of a key, following only links of the overlay network,
with some guarantees regarding the maximum number of “hops” that must be
done.18

The routing algorithm is usually different depending on the key set and the
way keys are logically assigned to the network nodes, and often several varia-
tions of an algorithm are available. Thus, a KBR system is a triplet (key set,
key assignment, routing algorithm); although all have the three elements, and
similarities are often great, there are almost always at least subtle differences
between the corresponding levels of different KBR systems.

The generic explanation above might be easier to understand with an ex-
ample. Because much of the research in this document is based on a specific
KBR system—Chord—we will describe it briefly in the next subsection.

KBR with Chord
Chord[71] is a key-based routing system that uses the set of 160-bit integers as
its keys.19 The keys are logically considered ordered, such that 1 succeeds 0, 2

18Network latency is limited by light speed, and current networks are relatively
close to this limit. In contrast, bandwidth depends more on technological advances,
and the amount of bandwidth available for a certain cost is constantly increasing.
Thus, the cost of just opening a connection rises relative to the cost of sending a certain
amount of data per connection.

19The constant 160 was chosen with the intent of using the SHA-1 cryptographic
hashing algorithm for operations using the KBR layer; these will be explained later.
For the purposes of this subsection, the only important requirement is that the total
number of keys be much larger than the number of nodes in the network; 2160 is much
higher even than the 2128 number of IPv6 addresses.

2.3. P2P AND KBR SYSTEMS 27

Figure 2.5: Illustration of a (very sparse) Chord overlay. Gray circles repre-
sent peer nodes andwhite circles key/value pairs. The vertical radiusmarks
the origin of the ID circle; in this illustration key/ID values increase clock-
wise. The gray anti-clockwise arrows mark the section of the key space
each node is responsible for.

succeeds 1, and arranged on a circle, such that 0 succeeds 2160 − 1.
Each peer node is randomly20 assigned an identifier (ID) from the same set

of keys. The ID of the node can be thought of as its logical “address” on the
circle of keys.

For any of the 2160 keys, Chord defines the successor of that key to be
the first node after it on the ordered circle. (In most cases this means the node
with the lowest ID that is still numerically greater than the key; that is not true,
however, because the keys form a circle; for example, 0 is a successor of 2160−1.)
The predecessor of a key is defined analogously. Chord considers each key
to be the responsibility of its successor node. Given the random distribution of
node IDs, in practice this means the key-space is on average evenly distributed
between nodes. Figure 2.5 shows a schematic of these conventions.

Each Chord node maintains a list of connections to its peers, called “fin-
gers”. If a node has the ID k, its fingers will point to the nodes that own the
keys k + 2n, with n = 1..160. The fingers of a node are, as a consequence,
pointers to progressively “further” points of the circle, each pointing twice as
far from the node as the previous one. (Chord also keeps connections to one or

20A SHA-1 hash of the node’s physical network address is the usual method.

28 CHAPTER 2. PEER-TO-PEER XML DATABASES

Figure 2.6: AChord overlay with the same orientation as that in Figure 2.5.
The light gray lines mark the reference positions for the finger table entries
of the top node (right semicircle) and the bottom one (left semicircle); note
they divide the key space in successive halves. The darker gray arrows point
to the nodes that populate each table entry for the two nodes.
Each arrow intersects the circle in “target” position of its finger table en-
try; note that the node populating each finger table entry is the first node
following the reference point, i.e., is its successor.
The continuous arrows mark the route taken by a query from the bottom
node towards the key (white circle): first to the top node, then to the top-
right node; the latter node is the successor of the key, so it will answer the
query.
Observe that some of the finger table entries point to the same node; this
happens because the identifier space is much larger than the number of
nodes, and the first few fingers table entries of a node divide its neighbor-
hood very finely

more successor and predecessor nodes, and perhaps other connections cached
as a result of previous operations. But it is the fingers that are essential to the
Chord algorithm.) These connections form the Chord overlay network. See
Figure 2.6 for an illustration.

Consider now that a Chord node needs to find the owner of a certain
key—the basic operation of key-based routing. The node will consult its finger-
list, and it will direct its query to the furthest node in the list that is before

2.3. P2P AND KBR SYSTEMS 29

the position of the looked-for key on the circle. That node, in turn, will re-
cursively use the same procedure. However, given the specific distribution of
fingers, each node will get progressively closer: if node X decides to send its
query to one of its fingers Y, then Y will never propagate the query further
than the next finger in X’s list. Consider:

The key, in general, can be anywhere on the Chord key-circle. Each time
a node uses the above procedure to select a finger, the search space is at worst
halved, i.e., at least half of the remaining peers are determined not to own the
looked-for key. It takes at most log2(N) halvings to reduce the total search
space to 1, thus finding the owner of a key requires in the worst case log(N)
hops, with N the number of peer nodes in the network. (For comparison,
looking for a node in an unstructured network will lead to contacting on aver-
age half the nodes.)

Distributed Hash Tables
Key-based routing, as the name implies, is concerns only with locating nodes
based on abstract keys. To be useful, a KBR system needs a method for as-
sociating data—or, in general, the resources shared by participants in the net-
work—to keys (and, thus, to the nodes in the network), such that searching for
a certain resource translates easily to routing a message to the node “owning”
that resource.

We describe here briefly one of the approaches, the Distributed Hash Table
(or DHT), partly because of its simplicity and popularity, and also because it
serves as a fundamental building block for many contributions described later
in this work.

In a DHT, each resource is associated a key by hashing some property of
the resource—quite commonly the name—and placing responsibility of the re-
source to the network node that owns that key. Finding a resource is thus
similar to using a hash table. (Note that a hash table is commonly said to be
O(1), meaning that searching for a value takes a constant time independent of
the number of values in the table. For a DHT the number of hops—average or
worst case—needed to reach a key is similarly cited and usually has a different
value, e.g., O(log(N)) in Chord’s case. However, the latter value makes ref-
erence to the number of network nodes, not values; in general, searching for a
value in a DHT requires on average a constant time independent of the number
of values stored in the network.)

Assuming a well-chosen hashing function,21 the keys of any set of resources
will be distributed evenly throughout the network, meaning that no peer will

21Chord uses the cryptographic hash algorithm SHA-1.

30 CHAPTER 2. PEER-TO-PEER XML DATABASES

be burdened more than others. That said, a system might intentionally use an
order-preserving hash function (or similar mechanism) to keep similar-valued
resources close in the key space; this will lead to related values being held by
one or a few successive peers, a property that might be useful for, e.g., range
querying.

The resource is not necessarily moved physically from the peer that shared
it to the one “owning” its key. Instead, theDHT can use as an index for locating
the resource (see below). Which method is chosen depends on what exactly
the application intends; for example, Freenet actually splits shared files and
physically distributes the fragments redundantly among the peers in an attempt
to prevent censorship: in order to forcibly remove a file from the network,
one needs to find and coerce most of the large number of nodes that store the
fragments, rather than the smaller number of nodes that would hold the entire
file in most systems. The major part of this thesis deals with indexing systems.

For a very simple example, in a file-sharing DHT-based network, a peer
will use its files’ names as identifiers, hash them into a key, and then store
its own identifier as the “value” in the DHT. Another peer looking for a file
with a certain name will hash the name, retrieve the values associated with the
resulting key from the DHT, which are the addresses22 of peers owning files
with that name, and then contact those peers directly to retrieve the file.

It is easy to see that, even given a certain DHT implementation and a single
kind of shared resource, there are many different ways to distribute or index
the resource throughout the network. Also, given particular indexing conven-
tions, it is in general possible to use several different DHT algorithms. Thus,
a DHT can be considered as a building block for peer-to-peer applications, in
much the same way as hash-tables are not programs in themselves but building
blocks. One consequence of this is that it is difficult to predict and compare,
simply by analysis, the performance of different solutions to the same prob-
lem. Unfortunately, the distributed nature of peer-to-peer applications means
that testing them is more difficult than for local programs; the next chapter
discusses in detail the testing and simulation of peer-to-peer systems. The fol-
lowing section describes in more detail existing DHT systems.

22Observe that it is possible for the same key to be associated to different resources,
and that “the same” resource (given the equivalency relation defined by the key) may
reside on several peer nodes. This can be a difficulty—requiring an additional disam-
biguation method for content with ambiguous keys—or an opportunity, e.g., provid-
ing load-balancing or resiliency almost for free.

2.4. TESTING AND SIMULATING P2P APPLICATIONS 31

2.4 Testing and Simulating P2P Applications
Section 2.3, P2P and KBR Systems, summarizes several of the various KBR algo-
rithms and DHT protocols in existence. All such systems offer a fundamental
primitive to higher-level applications: lookup of a key, and retrieval of values
associated with that key, distributed within a network self-assembled from a
very large number of computing nodes, in using a number of messages sublin-
ear in the number of peers participating.

The protocols involved are regular enough that relatively simple algorith-
mic analysis can provide guarantees about the worst- or average-case cost for
the basic routing and retrieval operations. However, such analysis is not suffi-
cient, for several reasons:

In the particular case of peer-to-peer networks, the number of participating
nodes is limited; even a very conservative estimate of one peer active per per-
son, at all times, results in a order of magnitude below 1010, or approximately
233. In practice, the number of simultaneously active peers is much lower.
Given the subunitary (usually logarithmic, or subunitary-exponential) bounds
computed for the basic DHT operations, the actual orders of magnitude result-
ing from the cost formulas are usually close; as a consequence, the constants
hidden by limits in the O notation become significant. Since the network-
level operations counted by such bounds—messages—represent high costs in
human terms,23 very detailed accounting of the costs is necessary, which is
much harder to do analytically.

Detailed accounting is complicated by two other issues: First, the “quan-
tum” of cost measured by the number-of-steps formulas is far from constant.
Network latency and bandwidth between peers can vary by orders of magni-
tude. Protocols that keep count of various network locality measures are hard
to evaluate in detail, and any analyses are conditional on assumptions about
the physical network structure and, usually, how the high-level application
uses the DHT layer.24

Secondly, the various DHT protocols among which an application devel-
oper might chose usually offer different trade-offs between such properties as
load-balancing, resiliency to failure, resistance to attack, or behavior during

23The network latency of one message exchange over the entire Internet is close to
human perception, of the order of tens of milliseconds. In contrast, the basic oper-
ations of, e.g., sorting algorithms are often many orders of magnitude below human
perception; thus, human-noticeable delays are encountered mainly for vast numbers
of primitive operations, where the limit behavior is a more useful description.

24As an example, Kademlia favors long-life nodes, which improves responsivity but
affects load balancing in ways that may be difficult to evaluate.

32 CHAPTER 2. PEER-TO-PEER XML DATABASES

non-steady states, all of which interact in a complex way with performance.
In most cases, such trade-offs may be made even within a protocol, e.g., by
varying network-wide constants (like the size of k-buckets in Kademlia[50]) or
even the hash function used to distribute keys.[49]

As a consequence, choosing which DHT or routing layer protocol should
be decided by testing the actual behavior, after execution, rather than through
analysis before implementation, perhaps using Grid’5000[7] or a similar sys-
tem. Even supposing the analysis of lower level protocols were possible, anal-
ysis of the higher level application is certain to be even more complicated; and
even given that higher level of analysis, the fully developed application would
need to be tested, a challenging task for a large, asynchronous peer-to-peer ap-
plication.

The difficulties described above apply to almost every high level peer-to-
peer application. This presents an opportunity: a generic framework could
abstract and implement as much as possible of the solutions, allowing a re-
searcher or developer to focus on the implementation and study of the specific
system he is working on.

Such a framework should contain generic interfaces to abstract KBR or
DHT layers, allowing an application to be written, when possible, indepen-
dently of a specific low-level protocol; ready-made implementations of existing
protocols against these interfaces, allowing their quick assembly with an appli-
cation module; and, most importantly, provide facilities for running tests and
simulations of the resulting application, to observe and measure its behavior
in practice.

Chapter 3

XQ2P

XQ2P, the main contribution of this work, is a research-oriented peer-to-
peer–distributed XML database; it responds to queries expressed in the
XQuery language.

The first section below introduces XQ2P, the problems it tries to solve and
the assumptions we made when developing it.

Following that, Architectural Overview contains a high level presentation
of XQ2P’s architecture; Section 3.3, XML Document Handling, describes how
XML documents are handled. Section 3.4, The XQuery Processing Kernel, de-
tails the query processing subsystem at the core of XQ2P; the XQuery kernel
handles local query execution, and upon it are built the distributed query tech-
niques presented in the next two chapters.

The final section of this chapter describes P2PTester, a framework for de-
veloping and testing peer-to-peer applications, and how we used it to build
XQ2P.

3.1 Introduction
The main contributions of this paper have been implemented in XQ2P. Our
intention was to explore the problems and potential opportunities arising from
applying the peer-to-peer model with XML database technologies. This combi-
nation of concepts giving rise to many avenues of investigation, we attempted
to limit the scope of our work to what seemed to us the most interesting direc-
tion.

Assumptions and Problem Domain
We define thus our model through the following set of assumptions:

33

34 CHAPTER 3. XQ2P

� The users of the system form a heterogeneous community, with diverse
interests;

� Each user (or a vast majority of them) owns and controls data, and is
willing to share (allow use of) this data with the others users; shared data
is available to every user.

� Each user is interested in executing queries in certain domains; such
queries require accessing data in that domain shared by some of the other
users;

� The number of users and the total amount of data shared are too large to
allow users to simply replicate each other’s data; and:

� No central entity is available to manage the shared data, e.g., by parti-
tioning the data in domains; however:

� Typical queries need only a fraction of the data, from a relatively small
number of other users (i.e., those users with shared interests and who
shared data relevant to the query);

� All data is represented asXMLdocuments. A usermay share any number
of documents, including zero;

� Queries are written in XQuery;

� Data from each domain of interest is structured, in general, in stan-
dardized ontologies. In other words, we do not consider the need to
match and adapt different ontologies, except what the user can express
via queries.

Observe that, from a high-level view, these statements basically describe an
XML database: the user is presented with a vast collection of documents, and
writes XQuery programs to find, retrieve and manipulate the assembled data.

The difference is that the system is distributed: the queried data is dis-
tributed among the (potentially vast) set of users and machines participating;
XQ2P attempts to present the entire volume of data the same way as a unitary
XML database.

It is important to remark on the assumption about queries’ data depen-
dence. Given our model of data ownership, queries that need to access most of
the data in the database will by necessity lead to the querying node communi-

3.2. ARCHITECTURAL OVERVIEW 35

cating with most (if not all) of its peers. As such, in general a database cannot
do better than contacting all peers and asking for the relevant data.1

In contrast, when individual queries only need to access part of the data,
a different strategy is available: the system can attempt to identify the nodes
owning relevant documents via one or several indexes, and then communicate
with those nodes only.

3.2 Architectural Overview
In very general terms, XQ2P functions as follows:

To participate, a user must obtain and run an XQ2P node. First, the node
must connect to an XQ2P network;2 to do so, the address of any node already
part of the network must be provided.3 XQ2P is built on top of a KBR net-
work; in principle, any KBR algorithm can be used, its details and performance
being reflected in the behavior of XQ2P.

Second, a node must publish its data over the network. All shared docu-
ments are indexed, and their indexed contents are distributed throughout the
overlay network, using operations very similar to those of a DHT.4

Finally, a node may be asked (by its owner and user) to execute queries, ex-
pressed in the XQuery language. A query is first analyzed and its components
are compared with the index; Then, the distributed index is used to locate the
peers that contain relevant documents; These peers are contacted, and the rel-
evant data is retrieved from them; Finally, the initiating node aggregates the
resulting data according to its original query, and returns the answer.

Note that this system is modular, and presents ample opportunity for
modifications and extensions. Any KBR system—even several at the same

1For particular queries it may be possible to design a P2P system that can retrieve
aggregates depending on all available data without accessing the original data sources;
our system, however, does not have knowledge of which kind of queries it will need
to execute.

2 XQ2P allows and encourages the sharing of many different kinds of data over a
single overlay; however, it is possible to create several separate XQ2P-based networks,
for reasons external to XQ2P itself, e.g., access control.

3 We do not address directly network discovery in this work; any of the usual
methods are applicable, e.g., DNS records, “well-known” addresses, or friend’s nodes.

4In fact, our indexing could be implemented over a DHT; however, we implement
slightly different semantics than a basic DHT, to support efficient querying.

36 CHAPTER 3. XQ2P

time5—might be used as a basis, and XQ2P’s XQuery kernel may make use
of varied types of indexes. We used Chord’s key-based routing for our imple-
mentation; the types of indexes we implemented are presented below.

A wide variety of algorithms and indexing methods have been published
that aim to optimize one of these domains of XQuery, or most often a par-
ticular subset of queries in a domain.6 For this reason, we designed XQ2P’s
XQuery processor to allow the separate study of algorithms applied to these
divisions.

XQ2P’s query processor is designed to be easily modifiable and extensi-
ble in order to allow experimentation with many different optimization algo-
rithms. To this end, we divided our work in two parts:

First, we implemented the entire XQuery standard in the most straight-
forward and simple manner possible, without any optimization. A query is
received as text, and is parsed into a structure that follows closely the struc-
ture of the XQuery grammar. Then we build a tree of operators that is almost
isomorphic: each syntactic construction of XQuery has an associated opera-
tor that implements directly the semantic described by the standard, except
for the few elements that appear in the XQuery grammar for the purpose of
textual representation.7 This operator tree implements the entire semantic of
the query, and can be invoked to execute it directly.

Second, we implement the specialized algorithms as separate operators.
Such a specialized operator optimizes a certain part of the computation, and
uses the generic operators for the rest. In particular, the distributed indexes
and operators presented in chapters 4 and 5 are built in this fashion.

3.3 XML Document Handling
XQ2P is a peer-to-peer distributed XML database. As such, each node holds a
collection of data in XML format.8 In our model, a node’s data is a collection

5This can be useful if the different overlays’ structures allow indexingwith different
features or performance.

6To our knowledge there are no peer-to-peer applications that attempt to optimize
the entire set of XQuery features, nor even to support the entire XQuery language
with partial optimization.

7For example, parenthesized expressions do not have an associated operator, as
they serve only syntactic purposes.

8It is of course possible for a particular node to not hold any data itself. Such a
node can be used to query only the data shared by other nodes. But all nodes have the
ability to host data.

3.4. THE XQUERY PROCESSING KERNEL 37

of XML documents (i.e., nodes do not host XML fragments).
Because our research is focused on querying, we did not devote effort to

implement a particularly complex storage system; XQ2P uses very simple in-
memory storage and indexing.

A document is added to a node’s data store by simply passing it the path
to an XML file. The node loads the document to a structured in-memory
representation and indexes it.9 The file path serves is also remembered, serving
as the document-uri property of its document node for queries.

In-memory representation: Documents are parsed using SAX to a struc-
tured form that is kept in memory. The data structure itself is based on the
XQuery 1.0 and XPath 2.0 Data Model (XDM),[79] and is very similar to the
DOM model. The main difference from the Java DOM binding is that the
various node properties are expressed using the data types used by the XQuery
processor—in fact, the same classes are used during XQuery processing.

Once parsed and loaded to memory, documents are assigned a numeric
identifier, unique among the documents owned by that peer.10

3.4 The XQuery Processing Kernel
A database is of little use unless it is possible to query the data it holds. The
main focus of our work was thus to provide a powerful querying subsystem
for XQ2P.

XQ2P accepts and executes queries in the XQuery language.11 An im-
portant point that merits repeating is that we expended considerable effort
attempting to build a system that handles the entire XQuery 1.0 language.12

Optimization techniques will, in general, support only a subset of a query
language’s features; a common approach when studying such techniques is to
implement a processor for only the optimized subset, perhaps with some other

9The document is also published to the network, a process described later, at the
same time. It would be possible to separate the two operations, and thus keep some
documents private to a node, but we did not yet need to implement this.

10In principle, the document’s path of origin can be used as an identifier. We prefer
numeric ones, though, because path strings are much more verbose.

11As a proper subset of XQuery, XPath can also be used for querying, e.g., by XPath
applications that use XQ2P as a storage layer.

12XQ2P passed above 98% of the tests included in the XQuery Test Suite[81],
though the exact number varies as the test suite is updated.

38 CHAPTER 3. XQ2P

useful features. A complete query module is constructed, in this approach, by
adding new techniques for handling more features, hopefully resulting in a
complete implementation.

This approach, although appropriate in many scenarios, has a problem of
particular importance to us: Different optimization techniques will, in general,
allow supporting different subsets of the complete language. As a consequence,
it is difficult or impossible to compare directly two systems with different fea-
ture coverage on the same workload. Instead, tests must be done with queries
tailored for each individual system tested, and comparisons will necessarily re-
quire some extrapolation of the results.

We have adopted the opposite approach: We first developed a system that
supports the entire XQuery standard.13 Rather than performance, our focus
for this part was simplicity, ease of implementation, and extensibility. These
goals allowed us to implement the system quickly, and thus to devote more
time to investigate specific optimization techniques, and to integrate these latter
with relative ease with the generic system.

With the generic querying system complete, we have then developed ex-
tensions that utilize indexing techniques and optimized algorithms to optimize
subsets of the language, leaving the rest to be handled by the generic part.

Note that the generic processor does not include any notion of peer-to-peer
processing. Every functionality related to the distributed nature of XQ2P is
implemented as extensions to the basic system. A nice side-effect of this is that
XQ2P’s basic processor is also useful as a basis for researching XQuery opti-
mizations in general—in fact, the optimization techniques studied in this paper,
where possible, have been implemented first as modules for local processing;
the distributed-processing modules are extensions of these, with modifications
and additions appropriate to the peer-to-peer context.

The following sections of this chapter describe the generic query proces-
sor, i.e., the unoptimized but complete implementation of XQuery used as a
basis for study. The following chapter describes the optimized operators we
developed for structural queries, as an extension to the generic processor, and
the chapter after that presents the operators that extend the query processor to
operate over the peer-to-peer distributed database.

As the remainder of this chapter does not involve distributed processing
concepts, in the following sections “query processor” should be taken to refer
only to the generic XQuery processor component. Where distributed process-
ing is involved, we will say so explicitly.

13Except for some features the standard itself classifies as optional. In particular, the
Schema Import, Schema Validation and Static Typing features are not (yet) supported.

3.4. THE XQUERY PROCESSING KERNEL 39

Architecture
As mentioned above, in designing the generic query processor we sought sim-
plicity and straightforwardness rather than purely performance.

A common approach for optimizing XQuery is to define a simpler model
that expresses only the subset of language features that is to be investigated, and
devise a procedure for formulating supported queries in the chosen formalism,
while preserving their semantic. This eases considerably the researcher’s task,
as XQuery is a very complex language.

We believe that this approach is not optimal for our project: We intend
the query processor to be easily (or as easily as possible) extended by adding
several specialized operators. A given simpler formalism will be appropriate
for one or perhaps a few optimization techniques, but it risks complicating the
implementation of many different ones.

For these reasons, we decided instead to structure our processor by fol-
lowing the structure of the XQuery language. Almost every component is a
close translation in Java of a syntactical or semantic element specified by the
standard. Besides being simple to implement and amenable to extension with
almost any optimization method, this approach has the advantage of being ex-
ceedingly easy to read and understand by the prospective extension developer:
familiarity with the XQuery language and its semantics can be easily translated
to familiarity with the processor’s implementation.

The XQuery standard defines queries as composed of expressions. Except
for a small number of elementary expressions—e.g., constants—each type of
expression is a possible way of composing other expressions; the expressions
composed by another expression are called subexpressions or operands. The
semantic of an expression, accordingly, is defined by describing how an expres-
sion’s result is obtained from the results of its operands.

Accordingly, we built our processor in the most straightforward way: for
each XQuery expression we wrote an operator that implements the semantic
dictated by the standard. At operator instantiation subexpressions are passed
as constructor parameters, and stored in member fields. Thus, an operator in-
stance represents an entire expression tree; the operator instance corresponding
to the topmost expression in a query implements the entire query’s semantic.14

14That is, the expression evaluated by the query. AnXQuery program also contains
elements that are not expressions, e.g., options and function declarations (although
these declarations may contain expressions). These are recorded in a special “query”
object, of which the top-level expression is another member.

40 CHAPTER 3. XQ2P

Evaluation All operator objects have an evaluate method, which takes as
argument a dynamic context, and returns the Sequence of items, containing
the result of evaluating that operator—or, more precisely, the tree of expres-
sions rooted at it—in the given dynamic context. (Recall that the XQuery
Data Model[79] defines the result of every expression to be a sequence of items.
These data types are described below.) In general, when the evaluatemethod
is called, an operator will call the same method of its sub-expressions (manip-
ulating the dynamic context before passing it to them, if necessary), then will
perform its own function using the results as operands, and finally will return
the resulting sequence.

Errors The evaluation of an XQuery expression can also generate a dynamic
error; this situation is implemented by throwing a Java exception. All raised
exceptions are subclasses of XQueryError, itself a RuntimeException.15

Data structures
This section section presents the Java classes used to represent XQuery data.
They are presented here to allow using them in the following sections.

Note that these data types are used throughout the processor: besides the
values passed between operators during processors, these same data types are
used for the in-memory representation of XML documents, and also for related
properties of, e.g., operators. We have attempted to map the XQuery data
types to Java classes and interfaces as naturally as possible; the main intent was
to allow expressing XQuery semantics with natural constructions in Java.

For reference, a diagram summary of the XQuery data types is represented
in Figure 3.1.

Sequences
The most general data type in XQuery is the sequence: operations are always
defined in terms of input and output sequences; particular cases where an op-
eration returns “nothing” or just one item as a result are expressed as returning
the empty sequence or a cardinality-one sequence. The last part is worthy of

15It is perhaps unfortunate that Java and XQuery terminology differ in this respect,
though there are reasons for both; we decided on XQueryError by reasoning that
XQueryException can be too easily interpreted as related to Java rather than XQuery
semantics, and that XQueryErrorException would be silly. Note that XQuery 3.0
maintains the terminology, even though it adds try/catch expressions that allow exe-
cution of a query to continue even in the presence of errors.

3.4. THE XQUERY PROCESSING KERNEL 41

Figure 3.1: XQuery type hierarchy
Image source: XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition) [79]

42 CHAPTER 3. XQ2P

mention: whereas most programming languages make an explicit distinction
between an object and a container (lists and arrays being the usual container,
the analogue of a sequence) containing only that object, XQuery explicitly
takes the opposite position.16

We represent the XQuery concept of sequence with the Sequence Java
interface. We believe that this mapping allows more flexibility than the alter-
native of making it a base (probably abstract) class for all XQuery types.
Instead, the main branches of the XQuery type system—nodes and atomic val-
ues—are mapped to two different Java class hierarchies; they both implement
the Sequence interface using helper abstract classes.

Sequences are immutable in XQuery, and this is also true of their Java repre-
sentations. Appending sequences, for example, means creating a new sequence
rather than adding elements to one of the operand sequences. Due to this par-
ticularity, we have chosen not to create the Sequence interface as a descendant
of the usual Java List interface; instead, we created the interface from scratch
with only methods that make sense for the XQuery type. However, Sequence
does extend the Iterable<Item>17 interface, mainly to allow common Java us-
age patterns with for loops. The optional remove operation is not supported
however, attempts to use it generating an UnsupportedOperationException.
Sequence does declare sequence-combining operations, like concatenate and
append, but these create new sequences rather than modifying the sequence
they apply to. (They are written in the interface only to allow a more natural
syntax in Java.)

Besides concatenation, the usual operations XQuery does with sequences is
selecting an item (the method get(int) and the common case first() helper
method implement this), and sub-sequencing, i.e., creating a new sequence that
contains a continuous subsequence of the first (implemented by the before and
after methods, with the convenience method rest being the counter-part to
first; however, note that first is mainly intended to be used to transfer an
item in a Sequence-typed variable to an Item-typed one without a cast).

Finally, the interface specifies the exact behavior of the equals and
hashCode methods, to ensure correct behavior. (In short, two sequences of
the same length are equal if their items are pairwise equal.)

We mentioned before that XQuery items automatically behave as singleton
sequences by implementing the interface. There are separate implementations
of the class, however, for the other possible cardinalities:

16Representing no result as an empty list, by contrast, is rather more common,
occurring for example in several variants of Lisp. Unlike Lisp languages, it is not
possible to express a sequence of sequences in XQuery.

17Item is the base interface for XQuery items, and will be presented shortly.

3.4. THE XQUERY PROCESSING KERNEL 43

The empty sequence is implemented as a singleton object, a public static
final member of Sequence called EMPTY_SEQUENCE. All operations that
would return an empty sequence will return this object. Note that this latter
sentence is descriptive, not normative. In theory the existing code should
work even if a different object is returned, as long as it behaves as an empty
sequence. Using a singleton is useful because it avoids creating unnecessary
empty objects.

“Long” sequences NonSingletonSequence is a somewhat unfortunately
named18 class used to represent sequences containing more than one item. It is
implemented straightforwardly by wrapping a Java List<Item> and providing
the Sequence operations on top of it. Special cases where the result would be
the empty sequence or a single item are handled correctly, by returning either
the EMPTY_SEQUENCE or the (unwrapped) item as appropriate (this sentence is
also true for the other implementations of the interface).

In general the user should never need to use this class explicitly; its use is
confined to the various subsequencing and concatenating operations defined by
the Sequence interface. User code must use these exposed operations rather
than creating sequences manually.

Subsequences Subsequencing is a common operation; rather than create a
new sequence object for each such operation (which can be costly for long se-
quences), we use a specialized SubSequence class; provided with an initial se-
quence and bounds within it, a SubSequencewill behave as expected by return-
ing elements from the initial sequence directly rather than keeping a copy of
its list.19 (The fact that sequences are immutable considerably helps with this.)
Like the other sequence classes, this one too handles special cases explicitly:
besides the empty and singleton case, a subsequence of another SubSequence
will access the original elements directly rather than creating several wrapping
layers.

18The name is not quite accurate because empty sequences are also not singletons,
yet are represented by a different class.

19It is perhaps worth mentioning that this approach is not entirely without prob-
lems: a small subsequence (at least two elements) of a large one will cause the latter
to be kept in memory, even though only the small one is still accessible. It would be
possible to use weak references to avoid this. We have refrained from implementing
such a complex system, at least until tests show it to be necessary in practice; we expect
most code to eventually disassemble sequences to individual items.

44 CHAPTER 3. XQ2P

Items
XQuery sequences are composed of items. In our Java implementation, the
Item interface serves to mark an object as an item.

Because the two kinds of items, nodes and atomic values, are quite distinct
in properties, we believe an interface to be more appropriate than an abstract
base class. In fact, items in general don’t have any property except their status
as (XML) nodes or atomic values. As such, the operations defined by Item
serve only to distinguish between the two. The XQuery practice of defining
an operation’s effect on an item based on the item type would usually translate
in Java to a rather cumbersome sequence of instanceof and cast operations;
the methods of Item and Sequence are intended to avoid this; thus, a user is
expected to write (given Item item as argument):
if(item.isNode()){

item.asNode() // ...
}else{

item.asAtomic() // ...
}

rather than the more cumbersome
if(item instanceof Node){

Node n = (Node) item;
// ...

}else{
AtomicValue a = (AtomicValue) item;
// ...

}.

This recommendation implies a fewmore things besides being a little more leg-
ible: First, the asNode and asAtomic methods will throw XPTY000420 rather
than a class cast exception when used on the opposite item kind; thus, when
implementing most operations that expect only a single kind of item the tests
can be omitted, resulting in the expected XQuery type error being raised au-
tomatically. Second, it is likely to be slightly more efficient: the methods are
implemented without any casting and type-checking (as they are virtual meth-
ods implemented separately for nodes and atomic values, they already know
the kind of item they apply to).

20XPTY0004: It is a type error if, during the static analysis phase, an expression is found
to have a static type that is not appropriate for the context in which the expression occurs,
or during the dynamic evaluation phase, the dynamic type of a value does not match a
required type as specified by the matching rules in [subsection] SequenceType Matching.[77]

3.4. THE XQUERY PROCESSING KERNEL 45

There are two kinds of items in XQuery: nodes, representing fragments of
XML trees, and atomic values, which are somewhat similar to primitive types
in other programming languages. (We have attempted briefly to employ Java’s
generics to partially reflect XQuery sequence and item types in Java, but the
results were brittle and cumbersome. We believe the “conversion” methods to
be better suited to our purpose.)

Atomic Values
In XQuery, atomic values serve a purpose similar to that of primitive data
types in other programming languages: they represent, for example, strings
and numbers. This view can be slightly misleading; atomic values can rep-
resent rather complex objects, like dates and time intervals. Perhaps a better
description would be “everything that is neither a node nor a sequence” (note
that the previous sentence uses “sequence” in the XQuery sense; it is possi-
ble, e.g., to view a string as a sequence of characters, but XQuery nevertheless
would treat one as an atomic item.)

We represent the XQuery atomic type hierarchy21 with a similar hierarchy
of Java types.

Unfortunately, the XQuery notion of a derived type is quite different from
Java’s. Type derivation in XQuery is a restriction rather than an extension, as
in Java. As a result, the Java type hierarchy is quite convoluted; fortunately, the
user of the framework will not usually need to be aware of its internal details.

All Java instances of an atomic type are immutable. All operations will
create a new value rather than modifying their operands.

As a general rule, all atomic types are represented by a class with the name
XS_ followed by the (unqualified) name of the type. All these classes are derived
from an abstract class named AtomicValue; this provides the common opera-
tions, e.g., an implementation for the type-independent methods in interfaces
Sequence and Item.22 The method getType() is declared, used for introspec-
tion in XQuery programs; the results of this method will be described later.

With only a few exceptions,23, the XS_〈type〉 are abstract Java classes;

21By this we mean only the hierarchy of built-in types; user-defined types are not
implemented yet.

22AtomicValue is somewhat redundant with xs:anyAtomicType and its Java
equivalent XS_anyAtomicType. In fact, the latter is the sole descendant of
AtomicValue, and has no new members itself. However, we felt it was worth having
it: its name is easier to read in Java source, and it allows a clearer separation of XQuery
concepts from the Java elements.

23For example, xs:boolean, which is a very simple type.

46 CHAPTER 3. XQ2P

they provide general type-specific functionality via staticmethods and some
checking where appropriate. Instances—created via static methods of the
abstract classes—are actually instances of private final types hidden inside
the abstract ones. This is intended to allow implementing XQuery-derived
types without forcing the results to be Java-derived from an implementation
class; the detailed description of, e.g., numeric types, below, will make this
clearer for the interested reader. (Remember that knowledge of these internal
details is not necessary tomake use of the XQ2P framework, but only to extend
it with new types.)

Each XS_〈type〉 class, in general, defines methods of several kinds, with
regular names, to facilitate use throughout the rest of the framework:

Factory methods are static functions that instantiate a new value of the appropri-
ate type. These always have names starting with “new” followed by the
XML Schema name of the atomic type, with an initial capital. There is al-
ways a factory method with a single String argument—all non-abstract
XML Schema types can be cast into from strings. Where appropriate,
the overloading is used to provide factory methods with other argu-
ments. For example, xs:int is associated with the Java class XS_int,
which provides the newInt(String) method, but may also provide a
newInt(int) method.

Accessor methods are usually abstract methods that extract some particular in-
formation from the atomic value as Java data types. For example, an
XS_double has a decimalValue()method that returns the value it con-
tains a Java double value. There is always a stringValue()method that
returns a Java String. Depending on the exact type, several auxiliary
methods may be provided for convenience; for example, the numeric
types have isZero() or isInfinite boolean-valued methods, which
are easier to use than extracting the value and checking manually.

Auxiliary methods are also exposedwhere needed, usually as protected static
methods. These are used for various purposes like parsing, checking or
generating canonical values, and are left non-private to allow their reuse
in the future.

In the following paragraphs we describe in more detail some of the more
important atomic value types.

String types are all based on the XS_string class, which doesn’t do
anything itself other than wrap a Java String. Its derived classes—e.g.,
XS_normalizedString or XS_NCName—in general don’t do anything else

3.4. THE XQUERY PROCESSING KERNEL 47

other than verifying that the string they wrap respects their respective lexical
rules. We must mention that XS_NCName also provides a method that generates
a NCName, a different String-wrapping class we developed separately for use
within XQ2P’s XQuery parser.24 Similarly, XS_QName allows conversion to
QName, also used in the parser.

Numeric types are the more baroque parts of the type hierarchy. A different
XS_〈name〉 class is declared for each XQuery numeric type; these are derived in
the same way as in XQuery. However, a separate layer of interfaces is declared
that is derived in the opposite order:

Numeric is the base interface. It marks all numeric types, and declares
stringValue() and boolean courtesy method isZero().

NumericLevelDouble marks xs:double (and XQuery-derived types, though
none are provided yet); since the ones below extend it, all other numeric
types are also part of this level. It allows retrieving the wrapped value as a
Java double via the doubleValue(), and declares the booleanmethods
isInfinite and isNaN().

NumericLevelFloat marks xs:float and the “lower” types (i.e., all but
xs:double). It allows retrieving the wrapped value as a Java float via
the floatValue().

NumericLevelFloat marks xs:decimal and the “lower” types (i.e., all but
xs:double and xs:float). It allows retrieving the wrapped value as
a java.math.BigDecimal via the decimalValue().

NumericLevelFloat marks xs:integer and everything derived from it. It
allows retrieving the wrapped value as a java.math.BigInteger via the
integerValue().

These are used to facilitate the implementation of XQuery’s detailed rules for
arithmetic with mixed-typed operands.

XS_float and XS_double are implemented as wrappers of the Java
float and double types. XS_decimal and XS_integer use java.math’s
BigDecimal and BigInteger25 classes, respectively. The many numeric types

24We intended the different components of XQ2P to be independent of each other,
to allow their being reused separately; this explains the slight duplication.

25Note that, while useful for calculations, the Java classes are not quite equivalent
to the XQuery semantics; in particular, turning to and from the string representation

48 CHAPTER 3. XQ2P

derived from xs:integer use the closest Java type of sufficient width—for
example, xs:int wraps a Java int—with careful checking at each conversion
for the appropriate restrictions, e.g., non-negativity.

Time types The classes associated with date and time use internally a sim-
ple numeric value (milliseconds for durations, milliseconds since the Epoch
for xs:dateTime or since midnight for xs:time), together with a timezone
object (which internally records “minutes from GMT”). This facilitates op-
erations with dates, turning most of them into simple arithmetic. (Java’s
GregorianCalendar is used internally to extract date elements like the year
and day, however.)

Other types We straightforwardly wrap Java types, providing methods for
conversion to and from strings. XS_base64Binary and XS_hexBinary inter-
nally use byte arrays for storage, XS_boolean a simple boolean, and the var-
ious other types, like XS_anyURI or XS_untypedAtomic, wrap strings.

Nodes
Nodes are the other kind item that may occur in sequences in the XQuery data
model. In Java they are translated to a hierarchy of interfaces, one for each kind
of node: document, element, attribute, text, processing instruction and com-
ment; the names follow the usual Java conventions, without a prefix. Interface
Node roots the hierarchy, and two “intermediary” interfaces, ContentNode and
ContainerNode are used to eliminate type-testing and casting where possible
(Attribute is a Node, Document and Element are ContainerNodes, and all
nodes except Document and Attribute are ContentNodes); a getNodeKind()
method is also provided, returning an enum-typed value.

A parallel hierarchy of classes is used for actual implementation of these
interfaces. However, their details are not exposed to the user, therefore we do
not detail them here. Actual instances of nodes are obtained by parsing a doc-
ument, or as results of executed queries. The intent is to hide implementation
details, and allow several different implementation of the node interface (and
sub-interfaces), for example for adding an optimized storage engine to XQ2P
or accessing nodes on other peers via RMI-like mechanisms.

requires particular care, and the rules for arithmetic with the values are subtly different,
especially when operands are values of different types.

3.4. THE XQUERY PROCESSING KERNEL 49

Node extends Comparable<Node>, comparing nodes by document order.26
A system of numeric document and node identifiers is available. (Future imple-
mentations of the interface must use it to ensure consistent ordering between
documents and document fragments of different actual types.)

Schema Types
Several parts of XQuery require explicitly manipulating representations of
types: Schema types are types of items, as defined by XML Schema (with a
few additions from the XPath and XQuery data model). (These should not be
confused with sequence types, which describe sequences. The two are easily con-
fused, because they share the subtree rooted at xs:anyAtomicType. Sequence
types are described in the next subsection.)

Although XQ2P does not support the Schema Import and Schema Valida-
tion optional features of XQuery, all non-optional operations with predefined
types are supported. As a consequence, parallel to the hierarchy of classes for
the predefined types, there is also a hierarchy of objects that identify these types.
(These are also used for sequence types, see below.)

Each simple type is represented by a singleton instance of SchemaType,
stored as a public static final member of that same class for ease of use
via static imports. Their names all follow a standard pattern, xs_〈type name〉;
this is analogous to the Java class names used for objects of each type, using a
lower-case prefix.

These type objects are very simple internally; their only properties are the
type name (an ExpandedQName, a class that will be described later) and a refer-
ence to their base type (in XML Schema terms).

Sequence Types
Sequence types describe, as their names imply, the more-or-less precise com-
position of sequences that are passed around between various XQuery expres-
sions. (For example, theymay be used to declare types of variables and function
arguments.)

Although sequence types are represented with a rather complicated set of
classes, users are not intended to need all the details: A set of public final
static members of the SequenceType class are made available, both proper-
ties and factory methods, which handle the details.

26XQuery semantics demand that many expressions implicitly return node se-
quences in document order; ordering of non-node ormixed sequences is more complex
and does not map well to Java’s semantics. This explains why Item does not extend
Comparable<Item>.

50 CHAPTER 3. XQ2P

Exception Types
XQuery defines a large number of error conditions and the precise error types
that must be raised. XQ2P translates these to Java RuntimeExceptions—in
fact, Java’s exception mechanism is used for raising XQuery errors, as will be
detailed later—and for this purpose we provide in package xquery.errors a
class for each error defined in [77].27

Each error kind is represented by a different class. The class name is always
the unqualified name of the error, as specified by the standard, for convenience.
The error types always internally contain the fully qualified name (and present
it with a default prefix when needed), as well as the description of the error
condition. Depending on the case, individual error classes define constructors
with argument types relevant to the particular condition they represent; these
are used to automatically construct more descriptive error messages.

All errors types are indirectly derived from the XQueryError (abstract)
class, itself extending RuntimeException. The intermediate abstract classes
XQueryStaticError, XQueryTypeError and XQueryDynamicError (the last
with sub-type XQueryFunctionError) group the errors depending on their
origin in different parts of the relevant standards.

Function errors are defined in [78], while the others are defined by the
XQuery standard[77] itself. The reader is reminded that: static errors are those
that are detected before a query starts executing—e.g., syntax errors; dynamic
errors arise during processing, i.e., they cannot be detected statically; type er-
rors are an intermediate category: XQuery implementations that support the
optional Static Typing Feature may raise them statically, those that don’t must
raise them at execution time. XQ2P does not support static typing for now,
so type errors will always be dynamic.

XML Names
Due to its relationship with XML, identifiers used in XQuery are defined
by reference to the XML Namespaces recommendation (XQ2P uses the 1.1
version[75] of the specification). XML names are strings that follow specific
lexical restrictions; because these are used everywhere throughout the specifi-
cation, XQ2P defines several string wrapper types that ensure well-formedness:

NCNames hold any string that satisfy the lexical restrictions for XML names,
except those that contain colons. (The name is an derived from “no-colon
name”.)

27Note that we only defined the errors that the current implementation of XQ2P
can raise, however. Due to the non-implemented optional features, we did not need
some of the errors.

3.4. THE XQUERY PROCESSING KERNEL 51

QNames hold all valid names for namespace-aware XML. A QName is formed
from a local part and an optional prefix, separated by a colon; both the local
part and the prefix are NCName instances. Note that NCNames and QNames are
purely syntactic constructs, and their meaning is dependent on the namespaces
that are in scope at any point they are used; it is possible for the same such name
to mean different things at different points in the same document.

A QName is transformed into a semantic construct through the process of
expanding it: the list of namespaces in scope is consulted to determine the
namescape bound to the prefix or, for unprefixed QNames, the default names-
pace, which is associated with the local name (“local” means local to the names-
pace) to form an ExpandedQName. Strictly speaking an ExpandedQName is a
tuple formed of an URI and a NCName. XQ2P however also retains the original
prefix used for ExpandedQNames derived from a document; the prefix has no
influence to the processing and evaluation of queries, except that during XML
output this prefix is used if possible.28

The URI part of an ExpandedQName is an instance of XS_anyURI.
Note that NCName, QName and ExpandedQName are classes used in the imple-

mentation of XQ2P itself. An XQuery processed by XQ2P may also use and
process values holding XML names, i.e., of types xs:NCName and xs:QName.
Such values are held by distinct classes, XS_NCName and XS_QName, which
are part of a distinct Java class hierarchy. For instance, when parsing the
expression fn:node-name(.), an instance of QName will hold the name of
the fn:node-name non-terminal, which is then converted to an instance of
ExpandedQName when the function is resolved; However, if the expression is
later evaluated, and if no error is raised, it will return a (possibly empty) se-
quence of xs:QName.

XQuery parsing
For simplicity and generality, the XQuery-processing part of XQ2P accepts
queries formulated in the human-readable syntax of XQuery.29 The first step
in processing such a query is parsing it into an in-memory syntactic tree.

28The XQuery standard declares the specific prefixes used during output to be im-
plementation defined, but it encourages implementations to conserve prefixes from
original data; presumably these have been chosen by humans for readability reasons.

29We have not made use of XQueryX, the XML syntax for XQuery[82]—which is
rarely used in general, and implemented by very few commercial products— and thus
we have not implemented support for it. The XML-based syntax is intended to be
easy to parse, however, and support can be added very easily if needed.

52 CHAPTER 3. XQ2P

As already discussed, XQ2P is intended to support (almost) the entire
XQuery language; to this end, we developed a complete parser for the XQuery
1.0 language (including the few optional features XQ2P itself does not support).

We would like to stress that the parser, together with the package of classes
the in-memory syntactic tree is built of, is designed to be completely separated
from the rest of XQ2P. The parsing module can thus be reused in any other
XQuery-related project. (Parsing XQuery is not a trivial task, and we hope
this to save some time to future researchers.)

The parser The parser itself consists of about 2500 lines of JavaCC code.
For the most part its structure mirrors the grammar specified in Appendix A
of [77]. Only a small number of deviations were required, mainly to accom-
modate the extra-grammatical constraints.

Note that with respect to the xml-version constraint, the parser supports
only XML 1.1[74] and XML Names 1.1.[75]30

The parser relies on the Java standard library for any Unicode processing.
As such, the Unicode version supported will be the same as the one in the Java
library used.

A small detail of some practical importance is that the parser does not at-
tempt to do encoding detection. Although the encoding declaration (option-
ally included in the version declaration of XQuery) is parsed, checked for lex-
ical and syntactic correctness, and stored in the syntactic tree, it is otherwise
completely ignored by the parser itself;31 character set detection, even in the
presence of such a declaration, is not trivial and quite beyond the scope of

30According to the XQuery standard, the choice to support XML 1.0 or XML 1.1,
and that between XMLNames and XMLNames 1.1, is implementation defined. Since
our decision was not motivated by any particular difference between the two—we sim-
ply picked the newest version of each—describing the differences is beyond the scope
of this document. Please see the excellent summaries of and rationale for changes in-
cluded in the cited standards.

31According to the XQuery specification, the handling of an encoding declaration
is implementation-dependent; it also explicitly mentions that such a declaration may
be incorect due to moving the query between environments, and that its presence or
absence has no effect on the semantics of the query. (Although the latter statement,
while technically true, is somewhat misleading: it is perfectly possible for a certain
sequence of bytes to be parsed as several distinct but valid XQuery programs whose
execution generate different results, if those bytes are transformed to characters using
different character sets. However XQuery is defined in terms of Unicode characters,
not bytes.)

3.4. THE XQUERY PROCESSING KERNEL 53

this thesis. XQ2P uses either the platform’s default charset or a user-supplied
explicit one.

The syntactic tree
The result of successfully parsing a query is a syntactic tree,32 represented with
objects from the syntax package. This is closer to a concrete rather than an
abstract syntactic tree: features like parentheses and lexical representations of
literals are stored, in an attempt to support almost any usage. (Comments and
non-significant whitespace, however, are not retained.)

In general, the classes in the syntax package are a mapping of the structure
and naming patterns of the XQuery grammar. For example, the production
for “if” expressions,
[45] IfExpr ::= "if" "(" Expr ")"

"then" ExprSingle "else" ExprSingle

is represented by class syntax.expr.IfExpr, instances of which have a
member condition of type syntax.expr.Expr and two member of type
syntax.expr.ExprSingle, named thenCase and elseCase. The type
ExprSingle is an interface, which class IfExpr implements, corresponding
to production 32 of the grammar.33

The classes in general are designed to prevent, as much as possible, the con-
struction of a parse tree that does not correspond to a correct query (or part of
query). To that end, all instances are immutable, and constructors verify pre-
conditions corresponding to the grammar constraints (for example, attempt-
ing to construct an IfExpr with a null condition will raise an exception). To
make processing of such trees convenient from a Java standpoint, all members
are declared public final rather than requiring (or even providing) accessors
(collection members are all unmodifiable).

Objects corresponding to terminal symbols record the exact lexical repre-
sentation that generated them—e.g., StringLiterals remember if they were
quote- or apostrophe-delimited, and IntegerLiterals record any padding ze-
ros—but as a convenience to the user they also have members giving them
an interpretation. Integer, decimal and double literals are interpreted, respec-
tively, as BigInteger, BigDecimal and double values, and string literals are
given a Java String representation where escapes and character references in
the lexical representation are replaced by their meaning.

32Specifically, an instance of syntax.Module.
33We did take a few liberties in the translation, for example with grammar structure

related to operator precedence.

54 CHAPTER 3. XQ2P

About names XQuery relies heavily on the XML Names[75] specification,
not only for the XML elements and attributes it manipulates, but for its own
identifiers, like functions and variables, including namespaces.

In the parsing tree, NCNames andQNames are represented by eponymous
classes; these are simply string wrappers that verify upon construction that
they are lexically correct. NCNames and QNames are syntactic elements, and
they do not have a single semantic in themselves: their exact meaning depends
on the context.

In XQuery processing, names are assigned meaning after parsing but before
execution, during static analysis of the query: each name is assigned a names-
pace (possibly the empty one) depending on the namespaces in scope at the
point where it occurs and its prefix (or lack thereof). The result is an expanded
name. XQ2P represents expanded names as instances of ExpandedQName. (The
prefix is also stored in the ExpandedQName, but the expanded name is only
determined by the namespace and the local name.)

Static analysis
The XQuery specification defines two phases of processing: the static analysis
phase and the dynamic evaluation phase. The first of these, static analysis,
depends only on the query itself and the static context, not on the data that
will be accessed by the query. During static analysis, the query is checked for
correctness,34 names, prefixes and types are resolved, and the operation tree is
built.

Each of the various steps of static analysis can be performed separately, but
XQ2P executes them all in a single pass over the parsed representation of the
query.

During static analysis, the static context of each expression is determined.
The static context contains all information available to the expression,
for example in which namespaces and variables are in scope, or defaults
that are to be used for operations that do not explicitly mention some
option, e.g., collations. XQ2P holds the static context in an instance of
xquery.context.StaticContext, which have getter and setter methods for
each of the individual components of the static context.

The entire logic of static analysis is embodied in class StaticAnalyzer of
package xquery.core. This class contains one method for each of the classes

34This means checking all the conditions that may rise a static error, with the ex-
ception of parsing errors. If a parsing error is encountered, query processing stops
before the static analysis phase.

3.4. THE XQUERY PROCESSING KERNEL 55

in xquery.syntax, named analyze〈class name〉. Each such method takes as
argument an instance of its associated class plus an instance of StaticContext.

Static analysis is initiated by passing the entire query (an instance of
xquery.syntax.Module), together with a static context instance freshly-
initialized with the default, to the analyzeModule method. Each method
in StaticAnalyzer, including analyzeModule, will examine the syntax
(sub-)tree it was passed, alter the static context when necessary, call the
appropriate methods to analyze any sub-expressions it is composed of (passing
them the altered static context) and receives from them the operation sub-tree
that implements them, then, assuming all is well, assembles from the results
the operation tree corresponding to the syntax (sub-)tree it analyzed. The
static analyzer thus performs a depth-first traversal of the syntax tree, con-
structing the static context of each expression when descending and building
the operator tree that will execute the query while ascending.35

If a static error is detected during static analysis, the method that found it
will throw the corresponding Java exception (see page 50). The exception will
propagate backwards through the chain of method invocations and stop the
processing of the query.

The somewhat complex structure of StaticAnalyzer (basically, one
method for each syntax element, all in one36 object), though needing a bit
of care on our part during development, has the favorable side effect of
enabling relatively easy modification via class derivation: The mentioned
xquery.core.StaticAnalyzer itself builds an unoptimized operator tree,
using the basic operators (see Architecture)(see page 39)). Adding optimized
operators for some operations (or other optimizations) can be achieved by
subclassing StaticAnalyzer and replacing only the methods corresponding
to the relevant sub-part of the query features. (Alternatively, a similar pattern
can be used on the resulting operator tree, which has a slightly simpler
structure.)

35This system resembles somewhat the Visitor pattern; however, the methods of
StaticAnalyzer perform the functions of both accept and visit without coopera-
tion from the syntax tree. The public final members of the immutable syntax tree
elements are intended to ease this process.

36This description is somewhat simplified; in practice, the many methods used are
partitioned between several sub-classes, which provides some organization. For exam-
ple, methods related to the prologue are separated from those that analyze expressions.

56 CHAPTER 3. XQ2P

Processing Operators
The result of static processing is an operator tree. Operators are all Java objects
with a single evaluate method; the method takes as its single argument an
instance of DynamicContext and returns a Sequence.

During the construction of the operator tree each operator extracts from
the static context any values it will need for execution; any subexpressions are
also fully bound by this time. Operator trees are immutable, and they can be
used to execute the same query several times, even concurrently. (In principle,
the operator tree could be serialized and executed at a latter date, though we
have not implemented this.)

XQuery execution is started by passing a DynamicContext to the root op-
erator. Each operator may read values from the dynamic context, evaluate
subexpressions, perhaps passing them a modified dynamic context, and per-
form some computation. In all cases, either an XQueryDynamicError is raised
or a result sequence is returned.

Operator evaluation in general is short-circuited in the presence of excep-
tions, but otherwise all subexpressions are evaluated fully before their parent
expression is evaluated. This is necessary to detect errors as fast as possible;
given that XQ2P lacks static type analysis we considered the loss of perfor-
mance an acceptable trade-off for a research engine.

In the simplest case, the operator tree is almost isomorphic with the syntax
tree. The exception is that syntax-only elements are not translated. For exam-
ple, parentheses are not needed to specify evaluation order because subexpres-
sions are bound, so parenthesized expressions are not present in the operator
tree.

However, structural optimizations can be implemented by traversing the
initial operator tree and constructing a different operator tree. Several struc-
tural passes can be executed efficiently in series: because each sub-tree is im-
mutable, parts of the tree that are not modified by an optimization pass can
simply be linked to the new tree. This kind of transformation is used to sub-
stitute optimized TwigStack-based operators in place of the standard ones.

Note that several XQuery syntactic features are defined in terms of func-
tions (see page 57, below) in the standard library. For example, arithmetic and
logical operators are defined in terms of operator functions. We do not repre-
sent them as such in the operator tree, but use separate operators to maintain
a more obvious relationship between the operator tree and the syntactic one.
(The operators are implemented in terms of such functions, however. A tree-
transformation step can be added if needed to make this explicit.)

3.5. P2PTESTER 57

Functions
Function calls are implemented by a separate operator. Only the (qualified)
name of the function is bound; the actual implementation is obtained from
the dynamic context at evaluation time.

User-defined functions are implemented simply by constructing the oper-
ator tree of their body expressions. When evaluating a function call, the dy-
namic context is augmented by the parameters, and the function’s operator tree
is evaluated as if it were a separate XQuery instance.

However, functions can also be implemented in Java; such functions may
be added to the initial dynamic context before evaluation to make the available
during XQuery execution. The entire XQuery 1.0 and XPath 2.0 Functions
and Operators library[78] is implemented in this manner and included in the
default environment. The time series extensions we describe in also make use
of this feature.

Performance Considerations
XQ2P is intended primarily as a research engine. As such, we avoided most
optimizations, preferring to focus on simplicity and obviousness of code style.
We attempted, instead, to make it easy to add such optimizations in the fu-
ture. For example, most user-visible structures are immutable, which allows
the implementation of many parallelization techniques; interfaces are generic
whenever possible, to facilitate replacement of individual components; and the
operator tree structure is designed to facilitate most query plan transforma-
tions.

We make use of these facilities ourselves to construct optimized operators
that implement structural join algorithms and substitute them into the basic
query plans, as well as for implementing the subset of XQuery 3.0 windowed
for syntax we added as an extension for time-series processing. .

3.5 P2PTester
As we argue in §2.4, the development of peer-to-peer applications benefits from
—requires, even—simulations and tests throughout the entire process.

Before commencing this work we anticipated that a significant difficulty in
our investigation would be the accurate characterization of the performance of
different solutions to the problems to be encountered. We decided that theo-
retical analysis of the algorithms would not be sufficient, and that simulation
and testing would be necessary.

58 CHAPTER 3. XQ2P

We reviewed the available options, and decided that none of the existing
systems for P2P simulation and testing were completely appropriate for our
needs. We resolved to implement a new framework dedicated to this purpose.
The first steps have been done as a Master’s project[14]; the complete system
was presented in [15] and [13].

Our goal was to develop a system with the following features:
� it should allow testing of any kind of peer-to-peer network, without be-
ing limited, e.g., to DHT systems, or even only to structured ones;

� it should include a generic event logging and recording and tools for vi-
sualization and statistic analysis of logs and test results;

� it should provide a modular architecture from building peer-to-peer ap-
plications from simpler modules, and pre-built modules for basic opera-
tions like networking, storage and even DHT;

� test scale should easily scale from simple, in-process simulations to large
scale tests on many machines simultaneously, over a real physical net-
work;

� the realism of the physical transport underlying simulations should be se-
lectable on a run-by-run basis, and range from simple but fast in-memory
inter-process communication, to programmatic simulation of network
conditions, to using an actual physical network;

� the type of scenario executed should not be limited arbitrarily; fixed sce-
narios, recorded traces, programmed scenarios and interactive activity
should all be supported;

� developed applications should not be dependent on the tester; once test-
ing is complete, the application should be usable outside testing by just
changing the command line.

We believe to have achieved all these goals.
The decision to have complete generality of the testing system, both for

the type of peer-to-peer applications tested and for the test scenarios executed,
led quite naturally to our splitting the framework along the two conceptual
divisions, application/tester and tester/scenario. We present each of these in
turn:

Applications
To allow the development of any kind of peer-to-peer network, and in partic-
ular to allow running those applications separately from the tester infrastruc-
ture, we do not impose any kind of precise structure to the tested application.
As such, the user of P2PTester will simply build his or her application as any
Java program.

3.5. P2PTESTER 59

However, during testing, the test framework—in particular, the test scenar-
ios, as will be explained later—needs to control the detailed behavior of the
application. Recall that running a test consists, in general, of: (i) instantiating
several copies of the tested application, one for each network node that is simu-
lated; (ii) instructing each node to perform certain operations at certain times,
for example connecting, or publishing some data. This is accomplished by a
pair of interfaces, one for controlling and one for instantiating the tested code.
A third category of interfaces is provided for the purpose of logging, which
will be described separately. The logical interfaces are implemented by sets of
Java interfaces.

Instantiating peer nodes: Each test scenario needs to control the creation of
peer nodes, in various detail. For example, scenarios that test the scaling abili-
ties of a peer-to-peer algorithmmight instantiate varying numbers of peers and
compare the resulting behaviors; others might vary the order and frequency
with which peers join the overlay.

At the same time, for each class of applications (peer-to-peer ones being a
particular case) a specific set of objects—the set of instantiation parameters—is
needed to make a new instance. In our case, some of these are the same for all
instances used in a test: for example, a class implementing a KBR algorithm
can, in general, use any number of network modules to communicate between
peers; during a test, however, all instances tested will necessarily use the same
module; the framework must thus allow arguments to be provided to each
node at instantiation without involvement from the test scenario, but under
the control of the test framework. Some other parameters must be controlled
by the scenario: for example, the scenario might need the nodes to simulate
different abilities. Still others might be independent of testing, and thus need
to be provided without the involvement of the test framework.

The basic method in the Java language to specify initialization is construc-
tors. However, constructors may not be declared for an interface, and are thus
inadequate37 for our purpose. We decided to use the factory design pattern to
solve this problem. On the one hand, the application researcher must write
a factory class with methods to instantiate a node of their application; these
methods define via their argument lists the kinds of objects appropriate to their
case. On the other hand, each test scenario writer must write the interface for
the factory their scenario needs; the argument lists of the factory methods will
define thus which instantiation parameters the scenario is willing (and able) to
define. Observe that if the factory class for an application matches the factory

37That is not to say using them would be impossible, only that it would be more
difficult than their worth.

60 CHAPTER 3. XQ2P

interface for a test scenario, then that test scenario is applicable to the appli-
cation (i.e., it makes sense and it is possible to test the application with that
scenario).

It may be the case, however, that a specific test might not need to control
some particular argument for its applications;38 the user of P2PTester might
want to supply such an argument for different test runs of the same scenario,
or might need to supply the same value for different scenarios. In these cases,
an adapter factory must be written; this is simply a class that implements the
interface required by the scenario, and provides the extra arguments the ap-
plication needs. In the case where some application arguments are different
for each test run (but identical within a test), an extra adapter must be used to
allow supplying arguments via the test harness at test execution time.

It is intended and expected that some generic factory interfaces will be de-
veloped, to be used by test scenarios that apply to many different kinds of
peer-to-peer applications. Indeed, some such interfaces and several commonly
used adapters (e.g., for abstracting away the networking layer) are provided,
ready to use, in P2PTester’s library.

Controlling peer nodes: Each type of peer-to-peer application offers several
types of operations it can execute. For example, every KBR application, basi-
cally, can locate (alternatively, route a message to) the “owner” of a key. Even
simpler, for all peer-to-peer application the operations for joining and leaving
an overlay have in general the same signature. Each test scenario needs to con-
trol those aspects of the application that it tests; it is important to observe,
though, that some generic tests will be applicable to different applications im-
plementing the same features. For example, a scenario intended to measure
how many messages are needed to connect to the overlay network will be ap-
plicable to any kind of application; similarly, a scenario used for comparing
the efficiency of KBR algorithms should in general work with any kind of
KBR implementation. This problem is most naturally solved by a hierarchy
of Java interfaces, interface inheritance providing the required ability of writing
a scenario at the necessary level of generality and executing it on a particular,
perhaps more feature-full, implementation of the concept.

As it may be apparent from the example above, all interfaces that define ap-
plication functionality are derived from the base interface Peer, which declares
the fundamental ability to take part in peer-to-peer networking. On further re-
flection, this is not really necessary; some very specific kinds of P2P networks
might possibly require a different connection model. We have never needed

38Indeed, for some parameters specific to an application, a sufficiently generic test
might not be able to provide an initial value.

3.5. P2PTESTER 61

/** Chord algorithm with customizable hashing. */
class Chord <V extends Serializable >

implements KBR<byte[], V> {
public Chord(MessagePipe p, MessageDigest

hasher){
// ...

}
}
/** Generic DHT-over-KBR implementation. */
class StringDHT implements DHT<String ,String > {

public <K> StringDHT(KBR<K,String > adapted ,
Converter <String , K> adapter){

// ...
}

}

new Factory <DHT<String ,String >> {
DHT<String ,String > construct(FactoryCallback c)

{
return new StringDHT(

new Chord <String >(c.getMessagePipe(),
MessageDigest.getInstance("SHA -1")),

new Converter <String , byte[]>(){
public byte[] convert(String s){

return s.getBytes("UTF -8");
}

}
);

}
}

Figure 3.2: An example of adapter factory. Abbreviated versions of in-
terfaces KBR and DHT are shown in Figure 3.3. Chord would implement
the Chord algorithm for generic kinds of values and an arbitrary hashing
function, and StringDHT would implement a DHT with String keys and
values given a KBR implementation and a converter from strings to the
KBR’s type of keys. At the bottom is an example of an anonymous fac-
tory class that combines the above, using standard Chord hashing.

62 CHAPTER 3. XQ2P

/** Base interface for peer-to-peer nodes. */
interface Peer {

/** Create a new overlay. */
void init();
/** Join an existing overlay. */
void join(PeerAddress entryPoint);
/** Leave the overlay. */
void leave();
/** Obtain this ’nodes address. */
PeerAddress getAddress();

}
/** An interface for implementations of key-based

routing. */
interface KBR<K,M> extends Peer {

/** Route a message to the peer owning a certain
key. */

void routeToKey(K key, M message);
}
/** An interface for DHT implementations. */
interface DHT<K,V> extends Peer {

/** Store a key-value pair in the overlay. */
void put(K key, V value);
/** Retrieve a value from the overlay. */
V get(K key);

}

Figure 3.3: Abbreviated versions of some standard service interfaces pro-
vided by P2PTester.

3.5. P2PTESTER 63

this, so our initial decision stands in present code; that said, the modifications
required to remove the limitation are not extensive, and may be modified in
future versions of the framework.39

It is intended that the same interface used by the test scenario to control
the peers be used to connect the core of the developed application with a user
interface. Since this separation between functionality and UI does not impose
any significant restrictions on the application researcher—indeed, it is a rec-
ommended and common coding practice—we believe it to be a satisfactory
solution40 to the requirement that the tested application be as close as possible
to the real one. An useful side-effect is that a UI written to such an interface can
be used with no modification to control different P2P applications that share
functionality.

The elements described above are the only real constraints on how a re-
searcher must build their application to allow its testing with P2PTester. The
framework provides several other modules intended to be used when building
the application, but their use is optional.

Event Logging
The P2PTester framework provides a facility for logging events happening in-
side the tested application during a scenario. Several types of events—notably,
the passing of messages between peers, explained later in more detail—are
recorded automatically, but an interface to the logging facility is also exposed
to the writer of test scenarios and to tested applications. This facility is in-
tended to allow the researcher to examine in detail the internal behavior of a
particular application. For example, a node in any DHT system has the abil-
ity to publish a key-value pair, but different DHT systems may accomplish

39A word of caution for prospective researchers on the subject: While designing
pre-built components for users of the framework, the architecture also included such
inheritance relations between very low level node types, like DHT, and higher level
ones that build on them, e.g., an XML database that uses a DHT as a primitive opera-
tion. This might seem like a good idea: a module that makes use of another low-level
P2P primitive can expose it with apparent ease. That said, it is not obvious why it
should do that. We found such exposure to be more trouble than its worth; if a higher
level module needs to share access to a low level module with an intermediate one,
coordination is easier the higher level one is in control. We have refactored it out of
some of the pre-built interfaces modules, but the user of the framework might still
find traces of it in the module libraries.

40The alternative, namely to have the test framework control the UI of the appli-
cation rather than in its internal functionality, is much more difficult and outside the
scope of this research.

64 CHAPTER 3. XQ2P

this by passing through different phases (e.g., the publisher might first identify
the peer responsible for the key, then sending the key-value pair to that peer;
or, alternatively, it may route a message with key-value pair directly through
the overlay); logging the individual phases of an operation allows the appli-
cation developer to analyze them separately. However, using this facility is
completely optional: the interface passed to the peer may be ignored.

The interface to the event logging facility is designed to be very simple: a
single method that accepts Event objects as arguments. The framework pro-
vides several implementations for this interface, allowing the user to chose one
at scenario run time. Each uses a different technique for recording events, each
influencing the performance of simulations differently. For example, an logger
that serializes events to disc is necessary for test runs that will generate large
numbers of events, but will introduce random delays while flushing to disc; an
in-memory logger generally avoids this assuming the number of events is low
enough relative to the memory available on the test hosts. A “dummy” log-
ger is provided which ignores logged messages, intended for cases where event
logging is unnecessary.41 The advanced user is also offered the opportunity to
register one or more filter callbacks with the logging facility; these filters are
called when an event is logged and allow or deny the logging of events depend-
ing on any of their features.

The logging facility accepts as “events” any object of class Event of
utils.events. The base class of Event (sometimes conspiring with the par-
ticular event logger used) automatically records basic information including a
timestamp42 for the event and the identity of the peer that generated it, and a
set of tags (to be explained below).

Several derived classes are provided for common types of events, and the
user of P2PTester is encouraged used derived classes that record events interest-
ing to the particular application that is developed. There are no explicit limits
to what kinds of information may be recorded in an event, other than that it
be serializable; that said, logging to many events or events with much data at-
tached can lower performance of test runs, and some experience and judicious
application of filters may be necessary.

41In particular, this may be used after testing, to simply disable event logging in the
stand-alone application. A developer concerned with performance may also use the
Java trick of wrapping event generation in a true-returning function called from an
assert statement, which will completely disable execution of any logging.

42 The timestamps are generated based on the clock of themachine where the Event
object was instantiated. Some care should be exercised when comparing timestamps
for tests ran over a network, since P2PTester does not attempt to synchronize the
clocks of host machines.

3.5. P2PTESTER 65

Event tagging A related feature is tagging of events. Due to the distributed
and asynchronous nature of peer-to-peer networks, it is often difficult to de-
termine which of the events in a log trace are caused by the execution of a
particular command. For example, during the execution of a “publish” oper-
ation, a peer node might also receive and act on unrelated messages from the
other peers, and thus the log might contain interspersed events caused by dif-
ferent operations. To aid in disambiguating the cause of events, the base class
of Event accepts, via its constructors, a set of “tag” objects.

Other than implementing the interface Watermark, these tags may contain
any kind of information, but they should be in general small, immutable and
serializable, due to their use.

An application wishing to make use of this system must accept for each
operation it exposes, in addition to those arguments necessary for the opera-
tion, a set of such tags, propagate them throughout43 its internal processes, and
attach them to any events generated in order to complete that operation. Once
this is done, the writer of test scenarios may add different tags when peers are
instructed to execute different operations, and then use them to identify the
event trace of each operation from the event log. These tags can also be used to
filter which events should be logged (see the description of the logging facility,
above).

In order to make the use of this feature optional, the peer-to-peer interfaces
that are included with the P2PTester framework receive the tags via a variable-
length argument list. In this way, implementations that do not wish to make
use of the facility may simply ignore the extra arguments, and the writer of test
scenarios can add or remove any number of tags to different operations with
ease. Users of the framework are encouraged to follow this practice if they
need to establish their own application interfaces.

Messaging Layer
For any practical peer-to-peer application, the network layer—the part of the
application that handles communication over the physical network—requires
significant attention from the developer, despite the fact that usually the focus
of the research is considerably higher conceptually. In our particular case, the
requirements for P2PTester impose several constraints:

On one hand, while developing a peer-to-peer system, as well as when com-
paring the algorithmic, network-independent behavior of different systems, it
is useful to avoid actually communicating over a network, given the inherent

43 This may be quite complicated, depending on the application. Unfortunately, it
is impossible in general to do it automatically.

66 CHAPTER 3. XQ2P

delays; instead, an in-memory simulation where communication is achieved
by passing objects directly between the processes representing each simulated
peer node can be much faster, thus allowing many test iterations. It also allows
comparing the algorithms directly, without confounding factors inherent to
network access, e.g., serialization performance.

On the other hand, testing in a real environment, with messages travel-
ing over a physical network, can also provide invaluable information about
the real-world behavior and performance of an application. Separately from
the performance aspect, the truly parallel processes of nodes distributed on
separate hosts, together with the vastly different latencies and bandwidth of a
physical network, can often reveal bugs and anomalies that simulation within
a single virtual machine may hide.

In addition to the various kinds of tests, we have also intended to allow
transforming systems built with P2PTester from simulation prototypes to real
applications with as little development effort as possible.

We chose to use the same approach we used for the relationship between
test scenarios and tested applications, described above. A generic interface,
MessagePipe, describes the functionality of a generic communications end-
point. Different implementations of this interface are provided, each using a
different method for actually passing messages between peers; researchers may
add other implementations, more suited to particular needs, which can be then
used for any and all applications if needed. Each implementation provides to
the testing framework a factory object, and the user may then choose, on a
test-by-test basis, which network module to use, independently from the test
scenario and the tested application.

The MessagePipe Interface: When deciding on an API intended to be used
by many different applications, developed by different researchers, several
choices must be made; some very different trade-offs between ease of use, sim-
plicity, performance, and compatibility with network technologies are possi-
ble. In addition to the technical choices, different users may prefer, and differ-
ent algorithms may be more amenable, to different models of communication.

We attempted to offer the maximum flexibility to the user with a two-
pronged approach: We chose a low-level interface that expresses the simplest
and most general communication model, designed to allow maximum opti-
mization opportunities for the implementation. For ease of use, we provide
adapters: classes that offer alternative, conceptually-simpler idioms built on the
low-level API, allowing researchers to use the model most appropriate to their
needs.

Our communication API is expressed by the MessagePipe interface.

3.5. P2PTESTER 67

A MessagePipe represents an asynchronous communication endpoint;
each peer nodes receives a separate instance of it when instantiated. At
creation time, the pipe is in the “closed” state. The owner can “open”
the pipe for communication by registering a call-back handler to receive
messages asynchronously. Message sending is also asynchronous: the send
method will only confirm sending the message via a call-back method. Note
that MessagePipe confirmations and errors are not guaranteed, and their
semantics are best-effort: a confirmation means only that the pipe finished its
work and did not detect an error; a message may be lost or discarded by the
recipient; similarly, an error callback means that something unexpected went
wrong, not that the message is certain not to have reached its destination.

A pipe can be “closed” at the application’s choice;44 it can be reopened and
closed any number of times.

Each open MessagePipe has its own address. This is an abstract object,
depending on the exact implementation of the network layer in use; as such, in
only exposes very limited internal information, in an attempt to guarantee that
the user application remains independent of its particularities.45 The address
is returned to the peer only when the pipe is opened—in fact, an endpoint
does not have an address while in the “closed” state, and it may have different
addresses if closed and re-opened.

Note that the PeerAddress encapsulates all the information needed to
communicate with the peer, which may be different from the physical address
of the host it runs on. For example, in a TCP/IP–based implementation of
the messaging API, the PeerAddress will typically encapsulate both the IP ad-
dress of the host machine and the TCP port the endpoint is listening on for
messages. Applications are intended to use them as opaque objects.

Message content Themessaging API does not constrain the type of messages
transmitted. Each kind of application may simply send any kind of objects it
requires, with no restriction other than it be serializable using Java’s standard
mechanism.

44The various implementations of the messaging API may also expose extra func-
tionality to the test scenario; this may be used, for example, to allow the scenario to
simulate changing network conditions.

45 We attempted to use Java’s generic type system to expose partially the type of
addressing: Both the MessagePipe and Peer interfaces have a type parameter based
on PeerAddress, allowing implementations to pick a refined kind of address they
may work with. This may allow, for example, to write a P2P application that works
only with IPv4 or IPv6 addresses. This system proved cumbersome, and will probably
be refactored out.

68 CHAPTER 3. XQ2P

public interface MessagePipe
<AddressTYPE extends PeerAddress > {

/** Callback for received messages. */
public static interface Listener {

/** Called when a message is received. */
void messageReceived(

Serializable message ,
Set<Watermark > marks

);
}

/** Callback for send operations. */
public static interface Callback {

/** Called when the message was sent. */
void messageSent();

/** Called if an error was encountered. */
void sendFailed(Exception cause);

}

/** Puts the pipe in a wait-for-connections
state. */

public AddressTYPE openPipe(
MessagePipe.Listener listener

);

/** Closes the listening port. */
public void closePipe();

}

Figure 3.4: The MessagePipe interface, abbreviated. (Declared exceptions
and detailed comments have been omitted.)

3.5. P2PTESTER 69

In addition to the content, the MessagePipe API allows each message to be
additionally accompanied by a set of Watermarks. This is intended to support
the event logging and tagging system, described earlier. We decided to include
the tags explicitly in the interface—rather than have the application itself attach
it to the content of the message, if it needs to—for pragmatic reasons: This al-
lows the framework to couple the messaging layer to the event-logging system,
and log events related to sending and receiving messages, complete with their
relevant tags, automatically.46

Several implementations of the MessagePipe interface are provided to the
framework’s user:

MessagePipeLocal provides simple and very fast in-process communication.
It is intended to be used for tests where all peer nodes execute within the
bounds of a single Java virtual machine. Messages are passed directly between
the threads of various peers; no time is spent interacting with the machine’s
networking infrastructure, nor marshaling and unmarshaling objects.

MessagePipeSocket uses TCP/IP sockets for sending messages between
peers. (An alternate implementation MessagePipeChannel is available, the
main difference being that the latter uses the communication primitives of
java.nio.) This class is necessary for running tests over networks; tests run
using it will naturally reflect the performance of the underlying physical net-
work. (However, it is possible to use this class also for in-process tests. In that
case, messages will cross the entire network stack, which allows simulations
closer to real conditions, but by not sending messages over the wire avoids
being limited by the bandwidth and latency of the network.)

Wrappers Apair of “wrappers” are also provided. These take a MessagePipe
instance as an argument, and implement the same interface by delegating all
functionality to this wrapped instance; at the same time they perform an ad-
ditional function: MessagePipeTracer will print a message each time a mes-
sage is sent or received, and MessagePipeLogWrapper will automatically log
Events using the event logging system described above. The former is intended
for very simple debugging, while the latter can be used by the framework to
log automatically all events related to messaging. The same pattern may be
employed by users needing similar behaviors.47

46We may revise this decision for future versions of the framework.
47 For example, such as “intercepting” wrapper may delay or dropmessages to simu-

late network failures, display simulation activity in real time, or even to allow manual

70 CHAPTER 3. XQ2P

The Tester and Test Scenarios
The last major component of the P2PTester framework is the tester itself: the
programs that are executed by the tester’s user, and which host and control the
processes of the tested application and the test scenario.

P2PTester was designed from the start with the intent to allow the execu-
tion of tests on multiple machines. Single-machine tests are very important,
too, especially in the first stages of application development: tests are simpler to
run on a single machine, and the first stages of algorithm development usually
need many low-scale, quick tests. However, since we considered execution on
many machines very important, we decided to focus on that use case from the
start; running tests on a single machine is only a special case of the distributed
version.48

During a test run, from the point of view of the tester’s user there are two
types of processes running: The first is the tested P2P algorithm; there are as
many P2P application nodes as needed, each of which is a separate process.
The second is the test scenario, which is a single, separate process (though it
may be threaded) which communicates with (indeed, controls) the application
nodes.

In the most general case each such process runs in a different Java VM and
communicates only through sockets with the others. However, it is possible
to run several such processes in the same VM (and even sharing some objects),
depending on the tester’s configuration, trading some reliability and realism
for efficiency. This is always done transparently (i.e., objects are shared only
when they would have been exported through RMI) so that logically each pro-
cess can be considered to run in its separate memory space. The intent is to
run the several logical processes in separate JVMs (and separate physical ma-
chines) when we need precise timing measurements and in a single JVM when
we are interested in evaluating algorithmic complexity (e.g., to measure only
the number of messages exchanged) or verifying correctness of behavior. Usu-
ally, the number of messages exchanged is more important than how long it
took to send them, since the later depends on variable network conditions, and
the former on algorithm performance. However, for applications that take ad-
vantage of network locality (physical closeness between nodes) for caching and
routing purposes, measuring behavior when communicating over a physical

inspection and control of messages en route. We envisaged adding each of these to
P2PTester; they have been left for future development due to time limitations and the
fact that they were not needed for this work.

48We did make a few single-machine optimizations, though, mentioned later.

3.5. P2PTESTER 71

network is important.49
Any test system contains two objects belonging to the tester: a

MasterTester and at least one SlaveTester. There is always one
SlaveTester for each physical machine that hosts the test run, and ex-
actly one MasterTester for the entire test. The SlaveTester instantiates
and hosts the processes for each P2P-application node, as directed by the
MasterTester. The master hosts and controls the process of the test scenario,
and coordinates the slave testers. The number of slaves and the distribution of
application nodes (peers) on these slaves is hidden from the test scenario; the
latter acts as if all the peers are directly accessible. Java RMI is used to connect
the test scenario to the peers.

The MasterTester and SlaveTester objects are not stand-alone applica-
tions. In order to use them, a “helper” application is used; this application
initializes the test environment by starting a master and/or a slave, connects
them, and then starts a test run with a test scenario and an P2P application
class chosen by the user.

We provide several such helper applications, which can be used immedi-
ately; a user with special requirements can modify or write an entirely different
one to satisfy any particular test environment configuration.

Running distributed and local tests
For local tests (those tests that are meant to run on a single machine), the helper
application starts a MasterTester and a SlaveTester in the same virtual ma-
chine and connects them directly (by passing each one references to the other).
We have two versions: The first one uses a GUI with a menu system to allow
the user to pick a test configuration (that is, which P2P application is tested,
which test scenario is run, and what communication layer is used). Another
starts the test directly, and changing it requires changing the source code of
the set-up section; this is much simpler and quicker to use for incremental
or automatic testing, both when using an IDE like Eclipse and when only a
command-line is available. The last is also command-line-based, but it allows
using command-line parameters to start a test, useful for scripting a set of test
runs.

When running a distributed test, another factor is added: the master tester
is started the same way as in the local case, but with a special flag set which in-
structs the helper application to wait for user input before starting the test run.

49It is also possible to estimate the effectiveness of such algorithms using a
MessagePipe implementation that simulates various network conditions. We do not
yet provide this, but it can be added by the user according to their needs.

72 CHAPTER 3. XQ2P

On the other machines that participate in the test, a separate helper application
is run. The latter starts a single SlaveTester and instructs it to connect to the
(remote) master; the address of the master must be communicated through the
command line. When slaves are started this way on all machines, the user (or
a script) must tell the master to start the test, which is then run distributed on
all machines.

In the cases described above, there is one Java VM running on each phys-
ical machine that participates in the test. There is another option; a separate
JVM can be started for each separate process: the master, each slave, the test
scenario, and each node of the tested P2P application runs in a separate JVM.
This technique is useful when it is necessary to physically separate every pro-
cess, for instance when the P2P application is still unstable and crashing nodes
can stop the entire test run, or when peers cannot be reliably stopped from
within the Java VM. (Rogue threads, for instance, might be refusing to stop.
The separation of JVMs allows turning off the process directly by forcing its
JVM to stop.) Other uses could include isolating memory-usage issues, or run-
ning applications that make use of static fields in an unsafe way. This method
of execution, however useful, tends to be very slow, because of the added over-
head of each JVM; because of this it is not active by default, but can be activated
by users who need it. (Some JVMs have optimizations that avoid much of the
VM launchin overhead after the first VM is launched, which is likely to reduce
such performance problems.)

Customizing and extending the tester A researcher with a special configu-
ration of the test environment might need to change the tester infrastructure
to suit his needs. This is not a difficult task, but reading and understanding the
code of the tester objects is required, which could take some time.

There are two main options for extending the tester: First, the “helper ap-
plications” that start, configure and connect the master and slave testers can
be modified. This can be useful for complicated testing environments, e.g.,
Internet-distributed hosts or firewalls. In such cases a helper application might
search for the testers available or open connections through firewalls and gate-
ways. This is relatively easy to do, because the user does not need to know
many details about the internal workings of the tester.

Second, the user can modify the tester itself. An example might be replac-
ing the Java RMI-based connections between testers (and, thus, between the
peer nodes and the test scenario) with another specialized messaging system,
particular to their testing environment, which runs over a different communi-
cation channel than the one used by the tested application itself. This allows to
minimize the influence of the tester communication overhead over measure-

3.5. P2PTESTER 73

ments of the P2P application behavior. (As an example, certain clusters built
specifically for testing have two parallel network interfaces (or more), one of
which could be used by the tested application and the other by the tester.)

Performance considerations and limitations
This section describes the limitations of the tester platform, including both
those we encountered or those we anticipate.

Memory The tester, by itself, does not use a lot of memory. Depending
on the JVM used (and the libraries loaded by default), the memory usage of
the master and slave processes can be well below 32MB, including the JVM.
Running each process in a separate JVM can quickly occupy a lotmore, though,
unless there are optimizations for sharing common parts of code, which are
available in some newer JVM implementations.

On the other hand, each node of the tested P2P application can use up lots
of memory. Especially in the cases we investigated—applications that index
XML documents—it easily possible to fill up to a GB of memory with data
and indexes, even with only a dozen logical nodes on every testing machine.
Applications are usually built with the intent of running as a single-instance; us-
ing hundreds of megabytes of RAM, especially for something like a distributed
XML database, is not unusual. It is easy to reach the limits of most machines
with only a few instances of such an application.

The best solution, after increasing the memory as much as possible, is run-
ning tests on several machines, which is of course one of the reasons we devel-
oped the tester.

Processor Most P2P applications are not particularly processor-intensive.
Except for some tasks, like hashing and local indexing, the algorithms depend
on the network and the overlay structure for performance.

However, when running many nodes on a single machine tests can become
CPU-bound. One particular case is when direct process-to-process commu-
nication is employed (i.e., messages are passed directly between nodes, as Java
objects, instead of being sent over the network). This almost removes the com-
munication cost, thus allowing a test scenario to be run at the limit of the
available processing power. Modern machines with multiple processing cores
and multi-threading can help, but will at best provide an order of magnitude
increase in the number of threads supported before performance becomes a
problem.

Remember that for CPU-bound tests, any timing measurements are not
very relevant for the behavior of the application in real conditions. Analysis of

74 CHAPTER 3. XQ2P

algorithmic complexity, based on the number of messages exchanged, is usually
more interesting.

Hard-drive performance The performance of the drives used can easily be-
come more important than that of the processor when running many peers on
the same machine. For example, if several peers that run on a single machine
are simultaneously indexing large XML documents, it is very likely that the
hard-drive’s throughput be saturated.

Another important issue here is the logging. Logs can easily become hard-
drive limited, considering that all messages are recorded (and twice! once for
the sender and once for the receiver, though sometimes this can be optimized-
away). It is recommended that large logs be written to a different physical
drive, or even to a fast RAID array, separate from the drives used by the tested
P2P application.

(Of course, this is significant mostly for cases where precise timings are
measured. If only number-of-messages are used for evaluating the application,
the only concern is how long it takes to run a test.)

Another optimization, also useful for test runs where the user is interested
in time of execution, not in analyzing the exchange of messages, is to disable
the logging of messages altogether, and log only interesting events like ask-
ing/answering of a query, or starting/finishing an indexing operation.

When possible, it is usually best to strictly filter the events logged and use
an in-memory log.

Networking Lastly, but the most important for our subject—testing P2P ap-
plications—are networking performance issues.

Certainly, most tested applications will use the network intensely. Some
usage patterns—for example, a simple query on well-indexed data, with few
results—will transfer only small amounts of data. In these cases latency is ex-
pected to be the most important factor for performance. However, this is not
always true: First, test scenarios typically would run many operations in par-
allel, as fast as possible, which can easily overcharge a small testing network
with many peers running on a single machine. Second, some operations, for
instance indexing of XML documents, can create a temporary flood of infor-
mation through the network.50

50In real-world usage, the distributed nature of such applications and human usage
patterns cause such “floods” to be dispersed both temporarily and spatially. Except for
very large-scale distributed tests, however, they are concentrated by the need to run
the test on the machines available to the user, such as a local network or even a single
machine.

3.5. P2PTESTER 75

Another, even more important, issue is linked to other network-related re-
sources besides bandwidth and latency. Peer-to-peer applications commonly
exhibit a very particular communication pattern: first, they open a relatively
large number of connections (dozens to around a hundred) which draw their
“neighbors” in the logical overlay of the network. These connections occa-
sionally change as nodes and data are added and removed, but their order of
magnitude is mostly constant. This order of magnitude is usually proportional
to a slow-growing sub-linear function of the number of peers in the network,
for instance a logarithm or the square root. Second, during active operation
(e.g., querying and indexing) the peers need to communicate with many other
nodes, often exchanging a few messages before finding the address of another,
and so on.

An unexpected problem caused by these communication patterns is that
it is very easy to simply exhaust the ports available, or at least severely con-
fuse the OS. There are 216 ports for TCP/IP, but only not all of these can be
used for opening random connections. When many nodes are run on a single
connection51 it is surprisingly easy to reach a point where connections can-
not be opened reliably. Experimentally, we have encountered this situation
from between 50 to 200 tested nodes on a machine, much quicker than we had
expected.52

We commonly use direct (not over-the-network) communications when
running large tests on a single machine, which avoids this problem and also
makes tests much quicker (an order of magnitude, or more, is not unusual).
However that technique is not available on multi-machine tests. We believe
some optimizations are necessary to layers when scaling (complex) test scenar-
ios above a few hundred application nodes.

Test scale Related to the above problem is the fact that peers running on a dif-
ferent machine than the MasterTestermust be connected to the test scenario
through the network. We use RMI over sockets for this, as it is a well-optimized
system, powerful, well-known and relatively easy to implement.

It has a problem, though: it seems to be not very robust in larger-scale (over
one hundred nodes on one machine), intense scenarios, with many peers work-
ing in parallel. We believe socket-deprivation is one of the reasons, combined

51Note that two ports are used for each logical “link”: one belongs to the sender
and one to the receiver.

52We have struggled at one point diagnosing inexplicable failures to open connec-
tions, which were traced to what appeared to be bugs in the native code parts of
the JVM used that dealt with opening connections. We are not overly fond of the
memory.

76 CHAPTER 3. XQ2P

perhaps with synchronization bugs. Sun’s implementation of RMI also has
an annoying habit of succumbing to strange bugs when the network set-up is
less than ideal. For instance, we have repeatedly observed it breaking when
a DNS server was unavailable or misconfigured, despite the fact that only nu-
meric IP addresses were used.

On the other hand, readers must surely have noted that the distributed
testing environment we present is a very traditional client-server, centralized
system. Certainly, such a system will fall behind the tested application in scal-
ing ability. It may seem counter-intuitive, but we consider that this is prefer-
able: the alternative would have been to build a complex, smart P2P system to
handle tests of... other P2P systems. That solution might scale a bit better, but
there would still be a difference between the scalability of the tester and of the
tested applications (otherwise, we would not need a tester), at the added cost
of complexity and the risk of hard-to-discover interactions between the two
parallel P2P networks.53

We decided that simplicity is the best bet, and using brute force will work
best at the beginning. We intend to use a relatively small number of testing
machines, hundreds at most, and to test only up to a few thousand nodes. This
should be enough for a huge part of developing a P2P application, on one
hand, and more than this is impossible or very difficult to do in a generic way.
However, an advantage of the simple design is that someone who needs more
can extend and adapt the master/slave design to something more appropriate
to their needs.

An extension that we anticipate we will use, and which might be generic
enough to be useful to others, is running the equivalent of a MasterTester on
each participating machine, or one for every few slaves, each master running
a copy of the “test scenario” process. These parallel test scenarios can then
communicate and inter-link the networks they each command. This is actu-
ally possible without any changes to the tester: a user needs only write a test
scenario that “cheats” and communicates directly with its “clones”, without
specific support from the framework.

Other resources A less specific problem we encountered when using the
tester is that P2P applications (or rather, their developers) often assume that
the applications are run individually, one per machine. This can lead to diffi-

53That said, there are situations where this might be useful. The test infrastructure
can consist of two parallel networks (using two network adapters for each machines),
for example. The tester framework could use one of these while the tested application
uses the other. Though we experimented briefly with such a set-up, a P2P implemen-
tation of the tester is left for future work.

3.6. USE FOR XQ2P 77

cult conflicts when trying to run tens of copies simultaneously. This can be
something as simple as sharing configuration files (and conflicts at start-up), to
more complex problems.

One important example is that one application we tested used a stand-alone
relational database as a backend. It also assumed the database was installed and
well-configured, which can be difficult or impossible with a dozen or more
instances running in parallel. A very well-designed P2P applicationwould have
the option of using any of several similar databases, including a built-in module
like SQL-Lite. However, because of differences and incompatibilities between
different database engines, we expect a lot of work will be needed in cases like
this. Even when the problem of sharing these resources is solved, they always
leave the problem of performance limitations, too.

3.6 Use for XQ2P
XQ2P was constructed using several components provided by P2PTester.
Specifically:

Communication: All messaging between peers happens using per-peer in-
stances of the MessagePipe primitive. When used in tests distributed over sev-
eral hosts, the default socket-based implementation is used; in local tests the in-
memory message-passing implementation is preferred for speed reasons. Note
that this was done for simplicity reasons, as XQ2P is intended initially as a re-
search tool; a more practical application would perhaps benefit from a stream-
ing approach to transferring index lists, including optimizations like those pro-
posed by [58], and using message passing only for overlay-maintenance and
routing operations.

Tracing and Logging: The number of messages exchanged by XQ2P for in-
dexing and querying tend to be easily analyzed statically. Nevertheless we took
advantage of the tracing and logging features provided by P2PTester tomonitor
peer loading state and the size of exchanged transfer, as well as for debugging
purposes during development.

Key-based routing: XQ2P uses a key-based routing module as a fundamen-
tal primitive on which it implements its higher-level indexing and querying
functions. A simplified version of Chord provided by P2PTester is used by
default. In addition, a ready-made module that simulates a KBR overlay is also
useful for running quick local tests of the higher-level functions (simulating the

78 CHAPTER 3. XQ2P

interface XQueryDB extends Peer {
public void publish(File document);

public Sequence evaluate(String xquery);
}

Figure 3.5: A simplified version of the XQueryDB interface, implemented
by XQ2P nodes. Exception handling and event tagging have been omitted
for brevity.

lower-level layer eliminates the large number of messages needed to establish
the overlay; this is transparent to the higher layers).

Note that we do not use the provided DHT modules directly: The basic
operation of the indexes (see the following chapters) resemble a DHT in the
sense that they associate values to keys; however, the exact semantics of put
operations are slightly more complex, as peers need tomerge indexes associated
by several nodes with a single key.

Test Scenarios: Test scenarios were used extensively during XQ2P develop-
ment for debugging and evaluation purposes. P2PTester allows precisely spec-
ifying behavior—such as which peer publishes what document or initiating
queries from any of the peer nodes and checking or comparing results, sequen-
tially or in parallel—and re-executing such scenarios with perfect reproducibil-
ity.54 In addition, such tests can be run repeatedly while changing the lower-
level modules, such as the network layer or the KBR implementation, without
any modification to XQ2P itself.

Interface: The interface exposed by XQ2P is very simple, as most of its com-
plexity is contained in the query language. It resembles the one in Figure 3.5.
Addingmore features, such as indexing a local document without publishing it,
removing a document from the index, or various access controls, can of course
be expressed by derived interfaces; being focused on indexing and query eval-
uation, we ignored such features in this work.

Note that it is relatively easy to write adapters around XQ2P that respond
to other query languages; an adapt or needs only translate the query to XQuery

54Injecting any desired amount of randomness is also easy.

3.6. USE FOR XQ2P 79

syntax. Such adapters would allow comparing XQ2P with other engines us-
ing the same test scenarios. For example, tree-pattern queries are simple to
express in XQuery; most reuse subsets of XQuery syntax, making translation
unnecessary.

Chapter 4

Distributed XQuery
Processing with Structural
Indexing

In the previous chapter we presented the general architecture of XQ2P, and
explained the functioning of its XQuery processing kernel on local data. As
a distributed database, XQ2P needs to be able to answer queries using data
published by peer nodes as well. We adopted a simple approach for solving
this problem:

First, nodes that participate in the distributed database organize themselves
into an overlay network with (efficient) key-based routing.

Second, peer nodes that wish to make a local document available to the
distributed database will publish an index of that document throughout the
overlay, using a DHT-like protocol deployed on top of the KBR layer.

Finally, nodes that wish to execute a query over the shared data use the
distributed index to locate relevant documents and contact the peer nodes that
hold them; either the entire located documents or parts of them are down-
loaded, and the local XQuery processor is used to perform the query on the
retrieved data.

In this chapter we describe the use of a structural index—i.e., one based on
the types and relationships between XML elements—to execute this strategy.
In the next chapter we apply the same approach to a value-based index.

The contents of this chapter are as follows: The overlay network used by
XQ2P is presented in the first section, below. Structural join algorithms and
the particular case of TwigStack, used by XQ2P, are then presented in §4.2; the
index used is described in §4.3.

81

82 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

Though we use TwigStack to enable XQuery evaluation on the distributed
database, the algorithm was originally proposed for local evaluation, a fact
XQ2P takes advantage of. Accordingly, §4.4 introduces the TwigStack-based
XQ2P operators and describes their use for local query evaluation, and finally
§4.5 extends this to execution over distributed data.

4.1 The XQ2P Overlay Network
XQ2P is a peer-to-peer distributedXMLdatabase. As such, the first andmost ba-
sic task of the system is to organize the participating node in a overlay network.
This layer provides key-based routing functionality, which is fundamental to
the indexing and querying functions built on it.

In principle, almost any KBR protocol would be suitable for our use. We
implemented a simplified variant of the Chord system to serve as a KBR layer.
Its basic features are as follows:

Communication XQ2P nodes use the MessagePipe primitive provided by
the P2PTester framework. The exact implementation can be chosen depending
on the intended usage, the default being socket-based.

Node identity Each node participating to the XQ2P network has an associ-
ated identifier. Its only purpose is to distinguish the node from other nodes on
the same overlay; this has certain implications:

� A node does not have an identifier while not connected to a network;

� As long as it is connected to the network, the node’s identifier does not
change;

� No two nodes connected to the same overlay may have the same identi-
fier.

The address of a MessagePipe matches these conditions, and for this reason
we use it as its identity. Note that the exact content of the address is not im-
portant for XQ2P; it is used as an opaque object, the only operation needed
being comparison for equality. Thus, XQ2P can use any of the MessagePipe
implementations without modification.

Observe that a node does not have identity when not connected to a net-
work, and that if node disconnects and then re-connects to the same network
it may well have a different address (and identity). In other words, a node’s
identity does not persist while it is disconnected.

4.2. STRUCTURAL JOIN ALGORITHMS 83

Keyspace We use the usual 160-bit circular key space of Chord; node IDs
are obtained by hashing the serialization of the node’s address with the SHA-1
algorithm. Note that the objects used for IDs and keys are an implementation
of a very limited interface; they are opaque to the upper logic layer, which only
performs comparisons for equality with them. This allows replacing the KBR
layer with a different one transparently, without any modification to the rest
of the code.

Overlay structure As in basic Chord, each node maintains connections to
its successor, its predecessor and “fingers” to nodes owning keys at distances
2i, i = 1..160 from its ID.

Routing The only operation this layer offers is key-based routing: Given a
key (from the higher logic layers), it finds and returns the address of the peer
owning that key. This operation requires O(log2N)message exchanges, where
N is the number of peers connected to the overlay. (The message length is very
short; message payloads consist only of an ID or a peer address, plus a tag for
the message type. It is latency rather than bandwidth that limits performance
at this level.) The signature of the operation is simply:

ID find_owner(ID key, Watermark... marks);

where the marks argument is used for the optional event-tagging feature (see
page 65).

Differences from Chord Because we use XQ2P as a research platform, we
simplified the KBR layer as much as possible. We did not implement the parts
of the Chord protocol related to checking connectivity periodically and main-
taining the overlay. Instead, a connecting or disconnecting node will explicitly
notify the (already connected) peers that it might need to update their fingers
table. This is intended to reduce network chatter during testing. However,
note that the layers above are ignorant of these details, and a more full-featured
KBR layer can be substituted transparently.

For a more detailed description of the Chord protocol itself, consult §2.3,
in particular page 26.

4.2 Structural Join Algorithms
Document-centric XML processing tools usually need to process entire docu-
ments (and collections of documents); their focus is efficient traversal of entire
trees. In contrast, use of XML in data-centric environments tends to require

84 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

querying and returning relatively small parts of very large collections of XML
data. In such cases, techniques that traverse the entire document tree to locate
relevant data are too slow, no matter their efficiency. Indexing is necessary
to rapidly identify and locate only those parts of an XML connection that are
necessary for answering a query.

Traditional indexing structures and algorithms developed for relational
databases can be usually applied to solving value predicates in typed XML data,
and text-search indexes and algorithms are similarly applicable to some queries
on XML content.

Efficiently answering structural queries on XML, however, requires more
specific techniques. By “structural queries” we mean such queries that select
tuples of XML nodes that have specific types and structural relationships in re-
lation to the XML trees—e.g., parent/child, ancestor/descendant—rather than
through specifying conditions on the content they hold. XML querying lan-
guages like XPath and XQuery rely heavily on such structural relationships.

XQ2P implements structural indexing based on node numbering and the
TwigStack algorithm to perform structural queries. Consult Chapter 6 for
other examples of structural indexes and algorithms that apply to them.

The TwigStack Algorithm
XQ2P uses an implementation of TwigStack to implement pertinent-document
location within the distributed document collection, and to accelerate query
execution over local documents.1 In this section we summarily describe the
functioning of the algorithm; see [12] for a more detailed description and anal-
ysis.

TwigStack uses an index based on a numbering scheme where each element
is assigned a pair if integers, leftpos and rightpos, such that leftpos1 <
leftpos2 ≤ rightpos2 < rightpos1 whenever node 1 is an ancestor of node
2. Documents are indexed by constructing, for each element type,2 the list
(document ID, leftpos, rightpos, level) of occurrences of that element
type in the collection, ordered by document ID and leftpos; level is the

1 Many other algorithms using the holistic join principle have been published since
TwigStack, several of which are mentioned in Structural Join Algorithms)(see page 83).
We chose TwigStack for being well-known, and partly a demonstration of integrating a
complex optimization in XQ2P. Adapting further improvements andmore algorithms
is a promising direction for future work.

2 TwigStack, as defined in [12], also indexes individual words in text nodes, allowing
execution of some text value predicates simultaneously with the structural query. We
omitted this feature in XQ2P for now.

4.2. STRUCTURAL JOIN ALGORITHMS 85

depth of the element occurrence in its tree, with the level of the root element
equal to zero.

TwigStack solves twig-pattern queries. Twig pattern queries are trees with
nodes corresponding to node tests. An answer for a twig pattern is the set of all
assignments of document nodes of correct type to each query node, such that
the parent-child relationships between nodes in the twig pattern correspond
to parent-child or ancestor-descendant relationships between assigned nodes.
(In common graphic representations of twig patterns, parent-child edges are
represented by single lines and ancestor-descendant edges by double lines.)

TwigStack accumulates results using a tree of stacks, one stack for each
node in the twig pattern. Each stack holds tuples of a node (more exactly, the
positional representation of a node) and an integer, representing a pointer to
some position within that stack’s parent stack; the stacking algorithm (below)
ensures this pointer indicates the highest element on the parent stack that is an
ancestor of this node, and that a node on a stack is a descendant of all nodes
below it in the same stack. This makes the tree of stacks a compact encoding of
partial query results. (Root stacks, i.e., stacks corresponding to the root node
in the twig pattern, do not need the integer pointer.)

A stream of node positional identifiers is used for each twig pattern query
node, each stream referring to nodes of the same type as that referenced by its
query node. Note that the streams are ordered by leftpos,3 which translates
to document order in XML.

The algorithm advances all streams until the elements pointed to by each
stream are in the relationship demanded by twig pattern; this state can be eas-
ily determined by testing inequalities between the positional identifiers at the
head of each stream. Consider the case of a two-level twig pattern where the
streams are not in such a state: then at least one of the child streams points
to an element before the root element in document order, or comes after the
closing of the root element’s end-tag; in the former case, the child stream can
be advanced until it reaches the first element with a greater leftpos than the
root element’s, without needing to examine intermediary elements; similarly, in
the latter case the root element must be advanced until its rightpos is greater
than all the child elements’. Repeatedly advancing the streams4 in this way
TwigStack rapidly skips over portions of the index that cannot contribute to
results.

When a correct position for a pair streams is found, the element pointed to

3In multi-document instances of the algorithm, by (document ID, leftpos).
4Because the “targets” values for skipping are known, an appropriate index can use,

e.g., binary search to advance without examining each element.

86 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

by the child stream is either a descendant of the element on top of that stream’s
stack, or comes after it in the document. (Remember streams are sorted in doc-
ument order.) In the former case, it is pushed onto its stack, with the integer
pointing to the parent stack’s top. In the latter case, none of the results accu-
mulated on the lower stacks may form a valid answer with any future elements;
if the stream belongs to leaf query node, then results accumulated on the stacks
that depend on the streams’ top are outputted,5 and the top element is lifted
from the stack; if not, nodes are lifted from parent stacks successively until
another correct pair of streams is found.

The precise sequence of operations ensures that all possible correct assign-
ments are considered and generated, which ensures correctness. Themechanics
of advancing the streams depending on positional identifiers efficiently skips
over nodes that do not participate in results, which ensures speed. Finally, the
stack-encoding minimizes memory use for partial results.

4.3 Document Indexing
All documents in a node’s collection are indexed at loading time. We imple-
ment an index based on the popular technique of pre/post structural labeling,
because it is useful in several different stages by several different algorithms
during query processing (described on page 37). Note however that XQ2P was
designed such that it is easy to add other indexes at the same time.

Conceptually, our index is built as follows:
First, all attribute and element nodes are traversed in document order. A

counter, initially zero, is incremented each time the traversal passes from a node
to another. Each node is assigned a start label, equal to the value of counter
when the node is encountered, and a end label, equal to the value of the counter
when the subtree rooted at that node has been traversed. Each node is also
assigned a level label, equal to the depth of the node in the tree. This kind of
labeling is commonly called region encoding.6

Observe that the labeling ensures that, for each node:

� the start label is always lower than the start label of any of its descendants;

� the end label is greater than the end label of its descendants;

5If the query contains parent/child edges, not all nodes accumulated on the stacks
necessarily form a result: the stacks guarantee only ancestor/descendant relationships,
so the level of nodes needs to be considered.

6There are many different possible region encodings, depending on exactly which
nodes are counted and when the counter is incremented.

4.3. DOCUMENT INDEXING 87

Figure 4.1: Region encoding of a simple tree

a: (0,9,1); (6,8,2)
@b: (1,1,2)
c: (2,5,2)
@c: (7,7,3)
d: (3,3,3); (4,4,3)

Figure 4.2: The index lists generated for the document tree in Figure 4.1.
Note that attributes are listed separately from elements that have the same
name.

� the start label is greater than the end label of any preceding node;

� the start label is greater than the end label of any preceding node;

� the level is exactly one less than that of its children, exactly one more
than its parent’s, and equal to that of its siblings.

These properties are very useful for a implementing so-called “structural join
algorithms”; we describe these in more detail later.

Then, for each kind of node thus traversed, we construct the list of (start,
end, level) triplets assigned to nodes of that kind. In the preceding, two nodes
are of the same kind if they are of the same node type (i.e., they are either both
element nodes or both attribute nodes) and they have the same QName.

A document’s index is the map having as keys the node kinds and the list
of nodes of that kind, in document order (i.e., sorted by the “start” label). The
index of each document is kept in memory, associated with that document.

88 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

Publishing documents
As a distributed XML database, XQ2P must allow the user to query docu-
ments owned by any node of the network, not just those on his or her own
node. Nodes must publish information about the documents they own, to al-
low other nodes to find them. This information is called the index, and we
call the process of informing the network about documents “publishing” those
documents. (See §3.2.)

XQ2P’s architecture allows using many different kinds of indexes, and even
using several kinds of indexes at the same time. For this work, we imple-
mented an index that is an extension of the index described above for a peer-
to-peer context. Because of their similarity, we refer to both as “index”; when
disambiguation is necessary, we will refer to the indexing of a document as the
“document index”, to the collection of indexes of documents owned by a peer
as the “local index”, and to the index of all documents in the network as the
“distributed index”.

Logically, the distributed index is a straight-forward extension of the local
version to the case of multiple documents owned by multiple peers. Recall
that local index represented each indexed node by a (start, end, level) triplet.
The distributed version adds to this the identifier of document that contains
the node, and the identifier of the peer that owns that document.7

Thus, the logical structure of the distributed index is a map from node
kinds to the list of 5-tuples interpreted as the structural identifiers of nodes of
that kind. Observe that the structural properties of these tuples are the same
as those of triplets in the single document index as long as the peer ID and
document ID are identical (when they are not, the nodes are part of different
documents, thus they have no relationship).

The lists of 5-tuples are sorted first by peer ID, then by document ID, and
finally by the start label. (Because the document indexes are already sorted
by start label, the distributed index is assembled with an insertion-sort on the
(peer ID, document ID) sort key.) Incidentally, the order given by (peer ID,
document ID) is used for the extension of document order to nodes between
two documents (see page 17).

This index is distributed through the overlay network similarly to a DHT:
Each time a document is published, the publisher node will do the equivalent
of a put operation for each node kind. The node kind is the key, while the list
of 5-tuples is the value associated with that key. The KBR key is determined by
hashing theUTF-8 representation of theQName for elements, and theQName

7Recall that documents are assigned an identifier that is unique only among docu-
ments owned by the same peer.

4.3. DOCUMENT INDEXING 89

a : (0 : 0 : 0 , 8 , 1) ; (0 : 1 : 0 , 7 , 1) ; (1 : 0 : 0 , 9 , 1) ; (1 : 0 : 6 , 8 , 2)
@b: (0 : 0 : 1 , 1 , 2) ; (0 : 1 : 2 , 2 , 3) ; (0 : 1 : 5 , 5 , 3) ; (1 : 0 : 1 , 1 , 2)
c : (0 : 0 : 3 , 3 , 3) ; (0 : 1 : 1 , 3 , 2) ; (0 : 1 : 4 , 6 , 2) ; (1 : 0 : 2 , 5 , 2)

@c : (0 : 0 : 5 , 5 , 4) ; (1 : 0 : 7 , 7 , 3)
d : (0 : 0 : 4 , 6 , 3) ; (1 : 0 : 3 , 3 , 3) ; (1 : 0 : 4 , 4 , 3)

Figure 4.3: Region encoding for a two-peer, three-document collection.
The rounded gray boxes represent peers; peer IDs are in the top-left corner
(short consecutive numbers are used here for brevity). Boxes with folded
corners represent document nodes and their IDs.

90 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

prefaced with an “@” character for attributes. (Recall that “@” cannot be the
first character in a QName.)

Recall that in a usual DHT multiple values associated with a single key are
simply kept in a list. In our case, for a particular QName, the value is a list of
5-tuples, which must be distributed for each document published that contains
nodes of that kind. (We occasionally call such a list a “posting list”, similarly to
[4].) But in a peer-to-peer network it is in general unpredictable when each peer
will publish documents. Because we want the distributed index to be ordered
by (peer ID, document ID), using the simple DHT semantic of appending to
a list will lead to posting lists being appended in the order of posting. For this
reason, we use slightly modified semantics: the peer that holds the posting lists
for a QName will insert newly received posting lists (from newly published
documents) in the necessary position to maintain the sorting, rather than just
appending them at the end.

The description above is of the logical structure of the index, which is the
form used to describe the querying algorithms, later in this document. How-
ever, for efficiency reasons in the actual implementation peers do not publish
or hold a flat (sorted) list of 5-tuples. Instead, the piece of distributed index held
for each QName is represented as a (sorted) list of (node ID, local index) pairs,
where the local index is also a (sorted) list of (document ID, document index)
pairs; the document index is simply the list of triplets described in the previous
section. This avoids duplicating the peer and document ids for each indexed
document node, and also allows the constructing the distributed index from
the document indexes by simple inclusion. For example, the compact form of
the list for c elements in Figure 4.3 would be:

{0 : [0 : (3, 3, 3)], [1 : (1, 3, 2), (4, 6, 2)]}, {1 : [0 : (2, 5, 2)]}.

Modification of indexed documents
Other than publishing newly added documents, the only modification to the
distributed index we support explicitly is document removal. If a peer wants to
cease to offer access to a published document, it must issue a drop request for
every posting list it has published for that document. This requires the same
number of messages as the initial publishing. (However, note that these request
need only mention the QName, the peer ID and the document ID; since the
actual list of triplets does not need to be sent, the messages are much shorter.)
This step is not strictly necessary: the node can simply refuse to service query
requests for that document; the querying algorithms must be able to handle
this case anyway, to deal with nodes that drop from the overlay network, e.g.,
due to broken connectivity.

4.4. THE TWIGSTACK OPERATORS 91

There is no explicit support for changed documents, although a peer can
achieve this by dropping the published document then publishing the changed
version. Efficient support for updates of this kind of structural indexes is com-
plex, and interesting future work.

4.4 The TwigStack operators
We implement the TwigStack algorithm in an eponymous class. A TwigStack
object is constructed from a tree of input streams (represented as a list of
streams with a second list of integer pointers to the parent). It has a single
evaluatemethod, which returns an encoded form (based on the stack encod-
ing of the algorithm) of the results, i.e., correct assignments of nodes for each
node in the stream query. Note that the algorithm itself does not depend on
the type of nodes encoded by the input streams; we only implement indexes
of element of specific types in XQ2P, but this is possible to extend later, for
example to include composite streams that allow two kinds of elements, or
streams of words in text nodes and attribute values.

Note that TwigStack is not an operator class in the XQ2P sense, as it does
not generate Sequences of items. Instead, operators are constructed based on
the class and embedded into a modified query plan.

Query plan transformation
In order to use TwigStack-based processing, the operator tree (basically, the ex-
ecutable query plan) generated by XQ2P after standard static analysis is trans-
formed into an analogous operator tree that substitutes TwigStack-based oper-
ators to the default axis-navigation ones.

There are two TwigStack-based operators: the first replaces stand-alone
XPath expressions; the second replaces FLWOR expressions. The separate
FLWOR operator is used because iterating over tuples can be done more ef-
ficiently using the stack-encoded results of TwigStack directly rather than over
instantiated sequences of results.

The transformation step visits the of the original query plan to discover
tree patterns. Stand-alone path expressions are transformed in three phases:

Discovery: If the expression currently examined can begin a tree pattern that
may be optimized, begin the construction of a new tree-pattern builder. Cur-
rently, only calls to fn:document or to fn:collection are such expressions.
(If a tree-pattern was already in construction, a stack is used to keep track of it
until the new tree pattern is finished.)

92 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

Assembly: When visiting subexpressions, there are several possibilities:
If the subexpression can continue the currently constructed query plan,
a new query node is added to the latter. Currently only descendant::,
descendant-or-self::, child:: and attribute:: axis steps with elemen-
t/attribute name tests can participate in a tree pattern.

If axes have predicates, their subexpression are added to a “predicate list” of
the current (last added) node of the tree pattern.

Otherwise, the expression is a continuation of the XPath that cannot be
performed using TwigStack; it is analyzed as a separate expression, and the
resulting sub-tree of operators is set as the output transformer operator of the
current query plan. Examples of expressions that cannot form parts of the twig
pattern query are function calls, arithmetic expressions, or non-descending axis
steps.

Operator substitution: When the visit of subexpressions of a tree-pattern
root expression is done, the tree pattern is finished. The query nodes are used to
construct a new TwigStack instance, which together with the predicate list and
the output receiver, if any, is used to construct a new operator (i.e., a sequence-
producing) instance.

Execution: When the evaluatemethod of the new operator is called, it first
obtains the index streams from the dynamic environment and passes them to
the TwigStack instance for execution. It then iterates over result tuples and
executes any predicates in the predicate list on the appropriate nodes; tuples
that fail a predicate test are skipped. It then generates the sequence of nodes
corresponding to the output node. If there is an output transformer operator,
the sequence is passed to the latter and the result is returned; otherwise, the
sequence is returned as generated.

FLWOR expressions : If a tree-pattern root expression is discovered as the
root expression assigned to a for or let clause of a for expression, the pro-
cess above is slightly modified: The variable that was assigned is added to a
list of twig-pattern–bound variables; in the assembly phase, path expressions
beginning with accesses to a variable that is in the list of twig-pattern–bound
variables become eligible to continue the same twig pattern rather than begin-
ning a new one, and variables that are assigned the result of such expressions are
also added to the bound-variables list. The twig pattern will have several out-
put nodes (one per variable), each of which might have an output transformer
expression.

4.4. THE TWIGSTACK OPERATORS 93

Twig patterns discovered in FLWOR expression clauses cause the substi-
tution of the entire FLWOR expression, not just of individual variable assign-
ments. When the replacement operator is executed, the tuples generated by the
FLWOR expression are generated as needed from the compact representation
returned by the TwigStack expression.

Note that not all for and let clauses of a FLWOR expression are neces-
sarily bound to a twig-pattern output node; those that are assigned expressions
that are not expressible in the tree-pattern will be computed by the original
operator subtree.

Query formulation
XQ2P requires no syntactical changes for distributed queries. Queries that
must be executed over the distributed database use the same XQuery dialect
as the local ones. The only user-visible modifications are to the data-source
functions:

The fn:collection function is augmented: it will also accept the
“distributed” collection. This behaves similarly to the “local” collection
described on page 96, but refers to all documents in published on the network.
The “remote” collection is also provided, which holds the difference of the
“distributed” and “local” collection, i.e., all documents published on the
network except those published by the node running the query.

The fn:doc function is extended to accept references to documents on other
nodes. These are identified by URL following the generic syntax of [5], with
the following elements:

Scheme name This is always the string "xq2p".

Host part This depends on the specific KBR routing layer in use, as it identifies
the node within the network that the document is retrieved from. For
Chord, it is the case-insensitive hexadecimal representation of the node’s
identifier.8

8It is of course possible to also allow node names, to offer URL persistence with
regards to node ID changes, but we have not yet implemented this feature.

94 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

Document path This corresponds to the document name used by the publishing
node. It is in the form of an absolute path, i.e., it is always separated from
the host part by a forward slash.9

xq2p: URIs contain no username, password, no port, query string or
fragment identifiers. As an example, a typical XQ2P URI might look
like xq2p:0123456789ABCDEF/some/document.xml, referring to the doc-
ument labeled “/some/document.xml” published by the node with Chord
ID “0x0123456789abcdef”.10 The fn:doc-available function is extended
similarly.

Even in the distributed environment, the two data-source functions retain
their local capabilities. It is thus possible to write a query that references at
the same time local documents and distributed ones (the later including the
former). See Figure 4.4 for an example.

Stages of processing
XQ2P performs query execution in several stages. In short:

� First, the query operator plan is examined to identify data sources. The
result is the set of twig patterns that assemble the query, and the set of
node sources these patterns are sourced from.

� Second, each enabled query transform is executed. The result is an op-
timized query plan; in particular, TwigStack operators replace the un-
optimized operators where possible, and the list of required indexes is
constructed.

� Third, a dynamic environment is constructed for the query; in par-
ticular, the dynamic environment is augmented with the references to
the node sources and indexes needed by the query. (To recap, docu-
ments required by unoptimized tree patterns sourced from fn:doc()
and fn:collection('local') are retrieved from cache, and indexes are
attached to the TwigStack operators; constructed node–patterns are left

9The exact syntax of a document name is in principle free-form, but XQ2P nodes
currently use a format based on Unix file path syntax.

10The additions to the fn:doc function are intended mainly for debugging pur-
poses. It is expected that user queries will in general access the distributed database via
fn:collection.

4.4. THE TWIGSTACK OPERATORS 95

<html><body> {
for $artist:=fn:collection('local')/favorites/song

/@artist
let $albums:=fn:collection('distributed')/music/

artists/*[@name=$artist]//album/@title
order by $artist , $album
return

<h3>Albums of {$artist}:</h3>
{

for $album:=$albums
return <p>{$album}</p>

}
} </body></html>

Figure 4.4: Example use of fn:collection.
This query might find albums from the entire distributed database that are
created by an artist who created at least one song that the owner of the
executing node liked. The result is an HTML document.

alone, to be assembled during query plan execution; unidentified data
sources, e.g., the initial value of the context node, raise dynamic errors.11)

� Finally, the final query plan is executed, by passing the DynamicContext
instance to the evaluate method of the query plan root operator. The
result is either the Sequence containing the result, or a dynamic error.
The third step might be re-run during this stage, in cases where the data
source functions have non-literal arguments.

The execution of distributed queries follows the same sequence. However,
the third stage is modified to support the additions to the doc and collection
functions, as follows.

11Observe that although technically the execution of the query plan has not started,
this step belongs to the execution rather than analysis stage of query processing, be-
cause it depends on the actual data (specifically, the presence thereof); thus, only dy-
namic errors can be raised.

96 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

The fn:doc and fn:doc-available functions
The modifications to fn:doc are the least extensive. If URI refers to a doc-
ument published by the node executing the query, the function behaves as if
having received the local: URI to that document.

Otherwise, the node identified by the host part of the URI is contacted
and the document is retrieved, indexed and cached, then used just as a local
document would be.12 If any of these steps fail (e.g., if there is no node with
the given identifier, or it exists but it has not published a document with the
given name, or a connection error occurs), err:FODC0005 is raised.

fn:doc-available is similarly extended. Note that to satisfy the require-
ments of this function, any call to fn:doc-availablewill cause the document
to be downloaded and indexed, even if it is not actually accessed via fn:doc.

The fn:collection function
The fn:collection function is treated differently: when called with the
'local'13 argument, the query plan is simply given reference to the (indexed
and cached) set of local documents. A different approach is needed for the
distributed case, because simply downloading every shared document would
defeat the purpose of a peer-to-peer network.

Instead, we attempt to retrieve only the documents that contain data rele-
vant to the query. Recall that the efficiency of the TwigStack algorithms de-
scribed above is due to their skipping over nodes that do not participate in the
result as soon as possible. We exploit this same property to skip over (remote)
document nodes that do not participate in the query. Since TwigStack algo-
rithms are needed, thus implicitly the optimized tree patterns, queries where
fn:collection('distributed')14 appears outside of an optimized tree pat-
tern are rejected with err:FODC0002, “Error retrieving resource.”

A call with a non-literal argument will raise err:FODC0003, “Function sta-

12Note that any document is loaded at most once. Thus, the function is stable, even
if the URI is constructed dynamically.

13Note that the argument to fn:collection should technically be interpreted as
anURI, resolved against the base URI from the static context if relative. For simplicity
XQ2P accepts 'local', 'distributed' and 'remote' (which are relative URIs)
regardless of the base URI; this may be interpreted as mapping all URIs ending in the
three strings to one of the three collections.

14This is the default collection, so that fn:collection(), i.e., a call without argu-
ment, is synonymous and refers to the entire indexed collection.

4.5. INDEXED DOCUMENT RETRIEVAL 97

bility not defined”.15

4.5 Indexed document retrieval
XQ2P uses the same execution engine for local and distributed queries; this
means that the actual execution of the query requires having direct access to the
needed documents, where “needed” means documents whose nodes contribute
to the results. In the P2P case, we are concerned primarily with queries where
only a small subset of shared documents contribute to the results, in which
case we can use the following method:

� First, each optimized query pattern sourced at the 'distributed' col-
lection is transformed into a pattern that retrieves the document URIs;
the parts of the query that refer to non-document nodes is transformed
to a predicate on those document nodes. For example,

fn:collection()//a[b]/c

becomes the equivalent of
fn:document-uri(

fn:collection()/document-node()[//a[b]/c]
).

Note that the “predicate” will rarely consist of the entire query: it is
only the sub-part of the query that can be executed using the index and
the TwigStack algorithms available. Any call to fn:collection the re-
sults of which are not filtered with an optimized query pattern raises
err:FODC0002. We sometimes call this derived query a “filtering query”,
because it filters out from the collection documents that do not partici-
pate in results.

15Given the way indexed documents are retrieved, described in the next section, it
would be quite complex to implement the function stably without this requirement.
XQ2P does not yet provide an option to disable function stability.
(The actual requirements for stability is that all required documents be discover-

able in one pass, as described in the following section. This is technically possible for
any statically-computable string, not only literals, and even for dynamically-computed
strings where the resulting pattern is strictly more restrictive than another statically-
computable pattern in the query. We leave such refinement for future work.)

98 CHAPTER 4. DISTRIBUTED STRUCTURAL INDEXING

� Second, this derived query is executed using only the distributed index.
Observe that any remaining part of the original query is a predicate in
this derived query, and it contains only relationships that the TwigStack
algorithm can determine from the index, without accessing the docu-
ments, because this is how the optimized query patters are selected in
the analysis phase. The result of this step is the list of documents that
may contribute to the query result.16

� Third, the documents identified in the second step are downloaded and
temporarily17 merged to the local collection. Optionally, this stage may
raise err:FODC002 if the result list of documents is too large;18 this can
happen if the indexes used are not selective enough.

� Finally, the original optimized query plan is executed on the set of result-
ing documents. Since every document is downloaded locally, this uses
the local query engine, and the process is identical to executing a local
query.

Filtering query generation As mentioned above, the first step of querying
is determining which documents may contain results. Distributed documents
can only be accessed by queries that do so via the optimized query patterns
(described earlier); we need only transform the pattern from one that specifies
a node to one that specifies a document containing such a node.

Since we use the same indexes for document and node retrieval, this trans-
formation is straightforward,19 every pattern P becoming the equivalent of

collection()/document-node()[P].

Note that we do not construct and execute a new query for this step; in-
stead, the “pattern operators” are substituted in a transformed version of the
operator tree in memory, which is then executed immediately before the root
query expression; if the step is successful, the dynamic query environment
(specifically, the sequences returned by the fn:doc and fn:collection func-

16Calls to fn:collection('remote') are treated the same, except that documents
belonging to the local peer are simply filtered from the list.

17Currently XQ2P retains the documents only as long as the query is executed, but
a caching mechanism could be added at this point.

18The exact limit is configurable by the user.
19There are some more complex transformations that may be more efficient, but

we leave these for future work.

4.5. INDEXED DOCUMENT RETRIEVAL 99

tions) is augmented with the retrieved documents. The local query plan is
simply run with this dynamic environment.

Chapter 5

Processing Time Series
Efficiently with Value
Indexing

To further validate XQ2P as an extensible platform for research on efficient
techniques for XQuery evaluation, we also experimented with value indexing
by extending to allow efficient execution of operations on time-series data. The
content in this chapter focuses on the modifications to XQ2P; for more details
and references on the general problem of time-series processing, including com-
parisons with a non-distributed XML database, we invite the reader to consult
[16].

Time series have been used in many application domains, including such
distinct areas as economy and finance, weather and climate, or transport con-
trol. In our prototype extension to XQ2P, we focused on efficiently com-
puting large time-series of financial data. A generic construct for processing
continuous streams of data based on windows has been proposed in [10] and
adopted by XQuery 3.0[80]. As window-based queries are particularly well
suited to processing time-series data, we decided to implement limited sup-
port1 for XQuery 3.02 syntax for this task. The relative ease of adding the new
constructs further validates the suitability of XQ2P as a research platform for

1We remind the reader that XQ2P is based on XQuery 1.0. In order to support
processing of time-series data we added support for the windowed-for constructs of
XQuery 3.0, but not for the entire set of features added in the latter version of the
standard.

2Earlier working drafts referred to the version of XQuery succeeding 1.0 as 1.1.

101

102 CHAPTER 5. EFFICIENT TS PROCESSING

XQuery.

5.1 The Time Series Model
The model we adopted for time-series data is derived from the RoSeS
project[88]. The model is composed of a vector space of time-series equipped
with operators that map one or several time-series to one, analogous to
relational operators. Also included are time-domain aggregate operators that
change the time unit of a series.

A time-series is defined as a (potentially unlimited) vector of values. The
vector is associated with a calendar that associates each value with a point in
time. The sampling granularity is specific to each time-series (e.g., a value each
second, hour, day). Values can in principle be of any XPath/XQuery type;
for the specific needs of application—where values stock valuations—we use
floating-point numbers. Regardless of the domain of specified values of each
time-series, we also define two distinct null values, the empty or non-existent
value, denoted “!”, meaning a value is known not to exist for the given time,
and the unknown value, denoted “?”. Scalar operators on a time-series’ val-
ues are extended to act suitably on null operands when applied to time-series:
Operations between the unknown value and any other value result in the un-
known value, i.e., ∀x, x ◦ ? =?. Other operations are extending depending on
semantics; in our case we extend the (+, ×) operations on floating point values
to operate pairwise on time-series, forming a linear vector space such that for
any x except ?, x + ! = x and x × ! = ! (i.e., adding a non-existing value to
any value does not change the latter, and the product of a non-existing value
does not exist for any value).3

The calendar starts at the a given time, corresponding to the first available
value, and ends with the last available value. When operating on time-series
whose calendars overlap only partially, these are padded to cover the union
time domain using ! by default. An explicit operation may be used to pad
with ? or with another value, such as numeric zero.

Time-series Operators
We derive operators specialized for time-series from relational algebra. The
following definitions denote (t, v) an entry of a time-series having the value v
time t:

3Such semantics resemble the behavior of null, zero, or NaN (not-a-number) values
in many programming languages.

5.2. STOCK SELECTION AND STRATEGY EVALUATION 103

Projection: PROJf un(S) = {[t, v]|[t, val] ∈ S ∧ v = fun(val)}. In other
words, projection applies the scalar function func to each value in a time-series,
and maps each time point to the result in a new time-series.

Selection: SELpred(S) = {[t, v]|[t, val] ∈ S ∧ v = pred(val)}, where
pred(val) = val if val satisfies the predicate, and ! otherwise. In other words,
the result is a same-domain time-series where values that do not satisfy the
predicate are replaced with the non-existing value.4

Union: S1 ∪ S2 = {[t, v]|[t, val] ∈ S1 ∨ [t, val] ∈ S2}.

Intersection: S1 ∪ S2 = {[t, v]|[t, val] ∈ S1 ∧ [t, val] ∈ S2}.

K-ary Join: JOINfun(S1 . . . Sk) = {[t, v]|[t, v1] ∈ S1∧· · ·∧[t, vk] ∈ Sk ∧m =
fun(v1, . . . , vk)}. This operation perform a join on the time attribute of k
time-series using the same calendar, and applies a matching function to the k-
tuple of values for each time point.

The above operations are represented with let and where operations in
XQuery.

Window operator: WINfun(S, w) = {[t, v]|val = fun([t − 1, v1], . . . , [t −
w, vw])} such that [t − i, vi] designate the ith value previous to t in series S,
except that if t − i is negative (i.e., if it would point to a time before the series’
calendar’s beginning), it is set to val0 (i.e., the first value in the series).

Window operations are expressed in XQuery by for window clauses, using
XQuery functions for mapping windows to values.

5.2 Stock Selection and Strategy Evaluation
Technical analysis is a technique used in finance that considers prices and vol-
umes as temporal signals and analyzes such signals to detect indicators, patterns
and events, in an attempt to predict future prices and guide investment.

Several window-based operations are used often in such analysis, includ-
ing for example the Moving Average (MAVG) and the Relative Strength Index
(RSI). MAVGw computes the classical moving average series of a series S with

4Selection can be seen as a special-case of projection, using a function that switches
between the identity function and the constant-! function depending on the result of
applying the predicate.

104 CHAPTER 5. EFFICIENT TS PROCESSING

a sliding window of fixed size w. Let V = MAVGw(S). The value V [t] is
defined by:

V [t] =
∑

i=1..w

S[t]

w
=

(w − 1) × V [t − 1] − S[t − w] + S[t]

w
;

A common variation is the exponential moving average, where value [t − i] is
modulated by weight (1 − α)i in the sum above. Many other indicators with
similar structure exist.[43] The common feature we remark upon is that such
operations generate a result time-series based on the same calendar as the source
time-series.

More complex operators can be obtained by combining logical, vectorial,
and windowing operators. For example, Moving Average Convergence/Di-
vergence (MACD) is one of the simplest indicators used by investors. A usual
base formula for MACD is the difference between a stock’s 26-day and 12-day
moving averages; a 9-day moving average of MACD is then computed, acting
as a signal for buying and selling at zero-crossing. The following expression
computes non-empty values as signals for buy decisions using the formula in
this paragraph:

BUY = SEL>0(MAVG9(MAVG1 2(S) − MAVG2 6(S))).

In a financial application, such complex queries with statistical operators
are executed on very long input series. As an example, a year of stock quotes
at minute resolution would contain over 180 thousand entries; at 15 second
resolution this stretches to 734300 entries for one year. Typical queriesmay run
over intervals of decades, and often such a query must be applied to dozens or
hundred of stocks (i.e., separate time series) at once. In consequence, the ability
to run complex queries with high efficiency is very important.

5.3 Time-Series in XQuery
We adopt a very simple XML schema for representing time-series: a
timeseries element contains a list of time and value elements, alter-
nating between the two. In our financial-application tests, time elements are
interpreted as xs:dates, and values as xs:double for stock prices. Such a
simple representation allows us to write optimized operators for manipulating
time-series with relative ease. Data in different formats can be easily trans-
formed to this schema; for example, representations with implicit time, i.e.,
series of values associated with a starting time and a sampling granularity can

5.4. TIME-SERIES OVER A DHT 105

declare function local:mavg($ts as ts:document ,
$i as xs:integer) as ts:document {

<ts:document > {
for sliding window $w in $ts//ts:value

start at $s when fn:true()
only end at $e when $e-$s eq $i-1

return <ts:timeseries >
{(data($w/preceding -sibling::ts:date))[$i]}
<ts:value >{avg(data($w))}</ts:value >

</ts:timeseries >
} </ts:document >

};

Figure 5.1: The MAVG operator implemented as an XQuery 3.0 function.

be transformed by iterating over the values and computing the time moment
for each.

Based on this schema we developed XQuery 3.0 functions that use for
window clauses to implement the operators defined above. Refer to Figure 5.1
for an example showing an XQuery implementation of the MAVG operator.
Such a declaration can be used in any XQuery 3.0 processor. In XQ2P how-
ever we augment the execution environment with functions that achieve the
same effects but are implemented in Java; their code can be hand-optimized to
take advantage of the known schema and achieve much higher performance in
the inner loops than the standard XQuery operations. (Recall that XQ2P lacks
general support for XML Schema, and thus cannot yet perform such optimiza-
tions automatically.)

Using the provided operators one can compose more complex operators
and strategies in using a declaratively. For example, the MACD-based strategy
used as an example at the end of the previous section could be implemented as
in Figure 5.2.

5.4 Time-Series over a DHT
Because individual time-series can be very large—tens of GBs is not un-
usual—relying on a single peer to handle even a single time-series in a
peer-to-peer application can easily lead to overloading. For this reason we

106 CHAPTER 5. EFFICIENT TS PROCESSING

let $doc := doc("lvmh -quotes -ts.xml")/document
let $mavg12 := ts:mavg($doc , 12)
let $mavg26 := ts:mavg($doc , 26)
let $sub := ts:msub($mavg12 , $mavg26)
let $macd := ts:mavg($sub , 9)
return <ts:document > {

for $ts in $macd//ts:value
return <ts:timeseries >

{$ts/preceding -sibling::ts:date}
<ts:value >

{if ($ts > 0) then "buy" else "sell"}
</ts:value >

</ts:timeseries >
} </ts:document >

Figure 5.2: The MACD-based strategy described on page 104. The opti-
mized functions implementing time-series operators are provided in the
dynamic environment under the provisional namespace http://www.
prism.uvsq.fr/dim/ts/, bound by default to the prefix ts. ts:msub is
the linear subtraction operator, computing the pairwise difference of two
timeseries’ values at each point in time. Although XQ2P does not have
generic XML Schema support, the same namespace is used to detect ele-
ments representing timeseries, triggering timeseries-specific behavior.

implemented a horizontal-partitioning scheme for time-series data, spreading
responsibility for a time-series using the DHT.

When a peer node wishes to share a time-series document, the following
steps are performed: First, the time-series is split into a sequence of segments
of fixed size, e.g., 1024 entries; when needed, the last segment is padded with
? values. A fixed amount of overlap is introduced between segments (e.g., 128
values at each end); this allows performing many windowing operations on a
segment without needing to access adjacent segments. The time-series is then
published over the DHT; see Figure 5.3.

To publish a time-series, two types of key-value pairs are stored in theDHT.
First, the identifier of the time-series5 is associated with metadata that declares

5Currently, time-series are simply identified by an URI denoting the document
they were extracted from. A single time-series can be stored in one document.

http://www.prism.uvsq.fr/dim/ts/
http://www.prism.uvsq.fr/dim/ts/

5.4. TIME-SERIES OVER A DHT 107

Figure 5.3: Splitting a time-series in segments over a DHT. Note that the
numbering of peer nodes and the placement of the segments in the diagram
are sequential only for readability and to make obvious the overlap of suc-
cessive segments. In practice the key-hashing function of the DHT will
distribute the segments randomly throughout the overlay.

its length (this could be extended with further information), and a list of cache
entries that will be discussed later.

Second, a tuple of the time-series identifier plus a segment index is used
as key to store each segment. Peers that need to access a time-series will first
contact the node holding the metadata to obtain the length of the time-series
and thus to determine how it is segmented (this step also implicitly determines
the existence of the time-series). Then it can contact the peer nodes holding
the segments it is interested in. Note that using both the time-series ID and the
segment index as a key causes segments to be randomly distributed throughout
the overlay network due to the uniform-hashing used on keys; this provides a
load-balancing for storage resources.

In cases where one or a few time-series, or even only some segments, are
very popular—i.e., they are accessed by many peers—this scheme could cause
disproportionate network load on the nodes holding the popular segments. We
add a segment-specific cooperative caching scheme to address the issue: peer
nodes that access and download a segment also cache it for a certain period of
time, and they announce this fact by entering their ID together with the index
of the segment in a cache entry held together with the time-series metadata;

108 CHAPTER 5. EFFICIENT TS PROCESSING

when segments are evicted from cache the entry is removed.6
With the cache in place, the retrieval algorithm is altered: whenever a peer

wishes to retrieve a particular segment, it searches the cache entries for peers
that hold that segment, and asks one of these at random. If this fails, the peer
will fall-back to the procedure described above and contacts the “canonical”
owner of the segment. (Canonical peers also register themselves in the cache,
so that the random selection distributes load equally to them even for cached
segments; the fall-back is usually necessary only in the short time after pub-
lishing, before the canonical segment owners have time to update the cache
entries.) The fact that peers cache segments they use leads to more popular
segments being more widely cached; picking between caching peers at random
ensures network-load–balancing between them.

5.5 Distributed Computation
The reader might have noticed that the program in Figure 5.2 computes several
transformations of the initial time-series by applying MAVG operators to it.
This situation is quite common. Observe that, although the elementary oper-
ations of a moving-average computations are relatively simple, applying such
an operator to a large time-series can be very expensive simply because of the
length of the timeseries (requiring many iterations of the elementary function).

However, executing a windowed operation can be executed in parallel on
slices of a time-series; the elementary operations applied to each window do
not depend of the results on other windows, except indirectly through the
overlapping elements in the source data.

In the previous section, we mentioned that time-series are split in over-
lapping segments. The overlap allows computing the results of a windowing
operation on a time-series in parallel, as long as the window length is shorter
than the overlap.7

6There are many improvements that could be applied to this caching scheme; for
example, a peer can usually anticipate which segments it will cache and announce this
to the metadata-storing peer in the same message with which it requests a time-series’
metadata, to reduce the number of message exchanges. In the interest of simplicity, and
because the large volume of time-series lowers the relative cost of individual messages,
we did not implement such optimizations.

7Observe that, given a segment of a time-series, operations with window sizew can
only be performed starting at the wth element of the segment; the first w elements of
the result require data from the previous segment.

5.5. DISTRIBUTED COMPUTATION 109

We take advantage of this feature: when a peer requires, either as a com-
plete query or as an intermediary result, a time-series derived via a windowing
function (of sufficiently small window size) from an original time-series, it will
initially proceed as above—i.e., it locates peers holding the segments it needs of
the original time-series—but will then request the modified time-series. Thus
a peer that holds segment s of time-series S can be asked for segment s of
the derived series, e.g., MAV G(S, w). It will compute this segment using the
locally-stored input segment and reply directly the computed results.

By issuing such a request in parallel for all segments of a derived time-series
it needs, a peer can in effect cause it to be computed in parallel; the number
of computing peers increases together with the number of segments, which
can make operations on long time-series occur in time comparable to those on
segment-length series.8

The cache system described above can be extended to explicitly support
derived queries: peers that compute a derived query can simply cache the re-
sults.9

8Communication costs increase, however, linearly with the number of segments.
9Peers that do this could send a cache entry to the metadata node of the original

time-series (S in the previous example), keyed by the segment index together with the
expression used for the derived time-series. Since a node that needs a time-series first
retrieves its metadata, it can determine which derived series are cached by another peer
node, and can choose to contact those retrieve those rather only nodes with the source
time series, and to prefer peers without cached results for derived segments it can’t find
in the cache. However such detailed cache control is beyond the scope of this work.

Chapter 6

Related Work
Situated at the confluence of three large domains—databases, XML processing,
and peer-to-peer networks—ourwork onXQ2P touchesmany established areas
of research. It would be impossible to include here a review of all or even a
major fraction of all related contributions. Instead, we focus only on those that
are conceptually closest to this work.

The area of databases—and, in particular, relational databases—being the
oldest and best established, we refrain from exploring it in any detail; instead,
we will mention only publications that are directly connected to this paper.
The interested reader might consult such works as [29] for a thorough treat-
ment of the subject. Similarly, we keep silent on document-oriented work on
XML, focusing on its use in peer-to-peer databases.

The focus of this work is querying, i.e., identifying, locating and retrieving
some subset of the total data available. Accordingly, in §6.1 we identify and dis-
cuss theDataModels, the kinds of data a data storage system can hold and, most
importantly, theQuery Models they offer, which allow the user to specify what
data is needed. In §6.2 we compare the main Retrieval and Indexing Schemes
that allow a storage engine to efficiently retrieve the queried data. Structural
indexes, corresponding to the scheme used by XQ2P, are described in more de-
tail in §6.3. §6.4 presents protocols for key-based routing and distributed hash
tables, of which the Chord variant used by XQ2P is an particular case. Lastly,
§6.5 presents some other approaches to testing and simulating peer-to-peer net-
works.

6.1 Data and Querying Models
The least sophisticated data model might be called the “labeled blob”: in this
model, the storage system is not aware of the content of the data it stores except

111

112 CHAPTER 6. RELATED WORK

via limited metadata, such as a label or a key.
The blob model allows only a very restricted query model, retrieving the

block of bytes associated with a given retrieval key; this is commonly called
key lookup. Slightly more complex variations are possible: in some cases, more
than one kind of metadata may be used, such as alternate labels, version, last
modification date, or blob size may be used in querying, and the user might be
allowed to demand only a sub-part (e.g., a set of byte ranges) of a blob.

Even such a simple model is tremendously useful. All DHT systems fall
in this category, and file-sharing applications[57, 21] are examples of very suc-
cessful peer-to-peer applications using it.

Slightly more advanced is the filesystem model, where data is stored mainly
as opaque blobs, but where the labels or retrieval keys have structure of which
the storage system is aware. Such systems allow the more sophisticated query-
ing model of asking for the blobs whose labels satisfy more complex conditions
than just equality with a user-supplied value. Filesystems allow such querying
models as identifying (and retrieving) groups of files by a single key (e.g., direc-
tories), retrieving files via key substrings, keys with wildcards, or even regular
expressions on the key. Common features of such systems is that they are
hierarchical, i.e., groups of files (folders) have a key (or name), and the files
they contain are prefixed by that key; almost always folders are implemented
as special kinds of files that the storage system can read. Indeed, such systems
are commonly implemented on top of a simpler labeled-blob layer. Most dis-
tributed filesystems follow this model; see [34] for a survey.

We label text search engines those storage systems that can interpret the data
they contain as strings of symbols. This allows a query-by-content model,
where the user can request files that contain certain strings. This might mean
asking for data that contains one or several substrings, similarity searches or
even regular expressions.1 The most common query model added by text en-
gines is that of keyword searching; often some type of aggregate query is also
available, e.g., counting occurrences of a keyword. Such systems are usually
said to be unstructured data systems: Although strictly speaking the data is
structured as strings of symbols, most of its structure and meaning (e.g., sen-
tences in the case of document storage) is not apparent to the storage engine
itself. See [64] for a proposal of a peer-to-peer web search engine that includes

1In common parlance the term full-text engine refers to more advanced systems
for querying human-readable text documents; the term usually implies such language-
specific features as case-insensitivity, word-splitting or stemming, and similarity or
phonetic searching. Conceptually, though, systems that do not handle text as such,
e.g., a protein database, could be classified in this same category. The only difference
is how human users interpret the symbols.

6.1. DATA AND QUERYING MODELS 113

a version of the PageRank[54] algorithm.
Systems that allow to express the structure of data and query using such

structure—as well as the values—are said to use structured data model.
In the relational data model information is structured as relations, usually

represented as tables or rows of tuples; databases using this model are termed
relational databases. The model allows querying with languages based on re-
lational algebra, the most popular of which is SQL and its many variants.
Such languages have powerful expressivity, including such concepts as data
types, selection with complex predicates, projections, joins and aggregation.
PIER[56, 37, 38, 33] is a peer-to-peer query processor, based on a DHT, which
uses a relational model. PeerDB[53] and AmbientDB[8] are other examples.

The object graph data model represents entities as labeled nodes of a graph
and relationships between them as labeled oriented arcs between these nodes.
Primitive values such as numbers or text strings are usually represented as spe-
cial valued nodes attached to the entity they describe. Systems with a graph
data model tend to use query models based on paths. A path is a sequence
of relationships that describes how to reach from a node to another by fol-
lowing relationship arcs (paths are usually defined to apply on collections of
nodes, e.g., going from an initial collection of nodes to that of nodes reachable
from them via a certain arc); filtering constructs (e.g., predicates) and set and
sequence operators complete these languages. One notable example of such a
data model is RDF, the Resource Description Framework. Edutella[52] is a
system that indexes RDF schemas and queries them in it specific query lan-
guage. [69] proposes a system for routing queries on RDF/S fragments over a
DHT.

Trees are an important special case of graph; accordingly, the tree data
model, which represents data as labeled nodes connected by ancestor/descen-
dant relationships. (The exact semantic is often implicit in the type of nodes,
or expressed in a separate ontology.) Many-to-many relationships are usually
not expressed through structure but by data. Tree data models also tend to rely
heavily on paths.

XML is the most popular example of a tree data model. In the XMLmodel,
data is structured as labeled trees, with untyped (text) or typed (e.g., numeric)
values as leaves. XML has become very popular, especially in distributed con-
texts and over theWeb, among other reasons because it is well suited to express
data with high heterogeneity and widely variable structure; especially relevant
to us is that its tree structure allows query languages that are expressive, pow-
erful and often more intuitive than a more strictly structured model like SQL,
while remaining much simpler than most object-graph–based models.2

2Concepts like grouping, ownership, and composition are often easier to express

114 CHAPTER 6. RELATED WORK

The canonical language for querying XML isXPath. As its name suggests, it
is a path-based language: its fundamental operation is navigating the ancestor-
descendant relationships between XML nodes. XQuery is a superset of XPath;
it uses XPath expression syntax to refer to parts of an XML document, and
supplements it with “FLWOR expressions” (the acronym stands for the key-
words for, let, where, order by, return) to perform SQL-like joins, as well as
other constructions.

Several projects address the problem of querying XML databases using
XPath, or, more often, specific subsets of it. XQ2P attempts to support the
entire XQuery language, optimizing as much of it as possible, in a top-down
manner.

6.2 Indexing and Retrieval Schemes
Most practical queries are intended to retrieve a small amount of data—the
results—from what is, in general, a large database. To achieve high (or even
acceptable) performance, databases almost universally use indexes and carefully
designed schemes of accessing these indexes to answer queries by examining as
little as possible of the data they hold.

The problem is manifests itself even more acutely in the case of distributed
data management systems: because the data is widely spread throughout the
network, the cost of accessing unnecessary parts of it are much higher. Appro-
priate querying schemes vary, of course, depending on the data model and the
network/distribution system.

The earliest peer-to-peer systems, such asNapster,[87] eschewed the issue by
relying on a centralized server to index and perform queries, using their peer-to-
peer features only after the necessary data (i.e., the node owning it) was located.
Various reasons, not all of them of a technical nature, pressured developers to-
wards less centralized solutions; that said, the semi-centralized model continue
to exist in such systems as the extremely popular BitTorrent[57] system, where
“trackers” coordinate “swarms” of peer nodes, and the earlier eDonkey[35]
network.

The first fully distributed systems, like Gnutella,[62] relied on “flooding”
a query through the unstructured connections between the peers: basically, a
query is sent to all peers a node knows about, who either answer if they have
results or propagate the query further to their own peers. Even for the simple

and especially visualize in terms of ancestor/descendant branches than in terms of
tables.

6.2. INDEXING AND RETRIEVAL SCHEMES 115

data model of these networks (queries consisted mostly of keyword-search on
file names), such an approach was considered insufficiently efficient.[17]

The introduction of key-based routing over overlay networks, and the dis-
tributed hash tables they made possible, was a major advancement. Such net-
works allow executing key lookups efficiently; in addition, such systems pro-
vided features like fault tolerance, load balancing and reliability. Several of
them, including Chord,[71] Pastry[63] and CAN,[71] are described in more
detail on page 119.

DHT networks provide a restricted model for data representation and
querying. Due to their simplicity and efficiently, however, they have been
used as building blocks for more complex storage systems.3 Many higher level
systems store indexes and metadata in a DHT sub-layer and provide more ad-
vanced services based on them.

As an example, a distributed text-search engine might store an inverted in-
dex in a DHT, using words or terms as keys and the names of documents con-
taining those words as values.[44, 6] A keyword query can be solved by first
retrieving the set of document names containing the desired word (intersecting
the sets if more than one keyword is searched for), then retrieving only those
documents. (Other local text indexing techniques can be similarly adapted to
DHTs.)

Systems with a structured data model also use indexes stored on an overlay
network to solve queries expressed in their high-level models. In general, all
such systems use a variant of the following two-step technique: First, the index
is queried to determine the set of or peer nodes containing data that is poten-
tially relevant to the result. Then, the original query is forwarded to the peers
found in the first step, which compute partial results locally and return them
to the original node. In a few cases, for example existence or counting queries,
the first step might be sufficient to determine the final result, and the second
step is not executed. Note that in most cases the index cannot determine with
certitude that a document is relevant for a particular query; in general the index
is queried conservatively, which leads to some number of false positives. Since
false positives cause unnecessary connections and communication, an index’s
selectivity for the kind of queries supported by a system is very important for
efficiency.

Many DHT-based indexing schemes have been proposed for XML index-
ing. We concentrate on the following approaches, listed by the choice for key/-
value:

3In fact, several have been developed specifically for this purpose.

116 CHAPTER 6. RELATED WORK

Tag Name/Paths [27] discusses using tag names as keys to a DHT, with val-
ues set to the list of paths that tag can be reached from in each document where
it occurs. For example, given <a><c/>, key cwould denote a list
containing docid/a/b/c (with docid a unique identifier for the indexed docu-
ment). The system can easily identify documents answering linear ancestor/de-
scendant queries, and with some processing of the path list supports embedded
wildcards. Themethod has low specificity for twig queries: it can only identify
documents containing each embedded path, but not those containing the paths
at the same time. There is no direct support for other axes (e.g., ancestor or
sibling). [27] suggests using attaching other information (“summaries” in the
paper’s terminology) to each node, e.g., the list of all paths descending from
the node, but they do not discuss the rapid escalation of such lists needed to
support large parts of XPath. Indexing of text content is mentioned but not
elaborated upon.

Path Suffixes/Path In [70] the authors list every path occurring in a docu-
ment. They store the path, together with a document ID, using as keys all its
suffix subpaths; for example, path a/b/c would be stored with keys {a/b/c},
{b/c}, and {c}. P-Grid is used as the underlying routing primitive, which uses
an order-preserving hash to construct a trie. The system attempts to answer all
linear descendant paths, including uses of wildcards: the query path is divided
in segments containing only the child axis (i.e., without //) separated by de-
scendant axis calls, after replacing wildcards with descendant axis paths. The
index is queried for the longest child-axis-only segment; if it is the last segment,
the search trivially terminates here; however, if the segment is not last, the re-
ceiving peer must flood the subtree rooted at itself to filter the results, a costly
operation. [70] proposes a caching system to reduce the need for flooding. Like
[27], the index has no specificity for twig queries.

Document Signatures/Document URIs psiX[60] proposes a method of
summarizing XML documents: For each document psiX builds its structural
summary graph;4 a signature is constructed from the SSG based on irreducible
polynomials over a finite field: each edge in the SSG of the document collec-
tion is assigned a distinct irreducible polynomial, and the document signature
is obtained by multiplying the polynomials of the edges it contains. A similar
scheme is used to assign signatures to twig patterns; algebraic operations on

4A directed graph containing all distinct node labels as vertices, linked by arcs if
and only if a parent-child relationship exists between two nodes of those names in the
summarized document.

6.2. INDEXING AND RETRIEVAL SCHEMES 117

the signature polynomials can be used to determine if a document signature is
compatible with a query. The authors construct an tree-based structure called
an H-index on top of a Chord DHT to store these signatures; the document
URIs are used as values. The authors of [60] further extend this with value
indexes, summarizing values in a manner similar to Bloom fields. Note
that the psiX system is specific only to the presence of pairwise parent-child
relationships: it can tell that a document contains, e.g., a/b and b/c edges, but
it cannot test for a/b/c.

Paths/Document Fragments XP2P[9] proposes a system where documents
are split into fragments, which are pushed into a DHT (Chord) using the paths
of the fragment in the original document as key; the value is the XML fragment
(a sub-tree of the original document), together with the path of its parent frag-
ment and the paths of its children fragments (if they exist). Note that, despite
using Chord, XP2P uses a path fingerprinting technique rather than hashing
to generate keys; this puts into question the validity of the usual guarantees
Chord provides.5 The work focuses on executing linear path queries over such
fragmented documents rather than on specific algorithms for fragmentation.

Tag Name/Structural Identifiers Such systems use region encoding to gen-
erate structural identifiers for each occurrence of a tag in a document; the list
of positions for each tag is recorded in the DHT, using the tag name as key.
Systems based on region encoding aim to take advantage of several efficient
structural join algorithms[30, 20] to match twig pattern queries against docu-
ments; such algorithms can provide very high specificity when used to filter
documents for relevance against a large fraction of structural queries. XQ2P
uses this index and a variant of TwigStack for query resolution. KadoP [3, 4]
uses this same model; it refers to the list of structural identifiers as a “posting
list”. KadoP also uses posting lists for individual words in documents, allowing
the index to solve keyword queries against text content; it uses a conjunctive
XML tree pattern query language, and also supports semantic annotations and
querying. [58] presents the DPP structure, which horizontally partitions long
posting lists and distributes them among peers to increase load balancing and
parallelism. Several types of structural indexes developed for non-distributed
databases, many of which are adaptable to this scheme, are collected in the
following section.

5The possibility of using an overlay not dependent on uniform hashing is not dis-
cussed by the authors.

118 CHAPTER 6. RELATED WORK

A slightly different approach is proposed in [24]: Instead of a DHT, the
hybrid peer-to-peer system MediaPeer[25] is used to index path-sets in a trie
(which uses tag names as symbols) managed by super-peers. Nodes add to the
index every path existing in their shared documents. A particularity of this
system is that, instead of first locating relevant peers and then querying them
directly, individual path queries are routed through the trie to peers, which
then respond with relevant data to the node that originated the queries. Tree-
pattern queries are decomposed into individual path queries, and the final result
is assembled by intersecting the partial results for each path. An optional value-
indexing service may be used to asynchronously index values (the text content
of XML nodes), again using the trie structure.

6.3 Structural Indexes for XML
Several attempts have been made to map the structure of the XML documents
into relational structure. A basic approach would be to create a relation (or
class, for object-oriented databases) for each kind of element; a different schema
is needed for each XML type; tree structure is represented as child-to-parent
pointers, implemented by foreign keys between relations. [67] is an example
of this approach in SQL, as is [2] for OODBs. Such techniques are difficult
or impossible to apply for semi-structured XML and documents the schema of
which is not known in advance.

The model-mapping approach represents directly the tree model of the
stored XML documents. In principle, a single schema would represent all
types of elements, from all types of documents; the type of each element is
represented as an attribute rather than a separate relation. [26] presents several
variants of using a single relation to represent all parent-child edges in the XML
tree; structural relationships are queried by joins.

Such approaches encounter serious limitations when applied outside of a
restricted set of query types. For example, queries on structure other than
parent/child are difficult to express. Path and tree-pattern queries require one
structural join for each step, which can generate large amounts of unused in-
termediary results; about information the query optimizers of most relational
database engines have little opportunity of ordering joins optimally in com-
plex queries. In addition, document-ordering constraints of such languages as
XPath require complex and costly ordering steps.

More efficient indexing techniques make use of node numbering schemes
to express tree structure instead of explicitly encoding parent-tree edges. Such
schemes in general construct and inverted list for each node type (e.g., element
name) holding one or several numbers reflecting the position of element open-

6.4. KBR AND DHT PROTOCOLS 119

and end-tags or its level in the tree (i.e., the distance from the root node); many
variations are possible, differing on such features as what kind of relationships
can be determined via joins or efficient support for updates. This type of in-
dex allow expressing containment queries via a single join using inequalities
between the numbering of elements, rather than eq-joining element ids to de-
termine parentship.

[84] compares implementations of this approach in XML-specific engines
and using a RDBMS. XRel[83] is another encoding that takes advantage of
usual RDBMS indexes and join algorithms for XPath processing using number-
ing. [20] proposes structural joins taking advantage of B+-indexes of region-
encoded nodes. [32] introduces the staircase join as an addition to a RDBMS
kernel that takes advantage of tree structure to perform structural joins more
efficiently. [42] proposes a new stack-based algorithm to break twig-queries
into a set of binary join components.

A problemwith early structural join techniques is that they generate a large
amount of intermediary results; such methods consider each pair of structural
relationships separately then merge the results; in the case of relations that
occur often in documents, large intermediary lists are generated only to be
filtered later.

[12] proposes PathStack and TwigStack, as well as a specific indexing struc-
ture called XB-tree and corresponding improved TwigStackXB algorithms; the
Stack family consists of holistic join algorithms which avoid producing large
intermediary results by joining all pairs of relations in parallel rather than se-
quentially. A large number of improved variants of holistic join techniques
have been proposed subsequently: [40, 39] introduced the XR-tree index and
the TSGeneric+ algorithm; [47] improves handling of parent-child edges with
TwigStackList; [47] and [48] introduce the extendedDewey encoding and the TJ-
Fast algorithm for accessing only leaf elements; Twig2Stack[19], TwigList[59],
PathStack¬[41] are other improvements of holistic algorithms.

6.4 KBR and DHT protocols
This section describes several of the existing DHT protocols. A simplified
variant of the first we present, Chord, is used byXQ2P; see page 26 and page 82.

Chord: One of the first DHT protocols proposed, Chord[71] organizes its
overlay using keys of 2m bits, organized as a circle: keys range from 0 to 2m −1;
the normal succession relation, i.e., 1 succeeds 0, 2 succeeds 1, ..., is extended
with the relation 0 succeeds 2m −1 to complete the circle. In practice the SHA-
1 algorithm is used to generate keys, which limits m to a generous 160, but the

120 CHAPTER 6. RELATED WORK

algorithm is specified in general for any sufficiently large m. In principle the
hashing function can be changed, the algorithm’s properties depending only
on the hash function being cryptographically secure (non-invertible) and its
distribution of values uniformly.

Nodes are assigned ids by hashing their network address, and values are as-
signed keys by hashing their descriptor (e.g., file name), using the same hash
function. Because the hash function is uniform, both node ids and keys are
distributed uniformly around the key circle. The hash function is used to im-
plement consistent hashing, which ensures that adding or removing one hash-
ing slot does not greatly change the mapping of keys to slots: Chord defines
successor(k) to be the first node whose identifier succeeds k in the circle,6
Each key k is owned by successor(k); the uniform hashing ensures that own-
ership of keys is fair, i.e., on average nodes own a similar number of keys, and
use of consistent hashing means that a peer joining or leaving the network does
not require the reassignment of any keys other than those held by a few peers;
on average, O(K/N) keys change hands for each node change, where N is the
total number of nodes and K the total number of keys.7

Each node knows the address of its successor in the ring; this invariant is
sufficient to find the location of any key, by simple linear search along the suc-
cessor chain. However, this would be very slow. Chord requires each node to
maintain a “finger table”,8 containing the addresses of successor((n + 2i) mod
2m) for i = 0..(m − 1); there are at most m such addresses held, i.e., the num-
ber of overlay connections is bounded by O(logN). Using always the farthest
“finger” that precedes the key needs when searching at least halves the space of
remaining nodes, which ensures that finding the owner of a key is O(logN).

Pastry: Another one of the originally proposed DHT algorithms is
Pastry[63]. Similarly to Chord, it uses a hashtable with a circular keyspace,
however with 128-bit keys. Node IDs are assigned randomly and uniformly;
this ensures that nodes that are close in ID values are diverse geographically.

Pastry is capable of using a scalar routing metric, an indication of some

6Usually, the smallest k′ such that k′ >= k, except near the origin, around 2m − 1
and 0.

7In the case of a leaving peer, only the responsibility for its keys needs be trans-
ferred; in case of a joining peer, it needs only take responsibility for, on average, half
the keys owned by its predecessor.

8As long as at least one other peer is known, a Chord node can always reestab-
lish the correct table. It is enough to check the addresses in the table periodically to
maintain connectivity.

6.4. KBR AND DHT PROTOCOLS 121

sense of “closeness” between nodes in the physical network’s geography. The
metric is not fixed and can be supplied by an external program; examples of
useful metrics are network latency, number of IP-routing hops, or available
bandwidth between the nodes.

The 128-bit keys are logically represented as a string of digits of b bits, i.e.,
represented in base 2b. For example, with a typical value of b = 4 the keys are
represented as 16-digit numbers in base 16. From each peer’s point of view, this
allows partitioning the keys into levels: level 1 consists of all keys that share a
one-digit prefix with that peer’s ID, level 2 of all keys with a shared two-digit
prefix, and so on (level 0 contains all keys that have a different first digit, i.e.,
those sharing a zero-length prefix with the node’s ID).

Each node maintains three tables of addresses. The leaf node list consists
L nodes, the L/2 closest peers by ID in each direction on the key circle. The
neighborhood list consists of the M closest nodes in terms of the routing met-
ric. The routing table contains, for each key level, and for each possible digit
at that level except that in the node’s own ID, the address of the closest known
peer (in routing metric terms) that has the corresponding prefix, resulting in
2b − 1 contacts per level, with the number of levels proportional to log2 N/b;
L and M are usually of the order of 2b.

A packet can be routed to any address in the keyspace; the peer whose ID is
closest to the given key will receive it. When routing towards a key, a peer first
examines its leaf node list (and itself), and routes directly to the destination
if a match is found. If that fails, the peer will search its routing table for a
node that shares a longer prefix with the key than it itself does (the longest
common prefix is preferred if several such nodes are found). If there are no
contacts with a longer prefix, the node will choose a contact with the same
prefix length but with an ID numerically closer to the key. (There is always
such a node, otherwise the routing node is the destination and routing would
have ended at the first step.)

The neighborhood list is not directly used during routing; instead, it is used
to maintain the routing table.

Similarly to Chord, on average Pastry maintains O(logN) routing entries
and requires O(logN) steps to route a message. However, the use of a routing
metric allows Pastry to exploit network locality, and each step is potentially
less costly.

Tapestry: Similarly to Pastry, Tapestry[85] uses prefix routing with links pri-
oritized by a routing metric like latency or network locality. Like Chord, it
uses SHA-1 to generate a 160-min identifier space; the keys are represented as
40-digit hexadecimal values, thus dividing the keyspace into “levels” like Pas-

122 CHAPTER 6. RELATED WORK

try does. An interesting feature of the protocol is that it explicitly uses appli-
cation IDs to allow several applications to share an overlay, which increases
efficiency.9

Kademlia: Described in [50], Kademlia uses 128-bit IDs and keys; keys are
generated via hashing and node IDs are random. The protocol defines a logical
distance calculation: between any two IDs, it is defined to be the Exclusive Or
(XOR) of their IDs, interpreted as an unsigned integer.

Each Kademlia nodemaintains 128 lists of nodes (i.e., one per bit of ID); list
n will contain peers whose IDs match the node’s first n − 1 bits and a different
nth bit. Notice that with respect to the XOR metric defined above, all peers
held in list n are further away than any peer in list n+1 and closer than any peer
in list n−1. Kademlia literature refers to the lists as k-buckets; k is a predefined
constant (e.g., 10 or 20) and represents the maximum length of such a list. Note
that for progressively smaller distances there are progressively fewer candidate
nodes, due to the fixed length of IDs; this means that each node will have very
good knowledge of its neighborhood, i.e., the k-buckets with large k will be
exhaustive.

Node membership in each list is very dynamic; each node encountered via
normal network operations is considered for inclusion in the list, according
to certain heuristics. Kademlia favors long-lived nodes; when a new candidate
is available for a full list, it will only replace an old node if it has stopped
responding. Note that the fine-grained distancewithin a k-bucket is not a factor
in the heuristics.

When searching for a peer with a certain ID, a Kademlia node will query a
certain number (3 is a common value) of those nodes it knows that are closest
to the searched ID; the target nodes will respond with their closest k nodes,
and the querying node will update its k-buckets (keeping the best ones, i.e.,
closest to the desired key, that respond to messages) and re-iterate. Values are
stored at the k closest nodes to their hashed keys to provide redundancy; nodes
that store values explore the network periodically and replicate the values, to
compensate for disappearing nodes.

Searching for values is done in a similar manner: peers with IDs closer than
the searching node are successively interrogated, thus progressively diminish-
ing the distance to a node that would hold the value’s key. Kademlia also
supports accelerated lookups; this is done by extending the routing tables be-
yond single bits, adding k-buckets for groups of bits, which function similar to
Pastry’s “digits”.

9This is possible for other DHT networks, too, but defining the feature in the
protocol lowers the barrier for cooperation between applications.

6.4. KBR AND DHT PROTOCOLS 123

CAN: Unlike the examples above, the Content Addressable Network, or
CAN[61], uses a virtual multi-dimensional toroidal Cartesian coordinate
space to organize its overlay network. Given a number of dimensions d, d
numerical coordinates can be used to specify a point in this coordinate space.
The coordinate space is partitioned among peers dynamically by splitting: on
joining the network, a node picks a random point in coordinate space and
attempts to take ownership of the block of space (“zone”) surrounding that
point. To do so, it communicates with the node currently owning the zone
that contains the chosen point; an attempt is made to split the zone in two
halves along one dimension,10 and ownership of one of the new sub-zones is
passed to the joining node. If the join attempt fails for any reason, the joining
node will simply pick another random point and attempt to join again.

Each connected node maintains a routing table holding the coordinates of
the zones adjacent to its own and the IP addresses of those zones’ owners (the
node’s neighbors). In CAN, messages are routed to points in the coordinate
space; the points’ coordinates function like the keys in circular-space DHTs,
and are similarly obtained by hashing. To route a message towards a point,
each node simply forwards the message to its neighbor whose coordinates are
closest to the target point; when the message reaches the node that owns the
zone (volume) which contains the target point, it has reached its destination;
in case of failure of the closest node, the procedure simply falls back to the
next-closest neighbor.

For a given d-dimensional space with N nodes, the average routing path
length is of the order O(dn1/d), and each node maintains a routing table of
size O(d).11 The exact value of d can be chosen by each application, achieving
different balances between routing state and average path length. In addition
to varying the number of dimensions, CAN also allows the use of multiple,

10The dimension picked cycles between dimensions, to maximize the ease of merg-
ing zones in case of nodes leaving the network, e.g., in a three-dimensional space splits
happen along the x coordinate, then y, then z, then x again.

11Although CAN seems fundamentally different from the circle-key approaches
described above, the differences may be deceiving. The key-circle in fact forms a one-
dimensional torus; Chord routing with only successor nodes or Pastry routing using
only L = 1 leaf node tables is analogous to d = 1 CAN routing. Multiple-dimension
CAN is analogous to “folding” the Chord circle; where Chord skips large portions
of its one dimension, CAN “goes around” through its separate dimensions. Pastry
splitting its key in 2b-sized levels is analogous to partitioning a point’s coordinates in
dimensions, albeit the resulting logical “zones” and the path taken by a routed message
are slightly different. CAN has the same scaling properties as the circle-key protocols
if d is scales like (log2 n)/2.

124 CHAPTER 6. RELATED WORK

parallel coordinate spaces, called realities; each node owns a different zone in
each reality, and the contents of the DHT are replicated in each reality, thus
increasing data availability. There exist also variants where zones are shared
between more than one peer (called zone overloading), and the possibility to
use several hash functions to map each key onto several different points.12

P-Grid: Distinct from the other entries in this section, technically P-Grid[1,
66] is not quite a DHT.We describe it here because it is conceptually very close,
and despite its differences it can replace a DHT in most applications. P-Grid
uses prefix-routing over an overlay topologically similar to Pastry: Keys are
treated as binary strings; Peers are responsible for a partition of the key space
based on key prefixes, referred to as “paths”; Paths associated with peers are
of equal length, thus building a balanced binary tree with peers at leaf nodes;
Peers maintain routing tables in levels, with exponentially increasing distance
in key space from themselves (i.e., a peerwith path “000”will keep in its routing
table links to peers with paths matching with “1*”, “01*” and “001*”). P-Grid
nodes hold several alternative nodes at each level in their routing table and pick
randomly among them during routing, which allows it to achieve a logarithmic
expected search cost even though the data distribution over the tree may be
imbalanced.

The main characteristic of P-Grid that distinguishes it from pure DHTs is
that it uses an order-preserving hash function. The initial publication defines
a mapping for strings in the following manner: Using a database of sample
strings, it constructs a balanced trie: the database is partitioned recursively into
equal sections, until each partition is smaller than a threshold. When searching
for a given string, first the string is “searched” for in the trie, appending “0” to
the key for left turns and “1” for right turns. The resulting binary string is then
searched for in the overlay network. If the distribution of the sample strings
resembles that of the actual data, the distribution of values in the network will
be balanced.13

12Technically, these variations are also possible for the other DHT protocols, and
some have been explored. It would even be possible to combine several protocols,
using for example a Chord reality and a CAN reality in the same application.

13Because the distribution of strings—or other hashed data—in different databases
will not be similar in general, the keys generated via this procedure are application-
specific. However, a single P-Grid overlay can be easily used by several applications,
as long as each uses its own sample-data trie (i.e., based on its own data distribution),
they all have the same maximum key-string length, and the protocol can discriminate
between requests from individual applications.

6.5. TESTERS AND SIMULATORS FOR P2P SYSTEMS 125

Using this type of order-preserving hashing allows P-Grid to efficiently
search for ranges of data: values that are close by (e.g., succeeding values) will
be either handled by a peer with the same path, or by peers with “successive”
paths; the routing layer efficiently supports finding peers with lexicographi-
cally successive paths via the longest applicable “prefix levels” (in fact, it can do
so both ways, i.e., one can also search for lexicographically preceding paths).

6.5 Testers and Simulators for P2P Systems
Several projects attempt to assist researchers of peer-to-peer applications to test
their results. Below we present some of them, summarizing their goals, design
choices and features.

PlanetSim
PlanetSim[28] is a simulation framework for overlay networks and services. It
presents a layered and modular architecture, intended to allow a developer to
choose the lever on which they need to work: creating and testing new overlay
algorithms (e.g. Chord or Pastry), or creating and testing new services (e.g.
distributed hash table, multicast, distributed object location and routing) on
top of such overlays. PlanetSim is developed at the Architecture and Telematic
Services Research Group at Universitat Rovira i Virgili in Tarragona.

PlanetSim also attempts to allow easy transition from simulation code to
experimentation code running in the Internet. This is done by hiding the un-
derlay network in wrapper code that takes care of network communication;
this way the same code can be run unchanged in the simulator and in network
test-beds such as PlanetLab. A common API for structured overlays is used by
the distributed services. This enables transparency of the running environment
(either the simulator or the network) for the running services.

PlanetSim has been developed in the Java language. It enables running scal-
able simulations in reasonable time on a single machine. It offers two pre-
implemented overlays (Chord and Symphony) and a variety of services, in-
cluding multicast and DHT, to serve both as example implementations and to
test the framework itself.

Simplified, PlanetSim’s architecture consists of three layers. At the top
is the application layer; it is here that the various (tested) services are imple-
mented. It communicates via a common API with the middle layer, that of
the overlay network, which handles basic routing functionality. In the case of
PlanetSim, this module offers the sole service of KBR (key-based routing). The
common API between the application level and the routing (overlay) level is a

126 CHAPTER 6. RELATED WORK

small set of interfaces, designed to allow “plugging” different routing modules
(Chord and Symphony are provided), and to allow the application to use them
transparently. The API allows the application level to demand basic routing-
related operations (send, receive, broadcast) and to give some guidance to the
routing layer.

At the bottom is the physical network layer. However, the routing layer
does not communicate directly with the network; instead, a simulator module
is interposed between the two. The simulator module hides the network layer
from the routing layer; it also administers and controls the simulation.

The overlay level of a running node passes its messages to the simulator
module. The simulator passes the message to the destination node, as the net-
work would have done. This allows the simulator to intercept messages, to
record the state of the network (it is, in fact, possible to serialize an entire
network that reached a stable state; the serialized network can be loaded and
be subjected to several different scenarios), to simulate some network effects
(delay or failures, for instance), and even to step through a simulation. The
simulator dictates the overall life cycle of the framework by calling the appro-
priate methods of the nodes, starting and stopping nodes as required by the
simulation.

In current simulations, the network layer is emulated by the simulatormod-
ule: messages are passed directly to the destination nodes by the simulator, after
any processing is over. The main initial efforts went to optimizing this section,
to allow as efficient as possible simulation of large-scale networks. The system
allows in theory writing network modules that are used for actually passing
messages through a physical network, for example a TCP/IP or a UDP-based
module; to our knowledge, however, such a module is not included in the dis-
tribution.

The simulator can produce graphs of the overlay structure during a large
simulation.

Though no generic tools for analyzing a network’s performance are in-
cluded, the simulator module is versatile enough to provide many useful mea-
surements of network behavior.

When we began this work, PlanetSim did not yet feature a true distributed
simulator. Any simulation would take place on a single physical machine.
The framework is well optimized; this allows reasonably large simulations,
but places limits on the scale of a simulation. In addition, running all nodes on
a single machine, and using in-memory message passing to emulate a network
layer cannot accurately reproduce real-life situations; this reduces drastically
the ability to evaluate and compare the real behavior of equivalent networks.
More recent versions provide wrapper code for the network communication
layer that allow existing code to run in network testbeds such as PlanetLab,

6.5. TESTERS AND SIMULATORS FOR P2P SYSTEMS 127

but we have not reviewed this.
A more subtle restriction of PlanetSim is its focus on key based routing

as a base layer for all services. This is appropriate for current applications,
most if not all of which are indeed based on the KBR concept. However, this
means that the frameworkmay not be helpful to develop any applications with
a different routing primitives. Extending the framework to support such de-
velopments is likely to be a daunting task due to the implicit assumptions built
into it.

Overlay Weaver
Overlay Weaver[68] is an overlay construction toolkit developed at the Na-
tional Institute of Advanced Industrial Science and Technology in Japan. It fea-
tures a similar decomposition in layers andmodules to that of PlanetSim. How-
ever, there is considerable more flexibility in the OW framework, mostly due
to the more fine-grained decomposition in modules separated by well-defined
interfaces.

The toolkit provides implementations for each module (in some cases, sev-
eral), and thus it enables overlay designers to implement a structured overlay
algorithm with a relatively low amount of code and improve it rapidly by it-
erative testing on a single computer. Because the modules are designed to be
pluggable, it is possible to make realistic comparisons between new and exist-
ing overlay algorithms. The framework is designed such that it allows running
the same applications and algorithms on the provided emulator (thus hosting
thousands of virtual nodes on a single machine) and, in addition, on a real
network.

As in the PlanetSim system, all applications are based on a key-based rout-
ing layer. This layer (split into several modules to allow adding of new imple-
mentations) exposes a stable KBRAPI to what OW calls the services layer. The
latter corresponds to the application layer in PlanetSim; it provides higher-level
P2P primitives, such as distributed hash table, to any higher-level application,
using the routing layer for networking. Assuming there are well-defined inter-
faces towards the higher tiers, it is possible to mix and match different routing
protocols (based on Chord or Kademlia, for example) with the same imple-
mentation of a service (for instance, DHT) and compare their behavior.

Above these services lay any high-level, user-interfacing application. Again,
because the tier one services provide each stable APIs, it is possible to exchange
different implementations for each module.

Several services (low-level functionality modules) are offered by the frame-
work, usable by a higher-level application. For example, the Messaging service
handles point-to-point message passing over the underlying network, and the

128 CHAPTER 6. RELATED WORK

Directory service abstracts storage. Both services are pluggable, with several
implementations available for each (TCP, UDP and direct in-memory inter-
thread for message passing and Berkley DB or in-memory hash-table for stor-
age). It is intended that the applications will use the provided modules directly
(as the focus of the framework is on high-level development), but the develop-
ers can nevertheless implement their own modules if needed.

There are several example applications available on the highest level to serve
as examples for developers. Among them is an IPmulticast router and, notably,
shells that allow command-line user-interaction (and scripting) to theDHT and
multicast service, which are useful for testing purposes.

The OW toolkit provides several features destined to help developers to
test their applications and improve them through iterative testing. The most
important is the Distributed Environment Emulator. The DEE can host many
nodes on a single machine (on the order thousands) and control them through
scenarios. A simple scenario generator can be used to build scenarios, or alterna-
tively the scenarios can be written by hand. It is also possible to collect a trace
by running an existing application and translate this into a scenario. There
is also a distributed mode: several emulators, running on separate machines,
are connected to form a single emulator in cooperation. Then the emulator is
used, the application uses the emulator’s messaging service (by plugging a dif-
ferent network module) instead of the normal TCP or UDP messaging. This
improves emulation performance and allows easier monitoring and evaluation
of the applications’ behaviors, but naturally reduces the realism of the simula-
tion.

Besides a simple connectivity graph generator and message counter, there
were no generic measurement tools included when we evaluated Overlay
Weaver.

Evaluations of deployed P2P networks
Aside from the above approaches, there have been several well coordinated at-
tempts to measure the behavior of real, working peer-to-peer networks. Such
studies[45] are generally restricted to file-sharing networks, which, as men-
tioned above, often use unsophisticated algorithms. The researchers had no
way of influencing the networks, being strictly limited to observation. De-
spite these limitations, the research generated some very useful results. By
monitoring the activity of real users at the scale of the entire Internet, and
for long stretches of time, the researchers were able to gather many behavior
statistics. For example, time spent connected, rate of failure, network perfor-
mance (meaning the distribution of local performance characteristics of each
peer’s connection rather than global averages), number of queries attempted,

6.5. TESTERS AND SIMULATORS FOR P2P SYSTEMS 129

success rate of said queries, number of links established, or a network’s degree
of connectivity. While particular to the individual networks measured, such
informationmay be very useful for extrapolating generic real-life Internet-scale
network conditions, which can be applied to simulation of network conditions
in simulators.

Chapter 7

Conclusion
Ever-increasing amounts of information is exchanged today between an ever-
increasing number of network end-points; web services, connected mobile de-
vices and even individual network-enabled applications on each device are only
going to multiply. In this context, data sharing technologies are naturally an
important area of research.

Peer-to-peer networking, particularly structured peer-to-peer networks,
provide some very successful solutions to problems of scalability and self
organization in large networks. At the same time, the almost ubiquity of
XML for data representation significantly lowered barriers to interoperability
and facilitates the development of very heterogeneous systems. The lack of
widespread common language for querying distributed XML information,
however, is still a difficulty. Keyword search and application-specific query
interfaces are still the norm for distributed systems.

We believe that widespread support of XQuery is a desirable solution. In
this work we have demonstrated that such an approach is feasible, and present a
system that exemplifies it, and furthermore that can be improved with relative
ease.

Query language: In our work we took the approach opposite to the usual
for related research: rather than developing an indexing scheme or retrieval
algorithm and then defining a query language adapted to its abilities, we instead
began with the intention to support a specific language, and attempt to solve
the problem of designing a system that can do this.

We picked XQuery as the target language for two main reasons: First, be-
cause of XQuery’s power and expressivity, which makes it very well suited to
supporting practically every kind of querying needs. And second, XQuery
is already the standard language for non-distributed XML databases; its sub-

131

132 CHAPTER 7. CONCLUSION

set XPath is also very widely implemented as an embedded language in non-
database applications that must nevertheless manipulate XML data, such as
web browsers.

Extensible platform: We designed XQ2P with an intense focus on develop-
ing a platform that is as simple as possible1 to extend and experiment with.
XQuery is a complex language, and attempting to support all or even most of
its features is daunting task. Most research focuses on efficient implementa-
tions for only a restricted subset of these features, which makes it very difficult
to compare and combine the results.

Starting with a platform that already contains adequate implementations of
all features would allow researchers to concentrate only on the parts they are
focused on. In this way, much development effort is avoided, and incremental
improvement in separate features are more easily combined and compared.

We followed these ideas throughout this entire work: The core XQuery
processing kernel of XQ2P is constructedwith simplicity inmind, to allow it to
be understood—and modified—with ease; we avoided optimizations wherever
they conflicted with clarity or they introduced entanglement between features;
each feature of the language was implemented by separate modules, allowing
facile removal, replacement and addition of features. We approached the peer-
to-peer side of the problem in the same manner: P2PTester, the platform upon
which XQ2P is built, encourages incremental development by providing com-
mon interfaces, ready-built modules for lower-level peer-to-peer networking
layers, and a generic distributed testing infrastructure. Development not re-
lated to XQ2P or XQuery in general is also just as well supported.

Structural index–based XQuery evaluation: We demonstrate the validity
of our approach by adapting the TwigStack holistic join algorithm and the
node numbering scheme it uses for indexing for KBR-based indexing and peer-
to-peer querying as an XQ2P module. Our distributed indexing and querying
model is shared by some related projects, such as KadoP (see §6.2), but to our
knowledge this is the first peer-to-peer system that attempts to support all of
XQuery’s features. It must be remarked that not all queries are supported with
efficiency. There are certainly situations where a structural index in general, and
the one we use in particular, is not selective enough. This does not invalidate
our focus on complete XQuery support, however: Firstly, it is easy to express
queries that no system can solve quickly; as a trivial example, a query that
demands all the data must necessarily access all available data. Secondly, XQ2P

1But not simpler!

133

makes it easy to add new indexes and retrieval techniques (see below), to extend
the fraction of queries that can be optimized; it is certainly easier to improve
it than to construct a better system from scratch. Finally, the many features
of XQuery allow complex manipulation of the data that the index system can
retrieve, increasing the number of queries that can be answered; slow support
for some queries is still preferable to none at all.

Integration of value indexes: We also implement a novel value-based index
and horizontal partitioning technique for time-series data as another module
on top of XQ2P. The approach demonstrates XQ2P’s support for application-
specific optimizations: operators and user functions optimized for time-series
operations are included, which allow high performance and in some cases
distributed evaluation. The time-series processing module is completed by a
caching system. We apply these techniques for large volumes of stock-price
data, demonstrating that the XML model can be successfully applied for data-
intensive applications.

Perspectives: Our target of complete XQuery support and the complexity of
that language present many promising avenues for future contributions. Per-
haps the most natural of these would be the addition of some of the improved
structural join algorithms mentioned in §6.3. We also left out of our imple-
mentation support for mixed keyword and structural queries that holistic join
algorithms in general can provide; adding this and other text indexing methods
has potential for much better selectivity. On amore abstract level, we believe it
very interesting to study how several indexes can be employed at the same time,
i.e., to execute different parts of a query using different indexes; analogous re-
search for relational databases should provide some interesting directions in
this respect.

A technique that we did not have time to explore but that XQ2P’s modu-
lar structure should support exemplarily is employing parallel overlays to sup-
port multiple indexing methods: for example, an overlay based on an order-
preserving hash or a tree structure in addition to the uniform-hash one we
chose should allow both range queries and structural queries to be optimized
at the same time.

With regards to the XQuery processing kernel itself, we would like to see
many of the techniques for expression reordering and query transformation,
such as [18, 73, 51, 11, 31], applied as a preprocessing step. Besides providing
increased efficiency for local evaluation, such methods also have the potential
to benefit distributed query processing: Simplifying queries and reduction of
redundant subexpressions can reduce the number of index accesses. Reordering

134 CHAPTER 7. CONCLUSION

and factorization can merge twig patterns; holistic algorithms usually perform
better with one large twig pattern than on many smaller ones. Some query
rewriting techniques, for example expressing backward axes (i.e., ancestor::)
with forward ones (descendant::) can allow an index to optimize more of
the query.

List of Figures

2.1 Example of a document-like XML tree 14
2.2 Tree model of an XML document 18
2.3 Typical XPath syntax . 19
2.4 Example of FLWOR expression 20
2.5 Key ownership in a Chord overlay 27
2.6 Chord finger tables . 28

3.1 XQuery type hierarchy . 41
3.2 An example of adapter factory . 61
3.3 Standard interfaces provided by P2PTester 62
3.4 The MessagePipe interface . 68
3.5 The XQueryDB interface . 78

4.1 Region encoding of a simple tree 87
4.2 Indexed lists for a simple document 87
4.3 Region encoding for a two-peer, three-document collection 89
4.4 Example use of fn:collection 95

5.1 The MAVG operator as an XQuery 3.0 function 105
5.2 MACD-based strategy in XQuery 3.0 106
5.3 Splitting a time-series in segments 107

135

Bibliography

[1] K. Aberer, P. Cudre-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt: P-Grid: a Self-Organizing Structured P2P
System. SIGMOD Record, 32(3), 2003

[2] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and
J. Simeon: Querying Documents inObject Databases. Technical report, IN-
RIA 1996

[3] S. Abiteboul, I. Manolescu, and N. Preda: Constructing and querying peer-
to-peer warehouses of XML resources. ICDE 2005

[4] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun: XML
processing in DHT networks. ICDE 2008

[5] T. Berners-Lee, R.T. Fielding, and L. Masinter: Uniform Resource
Identifier (URI): Generic Syntax. 2005, http://tools.ietf.org/html/
rfc3986

[6] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer: Min-
erva: Collaborative P2P search. In proc. of the 31st International Confer-
ence on Very Large Data Bases 2005

[7] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jé-
gou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet,
B.Quetier, O. Richard, E.-G. Talbi, and I. Touche.Grid’5000: A large scale
and highly reconfigurable experimental grid testbed, International Journal of
High Performance Computing Applications, 20(4):481–494, 2006

[8] P. Boncz and C. Treijtel: AmbientDB: relational query processing in a P2P
network. In proc. of the International Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing, 2003

[9] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain: XPath lookup
queries in P2P networks. WIDM 2004

137

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

138 BIBLIOGRAPHY

[10] I. Botan, P.M. Fischer, D. Florescu, D. Kossmann, T. Kraska, and R. Ta-
mosevicius: Extending XQuery with Window Functions. In VLDB 2007,
pp.75–86

[11] M. Brantner, C-C. Kanne, and G. Moerkotte: Let a Single FLWOR Bloom
(to improve XQuery plan generation). In XSym Workshop, 2007

[12] N. Bruno, N. Koudas, D. Srivastava: Holistic twig joins: optimal XML
pattern matching. SIGMOD 2002

[13] B. Butnaru, F. Drăgan, G. Gardarin, I. Manolescu, B. Nguyen, R. Pop,
N. Preda, and L. Yeh: P2PTester: a tool for measuring P2P platform perfor-
mance. Demonstration at BDA 2006

[14] B. Butnaru: Architecture de test pour les systèmes Pair à Pair, Rapport de
stage de Master, Université de Versailles Saint-Quentin-en-Yvelines, 2006

[15] B. Butnaru, F. Drăgan, G. Gardarin, I. Manolescu, B. Nguyen, R. Pop,
N. Preda, and L. Yeh: P2PTester: A tool for measuring P2P platform perfor-
mance. In proc. of ICDE, pp.1501–1502, 2007

[16] B. Butnaru, B. Nguyen, G. Gardarin, and L. Yeh: XQ2P: Efficient XQuery
P2P Time Series Processing. BDA 2009

[17] Y. Chawathe, S. Ratnasamy, L. Breslau, M. Lanham, and S. Shenker: Mak-
ing Gnutella-like p2p systems scalable. In proc. of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, pp.407–418

[18] D. Che, K. Aberer, andM.T.Ozsu: Query optimization inXML structured-
document databases. VLDB J., 15(3):263–289, 2006

[19] S. Chen, H.G. Li, J. Tatemura, W.P. Hsiung, D. Agrawal, and K.S. Can-
dan: Twig2Stack: Bottom-up processing of generalized-tree-pattern queries
over XML documents. VLDB 2006

[20] S-Y. Chien, Z. Vagena, D. Zhang, V. Tsotras, and C. Zaniolo: Efficient
structural joins on indexed XML documents. In VLDB, pages 263–274, 2002

[21] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong: Freenet: A distributed
anonymous information storage and retrieval system. Lecture Notes in
Computer Science, Volume 2009/2001, pp.46–66, 2001

[22] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica: Towards
a Common API for Structured Peer-to-Peer Overlays. In proc. of the 2nd
International Workshop on Peer-to-Peer Systems, 2003

BIBLIOGRAPHY 139

[23] R.Dingledine, N.Mathewson, and P. Syverson.Tor: The second-generation
onion router. In proc. of the 13th USENIX Security Symposium, 2004

[24] F. Drăgan, G. Gardarin, and L. Yeh: Routing XQuery in a p2p network
using adaptable trie-indexes. IADIS 2005

[25] F. Drăgan, G. Gardarin, and L. Yeh: MediaPeer: A safe, scalable p2p archi-
tecture for xml query processing. In DEXA Workshops, pp.368–373, 2005

[26] D. Florescu and D. Kossmann: A performance evaluation of alternative
mapping schemes for storing XML data in a relational database. Technical
report, INRIA 1999

[27] L. Galanis, Y. Wang, S.R. Jeffrey, and D.J. DeWitt: Locating data sources
in large distributed systems. VLDB 2003

[28] P. García, C. Pairot, R. Mondéjar, J. Pujol, H. Tejedor, and R. Rallo: Plan-
etSim: A New Overlay Network Simulation Framework, Lecture Notes in
Computer Science, Volume 3437. Software Engineering and Middleware,
pp.123–137, March 2005

[29] G. Gardarin and P. Valduriez: Relational databases and knowledge bases.
Addison-Wesley Publishing Company, 1990

[30] G. Gottlob, C. Koch, and R. Pichler: Efficient algorithm for processing
XPath queries. In proc. of VLDB 2002

[31] M. Grinev and S. Kuznetsov: Towards an Exhaustive Set of Rewriting Rules
for XQuery Optimization: BizQuery Experience. In proc. ADBIS 2002

[32] T. Grust, M. van Keulen, and J. Teubner: Staircase Join: Teach a Relational
DBMS to Watch its (Axis) Steps. VLDB 2003

[33] M.Harren, J.M.Hellerstein, R. Huebsch, B.T. Loo, S. Shenker, and I. Sto-
ica: Complex Queries in DHT-based Peer-to-Peer Networks. IPTPS, March
2002

[34] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell: A Sur-
vey of Peer-to-Peer Storage Techniques for Distributed File Systems ITCC’05,
vol. 2, pp.205–213, 2005

[35] O. Heckmann and A. Bock: The eDonkey 2000 Protocol. Technical Re-
port KOM-TR-08-2002, Multimedia Communications Lab, Darmstadt
University of Technology, December 2002.

140 BIBLIOGRAPHY

[36] J. Hidders, P. Michiels, J. Siméon, and R. Vercammen: How to Recognise
Different Kinds of Tree Patterns From Quite a Long Way Away. In proc.
PLAN-X pp.14–24, 2007

[37] R. Huebsch, B. Chun, J.M. Hellerstein, B.T. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A.R. Yumerefendi: The Architecture of PIER: an
Internet-Scale Query Processor. CIDR 2005

[38] R. Huebsch, J.M. Hellerstein, N. Lanham, B.T. Loo, S. Shenker, I. Stoica:
Querying the Internet with PIER. VLDB 2003

[39] H. Jiang, H. Lu, W. Wang, and B.C. Ooi: XR-tree: Indexing XML data for
efficient structural joins. ICDE 2003

[40] H. Jiang, W.Wang, H. Lu, and J.X. Yu: Holistic twig joins on indexed XML
documents. In proc. VLDB, pp.273–284, 2003

[41] E. Jiao, T.W. Ling, and C-Y. Chan: PathStack¬: A holistic path join algo-
rithm for path query with not-predicates on XML data. DASFAA 2005

[42] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N. Koudas, and D. Srivas-
tava: Structural joins: A primitive for efficient XML query pattern matching.
ICDE 2002

[43] A. Khan and V. Zuberi: Stock Investing for Everyone. John Wiley & Sons,
1999

[44] J. Li, B.T. Loo, J. Hellerstein, F. Kaashoek, D.R. Karger, and R. Morris:
On the feasibility of peer-to-peer web indexing and search. In proc. of the 2nd
International Workshop on Peer-to-Peer Systems 2003

[45] J. Li, J. Stribling, T.M. Gil, R. Morris, and M.F. Kaashoek: Comparing
the performance of distributed hash tables under churn. In proc. of the 3rd
International Workshop on Peer-to-Peer Systems 2004

[46] D. Liben-Nowell, H. Balakrishnan, and D. Karger: Analysis of the Evolu-
tion of Peer-to-Peer Systems. ACMConf. on Principles of Distributed Com-
puting, July 2002

[47] J. Lu, T. Chen, and T.W. Ling: Efficient processing of xml twig patterns with
parent child edges: a look-ahead approach. CIKM, pp.533–542, 2004

[48] J. Lu, T.W. Ling, C.Y. Chan, and T. Chen: From region encoding to ex-
tended Dewey: On efficient processing of XML twig pattern matching. In
proc. VLDB, pp.193–204, 2005

BIBLIOGRAPHY 141

[49] R. Mahajan, M. Castro, and A. Rowstron: Controlling the Cost of Relia-
bility in Peer-to-peer Overlays, IPTPS 2003

[50] P. Maymounkov and D. Mazières: Kademlia: A peer-to-peer information
system based on the XOR metric. In proc. of IPTPS 2002, pp.53–65

[51] P. Michiels: XQuery optimization. VLDB Workshop 2003

[52] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch: Edutella: A P2P networking infrastructure based
on RDF. In proc. of the 12th International Conference on World Wide
Web. 2003

[53] B. Ooi, Y. Shu, and K-L. Tan. Relational data sharing in peer-based data
management systems. SIGMOD Record, 23(3), 2003

[54] L. Page, S. Brin, R. Motwani, and T. Winograd: The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford Digital Li-
brary Technologies Project, 1998

[55] V. Papadimos, D. Maier, and K. Tufte: Distributed Query Processing and
Catalogs for Peer-to-Peer Systems. CIDR 2003

[56] The PIER project. http://pier.cs.berkeley.edu/

[57] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips: The BitTorrent P2P File-
sharing System: Measurements and Analysis. IPTPS 2005

[58] N. Preda: Efficient web resource management in structured peer-to-peer net-
works. PhD thesis, Université de Paris XI, 2008

[59] Lu Qin, Jeffrey Xu Yu, and Bolin Ding: TwigList: Make Twig Pattern
Matching Fast. DASFAA 2006

[60] P. Rao and B. Moon: Locating XML Documents in a Peer-to-Peer Network
using Distributed Hash Tables. IEEE Transactions on Knowledge and Data
Engineering, 21(12):1737–1752, December 2009

[61] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker: A scalable
content addressable network. In proc. ACM SIGCOMM 2001

[62] M. Ripeanu: Peer-to-peer architecture case study: Gnutella network. Techni-
cal report, University of Chicago, 2001.

http://pier.cs.berkeley.edu/

142 BIBLIOGRAPHY

[63] A. Rowstron and P. Druschel: Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In proc. of the 18th
IFIP/ACM Int. Conf. Distributed Systems Platforms, pp.329–350, 2001

[64] K. Sankaralingam, S. Sethumadhavan, and J. Browne: Distributed PageR-
ank for P2P systems. In proc. of the Twelfth International Symposium on
High Performance Distributed Computing, June 2003

[65] S, . Săroiu, P.K. Gummadi, S.D. Gribble: A Measurement Study of Peer-to-
Peer File Sharing Systems. In proc. Multimedia Computing and Network-
ing 2002

[66] R. Schmidt: The P-Grid System—Overview. http://www.p-grid.org/
implementation/

[67] J.G. Shanmugasundaram, K.H. Tufte, C. Zhang, D.J. DeWitt, and
J. Naughton: Relational Databases for Querying XML Documents: Limi-
tations and Opportunities. VLDB 1999

[68] K. Shudo: Overlay Weaver, http://sourceforge.net/projects/
overlayweaver

[69] L. Sidirourgos, G. Kokkinidis, and T. Dalamagas: Efficient Query Routing
in RDF/S schema-based P2P. HDMS 2005

[70] G. Skobeltsyn, M. Hauswirth, and K. Aberer: Efficient processing of XPath
queries with structured overlay networks. Lecture Notes in Computer Sci-
ence, 2005, n3761, pages 1243-1260

[71] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan: Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. In proc.
ACM SIGCOMM 2001

[72] The Tor Project. https://www.torproject.org/

[73] A.M.Weiner, C.Mathis, and T. Härder: Rules for Query Rewrite in Native
XML Databases. In proc. EDBT DataX Workshop, pp.21–26, 2008.

[74] World Wide Web Consortium: Extensible Markup Language (XML)
1.1 (Second Edition). W3C Recommendation. http://www.w3.org/TR/
xml11/

[75] World Wide Web Consortium: Namespaces in XML 1.1 (Second Edition).
W3C Recommendation. http://www.w3.org/TR/xml-names11/

http://www.p-grid.org/implementation/
http://www.p-grid.org/implementation/
http://sourceforge.net/projects/overlayweaver
http://sourceforge.net/projects/overlayweaver
https://www.torproject.org/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml-names11/

BIBLIOGRAPHY 143

[76] World Wide Web Consortium: XML Path Language (XPath) Version 2.0
(Second Edition). W3C Recommendation, 14 December 2010. http://
www.w3.org/TR/xpath20/

[77] World Wide Web Consortium: XQuery 1.0: An XML Query Lan-
guage (Second Edition). W3C Recommendation. http://www.w3.org/
TR/xquery/

[78] World Wide Web Consortium: XQuery 1.0 and XPath 2.0 Functions and
Operators (Second Edition). W3C Recommendation, 14 December 2010.
http://www.w3.org/TR/xpath-functions/

[79] World Wide Web Consortium: XQuery 1.0 and XPath 2.0 Data Model
(XDM) (Second Edition). W3C Recommendation, 14 December 2010.
http://www.w3.org/TR/xpath-datamodel/

[80] World Wide Web Consortium: XQuery 3.0: An XML Query Lan-
guage (Second Edition). W3C Working Draft. http://www.w3.org/TR/
xquery-30/

[81] World Wide Web Consortium: The XML Query TestSuite. www.w3.org/
XML/Query/test-suite/

[82] World Wide Web Consortium: XML Syntax for XQuery 1.0 (XQueryX)
(Second Edition). W3C Recommendation, 14 December 2010. http://
www.w3.org/TR/xqueryx/

[83] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura: XRel: A Path-
BasedApproach to Storage andRetrieval of XMLDocuments using Relational
Databases. ACM Transactions on Internet Technology, 1(1):110–141, Au-
gust 2001

[84] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G.M. Lohman: On
Supporting Containment Queries in Relational Database Management Sys-
tems. SIGMOD 2001

[85] B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph: Tapestry: a fault-tolerant
wide-area application infrastructure. Computer Communication Review,
32(1):81, 2002

[86] There is no official description of the Direct Connect protocol. A short
description of its properties is provided by Wikipedia at http://en.
wikipedia.org/wiki/Direct_Connect_(file_sharing)

[87] LLC Napster. http://www.napster.com

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/
www.w3.org/XML/Query/test-suite/
www.w3.org/XML/Query/test-suite/
http://www.w3.org/TR/xqueryx/
http://www.w3.org/TR/xqueryx/
http://en.wikipedia.org/wiki/Direct_Connect_(file_sharing)
http://en.wikipedia.org/wiki/Direct_Connect_(file_sharing)
http://www.napster.com

144 BIBLIOGRAPHY

[88] RoSeS — Really Open and Simple Web Syndication. http://www-bd.
lip6.fr/roses/doku.php

http://www-bd.lip6.fr/roses/doku.php
http://www-bd.lip6.fr/roses/doku.php

