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Abstract: The fundamental goal of the planetary sciences is to understand the formation and

evolution of the Solar System. For achieving this goal, the asteroids are of a special interest to

the astronomical community as a possible window back to the beginning of the planetary for-

mation. Being the only remnants of the early stages of planetary history they recorded the com-

plex chemical and physical evolution that occurred in the solar nebula. Thus, the knowledge

of both dynamical and physical properties of the current asteroid population brings valuable

information for understanding the Solar System and more generally other planetary systems.

In this thesis I present the project Modeling for Asteroids (acronym M4AST). M4AST is

an on-line service that I developed for modeling surfaces ofasteroids using several theoretical

approaches. M4AST consists into a database containing morethan 2,500 spectra of asteroids

together with a library of routines which can model and extract several mineralogical param-

eters. The database M4AST could be accessed via its own webpage interface as well as via

the Virtual Observatory (VO-Paris) protocols. This service is available to the web address

http://cardamine.imcce.fr/m4ast. It allows several routines for modeling spectra: taxonomic

classification, space weathering effects modeling, comparison to laboratory spectra of mete-

orites and minerals, band centers and band area computing.

I have participated to more than 10 observational campaignsfor observing both physical

and orbital parameters of asteroids. The objective of spectral runs was to characterize the

mineralogical properties of these bodies based on their reflectance spectra. Astrometry was

mainly devoted to the confirmation and secures orbits of new discovered asteroid.

During the thesis I observed and characterized near-infrared spectra of eight Near Earth

Asteroids namely 1917, 8567, 16960, 164400, 188452, 2010 TD54, 5620, and 2001 SG286.

These observations were obtained using the NASA telescope IRTF equipped with the spectro-

imager SpeX, and the CODAM-Paris observatory facilities. Based on these spectra mineralog-

ical solutions were proposed for each asteroid. The taxonomic classification of five of these

objects was reviewed and a corresponding type was assigned to the other three asteroids that

were not classified before. Four of the observed objects havedelta - V lower than 7 km/sec,

which make them suitable targets in terms of propulsion for afuture spacecraft mission. The

asteroid (5620) Jasonwheeler exhibits spectral behaviorssimilar to the carbonaceous chondrite

meteorites.

I observed and modeled six Main Belt Asteroids. (9147) Kourakuen, (854) Frostia, (10484)

Hecht and (31569) 1999 FL18 show the characteristics of V-type objects, while (1333) Cevenola,

(3623) Chaplin belong to S-complex. Some of them have some peculiar properties: (854) Fros-

tia is a binary asteroid, (10484) Hecht and (31569) 1999 FL18have pairs, (1333) Cevenola,

(3623) Chaplin show large amplitude lightcurves. The taxonomic classification, the compar-

isons to the meteorite spectra from the Relab database and themineralogical analysis converged

to the same solutions for each of these objects, allowing to find important details for the chem-

ical compositions and resemblances to the Howardite-Eucrite-Diogenite class of meteorites.





Résumé:L’objectif fondamental des sciences planétaires est la compréhension de la forma-

tion et de l’évolution du Système Solaire. Pour atteindre cet objectif les astéroïdes présentent

un intérêt tout particulier pour la communauté scientifique.En effet, nous pouvons regarder

la population astéroïdale comme une fenêtre vers le passée,par laquelle nous regardons les

débuts de la formation du système planétaire. Ils sont les témoins des premiers moments de

la formation des planètes gardant dans leur structure la complexité chimique de la nébuleuse

primordiale. Pour cette raison, les études physiques et dynamiques de ces corps nous appor-

tent des informations essentielles sur l’histoire et l’évolution de notre Système Solaire et plus

généralement sur la formation des systèmes planétaires.

Pendant ma thèse j’ai développé l’application Modelling for Asteroids (acronyme M4AST).

M4AST est un service en libre service sur internet permettant la modélisation des surfaces

d’astéroïdes en utilisant plusieurs approches théoriques. M4AST est composé d’une base

de données contenant quelques 2500 spectres d’astéroïdes et d’une bibliothèque de routines

permettant la modélisation et l’obtention de plusieurs paramètres minéralogiques. La base

de données est accessible aussi bien par les biais des protocoles de l’Observatoire Virtuel

(OV-Paris) que par sa propre interface. Le service est accessible depuis l’adressehttp://

cardamine.imcce.fr/m4ast. M4AST permet plusieurs types d’analyses : classifi-

cation taxonomique, modélisation de l’altération spatiale, comparaison avec les spectres des

météorites et des minéraux terrestres, calculs des centreset des surfaces des bandes.

J’ai participé à plus de 10 campagnes d’observations pour lacaractérisation physique et

dynamique des astéroïdes. Les observations spectroscopiques ont servi à la caractérisation

minéralogique des surfaces d’astéroïdes. L’astrométrie aplutôt servi à la confirmation et la

sécurisation de nouvelles découvertes d’astéroïdes. Pendant la thèse, j’ai observé et carac-

térisé les spectres en infrarouge proche de huit astéroïdesgéocroiseurs : 1917, 8567, 16960,

164400, 188452, 2010 TD54, 5620, and 2001 SG286. Ces observations ont été obtenues

avec le télescope IRTF et du spectrographe SpeX, en employant l’infrastructure CODAM de

l’Observatoire de Paris. Pour chaque astéroïde j’ai proposé des solutions minéralogiques. Une

révision de leur taxonomie a aussi été effectuée pour cinq astéroïdes de mon échantillon. Qua-

tre des objets sont des objets à faible delta-V, qui sont des cibles souhaitables/possibles pour

des missions spatiales. L’astéroïde (5620) Jasonwheeler montre un spectre similaire à ceux des

météorites chondritiques.

J’ai observé et modélisé six astéroïdes de la ceinture principale. (9147) Kourakuen, (854)

Frostia, (10484) Hecht and (31569) 1999 FL18 montrent des caractéristiques des astéroïdes

du type V; (1333) Cevenola, (3623) Chaplin sont du type taxonomique S. Quelques astéroïdes

de cet échantillon sont particuliers : (854) Frostia est un astéroïde binaire, (10484) Hecht et

(31569) 1999 FL18 ont des gémeaux dynamiques, (1333) Cevenola et (3623) Chaplin sont

des objets avec des courbes de lumières à grandes amplitudes. La classification taxonomique,

la comparaison avec les météorites, permettent l’établissement des solutions minéralogiques

http://cardamine.imcce.fr/m4ast
http://cardamine.imcce.fr/m4ast


intéressantes et des ressemblances avec les météorites de la classe des howardites, eucrites et

diogenites.



Rezumat: Obiectivul fundamental al ştiinţelor planetare este în¸telegerea form̆arii şi evoluţiei

Sistemului Solar. În atingerea acestui obiectiv asteroizii prezint̆a un interes special pentru co-

munitatea ştiinţific̆a. Populaţia de asteroizi poate fi privită ca o fereastră spre trecut, prin care

se pot cunoaşte originile Sistemului Solar. Astfel, asteroizii sunt m̆arturiile primelor momente

ale form̆arii planetelor, p̆astrând în structura lor complexitatea chimică a nebuloasei primor-

diale. Din acest motiv, studiile fizice şi dinamice ale acestor corpuri aduc informaţii esenţiale

despre istoria şi evoluţia sistemului nostru solar şi generalizând despre formarea altor sisteme

planetare.

Pentru realizarea acestei teze am dezvoltat aplicaţia Modelling for Asteroids (M4AST).

M4AST este un serviciu gratuit, care poate fi accesat online.Acesta permite modelarea propri-

et̆aţilor fizice ale suprafeţelor de asteroizi utilizând maimulte abord̆ari teoretice. M4AST este

compus dintr-o baz̆a de date care conţine peste 2 500 de spectre de asteroizi şiun set de ru-

tine care permit modelarea şi obţinerea mai multor parametrii mineralogici. Baza de date este

accesibil̆a şi indirect folosind protocolul Observatorului Virtual(OV - Paris). Serviciul este

accesibil la adresahttp://cardamine.imcce.fr/m4ast. M4AST permite mai multe

tipuri de analize: clasificarea taxonomică, modelarea alterării spaţiale, comparaţia spectrală cu

meteoriţii şi mineralele terestre, calculele centrelorde band̆a şi ariilor benzilor.

Am participat la mai mult de 10 campanii de observaţii pentru caracterizarea fizică şi di-

namic̆a a asteroizilor. Observaţiile spectroscopice au servit la caracterizarea mineralogică a

suprafeţelor asteroizilor. În perioada tezei am obţinutşi analizat spectrele în infraroşu a opt

asteroizi geointersectori (asteroizi ce se apropie sau intersecteaz̆a orbita P̆amântului): 1917,

8567, 16960, 164400, 188452, 2010 TD54, 5620 şi 2001 SG286.Aceste observaţii au fost

obţinute cu ajutorul telescopului IRTF şi al spectografului SpeX, utilizând infrastructura CO-

DAM a Observatorului din Paris. Pentru fiecare asteroid am propus soluţii mineralogice. O

revizuire a taxonomiei lor a fost efectuată pentru cinci astroizi din acest eşantion. Patru din-

tre obiecte sunt obiecte cu delta - V mic, acestea fiind ţinteposibile pentru misiunile spaţiale.

Asteroidul (5620) Jasonwheelr prezintă un spectru similar cu cel al meteoriţ ilor condritici.

Am observat şi modelat spectrele a şase asteroizi din centura principal̆a. (9147) Kourakuen,

(854) Frostia, (10484) Hecht şi (31569) 1999 FL18 prezintă caracteristici ale asteroizilor de

tipul V. (1333) Cevenola, (3623) Chaplin sunt de tipul taxonomic S. Aceste şase obiecte au

câteva propriet̆aţi remarcabile: (854) Frostia este un asteroid binar, (10484) Hecht şi (31569)

1999 FL18 au perechi dinamice, (1333) Cevenola şi (3623) Chaplin sunt obiecte care au curbe

de lumin̆a cu amplitudini mari. Clasificarea taxonomică, comparaţia cu meteoriţii, permit sta-

bilirea de soluţii mineralogice interesante.

http://cardamine.imcce.fr/m4ast
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Part I

INTRODUCTION





1
Why asteroids?

Even if the total mass of the asteroids is insignificant in rapport with the total mass of the planets, their
large number, wide distribution throughout the Solar System and extremely divers composition makes them
a valuable resource for Solar System studies. This introductory chapter provides a general overview of this
population. The asteroids place in the diversity of the Solar System objects is described based on the scientific
literature. Some briefly notes about asteroids discovery, following an historical line are given. The main
physical properties of these objects are outlined. At the end of the chapter is made a short summary regarding
my contribution in the discovery of the asteroids are outlined.

1.1 The place of asteroids in the structure of the Solar System

Asteroids are well-preserved samples from the first phase ofthe Solar System formation which

started 4.57· 109years ago. In order to discuss their physical properties it is useful to trace

back the events that took place at the beginning of the Solar System. According to the Solar

Nebula Disk Model, the Solar System emerged from a large molecular gas and dust cloud

which accumulated sufficient mass and density for gravitational collapse to occur. When the

gravitational collapse was triggered (typically by randomturbulence which locally increase the

density within the cloud), the gas and dust cloud condensed until it formed a central mass and

a protoplanetary disk that surrounded it.

As a consequence of the angular momentum conservation, the rate of rotation of the disk

and central mass increased as it collapsed. The central masscontinued to grow until it formed

a protosun. When enough mass was accumulated for fusion to occur it became the Sun. At this

stage a strong temperature gradient across the disk was present. The gradient of the temperature

into the protoplanetary disk determines the distance wherethe different components started to

condense. The inner disk was too hot for the condensation of volatiles, so it was dominated

by rocky material, while the outer disk had a mixture of volatiles and ices. Within the disk,

micron-size dust grains collided at velocities forming bodies up to a kilometer in size. Many of

these large bodies collided and merged or ejected other bodies and eventually grew to planetary

sizes [DeMeo, 2010].

This part of the planetary formation process occurred over aperiod of less than 10 millions
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of years [Yinet al., 2002]. After this period strong solar winds begin to clear dust from the So-

lar System, leaving the minor bodies and planets with a paucity of new material to accumulate.

The asteroids are remnants of the planetesimal population that once formed the planets.

Even if some of the asteroids were affected by thermal and dynamical evolution and by col-

lisions, most of them did not suffer a significant geologicalevolution preserving the physical

evidences related to the first 200 million years of the Solar System history .

Currently, there is a wide diversity of bodies in the Solar System, thus in order to facilitate

their studies and the discussions some definitions are required for different categories. The def-

initions of a planet, dwarf planet, and of a small body given below were assigned in Resolution

5 and 6 of the IAU (International Astronomical Union) 2006 General Assembly1.

According to this resolution,a planet is a a celestial body that:a) is in orbit around the

Sun,b) has sufficient mass for its self-gravity to overcome rigid body forces so that is assumes

a hydrostatic equilibrium - nearly round shape, andc) has cleared the neighborhood around its

orbit.

A dwarf planet is a celestial body thata) is in orbit around the Sun,b) has sufficient mass

for its self-gravity to overcome rigid body forces so that isassumes a hydrostatic equilibrium -

nearly round shape,c) has not cleared the neighborhood around its orbit, andd) is not a satellite

of a planet. Plutoids are dwarf planets with a semi-major axis greater than that of Neptune. All

other objects except satellites orbiting the planets shallbe referred collectively assmall bodies

of Solar System(are also called minor planets).

Following these definitions, there are eight planets in our Solar System: Mercury, Venus,

Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Pluto isa dwarf planet, also as Ceres,

Haumea, Makemake, and Eris. Ceres is located in the asteroid belt, while all others have

semimajor axes greater than that of Neptune.

The categories of small bodies of Solar System include asteroids, trans-neptunian objects

(denoted TNOs), comets and other small bodies. The size of the objects ranges from dust grains

and small coherent rocks up to hundreds of kilometers size boulders. These categories are

briefly presented bellow. The statistic data is taken from Minor Planet Center (MPC) website

(http://www.minorplanetcenter.org/iau/mpc.html).

Asteroids are referred to being rocky minor planets that orbit the Sun at distances ranging

from interior to Earth’s orbit up to Jupiter’s orbit [de Pater & Lissauer, 2010].

Cometsare ice-rich bodies for which the volatile constituents sublimate during close ap-

proaches to the Sun. They are characterized by a nucleus - theinner part of the body, the coma

- the spherical halo of sublimated material surrounding thenucleus, and two tails: a dust tail

trailing opposite the comet’s trajectory and an ion tail in the anti-Sun direction.

Centaursare icy bodies orbiting between (and in some cases also cross)the orbits of Jupiter

and Neptune. There are 64 known Centaurs as of August 12, 2012.Centaurs are on chaotic

1http://www.iau.org/

http://www.minorplanetcenter.org/iau/mpc.html
http://www.iau.org/
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orbits with high eccentricities and/or inclinations. Dynamical calculations show that they are

transitioning from the trans-neptunian region [de Pater & Lissauer, 2010].

TNOs are small bodies of the Solar System whose orbits lie partly or entirely beyond the

orbit of Neptune. There are 1,044 known TNOs as of August 12, 2012. The existence of a disk

of numerous small bodies exterior to the major planets was postulated by K. E. Edgeworth and

by G. P. Kuiper. Therefore, this ensemble is referred as the Edgeworth-Kuiper belt.

All small bodies (excepting the comets) with well-determined orbits are designated by a

number (in a chronological order of the discoveries) and additionally can receive a name, e.g.,

(1) Ceres, (7986) Romania, (99942) Apophis, (134340) Pluto. After an object is discovered,

but the orbit is not well determined, it receives a provisional designation. This designation is

related to the date of discovery of the object: the first four characters indicate the year, followed

by a space, then a letter to show the half of the month (A for January 1-15, K for May 16-31,

I is omitted), followed by another letter to show the order ofdiscovery within the half month

(A for 1st, Z for 25). If a large number of the asteroids are discovered in certain half month, an

additional number completes the designation, e.g: 2012 AA,2001 SG286, 2005 UJ516.

The next sections of this chapter discuss the discovery of the asteroids and the diversity of

these small bodies, while this thesis concerns their composition using spectroscopy.

1.2 The Discovery Of Asteroids

The roots of asteroid studies can be found at the end of the 16th century when the German

mathematician and astronomer, Johannes Kepler realized that the distance between Mars and

Jupiter was not proportional to the distances between otherplanets. He concluded that it must

be another planet, undiscovered yet, occupying this part ofthe Solar System: "Inter Jovem et

Martem interposui planetam" (Kepler 1596).

Further studies of the relative distances of the planets from the Sun were made 170 years

later when Johan Daniel Titius noted that the sequence of thedistances from the Sun of the

known planets could be fitted by a geometric progression. Therelation was published by Johan

Elert Bode in 1772, and today the modern formulation of the Titius-Bode empirical law is:

rn = 0.4+0.3∗2n (1.1)

wherernis the semi-major axis of the n-th planet. Here, the units are considered such that the

Earth’s semi-major axis is equal to 1.

It can be identified Mercury for n = -1, Venus for n = 0, Earth forn = 1, Mars for n = 2,

Jupiter for n = 4, and Saturn for n = 5. After the discovery of the planet Uranus (made by Sir

William Herschel in 1781) at a solar distance close to the solution n = 6, the regularity in the

planetary location was considered a primary feature of the Solar System. At that moment the

searching for the "missing planet" with n = 3 began.
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Figure 1.1: A field obtained with INT-WFC on February 28, 2012.Ten asteroids were identified (marked with
pink), from which only three were known at the moment of the observation. The size of the field is (15 arcmin x
15 arcmin)

In January 1801, the abbot Giuseppe Piazzi discovered Ceres,a small body at just the right

distance. In 1802 Heinrich Olbers discovered Pallas at the same orbital distance. In the follow-

ing years, Juno (1804) and Vesta (1807) were discovered alsoat similar orbital distances with

Ceres and Pallas. These bodies were too small to be classified asplanets, but the gap was filled.

At the beginning of the XIX century, only comets were known tobe small objects orbiting

the Sun, but they appear like diffuse objects. Herschel, oneof the most known astronomers at

that time called these objects (Ceres, Palas, Juno, Vesta) asteroids (from Greek "asteroeides").

In this way it was underlined their different appearance - point sources ("star-like") unresolved

by the telescopes, compared with the comets which show extended comas.

The first theory of the origin of asteroids, was developed by Olbers in 1803, who suggested

that they are fragments of a planet that had been broken to pieces and additional fragments will

be found. This prediction became popular, while other asteroids were discovered orbiting at

the same solar distance. With the increasing number of thesenew findings the hypothesis that

they could be fragments of an exploded planet became very popular.

In the middle of the 20th century Otto Johannes Schmidt proposed that asteroids represented

an arrested stage of planet formation and have never been assembled into a large body. This is

now the most plausible hypothesis.

The apparition of photography, offered new means for findingnew asteroids. The method

consists in comparison of photographic films of the same region of the sky taken at different

time intervals. The vast majority of the objects recorded onfilms were stars and galaxies and
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their images were located in the same relative positions on all photographic films. Because

a moving asteroid would be in a slightly different position on each picture exposure and the

background stars and galaxies were not, it could be identified.

Nowadays the charge coupled devices (CCD) are used instead of photography. While, the

CCD technology is more sensitive and accurate than the older photographic methods, the mod-

ern discovery technique itself is rather similar. Separatedby several minutes, three or more

CCD images are taken of the same region of the sky. These images are then compared to see

if any asteroid has systematically moved to different positions on each of the separate images

(Fig. 1.1).

For a newly discovered object, the separation of the asteroid location from one image to

another, the direction it appears to be traveling, and its brightness allow to estimate its orbital

characteristics and roughly its size. For example, an object that appears to be moving very

rapidly from one image to the next one, is almost certainly very close to the Earth. Computer-

aided analyses of the CCD images have replaced the older, manual techniques for all the current

asteroid search programs.

Fig. 1.1 shows a field obtained with INT-WFC (Isaac Newton Telescope, Wide Field Cam-

era) on the night of February 28, 2012. Ten asteroids could beidentified in this field by taking

consecutive images at an interval of five minutes. At the moment of the observation only three

of the identified asteroids were known.

Thanks to this technological development, during the last decades the total numbers of the

asteroids discovered had grown exponentially. Among the most important surveys dedicated to

asteroid detection (particularly to Near Earth Asteroids)are those leaded by the United States

(CSS, LINEAR, Spacewatch, LONEOS and NEAT) which have been using large field, mostly

1m class telescopes. In the Europe the most important programs were: ASIAGO/ADAS in

Italy and Germany, CINEOS in Italy, KLENOT in the Czech Republic, NEON in Finland.

An example of successfully observing run is the one performed by [Boattiniet al., 2004].

During two short runs at ESO (European Southern Observatory) LaSilla, they employed the

MPG (Max Planck Gesellschaft) 2.2m telescope as a search facility, and the NTT (New Tech-

nology Telescope) 3.5m as a follow-up telescope to survey faint asteroids beyond 22 magnitude,

for three observing nights. The authors observed about 700 Main Belt asteroids as faint as V

22 magnitude. They exposed between 60s and 150s in the R(red) band.

To conclude this section, as of August 13, 2012 there are 588,219 observed asteroids from

which 333,841 have the orbits well determined (as a consequence they were numbered)2.

1.3 Distribution and diversity of asteroids

Asteroids are often grouped according to their orbital parameters. Fig. 1.2 shows the distribu-

tion of the asteroids as a function of their heliocentric distance. The majority of asteroids are
2http://www.naic.edu/~nolan/astorb.html

http://www.naic.edu/~nolan/astorb.html
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Figure 1.2: a) The position of asteroids in the inner part of the Solar System (Source:http://en.
wikipedia.org/). b)The distribution of asteroids in a representation (a,e)- bottom and (a,sini) - top, a is
the semi-major axis andi the inclination [Nedelcu, 2010].

located in the Main Belt, at heliocentric distances between 2.1 and 3.3 AU3 (these are called

Main Belt Asteroids - MBAs). Several gaps and concentrationscan be distinguished by plot-

ting the distribution versus semi-major axis (Fig. 1.2b). These gaps are called Kirkwood gaps

and correspond to the locations of resonances with Jupiter (in the Fig. 1.2 there are marked

4:1, 3:1, 5:2, 2:1 resonances). The 3:1 and 5:2 resonances located at 2.5 and 2.82 AU, respec-

tively define the boundaries between the inner (2.0 - 2.5 AU),middle (2.5 - 2.82 AU), and outer

(2.82-3.3 AU) regions of asteroid belt.

The MBAs have diameters up to≈500 km (Pallas, Vesta). Ceres, the largest body from the

Main Belt, which has a diameter of≈1000 km is classified as a dwarf planet.

Inside the Main Belt, several clusters of asteroids could be identified [Birlan & Nedelcu,

2010]. These are called asteroid families and are defined by Zappalaet al. [1995] as a group

of bodies that are genetically and dynamically linked as a result of a catastrophic event: colli-

sion of two bodies followed by the destruction of both targetand impactor. Usually, they are

identified as groups in the space of orbital proper elements [Milani & Knezevic, 1990]..

According to Minor Planet Center (as of August 2012), a total of 5,188 asteroids were

discovered near Jupiter’s Lagrangian pointsL4 (3404 objects) andL5 (1784 objects) - Fig. 1.2a.

These objects are calledTrojan asteroids. They are characterized by low albedo. The largest

body is (624) Hektor with a mean radius≈100km [de Pater & Lissauer, 2010]. Several Mars

and Neptune Trojans have also been discovered.

3AU is an astronomical unit of distances, 1AU = 149,597,870,700 m (≈ the average Earth - Sun distance.)

http://en.wikipedia.org/
http://en.wikipedia.org/
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Owing to some mechanisms some of the Main Belt Asteroids have migrated into the inner

part of the Solar System [Morbidelliet al., 2002]. These areNear-Earth Asteroids (denoted

NEAs), small bodies of the Solar System with perihelion distancesq ≤ 1.3 AU and aphelion

distancesQ≥ 0.983AU, whose orbits approach or intersect Earth orbit. Dynamical studies con-

firmed the main belt origin for the majority of NEAs population. The transition of a main belt

asteroid to NEA class is due to the dynamical perturbations associated with the main belt reso-

nances. The most active of these regions acting as escape hatches are theν6 secular resonance

and the orbital resonances 3:1, 5:2 and 2:1 with Jupiter situated at 2.5, 2.8 et 3.2 astronomical

units. Long term numerical integrations have revealed the source regions of the current NEAs

population: 61% originated in the inner region of main belt,24% in the central and 8% in the

outer main belt. Only 6% of NEAs are considered to have a cometary origin. The steady-state

model of NEA will require a constant flux of objects with H≤ 18 of 800/Myr.

Depending on their orbital parameters, NEAs are subdividedinto Amors (1.016< q < 1.3

AU), Apollos (a≥ 1.0 AU; q ≤ 1.016 AU), Athens (semi-major axe a< 1.0 AU; Q ≥ 0.983

AU), and Atiras (Q< 0.983 AU).

Potentially Hazardous Asteroids (PHAs) are currently defined based on parameters that

measure the asteroid’s potential to make threatening closeapproaches to the Earth. All as-

teroids with an Earth minimum orbit intersection distance (MOID) smaller than 0.05 AU and

an absolute magnitude (H) of 22.0 or brighter are considered PHAs [Milaniet al., 2000]. A

sub-category of these asteroids are virtual impactors (VIs), objects for which the future Earth

impact probability is non-zero according to the actual orbital uncertainty [Milani & Gronchi,

2010].

One of the most important aspects related to the NEAs is theiraccessibility to be inves-

tigated by the spacecrafts. Some of them require less propulsion in order to be encountered

by spacecraft than that for the Moon, making them ideal mission targets. This enables their

scientific study and the detailed assessment of their futureuse as space resources.

In the last fifty years different observing programs dedicated to asteroids have shown a large

diversity in their properties. Several physical properties like diameter, albedo, shape could be

deduced from light-curve analysis, radar observations, and polarimetry. The asteroid composi-

tion could be inferred through spectroscopic observations.Based on this type of observations,

different taxonomic categories were defined with the purposeto roughly correlate the surface

compositions of different objects. The first identified types were S (stony - based on the re-

semblance with stony meteorites), C (resemblances with carbonaceous chondrite meteorites),

M (metallic), and E (enstatite achondrite). As a consequence of this taxonomic classification

it was discovered the correlation between taxonomic classes and heliocentric distances. The

more thermally processed, metamorphic and igneous asteroids classes (E, S, M) are usually

found in the central and inner regions of the main belt while the outer regions are dominated

by the primitive, relatively unaltered asteroids types. This correlation is rooted in the original
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heterogeneity of the protoplanetary disk at the time when the accretion of asteroids started.

These taxonomic classes emerged as more and more asteroids observations were available,

such that the modern taxonomies (e.g. Bus-DeMeo [DeMeoet al., 2009]) contain more than

20 classes.

From the point of view of their geological evolution, asteroids could be described by three

broad categories: primitive, partially melted, and differentiated. Primitive objects are mainly

made of silicates, carbon, and organics and some are similarto CI and CM meteorites. Olivine,

pyroxene and metal are the main constituents of asteroids partially melted, or at least thermally

altered. Remnants of disrupted differentiated bodies include basaltic types, nearly-pure olivine,

and metallic bodies, that represent pieces of the crust, mantle, and core [DeMeo, 2010].

1.4 Asteroid brightness and albedo

The apparent magnitude of asteroids depends on geometric parameters (Earth-object distance,

Sun-object distance and phase angle) and on the physical andoptical properties of the body

(size and albedo). The absolute magnitude takes into account only the body intrinsic properties.

For asteroids it is defined as being the apparent magnitude ifthe body were at 1 AU from both

the observer and the Sun as seen at phase angleφ = 0. This is an analytical definition because

no geometrical point can satisfy the three conditions at thesame time. It can be computed from

astrometric and photometric observations with the formula:

H = mv+2.5· log
Φ

r ·∆ (1.2)

whereH is the absolute magnitude,mv is apparent magnitude,Φ is the phase integral (integra-

tion of reflected light; a number in the 0 to 1 range),r is the heliocentric distance (measured in

AU), and∆ is Earth-object distance (measured in AU) [Magrin, 2006].

The relation between the absolute magnitude and the body physical properties is:

log(pv ·D2) = 6.259−0.4·H (1.3)

where D is the diameter of the body expressed in km andpv is the geometrical albedo [Magrin,

2006].

The geometric albedo can be thought of as the amount of radiation reflected from a body

relative to that of a flat diffuse surface which is a perfect reflector at all wavelengths (called

Lambertian surface) [de Pater & Lissauer, 2010].

1.5 My contribution to asteroids discovery

My contribution to asteroids discovery can be divided in twoparts: 1) the observing campaigns

in which I was involved and 2) the data-mining of archives forasteroids randomly appearing in
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the fields.

Together with my colleagues, I participated to the following observing campaigns for dis-

covery, follow-up and recovery of asteroids (in particularfor NEAs):

• March, 03 2010; Isaac Newton Telescope (INT) 2.5m, Roque de Los Muchachos Obser-

vatory (ORM) in La Palma (Canary); Data reduction and measurements;

• April 19, 2010; Telescope - T120 Obsv. de Haute Provence (France); Data reduction and

measurements of NEAs;

• November 15-19, 2010; Telescope - T120 Obsv. de Haute Provence (France); On site

mission (observer, data reduction and measurements);

• March 01-04, 2011; T1m, Pic du Midi (France); On site mission(observer, data reduction

and measurements);

• June 03-04, 2011; Blanco 4m - Cerro Tololo, Chile; Data reduction and measurements;

• November 16-24, 2011; T1m, Pic du Midi (France); On site mission (observer, data re-

duction and measurements);

• February 25 - 28, 2012; Isaac Newton Telescope (INT) 2.5m, Roque de Los Muchachos

Observatory (ORM) in La Palma (Canary); On site mission (observer, data reduction and

measurements);

Figure 1.3: The flowchart of Mega-Precovery [Vaduvescuet al., 2012].

Despite some recent data mining efforts, the vast collection of CCD images and photo-

graphic plate archives still remains insufficiently exploited. Considering this point, I was in-

volved in the design of a software project for data mining worldwide image archives for poorly

known asteroids called MegaPrecovery.

We designed Mega-Precovery [Vaduvescuet al., 2012], with the aim to fasten and target the

search of one or some few important objects, such as PHAs or VIs. Given this, we propose to

search very large collections of archives for images which include one or few selected known

asteroids in their field. There are two components of this project:
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Mega-Archive - the database which includes the individual instrument archives, namely the

observing logs for their science CCD images or plates available from a collection of in-

struments and telescope around the globe. The Mega-Archiveis an open project allowing

other instrument archives to be added later for explorationby anybody who would like to

contribute. As of March 2012, the Mega-Archive counts abouttwo million images from

20 instrument archives available for search via Mega-Precovery. This include all ESO

imaging instruments, the INT WFC, CFHTLS, Subaru Suprime-Cam, Blanco Mosaic-2

and AAT WFI archives;

Mega-Precovery software4 for data mining the Mega-Archive for the images containing

one or a more desired catalogued object (NEAs, PHAs or other asteroids) included in a

local daily updated MPC database. The Mega-Precovery software is written in PHP, being

embedded on the EURONEAR website as a public access application under the Observing

Tools section. The flowchart of the project is given in Fig. 1.3.

The output of Mega-Precovery consists in a list including the images and the corresponding

CCD number predicted to contain the queried object(s). The results are displayed both in

the web interface (visible only at the end of the run) and sentvia e-mail to the user (in case

this option was selected). The user can search the images in the online instrumental archive,

then download, inspect and measure the data related to this asteroid according to his/her own

scientific interest (astrometry, photometry, etc).

Inside EURONEAR team [Vaduvescuet al., 2012], I searched for randomly appearances

of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs) in ES-

O/MPG WFI(Wide Field Imager) and INT WFC archives (these are two wide field 2m class

telescope ). A total of 152 asteroids (108 NEAs and 44 PHAs) were identified and measured

on 761 images and their astrometry was reported to Minor Planet Center (MPC). Both recov-

eries and precoveries (apparitions of the object in the images before official discovery) were

reported, including prolonged orbital arcs for 18 precovered asteroids and 10 recoveries, plus

other 124 recoveries.

All the astrometric measurements were submitted to Minor Planet Centerhttp://www.

minorplanetcenter.org/iau/mpc.html. These measurements appear in 12 Minor

Planet Circulars and 21 Minor Planet Electronic Circulars: (79530, 1 (2012); 78894, 9 (2012);

78437, 11 (2012); 77699, 2 (2012); 77266, 11 (2011); 77265, 3(2011); 77173, 6 (2011); 75198,

5 (2011); 74036, 3 (2011); 72456, 4 (2010); 70198, 9 (2010); 69303, 1 (2010)); (2012-E19

(2012); 2012-D102 (2012); 2012-D82 (2012); 2011-W52 (2011); 2011-W45 (2011); 2011-

W44 (2011); 2011-W33 (2011); 2011-W29 (2011); 2011-W28 (2011);2011-W27 (2011);

2011-W25 (2011); 2011-W22 (2011); 2011-W12 (2011); 2011-E19 (2011); 2011-E14 (2011);

2011-E13 (2011); 2011-E12 (2011); 2011-E11 (2011); 2010-W13 (2010); 2010-W12 (2010);

2010-W11 (2010)). An example of such circular is given in Fig.1.4.
4http://euronear.imcce.fr/tiki-index.php?page=MegaPrecovery

http://www.minorplanetcenter.org/iau/mpc.html
http://www.minorplanetcenter.org/iau/mpc.html
http://euronear.imcce.fr/tiki-index.php?page=MegaPrecovery


Figure 1.4: The first part of the Minor Planet Electronic Circular issued for the orbit recovery of the asteroid 2007
ES.
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2
Why spectroscopy?

Much of the knowledge about the Univers came from the study ofelectromagnetic radiation received from the
cosmic bodies. The most important method to study the electromagnetic radiation is spectroscopy.
This chapter introduces the theory behind the application of spectroscopy in astronomy. A short description
of the basic components of a spectrometer (the prism and gratings) is made. The transparency of the Earth
atmosphere as a function of wavelength is presented. A simple example of the way in which the properties of
celestial bodies could be studied using spectroscopy is shown. The chapter ends by outlining the principles
for applying spectroscopy in asteroid studies.

Spectroscopy is one of the most powerful scientific tools forstudying the nature. The study

of celestial bodies using spectroscopy connects astronomywith fundamental physics at atomic

and molecular levels.

The beginning of spectroscopy applied to celestial bodies could be traced back to early

nineteenth century with the discovery of dark lines in the solar spectrum by W. H. Wollaston

in 1802 and J. von Fraunhofer in 1815. Fraunhofer did not knowwhat is the cause for the dark

lines he observed besides the well known characteristic colors of the rainbow. However, he

catalogued the exact wavelength of each dark line and today these are still known asFraunhofer

lines.

On the contrary, in the same period the positivist French philosopher Auguste Comte noted

referring to celestial bodies: "We will never know how to study by any means the chemical

composition, or their mineralogical structure".

Performing similar observations using light from brightest stars, Fraunhofer concluded that

most of the spectral features are somehow related to the composition of the object he observed

[Tennyson, 2005]. The physical explanation came later, with the development of quantum

mechanics: the dark lines at discrete wavelengths arise from the absorption of energy by the

atoms or the ions in the star atmosphere.

Nowadays, the laboratory spectroscopic studies of different chemical components provide

the basis for interpreting astronomical spectra. There is adirect connection between the phys-

ical parameters of a celestial body and the information thatcan be obtained by observing its

spectrum. By carefully analyzing the spectra it is possible to obtain information about the com-
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position of the object being observed, its temperature and its internal pressure or density, its

motion relative to the Earth, and the presence of a magnetic field.

2.1 Diffraction gratings and prisms

There are several methods that can be used to separate the light into its component wavelengths.

The simplest way is to use broad band filters before the detector in order to isolate different

spectral regions. This method is called photometry and is considered as a separate subject from

the spectroscopy.

Spectral resolution (or resolving power) is defined as the fraction of the wavelength -∆λ ,

that can be resolved relative to that of the operating wavelength -λ (Eq. 2.1). in general, the

spectroscopy is considered to involve spectral resolutions higher than 50.

R=
λ

∆λ
(2.1)

The astronomical spectrometers are devices that measure the amount of radiation coming

from the celestial bodies at different wavelengths. To split the light into its component wave-

length, astronomers can use diffraction gratings, prisms,Fabry-Pérot etalons and Fourier trans-

form spectroscopes. Bellow are summarized the main characteristics of diffraction gratings and

prisms which were used during different observations that Iperformed.

The diffraction grating generally consists of a large numberN, of parallel slits separated by

opaque spaces of comparable dimensions. Producing the spectra with the diffraction gratings

involves the interference ofN waves and the diffraction on slit phenomena [Cristescu, 2004].

The distribution of intensity of the radiation in the diffraction pattern is described by the formula

Eq. 2.2.

I = I0 ·
[

sinπbsinθ
λ

πbsinθ
λ

]2

·
[

sinNπ(b+d)sinθ
λ

sinπ(b+d)sinθ
λ

]2

(2.2)

whered is the size of opaque spaces,b is the size of the slit,θ is the angle between a cer-

tain direction and the normal to the grating andI0 is the total intensity passing through a slit

[Cristescu, 2004]. The minima and the maxima position dependon the wavelength and on the

diffraction grating parameters (b andd).

By increasing the numberN of slits, the interference fringes become sharpest. Two wave-

lengths (λ andλ +∆λ ) could be barely separated, if the minimum of the diffraction pattern

corresponding toλ is in the same position as the bright fringe corresponding toλ +∆λ for

the same diffraction orderm. From this condition it can be computed the spectral resolution

R= N ·m. Thus the chromatic resolving power is proportional to the total number of slits and

it is higher in the higher orders. In Fig. 2.1 are shown the diffraction patterns obtained using a

diffraction grating havingb= d = 5µm andN = 1000.

The dispersion of a spectrum is the rate of change of wavelength with the angular position.



CHAPTER 2. WHY SPECTROSCOPY? 45

(a)

2.85 2.86 2.87 2.88 2.89 2.9
−0.1

0

0.1

0.2

0.3

0.4

teta[deg.]

I/I
0

 

 

500 nm
501.5 nm
503 nm

(b)

2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

teta[deg.]

I/I
0

 

 

400 nm
700 nm

Figure 2.1: The diffraction pattern produced by a diffraction grating havingb= d = 5µm and N=1000. Different
wavelengths are considered.

It can be computed by deriving Eq. 2.3.

λ =
d ·sinθ

m
(2.3)

In practice most gratings use mirrors in place of the slits. On a well-polished surface of a

metal, very thin, parallel grooves are drawn. The waves reflected from these grooves behave

exactly as the transmitted waves in the case of the transmission gratings. They can be designed

such that the main part of the incoming radiation is diffracted selectively on a given order.

Because a blaze of light is seen when the grating is viewed at the correct angle, this is called

blazed grating [Cristescu, 2004].

The prism acts as a disperser through the effect of differential refraction. This follows from

the fact that the refractive index of a material depends on the wavelength. This dependence can

be described by the empirical Hartmann formula - Eq. 2.4.

nλ ≈ A+
B

λ −C
(2.4)

where A, B, C are the Hartmann constants for a particular material [Kitchin, 1995].

The spectral resolution of a prism is given by:

R≈
ABL

√

1−0.25n2
λ

(λ −C)2 (2.5)

whereL is the length of the face of the prism. For a typical prism usedin astronomy made of

a dense flint and a side length of 10 cm, the spectral resolution could be up to 15,000 [Kitchin,

1995]. Compared to the diffraction gratings which can have higher spectral resolution, this is

one of the disadvantages of prisms.

In order to produce a reliable spectrum, the dispersive element should be combined with
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Figure 2.2: The atmospheric transmission above Mauna Kea for the wavelength ranges 0.9 - 2.7µm with a water
vapor column of 1.6 mm and an air mass of 1 (Source:http://www.gemini.edu/?q=node/10789).

several other components into the instrument called spectrometer. Usually, the designs of spec-

trometers incorporate the following basic components: an entrance slit to reduce the overlap

between adjacent wavelengths and to reduce the background noise, collimators to produce par-

allel beams of light, a dispersive element, a focusing element to produce focused images of the

slit for different wavelengths of the spectrum, and a detector.

2.2 Spectroscopy and atmospheric transparency

The observation of celestial bodies using different types of ground-based telescopes is possible

in the regions of electromagnetic spectrum for which the atmosphere is transparent. There are

two spectral windows which allow the observation: the optical (V) up to the mid-infrared(the

near-infrared 0.8 - 2.5µm interval is denoted as NIR) and the radio one. The X-rays and ultra-

violet wavelengths are blocked due to absorption by ozone and oxygen, while the far infrared

radiation is blocked mainly due to absorption by water and carbon dioxide.

While in the optical wavelength region the atmosphere is almost completely transparent, in

the near-infrared there are absorption bands of water vapors making some regions like 1.4-1.5

µm and 1.8-2.0µm poorly transparent (Fig. 2.2). Because of the effects of theatmosphere, ob-

servations with space telescopes, such as the Hubble and Spitzer telescopes, are very valuable.

Another important difference between the V and NIR spectralintervals is the fact that the

sky is brighter in the NIR region. For example in the J, H, K filters1 the estimated sky back-

ground has 15.7, 13.6, respectively 13 mag/arcsec2. Additional, important variations of the sky

background could be observed in the intervals of tens of arc minutes of the sky.

1Wide band filters centered on 1.25µm (J), 1.65µm (H), 2.2µm (K)

http://www.gemini.edu/?q=node/10789
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These issues in the NIR part require additional observing techniques and processing methods

(described in Chapter 4) comparing to observation in the V part of the spectrum.

2.3 A simple application

Bellow is described a simple application to exemplify the basic method for obtaining spectra

of celestial bodies. It concerns an emission spectrum studied in the V region using a small

telescope. Additional details regarding this spectral observation can be found inPopescuet al.

[2012a].

An easy way to obtain spectra of celestial bodies is to use a prism or a transmission grating

in front of a telescope objective. Depending on the equipment used, the sky quality on the

observing moment and data reduction procedures, the limiting magnitude could be pushed up

to V = 15 in low resolution mode, with a small telescope (principal mirror diameter below 50

cm).

Together with my colleagues, I carried out observations with telescopes having the diam-

eter of principal mirror between 200-300 mm and a diffraction grating having 100 lines/mm

[Popescuet al., 2012a]. Since promising results were obtained both for stars and for the quasar

3C273 we took the challenge to observe the quasar PG1634+706 that has and apparent magni-

tude V=14.7. The purpose was to identify the emission lines in its spectrum and to calculate

their redshift. For this run we used a Celestron C8-NGT telescope, which is a Newtonian type

having the primary mirror of 200 mm and a focal length of 1,000mm, which means a focal

ratio f/5. It is used on a AS-GT (CG-5 GoTo) equatorial mount allowing automated tracking

of the object. For image recording we used An ATIK 314L+ CCD (charge coupled device)

camera having 1.45 Megapixels (a matrix of 1391x1039 pixels), each pixel being a square -

6.45 x 6.45µm (chip size - 8.98 x 6.71mm). This camera has a resolution of 16 bits.

The spectrum of PG1634+706 was obtained using a Star Analyser100 - a high efficiency

100 lines/mm transmission diffraction grating, blazed in the first order. It was mounted in a

standard 1.25 inch diameter threaded cell which is compatible with the telescope and CCD

camera. A rough calibration of the system can be estimated according to the designer formula

adapted to our system (Eq. 2.6):

Dispersionestim[
nm

pixel
] =

6.45
d[cm]

(2.6)

whered is the distance between grating and CCD. The optical design allowed a resolution

around 1.5nm. A precise calibration was made using known lines identified in the spectrum of

a bright star. The software used for data acquisition was Artemis Capture.

The observations were carried out at 2011-08-05.089 (UT) ina low light pollution area

(Vălenii de Munte - România). The object has the equatorial coordinates RA = 16h34m29s and

DEC =+70o31′32”. At the observing moment the object had an air mass of 1.17. The final
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Figure 2.3: The field of quasar PG1634+706 (north is at bottomof the figure). The object and its spectrum are
surrounded by a rectangle. In this image it can be distinguish the zero order (objects are dots) and the first order
(light is dispersed) -Popescuet al. [2012a].

image (Fig. 2.3) consists of a stack of 18 individual images with 90 seconds exposure time each

and 3 images with 60 seconds exposure time each, thus a 30 minutes total exposure time. Bias

and flat field corrections were made using corresponding images taken at the beginning of the

night.

The wavelength calibration was done by identifying the position of the known lines in the

star spectra. In general, stellar spectra have two dominantfeatures: the continuum - emission at

all wavelengths across their spectrum, and discrete absorption lines corresponding to elements

which are present in the stellar atmosphere. Hydrogen is themost common gas in the atmo-

sphere of stars, and thus its well known absorption lines from visible (Hα ,Hβ ,Hγ) can be used

for wavelength calibration. Since the image (Fig. 2.3) contains also the spectra of some stars

an accurate calibration can be made using this procedure. The value of the resolution found is

given in Eq. 2.7:

Dispersion[
nm

pixel
] = 1.480±0.008 (2.7)

The preprocessing of this spectrum consists in noise reduction which was made by applying

on the image a Gaussian filter withσ = 2 pixels. This filter replaces each pixel with a pixel

of value proportional to a normal distribution computed over the current pixel and its nearest

neighbors [West & Cameron, 2006].

The spectral profile contains a continuum part, which is the continuum emission part of

the quasar modulated by the transfer function of the acquisition system (telescope, diffraction

grating and CCD camera transfer functions). Continuum subtraction reduces the smoothly
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Figure 2.4: a) PG1634 + 706 spectrum obtained after data reduction and continuum subtraction; b) the correlation
coefficient between quasar spectrum and the template spectrum shifted with different z [Popescuet al., 2012a].

varying background to zero and essentially has the same effect as filtering out the long-period

Fourier components of the spectra. Without continuum subtraction, the intensities of spectral

lines are not clearly detectable. The continuum was removedby dividing the spectrum with

a fifth order polynomial curve fitting. The obtained result after data reduction and continuum

subtraction is given in Fig. 2.4.

The redshift is defined as the ratio of the change in wavelength (∆λ = λobs− λ0) to the

non-shifted wavelength (λ0) from a stationary source:

z=
λobs−λ0

λ0
=

√

c+v
c−v

−1 (2.8)

where c is the speed of light in free space and v is the recession speed of the object. The analysis

of the obtained spectrum of PG1634+706 consists in redshiftdetermination and application of

Hubble law to determine its distance.

The most common technique [Tonry & Davis, 1979] to determinethe redshift is the cross-

correlation of the observed spectrum with a template spectrum. The redshift is determined by

the location of the largest peak in the cross-correlation functions. Several rest frame compos-

ite quasar spectra exists for the optical region like the onefrom the article of [Franciset al.,

1991] obtained using data from Large Bright Quasar Survey (LBQS). Thus for determining the

redshift of our spectrum the following steps were taken:

• Shift the template spectrum with az varying from 0.4 to 1.8 using the step of 0.001. This

is a reasonable assumption made after visual inspection of our data.

• At each step, the correlation coefficient between the quasarspectrum and the shifted tem-

plate spectrum is computed (Fig. 2.4).

• Choose the redshift corresponding to the best correlation coefficient found.

In this way, it was obtainedz= 1.340 corresponding to the peak value of the correlation
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Table 2.1: The emission lines identification in spectrum of PG1634 +706. The line labels, their corresponding
laboratory wavelengths, these wavelengths shifted withz= 1.34, and the wavelengths observed in the spectrum
are presented.

Line λ0 [nm] λ [nm] λobs [nm]
C III] 190.6 446.0 444
Fe III 207.7 485.8 488
Fe II + CII] 232.6 544.3 544
Mg II 280.0 655.2 655

coefficient equal to 0.5416. The determination is at 3σ compared with the level of noise

(whereσ = 0.1987 is the standard deviation of the correlation coefficient values plotted in

Fig. 2.4).

Considering the value found for the redshift -z= 1.340, the emission lines of known chem-

ical elements could be identified in the spectrum of PG1634+706 (Table 2). Based on the emis-

sion line identification the accuracy ofz determination can be ascertained:z= 1.340±0.008.

Because PG1634+706 is a bright quasar with high redshift of spectral lines, it has been

studied in some papers like [Schmidt & Green, 1983, Treveseet al., 2007]. Our observation for

this object was at the limited magnitude for the type of equipment used. With a robust method,

we succeed to extract the signal from noise and compute the redshift. Our determination of

redshift z = 1.340±0.008, with a small telescope agrees with the value found from observation

with large telescopes.

The result obtained allow to assert that even using a small telescope and the simplest spec-

trograph valuable results can be obtained. The developed methods for observations and data

reduction can be used as a starting point for spectroscopy ofcelestial bodies with small tele-

scopes.

2.4 Spectroscopy for asteroids

The knowledge of the surface mineralogy of individual asteroids and groups of asteroids can be

inferred through the spectroscopy. The solar light reflectedfrom the asteroids contains essential

information regarding the optical properties of the materials found at the asteroids surface. The

spectral interval 0.8 - 2.5µm is very important to discriminate between different mineralogy

of silicate-based compounds. Silicate minerals identification is based on the presence of broad

bands of absorption around 1 and 2µm. These bands are due essentially to the presence of

olivine and pyroxene (or mixtures) on the surface of the asteroid.

2.4.1 Reflectance versus emission

The incident flux arriving from an asteroid surface is splitted in two contributions (Fig. 2.5):

the solar radiation passively reflected by the surface material, and the solar radiation which has

been absorbed, converted to heat, an re-emitted as thermal radiation [McCord & Adams, 1977].
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Figure 2.5: The components of the radiation received from 1km square lunar mare area (dark basaltic plain
on Moon formed by ancient volcanic eruptions) having an albedo of 006, considering the average Earth-Moon
distance, phase angle 0, T = 395K. The flux is measured in Wattsper square meter per micron. Source
McCord & Adams [1977]

The following relation can be written to describe the spectrum recorded by a detector on a

ground base observatory:

Y(λ ) = [X(λ ) ·HA(λ )+T(λ )] ·HT(λ ) (2.9)

whereY(λ ) is the radiation flux recorded by the spectrometer,X(λ ) is the radiation flux from

the Sun,HA(λ ) is the transfer function of the asteroid,HT(λ ) include the transfer function of

the Earth atmosphere and of optical instrument andT(λ ) is the thermal infrared emission of

the asteroid

In the VNIR spectral region (0.40, 2.50)µm the thermal emission of the asteroids can be

neglected compared to the reflected radiation for the majority of asteroids. Thus in this spectral

region, the reflection spectra are studied.

In some particular cases, some asteroids become warm enoughsuch that the thermal flux

can not be ignored. These are low-albedo NEAs that become warm enough to emit detectable

thermal flux at 2.5µm when they are located near perihelion. In this case the thermal radiation

can account for 33% of the total flux for an object with an albedo 0.04 at 1.0 AU. Rivkinet al.

[2005] defined a quantity called "thermal excess" to describethis phenomenon:

γ =
R2.5+T2.5

R2.5
−1 (2.10)

whereR2.5 is the reflected flux at 2.5µm andT2.5 is the thermal flux at 2.5µm. UsuallyR2.5 is

determined by extrapolating a linear continuum from shorterwavelengths up to 2.5µm. It was

shown that the lower albedo give larger values ofγ as also do smaller solar distances. Beyond

1.9 AU, the expected thermal excess is close to zero for all modeled albedo [Rivkinet al.,
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2005].

2.4.2 Spectral features

Because minerals are characterized by unique compositions in specific crystallographic struc-

tures, each mineral has a characteristic reflectance spectrum with different spectral features.

These features come from electronic and vibrational transitions within crystals or molecules.

The wavelengths at which the features are located in the spectrum depends upon the ionic (e.g,

Fe2+, Fe3+ etc. ) or molecular (e.g, H2O, OH, CO3) species involved and the mineral structure

[Gaffeyet al., 1993a]. As a general rule, crystal field theory is used to explain absorption bands

in asteroid spectra.
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Figure 2.6: Reflectance spectra of several meteoritic important minerals: a) Spinel, b) Pyroxene, c) Olivine, d)
Iron-Nickel alloy.

Considering the meteoritic minerals spectra as a starting point for analyzing asteroid spectra

it can be found that several features are detectable in the range of (0.35 - 2.50)µm. The

most abundant mineral species composing the meteorites are: olivine (Fig 2.6c), pyroxene
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(Fig. 2.6b), Iron-Nickel alloy (Fig. 2.6d), spinel (Fig. 2.6a) and feldspar.

Most asteroids are composed by a mixture of these minerals. Since the spectral parameters

of different absorption features (i.e. band position and the ratio between band areas) are related

to the specific composition of the individual mineral, spectral analysis of the asteroid surface is

able in most cases to detect mineralogical signatures characteristic of a particular species. So it

is possible to establish the presence of specific mineral phases such as those listed above.

The possibility of revealing a feature depends on the abundance of the particular species so

that the strength of the feature can be detected over the spectrum noise. In some high quality

spectra of simple mineral mixtures the average compositionand relative abundances can be also

determined. Several empirical methods have been developedto accomplish this task: Gaffey

[1976] defined a procedure for determining the relative abundance of pyroxene and plagioclase

in basaltic achondritic assemblages, Cloutiset al. [1986b] developed a method for determining

the relative abundances of olivine-orthopyroxene mixtures.

However, it cannot be ignored the possibility to obtain the same spectral trend by adding

various end-members of minerals. In this case, the degeneracy of mineralogical solutions must

be emphasized when the analysis of the asteroid spectra is performed.
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3
Observing techniques

Observations from Earth remain the most accessible way to study the small bodies of the Solar System. In
this chapter are overviewed the observing techniques used to obtain asteroid spectra. First, the NASA IRTF
telescope and the SpeX instrument are briefly described. These instruments were used to obtain the spectra
presented in this thesis. The planning of the observations on which I was involved is shown.
The second part of the chapter present the data reduction procedure. The calibration files used for data
reduction are defined. In the end the description of the stepsfollowed for obtaining the spectrum in its final
analyzable form is given.

While several programs (like Marco-Polo-R, Osiris-REx, Hayabusa2) are under develop-

ment for space exploration of asteroids and several others are in service (e.g. Rosetta, Dawn),

the choice of their targets is made based on strong groundbased science. However, space-probes

can only visit a very limited number of objects. For a pictureof the whole asteroid population,

the study of their global properties and their diversity is required and this can be achieved by

using groundbased telescopes.

3.1 IRTF Telescope and the SpeX instrument

Several large telescopes are equipped with a spectrograph.Some examples among those sup-

porting research programs for planetary sciences are: the NASA InfraRed Telescope Facility

(IRTF), the European Southern Observatory (ESO) Very LargeTelescope (VLT), the ESO New

Technology Telescope (NTT) and Telescopio Nazionale Galileo (TNG).

The NIR spectra presented in this thesis are obtained with NASA IRTF (Fig. 3.1a), a 3.0-

meter telescope located on the top of Mauna Kea - Hawaii. It was built initially to support

the Voyager missions, but today at least 50% of the observingtime is devoted to planetary

sciences. The IRTF hosts 6 facility instruments:, SpeX (Fig. 3.1b), NSFCAM2, CSHELL,

MIRSI, Apogee, Moris. These instruments allow imaging, polarimetry, low and high resolution

spectroscopy in the near to mid infrared (0.8 - 30)µm.

SpeX - the most used instrument by planetologists from NASA IRTF telescope, is a low to

medium resolution spectrograph and imager in the (0.8-5.5)µm. It provides spectral resolu-

tions of R≈ 1000 - 2000 across 0.8 - 2.4µm, 2.0 - 4.1µm, and 2.3 - 5.5µm, using prism
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(a) (b)

Figure 3.1: a) The 3m NASA InfraRed Telescope Facility at theMauna Kea Observatory on Hawaii. b) SpeX
instrument mounted to IRTF telescope. As scale, SpeX is 1.4mtall and weighs 478kg.

cross-disperser [Rayneret al., 2003]. Single order long slit modes are also available. A high

throughput prism mode is provided for 0.8 - 2.5µm spectroscopy at R≈ 100.

SpeX employs a 1024x1024 Aladdin3 InSBb CCD array for acquiringthe spectra, while

image acquisition could be made with a 512x512 Alladin2 CCD InSb array.

Two interfaces are used to manage the instrument and the spectrograph, GuideDog interface

(Fig. A.1) is dedicated to pointing and tracking the object and BigDog (Fig. A.2) interface is

used for spectrograph setup and spectra acquisition.

Observations on IRTF can be performed from anywhere in the world using an internet con-

nection via VNC (Virtual Network Connection) protocol. The observing runs for this work

were conducted remotely from Meudon-Paris (France), more than 12 000 Km away from

Hawai [Birlanet al., 2004b, Buset al., 2002]. Due to different time zones, for the observers

in Meudon, the observing time occurred during daylight hours: a full hawaiian night session

started at 5 a.m. and ended at 5 p.m. - Paris local time.

Using the equipment provided at Centre d’Observation à Distance en Astronomie à Meudon

(CODAM), team had the control remotely of both the instrument/guider system and the spec-

trograph set-up and spectra acquisition [Birlanet al., 2004a, 2006]. A permanent and constant

audio/video link with the telescope operator was essentialin order to administrate possible

service interruptions, thus another interface was used to keep the audio-video link open (via

Polycom ViewStation video-conference system both on Meudon and Mauna Kea). All soft-

ware was re-initialized at the beginning of each night.

3.2 Planning the observations

The typical cycle of astronomical observations on world-class telescopes imply the following

steps: 1) issue received with the call of proposal for observers; 2) targets selection; 3) proposal

submission and evaluation; 4) observations; 5) data reductions and analysis; 6) publications
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and dissemination of the results.

Generally, the targets are selected based on a desired scientific criterion, which in general

reduce their number up to few tens. Observational time is obtained after a severe selection of

the best proposals made by the IRTF time allocation committee.

Scheduling the observing time for asteroids requires an ephemerides (the position of astro-

nomical objects on the sky) calculator, such as:http://ssd.jpl.nasa.gov/horizons.

cgi or http://www.imcce.fr. However, for the large observing programs that targets

many objects an additional scheduler is required. It is the case of the programPhysical prop-

erties of low delta-V Near-Earth Asteroidsfor which I designed a planning software, available

online at:http://m4ast.imcce.fr/lowdv.php.

The tool selects targets based on the following criteria:

• "delta-V" - the available propulsion required remains an engineering design constrain;

typically "delta-V" should be lower than 7 km/sec for the initial rendezvous and should

have additional 1 km/sec for return;

• H - the absolute magnitude, determines the diameter of the target and should be restricted

to consider the kilometers size objects;

• the apparent magnitude and proper motion of the object should be selected in agreement

with the telescope capabilities;

• the altitude at the moment of the observing time should correspond to a low airmass.

For example, among the objects accessible for observation with IRTF telescope on May

18-19, 2008 were: (5620) Jasonwheeler, ( 1943) Anteros, (143651) 2003 QO104, and (433)

Eros.

3.3 Data reduction procedures

The data reduction procedures for the observational data consist in obtaining the flux as a func-

tion of wavelength from the CCD images. Usually these images are in .fits1 format.Additional

information regarding the CCD images for astronomy can be found in the book "Electronic

Imaging in Astronomy Detectors and Instrumentation" [McLean, 2008].

The calibration files are:

Bias - in the "no-signal" condition, the CCD electronics system willalways produce a small

positive readout signal for each pixel. This electronic signature is therefore known as the

bias level. This can be easily measured by taking a zero second exposure time. Multiple

bias frames can be averaged to reduce the random readout noise by averaging them.

Dark - Dark-current levels, due to thermal noise, are determinedby long exposures with the

CCD shutter closed. To minimize this effect CCDs are generally cooled to low temper-
1FITS is the acronym of Flexible Image Transport System

http://ssd.jpl.nasa.gov/horizons.cgi
http://ssd.jpl.nasa.gov/horizons.cgi
http://www.imcce.fr
http://m4ast.imcce.fr/lowdv.php
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Figure 3.2: The data reduction procedure for NIR spectra obtained with IRTF/SpeX [Nedelcu, 2010].
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atures. To remove this noise, an exposure is taken of similarlength as the useful im-

ages,with the dome and shutter closed. These dark images canalso be used to find dead

or hot pixels. If dark frames are used, the CCD bias is containedwithin them and separate

bias corrections are not necessary. Similarly, multiple dark exposures can be averaged to

reduce the random readout noise by averaging them. This is called a "master dark file".

Dark current is more significant in infrared arrays, and it maynot be linear and scalable

from different exposures [McLean, 2008].

Flat - Sensitivity variations from pixel to pixel arise as the result of fabrication processes and

also due to optical attenuation effects such as microscopicdust particles on the surface

of the CCD. A flat field image to correct for this effect is usuallyobtained by observing

inside of the telescope dome (if it is matt or white) or place ahuge white card on the dome.

The dome is illuminated with a projector lamp. In this case the telescope is completely

out of focus which ensures that the field is uniformly illuminated. For faint objects it is the

light of the sky that dominates, and so it is better to try to use the sky itself as a flat-field.

In other cases, as in photometry for instance, the flat field could be done using a sky region

in the day light time (at the beginning and end of the night).

Arc lamp - "arc" images are used to determine the pixel to wavelength correspondence, more

exactly to make the wavelength calibration. Typically, thelamps used contain helium,

neon, xenon, argon or a combination thereof. The emission lines from the spectrum of the

arc lamp are at known wavelengths and can be identified. For the IRTF/SpeX a lamp with

argon is available (Fig. 3.2).

Standard star - A solar-like standard star spectrum taken at similar airmass is required to

correct the atmospheric effects and to remove the signatureof the Sun’s spectrum in order

to have only the signature of the asteroid surface. The G2 stars are used with magnitudes

(usually between 5 to 12) that allow to obtain a high SNR (signal to noise ratio) spectrum

with a short integration time (a few seconds). If the star is too bright it will saturate the

CCD, while a fainter star will require an unacceptably long integration time.

The steps required for data reduction are figured in Fig. 3.2.These steps are described

below:

Acquisition of the images containing the spectra. The most important aspect that should be

taken into account is the variation of the sky background. This effect is caused in principal by

the chemical reaction of combination/recombination in ionosphere2. There are two techniques

used to avoid this unwanted effect. First, the images are taken with an exposure time less than

120 sec. It is known that the variation of the sky background in an interval lower than 120

sec. could be neglected. Images with longer exposure time can be obtained by combining

individual images with shorter exposure time. Second, the spectra are obtained alternatively

2the most common name of these phenomena is airglow
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Figure 3.3: The raw spectra of an asteroid and standard star.The twos spectra are modulated by the absorption
bands of the Earth atmosphere (essentially telluric water bands).

at two separate locations along the slit (close to top - "A" andclose to bottom - "B"). This is

call the nodding procedure [Nedelcu, 2010]. In the low resolution mode of SpeX, spectra are

acquired only in a band of 512x100 pixels of the CCD.

Flat field corrections. The flat field images are made using a lamp based on Quartz-

Tungsten-Halogen (T=3200 K). This procedure is applied at the beginning and at the end of

the observing session, by taking 10 images each time. If a pixel value is greater than 10%

of the neighboring pixels, it is considered as a bad pixel. Such pixels are replaced in all im-

ages (object images, flat fields and arc images and standard star images) with a value obtained

from interpolation of neighboring pixel values. A "master flat" is obtained by combining and

averaging all flat field images. The master flat field is subtracted from all images.

Removing the sky background. The consecutive images A and B are subtracted (A-B and

B-A) resulting new images containing two spectra: one with positive pixel values and another

with negative pixel values (Fig. 3.2.3).

Wavelength calibration. The wavelength calibration is made by identifying the emission

lines of an Argon lamp. Thus, it results a correspondence between the pixel position on the

x-axis and the wavelength (Fig. 3.2.3).

Combining the images. The two spectra (corresponding to both positive and negative pixel

values ) are identified in each image. The images are cut, onlythe positive spectrum being kept.

A final spectral image (Fig. 3.2.4) is obtained for each object by gathering all its corresponding

images (before summing all images they are aligned by the brightest trace).

Extraction of the raw spectrum. The final point of this stage consists in summing the value
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of the pixels fromy axis corresponding to the spectrum of an object and extraction of these

values in a file containing the wavelengths (in accord with the correspondence pixel position

on x axis - wavelength) and the pixel values (Fig. 3.2.3). An example of such a raw spectrum

is given in Fig. 4.1.

The next part of the data reduction procedures consists in removing the influence of Earth at-

mosphere. This task is accomplished using some IDL routinesthat implements the atmospheric

transmission (Atmospheric Transmission Model (ATRAN)) model by Lord [1992].

The final step consists in dividing the asteroid spectrum by the solar analog. In this way we

obtain the relative reflectance spectrum of the asteroid. The NIR spectra presented in this thesis

are normalized to 1.25µm.





4
Spectral analysis techniques

VNIR reflectance spectroscopy is currently the best remote technique for characterizing the surface composi-
tions of asteroids. In the last fifty years it has been used extensively to determine the surface mineralogy of
asteroids.
The analysis of reflectance spectra can be done using severalmethods, such as taxonomic classification,
comparison with laboratory spectra, band parameter determination, and modeling of the space weathering
effects. This chapter presents those methods which I used for spectral analysis and implemented in a software
package.

"Asteroids" actually means "star-like" because viewed through a telescope, these planetesi-

mals are merely point sources of light. A panoply of new observational techniques (e.g. spec-

troscopy, photometry, polarimetry, adaptive optics, radar, etc.) has transformed these star-like

objects into individual little worlds.

4.1 Interpretation

Olivine, pyroxene (clino- and ortho-pyroxene), iron-nickel (Fe-Ni) metal, spinel, and feldspar

are some of the most important minerals that can be identifiedby carefully analyzing the re-

flection spectra of the asteroid [McSween, 1999]. If these minerals are combined to form a

rock the resulting spectrum is a messy composite of the individual spectra for the constituent

minerals.

4.1.1 Taxonomy

Taxonomy is the classification of asteroids into categories(classes, taxons) using some param-

eters and noa priori rules. The main goal is to identify groups of asteroids that have similar

surface compositions. The classification into taxons is thefirst step for further studies of com-

parative planetology. In the case of asteroids, a precise taxonomic system gives an approach to

a specific mineralogy for each of the defined classes.

Taxonomic systems of asteroids were initially [Chapmanet al., 1971] based on asteroid

broadband colors, which allowed us to distinguish between two separate types of objects, de-

noted "S" (stony) and "C" (carbonaceous). Based on the increasing amount of information from
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different types of observations, new taxonomic classes were defined. Historically, the most

widely used taxonomies are the following: Tholen [1984] andBarucciet al. [1987], which

used data from the Eight-Color Asteroid Survey [Zellneret al., 1985] together with thermal

albedo; Bus & Binzel [2002a], which used data from the SMASS2 survey; and DeMeoet al.

[2009], which is an extension of a previous taxonomy scheme into the near-infrared.

Statistical methods are used for defining taxonomic systemsof asteroids. We point out two

of them, namely principal component analysis (PCA) and the G-mode clustering method.

Principal component analysis (PCA) is a method for reducing the dimensionality of a data

set of M variables, involving linear coordinate transformations to minimize the variance. The

first transformation rotates the data to maximize the variance along the first axis, known as the

principal component 1 (PC1), then along the second axis - the second principal component, and

so on. Overall, the new coordinates are ordered decreasingly in terms of the dispersion in the

principal components.

Bellow is the summary of Bus-DeMeo taxonomy in conformity with[DeMeoet al., 2009].

The prototype asteroids (specified by their number) of each class and a short description is

given.

A : 246, 289, 863 - Deep and extremely broad absorption band, first minimum near 1µm; may

or may not have a shallow 2µm absorption band; very highly sloped.

B : 2, 3200 - Linear, negatively sloping often with a slight round bump around 0.6µm and/or

a slightly concave up curvature in the 1 to 2µm region.

C : 1, 10, 52 - Linear, neutral visible slope often a slight rough bump around 0.6µm; low but

positive slope after 1.3; may exhibit slight feature longword of 1 µm.

Cb : 191, 210, 785 - Linear with a small positive slope that starts around 1.1µm.

Cg : 175 - Small positive slope that begins around 1.3µm; pronounced UV dropoff.

Cgh : 106, 706, 776 - Small positive slope that begins around 1µm; pronounced UV dropoff

similar to Cg; includes a broad, shallow absorption band centered near 0.7µm similar to

Ch.

Ch : 19, 48, 49 - Small positive slope that begins around 1.1µm; slightly pronounced UV

dropoff; includes a broad, shallow absorption band centered near 0.7µm.

D : 1143, 1542, 3248 - Linear with very steep slope; some show slight curvature or gentle kink

around 1.5µm.

K : 42, 579, 742 - Wide absorption band centered just longword of 1 µm; the fist maximum

and the minimum are sharply pointed; the walls of the absorption are linear with very little

curvature.

L : 236, 402, 606 - Steep slope in visible region leveling out abruptly around 0.7µm; there is

often a gentle concave down curvature in the infrared with a maximum around 1.5µm;

there may or may not be a 2µm absorption feature.
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O : 3628 - Very rounded and deep, "bowl" shape absorption feature at 1µm as well as a

significant absorption feature at 2µm.

Q : 1862, 3753, 5660 - Distinct 1µm absorption feature with evidence of another feature near

1.3µm; a 2µm feature exists with varying depths between objects.

R : 349 - Deep 1 and 2µm features; the 1µm feature is much narrower than a Q type, but

slightly broader than a V type.

S : 5, 14, 20 - Moderate 1 and 2µm features; the 2µm feature may vary in depth between

objects.

Sa : 984, 5261 - Has a deep and extremely broad absorption band at1 µm; has similar features

to A types but is less red.

Sq : 3, 11, 43 - Has a wide 1µm absorption band with evidence of a feature near 1.3µm like

the Q type, except the 1µm feature is more shallow for the Sq.

Sr : 237, 808, 1228 - Has a fairly narrow 1µm feature similar to but more shallow than an R

type as well as a 2µm feature.

Sv : 2965, 4451 - Has a very narrow 1µm absorption band similar to but more shallow than a

V type as well as a 2µm feature.

T : 96, 308, 773 - Linear with moderate to high slope and often gently concaving down.

V : 4, 1929, 2851 - Very strong and very narrow 1µm absorption and as well as a strong 2µm

absorption feature.

X : 22, 87, 153 - Linear with medium to high slope.

Xc : 21, 97, 739 - Low to medium slope and slightly curved and concave downward.

Xe : 64, 77, 3103 - Low to medium slope similar to either Xc or Xk type, but with an absorption

band feature shortward of 0.55µm.

Xk : 56, 110, 337 - Slightly curved and concave downward similarto Xc type but with a faint

feature between 0.8 to 1µm.

Ld : 279, 3734 - Diverged to L and D classes.

Sk : 3, 6585 - Diverged to the S and Sq classes.

Sl : 17, 30 - Merged with the S class.

The classification of an asteroid spectrum in Bus-DeMeo taxonomy can be done via MIT-

SMASS online tool1.

The G-mode is a multivariate statistical clustering methodthat allows us to classify a sta-

tistical sample consisting of N elements with M variables. The parameter G is the analog of

the distance in a NxM space. This statistical distance between an object and a taxonomic class

shows the similarities of the characteristics of this object to those of its class [Barucciet al.,
1http://smass.mit.edu/busdemeoclass.html

http://smass.mit.edu/busdemeoclass.html
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Figure 4.1: Bus-DeMeo taxonomy key figures. Source :http://smass.mit.edu/busdemeoclass.
html

1987, Birlanet al., 1996a]. One of the advantages of this method is that even if only a subset

of variables is available for an object (only part of the spectrum), a preliminary classification

can still be achieved.

4.1.2 Spectral comparison - Comparative planetology

Spectroscopy of different samples performed in the laboratory provides the basis upon which

compositional information about unexplored planetary surfaces can be understood from re-

motely obtained reflectance spectra. Thus, confronting thespectral data derived from telescopic

observations with laboratory measurements is an importantstep in study of asteroid physical

properties [Brittet al., 1992, Vernazzaet al., 2007,Popescuet al., 2011].

Among the laboratory samples, meteorites can provide the most fruitful results for under-

standing asteroid composition. This is owed to the fact that, prior to their arrival meteorites are

themselves small bodies of the solar system. Thus, spectralcomparison represents a direct link

for understanding of asteroid-meteorite relationships.

The traditional classification is based upon their appearance [de Pater & Lissauer, 2010]:

• metal meteorites are referred asiron meteorites. They are made primary of iron and nickel

and smaller amounts of siderophile elements (elements which easily combine with molten

iron);

http://smass.mit.edu/busdemeoclass.html
http://smass.mit.edu/busdemeoclass.html
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• meteorites that contain comparable amounts of macroscopicmetallic and rocky compo-

nents are calledstony irons.

• meteorites that do not contain large concentrations of metal are know asstones.

A second classification of meteorites takes into account their mineralogic changes:achon-

dritesare igneous bodies, the product of melting, changes in composition and recrystallization,

while chondritesare the primitive meteorites composed of material that formed the solar neb-

ula and surviving interstellar grains, little modified in some case by aqueous and/or thermal

processes.

Chondrites keep the records of the origin and the early evolution of the Sun and planets. The

name comes from Greek -"chondros", meaning grain or seed, a reference to the appearance

produced by numerous small, rounded inclusions called chondrules. These chondrules are

small droplets of olivine and pyroxene condensed and crystallized from the hot primordial

solar nebula in form of small spheres. They accreted with other material that condensed from

the solar nebula forming a matrix [McSween, 1999]. The chondritic meteorites are split in:

ordinary chondritesso named because they are the most abundant type; thecarbonaceous

chondritesactually misnamed when they were believed to have much higher carbon contents

than other chondrites; theenstatite chondritesnamed for their high abundances of enstatite, a

magnesium silicate mineral. Rumuruti and Kakangari chondrite meteorites does not fit in any

of these classes, being considered separate types [de Pater& Lissauer, 2010].

The most common primitive meteorites - ordinary chondritesare divided based on their

Fe/Si ratio:H - high Fe content,L low Fe, andLL low Fe and low metal. The same criterium

applies for enstatite chondritesEH, EL. The carbonaceous chondrites are split in eight classes

which slightly differ in composition:CI,CM, CO, CV, CR, CH, CB,andCK [de Pater & Lissauer,

2010].

In Fig. 4.2a is given the microscopic view of a thin section ofthe Allende meteorite(CV3).

It shows numerous chondrules, white calcium-aluminum inclusions (CAI), and opaque metal

grains, all held together by dark, fine-grained matrix material. All of this diversity is con-

tained within several square centimeters of surface area inthis meteorite. For comparison, the

abundance of elements in the Sun’s photosphere is plotted against their abundance in the car-

bonaceous chondrites [Ringwood, 1979]. Most elements lie very close to the curve of equal

abundance (normalized to Si).

Chondritic meteorites are assigned a petrographic type ranging from 1 to 7. This describes

the degree of alteration by different processes. Type 3 chondrites appear to be least altered and

provide the best data on the conditions within the protoplaneatry disc. Types 5 to 7 are shocked

materials, signature of collisional processes of parent bodies.

In contrast to chondrite, achondrites came from differentiated parent bodies (bodies that

have undergone density-dependent phase separation). The igneous origin of these meteorites

imply a partial or total melting of primordial chondritic matter. Igneous processes are the
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(a) (b)

Figure 4.2: a) The photomicrograph of a thin section of the carbonaceous chondrite Allende, which was seen to
fall in Chihuahua, Mexico on the night of February 8, 1969. Numerous round silicate chondrules together with
irregular inclusions can been observed . b) Comparison of solar-system abundances (relative to silicon) determined
by solar spectroscopy and by analysis of carbonaceous chondrites [Ringwood, 1979].

primary means by which planetary body evolve. The bulk compositions of achondrites are

enriched in litophile and chalcophile elements.The abundances of these elements are also en-

hanced in the Earth’s crust. Achondrites are significantly depleted in iron and siderophile ele-

ments. The subtypes of achondritic meteorites include: Howardite - Eucrite - Diogenite (HED),

Aubrites, Shergottite - Nakhlite - Chassignite (SNC), Ureilites, Acapulcoites and Lodranites.

A small percentage of known achondrites are from two larger bodies - the Moon and Mars

[de Pater & Lissauer, 2010].

Several spectral libraries are available for accomplishing spectral comparison, such as Re-

lab2, USGS Spectroscopy Laboratory3, the Johns Hopkins University (JHU) Spectral Library,

the Jet Propulsion Laboratory (JPL) Spectral Library4, etc. I used the Relab spectral library,

which is one of the largest libraries and contains more than 15,000 spectra for different types

of materials from meteorites to terrestrial rocks, man-made mixtures, and both terrestrial and

lunar soils.

4.1.3 Space weathering effects

It is now widely accepted that the space environment alters the optical properties of airless

body surfaces (Fig. 4.3). Space weathering is the term that describes the observed phenomena

caused by these processes operating at or near the surface ofan atmosphere-less solar system

body, that modify the remotely sensed properties of this body surface away from those of the

unmodified, intrinsic, subsurface bulk of the body [Chapman,1996, 2004].

2http://www.planetary.brown.edu/relab/
3http://speclab.cr.usgs.gov/
4http://speclib.jpl.nasa.gov/

http://www.planetary.brown.edu/relab/
http://speclab.cr.usgs.gov/
http://speclib.jpl.nasa.gov/
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Figure 4.3: Different ways in which space weathering affects the visible and near-infrared spectra of soil. Space
weathering processes alters the properties of the soil thatcovers the surface of all bodies which are not protected
by an atmosphere (Sourcehttp://en.wikipedia.org/).

The objects that are most affected by the space weathering are silicate-rich objects for which

a progressive darkening and reddening of the solar reflectance spectra appear in the 0.2 - 2.7

µm spectral region [Hapke, 2001]. Lunar-type space weathering is well-understood, while

two well-studied asteroids (433 Eros and 243 Ida) exhibit different space weathering types.

The mechanism of space weathering for asteroids is still currently far from being completely

understood.

The latest approaches to the study of space weathering are based on laboratory experiments.

Simulations of micrometeorites and cosmic ray impacts havebeen achieved using nanopulse

lasers on olivine and pyroxene samples. These have shown thatlaser ablation lowers the albedo,

dampens the absorption bands, and reddens the spectrum. These effects could explain the tran-

sition from "fresh" ordinary chondrite material to the observed asteroid spectra [Yamadaet al.,

1999, Sasakiet al., 2001]. The spectral effects generated by the solar wind irradiation to sili-

cate materials were also investigated by Brunettoet al. [2006]. On the basis of ion irradiation

experiments, they found "a weathering function" that could be used to fit the ratio of the spectra

of irradiated to unirradiated samples, which was implemented in M4AST.

4.1.4 Band parameters

The "traditional" method used for mineralogical analysis isbased on different parameters that

can be computed from the reflectance spectra of the object. These parameters give information

about the minerals that are present on the surface of the asteroid, their modal abundances, and

the size of the grains.

Cloutiset al. [1986b] outlined an analytical approach that permits the interpretation of vis-

ible and near-infrared spectral reflectance to determine the mineralogic and petrologic param-

eters of olivine-orthopyroxene mixtures, including end-member abundances, chemistries, and

http://en.wikipedia.org/
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particle size. These parameters are the wavelength position of the reflectance minima around 1

µm and 2µm, the band centers, and the band area ratio (BAR) which is the ratio of the areas

of the second absorption band relative to the first absorption band.

Gaffey [2010] noted that mineralogically diagnostic spectral parameters (band centers, BARs)

are "essentially immune to the effects of space weathering observed and modeled to date”.

4.2 Algorithms

This section describes the algorithms used to analyze the different types of spectra. The de-

scription of these algorithms was part of the paperPopescuet al. [2012b].

4.2.1 Taxonomic classification

Different approaches for the taxonomies can be used.

To classify a spectrum in the Bus-DeMeo taxonomy, we determine how closely the asteroid

spectrum is fitted by the standard spectrum of each class using a curve matching approach.

This approach involves first fitting the spectrum with a polynomial curve and then comparing

this curve to the standard spectrum at the wavelengths givenin the taxonomy. We select the

taxonomic classes producing the smallest standard deviation in the error (see Eq. 4.5).

For G-mode taxonomy, we used the algorithm defined in Fulchignoniet al. [2000]. This

comprises the computation of theg parameter, which gives the statistical distance of a new

sample, characterized by{xi} from the taxonomic classs

gs =

√

2·Rs ·
M

∑
i

(

xi −xis

σis

)2

−
√

2·Rs ·M−1, (4.1)

whereM is the number of points along the selected section of the spectrum, andi = 1...M.

The G-mode method defines for each taxonomic classs the mean values{xis}, the standard

deviations{σis}, and a statistical indicatorRs. We select the classes that have the lowestgs, the

ideal case beinggs =−
√

2·Rs ·M−1.

The taxonomic classes are defined depending on the taxonomy in different wavelength in-

tervals (0.45 - 2.45µm for Bus- DeMeo taxonomy, 0.337 -2.359µm for G13 [Birlanet al.,

1996a] taxonomy, and 0.337 - 1.041 and for G9 taxonomy) and some of them also using the

albedo. The curve matching org factor computation can be made across a smaller wavelength

interval (depending on the available wavelength range of the asteroid spectrum) but with a

lower confidence, thus a reliability criterion is required [Popescuet al., 2011]

Reliability=
card([λm,λM]

⋂{λ T
1 ,λ T

2 , ...,λ
T
N})

N
, (4.2)

where[λm,λM] is the spectral interval between the minimum wavelength andthe maximum

wavelength in the asteroid spectrum,λ T
1 ,λ T

2 , ...,λN
T

are the N wavelengths for which the stan-
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dard spectra of the taxonomy are given, andcard() represents the number of elements of a

discrete set.

4.2.2 Curve matching

The methods for taxonomic classification and comparison with meteorite spectra are based on

curve matching. These procedures involve minimizing a quantity (usually calledΦ) in order to

determine the best estimates for a given asteroid spectrum.

A quantity commonly used to test whether any given points arewell-described by some

hypothesized function is chi-square (χ2), the determination being called the chi-square test for

goodness of the fit [Bevington & Robinson, 1992].

The classical definition for theχ2 is :

χ2 =
N

∑
i

(xi −µi)
2

σ2
i

, (4.3)

where there areN variablesxi normally distributed with the meanµi and varianceσ2
i . If σ2

i are

correctly estimated, the data are well-described by the valuesµi whenΦ= χ2 → 0.

We denote by{ei} the error between the data (asteroid spectrum) and the fitting curve:

ei = (xi −µi). (4.4)

Our first approach to curve matching, derived from chi-square fitting, is based on the formula

Φstd=
1
N
·
√

N

∑
i
(ei −e)2, (4.5)

where we have denoted withe the mean value of the set{ei} (Eq. 4.4).

The quantity to minimize in this case is the standard deviation of the errors. To apply this

procedure, we smooth our asteroid spectrum by a polynomial curve (using thepoly f it function

from the Octave3.2 computation environment). This step is required to eliminate the outliers

produced by the incomplete removal of telluric absorption lines.

We used this type of curve matching to find the taxonomic classof the asteroid in the Bus-

DeMeo taxonomy and to compare with laboratory spectra. In the latter case, we determine how

well the asteroid spectrum is fitted by different laboratoryspectra, and select the closest 50 fits,

in ascending order ofΦ.

A second approach to curve matching can be made usingχ2 with the definition [Nedelcuet al.,

2007]:

χ2 =
1
N
·

N

∑
i

(xi −µi)
2

xi
, (4.6)

wherexi are the values of a polynomial fit to the asteroid spectrum andµi are the reflectance

values for the meteorite spectrum. The meaning of this formula is that of a relative error at each
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wavelength (N being the number of wavelengths on which the comparison is made).

The third approach to curve fitting is based on the correlation coefficient

ρX,M =
cov(X,M)

σX ·σM
, (4.7)

where,X = {xi} is the spectrum of the asteroid andM = {µi} is the laboratory spectrum. The

correlation coefficient detects linear dependences between two variables. If the variables are

independent (i.e. the asteroid and laboratory spectra), then the correlation coefficient is zero.

A unitary value for the correlation coefficient indicates that the variables are in a perfect linear

relationship, though in this case we search for laboratory spectra that match the desired asteroid

spectrum with the highestρX,M.

Finally, we concluded that a good fitting can be achieved by combining the standard devi-

ation method and correlation coefficient method. In connection to the Eq. 4.5 and Eq. 4.7 a

combined coefficient can be defined - Eq. 4.8.

Φcomb=
ρX,M

Φstd
, (4.8)

whereρX,M was defined in Eq. 4.7 andΦstd was defined in Eq. 4.5. In this case, the laboratory

spectra that match the asteroid spectrum are those with the highest value ofΦcomb.

4.2.3 Computing the space weathering effects

Our approach to computing space weathering effects appliesthe model proposed by Brunettoet al.

[2006]. On the basis of laboratory experiments, they concluded that a weathered spectrum can

be obtained by multiplying the spectrum of the unaltered sample by an exponential function (

see Eq. 4.9) that depends on the precise parameterCs.

By fitting the asteroid spectral curve with an exponential function using a least-square error

algorithm, we can compute theCs parameter

W(λ ) = K×exp(
Cs
λ
) (4.9)

Brunetto & Strazzulla [2005] demonstrated that ion-inducedspectral reddening is related

to the formation of displacements, with theCs parameter being correlated with the number

of displacements per cm2 (named damage parameter -d). Brunettoet al. [2006] obtained an

empirical relation betweenCs and the number of displacements per cm2

Cs = α × ln(β ×d+1), (4.10)

whereα = -0.33 µm andβ = 1.1×1019 cm2. Eq. 4.10 can be used to compute the damage

parameterd.

This model for the space weathering effects describes the effects of solar-wind ion irradia-
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tion. While this is not the only active weathering process, itseems to be the most important at

1 AU [Vernazzaet al., 2009, Brunettoet al., 2006].

The removal of space weathering effects is made by dividing the asteroid spectrum byW(λ )
at each wavelength.

4.2.4 Application of the Cloutis model

Cloutiset al. [1986b] proposed a method for the mineralogical analysis ofspectra showing

absorption bands. We implemented an application to computethe spectral parameters defined

by this method. The computation of all the parameters described in Section 4.2 is done for

spectra that contains the V + NIR wavelength regions. If onlythe NIR region is given, then

only the band minima can be computed.

The following steps are taken: we first compute the minima andmaxima of the spectrum.

This is done by starting with the assumption that there is a maximum around 0.7µm followed

by a minimum around 1µm, then a maximum between 1.3 - 1.7µm and a minimum around

2 µm. The spectrum is fitted around these regions by a polynomialfunction. The order of

the polynomial is selected to be between three and eight, in order to obtain the smallest least

square residuals. The minima and the maxima are the points where the first derivative of the

fitted polynomial functions is zero.

In the second step, using the wavelengths and the reflectanceat the two maxima and at the

end of the spectrum (around 2.5µm), we compute two linear continua, tangential to the spectral

curve. The continuum part is removed by dividing the spectrum by the two tangential lines (in

the corresponding regions). The band centers are computed following a method similar to that

applied to the band minima, but after the removal of the continuum.

The last step consists in computing the two absorption-bandareas. The first absorption band

is located around 1µm and between the first and second maxima. The second absorption band

is located around 2µm, between the second maximum and the end of the spectrum. Thearea

is computed using a simple integration method. This method consists in computing the area

between two consecutive points in the spectrum defined by a trapezoid and summing all these

small areas corresponding to the absorption band.

OPX
OPX+OL

= 0.4187× (
BII
BI

+0.125). (4.11)

The ratio of the areas of the second to the first absorption band (BAR= BII
BI ) gives the relative

abundance orthopyroxene vs olivine presented in Eq. 4.11 [Fornasieret al., 2003].





5
M4AST - Modeling of Asteroids Spectra

The increasing number of asteroid spectral measurements has lead to well-developed methods for analyzing
asteroid spectra. There is however no centralized databasefor all the published data and a set of standard
routines is also required.
This chapter describes a public software tool (called M4AST) that combines both data archives and analyses
of asteroid spectra. M4AST (Modeling for asteroids) consists of an asteroid spectral database and a set of
applications for analyzing asteroid spectra. These applications cover aspects related to taxonomy, curve
matching with laboratory spectra, space weathering models, and mineralogical diagnosis. M4AST tool is
fully available via a web interface. The database contains around 2,700 spectra of asteroids that can be
either processed in M4AST and/or downloaded. M4AST applications can also be used to characterize new
asteroid spectra.
The robustness of routines is proven by the solutions found for spectra of two NEAs: (99942) Apophis, and
(175706) 1996 FG3. The results confirm those already published in the literature. M4AST was presented to the
scientific community through a dedicated article publishedrecently [Popescuet al., 2012b]. The presentation
from this chapter closely follows the cited article.

Asteroid spectra have been obtained since the late 1960s. McCordet al. [1970] published

the first spectral measurements in the 0.3-1.1µm wavelength region for the asteroid (4) Vesta,

and found that its spectrum is similar to those of basaltic achondritic meteorites. The most im-

portant surveys in the 1980s for measuring the spectral characteristics of asteroids are the Eight-

Color Asteroid Survey1 (ECAS, Zellneret al. [1985]), and the 52-color survey2 [Bell et al.,

1988]. All these results showed the diversity of asteroid surface composition.

In the last two decades, the development of CCD spectrograph and the access to 3 - 8 m tele-

scope class have made possible to obtain spectra of significantly fainter asteroids with a much

higher spectral resolution than achievable by broad-band photometry. Several spectroscopic

surveys have been performed, including SMASS [Xuet al., 1995], SMASS2 [Bus & Binzel,

2002b], and S3OS2 [Lazzaroet al., 2004]. Other spectroscopic surveys have been dedicated

only to NEAs such as SINEO [Lazzarinet al., 2005] or the survey performed by de Leónet al.

[2010]. The total number of asteroid spectra resulting fromthese surveys is in order of thou-

sands and has led to a mature understanding of their population.

Currently, the spectral data of asteroids continues to grow.The most important spectral

1ECAS is a photometric survey
252-color is a spectrophotometric survey
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Figure 5.1: M4AST logo and the aims of this project.

surveys for asteroid have made their data available online.However, there is no centralized

database containing all the asteroid spectra3. Moreover, the exploitation of these data in terms

of construction of mineralogical models, comparison to laboratory spectra, and taxonomy is

treated individually by each team working in this field. Whilethe spectral databases for as-

teroids have become significant in size and the methods for modeling asteroid spectra are now

well-defined and robust, there are no standard set of routines for handling these data.

I developed M4AST (Modeling for Asteroids), which is a tool dedicated to asteroid spectra

[Popescuet al., 2012b, 2011, Birlan &Popescu, 2011]. The logo of this project and the aims

are given in Fig. 5.1. M4AST was conceived to be available viaa web interface (http://

cardamine.imcce.fr/m4ast/) and is free for access to the scientific community.

The flowchart of the M4AST project is presented in Fig. 5.2. This project consists of a

database containing the results of the observational measurements and a set of applications

for spectral analysis and interpretation. Additionally, we start up to build a tool dedicated to

observations planing, already described in chapter 3. Bellow we discuss the spectral database

and the modelling tools parts of M4AST.

5.1 Spectral database

The first component of the project is the spectral database. It contains the results of telescopic

measurements for the reflectance spectra of different wavelength ranges (V - visible, NIR - near

infrared, V+NIR - visible and near infrared) of the asteroids, and the observations logs.

5.1.1 Structure of M4AST database

The information in the database is organized into two type offiles: permanentandtemporary

files. Additionally, there is a catalog to keep track of the permanent files recorded.

3Some of these data are archived within the Small Bodies Node of the Planetary Data System (http://pds.nasa.gov/)

http://cardamine.imcce.fr/m4ast/
http://cardamine.imcce.fr/m4ast/
http://pds.nasa.gov/


CHAPTER 5. M4AST - MODELING OF ASTEROIDS SPECTRA 79

Figure 5.2: Block diagram and work flow of M4AST [Popescuet al., 2012b].

Permanent files are uploaded through a dedicated interface protected by a password. Any

new file submitted in this way is recorded in a catalog together with its observation log. The

observation log is also kept in the header of each file containing the corresponding spectral data,

including IAU designations of the asteroid, the date and hour (UT) of the observation, and the

IAU code of the observatory. Additional information could be included such as the investigator

name and e-mail address as well as the link to a reference, if the spectrum was published.

Each file containing the spectral data includes a header withthe observation log and the

measurements given in two columns: the first column containsthe wavelength inµm, and the

second column contains the corresponding reflectance values(normalized to unity at 0.55µm

if the visible part of the spectrum is contained, and otherwise at 1.25µm). If the dispersion in

the measurements is available, then it is provided into a third column.

Temporary files are created by the users only for processing the data. They provide a way

for the anonymous user to use the applications of M4AST for his own spectral data. Temporary

files receive a random name and can be removed by the same user that created them (no ad-

ministrative rights are required). The application library is fully available for modeling spectral

data contained in temporary files. No permanent informationis recorded.

5.1.2 The content

Historically, the database was designed for making available to the scientific community the

spectra obtained after observations performed remotely from the Centre d’Observation à Dis-

tance en Astronomie à Meudon (CODAM) [Birlanet al., 2004a, 2006]. The observations were

obtained in the 0.8 - 2.5µm spectral region using the SpeX/IRTF instrument, located on Mauna

Kea, Hawaii. The project now includes around 2,700 permanent spectra (in the V and NIR

wavelength regions) of both main belt and near-Earth asteroids.

Except the spectra obtained via CODAM, the main sources of thedatabase are SMASSI

[Xu et al., 1995], SMASII [Bus & Binzel, 2002b], and S3OS2 [Lazzaroet al., 2004] and

de Leónet al. [2010]. Together with our program of asteroid spectroscopic observations, some
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Figure 5.3: The database interface of M4AST. Here is illustrated the search of a spectrum for (1917) Cuyo and the
result of this search displayed at the bottom of the interface.

collaborations are intended in order to enlarge M4AST database.

The purpose of this database is not to duplicate other spectral libraries that already exist, but

to offer an unique format for the data, a fast way of applying the existing models, and a rapid

comparison of results.

5.1.3 M4AST database via the Virtual Observatory

The Virtual Observatory (VO) is an international astronomical community-based initiative. Its

aims are to allow global electronic access to the available astronomical data archives of space

and ground-based observatories and other sky survey databases and to enable data analysis

techniques through a coordinating entity that will providecommon standards.
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The M4AST spectral database can be accessed via VO-Paris Data Centre4 using Simple

Spectral Access Protocol [Doug Tody & the Data Access Layer Working Group., 2011]. The

M4AST spectral data obtained via VO can be retrieved in bothVOTableformat or our native

ASCII format. A "simple query search" based on asteroid designation correctly returns all the

spectra from our database for the corresponding object.

New protocols, dedicated to planetology, (such as Table Access Protocol) will be imple-

mented in the future.

5.2 The interface

M4AST includes two interfaces, one dedicated to database access (Fig. 5.3) and another for

running the different applications dedicated to spectral analysis (Fig. 5.4). The access flow

starts with the database interface and continues with the modeling tool interface. Fig. 5.2 gives

an overview of the M4AST workflow.

5.2.1 Database interface

The database interface (Fig. 5.3), calleduser input interface, allows the users to access the

spectra from the database or upload their own spectra for further processing. The following

options are available:

Search spectra in database- the user can search spectra in the database based on a maximum

of three keywords. These keywords include object designations, observing date, and the

IAU observatory code.

Download file from database- the user can download any spectrum using as input the file-

name provided by the previous option.

Upload temporary spectrum to database- the user can anonymously upload his own spec-

tral data for further processing. The file with the spectrum should contain two or three

columns, the first column containing the wavelengths (givenin angstroms, nanometers,

or microns), the second column containing the corresponding reflectance. Optionally, the

third column may include the dispersion of observations. The file receive a temporary

name over which the user has full control.

Concatenate spectra- spectra in different wavelength regions (V and NIR) can be merged.

The procedure consists in the minimization of data into a common spectral region (usually

0.8 - 0.9µm). The result is stored in a temporary file and can be further processed.

The results of all these operations are displayed at the bottom of each page (Fig. 5.3). These

results can be either spectra found in the database or temporary files. The connection with the

modeling tools is made using the name of the file containing the spectrum. This filename is

provided as a link and a simple click allows the user to accessthe modeling tool interface.
4http://voparis-srv.obspm.fr/portal/

http://voparis-srv.obspm.fr/portal/
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Figure 5.4: M4AST web application tool : modelling tool interface

5.2.2 Modeling tool interface

The second component of the M4AST project is the set of applications for modeling and an-

alyzing the spectra from the database or any spectrum submitted by the user. The use of the

modeling tool interface(Fig. 5.4) is based on the name of the file containing the spectral data.

The following applications are currently available in thisinterface:

Plot spectrum - plot the reflectance as a function of wavelength. Additional information re-

lated to the selected spectrum (the observing log) are also given.

Taxonomy - classify the spectrum according to different taxonomies.Taxonomic systems

that can be selected are Bus-DeMeo [DeMeoet al., 2009], G13 [Birlanet al., 1996a],

and G9 [Fulchignoniet al., 2000]. The methods behind these classifications are outlined

in chapter 4. The results of this application consist in the first three classes that match

the asteroid spectrum, together with some matching quantitative values (coefficients). In

addition, the asteroid spectrum is plotted together with standard spectra corresponding to

the best matches.

Search matching with spectra from the Relab database- performs spectral comparison with

spectra from Relab database. In general, only the meteorite spectra are of interest, thus an
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Figure 5.5: M4AST web tool application: screen-shoot from the table containing the list of the closest fifty best
matches which are ordered upon the comparison coefficient (column two of the table).

option for selecting between all spectra and only meteoritespectra is included. However,

the "all spectra" option includes spectral measurements formixtures (olivine/pyroxene)

prepared in the laboratory that can be considered when analyzing asteroid spectra. Four

methods are available for the spectral matching. Their description is given in Chapter

Methods of Analysis. This application provides the first fifty laboratory spectra that match

the spectrum (ordered by the matching coefficient - defined inprevious chapter). These

results are given in a table, together with a link to visualize a comparative plot between

laboratory spectrum and the asteroid one. This table includes all the information regarding

the spectral measurements and the sample characteristics (Fig. 5.5).

Space weathering effects- uses the space weathering model defined by Brunettoet al.[2006].

The results consists in computing the parameters of the model and de-reddening the spec-

trum. The de-reddening (removal of space weathering effects) is done by dividing the

spectrum by its continuum. The spectrum obtained can be further analyzed, being pro-

vided in a temporary file.

Band parameters and mineralogical analysis- computes the spectral parameters defined by

Cloutiset al. [1986b]. If only the infrared part of the spectrum is given, the algorithm

computes the band minima. If the spectrum contains both V andNIR regions, all the pa-

rameters described in chapter 4 are calculated. Along with the results, the plots necessary

to interpret these parameters are also provided.

After each computation made in M4AST, the results are displayed at the bottom of the page.

It must be noted that some of these applications provides meaningfully results only for certain

types of spectra. Their applicability is indicated in the publications describing the models. The

reference to the relevant publications is also available via the web interface.



84 CHAPTER 5. M4AST - MODELING OF ASTEROIDS SPECTRA

(a)

0.5 1 1.5 2 2.5

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Wavelength [um]

R
el

at
iv

e 
R

ef
le

ct
an

ce

 

 

Apophis
Sq
S
Sr

(b)

0.5 1 1.5 2 2.5

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Wavelength [um]

R
el

at
iv

e 
R

ef
le

ct
an

ce

 

 

1996 FG3
Ch
Cg
Xc

Figure 5.6: Classification in Bus-DeMeo taxonomical systemfor: a)) (99942) Apophis, and b) (175706) 1996
FG3. All the spectra are normalized to 1.25µm.

5.2.3 Updating the database

Permanent spectra can be added into the database via a dedicated interface -update database

(Fig. 5.2) - that requires administrative rights. The information needed to add a new permanent

file with spectral data are asteroid designations (an additional utility is provided to check the

designations), information about the observation (date, investigator, and IAU code of the ob-

servatory), and information about the uploaded file containing the measurements. Each record

submitted to the database can be removed only from this interface.

5.3 Testing of M4AST

The functionality of M4AST is exemplified here by the analysis of two spectra available in

the database that were previously discussed by Binzelet al. [2009], and de Leónet al. [2011a].

Our selection here covers a wide variety of spectra, (99942)Apophis is anSq type asteroid

with moderate features, and (175706) 1996 FG3 is a primitivetype with featureless spectra.

My choice for these objects is not trivial. (99942) Apophis is a NEA which came very close to

the Earth. The next approach will occur in 2029 and its Minimum Orbital Intersection Distance

(MOID) is less than 40,000 km from the Earth surface. 1996 FG3is the main target of the

future mission Marco-Polo-R. Ground based science is highlyrequired for this object if the

mission will take place.

The discussion of the taxonomic type of each object is made with reference to both Fig. 5.6

for Bus-DeMeo taxonomy and Fig. 5.7 for G-mode taxonomies. Table 5.1 summarizes the

comparison of asteroid spectra with spectra from the Relab database. The corresponding plots

are given in Fig. 5.8.
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Table 5.1: Summary of the results obtained by matching the asteroids spectra with spectra from the Relab database.
For each asteroid, I show the best two matches, obtained by measuring the standard deviation (std. dev.) and the
correlation coefficient (corr. coef.).

Spectrum std. dev. corr. coef. Meteorite/Sample Sample ID Type Texture
(99942) 0.01756 0.98013 Simulant CM-CMP-001-B Soil/Lunar Particulate

0.01970 0.98224 Hamlet OC-TXH-002-C OC-LL4 Particulate
(99942) 0.01539 0.96245 Cherokee Springs TB-TJM-090 OC-LL6 Particulate
de-reddened 0.01609 0.97272 Cat Mountain MB-DTB-035-A OC-L5 Particulate
(175706) 0.01219 0.90546 Sete Lagoas MH-JFB-021 OC-H4 Slab

0.01504 0.85366 Murchison heated 1000◦C MB-TXH-064-G CC-CM2 Particulate

5.3.1 Results

The first spectrum considered to exemplify the M4AST routines is that of the potential haz-

ardous asteroid(99942) Apophis[Binzel et al., 2009]. On the basis of this spectrum this as-

teroid was found to be an Sq type, and has a composition that closely resemble those of LL

ordinary chondrite meteorites.

M4AST classifies this spectrum in the Bus-DeMeo taxonomy as anSq-type (Fig. 5.6a). The

next two types, S and Sr, are relatively good matches, but have larger errors. Applying the G13

taxonomy, M4AST classifies this asteroid as being in class 2 (Fig. 5.7a). Two other classes

(namely 6 and 7) are relatively close in terms of g factor (Fig5.7a). Class 2 has the represen-

tative members (7) Iris and (11) Parthenope, which areS andSq type asteroids according to

DeMeo et al. (2009). The classes 2, 6, and 7 are equivalent to the S profile.

Being an Sq type, for this asteroid spectrum it can be applied the space weathering model

proposed by Brunettoet al. [2006]. Thus, fitting the spectrum with an exponential continuum

we foundCs = -0.196µm, corresponding to a moderate spectral reddening. The result obtained

by Binzelet al.[2009] isCs = -0.17± 0.01µm. This difference could be caused by the different

method that they used: their "best fit was performed as an integral part of the overall minimum

RMS solution". TheCs value gives the number of displacements per cm2, d = 0.74×1019

displacements/cm2. Next, will be analyzed both the original spectrum and the de-reddened

spectrum.

Comparing the original spectrum of (99942) Apophis with all laboratory spectra from Relab,

M4AST found matches with some ordinary chondrite meteorites (L and LL subtypes, and

petrologic classes from 3 to 6) and some lunar soils (Figs. 5.8a and 5.8b). Referring to standard

deviation and to correlation coefficient, the closest matches were those of particulate lunar soils

and some spectra from Hamlet meteorite which is particulatewith grain sizes smaller than 500

µm. The meteorite Hamlet is an ordinary chondrite, subtype LL4.

In the case of the de-reddened spectrum, the majority of solutions correspond to ordinary

chondrite meteorites, of subtype L and LL, with petrologic classes from 4 to 6. The best

matches were those of the Cherokee Springs meteorite (an LL6 ordinary chondrite, Fig. 5.8c)

and the Cat Mountain meteorite (an L5 ordinary chondrite, Fig. 5.8c). From spectral modeling
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Figure 5.7: Classification in the G-mode taxonomical systemfor: a) (99942) Apophis using G13 taxonomy, b)
(175706) 1996 FG3 using G13 taxonomy, and c) (175706) 1996 FG3 using G9 taxonomy. All the spectra are
normalized either to 1.25µm (left and central panel), or to 0.55µm (c).

of mixtures of olivine, orthopyroxene, and clinopyroxene,Binzelet al. [2009] correlate the

spectrum of (99942) Apophis to the spectra of LL meteorites.These results agrees with the

spectral matching solutions found by M4AST.

No significant differences between the Cloutis model parameters computed for original and

de-reddened spectrum are found. The application founds thefirst band center at 0.9721±
0.0143µm (0.9755± 0.0144µm for the de-reddened spectrum), the second band center at

1.8200± 0.0679µm (1.8404± 0.0591µm for the de-reddened spectrum), and the band area

ratio 0.4059± 0.0047 (0.3886± 0.0015 for the de-reddened spectrum). These parameters

correspond to an ordinary chondrite with anOPX/(OPX+OL) ratio of 0.222 (0.215 for the

de-reddened spectrum). This ratio agrees with the compatibility relation between NEA and

LL ordinary chondrites found by Vernazzaet al. [2008], which is similarly consistent with the

spectral matching we found.

This value means that the ordinary chondrite consist of 78% olivine, which is consistent

with an LL ordinary chondrite. And this result agrees to the spectral matching.

The dark primitive asteroid(175706) 1996 FG3is the primary target of the ESA Marco

Polo-R mission. Some papers were dedicated to this object, namely de Leónet al. [2011b],

Wolterset al. [2011], Rivkinet al. [2012], and Walshet al. [2012]. There are few spectra pub-

lished in both V and NIR. In the M4AST database, we included spectra from the MIT-UH-IRTF

(MINUS) survey5 and the spectrum of de Leónet al. [2011b].

On the basis of different spectra, the asteroid has been classified as belonging to primitive

types (C, B, or X), but there is no consensus on its classification in the literature [de Leónet al.,

2011b, Walshet al., 2012]. In addition some spectral matchings have been notedwith mete-

orites ranging from ordinary chondrite H-type to both CM2 andCV3 carbonaceous chondrite

[de Leónet al., 2011b, Rivkinet al., 2012].

To exemplify the applications of M4AST, we used the spectrumobtained on March 30, 2009

by MIT-UH-IRTF (MINUS). The classification in the Bus-DeMeo taxonomy returned the Ch,
5http://smass.mit.edu/minus.html

http://smass.mit.edu/minus.html
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Figure 5.8: Asteroid spectra and the best two matches derived from a comparison with laboratory spectra:(a)
spectrum of Apophis and the spectrum of a simulant Lunar soil, (b) spectrum of Apophis and the spectrum of
a particulate sample from the Hamlet meteorite, (c) de-reddened spectrum of Apophis and the spectrum of a
particulate sample from the Cherokee Springs meteorite, (d) de-reddened spectrum of Apophis and the spectrum
of a particulate sample from the Cat Mountain meteorite, (e)spectrum of 1996 FG3 and the spectrum of a sample
from the meteorite Sete Lagoas, and (f) spectrum of 1996 FG3 and the spectrum of a sample from the Murchison
meteorite heated to 1000◦C.
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Cg, and Xc taxonomic types (Fig. 5.6b). The scores obtained for the classes Ch, Cg, Xc, C, and

Cgh are very similar. This object has neither the absorption band centered at 0.7µm typical

of Ch-type, nor the redder spectral slope of Xk-types [de Leónet al., 2011b]. In addition, the

slope in the NIR part of the spectrum, that is of Cg type does notcorresponds to the spectrum

of (175706) 1996 FG3.

Classifying this spectrum of (175706) 1996 FG3 using the G13 taxonomy, we obtain with

high confidence (gs = -1.237) the type corresponding to class 3. The other two types (classes 9

and 4) have greatergs coefficients (Fig. 5.7b). Groups 3 and 4 are the equivalents for the C-type

asteroids. As representative members of the class 3, there are (1) Ceres and (10) Hygiea, which

are both primitive asteroids. The classification in the G9 taxonomy (Fig. 5.7c) confirms the

classification as a primitive type, suggesting as the first options the classes G and C, while the

third option (V) could be ignored because it has a largergs.

Considering these three classifications, the solution on which the applications of M4AST

seems to converge is that the spectrum of (175706) 1996 FG3 isof a Cg taxonomic type.

Comparing the spectrum of (175706) 1996 FG3 to the laboratoryspectra, it was obtained

a good match to a sample of the meteorite Sete Lagoas (Fig. 5.8e). Other matches are the

spectrum of a sample from meteorite Murchison heated to 1000◦C (Fig. 5.8f), the spectrum of

a sample from the Dhofar 225 meteorite, and the spectrum of a sample from Ozona. This is

puzzling, since both the Sete Lagoas and Ozona meteorites are ordinary chondrites (H4 and H6,

respectively), and both Murchinson and Dhofar 225 are carbonaceous chondrites. However, it

can be noted that the majority of matching solutions are spectra of carbonaceous chondrite

meteorites (CM type). If additionally, is taken into accountthe asteroid albedo6, then the

spectrum of Dhofar 225 (sample ID: MA-LXM-078) and Murchison heated to 1000◦C (sample

ID: MB-TXH-064-G ) seems to be the most probable analogs of this asteroid spectrum.

While the results of M4AST are in agreement with those alreadypublished, it can be con-

cluded that the routines of M4AST work correctly and their implementation is robust.

5.3.2 Discussions regarding misinterpretations of spectra

Applying the correct methods for interpreting asteroid spectra can reveal a lot of information

about the physical properties of these objects. However, each method has its own limitations

which in general are well-described in their correspondingpaper, and using the methods beyond

their limits may of course lead to incorrect results.

The first misinterpretation that may occur is related to space weathering. Gaffey [2008]

noted, "space weathering is commonly invoked to reconcile observational data to the incorrect

expectation that ordinary chondrite assemblage are commonin the asteroid belt". While space

weathering for the lunar samples has been well-documented using the samples returned from

the Apollo missions, it has been observed that different models are required to interpret the

6the geometric albedo was found as 0.039±0.012 by Walshet al. [2012]
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space weathering processes that acted on different asteroid surfaces.

The model I applied for space weathering was based on laboratory experiments that consist

in ion irradiation (Ar+) of olivine and pyroxene powders. This model is suitable forasteroids

that seem to consist of olivine and pyroxene, such as those from the S complex.

According to these experiments, the reddening in the infrared part of spectra due to solar-

wind ion irradiation can be removed, by dividing the spectrum by an exponential function.

However, there are several other effects that can modulate the spectra, such as either thermal

influence [Rivkinet al., 2005] or the debated phase-angle effect [Veverkaet al., 2000].

The second misinterpretation that may occur is related to the spectral matches with labo-

ratory spectra [Gaffey, 2008]. Curve matching can provide clues to the nature of the asteroid

surface composition. The efficiency of this method can be clearly observed in the case of as-

teroids that have strong spectral features, such as the vestoids7. Misinterpretations can occur

when the asteroid surface is modified by space weathering effects, while the meteorite can be

modified by terrestrial influences.

The four methods proposed take into account different characteristics of the spectra: spectral

slope, band depths, and the various feature positions. In the context of taxonomic classification,

albedo value, space-weathering effects, and similar solutions obtained from all four matching

methods, the developers [Popescuet al., 2012b] of M4AST believe that spectral matches with

laboratory spectra provide valuable information on the asteroid surface nature.

By applying the methods of M4AST, it can be observed that a goodsolution for interpret-

ing the asteroid spectrum is found when all the methods converge to the same mineralogical

interpretation. For example, when the spectrum of (99942) Apophis was processed, despite

the poor signal to noise ratio in the infrared part of its spectrum, we obtain the classification

Sq in the Bus-DeMeo taxonomy and an analog of this class in the G13 taxonomy. We then

found that the spectra of ordinary chondrite meteorites (L,LL subtypes) match this spectrum.

These two results were confirmed and developed by applying the Cloutis model: the fraction

of olivine-orthopyroxene is 22%, and the associated parameters are equivalent to those of an

ordinary chondrite. This conclusion is in general valid forall the spectra analyzed via M4AST.

7Vesta-like asteroids
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6
Spectral properties of near-Earth asteroids

This chapter presents spectra of eight NEAs (1917, 8567, 16960, 164400, 188452, 2010 TD54, 5620, and
2001 SG286 ) obtained using the NASA telescope IRTF equippedwith the spectro-imager SpeX. The analysis
of these spectra includes taxonomic classification, comparison with laboratory spectra from Relab database,
and for the S-type objects the correspondent mineralogicalmodels. I also attempted to interpret our data
using a space-weathering model.
The taxonomic classification of five objects was reviewed anda corresponding type was assigned to the other
three asteroids that were not classified before. I found that(1917) Cuyo, (8567) 1996 HW1, (16960) 1998
QS52, (188452) 2004 HE62, and 2010 TD54 are in the S-complex.For these S-type asteroids a good matching
was found with spectra of ordinary chondrites meteorites.
The asteroids (5620) Jasonwheeler and 2001 SG286 were classified as D-type objects. The spectrum of (5620)
Jasonwheeler is similar to spectra of carbonaceous chondrite meteorites. The results found for the two objects
confirm their primitive properties obtained in several other spectral intervals.
Four of the observed objects have delta - V lower than 7 km/sec, which make them suitable targets in terms of
propulsion for a future spacecraft mission.

Near-Earth Asteroids (NEAs) are a continuously changing population of small bodies with

orbits that come close to the Earth’s orbit. Their chaoticity defines them as a critical population,

while several important gravitational field (those of the Sun, Jupiter, and the inner planets) are

superimposed influencing their orbital movement.

Because of the relatively short lifetime of these objects, itis necessary to understand the

dynamical mechanisms of supplying those bodies which are lost (due to expulsion from the

Solar System, falling into the Sun or on the telluric planets) and their reservoirs of objects from

the Main Belt. According to Gladmanet al. [2000] the median lifetime of the NEAs is 10 Myr.

On the other hand, NEAs are among the most accessible bodies in the Solar System in terms

of the spacecraft propulsion requirements to reach them. Inthis sense, the knowledge of the

ensemble of physical parameters for these objects, including their composition, is a critical

point in defining any mission scientific objectives. Currently, several programs (like Marco-

Polo-R, Osiris-REx, Hayabusa2) are under development for space exploration of NEAs.

Another point is that the objects in near-Earth space are a valuable source of information as

they represent a mixture of the different populations of small bodies: main-belt asteroids and

cometary nuclei [DeMeo & Binzel, 2008], and a link with meteorites [Vernazzaet al., 2008,
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Table 6.1: Some characteristics of the observed NEAs: orbittype, semi-major axis, eccentricity, inclination,
absolute magnitude (H), and the delta-V.

Object Orbit Type a e i ∆V [km/s] H
Cuyo Amor 2.15005205 0.50448184 23.943786 8.556 14.7
Jasonwheeler Amor 2.15783969 0.42369152 7.861788 6.974 17.0
1996 HW1 Amor 2.04580925 0.44905867 8.439303 6.495 15.4
1998 QS52 Apollo 2.20249841 0.85791440 17.563883 11.11 14.2
2005 GN59 Apollo 1.65644063 0.46770919 6.627004 6.002 17.4
2004 HE62 Amor 2.55781560 0.56690184 24.685809 9.074 17.3
2001 SG286 Apollo 1.35819973 0.34708703 7.772096 5.604 20.9
2010 TD54 Apollo 1.97198039 0.64352131 4.809727 - 28.7

Popescuet al., 2011]. Their accessibility enables their scientific study, their practical study,

and their detailed assessment for their future use as space resources.

In this chapter are describe spectroscopic results for eight NEAs in the 0.8-2.5µm spectral

region. Some of their dynamical characteristics are summarized in Table 6.1. The asteroids

were observed during several runs between 2008 and 2010 as part of a project for studies

of NEA physical properties, and potential targets of spacecraft missions. I modeled and in-

terpreted the acquired spectra using the techniques described in chapter four with the goal

of achieving basic interpretations regarding the composition and physical processes that took

place at the surface of these asteroids.

6.1 Log of observations

In contrast to the Main-Belt asteroids, the asteroids classified as NEA do not often have a

favorable geometry for ground-based observations. The small diameters of the majority of

NEAs impose tight constraints on the suitable geometries ofobservations for determining the

reflective properties of their surfaces. These conditions are usually met in the case of a close

approach to the Earth, when the apparent magnitude decreases by several magnitudes. These

suitable geometries occur on average, only five times per century.

The technical limitations like differential tracking, diameter of the principal mirror of the

telescope and the sensitivity of the detectors should be alsotaken into account.

The spectral data described here were obtained in the 0.8 - 2.5 µm spectral region with the

SpeX/IRTF instrument. The observations were carried out intwo sessions: in August 2008

and in May 2009. The remotely observing procedure from CODAM was used. The spectrum

of 2010 TD54 was received from professor R. Binzel (private communication). For all the

observations the low resolution prism mode (R≈ 100) of the spectrograph was used. A 0.8×15

arcsec slit oriented north-south was used. The spectra of the asteroids and the solar analog stars

were obtained using the nodding procedure.

Log of the observations is given in Table 6.2. In general, theasteroid spectra were obtained

taking images with an integration time (Itime) of 120s, for several cycles, to increase theS/N
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Table 6.2: Log of NEAs observations. Their designations, date of observation with the fraction of the day for
the mid time of the observation, the apparent magnitude, thephase angle, the heliocentric distance, the airmass at
the mean UT of each observation, the integration time for each spectrum (ITime), and the number of cycles are
shown.

Asteroid Date (UT) V Φ (◦) r (UA) Airmass ITime(s) Cycles
(1917) Cuyo 2008-08-27.637 14.6 66.0 1.105 1.038 120 6
(5620) Jasonwheeler 2009-05-04.569 16.5 20.9 1.345 1.344 120 6
(8567) 1996 HW1 2008-08-27.543 12.9 28.8 1.143 1.099 60 13
(16960) 1998 QS52 2008-08-27.588 16.9 30.0 1.784 1.105 120 13
(164400) 2005 GN59 2008-08-27.472 16.2 25.2 1.244 1.024 120 2
(188452) 2004 HE62 2008-08-27.404 16.7 60.8 1.109 1.513 120 12
2001 SG286 2009-05-19.594 16.7 102.0 1.006 1.962 120 2
2010 TD54 2010-10-12.303 15.5 17.3 1.000 1.252 120 8

Table 6.3: The solar analogs used for data reduction in the case of the NEAs spectra. The airmass at the moment
of observations and relative distance to the asteroid are presented.

Asteroid Solar analogue Airmass Distance[o]
(1917) Cuyo BD+41 309 1.141 29.1
(5620) Jasonwheeler HD 154716 1.240 15.4
(8567) 1996 HW1 HD 217577 1.213 5.4
(16960) 1998 QS52 HD 27834 1.083 48.5
(164400) 2005 GN59 BD+28 3198 1.410 46.7
(188452) 2004 HE62 BD+28 3198 1.401 11.8
2001 SG286 HD 216516 1.742 3.4
2010 TD54 L115-271 1.092 8.71

ratio. For two objects of our sample (2005 GN59, and 2001 SG286), the atmospheric conditions

and their faint magnitude imply a poorS/N ratio. In this case, in order to obtain reliable spectral

measurements the images were selected by visual inspection, removing all those in which it

could not distinguish the trace of the spectrum before the data reduction procedure.

Our strategy was to observe all asteroids as close to the zenith as possible (Table 6.2). Each

observed asteroid was preceded by observations of a solar analog. The following stars were

observed and used as solar analogs: BD+41 309, HD 154716, HD 217577, HD 27834, BD+28

3198, HD 216516, and L115-271 (Table 6.3). The differentialairmass between the asteroid

and the standard was usually restricted to less than 0.15. The photometric G2V standards were

chosen. An exception was made for 2010 TD54, where the data reduction was performed using

Landolt 115-271 star, commonly used for NIR spectral measurements.

6.2 S-type Near-Earth Asteroids

Spectroscopic observations in visible wavelengths show that 65% of NEAs have S- and Q-type

spectral properties. When corrected for discovery biases, the near-Earth population of S- and

Q-type asteroids is estimated to be 36 % of the total NEA population [Stuart & Binzel, 2004].

Six asteroids from our eight observed samples have spectra similar to the S-complex. These

objects are: (1917) Cuyo, (8567) 1996 HW1, (16960) 1998 QS52, (164400) 2005 GN59,
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(188452) 2004 HE62, and 2010 TD54. The summary of the resultsobtained by matching

the asteroid spectra and the de-reddened asteroid spectra with spectra from the Relab database

is given in Table 6.4.
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Figure 6.1: a) The visible [Binzelet al., 2004b] and the NIR spectrum of (1917) Cuyo; b) a polynomial fit of the
V+NIR spectrum of (1917) Cuyo compared with the theoreticalspectra of R and Sr types; c) reflectance spectrum
of (1917) Cuyo and the closest match resulting from meteorite comparison - H3-4 ordinary chondrite Dhajala; d)
De-reddened spectrum of (1917) Cuyo and the closest match resulting from meteorite comparison, H6 ordinary
chondrite Lancon.

6.2.1 (1917) Cuyo

With an absolute magnitudeH = 14.7, this object has an estimated diameter of 5.2 km [Binzelet al.,

2002]. It is an Amor-type asteroid, with a rotation period of2.6905±0.0005 hrs [Wisniewskiet al.,

1997].

Two spectra in the visible wavelengths are published for this object. For the first one,

Binzelet al. [2004b] found that this asteroid is a Sl-type in Bus taxonomy,with a high slope of

(0.7233µm−1). The second one was classified by Michelsenet al.[2006] as an S-type asteroid

in Tholen taxonomy. I joined the visible spectrum from the SMASS database [Binzelet al.,
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2004b], with the data in NIR region (Fig. 6.1a). The analysiswas performed on the composite

V+NIR spectrum.

Using M4AST tool for taxonomic classification of a spectrum,the R and Sr types are ob-

tained as possible classes for this object. The R-type is obtained with a slightly better matching

coefficient than Sr-type, because of the trend in the 1-1.5µm spectral region. With the tool

from the MIT-SMASS website, this NEA was classified as Sr-type with a higher spectral slope

of 0.5086µm−1. By visual inspection of the two solutions, it can be seen thatthe features

around 1µm and 2µm are more shallow than for R class (Fig. 6.1b), so it can be concluded

that this object is an Sr type asteroid.

The comparison with the Relab database shows that the closestspectral fit is obtained for

a tiny section from the Dhajala meteorite (Sample ID: LM-LAM-026, Fig. 6.1c). This corre-

sponds to an ordinary chondrite meteorite rich in Fe (H3-4 Olivine-Bronzite). Das Guptaet al.

[1978] estimated a total iron content of 27.1% of the total mass of Dhajala. This meteorite

was also studied by analyzing the metallic grains in its OC structure [Kong & Ebihara, 1997].

While the formation of metallic iron is a consequence of the spatial alteration of an object,

space weathering models are nevertheless justified.

Modeling the effects of space weathering on the basis of the exponential continuum, it can

be foundCs = -0.484µm, corresponding to strong spectral reddening. Owing to thesize of

this NEA, this value agrees with the general conclusion thatlarger objects are collisionally

older, hence contain surfaces that are more space-weathered, or are not subject to other surface

rejuvenating events as frequently as smaller NEAs. The number of displacements per cm2,

which provides a measure of the solar-wind ion irradiation,is 3.25×1019, which implies that

the exposure has been longer than 1My [Brunettoet al., 2006].

By removing the exponential continuum and fitting the unweathered spectrum with mete-

orite spectra from the Relab database, the closest match was found to be ordinary chondrites

with high level content of Fe, but with a higher petrologicaltype (H5, H6). The spectra of

the following meteorites are very similar to the de-reddened spectrum of (1917) Cuyo: Lancon

(Fig. 6.1d), Collescipoli, Ehole (Table 6.4).

6.2.2 (8567) 1996 HW1

This asteroid has an Amor type orbit and a∆V = 6.495 km/s, though it is a suitable target in

terms of propulsion for a space mission. The radar observations show a two-lobed object about

1.1 by 2.7 km in size [Tayloret al., 2009]. The object is rotating with a synodic period of

8.7573±0.0009 hrs [Higginset al., 2006].

Vernazza [2006] found this asteroid to be an S-type based on the visible spectrum (0.5 -

0.95µm) acquired on August 29, 2005 at TNG. The NIR spectrum of (8567) 1996 HW1 was

obtained in August 28, 2008 using an integration time of 60sec, due to the fact that the apparent

magnitude was 12.9. I combined the visible spectrum from Vernazza [2006] with the NIR data
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Figure 6.2: a) The visible [Vernazza, 2006] and the NIR spectra of (8567) 1996 HW1; b) a polynomial fit of the
V+NIR spectrum of (8567) 1996 HW1 compared with the theoretical spectra of S and Sq types; c) reflectance spec-
trum of (8567) 1996 and the closest match resulting from the meteorite comparison - the LL4 ordinary chondrite
Hamlet; d) de-reddened spectrum of (8567) 1996 HW1 and the closest match resulting from meteorite comparison
-the LL6 ordinary chondrite Cherokee Springs.

(Fig. 6.2a) before analyzing the composite spectrum.

Using the taxonomic classification tool from the MIT-SMASS,this NEA is classified as an

S-type with the spectral slope 0.2245µm−1. Using the M4AST approach, it can be found that

an Sq type provides a closer fit spectrum than an S (Fig. 6.2b).Sq type is at the transition

between S and Q classes with two absorption bands around 1µm and 2µm that are more

shallow than for Q-type [DeMeoet al., 2009]. Comparing the features for the two considered

spectral types with a polynomial fit of the spectrum, it can beobserved that an Sq type matches

more closely the obtained data than an S type. Since there areno measurement of the albedo

for this object, assuming a value of 0.20 as typically found for the albedo of S-type asteroids

[Fulchignoniet al., 2000], the diameter can be estimated to be≈ 2.5 km.

The spectrum from the Relab sample that provides the closest fit is a particulate ground

sorted (0-125µm) Hamlet meteorite (sample ID: OC-TXH-002-C), an ordinary chondrite with
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Table 6.4: Summary of results obtained by matching the asteroid spectra and de-reddened asteroid spectra with
spectra from the Relab database. The comparison was made using aχ2 method and a selection of the obtained
results was done based on spectral features (band, band-gap, concavity) positions, and albedo values. For (5620)
Jasonwheeler, a de-reddening model was not applied

Matching results for asteroid spectra
Spectrum Meteorite Sample ID Type Texture Size [µm]
(1917) Cuyo Dhajala LM-LAM-026 OC/H3-4 Thin Section -
(8567) 1996 HW1 Hamlet OC-TXH-002-C OC/ LL4 Particulates 0-125
(16960) 1998 QS52 Saratov MB-CMP-028-H OC/L4 Particulates 0-370

Homestead MR-MJG-048 OC/L5 - -
Hamlet 1 MR-MJG-069 OC/LL4 - -

(188452) 2004 HE62 La Criolla MH-FPF-050-B OC/L6 Particulates 0-150
Cherokee Springs OC-TXH-001-A OC/LL6 Chip -
Wold Cottage MH-FPF-064 OC/L6 Particulates -

2010 TD54 Saratov MB-CMP-028-B OC/L4 Particulates 10-45
Mirzapur TB-TJM-111 OC/L5 Particulates 0-150
Rio Negro TB-TJM-081 OC/L4 Particulates 0-150

Matching results for de-reddened asteroid spectra
(1917) Cuyo Lancon MR-MJG-033 OC/H6 - -

Collescipoli MR-MJG-030 OC/H5 - -
Ehole TB-TJM-074 OC/H5 Particulates 0-150

(8567) 1996 HW1 Cherokee Springs TB-TJM-090 OC/LL6 Particulates 0-150
Hedjaz OC-TXH-016-C OC/L3-6 Particulates 0-125
Ensisheim TB-TJM-092 OC/LL6 Particulates 0-150

(16960) 1998 QS52 Hamlet 1 MR-MJG-069 OC/LL4 - -
Gruneberg MR-MJG-040 OC/H4 - -

(188452) 2004 HE62 Nanjemoy MR-MJG-034 OC/H6 - -
Olmedilla de Alarcon MR-MJG-075 OC/H5 - -
MAC88119.9 MB-TXH-044 OC/H5 Slab 0

2010 TD54 Gruneberg MR-MJG-040 OC/H4 - -
Queen’s Mercy MR-MJG-035 OC/H6 - -
Ochansk MR-MJG-027 OC/H4 - -

a low level content of Fe and metal - LL4 (Table 6.4, Fig. 6.2c). The asteroid spectrum in the

region 1.6 -2.5µm is shallower than that of the meteorite spectrum, which could be explained

by considering space-weathering effects.

Using the space weathering model of Brunettoet al. [2006], it can be found thatCs = -0.258

µm. Modelling this with a damage parameter due to the solar-wind ion irradiation the number

of displacements per cm2 can be found asd = 1.08×1019, showing that it has experienced an

appreciable amount of space weathering.

By removing the exponential continuum and comparing again with Relab meteorite spectra,

the closest matches are also ordinary chondrite (LL6, L3-6 types) spectra with a low metal,

low Fe content. The meteorite spectra that provide the closest fit of the de-reddened spectrum

of this asteroid are those of: Cherokee Spring (Fig. 6.2d), Hedjaz,and Ensisheim (Table 6.4).

The Relab samples of these meteorites are particulates sorted in order of their sizes, which are

smaller than 150µm.
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Figure 6.3: a) The visible [Binzelet al., 2004b] and the NIR spectra of (16960) 1998 QS52; b) a polynomial fit
of the V+NIR spectrum of (16960) 1998 QS52 compared with the theoretical spectra of Sr, Sq and Q types; c)
the reflectance spectrum of (16960) 1998 QS52 and the closestfit resulting from spectral comparison - the L4
ordinary chondrite Saratov; d) the de-reddened spectrum of(16960) 1998 QS52 and the closest fit resulting from
meteorite comparison - the LL4 ordinary chondrite Hamlet.

6.2.3 (16960) 1998 QS52

With an absolute magnitudeH = 14.20, this asteroid has an estimated diameter of 4.3 km

[Binzel et al., 2002]. It is characterized by a synodic period of 2.900±0.001 hrs [Warner,

2009]. It has an Apollo orbit type and∆V = 6.5 km/s, which makes it an accessible target

for a spacecraft mission. (16960) 1998 QS52 is a PHA object type with 0.01408 AU MOID

computed at epoch 55600.0 MJD (NeoDys1).

On the basis of a visible spectrum acquired with the MDM 2.4 m telescope in 15 October

1998, Binzelet al. [2004b] classified this asteroid as Sq type. The spectrum of the visible

region has a small negative slope of -0.0205µm−1. The following analysis was made on the

combined V+NIR spectrum (Fig. 6.3a).

Both methods for taxonomic classification (M4AST and MIT-SMASS online tool) of clas-

1htt p : //newton.dm.unipi.it/neodys/
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sification gave the same results: this object has the characteristics of an Sr type in Bus-DeMeo

taxonomy, with a fairly 1µm feature (Fig. 6.3b). The slope of this composite spectrum is

0.1126µm−1.

Comparison with meteorite spectra from Relab database shows the match with ordinary

chondrites samples with low content of Fe (L4, LL4, L5). The best fit is a powdered sam-

ple (dimensions: 10 - 45µm) from Saratov meteorite, an ordinary chondrite L4 (Table 6.4,

Fig. 6.3c).

Analyzing this composite spectrum with a space weathering model [Brunettoet al., 2006] ,

I computed the value ofCs = -0.149 which describes an unreddened spectrum corresponding to

a fresh surface. It can be speculated that this young surfaceis due to a relatively recent close

encounter with a planet [Binzelet al., 2010].

To verify this hypothesis, 100 orbital clones of 1998 QS52 were generated using a random

gaussian distribution centered at the nominal values in each of the six orbital elements. The 1σ
values were obtained from the orbital elements uncertainties provided by the NeoDys service

for this asteroid. The 100 clones were numerically integrated backward in time for 5,000 years

using the computing routines proposed by Nedelcu [2010]. Each close encounter (MOID) with

Venus, the Earth, and Mars was then carefully analyzed to findthe closest one able to rejuvenate

the surface of the object.

In addition to the 1989 close approach to Earth, an event already identified by NeoDys, the

calculus confirms that five others close approaches to Venus had occurred in the past 3,000

years before the common origin signature of our cloud of clones was erased by close planetary

encounters. The MOID values are larger than those predictedby Binzelet al. [2010]. The de-

terministic clones approach can reliably obtain NEAs positions only for a couple of thousands

years backward in time [Nedelcu, 2010]. Systematic errors in osculating elements can affect

the position of the object, and close encounters with telluric planets will modify in a non-linear

way the uncertainty in the position. Thus, it can be estimatedthat for timescales of millions

of years (the scale for SW determined by Brunettoet al. [2006]) the object might experience

additional close encounters that cannot be reproduced by our numerical integration of orbit.

Comparing the de-reddened spectrum with the Relab database, it can be found a good fit

to the spectrum with the one of Hamlet meteorite, a LL4 ordinary chondrite (Fig. 6.3d). This

result was also found when comparing with the original spectrum. This agrees with the result

that dividing the spectrum with the exponential continuum by the small value ofCs does not

alter its characteristics.

6.2.4 (188452) 2004 HE62

Few physical parameters of (188452) 2004 HE62 are known. This asteroid has an Amor orbit

and an absolute magnitudeH = 17.30 (Table 6.1). No other spectral investigations have been

published for this asteroid. The NIR spectrum observations(Fig. 6.4a) of this object were made
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Figure 6.4: a) The NIR spectrum of (188452) 2004 HE62 normalized to 1.25µm; b) a polynomial fit for the
spectrum of (188452) 2004 HE62 compared with the theoretical spectra of Sr and Sv types; c) the reflectance
spectrum of (188452) 2004 HE62 and the closest fit resulting from meteorite spectra comparison - the L6 ordinary
chondrite La Criolla; d) the de-reddened spectrum of (188452) 2004 HE62 and the closest matches resulting from
meteorite comparison - the H6 ordinary chondrite Nanjemoy.

on August 27, 2008 when the object had an apparent magnitude of 16.7.

The spectrum of (188452) 2004 HE62 has two features around 1 and 2 µm: these are two

deep absorption bands that are larger than for Sv-type meteorites but not so deep to be classified

as one of the end members R or V. However, the classification isbetween the Sr and Sv classes

in the Bus-DeMeo taxonomy (Fig. 6.4b). A visible spectrum would help to clarify the object’s

classification. The spectral slope computed on the NIR part of the spectrum is 0.1167µm−1.

Assuming an average albedo of 0.2 - typical for S-type objects, the diameter can be estimated

to be∼1 km.

By comparing with data from the Relab database, this spectrum was found to be closely

matched by the spectra of ordinary chondrite meteorites with low Fe, low metallic content,

and high petrologic class (L6, L5, LL6) - Table 6.4. The best-fit solution was obtained with

a spectrum of a particulate sample (0-150µm) from the La Criolla meteorite (Sample ID:
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MH-FPF-050-B) - Fig. 6.4c.

Modeling the spectra with the exponential continuum [Brunetto et al., 2006], the parameter

Cs is found to be of -0.377µm, which characterizes a surface affected by space weathering

effects. Removing this continuum and comparing with Relab meteorite spectra, the best fit

are also the ordinary chondrites, the same petrologic classbut with a high content of Fe (OC

types H5, H6). The closest match in this case is a sample from aNanjemoy meteorite, an H6

Olivine-Bronzite OC, which consists of 18% Fayalitic material(Fig. 6.4d).
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Figure 6.5: a) The NIR spectrum of 2010 TD54; b) a polynomial fit for the spectrum of 2010 TD54 compared
with the theoretical spectra of Sv, Sr and S types; c) the reflectance spectrum of 2010 TD54 and the closest match
resulting from meteorite comparison - the L4 ordinary chondrite Saratov; d) the de-reddened spectrum of 2010
TD54 and the closest match resulting from meteorite comparison - the H4 ordinary chondrite Gruneberg.

6.2.5 2010 TD54

The analysis of this object is interesting from the point of view of its size and the phenomena

that occur on the surface of small bodies during a close encounter with Earth. With an absolute

magnitudeH = 28.75, 2010 TD54 was discovered by the Catalina Sky Survey inOctober 09,

2010. Having an Apollo orbit type, this object passed within0.00035 AU of the Earth on 12.55
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Oct 2010 [Hicks & Rhoades, 2010].

Preliminary measurements were done by Hicks & Rhoades [2010]. They found a rotational

period of 42.0 sec, which implies that this small NEA is the most rapidly rotating natural

body known in the Solar System. They also measured the object’s average colors (B-R =

1.284±0.045 mag; V-R = 0.461±0.030 mag; R-I = 0.344±0.022 mag). These are compatible

with an S-type spectral classification.

The NIR spectrum of 2010 TD54 is plotted in Fig. 6.5a. Using the MIT-SMASS online tool

for Bus-DeMeo taxonomy, this asteroid is classified as belonging to a S complex, of subtypes

Sr or Sq. An end class Q is also proposed but with a lower coefficient. By using the M4AST

method, this spectrum can be classified to be between Sv and Srclasses (Fig. 6.5b). It has a

fairly prominent feature around 1µm and another around 2µm. When considering these two

results and the depth of the two absorption bands, I found that the Sr type provides a more

accurate description for this object. The slope for this NIRspectrum is 0.062µm−1.

The matching with meteorite spectra (Fig. 6.5c) shows that the best fit is a spectrum for a

sample from Saratov - an ordinary chondrite meteorite with alow content of Fe (L4). This

sample contains particles with sizes between 10 and 45µm (Sample ID: MB-CMP-028-B).

The spectrum can also be closely fitted with spectra of powdered samples from the meteorites

Mirzapur and Rio Negro, which are also L ordinary chondrites.

Modelling the space weathering effects, aCs = -0.223µm can be computed, which describes

a relatively fresh surface. This agrees with the small bodies having relatively young surfaces,

and Earth encounters are one of the origins for rejuvenatingsurfaces on near-Earth asteroids

[Binzel et al., 2010]. Removing the exponential continuum and comparing again with spectra

from the Relab database, it can be found a good fit to the spectrum with those of ordinary

chondrite meteorites with high level of Fe, from petrologicclass 4 (H4 - Olivine-Bronzite).

Spectra of meteorites such as Gruneberg (Fig. 6.5d), Queen’s Mercy, or Ochansk match the

unweathered spectrum of this asteroid (Table 6.4).

6.2.6 (164400) 2005 GN59

This asteroid has an absolute magnitudeH = 17.40, derived from astrometric observations. The

synodic period of the asteroid was estimated to be 38.62±0.01 hrs [Vander Haagen, 2011], but

the monomodal solution of 19.31±0.01 hrs cannot be totally excluded.

A preliminary spectrum of this object was presented by Birlanet al.[2009], while Tayloret al.

[2009] presented thermal emission data corroborated with radar observations. From these radar

observations, Tayloret al. [2009] discovered that this object has a two-lobed 0.35 by 1.1 km

shape, with non-convex surface features.

Dynamically, (164400) 2005 GN59 is an Apollo asteroid. Its calculated∆V = 6.002 km/s

make this asteroid a possible target in terms of propulsion for spacecraft mission.

The NIR spectrum of 164400 was obtained in August 28, 2008 fora total integration time



CHAPTER 6. SPECTRAL PROPERTIES OF NEAR-EARTH ASTEROIDS 105

of 480 sec. While the spectrum is quite noisy, in order to obtain information about its taxo-

nomic class, a five order polynomial function is used to reproduce the real data. The values

for reflectance corresponding to wavelengths between 1.7 and 2 µm were excluded due to high

noise caused by atmospheric turbulence (Fig. 6.6).
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Figure 6.6: NIR spectrum of (164400) 2005 GN59 and
its taxonomic classification.

Both the MIT-SMASS on-line tool and the

M4AST routine classifies this object as an L-

type. However, the K taxonomic class is also

a reasonable match to our data (Fig. 6.6).

An additional NIR spectrum of this ob-

ject was obtained by the MIT-UH-IRTF

Joint Campaign for NEO Spectral Reconnais-

sance2. This spectrum has higher S/N than

the one presented in Fig. 6.6. The classifi-

cation of this additional spectrum is between

Sq and Q types, while a K taxonomic class

was proposed as a third solution. The L tax-

onomic class is also considered as a possible

solution by the MIT-SMASS on-line tool.

The difference between the spectrum pre-

sented here and the one from MIT-UH-IRTF Joint Campaign, is caused by the SNR. For our

spectrum [Popescuet al., 2011], I did not take into account the feature between 1.7 and 2 µm.

A visible spectrum would again help distinguish between thefive possible solutions for the NIR

part of the spectrum.

The spectrum of 2005 GN59 is noisy and I did not attempt to compare it with the Relab

database and the de-reddening model.

6.3 Spectral properties of two primitive NEAs

Asteroids with low albedo are considered to contain the mostprimitive materials. They are

found in the C, D, T and other dark taxonomic classes. The only images of such type of

asteroid were those of (253) Mathilde, obtained by NEAR space-mission [Clarket al., 1999].

This asteroid surface reflects only three percent of the Sun’s light, making it twice as dark as a

chunk of coal. Such a dark surface is believed to have carbon-rich material that has not been

altered by planetary formation processes.

A strong correlation between the asteroid taxonomical classes and their heliocentric distance

was showed based on the samples studied until now. The high albedo asteroids (like those of E

and S type) can be found in the inner part of the main belt while, on the other hand C type are

2htt p : //smass.mit.edu/minus.html
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found mainly in the outer regions of the asteroid belt. D-type asteroids are found in the extreme

outer parts of the asteroid belt and among the Trojan objects[de Pater & Lissauer, 2010]. Their

distribution in space provides insight into the temperatures, pressures and chemistry of the

solar nebula. de Pater & Lissauer [2010] noted that D type asteroids are probably even more

primitive than the C-types and it may have formed at even lowertemperatures.

Few things are known about the composition of D-type asteroids because few meteorites

with similar spectral characteristics are available for study. One of the most interesting facts

related to primitive asteroid is the fact that they are expected to contain organic materials3.

In this section we describe two D-types asteroids which haveorbits close to the Earth orbit.

They are a valuable resource from the scientific point of view, since they are reachable for

sample and return space mission.

6.3.1 (5620) Jasonwheeler

This object has the geometric albedopv = 0.094 [Muelleret al., 2011]. It is an Amor-type as-

teroid with a diameter of 1.77 km [Muelleret al., 2011] and the synodic period of 5.307±0.001

hrs [Durkee, 2010]. The light-curve amplitude of 1.2 magnitude [Durkee, 2010] is indicative of

an object with an elongated shape, or a binary system. Having∆V = 6.974 km/s, this asteroid

is a suitable target in terms of propulsion for a possible spacecraft mission.

No other spectroscopic studies of this object were found in the literature. The NIR spec-

trum obtained on May 5, 2009 when the object had the apparent magnitude 16.5, is plotted in

Fig. 6.7a.

The MIT-SMASS online tool for taxonomy classified this object as belonging to D-class.

With M4AST best-fit method, the spectrum is more similar to T-class (Fig 6.7b). In general, D-

type asteroids have linear spectra with a very steep slope (greater than 0.38µm−1) and display

a slight curvature around 1.5µm. On the other hand, T-types also have linear spectra with a

steep gradient - between 0.25 and 0.38µm−1 - that nevertheless gradually curves concavely

downward. [DeMeoet al., 2009]. The spectrum of this asteroid has a steep slope in the0.9 -

1.5 µm region and a slight curvature between 1.5 - 2.2µm, though the classification is at the

boundary between D-type and T-type. The overall NIR slope is0.2504µm−1.

Taking into account the low geometrical albedo when comparing with spectra from the Re-

lab database, I found close spectral matches for this spectrum with CM2 carbonaceous chon-

drite meteorites(Table 6.4, Fig. 6.7d, 6.7e, 6.7f). In general, the CM2 meteorites are character-

ized by 30% levels of chondrules with grain sizes of≈300µm, the absence of Fe-Ni alloys,and

the presence of CAI (Ca -Al inclusions) [Dobrica, 2010]. The closest description of the spec-

trum is provided by a sample of particulates (0-75µm) from the meteorite Mighei/Meghei

(Sample ID: MR-MJG-108). Other spectra of CM2 carbonaceous chondrite meteorites that fit

the Jasonwheeler NIR spectrum are those of powdered sampleswith particle sizes smaller than

3https://www.oca.eu/MarcoPolo-R/
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Figure 6.7: The NIR spectrum of (5620) Jasonwheeler; b) a polynomial fit for the spectrum of (5620) Jasonwheeler
compared with the theoretical spectra of D and T types; c) estimation of thermal flux in the spectrum of (5620) Ja-
sonwheeler - the dashed line indicates where a linearly extrapolated continuum would fall, the solid line shows the
presence of thermal flux; d), e), f) the reflectance spectrum of (5620) Jasonwheeler and the closest three matches
resulting from meteorite comparison: the CM2 carbonaceouschondrite Mighei/Meghei, the CM2 carbonaceous
chondrite Cold Bokkeveld, and the CM2 carbonaceous chondrite ALH84029 [Popescuet al., 2011].
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125µm. This fit suggests that the asteroid might be covered by a fineregolith layer.

By fitting the spectrum (Fig. 6.7c) with an eighth order polynomial function, it can be ob-

serve an excess of flux after 2.2µm that cannot be explained by the general trend in the spectral

region 1.4 - 2.2µm and its taxonomical classification. Even if the level of noise is relatively

important, it can be assumed that this feature is caused by asteroid thermal emission. Fol-

lowing Rivkin et al. [2005], I calculated the "thermal excess" parameter that describes this

phenomenon:

γ =
R2.5+T2.5

R2.5
−1= 0.092±0.0420 (6.1)

whereR2.5 is the reflected flux at 2.5µm andT2.5 is the thermal flux at 2.5µm. This value

agrees with the geometrical albedopv = 0.094 for an asteroid at a 1.345 AU distance from

the Sun and a phase angle of 20◦ [Rivkin et al., 2005]. This value also agrees with the result

obtained from mid-IR observations by Muelleret al. [2011].

Taking into account its dynamical parameters and that D and Ttypes are considered to be of

a primitive composition, it can be concluded that this objectis very interesting from the point

of view of "in-situ" exploration.

6.3.2 2001 SG286

This is an Apollo type asteroid with an absolute magnitude of20.9. It is classified as PHA.

Its ∆V = 5 km/s makes it a suitable target for a spacecraft mission. Michel & Delbo [2010]

estimated its median lifetime as an NEA to be about 22.19 Myr.The mechanism of injection

into the NEA population is the secularν6 resonance, but the 3:1 mean motion resonance with

Jupiter could not be entirely excluded [Michel & Delbo, 2010].
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Figure 6.8: Visible [Binzelet al., 2004a] and NIR spec-
trum of 2001 SG286. A linear fit and the D-type theoret-
ical spectrum are plotted for comparison.

On the basis of spectral data in the vis-

ible region, Binzelet al. [2004a] classified

this asteroid as a D-type one. Using an av-

erage albedo of 0.09 for D-type asteroids,

Binzelet al. [2004a] computed a diameter of

about 350m for this object.

The object was observed on May 19,

2009 in the NIR for a total time of 480sec,

in difficult conditions (considerable differen-

tial motion, only a few hours of visibility

over three nights, limited atmospheric trans-

parency). The NIR spectrum is reliable only

for the spectral interval 0.8-1.7µm.

The composite V+NIR spectrum was ob-

tained by superposing data in the 0.82-0.9
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µm spectral interval (Fig. 6.8). The slope parameter for the composite spectrum is 0.7202

µm−1 (computed for a spectrum normalized to a reflectance value at1.25µm) in agreement

with the slope range for D-type taxonomic class.
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Figure 6.9: a) Wavelength position of the centers of the two absorption bands computed using Cloutiset al.
[1986a]. The regions enclosed correspond to the band centers computed for the H, L, and LL chondrites, re-
spectively [de Leónet al., 2010]; b) BAR versus band I centers. The regions enclosed bycontinuous lines corre-
spond to the values computed for basaltic achondrites, ordinary chondrites(OC), and olivine-rich meteorites(Ol)
[Gaffeyet al., 1993b].

6.4 Discussion

Luu & Jewitt [1990] suggested that the phase angle can affectthe spectral slope. This was

called "phase reddening" and consists of an increase in the spectral slope (reddening of the

spectra) with the phase angle. Some studies have been performed based on laboratory measure-

ments [Gradie & Veverka, 1986] and during the approach to (433) Eros by the NEAR spacecraft

[Veverkaet al., 2000]. However, it should also be reminded the result mentioned in Binzelet al.

[2004b] regarding a study conducted at MIT for which no correlation was found between the

phase angle and the spectral slope for the ground-based asteroid reflectance spectra.

During the observing runs of these NEAs, all the asteroids were observed at phase angles as

small as possible. Owing to this constraint, we [Popescuet al., 2011] succeeded in observing

only six objects at a phase angles between 17◦ and 30◦ (Table 6.2). The observations of (1917)

Cuyo and (188452) 2004 HE62 were at a phase angle around 60◦ (Table 6.2).

Assuming similar surface mineralogies, the influence of phase angle on spectral slope is

unclear from our measurements. For (1917) Cuyo, a high spectral slope was obtained, but for

(188452) 2004 HE62 the computed spectral slope is comparable to the spectral slope of (8567)

1996 HW1 and (16960) 1998 QS52, which were measured at phase angles smaller than 30◦

(Table 6.5). Considering the trend of S-class objects, the reflectance value at 1.25µm is higher

than the reflectance value at 0.55µm, thus the comparison of slopes is correct. Therefore, no
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Table 6.5: Slope andCs parameter for the S-type objects studied in this article. The calculation was made by
normalization of spectra to 0.55µm. Objects marked with (*) are normalized to 1.25µm (only for NIR part).

Object Slope(µm−1) Cs( µm)
(1917) Cuyo 0.5086 -0.484
(8567) 1996 HW1 0.2245 -0.258
(16960) 1998 QS52 0.1126 -0.149
(188452) 2004 HE62(*) 0.1167 -0.377
2010 TD54(*) 0.0620 -0.223

correction has been applied for this presumed effect of phase reddening.

Several NIR spectra for the asteroids (1917) Cuyo, (8567) 1996HW1, and (16960) 1998

QS52 were obtained by the MIT-UH-IRTF Joint Campaign for NEO Spectral Reconnaissance.

However, a variation in spectral slope between the spectra of the same object was observed.

Similar spectral variations in the NIR spectrum of a NEO was previously reported by

de Leónet al.[2011b]. The asteroid (8567) 1996HW1 was observed five times,at phase angles

between 20◦ and 55◦. In this case, a variation in the spectral slope with phase angle was

observed (i.e. the spectrum is redder for larger phase angles). While this object is not well-

known in terms of spin axis and shape, it is difficult to draw any conclusions about the first order

dependence of the slope on phase angle. A surface dichotomy and degrees of space weathering

could compete with this effect.

The S-types objects have widely varying spectral slopes (Table 6.5), which is a general

conclusion for the asteroids belonging to this complex [DeMeoet al., 2009]. In the Bus-DeMeo

taxonomy, the objects in the S-complex with a slope larger than 0.25µm−1 receive the notation

’w’ added to their type as an indication that they may be affected by space weathering effects.

This is the case for (1917) Cuyo.

Although space weathering may occur on all asteroids, many types lack strong spectral-band

contrasts that ensure that weathering effects are easily detectable [Clarket al., 2002]. S-class

asteroids are significantly reddened compared with their presumed meteorite analog, and this

difference can be explained by space weathering phenomenon[Vernazzaet al., 2008]. This

process may be the result of dust impacts and solar wind sputtering on the surface of atmo-

sphereless bodies and cause a reddening of the spectral slope, a decrease in spectral absorption

intensities, and a diminishing of albedo [Fornasieret al., 2003].

An important concept in understanding space weathering processes is the development and

accumulation of submicroscopic single-domain metallic Fe(4-30nm), produced in the space

environment by a reduction of FeO in minerals. Referred to as nanophase reduced iron -

"npFe0", these are formed through the fractional processes that occur during ion-particle sput-

tering, vapor deposits from energetic micrometeorites impacts, or both. As more "npFe0"

accumulates, the entire continuum becomes redder until it is almost linear through to the near-

infrared region. With small amounts of "npFe0" , reddening of only the visible region of the

spectra occur [Pieterset al., 2000].



CHAPTER 6. SPECTRAL PROPERTIES OF NEAR-EARTH ASTEROIDS 111

Table 6.6: Computed parameters from the Cloutiset al. [1986a] model applied to the V+NIR spectra of (1917)
Cuyo, (8567) 1996 HW1, and (16960) 1998 QS52. The estimation error for band centers (BI, BII) is±0.005.

Object BI BII BAR OPX
( µm) ( µm) (%)

(1917) Cuyo 0.93 1.95 0.670±0.1526 33.28
(8567) 1996 HW1 0.99 2.06 0.485±0.2687 25.50
(16960) 1998 QS52 0.97 2.03 0.232±0.1996 14.94

A space weathering model has been applied for S-type objects. For two of the asteroids,

(188452) 2004 HE62 and 2010 TD554, the models imply that the iron content ambiguity

changes the best analog among meteorite samples. Thus, the best mineralogical analog will

always be an OC meteorite, the same petrologic type, but the spectra for a sample containing

Fe will be different. This could be explained in the following terms: highly curved continua

occur for samples with small amounts ofnpFe0, and the more linear continua occur for samples

with large amounts ofnpFe0 [Pieterset al., 2000].

A quantitative comparison between the reflectance properties of (1917) Cuyo, (8567) 1996

HW1, and (16960) 1998 QS52 (since for these objects both visible and NIR data are available)

and potential meteorite analogs could be made with the parameters computed from the model

of Cloutiset al. [1986a]. The values of these parameters are given in Tabel 6.6. Plotting Band

I center versus the BAR [Gaffeyet al., 1993b], it can be found that all three objects are located

in the ordinary chondrite region (Fig. 6.9). (1917) Cuyo and (16960) 1998 QS52 are under the

olivine-orthopyroxene mixing line, while (8567) 1996 HW1 isabove the olivine-orthopyroxene

mixing line.

Another comparison was made by plotting the Band I center versus the Band II center

(Fig. 6.9). Considering the results of de Leónet al. [2010], I found that (1917) Cuyo is in

the region of OC -H meteorites, while 16960 is in the region ofOC -L meteorites. (8567) 1996

HW1 is outside the enclosed areas, between the regions for L and LL chondrites.

The statistical interpretation of the results agrees with the results obtained by comparison to

Relab meteorite spectra. The measured parameters are directindications of a spectrum’s basic

properties - revealing their distributions without makingany assumptions about their underlying

mineralogy [Vernazzaet al., 2008].





7
Spectral properties of Main Belt Asteroids

This chapter describes the spectral properties of six Main-Belt asteroids. The choice to study these objects
was made based on the fact that they showed some peculiar physical properties. Thus, (9147) Kourakuen
is a vestoid which dynamically could not belong to Vesta family, (854) Frostia is a binary asteroid, (1333)
Cevenola and (3623) Chaplin are two asteroids with large amplitude lightcurves, and two asteroids for which
it was reported to have pairs (10484) Hecht and (31569) 1999 FL18.
The observations presented here are part of the two long termprograms which aim to study physical properties
of vestoids and of asteroids pairs. The NIR spectra were acquired using the NASA telescope IRTF equipped
with the spectro-imager SpeX. The spectra were analyzed applying the techniques described in chapter 4 and
chapter 5.
I found that (9147) Kourakuen, (854) Frostia, (10484) Hechtand (31569) 1999 FL18 show the characteristics
of V-type objects, while (1333) Cevenola, (3623) Chaplin belong to S-complex. The taxonomic classification,
the comparison with the meteorite spectra from the Relab database and the mineralogical analysis converged
to the same solutions for each of these objects, allowing to find important details for the chemical composi-
tions.

Although more than 300,000 asteroids have well establishedorbital behavior, less than 3%

of these have some of their compositional properties determined. To point out the scientific

importance of these studies, it can be recalled that the majority of the asteroids have orbits

in the region between 2.2 and 3.3 AU. This is the region that defines the transition between

terrestrial and giant planets.

The majority of knowledge regarding compositional characterization is mainly due to three

large surveys: the Eight-Color Asteroid Survey - ECAS [Zellner et al., 1985], S3OS2

[Lazzaroet al., 2004], and the most fruitfully Small Main-Belt Spectroscopic Surveys (SMASSI,

SMASSII, SMASS-IR) - Bus & Binzel [2002b].

The analysis of the spectra of six Main Belt asteroids which have some remarkable physical

properties is made in the context of previously published physical and dynamical properties of

these asteroids. Table 7.1 summarizes some parameters of the considered sample.

7.1 Log of observations

The spectral observations were carried out in two sessions:March 2007 and November 2011

using the 3.0 m NASA IRTF telescope located at Mauna Kea - Hawai. The SpeX instrument
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Table 7.1: Some characteristics of our observed MBAs: semi-major axis, eccentricity, inclination, absolute mag-
nitude (H), and orbital period.

Object a e i Orbit. Period H
AU ◦ Days Mag.

(9147) Kourakuen 2.19161 0.106186 5.816 1185.06 13.4
(854) Frostia 2.36832 0.172996 6.091 1331.25 11.8
(1333) Cevenola 2.63344 0.133589 14.641 1560.93 11.5
(3623) Chaplin 2.85105 0.086814 3.071 1758.35 11.9
(10484) Hecht 2.32087 0.079053 5.729 1291.44 13.7
(31569) 1999 FL18 2.31427 0.123171 6.402 1285.94 14.0

Table 7.2: Log of asteroids observations. Asteroid designation, date of observation with the fraction of the day for
the mid time of the observation, apparent magnitude, phase angle, heliocentric distance, the airmass at the mean
UT of each observation, the integration time for each spectrum (ITime), and the number of cycles are presented.

Asteroid Date V Φ r Airmass ITime Cycles
UT Mag. ◦ UA sec

(9147) Kourakuen 2011-11-15.35716.1 20.1 1.9596 1.116 120 16
(854) Frostia 2007-03-13.487 14.9 3.6 2.3484 1.070 120 10
(1333) Cevenola 2007-03-12.54915.6 13.8 2.6696 1.035 120 24
(1333) Cevenola 2007-03-13.57515.6 14.5 2.6710 1.031 120 10
(3623) Chaplin 2007-03-12.378 17.1 14.7 3.0366 1.085 120 18
(3623) Chaplin 2007-03-13.267 17.2 14.9 3.0371 1.018 120 20
(10484) Hecht 2011-11-16.420 17.0 16.3 2.1986 1.060 120 6
(31569) 1999 FL18 2011-11-16.33017.1 19.9 2.0294 1.040 120 12

was used in low-resolution mode for these sessions. The observations were made in the 0.8-

2.5 µm spectral interval. A 0.8 arcsec wide and 15 arcsec length slit, oriented North-South,

allowed simultaneous measurements of the object and sky. The nodding procedure described

in chapter 3 was applied. The observing conditions and parameters are given in Table 7.2.

The automatic guiding mode of the telescope was used for these observation. Since, for the

main belt asteroids the relative speed (∆RA/∆t, ∆DEC/∆t) is low, it does not impose difficul-

ties for the differential tracking. In the moment of observations our objects had speed bellow

0.6′′/min.

The apparent magnitude of the asteroids varies depending onthe relative position with the

Earth and the Sun. In the case of main belt asteroids this apparent magnitude variation could

up to four magnitudes. The asteroids described here were observed when they were close to

their brightest apparent magnitudes (at oppositions - Table 7.2).

Another constraint that should be taken into account when scheduling the observations is

the airmass. In order to obtain good SNR for the spectra, I managed to observe all objects at an

airmass smaller than 1.12 (zenith angle below 25◦) - Table 7.2.

The integration time for each image was 120 second. Depending on the weather conditions,

and considering a basic SNR evaluation of the data, a different number of images for each

object were taken.

Each observed asteroid was preceded by observations of solar analogs located in the vicinity.



CHAPTER 7. SPECTRAL PROPERTIES OF MAIN BELT ASTEROIDS 115

Table 7.3: Solar analogs used for data reduction, their airmass at the moment of observations and their relative
distance to the object.

Asteroid Solar Analogue Air mass Distance [◦]
(9147) Kourakuen HD940 1.280 11.5
(854) Frostia G104-335 1.070 11.3
(1333) Cevenola HD127913 1.055 10.1
(1333) Cevenola HD127913 1.031 10.2
(3623) Chaplin HD73708 1.025 6.6
(3623) Chaplin HD73708 1.018 6.6
(10484) Hecht Land115-271 1.200 19.5
(31569) 1999 FL18 Land115-271 1.200 15.1

The following stars were observed and used as solar analogs:HD940, G104-335, HD127913,

HD73708 and L115-256 (Table 7.3). Our choice was to observe the solar analogue as close

as possible to the target (bellow 20o). The differential airmass between the asteroid and the

standard was usually restricted to less than 0.16. The starswere chosen using the tool avail-

able on IRTF website1. An exception was made for (10484) Hecht and (31569) 1999 FL18,

where the data reduction were performed using L115-271, commonly used in NIR spectral

measurements.

G104-335, HD127913, HD73708 are G2V type, while HD940 is a K0star [Høget al., 2000,

Cutri et al., 2003, Landolt, 1992]. HD 940 was chosen as trade-off between the spectral type,

airmass, and its relative distance to (9147) Kourakuen.

The data reduction followed the procedure described in chapter 3. For the computation of

the final reflectance (ratio between the asteroid spectrum and the star spectrum) is considered

the similar dynamic regimes of the detector [Vaccaet al., 2004, Rayneret al., 2003].

7.2 (9147) Kourakuen - a V-type asteroid outside Vesta family

One of the most interesting asteroid family is the one of (4) Vesta. Located in the inner as-

teroid belt, the origins of this family is in a collision event that excavated a large crater in the

surface of asteroid (4) Vesta [Asphaug, 1997]. The presenceof such a crater in the south hemi-

sphere of the asteroid has been confirmed by HST images [Thomas et al., 1997] and recently

by NASA’s Dawn spacecraft. This crater, called Rheasilvia, has 505 Km in diameter and is one

of the largest craters in the Solar System. The latest estimates indicate that the cratering event

occurred at least 1.2 Gyr ago [Carrubaet al., 2005].

(4) Vesta is particularly interesting because it is the onlylarge asteroid showing a basaltic

crust [McCordet al., 1970]. Basaltic asteroids are believed to derive from bodieswhose interi-

ors reached the melting temperature of silicate rocks and subsequently differentiated

[Gaffeyet al., 2002]. Thus, (4) Vesta is a differentiated object with a basaltic crust and exposed

mantle material [Gaffey, 1997] that survived during the Solar System history. It is considered

1http://irtfweb.ifa.hawaii.edu/cgi-bin/spex/find_a0v.cgi

http://irtfweb.ifa.hawaii.edu/cgi-bin/spex/find_a0v.cgi
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Figure 7.1: a) Spectrum of (9147) Kourakuen normalized to 1.25µm; b) a polynomial fit of the spectrum of (9147)
Kourakuen compared with the theoretical spectra of V, Sv, and Sr types; c) the comparison between the spectrum
of (9147) Kourakuen and the spectrum of a sample from Pavlovka, d) the comparison between the spectrum of
(9147) Kourakuen and the spectrum of a mixture of Pyroxene-Hypersthene-Plagioclase-Bytownite-Ilmenite.

asthe smallest terrestrial planet[Keil, 2002]. While (4) Vesta was the first known asteroid pre-

senting a basaltic crust, in the last years an increasingly large number of small asteroids with a

similar surface composition have been discovered [de Sanctis et al., 2011a].

Vesta’s density was derived from the estimation of its mass [Hilton, 2002] and shape

[Thomaset al., 1997]. The computed values of the bulk density span the range 3,000-4,300

kg/m3. This interval is supported also by models of internal structure of large differentiated

bodies. Ruzickaet al. [1997] calculated the density of silicate fraction in Vesta-like asteroids,

assuming an average value of the bulk density of 3,540kg/m3. They conclude that Vesta could

be modeled with an eucritic/diogenitic crust and an olivinemantle for a metallic core between

zero and 25% of the total mass of the asteroid. In this case, the density of the crust could not

be less than 3,000kg/m3.

Based on spectroscopic behavior and dynamical consideration from the main-belt through

the resonances 3:1 andν6 resonances [Binzel & Xu, 1993], Vesta and the vestoids are supposed
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to be at the origin of Howardite-Eucrite-Diogenite meteorites. The structure of HED meteorites

is very close to mafic materials. Thus, the parent body of HED meteorites are supposed to have

experienced volcanism and metamorphism in the process of formation during the early Solar

System. The parent body of Vesta and vestoids underwent accretion, total melting, fractiona-

tion, and differentiation during the first few million of years of Solar System formation [Keil,

2002].

The V-type asteroids are objects with reflectance spectra similar to the asteroid (4) Vesta

and to HED meteorites. These objects smaller in size than Vesta (commonly called ’vestoids’)

present spectral properties similar to this asteroid. Partly, the vestoids are identified as frag-

ments of Vesta, a result of the catastrophic collision who excavated material from the crust and

the mantle [Binzel & Xu, 1993] of (4) Vesta.

The V-type asteroids are mainly located in the population represented by the Vesta fam-

ily, and is considered to be the reservoir of HED meteorites.However, basaltic asteroids,

not yet considered members of Vesta family, are also locatedin the vicinity of the family

[Florczaket al., 2002, Duffardet al., 2004]. Data on V-type asteroids such as (1459) Mag-

nya are reported at different semi-major axis [Lazzaroet al., 2000, Roig & Gil-Hutton, 2006,

Duffard & Roig, 2009] and in the NEA population [Binzelet al., 2002]. This picture of V-

type asteroids supports the hypothesis of formation of several objects with basaltic crust in the

Main-Belt.

At present, hundreds of asteroids are classified as potentially V-type bodies, based on the

new photometric investigations. According to dynamical considerations some of these objects

possibly belong to the Vesta-family, while others seem to have no clear connection. Ground-

based observations allow to investigate the spectral properties and hence the mineralogical

composition of such asteroids.

(9147) Kourakuen is a main belt asteroid with an estimated diameter of 5.1 Km. Having

the semi-major axis a = 2.19 AU, eccentricity e = 0.108, and inclination i = 6.892◦, this object

could not belong to Vesta family considering the dynamical criteria. However, its SDSS (Sloan

Digital Sky Survey) colors [Roig & Gil-Hutton, 2006] suggests a surface composition similar

to (4) Vesta (a V-type object). The cause could be a higher ejection velocity and a subsequent

dynamical evolution.

The spectrum of (9147) Kourakuen (Fig. 7.1a) has the characteristics of a V-type asteroid

[Popescuet al., 2012b]. In Bus-DeMeo taxonomy, V-type asteroids are characterized by a

very strong and very narrow 1µm absorption feature and a strong 2µm absorption feature

[DeMeoet al., 2009]. M4AST classify undoubtedly this spectrum as V-type. This agrees the

classification made via MIT-SMASS online tool. A similar result was found by de Sanctiset al.

[2011a] using a more noisy spectrum. The next two matches (the program always returns the

first three matches), Sv and Sr types have a larger matching error (Fig. 7.1b).

The solution given by all four methods for comparison with laboratory spectra shows that the
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spectrum of 9147 Kourakuen is almost identical with the spectrum of a sample from Pavlovka

meteorite (Fig. 7.1c). This meteorite sample is of type achondrite howardite already stud-

ied so far [Olsenet al., 1990, Labotka & Papike, 1980]. The bulk composition of the chon-

drules from this meteorite contains SiO2 (50.1%), MgO(23.7%), FeO(15%), Al2O3(6.2%),

CaO(3.8%) [Olsenet al., 1990].

Other meteorite laboratory spectra similar to the spectrumof (9147) Kourakuen are those of

the meteorites Roda (Achondrite Diogenite), Le Teilleul (Achondrite, Howardite) and Kapo-

eta (Basaltic HED Howardite). The first fifty solutions that matched our spectrum are HED

(Howardite Eucrite Diogenite) meteorites. These are basaltic meteorites believed to result from

large asteroids that melted to form a metallic core and basaltic magma after the formation.

Another solution of this application is a spectrum of a man-made mixture of Pyroxene Hy-

persthene Plagioclase Bytownite Ilmenite (Fig. 7.1d). Thisman-made mixture reproduces quite

well the natural composition of volcanic rocks or melting rock of volcanic beds, and is consis-

tent to the V-type mineralogical composition of asteroids.In all laboratory spectra proposed

by M4AST to match this asteroid spectrum, the majority corresponds to HED achondrite me-

teorites.

While the standard deviation measures the overall matching between the two spectra, the

correlation coefficient finds those spectra for which the spectral features positions and shapes

are very close. In the case of spectrum of (9147) Kourakuen, avery high correlation coefficient

(more than 0.99) characterize the first matching solutions (Table 7.4).

Since only the NIR part of the spectrum is available, we can only compute the band minima.

The high signal to noise ratio of this spectrum ensures that there is a small error in computing

the band minima. The first minimum is at 0.9217± 0.0005µm and the second minimum is at

1.9517± 0.0062µm, which imply a band separation of 1.03µm. The band separation provides

a way of estimating the iron content. Cloutiset al. [1990] noted that the band separation is a

linear function of the BII minimum for orthopyroxenes and that both parameters increase with

the iron content. If we refer to the relation obtained by de Sanctiset al.[2011b], the parameters

that we found match their formulay = 0.801∗ x−0.536, wherey is the band separation and

x is the BII minimum. These parameters correspond to an iron content of around 40 wt%.

However, the laboratory calibrations suggest that the correspondence is true for a number of

low aluminum orthopyroxenes but invalid for mixtures of olivine, metal, and both ortho- and

clino-pyroxenes [de Sanctiset al., 2011b].

Concluding this section, based on an accurate near-infraredspectrum of the asteroid (9147)

Kourakuen a description of its surface composition was made. The comparisons with mete-

orites spectra which revealed a spectral matching with HED type meteorites (in particular with

the spectrum of Pavlovka meteorite) agrees and is complementary to the taxonomical classifi-

cation and to the mineralogical solution found.
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Table 7.4: Summary of results obtained by matching the main belt asteroids spectra with spectra from Relab
database. The most relevant matches are presented. The comparison coefficients are given together with some
details related to the laboratory samples.

Spectrum std. dev. corr. coef. Meteorite/Sample Sample ID Type
9147 0.01884 0.99477 Pavlovka MR-MJG-094 Achondrite(AHOW)

0.02244 0.99207 Mixture SC-EAC-039 Man-made
0.02731 0.99048 Roda MR-MJG-099 Achondrite(ADIO)

854 0.01894 0.98847 "ALHA76005,85" MB-TXH-066-A HED Eucrite
0.01917 0.98842 "Y-793591,90" MT-TXH-043-A HED Eucrite
0.02396 0.98332 "ALH-78132,61" MB-TXH-072-A HED Eucrite

1333 0.02065 0.97005 Saratov MR-MJG-046 OC/L4
0.02248 0.97188 Hamlet #1 MR-MJG-069 OC/LL4
0.02413 0.95487 Paranaiba MB-CMP-010-D OC/L6

1333 0.01774 0.93893 Denver TB-TJM-072 OC/L6
De-reddened 0.02841 0.94397 Hamlet #1 MR-MJG-069 OC/LL4
3623 0.04344 0.83962 Gabbro 50S RG-CMP-057 Rock/Igneous Plutonic

0.04334 0.83360 14321,150P LS-JBA-097 Rock/Polymict Breccia
3623 0.03296 0.79520 Fayetteville MB-CMP-007-L OC/H4
De-reddened 0.04093 0.79900 Gabbro Ns RG-CMP-017 Rock/Igneous Plutonic
1048 0.08761 0.93656 PYX:OLV:PLG:ILM SC-EAC-045 Man - Made

0.09487 0.93345 Mixture SC-EAC-060 Man - Made
31569 0.04156 0.96088 Pasamonte MR-MJG-090 HED Eucrite

0.04112 0.95996 Mineral SB-RGB-001 Pigeonite
0.04433 0.95991 Macibini Clast 3 TB-RPB-027 HED Eucrite

7.3 A binary asteroid: (854) Frostia

The number of known multiple systems among asteroids has increased significantly in recent

years. In the past, the binarity and multiplicity of asteroids was suggested by several authors

[van Flandernet al., 1979] based on occultations of stars (for example in the articles of Binzel

[1978]2, and Donnison [1979]3) or photometry [Tedesco, 1979, Binzel & van Flandern, 1979,

Dunlap & Gehrels, 1969]. These observational facts were at the origin of theoretical prob-

lems related to spin evolution and stability [Wijesinghe & Tedesco, 1979, Zappalaet al., 1980,

Leoneet al., 1984].

Analytical and numerical simulations of catastrophic collisions among small bodies, us-

ing several hypothesis, are published regularly by severalteams [Dell’Oro & Cellino, 2007,

Durdaet al., 2004, Holsapple & Michel, 2008]. This topic remains open despite an important

acquisition of knowledge from laboratory experiments and numerical tests. The most important

conclusion of these works is that elongated shapes, binarity or multiplicity could be explained

for both large objects (≈100 km in size) and relatively small ones (kilometer-size asteroids).

For instance, adoublet systemis a binary system where both bodies are of nearly equal sizes.

Their origin is not well understood, but several such systems have been reported (ex: (90)

Antiope, (617) Patroclus, (69230) Hermes, 1998 WW31). Theoretical studies concerning the

2The article also presents historical facts of occultation of stars by asteroids.
3This satellite was not confirmed by direct imaging. [Storrset al., 1999]
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Figure 7.2: a) The visible and NIR spectrum of (854) Frostia;b) A polynomial fit for the spectrum of (854) Frostia
compared with the theoretical spectra of V, Sv and Sr types; c) the comparison between the spectrum of (854)
Frostia and the spectrum of a sample from ”ALHA76005,85” meteorite; d) the comparison between the spectrum
of (854) Frostia and the spectrum of a sample fromY−793591,90 meteorite.

movement of components around their center of mass can be validated by observational results

(obtained for instance using adaptive optics); results of their dynamics will be constrained by

the physical model which takes into account shape, bulk density, and internal properties of

the components. Furthermore, the interaction between a dynamical and a physical model al-

lows the derivation of the most probable configuration of thesystem (in terms of separation of

components, orbital parameters, shapes and densities).

(854) Frostia is a Main-Belt asteroid with an absolute magnitudeH = 11.8mag. Its semi-

major axis isa= 2.36832AU (Table 7.1). This asteroid was observed intensely in photometry

[Behrendet al., 2006] by amateurs and professional astronomers4. (854) Frostia is a slow ro-

tator with a synodic period of 37.728hrs. Its regular lightcurve with an amplitude of 0.33mag

presents, for short periods of time, important attenuation, of about 0.7− 0.8mag. The large

magnitude is very well explained by mutual eclipse/occultation events for an object with two

4http://obswww.unige.ch/~behrend/page_cou.html

http://obswww.unige.ch/~behrend/page_cou.html


CHAPTER 7. SPECTRAL PROPERTIES OF MAIN BELT ASTEROIDS 121

components of comparable size. Unfortunately, no physicalephemerides of Frostia are known

to have a precise timing of possible mutual phenomena of thissystem. Nevertheless there is

little chance for a geometry allowing mutual phenomena at the time of our observations.

Based on a physical model of a double system, Behrendet al. [2006] calculated a bulk

density of 750 - 1,020 kg/m3. They explain such a low density value by a possible C-type

asteroid with a high macro-porosity of about 45 %.

Sloan Digital Sky Survey (SDSS) colors (Ivezić et al. [2001])5 of this object were also re-

ported. These data show large variations in color. It is important to note that thev− i color is

greater than thev−z one6, which suggest the presence of absorption band around 1µm.

Visible spectroscopy of Frostia was reported by Alvarez-Candalet al. [2006]. These results

are in agreement with SDSS colors and the authors classified this asteroid in the V-taxonomic

class.

NIR spectrum of (854) Frostia was obtained on March 13, 2007.The total integration time

of 40 min allows an accurate spectrum with the S/N of 120. I joined the visible spectrum from

Behrendet al. [2006] with our data in NIR region (Fig. 7.2a). The analysis was made on the

composite V+NIR spectrum. This spectrum likely representsthe asteroid globally, being a first

characterization of the asteroid’s mineralogy.

The spectrum of (854) Frostia reveals large and deep absorption bands around 1 and 2µm.

In Bus-DeMeo taxonomy the V+NIR spectrum is typical ofV-type asteroids [DeMeoet al.,

2009], similar to the asteroid (4) Vesta. The next two matches returned by M4AST are Sv and

Sr types but these types have larger matching error (Fig 7.2b).

(854) Frostia was not included in the family of (4) Vesta by Zappalaet al. [1995]. The loca-

tion of (854) Frostia inside the Main-Belt is very similar to that of Vesta family in semi-major

axis and inclination and may justify its membership to the same clan. Frostia’s eccentricity of

0.17 is slightly over the greater boundary (of 0.12) of Vestafamily. This case is not particular

while other V-type asteroids were already reported in the inner part of the Main Belt, relatively

close to the Vesta family [Duffardet al., 2004].

In the assumption of (854) Frostia as a fragment of Vesta’s crust, a value of its density around

3,000kg/m3 seems to be reasonable. The value calculated by Behrendet al. [2006] (around

1,000kg/m3) is very difficult to explain even if an unrealistic porosities of 75% in a rubble-

pile structure is assumed. In fact, large porosities for small fragments of large differentiated

bodies are not realistic while the self-gravitation tendency is to decrease the volume of empty

space inside the object. Behrendet al. [2006] inferred a C-type asteroid by analogy with the

asteroid (90) Antiope. It is difficult to reconcile the C and Vtaxonomic classes while the objects

experienced different temperatures in their history.

Descamps [2010] published recently a refined study of binarysystems by accounting in-

5http://sbn.psi.edu/ferret/
6Sloan Digital Sky Survey was obtained using five broad band filters, namelyu,g, r, i,zcentered to 3,551, 4,686, 6,165, 7,481, and 8,931

http://sbn.psi.edu/ferret/
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homogeneous bodies with ellipsoidal shapes. This model allows the simultaneous fit of grain

density and the bulk porosity. The author calculated a graindensity of(2,790±380)kg/m3 in

agreement to the one of Vesta-like asteroids, correlated toa bulk porosity of 63% (≈55% of

macroscopic porosity +≈8% of microporosity).

For the laboratory spectra proposed by M4AST to match this asteroid spectrum, the ma-

jority corresponds to achondrite meteorites, subtype Basaltic HED -Eucrite. This fully agrees

with the classification as a V-type asteroid. The first solution given by all four methods for

comparison with laboratory spectra shows that the spectrumof (854) Frostia is almost identi-

cal with the spectrum of ”ALHA76005,85” meteorite. Other relevant solutions of this appli-

cation are the spectra of samples from Basaltic HED -Eucrite meteorites: ”Y− 793591,90”,

”ALH−78132,61” (Fig. 7.2c, 7.2d, Table 7.4). Another significant resultof the spectral com-

parison was the fact that the first matches correspond to particulate samples with sizes less than

25 µm. This suggests that (854) Frostia is covered by fine grains of regolith.

The meteorite number 5 discovered in 1976 in Allan Hills -Antartica (”ALHA76005,85”)

was study in many papers [Olsenet al., 1978, Simon & Papike, 1983, Miyamotoet al., 1979].

Olsenet al. [1978] noted about this meteorite that is a pale gray in colorand consists of a

finely divided mycrocrystalline pyroxene rich matrix that contains clastic fragments: white

Plagioclase rich rocks, grey clasts of glass, monominerallic fragments of pyroxenes, silica,

oxide minerals, sulfides and metal. On a plot of CaO againstFe
Fe+Mg, is placed in the middle of

the eucrite field.

The mineralogy of (854) Frostia could be refined by taking into account the precise posi-

tion of the band minima, band centers at 1 and 2µm and the band area ratio (BAR). To esti-

mate these parameters the mineralogical models can be applied [Cloutiset al., 1986a, 1990]

using M4AST routines on the composed V+NIR spectrum. The first minimum (BI mini-

mum) is found at 0.9309±0.0015µm, while the BII minimum is located at 2.0049±0.0046

µm, implying a band separation of 1.0740 µm. These parameters fit in the empirical for-

mula y = 0.801∗ x−0.536, wherey is the band separation andx is the BII minimum. They

correspond to an iron content of around 55 wt%, according to the calibrations shown by

de Sanctiset al. [2011b]

After removing the continuum by considering a linear function for each band it can be found

the band centers at 0.9355±0.0012µm for the first band, respectively 1.9972±0.0038µm for

the second band. In the case of BII, the thermal correction canbe computed using the formulas

(2) and (4) from Burbineet al. [2009]. The value found 0.002µm is closely to the value of the

error-bar for BI center, thus its influence can be neglected. The positions of BI and BII centers

are relatively similar to those obtained for the asteroid (1459) Magnya [Hardersenet al., 2004].

If these values obtained for Frostia are placed in the context of the pyroxene studies of Adams

[1974] and Cloutis & Gaffey [1991] it can be concluded a dominant presence of orthopyroxene

on the asteroid surface. The position of the bands place the asteroid near the Eucrite region (see
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Fig 10 from Gaffey [1997]).

The spectrum of (854) Frostia presents an inflexion near 1.2µm which is an indication of

the presence of feldspar in the basaltic achondrite materials. The mineralogical composition

using the pyroxene calibration [Gaffeyet al., 2002] suggests the formulaWo8Fs43En49 (with a

4% of uncertainty for wollastonite and ferrosilite). This composition is, within the error-bars,

similar to that of (4) Vesta and (1459) Magnya, and similar tothat of the asteroid (3269) De

Sanctis [Duffardet al., 2004].

The calculated BAR for (854) Frostia was 1.9052± 0.08, in agreement with the basaltic

achondrite minerals [Gaffeyet al., 1993b]. This ratio gives the relative abundance orthopyrox-

ene vs olivine [Fornasieret al., 2003]: 0.85 %. This fully agrees with the the mineralogical

analysis performed above.

7.4 1333 and 3623 - two asteroids with large amplitude lightcurves

The lightcurve of an asteroid is the display of the variationof its magnitude over time. The

lightcurve is related to the rotation of an asteroid around an instantaneous axis. In other words,

the lightcurve could be interpreted as an observable of the angular momentum for a given

object. This variation is primarily due to the shape [French& Binzel, 1989]. The lightcurve

could be also due to the albedo variation [Harris & Lupishko,1989] of the asteroids. The results

of observations of lightcurves for asteroids are regularlysynthesized in catalogs of lightcurves

(for example Lagerkvistet al. [1987]).

Several asteroids exhibit large amplitude lightcurves, which remained unexplained until the

last decade. Different explanations were proposed for these variations, starting with elon-

gated shaped asteroids and including double and multiple systems of aggregates in a weak

self-gravitational field [Cellinoet al., 1985].

This section is focused on the spectroscopic results obtained for two asteroids with large

amplitude lightcurves. Near-Infrared (NIR) spectroscopicobservations for (1333) Cevenola,

and (3623) Chaplin are presented. A detailed analysis of their spectra, and the mineralogical

models derived for each asteroid are discussed.

7.4.1 (1333) Cevenola

(1333) Cevenola has an absolute magnitude H = 11.5 mag. The asteroid is placed in the Main

Belt, having a semi-major axis a = 2.63344 AU and a eccentricity e = 0.133589 (Table 7.4).

Photometry of this asteroid shows a large amplitude of 0.97±0.03magand a synodical period

of 4.88±0.02hrs [Warner, 2002].

(1333) Cevenola belongs to the Eunomia family [Zappalaet al., 1995, Mothé-Dinizet al.,

2005]. This family has more than 430 objects [Zappalaet al., 1995]. 44 members of Eu-
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Figure 7.3: The NIR spectra with the error-bars for (1333) Cevenola; a) obtained in March 12, 2007; b) obtained
in March 13, 2007. The spectra are normalized to 1.25µm.

nomia family (including Cevenola) were studied spectroscopically in the visible region by

Lazzaroet al. [1999]. Based on the visible spectrum, 41 of them were classified as S-type

objects, while three asteroids exhibit flat spectra and wereconsidered as intruders. Consider-

ing these samples in the frame of the Bus-DeMeo taxonomy [DeMeo et al., 2009], only three

objects are re-observed in the near-infrared region.

The visible spectrum was reported by Lazzaroet al. [2004] in the framework ofS3OS2 sur-

vey, and the analysis of spectral data places the asteroid into theS(Sq more precisely) complex.

The Eunomia family is actually dominated by objects displaying S-type spectra.

Two NIR spectra were obtained for this asteroid (Fig. 7.3), on two consecutive nights, sep-

arated by 24 hours. The spectrum of March 12, 2007 is the result of the combination of in-

dividual spectra of 120 seconds each, for the total integration time of 1.4667hrs. The second

spectrum was obtained in March 13, 2007 for the total integration time of 40min. Consequently,

a S/N of 50 and 20 was estimated. The two NIR spectra are very similar. I made an average

spectrum between the two spectra of (1333) Cevenola and I merged with the visible part from

S3OS2 (Fig. 7.4a).

The SMASS-MIT online tool classifies this spectrum as anSq type in Bus-DeMeo taxon-

omy. TheSqtype has a wide 1-micron absorption band with evidence of a feature near 1.3µm

like the Q-type, except the 1-micron feature is more shallowfor the Sq [DeMeoet al., 2009].

Among the solutions proposed by M4AST for taxonomic classification of this spectrum are

also theQ andK types. This is due to the fact that the spectrum is not as reddened as forSq

type in the infrared part (Fig. 7.4b ). Using the G13 taxonomy[Birlan et al., 1996a], it can

be found that this spectrum belongs to S-complex, being in the class 2 of this taxonomy. The

class 2 of G13 taxonomy includes asteroids like (7) Iris, (11) Parthenope, (26) Proserpina, (27)

Euterpe.

The taxonomic type found for this asteroid spectrum, allowsthe application of space weath-
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Figure 7.4: a) The visible and the averaged NIR spectrum of(1333) Cevenola; b) A polynomial fit for the V+NIR
spectrum of (1333) Cevenola compared with the theoretical spectra of Sq, Q and K taxonomic types; c) the
comparison between the spectrum of (1333) Cevenola and the spectrum of a sample fromSaratovmeteorite; d)
the comparison between the spectrum of (1333) Cevenola and the spectrum of a sample fromHamlet#1 meteorite.

ering model proposed by Brunettoet al. [2006]. Thus, fitting the spectrum with an exponential

continuum I foundCs = -0.133µm, corresponding to a relatively fresh surface. TheCs value

gives the number of displacements per cm2, d = 0.45×1019 displacements/cm2.

Comparing the original spectrum of (1333) Cevenola with all laboratory spectra from Relab,

M4AST found matches with ordinary chondrite meteorites (L and LL subtypes, and petrologic

classes 4 and 5). In terms of standard deviation and correlation coefficient, the best matches

where those of samples from Saratov, Hamlet #1 (Fig. 7.4) andParanaiba. These meteorites

are ordinary chondrites with low iron content.

I compared also the de-reddened spectrum of (1333) Cevenola to laboratory spectra from

Relab. In this case, the four methods used give relatively different solutions. The spectral

solutions that can be selected are the spectrum of a sample from Denver meteorite and the

spectrum of a sample from Hamlet #1 meteorite. Both meteorites are ordinary chondrites with

low iron content.
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Figure 7.5: The NIR spectra of (3623) Chaplin; a) obtained inMarch 12, 2007; b) obtained in March 13, 2007.
The spectra are normalized to 1.25µm.

Applying the Cloutis mineralogical model, the following parameters can be found: BI cen-

ter is at 0.9803±0.0111µm, BII center is at 1.9630±0.0116µm, and the BAR is 0.3317±
0.0036. These values imply anOPX

OPX+OL ⋍ 0.19. The results of the model suggest a miner-

alogy similar with ordinary chondrites LL subtype. It agreeswith the results found from the

comparison with laboratory spectra.

This spectrum was analyzed by Birlanet al. [2011] using the modified Gaussian model

(MGM) procedure [Sunshine & Pieters, 1993]. The procedure allows the quantitative charac-

terization of absorption features, by simultaneous fittingof multiple Gaussian-like absorption

bands [Pieters & McFadden, 1994]. This analysis strongly indicate that the presence of both

olivine and pyroxene are necessary for reproducing the observational data of (1333) Cevenola.

The mineralogical solution corresponds to fayalitic material with the molar percentage equal

to 20±5 [Sunshineet al., 2007] and the width of these absorption bands span the same range

as presented by Sunshine & Pieters [1998]. However, the strength ratio between the M1 and

M2 olivine crystals is different from the calibration values proposed by Sunshineet al. [2007].

This imply that mineralogies with fayalitic-forsteritic components need to be completed with

other components.

7.4.2 (3623) Chaplin

(3623) Chaplin belongs to the Koronis family [Zappalaet al., 1995, Mothé-Dinizet al., 2005].

The asteroid has the synodic period of 8.361±0.005 hrs, and a large amplitude in its composite

lightcurve estimated to 0.97±0.02 mag. [Birlanet al., 1996b]. However, there is no estimation

for its pole coordinates.

Two NIR spectra of the asteroid, presented in Fig 7.5a and Fig7.5b were obtained at a

time interval of about 23 hours. The spectrum of March 12, 2007 is the result of combined
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Figure 7.6: a) The NIR averaged spectrum of (3623) Chaplin; b) A polynomial fit for (3623) Chaplin compared
with the theoretical spectra of S, Sv and Sq taxonomic types;; c) the comparison between the spectrum of (3623)
Chaplin and the spectrum of a sample from igneous plutonic rock; d) the comparison between the spectrum of
spectrum of (3623) Chaplin and the spectrum of a sample from low-calcium impact melt breccia rock.

individual spectra of 120 seconds each, for the total integration time of 72 min, while the the

second spectrum (obtained in March 13, 2007) was obtained for the total integration time of 80

min. The S/N was estimated in the range of 15-20.

The NIR spectrum of (3623) Chaplin is typical toS complex asteroids, which is the taxo-

nomic class of the Koronis family on which Koronis belongs. The classification made using

M4AST gives relatively different solutions compared with the classification made via SMASS

MIT online tool. M4AST gives the solutions:Sv, L andS, while the SMASS MIT online tool

givesS, Sq, Q andL. By visual inspection between these solutions, I consider aspossible types

for this spectrum the solutionsS, SvandSqFig. 7.6b.

The comparison with laboratory spectra is presented in Table 7.4. The majority of matchings

are among Igneous Plutonic rocks and Polymict Breccia rocks.The fist matching corresponds

to a spectrum of Igneous Plutonic rock, subtype - Gabro Shocked, with crumbed (particles

size between 45 and 75µm). The second match is a low-Calcium Impact Melt Breccia, a
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rock brought by Apollo 14 mission. A meteorite spectrum thatseems to match this asteroid

spectrum is that of an Achondrite - Ureilite type,PCA82506,80.

Applying de-reddening model, it can be found that it is characterized by a low space-

weathering effect ( Cs = -0.157µm). This small value ofCs can be explained by the fact

that (3623) Chaplin resides in the outer part of the Main Belt, being less affected by the so-

lar wind ion radiation. After removing the exponential continuum, the laboratory spectra that

match this spectrum are those of a sample from Fayetteville meteorite - an ordinary chondrite

meteorite and a Igneous Plutonic rock.

(1333) Cevenola and (3623) Chaplin were observed over two consecutive nights in order

to detect spectral variations in their spectra. Their correspondent spectra has the same profile,

which is interpreted as a homogeneity of the surfaces of eachobject.
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Figure 7.7: The NIR spectra of a) (10484) Hecht and b) (31569)1999 FL18. Both spectra are normalized to 1.25
µm.Taxonomic classification of c) (10484) Hecht and d) (31569) 1999 FL18.
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7.5 Asteroid pairs: (10484) Hecht, (31569)1999 FL18

The identification of asteroid-pairs could be considered asthe smallest cluster that could be

derived using the asteroids dynamical parameters.Vokrouhlický & Nesvorný [2008] propose a

set of pairs of asteroids of a common origin. This topic is further re-analyzed and quantified in

terms of statistical significance by Pravec & Vokrouhlický [2009].

The formation of asteroid pairs could be explained using thefollowing mechanisms: col-

lision disruptions of km-sized and larger parent asteroids,Yarkovsky-O’Keefe-Radzievski-

Paddack (YORP) effect which can induce spin-up and rotational fission of fast-rotating objects,

and splitting of unstable asteroid binaries [Vokrouhlický& Nesvorný, 2008] . In the first case

the asteroids would be parts of compact collisional families with many members that would be

found by future asteroid surveys.

Physical characterization of asteroid pairs is still incipient and a challenging task since a

large fraction of identified pairs have large magnitudes. Some recent results were proposed by

[Duddyet al., 2012]. In this framework we started an observing programs of these intriguing

objects.

Here I briefly describe the NIR spectra (Fig. 7.7) of two objects from two different pairs

identified by Pravec & Vokrouhlický [2009]: (10484) Hecht and (31569) 1999 FL18. The

observations were performed using SpeX/IRTF in low resolution mode. While the S/N ratio is

poor for (10484) Hecht only the spectral range 0.8-2.1µm is considered as relevant. For the

asteroid (31569) 1999 FL18 the spectrum is reliable over thespectral interval 0.8-2.4µm.

(10484) Hecht has an apparent magnitude H = 14.0, while its twin (44645) 1999 RC118 has

an apparent magnitude H = 14.7. The favorable positions to obtain the spectrum of (44645)

1999 RC118 are in July 2013 when the asteroid has an apparent magnitude 18.0 and in the

beginning of January 2015 when the asteroid has an apparent magnitude 17.0.

(31569) 1999FL18 has also the apparent magnitude H = 14.0, while its twin (21321) 1997AN2

has an apparent magnitude H = 14.3. The favorable geometry toobtain the spectrum of (21321)

1997AN2 arise in October 2013 when the asteroid has an apparent magnitude 16.4.

(10484) Hecht data are close to the V, Sv, Sr (Fig. 7.7c) and R taxonomic classes into the

Bus-DeMeo taxonomy. The result is mainly based on the deep 1µm absorption band. The

asteroid (31569) 1999 FL18 was classified as V or Sv taxonomictype (Fig. 7.7d).

The comparison to meteorite spectra confirms the affinity of both spectra to the one of HED

meteorites. The best fit for (10484) Hecht are the man - made mixtures containing Pyroxene

Hypersthene Olivine Forsterit Plagioclase Bytownite Ilmenite. However, due to the poor SNR

of the data over 2.1µm, the acapulcoide primitive achondrite meteorites could also be a relative

good mineralogical solution. For (31569) 1999 FL18 the HED eucritic nature is proposed.

Among the solutions it can be found the spectrum of a sample ofMacibini Clast 3, a meteorite

discovered in South Africa (Table 7.4).
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The band minima for the (10484) Hecht are at 0.9244±0.0038µm, respectively 2.0461±
0.1522µm, resulting in a band separation of 1.1217µm. These values indicate an iron content

larger than 65 wt%, based on empirical relation obtained from the laboratory experiments. For

a similar analysis of the spectrum of (31569) 1999 FL18 the following values can be found

0.9310±0.0011µm, respectively 2.0341±0.0094µm for the band minima, and a band sep-

aration of 1.1031 µm. These values are also equivalent with an iron content larger than 65

wt%.

(31569) 1999 FL18 belong to two different pairs which could be genetically related. The

extrapolation of the results to these pairs shows four new objects possible V-type inside the

asteroidal population.

The spectral observations and analysis of asteroid pairs isa new scientific program based on

the dynamical findings by Vokrouhlický & Nesvorný [2008].
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CONCLUSIONS AND PERSPECTIVES





8
Conclusions and perspectives

During my Ph. D. studies, I applied the spectral techniques to determination of asteroids physi-

cal properties. The work consists of three main activities:telescope observations, developing of

the methods and tools for asteroid spectral analysis, and interpretation of the asteroids spectra.

I observed for more than 40 hours on NASA SpeX/IRTF, in remotecontrol from CODAM

Center(Paris). The purpose of these observations was to obtain NIR asteroid spectra. The

results where partially published [Birlanet al., 2011,Popescuet al., 2011, Birlan &Popescu,

2011, Birlanet al., 2012,Popescuet al., 2012b].

Additional to the main subject of the thesis, I observed around 20 nights for asteroids dis-

covery (with particular interest for NEAs), recovery and follow up. These observations were

made from Obsv. de Haute Provence (France), Pic du Midi (France), and ORM in La Palma

(Canary). The results of these campaigns appeared in 12 MinorPlanet Circulars and 21 Minor

Planet Electronic Circulars.

For analysis of asteroids NIR spectra I applied the well known methods (taxonomic clas-

sifications, band analyses and comparative mineralogy) andI proposed new mathematical ap-

proaches for spectral comparison and taxonomical classification. I implemented all these meth-

ods into routines of a software package called M4AST (Modeling for Asteroids). The second

component of M4AST is the spectral database which has around2,700 asteroid spectra ob-

tained from our observing program and different collaborations. The spectra from the database

are in a standard format and are fully available for download. I developed M4AST using Oc-

tave computation environment, PHP programming language, and GNUPlot tools (with the free

GNU license).

M4AST was conceived to be fully available via a web interfaceand can be used by the sci-

entific community. Together with my colleagues, I presentedin a paper [Popescuet al., 2012b]

the interfaces available to access this software tool and the algorithms behind each method used

to perform the spectral analysis. The robustness of the routines has been demonstrated by using

the software to model a variety of spectra.

Together with my colleagues, I obtained and analyzed NIR spectra for eight near-Earth

asteroids [Popescuet al., 2011]. Four of the observed objects have delta - V lower than7
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km/sec, which make them suitable targets in terms of propulsion for a future spacecraft mis-

sion. I modeled and interpreted the obtained spectra using avariety of techniques with the goal

of interpreting the asteroidal surfaces in terms of their mineralogical composition. Each aster-

oid spectrum was analyzed to obtain its taxonomic class and the closest matching meteoritic

analogs from the laboratory databases. The taxonomic classification of five of these objects was

reviewed and I assigned a corresponding type to the other three asteroids that had not been pre-

viously classified. I found that (1917) Cuyo, (8567) 1996 HW1, (16960) 1998 QS52, (188452)

2004 HE62, and 2010 TD54 are in the S-complex. For these objects, a good matching with the

spectra of ordinary chondrites meteorites has been obtained.

From this set of samples, the asteroid Jasonwheeler was found to have a NIR spectrum

similar to that of carbonaceous chondrite meteorites. It wasclassified to be between D and

T taxonomic classes. Since these classes are considered to have primitive compositions and

the delta-V for this object is smaller than 7 km/sec, Jasonwheeler could be a very interesting

candidate for a sample and return spacecraft mission.

In different collaborations [Birlanet al., 2011, Birlan &Popescu, 2011,Popescuet al., 2012a,

Birlan et al., 2012] I analyzed VNIR spectra for a variety of asteroids: vestoids, asteroid pairs,

asteroids with large amplitude light-curve. Their spectral properties are in agreement with the

V and S complex types. For the V-type a very good matching withHED meteorites was found.

Mineralogical solutions were proposed for all these asteroids.

My future work includes two directions: developing M4AST tools and observational pro-

grams for asteroid spectra. Future developments of M4AST project consist in increasing the

number of spectra in the database, additional methods for analyzing the spectra (such as min-

eralogical charts Birlanet al. [2011]), and a more friendly interface.

The first observational programs in which I am involved, as one of the co-investigators,

aims to obtain using SpeX, NIR spectra of NEAs with MOID < 0.1 AU and orbits that are

approaching Earth. The team is particularly interested to find V-types asteroids that may be

at the origin of the meteor showers associated with the increased number of HED falls during

June of each year. For this program we obtained 16 hours of observations on the IRTF/SpeX in

the second half of 2012.

Another program on which I participate aims to gather physical characterization results for a

large sample of potential target destinations for developing future space mission opportunities.

Particular attention is given to asteroids presenting spectra similar to primitive mineralogical

composition.
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The GuideDog and the BigDog interfaces

Figure A.1: The GuideDog interface is used to control the guider system of the telescope. Source: Rayneret al.
[2004].
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Figure A.2: The BigDog interface is used to control the spectrograph set-up and spectra acquisition. Source:
Rayneret al. [2004].
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ABSTRACT

Context. Near-Earth objects are among the most accessible bodies in the solar system in terms of the spacecraft propulsion require-
ments to reach them. The choice of targets and the planning of space missions are based on high quality ground-based science.
Aims. The knowledge of the ensemble of physical parameters for these objects, including their composition, is a critical point in
defining any mission scientific objectives. Determining the physical properties of near-Earth asteroids (NEAs) is also possible from
the ground by analyzing spectroscopy at both visible and infrared wavelengths.
Methods. We present spectra of eight NEAs (1917, 8567, 16960, 164400, 188452, 2001 SG286, and 2010 TD54) obtained using the
NASA telescope IRTF equipped with the spectro-imager SpeX. The observations were performed in the 0.8–2.5 µm spectral region
using the low resolution mode of the spectrograph. We completed the taxonomic classification using the Bus-DeMeo taxonomy. We
analyzed the spectra by comparing them to meteorite spectra from the Relab database using a χ2 approach. For the S-type asteroids
of our sample, the band centers and BAR were calculated. We also attempted to interpret our data using a space-weathering model.
Results. The taxonomic classification of five objects was reviewed and we assigned a corresponding type to the other three aster-
oids that were not classified before. We found that (1917) Cuyo, (8567) 1996 HW1, (16960) 1998 QS52, (188452) 2004 HE62, and
2010 TD54 are in the S-complex. We achieved a good matching of our S-type asteroids with the spectra of ordinary chondrites mete-
orites. The asteroid (5620) Jasonwheeler was found to have a NIR spectrum similar to carbonaceous chondrite meteorites. Thus, our
results confirm its primitive properties obtained in several other spectral intervals.

Key words. minor planets, asteroids: general – methods: observational – techniques: spectroscopic

1. Introduction

Asteroids are leftovers from the formation of the solar system
and studying their properties in detail will allow us to constrain
more reliably the formation and evolution of our solar system.

There are more than 500 000 known asteroids, most of them
belonging to the main belt. Owing to some mechanisms, which
are still the subject of dynamical studies, some of these objects
have migrated into the inner part of the solar system (Morbidelli
et al. 2002). These are near-Earth asteroids (denoted NEAs),
small bodies of the solar system with perihelion distances q ≤
1.3 AU and aphelion distances Q ≥ 0.983 AU, whose orbits
approach or intersect the Earth orbit. Depending on their or-
bital parameters, NEAs are divided into Apollos (a ≥ 1.0 AU;
q ≤ 1.016 AU), Athens (a < 1.0 AU; Q ≥ 0.983 AU), and Amors
(1.016 < q < 1.3 AU).

Potentially hazardous asteroids (PHAs) are currently de-
fined based on parameters that measure the asteroid’s potential

⋆ Appendices A and B are available in electronic form at
http://www.aanda.org

to make threatening close approaches to the Earth. All aster-
oids with an Earth minimum orbit intersection distance (MOID)
smaller than 0.05 AU and an absolute magnitude (H) of 22.0 or
brighter are considered PHAs (Milani et al. 2000).

One of the most important aspects related to the NEAs is
their accessibility to be investigated by spacecrafts. This enables
their scientific study and the detailed assessment of their future
use as space resources. Several programs for space exploration
of these objects (Marco Polo-R, OSIRIS-REx, Hayabusa2) are
now under study around the World. The choice of targets and
the planning of space exploration are based on strong ground-
based science. Thus, the knowledge of the ensemble of physical
parameters of objects and their composition is a critical point in
defining the mission scientific objectives.

A major scientific goal of studies of the NEA population is
their global characterization in terms of spectral trends, relating
the spectral data to the laboratory measurements. Given the dom-
inance of S-type asteroids among the NEA population, and the
abundance of ordinary chondrites (OC) among the meteorites, it
has been generally and widely assumed that they are connected,

Article published by EDP Sciences A15, page 1 of 15
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Table 1. Log of asteroids observations.

Asteroid Date (UT) V Φ (◦) r (UA) Airmass ITime(s) Cycles Solar analogue Airmass
(1917) Cuyo 2008/08/27.637 14.6 66.0 1.105 1.038 120 6 BD+41 309 1.141
(5620) Jasonwheeler 2009/05/04.569 16.5 20.9 1.345 1.344 120 6 HD 154716 1.240
(8567) 1996 HW1 2008/08/27.543 12.9 28.8 1.143 1.099 60 13 HD 217577 1.213
(16960) 1998 QS52 2008/08/27.588 16.9 30.0 1.784 1.105 120 13 HD 27834 1.083
(164400) 2005 GN59 2008/08/27.472 16.2 25.2 1.244 1.024 120 2 BD+28 3198 1.410
(188452) 2004 HE62 2008/08/27.404 16.7 60.8 1.109 1.513 120 12 BD+28 3198 1.401
2001 SG286 2009/05/19.594 16.7 102.0 1.006 1.962 120 2 HD 216516 1.742
2010 TD54 2010/10/12.303 15.5 17.3 1.000 1.252 120 8 L115-271 1.092

Notes. Asteroid designations, date of observation with the fraction of the day for the mid time of the observation, the apparent magnitude, the
phase angle, the heliocentric distance, the airmass at the mean UT of each observation, the integration time for each spectrum (ITime), and the
number of cycles are presented. The last two columns describe the solar analogs used for data reduction, as well as their airmass at the moment of
observations.

and that NEAs are the most probably parent bodies of mete-
orites (Vernazza et al. 2008; de León et al. 2010). Vernazza et al.
(2008) reported that about two-thirds of near-Earth asteroids in
their sample of 38 objects have spectral properties quantitatively
similar to the LL meteorites.

Statistical analysis of spectral data allows the construction
of taxonomies and taxonomic classes. These analyzes represent
a first step in studies of comparative planetology, which permit
us to characterize the specific mineralogy of each class that they
identify. The new taxonomy for asteroids obtained by DeMeo
et al. (2009) underlines the importance of both visible and near-
infrared spectral data to determining the asteroid statistics. This
is quite understandable while the spectral data of regoliths on
the asteroid’s surface are of the 0.4–3.6 µm spectral region1.
With few exceptions, this spectral region is accessible from the
ground, the atmosphere being transparent at these wavelengths.
This new Bus-DeMeo taxonomy, based on the spectra of more
than 310 objects, defines 24 classes.

Irradiation by cosmic and solar wind ions, as well as bom-
bardment by interplanetary dust particles (micro-meteorites)
produce relevant surface modifications to airless bodies of the
solar system. These processes are known as space weathering
(Hapke 2001). The most affected by this alteration are silicate-
rich objects, for which a progressive darkening and reddening of
the solar reflectance spectra appear in the 0.2–2.7 µm spectral re-
gion (Hapke 2001). Space weathering processes can explain the
spectral differences between the ordinary chondrite meteorites
and their presumed parent bodies – the S-type asteroids (Pieters
et al. 2000). Vernazza et al. (2009) demonstrate the necessity
to take the composition into account when evaluating weather-
ing effectiveness. The laboratory experiments show that solar-
wind ion implantation is the most rapid of several competing
processes (Brunetto et al. 2006; Vernazza et al. 2009; Loeffler
et al. 2009).

On the basis of laboratory experiments, Brunetto et al.
(2006) describe the spectral effects of solar wind irradiation by
an exponential continuum in terms of the ratio of weathered
spectra to unweathered spectra. Since ion-induced spectral red-
dening is related to the formation of displacements, they corre-
lated the model with a damage parameter of the surface given as
the number of displacements per cm2.

In this paper, we present spectroscopic results for eight
NEAs in the 0.8–2.5 µm spectral region. The asteroids were ob-
served during several runs between 2008 and 2010 to study NEA
physical properties, and are subsidiary to the potential targets of
spacecraft missions. In Sect. 2, the details related to observation

1 We refer here only to the reflectance spectra.

methods and the steps followed for data reduction are given.
We modeled and interpreted the acquired spectra using differ-
ent techniques with the goal of achieving basic interpretations
regarding of the composition and physical processes that took
place at the surface of the asteroids (Sect. 3). The results of
spectral analysis for each of the eight objects are described in
Sect. 4. Some general characteristics of our sample are discussed
in Sect. 5. Finally, the conclusions summarize the obtained re-
sults.

2. The observing method and data reduction

In contrast to the main-belt asteroids, the asteroids classified as
NEA do not often have a favorable geometry for ground-based
observations. The small diameters of the majority of NEAs im-
pose tight constraints on the suitable geometries of observations
for determining the reflective properties of their surfaces. These
conditions are usually met in the case of a close approach to the
Earth, when the apparent magnitude decreases by several mag-
nitudes. These suitable geometries occur on average, only five
times per century.

During the observing run, the asteroids and the solar ana-
log were alternatively observed. Our strategy was to observe all
asteroids as close to the zenith as possible (Table 1). Each ob-
served asteroid was preceded by observations of solar analogs
located in the vicinity. The following stars were observed and
used as solar analogs: BD+41 309, HD 154716, HD 217577,
HD 27834, BD+28 3198, HD 216516, and L115-271 (Table 1).
Our choice was to observe the solar analogue as close as pos-
sible to the target. The differential airmass between the asteroid
and the standard was usually restricted to less than 0.15. The
photometric G2V standards were chosen. We made an exception
for 2010 TD54, where the data reduction were performed using
L115-271, commonly used in NIR spectral measurements.

The asteroids were observed in the 0.8–2.5 µm spectral re-
gion with the SpeX/IRTF instrument, located on Mauna Kea,
Hawaii. These observations were performed remotely from the
Centre d’Observation à Distance en Astronomie à Meudon
(CODAM) (Birlan et al. 2004, 2006) using the low resolu-
tion prism mode (R = 100) of the spectrograph. We used a
0.8 × 15 arcsec slit oriented north-south. The spectra for the as-
teroid and the solar analog stars were obtained alternatively at
two separate locations along the slit denoted A and B following
the nodding procedure (Nedelcu 2010).

The data reduction process consists of two main steps (Birlan
et al. 2007; Nedelcu 2010): first, obtaining the raw spectra for
the object and the solar analog and second, computation of a
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Table 2. Some characteristics of our NEAs: orbit type, semi-major axis, eccentricity, inclination, absolute magnitude (H), the Delta-V , and
taxonomic classification.

Object Orbit type a e i ∆V H Taxonomic type
[km s−1] Previous This work

(1917) Cuyo Amor 2.15005205 0.50448184 23.943786 8.556 14.7 Sl;S Srw
(5620) Jasonwheeler Amor 2.15783969 0.42369152 7.861788 6.974 17.0 – D;T
(8567) 1996 HW1 Amor 2.04580925 0.44905867 8.439303 6.495 15.4 S Sq
(16960) 1998 QS52 Apollo 2.20249841 0.85791440 17.563883 11.11 14.2 Sq;Q Sr
(164400) 2005 GN59 Apollo 1.65644063 0.46770919 6.627004 6.002 17.4 – L
(188452) 2004 HE62 Amor 2.55781560 0.56690184 24.685809 9.074 17.3 – Sr;Sv
2001 SG286 Apollo 1.35819973 0.34708703 7.772096 5.604 20.9 D D
2010 TD54 Apollo 1.97198039 0.64352131 4.809727 – 28.7 S Sr;Sv

normalized reflectance spectrum by dividing the asteroid spec-
trum by the solar analog spectrum and performing a correction
for telluric lines.

For the first step, the Image Reduction and Analysis Facility
(Tody 1986) was used. Preprocessing of the CCD images in-
cluded bias and flat field correction. An averaged bias frame
taken at the telescope at the beginning of each observing night
was used to perform bias subtraction. Flat fields images were ob-
tained for each object using calibration lamps, at the beginning
or end of the night. For the wavelength calibration, the Ar lamp
spectrum was used. In the second step, specific IDL routines
were used to help diminish the influence of telluric bands in our
spectra (Rivkin et al. 2004). No other correction for the differ-
ential refraction was performed. For the computation of the final
reflectance (ratio of the asteroid spectrum to the star spectrum),
we took into account the similar dynamic regimes of the detector
(Vacca et al. 2004; Rayner et al. 2003).

Log of asteroids observations is given in Table 1. In general,
the asteroid spectra were obtained taking images with an integra-
tion time (Itime) of 120s in the nodding procedure, for several
cycles, to increase the S/N ratio. For two objects of our sam-
ple (2005 GN59, and 2001 SG286), the atmospheric conditions
and their low brightness imply a poor S/N ratio. In this case, to
obtain reliable spectral measurements, the images were selected
by visual inspection, removing all those in which we could not
distinguish the trace of the spectrum before the data reduction
procedure.

3. Methods used to analyze data

We consider our analysis of spectra in the context of previously
published physical and dynamical properties of these objects.
Table 2 summarizes some parameters of our sample.

We complete our spectral data with the visible counterpart,
when available. This is the case for four of our asteroids: (1917)
Cuyo, (8567) 1996 HW1, (16960) 1998 QS52, and 2001 SG286.
For each of them, the visible spectrum was merged with our
NIR data using a procedure of minimization of data in the com-
mon spectral region 0.82–0.9 µm.

We computed the slope for each spectrum using a first-order
polynomial fit. For the case of composite spectra (V + NIR), the
slope was computed for the spectra normalized to 0.55 µm to
compare with the conclusions of the DeMeo et al. (2009) tax-
onomy. Otherwise, when only NIR was available, the slope was
computed for the spectra normalized to 1.25 µm.

Taxonomic types, although not usable to determine the
mineralogic compositions of the objects, help constrain min-
eral species that may be present on the surface of the aster-
oid. Currently, the most commonly taxonomies are: Tholen

taxonomy (Tholen 1984), Barucci taxonomy (Barucci et al.
1987; Birlan et al. 1996), based on Eight-Color Asteroid Survey
data (Zellner et al. 1985), SMASII spectral taxonomy (Bus &
Binzel 2002), and Bus-DeMeo taxonomy (DeMeo et al. 2009).
We used the last one, which is an extension of the Bus & Binzel
(2002) taxonomy to the near-infrared, considering the data
spanning the wavelength range between 0.45 µm to 2.45 µm.
The Bus-DeMeo taxonomy is based on Principal Component
Analysis and comprised 24 classes. This taxonomy allows us to
analyze spectra using only NIR data, although we are in this case
unable to obtain a unique classification. We used two indepen-
dent methods to establish the taxonomical class of each aster-
oid in our sample. In a first approach, spectral data of our aster-
oids were compared with Bus-DeMeo taxonomic classes via the
MIT-SMASS on-line tool2. The second approach to taxonomic
classification was a procedure developed during this study using
a χ2 minimization method accounting for the mean and standard-
deviation values of the Bus-DeMeo taxonomic classes. For this
method, we define a reliability criterion:

Reliability =
card([λm, λM]

⋂

{λT
1 , λ

T
2 , ..., λ

T
41})

41
(1)

where [λm, λM] is the spectral interval between the minimum and
maximum wavelengths of the spectrum, λT

1 , λ
T
2 , ..., λ41 are the 41

wavelengths from Bus-DeMeo taxonomy, spanning the interval
between 0.45 µm and 2.45 µm, and card() represents the num-
ber of elements of a discrete set. To apply this procedure, we
smoothed our data by curve fitting with polynomial functions.
This was done using poly f it from the Octave3.2 computation
environment. The degree of the polynomial was selected to be
between 15 to 21 such that the fit produces the smallest least
squares fitting residuals. The obtained fitting curves are given in
Fig. 3. Overall, we observed that both procedures gave similar
results.

We also compared our observational data with laboratory
spectra. Spectroscopy of different samples made in the labora-
tory provides the basis upon which compositional information
about unexplored or unsampled planetary surfaces is derived
from remotely obtained reflectance spectra. The Relab3 spectral
database contains more than 15 000 spectra for different types
of materials from meteorites to terrestrial rocks, man-made mix-
tures, and terrestrial and lunar soils. The comparison was made
in the first step using a χ2 minimization method between aster-
oid spectrum and all the spectra from the Relab database, which
were first normalized to 1.25 µm. In this way, the best fifty spec-
tral curves of different Relab samples were selected for further
analysis. From these results, only the meteorite spectra were

2 http://smass.mit.edu/busdemeoclass.html
3 http://www.planetary.brown.edu/relab/
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kept. After that, we considered only those meteorite spectra for
which the mean reflectance value remains roughly in an inter-
val of ±50% centered on the albedo value (or mean albedo value
corresponding to taxonomic class for that asteroid). A third se-
lection was made by taking into account the spectral-feature po-
sition (band maxima, band minima) and slope. This was done by
comparing each asteroid spectrum with a meteorite spectrum,
and selecting the meteorite spectra for which the spectral fea-
tures do not differ by roughly more than 10% and the difference
in slope is not notably larger than 10%. Our initial intention had
been to publish the first three most closely fitting solutions satis-
fying this criteria, for each asteroid spectrum. However, for some
asteroid spectra we found only one or two solutions correspond-
ing to the above mentioned criteria.

In our sample, the asteroids belonging to the S-complex were
also investigated by considering space weathering effects. Our
approach involved applying the model proposed by Brunetto
et al. (2006) and calculating the Cs parameter for each of these
objects using the formula:

W(λ) = K × exp
(

Cs

λ

)

· (2)

Brunetto et al. (2006) demonstrated that for laboratory experi-
ments this provides a good approximation of the effects of irra-
diated materials, regardless of whether they are powder or bulk
samples, meteorite or terrestrial samples, or samples of either
olivine or orthopyroxene. They concluded that a weathered spec-
trum can be obtained by multiplying the spectrum of the unal-
tered sample by the exponential function (Eq. (2)) depending on
the precise value of the parameter Cs.

Cs = α × ln(β × d + 1) (3)

where α = −0.33 µm and β = 1.1 × 1019 cm2.
Brunetto & Strazzulla (2005) demonstrated that ion-induced

spectral reddening is related to the formation of displacements,
though this Cs parameter is also correlated with the number of
displacements per cm2 (damage parameter, noted here by the
letter d). By fitting experimental data, Brunetto et al. (2006) ob-
tained the relation between Cs and the number of displacements
per cm2 (Eq. (3)). We computed this damage parameter by con-
sidering the values from Brunetto et al. (2006).

This model for the space weathering effects, which we ap-
plied to our data, describes the effects of solar-wind ion irradia-
tion. This is not the only active weathering process, but it seems
to be the most efficient at 1 AU (Vernazza et al. 2009; Brunetto
et al. 2006).

We managed to remove the effects of space weathering by
dividing the spectrum with the computed exponential continuum
W(λ). The de-reddened spectra obtained for the S-type asteroids
were compared again with the laboratory measurements from
the Relab database.

The computations for the modeling methods described above
were done using M4AST4 (Popescu & Birlan 2011), which is
software developed at IMCCE Paris to analyze asteroid spec-
tra. This tool implements the algorithms for the aforementioned
models.

OPX
OPX + OL

= 0.4187 ×

(

BII
BI
+ 0.125

)

. (4)

Since for (1917) Cuyo, (8567) 1996 HW1, and 16960 (1998
QS52) we had V+NIR spectra, we were able to apply the model

4 http://cardamine.imcce.fr/m4ast/

proposed by Cloutis et al. (1986). Thus, we computed the two-
band centers (at 1 µm and 2 µm), the ratio of the areas of the
second to the first absorption band (BAR) and we analyzed the
percentage of orthopyroxene using Eq. (4). The computations
were done using the standard procedures described by Cloutis
et al. (1986). These results are presented in Table 5.

4. Results

This section describes the results obtained for the observed
asteroids: (1917) Cuyo, (5620) Jasonwheeler, (8567) 1996
HW1, (16960) 1998 QS52, (188452) 2004 HE62, 2010 TD54,
(164400) 2005 GN59, and 2001 SG286. All spectra were nor-
malized to 1.25 µm. The spectra for the first six objects are plot-
ted in Fig. 1 with error bars and joined with the visible part avail-
able from the literature (Binzel et al. 2004b; Vernazza 2006). The
data obtained for the last two objects, (164400) 2005 GN59 and
2001 SG286, are plotted in Fig. 4 together with some curves that
model these spectra.

The discussion about the taxonomic type of each object is
made with reference to Fig. 3. The results for the taxonomic clas-
sification of spectra are synthesized in Table 2 to allow a com-
parison with the physical properties and previously taxonomic
classification.

Table 3 summarizes the comparison of asteroid spectra with
those of meteorites from the Relab database considering both the
original and de-reddened spectra (the case of S-type asteroids).
The corresponding figures are presented in Appendices A and B.
Some additional data related to meteorites with similar spectra
to our objects are given in Table 3.

4.1. (1917) Cuyo

With an absolute magnitude H = 14.7, this object has an esti-
mated diameter of 5.2 km (Binzel et al. 2002). It is an Amor-type
asteroid,with a synodic period of 2.6905±0.0005 h (Wisniewski
et al. 1997).

Two spectra in the visible are published for this object. For
the first one, Binzel et al. (2004b) found that this asteroid is a
Sl-type in Bus taxonomy, with a high slope of (0.7233 µm−1).
The second one was classified by Michelsen et al. (2006) as an
S-type asteroid in Tholen taxonomy. We joined the visible spec-
trum from the SMASS database corresponding to Binzel et al.
(2004b), with our data in NIR region (Fig. 1). The analysis was
made on the composite V + NIR spectrum.

With the tool from the MIT-SMASS website, this NEA was
classified as Sr-type with a higher spectral slope of 0.5086 µm−1.
Using our χ2 method, R- and Sr-types are obtained as possible
classes for this object. The R-type is obtained with a slightly
better coefficient of reliability than Sr-type, because of the trend
in the 1–1.5 µm spectral region. By visual inspection of the two
solutions, we can see that the features around 1 µm and 2 µm are
more shallow than for R class (Fig. 3), so we can conclude that
this object is an Sr type asteroid.

The comparison with the Relab database shows that the clos-
est spectral fit is obtained for a tiny section from the Dhajala me-
teorite (Sample ID: LM-LAM-026, Fig. A.1). This corresponds
to an ordinary chondrite meteorite rich in Fe (H3-4 olivine-
bronzite). Das Gupta et al. (1978) estimated a total iron con-
tent of 27.1% of the total mass of Dhajala. This meteorite was
also studied by analyzing the metallic grains in its OC structure
(Kong & Ebihara 1997). While the formation of metallic iron is
a consequence of the spatial alteration of an object, space weath-
ering models are nevertheless justified.
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Fig. 1. Spectra of (1917) Cuyo, (5620) Jasonwheeler, (8567) 1996 HW1, (16960) 1998 QS52, (188452) 2004 HE62, and 2010 TD54, with error-
bars. All spectra are normalized to 1.25 µm. For (1917) Cuyo, (8567) 1996 HW1, and (16960) 1998 QS52, we added the visible part (plotted with
green) from the literature (Binzel et al. 2004b; Vernazza 2006).

Modeling the effects of space weathering on the basis of the
exponential continuum, we find that Cs = −0.484 µm, corre-
sponding to strong spectral reddening. Owing to the size of this
NEA, this value agrees with the general conclusion that larger
objects are collisionally older, hence contain surfaces that are
more space-weathered, or are not subject to other surface reju-
venating events as frequently as smaller NEAs. The number of
displacements per cm2, which provides a measure of the solar-
wind ion irradiation, is 3.25× 1019, which implies that the expo-
sure has been longer than 1My (Brunetto et al. 2006).

By removing the exponential continuum and fitting the
unweathered spectrum with meteorite spectra from the Relab
database, the closest match was found for ordinary chondrites
with high level content of Fe but with a higher petrological
type (H5, H6). The spectra of the following meteorites are very
similar to the de-reddened spectrum of (1917) Cuyo: Lancon,
Collescipoli, Ehole (Table 3, Fig. B.1).

4.2. (5620) Jasonwheeler

This object has the geometric albedo pv = 0.094 (Mueller et al.
2011). It is an Amor-type asteroid with a diameter of 1.77 km
(Mueller et al. 2011) and the synodic period of 5.307 ± 0.001 h
(Durkee 2010). The light-curve amplitude of 1.2 magnitude
(Durkee 2010) is indicative of an object with an elongated shape,
or a binary system. Having ∆V = 6.974 km s−1, this asteroid is
a suitable target in terms of propulsion for a possible spacecraft
mission.

No other spectroscopic studies of this object were found in
the literature. The NIR spectrum obtained on May 5, 2009 when
the object had the apparent magnitude 16.5, is plotted in Fig. 1.

The MIT-SMASS online tool for taxonomy classified this
object as belonging to D-class. With our best-fit method, the
spectrum is more similar to T-class (Fig. 3). In general, D-type
asteroids have linear spectra with a very steep slope (greater than
0.38 µm−1) and display a slight curvature around 1.5 µm. On the
other hand, T-types also have linear spectra with a steep gradi-
ent – between 0.25 and 0.38 µm−1 – that nevertheless gradually
curves concavely downward (DeMeo et al. 2009). The spectrum
of this asteroid has a steep slope in the 0.9–1.5 µm region and a
slight curvature between 1.5–2.2 µm (Fig. 3), though the classifi-
cation is at the boundary between D-type and T-type. The overall
NIR slope is 0.2504 µm−1.

Taking into account the low geometrical albedo when com-
paring with spectra from the Relab database, we found close
spectral matches for this spectrum with CM2 carbonaceous
chondrite meteorites (Table 3, Fig. A.2). In general, the CM2
meteorites are characterized by 30% levels of chondrules with
grain sizes of ≈300 µm, the absence of Fe-Ni alloys,and the
presence of CAI (Ca-Al inclusions) (Dobrica 2010). The closest
description of the spectrum is provided by a sample of particu-
lates (0–75 µm) from the meteorite Mighei/Meghei (Sample ID:
MR-MJG-108). Other spectra of CM2 carbonaceous chondrite
meteorites that fit the Jasonwheeler NIR spectrum are those of
powdered samples with particle sizes smaller than 125 µm. This
fit suggests that the asteroid might be covered by a fine regolith
layer.

By fitting the spectrum (Fig. 2) with an eighth order poly-
nomial function, we can observe an excess of flux after 2.2 µm
that cannot be explained by the general trend in the spectral re-
gion 1.4–2.2 µm and its taxonomical classification. Even if the
level of noise is relatively important, it can be assumed that this
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Table 3. Summary of results obtained by matching the asteroid spectra and de-reddened asteroid spectra with spectra from the Relab database.

Matching results for asteroid spectra
Spectrum Meteorite Sample ID Type Texture Size [ µm]
(1917) Cuyo Dhajala LM-LAM-026 OC/H3-4 Thin Section –
(5620) Jasonwheeler Meghei (Mighei) MR-MJG-108 CC/CM2 Particulates 0–75

Cold Bokkeveld MB-TXH-061 CC/CM2 Particulates 0–125
ALH84029 MB-TXH-052 CC/CM2 Particulates 0–100

(8567) 1996 HW1 Hamlet OC-TXH-002-C OC/ LL4 Particulates 0–125
(16960) 1998 QS52 Saratov MB-CMP-028-H OC/L4 Particulates 0–370

Homestead MR-MJG-048 OC/L5 – –
Hamlet 1 MR-MJG-069 OC/LL4 – –

(188452) 2004 HE62 La Criolla MH-FPF-050-B OC/L6 Particulates 0–150
Cherokee Springs OC-TXH-001-A OC/LL6 Chip –
Wold Cottage MH-FPF-064 OC/L6 Particulates –

2010 TD54 Saratov MB-CMP-028-B OC/L4 Particulates 10–45
Mirzapur TB-TJM-111 OC/L5 Particulates 0–150
Rio Negro TB-TJM-081 OC/L4 Particulates 0–150

Matching results for de-reddened asteroid spectra
(1917) Cuyo Lancon MR-MJG-033 OC/H6 – –

Collescipoli MR-MJG-030 OC/H5 – –
Ehole TB-TJM-074 OC/H5 Particulates 0-150

(8567) 1996 HW1 Cherokee Springs TB-TJM-090 OC/LL6 Particulates 0–150
Hedjaz OC-TXH-016-C OC/L3-6 Particulates 0-125
Ensisheim TB-TJM-092 OC/LL6 Particulates 0-150

(16960) 1998 QS52 Hamlet 1 MR-MJG-069 OC/LL4 – –
Gruneberg MR-MJG-040 OC/H4 – –

(188452) 2004 HE62 Nanjemoy MR-MJG-034 OC/H6 – –
Olmedilla de Alarcon MR-MJG-075 OC/H5 – –
MAC88119.9 MB-TXH-044 OC/H5 Slab 0

2010 TD54 Gruneberg MR-MJG-040 OC/H4 – –
Queen’s Mercy MR-MJG-035 OC/H6 – –
Ochansk MR-MJG-027 OC/H4 – –

Notes. The comparison was made using a χ2 method and a selection of the obtained results was done based on spectral features (band, band-gap,
concavity) positions, and albedo values. For (5620) Jasonwheeler, a de-reddening model was not applied. The figures for this comparison can be
found in Appendices A and B.
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Fig. 2. Spectrum of (5620) Jasonwheeler. The dashed line indicates
where a linearly extrapolated continuum would fall, the solid line shows
the presence of thermal flux.

feature is caused by asteroid thermal emission. Following Rivkin
et al. (2005), we calculated the “thermal excess” parameter that
describes this phenomenon:

γ =
R2.5 + T2.5

R2.5
− 1 = 0.092 ± 0.0420 (5)

where R2.5 is the reflected flux at 2.5 µm and T2.5 is the thermal
flux at 2.5 µm. This value agrees with the geometrical albedo
pv = 0.094 for an asteroid at a 1.345 AU distance from the
Sun and a phase angle of 20◦ (Rivkin et al. 2005). This value
also agrees with the result obtained from mid-IR observations
by Mueller et al. (2011).

Taking into account its dynamical parameters and that D and
T types are considered to be of a primitive composition, we can
conclude that this object is very interesting from the point of
view of “in situ” exploration.

4.3. (8567) 1996 HW1

This asteroid has an Amor type orbit and a ∆V = 6.495 km s−1,
though it is a suitable target in terms of propulsion for a space
mission. The radar observations show a two-lobed object about
1.1 by 2.7 km in size (Taylor et al. 2009). The object is rotating
with a synodic period of 8.7573±0.0009 h (Higgins et al. 2006).

Vernazza (2006) found this asteroid to be an S-type based on
the visible spectrum (0.5–0.95 µm) acquired on August 29, 2005
at TNG. Our NIR spectrum of (8567) 1996 HW1 was obtained
in August 28, 2008 using an integration time of 60 s, since the
apparent magnitude was 12.9. We combined the visible spec-
trum from Vernazza (2006) with our NIR data (Fig. 1) before
analyzing the composite spectrum.

Using the classification tool from the MIT-SMASS website,
this NEA was classified as an S-type with the spectral slope
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Fig. 3. Classification in Bus-DeMeo taxonomical system for (1917) Cuyo, (5620) Jasonwheeler, (8567) 1996 HW1, (16960) 1998 QS52, (188452)
2004 HE62, and 2010 TD54. The polynomial fit of the spectra are plotted against the curves for the resulting classes. The reflectances are
normalized at 1.25 µm.

0.2245 µm−1. Using the χ2 approach, it can be found that an
Sq type provides a closer fit spectrum than an S (Fig. 3), being at
the transition between S and Q classes with two absorption bands
around 1 µm and 2 µm that are more shallow than for Q-type
(DeMeo et al. 2009). Comparing the features for the two consid-
ered spectral types with a polynomial fit of the spectrum, it can
be observed that an Sq type matches more closely our data than
an S type. Since there has been no measurement of the albedo
for this object, assumes a value of 0.20 as typically found for the
albedo of S-type asteroids (Fulchignoni et al. 2000), hence the
diameter can be estimated to be 2.5 km.

The spectrum from the Relab sample that provides the clos-
est fit is a particulate ground sorted (0–125 µm) Hamlet mete-
orite (sample ID: OC-TXH-002-C), an ordinary chondrite with
a low level content of Fe and metal – LL4 (Table 3, Fig. A.3).
The asteroid spectrum in the region 1.6–2.5 µm is shallower than
that of the meteorite spectrum, which could be explained by con-
sidering space-weathering effects.

Using the space weathering model of Brunetto et al. (2006),
we calculated Cs = −0.258 µm, which corresponds to the red-
dening of the spectra. Modelling this with a damage parame-
ter due to the solar-wind ion irradiation we found d = 1.08 ×
1019 displacements per cm2, thus it has experienced an appre-
ciable amount of space weathering.

By removing the exponential continuum and comparing
again with Relab meteorite spectra, we also found the closest
match with an ordinary chondrite(LL6, L3-6 types) spectrum
with a low metal, low Fe content. The meteorite spectra that pro-
vide the closest descriptions of the de-reddened spectrum of this
asteroid are those of: Cherokee Spring, Hedjaz, and Ensisheim
(Table 3, Fig. B.2). The Relab samples of these meteorites are
particulates sorted in order of their sizes, which are smaller than
150 µm.

4.4. (16960) 1998 QS52

With an absolute magnitude H = 14.20, this asteroid has an esti-
mated diameter of 4.3 km (Binzel et al. 2002). It is characterized
by a synodic period of 2.900 ± 0.001 h (Warner 2009). It has
an Apollo orbit type and ∆V = 6.5 km s−1, which makes it an
accessible target for a spacecraft mission. (16960) 1998 QS52 is
a PHA object type with 0.01408 AU MOID computed at epoch
55600.0 MJD (Neodys5).

On the basis of a visible spectrum acquired with the MDM
2.4 m telescope in 15 October 1998, Binzel et al. (2004b) clas-
sified this asteroid as an Sq type. The spectrum of the visible re-
gion has a small negative slope of –0.0205 µm−1. We joined the
SMASS visible spectrum with our NIR spectrum (Fig. 1). The
following analysis was made on the combined V + NIR spec-
trum.

Both methods of classification gave the same results: this
object has the characteristics of an Sr type in Bus-DeMeo tax-
onomy, with a fairly 1 µm feature (Fig. 3). The slope of this
composite spectrum is 0.1126 µm−1.

Comparison with meteorite spectra from Relab database
shows the match with ordinary chondrites samples with low con-
tent of Fe (L4, LL4, L5). The best fit is a powdered sample (di-
mensions: 10–45 µm) from Saratov meteorite, an ordinary chon-
drite L4 (Table 3, Fig. A.4).

Analyzing this composite spectrum with a space weathering
model (Brunetto et al. 2006), we computed the value of Cs =

−0.149 which describes an unreddened spectrum corresponding
to a fresh surface. It can be speculated that this young surface is
due to a relatively recent close encounter with a planet (Binzel
et al. 2010).

5 http://newton.dm.unipi.it/neodys/
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To verify this hypothesis, we generated 100 orbital clones of
1998 QS52 using a random Gaussian distribution centered at the
nominal values in each of the six orbital elements. The 1σ values
were obtained from the orbital elements uncertainties provided
by the Neodys service for this asteroid. The 100 clones were
numerically integrated backward in time for 5000 years using
the computing routines proposed by Nedelcu (2010). Each close
encounter (MOID) with Venus, the Earth, and Mars was then
carefully analyzed to find the closest one able to rejuvenate the
surface of the object.

In addition to the 1989 close approach with Earth, an event
already identified by Neodys, we were able to confirm that an-
other five close approaches with Venus had occurred in the past
3000 years before the common origin signature of our cloud of
clones was erased by close planetary encounters. The MOID val-
ues are larger than those predicted by Binzel et al. (2010), whose
findings,however we cannot exclude. Our deterministic clones
approach can reliably obtain NEAs positions only for a couple
of thousands years backward in time (Nedelcu 2010). Systematic
errors in osculating elements can affect the position of the object,
and close approaches with telluric planets will modify in a non-
linear way the uncertainty in the position. Thus, we estimate that
for timescales of millions of years (the scale for SW determined
by Brunetto et al. 2006) the object might experience additional
close encounters that cannot be reproduced by our numerical in-
tegration of orbit.

Comparing the de-reddened spectrum with the Relab
database, we found a good fit to the spectrum with a Hamlet me-
teorite, a LL4 ordinary chondrite (Fig. A.4). This result was also
found when comparing with the original spectrum. This agrees
with our finding that dividing the spectrum with the exponential
continuum by the small value of Cs does not alter its character-
istics.

4.5. (188452) 2004 HE62

Few physical parameters of (188452) 2004 HE62 are known.
This asteroid has an Amor orbit and an absolute magnitude
H = 17.30 (Table 2). No other spectral investigations have
been published for this asteroid. Our NIR spectrum observations
(Fig. 1) of this object were made on August 27, 2008 when the
object had an apparent magnitude of 16.7.

The spectrum of (188452) 2004 HE62 has two features
around 1 and 2 µm: these are two deep absorption bands that are
larger than for Sv-type meteorites but not so deep to be classified
as one of the end members R or V. However, the classification
is between the Sr and Sv classes in the Bus-DeMeo taxonomy
(Fig. 3). A visible spectrum would help us to clarify the object’s
classification, which in the end was obtained with both methods
of classification. The spectral slope computed on the NIR part
of the spectrum is 0.1167 µm−1. Assuming an average albedo of
0.2, which is typical of S-type objects, we can estimate the di-
ameter to be ∼1 km.

By comparing with data from the Relab database, this spec-
trum was found to be closely matched by the spectra of ordinary
chondrite meteorites with low Fe, low metallic content, and high
petrologic class (L6, L5, LL6) – see Table 3 and Fig. A.5 for
details. The best-fit solution was obtained with a spectrum of
a particulate sample (0–150 µm) from the La Criolla meteorite
(Sample ID: MH-FPF-050-B).

Modeling the spectra with the exponential continuum
(Brunetto et al. 2006), the parameter Cs is found to be of
–0.377 µm, which characterizes a surface affected by space
weathering effects. Removing this continuum and comparing

with Relab meteorite spectra, the best fit is also an ordinary
chondrite (Fig. B.4), the same petrologic class but with a high
content of Fe (OC types H5, H6). The closest match in this case
is a sample from a Nanjemoy meteorite, a H6 olivine-bronzite
OC, which consists of 18% Fayalitic material (Fig. B.4).

4.6. 2010 TD54

The analysis of this object is interesting from the point of view
of its size and the phenomena that occur on the surface of
small bodies during a close encounter with Earth. With an ab-
solute magnitude H = 28.75, 2010 TD54 was discovered by the
Catalina Sky Survey in October 09, 2010. Having an Apollo or-
bit type, this object passed within 0.00035 AU of the Earth on
12.55 Oct. 2010 (Hicks & Rhoades 2010).

Preliminary measurements were done by Hicks & Rhoades
(2010). They found a rotational period of 42.0 s, which im-
plies that this small NEA is the most rapidly rotating natural
body known in the solar system. They also measured the ob-
ject’s average colors (B − R = 1.284 ± 0.045 mag; V − R =
0.461± 0.030 mag; R− I = 0.344± 0.022 mag). These are com-
patible with an S-type spectral classification.

The NIR spectrum of 2010 TD54 is plotted in Fig. 1. Using
the MIT-SMASS online tool for Bus-DeMeo taxonomy, this as-
teroid is classified as belonging to a S complex, of subtypes Sr
or Sq. An end class Q is also proposed but with a lower coeffi-
cient. By using the χ2 method, this spectrum can be classified to
be between Sv and Sr classes (Fig. 3). It has a fairly prominent
feature around 1 µm and another around 2 µm. When consider-
ing these two results and the depth of the two absorption bands,
we found that the Sr type provides a more accurate description
for this object. The slope for this NIR spectrum is 0.062 µm−1.

The matching with meteorite spectra (Fig. A.6) shows that
the best fit is a spectrum for a sample from Saratov – an ordinary
chondrite meteorite with a low content of Fe (L4). This sample
contains particles with sizes between 10 and 45 µm (Sample ID:
MB-CMP-028-B). The spectrum can also be closely fitted with
spectra of powdered samples from the meteorites Mirzapur and
Rio Negro, which are also L ordinary chondrites.

Modelling the space weathering effects, we computed Cs =

−0.223 µm, which describes a relatively fresh surface. This
agrees with the small bodies having relatively young surfaces,
and Earth encounters being one of the origins for rejuvenating
surfaces on near-Earth asteroids (Binzel et al. 2010). Removing
the exponential continuum and comparing again with spectra
from the Relab database, we found a good fit to the spectrum
with those of ordinary chondrite meteorites with high level of Fe,
from petrologic class 4 (H4 – olivine-bronzite). Spectra of mete-
orites such as Gruneberg, Queen’s Mercy, or Ochansk match the
unweathered spectrum of this asteroid (Table 3, Fig. A.6).

4.7. (164400) 2005 GN59

This asteroid has an absolute magnitude H = 17.40, derived
from astrometric observations. The synodic period of the aster-
oid was estimated to be 38.62 ± 0.01 h (Vander Haagen 2011),
but the monomodal solution of 19.31 ± 0.01 h cannot be totally
excluded.

A preliminary spectrum of this object was presented by
Birlan et al. (2009), while Taylor et al. (2009) presented ther-
mal emission data corroborated with radar observations. From
these radar observations, Taylor et al. (2009) uncovered that this
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Fig. 4. NIR spectrum of (164400) 2005 GN59 and 2001 SG286. These spectra are normalized to 1.25 µm.

object has a two-lobed 0.35 by 1.1 km shape, with non-convex
surface features.

Dynamically, (164400) 2005 GN59 is an Apollo asteroid. Its
calculated ∆V = 6.002 km s−1 imply that it is a suitable target in
terms of propulsion for spacecraft mission.

The NIR spectrum of 164 400 was obtained in August 28,
2008 for a total integration time of 480 s. While the spectrum
is quite noisy, to obtain information about its taxonomic class,
we used a five order polynomial function to reproduce the real
data. The values for reflectance corresponding to wavelengths
between 1.7 and 2 µm were excluded because of the very high
noise caused by atmospheric turbulence (Fig. 4).

Both the MIT-SMASS on-line tool and the χ2 routine clas-
sify this object as an L-type. However, the K taxonomic class is
also a reasonable match to our data (Fig. 4).

An additional NIR spectrum of this object was obtained
by the MIT-UH-IRTF Joint Campaign for NEO Spectral
Reconnaissance6. This spectrum has higher S/N than ours. We
classified this spectrum with both methods and found it to be be-
tween Sq and Q types, while a K taxonomic class was proposed
as a third solution. The L taxonomic class is also considered as
a possible solution by the MIT-SMASS on-line tool. The differ-
ence between our spectrum and this one is caused by the low
signal-to-noise ratio of our spectrum, which prevented us taking
into consideration the feature between 1.7 and 2 µm. A visible
spectrum would again help us to distinguish between the five
possible solutions for the NIR part of the spectrum.

The spectrum of 2005 GN59 is noisy and we did not attempt
to compare it with the Relab database and the de-reddening
model.

4.8. 2001 SG286

This is an Apollo type asteroid with an absolute magnitude of
20.9. It is classified as PHA. Its ∆V = 5 km s−1 makes it a suit-
able target for a spacecraft mission. Michel & Delbo (2010) esti-
mated its median lifetime as an NEA to be about 22.19 Myr. The
mechanism of injection into the NEA population is the secular
ν6 resonance, but the 3:1 mean motion resonance with Jupiter
could not be entirely excluded (Michel & Delbo 2010).

On the basis of spectral data in the visible region, Binzel
et al. (2004a) classified this asteroid as a D-type one. Using an
average albedo of 0.09 for D-type asteroids, Binzel et al. (2004a)
computed a diameter of about 350 m for this object.

The object was observed on May 19, 2009 in the NIR
for a total time of 480 s, in difficult conditions (considerable

6 http://smass.mit.edu/minus.html

Table 4. Slope and Cs parameter for the S-type objects studied in this
article.

Object Slope (µm−1) Cs (µm)
(1917) Cuyo 0.5086 –0.484
(8567) 1996 HW1 0.2245 –0.258
(16960) 1998 QS52 0.1126 –0.149
(188452) 2004 HE62(*) 0.1167 –0.377
2010 TD54(*) 0.0620 –0.223

Notes. The calculation was made by normalization of spectra to
0.55 µm. Objects marked with (*) are normalized to 1.25 µm (only for
NIR part).

differential motion, only a few hours of visibility over three
nights, limited atmospheric transparency). The NIR spectrum is
reliable only for the spectral interval 0.8–1.7 µm.

The composite V+NIR spectrum was obtained by superpos-
ing data in the 0.82–0.9 µm spectral interval (Fig. 4). The slope
parameter for the composite spectrum is 0.7202 µm−1 (computed
for a spectrum normalized to a reflectance value at 1.25 µm) in
agreement with the slope range for D-type taxonomic class.

5. Discussion

Luu & Jewitt (1990) suggested that the phase angle can affect the
spectral slope. This was called “phase reddening” and consists of
an increase in the spectral slope (reddening of the spectra) with
the phase angle. Some studies have been performed based on
laboratory measurements (Gradie & Veverka 1986) and during
the approach to (433) Eros by the NEAR spacecraft (Veverka
et al. 2000). However, for our method of observation we retain
the result mentioned in Binzel et al. (2004b) regarding a study
conducted at MIT for which no correlation was found between
the phase angle and the spectral slope for the ground-based as-
teroid reflectance spectra.

During our observing runs, all the asteroids were observed
at phase angles as small as possible. Owing to this constraint,
we succeeded in observing only six objects at a phase angles
between 17◦ and 30◦ (Table 1). We observed (1917) Cuyo and
(188452) 2004 HE62 at a phase angle around 60◦ (Table 1).

Assuming similar surface mineralogies, the influence of
phase angle on spectral slope is unclear from our measurements.
For (1917) Cuyo, a high spectral slope was obtained, but for
(188452) 2004 HE62 the computed spectral slope is compa-
rable to the spectral slope of (8567) 1996 HW1 and (16960)
1998 QS52, which were measured at phase angles smaller than
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Fig. 5. (Left) Wavelength position of the centers of the two absorption bands computed using Cloutis et al. (1986). The regions enclosed correspond
to the band centers computed for the H, L, and LL chondrites, respectively (de León et al. 2010). (Right) Band area ratio (BAR) versus band I
centers. The regions enclosed by continuous lines correspond to the values computed for basaltic achondrites, ordinary chondrites (OC), and
olivine-rich meteorites (Ol) (Gaffey et al. 1993).

30◦ (Table 4). Considering the trend of S-class objects, the re-
flectance value at 1.25 µm is higher than the reflectance value
at 0.55 µm, thus our comparison of slopes is correct. Therefore,
no correction has been applied for this presumed effect of phase
reddening.

Several NIR spectra for the asteroids (1917) Cuyo, (8567)
1996HW1, and (16960) 1998 QS52 were obtained by the MIT-
UH-IRTF Joint Campaign for NEO Spectral Reconnaissance.
These spectra are similar to those presented in this paper in
terms of spectral features. However, a variation in spectral slope
between the spectra of the same object was observed. Similar
spectral variations in the NIR spectrum of a NEO was previ-
ously reported by de León et al. (2011). For our sample, the as-
teroid (8567) 1996HW1 was observed five times, at phase an-
gles between 20◦ and 55◦. In this case, a variation in the spectral
slope with phase angle was observed (i.e. the spectrum is red-
der for larger phase angles). While this object is not well-known
in terms of spin axis and shape, it is difficult to draw any con-
clusions about the first order dependence of the slope on phase
angle, while a surface dichotomy and degrees of space weather-
ing could compete with this effect.

The S-types objects in our sample have widely varying spec-
tral slopes (Table 4), which is a general conclusion for the as-
teroids belonging to this complex (DeMeo et al. 2009). In the
Bus-DeMeo taxonomy, the objects in the S-complex with a slope
larger than 0.25 µm−1 receive the notation “w” added to their
type as an indication that they may be affected by space weath-
ering effects. This is the case for (1917) Cuyo.

Although space weathering may occur on all asteroids, many
types lack strong spectral-band contrasts that ensure that weath-
ering effects are easily detectable (Clark et al. 2002). S-class as-
teroids are significantly reddened compared with their presumed
meteorite analog, and this difference can be explained by space
weathering phenomenon (Vernazza et al. 2008). This process
may be the result of dust impacts and solar wind sputtering on
the surface of atmosphereless bodies and cause a reddening of
the spectral slope, a decrease in spectral absorption intensities,
and a diminishing of albedo (Fornasier et al. 2003).

An important concept in understanding space weath-
ering processes is the development and accumulation of

Table 5. Computed parameters from the Cloutis et al. (1986) model
applied to the V+NIR spectra of (1917) Cuyo, (8567) 1996 HW1, and
(16960) 1998 QS52.

Object BI BII BAR OPX
(µm) (µm) (%)

(1917) Cuyo 0.93 1.95 0.670 ± 0.1526 33.28
(8567) 1996 HW1 0.99 2.06 0.485 ± 0.2687 25.50
(16960) 1998 QS52 0.97 2.03 0.232 ± 0.1996 14.94

Notes. The estimation error for band centers (BI, BII) is ±0.005.

submicroscopic single-domain metallic Fe (4–30 nm), produced
in the space environment by a reduction of FeO in minerals.
Referred to as nanophase reduced iron – “npFe0”, these are
formed through the fractional processes that occur during ion-
particle sputtering, vapor deposits from energetic micromete-
orites impacts, or both. As more “npFe0” accumulates, the entire
continuum becomes redder until it is almost linear through to the
near-infrared region. With small amounts of “npFe0”, redden-
ing of only the visible region of the spectra occur (Pieters et al.
2000).

A space weathering model has been applied to five spectra
in our samples (of S-type objects). For two asteroids, (188452)
2004 HE62 and 2010 TD554, the models imply that the iron con-
tent ambiguity changes the best analog among meteorite sam-
ples. Thus, the best mineralogical analog will always be an
OC meteorite, the same petrologic type, but the spectra for a
sample containing Fe will be different. This could be explained
in the following terms: highly curved continua occur for sam-
ples with small amounts of npFe0, and the more linear continua
occur for samples with large amounts of npFe0 (Pieters et al.
2000).

A quantitative comparison between the reflectance proper-
ties of (1917) Cuyo, (8567) 1996 HW1, and (16960) 1998 QS52
(since for these objects we have both visible and NIR data)
and potential meteorite analogs could be made with the pa-
rameters computed from the model of Cloutis et al. (1986).
The values of these parameters are given in Tabel 5. Plotting
Band I center versus the BAR (Gaffey et al. 1993), we found
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that all three objects are located in the ordinary chondrite region
(Fig. 5). (1917) Cuyo and (16960) 1998 QS52 are under the
olivine-orthopyroxene mixing line, while (8567) 1996 HW1 is
above the olivine-orthopyroxene mixing line.

Another comparison was made by plotting the Band I center
versus the Band II center (Fig. 5). Considering the results of de
León et al. (2010), we found that (1917) Cuyo is in the region of
OC -H meteorites, while 16960 is in the region of OC-L mete-
orites. (8567) 1996 HW1 is outside the enclosed areas, between
the regions for L and LL chondrites.

This statistical interpretation of the results agrees with our
results obtained by comparison to Relab meteorite spectra.
These measured parameters are direct indications of a spec-
trum’s basic properties – revealing their distributions without
making any assumptions about their underlying mineralogy
(Vernazza et al. 2008).

6. Conclusions

We obtained NIR spectra for eight near-Earth asteroids using
IRTF/SpeX. The observations were performed remotely between
the IRTF and Observatoire de Paris-Meudon. This technique
proved to be robust while providing full control of the spectro-
graph and access to several telescope operations (focus, tracking,
etc.).

Four of the observed objects have ∆V lower than 7 km s−1,
which make them suitable targets in terms of propulsion for a
future spacecraft mission.

We have modelled and interpreted the obtained spectra using
a variety of techniques with the goal of interpreting the asteroidal
surfaces in terms of their mineralogical composition. Each aster-
oid spectrum was analyzed to obtain its taxonomic class and the
closest matching meteoritic analogs in the laboratory. We have
considered and discussed the effects of space weathering based
on the model of Brunetto et al. (2006).

The taxonomic classification of five objects was reviewed
and we assigned a corresponding type to the other three asteroids
that had not been previously classified. We found that (1917)
Cuyo, (8567) 1996 HW1, (16960) 1998 QS52, (188452) 2004
HE62, and 2010 TD54 are in the S-complex. For these objects,
a good matching with the spectra of ordinary chondrites mete-
orites has been obtained.

The asteroid Jasonwheeler was found to have a NIR spec-
trum similar to that of carbonaceous chondrite meteorites. It was
classified to be between D and T taxonomic class. Since these
classes are considered to have primitive compositions and the
∆V for this object is smaller than 7 km s−1, Jasonwheeler could
be a very interesting candidate for a sample and return spacecraft
mission.
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ABSTRACT

Context. The interpretation of asteroid spectra provides the basis for determining the chemical composition and physical process that
modified the surface of the asteroids. The increasing number of asteroid spectral measurements has lead to well-developed methods
for analyzing asteroid spectra. There is however no centralized database for all the published data and a set of standard routines is
also required.
Aims. We present a public software tool that combines both data archives and analyses of asteroid spectra.
Methods. Our project M4AST (Modeling for asteroids) consists of an asteroid spectral database and a set of applications for analyzing
asteroid spectra. These applications cover aspects related to taxonomy, curve matching with laboratory spectra, space weathering
models, and mineralogical diagnosis.
Results. M4AST project is fully available via a web interface. The database contains around 2700 spectra that can be either processed
in M4AST and/or downloaded. The paper presents the algorithms we developed for spectral analyses based on existing methods. The
robustness of routines is proven by the solutions found for spectra of three different asteroids: (9147) Kourakuen, (99 942) Apophis,
and (175 706) 1996 FG3. The available results confirm those in the literature. M4AST applications can also be used to characterize
any new asteroid spectra.
Conclusions. M4AST is a robust and reliable tool dedicated to asteroid spectra.

Key words. minor planets, asteroids: general – methods: data analysis – techniques: spectroscopic

1. Introduction

Spectroscopic studies of celestial bodies connect astronomy with
fundamental physics on both atomic and molecular levels. The
interpretation of the visible and near-infrared reflectance spectra
of asteroids provides a powerful remote method for characteriz-
ing their surface composition. The mineralogical and the chem-
ical properties of these objects provide direct information about
the conditions and processes that were present during the very
early stages of the evolution of the solar system. Another im-
portant aspect related to asteroids is their relative accessibility to
spacecraft investigations. This enables their scientific study and
the detailed assessment of their future use as space resources.
The choice of targets and the planning of space missions are
based on the ensemble of physical and dynamical parameters of
these objects, which are properties inferred from ground-based
observations.

Asteroid spectra have been obtained since the late 1960s.
McCord et al. (1970) published the first spectral measurements
in the 0.3–1.1 µm wavelength region for the asteroid (4) Vesta,
and found that its spectrum is similar to those of basaltic achon-
dritic meteorites. The most important surveys in the 1980s
for measuring the spectral characteristics of asteroids were the
Eight-Color Asteroid Survey (ECAS, Zellner et al. 1985), and
the 52-color survey (Bell et al. 1988). All these results showed
the diversity of asteroid surface composition.

⋆ M4AST is available via the web interface:
http://cardamine.imcce.fr/m4ast/

In the past two decades, the development of CCD spectro-
graphs have made it possible to obtain spectra of significantly
fainter asteroids with a much higher spectral resolution than
achievable with filter photometry. Several spectroscopic sur-
veys have been performed, including SMASS (Xu et al. 1995),
SMASS2 (Bus & Binzel 2002b), and S3OS2 (Lazzaro et al.
2004). Other spectroscopic surveys have been dedicated only to
near-Earth asteroids such as SINEO (Lazzarin et al. 2005) or
the survey performed by de León et al. (2010). The total num-
ber of asteroid spectra resulting from these surveys is on the or-
der of thousands and has led to a mature understanding of their
population.

Currently, the spectral data of asteroids continues to grow.
The most important spectral surveys for asteroid have made their
data available online. There is no centralized database containing
all the asteroid spectra1. Moreover, the exploitation of these data
in terms of the construction of mineralogical models, compari-
son to laboratory spectra, and taxonomy is treated individually
by each team working in this field. While the spectral databases
for asteroids have become significant in size and the methods for
modeling asteroid spectra are now well-defined and robust, there
are no standard set of routines for handling these data.

We developed M4AST (Modeling for Asteroids), which is a
tool dedicated to asteroid spectra (Popescu et al. 2011; Birlan &
Popescu 2011). It consists of a database containing the results

1 Some of these data are archived within the Small Bodies Node of
the Planetary Data System (http://pds.nasa.gov/).
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of the observational measurements and a set of applications for
spectral analysis and interpretation. M4AST covers several as-
pects related to the statistics of asteroids – taxonomy, curve
matching with laboratory spectra, modeling of space weather-
ing effects, and mineralogical diagnosis. M4AST was conceived
to be available via a web interface and is free for access to the
scientific community.

This paper presents M4AST as follows: in Sect. 2, we briefly
review the general methods used to analyze asteroid spectra.
In Sect. 3, we describe the structure of the database, and in
Sect. 4 we give details about the M4AST interfaces and their
use. Section 5 presents the algorithms behind the different mod-
els implemented in M4AST. Section 6 shows some examples of
spectral analysis and discusses the applicability of the models.
We end up with the conclusions and further perspectives.

2. Methods for asteroid spectra analysis

“Asteroids” actually means “star-like” and viewed through a
telescope, as these planetesimals are merely a point source of
light. A panoply of new observational techniques (e.g. spec-
troscopy, photometry, polarimetry, adaptive optics, radar, etc.)
has transformed these star-like objects into individual little
worlds.

One of the techniques used to characterize the surface of
asteroids is reflectance spectroscopy in the visible and near-
infrared wavelength regions. Diagnostic features in spectra re-
lated to electronic and vibrational transitions within minerals or
molecules are detectable in the 0.35–2.50 µm spectral range.
The overlapping of the absorption bands from different min-
eral species provides a distinctive signature of the asteroid sur-
face. Olivine, pyroxene (clino- and ortho-pyroxene), iron-nickel
(Fe-Ni) metal, spinel, and feldspar are some of the most impor-
tant minerals that can be identified by carefully analyzing the
reflection spectra of the asteroid (McSween 1999).

The analysis of reflectance spectra can be done using several
methods, such as taxonomic classification, comparison with lab-
oratory spectra, band parameter determination, and modeling of
the space weathering effects. We briefly discuss below the meth-
ods implemented via M4AST.

2.1. Taxonomy

Taxonomy is the classification of asteroids into categories
(classes, taxons) using some parameters and no a priori rules.
The main goal is to identify groups of asteroids that have similar
surface compositions. The classification into taxons is the first
step for further studies of comparative planetology. In the case
of asteroids, a precise taxonomic system gives an approach to a
specific mineralogy for each of the defined classes.

Taxonomic systems of asteroids were initially based on as-
teroid broadband colors (Chapman et al. 1971), which allowed
us to distinguish between two separate types of objects, de-
noted “S” (stony) and “C” (carbonaceous). Based on the in-
creasing amount of information from different types of obser-
vations, new taxonomic classes were defined. Historically, the
most widely used taxonomies are the following: Tholen (1984)
and Barucci et al. (1987), which used data from the Eight-Color
Asteroid Survey (Zellner et al. 1985); Bus & Binzel (2002a),
which used data from the SMASS2 survey; and DeMeo et al.
(2009), which is an extension of a previous taxonomy scheme
into the near-infrared.

Statistical methods are used for defining taxonomic systems
of asteroids. We point out two of them, namely principal com-
ponent analysis (PCA) and the G-mode clustering method.

Principal component analysis (PCA) is a method for reduc-
ing the dimensionality of a data set of M variables, involving
linear coordinate transformations to minimize the variance. The
first transformation rotates the data to maximize the variance
along the first axis, known as the principal component 1 (PC1),
then along the second axis – the second principal component,
and so on. Overall, the new coordinates are ordered decreasingly
in terms of the dispersion in the principal components.

The G-mode is a multivariate statistical clustering method
that allows us to classify a statistical sample consisting of N ele-
ments with M variables. The parameter G is the analog of the dis-
tance in a NxM space. This statistical distance between an object
and a taxonomic class shows the similarities of the characteris-
tics of this object to those of its class (Birlan et al. 1996). One
of the advantages of this method is that even if only a subset of
variables are available for an object (only part of the spectrum),
a preliminary classification can still be achieved.

2.2. Spectral comparison

Spectroscopy of different samples performed in the laboratory
provides the basis upon which compositional information about
unexplored planetary surfaces can be understood from remotely
obtained reflectance spectra. Thus, confronting the spectral data
derived from telescopic observations with laboratory measure-
ments is an important step in study of asteroid physical proper-
ties (Britt et al. 1992; Vernazza et al. 2007; Popescu et al. 2011).

Several spectral libraries are available for accomplishing this
task, such as Relab2, USGS Spectroscopy Laboratory3, the Johns
Hopkins University (JHU) Spectral Library, the Jet Propulsion
Laboratory (JPL) Spectral Library4, etc. We use the Relab spec-
tral library in M4AST, which is one of the largest libraries and
contains more than 15 000 spectra for different types of materi-
als from meteorites to terrestrial rocks, man-made mixtures, and
both terrestrial and lunar soils.

2.3. Space weathering effects

It is now widely accepted that the space environment alters the
optical properties of airless body surfaces. Space weathering is
the term that describes the observed phenomena caused by these
processes operating at or near the surface of an atmosphere-less
solar system body, that modify the remotely sensed properties of
this body surface away from those of the unmodified, intrinsic,
subsurface bulk of the body (Chapman 1996, 2004).

The objects that are most affected by the space weather-
ing are silicate-rich objects for which a progressive darkening
and reddening of the solar reflectance spectra appear in the
0.2−2.7 µm spectral region (Hapke 2001). Lunar-type space
weathering is well-understood, but two well-studied asteroids
(433 Eros and 243 Ida) exhibit different space weathering types.
The mechanism of space weathering for asteroids is still cur-
rently far from being completely understood.

The latest approaches to the study of space weathering
are based on laboratory experiments. Simulations of microm-
eteorites and cosmic ray impacts have been achieved using
nanopulse lasers on olivine and pyroxene samples. These have

2 http://www.planetary.brown.edu/relab/
3 http://speclab.cr.usgs.gov/
4 http://speclib.jpl.nasa.gov/
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Fig. 1. Block diagram and work flow of M4AST.

shown that laser ablation lowers the albedo, dampens the ab-
sorption bands, and reddens the spectrum. These effects could
explain the transition from “fresh” ordinary chondrite material to
the observed asteroid spectra (Yamada et al. 1999; Sasaki et al.
2001). The spectral effects generated by the solar wind irradi-
ation to silicate materials were investigated by Brunetto et al.
(2006). On the basis of ion irradiation experiments, they found
“a weathering function” that could be used to fit the ratio of the
spectra of irradiated to unirradiated samples, which was imple-
mented in M4AST.

2.4. Band parameters

The “traditional” method used for mineralogical analysis is
based on different parameters that can be computed from the
reflectance spectra of the object. These parameters give infor-
mation about the minerals that are present on the surface of the
asteroid, their modal abundances, and the size of the grains.

Cloutis et al. (1986) outlined an analytical approach that per-
mits the interpretation of visible and near-infrared spectral re-
flectance to determine the mineralogic and petrologic parame-
ters of olivine-orthopyroxene mixtures, including end-member
abundances, chemistries, and particle size. These parameters are
the wavelength position of the reflectance minima around 1 µm
and 2 µm, the band centers, and the band area ratio (BAR) which
is the ratio of the areas of the second absorption band relative to
the first absorption band.

Gaffey (2010) noted that mineralogically diagnostic spectral
parameters (band centers, BARs) are “essentially immune to the
effects of space weathering observed and modeled to date”.

3. Spectral database

The schematic of the M4AST project is given in Fig. 1. The
first component is the spectral database. It contains the results
of telescopic measurements for the reflectance spectra of dif-
ferent wavelength ranges (V – visible, NIR – near infrared,
V+NIR – visible and near infrared) of the asteroids and the
observations logs.

3.1. Structure of M4AST database

The information in the database is organized into two type of
files: permanent and temporary files. Additionally, there is a cat-
alog to keep track of the permanent files recorded.

Permanent files are uploaded through a dedicated interface
protected by a password. Any new file submitted in this way
is recorded in a catalog together with its observation log. The
observation log is also kept in the header of the file containing
the corresponding spectral data, including IAU designations of
the asteroid, the date and hour (UT) of the observation, and the
IAU code of the observatory. Additional information could be
included such as the investigator name and e-mail address as
well as the link to a reference if the spectrum was published.

Each file containing the spectral data includes a header with
the observation log and the measurements given in two columns:
the first column contains the wavelength in µm, and the second
column contains the corresponding reflectance values (normal-
ized to unity at 0.55 µm if the visible part of the spectrum is con-
tained, and otherwise at 1.25 µm). If the dispersions in the mea-
surements are available, they are provided in the third column.

Temporary files are created by the users only for processing
the data. They provide a way for the anonymously user to use
the applications of M4AST for his own spectral data. Temporary
files receive a random name and can be removed by the same
user that created them (no administrative rights are required).
The application library is fully available for modeling spectral
data contained in temporary files. No permanent information is
recorded.

3.2. The content

Historically, the database was designed for making available to
the scientific community the spectra obtained after observations
performed remotely from the Centre d’Observation à Distance
en Astronomie à Meudon (CODAM) (Birlan et al. 2004, 2006).
The observations were obtained in the 0.8–2.5 µm spectral re-
gion using the SpeX/IRTF instrument, located on Mauna Kea,
Hawaii. The project now includes around 2,700 permanent spec-
tra (in the V and NIR wavelength regions) of both main belt and
near-Earth asteroids.

Along with the spectra obtained via CODAM, the main
sources of the project are SMASSI (Xu et al. 1995), SMASII
(Bus & Binzel 2002b), and S3OS2 (Lazzaro et al. 2004) and
de León et al. (2010). Together with our program of asteroid
spectroscopic observations, some collaborations are intended in
order to enlarge M4AST database.

The purpose of this database is not to duplicate other spectral
libraries that already exist, but to offer a unique format for the
data, a fast way of applying the existing models, and a rapid
comparison of the results.
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3.3. M4AST database via the Virtual Observatory

The Virtual Observatory (VO) is an international astronomical
community-based initiative. Its aims are to allow global elec-
tronic access to the available astronomical data archives of space
and ground-based observatories and other sky survey databases
and to enable data analysis techniques through a coordinating
entity that will provide common standards.

The M4AST spectral database can be accessed via VO-
Paris Data Centre5 using Simple Spectral Access Protocol (Tody
2011). The M4AST spectral data obtained via VO can be re-
trieved in both VOTable format or our native AS CII format. A
“simple query search” based on asteroid designation correctly
returns all the spectra from our database for the corresponding
object.

New protocols, dedicated to planetology, (such as table ac-
cess protocol) will be implemented in the future.

4. The interface

M4AST includes two interfaces, one dedicated to database ac-
cess and another for running the different applications dedicated
to spectral analysis6. The access flow starts with the database in-
terface and continues with the modeling tool interface. Figure 1
gives an overview of the M4AST work-flow.

4.1. Database interface

The database interface (Fig. 1), called user input interface, al-
lows the users to access the spectra from the database or upload
their own spectra for further processing. The following options
are available:

Search spectra in database – the user can search spectra in the
database based on a maximum of three keywords. These key-
words include object designations, observing date, and the
IAU observatory code.

Download file from database – the user can download any spec-
trum using as input the filename provided by the previous
option.

Upload temporary spectrum to database – the anonymously
user can upload his own spectral data for further process-
ing. The file with the spectrum should contain two or three
columns, the first column containing the wavelengths (given
in angstroms, nanometers, or microns), the second column
containing the corresponding reflectance. Optionally, the
third column may include the dispersion of measurements.
The file is given a temporary name over which the user has
full control.

Concatenate spectra – spectra in different wavelength re-
gions (V and NIR) can be merged. The procedure consists
in the minimization of data into a common spectral region
(usually 0.8–0.9 µm). The result is stored in a temporary file
and can be further processed.

The results of all these options are displayed at the bottom
of each page. These results can be either spectra found in the
database or temporary files. The connection with the modeling
tools is made using the name of the file containing the spectrum.
This filename is provided as a link and a simple click allows us
to access the modeling tool interface.

5 http://voparis-srv.obspm.fr/portal/
6 http://cardamine.imcce.fr/m4ast/

4.2. Modeling tool interface

The second component of the M4AST project is the set of appli-
cations for modeling and analyzing the spectra from the database
or any spectrum submitted by the user. The usage of this tool
(Fig. 1), called the modeling interface, is based on the name of
the file containing the spectral data.

The following applications are currently available in this
interface:

Plot spectrum – plot the reflectance as a function of wavelength.
Additional information related to the selected spectrum (the
observing log) are also given.

Taxonomy – classify the spectrum according to different tax-
onomies. Taxonomic systems that can be selected are
Bus-DeMeo (DeMeo et al. 2009), G13 (Birlan et al. 1996),
and G9 (Fulchignoni et al. 2000). The methods behind these
classifications are outlined in Sect. 5. The results of this
application consist in the first three classes that match the
asteroid spectrum, together with some matching quantitative
values (coefficients). In addition, the asteroid spectrum is
plotted together with standard spectra corresponding to the
best matches.

Search matching with spectra from the Relab database – per-
forms spectral comparison with spectra from Relab
database. In general, only the meteorite spectra are of
interest, thus an option for selecting between all spectra
and only meteorite spectra is included. However, the “all
spectra” option includes spectral measurements for mixtures
(olivine/pyroxene) prepared in the laboratory that can be
considered when analyzing asteroid spectra. Four methods
are available for the spectral matching. Their description
is given in Sect. 5. This application provides the first
50 laboratory spectra that matched the spectrum (in order
of the matching coefficient). These results are given in a
table, along with a link to visualize a comparative plot of
laboratory spectra and asteroid spectra. The table includes
all the information regarding the spectral measurements and
the sample characteristics.

Space weathering effects – uses the space weathering model de-
fined by Brunetto et al. (2006). The results consists in com-
puting the parameters of the model and de-reddening the
spectrum. The de-reddening (removal of space weathering
effects) is done by dividing the spectrum by its continuum.
The spectrum obtained can be further analyzed, being pro-
vided in a temporary file.

Band parameters and mineralogical analysis – computes the
spectral parameters defined by Cloutis et al. (1986). If only
the infrared part of the spectrum is given, the algorithm com-
putes the band minima. If the spectrum contains both V and
NIR regions, all the parameters described in Sect. 2.4 are cal-
culated. Along with the results, the plots required to interpret
these parameters are also provided.

After each computation made in M4AST, the results are dis-
played at the bottom of the page. It must be noted that some of
these applications provides meaningfully results only for certain
types of spectra. Their applicability is indicated in the publica-
tions describing the models. The reference to the relevant publi-
cations is also available via the web interface.

4.3. Updating the database

Permanent spectra can be added into the database via a dedicated
interface – update database (Fig. 1) – that requires administrative
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rights. The information needed to add a new permanent file with
spectral data are asteroid designations (an additional utility is
provided to check the designations), information about the ob-
servation (date, investigator, and IAU code of the observatory),
and information about the uploaded file containing the measure-
ments. Each record submitted to the database can be removed
only from this interface.

5. Algorithms – the mathematical approach

This section describes the algorithms used to analyze the differ-
ent types of spectra.

5.1. Taxonomic classification

We used different approaches for the three taxonomies types pro-
posed in M4AST.

To classify a spectrum in the Bus-DeMeo taxonomy, we de-
termine how closely this asteroid spectrum is fitted by the stan-
dard spectrum of each class using a curve matching approach.
This approach involves first fitting the spectrum with a polyno-
mial curve and then comparing this curve to the standard spec-
trum at the wavelengths given in the taxonomy. We select the
taxonomic classes producing the smallest standard deviation in
the error (see Eq. (5)).

For G-mode taxonomy, we used the algorithm defined in
Fulchignoni et al. (2000). This comprises the computation of the
g parameter, which gives the statistical distance of a new sample,
characterized by {xi} from the taxonomic class s

gs =

√

√

2 Rs

M
∑

i

(

xi − xis

σis

)2

−
√

2 Rs M − 1, (1)

where M is the number of points and i = 1...M. The G-mode
method defines for each taxonomic class s the mean values {xis},
the standard deviations {σis}, and a statistical indicator Rs. We
select the classes that have the lowest gs, the ideal case being
gs = −

√
2 Rs M − 1.

The taxonomic classes are defined depending on the tax-
onomy in different wavelength intervals (0.45–2.45 µm for
Bus-DeMeo taxonomy, 0.337–2.359 µm for G13 taxonomy, and
0.337–1.041 and for G9 taxonomy) and some of them also us-
ing the albedo. The curve matching or g factor computation can
be made across a smaller wavelength interval (depending on the
available wavelength range of the asteroid spectrum) but with a
lower confidence, thus a reliability criterion is required (Popescu
et al. 2011)

Reliability =
card

(

[λm, λM]
⋂

{λT
1 , λ

T
2 , ..., λ

T
N
}
)

N
, (2)

where [λm, λM] is the spectral interval between the minimum
wavelength and the maximum wavelength in the asteroid spec-
trum, λT

1 , λ
T
2 , ..., λN

T
are the N wavelengths for which the stan-

dard spectra of the taxonomy are given, and card() represents
the number of elements of a discrete set.

5.2. Curve matching

The methods for taxonomic classification and comparison with
meteorite spectra are based on curve matching. These proce-
dures involve minimizing a quantity (usually called Φ) in order
to determine the best estimates for a given asteroid spectrum.

A quantity commonly used to test whether any given
points are well-described by some hypothesized function is
chi-square (χ2), the determination being called the chi-square
test for goodness of the fit (Bevington & Robinson 1992).

The classical definition for the χ2 is:

χ2 =

N
∑

i

(xi − µi)2

σ2
i

, (3)

where there are N variables xi normally distributed with the
mean µi and variance σ2

i
. If σ2

i
are correctly estimated, the data

are well-described by the values µi when Φ = χ2 → 0.
We denote by {ei} the error between the data (asteroid spec-

trum) and the curve that was fitted

ei = (xi − µi). (4)

Our first approach to curve matching, derived from chi-square
fitting, is based on the formula

Φstd =
1
N

√

√

N
∑

i

(ei − e)2, (5)

where we have denoted with e the mean value of the set {ei}
(Eq. (4)).

The quantity to minimize in this case is the standard devia-
tion of the errors. To apply this procedure, we smooth our aster-
oid spectrum by a polynomial curve (using the poly f it function
from the Octave3.2 computation environment). This step is re-
quired to eliminate the outlier points produced by the incomplete
removal of telluric absorption lines.

We used this type of curve matching to find the taxonomic
class of the asteroid in the Bus-DeMeo taxonomy and to com-
pare with laboratory spectra. In the latter case, we determine how
well the asteroid spectrum is fitted by different laboratory spec-
tra, and select the closest 50 fits, in ascending order of Φ.

A second approach to curve matching can be made using χ2

with the definition (Nedelcu et al. 2007):

χ2 =
1
N

N
∑

i

(xi − µi)2

xi

, (6)

where xi are the values of a polynomial fit to the asteroid spec-
trum and µi are the reflectance values for the meteorite spectrum.
The meaning of this formula is that of a relative error at each
wavelength (N being the number of wavelengths on which the
comparison is made).

The third approach to curve fitting is based on the correlation
coefficient

ρX,M =
cov(X,M)
σX σM

, (7)

where, X = {xi} is the spectrum of the asteroid and M = {µi}
is the laboratory spectrum. The correlation coefficient detects
linear dependences between two variables. If the variables are
independent (i.e. the asteroid and laboratory spectra), then the
correlation coefficient is zero. A unitary value for the correlation
coefficient indicates that the variables are in a perfect linear re-
lationship, though in this case we search for laboratory spectra
that match the desired asteroid spectrum with the highest ρX,M .

Finally, we concluded that a good fitting can be achieved by
combining the standard deviation method and correlation coeffi-
cient method. Thus, the fourth coefficient we propose is

Φcomb =
ρX,M

Φstd
, (8)
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where ρX,M was defined in Eq. (7) and Φstd was defined in
Eq. (5). In this case, the laboratory spectra that match the as-
teroid spectrum are those with the highest value of Φcomb.

5.3. Computing the space weathering effects

Our approach to computing space weathering effects applies the
model proposed by Brunetto et al. (2006). On the basis of lab-
oratory experiments, they concluded that a weathered spectrum
can be obtained by multiplying the spectrum of the unaltered
sample by an exponential function (see Eq. (9)) that depends on
the precise parameter Cs.

By fitting the asteroid spectral curve with an exponential
function using a least-square error algorithm, we can compute
the Cs parameter

W(λ) = K × exp
(

Cs

λ

)

(9)

Brunetto & Strazzulla (2005) demonstrated that ion-induced
spectral reddening is related to the formation of displacements,
with the Cs parameter being correlated with the number of dis-
placements per cm2 (named damage parameter – d). Brunetto
et al. (2006) obtained an empirical relation between Cs and the
number of displacements per cm2

Cs = α × ln(β × d + 1), (10)

where α = −0.33 µm and β = 1.1 × 1019 cm2. M4AST applies
Eq. (10) to compute the damage parameter d.

This model for the space weathering effects describes the ef-
fects of solar-wind ion irradiation. While this is not the only ac-
tive weathering process, it seems to be the most efficient at 1 AU
(Vernazza et al. 2009; Brunetto et al. 2006).

The removal of space weathering effects is made in M4AST
by dividing the asteroid spectrum by W(λ) at each wavelength.

5.4. Application of the Cloutis model

Cloutis et al. (1986) proposed a method for the mineralogical
analysis of spectra showing absorption bands. We implemented
an application to compute the spectral parameters defined by
this method. The computation of all the parameters described
in Sect. 4.2 is done for spectra that contains the V + NIR wave-
length regions. If only the NIR region is given, then only the
band minima can be computed.

The following steps are made: we first compute the minima
and maxima of the spectrum. This is done by starting with the
assumption that there is a maximum around 0.7 µm followed by
a minimum around 1 µm, then a maximum between 1.3–1.7 µm
and a minimum around 2 µm. The spectrum is fitted around these
regions by a polynomial function. The order of the polynomial
is selected to be between three to eight, in order to obtain the
smallest least square residuals. The minima and the maxima are
the points where the first derivative of the fitted polynomial func-
tions is zero.

In the second step, using the wavelengths and the reflectance
at the two maxima and at the end of the spectrum (around
2.5 µm), we compute two linear continua, tangential to the spec-
tral curve. The continuum part is removed by dividing the spec-
trum by the two tangential lines (in the corresponding regions).
The band centers are computed following a method similar to
that applied to the band minima, but after the removal of the
continuum.

The last step consists in computing the two absorption-band
areas. The first absorption band is located around 1 µm and be-
tween the first and second maxima. The second absorption band
is located around 2 µm, between the second maximum and the
end of the spectrum. The area is computed using a simple in-
tegration method. This method consists in computing the area
between two consecutive points in the spectrum defined by a
trapezoid and summing all these small areas corresponding to
the absorption band.

OPX

OPX + OL
= 0.4187 ×

(

BII

BI
+ 0.125

)

. (11)

The ratio of the areas of the second to the first absorption band
(BAR = BII

BI
) gives the relative abundance orthopyroxene vs.

olivine presented in Eq. (11) (Fornasier et al. 2003).

6. Results and discussions

The functionality of M4AST is now exemplified by the analysis
of three spectra available in the database that were previously
discussed by Popescu et al. (2012), Binzel et al. (2009), and
de León et al. (2011). Our selection here covers a wide variety
of spectra: (9147) Kourakuen is a vestoid with deep absorption
features, (99 942) Apophis is an Sq type asteroid with moderate
features, and (175 706) 1996 FG3 is a primitive type with fea-
tureless spectra.

The discussion of the taxonomic type of each object is made
with reference to both Fig. 2 for Bus-DeMeo taxonomy and
Fig. 3 for G-mode taxonomies. Table 1 summarizes the com-
parison of asteroid spectra with spectra from the Relab database.
The corresponding plots are given in Fig. 4.

6.1. Results

The spectrum of (9147) Kourakuen has the characteristics of
a V-type asteroid. In Bus-DeMeo taxonomy, V-type asteroids
are characterized by a very strong and very narrow 1 µm ab-
sorption and a strong 2 µm absorption feature (DeMeo et al.
2009). M4AST undoubtedly classify this spectrum as V-type.
This agrees with the classification made via the MIT-SMASS
online tool7. The next two matches (the programs always returns
the first three matches) of Sv and Sr types have larger matching
errors (Fig. 2(a)).

The solution given by all four methods for comparison with
laboratory spectra shows that the spectrum of (9147) Kourakuen
is almost identical to the spectrum of a sample from the Pavlovka
meteorite (Fig. 4(a)), which is a howardite achondrite meteorite.
The second best match corresponds to the spectrum of a a man-
made mixture of pyroxene hypersthene plagioclase bytownite
ilmenite (Fig. 4(b)). This man-made mixture reproduces quite
well the natural composition of volcanic rocks or melting rock of
volcanic beds, and is consistent to the V-type mineralogical com-
position of asteroids. The majority of the laboratory spectra pro-
posed by M4AST as good matches to this asteroid corresponds
to Howardite-Eucrite-Diogenite (HED) achondrites, which are
meteorites that come from asteroid (4) Vesta. This agrees with
the the classification of a V-type asteroid.

While the standard deviation measures the overall matching
between the two spectra, the correlation coefficient find the spec-
tra for which the spectral features positions and shapes are very
close. In the case of spectrum of (9147) Kourakuen, a very high

7 http://smass.mit.edu/busdemeoclass.html

A130, page 6 of 10

http://smass.mit.edu/busdemeoclass.html


M. Popescu et al.: M4AST - Modeling of asteroid spectra

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wavelength [um]

R
e

la
ti
v
e

 R
e

fl
e

c
ta

n
c
e

 

 

Kourakuen

V
Sv

Sr

(b)

0.5 1 1.5 2 2.5

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Wavelength [um]

R
e
la

ti
v
e
 R

e
fl
e
c
ta

n
c
e

 

 

Apophis

Sq
S

Sr

(c)

0.5 1 1.5 2 2.5

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Wavelength [um]

R
e

la
ti
v
e

 R
e

fl
e

c
ta

n
c
e

 

 

1996 FG3

Ch
Cg

Xc

Fig. 2. Classification in Bus-DeMeo taxonomical system for: a) (9147) Kourakuen; b) (99 942) Apophis; and c) (175 706) 1996 FG3. All the
spectra are normalized to 1.25 µm.
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Fig. 3. Classification in the G-mode taxonomical system for: a) (99 942) Apophis using G13 taxonomy; b) (175 706) 1996 FG3 using G13 taxon-
omy; and c) (175 706) 1996 FG3 using G9 taxonomy. All the spectra are normalized either to 1.25 µm (left and central panel), or to 0.55 µm (c)).

Table 1. Summary of the results obtained by matching the asteroids spectra with spectra from the Relab database.

Spectrum Std. dev. Corr. coef. Meteorite/Sample Sample ID Type Texture
(9147) 0.01884 0.99477 Pavlovka MR-MJG-094 Achondrite(AHOW) –

0.02244 0.99207 Mixture SC-EAC-039 Pyrox Hyper Plagi Bytow Ilmen Particulate
(99 942) 0.01756 0.98013 Simulant CM-CMP-001-B Soil/Lunar Particulate

0.01970 0.98224 Hamlet OC-TXH-002-C OC-LL4 Particulate
(99 942) 0.01539 0.96245 Cherokee Springs TB-TJM-090 OC-LL6 Particulate
de-reddened 0.01609 0.97272 Cat Mountain MB-DTB-035-A OC-L5 Particulate
(175 706) 0.01219 0.90546 Sete Lagoas MH-JFB-021 OC-H4 Slab

0.01504 0.85366 Murchison heated 1000 ◦C MB-TXH-064-G CC-CM2 Particulate

Notes. For each asteroid, we show the best two matches, obtained by measuring the standard deviation (std. dev.) and the correlation coefficient
(corr. coef.).

correlation coefficient (more than 0.99) characterizes the first
matching solutions (Table 1).

Since only the NIR part of the spectrum is available, we can
only compute the band minima. The high signal to noise ratio of
this spectrum ensures that there is a small error in computing the
band minima. The first minimum is at 0.9217 ± 0.0005 µm and
the second minimum is at 1.9517 ± 0.0062 µm, which imply
a band separation of 1.03 µm. The band separation provides a
way of estimating the iron content. Cloutis et al. (1990) noted
that the band separation is a linear function of the BII minimum
for orthopyroxenes and that both parameters increase with the
iron content. If we refer to the relation obtained by de Sanctis
et al. (2011), the parameters that we found match their formula

y = 0.801 ∗ x−0.536, where y is the band separation and x is the
BII minimum. These parameters corresponds to an iron content
of around 40 wt%. However, the laboratory calibrations suggest
that the correspondence is true for a number of low aluminum
orthopyroxenes but invalid for mixtures of olivine, metal, and
both ortho- and clino-pyroxenes (de Sanctis et al. 2011).

The second spectrum we consider to exemplify the M4AST
routines is that of the potential hazardous asteroid (99 942)
Apophis (Binzel et al. 2009). On the basis of this spectrum this
asteroid was found to be an Sq type, and has a composition that
closely resemble those of LL ordinary chondrite meteorites.

M4AST classifies this spectrum in the Bus-DeMeo taxon-
omy as an Sq-type (Fig. 2(b)). The next two types, S and Sr,
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Fig. 4. Asteroid spectra and the best two matches derived from a comparison with laboratory spectra: a) spectrum of Kourakuen and the spectrum
of a sample from Pavlovka; b) spectrum of Kourakuen and the spectrum of a mixture of pyroxene hypersthene plagioclase bytownite ilmenite;
c) spectrum of Apophis and the spectrum of a simulant Lunar soil; d) spectrum of Apophis and the spectrum of a particulate sample from the
Hamlet meteorite; e) de-reddened spectrum of Apophis and the spectrum of a particulate sample from the Cherokee Springs meteorite; f) de-
reddened spectrum of Apophis and the spectrum of a particulate sample from the Cat Mountain meteorite; g) spectrum of 1996 FG3 and the
spectrum of a sample from the meteorite Sete Lagoas; and h) spectrum of 1996 FG3 and the spectrum of a sample from the Murchison meteorite
heated to 1000 ◦C.

are relatively good matches, but have larger errors. Applying
the G13 taxonomy, M4AST classifies this asteroid as being in
class 2 (Fig. 3(a)). Two other classes (namely 6 and 7) are rel-
atively close in terms of g factor (Fig. 3, upper plot). Class 2
has the representative members (7) Iris and (11) Parthenope,
which are S- and S-q type asteroids according to DeMeo
et al. (2009). The classes 2, 6, and 7 are equivalent to the
S profile.

Being an Sq type, for this asteroid spectrum we can ap-
ply the space weathering model proposed by Brunetto et al.
(2006). Thus, fitting the spectrum with an exponential contin-
uum we found Cs = −0.196 µm, corresponding to a mod-
erate spectral reddening. The result obtained by Binzel et al.
(2009) is Cs = −0.17 ± 0.01 µm. This difference could be
caused by the different method that they used: their “best fit was

performed as an integral part of the overall minimum RMS solu-
tion”. The Cs value gives the number of displacements per cm2,
d = 0.74×1019 displacements/cm2. We analyze both the original
spectrum and the de-reddened spectrum.

Comparing the original spectrum of (99 942) Apophis with
all laboratory spectra from Relab, M4AST found matches with
some ordinary chondrite meteorites (L and LL subtypes, and
petrologic classes from 3 to 6) and some lunar soils (Figs. 4(c)
and 4(d)). Referring to standard deviation and to correlation co-
efficient, the closest matches were those of particulate lunar soils
and some spectra from the Hamlet meteorite which is particulate
with grain sizes smaller than 500 µm. The meteorite Hamlet is
an ordinary chondrite, subtype LL4.

In the case of the de-reddened spectrum, the majority of so-
lutions correspond to ordinary chondrite meteorites, of subtype
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L and LL, with petrologic classes from 4 to 6. The best matches
were those of the Cherokee Springs meteorite (an LL6 ordinary
chondrite, Fig. 4(e)) and the Cat Mountain meteorite (an L5 ordi-
nary chondrite, Fig. 4(e)). From spectral modeling of mixtures of
olivine, orthopyroxene, and clinopyroxene, Binzel et al. (2009)
correlate the spectrum of (99 942) Apophis with the spectra of
LL meteorites. This results agrees with the spectral matching
solutions found by M4AST.

No significant differences between the Cloutis model param-
eters computed for original and de-reddened spectrum are found.
The application found the first band center at 0.9721±0.0143µm
(0.9755± 0.0144 µm for the de-reddened spectrum), the second
band center at 1.8200 ± 0.0679 µm (1.8404± 0.0591 µm for the
de-reddened spectrum), and the band area ratio 0.4059± 0.0047
(0.3886 ± 0.0015 for the de-reddened spectrum). These param-
eters correspond to an ordinary chondrite with an OPX/(OPX +
OL) ratio of 0.222 (0.215 for the de-reddened spectrum). This
ratio agrees with the compatibility relation between NEA and
LL ordinary chondrites found by Vernazza et al. (2008), which
is similarly consistent with the spectral matching we found.

This value means that the ordinary chondrite consist of 78%
olivine, which is consistent with an LL ordinary chondrite. And
this result agrees with the spectral matching.

The dark primitive asteroid (175 706) 1996 FG3 is the pri-
mary target of the ESA Marco Polo-R mission. Some papers
were dedicated to this object, namely de León et al. (2011),
Wolters et al. (2011), Rivkin et al. (2012), and Walsh et al.
(2012). There are few spectra published in both V and NIR. In
the M4AST database, we included the spectra from the MIT-
UH-IRTF (MINUS) survey8 and the spectrum of de León et al.
(2011).

On the basis of different spectra, the asteroid has been clas-
sified as belonging to primitive types (C, B, or X), but there
is no consensus on its classification in the literature (de León
et al. 2011; Walsh et al. 2012). In addition some spectral match-
ings have been noted with meteorites ranging from ordinary
chondrite H-type to both CM2 and CV3 carbonaceous chondrite
(de León et al. 2011; Rivkin et al. 2012).

To exemplify the applications of M4AST, we used the spec-
trum obtained on March 30, 2009 by MIT-UH-IRTF (MINUS).
The classification in the Bus-DeMeo taxonomy returned the Ch,
Cg, and Xc taxonomic types (Fig. 2(c)). The scores obtained for
the classes Ch, Cg, Xc, C, and Cgh are very similar. This ob-
ject has neither the absorption band centered at 0.7 µm typical
of Ch-type, nor the redder spectral slope of Xk-types (de León
et al. 2011). In addition, the slope in the NIR part of the spec-
trum, that is of Cg type does not corresponds to the spectrum of
(175 706) 1996 FG3.

Classifying this spectrum of (175 706) 1996 FG3 using the
G13 taxonomy, we obtain with high confidence (gs = −1.237)
the type corresponding to class 3. The other two types (classes
9 and 4) have greater gs coefficients (Fig. 3(b)). Groups 3 and
4 are the equivalents for the C-type asteroids. As representative
members of the class 3, there are (1) Ceres and (10) Hygiea,
which are both primitive asteroids. The classification in the G9
taxonomy (Fig. 3(c)) confirms the classification as a primitive
type, suggesting as the first options the classes G and C, while
the third option (V) could be ignored because it has a larger gs.

Considering these three classifications, the solution on which
the applications of M4AST seems to converge is that the spec-
trum of (175 706) 1996 FG3 is of a Cg taxonomic type.

8 http://smass.mit.edu/minus.html

Comparing the spectrum of (175 706) 1996 FG3 to the lab-
oratory spectra, we obtain a good match to a sample of the
meteorite Sete Lagoas (Fig. 4(g)). Other matches are the spec-
trum of a sample from meteorite Murchison heated to 1000 ◦C
(Fig. 4(h)), the spectrum of a sample from the Dhofar 225 me-
teorite, and the spectrum of a sample from Ozona. This is puz-
zling, since both the Sete Lagoas and Ozona meteorites are ordi-
nary chondrites (H4 and H6, respectively), and both Murchinson
and Dhofar 225 are carbonaceous chondrites. However, we note
that the majority of matching solutions are spectra of carbona-
ceous chondrite meteorites (CM type). If additionally, we take
into account the asteroid albedo9, then the spectrum of Dhofar
225 (sample ID: MA-LXM-078) and Murchison heated to 1000
◦C (sample ID: MB-TXH-064-G ) seems to be the most probable
analogs of this asteroid spectrum.

With the results of M4AST in agreement with those already
published, we conclude that the routines of M4AST work cor-
rectly and their implementation is robust.

6.2. Discussions regarding misinterpretations of spectra

Applying the correct methods for interpreting asteroid spectra
can reveal a lot of information about the physical properties
of these objects. However, each method has its own limitations
which in general are well-described in the corresponding paper,
and using the methods beyond their limits may of course lead to
incorrect results.

The first misinterpretation that may occur is related to space
weathering. As Gaffey (2008) noted, “space weathering is com-
monly invoked to reconcile observational data to the incorrect
expectation that ordinary chondrite assemblage are common in
the asteroid belt”. While space weathering for the lunar samples
has been well-documented using the samples returned from the
Apollo missions, it has been observed that different models are
required to interpret the space weathering processes that acted
on different asteroid surfaces.

The model we applied for space weathering was based on
laboratory experiments that consist in ion irradiation (Ar+) of
olivine and pyroxene powders. This model is suitable for aster-
oids that seems to consist of olivine and pyroxene, such as those
from the S complex.

According to these experiments, the reddening in the in-
frared part of spectra due to solar-wind ion irradiation can be
removed, by dividing the spectrum by an exponential function.
However, there are several other effects that can modulate the
spectra, such as either thermal influence (Rivkin et al. 2005) or
the debated phase-angle effect (Veverka et al. 2000).

The second misinterpretation that may occur is related to the
spectral matches with laboratory spectra (Gaffey 2008). Curve
matching can provide clues to the nature of the asteroid surface
composition. The efficiency of this method can be clearly ob-
served in the case of asteroids that have strong spectral features,
such as the vestoids. Misinterpretations can occur when the as-
teroid surface is modified by space weathering effects, while the
meteorite can be modified by terrestrial influences.

The four methods we proposed take into account different
characteristics of the spectra: spectral slope, band depths, and
the various feature positions. In the context of taxonomic classi-
fication, albedo value, space-weathering effects, and similar so-
lutions obtained from all four matching methods, we believe that

9 The geometric albedo was found as 0.039 ± 0.012 by Walsh et al.
(2012).
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spectral matches with laboratory spectra provide valuable con-
straints of the asteroid surface nature.

By applying the methods of M4AST, we observed that a
good solution for interpreting the asteroid spectrum is found
when all the methods converge to the same mineralogical inter-
pretation. For example, when the spectrum of (99 942) Apophis
was processed, despite the poor signal to noise ratio in the in-
frared part of its spectrum, we obtained the classification Sq in
the Bus-DeMeo taxonomy and an analog of this class in the G13
taxonomy. We then found that the spectra of ordinary chondrite
meteorites (L, LL subtypes) match this spectrum. These two
results were confirmed and developed by applying the Cloutis
model: the fraction of olivine-orthopyroxene is 22%, and the as-
sociated parameters are equivalent to those of an ordinary chon-
drite. This conclusion is in general valid for all the spectra we
analyzed via M4AST.

7. Conclusions and perspectives

Spectroscopy plays a key role in determining the chemical com-
position and physical processes that took place and modified the
surface of atmosphere-less bodies in the solar system. The devel-
opment of telescopic instruments (such as SpeX on IRTF, NICS
on TNG etc.) and the possibility to access them remotely has led
to an increasing number of asteroid spectral measurements. In
this context, the exploitation of spectral measurements becomes
one of the important means of developing minor planet science.
During the past few decades, several methods have been devel-
oped to analyze asteroid spectra in order to reveal the physical
and chemical properties of these objects. These methods com-
prise taxonomic classifications, band analyses and comparative
mineralogy.

In this paper, we have described M4AST (Modeling for
Asteroids), which is a software project dedicated to asteroid
spectra. It consists of an asteroid spectral database and a set
of applications for analyzing the spectra. The M4AST spectral
database has around 2700 asteroid spectra obtained from our ob-
serving program and different collaborations. The spectra from
the database are in a standard format and are fully available for
download.

The M4AST applications cover aspects related to taxonomy,
curve matching with laboratory spectra, space weatherin models,
and diagnostic spectral parameters.

M4AST was conceived to be fully available via a web inter-
face and can be used by the scientific community. We have pre-
sented the interfaces available to access this software tool and
the algorithms behind each method used to perform the spectral
analysis. The applications have been exemplified with three dif-
ferent types of spectra. The robustness of the routines has been
demonstrated by the solutions found for the asteroid spectra of
(9147) Kourakuen, a V-type asteroid, (99 942) Apophis an Sq as-
teroid, and (175 706) 1996 FG3 a Cg type asteroid and a target of
Marco Polo – R mission. The results agree with and complement
those previously published for these objects.

Future developments of this project will include increasing
the number of spectra in the database, additional methods for
analyzing the spectra (such as mineralogical charts – Birlan et al.
2011), and a more friendly interface.
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Sunt descrise două aplicaĠii ale spectroscopiei în studiul obiectelor de pe 

bolta cerească. Prelucrarea şi analiza datelor pentru spectrele de emisie şi spectrele 

de reflexie sunt exemplificate folosind observaĠiile la quasarul PG1634+706, 

respectiv observaĠiile la asteroidul (9147) Kourakuen. 

Pentru quasarul PG1634+706 s-a obĠinut deplasarea Doppler spre roşu a 

liniilor spectrale utlizând o schemă simplă de telescop şi spectrometru. Rezultatul 

este în concordanĠă cu valoarea acceptată în literatura de specialitate. 

Spectrul în infraroşu apropiat obĠinut pentru asteroidul (9147) Kourakuen a 

permis clasificarea acestuia în tipul vestoizilor. Utilizând acest spectru a fost făcută 
o descriere a compoziĠiei suprafeĠei acestui obiect.  SoluĠia comparării cu spectrele 

meteoriĠilor a scos în evidenĠă potrivirea spectrală cu meteoriĠii HED. 

 

We describe two applications of spectroscopy to study the properties of 

celestial bodies. Data reduction and data analysis for emission and reflection 

spectra in astronomy are outlined using the spectra acquired for the quasar 

PG1634+706 and the asteroid (9147) Kourakuen. 

For the quasar PG1634+706 we obtained the Doppler redshift of the 

spectral lines using a basic design of a spectrometer and a telescope. Our result is 

in agreement with the one accepted in the literature. 

The accurate near-infrared (NIR) spectrum obtained for the asteroid (9147) 

Kourakuen allows to classify this object as a vestoid.  A description of the surface 

composition for this object was obtained using this spectrum. The comparison with 

meteorites spectra reveals a spectral matching with HED meteorites. 

 

Keywords: spectroscopy, astronomy, asteroid, quasar 

1. Introduction 

Spectroscopy is one of the most powerful scientific tools for studying 

nature. The study of celestial bodies using spectroscopy connects astronomy with 
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fundamental physics at atomic and molecular levels. The beginning of 

astrophysical spectroscopy could be traced back to early nineteenth century with 

the discovery of dark lines in the solar spectrum by W. H. Wollaston in 1802 and 

J. von Fraunhofer in 1815. The dark lines at discrete wavelengths arise from 

absorption of energy by atoms or ions in the solar atmosphere [1].  

Due to atmosphere transparency, there are two spectral windows which 

allow the observation of celestial bodies: the visible to near-infrared region (Fig. 

1), and the radio window. The X-rays and ultraviolet wavelengths are blocked due 

to absorption by ozone and oxygen, while the far infrared radiation is blocked 

mainly due to absorption by water and carbon dioxide [2]. 

 
Fig. 1. Earth’s atmospheric absorption as a function of wavelength (Adapted from [2]) 

 

In this article, we focus on the data reduction and data analysis for two 

types of spectra that we could obtain from celestial bodies: - the emission 

spectrum of a quasar and the reflection spectrum of an asteroid. Our observations 

were carried out in 0.4 – 0.7 ȝm and 0.8 – 2.5 ȝm spectral intervals. 

For the emission spectroscopy, we attached a spectrometer to a telescope 

with the diameter of primary mirror of 200mm, with the purpose of studying the 

possibility to measure the redshift from quasars using this type of equipment. 

Thus, as application for the emission spectra, in this paper we describe the visible 

spectrum obtained on August 06, 2011,  for PG1634+706 - a bright quasar with 

apparent magnitude ~14.7, for which a large redshift was reported [3,4]. At this 

apparent magnitude, the observations with a Newtonian telescope, having a 

primary mirror with 200 mm diameter, are very challenging. With a robust 

method for data reduction we succeed to obtain a redshift (z = 1.340) similar with 

the one accepted in the scientific literature (z = 1.337).  Both observing 

procedures and data reduction methods could serve as a basis for further 

systematic spectroscopic studies of celestial bodies using this relatively simple 

equipment. 

In the case of reflectance spectroscopy we used the NASA InfraRed 

Telescope Facility (IRTF) - a 3.0 meter telescope located at the Mauna Kea 

Observatory, Hawaii. Reflectance spectroscopy is a remote sensing technique 

used to study the surfaces and atmospheres of solar system bodies. It provides 
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first-order information on the presence and amounts of certain ions, molecules, 

and minerals on the surface or in the atmosphere of the object. By looking at the 

changes in reflectance, the presence of absorption features can be identified. 

Localized dips in the spectrum indicate a particular material is absorbing light at 

that wavelength. From Mercury to the most distant dwarf planet, almost 

everything that is known about surface mineralogy has resulted from reflectance 

spectroscopy using ground-based telescopes [5, 6].  

Our observation target for reflectance spectroscopy was the asteroid 

(9147) Kourakuen. Based on its colors in the visible, this asteroid was suspected 

to have a basaltic surface. We chose to observe the spectrum in the near-infrared 

(NIR) of this puzzling object from the main belt, having a favorable position and 

apparent magnitude (16.4) for observation with IRTF telescope on November 15, 

2011.   

The paper is organized as follow: in section two we present the 

observation methods giving also some details regarding the equipment we used. In 

section three we describe the data reduction and data analysis for the visible 

spectrum of PG1634+706. The steps for obtaining the spectrum of (9147) 

Kourakuen together with the analysis of the results are given in section four. The 

last section is dedicated to discussions and conclusions. 

2. Acquiring spectra for celestial bodies 

A simple way to obtain the spectra from celestial bodies is to use a prism 

or a transmission grating in front of a telescope objective. Depending on the 

equipment used, the sky quality at the observing moment and the data reduction 

procedures, the limiting magnitude could be pushed up to V=15 with a small 

telescope. On the other hand, a three meter telescope allows magnitudes up to 

V=18. These limiting magnitudes are valid for low resolution modes of the 

spectrograph. 

 Our first observations were carried out with telescopes having the 

diameter of principal mirror between 200-300 mm and a diffraction grating having 

100 lines/mm. Since promising results were obtained both for stars and the quasar 

3C273 we took the challenge to observe a quasar with an apparent magnitude 

V=14.7. For this run we used a Celestron C8-NGT telescope, which is a 

Newtonian type having the primary mirror of 200 mm and a focal length of 1000 

mm, which means a focal ratio f/5.  It is used on a AS-GT (CG-5 GoTo) equatorial 

mount allowing automated tracking of the objects. For image recording we used 

an ATIK 314L+ CCD (charge coupled device) camera having 1.45 Megapixels (a 

matrix of 1391x1039), each pixel being a square - 6.45 x 6.45 µm (chip size - 8.98 

x 6.71mm). This camera has a resolution of 16 bits. 
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The spectrum was obtained using a Star Analyser 100 - a high efficiency 

100 lines/mm transmission diffraction grating, blazed in the first order.  It was 

mounted in a standard 1.25 inch diameter threaded cell which is compatible with 

the telescope and CCD camera. A rough calibration of the system can be 

estimated according to the designer formula [7] adapted to our system (Eq. 1):  

][

45.6
]/[

cmd
pixelnmDispersionestim =                                             (1) 

where d is the distance between grating and CCD. Our optical design allows a 

resolution around 1.5nm. A precise calibration was made using known lines 

identified in the spectrum of a bright star. 

 
Fig. 2. Portion of the final image showing the field of quasar PG1634+706 (north is at bottom of 

the figure). The object and its spectrum are surrounded by a rectangle. In this image we distinguish 

the zero order (objects are dots) and the first order (light is dispersed) 

 

The software used for data acquisition was Artemis Capture. The 

observations were carried out on 6 August 2011 in an area with low light pollution 

(Vălenii de Munte – Romania).  The observational circumstances are given in 

Table 1. The final image (Fig. 2) consists in a stack of eighteen images with 90 

seconds exposure time and three images with 60 seconds exposure time each, thus 

a 30 minutes total exposure time. Bias and flat field corrections were made using 

corresponding images taken at the beginning of the night. 
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Table 1 

Observational circumstances of the selected objects: name of objects, moment of observation 

(UT), position of the objects (RA and DEC), visual magnitude (VMAG), airmass, and the 

integration time (ITIME) are presented. 

 

Object UT RA[hrs] DEC[°] VMAG Air mass ITIME 

PG1634+706 2011-08-05.089 16:34:29 +70:31:32 14.7 1.17 30 min 

 (9147) Kourakuen 2011-11-15.357 00:53:18 -04:36:21 16.4 1.14 32 min 

HD4940 2011-11-15.375 00:51:17 -13:06:52 8.7 1.28 12 sec 

 

In the last century the application of spectroscopy for astronomical objects 

has lead to the development of large ground-based observatories dedicated to this 

purpose. One of these is the NASA Infrared Telescope Facility (NASA IRTF) - a 

3-meter telescope optimized for the infrared astronomy. SpeX, one of the 

instruments available to be used with this telescope, provides spectral resolutions 

of R~1000-2000 across 0.8-2.4 ȝm, 2.0-4.1 ȝm, and 2.3-5.5 ȝm, using prism cross-

dispersers. Single order long slit modes are also available. A high throughput 

prism mode is provided for 0.8-2.5 ȝm spectroscopy at R~100. It employs a 

1024x1024 Aladdin3 InSBb CCD array for acquiring the spectra. Image 

acquisition could be made with a 512x512 Alladin2 CCD InSb array [8]. 

 Two computers manage the instrument - namely GuideDog and BigDog, 

the first is dedicated for pointing and tracking the object and the second is used 

for spectrograph setup and image acquisition. Because the asteroid (9147) 

Kourakuen has an apparent motion of 0.16”/min a differential tracking was 

employed. 

 We observed (9147) Kourakuen in the 0.8-2.5 ȝm spectral region with the 

SpeX/IRTF instrument. The observations were performed remotely from the 

Centre d’Observation à Distance en Astronomie à Meudon (CODAM) [9, 10] on 

November 15, 2011. The moment of observation (given in universal time -UT), 

the position of the object, the visual magnitude, the airmass (optical path length 

through Earth’s atmosphere for light from a celestial body) and the integration 

time are given in Table 1. The observations were carried out using the low 

resolution prism mode of the spectrograph. We used a 0.8 x 15 arcsec slit oriented 

north-south. 

 A solar-like standard star taken at similar airmass is required to correct for 

atmospheric effects and to remove the signature of the Sun’s spectrum in order to 

have only the signature of the target surface. Two G2V solar analogs were 

observed, namely HD22361 and HD4940. We observed the last one (HD4940) 

since it was at favorable airmass (the differential airmass between the asteroid and 

this standard star was ~0.14) at the moment of observation. Three pairs of images 

having 2 seconds exposure time for each image were sufficient to obtain a good 
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SNR (signal to noise ratio), considering the 8.7 magnitude of the star.  When 

choosing the analog solar we also considered that if the star is too bright will 

saturate the CCD, while a fainter star will require a too long integration time.  

  The spectra for the asteroid and the solar analog star were obtained 

alternatively at two separate locations along the slit (close to top and close to 

bottom) following the nodding procedure [11].  

 

 
 Fig. 3. Part of the image that contains the spectrum of (9147) Kourakuen. The horizontal 

trace represents the spectrum of the light reflected by the object. 

 

 Because the asteroid had an apparent magnitude of 16.4, eight pairs of 

images were taken with an exposure time of 2 minutes per image (Fig. 3). The 

spectrum of the object is the horizontal trace from the upper side of the image. 

The vertical stripes are the atmospheric lines caused by different transparency. 

The subtractions between adjacent images will partially remove the effect of the 

atmosphere (Fig. 4).  

 

 
 Fig. 4. Result obtained after the subtraction between two consecutive images. The white 

trace is the spectrum from the first image, and the dark trace (it appears black because the pixels 

have negative values after subtraction) is the spectrum from the second.  
 

 Preprocessing of the CCD images included bias and flat field correction. 

An averaged bias frame taken at the beginning of the night was used to perform 

bias subtraction. Flat field images were obtained using calibration lamps at the 

end of the night. 

 Our strategy was to look at objects as close to the zenith as possible, thus 

all observations were made at an airmass less than 1.3 (~50 deg altitude). 
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3. Data reduction and data analysis of emission spectra � application 

to the quasar PG1634 + 706 

Because for these observations we did not use a lamp for wavelength 

calibration, this was done by identifying the position of the known lines in the star 

spectra. In general stellar spectra share two dominant features: the continuum - 

emission at all wavelengths across their spectrum and discrete absorption lines 

corresponding to the elements which are present in the stellar atmosphere. 

Hydrogen is the most common gas in the atmosphere of stars, and thus its well 

known absorption lines from visible (HĮ, Hȕ, HȖ) can be used for wavelength 

calibration. Since our image (Fig. 2) contains also the spectra of some stars an 

accurate calibration can be made using this procedure. The value of the resolution 

found is given in Eq. 2: 
008.0480.1]/[ ±=pixelnmDispersion                                         (2) 

 

Fig. 5. PG1634 + 706 spectrum obtained after data reduction and continuum subtraction. 

 

The preprocessing of this spectrum consists in noise reduction which was 

made by applying on the image a Gaussian filter with ı = 2 pixels.  This filter 

replaces each pixel with a pixel of value proportional to a normal distribution 

computed over the current pixel and its neighbors [12].  

The spectral profile contains a continuum part, which is the continuum 

emission part of the quasar modulated by the transfer function of the acquisition 

system (telescope, diffraction grating and CCD camera transfer functions). 

Continuum subtraction reduces the smoothly varying background to zero and 

essentially has the same effect as filtering out the long-period Fourier components 

of the spectra. Without continuum subtraction, the intensities of spectral lines are 

not clearly detectable [13]. The continuum was removed by dividing the spectrum 

with a fifth order polynomial curve fitting. The obtained result after data reduction 

and continuum subtraction is given in Fig. 5.  

Quasars are objects with star-like appearance and strong radio emissions, 

their name being derived from quasi-stellar radio sources. The identification in 
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their spectra of the emission lines (example: hydrogen Balmer lines - HĮ, Hȕ, HȖ) 
reveals that a large Doppler redshift exists for this type of objects. This redshift is 

defined as the ratio of the change in wavelength (ǻȜ = Ȝobs – Ȝ0) to the non-shifted 

wavelength from a stationary source: 

1
0

−−
+=Δ=

vc

vc
z λ

λ
                                               (3) 

where c is the speed of light and v is the recession speed of the object.  

 

 

  

 

 

 

 

 

 

 

 
Fig 6. Correlation coefficient between quasar spectrum and the template spectrum shifted with 

different z. 

 

 The analysis of the obtained spectrum of the quasar PG1634+706 consists 

in redshift determination and application of Hubble law to determine the distance.

 The most common technique [14] to determine the redshift is the cross-

correlation of the observed spectrum with a template spectrum. The redshift is 

determined by the location of the largest peak in the cross-correlation functions. 

Several rest frame composite quasar spectra exists for the optical region like the 

one from article [15] obtained using data from Large Bright Quasar Survey 

(LBQS) and form article [16] based on Sloan Digital Sky Survey (SDSS). Thus 

for determining the redshift of our spectrum the following steps were taken: 1.) 

shift the template spectrum with a z varying from 0.4 to 1.8 using the step of 

0.001. This is a reasonable assumption made after visual inspection of our data; 

2.) at each step, the correlation coefficient between the quasar spectrum and the 

shifted template spectrum is computed (Fig. 6); 3.) choose the redshift 

corresponding to the best correlation coefficient found. 

In this way, we obtained z = 1.340 corresponding to the peak value of the 

correlation coefficient equal with 0.5416. Our determination is at ~ 3ı (where ı = 

0.1987 is the standard deviation of the correlation coefficient values plotted in 

Fig. 6).  

Considering the value found for the redshift - z = 1.340, the emission lines of 

known chemical elements could be identified in the spectrum of PG1634+706 
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(Table 2). Based on the emission line identification the accuracy of z 

determination can be ascertained:  z = 1.340 ± 0.008. 
Table 2 

Emission line identification in spectrum of PG1634 +706 

 

Edwin Hubble showed that there is a pattern in the speeds with which the 

galaxies are receding form us which implies that the Universe is expanding [15]. 

Observations that followed confirmed Hubble law: 

 dHv ⋅= 0                                                                     (4) 

where v is the radial velocity and d is the distance and H0 is the Hubble constant. 

Recently, high-redshift measurements have been used to predict the value of H0  

[16, 17]: 

Mpcs

km
H ⋅±= 3.13.700                                            (5) 

Applying the equation (3), (4), (5) the speed of this object and the distance 

to it can be computed (Eq. 6). 
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These results are in agreement with the value found by other studies of this 

bright quasar [3, 4, 31]. 

4. Data reduction and data analysis of reflection spectra � application 

to 9147 Kourakuen 

The observation of reflection spectra from a celestial object implies 

additional steps in both observing method and data reduction procedure. This is 

due to the fact that the light reflected from the surface of the body must be divided 

by a spectrum of a solar-like star to determine the reflectance relative to that of the 

original light source, the Sun. Thus, the data reduction process for the reflection 

spectra consist in tree steps: 1) obtain the raw spectra for the object and the solar 

Line Rest-frame wavelength 

[nm] 

Ȝ shifted with z=1.34 

[nm] 

Ȝ observed in quasar spectrum 

[nm] 

C III] 190.6 446.0 444

Fe III 207.7 485.8 488 

Fe II + CII] 232.6 544.3 544 

Mg II 280.0 655.2 655 
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analog, 2) obtain the wavelength calibration of the instrument using flat field 

images taken with calibration lamps and 3) compute normalized reflectance 

spectrum by dividing the asteroid spectrum by the solar analogue spectrum and 

performing a correction for Earth atmospheric lines [18, 19].  
Fig 7. NIR spectrum of (9147) Kourakuen. 

 

For the first two steps, the Image Reduction and Analysis Facility (IRAF) 

[20] was used in conjunction with some scripts that create the command files for a 

specific set of IRAF instructions. For the second step, specific IDL routines were 

used in order to diminish the influence of the telluric bands in our spectrum and to 

divide the obtained spectrum by the solar analog. The obtained result for (9147) 

Kourakuen is given in Fig. 7.  

Basaltic asteroids are believed to derive from bodies whose interiors 

reached the melting temperature of silicate rocks and subsequently differentiated 

[21].  (4) Vesta was the first known asteroid presenting a basaltic crust. In the last 

years an increasingly large number of small asteroids with a similar surface 

composition have been discovered [22]. (9147) Kourakuen is a main belt asteroid 

with an estimated diameter of 5.1 Km. Having the semi-major axis a =2.19 AU, 

eccentricity e = 0.108, and inclination i=6°.892, this object could not belong to 

Vesta family considering the dynamical criteria. However, its SDSS (Sloan 

Digital Sky Survey) colors [23] suggests a surface composition similar to (4) 

Vesta (a V-type object). 

 The first step in analyzing the reflecting spectrum for this object consists 

in finding the taxonomic type of the asteroid. Taxonomic types, although not 

usable to determine the mineralogical compositions of the objects, help constrain 

mineral species that may be present on the surface of the asteroid. We used two 

independent methods to establish the taxonomical class of this asteroid. In a first 

approach, spectral data of our asteroids were compared with Bus-DeMeo 

taxonomic classes [24] via the MIT-SMASS on-line tool. The second approach to 

taxonomic classification was a procedure using a Ȥ2 minimization method 
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accounting for the mean and standard-deviation values of the Bus-DeMeo 

taxonomic classes [18]. Both methods lead to the same result:  this object is 

undoubtedly a V-type (Fig. 8.a).  In the Bus-DeMeo taxonomy, V-type asteroids 

are characterized by very strong and very narrow 1-micron absorption and strong 

2-micron absorption feature [24]. 

Putting the spectral data obtained from telescope observations, in relation 

to the laboratory measurements could reveal a lot of information related to the 

composition of the surface of these celestial bodies. Spectroscopy of different 

samples made in the laboratory provides the basis upon which compositional 

information about unexplored or unsampled planetary surfaces is derived from 

remotely obtained reflectance spectra. Such a comparison could be made based on 

a Ȥ2
 coefficient [11]: 

∑ −= wN

i i

ii

w wf

wfR

N )(

))((1
2

2χ                                                (7) 

where Ri are the reflectances obtained in laboratory, f(wi) are the object 

normalized reflectances and Nw is the number of points.  

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig 8.a) Taxonomic comparison between the polynomial fit of (9147) Kourakuen (blue) and the V-

type class (red); b) Comparison between the spectrum of (9147) Kourakuen (blue) and the NIR 

spectrum of meteorite Pavlovka. 

 

 The Relab spectral database contains more than 15,000 spectra for 

different types of materials from meteorites to terrestrial rocks, man-made 

mixtures, and terrestrial and lunar soils [25]. We compared our spectrum with all 

the spectra from the Relab database, using a Ȥ2
 minimization method and 

additionally, the correlation coefficient. The solution found with both methods 

was that the spectrum of (9147) Kourakuen is almost identical with the spectrum 

of Pavlovka meteorite (Fig. 8.b). The meteorite sample is of type achondrite 

howardite already studied so far [26, 27]. The bulk compositon of the chondrules 
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from this meteorite contains SiO2 (50.1%), MgO(23.7%), FeO(15%), 

Al2O3(6.2%), CaO(3.8%) [26].  

Laboratory spectra similar to the spectrum of (9147) Kourakuen are those 

of the meteorites Roda (Achondrite Diogenite), Le Teilleul (Achondrite, 

Howardite) and Kapoeta (Basaltic HED Howardite). The first fifty solutions that 

matched our spectrum are HED (Howardite Eucrite Diogenite) meteorites. These 

are basaltic meteorites believed to result from large asteroids that melted to form a 

metallic core and basaltic magmas after the formation.  

The absorption band parameters are diagnostic of the mineralogy present on the 

surface of the observed asteroids. The relationship between these spectral 

parameters and the mineralogy, particularly pyroxene and olivine, has been 

studied in various papers over the last years [28]. Most pyroxenes and the basaltic 

achondrites show a strong correlation between the position of band centers at 1 

ȝm and 2 ȝm [28, 29, 30]. Thus, we computed the band minima and band centers 

(at 1 ȝm and 2 ȝm), defined as the wavelength position of the point of lowest 

reflectance before and after the removal of the continuum, respectively [28]. The 

computations were done using the standard procedures [31].  The results are given 

in Table 3. 
Table 3 

Band centers and band separation as deduced from Cloutis model. 

BI center (ȝm) BII center (ȝm) Band separation [ȝm] 

0.913 ±0.005 1.952 ±0.005 1.039±0.010 

5. Discussions and conclusions 

We described here two types of spectra of celestial bodies – the emission 

spectrum of a very far away object, the quasar PG1634 +706 and the reflection 

spectrum of a remnant object from the solar system formation, (9147) Kourakuen. 

The techniques for acquiring the spectra and the models used for data analysis are 

presented.  

The two types of observations share common points in acquisition 

procedure, data reduction and data analysis methods. Conceptually the design of 

the acquisition system is the same:  a telescope, a diffraction device (which could 

be a grating that works in transmission or reflection, or a prism) and the device to 

record the image of the spectrum – a charge coupled device (CCD).  Also, 

extracting the spectrum from the image follows almost the same steps: the 

identification of the trace of the spectrum and getting pixel values, wavelength 

calibration, removing the Earth atmospheric influences in the spectrum. Data 

analysis includes the comparison between the spectra of celestial body with 

known spectra from the laboratory. 
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However the wide variety of results that can be obtained from analyzing 

the emission spectra and the reflection spectra from celestial bodies has lead to 

two separate domains of astronomy. 

Because PG1634 +706 is a bright quasar, it has been studied in some 

papers like [3, 4, 31, 32]. Our observation for this object was at the limited 

magnitude for the type of equipment used. With a robust method, we succeed to 

extract the signal from noise and compute the redshift. Our determination of 

redshift z = 1.340 ± 0.008, with a small telescope agrees with the value found 

after observation with large telescopes. The developed methods for observations 

and data reduction can be used as a starting point for spectroscopy of celestial 

bodies with small telescopes. 

We obtained an accurate near-infrared spectrum of the asteroid (9147) 

Kourakuen. Based on this spectrum, a description of the surface composition was 

made. The comparisons with meteorites spectra revealed a spectral matching with 

HED type meteorites and in particular with the spectrum of Pavlovka meteorite. 

Using the Bus-DeMeo taxonomy, we classified this object as a V-type  

(taxonomic class describing asteroids with similar spectra as Vesta), which agrees 

to the type identified using a relatively more noisy spectrum by [22]. 
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ABSTRACT
Near-infrared spectroscopy can play a key role for establishing the mineralogical com-
position and supporting other physical data obtained by complementary observational
techniques such as adaptive optics, radar, and photometry. The objective of our survey
was asteroids which present large variations in their lightcurves. We report observa-
tions for asteroids (854) Frostia, (1333) Cevenola, and (3623) Chaplin carried out in
the 0.8-2.5 m spectral range using SpeX/IRTF in LowRes mode. The spectral mod-
eling of these asteroids give new insights to these peculiar objects in the main-belt.
(854) Frostia is a V-type asteroid, and its spectral properties are similar to those of
basalts. The most probable mineralogical solution Wo8Fs43En49 was calculated for
Frostia. (1333) Cevenola was estimated to have an Sq spectral type, in agreement
with its membership to the Eunomia family. (3623) Chaplin is an S-type asteroid, in
agreement with the taxonomic type of the Koronis family.

Key words: asteroids, spectroscopy, mineralogical model

1 INTRODUCTION

The lightcurve of an asteroid is the display of the variation of
its magnitude over time. The lightcurve is related to the ro-
tation of an asteroid around an instantaneous axis. In other
words, the lightcuve could be interpreted as an observable
of the angular momentum for a given object. This variation
is primarily due to the shape (French & Binzel 1989). The
lightcurve could be also due to the albedo variation (Harris
& Lupishko 1989) of the asteroids. The results of observa-
tions of lightcurves for asteroids are regularly synthesized in
catalogs of lightcurves (for example Lagerkvist et al. (1987)).

Several asteroids exhibit large amplitude lightcurves,
which remained unexplained until the last decade. Several
explanations were proposed for these variations, starting
with elongated shaped asteroids and including double and
multiple systems of aggregates in a weak self-gravitational
field (Cellino et al. 1985).

The number of known multiple systems among aster-
oids has increased significantly in recent years. In the past,

⋆ The article uses observations performed with SpeX/IRTF
† E-mail:Mirel.Birlan@imcce.fr

the binarity and multiplicity of asteroids was suggested by
several authors (van Flandern et al. 1979) based on oc-
cultations of stars (for example in the articles of Binzel
(1978)1, and Donnison (1979)2) or photoelectric photom-
etry (Tedesco 1979; Binzel & van Flandern 1979; Dunlap
& Gehrels 1969). These observational facts were the origin
of theoretical problems related to spin evolution and stabil-
ity (Wijesinghe & Tedesco 1979; Zappala et al. 1980; Leone
et al. 1984).

Several articles are based on observations using vari-
ous techniques namely radar (Ostro et al. 2002, 2000; Magri
et al. 2007), adaptive optics (Marchis et al. 2005), adap-
tive optics combined with lightcurve photometry (Descamps
et al. 2007), and lightcurve photometry (Behrend et al. 2006;
Pravec et al. 2002).

Analytical and numerical simulations of catastrophic
collisions among small bodies, using several hypothesis, are
published regularly by several teams (Durda et al. 2004;

1 The article also presents historical facts of occultation of stars
by asteroids.
2 This satellite was not confirmed by direct imaging. (Storrs et al.
1999)
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Dell’Oro & Cellino 2007; Holsapple & Michel 2008). This
topic remains open despite an important acquisition of
knowledge from laboratory experiments and numerical tests.
In the framework of this paper the most important con-
clusion of these works is that elongated shapes, binarity
or multiplicity could be explained for both large objects
(≈100 km in size) and relatively small ones (kilometre-size
asteroids). For instance, a doublet system is a binary system
where both bodies are of nearly equal sizes. Their origin is
not well understood, but several such systems have been re-
ported (ex: (90) Antiope, (617) Patroclus, (69230) Hermes,
1998WW31). Theoretical studies concerning the movement
of components around their center of mass can be validated
with observational results (obtained for instance using adap-
tive optics); results of their dynamics will be constrained by
the physical model which takes into account shape, bulk
density, and internal properties of the components. Further-
more, the interaction between a dynamical and a physical
model allows the derivation of the most probable configu-
ration of the system (in terms of separation of components,
orbital parameters, shapes and densities).

Spectroscopic measurements of asteroids contribute to
the characterization of minerals at the surface. In the as-
sumption of homogeneous bodies, this constrains the nature
of tensile stress inside the object. The features of its spec-
trum constrains the mineralogical composition and implic-
itly the range of its density. By applying these considera-
tions to the models, some physical parameters such as the
macro-porosity or the rubble pile structures will be derived.

The article is focused on the spectroscopy of one binary
system and two asteroids with large amplitude lightcurves.
Near-Infrared (NIR) spectroscopic observations for the bi-
nary system of (854) Frostia are presented. Observations of
(1333) Cevenola, and (3623) Chaplin, asteroids with large
amplitude lightcurves are also presented. A detailed analy-
sis of these spectra, and the models derived for each asteroid
are then discussed.

2 THE OBSERVING PROTOCOL

The asteroids were observed in the 0.8-2.5 µm spectral re-
gion by means of the instrument SpeX on the IRTF located
on Mauna Kea, Hawaii. These observations were performed
in remote mode from the Centre d’Observation à Distance
en Astronomie à Meudon (CODAM), more than 12,000 km
away from Hawaii, (Birlan et al. 2004, 2006) using the low
resolution Prism mode (R = 100) of the spectrograph. We
used a 0.8×15 arcsec slit oriented North-South. The spec-
tra for the asteroid and the solar analog stars were obtained
alternatively on two separate locations on the slit denoted
A and B (the nodding procedure). The data reduction pro-
cess consists of two main steps: 1) obtaining the raw spectra
for the object and the solar analog and 2) computation of
the normalized reflectance spectrum by dividing the aster-
oid spectrum by the solar analog spectrum and performing
a correction for telluric lines.

For the first step, Image Reduction and Analysis Fa-
cility (IRAF http://iraf.noao.edu) was used. For the second
step, after the wavelength calibration, specific IDL routines
were also used in order to diminish the influence of telluric
bands in our spectra (Rivkin et al. 2004). In order to publish

high confidence data, the raw images were also re-reduced
via Spextool (Cushing et al. 2004) and specific MIDAS pro-
cedures, and the results were compared with the previous
ones.

Our strategy was to observe all asteroids as close to
the zenith as possible (circumstances of our targets are pre-
sented in Table 1). Thus, we managed to observe all targets
with an airmass less then 1.25. No other correction for the
differential refraction was considered. Each observed aster-
oid was preceded by observations of solar analogs in the
vicinity of it (airmass differences between the asteroid and
the standard less than 0.1). The seeing varied between 0.7-
1.8 arcsec during the observing runs, and the humidity was
in the 25% - 85% range.

In order to obtain a S/N in the 80-200 range, we needed
15 to 40 minutes of exposure time, depending on the asteroid
magnitude, and counting both the effective exposure and
CCD camera readout time. Circumstances of observations
are presented in Table 2.

For the asteroid spectra, the solar analogs HD127913,
G104-335, HD73708 were observed. For the computation of
the final reflectance (ratio between the asteroid spectrum
and the star spectrum) we took into account the similar
dynamic regimes of the detector (Vacca et al. 2004; Rayner
et al. 2003).

3 RESULTS

3.1 (854) Frostia

This asteroid was observed intensely in photometry
(Behrend et al. 2006) by amateurs and professional as-
tronomers3. The asteroid is a slow rotator with a synodic
period of 37h.728. Its regular lightcurve with an amplitude
of 0m.33 presents, for short periods of time, important at-
tenuation, of about 0m.7−0m.8. The large magnitude is very
well explained by mutual eclipse/occultation events for an
object with two components of comparable size. Based on
a physical model of a double system, Behrend et al. (2006)
calculated a bulk density of 750 - 1,020 kg/m3. They explain
such a low density value by a possible C-type asteroid with
a high macro-porosity of about 45 %.

Sloan Digital Sky Survey (SDSS) colors (Ivezić et al.
(2001))4 of this object are reported. These data show large
variations in color. It is important to note that the v−i color
is greater than the v − z one5, which suggest the presence
of absorption band around 1 µm.

Visible spectroscopy of Frostia was reported by Alvarez-
Candal et al. (2006). These results are in agreement with
SDSS colors and the authors classified this asteroid in the
V-taxonomic class.

NIR spectrum of (854) Frostia (Fig 1) was obtained on
March 13, 2007. The total integration time of 40 min allows
an accurate spectrum with the S/N of 120. Following Bus-

3 http : //obswww.unige.ch/ ∼ behrend/page cou.html
4 http : //sbn.psi.edu/ferret/
5 Sloan Digital Sky Survey was obtained using five broad band
filters, namely u, g, r, i, z centered to 3,551, 4,686, 6,165, 7,481,
and 8,931 Å respectively
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Table 1. Circumstances of the observations are presented (date of observations with the fraction of the day for the beginning of the
observation, number and name of the asteroid, semi-major axis, eccentricity, inclination, the apparent magnitude, phase angle, as well
as heliocentric and geocentric distances).

Date (UT) Asteroid a (UA) e i(◦) V Φ (◦) r (UA) ∆ (UA)

2007/03/13.48753 (854) Frostia 2.36823 0.17398 6.090 14.93 3.62 2.34843 1.36087
2007/03/12.54861 (1333) Cevenola 2.63584 0.13314 14.642 15.63 13.74 2.66963 1.82769
2007/03/13.57463 (1333) Cevenola 2.63584 0.13314 14.642 15.61 13.45 2.67108 1.82177
2007/03/12.37775 (3623) Chaplin 2.85048 0.08790 3.072 17.15 14.68 3.03656 2.30870
2007/03/13.26730 (3623) Chaplin 2.85048 0.08790 3.072 17.17 14.89 3.03710 2.31966

Table 2. Observation circumstances for each asteroid. The columns show the name of the asteroid, the mean JD value for each series,
the individual time for each spectrum (Itime), the number of cycles, and the airmass at the mean JD of each series. The two columns

present the standard star used for data reduction as well as its airmass during the observation.

Object JD Itime(s) Cycles Airmass Standard Airmass

(854) Frostia 2454172.98754 120 10 1.105 G104-335 1.070

(1333) Cevenola 2454172.04901 120 24 1.016 HD127913 1.055

(1333) Cevenola 2454173.07464 120 10 1.034 HD127913 1.031

(3623) Chaplin 2454171.87776 120 18 1.111 HD73708 1.085

(3623) Chaplin 2454172.76731 120 20 1.019 HD73708 1.018
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Figure 1. NIR spectrum of (854) Frostia with the error-bars is
presented. The spectra is normalized to 1.25 µm.

DeMeo taxonomy, the NIR spectrum is typical of V -type
asteroids (DeMeo et al. 2009)6.

3.2 (1333) Cevenola

Dynamically, (1333) Cevenola belongs to the Eunomia fam-
ily (Zappala et al. 1995; Mothé-Diniz et al. 2005). Photome-
try of this asteroid shows a large amplitude of 0m.97±0m.03
and a synodical period of 4h.88± 0.h02 (Warner 2002). The
visible spectrum was reported by Lazzaro et al. (2004) in
the framework of S3OS2 survey, and the analysis of spec-
tral data places the asteroid into the S (Sq more precisely)

6 http : //smass.mit.edu/busdemeoclass.html
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Figure 2. NIR spectrum of (1333) Cevenola obtained in March
12, 2007 with error-bars. The spectrum is normalized to 1.25 µm.

complex. The Eunomia family is actually dominated by ob-
jects displaying S-type spectra.

Two NIR spectra were obtained for this asteroid (Figs 2
and 3), on two consecutive nights, separated by 24 hours.
The spectrum of March 12, 2007 is the result of the com-
bination of individual spectra of 120 seconds each, for the
total integration time of 1h28min. The second spectrum was
obtained in March 13, 2007 for the total integration time of
40min. Consequently, a S/N of 50 and 20 was estimated.

The NIR spectra are very similar. The consistency with
the Sq classification (DeMeo et al. 2009) is confirmed either
based on NIR data or the composite visible+NIR one.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 3. NIR spectrum of (1333) Cevenola obtained in March
13, 2007 with error-bars. The spectrum is normalized to 1.25 µm.
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Figure 4. NIR spectrum of (3623) Chaplin obtained in March

12, 2007 with error-bars. The spectrum is normalized to 1.25 µm.

3.3 (3623) Chaplin

(3623) Chaplin belongs to the Koronis family (Zappala et al.
1995; Mothé-Diniz et al. 2005). The asteroid has the synodic
period of 8.h361± 0.h005, and a large amplitude in its com-
posite lightcurve estimated to 0.m97 ± 0.m02 (Birlan et al.
1996). There is no estimation for its pole coordinates.

Two NIR spectra of the asteroid, presented in Fig 4 and
Fig 5 were obtained at a time interval of about 23 hours. The
spectrum of March 12, 2007 is the result of combined indi-
vidual spectra of 120 seconds each, for the total integration
time of 72min, while the the second spectrum (obtained in
March 13, 2007) was obtained for the total integration time
of 80min. The S/N was estimated in the range of 15-20.

The NIR spectrum is typical among S complex aster-
oids (DeMeo et al. 2009), more precisely close to the Sq

taxonomic subclass.
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Figure 5. NIR spectrum of (3623) Chaplin obtained in March
13, 2007, with error-bars. The spectrum is normalized to 1.25 µm.

4 SPECTRAL MODELS AND
MINERALOGICAL APPROACH

The three objects present absorption features around 1 and 2
µm, and the strength of absorption varies from one asteroid
to another. The investigation was conducted using several
techniques, namely the Modified Gaussian Model (Sunshine
& Pieters 1993), and 2D mineralogical charts using χ2 min-
imization of laboratory spectra.

4.1 MGM applied to spectra

The spectra were analyzed using the Modified Gaussian
Model procedure (Sunshine & Pieters 1993). The procedure
applied to high quality spectral data allows the quantitative
characterization of absorption features, by simultaneous fit-
ting multiple Gaussian-like absorption bands (Pieters & Mc-
Fadden 1994). This condition is satisfied in our case for the
spectra of Frostia and Cevenola, and in a relative way by
the spectrum of Chaplin. The advantage of this method is
the ability to quantitatively compare the asteroid spectra
to certain minerals (Sunshine et al. 1990) by calculating in-
dividual bands centers, Full Width at Half Maximum, and
strength. However, in the case of asteroid spectra, the results
are physically relevant when the steps are carefully tested
using laboratory measurements as standard (Canas et al.
2008). This method is appropriate for spectra revealing ab-
sorption features. The method is unable to solve, in terms of
mineralogical solution, the continuum of analyzed spectra.

The MGM approach was initially used in free parameter
mode, by considering the best fit obtained with a minimum
number of absorption bands, in an a priori assumption of
mineralogical compounds. In a second step, depending on
minerals, the parameters of the continuum were fixed as well
as the parameters of some individual absorption bands. We
used the constrains obtained by Sunshine & Pieters (1998)
for the olivine while the pyroxene was constrained by the
results published by Cloutis & Gaffey (1991a). The MGM
analysis was performed for Cevenola by taking advantage of

c© 0000 RAS, MNRAS 000, 000–000
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Table 3. Modified Gaussian Model applied to (854) Frostia and (1333) Cevenola. The best fit of this tool is summarized as follows:
number of bands, the center of the band, the Full Width at Half Maximum value, the absorption strength, and the slope of the continuum.

Asteroid Number of Center of Band FWHM Strength (log Continuum

Bands (µm) (µm) reflectance) slope

0.922 0.162 -0.359
1.032 0.202 -0.173

(854) Frostia 5 1.248 0.150 -0.064 -5.10 E-05
1.933 0.522 -0.414
2.330 0.546 -0.223

0.482 0.278 -0.196
0.851 0.239 -0.100

(1333) Cevenola 6 0.916 0.184 -0.099 -7.12 E-06

1.045 0.177 -0.118
1.220 0.459 -0.097
2.041 0.570 -0.130

previous work done by Sunshine et al. (2004) on the S-type
asteroids. The non-uniqueness of mineralogical solution ob-
tained from spectral modeling justifies the omission of minor
components. The major part of the best mineralogical solu-
tions from the literature (for the same sample) are reliable
in a limit of few percent. Even at this level of confidence, the
mineralogy is not unique. Thus, our approach is justified.

A mineralogical solution was obtained for (854) Fros-
tia using five absorption bands (Fig 6). This model shows
that spectral features indicate the presence of both Low-Ca-
Pyroxene(LCP) and High-Ca-Pyroxene(HCP). The pres-
ence of HCP is required for the spectral fit at wavelengths
larger than 2.1 µm. This band over 2.1 µm is a specific
behavior of type B pyroxene, with bands attributable to
crystal field transitions in ferrous iron located in the M2
crystallographic site (Cloutis & Gaffey 1991b). For the spec-
tral profile around 1.25 µm, the presence of plagioclase such
as feldspar may be plausible. We note that the presence of
absorption bands for olivine in the MGM analysis is not
necessary for the fit of telescopic data.

The composite spectrum contained the visible data from
S3OS2 program and our NIR data for (1333) Cevenola ob-
tained in March 12, 2007 was also investigated using 6 ab-
sorption bands. In the model we used three absorption bands
for the olivine in the 1 µm region (Sunshine & Pieters 1998).
The band at 2.05 µm is recovered by only one pyroxene
band with a good fit. Finally the fit was obtained by fixing
the continuum and the width of absorption bands for the
olivine. The model (Fig 7) is relatively good within a limit
of 1.6%. Finally, the band at 1 µm is reproduced by four
bands superimposed, implying the presence of both olivine
and pyroxenes.

4.2 χ2 best fit with RELAB data

Spectral properties of minerals in a intimate mixture com-
bine in a non-additive, generally unique manner (Singer
1981). In the case of pyroxenes, this non-linearity was pre-
sented also by Cloutis & Gaffey (1991a). However, no other
analytical law or approach by polynomial function was pro-
posed until now for modelling real spectra. Thus, we propose
the approach of three component minerals linearly mixed
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Figure 6. MGM modeling of NIR data of (854) Frostia using
five absorption bands of Low-Ca-pyroxene (LCP) and High-Ca-
piroxene(HCP). This figure presents, from the bottom to the top,

the observational data superimposed to the MGM fit, the con-
tinuum, the individual absorption bands, and the errors between
the model and the observational data. These plots are offset for

clarity.

as a possible/probable solution to find families of minerals
which are the best matches for our telescopic data.

The spectra were investigated with three component
mixtures. This is the first time when mineralogical χ2 resid-
ual space is plotted for asteroids. The initial components
used for the mixtures are real laboratory spectra from the
RELAB database 7.

In order to have a homogeneous data-set, the end-
members were selected from the spectra obtained in the 0.3
- 2.6 µm wavelength range using the bidirectional visual
and infrared spectrometer (BD-VNIR) within the Plane-
tary Geology and Geophysics programe (PGG). The olivine

7 http : //www.planetary.brown.edu/relab
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Figure 7. MGM modeling of VNIR data of (1333) Cevenola. The
presence of both olivine (Ol) and pyroxene (LCP) minerals are
necessary for this fit. The individual absorption bands are draw

in black for LCP and gray for the olivine.

(Ol), orthopyroxene (OPx) and clinopyroxene (CPx)8 sets
that were identified contain 44, 33 and 55 spectra respec-
tively. The olivine set includes synthetic spectra that span
the Fa0Fo100 - Fa100Fo0 domain in 5-10 mol% increments
(Dyar et al. 2009) while the members of orthopyroxene set
sample the range En0Fs100 - En100Fs0 (Klima et al. 2007).
The clinopyroxene spectra represents minerals with different
Wo, En, Fs content. The wide variety of minerals included
in the three above sets make them suitable for generating
synthetic mixtures spectra.

The high resolution, high S/N RELAB spectra were fit-
ted using a cubic B-spline function with 25 fitting coeffi-
cients. For the asteroids spectra, in order to avoid the over-
fitting, the number of coefficients was reduced to 12. In both
cases it was confirmed by visual inspection that the inter-
polating functions approximate well the overall shape of the
spectra.

For each possible combination of olivine, ortho- and
clinopyroxene, synthetic spectra were generated from b-
splined end-members spectra using a linear mixture by
varying the end-member’s concentration in 0.5% increment
(step). Each of the obtained spectra were compared to spline
smoothed spectra of (854) Frostia, (1333) Cevenola, and
(3623) Chaplin. The χ2 calculations were performed follow-
ing the formula:

χ2 =
1

Nw

Nw∑

i=1

(Ri − f(wi))
2

f(wi)
(1)

where Nw is the number of Ri reflectance values at wi

wavelength, and f(wi) the reflectance value of the geomet-
ric mixture obtained from laboratory spectra (i.e. additive
contribution of individual component).

The concentration for each of the components will span
the range between 0 and 100%, and the sum of the mixture

8 structures of orthorhombic and monoclinic crystals of pyrox-
enes

is 100%. The best mixture identified by the above χ2-test
is further refined in 0.1% concentrations step this time with
fixed end-members.

The χ2 minimization will allow the derivation of a map
of possible/plausible models. This method allows the plot of
2D mineralogical charts, an interesting tool for visualize the
best mineralogical solutions.

Two dimensional charts derived from the χ2 fit are pre-
sented in Figure 8, Figure 9, and Figure 10 for (854) Fros-
tia (1333) Cenevola, and (3623) Chaplin respectively. These
charts plot olivine on the X axis, and OPx/(CPx+OPx) on
the Y axis. The color code indicates the concordance of the
model to the observational data, the blue color represent-
ing the best fit. The white regions of the 2D charts are an
indicator of the limit where the χ2 minimization fails.

The best fit mixture for (854) Frostia was obtained us-
ing (Ol, OPx, CPx) = (0, c1dl14, c1dl07) with following
ratios (0%, 33.5%, 66.5%), while for the asteroid (1333)
Cevenola the best fit was obtained using (Ol, OPx, CPx)
= (cgpo84, c1dl01, c1dl12) with ratios (25%, 67.5%, 7.5%).

In the case of (3623) Chaplin the closest analogue was
the mixture (0, c1dl01, c1dl08) with ratios (0%, 96.5%,
3.5%).

The inferred mineralogical solutions explain well the as-
teroids spectra. However, giving the inherent complications
of curve matching procedure as the χ2-test Gaffey et al.
(2002) a family of mineralogical solutions could fit our spec-
troscopic data.

5 DISCUSSION

The binarity of (854) Frostia is supported by photomet-
ric data (Behrend et al. 2006). Unfortunately, no physical
ephemerides of Frostia are not known to have a precise tim-
ing of possible mutual phenomena of this system. Neverthe-
less there is little chance for a geometry allowing mutual
phenomena at the time of our observations. The spectrum
likely represents this object globally, thus being a first at-
tempt in the characterization of the asteroid’s mineralogy.

The spectrum of (854) Frostia (Fig 1) reveals large and
deep absorption bands around 1 and 2 microns. This spec-
trum, similar to the asteroid (4) Vesta, allows the classifica-
tion of (854) Frostia in the V type taxonomic class. Based
on spectroscopic behavior and dynamical consideration from
the main-belt through the resonances 3:1 and ν6 resonances
(Binzel & Xu 1993), Vesta and the vestoids are supposed to
be at the origin of Howardite-Eucrite-Diogenite meteorites.
The structure of HED meteorites is very close to mafic ma-
terials. Thus, the parent body of HED meteorites are sup-
posed to have experienced volcanism and metamorphism in
the process of formation during the early solar system. The
parent body of Vesta and vestoids underwent accretion, to-
tal melting, fractionation, and differentiation during the first
few million of years of solar system formation (Keil 2002).

(854) Frostia was not included in the family of (4) Vesta
by Zappala et al. (1995). The location of (854) Frostia inside
the Main-Belt is very similar to that of Vesta family in semi-
major axis and inclination and may justify its membership to
the same clan. Frostia’s eccentricity of 0.17 is slightly over
the greater boundary (of 0.12) of Vesta family. This case
is not particular while other V-type asteroids were already
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Spectral properties of (854), (1333), and (3623) 7

Figure 8. Two dimension chart of concentration for the asteroid (854) Frostia using olivine, orthopyroxene, and clinopyroxene from

RELAB is presented in the right side of the figure. The best fit mixture for (854) Frostia using (Ol, OPx, CPx) = (0, c1dl14, c1dl07)
with ratios (0%, 33.5%, 66.5%) is presented in the left side in the figure.

Figure 9. Two dimension chart of concentration for the asteroid (1333) Cevenola using olivine, orthopyroxene, and clinopyroxene from
RELAB is presented in the right side of the figure. The best mineralogical model for (1333) Cevenola using (Ol, OPx, CPx) = (cgpo84,
c1dl01, c1dl12) and the ratios (25%, 67.5%, 7.5%) is presented in the left side of the figure.

Figure 10. Two dimension chart of concentration for the asteroid (3623) Chaplin using olivine, orthopyroxene, and clinopyroxene from
RELAB. The best mineralogical mixture using (Ol, OPx, CPx) = (0, c1dl01, c1dl08) with ratios (0%, 96.5%, 3.5%) is presented in the
left of the figure.
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reported in the inner part of the Main Belt, relatively close
to the Vesta family (Duffard et al. 2004).

The V-type asteroids are objects with reflectance spec-
tra similar to the asteroid (4) Vesta and to HED meteorites.
Vesta is considered as the smallest terrestrial planet (Keil
2002) and is a differentiated object with a basaltic crust
and exposed mantle material (Gaffey 1997) that survived al-
most intact during the solar system history. Objects smaller
in size than Vesta (commonly called ’vestoids’) present spec-
tral properties similar to this asteroid. Partly the vestoids
are identified as fragments of Vesta, a result of a catas-
trophic collision who excavated material from the crust and
the mantle (Binzel & Xu 1993) of Vesta. Vesta’s density
was derived from the estimation of its mass (Hilton 2002)
and shape (Thomas et al. 1997). The computed values of
the bulk density span the range 3,000-4,300 kg/m3 (Birlan
2000). This interval is supported also by models of internal
structure of large differentiated bodies. Ruzicka et al. (1997)
calculated the density of silicate fraction in Vesta-like as-
teroids, assuming an average value of the bulk density of
3,540 kg/m3. They conclude that Vesta could be modelized
with an eucritic/diogenitic crust and an olivine mantle for a
metallic core between zero and 25% of the total mass of the
asteroid. In this case, the density of the crust could not be
less than 3,000 kg/m3.

In the assumption of (854) Frostia as a fragment of
Vesta’s crust, a value of its density around 3,000 kg/m3

seems to be reasonable. The value calculated by Behrend
et al. (2006) (around 1,000 kg/m3) is very difficult to ex-
plain even if we assume unrealistic porosities of 75% in a
rubble-pile structure. In fact, large porosities for small frag-
ments of large differentiated bodies are not realistic while the
self-gravitation tendency is to decrease the volume of empty
space inside the object. Behrend et al. (2006) inferred a C-
type asteroid by analogy with the asteroid (90) Antiope. It
is difficult to reconcile the C and V taxonomic classes while
the objects experienced different temperatures in their his-
tory.

Descamps (2010) published recently a refined study of
binary systems by accounting inhomogeneous bodies with
ellipsoidal shapes. This model allows the simultaneous fit of
grain density and the bulk porosity. The author calculated a
grain density of (2, 790±380)kg/m3 in agreement to the one
of Vesta-like asteroids, correlated to a bulk porosity of 63%
(≈55% of macroscopic porosity + ≈8% of microporosity).

The mineralogy of (854) Frostia could be refined by tak-
ing into account the precise position of the band centres at
1 and 2 µm. To estimate the minima of these absorption
features, we removed the continuum by considering a lin-
ear function for each one. The continuum for the Band I
was estimated using the reflectances at 0.7 and 1.43 µm,
while for the Band II the continuum was estimated using
the reflectances at 1.43 and 2.49 µm respectively. While our
spectrum do not contains the reflectance at 0.7 µm, this
value was estimated by polynomial extrapolation. The re-
flectance at 0.7 µm usually represents the lower limit of the
1 µm absorption feature for the V-types asteroids (Duffard
et al. 2004; Vernazza et al. 2005). The continuum was then
extracted from the spectrum in each corresponding region.
The band centre was then computed using a 6-th order poly-
nomial function. We found that the Band I minimum is lo-
cated at 0.931 ± 0.004 µm, while the Band II minimum is

located at 1.976 ± 0.004 µm. In the case of Band I we cal-
culated the thermal correction using the formulas 2 and 4
from Burbine et al. (2009). This value is of 0.002 µm, within
the value of the errorbar for Band I centre, thus we can ne-
glect its influence. The positions of Band I and Band II
centres are relatively similar to that obtained for the aster-
oid (1459) Magnya (Hardersen et al. 2004). If we place these
values for Frostia in the context of the pyroxene studies of
Adams (1974) and Cloutis & Gaffey (1991a) we conclude a
dominant presence of orthopyroxene on the asteroids’ sur-
faces. The position of the bands place the asteroid between
the Eucrite and Diogenite regions (see Fig 6 from Hardersen
et al. (2004)). These results are partially confirmed by our
Figure 8, that presents a large dominance of orthopyroxene.

The spectrum of (854) Frostia presents an inflexion near
1.2 µm which is an indication of the presence of feldspar in
the basaltic achondrite materials. The mineralogical com-
position using the pyroxene calibration (Gaffey et al. 2002)
suggests the formula Wo8Fs43En49 (with a 4% of uncer-
tainty for wollastonite and ferrosilite). This composition is,
within the error-bars, similar to that of (4) Vesta and (1459)
Magnya, and similar to that of the asteroid (3269) De Sanc-
tis (Duffard et al. 2004).

Another important mineralogical parameter which was
investigated for (854) Frostia was the band area ratio
(BAR). This is the result of the ratio between Band I and
Band II. Band I area was calculated as the area between
the continuum defined by the correspondent reflectances at
0.7 and 1.4 µm and the spectrum. Band II area was cal-
culated as the area between the continuum defined by the
correspondent reflectances at 1.4 and 2.43 µm and the spec-
trum. The reflectance value at 0.7 µm was estimated by lin-
ear extrapolation. Depending on the range that this value
could span, the estimation for the area of Band I could differ
by up to 5%. This extrapolation of our spectrum is also in
agreement with the visible spectrum of Alvarez-Candal et al.
(2006). The procedure of computation for the BAR value
was prior tested and validated using two spectra of V-type
asteroids (4) Vesta and (1459) Magnya (R. Binzel, Personal
communication). The calculated BAR for (854) Frostia was
1.57±0.08, in agreement with the basaltic achondrite min-
erals (Gaffey et al. 1993).

V-type asteroids are mainly located in the population
represented by the Vesta family, and is considered to be
the reservoir of HED meteorites. However, basaltic aster-
oids, not yet considered members of Vesta family, are also
located in the vicinity of the family (Florczak et al. 2002;
Duffard et al. 2004). Data on V-type asteroids such as (1459)
Magnya are reported at different semi-major axis (Lazzaro
et al. 2000; Roig & Gil-Hutton 2006; Duffard & Roig 2009)
and in the NEA population (Binzel et al. 2002). This pic-
ture of V-type asteroids supports the hypothesis of forma-
tion of several objects with basaltic crust in the Main-Belt.
The plot of Band I center versus BAR exhibits a diversity
among V-type asteroids much larger than the one obtained
for basaltic achondrite meteorites. This extension of BAR
range may be explained by reconsidering the physics and
mineralogy of asteroid surfaces.

The asteroid (1333) Cevenola is a member of Eunomia
family, counting more than 430 objects (Zappala et al. 1995).
44 members of this family (including Cevenola) were stud-
ied spectroscopically in the visible region by Lazzaro et al.
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(1999). 41 of them were classified as S-type objects, while
three asteroids exhibit flat spectra and were considered as
interlopers. If we consider this sample in the frame of the
Bus-DeMeo taxonomy (DeMeo et al. 2009), only three ob-
jects are re-observed in the near-infrared region. A robust
conclusion about this family cannot be drawn in the Bus-
DeMeo taxonomic system, however we can speculate on a Sq

taxonomic type for the three objects considering the VNIR
data.

The MGM analysis (Figure 7) strongly indicate that
the presence of both olivine and pyroxene are necessary
for reproducing the observational data of (1333) Cevenola.
The mineralogical solution corresponds to fayalitic material
with the molar percentage equal to 20±5 (Sunshine et al.
2007) and the width of these absorption bands span the
same range as in presented in Sunshine & Pieters (1998).
However, the strength ratio between the M1 and M2 olivine
crystals is different from the callibration values proposed by
Sunshine et al. (2007). This imply that mineralogies with
fayalitic-forsteritic components need to be completed with
other components. Recently Isaacson & Pieters (2010) pro-
poses a mineralogical solution of surfaces of Mars rich in
olivine, by considering the spectral influence of chromites.
The effect of chromite in olivine minerals is observed in the
reduced reflectance and in the absorption feature beyond
1.5 µm. A similar mineralogical solution together with solu-
tions obtained from different olivine varieties (dunite, peri-
dot, chryolithe, wadsleyite) need future analysis.

The family of mineralogical solutions computed by the
χ2 composition map (Figure 9) for (1333) Cevenola is also
composed by the mixture of ortopyroxene and olivine (the
horizontal dark-blue region in the figure). The olivine is less
constrained ranging from 0% to 60%. This region is com-
pleted by the blue part of the map for high olivine percent-
ages. In this case, the family of mineralogical solutions is
less constrained than that obtained for (854) Frostia.

Following DeMeo et al. (2009) the Sq asteroids ”present
a wide 1µm absorption band with evidence of a feature near
1.3 µm like the Q-type, except the 1µm feature is more shal-
low” for this class. (1333) Cevenola is similar to the S-IV
mineralogical subtype (Gaffey et al. 1993). Following Gaffey
et al. (1993) this subclass is characterized by assemblages
of olivine-orthopyroxene which could represent assemblages
similar either to the undifferentiated ordinary chondrites or
to the unmelted silicate portions of primitive achondrites.

(3623) Chaplin is a member of the Koronis family. The
NIR spectrum spans the same characteristics with the S-
type complex, which is the taxonomic class of the Koronis
family. We extrapolate its thermal albedo to the one of the
S-class of 0.198 ± 0.067 (Fulchignoni et al. 2000). The min-
eralogical map obtained in section 4.2 (dark blue region in
the mineralogical map) shows a best fit for families of miner-
alogical solutions dominated by orthopyroxene with clinopy-
roxenes and olivine as minor constituents.

(1333) Cevenola and (3623) Chaplin were observed over
two consecutive nights in order to detect spectral variations
in their spectra. Their correspondent spectra has the same
profile, which is interpreted as a homogeneity of the surfaces
of each object.

6 CONCLUSIONS

0.8-2.5 µm spectral data were obtained and analyzed for
the Main-Belt asteroids (854) Frostia, (1333) Cevenola, and
(3623) Chaplin. This NIR spectral interval is covered for the
first time for our targets, chosen among the asteroids with
large amplitudes in their lightcurves, which were observed
previously photometrically. Detailed mineralogical analysis
using Modified Gaussian Model was performed for our ob-
jects. Newly instruments such are 2D spectral charts by a
χ2 fit of mineralogical assemblages was performed for (854)
Frostia and (1333) Cevenola.

The asteroid (854) Frostia was classified as V-type, for
which the density and the spectral properties are incompati-
ble with the previous findings on density. Spectral properties
of this object are similar to those of basalts. We calculated
the mineralogical solution Wo8Fs43En49, with an error of
4% in wollastonite and ferrosilite, for Frostia.

(1333) Cevenola is a member of Eunomia family and
belongs to the Sq taxonomic type. The mineralogical maps
were constructed for the first time for (854) Frostia and
(1333) Cevenola, using as end-members the available lab-
oratory data for the olivine, ortho- and clinopyroxenes.

Finally, (3623) Chaplin belongs to the S-type taxonomic
complex, which characterize the members of the Koronis
family. Its mineralogy corresponds to minerals with olivine
and pyroxene content.
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