
HAL Id: tel-00812108
https://theses.hal.science/tel-00812108v1

Submitted on 11 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connaissance et synthèse en vue de la conception et la
réutilisation de circuits analogiques intégrés

Ramy Iskander

To cite this version:
Ramy Iskander. Connaissance et synthèse en vue de la conception et la réutilisation de circuits
analogiques intégrés. Systèmes embarqués. Université Pierre et Marie Curie - Paris VI, 2008. Français.
�NNT : 2008PA066169�. �tel-00812108�

https://theses.hal.science/tel-00812108v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS VI

Spécialité : INFORMATIQUE ET MICRO-ÉLECTRONIQUE

Présentée par : Ramy ISKANDER

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS VI

CONNAISSANCE ET SYNTHÈSE EN VUE DE LA CONCEPTION

ET LA RÉUTILISATION DE CIRCUITS ANALOGIQUES

INTÉGRÉS.

Soutenue le : 2 Juillet 2008

Devant le jury composé de :

M. Georges GIELEN KUL, Rapporteur

M. Maher KAYAL EPFL, Rapporteur

M. Andreas KAISER IEMN-ISEN

Mme. Noëlle LEWIS IMS

M. Hani RAGAI UFE

M. Serge SCOTTI STMicroelectronics

M. Alain GREINER LIP6

Mme. Marie-Minerve LOUËRAT LIP6

Ph.D. THESIS OF THE UNIVERSITY OF PARIS VI

Department : COMPUTER SCIENCE AND MICRO-ELECTRONICS

Presented by : Ramy ISKANDER

Thesis submitted to obtain the degree of

DOCTOR OF THE UNIVERSITY OF PARIS VI

KNOWLEDGE-AWARE SYNTHESIS FOR ANALOG

INTEGRATED CIRCUIT DESIGN AND REUSE.

Defended in 2nd July 2008

Committee in charge :

M. Georges GIELEN KUL, Reviewer

M. Maher KAYAL EPFL, Reviewer

M. Andreas KAISER IEMN-ISEN

Mme. Noëlle LEWIS IMS

M. Hani RAGAI UFE

M. Serge SCOTTI STMicroelectronics

M. Alain GREINER LIP6

Mme. Marie-Minerve LOUËRAT LIP6

A la mémoire de mon père et de mon beau-père.

Résumé

L’industrie des semi-conducteurs continue ses progrès impressionnants dans la miniaturisation

des circuits intégrés VLSI. Les concepteurs ont inventé des méthodes permettant d’exploiter la

complexité croissante des circuits intégrés à haute densité d’intégration. L’une d’elles consiste à

concevoir des systèmes embarqués sur puce (SoC) à l’aide de blocs pré-existants et déjà validés

(appelés IP, comme Intellectual Property), qu’ils aient été élaborés en interne à l’entreprise

réalisant l’intégration du SoC ou issus d’une tierce partie. Disposer d’une bibliothèque de blocs

IP paramétrés selon leurs performances en temps, surface et consommation est une clef pour

optimiser le système intégré vis à vis de l’application ciblée. S’il existe un flot standard bien

établi pour concevoir les blocs intégrés numériques, reposant sur une méthode de conception

descendante, la conception de circuits analogiques reste toujours une opération sur mesure. Alors

que les systèmes intégrés sur puce sont souvent mixtes analogique-numérique, les méthodes de

conception diffèrent complètement entre les deux mondes.

Dans cette thèse, nous proposons une méthode pour automatiser le dimensionnement et la

polarisation d’un circuit analogique dans le cas général, conduisant ainsi à une définition possible

d’un IP analogique. Cette méthode permet de générer automatiquement une procédure pour

calculer les dimensions d’une topologie électrique connue et son point de fonctionnement en se

fondant sur l’expression de la connaissance du concepteur. Cette méthode permet de détecter des

hypothèses conflictuelles émises par le concepteur et de traiter les cycles résultant des boucles

de contre-réaction. Plusieurs circuits analogiques sont présentés pour illustrer la généralité et la

précision de cette approche.

Mots Clefs

IP analogique, circuits analogiques intégrés CMOS, synthèse hiérarchique basée sur la connais-

sance, point de polarisation, analyse des dépendances, détection des conflits, résolution de con-

flits.

Abstract

The semiconductor industry has continued to make impressive improvements in the achievable

density of very large-scale integrated (VLSI) circuits. In order to keep pace with the levels of

integration available, design engineers have developed new methodologies and techniques to

manage the increased complexity inherent in these large chips. One such emerging methodology

is system-on-chip (SoC) design, wherein predesigned and preverified blocks (often called intel-

lectual property (IP) blocks) are obtained from internal sources, or third parties and combined

on a single chip. A library of reusable IP blocks with various timing, area, power configura-

tions is the key to SoC success as the SoC integrator can apply the trade-offs that best suit the

needs of the target application. Digital design has a well-defined, top-down design methodology

but analog/mixed-signal (AMS) design has traditionally been an ad hoc custom design process.

When analog and digital blocks coexist on the same substrate, the analog portion can be more

time-consuming to develop even though it may represent a smaller percentage of the chip area.

In this thesis, we present a hierarchical sizing and biasing methodology for analog intellectual

properties. The proposed methodology addresses the problem of automatically generating suit-

able designs plans that are used to compute the DC operating point and dimensions for analog

IPs. The methodology deals with different aspects of analog design problems such as insufficient

degrees of freedom, systematic offset and negative feedback circuits. It has been used to success-

fully size and bias a variety of analog IPs and proved its precision and efficiency.

Keywords

Analog Design Reuse, Hierarchical knowledge-based synthesis, Hierarchical sizing and biasing,

DC analysis, Dependency analysis, Conflict detection, Conflict resolution.

Contents

Résumé i

Abstract iii

Contents v

List of Figures xi

List of Tables xix

Résumé Étendu en Français xix

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Outline . 5

2 Motivation and Problem Definition 7

2.1 Introduction . 7

2.2 Motivation: System-on-Chip Reuse and Integration 7

2.3 Analog Design of an Audio DSP . 11

2.3.1 Case Study: Audio DSP . 11

2.3.2 Filter Realization . 13

2.3.3 Amplifier Realization . 13

2.3.4 Traditional Phases of Analog Design . 15

2.4 Hierarchical Sizing and Biasing Methodology . 19

2.5 Proposed Tool Architecture . 21

2.6 Conclusions . 22

3 State of the Art 25

3.1 Introduction . 25

3.2 Methods of DC Operating Point Computation . 25

vi CONTENTS

3.2.1 Standard Simulation . 26

3.2.2 Relaxed DC Formulation . 26

3.2.3 Operating Point Driven . 27

3.3 Compact Device Modeling . 27

3.4 Model Development and Standardization Efforts . 29

3.5 Analog IP and Design Reuse . 32

3.5.1 Optimization-Based Synthesis Tools . 32

3.5.2 Firm IP Hardening Flow . 34

3.5.3 Scaling Rules . 35

3.5.4 IP-Based Library . 36

3.5.5 Template-Based Layout Retargeting . 36

3.5.6 Recent Knowledge-Based Synthesis Tools . 37

3.5.6.1 CAIRO+: Creating Analog IPs - Reusable and Optimized 37

3.5.6.2 OCEANE: Outils pour la Conception et l’Enseignement des circuits

intégrés ANalogiquEs . 38

3.5.6.3 PAD: Procedural Analog Design . 40

3.5.6.4 Seville Design Reuse Flow . 41

3.5.6.5 Binkley’s Transistor Sizing Methodology 42

3.6 Analog IP and Design Representation . 43

3.6.1 Signal Flow Graphs . 43

3.6.2 Bipartite Graphs . 43

3.6.3 Platform-Based Design . 45

3.7 Conclusion . 49

4 Transistor Sizing and Biasing Methodology 53

4.1 Introduction . 53

4.2 BSIM3V3 Model Integration . 54

4.3 Sizing and Biasing Operators . 54

4.3.1 Principal Idea . 55

4.3.2 Operator Definition . 56

4.3.3 BSIM3V3 Model Inversion . 57

4.3.4 Convergence Criteria . 58

4.3.5 Operator Implementation . 59

4.3.6 Library of Operators . 61

4.4 Enhanced MOS Engine . 64

4.5 Illustrative example . 64

4.6 Conclusions . 68

CONTENTS vii

5 Device Sizing and Biasing Methodology 69

5.1 Introduction . 69

5.2 Hierarchy in Analog Design . 69

5.3 Device Definition . 72

5.3.1 The Transistor Packing . 72

5.3.2 The Reference Transistor . 73

5.3.3 Sizing and Biasing Operators Declaration . 73

5.3.4 Device Constraints . 73

5.3.5 External Device Connectors . 75

5.4 Device Dependency Graphs . 75

5.4.1 Device Parameters Revisited . 75

5.4.2 Dependency Graph Definition . 76

5.4.2.1 Node Definition . 76

5.4.2.2 Arc Definition . 76

5.4.2.3 Dependency Rule Definition . 77

5.4.3 Constructing Complex Dependency Graphs 78

5.5 Illustrative example . 79

5.6 Conclusion . 80

6 Circuit Sizing and Biasing Methodology 83

6.1 Introduction . 83

6.2 Hierarchy in CAIRO+ . 84

6.3 Module Dependency Graphs Definition . 85

6.3.1 Module Parameter Revisited . 85

6.3.2 Dependency Graph Definition . 85

6.3.2.1 Node Definition . 85

6.3.2.2 Arc Definition . 87

6.3.2.3 Dependency Rule Definition . 87

6.4 Bottom-Up Construction of Module Dependency Graphs 88

6.4.1 Identification of the Equipotentials . 88

6.4.2 Generation of the Reference Transistor Dependencies 88

6.4.2.1 General Algorithm . 90

6.4.2.2 Generation of Drain Current Dependency 90

6.4.2.3 Generation of Source Voltage Dependency (VS + W) 92

6.4.2.4 Generation of Gate Voltage Dependency (VG + W) 95

6.4.2.5 Generation of Gate/Drain Voltage Dependency (VG/D + W) 95

6.4.2.6 Generation of Width Dependency . 97

6.4.3 Merging Dependencies of Children Devices and Lower-Level Modules 100

6.4.4 Independence from Device Ordering . 100

viii CONTENTS

6.4.4.1 Single Constraint/Single Operator Problem 100

6.4.4.2 Single Constraint/Multiple Operator Problem 101

6.4.4.3 No Constraint/Multiple Operator Problem 102

6.5 Dealing with Different Aspects in Analog Design . 102

6.5.1 Dealing with Under-Specified Designs . 102

6.5.2 Dealing with Over-Specified Designs . 103

6.5.2.1 Systematic Offset Voltage . 104

6.5.2.2 Conflict Detection . 105

6.5.2.3 Conflict Resolution . 106

6.5.2.4 Computing Systematic Input Offset in Designer Mode 107

6.5.2.5 Computing Systematic Input Offset in Simulator Mode 107

6.5.3 Dealing with Negative Feedback Circuits . 108

6.5.3.1 Negative Feedback Circuits in Designer Mode 109

6.5.3.2 Negative Feedback Circuits in Simulator Mode 110

6.5.4 Introducing a Unified Formulation for Simulator Mode 112

6.6 Top-Down Evaluation of Dependency Graphs . 113

6.6.1 Node Coloring . 114

6.6.2 Scheduling using As-Late-As-Possible Scheme (ALAP) 114

6.6.3 Dependency Graph Evaluation . 115

6.7 Putting all together . 115

6.8 Detailed Example: Single-ended Two-Stage Amplifier 116

6.8.1 Creating Amplifier Dependency Graphs in Designer Mode 117

6.8.1.1 Synthesizing Children Devices . 118

6.8.1.2 Dependency Graph Without Systematic Offset in Designer Mode . . 122

6.8.1.3 Dependency Graph With Systematic Offset in Designer Mode . . . 125

6.8.2 Creating Amplifier Dependency Graphs in Simulator Mode 130

6.8.2.1 Dependency Graph With Systematic Input Offset in Simulator Mode130

6.8.2.2 Dependency Graph With Systematic Input Offset and Negative

Feedback in Simulator Mode . 131

6.8.2.3 Dependency Graph With Systematic Output Offset and Negative

Feedback in Simulator Mode . 136

6.9 Conclusion . 138

7 Case Studies 141

7.1 Introduction . 141

7.2 Fully Differential Current-Mode Integrator . 141

7.3 Fully Differential Common-Mode Feedback Amplifier 143

7.4 Fully Differential Transconductor . 148

7.5 0.5V Power Supply Fully Differential Body-Input Operational Amplifier 152

CONTENTS ix

7.6 Conclusion . 154

8 Knowledge-Aware Synthesis 167

8.1 Introduction . 167

8.2 Knowledge-Aware Optimization-Based Synthesis . 168

8.2.1 The Choice of Optimization Variables . 168

8.2.2 The Reduction Factor . 168

8.2.3 Optimization Engine . 170

8.2.4 Definition of the Cost Function . 174

8.2.5 Optimizing an Analog IP . 178

8.2.6 API for Knowledge-Aware Synthesis . 180

8.3 Results . 180

8.3.1 Synthesizing an Analog IP . 180

8.3.2 Comparison to the State-of-Art . 183

8.3.3 Changing the Specifications . 183

8.4 Conclusions . 183

9 Conclusion and Future Directions 189

9.1 Conclusion . 189

9.2 Future Work . 191

A Second-Order Effects in Deep Submicron 195

A.1 Normal Short-Channel Effects . 195

A.2 Reverse Short Channel Effects . 195

A.3 Normal Narrow-Width Effects . 196

A.4 Reverse Narrow-Width Effects . 197

A.5 Body Bias Effect . 198

A.6 Bulk charge Effect . 198

B Device API 199

B.0.1 Declaring the Reference Transistor . 199

B.0.2 Adding Device Constraints . 199

B.0.3 Synthesizing the Device . 199

C Device Implementation 203

C.1 CREATE procedure . 203

C.2 SIZE procedure . 204

C.3 The SYNTHESIZE routine . 204

x CONTENTS

D CAIRO+: A Dependency Language for Modeling and Design 207

D.1 Capturing module input parameter using GET VALUE 207

D.2 Setting a device input parameter using SET PARAM 207

D.3 Declaring and defining designer-defined procedures (DDP) 208

D.4 Retrieving an output parameter from designer-defined procedures (DDP) using

GET PARAM . 209

D.5 Using GET PARAM inside designer-defined procedures (DPP) 211

D.6 Elimination of Redundant Dependencies in Devices 214

D.7 Elimination of Redundant Dependencies in Modules 214

E Module Implementation 217

E.1 CREATE procedure . 217

E.2 SIZE procedure . 217

F The OTA Amplifier CAIRO+ Generator for Designer Mode 219

G The OTA Amplifier CAIRO+ Generator for Simulator Mode 231

H Knowledge-Aware Synthesis Code for the OTA Amplifier 245

I Graphical User Interfaces for Modules 249

I.1 Influence Exploration Tool . 249

I.2 Displaying Graphs Using GOBLIN . 251

J Module Dependency Graphs of the Fully Differential Transconductor 253

List of Publications 260

Bibliography 263

List of Figures

1 Filtre passe-bas . xxiv

2 Amplificateur opérationnel à transconductance (dit OTA simple) xxiv

3 Procédure de dimensionnement descendante de l’OTA simple (Fig. 2) xxv

4 Changement de variables et paramètres de dimensionnement xxvi

5 Position du problème de synthèse d’un circuit analogique xxvii

6 Architecture logicielle d’un générateur CAIRO+ . xxix

7 Niveaux hiérarchiques et propagation des paramètres avec CAIRO+ xxix

8 Les connexions possibles d’un drain de transistor MOS xxxi

9 Modèle électrique du MOS et différentes inversions possibles xxxi

10 La bibliothèque de dispositifs élémentaire . xxxii

11 Transistor de référence et propagation des paramètres d’une paire différentielle . . . xxxiii

12 Miroir de courant : (A) Contraintes sur les largeurs, (b) Propagation des valeurs . . . xxxiv

13 Graphe de dépendance pour le miroir de courant (Fig. 12) xxxv

14 L’OTA deux étages avec introduction d’un degré de liberté supplémentaire xxxvi

15 Conflits entre opérateurs: (a) Détection, (b) Résolution. Les rectangles montrent les

étapes de résolution . xxxviii

16 Le graphe de dépendance du module amplificateur: (a) les rectangles contiennent

les paramètres d’entrée, (b) les cercles fins sans arcs, les paramètres utilisés pour

propager les valeurs, (c) les cercles en gras contiennent les opérateurs, (d) les cercles

fins avec arcs, des procédures de calcul écrites par le concepteur. Chaque noeud est

représenté par le triplet (colonne, nom, index) . xl

17 Facteur de réduction par variable . xlii

2.1 Proposed analog/mixed-signal IP hardening flow . 9

2.2 Application: Audio digital signal processing . 12

2.3 Audio DSP: The signal spectral density at output of each block versus frequency . . 12

2.4 Low-pass active-RC filter . 13

2.5 Bode plot of the amplifier gain . 14

2.6 Single stage output transconductance op-amp . 14

2.7 Width propagation in OTA . 15

2.8 First order sizing procedure for the amplifier . 18

xii LIST OF FIGURES

2.9 Parameter mapping in the design space. 19

2.10 Block diagram of the proposed synthesis system . 22

3.1 Development cycle of a compact model . 28

3.2 MCAST model compiler architecture [Wan03, Hu05] 30

3.3 SimuCAD: ModelLib Dynamically-Linked SPICE Models [Simucad] 32

3.4 The Simucad Model Library Development Environment [Simucad] 33

3.5 Simulation-based optimization . 33

3.6 Analog/mixed-signal firm IP hardening [Hamour03] 34

3.7 IP-based library for a neuromorphic ASIC [Levi07b] 36

3.8 Sagantec template-based layout retargeting [Sagantec] 37

3.9 CAIRO+ IP generator architecture . 38

3.10 OCEANE design flow [Porte08] . 39

3.11 Top-down mixed design approach using PAD [Stefanovic05, Stefanovic03,

Stefanovic07, Kayal06] . 40

3.12 Seville design reuse flow [Lopez04] . 41

3.13 Signal flow graph for a MOS amplifier . 44

3.14 Signal flow graph for a two-block system with negative feedback 44

3.15 Example circuit to illustrate design plan computation 46

3.16 Undirected bipartite graph of circuit in Fig. 3.15 . 46

3.17 Directed bipartite graph of circuit in Fig. 3.15 . 47

3.18 Mixed-signal platform based design: Starting from the bottom left corner, an analog

platform stack is built from circuit level components generating instances and new

components at higher levels of abstraction. The top left graph shows the analog

constraint graph (ACG) used to sample performance of the telescopic operational

transconductance amplifier (OTA). The digital part of the mixed signal platform is

generate in a similar way as shown on the right. 51

4.1 Possible drain connectivity . 56

4.2 Plot of IDS versus VGS for different VDS1 > VDS2 > VDS3 58

4.3 Plot of IDS versus W for different VGS1 > VGS2 > VGS3 > VGS4 > VGS5 > VGS6 . . . 59

4.4 Implementation of the operator OPVG(Veg) . 60

4.5 Enhanced Architecture of MOS Engine . 65

4.6 Single stage OTA amplifier . 66

5.1 Hierarchical instantiation tree and parameter exchange 70

5.2 Low-level devices . 71

5.3 Transistor packing for a differential pair . 72

5.4 Inter-digitization of M1 and M2 . 72

5.5 Parameter propagation in a differential pair . 73

LIST OF FIGURES xiii

5.6 Parameter propagation using constraints . 74

5.7 External connectors for a differential pair . 75

5.8 Dependency graph for W2,W3
5←−W1 . 77

5.9 Graph representation for the operator OPV GD(Veg) 78

5.10 Current mirror: (A) Device constraints on widths, (b) Parameter propagation 78

5.11 Dependency Graph of the current mirror with width constraint. Assuming ideal

current mirror . 79

5.12 A simple current mirror . 79

5.13 Dependency graph of the simple current mirror . 80

6.1 Communication mechanism between successive hierarchical levels 85

6.2 Different node types . 86

6.3 Equipotential consisting of interconnected terminals 89

6.4 Adding terminal names to the same equipotential node 89

6.5 Dependency generation for the reference transistor 91

6.6 Dependency Generation for the operator OPIDS(...) 93

6.7 Dependency Generation the operator OPV S(...) . 94

6.8 Dependency Generation for the operator OPV G(...) 96

6.9 Dependency Generation for the operator OPV GD(...) 98

6.10 Dependency Generation for the operator OPW (...) 99

6.11 Preference of a constraint over an incident operator: (a) Conflict, (b) Resolution . . . 101

6.12 Preference of a constraint over multiple incident operators: (a) Conflict, (b) Resolution101

6.13 Multiple incident operators: (a) Conflict, (b) Resolution 102

6.14 Under-specified design dependency . 103

6.15 Directed cycles consisting of many parameters . 104

6.16 Single-Ended Two-Stage Amplifier . 104

6.17 Conflicts between operators: (a) Detection, (b) Resolution. The resolution steps are

enumerated in sequence. Nodes represent parameters, solid arcs represent depen-

dency between parameters, labelled arcs are operators, and dotted arcs are either

added or removed dependencies. 106

6.18 Block diagram of a feedback circuit . 108

6.19 Single negative feedback in designer mode . 109

6.20 Multiple negative feedbacks in designer mode . 110

6.21 Single negative feedback in simulator mode . 111

6.22 Multiple negative feedbacks in simulator mode . 111

6.23 Pseudo-code of the graph-based Newton-Raphson algorithm 114

6.24 Pseudo-code for the ALAP scheduling . 115

6.25 Pseudo-code of the SYNTHESIZE routine . 116

6.26 Single-ended two-stage amplifier . 117

xiv LIST OF FIGURES

6.27 Device dependency graph for the current mirror (M3,M4) 118

6.28 Device dependency graph for the differential pair (M1,M2) 119

6.29 Device dependency graph for the transistor M5 . 120

6.30 Device dependency graph for the transistor M6 . 121

6.31 Device dependency graph for the transistor M7 . 121

6.32 Device dependency graph for the transistor M8 . 122

6.33 Module dependency graph of the amplifier without systematic offset in designer

mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables and

parameters used for parameter mapping, (c) bold circles with arrows are operators,

(d) Thin circles with arrows are DDPs. Each node is a represented by a triplet (col-

umn, name, index). The current mirror dependencies are represented by the red

arcs. Device connectors, equipotentials and weights are not shown for clarity 123

6.34 Module dependency graph of the amplifier with systematic offset in designer mode:

(a) Rectangles are amplifier parameters, (b) Thin circles are variables and parame-

ters used for parameter mapping, (c) bold circles with arrows are operators, (d)

Thin circles with arrows are DDPs. Each node is a represented by a triplet (column,

name, index). Device connectors, equipotentials and weights are not shown for clarity127

6.35 Amplifier in open-loop configuration . 130

6.36 Module dependency graph of the amplifier with systematic offset in simulator

mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables and

parameters used for parameter mapping, (c) bold circles with arrows are operators,

(d) Thin circles with arrows are DDPs. Each node is a represented by a triplet

(column, name, index). Device connectors, equipotentials and weights are not

shown for clarity . 132

6.37 Amplifier in closed-loop configuration with output fixed in potential 134

6.38 Module dependency graph of the amplifier with systematic input offset and nega-

tive feedback in simulator mode: (a) Rectangles are amplifier parameters, (b) Thin

circles are variables and parameters used for parameter mapping, (c) bold circles

with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is a

represented by a triplet (column, name, index). Device connectors, equipotentials

and weights are not shown for clarity . 135

6.39 Amplifier in closed-loop configuration with output free in potential 137

6.40 Module dependency graph of the amplifier with systematic output offset and neg-

ative feedback in simulator mode: (a) Rectangles are amplifier parameters, (b) Thin

circles are variables and parameters used for parameter mapping, (c) bold circles

with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is a

represented by a triplet (column, name, index). Device connectors, equipotentials

and weights are not shown for clarity . 139

LIST OF FIGURES xv

7.1 Fully differential current-mode integrator . 155

7.2 Directed cycle for the transistor M666 . 156

7.3 Directed cycle for the transistor M444 . 156

7.4 Directed cycles in the integrator dependency graph 157

7.5 Module dependency graph of the fully differential current-mode integrator in de-

signer mode: (a) Rectangles are integrator parameters, (b) Thin circles are variables

and parameters used for parameter mapping, (c) bold circles with arrows are op-

erators, (d) Thin circles with arrows are DDPs. Each node is a represented by a

triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 158

7.6 Fully differential common-mode feedback amplifier. 159

7.7 Module dependency graph of the fully differential common-mode feedback ampli-

fier in designer mode: (a) Rectangles are amplifier parameters, (b) Thin circles are

variables and parameters used for parameter mapping, (c) bold circles with arrows

are operators, (d) Thin circles with arrows are DDPs. Each node is a represented by

a triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 160

7.8 Module dependency graph of the fully differential common-mode feedback ampli-

fier in simulator mode: (a) Rectangles are amplifier parameters, (b) Thin circles are

variables and parameters used for parameter mapping, (c) bold circles with arrows

are operators, (d) Thin circles with arrows are DDPs. Each node is a represented by

a triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 161

7.9 Fully differential transconductor . 162

7.10 Fully differential transconductor response . 163

7.11 Fully differential body-Input operational amplifier . 164

7.12 Module dependency graph of the fully differential body-input operational ampli-

fier in designer mode: (a) Rectangles are amplifier parameters, (b) Thin circles are

variables and parameters used for parameter mapping, (c) bold circles with arrows

are operators, (d) Thin circles with arrows are DDPs. Each node is a represented by

a triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 165

8.1 Parameter mappings in the design space. 168

8.2 Reduction factor for 0.13µm CMOS technology . 169

8.3 Block diagram of the proposed synthesis system . 170

8.4 Nelder-Mead Simplex Method . 173

8.5 Selection of the best point in the design space . 174

xvi LIST OF FIGURES

8.6 For n = 2, a simplex consisting of the 3 points (x1, x2,x3) is created having xbest at

its center of gravity. 174

8.7 Acceptability functions: (a) Greater-than type, (b) Less-than type, (c) Equality type,

and (d) Range type. Dotted arrows point to feasible regions of interest 178

8.8 Testing an analog IP . 179

8.9 Two-stage amplifier . 180

8.10 Module dependency graph of the amplifier for nonzero systematic offset in de-

signer mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables

and parameters used for parameter mapping, (c) bold circles with arrows are op-

erators, (d) Thin circles with arrows are DDPs. Each node is a represented by a

triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 182

A.1 Profile of Vth versus Leff for normal short-channel effects 196

A.2 Profile of Vth versus Leff for reverse short-channel effects 196

A.3 Profile of Vth versus W for normal narrow-width effects 197

A.4 Profile of Vth versus W for reverse narrow-width effects 197

B.1 Pseudo-code of the SYNTHESIZE routine . 201

C.1 Example of the implementation of the CREATE procedure of a differential pair . . . 203

C.2 Example of the implementation of the SIZE procedure of a differential pair 204

C.3 Pseudo-code of the SYNTHESIZE routine . 205

D.1 An example code of GET VALUE . 208

D.2 Dependency graph representation for GET VALUE . 208

D.3 External connectors for a differential pair . 209

D.4 An example code of SET PARAM . 209

D.5 Dependency graph representation for SET PARAM 209

D.6 An example code for declaring and defining DDP . 210

D.7 Dependency graph generated using DDP mechanism 211

D.8 An example code for retrieving a DDP parameter using GET PARAM 212

D.9 An example code for using GET PARAM inside a DDP 213

D.10 Dependency graph generated for DDP using GET PARAM 214

I.1 Influence Explorer User Interface . 249

I.2 Architectural independence from graphical packages 251

I.3 Example code for using an influence exploration tool 252

J.1 Hierarchy of subcircuits for the transconductor . 253

LIST OF FIGURES xvii

J.2 Module dependency graph of GMD of the fully differential transconductor in de-

signer mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables

and parameters used for parameter mapping, (c) bold circles with arrows are op-

erators, (d) Thin circles with arrows are DDPs. Each node is a represented by a

triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 254

J.3 Module dependency graph of CMC of the fully differential transconductor in de-

signer mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables

and parameters used for parameter mapping, (c) bold circles with arrows are op-

erators, (d) Thin circles with arrows are DDPs. Each node is a represented by a

triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 255

J.4 Module dependency graph of AMP of the fully differential transconductor in de-

signer mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables

and parameters used for parameter mapping, (c) bold circles with arrows are op-

erators, (d) Thin circles with arrows are DDPs. Each node is a represented by a

triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 256

J.5 Module dependency graph of GMD of the fully differential transconductor in sim-

ulator mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables

and parameters used for parameter mapping, (c) bold circles with arrows are op-

erators, (d) Thin circles with arrows are DDPs. Each node is a represented by a

triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 257

J.6 Module dependency graph of CMC of the fully differential transconductor in sim-

ulator mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables

and parameters used for parameter mapping, (c) bold circles with arrows are op-

erators, (d) Thin circles with arrows are DDPs. Each node is a represented by a

triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 258

J.7 Module dependency graph of AMP of the fully differential transconductor in sim-

ulator mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables

and parameters used for parameter mapping, (c) bold circles with arrows are op-

erators, (d) Thin circles with arrows are DDPs. Each node is a represented by a

triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity . 259

List of Tables

1 Opérateurs utilisés pour le dimensionnement . xxx

2 Polarisation et dimenionnement autaomatique de l’amplificateur Miller avec ten-

sion de décalage systématique en technologie CMOS 130NM et VDD = 1.2V xli

3 Dimensionnement et optimisation en technologie 130nm CMOS avec VDD = 1.2V.

Résultats et validation par simulation . xlv

4 Dimensionnement et optimisation en technologie 130nm CMOS with VDD = 1.2V

changement de spécifications . xlvi

5 Comparison of Synthesis Tools [Ochotta98] . xlvii

3.1 Compact Transistor models supported by CMC [Watts06] 29

3.2 Comparison of Synthesis Tools [Ochotta98] . 50

4.1 Class definition of sizing & biasing operators . 57

4.2 Definition of Operators for VS Computation . 62

4.3 Definition of Operators for VG Computation . 62

4.4 Definition of Operators for VG/D Computation . 63

4.5 Definition of Operators for W Computation . 63

4.6 Definition of Operators for IDS Computation . 63

4.7 Synthesis vs Simulation Results. 67

5.1 Synthesis vs Simulation Results. 81

6.1 Sizing & biasing operators for the amplifier in Fig. 6.16 105

6.2 Input Parameters for Minimum Systematic Offset in Designer Mode 125

6.3 Operating Point Results for Minimum Systematic Offset in Designer Mode 126

6.4 Computed Parameters for Minimum Systematic Offset in Designer Mode 126

6.5 Input Parameters For Systematic Offset in Designer Mode 128

6.6 Operating Point With Systematic Offset in Designer Mode 128

6.7 Computed Parameters for Systematic Offset . 129

6.8 Input Parameters For Systematic Offset in Simulator Mode 133

6.9 Computed Parameters for Systematic Offset in Simulator Mode 133

xx LIST OF TABLES

6.10 Input Parameters For Systematic Input Offset and Negative Feedback in Simulator

Mode . 136

6.11 Computed Parameters for Systematic Input Offset and Negative Feedback in Sim-

ulator Mode . 136

6.12 Input Parameters For Systematic Output Offset and Negative Feedback in Simula-

tor Mode . 140

6.13 Computed Parameters for Systematic Output Offset and Negative Feedback in Sim-

ulator Mode . 140

7.1 Input Parameters for the Integrator in Designer Mode 142

7.2 Computed Parameters for the Integrator in Designer Mode 143

7.3 Results in 0.13µm technology with VDD = 1.2V for the integrator 143

7.4 Input Parameters for the Amplifier in Designer Mode 144

7.5 Input Parameters for the Amplifier in Simulator Mode 145

7.6 Computed Parameters for the Amplifier in Simulator Mode with VOUTP = 0.5V . . 146

7.7 Computed Parameters for Amplifier in Simulator Mode with VBAL = 0.5V 147

7.8 Computed Parameters for Amplifier in Simulator Mode with VOUTP = VOUTM =

0.5V . 148

7.9 Input Parameters for the Transconductor in Designer Mode 149

7.10 Input Parameters for the Transconductor in Simulator Mode 150

7.11 Input Parameters For Body-Input Amplifier in Designer Mode 153

7.12 Computed Parameters for The Amplifier . 153

7.13 Operating Point for The amplifier . 153

8.1 Macros definitions for knowledge-aware synthesis . 184

8.2 Synthesis Results in 130nm CMOS with VDD = 1.2V in Designer Mode 185

8.3 Comparison With State of Art Synthesis Tools . 186

8.4 Synthesis Results in 130nm CMOS with VDD = 1.2V in Designer Mode 187

B.1 Macros definition for adding intrinsic device constraints 200

Résumé Étendu en Français

Ce chapitre est un résumé étendu de la thèse, en français. Le lecteur intéressé par plus de détails

pourra commencer directement la lecture au chapitre suivant.

1. Introduction

Ce paragraphe résume l’introduction de la thèse qui est l’introduction.

Voici plusieurs années que la synthèse de circuits numériques a atteint un niveau de maturité

élevé. Le comportement de ces circuits peut être représenté à différents niveaux d’abstraction, al-

lant des algorithmes jusqu’au niveau transistor, en utilisant des langages description standardisés

(i.e. VHDL, Verilog et SystemC) et des bibliothèques de portes logiques, dites cellules standard.

En ce qui concerne les circuits intégrés analogiques, la situation est bien différente. A chaque nou-

velle application, les concepteurs doivent inventer un nouveau dimensionnement d’une topologie

qu’ils auront sélectionnée, pour réaliser la fonction et les performances souhaitées. Il n’existe pas,

aujourd’hui, de méthode ayant conduit à un consensus permettant de synthétiser automatique-

ment un circuit analogique dans le cas général. Les outils de conception couramment utilisés sont

les simulateurs fonctionnels (type MATLAB), les simulateurs au niveau transistor (type SPICE) et

les éditeurs de masques. Par ailleurs, si un circuit analogique a donné satisfaction dans le cadre

d’une application (SoC), il est difficile de le réutiliser dans un autre contexte, sans dégrader les

performances de la nouvelle application.

Cette thèse est une contribution à la synthèse des circuits intégrés analogiques. Elle propose

une méthode générale pour calculer les dimensions et la polarisation des transistors d’un circuit

analogique CMOS en se fondant sur la connaissance du concepteur, sans avoir recours à un sim-

ulateur. Cette méthode suppose que le circuit est décrit comme une hiérarchie de modules et de

dispositifs élémentaires dans l’environnement de conception CAIRO+. Un dispositif élémentaire

est composé d’un petit nombre de transistors interconnectés, parmi lesquels on définit un tran-

sistor de référence et des transistors secondaires. Ce transistor de référence a un rôle essentiel

puisqu’il contrôle le dimensionnement et la polarisation des autres transistors au sein du disposi-

tif élémentaire. Ce contrôle est exprimé sous la forme d’un graphe de dépendance. A partir de

la description hiérarchique du circuit total, on peut construire son graphe de dépendance. Celui-

ci permet d’assurer que les contraintes électriques sont satisfaites par construction et exprime de

xxii Résumé Étendu

dimensionnement du circuit résultant des hypothèses du concepteur.

Cependant, à cause du nombre élevé de degrés de liberté présents dans un circuit analogique,

des conflits peuvent apparaı̂tre dans ce graphe. La méthode proposée permet de détecter automa-

tiquement les conflits. Dans certains cas, l’introduction d’ un degré de liberté supplémentaire

permet la résolution du conflit sous la forme d’une tension de décalage systématique.

Notre contribution porte sur quatre points :

• Pour atteindre la précision d’un simulateur au niveau transistor, nous avons introduit

un mécanisme d’inversion du modèle électrique du transistor, mis en oeuvre dans une

bibliothèque d’opérateurs électriques. Le modèle électrique utilisé pour le transistor est

BSIM3v3.

• Nous avons conçu une méthode pour dimensionner et polariser un circuit analogique en

nous appuyant sur un graphe de dépendance. Cette méthode suppose connue la connec-

tique du circuit (topologie électrique) et effectue un changement de variables du problème

de dimensionnement, ce qui permet de prendre en compte la connaissance du concepteur et

de restreindre l’espace des solutions possibles. Nous exprimons le dimensionnement d’un

circuit en termes d’opérateurs électriques.

• Pour expérimenter cette méthode, nous avons conçu un langage et un moteur de dimen-

sionnement qui ont été intégrés à l’environnement de conception CAIRO+.

• Cette méthode a été appliquée avec succès à plusieurs circuits analogiques : un OTA 2 étages,

un intégrateur gm/C en mode courant, un amplificateur différentiel avec stabilisation du

mode commun, un amplificateur en transconductance et un amplificateur différentiel sous

très basse tension d’alimentation.

2. Position du problème et Motivation

Ce paragraphe résume le chapitre 2 de la thèse qui présente le contexte de l’étude en définissant

le problème à résoudre et en introduisant les objectifs du travail.

2.1. Le contexte : les systèmes intégrés sur puce

En numérique, avant le standard VHDL, les concepteurs décrivaient les circuits comme une in-

terconnexion de portes logiques, au niveau structurel et physique. Avec le standard VHDL, les

concepteurs ont pu décrire les circuits sous forme d’automates. Ce sont les outils de synthèse

logique, basés sur ces automates, qui construisent la netlist en porte. Celle-ci est utilisée par des

outils de placement et routage pour dessiner les masques du circuit.

Ces résultats associés à l’augmentation de la finesse de gravure sur silicium, ont permis

d’envisager la conception d’un système intégré sur puce (dit SoC) à base de composants, appelés

Résumé Étendu xxiii

IP (Intellectual Property), décrits par leur vue comportementale. Ce sont aux outils de synthèse

et de placement et routage que revient la charge de dessiner les masques en s’appuyant sur une

bibliothèque de cellules standard.

En analogique, la situation est tout autre. S’il existe aujourd’hui des langages tels que VHDL-

AMS ou SystemC-AMS permettant de modéliser la fonction souhaitée, il n’existe pas d’algorithme

et encore moins d’outil logiciel permettant de synthétiser la fonction dans le cas général. Un

consensus se dégage pourtant pour définir ce que pourrait être un IP analogique, dit aussi Firm

IP. Il ne s’agit ni d’une description du matériel seul (le dessin de masques entièrement figé), ni

du logiciel seul (description fonctionnelle facilement reconfigurable), mais d’un triplet constitué

d’une netlist définissant une structure électrique bien identifiée, un ensemble de paramètres pour

dimensionner cette structure et un plan de masse approximatif (placement relatif de composants

dont on ne connaı̂t pas encore les dimensions). Le flot de conception comporte alors deux phases

essentielles : le dimensionnement de la structure et le dessin des masques.

Dans cet esprit, CAIRO+ définit un IP analogique comme un circuit paramétrable à base de dis-

positifs élémentaires. Le concepteur a la charge de décrire la structure, les paramètres et un plan de

masse relatif. CAIRO+ dispose d’un moteur de dimensionnement des dispositifs élémentaires et

de dessin des masques. Ces moteurs sont paramétrables en fonction de la technologie. L’exécution

du code avec des valeurs de spécifications fournit les dimensions de la structure, les performances

estimées et le dessin des masques. Concevoir un circuit paramétrable reste une lourde tâche qui

n’a d’intérêt que pour les blocs réutilisables, suivant d’autres spécifications ou d’autres technolo-

gies.

L’objectif de cette thèse est de décharger le concepteur d’une partie de la tâche de dimen-

sionnement en lui proposant une méthode générale et des outils pour l’expérimenter, permet-

tant de déduire automatiquement une procédure de dimensionnement, quelle que soit la struc-

ture électrique cible. On se propose pour cela de formaliser le processus de dimensionnement

hiérarchique suivant le calcul du point de polarisation.

2.2. Approche classique pour dimensionner un circuit analogique

Considérons le filtre passe-bas de la figure 1 où l’amplificateur est réalisé par l’OTA simple de la

figure 2 comme exemple pour analyser le raisonnement du concepteur lors du dimensionnement

(Fig. 3), et en déduire une méthode de dimensionnement hiérarchique basée sur le calcul du point

de polarisation.

Suivant l’application visée, les spécifications portant sur le filtre vont imposer des bornes mini-

males au gain Ad0 et à la fréquence de transition FT de l’OTA (Fig. 3). En s’appuyant sur le modèle

simple du transistor MOS, ces valeurs permettent d’en déduire le courant IDS,M1
et les longueurs

minimales des transistors L. Les tensions de mode commun VOUT , VIN+ et VIN− sont imposées

par les circuits d’entrée et de sortie de l’OTA. Le concepteur peut choisir de spécifier la tension

effective de grille Veg = VGS − Vth pour tous les transistors [Porte08, Silveira96, Stefanovic03,

xxiv Résumé Étendu

+

−

OUTPUT

FR

AMP

INPUT
R

CF

Figure 1: Filtre passe-bas.

W

L

2

2

W 3

L3

W

L

1

1

W

L

5

5

W 4

L4

VIN+ VIN−

VBIAS

C L
M1 M2

M3 M4

M5

IBIAS

Figure 2: Amplificateur opérationnel à transconductance (dit OTA simple).

Binkley03]. L1, IDS1, VDS1, µn, Cox et λn étant alors connus, la largeur de M1 peut être déduite de

l’équation 1:

IDS(NMOS) =
µn

2
Cox

W

L
(Veg)

2(1 + λnVDS) (1)

Ensuite le concepteur utilise l’équation 2 pour déterminer W3:

IDS(PMOS) =
µp

2
Cox

W

L
(Veg)

2(1 + λpVDS) (2)

Une fois M1 et M3 dimensionnés, on copie leurs dimensions pour M2 et M4. M5 est ensuite

dimensionné, en utilisant VBIAS = Veg5+Vth5 et l’équation 1 pour calculer W5. Une fois que toutes

les dimensions électriques et physiques (W et L) sont connues, on est en mesure de calculer les

paramètres petits-signaux et les performances électriques qui en découlent (Fig. 3).

2.3. Approche proposée

Nous nous proposons de généraliser ce raisonnement. Si le problème de dimensionnement d’un

circuit peut être posé en termes de calcul des largeurs et longueurs de tous les transistors, il

Résumé Étendu xxv

Niveau filtre

Concevoir un amplificateur tel que :

- Ad0 soit supérieur à une valeur donnée

- FT soit supérieure à une valeur donnée

?

Niveau circuit

IDS,M1
= Π · FT · Veg,M1

· CL

L = Ad0 ·Veg,M1
·(1

VE,M1

+ 1
VE,M3

)

?

Niveau transistor : idem pour M3 and M5

VGS,M1
= Veg,M1

+ Vth,M1

VDS,M1
= VOUT − (VIN+ − Veg,M1

− Vth,M1
)

WM1
=

2·LM1
·IDS,M1

µCox(VGS,M1
−Vth,M1

)2(1+λ·VDS,M1
)

* Vth,M1
est donné par la technologie

?

Paramètres petits-signaux

gm,M1
= µCox

WM1

LM1

Veg,M1

?

Estimation des performances

Sth,input = 32·K·Temp
3·gm,M1

Figure 3: Procédure de dimensionnement descendante de l’OTA simple (Fig. 2).

xxvi Résumé Étendu

apparaı̂t qu’un changement de variable en termes de courant de polarisation et tension effec-

tive de grille (Fig. 4) rend le problème plus facile à formuler par le concepteur. Cette idée de la

synthèse basée sur la polarisation est utilisée par plusieurs autres approches [Silveira96, Leyn98,

Stefanovic07, Porte08, Binkley03]. Une fois connu le point de polarisation, on peut calculer les

largeurs de tous les transistors puis leurs paramètres petits signaux.














Temp

VIN,i

Veg,i

IB,i

VOUT,i

Li














︸ ︷︷ ︸

Paramètres

duCircuit

⇒














W1

VGS,1

VDS,1

.

Wn

.














︸ ︷︷ ︸

Polarisation+

Dimensions

⇒














gm,1

gds,1

Cgs,1

.

gm,n

.














︸ ︷︷ ︸

Paramètres

Petits− signaux

⇒














Ad

FT

φm

.

Sth,input

.














︸ ︷︷ ︸

Performances

linéaires

Figure 4: Changement de variables et paramètres de dimensionnement.

Ce graphe permet d’examiner la cohérence des hypothèses effectuées sur le circuit et, dans

le cas de graphes sur-contraints ou sous-contraints, de proposer un diagnostic pour résoudre le

conflit.

2.4. La synthèse d’un circuit analogique

L’idée directrice de notre méthode est de montrer les bénéfices apportés par l’utilisation conjointe

de la connaissance et de l’optimisation dans un problème de synthèse analogique. Habituelle-

ment, l’optimisation utilise les largeurs des transistors comme variables à optimiser de façon

à évaluer les performances du circuit à l’aide d’un simulateur électrique au niveau transistors.

Or, considérer les largeurs des transistors comme variables n’est en général pas bien adapté au

problème. En effet, ce choix conduit à un espace de conception très vaste du fait de l’étendue des

valeurs possibles pour ces largeurs. La procédure de synthèse peut alors passer un temps con-

sidérable à évaluer des solutions non réalisables physiquement puisque largeurs et longueurs des

transistors sont choisies indépendamment l’une de l’autre.

Un autre point de vue consiste à considérer le premier vecteur donné dans la figure 4 comme

ensemble de variables à optimiser. Ce vecteur contient des courants, des tensions de polarisation

et des longueurs de transistors. Ces variables sont définies sur un intervalle plus petit que celui

des largeurs. En conséquence, pour un circuit donné, les variables du vecteur 1 définissent un

espace de conception plus petit que celui issu des largeurs. De plus, comme les largeurs sont cal-

culées à partir de ces variables, les dimensions des transistors sont cohérentes avec les hypothèses

de polarisation. La méthode de dimensionnement automatique des transistors que nous avons

Résumé Étendu xxvii

développée permet ensuite de calculer les composantes du deuxième vecteur de la figure 4 à par-

tir des composantes du premier vecteur.

Search Engine

Li

V
eg,i

V
IN,i

I
B,i

V
OUT,i

TEMP W
1

W
n

V
GS,1

V
DS,1

g
m,1

g
ds,1

Cgs,1

g
m,n

A
d0

F
T

PM

th,inSP
e

rf
o

rm
a

n
c

e

E
q

u
a

ti
o

n
s

B
S

IM
3

V
3

 M
o

d
e

l

S
iz

in
g

 a
n

d
 B

ia
s

in
g

Figure 5: Position du problème de synthèse d’un circuit analogique .

Cette approche (Fig. 5), combinant optimisation et connaissance, permet d’accélerer la

synthèse de circuits analogiques, tout en garantissant une précision comparable à celle d’un

simulateur.

3. Etat de l’art

Ce paragraphe résume le chapitre 3 de la thèse qui propose un état de l’art du domaine.

3.1. Polarisation et dimensionnement

Depuis une vingtaine d’années, les études portant sur la synthèse analogique ont été partagées

entre deux “écoles” : l’une est fondée sur la connaissance et l’autre sur la simulation électrique.

Dans le cas où la synthèse est fondée sur la connaissance, c’est au concepteur que revient la

charge de capitaliser son savoir faire sous une forme qui puisse être réutilisée. Un des premiers

outils à suivre cette approche est OASYS [Harjani87, Harjani88, Harjani89b, Harjani89a] qui

réalise la capitalisation du savoir faire via le codage du calcul des dimensions et du point de

polarisation (point DC) de chacun des sous-circuits qui composent le circuit. Cette phase de

codage est jugée très fastidieuse par la plupart des concepteurs. Inversement, dans le cas où

la synthèse est réalisée à partir de simulations électriques, on doit appeler un simulateur pour

chaque point DC à résoudre. Cette approche conduit à un temps d’exécution total conséquent,

comme cela apparaı̂t dans MAELSTROM [Krasnicki99] dont la solution, mettant en oeuvre une

optimisation, nécessite plusieurs centaines de simulation. Notons que, dans les deux approches,

le calcul du point de polarisation DC reste une étape incontournable.

C’est pourquoi plusieurs auteurs se sont intéressés au calcul du point DC et ont apporté des

xxviii Résumé Étendu

solutions à ce problème fondamental. Maulik [Maulik91, Maulik92b, Maulik92a] a utilisé une

méthode de relaxation en introduisant la solution DC comme un terme d’une fonction de coût.

Gielen et al [Plas01] ont résolu le problème du point DC comme un problème d’optimisation,

dont les variables sont les courants et les tensions de branche. Les dimensions des transistors sont

ensuite déduites en inversant le modèle électrique. L’inconvénient de ces méthodes est de faire

appel aux techniques d’optimisation, coûteuses en temps d’exécution, pour résoudre le point DC.

3.2 Connaissance et synthèse

Plusieurs études, dont le but était d’automatiser le dimensionnement d’un circuit analogique, ont

cherché à exprimer la connaissance sous forme d’une succession d’étapes de conception. Swings

et Sansen ont proposé DONALD [Swings91c] pour inverser numériquement le modèle analytique

comportemental d’un circuit analogique. DONALD utilise un algorithme numérique qui per-

met d’inverser les équations en fonction de différents paramètres, correspondant aux variables

du modèle. Ceci permet d’utiliser le même modèle pour résoudre des problèmes de synthèse ou

d’analyse. Le modèle de conception est représenté sous forme d’un graphe bipartite non orienté. Il

est transformé en une séquence ordonnée d’équations de dimensionnement, appelée solution plan

à partir de la propagation des contraintes, représenté par un graphe bipartite orienté. Ce graphe

est utilisé dans un processus de synthèse pour calculer les dimensions de composants élémentaires

à partir de performances spécifiées. DONALD sait traiter les problèmes sur-contraints ou sous-

contraints. Les cas sous-contraints correspondent à une donnée manquante. Les cas sur-contraints

correspondent à des variables qui doivent satisfaire plusieurs équations. DONALD détecte ces

problèmes et propose des solutions au concepteur. Bernardinis et Sangiovanni [Bernardinis04],

eux, ont formalisé le problème de dimensionnement d’un circuit analogique par un graphe bi-

partite appelé Analog Constraint Graphs (ACGs). L’espace de conception admissible est défini par

l’ensemble des contraintes d’égalité et d’inégalité portant sur les variables de conception. Cette

représentation est utilisée pour réduire l’espace de conception. Les ACGs permettent de choisir

efficacement, dans l’espace de conception, des jeux de variables correspondant uniquement aux

solutions réalisables. C’est pourquoi les ACGs sont utilisés lors de l’exploration du domaine de

conception, pour modéliser les performances du circuit.

3.3. Comparaison des outils de synthèse

Le tableau à la fin de ce chapitre présente un comparatif des outils de synthèse.

3.4 L’environnement de conception Cairo

Cette thèse a contribué à l’environnement de conception CAIRO+ développé depuis une

dizaine d’années au laboratoire LIP6 dans le cadre des thèses de Mohamed Dessouky, Hassan

Résumé Étendu xxix

Aboushady, Pierre Nguyen Tuong, Vincent Bourguet, Nicolas Beilleau, Jose Bonan et Laurent de

Lamarre [Dessouky01, Tuong06, de Lamarre02, Iskander04]. CAIRO+ permet de concevoir des

générateurs paramétrables. Un générateur paramétrable est un composant réutilisable (fig. 6)

qui reçoit en entrée les paramètres électriques et physiques du procédé de fabrication, ainsi

que des valeurs de spécifications et qui fournit en sortie une liste de performances, une netlist

dimensionnée et le dessin des masques correspondant.

Designer’s sizing procedure

Design space exploration (DSES)

Layout education for DSE

Shape function computation

Netlist Back−Annotation

Layout

Template

Netlist

Template

Sized

Netlist
Performances

GDSII

Layout

Specifications

Aspect Ratio

Circuit

Device

Generators

Technology 1

Technology 2

Interface

Functional

CREATE section

DESIGN SPACE EXPLORATION section

SHAPE & PLACE section

ROUTE section

Figure 6: Architecture logicielle d’un générateur CAIRO+ .

Les dispositifs élémentaires et les modules sont des générateurs paramétrables. Un circuit

analogique peut être représenté par une hiérarchie de modules et de dispositifs élémentaires. Les

modules peuvent instantier des modules existants et des dispositifs élémentaires. Le niveau le

plus bas de la hiérarchie est le niveau transistor. Chaque niveau de la hiérarchie ne peut com-

muniquer qu’avec le niveau directement supérieur ou avec ses descendants directs. La figure 7

présente un exemple de description et de communication hiérarchique avec CAIRO+.

���
�

���
�

���
�

���
�

��	
	

�
�

Standard BSIM3v3 Transistor Model

Device

Instance A

Device Device

Instance B Instance Z

SUBCKT

SUBCKT

Instance 2

Instance 1

SUBCKT

Instance N

Module Level

Device Level

Model Level

Figure 7: Niveaux hiérarchiques et propagation des paramètres avec CAIRO+.

xxx Résumé Étendu

Table 1: Opérateurs utilisés pour le dimensionnement.

Opérateur Définition

OPV S(Veg, VB) (VS , Vth,W)⇐ Temp, IDS , L, Veg, VD, VG, VB

OPV S(Veg) (VS , VB, Vth,W)⇐ Temp, IDS , L, Veg, VD, VG

OPV G(Veg) (VB, VG, Vth,W)⇐ Temp, IDS , L, Veg, VD, VS

OPV GD(Veg) (VB, VG, VD, Vth,W)⇐ Temp, IDS , L, Veg, VS

OPW (VG, VS) (VB, Vth,W)⇐ Temp, IDS , L, VD, VG, VS

4. Polarisation et dimensionnement d’un transistor

Ce paragraphe résume le chapitre 4 de la thèse qui présente un modèle inverse du transistor en

vue de son dimensionnement.

Lorsqu’ils suivent l’approche courante, les concepteurs utilisent le modèle quadra-

tique(équations 1 et 2) pour calculer “manuellement” les largeurs des transistors. Cette équation

est un modèle très simplifié du transistor MOS. Comme un de nos objectifs est d’atteindre

la précision d’un simulateur, nous avons introduit 46 opérateurs de dimensionnement dans

CAIRO+. Chaque opérateur se présente sous la forme suivante :

OP<class>(RVi, ...) : (LVj , ...)⇐ (RVn, ...) (3)

où <class> indique le paramètre essentiel à calculer, RVi est un sous ensemble de paramètres

connus du concepteur qui indique la version de l’opérateur, RVn est l’ensemble des paramètres

d’entrée nécessaires pour exécuter l’opérateur et LVj est l’ensemble des paramètres inconnus qui

sont calculés par cet opérateur. Un paramètre est considéré “connu” s’il est fixé par le concepteur

ou s’il résulte d’un calcul précédent de CAIRO+. Le tableau 1 présente les opérateurs utilisés

pour le dimensionnement. A titre d’exmple, considérons l’opérateur OPV S. Sa classe est celle de

la tension de source. Cet opérateur a deux versions suivant la connexion du “bulk”. La première

OPV S(Veg, VB) est activée dans le cas où la tension Veg est connue et que la tension VB doit être

fixée. Elle calcule VS , Vth et W , simultanément, en fonction des paramètres apparaissant à droite

de la flèche dans le tableau 1. La seconde version OPV S(Veg) est activée si Veg est connue et que

les connecteurs “bulk” et source sont reliés à l’intérieur du dispositif.

Dans l’environnement CAIRO+, le concepteur a ainsi à sa disposition plusieurs fonctions qui

lui permettent d’inverser un modèle électrique précis (identique à un simulateur) en fonction des

paramètres connus [de Lamarre02, Iskander08]. Ces valeurs peuvent être connues du concepteur

ou bien résulter de la connectique du circuit. La bibliothèque d’opérateurs a été définie en exami-

nant les divers cas de connexion illustrés par la figure 8.

Dans cette approche, la tension de drain peut être soit connue a priori, soit déterminée par sa

connexion à un autre dispositif élémentaire par la grille ou la source (Fig. 8). Ces fonctions sont

illustrées par la figure (9).

Résumé Étendu xxxi

Vdd
2

Vdd
2

g

Vp

s

d

s

d

d

s

g

s

g

g

d

s

I/P O/P

M1

M3

M2

M
A

MB

s

g

d

d

s

g

g

d

Figure 8: Les connexions possibles d’un drain de transistor MOS.

DS
,V

BS
,V

GS
,V)(Temp, W, L

BSIM3V3
I = F
ds

BSIM3V3 Model

,V
BS

,V
DS

,V
GS

, I
dsBSIM3V3

W = F −1 , L)(Temp

Standard Procedures

,V
BS

,V
DSds

, I
BSIM3V3

W = F −1 , L, V)(Temp eg

Elementary API

,V
D S

,V
ds
I egV, W, V , V))OPVG (Temp, , L,(V

thG B

,V
BS

,V
DegV) ,V, W, V(V)

dsG th OPVG (Temp, I , L,

jLV
i

RV nRV , ...)(

Sizing and Biasing Operators

, ...) , ...) : ((Definition: OP<class>

Figure 9: Modèle électrique du MOS et différentes inversions possibles.

5. Polarisation et dimensionnement d’un dispositif élémentaire

Ce paragraphe résume le chapitre 5 de la thèse qui introduit le concept de dispositif élémentaire

et de transistor de référence pour structurer un circuit.

xxxii Résumé Étendu

5.1. Définition d’un dispositif élémentaire

Un dispositif élémentaire est un groupe de transistors, réunis pour former une primitive réutilisable.

Il constitue une feuille de la représentation hiérarchique d’un circuit analogique.

La figure 2 montre que l’OTA est constitué par un ensemble de 3 primitives : le miroir de

courant (M3, M4), la paire différentielle (M1, M2) et le transistor MOS M5. Afin de définir un

dispositif élémentaire, on a identifié des règles pour regrouper certains transistors. Les condi-

tions qui suivent doivent être satisfaites pour réunir des transistors au sein d’un unique dispositif

élémentaire. Il s’agit de :

1. Les transistors qui constituent une “fonction” analogique.

2. Les transistors doivent être appariés (car ils ont des paramètres électriques communs).

On voit dans la figure 2 que les transistors M3 and M4 doivent être dans le même dispositif car :

1. Ils réalisent la fonction “miroir de courant”.

2. Leurs paramètres W , L et VGS devant être identiques, ils doivent être appariés.

Ces mêmes conditions sont remplies dans le cas de la paire différentielle (M1, M2).

La figure 10 présente la famille de dispositifs élémentaires disponibles dans l’environnement

CAIRO+. Le dessin des masques a été réalisé dans la thèse de Vincent Bourguet [Bourguet04].

E

C

F G

H I

A B D

Figure 10: La bibliothèque de dispositifs élémentaire.

Résumé Étendu xxxiii

5.2. Le transistor de référence

Dans un souci d’abstraction, le concepteur choisit de dimensionner un nombre minimum de tran-

sistors. Pour définir ces transistors, on introduit le concept de transistor de référence. Un dis-

positif élémentaire contient un seul transistor de référence qui est dimensionné en premier. Les

paramètres électriques de ce transistor définissent, d’une manière unique, par des relations sim-

ples, ceux des autres transistors. On peut dire que les paramètres de ce transistor sont propagés

vers les transistors secondaires. Dans le cas de l’OTA de la figure 2, le concepteur peut choisir :

1. M1 comme transistor de référence pour (M1, M2)

2. M3 comme transistor de référence pour (M3, M4)

3. M5 comme transistor de référence pour lui même.

Le transistor de référence de la paire différentielle est marqué par un point sur la figure 11.

���
�

W, L

M2M1

VIN+ VIN−

Figure 11: Transistor de référence et propagation des paramètres d’une paire différentielle.

5.3. Le graphe de dépendance d’un dispositif élémentaire

Dans l’approche classique décrite dans le cas du dimensionnement de l’OTA simple (Fig. 2), le

concepteur a reporté les largeurs de M1 et M3 vers M2 et M4. Ceci signifie que certains paramètres

doivent être propagés depuis le transistor de référence vers les transistors secondaires, au sein

d’un même dispositif élémentaire. Dans le cas général on dénit les contraintes linéaires sous la

forme :
[

Pelec,i

]

N×1
=
[

Ki

]

N×M
·
[

Pelec,ref

]

M×1
(4)

où Pelec,i est la matrice dont les éléments sont les paramètres électriques des transistors

secondaires, Ki est une matrice creuse, dont les éléments sont des constantes et Pelec,ref est la

matrice dont les éléments sont les paramètres électriques du transistor de référence. On peut

définir plusieurs types de contraintes dans un dispositif élémentaire en s’inspirant de sizing rules

method[Graeb01].

xxxiv Résumé Étendu

L’idée est alors de déduire automatiquement une procédure de dimensionnement pour

un circuit entier, en se fondant sur la description hiérarchique en module et en dispositifs

élémentaires. Une procédure d’un module ou d’un dispositif élémentaire est décrite par un

graphe de dépendance où un noeud est un paramètre de dimensionnement et l’existence d’un

arc orienté exprime une relation de dépendance entre la destination et l’origine. Un noeud

représente les paramètres électriques comme Temp, W , L, IDS , Veg, VGS , VD, VB , VS ou VG. Les

arcs représentent une relation pondérée par le poids de l’arc, entre les paramètres du noeud v et

celui du noeud u. Ce qui s’écrit : v ← u. L’existence d’un arc entre 2 noeuds résulte soit :

1. de la connectique, soit

2. de l’existence d’une relation entre les deux paramètres au travers d’un opérateur

3. de l’existence d’une contrainte liant ces paramètres.

Ce graphe garantit donc, par construction, le respect des contraintes existant pour chacun des

dispositifs élémentaires.

La figure 12 illustre un exemple de propagation des largeurs entre transistors d’un miroir de

courant.

W1
W 2

,W 3

5.01:5

x5

x5

u v

M1 M2 M3

d1 d2 d3

(a) (b)

s

Figure 12: Miroir de courant : (A) Contraintes sur les largeurs, (b) Propagation des valeurs.

A partir de la structure du dispositif élémentaire, CAIRO+ détermine quel est l’opérateur

adapté au transistor de référence. Le graphe de dépendance est construit en fonction de cet

opérateur. Il représente la procédure de dimensionnement du dispositif. L’exemple de la figure 13

présente le graphe de dépendance qui a été généré suivant l’opérateur OPV GD pour le miroir de

courant (fig. 12). Ce graphe montre les relations de dépendance entre les paramètres inconnus VS

et W et les paramètres connus : Temp, IDS , L, Veg, VD, VB et VG. Il est clair que chaque dispositif

élémentaire possède un sous ensemble d’opérateurs en fonction de sa structure interne.

6. Polarisation et dimensionnement d’un circuit

Ce paragraphe est un résumé des chapitres 6 et 7 de la thèse. Le chapitre 6 présente le calcul

automatique du point de polarisation d’un circuit fondé sur la structuration en modules et dis-

Résumé Étendu xxxv

5

4

3

2

1

76

M1,M2,M3/TEMP

CM/VEG

CM/IDS

CM/L

M2,M3/W

CM/TEMP

M1/IDS

Transistor

Parameters Parameters

Device

OPVGD(VEG)

5.0

Operator

Sizing & Biasing Constraints

0

OPVGD(VEG)

8

10

11

9

CM,M1/W

CM,M1/VG,VD

M1,M2,M3/L

M1,M2,M3/VEG

CM/d1

CM,M1/VS,VB

CM/s

Figure 13: Graphe de dépendance pour le miroir de courant (Fig. 12).

positifs élémentaires. Le chapitre 7 met en oeuvre cette méthode pour dimensionner des circuits.

Dans ce résumé on présente uniquement différents résultats obtenus pour l’OTA Miller.

6.1. Graphe de dépendance du circuit

Un circuit est représenté comme une hiérarchie de sous-circuits dans l’environnement CAIRO+.

Les feuilles de la hiérarchie sont des dispositifs élémentaires et les niveaux supérieurs sont les mod-

ules. Chaque sous-circuit est représenté par son graphe de dépendance. Le graphe de dépendance

exprime les relations qui existent entre les paramètres électriques DC (tensions, courants et di-

mensions) et certains paramètres choisis comme paramètres d’entrée. Au cours de la synthèse, on

construit automatiquement le graphe de dépendance à partir du transistor de référence de cha-

cun des dispositifs élémentaires. Ainsi le graphe du circuit entier est construit, récursivement, en

commençant par les dispositifs élémentaires.

Ce graphe est transformé, si possible, en graphe orienté acyclique (DAG).

Lorsque le graphe résultant est un DAG il représente un plan de dimensionnement du circuit

analogique. Pour dimensionner le circuit, le plan de dimensionnement est exécuté d’une manière

descendante, pour calculer le point de polarisation et les largeurs de tous les transistors à partir

des paramètres fixés par le concepteur.

6.2. Existence de conflits dans le graphe de dépendance

Du fait du nombre élevé de degrés de liberté d’un problème de synthèse analogique, il peut ap-

paraı̂tre des conflits dans le graphe de dépendance. Les conflits apparaissent quand un même

xxxvi Résumé Étendu

paramètre est défini de plusieurs façons, i.e. il existe plusieurs chemins dans le graphe aboutis-

sant à un même paramètre ou au contraire quand un ou plusieurs paramètres ne sont pas définis.

Ces conflits rendent la connaissance introduite dans le graphe, incohérente. Nous allons montrer

comment enrichir la connaissance du circuit qui repose sur l’existence de ce graphe pour détecter

et supprimer les conflits et construire un graphe orienté acyclique. Il est essentiel de savoir iden-

tifier les divers cas de conflits, de les comprendre et de les résoudre pour modéliser de manière

satisfaisante l’expertise du concepteur.

Nous avons examiné le problème particulier posé par l’introduction d’une tension de décalage

systématique lors de la conception d’un amplificateur.

Nous avons montré que cette tension se manifeste par l’existence de plusieurs hypothèses

conflictuelles. En identifiant le noeud sur lequel se produit le conflit, nous avons pu estimer

précisément la valeur de la tension de décalage.

Voff

IBIAS

VIN−

Cc

VDD

VIN+ VOUT

1:K

M1 M2

M3 M4 M6

CL

M7M5

M8

REF
I

Figure 14: L’OTA deux étages avec introduction d’un degré de liberté supplémentaire.

6.2.1. Tension de décalage

Si les deux entrées d’un amplificateur différentiel sont reliées à la tension de mode commun, la

sortie devrait atteindre le mode commun de sortie, ce qui n’est en général pas le cas dans les

circuits fabriqués. On parle alors de tension de décalage systématique ou aléatoire. Le décalage

systématique résulte directement de la technique suivie par le concepteur. Un décalage de tension

peut être acceptable dans certains cas d’amplificateurs opérationnels, de comparateurs, de con-

vertisseurs analogique-numérique et numérique-analogique La tension aléatoire résulte des

dispersions des paramètres caractérisant le procédé de fabrication, elle est inévitable. Pour amener

la sortie du circuit au niveau du mode commun souhaité, il est souvent nécessaire d’ajouter une

tension à une des entrées, appelée tension de décalage ramenée à l’entrée.

Étudions l’amplificateur 2 étages présenté Fig. 14. L’augmentation de la transconductance

du deuxième étage gm,M6 permet d’augmenter le produit gain-bande GBW (à marge de phase

Résumé Étendu xxxvii

constante et capacité de charge constante). Comme :

gm,M6 ≈
2IM6

VGS,M6 − Vth,M6
≈ 2IM6

Veg,M6
(5)

la tension VGS,M6, et la tension effective de grille Veg,M6, doivent être faibles. Cette hypothèse

entre en contradiction avec le choix arbitraire de la tension VDS,M4. Ce conflit déséquilibre

l’amplificateur qui sature au niveau VDD. Pour équilibrer l’amplificateur, on ajoute un degré de

liberté en libérant la tension au noeud VD,M4. La différence entre VD,M4 et VG,M6 est la tension

de décalage qui apparaı̂t à la sortie du premier étage. Pour ”ramener” à l’entrée cette tension, on

divise cette valeur par le gain du premier étage.

Vi,off ≈ (VD,M4 − VG,M6) ·
gds,M2 + gds,M4

gm,M1
(6)

En généralisant ce principe, on peut résoudre les conflits de tension sur n’importe quel noeud

du graphe en introduisant une tension de décalage.

6.2.2. Détection du conflit

Pendant la construction du graphe de dépendance, un conflit apparaı̂t dans le cas où un même

paramètre (ici, une tension) est évalué par des opérateurs distincts. Comme il n’y a aucune rai-

son que les valeurs données par les opérateurs distincts soient identiques, un conflit apparaı̂t

(Fig. 15(a)). Supposons (M3,M4) idéal (i.e. VG,M3 = VD,M4). VG,M3 et VD,M4 partagent le même

noeud. L’opérateur OPVGD est utilisé pour calculer VG,M3 et VD,M4 à partir des données connues

(courant IDS,M3). L’opérateur OPVG est utilisé pour calculer VG,M6 à partir de données connues

de M6 (courant IDS,M6). VD,M4 et VG,M6 formant une équipotentielle, VG,M6, VG,M3, VD,M4 et

VD,M1 partagent donc le même noeud. Les deux opérateurs OPVGD et OPVG calculent le même

paramètre et entrent donc en conflit. En introduisant un degré de liberté supplémentaire le graphe

peut être transformé en un nouveau graphe, sans conflit.

6.2.3. Résolution du conflit

Pour résoudre le conflit qui est apparu entre les deux opérateurs définissant un paramètre, nous

proposons de modifier le graphe par la technique de séparation des noeuds. On commence par

choisir un opérateur pivot. Ici l’opérateur pivot est défini soit comme l’opérateur qui calcule

une tension de grille(i.e. OPVG), soit comme celui qui calcule la tension de source (i.e. OPVS)

d’un transistor MOS. en supposant que les tensions de décalage sont associées à une grille ou à

une source de transistor MOS. Les transistors montés en diode sont donc exclus. Une fois le pivot

choisi, les paramètres qui créent le conflit sont différenciés en introduisant un nouveau noeud. Les

relations associées à chacun des opérateurs en conflit sont modifiées pour pointer vers les noeuds

appropriés. On corrige éventuellement les relations de dépendance associées au noeud conflictuel

xxxviii Résumé Étendu

IDS,M6

G,M6
V

IDS,M6

(a) (b)

V
OFFSET

1

OPVGD OPVG

DS,M3I

V

V

DS,M3I

S,M1
V

4

4

5 5

V

V

V

V
G,M6

G,M3

D,M1

VD,M1

D,M4

3 2

D,M4

G,M3

V
S,M1

OPVSOPVS

OPVGD OPVG = pivot

Figure 15: Conflits entre opérateurs: (a) Détection, (b) Résolution. Les rectangles montrent les étapes de

résolution.

initial. On introduit un nouveau noeud, qui représente la tension de décalage. L’introduction de

ce nouveau noeud permet de modifier le graphe de dépendance initial conflictuel en un graphe

sans conflit. La connaissance exprimée par le graphe modifié est alors cohérente.

Dans la figure 15(b), l’opérateur pivot est OPVG car il calcule une tension de grille. Après la

création d’un nouveau noeud (étape 1), le noeud initial n’est associé qu’à VG,M6 et le nouveau

noeud à {VG,M3, VD,M4, VD,M1}. Comme OPVG avait été choisi pour calculer VG,M6, les arcs de

dépendance associés sont modifiés (étape 2) pour relier VG,M6. OPVGD est modifié (étape 3)

pour être relié à {VG,M3, VD,M4, VD,M1}. Dans l’étape 4, l’arc entre VS,M1 et le noeud initial est

supprimé. Comme VS,M1 dépend des paramètres de M1, il faut modifier l’arc depuis VG,M6 qui

es indépéendnt des paramètres de M1. Ainsi l’arc de dépendance entre VS,M1 et le noeud ini-

tial VG,M6 est remplacé par un arc de dépendance avec le nouveau noeud {VG,M3, VD,M4, VD,M1}
qui contient VD,M1. Dans la cinquième étape on ajoute le noeud qui représente la tension de

décalage. Il est relié au noeud initial et au noeud ajouté. Sa valeur est VOFFSET = VG,M6 −
{VG,M3, VD,M4, VD,M1}. On obtient alors un graphe modifié sans conflit.

6.2.4. Graphe de dépendance du module

La figure 16 présente le graphe de dépendance de l’amplificateur à 2 étages. On suppose que

WM8 = WM5. Le transistor M8 appartient au circuit de polarisation de l’amplificateur. Nous

choisissons de spécifier le courant IBIAS . Le courant de référence IREF est un résultat du dimen-

sionnement.

On souhaite satisfaire la contrainte VG,M3 = VD,M4 en conservant le choix de Veg,CM et Veg,M6.

Dans la suite on va détailler l’analyse du graphe (Fig. 16) et expliquer la détection et la résolution

du conflit :

1. Les paramètres d’entrée pour dimensionner l’amplificateur sont : TEMP , VDD, VSS , IBIAS ,

Veg,CM , LCM , Veg,DP , LDP , VINCM , VOUTCM , Veg,M5, L{M8,M5,M7}, Veg,M6, LM6 et le rapport

Résumé Étendu xxxix

des courants entre les deux étages K. Ils apparaissent dans les noeuds entourés par un

rectangle.

2. Les paramètres utilisés pour propager des valeurs sont représentés par les noeuds entourés

d’un cercle. Considérons par exemple le paramètre (C2,vegcm,61) : il propage le paramètre

de l’amplificateur (C1,Veg,CM ,67) au paramètre du miroir de courant (C3,Veg,CM ,8).

3. Les paramètres des dispositifs élémentaires sont propagés aux paramètres des transistors

qui constituent le dispositif. Considérons par exemple le paramètre du miroir de courant :

(C3,Veg,CM ,8) est propagé à M3 via (C4,Veg,M3,7) et à M4 via (C4,Veg,M4,7). Notons que M3 et

M4 partagent la même tension effective de grille (C4,Veg,7).

4. Comme on a spécifié Veg,M3 = Veg,CM , VG/D,M3 est calculé par l’opérateur OPVGD(Veg,M3)

en (C5,VG/D,M3,2).

5. Comme on a spécifié Veg,M6, VG,M6 est calculé par l’opérateur OPVG(Veg,M6) en (C7,VG,M6,1).

6. Les points (4) et (5) entrent en conflit avec l’hypothèse VG,M6 = VD,M4. On applique donc

la méthode de séparation des noeuds et on ajoute le noeud (C8,VOFFSET ,0) pour calculer

la tension de décalage, qui dépend du noeud initial (C7,VG,M6,1) et du nouveau noeud

(C5,VG/D,M3,2). Lors du parcours du graphe, on évalue la tension de décalage comme la

différence des tensions à ces deux noeuds.

7. Les largeurs des transistors sont calculées aux noeuds (C8,{M1,M2},21), (C8,{M3,M4},11),

(C8,M6,31), (C7,{M5,M8},36) et (C8,M7,25).

8. Comme WM8 = WM5, ces paramètres partagent le même noeud : (C7,{M5,M8},36).

9. Le courant de référence IREF est calculé par l’opérateur OPIDS(VG,VS) au noeud

(C8,IDS,M8,41).

10. Le concepteur peut écrire des procédures de calcul qui font partie du graphe. Par exem-

ple, noeud (C3,l dp,56) est un paramètre de propagation calculé à partir de la procédure

IDS DP (IBIAS) écrite par le concepteur.

11. Le dimensionnement est effectué par la propagation des paramètres dans le graphe:

(a) VG,M3 et VD,M3 sont calculés par OPVGD(Veg,M3) au noeud (C5,VG/D,M3,2).

(b) VD,M3 est utilisé pour calculer VD,M5, qui est égal à VS,M1, avec l’opérateur

OPVS(Veg,M1,VB,M1) au noeud (C6,VS,M1,24).

(c) puis VD,M5 est utilisé pour calculer VG,M5 avec OPVG(Veg,M5) au noeud (C7,VG,M5,29).

(d) VG,M5, qui est égal à VG,M8, est utilisé pour calculer le courant IREF avec l’opérateur

OPIDS(VG,M8,VS,M8) au noeud (C8,IDS,M8,41).

xl Résumé Étendu

74 72 65 73 52 42 41

40

51

57

58

54

53

56

50

49

48

47

43

39

38

37

36

31

2529

30

20

23

3561

60 10

55 18

16

14

34 27 21

11

22

19 33

12
17

32 26

44

6

4

8

7

5

3 2

13

15

28

24 1

9

45

67

71

70

64

68

62

63

69

46

AMP/IBIAS

AMP/VEG_CM

AMP/L_CM

AMP/TEMP AMP/L_DP

AMP/VEG_DP

AMP/VDD

veg_cm

l_cm

ids_cm

temp CM/TEMP

CM/L

CM/VEG

CM/IDS

AMP/VSS

vdd

veg_dp

l_dp

ids_dp

M3,M4/TEMP

M3,M4/L

M3,M4/VEG

M3,M4/IDS

CM,M3,M6/VB,VS

DP/TEMP

DP/L

DP/VEG

DP/IDS

AMP/K

vss

AMP/VEG_M6

AMP/L_M8_M5_M7

AMP/L_M6

66

ibias

veg_m6

l_m6

ids_m6

l_m8_m5_m7

DP,M1/VG

DP,M1/VB

M8,M5,M7/VB,VS

M1,M2/IDS

M1,M2/VEG

CM,M3/VG,VD

M6,M7/VD

M6/TEMP

M6/IDS

M6/L

M8/TEMP

M5/TEMP

M5/IDS

M5,M8/L

M5/VEG

ids_m7

M7/TEMP

M7/L

M8,M5,M7/VG

M8/VD

M7/IDS

M5,M8/W

M1,M2/TEMP

M1,M2/L

OPVGD(VEG) OPVS(VEG,VB) OPVG(VEG)

OPVG(VEG)

OPVG(VEG)

OPVGD(VEG)

M6/VEG

C1 C2 C3 C4 C5 C6 C7 C8

AMP/VEG_M5

veg_m5

DP,M1/VD

AMP/VOUTCM

voutcm

AMP/VINCM

vincm

0

59

OPW(VG,VS)

OPVG(VEG)

OPIDS(VG,VS)

OPVS(VEG,VB)

DP,M1/VS

M5/VD
VOFFSET

CM,M3,M4/W

DP,M1,M2/W

M7/W

M6/W

M8/IDS

M6/VG

IDS_CM(IBIAS)

IDS_DP(IBIAS)

NI(K,IBIAS)

I(K,IBIAS)

Figure 16: Le graphe de dépendance du module amplificateur: (a) les rectangles contiennent les paramètres

d’entrée, (b) les cercles fins sans arcs, les paramètres utilisés pour propager les valeurs, (c) les cercles en gras

contiennent les opérateurs, (d) les cercles fins avec arcs, des procédures de calcul écrites par le concepteur.

Chaque noeud est représenté par le triplet (colonne, nom, index) .

6.2.5. Validation par simulation électrique

On a réalisé la simulation électrique de l’amplificateur, dimensionné suivant le graphe de la fig-

ure 16 et rebouclé par un gain unitaire. Le tableau 2 présente les résultats du point de fonc-

tionnement, obtenus par dimensionnement puis par simulation. On peut calculer la tension de

décalage ramenée à l’entrée en utilisant l’équation 6, qui donne la valeur -0.20424 mV avec les

équations plus précises d’OCEANE [Porte08] on obtient la valeur -0.2047 mV. Cette valeur de la

tension de décalage équilibre effectivement l’amplificateur. La tension de mode commun de sor-

tie VOUT = VDD + VDS,M6 vaut alors 0.6V pour une tension de mode commun d’entrée de 0.6V .

Remarquons que le point de fonctionnement obtenu par simulation électrique montre que M1 et

Résumé Étendu xli

M2 diffèrent légèrement sous l’influence de la tension de décalage qui a été ramenée à l’entrée.

Table 2: Polarisation et dimenionnement autaomatique de l’amplificateur Miller avec tension de décalage

systématique en technologie CMOS 130NM et VDD = 1.2V.

Paramètre Synthèse Simulation

M1,M2 M3,M4 M1 M2 M4

IDS(µA) 50.0 -50.0 50.028 49.971 -49.971

VGS(V) 0.453075 -0.462552 0.45317 0.45297 -0.4626

VDS(V) 0.590524 -0.462552 0.59057 0.6099 -0.44328

VBS(V) -0.146925 0.0 -0.14683 -0.14683 0.0

Vth(V) 0.333076 -0.342552 0.33304 0.33304 -0.34255

Veg(V) 0.12 -0.12 0.12013 0.11993 -0.12005

Vdsat(V) 0.115618 -0.120473 0.1157 0.11557 -0.12051

gm(mA/V) 0.671032 0.653846 0.67095 0.67075 0.65333

gds(µA/V) 4.24831 2.85842 4.2497 4.1989 2.9923

gmb(mA/V) 0.13131 0.143927 0.13129 0.13127 0.14382

Cgd(fF) 10.8436 30.2681 10.830 10.818 30.443

Cgs(pF) 0.165409 0.523254 0.16524 0.16518 0.52325

Csd(fF) 0.0378348 0.343275 0.037829 0.034159 0.39329

Cbd(fF) 0.0341236 0.284976 0.034119 0.030809 0.3265

M6 M6

IDS(µA) -500 -500.07

VGS(V) -0.443267 -0.44328

VDS(V) -0.6 -0.6

Vi,off (mV) -0.204241 –

Vi,off (mV) -0.2047342 -0.204734

1. Avec Eq. (6).

2. Avec les équations d’OCEANE [Porte08].

7. Synthèse et connaissance du concepteur

Ce paragraphe résume le chapitre 8 de la thèse qui montre comment exploiter la méthode de

dimensionnement par calcul du point de polarisation pour résoudre le problème d’optimisation

présenté à la figure (5).

xlii Résumé Étendu

Figure 17: Facteur de réduction par variable.

7.1. Choix des variables de synthèse

Dans l’idée d’évaluer la réduction de l’espace de conception introduite par le changement de

variables à optimiser, nous définissons une figure de mérite appelée facteur de réduction qui définit

le rapport entre le nombre de valeurs possibles pour les largeurs W = Wmin
i : Wmax

i : λw
i et celui

des tensions V = V min
i : V max

i : λv
i ,

FacteurDeRéduction =

n∏

i=1

λv
i

λw
i

· W
max
i −Wmin

i

V max
i − V min

i

(7)

où λw
i est l’incrément de la largeur qui varie entre Wmin

i and Wmax
i et λv

i et celui de la tension qui

varie V min
i and V max

i . Nous voyons que le facteur de réduction est souvent bien supérieur à un. En

effet, l’évolution des technologies fait décroı̂tre les tensions d’alimentation V max
i − V min

i et le pas

de grille fondeur λw
i . Ce facteur de réduction est représenté sur les courbes de la figure pour un

cas mono-dimensionnel, i.e. n = 1. En utilisant l’équation (7) pour n > 1, nous pouvons obtenir

un facteur de réduction important, et donc une réduction importante de l’espace de conception

en remplaçant la variable largeur par la variable tension de polarisation.

Pour tirer partie de la réduction potentielle de l’espace de conception, nous avons défini une

méthode de synthèse en trois phases, qui s’appuie sur la décomposition hiérarchique en dispositifs

Résumé Étendu xliii

élémentaires et modules. La première phase utilise des algorithmes classiques comme Nelder-Mead

Simplex[Nelder65, Lagarias98] pour donner des valeurs aux composantes du premier vecteur de

la figure (5). La deuxième phase calcule les deuxième et troisième vecteurs à l’aide du plan

de dimensionnement. Enfin, les performances sont évaluées par des équations, disponibles sous

OCEANE [Porte08].

7.2. Application

Cette méthode a été appliquée à l’amplificateur Miller (deux étages non-différentiel) de la figure

(14). Le plan de dimensionnement est toujours représenté par le graphe de dépendance donné

par la figure (16).

Le tableau 3 donne les spécifications de l’amplificateur, ainsi que les résultats de synthèse et

de simulation dans une technologie CMOS 130nm . Ces résultats montrent que cette approche

donne très rapidement un résultat comparable, en termes de précision, à la simulation. Le

temps d’exécution moyen est de 76 secondes sur un Intel Centrino 1.7GHz avec 2MB de

mémoire cache. Ces résultats sont satisfaisants si on les compare avec d’autres études : 16

minutes pour ASTRX/OBLX[Ochotta96], 76 minutes pour ASF[Krasnicki01], 2.8 heures pour

ANACONDA[Phelps00].

7.3. Réutilisation : changement de spécifications

Le circuit paramétrable ainsi conçu constitue un bloc IP AMS qu’il est facile de réutiliser pour une

autre application, ayant d’autres spécifications. Supposons maintenant que l’on ait besoin d’un

amplificateur de fréquence unitaire double du cas précédent. On élargit alors l’intervalle admis-

sible du courant IBIAS . Le tableau 4 présente la comparaison de résultats issus de la synthèse et

des résultats de simulation. La fréquence de transition doit être supérieure à 12Mhz et IBIAS peut

atteindre 60µA. Les résultats montrent effectivement que, par rapport au cas précédent, IBIAS

a augmenté pour satisfaire la contrainte sur la fréquence de transition (tableau 4). Le temps de

calcul moyen sur Intel Centrino 1.7GHz avec 2MB est 87 secs. Ce qui illustre l’efficacité de cette

méthode.

8. Conclusions

Cette thèse a présenté une méthode pour dimensionner un circuit en calculant son point de polar-

isation. Cette approche permet de déduire automatiquement une procédure de dimensionnement

quelle que soit la topologie électrique cible. La procédure de dimensionnement s’exprime par

un graphe de dépendance permettant de propager des contraintes de façon hiérarchique. Cette

méthode a été appliquée avec succès pour dimensionner plusieurs types de circuits analogiques.

xliv Résumé Étendu

Les algorithmes développés dans cette thèse ont été intégrés à l’environnement de conception

CAIRO+ du LIP6.

Cette approche, combinant optimisation et connaissance, permet d’accélérer la synthèse de

circuits analogiques, tout en garantissant une précision comparable à celle d’un simulateur

électrique. Elle apporte une contribution à la synthèse de circuits analogiques fondée sur la

connaissance du concepteur.

Résumé Étendu xlv

Table 3: Dimensionnement et optimisation en technologie 130nm CMOS avec VDD = 1.2V. Résultats et

validation par simulation.

Circuit Performances Spécifications Synthèse1 Simulation

Gain AC (dB) > 65 71.22 70.83

Gain de mode commun (dB) < 17 5.59 8.82

Fréquence de transition (MHz) > 6 10.79 10.66

Marge de phase (degrés) > 76 76.69 76.9

Tension de décalage à l’entrée (mV) < 2 -1.03 -1.07

Bruit à l’entrée @1Hz (µV/
√

Hz) < 20 10.86 10.14

Bruit à l’entrée @UGF (µV/
√

Hz) < 0.02 0.014 0.015

Slew Rate (V/µs) > 6 8.25 9.16

Transistors en Saturation = 8 8 8

Puissance (mW) < 1 0.176 0.176

Réjection de mode commun (dB) – 65.63 62.01

Tension minimale à l’entrée (V) – 0.53 0.53

Tension maximale à l’entrée (V) – 1.04 1.04

Tension maximale à la sortie (V) – 1.12 1.12

Tension minimale à la sortie (V) – 0.10 0.10

Surface (µm2) – 69 69

Temps de calcul moyen sur 10 runs (secs) - 76 -

Paramètre Domaine Synthèse

à optimiser de variation

LM5
= LM7

= LM8
(µm) 0.2:3:0.1 0.6

LCM (µm) 0.2:3:0.1 0.6

LM6(µm) 0.2:3:0.1 0.2

LDP (µm) 0.2:3:0.1 0.8

Veg,M5
(V) 0.01:0.2:0.01 0.1

Veg,DP (V) 0.01:0.2:0.01 0.08

Veg,CM (V) -0.2:-0.01:0.01 -0.15

Veg,M6
(V) -0.2:-0.01:0.01 -0.04

IBIAS(µA) 10:30:1 25.0

K 1:5:0.5 4.5

CC (pF) 1:5:0.1 2.9

Paramètre constant Valeur Synthèse

TEMP (degrés) 300.15 300.15

VDD (V) 1.2 1.2

VSS (V) 0.0 0.0

VICM (V) 0.6 0.6

VOUTCM (V) 0.6 0.6

CLOAD (pF) 3.0 3.0

1. Synthèse effectuée avec génération de dessins des masques

xlvi Résumé Étendu

Table 4: Dimensionnement et optimisation en technologie 130nm CMOS with VDD = 1.2V changement

de spécifications.

Performances Spécifications Synthèse1 Simulation

Gain AC (dB) > 65 72.04 71.49

Gain de mode commun (dB) < 17 15.91 18.13

Fréquence d transition (MHz) > 12 17.2 17.09

Marge de phase (degrés) > 76 76.44 76.59

Tension de décalage à l’entrée (mV) < 2 -0.67 -0.6882

Bruit à l’entrée @1Hz (µV/
√

Hz) < 20 8.31 7.02

Bruit à l’entrée @UGF (µV/
√

Hz) < 0.02 0.0125 0.0127

Slew Rate (V/µs) > 6 18.61 20.0

Transistors en Saturation = 8 8 8

Puissance (mW) < 1 0.432 0.432

réjection de mode commun (dB) – 56.13 53.36

Tension min mode commun entrée (V) – 0.58 0.58

Tension max mode commune entrée (V) – 1.03 1.03

Tension sortie max (V) – 1.1 1.1

Tension sortie min (V) – 0.09 0.09

Surface (µm2) – 155 155

Temps de calcul moyen sur 10 runs (secs) - 87 -

Paramètre Domaine Synthèse

à optimiser de variation Synthèse

LM5
= LM7

= LM8
(µm) 0.2:3:0.1 0.3

LCM (µm) 0.2:3:0.1 0.9

LM6(µm) 0.2:3:0.1 0.3

LDP (µm) 0.2:3:0.1 1.8

Veg,M5
(V) 0.01:0.2:0.01 0.07

Veg,DP (V) 0.01:0.2:0.01 0.17

Veg,CM (V) -0.2:-0.01:0.01 -0.17

Veg,M6
(V) -0.2:-0.01:0.01 -0.09

IBIAS(µA) 10:60:1 56

K 1:5:0.5 5

CC (pF) 1:5:0.1 2.6

Paramètre constant Valeur Synthèse

TEMP (degrés) 300.15 300.15

VDD (V) 1.2 1.2

VSS (V) 0.0 0.0

VICM (V) 0.6 0.6

VOUTCM (V) 0.6 0.6

CLOAD (pF) 3.0 3.0

1. Synthèse effectuée avec génération de dessins des masques

R
é
su

m
é

É
te

n
d

u
x
lv

ii

Table 5: Comparison of Synthesis Tools [Ochotta98].

Synthesis Tool

OPASYN

[Koh87]

OASYS

[Harjani87]

IDAC

[DeGrauwe84b]

ARIADNE

[Swings91a]

STAIC

[Harvey92]

ISAID

[Makris92]

Maulik

[Maulik91]

AMGIE

[Plas01]

School University of

California at

Berkeley

Carnegie Mel-

lon University

Centre Suisse

d’Electronique

et de Microelec-

tronique

Katholieke Uni-

versiteit at Leu-

ven

University of

Waterloo

Imperial

College in

London

Carnegie Mel-

lon University

Katholieke Uni-

versiteit at Leu-

ven

Performance evalua-

tion

Equations Equations Equations Equations Equations Equations/

Qualitative

Reasoning

Equations Equations

Non-Linear device

models

Simplified

equations

Simplified

equations

Custom models Simplified

equations

Simplified

equations

Simplified

equations

Equations+BSIM Equations+BSIM

Worst-case accuracy 200% 25% 15% 10%(low-perf.) 24% 14% 24% Not reported

Search methods Gridded, Steep-

est descent op-

tim.

Plan steps with

backtracking

Plan steps with

post optim.

Simulated

annealing

Coarse initial

optim. +

detailed final

optim.

Qualitative rea-

soning + post

optim.

Sequential

quadratic

programming

(SQP)

VFSR, Hooke-

Jeeves,

minimax, or

SQP

Synthesis time

(approximate)

1 min 5 sec A Few seconds 5 min 3 min Not reported 1 min few minutes to

2 hour

Machine VAX 8800 VAX 8800 CPU N/A CPU N/A MIPS 2000 Not reported DEC 3100 SUN Ultra

1-170, HP

712/80 UNIX

Preparatory effort to

add new circuit

2 weeks for well

understood cir-

cuit

6 months in-

cluding circuit

analysis

4-45 designer-

months

Not reported 3 circuits

required 100000

lines of code

Not reported 6 months in-

cluding circuit

analysis

1 week

Equations derived Manually Manually Symbolic simu-

lation + Manu-

ally

Symbolic simu-

lation + Manu-

ally

Manually Manually Manually Manually

+ Symbolic

analysis

How/Where Equations

are stored

Hard-coded Hard-coded Hard-coded +

Design files

Not reported language +

Database

Not reported Hard-coded Hard-coded

Most Complex circuit

example

7 variables (60

device opamp)

19 variables (17

device opamp)

N/A (15 circuit

types, incl.

delta-sigma,

from 5-30

devices)

14 variables (9

device opamp)

N/A (22 device

opamp)

8 variables (13

device opamp)

39 variables, 7

for topology se-

lection (19 de-

vices opamp)

N/A (Parti-

cle Detector

Front-End)

xlviii Résumé Étendu

Chapter 1

Introduction

1.1 Motivation

The complexity of integrated electronic circuits being designed is continuously increasing as ad-

vances in process technology make it possible to create mixed-signal integrated SoC designs. Most

parts of these SoC’s are completely digital rather than analog. Today, the transistor density has

reached 820 million transistors for latest Intel quad-core processors, fabricated in 45nm technol-

ogy. This huge increase in complexity has been made possible due to the development of synthe-

sis, layout and verification tools for the digital domain. The identification of intermediate design

representations for describing digital subsystems were behind the success of these tools: A subsys-

tem is described using VHDL or Verilog behavioral description. Then this behavioral description

is converted into an intermediate design representation, namely control/data flow graphs. This in-

termediate representation allows the abstraction of behavior into a clocked sequence of operators.

The control/data flow graphs are then optimized to more compact graphs. The sequencing of op-

erators in the graph is implemented using a finite state machine called control path. In each state,

the flow of data and operations are then implemented by connecting standard cells with a bus

architecture. The resulting hardware is called the data path. Both the control path and data path

realize together the required behavior. It is clear that the successful identification of intermediate

design representations gave the EDA tools enough insight to deal with the problems of digital

design and behavioral abstraction.

Despite some substantial progress achieved in the past from academic research, the specific

problems of analog circuit synthesis are such cumbersome that some designers strongly doubt

that it will ever happen. The fundamental problem for analog design is the lack of an intermediate

design representation that can abstract the behavior of analog circuits in appropriate sequence of

design steps. Spice netlists are the most common design representation for analog circuits. Netlists

describe structure rather than behavior. In general, a design representations for analog circuits

should have the following characteristics:

• The design representation should allow design abstraction from the system level down to

2 Introduction

the technology level.

• It should abstract the behavior of the circuit, hierarchically, from the atomic behavior of

building blocks.

• It should allow to compute the effect of system-level parameters on the transistor-level pa-

rameters.

• It should allow the documentation of design knowledge in appropriate design steps.

• It should ensure that the documented knowledge is an executable, reusable and consistent

entity.

• It should point the different problems in analog design and repair strategies to resolve them.

• It should allow the designer to use more intuitive quantities to describe the behavior.

• It should allow the computation of the electrical behavior of the analog circuit accurately

and efficiently.

• It should be used for many different types of analyses such as DC sweep, Monte-Carlo anal-

ysis, sensitivity analysis, ... etc.

• It should abstract the behavior independent of the fabrication process used.

• It should be directly mapped to any fabrication process.

• It should be stored in a database for later use.

Despite that few successful attempts have been recorded in literature, the hope is to be able to

write soft analog intellectual properties (IP) that can be synthesized from the system level specifi-

cations down to the physical level given a target technology. The emergence of analog intellectual

properties (IP) will definitely favorize the development of this research direction. Design reuse

of analog IP blocks will thus gain more importance in the coming few years especially with the

rapid advances in fabrication technologies led by the digital system needs. Analog cells would

have to be migrated to these new technologies with minimal manual contributions. While analog

design automation methodologies are not yet widely accepted by analog designers, design reuse

will soon be a huge driving force.

1.2 Contribution

The main contribution of this work is the identification of an intermediate representation for doc-

umenting analog design knowledge into a consistent and reusable form. The proposed design

representation is quite general since it can describe any type of analog circuits. It is evolutive

1.2 Contribution 3

since it promotes the enhancement, the modification and the maintenance of analog intellectual

properties. It possesses all the advantages enumerated in the previous section. To summarize, the

work presented in this thesis is fivefold:

Transistor Modeling: In this phase, a set of electrical parameters have been chosen to size and

bias a transistor. Since it is required to compute these parameters, it is essential to numerically

invert a BSIM3V3 transistor model in order to compute them accurately. This step is necessary to

control design errors in the earliest design phases. These design errors may accumulate to other

sources of errors in later design phases, resulting in an erroneous design. This phase has been

successfully implemented giving rise to the concept of the sizing and biasing operators.

Design Methodology: An innovative design approach to extract and reuse design knowledge

is proposed. It is called hierarchical sizing and biasing methodology. Traditional analog design

requires a complex sizing procedure, called a design plan, in order to compute transistor biases

and geometries from circuit specifications. One circuit has many possible design plans depending

essentially on designer expertise and on hypotheses used in the design. Furthermore, the abstract

design may slightly shift from a simulated circuit design. We propose the hierarchical sizing

and biasing to automatically extract abstract and simulatable design plans. The abstract design

plan is generated in the designer mode. This design plan sizes and biases the analog circuit while

respecting constraints and hypotheses imposed by the designer. The simulatable design plan is

generated in the simulator mode. It allows the designer to verify if the sized circuit resulting from

his abstract design plan is functioning as expected. Both abstract and simulatable design plans are

extracted automatically from the circuit structure and designer hypotheses. The method ensures

that the generated design plans represent reusable and consistent entity. Our approach deals with

different aspects of analog design such as identification of degrees of freedom, systematic offsets

and negative feedback circuits. The proposed method proved its efficiency and accuracy over a

wide range of circuit designs.

Language Development: The implementation of the hierarchical sizing and biasing methodol-

ogy have been studied thoroughly. This has led to the development of a design space exploration

language, which has been integrated as part of the CAIRO+ framework. The language has the

following characteristics:

• It is based on text files, hence, it allows modification, debugging and maintenance of analog

intellectual properties.

• It allows the designer to document his analog design knowledge intuitively and seamlessly.

• It allows the designer to express design constraints and hypotheses very easily.

4 Introduction

• It automatically extracts design knowledge while respecting designer’s constraints and hy-

potheses.

• It allows the designer to ensure knowledge consistency.

• It suggests to the designer possible repair strategies to deal with inconsistency.

• It synthesizes the analog IP using a hierarchical bottom-up approach.

• It controls the execution of knowledge using a top-down (left-to-right) approach.

• It accurately reports design errors that occurs during design analysis and execution.

• It ensures the independence of the design representation from the fabrication technology.

• It couples the design representation with a layout generation phase to ensure that the gen-

erated layout satisfies designer’s constraints and hypotheses.

• It creates a customized graphical influence exploration tool for the analog IP.

• It controls the execution of optimization algorithms used to optimize the analog IP.

• It configures testbenchs used to instantiate and test the analog IP.

Tool architecture: A new tool architecture has been proposed to demonstrate the strength of

the hierarchical sizing and biasing methodology. The architecture implements a language-based

methodology that targets both automated synthesis and design reuse for analog IPs. The architec-

ture alleviates the effort of knowledge documentation by introducing a minimum level of design

automation that is still acceptable and fully controlled by the designer.

Case Studies: The hierarchical sizing and biasing methodology was successfully applied to five

different analog intellectual properties IP, namely:

• A two-stage single-ended operational transconductance amplifier.

• A fully differential current-mode integrator.

• A fully differential common-mode feedback amplifier.

• A fully differential transconductor.

• A 0.5V fully differential bulk-input amplifier with local common-mode.

Many aspects of analog design are considered throughout the examples. In each intellectual

property, a complete design plan is automatically generated and represented using dependency

graphs as an intermediate representation for analog design knowledge. The consistency of the

1.3 Outline 5

design plan is ensured. Otherwise, repair strategies are proposed to transform the design into

a reusable and consistent entity. During the synthesis phase, the design plan is executed to de-

termine transistor sizes and biases. Those are later used for analog simulation to ensure their

correctness and accuracy. Both synthesis and simulation have demonstrated high agreements,

proclaiming that the proposed methodology is capable of producing simulator quality designs in

a very reasonable amount of execution time. Thus, facilitating interactive analog design. The pre-

sented analog intellectual properties have been synthesized and simulated in 0.13µm technology

process with VDD = 1.2V .

1.3 Outline

This section gives a brief overview of the contents of the following chapters:

After a brief introduction in chapter 1, chapter 2 defines the context of the thesis. The problem

definition and the objectives of the thesis are clearly stated.

Chapter 3 introduces the state-of-art of the different research fields related to the thesis work.

It includes the methods of DC operating point computation, compact device modeling, model

development and standardization efforts, design reuse techniques for analog IP and analog design

representation.

In chapter 4, a complete formulation for the transistor sizing and biasing that unifies both

standard simulation method and operating point driven formulation, will be presented. In the

proposed formulation, a library of procedures for computing the sizes and biases of a transistor

is developed. These procedures numerically invert the standard BSIM3V3 transistor model. The

procedures are overloaded to implement both standard simulation method and operating point

driven formulation. A sizing and biasing example is demonstrated at the end of the chapter.

Chapter 5 elaborates a design representation for the basic building blocks called devices. Some

key concepts are elaborated and used to create suitable sizing procedures for the devices. These

sizing procedures are represented by dependency graphs which are chosen to be the intermediate

design representation for devices. Examples are illustrated throughout this chapter.

In Chapter 6, the hierarchical sizing and biasing methodology is proposed to automatically

generate suitable design plan for the circuit topology. The created design plan respects the de-

signer’s hypotheses. The design plan is represented by dependency graphs. Since a design plan

should represent a consistent knowledge about the circuit, it should not contain any inconsistency.

Inconsistency occurs if the design is under- or over-specified. Inconsistency appears as redundant,

cyclic or conflicting hypotheses. The principles presented in this chapter deals with each type of

inconsistency. Based on those principles, different aspects of analog designs are then studied such

as degrees of freedom, systematic offset, feedback circuits, ... etc . Then, some automated ap-

proaches are proposed to deal with these aspects. As a case study, the proposed methodology is

illustrated through the design of an OTA amplifier.

6 Introduction

In Chapter 7, the proposed methodology is applied on four more case studies, namely: a fully

differential current-mode integrator, a fully differential common-mode feedback amplifier, a fully

differential transconductor and a 0.5V fully differential bulk-input amplifier with local common-

mode. For each circuit, the design plan is automatically generated and the circuit is synthesized.

The computed sizing and biasing are then compared to the simulation results of a commercial

analog simulator.

In chapter 8, the concept of knowledge-aware synthesis is introduced as a potential application

for the hierarchical sizing and biasing methodology. The advantages of knowledge-aware synthe-

sis are discussed. It will be shown that the method allows more intuitive choice of optimization

parameters, potential reduction in the design space, and faster optimization performance when

introduced inside an optimization loop. A complete formulation of the cost function along with

the Nelder-Mead Simplex optimization algorithm will be discussed. It will be shown that the pro-

posed synthesis system is capable of producing simulator-like quality designs in a very reasonable

amount of execution time. This compares favorably to the state-of-art synthesis tools. Conse-

quently, interactive analog design can be considered using the proposed synthesis system.

In chapter 9, conclusions are drawn together with the possible directions for future research

and development.

Chapter 2

Motivation and Problem Definition

2.1 Introduction

Analog design automation tools lack behind digital tools in generality and productivity. The fun-

damental difficulty is how to represent analog design knowledge so that analog design automa-

tion tools have enough insights on design issues. This chapter presents the motivations that led

to the development of the hierarchical sizing and biasing methodology.

In section 2.2, the motivations driving our study are introduced. It is shown that firm intellec-

tual properties (IP) are considered the most appropriate format for analog IP cores.

In section 2.3, an audio digital signal processor (DSP) will be discussed as a design example.

The low-pass filter that is one important component of the audio processor is realized. Traditional

design phases will be outlined out of the low-pass filter design.

In section 2.4, motivations and requirements on the hierarchical sizing and biasing methodol-

ogy will be outlined.

In section 2.5, a tool architecture is proposed to satisfy all the requirements for the hierarchical

sizing and biasing methodology.

In section 2.6, conclusions about analog design automation and firm intellectual properties are

drawn.

The hierarchical sizing and biasing methodology will be explained in further details in the next

chapters.

2.2 Motivation: System-on-Chip Reuse and Integration

The semiconductor industry has continued to make impressive improvements in the achievable

density of very large-scale integrated (VLSI) circuits [Semiconductors]. In order to keep pace

with the levels of integration available, design engineers have developed new methodologies and

techniques to manage the increased complexity inherent in these large chips. One such emerg-

ing methodology is system-on-chip (SoC) design [Saleh06], wherein predesigned and preverified

8 Motivation and Problem Definition

blocks (often called intellectual property (IP) blocks, IP cores, or virtual components) are obtained

from internal sources, or third parties and combined on a single chip. These reusable IP cores

[Keating02] may include embedded processors, memory blocks, interface blocks, analog blocks,

and components that handle application specific processing functions.

The main prerequisite for creating SoC designs is a set of reusable IP blocks that support plug-

and-play integration. IP blocks are the highest level building blocks of a SoC. A library of reusable

IP blocks with various timing, area, power configurations is the key to SoC success as the SoC in-

tegrator can apply the trade-offs that best suit the needs of the target application. The process of

creating a reusable IP block, however, differs from the traditional ASIC design approach. Typ-

ically, it may require five times as much work to generate a reusable IP block compared to a

single-use block [Keating02].

While design productivity can be improved significantly with the use of digital IP blocks,

another bottleneck exists if the designs include analog and mixed-signal components. Digital

design has a well-defined, top-down design methodology but analog/mixed-signal (AMS) design

has traditionally been an ad hoc custom design process. When analog and digital blocks coexist

on the same substrate, the analog portion of the design can be more time-consuming to develop

even though it may represent a smaller percentage of the chip area. In a few years, it is anticipated

that more than 70 percent of all SoC designs will have some form of analog/mixed-signal blocks

[Semiconductors]. This increase is consistent with the expected growth of the wireless industry

over the same period.

In order to keep pace with rapidly evolving markets, the productivity of AMS design can

be improved using a mixed-signal SoC design flow [Kundert00, Gielen00], employing AMS IP

[Madrid01, Li03, Hamour03]. One of the main advantages of the use of AMS IP in SoCs is the po-

tential reduction in power, which is especially important in battery-operated applications such as

personal digital assistants (PDAs), wireless local area networks (LANs), etc. Typical AMS compo-

nents include operational amplifiers, analog-to-digital converters (ADCs), digital-to-analog con-

verters (DACs), phase- locked loops (PLLs), delay-locked loops (DLLs), serializer/ deserializer

transceivers, filters, voltage references, radio frequency (RF) modules, voltage regulators, analog

comparators, etc. Many of these blocks are delivered in the form of hard IP and targeted to one

application in a specific fabrication technology. Therefore, they cannot be easily migrated to other

applications and other technologies by the end user.

Compared to digital IP, AMS IP must provide an even greater degree of flexibility in the design

parameters and performance characteristics. While the general function of an analog block may be

the same in different applications, the design specifications may vary widely between the appli-

cations. Furthermore, the performance of AMS IP blocks is significantly influenced by parasitics

and interactions with the surrounding environment, often in the form of power supply fluctua-

tions and substrate noise effects. Proper modeling of the interfaces between the different blocks is

important in the design process to account for different effects such as loading and coupling. This

2.2 Motivation: System-on-Chip Reuse and Integration 9

is needed to achieve correct performance when used in the overall system-level design [Ju91].

Currently, because of the complexity of analog/mixed signal design and its sensitivity to the

surrounding environment, AMS blocks are most commonly presented in the form of hard IP. How-

ever, this form has limited scope of applications. Hard IP will reduce the design cycle significantly

when the specifications and fabrication processes are identical, but will not greatly improve the

design cycle if it has to be modified in any way or migrated to a new process. This calls for a more

flexible definition for the format in which the AMS IPs are provided. Firm IP [Saleh06] appears

to be the most appropriate format to deliver the AMS IP library components. In this form, the IP

captures suitable schematics of the analog blocks with parameters that are adjustable to optimize

the design for specific applications. Unlike hard IP, this form allows ease of migration of IP from

foundry to foundry, customer to customer, and application to application.

Optimization to

produce viable sets

of solutions

Schematic

View

View

Physical

TestBenches

Layout

Sizing Selection

Parasitic Extraction OK
Yes

No

selection of

User/Tool

optimal solution

GDS−II

Firm IP

Figure 2.1: Proposed analog/mixed-signal IP hardening flow.

The traditional flow for AMS design relies heavily on the expertise and experience of the de-

signer. The design process begins with the performance specification of the component for a target

application. Ideally, the AMS block should be described at a high level in the form of soft IP as

in the digital case. System-level designers typically use tools such as MATLAB [MathWorks] for

specification and simulation. In addition, analog/mixed-signal hardware description languages

(AMS-HDL) are increasingly used to model these types of circuits. The languages are a relatively

10 Motivation and Problem Definition

new addition to the design process, and the most commonly used are Verilog-AMS [Verilog-AMS]

and VHDL-AMS [VHDL-AMS]. SystemC-AMS [SystemC-AMS] that covers functional, architec-

tural and linear electrical network levels, is currently being standardized. Automatic generation

of AMS architectures from AMS-HDL is still in its infancy because of the large number of variables

associated with AMS design. However, the current contribution of these AMS-HDLs to system-

level design is highly significant. They provide the necessary platform for system level verifica-

tion, an important part of design quality. Verification of mixed-signal SoCs requires co-simulation

of analog and digital behavioral models to reduce simulation costs [Rashinkar01].

Since AMS blocks cannot be easily synthesized from a high-level specification without

low-level support, designers must follow a design process such as the firm IP hardening flow

[Rajsuman00, Hamour03] illustrated in Fig. 2.1. The starting point of the flow is the set of selected

library components that comprise the unoptimized schematic view of the design. This library

consists of parameterized reusable components and is an essential part of the design flow. After

an architecture is chosen, the firm IP is taken through the IP hardening flow for optimization of

the circuit parameters to maximize performance and to generate the final GDSII layout of the

block.

When developing firm reusable AMS cores [Madrid01, Hamour03], the usual precepts of a

good design must be followed. That is, there should be a good formal specification, a good ar-

chitectural design and a good circuit implementation. In addition, there are a number of steps

that must be followed to achieve reusability, as discussed below. A successful IP block should

be parameterized, easily verified through reusable test benches, well documented, and have as-

sociated views to ease the derivative design process. Specifically, an AMS IP block should have

a behavioral/ analytical view (in AMS-HDL), a parameterized schematic view (transistor level),

and a layout view (floor plan). In addition, test benches are needed to validate the performance of

the circuit under different operating conditions and at various process corners. They are used as

the basis for verification of specifications and for exploration of the design space for the system.

We conclude that the development of AMS IP must take a different approach compared to

digital IP development. The IPs must be able to handle and transfer both design experience and

heuristics from the original design to subsequent design derivatives. In reality, this constitutes the

reusable IP in the analog design process.

In order to address the problem of layout representation for firm IP, a startup company named

CIRANOVA [Ciranova] developed a language-based design methodology for analog and mixed-

signal designers, enabling the creation of reusable and migratable layout generators. It is evident

that CIRANOVA’s approach requires a language-based behavioral description methodology that

allows designers to develop analog IPs in the form of libraries of parameterized generators, to size

and bias those IP, and to generate physical views for sized IPs. Both the electrical behavior and

physical view can communicate in a loop in order to ensure that the generated physical view have

the required electrical behavior. In this perspective, CAIRO+ [Dessouky01, Tuong06] language-

2.3 Analog Design of an Audio DSP 11

based framework was proposed to facilitate the development of parameterized generators for

analog firm IP.

The work presented here, addresses the problem of elaborating an intermediate design repre-

sentation in order to document, judge and repair knowledge in an analog firm IP. This interme-

diate representation will serve for sizing and biasing a firm IP automatically. The electrical view

of a firm IP communicates with its physical view to accurately generate the corresponding hard

IP. The design representation will provide future EDA tools enough insight to deal with different

aspects of analog design. As anticipated, the design representation will deal with both design ex-

perience and heuristics imposed by the designer. This is performed in a fully abstract way suitable

for analog firm IPs. Briefly, the designer will have full control on the construction of electrical and

physical views of the analog firm IP.

2.3 Analog Design of an Audio DSP

In this section, we illustrate the traditional steps involved in the design of an audio DSP processor.

We develop a top-down systematic approach for the design of a part of the audio DSP, i.e. a low-

pass filter. To realize the filter, we use a single-stage amplifier in an active-RC configuration. We

show how specifications in the system level affect circuit performances imposed on the amplifier.

We deduce how circuit parameters are mapped in the design space. In later sections, we propose

a hierarchical sizing and biasing methodology that reposes on those principles.

2.3.1 Case Study: Audio DSP

Suppose that the audio digital signal processor shown in Fig. 2.2 is to be designed. The audio

processor should eliminate echos that accompany the singer sound. Instead of directly hearing

the singer, the singer sound will be captured by a microphone and then processed by the audio

processor. Then the processed sound is directed to loud speakers free of echos.

Let us further examine the architecture of the audio DSP. The singer sound is first captured

using a microphone. The microphone converts the sound into an electrical signal. This signal is

then filtered using low-pass filter to reject noise that is outside the audio band. The filtered signal

is then fed to amplifier to amplify the signal level. This amplified signal is then converted to a

bit stream using an analog-to-digital converter (ADC). Next, the bit stream is processed using a

DSP processor that executes an echo elimination algorithm and outputs the sound in the form of

a bit stream that is free of echo. The output bit stream is converted back to an analog signal using

a digital-to-analog converter. This processed analog signal is filtered using a low-pass filter to

keep the signal in the audio band and remove noise outside the band. The audio signal is then

amplified using a power amplifier which drives loud speakers.

The effect of each block, beyond the DSP processor, on the audio signal is illustrated in Fig. 2.3.

The output of the DSP processor is a repeated audio signal spectrum with sampling frequency Fs

12 Motivation and Problem Definition

Figure 2.2: Application: Audio digital signal processing.

and signal bandwidth Fs
2 . The digital-to-analog converter (DAC) reshapes the audio signal in

the form of a normalized sync function, as shown in the figure. This form determines the filter

response required to reject the signal components outside the required band. The output of the

filter contains only the signal band of interest and some quantization noise coming from the DAC.

The signal power is then increased at the output of the power amplifier and then fed to loud

speakers.

Figure 2.3: Audio DSP: The signal spectral density at output of each block versus frequency.

2.3 Analog Design of an Audio DSP 13

2.3.2 Filter Realization

Let us assume that the low-pass filter at the output of the DAC is to be designed. First, a filter

topology is chosen to implement previously determined filter response. A designer may choose

the active-RC implementation of the filter shown in Fig. 2.4. The specifications on the filter re-

sponse should be translated into some specifications on the amplifier used. In general, sufficient

gain and unity-gain frequency are required for the amplifier.

+

−

OUTPUT

FR

AMP

INPUT
R

CF

Figure 2.4: Low-pass active-RC filter.

2.3.3 Amplifier Realization

The definition of the amplifier specifications is shown in Fig. 2.5. We denote the static gain Ad0,

the dominant pole Fd, the unity-gain frequency FT and the first non-dominant pole Fnd.

Once the specifications on the amplifier are determined, the amplifier topology is chosen to

implement them. The topology is then sized and biased using conventional analog design ap-

proaches.

For simplification, the single-stage output transconductance operational amplifier shown in

Fig. 2.6 is selected. Since this topology needs to be sized, the transistor size ratios W1

L1
, W2

L2
, W3

L3
, W4

L4

and W5

L5
are computed from the amplifier specifications.

Since a transistor width can reach a Wmax of 10000µm and the physical grid size for 130nm

technology is λph is 5nm, the maximum number of possible values for the width is Wmax
λph

= 2 · 106

values per transistor. For the five transistors of the amplifier in Fig. 2.6, the total design space

contains (2 · 106)5 = 32 · 1030 values. This design space is very huge, therefore, the designer must

have efficient methods to rapidly explore this very huge design space.

Traditionally, there exist two methods to explore the design space: simulation and knowledge

Capture:

14 Motivation and Problem Definition

Dominant Pole

First
First

Non−Dominant

Pole

d0
A

F
T

F
d

Fnd
Freq. (Hz)

A
m

p
li

fi
e

r
G

a
in

 (
d

B
)

Bandwidth

Frequency

Unity−Gain

Figure 2.5: Bode plot of the amplifier gain.

W

L

2

2

W 3

L3

W

L

1

1

W

L

5

5

W 4

L4

VIN+ VIN−

VBIAS

C L
M1 M2

M3 M4

M5

IBIAS

Figure 2.6: Single stage output transconductance op-amp.

• Simulation: Designs are refined by trial-and-error using an iterative time-consuming ap-

proach. This is performed using standard spice simulators. In spice simulator, circuits are

described using transistor level netlists. Netlists can be flattened (using only transistors) or

hierarchical (using subcircuits). Moreover, simulators use very precise transistor models for

simulation. Examples of commercial simulators are SPICE (Berkeley Open Source), ELDO

(Mentor Graphics), SPECTRE (Cadence) and HSPICE (Synopsys).

2.3 Analog Design of an Audio DSP 15

• Knowledge Capture: Designs are analysed by an experienced designer and equations that

describe the behavior of the circuit are extracted. The method is very time-consuming since

it requires long time to extract equations. Then it is rapid afterwards when directly apply-

ing them. The method is also robust, since the designer ensures that mismatch and other

phenomena are taken into account. Since the method relies on hand calculations, designers

generally use very approximate models during hand analysis. The method assumes that the

circuit is flattened at the transistor level. An example tool relying on this method is OASYS

[Harjani87, Harjani88, Harjani89b, Harjani89a].

W 3

L3

W

L

2

2

W

L

4

4

W

L

5

5

W

L

1

1

VIN+ VIN−

VBIAS

C L
M1 M2

M3 M4

M5

IBIAS

Figure 2.7: Width propagation in OTA.

Our main objective is to propose a methodology that combines the advantages of both methods

described above. Our proposed method should be precise as in simulation, robust and rapid as in

knowledge capture and fully hierarchical in order to reuse knowledge.

2.3.4 Traditional Phases of Analog Design

To illustrate the traditional phases involved into analog design, let us identify the different design

steps required to size and bias the amplifier shown in Fig. 2.6. A simplified sizing procedure will

be extracted out of these design steps.

Let us suppose that the width of a MOS transistor is to be computed using the quadratic model

of the drain current IDS in the strong inversion region,

IDS =
µ

2
Cox

W

L
(VGS − Vth)2(1 + λ · VDS) (2.1)

=
µ

2
Cox

W

L
(Veg)

2(1 + λ · VDS) (2.2)

16 Motivation and Problem Definition

where the µ is the mobility of electrons near the silicon surface, Cox is the gate oxide capacitance

per unit area, VGS is the gate-source voltage, Vth is the threshold voltage, λ is the channel-length

modulation coefficient, VDS is the drain-source voltage and Veg is the overdrive gate voltage. This

very simple model is based on device physics appropriate for long-channel and uniform doping.

Because the model equation is simple and easy to understand, it is still used for hand calcula-

tions and preliminary circuit simulations. However, the model has poor accuracy and scalability

[Cheng99].

To simplify design steps, it is assumed that the transistors of the amplifier have equal length

L. The width of the MOS transistor is then computed by inverting equation 2.1,

W =
2 · L · IDS

µCox(VGS − Vth)2(1 + λ · VDS)
(2.3)

This equation is used to compute the widths of M1, M3 and M5. Widths are then propagated from

M1 to M2 and from M3 to M4 ash shown in Fig. 2.7. Neglecting the channel-length modulation

effect, equation 2.1 becomes

IDS =
µ

2
Cox

W

L
(VGS − Vth)2 (2.4)

=
µ

2
Cox

W

L
(Veg)

2 (2.5)

From equation 2.4, the transconductance of the NMOS transistor is computed as:

gm =
∂IDS

∂VGS
|VDS ,VBS

(2.6)

= µCox
W

L
(VGS − Vth) (2.7)

= µCox
W

L
Veg (2.8)

=
2IDS

Veg
(2.9)

To compute the width from equation 2.3, the drain current IDS and the transistor length L

should be determined. Actually, IDS should be determined from the system specifications of the

filter. As explained in section 2.3.2, the filter requires an amplifier of sufficient static gain Ad0 and

sufficient unit-gain frequency FT . Using the unity-gain frequency specification, one can determine

the required current flowing in transistor M1 using equation 2.9 in:

FT =
gm,M1

2ΠCL
=

1

2ΠCL
· 2IDS,M1

Veg,M1

(2.10)

Inverting equation 2.10, the required current flowing into M1 is given by:

IDS,M1
= Π · FT · Veg,M1

· CL =
IBIAS,M5

2
(2.11)

2.3 Analog Design of an Audio DSP 17

Using the static gain Ad0, one can compute the required length L in equation 2.3. From small-

signal analysis, the static gain is expressed by:

Ad0 =
gm,M1

gds,M1
+ gds,M3

=
1

Veg,M1

(
1

1
L1·VE,M1

+ 1
L3·VE,M3

) (2.12)

where VE is the early voltage. Assuming that L1 = L3 = L and inverting equation 2.12, one can

determine the length L shared by all transistors:

L = Ad0 · Veg,M1
· (1

VE,M1

+
1

VE,M3

) (2.13)

From the above discussion, a first order sizing procedure for the amplifier that starts from

system specifications down to performances is illustrated in Fig. 2.8. Five abstraction levels are

identified for the amplifier: system level, circuit level, transistor level, small-signal parameters and per-

formance estimation. At the system level, the static gain Ad0 and unity-gain frequency FT are first

specified for the amplifier from the filter specifications. In the circuit level, these specifications

are used to determine amplifier circuit parameters such as the biasing current IBIAS,M5
, the dif-

ferential pair current IDS,M1
and the length of the transistors L. These circuit specifications are

translated into the transistor level to compute the biasing voltages VGS,M1
, VDS,M1

and the transis-

tor width WM1
. Similar steps in the transistor level are used to compute the widths of M3 and M5.

Once all the circuit parameters are determined, the small signal parameter gm,M1
is computed the

next level. Finally, the equation for the input thermal noise of the amplifier is expressed in terms

of the small signal parameter gm,M1
.

Since many levels of design are dealt with during the amplifier sizing, it is essential to iden-

tify the parameters that are used in each level of abstraction. The temperature Temp is general

parameter that should is fixed by the designer. In the system level, system parameters Ad0 and

FT are identified. In the circuit level, circuit design parameters such as the current IDS,M1
and

the length L are determined out of system parameters. Note that the overdrive voltage Veg,M1

is selected at the circuit level to fix the region of operation of the transistor as in the gm

ID
method

[Silveira96]. Note also that the common-mode input voltage VIN+ and the common-mode output

voltage VOUT are generally fixed in the circuit level. In the transistor level, transistor parameters

such as the biasing voltages (VGS,M1
,VDS,M1

) and the width WM1
are determined from circuit and

model equations. Next, small signal parameters such as the transconductance gm,M1
are deter-

mined by evaluating model equations. Finally, linear performances such as static gain Ad0, unity-

gain frequency FT , phase margin φm, ..., input-referred thermal noise Sth,input are computed in

terms of small signal parameters using performance equations extracted by experienced circuit

designer. Starting from the circuit level, the parameter set at each level of abstraction and their

successive transformations are illustrated in Fig. 2.9.

18 Motivation and Problem Definition

System Level

Design an amplifier with:

- Sufficient static gain Ad0

- Sufficient unity-gain freq. FT

?

Circuit Level

IDS,M1
= Π · FT · Veg,M1

· CL

L = Ad0 ·Veg,M1
·(1

VE,M1

+ 1
VE,M3

)

?

Transistor Level: same steps for M3 and M4

VGS,M1
= Veg,M1

+ Vth,M1

VDS,M1
= VOUT − (VIN+ − Veg,M1

− Vth,M1
)

WM1
=

2·LM1
·IDS,M1

µCox(VGS,M1
−Vth,M1

)2(1+λ·VDS,M1
)

* assuming that Vth,M1
is known from technology

?

Small-signal Parameters

gm,M1
= µCox

WM1

LM1

Veg,M1

?

Performance Estimation

Sth,input = 32·K·Temp
3·gm,M1

Figure 2.8: First order sizing procedure for the amplifier.

2.4 Hierarchical Sizing and Biasing Methodology 19














Temp

VIN,i

Veg,i

IB,i

VOUT,i

Li














︸ ︷︷ ︸

Circuit

Parameters

⇒














W1

VGS,1

VDS,1

.

Wn

.














︸ ︷︷ ︸

Biases+

Sizes

⇒














gm,1

gds,1

Cgs,1

.

gm,n

.














︸ ︷︷ ︸

Small− Signal

Parameters

⇒














Ad0

FT

φm

.

Sth,input

.














︸ ︷︷ ︸

Linear

Performances

Figure 2.9: Parameter mapping in the design space..

2.4 Hierarchical Sizing and Biasing Methodology

Recall from section 2.3.3 that our main objective is to propose a methodology that combines the

advantages of both simulation and knowledge capture. Our proposed method should be precise

as in simulation, robust and rapid as in knowledge capture and fully hierarchical in order to reuse

knowledge.

These objectives can be achieved by automating the design steps, presented in Fig. 2.9, from the

circuit parameters down to the small-signal parameters. The performance equations are assumed

to be available through circuit hand analysis, through the use of symbolic analysis [Gielen95],

or through the use of performance modeling techniques using statistical methods such Support

Vector Machines [Bernardinis03], Response Surface Models [Spence99], ... etc.

In order to map the vector of circuit parameters into the vector of sizes and biases, the designer

has to write a complex sizing procedure that depends mainly on the circuit topology, on designer’s

hypotheses, and on the different constraints that are imposed to ensure circuit functionality and

robustness as in the sizing rules method[Graeb01]. Automating the extraction of suitable sizing

procedures requires an identification of an intermediate design representation that allows us to

store and analyze the sizing procedure and to convert it to well-defined consistent and top-down

design steps. Introducing automation at this level, accelerates the design cycle of an analog circuit

and ensures its robustness. To be fully hierarchical, the development of the sizing procedures should

respect the hierarchy existing in the analog circuit. Respecting hierarchy encourages knowledge

reuse in the basic building blocks level, in the circuit level, and in higher levels of abstraction.

One remaining factor that needs to be ensured is the accuracy of the sizing procedures. To

map sizes and biases to the small-signal parameters, the transistor model equations need to be

evaluated. Here, the accuracy is ensured by evaluating standard BSIM3V3 transistor model. Since

a real model is used, the sizing procedures should attain a precision that is very comparable to

simulation.

To fulfill the requirements for the hierarchical sizing and biasing, four different methodologies

20 Motivation and Problem Definition

have been proposed:

1. Transistor sizing and biasing methodology: This methodology consists of precisely sizing

and biasing a transistor using standard transistor models such as BSIM3V3 Berkeley com-

pact model. The main contribution is the development of the sizing and biasing operators

that are considered as the interface between the transistor level and the standard transistor

models. Each operator is capable of numerically inverting the BSIM3V3 model to compute

unknown sizes and biases. The implementation of operators fulfills the precision require-

ment for our proposed methodology. The operators have been overloaded to support both

the knowledge capture and the standard simulation approaches depicted in section 2.3.3.

These are referred to by designer and simulator modes respectively.

2. Device sizing and biasing methodology: This methodology consists of introducing a new

level called device level between the transistor and circuit levels. This level fulfills the re-

quirement of hierarchy by introducing the basic building blocks that are used to construct

more complex circuits at higher levels of abstraction. The methodology consists of defin-

ing an intermediate design representation, using this representation to automatically create

suitable sizing procedures for each building block, and storing the sizing procedure in the

corresponding building block for later reuse. The sizing procedure respects the constraints

imposed on the building blocks to ensure their correct functionality. This fulfills the require-

ment of robustness for our proposed method.

3. Circuit sizing and biasing methodology: This methodology is the most laborious task. It

targets the circuit level and consists of defining circuit structure as an interconnection of ba-

sic building block from the device level. The methodology combines the sizing procedures

of building blocks in order to create more complex sizing procedures for the whole circuit.

This way knowledge stored in the building blocks can be reused in higher levels of abstrac-

tion. This fulfills both requirements on hierarchy and knowledge reuse. The methodology also

analyzes the knowledge presented in the sizing procedures and detects inconsistencies such

as incomplete knowledge, or conflicting hypotheses. It defines repairing mechanisms to cor-

rect those inconsistencies and transform the sizing procedure into a consistent and reusable

top-down knowledge.

4. System Level methodology: This methodology targets levels of abstraction higher than the

circuit level. These levels of abstraction are simply knowledge that enriches the design rep-

resentation of the circuit level. This enrichment may be in the form of constraints at the

system level or system equations that are stored in executable procedures. Unfortunately,

this methodology will be not be tackled in the present work.

The automatic extraction of suitable sizing procedures and their use in the computation of

DC operating point is made possible through the use of a design representation called dependency

2.5 Proposed Tool Architecture 21

graphs. Through the use of the dependency graphs, each level of abstraction can add knowledge

to enrich the dependency graph from the transistor level up to the system level. This way the

whole system knowledge can be stored in a reusable form and further analyzed to ensure its con-

sistency. Therefore, the the hierarchical sizing and biasing methodology is proposed to fulfill the above

requirements. Applying this methodology, one anticipates that the resulting design representation

contains all the required knowledge needed for sizing from the system level down to the transistor

level. The knowledge contribution of each level of abstraction is clearly documented in the design

representation. The design representation itself is a reusable and executable knowledge that can

be easily analyzed. This gives lots of knowledge insight to design automation tools.

We summarize the objectives of the hierarchical sizing and biasing methodology as follows:

1. The nature of analog design knowledge is understood by design automation tools.

2. Knowledge is represented in a unified intermediate design representation. Hence, knowl-

edge reuse is capitalized.

3. The choice of the circuit design parameters in Fig. 2.9 are intuitive to the designer. Instead

of dealing with widths, the designer manipulates currents and voltages.

4. Suitable sizing procedures are automatically extracted from the circuit topology.

5. The methodology is precise as in simulation approach.

6. The methodology is fully hierarchical since hierarchy is explicitly defined and used.

7. The methodology is rapid since it accelerates the design cycle of demonstrated analog cir-

cuits.

8. The methodology is robust since the sizing procedures respect constraints and hypotheses

expressed by the designer.

9. The methodology supports both knowledge capture and standard simulation approaches

through the designer and simulator modes.

2.5 Proposed Tool Architecture

The use of our proposed methodology inside an optimization loop proved to reduce the design

space during optimization. This is due to the fact that the circuit design parameters chosen in

the first vector of Fig. 2.9 have narrow ranges of variations compared to the widths when used as

optimization variables [Krasnicki99]. To demonstrate the effectiveness of the hierarchical sizing

and biasing methodology, a tool architecture has been proposed as shown in Fig. 2.10. The design

tool is an automated knowledge-based synthesis tool. Based on the selected set of circuit param-

eters, the synthesis system automatically generates suitable sizing procedures for the analog IP.

22 Motivation and Problem Definition

The analog IP is described starting from circuit level down to performances. Once the sizing pro-

cedure is generated, it is executed to computed the sizes and biases for every transistor. Then, the

models are evaluated to determine the small signal parameters. These are later used to evaluate

performance equations supplied by the designer. The optimal values of design parameters are

searched for using a search engine. The search engine uses the Nelder-Mead Simplex [Nelder65]

method.

Search Engine

Li

V
eg,i

V
IN,i

I
B,i

V
OUT,i

TEMP W
1

W
n

V
GS,1

V
DS,1

g
m,1

g
ds,1

Cgs,1

g
m,n

A
d0

F
T

S th,inP
e

rf
o

rm
a

n
c

e

E
q

u
a

ti
o

n
s

B
S

IM
3

V
3

 M
o

d
e

l PM

S
iz

in
g

 a
n

d
 B

ia
s

in
g

Figure 2.10: Block diagram of the proposed synthesis system.

The whole synthesis system was introduced in our analog design reuse environment called

CAIRO+. Now, CAIRO+ supports both the standard and automated modes. In the standard mode,

the designer documents his design knowledge in the form of reusable firm IP. In this mode, the de-

signer himself must ensure the consistency of knowledge. In the automated mode, the knowledge

is automatically extracted from the circuit topology and its consistency is automatically ensured

by the synthesis system.

2.6 Conclusions

To keep pace with rapidly evolving markets, analog intellectual properties (IP) has to be widely

adopted. This requires the identification of a canonical format to describe IP cores. One such

used format is the firm IP. Firm IP blocks are provided as parameterized circuit descriptions so

that designers can optimize cores for their specific design needs. Firm IPs appear to be the most

appropriate format to deliver AMS IP library components. Today, analog firm IPs are hardly

synthesized from specifications to layout. Therefore, advanced design tools and methodologies

are needed to explore the potential of firm IPs.

In this perspective, we have presented a design example of an audio DSP processor. Through-

out the example, we identified requirements for methodologies targeting the synthesis of firm IPs.

From these requirements, we propose a methodology for hierarchically sizing and biasing firm

2.6 Conclusions 23

IPs, along with a tool architecture to evaluate it. The following chapters describe in details of this

methodology.

Chapter 3

State of the Art

3.1 Introduction

Analog design automation is a very complex task. An efficient design of an analog intellectual

property touches many levels of design abstraction at the same time, namely system level, block

level, circuit level and transistor level [Jancke06, Doboli03, Martens08]. For this purpose, this chapter

introduces the state-of-art of the different fields that have direct impact on the development of the

hierarchical sizing and biasing methodology.

Since our proposed methodology computes the DC operating point, section 3.2 presents the

methods of DC operating point computation. Three different paradigms are compared, namely: stan-

dard simulation, relaxed DC formulation and operating point driven formulation.

In our proposed methodology, the DC operating point computation reposes on the integration

of a compact transistor model. Therefore, we introduce in section 3.3 and section 3.4 two important

fields, namely: compact device modeling and Model development and standardization efforts that have

largely occupied the industry and academia. Since the industrial aim is to integrate models that

accurately describe the behavior of physical devices, efforts for modeling and standardization are

inevitable to ensure the spread of compact models in the wide electronic community.

Since our proposed methodology is to be used for both synthesis and reuse for analog cells, we

present, in section 3.5, the state-of-art knowledge-based synthesis and design reuse methodologies

that have been developed in the last few decades.

Since our aim is to develop an intermediate design representation for analog, we present in

section 3.6, the known state-of-art design representations.

Finally, section 3.7 concludes the chapter.

3.2 Methods of DC Operating Point Computation

A very important topic to investigate in both approaches, is the DC operating point (DCOP) com-

putation. As DCOP computation is an indispensable task in knowledge-based synthesis, it is very

26 State of the Art

critical for simulation-based synthesis. In the latter approach, a simulator is called to compute

the DCOP at each design point in the design space. DCOP computation [Pillage95] is performed

by solving for node voltages using Newton-Raphson iterations. In each iteration, the circuit is lin-

earized and the admittance matrix is formed using Modified Nodal Analysis [Ho83] technique. Then

the admittance matrix is inverted to get an estimate of the node voltage, using either LU decom-

position or Gaussian elimination. This estimate is introduced into Newton-Raphson equation to

compute a better estimate for the next iteration. Note that one Newton-Raphson iteration requires

the evaluation of the Jacobian matrix for the nonlinear function that is solved. This process con-

tinues until Newton-Raphson converges. In addition to these steps, some runtime overhead may

exist during the simulator execution and control. These factors contribute to the increase of exe-

cution time of individual simulations. The impact on execution time will be great, as discussed

in MAELSTROM [Krasnicki99], that executes thousands of simulations during optimization. It

is clear that DC operating point computation is a mandatory task for both knowledge-based and

simulation-based synthesis. In the following, we describe several approaches for the DC operating

point computation.

3.2.1 Standard Simulation

In a simulator like SPICE, the DC solution is obtained by solving a system of simultaneous non-

linear equations with a Newton-Raphson root solver. The independent variables are the node

voltages Vn = [V1, · · · , VN]. The number of independent variables of the root solver is thus N.

Given the node voltages Vn, one can calculate the branch voltages Vb = AT · Vn , with A the in-

cidence matrix [Vlach94]. The branch constitutive equations g(Vb) allow to determine the device

currents out of the branch voltages and the device dimensions. The constraints are the Kirchhoff’s

Current Law (KCL) of the different nodes. Given the branch currents, one can calculate the error

on the KCL’s. The root solver has to solve the system of simultaneous nonlinear equations:

Vb = AT · Vn → Ib = g(Vb) → δKCL(A · Ib) = A · Ib − Jn = 0 (3.1)

where δKCL is the error on the KCL and Jn is the nodal current source vector of the nodal formu-

lation. The above root solving method is an incomplete solution method: one can’t guarantee that

the solution will always be found. The iterative Newton-Raphson scheme can fail to converge.

3.2.2 Relaxed DC Formulation

Several researchers attempted to solve the problem of DCOP computation during synthesis.

Maulik [Maulik93] used a relaxed DC formulation that specifies Kirchhoff’s Voltage Law (KVL),

Kirchhoff’s Current Law (KCL) and performance goals as constraint functions. Then, the

resulting constrained optimization problem is solved using sequential quadratic programming

techniques (SQP). In a relaxed DC formulation, the node voltages Vn and the device dimensions

3.3 Compact Device Modeling 27

W and L of the MOS transistors are the independent optimization variables. Similarly, in

ASTRX/OBLX [Ochotta96], all KCL and KVL equations were presented as penalty terms in the

overall cost function.

This has two major drawbacks. With a design space scattered full of local minima [Ochotta96],

efficient local optimization is excluded. It becomes necessary to do the optimization with a com-

putationally expensive global optimizer such as simulated annealing. The possible speed gain

obtained by not pursuing an exact DC solution during each optimization iteration is lost by this.

A second drawback of the introduced local optima is that DC consistency is less guaranteed.

DC consistency requires that one achieves the real global optimum. This requires long annealing

times. Avoiding DC inconsistency by increasing the weights on the KCL error measures is tempt-

ing but results in a premature freezing of the node voltages. These are key design parameters

which should be frozen only at the latest moment. As a consequence, the situation may occur

frequently that optimization have to be run multiple times because the obtained results are DC

inconsistent.

3.2.3 Operating Point Driven

In operating point driven sizing[Plas01, Leyn98], one specifies the operating point and determines

the device dimensions W out of it. The independent variables are the node voltages Vn, a set of

independent chord currents Ic and the L’s. Out of the node voltages Vn, the branch voltages

Vb = AT · Vn are determined, and out of the chosen set of independent chord currents, the branch

currents Ib are determined Ib = BT · Ic with B the basic loopset matrix [Vlach94]. Given the L’s of

the devices, the W ’s of the devices can be determined since the IDS,b currents are branch currents

that are calculated out of the chord currents:

Ib = BT · Ic (3.2)

δWi(Wi) = IDS,b − IDS,i(VGS,i, VDS,i, VBS,i,Wi, Li) = 0 i = 1, · · · ,M (3.3)

This is a sequence of M one-dimensional problems. For each transistor, one solves

W = W (IDS , VGS , VDS , VBS , L). The root solving is always converging since the function

W (IDS , VGS , VDS , VBS , L) is monotonic and thus can be solved with a bisection method. A

solution is thus guaranteed (even if it is unfeasible i.e. W < WMIN), making it a complete

method.

3.3 Compact Device Modeling

Compact device modeling [Brooks99] is defined as the process of developing device model equa-

tions used for the electrical representation of the physical behavior of a device. The word compact is

used because these equations are simplified based upon several assumptions that are made when

developing the model equations. Many of the equations in today’s compact models would hardly

28 State of the Art

seem brief or simplified; however, assumptions are still needed to arrive at unique solutions that

can be used by SPICE programs.

Model Equations

Device Physics

(with Approx.)

and

Experimental

Observation (VCCS, R, C, ...)

ElementsCircuit

via "Equivalent"

Implementation Solution Using:

− Linearization

− Time Discretization

.DC, .TRAN, .AC

Parameter

Extraction

Circuit Simulation

(Parameters)

Constants

Model Equation

Figure 3.1: Development cycle of a compact model.

Fig. 3.1 shows the development cycle of a compact model. A model developer uses device

physics with some approximations (using experimental observation) and develops a set of model

equations. The model equations have associated constants (parameters) that need to be deter-

mined from parameter extraction. Once a complete set of these parameters is established, the

model is then implemented into the SPICE programs. SPICE represents these equations as equiva-

lent circuit elements (voltage controlled current sources, resistors, capacitors, etc.) and then solves

the equations based upon the type of simulation requested. SPICE’s engine is a linear equation

solver. Therefore, all the nonlinear elements must be linearized using Taylor series expansion and

then solved via iterative techniques.

Currently, two of the fastest growing segment of the industry are fabless company and the

foundry [Foty97]. The fabless company relies on simulation of their design without having the

opportunity to build it first. The foundry puts the design into the integrated circuit without doing

the design environment. The only means of consistent communication regarding the design and

its performance is the electrical compact model.

In our proposed methodology, we mainly focus on the integration of the standard compact

model BSIM3V3 (BSIM for Berkeley Short-Channel IGFET Model) [Cheng99] developed at the

University of California, Berkeley, CA. The model was selected as the first MOSFET model for

standardization by the Compact Model Council (CMC).

3.4 Model Development and Standardization Efforts 29

3.4 Model Development and Standardization Efforts

As the semiconductor industry grew and new technologies were introduced, a need for electrical

models that SPICE could use for simulation grew accordingly. Many companies addressed this

need by creating focused model-development groups with the results being used internally as

proprietary models. Companies that did not have the luxury of investing many man years of effort

into model development depended on the models inherent in SPICE programs. Unfortunately as

technology progressed, models lagged behind in accuracy and in availability.

To face this lag in model development, the CMC was chartered to promote the international,

non exclusive standardization of compact model formulations and model development. The CMC

consists of 36 leading members in the semiconductor industry such as Cadence Design Systems,

Compaq, Conexant Systems, Hewlett Packard, Hitachi, IBM, Intel, Lucent Technologies, Mentor

Graphics, Motorola, Siemens, and many others. The CMC chose the BSIM3V3 model as the first

formally standardized compact model. Since BSIM3V3 is a very accurate, scalable, low-voltage,

high-speed, analog/digital MOSFET model, it has allowed CMC to develop a methodology for

standardizing compact models. The initial task was to develop quantitative and qualitative tests

for compact models. Tests were developed to show the ”goodness” of a compact model [SIA98].

These tests were not designed to show how accurate a model was, rather to document the short-

comings of the model. These shortcomings can cause simulation problems such as convergence

errors, inaccuracies in the simulation results, or longer than necessary runtime for the simulation.

The model equations by themselves could not be tested without a parameter set, so an initial

extraction methodology was also required. The standardization tasks included improved code

robustness, bug fixes, improved documentation, correction of numerical errors, inclusion of more

accurate portrayal of physical phenomenon, and software management procedures including re-

vision control and release procedures. Today, the CMC supports the standard models shown in Ta-

ble 3.1. The CMC also supports models for passive devices such resistors and varactors[Watts06].

Compact Model Developed at Model Type

PSP Penn State-Philips MOSFET Transistor

HICUM Dresden University of Technology, University of California San Diego Bipolar Transistor

MEXTRAM Philips Bipolar Transistor

BSIMSOI IBM SOI CMOS

LDMOSFET Delft University of Technology High-Voltage MOSFET

BSIM3 University of California Berkeley MOSFET Transistor

BSIM4 University of California Berkeley MOSFET Transistor

Table 3.1: Compact Transistor models supported by CMC [Watts06].

In parallel with the early work on BSIM3, the CMC also worked on establishing an indus-

30 State of the Art

try standard model to simulator Application Program Interface (API). Having such an interface

would greatly speed model development by simplifying the process of installing a model in a

simulator where it can be tested with a variety of circuits. Many attempts have been done to

build model compilers that reads compact device models described in high-level languages such

as VHDL-AMS and Verilog-AMS and automatically generate the simulator device code in C that

can be directly linked with existing circuit simulators such as SPICE3. For example, MCAST

[Wan03, Hu05] shown in Fig. 3.2 reported the successful implementation of industry grade device

models, including EKV, BSIM and BSIM-SOI, in VHDL-AMS and Verilog-AMS.

Device Code

Generation

SPICE 3f5

AdaptorAdaptor

SPECTRE IMB Leader

Adaptor

AST Construction

Auto−Differentation

Auto−Element

Stamping

C/C++ Files

of New Device

C/C++ Files C/C++ Files

of New Device of New Device

Description of a

VHDL−AMS

New Device Model

Intermediate

Format

VHDL−AMS

Parser

Optimization

Simulator Interface Generation

Figure 3.2: MCAST model compiler architecture [Wan03, Hu05].

Commercially, some interesting methodologies have been proposed. For instance, in Mentor

Graphics Mixed-Mode Simulator ELDOTM , the user-defined modeling language (UDM) and the gen-

eralized user-defined modeling language (GUDM) have been proposed. UDM (User-defined models)

is an interface which allows the user to write their own model. UDM can be used to implement

BJT, Diode, JFET and MOSFET. The only limitation of UDM is that the equivalent circuit of the

3.4 Model Development and Standardization Efforts 31

model to implement is imposed, and cannot be changed. For instance, a new diode model can

be implemented via UDM only if the model returns only one charge, one static current, both be-

tween the intrinsic anode and the cathode, an access resistor being optional. If the user wishes to

implement a diode model with two internal nodes, UDM cannot be used, rather GUDM is used.

GUDM is a more general interface which allows implementation of devices with varying equiv-

alent circuit. The internal equivalent circuit of the model is not restricted, the model can have

an unlimited number of internal nodes, static currents, and charges. The only limitation is that

the number of external pins be the same as the number of pins of the generic model (e.g. BJT: 4

pins; diode: 2 pins). To implement a user model, a set of functions, used as initializations, must

be filled out and a new one, used for the model itself, must be coded from scratch. Once imple-

mented, the UDM/GUDM model is compiled and linked to ELDOTM executable file. The model

can be debugged using a simple UNIX debugger.

A similar commercial product called ModelLibTM is proposed by Simucad [Simucad]. The

Simucad SPICE Model Library (ModelLib), shown in Fig. 3.3 is a collection of all of the models

delivered with Simucad circuit simulators as a dynamically linked library. Individual models are

distributed online as pre-compiled, pre-linked, pre-tested binary models that simulator users can

easily download and install when a required model update is available. ModelLib enables access

to the most up-to-date high performance SPICE models for:

1. SmartSpice Analog Circuit Simulator

2. SmartSpice-RF Harmonic Balance Based RF Simulator

3. Harmony Analog/Mixed Signal Simulator

4. Twister Full-Chip Hierarchical Analog Circuit Simulator

Simucad supports MOSFET models, SOI models, DIODE models, TFT models, BJT models, MES-

FET models, JFET models, FRAM models and HBT models.

Simucad offers also the model library development environment shown in Fig. 3.4. It al-

lows convenient and fully independent environment for proprietary model development. Model

source codes and binaries may be shared among different model development teams. It allows

easy and rapid generation and run of a complete set of regression tests for an independent and

isolated model.

Another important initiative in Europe, is the MOS Modeling and Parameter Extraction Group

(MOS-AK) [MOS-AK] which aims to encourage interaction and sharing of all information related

to the compact modeling at all levels of the device and circuit characterization, modeling and

simulations. One of its main targets is to promote standardization of the compact models and its

implementation into software tools.

32 State of the Art

Figure 3.3: SimuCAD: ModelLib Dynamically-Linked SPICE Models [Simucad].

3.5 Analog IP and Design Reuse

3.5.1 Optimization-Based Synthesis Tools

A firm IP can be reused by resynthesizing it using optimization-based synthesis tools. These are

classified into two distinct flows: simulation-based and knowledge-based. A simulation-based

synthesis flow, such as MAELSTROM [Krasnicki99], runs an optimizer in a closed loop with an

analog simulator. Both communicate circularly till an optimal set of values is achieved for design

parameters and the specifications are met. This is shown in Fig. 3.5.

The simulation-based approach uses standard commercial transistor models. Therefore, sizing

accuracy is always ensured. As distinct from the simulation-based approach, a knowledge-based

synthesis flow is normally based on approximate transistor models. In this approach, the designer

has to identify all the circuit equations describing circuit performances in terms of design param-

eters. The designer must also identify a design plan, i.e. an appropriate sizing procedure which

is based on circuit equations, in order to compute sizes and biases. Once determined, the design

plan can be coded using a programming language as C or MATLAB in the form of a reusable

knowledge. In OASYS [Harjani87, Harjani88, Harjani89b, Harjani89a], the codification process in-

cludes the computation of DC operating point and the dimensions for each sub-block used in the

hierarchy of the analog circuit.

The knowledge-based approach is more appealing to the designer than the simulation-based

one. Designers may not trust simulation-based synthesis results or may consider it incomplete.

3.5 Analog IP and Design Reuse 33

Figure 3.4: The Simucad Model Library Development Environment [Simucad].

Figure 3.5: Simulation-based optimization.

Therefore, to resolve the problem of approximate models, knowledge-based synthesis systems

started to incorporate accurate models borrowed from analog simulators. Moreover, the selection

of design parameters in simulation-based synthesis systems in not so obvious. Most systems

directly optimize the dimensions of transistors while many designers tend to use characteristic

currents and voltages. In knowledge-based systems, the designer has full control over the choice

34 State of the Art

of parameters.

We mainly focus our study on knowledge-based synthesis tools. Many research attempts re-

garding this class of synthesis tools have been reported in literature. Those are namely: OPASYN

[Koh87, Koh90], OASYS [Harjani87, Harjani88, Harjani89b, Harjani89a, Carley90], IDAC

[DeGrauwe84b, DeGrauwe84a, DeGrauwe87b, DeGrauwe87a, Degrauwe87c, DeGrauwe89],

ARIADNE [Swings91a, Gielen89, Gielen90b, Gielen90a, Gielen91, Swings91b, Wambacq91],

STAIC [Harvey92], ISAID [Makris92, Makris95, Toumazou90], Maulik [Maulik93, Maulik91,

Maulik92b, Maulik92a, Carley93] and AMGIE [Plas01]. Table 3.2 compared in details the reported

state-of-art knowledge-based synthesis tools.

3.5.2 Firm IP Hardening Flow

The IP hardening flow has been discussed in section 2.2. Fig. 3.6 shows a more detailed flow for

hardening a firm IP using its different views: schematic, analytic, testbenches and physical.

produce viable sets

of solutions

Optimization to

Sizing Selection

Parasitic Extraction

Layout

Testbenches

Analytic View

Physical view

OK

No

GDS−II

Yes

selection of

User

optimal solution

Schematic View

F
ir

m
 I

P

Figure 3.6: Analog/mixed-signal firm IP hardening [Hamour03] .

The concept of IP hardening [Hamour03] can be generically defined as the process of working

from a firm IP and a set of specifications to the production of the GDS-II layout. First an archi-

tecture/topology is selected using the behavioral and analytical models associated with the IP

blocks; the selected blocks must satisfy the specifications supplied by the user. Once a topology is

selected, the firm IP is optimized by simulating the testbenches to measure performance; the cir-

cuit is optimized over process corners with typical input/output loading effects included. Next,

the circuit layout is performed; this is followed by parasitic extraction and re-simulation; adjust-

ments to the layout are performed until the specifications are satisfied. For a physical synthesis

3.5 Analog IP and Design Reuse 35

flow to be effective, it must have the knowledge of the typical layout structure for this type of

block.

3.5.3 Scaling Rules

The migration of an analog circuit to a new technology usually requires a complete redesign. Sev-

eral researches attempted to calculate parameters for a given circuit in a new technology, starting

from the same design in an earlier technology.

Galup et al[Galup-Montoro00, Galup-Montoro02] studied the case of maintaining the original

dynamic range and the gain-bandwidth-product specification using two different reuse strategies:

constant-inversion-level scaling and channel-length scaling. Constant-inversion-level scaling keeps gm

ID

constant while channel-length scaling take advantage of the smaller dimensions of a new gener-

ation technology. The most important drawback of this method is the increase of the chip area

during a decrease of supply voltage. Hence, the area of the migrated circuit will be bigger than

the original area. This is due to the dependence of the product W · L on technology parameters

only. These cause the scaling rule for the product W · L to be greater than 1.

Acosta et al [Acosta02] studied the impact the redesign method presented in

[Galup-Montoro00, Galup-Montoro02] on two additional performance aspects (slew rate and

current mirror frequency response). The results show that the method decreases the slew rate

and hence this is an aspect to look after in the resulting design. Regarding the current mirror

frequency response, Acosta’s analysis shows that if the current mirror transistors were originally

designed to work in stronger inversion than the differential pair transistors, the current mirror

pole frequency increases, preserving a good overall frequency response. In addition, the

possibility of applying the bias current as a tuning parameter to customize an existing design for

different applications was analyzed. The results confirm that this approach works well for weak

and moderate inversion designs.

Savio et al [Savio06, Savio04] proposed an enhanced method based on [Galup-Montoro00,

Galup-Montoro02] to obtain a scaled circuit with a frequency behavior similar to the original

one. A tuning procedure modifies the transistor aspect ratios in order to properly scale the

transistor’s transconductances and the output conductances. When transistor’s parasitics re-

duce the frequency performances, an additional numerical loop is performed. In this loop, a

Levenberg-Marquadt optimization procedure is applied until the distance between the two curves

becomes lower than a threshold. Since the transconductance fitting may not ensure that the tran-

sient response are correct, a fitting procedure similar to the frequency fitting is applied to the

transient response. To conclude, Savio’s method improves the original one [Galup-Montoro00,

Galup-Montoro02] since the DC gain is preserved and the power consumption is decreased. How-

ever, the area drawback still exists.

The analog design reuse method proposed by Levi [Levi07a] solves the problem of area. The

proposed method allows the designer to choose the strategy of redesign, hence, the equations

36 State of the Art

which will be used to determine the scaling factors. The choice of strategy depends on the de-

signer goals and system specifications. The method does not suffer from the problem of area: the

chip area decreases with newer technologies. Parasitic effects are not taken into consideration.

Solutions similar to Savio’s work [Savio06, Savio04] could compensate parasitic effects.

3.5.4 IP-Based Library

In the approach presented by Levi[Levi07b], a database holds the hierarchy of analog IP blocks

and their contents at different levels namely system, macro-block, block, cell and transistor levels.

Each IP block is described by different views: symbol, connectical, functional, behavioural, schematic,

layout and characterization views. The objective of the exploration phase is to find one ASIC solu-

tion according to the initial specifications. The chosen method is to perform a top-down explo-

ration, from the macro-block level to the cell level using validity domain as a selection criterion. If

many different corresponding IPs are found at one level, the one with the largest validity domain

is selected. The method was applied to a neuromorphic ASIC as shown in Fig. 3.7.

System Level

Block level

Cell level

Transistor level

Macro−block level

K Ca LeakNa

schematic

Mathematical functions

Ionic currents

Neuron

Neural Networks

ASIC Hierarchy

Neuron

Sig_act Sig_inact Cin PowNa PowK PowCa

Figure 3.7: IP-based library for a neuromorphic ASIC [Levi07b].

3.5.5 Template-Based Layout Retargeting

In analog design, circuit functionality and performance are extremely sensitive to physical imple-

mentation details. Therefore, it is critical that a layout be optimally implemented. This begins

with a well-chosen topology or architecture followed by carefully crafting all physical details.

Since reaching optimal circuit behavior is an incremental task, designers need to have complete

control at each step of the physical implementation thereby enabling predictable results.

3.5 Analog IP and Design Reuse 37

A simple and proven methodology to achieve these goals is to use well-designed templates

for each type of circuit. Such a layout template includes all the circuit devices and objects and the

connectivity.

The relative placement and orientation of these elements have been carefully chosen in the

template. The properties that are going to be modified for each derivative implementation are the

actual device parameters, sizes and wire dimensions. The template is flexible enough to accom-

modate variations in device parameters and overall cell dimensions but maintains the basic layout

characteristics that were chosen for this family of circuits.

This approach is adopted by Sagantec to migrate circuit layouts for hard IP [Sagantec] as de-

picted in Fig. 3.8.

Figure 3.8: Sagantec template-based layout retargeting [Sagantec].

3.5.6 Recent Knowledge-Based Synthesis Tools

3.5.6.1 CAIRO+: Creating Analog IPs - Reusable and Optimized

Over the last 10 years, many contributors have developed CAIRO+ [Iskander08, Bourguet04,

Tuong06, Dessouky01] under the supervision of Alain Greiner and Marie-Minerve Louërat in LIP6

(Laboratoire d’Informatique Paris 6). CAIRO+ is a language-based design reuse framework that

is capable of migrating an IP from one technology to another. The architecture of an IP gener-

ator is shown in Fig. 3.9. Each generator possesses four different design sections: The CREATE

section specifies a netlist template for unsized schematic, a layout template for relative placement

and a functional interface consisting of input and output parameters. In the DESIGN SPACE EX-

PLORATION section, the designer documents sizing procedures, explores the design space for

38 State of the Art

Designer’s sizing procedure

Design space exploration (DSES)

Layout education for DSE

Shape function computation

Netlist Back−Annotation

Layout

Template

Netlist

Template

Sized

Netlist
Performances

GDSII

Layout

Specifications

Aspect Ratio

Circuit

Device

Generators

Technology 1

Technology 2

Interface

Functional

CREATE section

DESIGN SPACE EXPLORATION section

SHAPE & PLACE section

ROUTE section

Figure 3.9: CAIRO+ IP generator architecture.

trade-offs and evaluates performances in the presence of the generated layout along with para-

sitic effects. In the SHAPE & PLACE, the possible layout configurations are explored to determine

the best layout forms that matches geometric constraints on circuit width and height. In the final

ROUTE section, procedural routing is performed for the generated layout and the netlists back-

annotated with the parasitics. During instantiation in a testbench, the IP generator accepts high-

level specifications, the required circuit aspect ratio, different technologies and the generators for

basic building blocks called devices. After execution, the generator generates three different views:

a structural view in the form of sized netlist, a behavioral view in the form of electrical performances

and a physical view in form of GDSII physical layout.

3.5.6.2 OCEANE: Outils pour la Conception et l’Enseignement des circuits intégrés

ANalogiquEs

OCEANE [Porte08] is developed and maintained by Jacky Porte at LIP6 (Laboratoire

d’Informatique Paris 6). Since the structure of OCEANE is hierarchical, a design flow should be

defined to evolve through this hierarchy. As in the digital domain, the top-down design flow is

the ideal design flow for an analog circuit. Starting with a set of high-level specifications, the

sizing of elementary components corresponding to the lowest hierarchical level does not require

3.5 Analog IP and Design Reuse 39

Choice of Topology Choice of Topology Choice of Topology

Formal

Specifications

Parameterization

Sizing

Modeling

Yes

No No

Parameterization

Sizing

Yes

No No

Structural synthesis

Specifications

Physical synthesis

Specifications

Physical

Netlist/Macromodel

Specifications

Structural

Layout

Parameterization

Sizing

Modeling

Yes

No No

Formal synthesis

First Functional Path

Structural specifications Physical specifications

Specifications

met ?

Specifications

met ?

Specifications

met ?

COMDIAC

Figure 3.10: OCEANE design flow [Porte08] .

a backtrack on a higher-level design phase. The sequence of the different design phases adopted

by OCEANE is a first functional path followed by step-by-step iterative design phase. Considering

the design flow shown in Fig. 3.10, the first functional phase allows to study the feasibility of

the realization of the required performances in the highest hierarchical level. Then, the design

flow is divided into three phases: formal synthesis, structural synthesis and physical synthesis. For

each phase, OCEANE proposes a choice of parameterized topologies, an automated sizing

procedure given for one performance specification, an analytical model for the topology and a set

of technology models for validating the design using simulation. The technology models range

from MOS Level 1 to BSIM3V3 model. If performance specifications are not met, this can be

corrected by modifying the topology parameters or by choosing another topology - for either the

same or previous hierarchical level.

For the formal synthesis, the parameters for sizing and the simulation models depend on the

functional block. For instance, the parameters of a filter may be the coefficients of a transfer func-

tion, quality coefficients, Modeling is performed using a high-level programming language

(typically C language) or using macromodels understood by standard SPICE simulators.

For structural synthesis, the sizing will alter the parameters of an integrator, an amplifier, ...,

etc. In filter realization, the parameters will be capacitor ratios and ideal resistances and capaci-

40 State of the Art

tors, ..., etc. The simulation models are high level models or macromodels.

The physical synthesis phase is independent of the previous synthesis phases. It consists of

generating styles for transistors and passive components [Bourguet04].

3.5.6.3 PAD: Procedural Analog Design

AnalogDigital

PAD Tool

Specs of basic blocks

Circuit schematic

Transistor sizing

Behavioral simulation

and synthesis

Layout generation, extraction

and post layout simulation

Behavioral modeling

and simulation

Assembling

Layout generation, extraction

and post layout simulation

Figure 3.11: Top-down mixed design approach using PAD [Stefanovic05, Stefanovic03, Stefanovic07,

Kayal06].

PAD [Stefanovic05, Stefanovic03, Stefanovic07, Kayal06] is developed at EPFL (Ecole

Polytechnique Federal de Lausanne) under the direction of Prof. Maher Kayal. The introduction

of PAD in a mixed design flow is shown in Fig. 3.11. It is a chart-based design environment

dedicated to the design of analog circuits aiming to optimize design and quality by finding good

trade-offs. This interactive tool allows step-by-step design of analog cells by using guidelines

for each analog topology. Its interactive interface enables instantaneous visualization of design

trade-offs. At each step, the user modifies interactively one subset of design parameters and

observes the effect on other circuit parameters. At the end, an optimized design is ready for

simulation (verification and fine-tuning). The present version of PAD covers the design of

basic analog structures (one transistor or groups of transistors) and the procedural design of

transconductance amplifiers (OTAs) and different operational amplifier topologies. The basic

3.5 Analog IP and Design Reuse 41

analog structures calculator embedded in PAD uses the complete set of equations of the EKV

MOS model, which links the equations for weak and strong inversion in a continuous way.

Furthermore, PAD provides a layout generator for matched substructures such as current

mirrors, cascode stages and differential pairs.

3.5.6.4 Seville Design Reuse Flow

VERIFICATION
SYSTEM

SIZING

DRC+LVS+EXT

SYSTEM LAYOUT

GENERATION

VERIFICATION

DRC+LVS+EXT

GENERATION

MODULE LAYOUT

SIZING

MODULE

CELL

SIZING

CELL LAYOUT

GENERATION

Parasitic−aware

and geometrically

constrained sizing

DEVICE LEVEL

CELL LEVEL

SYSTEM LEVEL TAPE OUT
CONCEPT

Specifications

MODULE LEVEL

Figure 3.12: Seville design reuse flow [Lopez04].

The proposed hierarchical top-down bottom-up reuse flow [Lopez04] shown in fig. 3.12 is

developed in university of Seville. It is based on the design flow presented in [Chang97, Gielen00].

During the top-down path, three sizing processes are carried out:

• System sizing: where the system-level specifications are transmitted down to obtain perfor-

mance specifications for every module-level component of the analog mixed-signal system.

Because of the complexity of the circuit at this level, behavioral models should be used to

speed up the synthesis.

• Module sizing: where the performance specifications of each module-level block are mapped

42 State of the Art

into performance specifications for each of its components. As in system sizing, due to the

complexity of the circuit at this level, behavioral models should be used to speed up the

synthesis.

• Cell sizing: where each cell-level circuit is sized to obtain the value of device-level parameters

(transistor width and length, resistor value, capacitor value, ...) such that the performance

specifications for the cell-level circuit are properly addressed.

During the bottom-up path and after cell sizing, layout is generated by instantiating the cor-

responding layout template and the obtained sizing solution, which includes the implementation

style of each device if geometrical constraints have been defined. No formal verification is re-

quired because the layout template is correct-by-construction. Verification of the extracted layout

is neither necessary, since layout parasitics have been already considered. In this way, sizing-

layout-sizing spins are avoided, thereby speeding up the overall design reuse flow.

Module layout is then generated by assembling the instantiated layout of its cell-level com-

ponents or by instantiating the module layout template provided it has been incorporated as a

reusable block itself. Only in the former case, formal design rule and layout vs. schematic checks

of the module layout are performed. Extraction is necessary in both cases, since no parasitics

were considered during module sizing. Afterwards, the module performance is verified by using

simulation. Provided that the module-level circuit is not very complex, cell-level components can

be replaced by their device-level description. Otherwise, each cell-level circuit can be replaced

by a corresponding behavioral model, properly back-annotated with the attained electrical per-

formance (which includes the performance degradation induce by layout). A redesign loop to

modify the module layout (i.e. layout elements other than cell layout) or to repeat the module

sizing is initiated in the case the module fails to meet the intended performance specifications.

Bottom-up verification of the system-level circuit follows the same methodology. First, the

system layout is generated by assembling the module-level components or by instantiating the

system-level layout template provided it is available as a reusable block. A formal verification

precedes the performance verification where behavioral back-annotated models of the module

level circuits (including performance degradation due to parasitics) can be used to reduce the

simulation time.

3.5.6.5 Binkley’s Transistor Sizing Methodology

The transistor sizing and biasing developed by Binkley [Binkley03] enables optimum design

choices throughout the selection of inversion level coefficient IC and available channel length L.

The inversion level coefficient is a normalized measure of MOS drain current that numerically

describes the level of channel inversion. The use of the inversion coefficient IC allows a knowing

and thoughtful selection of MOS operation anywhere in weak, moderate, or strong inversion,

which strongly influences all aspects of circuit performance. Operation in the region of low

3.6 Analog IP and Design Representation 43

inversion coefficient IC and long channel length L results in optimal DC gain and matching

compared to the region of high inversion coefficient IC and short channel length L where

bandwidth is optimal. The methodology is implemented in a prototype CAD system where

a graphical view permits the designer to explore optimum trade-offs against preset gaols for

circuit transconductance gm, output transconductance gds, drain-source saturation voltage, gain,

bandwidth, white and flicker noise, and DC matching for a 0.5µm CMOS process. The design

methodology can be extended to deeper submicron MOS processes through linkage to the EKV

or BSIM3 MOS models or custom model equations.

3.6 Analog IP and Design Representation

In this section, popular design representation for analog intellectual properties are introduced. It

will be shown how every representation is used for a different level of design abstraction.

3.6.1 Signal Flow Graphs

Signal flow graphs (SFG) were first introduced by Mason[Mason56]. SFG are extensively used in

modeling, simulation, analysis and synthesis of linear electrical networks [Starzyk86, Guindi95,

Lee74]. They represent linear performances in the form of linear transfer functions which may be

expressed for the circuit level as shown in Fig. 3.13, or at the system (or block level) as shown in

Fig. 3.14. Mason also proposed a method known by Mason’s gain formula [Mason56] that computes

the overall transfer function from the SFG graphical representation as shown in the last step in

Fig. 3.13. Contemporary symbolic analysis techniques [Gielen89, Gielen94, Gielen91] use SFGs to

symbolically express the behavior of very complex analog circuits.

3.6.2 Bipartite Graphs

The bipartite graph was used by Gielen et al[Gielen93, Swings91c, Plas01] to represent the expres-

sions direct current (DC), alternating current (AC), transient, etc. that fully describe the relationships

between the circuit behavior and the circuit parameters. These equations are declarative, i.e.,

they only specify relationships that must hold simultaneously between different variables, but

they do not describe a direction nor sequence of solution (they are not assignments). DC equa-

tions are derived automatically from the circuit topology; AC equations are derived by means of

symbolic analysis techniques like with the ISAAC [Gielen89] or SYMBA [Wambacq95] tools; tran-

sient and other equations to date still have to be provided by the designer. In this way, most of a

declarative model can be generated automatically. The resulting model however is still declarative

and, therefore, not yet suited for computer execution. The equation manipulation tool DONALD

[Gielen93, Swings91c, Plas01] is, therefore, used to automatically determine the degrees of free-

dom in the design, then to choose a set of independent input variables (equal to the number of

44 State of the Art

Vin Ic

gm 1/go

VoutI

s.Cc

−s.Cc

−1/go

s.Cc − gm

s.Cc + go

Vout

Vin

+
−

Vin

Vout

Vbias

Cc

+
−

Vout

goVin

Ic

I

gm.Vin

Cc

Figure 3.13: Signal flow graph for a MOS amplifier.

+
−

u(s) c(s)s + 1 10/s^2

u(s)
1 s + 1 10/s^2 1

c(s)

−1

Figure 3.14: Signal flow graph for a two-block system with negative feedback.

degrees of freedom), and then to turn the undirected declarative model into a directed sequen-

tial computation plan, which indicates how (by means of which equations, in which direction,

and in which sequence) all the dependent variables have to be calculated from the values of the

3.6 Analog IP and Design Representation 45

independent ones.

Example : The approach is now illustrated for a simplified example to demonstrate the con-

cepts. Fig. 3.16 shows the DC part in equations (3.4)-(3.13). This corresponds to the declarative

model the common source single-transistor amplifier with resistive load shown in Fig. 3.15. The

equations use the variable notation <quantity>.<terminal>.<instance>. The declarative model

is represented as a bipartite graph containing two different types of vertices: ovals for the vari-

ables, rectangles for the constraining equations. Note that the graph is undirected. The declar-

ative equations are shown in the equation at the bottom of the next page. In total, there are

14 variables constrained by 10 independent equations. Hence, there are four degrees of free-

dom in this simplified example. This means that four independent variables can be selected

as input variables. Many combinations are possible. If we choose, for instance, the variables

v.vdd, log(l.mn), log(w.mn), vgs.mn as input set, then the originally undirected bipartite graph

can be directed using constraint propagation techniques, as shown in Fig. 3.17, indicating the di-

rection and order in which the equations have to be solved in order to calculate the values of

the remaining ten dependent variables (single line ovals) out of the values of the independent

variables (double line ovals).

eq vgnd : v.gnd = 0 (3.4)

eq vout : vout =
v.vdd− v.gnd

2
(3.5)

eq vsb.mn : vsb.mn = v.s.mn− v.b.mn (3.6)

eq vds.mn : vds.mn = v.d.mn− v.s.mn (3.7)

eq ids.mn : ids.mn = f(log(l.mn), log(w.mn), vgs.mn, vds.mn, vsb.mn) (3.8)

eq i.rl : i.rl =
v.p.rl − v.n.rl

rl
(3.9)

eq kcl.out : i.d.mn + i.n.rl = 0 (3.10)

eq i.d.mn : i.d.mn− ids.mn (3.11)

eq i.s.mn : i.s.mn = −ids.mn (3.12)

eq kcl.gnd : i.s.mn + i.gnd = 0 (3.13)

(3.14)

3.6.3 Platform-Based Design

Platform-based design (PBD) as presented in [Rabaey06, Keutzer00, Balarin03] has emerged as

a novel paradigm in the digital domain to allow designing at higher level of abstraction while

considering lower level physical properties. The PBD paradigm is a meet-in-the-middle approach

consisting of a bottom-up characterization phase and a top-down mapping phase. A platform is a

46 State of the Art

gnd

vdd

vout

vin Mn

RL

Figure 3.15: Example circuit to illustrate design plan computation.

eq_vgnd
v.s.mn

v.gnd v.vdd

v.p.rl

i.s.mn

eq_vsb.mni.gnd

eq_kcl.gnd

eq_vout
v.out
v.d.mn
v.n.rl

rl

eq_i.rleq_vds.mnvds.mnvsb.mn

logw.mn eq_ids.mn vgs.mn i.n.rl

eq_kcl.outlogl.mnids.mneq_i.s.mn

eq_i.d.mn i.d.mn

Figure 3.16: Undirected bipartite graph of circuit in Fig. 3.15.

library of components and interconnects along with composition rules, determining legal compo-

sitions of components (platform instances). The bottom-up characterization phase abstracts archi-

tectures as library components providing a set of models for the services that can be implemented

on it and their cost and performance. The top-down phase consists of selecting the optimal plat-

form instance (according to some cost function) that can support the requested functionality while

satisfying all system and architecture constraints.

In this paradigm, an analog platform (AP) is a set of components each decorated with a set

of behavioral models (F), configuration and performance models (C, P), and validity laws (L)

[Bernardinis05a]. This rich set of models helps to address the concerns raised earlier, leveraging

behavioral models to perform design optimization while considering architectural constraints and

3.6 Analog IP and Design Representation 47

eq_vgnd
v.s.mn

v.gnd

i.s.mn

eq_vsb.mni.gnd

eq_kcl.gnd

eq_vout
v.out
v.d.mn
v.n.rl

rl

eq_i.rleq_vds.mnvds.mnvsb.mn

eq_ids.mn i.n.rl

eq_kcl.outids.mneq_i.s.mn

eq_i.d.mn i.d.mn

logw.mn vgs.mn

v.p.rl

v.vdd

logl.mn

Figure 3.17: Directed bipartite graph of circuit in Fig. 3.15.

costs. Essential also is that the resulting abstractions ensure the following properties:

• Flexibility: any analog component can be encapsulated as an AP: newly specified circuits,

analog IPs (possibly third party s), module generators, circuit synthesizers and optimizers.

• Accuracy: the AP abstraction requires a set of models that introduce architectural effects at

the system level while guaranteeing composability.

• Hierarchy: AP components allow building high level hierarchical models while preserving

information on the actual architecture space. Therefore, correct abstraction levels can be

selected for MS designs and enable efficient design space explorations.

• Implementability: a notion of feasible performance is propagated bottom-up into the design

hierarchy, thus restricting (and characterizing) the actual design space.

The behavioral model F allows for the abstract computation of the system response without

being directly constrained to a specific architecture. Very general techniques can be adopted to

implement behavioral models, ranging from hand written block models (requiring deep insight on

the designer/developer) to model order reduction approaches, which are based on a mathematical

formulations and can be fully automated [Roychowdury04].

Even more essential to the AP abstraction is the introduction of configuration (C) and per-

formance (P) models. For a given module or component, the configuration model outlines the

space of the feasible realizations (in terms of design parameters such as transistor sizes, bias cur-

rents, supply voltages, etc.). The corresponding performance model maps these configuration

48 State of the Art

constraints into a set of feasible performance vectors. For example, for OTAs, the performance

model is specified in terms of the gain, noise, bandwidth, power n-tuples, which accurately iden-

tify the feasible performance range of a given OTA architectures in a given technology. Having

quantified bounds available is more attractive and reliable than the recursive estimation and op-

timization based approaches (such as advocated in [Roychowdury04]), especially in light of the

many secondary parameters emerging in today’s deep sub-micrometer processes. In hierarchi-

cal designs, where several components are connected together (defining a platform instance), the

performance model of level l is the configuration space of level l+1, hence a direct relation exists

between the performance model Pl and the configuration model Cl+1.

The efficient and accurate mapping of configuration models into performance models is one

of the main challenges of the A-PBD approach. Traditional performance models are based on

regression schemes, for which a rich literature exists (ranging from simple quadratic models for

optimization [Brayton81] to advanced data mining techniques [Liu02] and template independent

schemes [McConaghy05]). A more effective strategy is based on classifiers, which have the distinct

advantage of making it possible to encapsulate architectural alternatives for the same function-

ality (that obviously share the same performance space) in a very straightforward manner. Only

a negligible setup time is required to define a performance model for arbitrary performance fig-

ures and circuit topologies can be used. On the other hand, since the approach is based on a

sampling scheme requiring accurate simulation of performance, the characterization itself may

be expensive. In [Bernardinis05b], an approach that uses bipartite graphs called analog constraint

graphs (ACG) (similar to the previous section but augmented with inequality constraints), aimed

at pruning the number of samples (simulations) required to characterize a circuit is presented ex-

ploiting structural and functional properties of the configuration space. Even if the exponential

nature of the problem is not affected, the approach has shown to be practical for real case studies.

In addition, the process is easily parallelizable, so the entire characterization time can be reduced

to a few machine hours. A classification approach for analog performance based on support vector

machines [Boser92] is presented in [Bernardinis03].

Validity laws L form the final element of the AP abstraction. When assembling a platform

instance (composing platform library elements), the accuracy of the instance model has to be

guaranteed. In fact, the plain composition of behavioral models may not correspond to the be-

havioral model of the composition. Validity laws limit the scope of behavioral models to enforce

correct compositions and accurate modeling of interface effects (e.g., circuit loading due to other

circuits). An example of validity laws and interface modeling in the AP context can be found in

[Bernardinis04], where an RF receiver platform is built and used to optimize a UMTS system.

The essence of platform-based design is building a set of abstractions that facilitate the design

of complex systems by a successive refinement/abstraction process [Rabaey06, Bernardinis05a] as

shown in Fig. 3.18. The top left graph shows the analog constraint graph (ACG) used to sample

performance of the telescopic operational transconductance amplifier (OTA)

3.7 Conclusion 49

3.7 Conclusion

We conclude that analog design automation is still a very hot and not fully covered topic. Many

standardization and research efforts are still needed to achieve an acceptable level of maturity.

One potential research topic is the development of an efficient analog design representation. This

could strongly provide lots of insight for analog design and reuse tools. In this thesis work, we

investigate the problem of design representation and its impact on future EDA tools. We pro-

pose a design representation through which many aspects of analog design can be identified and

analyzed.

5
0

S
ta

te
o

f
th

e
A

rt

Table 3.2: Comparison of Synthesis Tools [Ochotta98].

Synthesis Tool

OPASYN

[Koh87]

OASYS

[Harjani87]

IDAC

[DeGrauwe84b]

ARIADNE

[Swings91a]

STAIC

[Harvey92]

ISAID

[Makris92]

Maulik

[Maulik91]

AMGIE

[Plas01]

School University of

California at

Berkeley

Carnegie Mel-

lon University

Centre Suisse

d’Electronique

et de Microelec-

tronique

Katholieke Uni-

versiteit at Leu-

ven

University of

Waterloo

Imperial

College in

London

Carnegie Mel-

lon University

Katholieke Uni-

versiteit at Leu-

ven

Performance evalua-

tion

Equations Equations Equations Equations Equations Equations/

Qualitative

Reasoning

Equations Equations

Non-Linear device

models

Simplified

equations

Simplified

equations

Custom models Simplified

equations

Simplified

equations

Simplified

equations

Equations+BSIM Equations+BSIM

Worst-case accuracy 200% 25% 15% 10%(low-perf.) 24% 14% 24% Not reported

Search methods Gridded, Steep-

est descent op-

tim.

Plan steps with

backtracking

Plan steps with

post optim.

Simulated

annealing

Coarse initial

optim. +

detailed final

optim.

Qualitative rea-

soning + post

optim.

Sequential

quadratic

programming

(SQP)

VFSR, Hooke-

Jeeves,

minimax, or

SQP

Synthesis time

(approximate)

1 min 5 sec A Few seconds 5 min 3 min Not reported 1 min few minutes to

2 hour

Machine VAX 8800 VAX 8800 CPU N/A CPU N/A MIPS 2000 Not reported DEC 3100 SUN Ultra

1-170, HP

712/80 UNIX

Preparatory effort to

add new circuit

2 weeks for well

understood cir-

cuit

6 months in-

cluding circuit

analysis

4-45 designer-

months

Not reported 3 circuits

required 100000

lines of code

Not reported 6 months in-

cluding circuit

analysis

1 week

Equations derived Manually Manually Symbolic simu-

lation + Manu-

ally

Symbolic simu-

lation + Manu-

ally

Manually Manually Manually Manually

+ Symbolic

analysis

How/Where Equations

are stored

Hard-coded Hard-coded Hard-coded +

Design files

Not reported language +

Database

Not reported Hard-coded Hard-coded

Most Complex circuit

example

7 variables (60

device opamp)

19 variables (17

device opamp)

N/A (15 circuit

types, incl.

delta-sigma,

from 5-30

devices)

14 variables (9

device opamp)

N/A (22 device

opamp)

8 variables (13

device opamp)

39 variables, 7

for topology se-

lection (19 de-

vices opamp)

N/A (Parti-

cle Detector

Front-End)

3
.7

C
o

n
cl

u
si

o
n

5
1

Figure 3.18: Mixed-signal platform based design: Starting from the bottom left corner, an analog platform stack is built from circuit level

components generating instances and new components at higher levels of abstraction. The top left graph shows the analog constraint graph

(ACG) used to sample performance of the telescopic operational transconductance amplifier (OTA). The digital part of the mixed signal platform

is generate in a similar way as shown on the right. .

Chapter 4

Transistor Sizing and Biasing

Methodology

4.1 Introduction

In this chapter, a complete formulation for the transistor sizing and biasing that unifies both stan-

dard simulation method and operating point driven formulation, will be presented. In the pro-

posed formulation, a library of procedures for computing the sizes and biases of a transistor are

developed. These procedures are essentially based on accurate standard BSIM3V3 models. They

serve as the interface between our proposed reuse strategy and the technology. The procedures

are overloaded to implement both standard simulation method and operating point driven for-

mulation. Incorporating these procedures into any knowledge-based synthesis system, allows

it to solve for transistor sizes and biases very accurately. The procedures were implemented in

our dedicated framework CAIRO+ [Dessouky01, Tuong06]. The ideas behind the procedures are

partially inspired from the work done for standard simulation methods [Vlach94] and operating

point driven formulation [Plas01, Leyn98].

In section 4.2, a brief description is given about the task of the BSIM3V3 model integration

performed in CAIRO+.

In section 4.3, since our transistor sizing and biasing methodology relies on inverting the

BSIM3V3 model, we present the concept of sizing and biasing operators performing the BSIM3V3

model inversion.

In section 4.4, the BSIM3V3 MOS engine of CAIRO+ is enhanced y incorporating sizing and

biasing operators.

In section 4.5, we illustrate an example for transistor sizing and biasing.

Finally, section 4.6 concludes our proposed methodology.

54 Transistor Sizing and Biasing Methodology

4.2 BSIM3V3 Model Integration

In order to maintain a good precision that is comparable to a simulator, it becomes mandatory to

integrate a high-precision BSIM3V3 model into CAIRO+. This ensures that our framework con-

trols the design errors that appears in early design phases. The initial integration of the BSIM3V3

in CAIRO+ was done by Laurent de Lamarre [de Lamarre02]. The model was then enhanced as

follows:

1. To allow the code to be easily explored by future developers, the OCEANE model structure

was preferred. The OCEANE model structure presented a better decomposition of functions

that facilitates the debugging of the model.

2. The binning was done only on the parameters needed, hence, a huge time saving during

simulation and optimization is gained.

3. Some small-signal capacitances were computed numerically in the initial model. This has

been replaced by complete analytical equations that were derived from the BSIM3V3 equa-

tions and tested against the results of a commercial simulator.

To allow technology migration by switching to different technology files, a complete character-

ization and debugging of the model over different technologies (namely 0.35µ 0.6µ and 0.13µ) was

then conducted. In addition, the technology parameter files and configuration files for the 0.13µ

ST CMOS technology have been converted from SPICE file formats to C files and were compiled

and linked to the MOS engine.

It is clear that the task of integrating new technology models into the CAIRO+ framework is a

very laborious and error-prone task. Since the compact device model is expected to be accurate, it

requires lot of iterations for characterization and debugging.

4.3 Sizing and Biasing Operators

In this section, we will describe the concept of sizing and biasing operators. We start with the

principal idea, then we describe how to define and implement one operator. Finally, the list of

implemented operators will be given.

4.3 Sizing and Biasing Operators 55

4.3.1 Principal Idea

Assume that the width W of an NMOS transistor is to be computed at ambient temperature Temp.

In strong inversion, the quadratic model of the MOS transistor is:

IDS,n =
µn

2
Cox

W

L
(VGS,n − Vth,n)2(1 + λnVDS,n) (4.1)

=
µn

2
Cox

W

L
(Veg,n)2(1 + λnVDS,n) (4.2)

Vth,n = Vth0,n + γn(
√

2φF − VBS,n −
√

2φF) (4.3)

φF =
k · Temp

q
ln

NA

ni
(4.4)

where the µn is the mobility of electrons near the silicon surface, Cox is the gate oxide capacitance

per unit area, λn is the channel-length modulation coefficient, Vth0,n is the threshold voltage with

zero VBS , γn is the body-effect constant, NA is the substrate doping concentration and ni is the

intrinsic carrier density. This very simple model is based on device physics appropriate for long-

channel and uniform doping. Because the model equations are simple and easy to understand,

they are still used for hand calculations and preliminary circuit simulations. However, the model

has poor accuracy and scalability [Cheng99].

To compute W from equation (4.1), the following design parameters should be set: IDS,n, L,

VGS,n, Vth,n and VDS,n. Normally, IDS,n and L are set by the designer. Since Veg,n = VGS,n − Vth,n,

setting Veg,n fixes the transistor region of operation. Designers may choose to set Veg,n in equa-

tion (4.2), instead of VGS,n and Vth,n in equation (4.1) as in [Silveira96, Porte08]. Equation (4.3)

shows that Vth,n is controlled by VBS,n which should be also fixed by the designer. Notice from

equation (4.4) the dependence of the surface inversion potential 2φF , hence Vth,n, on the tempera-

ture Temp. To summarize, Temp, IDS , L, Veg or VGS and VBS are set by the designer.

The only remaining parameter that needs to be set is VDS . This parameter is either set as part

of transistor specifications or fixed through the topology connections.

Based on the above considerations, an arbitrary analog circuit can be viewed as a set of con-

nections fixing the drain potentials of all transistors. Actually, few connections are possible to fix

the drain potential. Let us assume that an arbitrary circuit consists of transistors M1, M2 and M3

as in Fig. 4.1 . To size the three transistors, the potential of the common drain node should be

fixed. The most common connections to fix this potential are:

1. The drain is considered as an input terminal. Its DC value is fixed by the designer.

2. The drain is considered as an output terminal. Its DC value is fixed by the designer.

3. The drain is connected to the source of transistor MA. Its DC value is set to VS,MA
which

becomes the unknown.

4. The drain is connected to the gate of transistor MB . Its DC value is set to VG,MB
which

becomes the unknown.

56 Transistor Sizing and Biasing Methodology

Vdd
2

Vdd
2

g

Vp

s

d

s

d

d

s

g

s

g

g

d

s

I/P O/P

M1

M3

M2

M
A

MB

s

g

d

d

s

g

g

d

Figure 4.1: Possible drain connectivity.

5. The drain is connected to a gate, forming a diode-connected transistor as M1. The gate/drain

voltage VG/D becomes the unknown.

Points (3), (4) and (5) are solved by inverting the standard transistor model. Instead of using the

quadratic model, the standard BSIM3v3 transistor model has been integrated into our framework

. In other words, the BSIM3v3 analytical model is numerically inverted in order to solve for VS ,

VG and VG/D in terms of VD. The study of the inversion of the BSIM3v3 transistor model resulted

in developing the sizing and biasing operators described in subsequent sections.

4.3.2 Operator Definition

As discussed in the previous subsection, it is essential to our methodology to solve for the un-

known electrical parameters VS , VG, VG/D, as well as IDS , W and Vth. IDS and Vth are provided

explicitly by the BSIM3v3 model equations. VS , VG, VG/D and W , are to be solved for by numer-

ically inverting the BSIM3v3 model equations. Inversion operations are performed by a set of

operators called sizing and biasing operators. The study of model inversion resulted in implement-

ing 46 sizing and biasing operators in CAIRO+ framework. Each sizing and biasing operator has

the following form:

OP<class>(RVi, ...) : (LVj , ...)⇐ (RVn, ...) (4.5)

where <class> is the main electrical parameter to be computed, RVi is a subset of the known

electrical parameters that dictates which operator version to apply, RVn is the set of all known

electrical parameters required by the operator to execute, and LVj is the set of unknown electrical

4.3 Sizing and Biasing Operators 57

parameters that are computed by this operator. It is said that a parameter is known, if it is either

fixed by the designer or previously computed by CAIRO+ during sizing.

Table 4.1: Class definition of sizing & biasing operators.

Operator Definition

OPVS(Veg, VB) (VS , Vth,W)⇐ Temp, IDS , L, Veg, VD, VG, VB

OPVS(Veg) (VS , VB, Vth,W)⇐ Temp, IDS , L, Veg, VD, VG

.

OPVG(Veg) (VG, VB,W, Vth)⇐ Temp, IDS , L, Veg, VD, VS

.

OPVGD(Veg) (VG, VD, VB,W, Vth)⇐ Temp, IDS , L, Veg, VS

.

OPW(VG, VS) (W,VB, Vth)⇐ Temp, IDS , L, VD, VG, VS

.

OPIDS(Veg) (IDS , VB, Vth)⇐ Temp,W, L, Veg, VD, VS

.

Table 4.1 shows the definition of the main five classes of the sizing and biasing operators ap-

plied to the reference transistor. Let us examine in further detail one operator such as OPV S. The

OPV S operator class is source voltage. The table shows only two versions of this operator. The first

version OPV S(Veg, VB) is called whenever Veg is known and the reference transistor is not bulk-

source connected i.e. VB should be fixed by the designer. This operator computes VS , Vth and W ,

simultaneously, in terms of Temp, IDS , L, Veg, VD, VG and VB . The second version OPV S(Veg) is

called whenever Veg is known and the reference transistor is bulk-source connected. This operator

also determines VS , VB , Vth and W , simultaneously in terms of Temp, IDS , L, Veg, VD and VG.

4.3.3 BSIM3V3 Model Inversion

For the BSIM3V3 model, the characterization curve of IDS versus VGS has been simulated for

different VDS , as shown in Fig. 4.2. It is clear from the curve that IDS is a monotonic function of

VGS .

Consequently, solving for VGS can be easily done using the following Newton-Raphson equa-

tion:

vk+1
gs = vk

gs −
Ids(v

k
gs)− Ids,desired

gm(vk
gs)

(4.6)

In our actual implementation for this problem, we adopted a variant of the Damped Newton-

Raphson strategy [Coughran83]. We chose to use the direction corruptive damping scheme for

58 Transistor Sizing and Biasing Methodology

0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

VGS (Volts)

D
ra

in
 C

ur
re

nt
 ID

S
 (

µA
)

IDS versus VGS for different VDS values

VDS1

VDS2

VDS3

Figure 4.2: Plot of IDS versus VGS for different VDS1 > VDS2 > VDS3.

solving for the voltage VGS :

vk+1
gs = vk

gs + min(γ, |
Ids(v

k
gs)− Ids,desired

gm(vk
gs)

|)× sign(−
Ids(v

k
gs)− Ids,desired

gm(vk
gs)

) (4.7)

where γ is an arbitrary constant 0 < γ < 1 . In order to evaluate Ids(v
k
gs), the BSIM3V3 model

equation BSIM3V3 IDS(...) is called. We also note that the first derivative of IDS with respect to

VGS is simply the transconductance gm of the MOS transistor. The transconductance is evaluated

by calling the actual BSIM3V3 model function BSIM3V3 GM(...). This is done to evaluate the

derivative analytically rather than numerically.

The same observation is made for the characterization curve of IDS versus W , shown if Fig. 4.3.

It is clear that IDS is monotonic function of W .

In this case, the traditional newton Raphson algorithm is used to solve for the width W :

wk+1 = wk − Ids(w
k)− Ids,desired

I ′ds(wk)
(4.8)

Based on these observations, each sizing and biasing operator is designed to solve only one of

the two numerical problems discussed above. Since these two numerical problems are guaranteed

to always converge due to the monotonicity of IDS with respect to VGS and W , the sizing and

biasing operators do not suffer from convergence problems existing in analog simulators. Rather,

if the design parameters given to the operators are not consistent, the operator can diagnose the

direct cause of inconsistency and prints an diagnostic message to the designer.

4.3.4 Convergence Criteria

In order to stop the Newton-Raphson iterations, the same convergence criteria that are integrated

into spice simulators were adopted. The convergence criteria for voltage, current, width and

4.3 Sizing and Biasing Operators 59

5 10 15 20
0

100

200

300

400

500

W (µm)

D
ra

in
 C

ur
re

nt
 ID

S
 (

µA
)

IDS versus W for different VGS values

VGS1

VGS2

VGS3

VGS4

VGS5

VGS6

Figure 4.3: Plot of IDS versus W for different VGS1 > VGS2 > VGS3 > VGS4 > VGS5 > VGS6.

length quantities, are respectively:

| vn
(k) − vn

(k−1) |< reltol · vnmax + vntol (4.9)

where vnmax = max(| vn
(k) |, | vn

(k−1) |)

| in(k) − in
(k−1) |< reltol · inmax + abstol (4.10)

where inmax = max(| in(k) |, | in(k−1) |)

| wn
(k) − wn

(k−1) |< reltol · wnmax + abstol (4.11)

where wnmax = max(| wn
(k) |, | wn

(k−1) |)

| ln(k) − ln
(k−1) |< reltol · lnmax + abstol (4.12)

where lnmax = max(| ln(k) |, | ln(k−1) |)

Defaults values for reltol, vntol and abstol are 1.0e-5, 1.0e-6 and 1.0e-12 respectively.

4.3.5 Operator Implementation

To illustrate how to build an operator, the implementation of the operator OPVS(Veg) is given in

Fig. 4.4:

• In line 1, the operator name is declared.

• In line 2, the input parameters required by the operator are specified.

60 Transistor Sizing and Biasing Methodology

1 Operator OPVG(Veg)

2 Inputs Temp,VS ,VD,Veg ,L,IDS

3 Outputs VG,VB ,W ,Vth

4 Implements

5 Initialize Wmin from technology file

6 Let VB = VS

7 Let VDS = VD − VS

8 Let VBS = VB − VS = 0.0

9 Let Vth = BSIM3V 3 V TH(Temp,L, n ·Wmin, 0.0, VDS , VBS)

10 Let VG = 0.0

11 Let W = Wmin

12 Let iteration count = 0

13 Do

14 Set Wprev = W

15 Set VG,prev = VG

16 Set VG = VS + Veg + Vth

17 Set VGS = VG − VS

18 Solve for W using equation (4.8) for IDS,desired = IDS

19 Set Vth = BSIM3V 3 V TH(Temp,L,W, VGS , VDS , VBS)

20 Increment iteration count

21 While | VG − VG,prev |≥ ǫv and |W −Wprev |≥ ǫw and Maximum Iterations count not reached.

22 Return [VG, VB ,W, Vth]

Figure 4.4: Implementation of the operator OPVG(Veg).

• In line 3, the output parameters computed by the operator are specified.

• In line 4, the body of the operator is defined.

• In line 5, the minimum width of the technology Wmin is initialized from technology files.

• In line 6, since this operator assumes that the bulk and source are connected, then they have

equal node potential.

• In line 7, the differential drain-source voltage is initialized.

• In line 8, the differential bulk-source voltage is initialized to zero since the bulk and source

are assumed connected.

• In line 9, an estimate of the threshold voltage Vth is computed for an arbitrary width n ·Wmin

and VGS = 0.

• In line 10, the gate voltage is initialized to zero,

4.3 Sizing and Biasing Operators 61

• In line 11, the width is initialized to the minimum width.

• In line 12, iteration count is initialized to zero.

• In line 13, the loop computing the unknowns VG, VB , W and Vth starts here.

• In line 14, the previous computed width is preserved.

• In line 15, the previous computed gate voltage is preserved.

• In line 16, a new gate voltage is computed from the overdrive voltage Veg and the threshold

voltage Vth. The computation follows the gm

ID
principle presented in [Silveira96].

• In line 17, the difference gate-source voltage is computed.

• In line 18, the width is solved for using equation (4.8) for the desired current IDS .

• In line 19, the BSIM3V3 model function BSIM3V3 VTH is called to compute the actual Vth.

• In line 20, the iteration count is increased by 1.

• In line 21, the convergence is tested using equations 4.9 and 4.11. ǫv and ǫw represent the

right-hand side of equations 4.9 and 4.11, respectively. The maximum iterations count is

tested to stop the loop if a maximum count is reached.

• In line 22, the computed unknowns [VG, VB,W, Vth] are returned back to the caller.

Note that in line 19, the actual BSIM3V3 model was called in order to take into account deep

submicron effects affecting the threshold voltage discussed in appendix A. The operator was

designed to compute the threshold voltage that occurs from the designer required sizing and

biasing conditions. The accurate threshold voltage is always considered as an output from the

sizing and biasing operators. This way design errors due to threshold voltage estimation can be

eliminated during the early sizing and biasing phases.

4.3.6 Library of Operators

As discussed in subsection 4.3.1, it is required to numerically invert the BSIM3v3 analytical model

in order to solve for VS , VG and VG/D. This is done by implementing additional operators, based

on the principles discussed in previous sections. A complete library consisting of 46 sizing and

biasing operators was developed and integrated into the CAIRO+ framework. For example, Ta-

ble 4.2 lists the operators used to compute the source node voltage of a MOS transistor. The table

is divided into two groups. The first group is used in the case of the bulk-source connected tran-

sistor. The second one is used in the case of bulk and source are not connected. In each group,

one can notice that some operators do not take width W as input. These operators account for the

62 Transistor Sizing and Biasing Methodology

Table 4.2: Definition of Operators for VS Computation.

Operator Definition

OPVS(Veg) (VS , VB, Vth,W)⇐ Temp, IDS , L, Veg, VD, VG

OPVS(VGS) (VS , VB, Vth,W)⇐ Temp, IDS , L, VGS , VD, VG

OPVS(Veg,W) (VS , VB, Vth)⇐ Temp, IDS ,W, L, Veg, VD, VG

OPVS(VGS ,W) (VS , VB, Vth)⇐ Temp, IDS ,W, L, VGS , VD, VG

OPVS(VG,W) (VS , VB, Vth)⇐ Temp, IDS ,W, L, VD, VG

OPVS(Veg, VB) (VS , Vth,W)⇐ Temp, IDS , L, Veg, VD, VG, VB

OPVS(VGS , VB) (VS , Vth,W)⇐ Temp, IDS , L, VGS , VD, VG, VB

OPVS(Veg, VB,W) (VS , Vth)⇐ Temp, IDS ,W, L, Veg, VD, VG, VB

OPVS(VGS , VB,W) (VS , Vth)⇐ Temp, IDS ,W, L, VGS , VD, VG, VB

OPVS(VG, VB,W) (VS , Vth)⇐ Temp, IDS ,W, L, VD, VG, VB

Table 4.3: Definition of Operators for VG Computation.

Operator Definition

OPVG(Veg) (VG, VB, Vth,W)⇐ Temp, IDS , L, Veg, VD, VS

OPVG(VGS) (VG, VB, Vth,W)⇐ Temp, IDS , L, VGS , VD, VS

OPVG(Veg,W) (VG, VB, Vth)⇐ Temp, IDS ,W, L, Veg, VD, VS

OPVG(VGS ,W) (VG, VB, Vth)⇐ Temp, IDS ,W, L, VGS , VD, VS

OPVG(VS ,W) (VG, VB, Vth)⇐ Temp, IDS ,W, L, VD, VS

OPVG(Veg, VB) (VG, Vth,W)⇐ Temp, IDS , L, Veg, VD, VS , VB

OPVG(VGS , VB) (VG, Vth,W)⇐ Temp, IDS , L, VGS , VD, VS , VB

OPVG(Veg, VB,W) (VG, Vth)⇐ Temp, IDS ,W, L, Veg, VD, VS , VB

OPVG(VGS , VB,W) (VG, Vth)⇐ Temp, IDS ,W, L, VGS , VD, VS , VB

OPVG(VS , VB,W) (VG, Vth)⇐ Temp, IDS ,W, L, VD, VS , VB

operating-point-driven formulation. The operators that accepts the width as input, account for

the standard simulation approach.

Similarly, Table 4.3 and Table 4.4 list the operators used to compute VG and VG/D respectively.

Another set of operators that compute the width is shown in Table 4.5. These operators are

used if the only unknown to be computed is the width. This is essentially used for the operating

point driven formulation when the only unknown to be computed is the width of a transistor.

The latest set of operators that computes current of MOS transistor is listed in Table 4.6. This

is used for both operating point formulation and standard simulation approach when the only

unknown that needs to be computed is the current.

4.3 Sizing and Biasing Operators 63

Table 4.4: Definition of Operators for VG/D Computation.

Operator Definition

OPVGD(Veg) (VG, VD, VB, Vth,W)⇐ Temp, IDS , L, Veg, VS

OPVGD(VGS) (VG, VD, VB, Vth,W)⇐ Temp, IDS , L, VGS , VS

OPVGD(Veg,W) (VG, VD, VB, Vth)⇐ Temp, IDS ,W, L, Veg, VS

OPVGD(VGS ,W) (VG, VD, VB, Vth)⇐ Temp, IDS ,W, L, VGS , VS

OPVGD(VS ,W) (VG, VD, VB, Vth)⇐ Temp, IDS ,W, L, VS

OPVGD(Veg, VB) (VG, VD, Vth,W)⇐ Temp, IDS , L, Veg, VS , VB

OPVGD(VGS , VB) (VG, VD, Vth,W)⇐ Temp, IDS , L, VGS , VS , VB

OPVGD(Veg, VB,W) (VG, VD, Vth)⇐ Temp, IDS ,W, L, Veg, VS , VB

OPVGD(VGS , VB,W) (VG, VD, Vth)⇐ Temp, IDS ,W, L, VGS , VS , VB

OPVGD(VS , VB,W) (VG, VD, Vth)⇐ Temp, IDS ,W, L, VS , VB

Table 4.5: Definition of Operators for W Computation.

Operator Definition

OPW(Veg) (W,VB, Vth)⇐ Temp, IDS , L, Veg, VD, VS

OPW(VGS , VG) (W,VB, Vth)⇐ Temp, IDS , L, VGS , VD, VG

OPW(VGS , VS) (W,VB, Vth)⇐ Temp, IDS , L, VGS , VD, VS

OPW(VG, VS) (W,VB, Vth)⇐ Temp, IDS , L, VG, VD, VS

OPW(Veg, VB) (W,Vth)⇐ Temp, IDS , L, Veg, VD, VS , VB

OPW(VGS , VG, VB) (W,Vth)⇐ Temp, IDS , L, VGS , VD, VG, VB

OPW(VGS , VS , VB) (W,Vth)⇐ Temp, IDS , L, VGS , VD, VS , VB

OPW(VG, VS , VB) (W,Vth)⇐ Temp, IDS , L, VG, VD, VS , VB

Table 4.6: Definition of Operators for IDS Computation.

Operator Definition

OPIDS(Veg) (IDS , VB, Vth)⇐ Temp, W, L, Veg, VD, VS

OPIDS(VGS , VG) (IDS , VB, Vth)⇐ Temp, W, L, VGS , VD, VG

OPIDS(VGS , VS) (IDS , VB, Vth)⇐ Temp, W, L, VGS , VD, VS

OPIDS(VG, VS) (IDS , VB, Vth)⇐ Temp, W, L, VG, VD, VS

OPIDS(Veg, VB) (IDS , Vth)⇐ Temp,W, L, Veg, VD, VS , VB

OPIDS(VGS , VG, VB) (IDS , Vth)⇐ Temp,W, L, VGS , VD, VG, VB

OPIDS(VGS , VS , VB) (IDS , Vth)⇐ Temp,W, L, VGS , VD, VS , VB

OPIDS(VG, VS , VB) (IDS , Vth)⇐ Temp,W, L, VG, VD, VS , VB

64 Transistor Sizing and Biasing Methodology

4.4 Enhanced MOS Engine

An enhanced architecture for the MOS calculator, initially developed by Laurent de Lamarre in

[de Lamarre02], is proposed and is shown in Fig. 4.5. In our proposed architecture, the functions

that are kept in the leaf level correspond to the BSIM3V3 model equations. The standard sizing

and biasing procedures, that existed in the initial implementation [de Lamarre02], were kept in the

new architecture. These functions are mainly computing the width in terms of gate-source voltage

VGS . Another level was created for the functions, called elementary API. These functions compute

the width in terms of the overdrive voltage Veg. The uppermost level is dedicated for the sizing

and biasing operators that uses all the lower-level procedures and APIs for its implementation.

Note that an arrow means that the functions pointed by the arrow head calls the functions at the

arrow tail.

The proposed architecture was totally developed in C and integrated into the CAIRO+ frame-

work. It is developed as a standalone library that can be linked to any program in order to com-

pute sizes and biases of a MOS transistor based on the BSIM3V3 transistor model and supporting

0.13µm technology.

4.5 Illustrative example

Let us suppose that the OTA amplifier shown in Fig. 4.6 is to be sized and biased in 0.13µm

technology. The input common mode voltage VIN,CM = 0.6V and the output common mode

voltage is VOUT,CM = 0.6V . We assume also that the two branches of the amplifier are sized

identically, i.e. WM1
= WM2

and WM3
= WM4

. We assume also that the number of fingers for

all transistors is M = 1. Our objective is to implement a sizing procedure for the amplifier using

the sizing and biasing operators defined in section 4.3.6. Suppose that the steps to implement the

sizing procedure are:

1. We would like to compute the width of the diode-connected transistor M3 given that:

VDD = 1.2V (4.13)

VG,M3
= VD,M3

= VOUT,CM = 0.6V (4.14)

VS,M3
= 1.2V (4.15)

VB,M3
= 1.2V (4.16)

Temp = 300.15◦K (4.17)

LM3
= 2µm (4.18)

IDS,M3 = −10µA (4.19)

4.5 Illustrative example 65

DS
,V

BS
,V

GS
,V)(Temp, W, L

BSIM3V3
I = F
ds

BSIM3V3 Model

,V
BS

,V
DS

,V
GS

, I
dsBSIM3V3

W = F −1 , L)(Temp

Standard Procedures

,V
BS

,V
DSds

, I
BSIM3V3

W = F −1 , L, V)(Temp eg

Elementary API

,V
D S

,V
ds
I egV, W, V , V))OPVG (Temp, , L,(V

thG B

,V
BS

,V
DegV) ,V, W, V(V)

dsG th OPVG (Temp, I , L,

jLV
i

RV nRV , ...)(

Sizing and Biasing Operators

, ...) , ...) : ((Definition: OP<class>

Figure 4.5: Enhanced Architecture of MOS Engine.

2. Next, we would like to compute VS,M1
given that:

VD,M1
= VOUT,CM = 0.6V (4.20)

VG,M1
= VIN,CM = 0.6V (4.21)

Temp = 300.15◦K (4.22)

LM1
= 2µm (4.23)

IDS,M1 = 10µA (4.24)

Veg,M1 = 0.12V (4.25)

VB,M1
= 0V (4.26)

66 Transistor Sizing and Biasing Methodology

V
IN−IN+

V

V
BIAS

V
OUT

M2M1
I
BIAS

M5

V
DD

M3 M4

Figure 4.6: Single stage OTA amplifier.

3. Finally, we would like to compute the bias VG,M5
given that:

VD,M5
= VS,M1

(4.27)

Temp = 300.15◦K (4.28)

LM5
= 2µm (4.29)

IDS,M5 = 20µA (4.30)

Veg,M5 = 0.12V (4.31)

VS,M5
= 0V (4.32)

VB,M5
= 0V (4.33)

To implement the above sizing procedure, we perform the following calls to the sizing and

biasing operators:

• To compute WM3
based on the known parameters in step 1, we call:

OPW (VG, VS) : (W,VB, Vth)⇐ Temp, IDS , L, VG, VD, VS (4.34)

We get

OPW : (WM3
, VB,M3

, Vth,M3
) ⇐ Temp, IDS,M3

, LM3
, VG,M3

, VD,M3
, VS,M3

(4.35)

⇒ (7.75976µm, 1.2V,−0.335232V) (4.36)

• To compute VS,M1
based on the known parameters in step 2, we call:

OPV S(Veg, VB) : (VS , Vth,W)⇐ Temp, IDS , L, Veg, VD, VG, VB (4.37)

4.5 Illustrative example 67

We get

OPV S : (VS,M1
, Vth,M1

,WM1
) ⇐ Temp, IDS,M1

, LM1
, Veg,M1

, VD,M1
, VG,M1

, VB,M1
(4.38)

⇒ (0.155313V, 0.324687V, 8.17438µm) (4.39)

• To compute VG,M5
based on the known parameters in step 3, we call:

OPV G(Veg) : (VG, VB, Vth,W)⇐ Temp, IDS , L, Veg, VD, VS (4.40)

We get

OPV G : (VG,M5
, VB,M5

, Vth,M5
,WM5

) ⇐ Temp, IDS,M5
, LM5

, Veg,M5
, VD,M5

, VS,M5
(4.41)

⇒ (0.412767V, 0V, 0.292767V, 17.1798µm) (4.42)

In Table 4.7, the sizing and biasing results agree with simulation. The amplifier was sized,

biased and simulated in 0.13µm CMOS technology. We conclude that sizing procedures can be

written as a sequence of sizing and biasing operators. One of our main objectives is to automati-

cally generating this sequence based on the circuit topology and designer’s hypotheses. This will

be presented in the rest of the chapters along with many other objectives.

Table 4.7: Synthesis vs Simulation Results..

Parameter Synthesis Simulation

M1 M3 M5 M1 M3 M5

IDS(µA) 10.0 -10.0 20.0 10.0 -10.0 20.0

VGS(V) 0.444687 -0.6 0.412767 0.44469 -0.6 0.41277

VDS(V) 0.444687 -0.6 0.155313 0.44469 -0.6 0.15531

VBS(V) -0.155313 0.0 0.0 -0.15531 0.0 0.0

Vth(V) 0.324687 -0.335232 0.292767 0.32469 -0.33523 0.29277

Veg(V) 0.12 -0.264768 0.12 0.12 -0.26477 0.12

gm(mA/V) 0.136233 0.0701239 0.2641 0.13623 0.070124 0.26410

gds(µA/V) 0.714603 0.255633 18.7045 0.71460 0.25563 18.705

gmb(mA/V) 0.0272121 0.0146514 0.0566178 0.027212 0.014651 0.056618

Cgd(fF) 4.17931 3.29543 13.4681 4.1793 3.2954 13.468

Cgs(pF) 0.124526 0.126692 0.262478 0.12452 0.12669 0.26247

Csd(fF) 0.0740517 0.101938 4.26634 0.074052 0.10194 4.2664

Cbd(fF) 0.0619098 0.0779054 3.68848 0.061910 0.077905 3.6885

68 Transistor Sizing and Biasing Methodology

4.6 Conclusions

In this chapter, a method for accurately sizing and biasing a MOS transistor is proposed. The

method takes into account the second-order effects that may introduce some inaccuracy during

hand calculations. The method relies on the definition of a set of sizing and biasing operators

that interfaces to an accurate standard BSIM3V3 compact model. The operators represent the

interface of our reuse strategy to the target technology. The proposed set of operators provides

a unified formulation that accounts for both operating-point-driven formulation and standard

simulation approach. A new architecture for the MOS calculator is proposed to smoothly integrate

the operators into the CAIRO+ framework in the form of a standalone library. This library can

be linked to any synthesis system to accurately size and bias MOS transistors. The operators

can be easily extended to account for other model levels (such as BSIM4, PSP, ...) or uncommon

interconnections (such as bulk input connections in [Chatterjee05]). Currently the operators

support the BSIM3V3 compact model in the 0.13µ technology.

Chapter 5

Device Sizing and Biasing Methodology

5.1 Introduction

In the previous chapter, the transistor sizing and biasing methodology was presented to size and

bias a single transistor. We extend the ideas to develop more complex analog basic building blocks

called devices. We show also how design plans for devices are represented using device dependency

graphs. This is considered a necessary step to deal with hierarchy in analog design.

In section 5.2, we discuss how hierarchy is represented in CAIRO+.

In section 5.3, we present definitions for our basic building block called devices.

In section 5.4, we show how design plans for devices are represented using device dependency

graphs.

In section 5.5, we illustrate an example for device sizing and biasing.

Finally, the chapter is concluded in section 5.6.

5.2 Hierarchy in Analog Design

The hierarchy in analog design has been always a difficult problem that is still unsolved. Gen-

erally, hierarchy is needed to decompose a problem into more tractable sub-problems. Today,

analog designers rely on analyzing flattened analog circuits. This is because traditional analysis

techniques such as DC and AC analysis assume that the netlist is flattened. Consequently, infor-

mation about hierarchy is not preserved during traditional circuit analysis.

In the past, some attempts have been made to define hierarchy. For example, OASYS

[Harjani87, Harjani88, Harjani89b, Harjani89a] represents a substantial departure from the

optimization style of analog synthesis. OASYS seeks to formalize the mechanisms used by

human designers and capture this expertize in repeatable form. To accomplish this, OASYS relied

on three key organizational principles:

1. Hierarchy: The decomposition of a large problem into a small number of simpler problems.

In OASYS, circuits are decomposed into smaller sub-circuits, and these subcircuits are them-

70 Device Sizing and Biasing Methodology

selves successively decomposed. Eventually, transistors and other fundamental components

are designed explicitly and the completed circuit re-assembled.

2. Style Selection: The selection of an interconnection of subcircuits (a topology where each

component may itself be decomposed hierarchically) to best satisfy a particular given set of

performance specifications.

3. Translation: The mathematical mapping of performance specifications for a particular cir-

cuit in a design hierarchy into sets of specifications for each of its component subcircuits.

In OASYS, each topology has one design plan associated with it, and this plan is a linear sequence

of executable steps that are created by experienced designers, called plan steps. Plan steps may

perform design heuristics, computations of currents and voltages needed to proceed, or by succes-

sively refining the design through invocation of the selection and translation mechanisms for a

lower level sub block, once sufficient information has been deduced by the current plan.

In CAIRO+ framework [Dessouky01, Tuong06], an analog IP [Lopez05] is considered as an

abstract hierarchy of subcircuits. A subcircuit is an unsized schematic view. Leaf subcircuits are

called devices and higher-level subcircuits are called modules. For each subcircuit, the designer

creates a parameterized generator in CAIRO+ language. A parameterized generator is an instan-

tiable object that receives design and technology parameters and provides behavioral, structural

and physical views.

���
�

���
�

���
�

���
�

��	
	

�
�

Standard BSIM3v3 Transistor Model

Device

Instance A

Device Device

Instance B Instance Z

SUBCKT

SUBCKT

Instance 2

Instance 1

SUBCKT

Instance N

Module Level

Device Level

Model Level

Figure 5.1: Hierarchical instantiation tree and parameter exchange.

Following these definitions, an instance of the analog IP is viewed as a hierarchical instantia-

tion tree of device and module generators. Higher-level module generators instantiate lower-level

5.2 Hierarchy in Analog Design 71

module and device generators. A device-level MOS generator interfaces directly to the lowest hi-

erarchical level which is a standard BSIM3v3 transistor model. The generator in one level in the

hierarchy exchanges electrical parameters with its direct ascendants and descendants only. Fig. 5.1

illustrates an example of a hierarchical instantiation tree and parameter exchange in CAIRO+. In

this tree, device instances A, B, ... , and Z call the standard BSIM3v3 transistor model. The higher-

level module instance SUBCKT 2 instantiates both the lower-level module instance SUBCKT 1

and the device instance Z. SUBCKT 2 instance exchanges parameters with SUBCKT 1, device in-

stance Z and SUBCKT N.

A device represents the building block for the design construction in CAIRO+. Fig. 5.2 show

many possible device examples. A device may represent simple passive components like a resistor

(A) or a capacitor (B). It may represent matched component pairs such as matched resistors (C and

E) and matched capacitors (D and F). It may represent also active components like a MOS transis-

tor. Or, it represents a complex device comprising of more than one transistor like a differential

pair (G), a current mirror (H), a group of transistors sharing the same gate (I), etc.

E

C

F G

H I

A B D

Figure 5.2: Low-level devices.

Our main aim is to define a suitable hierarchical representation for analog circuits. This is ac-

complished by defining and elaborating the device in order to serve as a constitutive and reusable

building block. The work done by Mohamed Dessouky [Dessouky01] and Vincent Bourguet

[Bourguet04] elaborated the physical representation of a device. In this chapter, the electrical

representation of the device that describes its electrical behavior is elaborated. New concepts are

defined for devices so these can be synthesized by the CAIRO+ framework. Synthesizing a device

means generating a suitable design plan, i.e. sizing procedure, for that device. The sizing procedure

represents a reusable knowledge about the device that can be inherited by higher level modules

in order to size and bias that device. To represent the design plan for a device, an intermediate

72 Device Sizing and Biasing Methodology

representation called device dependency graphs is proposed.

5.3 Device Definition

5.3.1 The Transistor Packing

A device is defined as one or more transistors packed together as one atomic building block. The

following conditions should be respected during transistor packing:

1. Any set of transistors that form one distinct electrical function should be packed together.

2. Any set of transistors that either share a subset of electrical parameters such as W , L, VGS ,

or are matched in the physical level, should be packed together.

W

L

W

L

I
ds

I
ds

���
�

M2M1

VIN+ VIN−

Figure 5.3: Transistor packing for a differential pair.

As shown in Fig. 5.3, transistors M1 and M2 should be packed together as:

1. They form one atomic and complete function of a differential pair.

2. They share the same W and L, and should be physically matched to reduce current mis-

match. Consequently, both M1 and M2 are inter-digitized in Fig. 5.4.

Figure 5.4: Inter-digitization of M1 and M2.

5.3 Device Definition 73

���
�

W, L

M2M1

VIN+ VIN−

Figure 5.5: Parameter propagation in a differential pair.

5.3.2 The Reference Transistor

In the traditional method for analog design, the designer sizes at first a minimum set of primary

transistors. Their sizes are then copied into some other secondary transistors in the circuit. These

design steps are followed, for example, in the half-circuit analysis where one half of the circuit

is sized the other inherits the same sizes of the first half. To mimic these design principles in

an automated flow, the concept of the reference transistor is proposed. Each device contains only

one primary transistor, namely the reference transistor. The reference transistor is first sized and

biased. Then, its electrical parameters are propagated to the other transistors in the device. Sizing

and biasing a device means simply sizing and biasing the reference transistor and propagating

electrical parameters to the other transistors, if any. Reference transistors are marked by a dot as

shown in Fig. 5.3.

For example, in the differential pair shown in Fig. 5.5, one might possibly select M1 to be the

reference transistor, and M2 to be the secondary one. It is said that M1 propagates the width and

length to M2.

5.3.3 Sizing and Biasing Operators Declaration

In order to size and bias a reference transistor in a device, the device links with the sizing and

biasing operator classes it needs. The choice of operators depends mainly on the interconnection

of the reference transistor. For example, a diode-connected reference transistor is sized and biased

using the operator class OPVGD. Therefore, a device like the current mirror having its reference

transistor diode-connected should declare OPVGD as one of its linked operators.

5.3.4 Device Constraints

It is essential for a device to declare necessary and sufficient constraints that ensure its proper

sizing and operation. Different types of constraints can be defined into a device e.g. functional and

robustness constraints as in the sizing rules method[Graeb01]. Constraints are viewed as a way to

propagate parameters along the hierarchy. Here, two types of constraints are proposed:

74 Device Sizing and Biasing Methodology

���
�

���
�

W, L

VIN+ VIN−

W, L

DP DP
BA

W, L

VIN+ VIN−

M2AM1A M1B M2B

Figure 5.6: Parameter propagation using constraints.

1. Intrinsic Constraints: These constraints are introduced inside a device. Their main purpose

is to propagate parameters from the reference transistor to secondary ones. For example, in

Fig. 5.6, W and L are propagated inside DPA and DPB , from M1A to M2A and from M1B

to M2B respectively. Mathematically, intrinsic constraints are expressed as linear equality

constraints,
[

P tr
elec

]

N×1
=
[

K
]

N×M
·
[

P tr
elec,ref

]

M×1
(5.1)

where P tr
elec is a matrix of the electrical parameters of all secondary transistors, K is a matrix

of constants and P tr
elec,ref is a matrix of the electrical parameters of the reference transistor.

Applying this to the differential pair DPA, one gets
[

W2A

L2A

]

2×1

=

[

1 0

0 1

]

2×2

·
[

W1A

L1A

]

2×1

(5.2)

2. Extrinsic Constraints: These constraints are propagated from a reference device to other

secondary devices. For instance, in fully-differential circuits, half of the circuit is sized and

the other half is made identical of the sized half. To understand this, assume that in Fig. 5.6,

the differential pair DPA is to be first sized. Then its sizes are to be copied to another identical

differential pair DPB . In this case, the width and length are propagated from the reference

device DPA to the secondary device DPB as shown in the figure. One can also imagine that

this propagation is done between reference transistors corresponding to different devices.

Mathematically, extrinsic constraints are expressed as linear equality constraints,
[

P subckt
elec

]

N×1
=
[

K
]

N×M
·
[

P subckt
elec,ref

]

M×1
(5.3)

where P subckt
elec is a matrix of the electrical parameters of similar devices that need to be sized

and biased, K is a matrix of constants and P subckt
elec,ref is a matrix of the electrical parameters of

the sized and biased reference device. Applying this to the differential pair DPB , one gets
[

W1B

L1B

]

2×1

=

[

1 0

0 1

]

2×2

·
[

W1A

L1A

]

2×1

(5.4)

5.4 Device Dependency Graphs 75

5.3.5 External Device Connectors

Each device has a set of external connectors, connected to its external inputs and outputs. For

example, the differential pair shown in Fig 5.7 has connector g1 as its positive input terminal, g2 as

its negative input terminal, b as the common bulk, s as the common source, d1 and d2 as the drain

terminals. In general, the external connectors are created at device instantiation and cannot be

altered afterwards. As an exception, some parameters may control the creation of a common bulk

terminal as in Fig. 5.7 or consider the bulk is connected to the source for each separate transistor .

M2M1

d2d1 b

g2g1

s
Figure 5.7: External connectors for a differential pair.

5.4 Device Dependency Graphs

5.4.1 Device Parameters Revisited

Recall from section 4.3, the quadratic model of the NMOS transistor at ambient temperature Temp

in strong inversion is:

IDS,n =
µn

2
Cox

W

L
(VGS,n − Vth,n)2(1 + λnVDS,n) (5.5)

=
µn

2
Cox

W

L
(Veg,n)2(1 + λnVDS,n) (5.6)

Vth,n = Vth0,n + γn(
√

2φF − VBS,n −
√

2φF) (5.7)

φF =
k · Temp

q
ln

NA

ni
(5.8)

From our previous discussion in section 4.3, the design parameters Temp, IDS , L, W , Veg or

VGS , VBS and VDS have been chosen. In our proposed method, we are interested in potentials

rather than potential differences. This transforms our design parameters to Temp, IDS , L, W , Veg

or VGS , VG, VS , VD and VB . Let us examine how each of these parameters is set:

76 Device Sizing and Biasing Methodology

1. The temperature Temp is set by the designer to set the operating temperature.

2. Transistor length L is set by the designer in both standard simulation approach and operat-

ing point-driven formulation.

3. Transistor width W is set by the designer in standard simulation approach.

4. The drain-source current IDS is set by the designer in the operating-point-driven formula-

tion. In the standard simulation approach, IDS is computed from BSIM3V3 model equations.

5. The overdrive voltage Veg and the gate-source voltage VGS are set by the designer in the

operating-point-driven formulation.

6. The bulk potential VB is set by the designer in the operating-point-driven formulation if the

transistor is not bulk-source connected. If the transistor is bulk-source connected, the bulk

potential VB is made equal to the source potential VS .

For the terminal potentials VG, VS and VD, the BSIM3V3 model equations will be inverted

using the principles presented in subsection 4.3.1. This occurs in both the standard simulation

approach and the operating-point-driven formulation.

5.4.2 Dependency Graph Definition

In order to be able to automatically generate suitable sizing procedures for devices, an intermedi-

ate representation has been identified and is called device dependency graphs. We start by defining

nodes and arcs of the graph and how the nodes are related to each other in the graph.

5.4.2.1 Node Definition

A node represents an electrical parameter, namely Temp, IDS , L, W , Veg, VGS , VG, VS , VD or VB .

Each graph node possesses some properties:

1. It has an electrical type: drain-source current, length, width, parameter, connector, temperature,

gate voltage, ... , etc.

2. It has a list of multiples names , called aliases. Aliases are used to designate equivalent elec-

trical parameters. For example, if W1 = W2 then a node of type width will be created which

will have the aliases W1 and W2. This simply means that W1 is equivalent to W2.

5.4.2.2 Arc Definition

An arc represents a weighted dependence of one node v on another node u. Therefore, an arc is

directed since it has a propagation direction from node u to node v. It is said that v depends on u.

This is formally written as v
wi←− u. It means also that v = wi × u.

5.4 Device Dependency Graphs 77

5.4.2.3 Dependency Rule Definition

A dependency rule expresses electrical dependencies of a node v on other nodes u1, u2, · · · , un. This

is formally written as v
wi←− u1, u2, · · · , un. Multiple nodes may be computed from the rule si-

multaneously. This is expressed as v1, v2, · · · , vm
wi←− u1, u2, · · · , un. A dependency rule possesses

some properties:

1. It has a rule type: constraint or operator.

2. It has a constant weight. If it is omitted, it has a default value of 1.0.

3. It has a list of affected nodes. These are the nodes computed by applying the rule.

4. It has a list of affecting nodes. These are the nodes that are used to compute an affected

node.

5. It has a name of an operator to execute in order to compute an affected node.

To illustrate an example of a dependency rule of type constraint, consider that the widths W2

and W3 are imposed using the constraint W2 = W3 = 5×W1. This is formally written as W2,W3
5←−

W1. This can be represented by the dependency graph shown in Fig. 5.8. The constraint has a

5.0

W 1

W
2

W
3

Figure 5.8: Dependency graph for W2,W3
5←−W1.

constant weight of 5.0. W1 is the affecting node. The affected node has the aliases (W2, W3). The

constraint has no operator to execute.

To illustrate another example of a dependency rule of type operator, consider the operator

OPVGD generated for a diode-connected and bulk-source connected reference transistor of a cur-

rent mirror

OPV GD(Veg) : (VG, VD, VB, Vth,W)⇐ Temp, IDS , L, Veg, VS (5.9)

The operator has a default weight of 1.0. The list of affected nodes is (VG,VD,VB ,Vth,W). The list

of affecting nodes is (Temp,IDS ,L,Veg,VS). The operator name to execute is OPV GD(Veg). The

graph representation of the operator OPVGD is shown in Fig. 5.9. The nodes on the left hand-side

are the affecting nodes. The nodes on the right hand-side are the affected or computed nodes.

Each effected node is labelled with the name of the operator used to compute it. In our case, it is

OPVGD for both affected nodes. Each arrow points to the direction of parameter dependency (or

propagation).

78 Device Sizing and Biasing Methodology

Transistor Parameters

VS,VB W

VG,VD

VEG

L

IDS

TEMP

OPVGD(VEG)

OPVGD(VEG)

Sizing & Biasing Operator

01

2

3

4

5 6

Figure 5.9: Graph representation for the operator OPV GD(Veg).

5.4.3 Constructing Complex Dependency Graphs

Suppose that the current mirror, shown in Fig.5.10, is to be sized while respecting a mirror ratio

of 1:5. The mirror ratio is ensured by imposing the constraint W2 = W3 = 5 ×W1. The resulting

W1
W 2

,W 3

5.01:5

x5

x5

u v

M1 M2 M3

d1 d2 d3

(a) (b)

s

Figure 5.10: Current mirror: (A) Device constraints on widths, (b) Parameter propagation.

dependency graph of the current mirror is shown in Fig. 5.11. First, a new hierarchical level has

been created for the current mirror as a standalone device. This is shown as the first column

in the graph, labelled device parameters. The role of this level is to receive the parameters of the

current mirror and propagate them to its internal transistors in the transistor level shown in the

second column. In the second column, mainly the reference transistor M1 is biased. Hence, it

appears on all nodes. Since constraints have been imposed to propagate Veg, Temp and L from

M1 to M2 and M3, all share nodes 1, 2 and 4. In node 5, VS and VB share the same node since M1

is assumed bulk-source connected. The parameters VG,M1
, VD,M1

and WM1
are computed in the

third column. Recall the constant current ratio of 1:5 that is imposed on the current mirror. This

5.5 Illustrative example 79

constraint appears in the last column, where WM1
in node 6 is weighted by 5.0 and propagated to

WM2
and WM3

in node 7. Note also, how connectors have been added to appropriate nodes in the

device dependency graph.

5

4

3

2

1

76

M1,M2,M3/TEMP

CM/VEG

CM/IDS

CM/L

M2,M3/W

CM/TEMP

M1/IDS

Transistor

Parameters Parameters

Device

OPVGD(VEG)

5.0

Operator

Sizing & Biasing Constraints

0

OPVGD(VEG)

8

10

11

9

CM,M1/W

CM,M1/VG,VD

M1,M2,M3/L

M1,M2,M3/VEG

CM/d1

CM,M1/VS,VB

CM/s

Figure 5.11: Dependency Graph of the current mirror with width constraint. Assuming ideal current

mirror.

The most important to consider about constraints is that they are guaranteed to be satisfied by

construction since they make part of the device dependency graph.

5.5 Illustrative example

1:1

M1 M2

Figure 5.12: A simple current mirror.

Let us assume that the simple current mirror of Fig. 5.12 is to be sized and biased in 0.13µm

technology. We choose to set the device parameters Temp, IDS , Veg, L and VS (= VB). The resulting

dependency graph of the simple current mirror is shown in Fig. 5.13.

Since the reference transistor M1 is diode-connected, the operator

OPV GD(Veg) : (VG, VD, VB, Vth,W)⇐ Temp, IDS , L, Veg, VS (5.10)

80 Device Sizing and Biasing Methodology

5

4

3

2

1

6

M1,M2,M3/TEMP

CM/VEG

CM/IDS

CM/L

CM/TEMP

M1/IDS

Transistor

Parameters Parameters

Device

OPVGD(VEG)

Operator

Sizing & Biasing

0

OPVGD(VEG)

8

10

11

9

CM,M1/W

CM,M1/VG,VD

CM,M1/VS,VB

M1,M2,M3/L

M1,M2,M3/VEG

Figure 5.13: Dependency graph of the simple current mirror.

is called to compute the parameters VG,M1
, VD,M1

, VB,M1
, Vth,M1

and WM1
. Note that WM2

= WM1
.

Assuming that the number of fingers M = 1 and that:

VDD = 1.2V (5.11)

Veg,M1
= −0.12V (5.12)

VS,M1
= 1.2V (5.13)

VB,M1
= VS,M1

(5.14)

Temp = 300.15◦K (5.15)

LM1
= LM2

= 2µm (5.16)

IDS,M1 = −10µA (5.17)

WM2
= WM1

(5.18)

We get

OPV GD : (VG,M1
, VD,M1

, VB,M1
, Vth,M1

,WM1
)⇐ Temp, IDS,M1

, LM1
, Veg,M1

, VS,M1
(5.19)

⇒ (0.740562, 0.740562, 1.2,−0.339438, 30.8054µm) (5.20)

In Table 5.1, the sizing and biasing results of the simple current mirror agree with simulation.

5.6 Conclusion

In this chapter, a methodology is proposed to introduce and refine the hierarchy for analog de-

sign. The concepts developed in this chapter have been used to automatically generate sizing

5.6 Conclusion 81

Table 5.1: Synthesis vs Simulation Results..

Parameter Synthesis Simulation

M1 M2 M1 M2

IDS(µA) -10.0 -10.0 -10.0 -10.0

VGS(V) -0.459438 -0.459438 -0.45944 -0.45944

VDS(V) -0.459438 -0.459438 -0.45944 -0.45944

VBS(V) 0.0 0.0 0.0 0.0

Vth(V) -0.339438 -0.339438 -0.33944 -0.33944

Veg(V) -0.12 -0.12 -0.12 -0.12

gm(mA/V) 0.131655 0.131655 0.13165 0.13165

gds(µA/V) 0.342102 0.342102 0.34210 0.34210

gmb(mA/V) 0.0295237 0.0295237 0.029524 0.029524

Cgd(fF) 12.9712 12.9712 12.971 12.971

Cgs(pF) 0.434976 0.434976 0.43493 0.43493

Csd(fF) 0.315307 0.315307 0.31531 0.31531

Cbd(fF) 0.23738 0.23738 0.23738 0.23738

and biasing procedures for our elementary reusable building blocks, called devices. An Application

Program Interface (API) has been identified as shown in appendix B and integrated as part of the

language CAIRO+. The API is used to declare information about the structure and functionality

of the device. The method has been successfully used to implement devices such as a transistor, a

differential pair, a current mirror and an array of transistors.

Chapter 6

Circuit Sizing and Biasing Methodology

6.1 Introduction

Nowadays, researchers focus on developing methods and tools to manage and deploy analog

intellectual property cores (IP). In current approaches[Porte08, Stefanovic03, Stefanovic07,

Stefanovic05], knowledge is fully determined by the designer’s expertise and coded using

high-level languages such as C, MATLAB [MathWorks], Verilog-AMS [Verilog-AMS],

VHDL-AMS [VHDL-AMS] or SystemC-AMS [SystemC-AMS]. Contemporary EDA tools hardly

ensure knowledge consistency. The fundamental reason behind this is the lack of intermediate

representations that can represent, judge and correct analog design knowledge. Capitalizing

knowledge will be the main driving force in the next coming years. Therefore, it is important to

develop tools that ensures knowledge consistency. In this context, we propose a methodology

for automatic generation of suitable design plans for circuit sizing and biasing while respecting

designer hypotheses and ensuring consistency of knowledge stored in design plans.

In the previous chapter, we focused on defining basic building blocks called devices. In this

chapter, analog circuits are constructed by instantiating devices and interconnecting them. Then,

a suitable design plan is automatically extracted for the circuit topology based on designer hy-

potheses and performance specifications. Since a design plan represents a consistent knowledge

about the circuit, it should not contain any inconsistency. Inconsistency appears as redundant,

cyclic or conflicting hypotheses [Wu94]. Our proposed methodology mainly focuses on automati-

cally identifying and resolving these forms of inconsistency. We show that redundant hypotheses

depends on how knowledge is expressed. Moreover, an under-specified design results from cyclic

hypotheses. In addition, an over-specified design results from conflicting hypotheses. We show

that many aspects in analog design results into such inconsistencies. Identifying sources of in-

consistency is essential in representing knowledge, judging its effectiveness, and developing res-

olution techniques ensuring its consistency. This acquires EDA tools lots of insight to manipulate

analog design knowledge knowledge efficiently.

In our proposed methodology, the analog circuit is defined as a hierarchy of subcircuits. Leaf

84 Circuit Sizing and Biasing Methodology

subcircuits are called devices and higher-level subcircuits are called modules. Each subcircuit is

represented by dependency graph. A dependency graph expresses electrical dependencies of

subcircuit DC parameters on the designer’s selected parameters. The dependency graph of the

analog circuit is constructed in a hierarchical bottom-up approach. This is performed by merging

dependency graphs for children devices and lower-level modules. Generally, the resulting graph

contains directed cycles. To represent a design plan, the graph should be a directed acyclic graph

(DAG). Our method detects and removes existing directed cycles from the dependency graph,

thus obtaining the DAG which defines the design plan. The design plan is executed in a top-

down fashion in order to compute the DC operating point and the widths of all transistors. In this

chapter, we present the algorithms developed to implement our proposed methodology.

In section 6.2, we give a brief introduction about hierarchy in CAIRO+.

In section 6.3, we describe how to represent design plans for circuits using module dependency

graphs.

In section 6.4, we present a bottom-up construction methodology to construct module depen-

dency graphs.

In section 6.5, we show how our proposed methodology deals with different aspects in analog

design.

In section 6.6, we discuss how to evaluate module dependency graphs in a top-down fashion.

In section 6.7, we present the general synthesis routine based on the principles presented in

previous sections.

In section 6.8, we present a detailed example demonstrating the ideas and principles of this

chapter.

Finally, we conclude the chapter in section 6.9.

6.2 Hierarchy in CAIRO+

A discussed in section 5.2, an analog circuit is constructed as a hierarchy of interconnected sub-

circuits. Leaf subcircuits are called devices and higher-level subcircuits are called modules. Higher-

level modules instantiate devices and lower-level modules. In general, a module represents a

level of design abstraction in the hierarchy. The higher the module is, the higher the level of de-

sign abstraction. The design abstraction is determined by the nature of knowledge and the type

of input/output parameters.

Since each module has its input/output parameters, modules can communicate with each

other. The communication is performed using a predefined mechanism between successive levels.

This is illustrated in Fig. 6.1. In the figure, the current module level N, reads an input parameter

from the higher module level N+1 using a GET VALUE and sets back the output parameter to

the higher module level using a SET VALUE. Similarly, the current module level N sets an input

parameter in the lower module level N-1 using a SET PARAM and reads an output parameter

6.3 Module Dependency Graphs Definition 85

SET_PARAM GET_PARAM

SET_VALUEGET_VALUE

COMPUTE

CAIRO+Level N

Level N−1

Level N+1

Figure 6.1: Communication mechanism between successive hierarchical levels.

of the lower module level N-1 using a GET PARAM. The current module level N can execute a

procedure residing in the lower module level N-1 using a COMPUTE.

6.3 Module Dependency Graphs Definition

A design plan represents consistent knowledge about an analog circuit. Since we aim at auto-

matically generating suitable design plans for analog IPs, we use dependency graphs to represent

analog design knowledge. In this section, we define dependency graphs for modules. In subsequent

sections, we show how to automatically generate and evaluate module dependency graphs.

6.3.1 Module Parameter Revisited

A module level represent a distinct level of abstraction. It may represent system, functional, block

or circuit levels [Doboli03, Jancke06, Martens08]. Therefore, a module level defines its own set of

input and output parameters. The type of parameter depends on its role in its level of design ab-

straction. For instance, a biasing current in the circuit level can be determined from a specification

on the unity-gain frequency in the system level, as depicted in Fig. 2.8. Therefore, the unity-gain

frequency is considered as an input parameter to the circuit level. While the biasing current is con-

sidered as an output parameter of the circuit level. It is computed in the circuit level and returned

back to the system level.

6.3.2 Dependency Graph Definition

6.3.2.1 Node Definition

A node can be one of the following types:

1. An electrical parameter, namely Temp, IDS , L, W , Veg, VGS , VG, VS , VD or VB .

86 Circuit Sizing and Biasing Methodology

2. An input parameter to the module. The input parameter nodes are the root nodes that do not

have incident arcs. For example, in Fig. 6.2, AMPLIFIER/Veg,CM is an input parameter for

the amplifier module.

3. A propagation parameter, called link parameter, used to propagate electrical information from

one node to another. For example, the node veg in Fig. 6.2 propagates the module input

parameter AMPLIFIER/Veg,CM to the current mirror.

4. An input parameter to a device. As described in section 5.4.3, these parameters belong to

a device and propagate parameter values received by the device to its internal transistors.

For example, in Fig. 6.2 CURRENT MIRROR/Veg is an input parameter for the current

mirror.

5. An input parameter of a transistor belonging to a device. For example, M1/Veg is an input

parameter of the reference transistor M1 of the current mirror.

6. An output parameter from a designer-defined procedure. The designer-defined procedure

(DDP) describes the dependency of one output parameter on its input parameters. DDPs

will be described in section 6.3.2.3.

M1/VEGAMPLIFIER/VEG_CM CURRENT_MIRROR/VEGveg

Module Level Transistor LevelDevice LevelLink Parameter

Figure 6.2: Different node types.

To summarize Fig. 6.2: VEG CM is an input parameter of module AMPLIFIER. It is propagated

to the link parameter veg. The link parameter veg propagates its value to the parameter VEG of

the device CM. Finally, the device CM copies the parameter value into the reference transistor M1.

Formally, each node has some properties:

1. It has an electrical type: drain-source current, length, width, parameter, connector, temperature,

gate voltage, link, ... etc. The link parameter type does not exist for devices (cf. section 5.4.2.1).

2. It has a list of multiples names, called aliases. Aliases are used to designate equivalent electri-

cal parameters exactly as in devices (cf. section 5.4.2.1).

6.3 Module Dependency Graphs Definition 87

6.3.2.2 Arc Definition

As in devices (cf. section 5.4.2.2), an arc represents a weighted dependence of one node v on

another node u. Therefore, an arc is directed since it has a propagation direction from node u to

node v. It is said that v depends on u. This is formally written as v
wi←− u. It means also that

v = wi × u.

6.3.2.3 Dependency Rule Definition

A dependency rule (or simply dependency) expresses electrical dependencies of a node v on other

nodes u1, u2, · · · , un. This is formally written as v
wi←− u1, u2, · · · , un. Multiple nodes can be com-

puted from the rule simultaneously. This is expressed as v1, v2, · · · , vm
wi←− u1, u2, · · · , un. A

dependency rule possesses some properties:

1. It has a rule type: constraint, operator, or designer-defined procedure (DDP).

2. It has a constant weight. It has a default value of 1.0.

3. It has a list of affected nodes. These are the nodes computed by applying the rule.

4. It has a list of affecting nodes. These are the nodes that are used to compute an affected

node.

5. It has a name of either an operator or a designer-defined procedure.

Dependency rules of constraint and operator types were illustrated for devices in section

5.4.2.3. New types of dependency rules are added to the module dependency graph definition:

1. Extrinsic Device Constraints: This type of constraints were illustrated in section 5.3.4. Their

application depends on the context where the devices are used. They are not part of the

device. They are imposed by the external environment using the device. For instance, a

module level can impose this type of constraints on its instantiated devices. For a detailed

example, please refer to section 5.3.4.

2. Extrinsic Module Constraints: This type of constraints depends on the context where the

modules are used. They are imposed by the external environment using the module. For

instance, a higher module level can impose this type of constraints on its instantiated lower-

level modules. This is done by specifying equality constraints relating the input parameters

of the lower level modules.

3. Designer-Defined Procedures (DDPs): In many occasions, the designer would like to code

a portion of knowledge into a reusable procedure and execute it as part of the dependency

graph. For this situation, a DDP is used to express the dependency of one output parameter

on its input parameters. As opposed to an operator which executes a predefined procedure

88 Circuit Sizing and Biasing Methodology

in CAIRO+, a DDP is integrated into the dependency graph and called when its single out-

put parameter needs to be computed.

Appendix D shows how CAIRO+ is used as a dependency language for modeling and design.

The language constructs related to DDPs are further detailed in D.3.

6.4 Bottom-Up Construction of Module Dependency Graphs

In this section, the algorithms developed to construct module dependency graphs for analog cir-

cuits are presented. The construction of module dependency graphs is performed using a hierar-

chical bottom-up approach. The approach consists of hierarchically merging dependency graphs

for children devices and lower-level modules. To go through the hierarchy, an important step is

the identification of equipotentials. This will be explained first.

6.4.1 Identification of the Equipotentials

The first step towards generating design plans is the automatic identification of the equipotentials

in the current module level. An equipotential is defined as the set of all interconnected interface

terminals. Terminals can be external or internal to the current module level. External terminals are

on the external interface of the current module level. Internal terminals are on the external inter-

face of the children devices and lower-level modules instantiated in the current module level. To

identify equipotentials, the netlist in the current module level is traversed. Then, interconnected

terminals belonging to the same equipotential are preserved by adding their terminal names as

aliases of the same equipotential graph node. Fig. 6.3 shows an example of a module consisting

of device instance A, device instance B and module instance C. The possible equipotential nodes

are (e1,A/s), (e2,A/g), (e3,B/g), (e4,B/s), (e5,C/y) and (A/d,B/d,C/x),

Let us illustrate how the equipotential node (A/d,B/d,C/x) is created. First interconnected

interface terminals: A/d, B/d and C/x are identified. Then, these interface terminals are merged

to form one equipotential node. The merging is done by converting each terminal name to an

alias name for the same equipotential node. This technique is illustrated in Fig. 6.4. Finally, an

equipotential graph node with multiple aliases is created.

6.4.2 Generation of the Reference Transistor Dependencies

This section illustrates the algorithms designed to generate the dependencies for the reference

transistor. First, a general algorithm is presented. Then, its different blocks are detailed in sub-

sequent sections. The purpose of each block is to generate the dependency for a specific class of

operators. In addition, each block identifies which operator version to apply based on the known

parameters. It is assumed that a parameter is known if it is specified by the designer or known

6.4 Bottom-Up Construction of Module Dependency Graphs 89

d

d

g

g

Device Instance B

Device Instance A

s

s

e1

e2

e3

e4

e5
Instance C

Module
yx

Figure 6.3: Equipotential consisting of interconnected terminals.

A/d

B/d

C/x

A/d

B/d C/x C/x

A/d

B/d

Figure 6.4: Adding terminal names to the same equipotential node.

90 Circuit Sizing and Biasing Methodology

as a result of a previously generated dependency. As will be explained, the generation of the

dependencies is performed in the designer mode and the simulator mode.

6.4.2.1 General Algorithm

The flowchart of the main routine executed for the reference transistor of device is shown in

Fig. 6.5. It performs the following:

1. The dependency of the drain-source current is generated.

2. The flowchart then determines whether the synthesis is performed in the designer mode or

the simulator mode. In designer mode, either Veg or VGS are specified but not both. In the

simulator-mode, W and L are specified.

3. The flowchart then continues by generating the source voltage dependency.

4. Then the interconnection configuration of the reference transistor is examined. If it is a

diode-connected transistor, the gate/drain voltage dependency is generated. Otherwise,

the gate voltage dependency is generated.

5. At the end, the width dependency is generated if it was not already generated.

6.4.2.2 Generation of Drain Current Dependency

This step of the general algorithm is further detailed in the routine flowchart shown in Fig. 6.6.

The current IDS is first examined. If it is specified, this step will end without any further action.

Otherwise, the routine verifies Veg against VGS :

1. If both Veg and VGS are specified, the routine will display an error message stating that these

two parameters cannot be specified simultaneously.

2. If neither Veg nor VGS are specified, the dependency takes both the gate voltage VG and the

source voltage VS as affecting nodes.

3. If only VGS is specified, the dependency takes either VG or VS as affecting node, whichever

set. An error message is displayed if neither are specified.

4. If only Veg is specified, the dependency takes both VG and VS as affecting nodes.

Note that every affecting node is first searched for. If it is previously created, i.e. as an equipo-

tential node, it is retrieved and added to the dependency. Otherwise, it is created as a new graph

node and added to the dependency as an affecting node. The routine proceeds as follows:

1. It searches or creates nodes Temp, L, VD and W as affecting nodes.

6.4 Bottom-Up Construction of Module Dependency Graphs 91

are set ?

W & L

is set ?
GS

V

End

End

diode
connected ?

No Yes

already
W

?
Generated

Start

Yes

No

No

Yes

Yes

Yes

No

set ?& V

Yes

No

V is set ?
eg

Generate I Dependency
DS

G/D

Generate W Dependency

Generate (V

Generate (VGenerate (V
G

S
, W) Dependency

, W) Dependency, W) Dependency

(cf. Fig. 6.6)

(cf. Fig. 6.7)

(cf. Fig. 6.8) (cf. Fig. 6.9)

(cf. Fig. 6.10)

Veg set

GS
Error

No

Figure 6.5: Dependency generation for the reference transistor.

92 Circuit Sizing and Biasing Methodology

2. Then, it searches or creates either Veg or VGS , if specified, as affecting node.

3. In addition, it searches or creates node VB , if the reference transistor was not bulk-source

connected.

4. The current IDS is searched or created. It is then added as an affected node in the depen-

dency.

5. The operator name is set and its version is determined based on the known affecting nodes.

6. The dependency is finally created and the graph node IDS is marked as a known affected

node if all its affecting nodes are known or specified.

Note that the drain-source current dependency is generated essentially in simulator mode since

the current is computed in this mode.

6.4.2.3 Generation of Source Voltage Dependency (VS + W)

This step of the general algorithm is further detailed in the flowchart shown in Fig. 6.7:

1. The source voltage VS is first examined. If it is specified, this step will end without any

further action.

2. Otherwise, the flowchart proceeds by searching or creating nodes Temp, IDS and L as af-

fecting nodes for both W and VS dependencies.

3. Next, the flowchart examines Veg. If it is specified, then its corresponding node is searched

or created as an affecting node and added to both W and VS dependencies.

4. The search and creation steps is also performed for VGS , VD, VB and VG.

5. The routine proceeds by checking if W is specified at that point. If it is the case, it is searched

or created then added as an affecting node to only the VS dependency. Otherwise, W is

added as an affected node to the W dependency. This is followed by setting the operator

name and version needed to compute W . Then, the dependency for W is then created.

6. In the same manner, the checking for VS till the creation of the VS dependency proceeds.

7. The flowchart ends by marking the affected nodes W and VS as known nodes if their corre-

sponding affecting nodes are known or specified.

Note that the source voltage dependency is generated in both designer mode and simulator mode.

6.4 Bottom-Up Construction of Module Dependency Graphs 93

Start

End

A

set ?
G

V
Yes

V set ?
GS

Yes

No

End
A

A

V set ?S

No

Yes

as affecting node
S

Search/Create V

A

Error

Error

Current
Known ?

Yes

No

Yes

No Bulk−Source
connected ?

No

Yes

No

Yes

V
GS

V set ?

Yes

No and

Yes
GSV

 not set ?
 not set &

DS
Create I Dependency Rule

eg

V set ?

No

eg

set ?V
Yes

No

eg

Veg

V
GS

set ?
No

as affecting node

as affecting node

as affecting node
G

as affecting node

as affecting node
G

S

Search/Create W as affecting node

as affecting node

as affecting node

Search/Create V G
Search/Create V

S

Search/Create V

Search/Create V

Search/Create V

set &

Search/Create TEMP as affecting node

Search/Create L as affecting node

as affecting nodeSearch/Create V
D

egSearch/ Create V

GS
Search/Create V

Search/Create V
B

as affecting node

as affected node
DS

Search/Create I

Set Operator Name & Version: OPIDS(...)

only if all affecting nodes are known

Mark I
DS

as a known affected node

Figure 6.6: Dependency Generation for the operator OPIDS(...).

94 Circuit Sizing and Biasing Methodology

Start

End
Yes

No

Known ?
SV

A

A

Bulk−Source
connected ?

No

Yes

A

End

for W dependency rule

Yes

No

Known ?

V

for V dependency rule

GS

for W dependency rule

Yes

No

Known ?

V

Known ?

W Yes

No

S

for V dependency rule

for W dependency rule

for W dependency rule

for V dependency rule

for W dependency rule

for W dependency rule

for W dependency rule

Create W Dependency Rule

Set Operator Name & Version

for V dependency rule

S

S

S

S

for V dependency rule
S

for V dependency rule
S

for V dependency rule
S

for V dependency rule

S
Create V Dependency Rule

eg

Search/Create L as affecting node

Search/Create L as affecting node

eg

eg

for W dependency rule

Search/Create W as affecting node

Search/Create W as affected node

DS

GS

GS

D
Search/Create V as affecting node

Search/Create V as affecting node
D

B

B

Search/Create V as affecting node

Search/Create V as affecting node

G

G

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

to compute W: OPVS(...)

Search/Create TEMP as affecting node

S
for V dependency rule

Search/Create TEMP as affecting node

DSSearch/Create I as affecting node

Search/Create I as affecting node

to compute V : OPVS(...)

Set Operator Name & Version

S

Search/Create V as affected node
S

Mark V as a known affected node

only if all right nodes are known

Mark W as a known affected node

only if all right nodes are known

S

Figure 6.7: Dependency Generation the operator OPV S(...).

6.4 Bottom-Up Construction of Module Dependency Graphs 95

6.4.2.4 Generation of Gate Voltage Dependency (VG + W)

This step of the general algorithm is further detailed in the flowchart shown in Fig. 6.8:

1. The gate voltage VG is first examined. If it is specified, this step will end without any further

action.

2. Otherwise, the routine proceeds by searching or creating nodes Temp, IDS and L as affecting

nodes to both W and VG dependencies.

3. Next, the routine examines Veg. If it is specified, then its corresponding node is searched or

created as an affecting node and added to both W and VG dependencies.

4. The search and creation steps is also performed for VGS , VD, VB and VS .

5. The routine proceeds by checking if W is specified at that point. If it is specified, it is searched

or created then added as an affecting node to only the VG dependency. Otherwise, W is

added as an affected node to the W dependency. This is followed by setting the operator

name and version needed to compute W . Then, the dependency for W is then created.

6. In the same manner, the checking for VG till the creation of the VG dependency proceeds.

7. The routine ends by marking the affected nodes W and VG as known nodes if their corre-

sponding affecting nodes are known or specified.

Note that the gate voltage dependency is generated in both designer mode and simulator mode.

6.4.2.5 Generation of Gate/Drain Voltage Dependency (VG/D + W)

This step of the general algorithm is further detailed in the flowchart shown in Fig. 6.9:

1. The gate/drain voltage VG/D is first examined. If it is specified, this step will end without

any further action.

2. Otherwise, the routine proceeds by searching or creating nodes Temp, IDS and L as affecting

nodes to both W and VG/D dependencies.

3. Next, the routine examines Veg. If it is specified, then its corresponding node is searched or

created as an affecting node and added to both W and VG/D dependencies.

4. The search and creation steps is also performed for VGS , VD, VB and VS .

5. The routine proceeds by checking if W is specified at that point. If it is specified, it is searched

or created then added as an affecting node to only the VG dependency. Otherwise, W is

added as an affected node to the W dependency. This is followed by setting the operator

name and version needed to compute W . Then, the dependency for W is then created.

96 Circuit Sizing and Biasing Methodology

Start

End

A

A

Bulk−Source
connected ?

No

Yes

A

End

Yes

No

Known ?

VGS

for W dependency rule

Yes

No

Known ?

V

Known ?

W Yes

No

for W dependency rule

for W dependency rule

for W dependency rule

Create W Dependency Rule

Set Operator Name & Version

for V dependency rule

for V dependency rule

for V dependency rule

for V dependency rule

Create V Dependency Rule

Set Operator Name & Version

eg

eg

eg

for W dependency rule

Search/Create W as affecting node

Search/Create W as affected node

GS

GS

D
Search/Create V as affecting node

Search/Create V as affecting node
D

B

B

Search/Create V as affecting node

Search/Create V as affecting node

G

G

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Yes

No

Known ?

VG

G

G

G

G

G

to compute W: OPVG(...)

G
to compute V : OPVG(...)

Search/Create TEMP as affecting node

Search/Create TEMP as affecting node

for W dependency rule

for V dependency rule
G

Search/Create I as affecting nodeDS

for V dependency rule
G

Search/Create I as affecting node
DS

for W dependency rule

Search/Create L as affecting node

for V dependency rule
G

Search/Create L as affecting node

for W dependency rule

G

G
for V dependency rule

for V dependency rule

Search/Create V as affected node
G

Mark V as a known affected node
G

only if all right nodes are known

Mark W as a known affected node

only if all right nodes are known

Figure 6.8: Dependency Generation for the operator OPV G(...).

6.4 Bottom-Up Construction of Module Dependency Graphs 97

6. In the same manner, the checking for VG/D till the creation of the VG/D dependency proceeds.

7. The routine ends by marking the affected nodes W and VG/D as known nodes if their corre-

sponding affecting nodes are known or specified.

Note that the gate/drain voltage dependency is generated in both designer mode and simulator

mode.

6.4.2.6 Generation of Width Dependency

This step of the general algorithm is further detailed in the routine flowchart shown in Fig. 6.10.

The width W is first examined. If it is specified, this step will end without any further action.

Otherwise, the routine verify Veg against VGS :

1. If both Veg and VGS are specified, the routine will display an error message stating that these

two parameters cannot be specified simultaneously.

2. If neither Veg nor VGS are specified, the dependency takes both the gate voltage VG and the

source voltage VS as affecting nodes.

3. If only VGS is specified, the dependencies takes either VG or VS as affecting node, whichever

set. An error message is displayed if neither are specified.

4. If only Veg is specified, the dependencies takes both VG and VS as affecting nodes.

Note that each affecting node is first searched for. If it is previously created, it is retrieved and

added to the dependency. Otherwise, it is created as a new graph node and added to the depen-

dency as an affecting node. The routine proceeds as follows:

1. It searches or creates nodes Temp, L, VD and IDS as affecting nodes.

2. Then, it searches or create either Veg or VGS , if specified, as affecting node.

3. In addition, it searches or creates VB , if the reference transistor was not bulk-source con-

nected.

4. The width W is searched or created. It is then added as an affected node in the dependency.

5. The operator name is set and its version is determined based on the known nodes.

6. The dependency is finally created and the graph node W is marked as a known affected

node if all its affecting nodes are known or specified.

Note that the width dependency is essentially generated in designer mode to compute the width

of transistors

98 Circuit Sizing and Biasing Methodology

A

Start

End

End

Bulk−Source
connected ?

No

Yes

End

A

A

for W dependency rule

Yes

No

Known ?

VGS

Yes

No

Known ?

V

for W dependency rule

Yes

No

Known ?

GV

Known ?
D

V Yes

No

for W dependency rule

Known ?

W Yes

No

for W dependency rule

Create V Dependency Rule

Create W Dependency Rule

for V dependency rule

for V dependency rule

for V dependency rule
G/D

for V dependency rule
G/D

G/D

G/D

B

B

S

S

Set Operator Name & Version

eg

eg

Search/Create L as affecting node

Search/Create V as affecting node

Search/Create V as affecting node
eg

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create V as affecting node

Search/Create W as affecting node

G
Search/Create V as affected node

G/D

G/D
to compute V : OPVGD(...)

Search/Create TEMP as affecting node

Search/Create TEMP as affecting node

for W dependency rule

for V dependency rule
G/D

Search/Create I as affecting nodeDS

for V dependency rule
G/D

DS
Search/Create I as affecting node

for W dependency rule

Search/Create L as affecting node

Search/Create V as affecting nodeGS

Search/Create V as affecting nodeGS

for W dependency rule

for V dependency ruleG/D

for V dependency rule
G/D

Search/Create W as affected node

Set Operator Name & Version

to compute W: OPVGD(...)

Mark V as a known affected node
G

only if all right nodes are known

Mark W as a known affected node

only if all right nodes are known

Figure 6.9: Dependency Generation for the operator OPV GD(...).

6.4 Bottom-Up Construction of Module Dependency Graphs 99

Start

End

A

set ?
G

V
Yes

V set ?
GS

Yes

No

End
A

A

V set ?S

No

Yes
A

Error

Error

Known ?

Yes

No

Yes

No Bulk−Source
connected ?

No

Yes

No

Yes

V

V

Yes

No and

Yes
GSV

 not set ?
 not set &

eg

V set ?

No

eg

set ?V
Yes

No

eg

Veg

V
GS

set ?
No

as affecting node

as affecting node
G

S

Search/Create W as affecting node

as affecting node

as affecting node

as affecting node

G

S

Search/Create V

Search/Create V

Width

Create W Dependency Rule

set ?

set &GS

Search/Create V

Search/Create V

as affecting node

as affecting node

Search/Create VG as affecting node

Search/Create VS as affecting node
Search/Create W as affected node

Set Operator Name & Version: OPW(...)

Mark W as a known affected node

only if all affecting nodes are known

Search/Create V
B

Search/Create V
GS

Search/ Create Veg

Search/Create TEMP as affecting node

Search/Create L as affecting node

Search/Create V
D

as affecting node

Figure 6.10: Dependency Generation for the operator OPW (...).

100 Circuit Sizing and Biasing Methodology

6.4.3 Merging Dependencies of Children Devices and Lower-Level Modules

In the previous chapter, a methodology has been proposed to generate the design plans for de-

vices. Once design plans exist for children devices and lower-level modules, the design plans

for the current module level can be initially constructed by merging the design plans of children

devices and lower-level modules. We call children devices and lower-level modules as children

generators. Since a design plan is represented by a dependency graph, the merging is done on the

dependency graph nodes and arcs. The merging starts by enumerating all children generators.

For each child generator, the list of dependencies in its pool is enumerated. For each child depen-

dency, the affected node is checked if it was already created in the pool of the current module level.

If it exists, then its aliases in the pool are merged to its aliases in the child dependency and the

node is made universal by merging it to all nodes in the pool having common aliases. Then, the

node is set as the affected node of a newly created dependency in the pool of the current module

level. The same technique is applied for every affecting node of the child dependency. A final step

done on the newly created dependency, is to mark the affected node as known if all its affecting

nodes are known at this stage.

6.4.4 Independence from Device Ordering

Since the design plan of a module is generated by merging the dependency graph of the children

generators, it is important to ensure that the resulting design plan is independent from the order

by which children generators have been merged. This simply means that for the same set of

constraints and hypotheses set by the designer, the generated design plan of the circuit will always

be the same regardless of the device ordering. To achieve the independence from device ordering,

we identified three main problems that need to be solved:

6.4.4.1 Single Constraint/Single Operator Problem

Proposition 1 A constraint always has higher preference over an incident operator.

Proof Let us suppose that a node NB is affected by both a constraint and an incident operator,

as illustrated in Fig. 6.11(a). Since the constraint is a condition that is imposed by the designer

and should be satisfied, it is a persistent knowledge. On the other hand, an incident operator

is an information that has been generated to complete the knowledge based on designer’s hy-

pothesis. Since the knowledge is already ensured by the constraint, the incident operator could

be safely removed. Then the remaining graph is corrected. This results in the graph shown in

Fig. 6.11(b). Therefore, constraints should have higher preference over an incident operator as

stated by proposition 1.

6.4 Bottom-Up Construction of Module Dependency Graphs 101

OPxxx

(a) (b)

K K

N

N
B

A
N A

B
N

Figure 6.11: Preference of a constraint over an incident operator: (a) Conflict, (b) Resolution.

6.4.4.2 Single Constraint/Multiple Operator Problem

Definition A directed cycle is called first-order directed cycle if it is a directed cycle between only

two operators. In this case, each operator depends on a parameter computed from the other

operator.

(a) (b)

OPCB

OPBC

OPBD

OPDB OPDB

OPCB

N

N

N N

N

N

A
N

N
C

B

D

A C

B

D

K K

Figure 6.12: Preference of a constraint over multiple incident operators: (a) Conflict, (b) Resolution.

Fig. 6.12(a) shows examples of first-order directed cycles: (NB ,NC) and (NB ,ND). Node NB

is the common node between the two first-order directed cycles. Since a constraint always has a

higher preference over each incident operator, one can apply proposition 1 to resolve this situation

in the figure. After resolution, the resulting graph will evolve in only one direction as shown in

Fig. 6.12(b). Proposition 2 states that the previous proposition can be applied in this case.

Proposition 2 Proposition 1 can be applied for the case of having multiple incident operators having first-

order directed cycles and a single constraint, all affecting the same node.

102 Circuit Sizing and Biasing Methodology

Proof Since the constraint has a higher preference over each incident operator, then proposition 1

applies for every operator.

6.4.4.3 No Constraint/Multiple Operator Problem

(a) (b)

OPCB

OPBC
OPBA

OPBD

OPDB

OPBA

OPDB

OPCB

N

N

N N

N

N

A
N

N
C

B

D

A C

B

D

Figure 6.13: Multiple incident operators: (a) Conflict, (b) Resolution.

Fig. 6.13(a) shows examples of first-order directed cycles: (NB ,NC) and (NB ,ND). Node NB is

the common node between the two first-order directed cycles. In this case, no constraint exist. But

there exists an operator that has no cycle directly affecting the common node NB . We now present

proposition 3 that will resolve the situation as shown in Fig. 6.13(b).

Proposition 3 In the case of multiple incident operators that affect a common node: if no additional con-

straint exists, only one operator needs to be noncyclic in order to remove first-order directed cycles at that

node.

Proof In a first-order directed cycle, each operator has a missing parameter that is computed

by the other operator. Since operators in a first-order directed cycle are generated to complete

the knowledge and are not considered persistent, one can eliminate them in order to respect a

noncyclic persistent operator.

6.5 Dealing with Different Aspects in Analog Design

6.5.1 Dealing with Under-Specified Designs

An under-specified design is a design which does not have sufficient parameters (or degrees of

freedom) to be specified. For example , suppose that a design has two parameters u and v that

6.5 Dealing with Different Aspects in Analog Design 103

depend on each other as depicted in Fig. 6.14(a). The parameter u cannot be evaluated without

knowing v and vice versa. This means that we do not have sufficient degrees of freedom to specify

the problem. In order to solve the problem, one could choose u as a degree of freedom and then

compute v as shown in Fig. 6.14(b). Or, choose v as another possible degree of freedom and

then compute u as shown in Fig. 6.14(c). We conclude that insufficient degrees of freedom is

characterized by the formation of directed cycles.

v u

v u

v u

v u

u v

(a)

(c)(b)

u v u v

Figure 6.14: Under-specified design dependency.

In general, if many degrees of freedom are missing, directed cycles will contain more than two

parameters nodes. The general rule is to detect if dependency graphs contains directed cycles

and to choose at least one parameter to specify among the parameters forming the directed cycle.

Fig. 6.15(a) shows many parameters depending on each other. To resolve the dependencies, y has

been chosen as degree of freedom as shown in Fig. 6.15(b).

To detect directed cycles in the dependency graphs, the algorithm [Tiernan70], previously de-

veloped at IBM, has been implemented. Once detected, directed cycles are displayed for the de-

signer to inspect them and choose one favorable degree of freedom to solve each of them. Another

possibility is to choose, by default, the first parameter of a directed cycle as the additional degree

of freedom. Once selected, the designer has to set this parameter in the corresponding module or

device level to transform it to a controllable degree of freedom.

6.5.2 Dealing with Over-Specified Designs

An over-specified design is a design which has degrees of freedom more than actually required to

describe its physical dependencies. We show that dependency graphs allow us to detect and re-

solve over-specified designs. The study of those designs gives lots of insight into the circuit design

104 Circuit Sizing and Biasing Methodology

u

v

z

y

x

(a)

u

v

z

y

x

(b)

Figure 6.15: Directed cycles consisting of many parameters.

issues. We show that the design representation itself becomes an efficient aid in understanding

and resolving these issues.

Since a design plan represents a consistent knowledge about the circuit, it should not con-

tain any inconsistency. Inconsistency may appears as conflicting hypothesis [Wu94]. Mainly, we

investigate the problem of systematic offset that appears in the design of amplifiers. We prove

that a systematic offset appears as a conflicting hypothesis in the design knowledge. Its location

is determined and later used to evaluate it precisely. The whole method is fully automated and

integrated inside the CAIRO+ framework. It does not require any designer intervention.

6.5.2.1 Systematic Offset Voltage

Voff

IBIAS

VIN−

Cc

VDD

VIN+ VOUT

1:K

M1 M2

M3 M4 M6

CL

M7M5

M8

REF
I

Figure 6.16: Single-Ended Two-Stage Amplifier.

6.5 Dealing with Different Aspects in Analog Design 105

The problem of offset is encountered during the design of analog circuits such as operational

amplifiers, comparators, A/D, D/A, If both inputs of an ideal op-amp are connected to the

same common-mode input potential, the output potential is equal to zero. This is not the case in

real circuits due to systematic and random offsets. Systematic offset depends on the circuit design.

Random offset comes from random fluctuations of physical and technological parameters along

the chip. In order to bring the output to zero, it is therefore required to apply a proper input offset

potential at the input terminals.

Let us examine the two-stage amplifier in Fig. 6.16. For a given capacitance load CL and a

phase margin PM , increasing gm,M6 lowers the value of the compensation capacitance CC , hence,

increases the gain bandwidth product GBW ≈ gm,M1

CC
. In order to increase gm,M6 in strong inver-

sion, where:

gm,M6 ≈
2IM6

VGS,M6 − Vth,M6
≈ 2IM6

Veg,M6
(6.1)

the overdrive voltage Veg,M6 = VGS,M6 − Vth,M6 should be lowered. This requirement conflicts

with the arbitrary potential VDS,M4. This conflict imbalances the amplifier. In order to balance

the amplifier, a degree of freedom is created by liberating VD,M4. The virtual difference between

VD,M4 and VG,M6 is the systematic offset voltage appearing at the output of the first stage. To bring

this offset to the input of the amplifier, we divide it by the gain of the first stage amplifier,

Vi,off ≈ (VD,M4 − VG,M6) ·
gds,M2 + gds,M4

gm,M1
(6.2)

Generalizing this principle, any conflict in a node potential can be solved by inserting a systematic

offset voltage.

6.5.2.2 Conflict Detection

Table 6.1: Sizing & biasing operators for the amplifier in Fig. 6.16.

Operator Definition

OPVS(Veg, VB) (VS , Vth,W)⇐ Temp, IDS , L, Veg, VD, VG, VB

OPVG(Veg) (VG, VB, Vth,W)⇐ Temp, IDS , L, Veg, VD, VS

OPVGD(Veg) (VG, VD, VB, Vth,W)⇐ Temp, IDS , L, Veg, VS

OPW(VG, VS) (W,VB, Vth)⇐ Temp, IDS , L, VD, VG, VS

OPIDS(VG, VS) (IDS , VB, Vth)⇐ Temp,W, L, VD, VG, VS

During construction of the module dependency graph, conflicts appear as multiple operators

which are computing the same unknown parameter, such as node voltage. Actually, there is no

guarantee that those operators will calculate equal node voltages. This situation creates a conflict

106 Circuit Sizing and Biasing Methodology

IDS,M6

G,M6
V

IDS,M6

(a) (b)

V
OFFSET

1

OPVGD OPVG

DS,M3I

V

V

DS,M3I

S,M1
V

4

4

5 5

V

V

V

V
G,M6

G,M3

D,M1

VD,M1

D,M4

3 2

D,M4

G,M3

V
S,M1

OPVSOPVS

OPVGD OPVG = pivot

Figure 6.17: Conflicts between operators: (a) Detection, (b) Resolution. The resolution steps are enumer-

ated in sequence. Nodes represent parameters, solid arcs represent dependency between parameters, labelled

arcs are operators, and dotted arcs are either added or removed dependencies. .

as illustrated in Fig. 6.17(a). First, let us assume that the current mirror (M3,M4) is ideal, i.e.

VG,M3 = VD,M4. In Fig. 6.17(a), VG,M3 and VD,M4 share the same node since they should respect

this equality constraint. Operator OPVGD, listed in Table 6.1, is used to compute VG,M3 and VD,M4

from the known quantities of the current mirror, e.g. IDS,M3. Also, operator OPVG in the same

table is used to compute VG,M6 from known quantities of M6, e.g. IDS,M6. Unfortunately, VD,M4

and VG,M6 form the same equipotential. Therefore VG,M6 share the same node with VG,M3, VD,M4

and VD,M1. Since, both operators OPVGD and OPVG compute the same node, they are conflicting

by definition. Hence, one degree of freedom is needed to resolve this conflict. This degree of

freedom should be inserted in the graph to transform it to a conflict-free one.

6.5.2.3 Conflict Resolution

In order to resolve conflicts between operators, we propose the technique of node splitting. In this

technique, a pivot operator is selected. The pivot operator is defined as an operator computing

either the gate voltage (i.e. OPVG) or the source voltage (i.e. OPVS) of a MOS transistor. Both

operators are defined in Table 6.1. It was shown in Fig. 4.1 that the drain potential may be fixed or

determined from its connection to either a gate or a source terminal of another transistor. There-

fore, it is assumed that offsets are attached to only source or gate terminals of a MOS transistor.

Diode-connected transistors are excluded from this definition.

Once the pivot operator is selected, the parameters that do not match are separated into a

6.5 Dealing with Different Aspects in Analog Design 107

split node. Each of the conflicting operators are corrected to point to the appropriate node. Then

all graph dependencies are repaired with respect to the original and split nodes. This is done

using instance pathname equivalence between dependencies and parameters. Once repaired, a

systematic offset node is created in the graph. Its dependencies on the original and split nodes

are registered. It is inserted as one degree of freedom in the dependency graph to transform it

into a conflict-free one. This way, knowledge in the graph becomes consistent. In Fig. 6.17(b),

the pivot operator is OPVG since it computes only a gate voltage. After splitting in step 1, the

original node has only VG,M6 and the split node has {VG,M3, VD,M4, VD,M1}. Since OPVG was

originally created to compute VG,M6, it is corrected in step 2 to point to the original node VG,M6.

OPVGD is corrected in step 3 to point to the split node {VG,M3, VD,M4, VD,M1}. In step 4, the

dependency of VS,M1 on the original node is corrected to point to the split node. This is performed

using equivalence on instance pathname M1. Since VS,M1 depends logically on parameters of

M1, it is not correct to have it depending on the original node VG,M6 that does not contain any

parameters of M1. Therefore, the dependency of VS,M1 on original node VG,M6 is replaced by a

dependency on the split node {VG,M3, VD,M4, VD,M1} which contains VD,M1. In step 5, the offset

node is added to the graph. It depends on both the original and the split nodes. It is defined as

VOFFSET = VG,M6 − {VG,M3, VD,M4, VD,M1}. The graph is now conflict-free.

6.5.2.4 Computing Systematic Input Offset in Designer Mode

In the designer mode, the systematic offset is computed from the dependency graph of the am-

plifier as VOFFSET = VG,M6 − {VG,M3, VD,M4, VD,M1}. To bring it to the input of the amplifier, we

divide it by the static gain of the first stage as given by equation 6.2 which is repeated here for

convenience,

Vi,off ≈ (VD,M4 − VG,M6) ·
gds,M2 + gds,M4

gm,M1
(6.3)

The more the equation of the static gain is precise, the better is the estimate of the systematic input

offset.

6.5.2.5 Computing Systematic Input Offset in Simulator Mode

In simulator mode, the systematic offset is computed from the dependency graph of the amplifier

as VOFFSET = VG,M6 − {VG,M3, VD,M4, VD,M1}. To bring it to the input terminal, we reformulate

problem as follows: What is the potential of the amplifier positive input that will bring VOFFSET =

VG,M6 − {VG,M3, VD,M4, VD,M1} to zero. In general, this is reformulated as the constraint equation

6.4 on offset. The equation solves for the value of the amplifier positive input parameter VINP that

will bring VOFFSET to zero.

Foffset(VINP) = VG,M6(VINP)− VD,M4(VINP) = 0 (6.4)

108 Circuit Sizing and Biasing Methodology

We solve this equation using a graph-based Newton-Raphson algorithm that will be described

in section 6.5.4.

6.5.3 Dealing with Negative Feedback Circuits

The circuit sizing and biasing method, presented in this chapter, is extended to deal with negative

feedback circuits [Sedra91]. Negative feedback is applied to effect one or more of the following

properties:

1. Desensitize the gain: that is, make the value of the gain less sensitive to variations in the

value of circuit components, such as variations that might be caused by changes in temper-

ature.

2. Reduce nonlinear distortion: that is, make the output proportional to the input. In other

words, make the gain constant independent of signal level.

3. Reduce the effect of noise: that is minimize the contribution to the output of unwanted

electric signals generated by the circuit components and extraneous interference.

4. Control the input and output impedances: that is, raise or lower input and output

impedances by the selection of appropriate feedback topology.

5. Extend the bandwidth of an amplifier.

+

−

i

f

o
Load

s
Source A

B

x x

x

x

Figure 6.18: Block diagram of a feedback circuit.

Due to its numerous advantages, feedback circuits had to be analyzed by our proposed

method. An example for a feedback circuit is shown in Fig. 6.18. The figure shows the basic

structure of a feedback amplifier. Each arrow represents a voltage or a current signal. The

open-loop amplifier has a gain A; thus its output xo is related to the input xi by

xo = A · xi (6.5)

The output is fed to the load as well as the feedback network, which produces a feedback

signal xf from the output. This feedback signal xf is related to xo by the feedback factor B,

xf = B · xo (6.6)

6.5 Dealing with Different Aspects in Analog Design 109

The feedback signal is subtracted from the source signal xs, which is the input to the complete

feedback amplifier, to produce the signal xi, which is the input to the basic amplifier,

xi = xs − xf (6.7)

This subtraction makes the negative feedback. In essence, negative feedback reduces the signal

that appears at the input of the basic amplifier. Note that in real circuits, the source, the load

and the feedback network load the basic amplifier. That is the gain A depends on any of these

three networks. This loading effect has to be taken into account during the evaluation of negative

feedback circuits.

Note also that the gain of the feedback amplifier can be obtained by combining equations 6.5

through 6.7:

Af =
xo

xs
=

A

1 + A ·B (6.8)

where A ·B is called the loop gain. In the case of negative feedback, the loop gain A ·B should be

positive; that is, the feedback signal xf should have the same sign as xs thus resulting in a smaller

difference signal xi. Equation 6.8 indicates that for positive A · B, the gain with feedback will be

smaller than the open loop gain A by the quantity 1 + A ·B, which is called the amount of feedback.

For more information on feedback circuits, refer to [Sedra91].

Since a design plan should be represented by a directed acyclic graph (DAG), it should not

contain any directed cycles. On the other hand, a negative feedback appears as a directed cycle in

the dependency graph. This directed cycle is part of the structure and function of the circuit and

cannot be eliminated. Otherwise, the circuit will not be functioning properly. Therefore, negative

feedback is dealt with differently. In subsequent sections, we propose methods to compute neg-

ative feedback circuits and to represent them using dependency graphs, in both designer mode

and simulator mode.

6.5.3.1 Negative Feedback Circuits in Designer Mode

V
OUT,CM

V
OUT,CM

+

−

V
IN,CM

B

A

Figure 6.19: Single negative feedback in designer mode.

110 Circuit Sizing and Biasing Methodology

The designer mode is considered as an abstract view of the design. Under negative feedback

the operating point evolves till achieving a steady state. This evolution cannot be simulated since

the designer mode does not possess a general circuit DC solver. Therefore, the designer should

impose approximate steady state conditions and deduces dimensions for the circuit.

As explained before, the negative feedback represents a directed cycle that has to be broken

in order to obtain directed acyclic graphs. Therefore, under steady state conditions, the common-

mode input to block B in Fig. 6.19 is equal to the common-mode output VOUT,CM , producing zero

differential input signal to the amplifier. Only under these circumstances, the negative feedback

have no effect and can be broken. Normally, the common-mode voltage levels are known a priori,

which facilitates this step. In this case, input and output common-mode levels become among

degrees of freedom for the design. Once performed, the circuit is successfully sized and biased for

steady state conditions.

OUTB,CM
V

V
OUT,CM

V
OUT,CMOUTB,CM

V
+

−

+

−

CE

D

IN,CM
V

A

B

Figure 6.20: Multiple negative feedbacks in designer mode.

The above method is generalized for the case of multiple negative feedbacks that form multiple

directed cycles in the circuit dependency graph. Those can be broken as shown in Fig. 6.20. The

different common-mode levels have to be fixed for steady-state conditions and the circuit is then

sized and biased.

6.5.3.2 Negative Feedback Circuits in Simulator Mode

As opposed to the designer mode, the simulator mode is considered as the accurate view which

computes how the actual simulation will behave. In the simulator mode, the circuit is not hierar-

chical but flattened. In the flattened view, dimensions are given to all the transistors. Then, the

circuit is simulated by computing branch currents and node voltages. Again, negative feedback

poses problem as it adds directed cycles to the simulated dependency graph. Since the negative

feedback is essential for proper functioning, it is not removed from the graph but represented

6.5 Dealing with Different Aspects in Analog Design 111

differently. From Fig. 6.21, we compute X ′ as follows

VOUT = A · (VIN −X) (6.9)

X ′ = B · VOUT (6.10)

We substitute equation 6.9 into equation 6.10 to obtain X ′,

X ′ = A ·B · (VIN −X) = Ffeedback(X) (6.11)

Since X ′ = X for the feedback to be effective, we can solve the equation X ′ −X = 0 to get the

value of X that is the negative feedback signal. If X ′ = Ffeedback(X), then one solves

Ffeedback(X)−X = 0 (6.12)

where X is a selected parameter that represents the negative feedback signal and is used to solve

for the feedback condition.

VV

X

X’

+

−

IN OUTA

B

Figure 6.21: Single negative feedback in simulator mode.

X

X’

+

−

+

−

C

Y

E V
OUTIN

V

D
Y’

B

A

Figure 6.22: Multiple negative feedbacks in simulator mode.

For the case of multiple feedback signals in the block diagram in Fig 6.22, a negative feed-

back signal is selected for each negative feedback loop and is solved for each using equation 6.12.

112 Circuit Sizing and Biasing Methodology

Therefore, we deduce that

X ′ −X = F1,feedback(X)−X (6.13)

= A ·B · [E · (VIN − Y)−X]−X = 0 (6.14)

= A ·B · E · (VIN − Y)− (1 + A ·B) ·X = 0 (6.15)

Y ′ − Y = F2,feedback(Y)− Y = 0 (6.16)

= D · C ·A · [E · (VIN − Y)−X]− Y = 0 (6.17)

= D · C ·A · E · VIN − (1 + D · C ·A · E) · Y −D · C ·A ·X = 0 (6.18)

These equations are then solved together in X and Y using a graph-based Newton-Raphson

algorithm that will be described in the next section.

6.5.4 Introducing a Unified Formulation for Simulator Mode

Before proposing a unified formulation for the simulator mode, we highlight another type of con-

straints that needs to be taken into account. This is the Kirchhoff’s Current Law which states that

the sum of currents entering a node is equal to the sum of currents flowing out of the node. This

is mathematically expressed as
m∑

i=1

Ii,in =
l∑

j=1

Ij,out (6.19)

Equation 6.19 can be rewritten as an equality constraint as in equation 6.20. We call this type of

constraint Kirchhoff’s current law constraint. Note that in the last equation, currents are expressed

in terms of a variable X which is considered as the degree of freedom that is solved for, in order

to equalize the equation to zero.

FKCL(X) =

m∑

i=1

Ii,in(X)−
k∑

j=1

Ij,out(X) = 0 (6.20)

We represent now the unified formulation for the simulator mode. We would like to solve n

nonlinear equations in n unknowns:

FKCL(x1, x2, · · · , xn) = 0 (6.21)

Foffset(x1, x2, · · · , xn) = 0 (6.22)

Ffeedback(x1, x2, · · · , xn) = 0 (6.23)

or we have the vector of nonlinear equality constraints F(x):

F(x) =






FKCL(x)

Foffset(x)

Ffeedback(x)




 = 0 (6.24)

6.6 Top-Down Evaluation of Dependency Graphs 113

We call F(x) also the vector of Newton-Raphson constraints. Using the Damped Newton-Raphson

algorithm [Coughran83], we have:

J(xk) ·∆xk = −F(xk) (6.25)

xk+1 = xk + γ ·∆xk (6.26)

where γ is the damping coefficient and J(xk) is the n × n jacobian matrix of F(x) with respect to

x. The jacobian matrix is defined as:

J(xk) =







∂FKCL(xk)
∂x1

k

∂FKCL(xk)
∂x2

k

· · · ∂FKCL(xk)
∂xn

k

∂Foffset(xk)
∂x1

k

∂Foffset(xk)
∂x2

k

· · · ∂Foffset(xk)
∂xn

k

∂Ffeedback(xk)
∂x1

k

∂Ffeedback(xk)
∂x2

k

· · · ∂Ffeedback(xk)
∂xn

k







(6.27)

Each element in the jacobian matrix J(xk) is defined as

∂F(· · · , xi
k, · · ·)

∂xi
k

= lim
hi→0

F (· · · , xi
k, · · ·)− F (· · · , xi

k − hi, · · ·)
hi

(6.28)

where hi is an infinitely small step of computation.

To apply the above formulation, the designer states the types of constraints in F(x) required to

describe the circuit behavior inside the module. Then, one degree of freedom is specified for each

constraint. Finally, the system of nonlinear constraints is solved using equations 6.25 and 6.26.

Note the reduction in the size of F(x) since only the relevant node voltages are specified rather

that all node voltages as in standard DC analysis.

Another important point is how to compute F (· · · , xi
k, · · ·) and F (· · · , xi

k−hi, · · ·) in equation

6.28. In the actual implementation, this is done by evaluating the circuit dependency graph as a

DAG as will be explained in the next section. This requires that the DAG evaluation be part of the

damped Newton-Raphson Algorithm. The algorithm is simple and is outlined in Fig. 6.23.

Worth mentioning that the proposed method for simulator mode allows us to specify Newton-

Raphson constraints in one module level and inherit it in a higher level module during DC sim-

ulation. This represent an explicit form of hierarchical knowledge reuse that is the main target of

our proposed method.

6.6 Top-Down Evaluation of Dependency Graphs

The proposed methods shows how to construct module dependency graphs, in a bottom-up fash-

ion, for both the designer and simulator modes. Since the knowledge stored in the module depen-

dency graph is a directed acyclic graph (DAG), it can be divided into successive computational

levels. The subsequent subsections will describe simple algorithms used to perform this division.

114 Circuit Sizing and Biasing Methodology

Graph-Based Newton-Raphson Algorithm

1 Verify that the number of equations = the number of input parameters

2 Evaluate the DAG for the input parameter vector xk

3 Get FKCL(xk), Foffset(xk) and Ffeedback(xk)

4 Set F(xk) = [FKCL(xk) Foffset(xk) Ffeedback(xk)]
T

5 For each input parameter xi
k in xk

6 Set the input parameter xi
k equals to xi

k − hi

7 Evaluate the DAG for xi
k − hi

8 Get FKCL(· · · , xi
k − hi, · · ·), Foffset(· · · , xi

k − hi, · · ·) and Ffeedback(· · · , xi
k − hi, · · ·)

9 Compute the jacobian matrix J(xk) using equations 6.27 and 6.28

10 Restore the input parameter xi
k changed at step (5)

11 End For

12 Solve J(xk) ·∆xk = −F(xk) to get ∆xk using LU Factorization

13 Get next estimate xk+1 = xk + γ ·∆xk

14 If maximum iteration count is reached, then restore xk and goto step (16)

15 Repeat 2-13 until | xk+1 − xk |≤ ǫrelative ·max(| xk+1 |, | xk |) + ǫabsolute

16 Evaluate the DAG for the input parameter vector xk+1

17 End

Figure 6.23: Pseudo-code of the graph-based Newton-Raphson algorithm.

6.6.1 Node Coloring

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels

traditionally called ”colors” to each vertex of a graph so that adjacent vertices are not assigned

the same color. A computational level consists of the set of nodes that can be evaluated simulta-

neously. In our case, each computational level will be assigned one distinct color that is different

from previous and successive computational levels. Coloring a computational level consists of

coloring all nodes in this level with the same color. This means that nodes in the same computa-

tional level cannot be adjacent. The algorithm used for coloring is a variant of the as-late-as-possible

(ALAP) scheduling algorithm [Kung85]. This is presented in the subsequent subsection.

6.6.2 Scheduling using As-Late-As-Possible Scheme (ALAP)

The ALAP scheduling assigns each node to the latest possible computational level. The algorithm

is outlined in Fig. 6.24.

In this algorithm, the graph is checked if there exists nodes that do not possess outgoing arcs.

These nodes are colored using the same color since they form one distinct computational level.

Then all the arcs incident to these nodes are removed from the graph. This arc removal will create

6.7 Putting all together 115

ALAP Scheduling Algorithm

1 Given

2 V is the set of vertices,

3 Nodes u, v ∈ V ,

4 A is the set of arcs,

5 Arc uv ∈ A,

6 Graph G = (V,A),

7 Color c

8

9 Set color c to 0

10 While not all v ∈ V in G = (V,A) are colored

11 do

12 For all uncolored v ∈ V in G

14 If no arcs are out of v then

15 Colorize v with color c

16 Remove all arcs uv ∈ A incident on v in G

17 End If

18 End For

19 Increment color c

20 End While

Figure 6.24: Pseudo-code for the ALAP scheduling.

another set of uncolored nodes which constitutes another computational level and so on. The

algorithm stops when all graph nodes are colored.

6.6.3 Dependency Graph Evaluation

At the beginning, all the graph nodes will be scheduled into computational levels. Each compu-

tational level will then be visited in sequence. At each level, all nodes will be evaluated. Note

that all graph nodes in one level can be evaluated simultaneously. The evaluation proceeds from a

level to the next one, in a top-down (or left-to-right) approach till reaching the last computational

level. At the end, all the parameter values have been propagated in the whole graph.

6.7 Putting all together

The SYNTHESIZE routine is outlined for modules in Fig. 6.25. When synthesizing a module, the

steps depicted at lines 8-14 are executed:

1. In lines 2-4, the routine is called recursively for all children generators

116 Circuit Sizing and Biasing Methodology

1 function synthesize(generator)

2 for every child of generator

3 call synthesize(child)

4 end for

5 if generator is a device

6 generate dependencies for the reference transistor

7 eliminate all redundant dependencies

8 else if generator is a module

9 merge dependencies of all children generators

10 eliminate all redundant dependencies

11 if generator is the root generator then

12 resolve all external conflicts

13 end if

14 end if

15 end function

Figure 6.25: Pseudo-code of the SYNTHESIZE routine.

2. In line 5, the generator is checked if it represents a device level.

3. In line 6, the reference transistor dependencies are generated as depicted in subsection 6.4.2.

4. In line 7, the redundant dependencies are eliminated in devices as explained in appendix

D.6.

5. In line 8, the generator is checked if it represents a module level.

6. In line 9, if it is a module then the dependency graphs of all its children generators are

merged using the technique described in subsection 6.4.3.

7. In line 10, the redundant dependencies are eliminated from the resulting module depen-

dency graph, as explained in appendix D.7.

8. In lines 11-13, if the current level is the root level generator, the over-specified designs are

detected and resolved as described in subsection 6.5.2.

6.8 Detailed Example: Single-ended Two-Stage Amplifier

The sizing and biasing for the two-stage amplifier, shown in Fig. 6.26, will be studied for dif-

ferent designer’s hypotheses. This will be performed in both the designer mode and the simulator

6.8 Detailed Example: Single-ended Two-Stage Amplifier 117

mode. Two main design problems will be investigated, namely: the systematic offset and the negative

feedback.

Voff

IBIAS

VIN−

Cc

VDD

VIN+ VOUT

1:K

M1 M2

M3 M4 M6

CL

M7M5

M8

REF
I

Figure 6.26: Single-ended two-stage amplifier.

6.8.1 Creating Amplifier Dependency Graphs in Designer Mode

The SYNTHESIZE routine outlined in Fig. 6.25 is applied in designer mode. The first step is to

synthesize each device separately. Then, the different device dependency graphs will be merged

to form the module dependency graph for the amplifier. These steps will be illustrated in further

details in the next subsections.

Let us suppose that the module parameters of the amplifier are:

• TEMP : Temperature

• VDD: Positive supply

• VSS : Negative supply

• IBIAS : Biasing current of the amplifier

• Veg,M5: Overdrive voltage of biasing transistor M5

• Veg,CM : Overdrive voltage of the current mirror CM

• Veg,DP : Overdrive voltage of the differential pair DP

• VINCM : Common-mode input voltage

118 Circuit Sizing and Biasing Methodology

• K = IM6

IBIAS
: Current ratio between the first and second stage

• LM5,M7,M8
: Lengths of M5, M7 and M8 which are equal

• LDP : Length of the differential pair

• LCM and LM6
: Lengths of CM and M6. They are equal in the case of minimum systematic

offset (LCM = LM6
= LCM,M6

)

• VOUTCM : Common-mode output voltage

6.8.1.1 Synthesizing Children Devices

Applying steps 2-7 of the SYNTHESIZE routine, we generate the device dependency graph for

each device in the amplifier.

The current mirror (M3,M4): The known parameters for the current mirror are: Temp, Veg,CM ,

LCM , IDS,CM = −IBIAS
2 and VS,CM = VB,CM = VDD. Since the minimum systematic offset will

be first studied, we set LCM = LCM,M6
. Synthesizing the current mirror using this set of pa-

rameters, we get the device dependency graph of Fig 6.27. Since the reference transistor M3 is

diode-connected, the device dependency graph consists mainly of the operator OPV GD(Veg,CM).

9

7

2

4

510

8

3

1 0

6

CM/IDS

CM/VEG

CM/L

CM/TEMP

M3,M4/IDS

M3,M4/TEMP

CM,M3/VG,VD

CM,M3,M4/W

OPVGD(VEG)

OPVGD(VEG)

CM/d1

CM,M3/VS,VB

CM/s

M3,M4/VEG

M3/M4/L

Figure 6.27: Device dependency graph for the current mirror (M3,M4).

The differential pair (M1,M2): The known parameters of the differential pair are: Temp, Veg,DP ,

LDP , IDS,DP = IBIAS
2 , VG = VINCM and VB,DP = VSS . The drain voltage VD,DP is the result of

6.8 Detailed Example: Single-ended Two-Stage Amplifier 119

computation of the current mirror. This is identified as the equipotential (VD,DP ,VG/D,CM) using

the method of equipotentials discussed in section 6.4.1. Synthesizing the differential pair, we get

the device dependency graph of Fig. 6.28. Since the source voltage is unknown for the reference

transistor M1 and M1 is not bulk-source connected, the device dependency graph consists mainly

of the operator OPV S(Veg,DP , VB,DP).

DP/IDS

DP/VEG

DP/L

DP/TEMP

M1,M2/TEMP

DP,M1/VS

DP,M1,M2/W

OPVS(VEG,VB)

OPVS(VEG,VB)

87

6

5

4

3

2

1 0

11

12

10

9

DP,M1/VG

DP,M1/VB

DP,M1/VD

M1,M2/VEG

M1,M2/IDS

M1,M2/L

DP/s

DP/d1

DP/b

DP/g1

Figure 6.28: Device dependency graph for the differential pair (M1,M2).

The biasing transistor M5: The known parameters of the biasing transistor M5 are: Temp,

Veg,M5
, LM5

= LM5,M7,M8
, IDS,M5

= IBIAS and VS,M5
= VB,M5

= VSS . The drain voltage VD,M5

is the result of computation of the differential pair. This is identified as the equipotential

(VD,M5
,VS,DP) using the method of equipotentials discussed in section 6.4.1. Synthesizing the

biasing transistor, we get the device dependency graph of Fig. 6.29. Since the gate voltage of the

reference transistor is unknown and M5 is bulk-source connected, the device dependency graph

consists mainly of the operator OPV G(Veg,M5
).

The second stage load transistor M6: The known parameters of the load transistor M6 are:

Temp, LM6
, IDS,M6

= −K · IBIAS , VS,M6
= VB,M6

. Since the minimum systematic offset will

be first studied, then we impose the constraints that LM6
= LCM,M6

and VG,M6
= VD,DP . The

120 Circuit Sizing and Biasing Methodology

M5/W

OPVG(VEG)

OPVG(VEG)

6 7

01

2

3

4

5

M5/VG
M5/g

M5/VS,VB
M5/s

M5/VD
M5/d

M5/VEG

M5/IDS

M5/L

M5/TEMP

Figure 6.29: Device dependency graph for the transistor M5.

constraint VG,M6
= VD,DP makes VG,M6

known since VD,DP = VG/D,CM and VG/D,CM is computed

from the current mirror . Synthesizing the load transistor M6, we get the device dependency

graph of Fig. 6.30. Since the width WM6
is the only remaining unknown parameter, the device

dependency graph consists mainly of the operator OPW (VG,M6
, VS,M6

).

The second stage biasing transistor M7: The only known parameters are: Temp,

LM7
= LM5,M7,M8

, IDS,M7
= K · IBIAS , VS,M7

= VB,M7
. Since the gate voltage VG,M7

= VG,M5
as

the equipotential (VG/D,M8
,VG,M5

, VG,M7
) is identified and VG,M5

is previously computed from

M5, then VG,M7
is also a known parameter. Synthesizing the biasing transistor M7, we get the

device dependency graph of Fig. 6.31. Since the width WM7
is the only remaining unknown

parameter, the device dependency graph consists mainly of the operator OPW (VG,M7
, VS,M7

).

The biasing circuit transistor M8: The parameters of the biasing transistor M8 are imposed iden-

tically to M5. The known parameters are Temp, LM8
= LM5,M7,M8

, VS,M8
= VB,M8

. As the equipo-

tential (VG/D,M8
,VG,M5

, VG,M7
) is identified, then VG/D,M8

, becomes a known parameter too. The

unknown parameters are the width WM8
and the current IDS,M8

. Synthesizing the biasing tran-

sistor M8, we get the device dependency graph of Fig. 6.32. Since we have two unknowns, the

directed cycle (0,5) will be created. As we impose the constraint WM8
= WM5

, WM8
becomes

known resolving the directed cycle leaving IDS,M8
as the only unknown to be computed. Since the

6.8 Detailed Example: Single-ended Two-Stage Amplifier 121

M6/TEMP

M6/L

M6/W

OPW(VG,VS)

1

2

3

4

5

6

0

M6/VD
M6/d

M6/VS,VB
M6/s

M6/VG
M6/g

M6/IDS

Figure 6.30: Device dependency graph for the transistor M6.

M7/W

OPW(VG,VS)

1

2

3

4

5

6

0

M7/IDS

M7/VG
M7/g

M7/VS,VB

M7/s

M7/VD

M7/d

M7/TEMP

M7/L

Figure 6.31: Device dependency graph for the transistor M7.

122 Circuit Sizing and Biasing Methodology

current IDS,M8
is the only remaining unknown parameter, the device dependency graph consists

mainly of the operator OPIDS(VG,M8
, VS,M8

).

1 2 3

5

M8/W

M8/IDS

M8/L M8/VS,VBM8/TEMP M8/VG,VD

OPW(VG,VS)

OPIDS(VG,VS)

4

0

M8/sM8/d

Figure 6.32: Device dependency graph for the transistor M8.

6.8.1.2 Dependency Graph Without Systematic Offset in Designer Mode

To synthesize the amplifier, the module parameters TEMP , VDD, VSS , IBIAS , Veg,M5, Veg,CM ,

Veg,DP , K, LCM,M6
, LM5,M7,M8

, LDP , VINCM and VOUTCM are set by the designer. To achieve

minimum systematic offset:

• The constraint VG,M6
= VD,DP (or VG,M6

= VD,M1
= VD,M2

) is imposed for minimum sys-

tematic offset.

• The constraint LM6
= LCM = LCM,M6

is imposed to keep the same threshold voltage for the

current mirror CM and M6.

In addition, the constraint WM8
= WM5

and LM8
= LM5

= LM7
are imposed. As the biasing

current IBIAS is set by the designer, the reference polarization current is computed for M8. The

SYNTHESIZE routine is executed for the module level. At that time, all the device dependency

graphs are merged to form the module dependency graph illustrated in Fig. 6.33.

The module dependency graph for the amplifier possesses lots of characteristics:

1. The graph is a directed acyclic graph (DAG) as it evolves in only one left-to-right (or top-

down) direction.

2. The rectangle nodes are the minimal set of design parameters that the designer should

set for this graph. These parameters are (C1,IBIAS ,42), (C1,Veg,CM ,62), (C1,LCM,M6
,65),

(C1,Temp,67), (C2,VDD,58), (C2,Veg,DP ,63), (C2,LDP ,66), (C3,VSS ,57), (C3,VINCM ,60),

(C4,Veg,M5
,61), (C4,LM8,M5,M7

,64), (C5,K,43) and (C5,VOUTCM ,59).

6.8 Detailed Example: Single-ended Two-Stage Amplifier 123

C1 C2 C3 C4 C5 C6 C7 C8

67 60 59

54

57

56

43

42

62

65

66

58

55

46

41

63

64

61 48

50

53

52

1

3

5

7

51

49

18

16

14

12

9

6

4

2

10

11

13

15

17

20

21

40

47

45

44

39

37

36

35

22

34

33

32

31

30

28

27

26

25

24

8

19

23

29

38

AMP/IBIAS

AMP/L_CM_M6

AMP/TEMP AMP/L_DP

AMP/VEG_DP

AMP/VDD

AMP/VEG_CM

veg_cm

ids_cm

IDS_CM(IBIAS)

l_cm_m6

temp

CM/TEMP

CM/L

CM/VEG

CM/IDS

ids_dp

IDS_DP(IBIAS)

l_dp

veg_dp

vdd

0

AMP/VINCM

AMP/VSS

AMP/L_M8_M5_M7

AMP/VEG_M5

vss

vincm

DP/IDS

DP/VEG

DP/L

DP/TEMP

M3,M6,CM/VS,VB

M3,M4/TEMP

M3,M4/L

M3,M4/VEG

M3,M4/IDS

AMP/VOUTCM

veg_m5

ibias

AMP/K

l_m8_m5_m7

M1,M2/IDS

M1,M2/VEG

M1,M2/L

M1,M2/TEMP

CM,M3/VG,VD

M6/VG

DP,M1/VD

OPVGD(VEG)

ids_m6

NI(K,IBIAS)

vsp

ids_m7

I(K,IBIAS)

M5/VEG

M5,M8/L

M5/IDS

M5,M8/TEMP

DP,M1/VS

M5/VD

M7/TEMP

M7/L

M6,M7/VD

M5,M8/W

M6/IDS

M6/L

M6/TEMP

M7/IDS

M8,VD

M8,M5,M7/VG

OPVG(VEG)

CM,M3,M4/W

OPVGD(VEG)

DP,M1,M2/W

OPVS(VEG,VB)

M7,W

OPW(VG,VS)

M6/W

OPW(VG,VS)

M8/IDS

OPIDS(VG,VS)

DP,M1/VG

DP,M1/VB
M8,M5,M7/VS,VB

Figure 6.33: Module dependency graph of the amplifier without systematic offset in designer mode: (a)

Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter map-

ping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is a

represented by a triplet (column, name, index). The current mirror dependencies are represented by the red

arcs. Device connectors, equipotentials and weights are not shown for clarity.

124 Circuit Sizing and Biasing Methodology

3. The variables and parameters used for parameter mapping are represented as fine circle

nodes. As an example, variable (C2,veg cm,56) maps the amplifier parameter (C1,Veg,CM ,62)

into the current mirror parameter (C3,Veg,CM ,5).

4. Device parameters are propagated to transistors forming the device. As an example,

the current mirror parameter (C3,Veg,CM ,5) is propagated to M3 via (C4,Veg,M3
,4) and to

M4 via (C4,Veg,M4
,4). Note that M3 and M4 share the same effective gate-source voltage

(C4,{Veg,M3
, Veg,M4

},4).

5. Since Veg,M3
is specified, VG/D,M3

is computed by the operator OPVGD(Veg,M3
) in

(C5,VG/D,M3
,10). Operators are applied to bold nodes.

6. Transistor widths are computed in nodes (C8,{WM3
,WM4

},8), (C8,{WM1
,WM2

},19),

(C8,WM7
,23), (C8,WM6

,29) and (C7,{WM5
,WM8

},33).

7. The unknown reference current of IREF,M8
is computed in node (C8,IDS,M8

,38) via the oper-

ator OPIDS(VG,M8
, VS,M8

).

8. The graph is divided into eight successive computational levels.

9. All nodes in one computational level are computed simultaneously.

10. The design plan presented in the graph appears as the following sequence of operators:

(a) For the current mirror, OPV GD(Veg,M3) computes (WM3
,WM,4) in node

(C8,{WM3
,WM4

},8) and VG/D,M3
in node (C5,VG/D,M3

,10).

(b) Since VD,M1
= VG/D,M3

for the differential pair, this is used by OPV S(Veg,M1
, VB,M1

) to

compute (WM1
, WM2

) in node (C8,{WM1
,WM2

},19) and VS,M1
in node (C6,VS,M1

,22).

(c) Since VS,M1
= VD,M5

for transistor M5, OPV G(Veg,M5
) computes VG,M5

= VG/D,M8
=

VG,M7
and W5 in nodes (C7,{VG,M5

, VG,M7
, VG/D,M8

},27) and (C7,{WM5
,WM8

},33) re-

spectively.

(d) Since VG/D,M8
= VG,M5

for transistor M8, OPIDS(VG,M8
, VS,M8

) computes IDS,M8
in

node (C8,IDS,M8
,38).

(e) For transistor M6, OPW (VG,M6
, VS,M6

) computes WM6
in node (C8,WM6

,29).

(f) For transistor M7, OPW (VG,M7
, VS,M7

) computes WM7
in node (C8,WM7

,23).

11. The minimum systematic offset hypothesis VD,M1
= VD,M2

= VG,M6
appears as node

(C5,VG/D,M3
,10) where VD,M1

and VG,M6
share the same node.

12. The constraint LCM = LM6
appears as one parameter in node (C1,L CM M6,65) that affects

node (C2,l cm m6,46). This, in turn, affects both nodes (C3,LCM ,3) and (C7,LM6,31).

6.8 Detailed Example: Single-ended Two-Stage Amplifier 125

13. The constraint LM8
= LM5

= LM7
appears as one parameter in node (C4,LM8,M5,M7

,64)

that affects node (C5,l m8 m5 m7,40). This, in turn, affects both nodes (C6,LM8,M5
,36) and

(C7,LM7
,25).

14. The constraint WM8
= WM5

appears as node (C7,{WM8
,WM5

},33).

15. A designer-defined procedure is used at node (C2,ids cm,55) to compute IDS,CM from

(C1,IBIAS ,42).

The amplifier dependency graph is evaluated by setting its parameters as shown in Table 6.2.

Table 6.2: Input Parameters for Minimum Systematic Offset in Designer Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 IBIAS (µA) 30.0

Veg,M5(V) 0.1 LM5,M7,M8(µm) 0.34

Veg,CM (V) -0.12 LDP (µm) 0.34

Veg,DP (V) 0.12 LCM,M6(µm) 0.34

VINCM (V) 0.6 VOUTCM (V) 0.6

K = IM6

IBIAS
5.0

The amplifier dependency graph is then evaluated and the DC operating is computed in

0.13µm technology. Then the amplifier is simulated as a unity buffer closed-loop configuration.

The synthesis results are compared against the simulation results in Table 6.3. The results show

that the proposed methodology sized and biased the amplifier with very acceptable precision.

The slight differences between the simulation and synthesis comes essentially from the fact that

the synthesis phase is coupled with a layout generation phase into which the widths are aligned

with the physical grid.

Table 6.4 shows the computed widths and the number of fingers for all the devices of the

amplifier. In addition, the reference current IDS,M8
is also computed from the graph.

6.8.1.3 Dependency Graph With Systematic Offset in Designer Mode

To synthesize the amplifier, the module parameters TEMP , VDD, VSS , IBIAS , Veg,M5, Veg,M6
,

Veg,CM , Veg,DP , K, LCM , LM6
, LM5,M7,M8

, LDP , VINCM and VOUTCM are set by the designer. To

generate a conflict between the two stages of the amplifier:

1. LCM and LM6
are specified separately to account for different threshold voltages in the cur-

rent mirror CM and transistor M6.

2. The constraint VG,M6
= VG/D,CM is imposed.

126 Circuit Sizing and Biasing Methodology

Table 6.3: Operating Point Results for Minimum Systematic Offset in Designer Mode.

Parameter Synthesis Simulation

M1,M2 M6 M1 M2 M6

IDS(µA) 15.0 -150.0 15.004 15.003 -149.83

VGS(V) 0.481564 -0.473856 0.48142 0.48142 -0.47376

VDS(V) 0.607707 -0.6 0.60753 0.60765 -0.6

VBS(V) -0.118436 0.0 -0.11858 -0.11858 0.0

Vth(V) 0.361564 -0.353809 0.36167 0.36167 -0.35381

Veg(V) 0.12 Not Given 0.11975 0.11975 -0.11995

Vdsat(V) 0.119121 -0.119337 0.11897 0.11897 -0.11928

gm(mA/V) 0.190776 1.90276 0.19106 0.19106 1.9015

gds(µA/V) 2.27195 17.756 2.2738 2.2736 17.738

gmb(mA/V) 0.0356447 0.369543 0.035701 0.0357 0.36929

Cgd(fF) 1.03858 24.5575 1.0422 1.0422 24.558

Cgs(fF) 5.30485 152.293 5.3216 5.3215 152.26

Table 6.4: Computed Parameters for Minimum Systematic Offset in Designer Mode.

(W/M)DP (W/M)CM (W/M)M5
(W/M)M6

(W/M)M7
(W/M)M8

IDS,M8

2.08µm/4 6.32µm/2 6.64µm/4 62.2µm/20 27.6µm/16 6.64µm/4 35.29µA

3. In addition, Veg,CM and Veg,M6
are specified differently to generate the conflict as explained

in section 6.5.2.

After synthesizing the amplifier using the above hypotheses, we get the amplifier

dependency graph shown in Fig. 6.34. Comparing the graph with the case of minimum

systematic offset, we notice the introduction of the new offset node (C8,VOFFSET ,0). Node

(C5,{VG,M6
, VD,DP , VD,M1

, VG/D,CM , VG/D,M3
},10) of Fig. 6.33 has been split to the two nodes

(C5,{VD,DP , VD,M1
, VG/D,CM , VG/D,M3

},2) and (C7,VG,M6
,1) of Fig. 6.34. This is done to resolve the

conflict caused between these two nodes.

The amplifier dependency graph is then evaluated using the parameter values listed in Ta-

ble 6.5. Note that LCM 6= LM6 and that Veg,M6 6= Veg,CM to account for systematic offset hypothe-

ses listed above.

The amplifier is then simulated in a unity buffer closed-loop configuration. Table 6.6 shows the

computed and simulated operating points, as well as, the computed input offset. The synthesis

part of the table allows us to compute the internal offset of the amplifier and bring it to the positive

input of the amplifier. Using equation (6.2), the input offset is found to be -0.46805 mV. More

accurate equations from OCEANE [Porte08] have been used for the static gain of the first stage

and it was found that the input offset equals -0.471139 mV. This offset balances the amplifier

6.8 Detailed Example: Single-ended Two-Stage Amplifier 127

74 72 65 73 52 42 41

40

51

57

58

54

53

56

50

49

48

47

43

39

38

37

36

31

2529

30

20

23

3561

60 10

55 18

16

14

34 27 21

11

22

19 33

12
17

32 26

44

6

4

8

7

5

3 2

13

15

28

24 1

9

45

67

71

70

64

68

62

63

69

46

AMP/IBIAS

AMP/VEG_CM

AMP/L_CM

AMP/TEMP AMP/L_DP

AMP/VEG_DP

AMP/VDD

veg_cm

l_cm

ids_cm

temp CM/TEMP

CM/L

CM/VEG

CM/IDS

AMP/VSS

vdd

veg_dp

l_dp

ids_dp

M3,M4/TEMP

M3,M4/L

M3,M4/VEG

M3,M4/IDS

CM,M3,M6/VB,VS

DP/TEMP

DP/L

DP/VEG

DP/IDS

AMP/K

vss

AMP/VEG_M6

AMP/L_M8_M5_M7

AMP/L_M6

66

ibias

veg_m6

l_m6

ids_m6

l_m8_m5_m7

DP,M1/VG

DP,M1/VB

M8,M5,M7/VB,VS

M1,M2/IDS

M1,M2/VEG

CM,M3/VG,VD

M6,M7/VD

M6/TEMP

M6/IDS

M6/L

M8/TEMP

M5/TEMP

M5/IDS

M5,M8/L

M5/VEG

ids_m7

M7/TEMP

M7/L

M8,M5,M7/VG

M8/VD

M7/IDS

M5,M8/W

M1,M2/TEMP

M1,M2/L

OPVGD(VEG) OPVS(VEG,VB) OPVG(VEG)

OPVG(VEG)

OPVG(VEG)

OPVGD(VEG)

M6/VEG

C1 C2 C3 C4 C5 C6 C7 C8

AMP/VEG_M5

veg_m5

DP,M1/VD

AMP/VOUTCM

voutcm

AMP/VINCM

vincm

0

59

OPW(VG,VS)

OPVG(VEG)

OPIDS(VG,VS)

OPVS(VEG,VB)

DP,M1/VS

M5/VD
VOFFSET

CM,M3,M4/W

DP,M1,M2/W

M7/W

M6/W

M8/IDS

M6/VG

IDS_CM(IBIAS)

IDS_DP(IBIAS)

NI(K,IBIAS)

I(K,IBIAS)

Figure 6.34: Module dependency graph of the amplifier with systematic offset in designer mode: (a) Rect-

angles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter mapping,

(c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is a represented

by a triplet (column, name, index). Device connectors, equipotentials and weights are not shown for clarity.

during simulation. Consequently, the common-mode output voltage VOUTCM = VDD + VDS,M6

is at 0.6V. Notice that the simulated operating points of M1 and M2 are slightly different under

the influence of the offset voltage that appears now at the input. Table 6.7 shows the computed

parameters for the case of systematic offset. It is evident from the table that all dimensions and

128 Circuit Sizing and Biasing Methodology

Table 6.5: Input Parameters For Systematic Offset in Designer Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 IBIAS (µA) 30.0

Veg,M5(V) 0.1 LM5,M7,M8(µm) 0.34

Veg,CM (V) -0.12 LDP (µm) 0.34

Veg,DP (V) 0.12 LCM (µm) 0.34

Veg,M6(V) -0.1 LM6(µm) 0.34

VINCM (V) 0.6 VOUTCM (V) 0.6

K = IM6

IBIAS
5.0

number of fingers are the same for the minimum systematic offset, except for WM6
which has

increased to compensate for the lower effective gate voltage.

Table 6.6: Operating Point With Systematic Offset in Designer Mode.

Parameter Synthesis Simulation

M1,M2 M3,M4 M1 M2 M4

IDS(µA) 15.0 -15.0 15.023 14.978 -14.978

VGS(V) 0.481564 -0.473856 0.48150 0.48103 -0.47399

VDS(V) 0.607707 -0.473856 0.60752 0.62737 -0.45413

Vth(V) 0.361564 -0.353856 0.36165 0.36165 -0.35386

Veg(V) 0.12 -0.12 0.11985 0.11938 -0.12013

gm(mA/V) 0.190776 0.190494 0.19121 0.191 0.1901

gds(µA/V) 2.27195 2.22754 2.2764 2.2362 2.3301

M6 M6

IDS(µA) -150.0 -150.16

VGS(V) -0.454011 -0.45413

VDS(V) -0.6 -0.6

Vth(V) -0.354011 -0.35401

Veg(V) -0.1 -0.10012

gm(mA/V) 2.09537 2.0963

Vi,off (mV) -0.468051 Not used for simulation

Vi,off (mV) -0.4711392 -0.471139

1. Using equation 6.2.

2. Using more accurate equations from OCEANE [Porte08].

6.8 Detailed Example: Single-ended Two-Stage Amplifier 129

Table 6.7: Computed Parameters for Systematic Offset.

(W/M)DP (W/M)CM (W/M)M5
(W/M)M6

(W/M)M7
(W/M)M8

IDS,M8

2.08µm/4 6.32µm/2 6.64µm/4 80.63µm/22 27.6µm/16 6.64µm/4 35.29µA

Appendix C illustrates the CAIRO+ generator for the two-stage amplifier in the designer

mode. It shows how to write the SIZE procedure of the amplifier module in the case of presence

of systematic offset voltage.

130 Circuit Sizing and Biasing Methodology

6.8.2 Creating Amplifier Dependency Graphs in Simulator Mode

The simulator mode is intended to verify the synthesis results obtained in designer mode. In this

section, we will go further beyond this objective. We will show how to use the simulator mode

to deal with over-specified design problems, namely the systematic offset. It will be shown how to

compute the systematic input offset of an analog circuit in different ways. In addition, it will be

shown how to deal with negative feedback circuits in simulator mode.

6.8.2.1 Dependency Graph With Systematic Input Offset in Simulator Mode

The amplifier is assumed to be simulated in an open loop configuration as shown in Fig. 6.35.

The output node and the negative amplifier input are fixed in potential in order to compute the

systematic input offset at the positive input of the amplifier.

+

−

−

+

−

+

?

Figure 6.35: Amplifier in open-loop configuration.

To simulate the amplifier in simulator mode, the module parameters Temp, VDD, VSS , LM1
,

LM2
, LM3

, LM4
, LM5

, LM6
, LM7

, LM8
, WM1

, WM2
, WM3

, WM4
, WM5

, WM6
, WM7

, WM8
, VG/D,M3

,

VOUT , VINN and IREF,M8
are chosen. The number of fingers are set in the generator code. Note

that in simulator mode, parameters mainly consists of widths, lengths and number of fingers

exactly as for a standard simulator.

In addition, the Newton-Raphson constraint

FKCL(VG/D,M3
) = IDS,M5

(VG/D,M3
)− IDS,M1

(VG/D,M3
)− IDS,M2

(VG/D,M3
) = 0.0 (6.29)

is added to ensure that the Kirchhoff’s Current Law (KCL) is satisfied at the drain node of M5.

This is satisfied by solving for VG/D,M3
as one unknown. VG/D,M3

is selected as a parameter since

it controls both currents IDS,M1
and IDS,M2

.

The resulting amplifier dependency graph is generated as shown in Fig. 6.36. The design plan

represented by this graph is depicted as follows:

6.8 Detailed Example: Single-ended Two-Stage Amplifier 131

1. VG/D,M8
is computed in node (C4,{VG/D,M8

, VG,M5
, VG,M7

},27) using the operator

OPV GD(VS,M8
,WM8

). Note that VG/D,M8
= VG,M5

= VG,M7
.

2. Using VG,M7
, IDS,M7

is computed in node (C5,IDS,M7
,23) using the operator

OPIDS(VG,M7
, VS,M7

). This is propagated to node (C6,IDS,M6
,30) which is used to

compute {VD,M2
, VD,M4

, VG,M6
} in node (C7, {VD,M2

, VD,M4
, VG,M6

},3) using the operator

OPV G(VS,M6
,WM6

).

3. Using the computed VD,M2
, the gate node of M2 is computed in node (C10,VG,M2

,11) using

the operator OPV G(VS,M2
, VB,M2

,WM2
). Note that this is the positive input of the amplifier

to be computed.

4. The Newton-Raphson constraint node (C10,FKCL(VG/D,M3
),41) depends on the currents

IDS,M5
, IDS,M1

and IDS,M2
which are computed as follows:

(a) IDS,M5
is computed at node (C9,IDS,M5

,33) using the operator OPIDS(VG,M5
, VS,M5

).

(b) IDS,M3
is computed in node (C6,IDS,M3

,7) using the operator OPIDS(VG,M3
, VS,M3

). It

is then propagated to node (C7,IDS,M1
,19) with a weight equal to 1.0.

(c) IDS,M4
is computed in node (C8,IDS,M4

,0) using the operator OPIDS(VG,M4
, VS,M4

). It

is then propagated to node (C9,IDS,M2
,13) with a weight equal to 1.0.

(d) The constraint solves for a new value for (C3,VG/D,M3
,42) which is the unknown.

The graph is evaluated using the parameter values defines in Table 6.8. These parameter values

are extracted from subsection 6.8.1.3 to verify that the systematic input offset computed for the

designer mode was correct.

After evaluating the graph and solving for VG/D,M3
, we get the results in Table 6.9. In this

table, the systematic input offset is computed for the positive input terminal of the amplifier. The

simulator mode results agrees to a good precision with the designer mode results in Table 6.6.

This ensures how useful the simulator mode in verifying designer hypotheses and constraints.

6.8.2.2 Dependency Graph With Systematic Input Offset and Negative Feedback in Simulator

Mode

The amplifier is assumed to be simulated in a closed loop configuration as shown in Fig. 6.37.

The output node is fixed in potential. A negative feedback of the output to the negative amplifier

input is connected. It is required to compute the common-mode input voltages at the positive and

negative inputs of the amplifier. The systematic input offset will be the difference between the

voltages at the positive and negative terminals.

To simulate the amplifier in simulator mode, the module parameters Temp, VDD, VSS , LM1
,

LM2
, LM3

, LM4
, LM5

, LM6
, LM7

, LM8
, WM1

, WM2
, WM3

, WM4
, WM5

, WM6
, WM7

, WM8
, VG/D,M3

,

VOUT , VINP , VINN and IREF,M8
are chosen. The number of fingers are set in the generator code.

132 Circuit Sizing and Biasing Methodology

87

86

82

74

67

75

84 83

79

71

68

76 85 77

6981

78

73

70

80

72

66 45

62

63

65

64

61

60

59

40

39

38

37

42

15 24

25

26

27

28

53

54

55

56

58

57

23

10

9

8

5

4 7

29

30

31

48

49

50

51

52
44

43

22

21

20

19

18

6

3

2

1

16

34

35

36

46

47 33

17

14

13

12 11

0

32

NRC
41

VG_M3’

AMP/TEMP

AMP/IREF

AMP/VSS

AMP/L_M8

AMP/W_M8
temp

vss

iref

w_m8

l_m8

AMP/L_M7

AMP/W_M7

AMP/VDD

AMP/W_M3

AMP/L_M3

M1,M2/VB

M8,M5,M7/VS,VB

M8/TEMP

M8/IDS

M8/L

M8/W

AMP/VG_M3

vout

w_m7

l_m7

M7/TEMP

M7/L

AMP/L_M6

AMP/W_M6

M7/W

vdd

l_m3

w_m3

vg_m3

M6,M7/VD

M5,M7/VG

M8/VG,VD

AMP/L_M1

AMP/L_M4

AMP/W_M1

l_m6

w_m6

AMP/W_M4

M3/W

M3/TEMP

M1,M3/VD

M3,M4/VG

M6/VS,VB

M3,M4/VS,VB

M3/IDS

M6/TEMP

M6/W

M6/L

M6/IDS

w_m1

l_m1

l_m4

w_m4

AMP/L_M5

AMP/W_M5 AMP/W_M2

AMP/L_M2

l_m5

w_m5

M1/W

M1/VG

M1/L

M1/IDS

M1/TEMP

M2,M4/VD
M6/VG

M4/L

M4/TEMP

M5/VD

M1,M2/VS

M5/L

M5/TEMP

M5/W

l_m2

w_m2

M5/IDS

M2/W

M2/L

M2/IDS

M2/TEMP

M2/VG

M4/IDS

OPIDS(VG,VS)

OPIDS(VG,VS)

OPVG(VS,VB,W)

OPVS(VG,VB,W)

M7/IDS

OPIDS(VG,VS)

M4/W

OPVG(VS,W)

OPIDS(VG,VS)

M3/L

OPVGD(VS,W)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

AMP/VOUT AMP/VINN

vinn

Figure 6.36: Module dependency graph of the amplifier with systematic offset in simulator mode: (a) Rect-

angles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter mapping,

(c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is a represented

by a triplet (column, name, index). Device connectors, equipotentials and weights are not shown for clarity.

6.8 Detailed Example: Single-ended Two-Stage Amplifier 133

Table 6.8: Input Parameters For Systematic Offset in Simulator Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 IREF,M8
(µA) 35.29

(W/M)M1
(µm) 2.08/4 LM1

(µm) 0.34

(W/M)M2
(µm) 2.08/4 LM2

(µm) 0.34

(W/M)M3
(µm) 6.32/2 LM3

(µm) 0.34

(W/M)M4
(µm) 6.32/2 LM4

(µm) 0.34

(W/M)M5
(µm) 6.64/4 LM5

(µm) 0.34

(W/M)M6
(µm) 80.63/22 LM6

(µm) 0.34

(W/M)M7
(µm) 27.6/16 LM7

(µm) 0.34

(W/M)M8
(µm) 6.64/4 LM8

(µm) 0.34

VG/D,M3
(V) unknown VOUT (V) 0.6

VINN (V) 0.6

Table 6.9: Computed Parameters for Systematic Offset in Simulator Mode.

VG/D,M3
VINP = VG,M2

Vin,off = VINP − VINN

0.726004 V 0.599522 V -0.478 mV

In addition, the Newton-Raphson constraint

FKCL(VG/D,M3
) = IDS,M5

(VG/D,M3
)− IDS,M1

(VG/D,M3
)− IDS,M2

(VG/D,M3
) = 0.0 (6.30)

is added to ensure that the Kirchhoff’s Current Law (KCL) is satisfied at the drain node of M5.

This is satisfied by solving for VG/D,M3
as one unknown.

To account for negative feedback, a Newton-Raphson constraint is added:

Ffeedback(VINN) = VG,M1
(VINN)− VD,M7

(VINN) = 0.0 (6.31)

where the unknown is the negative input terminal voltage VINN .

To bring the systematic offset to the positive input, a Newton-Raphson constraint is added:

Foffset(VINP) = VS,M1
(VINP)− VS,M2

(VINP) = 0.0 (6.32)

where the unknown is the positive input terminal voltage VINP .

The resulting amplifier dependency graph is generated as shown in Fig. 6.38. Note that a

conflict exists between the sources VS,M1
and VS,M2

. This gives rise to the introduction of an offset

node (C12,VOFFSET ,4). The design plan represented by this graph is depicted as follows:

1. VG/D,M8
is computed in node (C4,{VG/D,M8

, VG,M5
, VG,M7

},31) using the operator

OPV GD(VS,M8
,WM8

). Note that VG/D,M8
= VG,M5

,= VG,M7

134 Circuit Sizing and Biasing Methodology

+

−

−

+

?

?

Figure 6.37: Amplifier in closed-loop configuration with output fixed in potential.

2. Using VG,M7
, IDS,M7

is computed in node (C5,IDS,M7
,27) using the operator

OPIDS(VG,M7
, VS,M7

). This is equally propagated to node (C6,IDS,M6
,34) which is used to

compute {VD,M2
, VD,M4

, VG,M6
} in node (C7, {VD,M2

, VD,M4
, VG,M6

},8) using the operator

OPV G(VS,M6
,WM6

).

3. The Newton-Raphson constraint node (C12,Foffset(VINP),0) depends on the voltages VS,M1

and VS,M2
which are computed as follows:

(a) VS,M1
is computed at node (C11,VS,M1

,2) using operator OPV S(VG,M1
, VB,M1

,WM1
).

(b) VS,M2
is computed at node (C10,{VS,M2

, VD,M5
},3) using operator OPV S(VG,M2

, VB,M2
,WM2

).

(c) The constraint solves for (C7,VINP ,1) which is the unknown.

4. The Newton-Raphson constraint node (C12,FKCL(VG/D,M3
),45) depends on the currents

IDS,M5
, IDS,M1

and IDS,M2
which are computed as follows:

(a) IDS,M5
is computed at node (C11,IDS,M5

,37) using the operator OPIDS(VG,M5
, VS,M5

).

(b) IDS,M3
is computed in node (C9,IDS,M3

,12) using the operator OPIDS(VG,M3
, VS,M3

).

It is then propagated to node (C10,IDS,M1
,23) with a weight equal to 1.0.

(c) IDS,M4
is computed in node (C8,IDS,M4

,5) using the operator OPIDS(VG,M4
, VS,M4

). It

is then propagated to node (C9,IDS,M2
,17) with a weight equal to 1.0.

(d) The constraint solves for (C5,VG/D,M3
,46) which is the unknown.

5. The Newton-Raphson constraint node (C12,Ffeedback(VINN),47) depends on the voltages

VG,M1
and VD,M7

which are computed as follows:

(a) VG,M1
is set via the unknown parameter (C8,VINN ,48).

(b) VD,M7
is constant and is set via the parameter (C2,VOUT ,75)

(c) The constraint solves for (C8,VINN ,48) which is the unknown.

6.8 Detailed Example: Single-ended Two-Stage Amplifier 135

M4/IDS

M3/TEMP

M3/L

M3/W

l_m1

w_m1

l_m5

w_m5

M2/W

M2/VG

M2/L

M2/IDS

M2/TEMP

M3/IDS

VOFFSET

M1/VS

M5/W M5/IDS

M5/L

M5/TEMP

M1/W

M1/VG

M1/TEMP

M2/VS

M5/VD

M1/IDS

M1/L

OPIDS(VG,VS)

OPIDS(VG,VS)

OPVS(VG,VB,W)

OPVS(VG,VB,W)

OPIDS(VG,VS)

OPVG(VS,W)

OPIDS(VG,VS)

OPVGD(VS,W)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

vinn

73

76

77

85

93 86

75

78

72

70

69

51

42

44

68 87

79

74

31

30

81

89

65

64

27

90

82 83

91 92

88

84

80

1

46

60

33

9

56

55

11

10

8

7

6

57

15

14

13

54 40 37

53

49

39

38

52

50

26

2521

20

24

18

23

17

16

22

12 3

2

5

61

62

36

63 35

34

41

28

29

4371

32

66

67

19

59

58

4

0
NRC

45
NRC

47

VG_M3’

NRC

AMP/L_M8

AMP/W_M8

AMP/IREF

AMP/VSS temp

AMP/L_M7AMP/TEMP

AMP/W_M7

l_m8

w_m8

iref

vss

w_m7

M8/W

M8/L

M8/IDS

M8/TEMP

M8,M5,M7/VS,VB

M1,M2/VB

AMP/W_M6

AMP/VDD

M7/W

M8/VD

M6,M7/VD

M7/TEMP

M7/L

M7/IDS

AMP/VG_M3

vdd

w_m6

l_m6

l_m7

AMP/W_M4

AMP/W_M3

l_m4

w_m4

vg_m3

M6/W

M6/L

M6/TEMP

M6/IDS

M3,M4,M6/VS,VB

AMP/L_M4 AMP/L_M2

AMP/L_M3AMP/L_M6

AMP/W_M2

l_m3

w_m3

M4/W

M3/VG,VD

M1/VD

M2,M4/VD

M6/VG

M4/L

M4/TEMP

AMP/L_M1

AMP/L_M5

AMP/W_M1

AMP/W_M5

l_m2

w_m2

48

M4/VG

AMP/VINP

vinp

AMP/VINN

AMP/VOUT

vout

M8,M5,M7/VG

VINP’

VINN’

Figure 6.38: Module dependency graph of the amplifier with systematic input offset and negative feedback

in simulator mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters

used for parameter mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are

DDPs. Each node is a represented by a triplet (column, name, index). Device connectors, equipotentials

and weights are not shown for clarity.

136 Circuit Sizing and Biasing Methodology

The graph is evaluated using the parameter values defines in Table 6.10. These parameter

values are extracted from subsection 6.8.1.3.

Table 6.10: Input Parameters For Systematic Input Offset and Negative Feedback in Simulator Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 IREF,M8
(µA) 35.29

(W/M)M1
(µm) 2.08/4 LM1

(µm) 0.34

(W/M)M2
(µm) 2.08/4 LM2

(µm) 0.34

(W/M)M3
(µm) 6.32/2 LM3

(µm) 0.34

(W/M)M4
(µm) 6.32/2 LM4

(µm) 0.34

(W/M)M5
(µm) 6.64/4 LM5

(µm) 0.34

(W/M)M6
(µm) 80.63/22 LM6

(µm) 0.34

(W/M)M7
(µm) 27.6/16 LM7

(µm) 0.34

(W/M)M8
(µm) 6.64/4 LM8

(µm) 0.34

VG/D,M3
(V) unknown VOUT (V) 0.6

VINN (V) unknown VINP (V) unknown

After evaluating the graph and solving for VG/D,M3
, VINN and VINP , we get the results in

Table 6.11. In this table, the computed systematic input offset is computed for the positive input

terminal of the amplifier. The simulator mode results agree to a good precision with the designer

mode results in Table 6.6.

Table 6.11: Computed Parameters for Systematic Input Offset and Negative Feedback in Simulator Mode.

VG/D,M3
VINP Vin,off = VINP − VINN

0.726004 V 0.599522 V -0.478 mV

Appendix F illustrates the CAIRO+ generator for the two-stage amplifier in the simulator

mode for the systematic input offset and negative feedback. It shows how to write the SIZE pro-

cedure in this case.

6.8.2.3 Dependency Graph With Systematic Output Offset and Negative Feedback in Simula-

tor Mode

The amplifier is assumed to be simulated in a closed loop configuration as shown in Fig. 6.39.

The output node is free in potential. A negative feedback of the output to the negative amplifier

input is connected. It is required to compute the common-mode input voltages at the positive and

negative inputs of the amplifier. The systematic input offset will be the difference between the

output voltage (negative input terminal voltage) and the positive input terminal voltage.

6.8 Detailed Example: Single-ended Two-Stage Amplifier 137

+

−

−

+?
?

Figure 6.39: Amplifier in closed-loop configuration with output free in potential.

To simulate the amplifier in simulator mode, the module parameters Temp, VDD, VSS , LM1
,

LM2
, LM3

, LM4
, LM5

, LM6
, LM7

, LM8
, WM1

, WM2
, WM3

, WM4
, WM5

, WM6
, WM7

, WM8
, VG/D,M3

,

VOUT , VINP , VINN and IREF,M8
are chosen. The number of fingers are set in the generator code.

In addition, the Newton-Raphson constraint

FKCL(VG/D,M3
) = IDS,M5

(VG/D,M3
)− IDS,M1

(VG/D,M3
)− IDS,M2

(VG/D,M3
) = 0.0 (6.33)

is added to ensure that the Kirchhoff’s Current Law (KCL) is satisfied at the drain node of M5.

This is satisfied by solving for VG/D,M3
as one unknown.

To account for negative feedback, a Newton-Raphson constraint is added:

Ffeedback(VOUT) = VG,M1
(VOUT)− VD,M7

(VOUT) = 0.0 (6.34)

where the unknown is the output terminal voltage VOUT .

To account for the systematic output offset, a Newton-Raphson constraint is added:

Foffset(VINN) = VS,M1
(VINN)− VS,M2

(VINN) = 0.0 (6.35)

where the unknown is the negative input terminal voltage VINN .

The resulting amplifier dependency graph is generated as shown in Fig. 6.40. Note that a

conflict exists between the sources VS,M1
and VS,M2

. This gives rise to the introduction of an offset

node (C12,VOFFSET ,4). The design plan represented by this graph is depicted as follows:

1. VG/D,M8
is computed in node (C4,{VG/D,M8

, VG,M5
, VG,M7

},31) using the operator

OPV GD(VS,M8
,WM8

). Note that VG/D,M8
= VG,M5

,= VG,M7

2. Using VG,M7
, IDS,M7

is computed in node (C5,IDS,M7
,27) using the operator

OPIDS(VG,M7
, VS,M7

). This is equally propagated to node (C6,IDS,M6
,34) which is used to

compute {VD,M2
, VD,M4

, VG,M6
} in node (C7, {VD,M2

, VD,M4
, VG,M6

},8) using the operator

OPV G(VS,M6
,WM6

).

138 Circuit Sizing and Biasing Methodology

3. The Newton-Raphson constraint node (C12,Foffset(VINN),0) depends on the voltages VS,M1

and VS,M2
which are computed as follows:

(a) VS,M1
is computed at node (C11,VS,M1

,2) using operator OPV S(VG,M1
, VB,M1

,WM1
).

(b) VS,M2
is computed at node (C10,{VS,M2

, VD,M5
},3) using operator OPV S(VG,M2

, VB,M2
,WM2

).

(c) The constraint solves for (C8,VINN ,1) which is the unknown.

4. The Newton-Raphson constraint node (C12,FKCL(VG/D,M3
),45) depends on the currents

IDS,M5
, IDS,M1

and IDS,M2
which are computed as follows:

(a) IDS,M5
is computed at node (C11,IDS,M5

,37) using the operator OPIDS(VG,M5
, VS,M5

).

(b) IDS,M3
is computed in node (C9,IDS,M3

,12) using the operator OPIDS(VG,M3
, VS,M3

).

It is then propagated to node (C10,IDS,M1
,23) with a weight equal to 1.0.

(c) IDS,M4
is computed in node (C8,IDS,M4

,5) using the operator OPIDS(VG,M4
, VS,M4

). It

is then propagated to node (C9,IDS,M2
,17) with a weight equal to 1.0.

(d) The constraint solves for (C5,VG/D,M3
,46) which is the unknown.

5. The Newton-Raphson constraint node (C12,Ffeedback(VOUT),47) depends on the voltages

VG,M1
and VD,M7

which are computed as follows:

(a) VG,M1
is set via the unknown parameter (C8,VINN ,1).

(b) VD,M7
is constant and is set via the parameter (C2,VOUT ,48)

(c) The constraint solves for (C2,VOUT ,48) which is the unknown.

The graph is evaluated using the parameter values defines in Table 6.12. These parameter

values are extracted from subsection 6.8.1.3.

After evaluating the graph and solving for VG/D,M3
, VINN and VOUT , we get the results in

Table 6.13. In this table, the computed systematic input offset is computed for the negative in-

put terminal (or the output node) of the amplifier. The simulator mode results agrees to a good

precision with the designer mode results in Table 6.6.

6.9 Conclusion

In this chapter, a circuit sizing and biasing methodology for firm intellectual properties is pro-

posed. Firm intellectual properties are abstracted in the form of modules. A module level consists

of a hierarchy of devices and lower-level modules. A bottom-up methodology, that supports

both operating-point-driven formulation and standard simulator formulation, automatically gen-

erates suitable design plans for firm intellectual properties. This is performed while respecting

designer’s hypotheses. Design plans are represented using rich module dependency graph. The

design plan is executed by evaluating the module dependency graph in a top-down approach. The

6.9 Conclusion 139

2

37

3

22

23

24

25

26

38

40

39

12

16

17

18

20

21

49

52

53

54

50

9291

59

58

57

15

14

13

5

16

7

8

10

11

55

56

75

90

82

62

61

60

35

36

34

33

927

46

63

64

65

81

32

30

29

28

19

42

43

41

66

67

6886

72

71 44

70

69

51

4873

85

77

76

93

78 79

87

74

89

83

80

84

88

31

NRC
0

4

NRC

NRC

47

45

VOFFSET

AMP/IREF

AMP/W_M8

AMP/L_M8

AMP/VSS

temp

iref

vss

l_m8

w_m8

AMP/W_M7

AMP/L_M7

AMP/TEMP l_m7

w_m7

M8/L

M8/W

M8/IDS

M8/TEMP

M1,M2/VB

M8,M5,M7/VS,VB

AMP/L_M6

AMP/W_M6

AMP/VDD

M7/W

M7/TEMP

M7/L

M6,M7/VD

M8/VD

M8,M5,M7/VG

OPVGD(VS,W)

AMP/L_M4

AMP/W_M4

w_m6

l_m6

vdd

AMP/VG_M3

OPIDS(VG,VS)

AMP/L_M3

AMP/W_M3

w_m4

l_m4

vg_m3

M6/W

M6/L

M6/TEMP

M6/IDS

M7/IDS M4/VS,VB

M3/VS,VB

M6/VS,VB

M4/TEMP

M4/L

AMP/W_M2

AMP/L_M2

l_m3

w_m3

M4/W

M3,M4/VG
M1,M3/VD

OPVG(VS,W)

AMP/L_M1

AMP/L_M5

AMP/W_M1

AMP/W_M5

l_m2

w_m2

M3/W

M2,M4/VD

M6/VG

M3/TEMP

M3/L

M4/IDS

OPIDS(VG,VS)

VG_M3’

w_m1

l_m1

l_m5

w_m5

M2/W

M2/VG

M2/L

M2/IDS

M2/TEMP

M3/IDS

OPIDS(VG,VS)

M5/W

M5/L

M5/TEMP

M1/W

M1/VG

M1/L

M1/IDS

M1/TEMP

M5/VD
M2/VS

OPVS(VG,VB,W)

M1/VS

OPVS(VG,VB,W)

M5/IDS

OPIDS(VG,VS)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

AMP/VOUT AMP/VINN

VINN’

VOUT’

AMP/VINP

vinp

vinn

vout

Figure 6.40: Module dependency graph of the amplifier with systematic output offset and negative feedback

in simulator mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters

used for parameter mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are

DDPs. Each node is a represented by a triplet (column, name, index). Device connectors, equipotentials

and weights are not shown for clarity.

methodology ensures knowledge consistency by dealing with under-specified knowledge (such

as incomplete knowledge) or over-specified knowledge (such as systematic offset). The methodol-

ogy also deals with negative feedback circuits. It was successfully illustrated for the synthesis of a

140 Circuit Sizing and Biasing Methodology

Table 6.12: Input Parameters For Systematic Output Offset and Negative Feedback in Simulator Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 IREF,M8
(µA) 35.29

(W/M)M1
(µm) 2.08/4 LM1

(µm) 0.34

(W/M)M2
(µm) 2.08/4 LM2

(µm) 0.34

(W/M)M3
(µm) 6.32/2 LM3

(µm) 0.34

(W/M)M4
(µm) 6.32/2 LM4

(µm) 0.34

(W/M)M5
(µm) 6.64/4 LM5

(µm) 0.34

(W/M)M6
(µm) 80.63/22 LM6

(µm) 0.34

(W/M)M7
(µm) 27.6/16 LM7

(µm) 0.34

(W/M)M8
(µm) 6.64/4 LM8

(µm) 0.34

VG/D,M3
(V) unknown VOUT (V) unknown

VINN (V) unknown VINP (V) 0.6

Table 6.13: Computed Parameters for Systematic Output Offset and Negative Feedback in Simulator Mode.

VG/D,M3
VOUT = VINN Vin,off = VINN − VINP

0.725942 V 0.600479 V 0.479 mV

two-stage amplifier. The methodology proved to be efficient and accurate in synthesizing generic

analog firm intellectual properties.

Chapter 7

Case Studies

7.1 Introduction

To evaluate the effectiveness of our proposed methodology, we apply it for the sizing and biasing

of four different analog intellectual properties with various complexity and analog design issues.

In section 7.2, the sizing and biasing of a fully differential cascode current-mode integrator

[Smith96] is presented.

In section 7.3, the sizing and biasing of a fully differential common-mode feedback amplifier

[Banu88] is presented.

In section 7.4, the sizing and biasing of a fully differential transconductor [Chamla05] is pre-

sented.

In section 7.5, the sizing and biasing of a fully differential body-input operational amplifier

[Chatterjee05] is presented.

In section 7.6 , we finally conclude the chapter.

7.2 Fully Differential Current-Mode Integrator

The problem of directed cycles caused by incomplete knowledge will be further illustrated on

the fully differential cascode current-mode integrator [Smith96] shown in Fig. 7.1. The integrator

contains 16 devices shown in dashed boxes. Since all devices in the same row are identically sized

and biased, only the first device in each row is sized an biased. In other words, devices M888,

M666, M444 and M222 will be sized and biased. Then, their biases and sizes will be copied into the

other devices in their corresponding row. This is done by introducing extrinsic device constraints

in the integrator module level. The 15 design parameters of the integrator are Temp, VDD, VSS ,

VINCM , VOUTCM , VBIAS , Veg,M222
, Veg,M444

, Veg,M666
, Veg,M888

, LM222
, LM444

, LM666
, LM888

and IBIAS .

Note that VCP and VBC are not given initially. When the SYNTHESIZE routine is executed for the

integrator module, two directed cycles are detected. The first directed cycle originates from device

M666. This directed cycle is shown in bold in Fig. 7.2. The figure shows that VG,M666
(labelled as

142 Case Studies

VCP in Fig. 7.1) and VS,M666
are two unknowns that depend on each other. Therefore, this cyclic

dependency gives rise to the directed cycle. Again, the same problem appears in device M444 as

shown in bold in Fig. 7.3. A cyclic dependency between VG,M444
(labelled as VBC in Fig. 7.1) and

VS,M444
gives rise to another directed cycle.

Both device dependency graphs of M444 and M666 are merged being part of the overall de-

pendency graph of the integrator. The resulting graph contains the same two directed cycles.

Therefore, the graph is not a DAG. The two directed cycles are shown in bold in Fig. 7.4. The

two directed cycles were retained since they were not resolved. In this case, a dialogue win-

dow is displayed to the designer, asking him to resolve both directed cycles. Therefore, the de-

signer should select one parameter from the directed cycle {VG,M666
= VCP , VS,M666

} and another

one from {VG,M444
= VBC , VS,M444

}. These possible suggestions agree with the choices made in

[Aboushady01]. In [Aboushady01], some dependency equations have been introduced in the in-

tegrator module to estimate suitable values for VCP and VS,M444
. Once the directed cycles are

resolved, the merging succeeds and the integrator dependency graph is successfully constructed

as shown in Fig. 7.5.

The integrator dependency graph is divided into five computational levels. Notice that the

fifth computational level shows that all the devices in the same row have the same widths. These

were propagated using module constraints. Notice also that the dependency equations introduced

by the designer appear at nodes (C2,VCP (· · ·), 38) and (C3,VS,M444
(· · ·), 32).

The integrator graph was evaluated for the parameter values given in Table 7.1. This results

in computing the parameters at the last column of the graph. These are given in Table 7.2 for

verification. Table 7.3 shows the biases and the small signal parameters for M444 and M666 in

0.13µm technology. These are compared to the DC operating point computed by an analog simu-

lator. From the table, it is clear that the proposed methodology is capable of accurately sizing and

biasing the integrator.

Table 7.1: Input Parameters for the Integrator in Designer Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.0

VSS (V) 0.0 IBIAS (µA) 10.0

Veg,M1
(V) 0.22 LM1

(µm) 7

Veg,M3
(V) 0.1 LM3

(µm) 5

Veg,M5
(V) -0.1 LM5

(µm) 5

Veg,M7
(V) -0.16 LM7

(µm) 7

VINCM (V) 0.5 VOUTCM (V) 0.5

VBIAS (V) 0.5

7.3 Fully Differential Common-Mode Feedback Amplifier 143

Table 7.2: Computed Parameters for the Integrator in Designer Mode.

(W/M)M888
(W/M)M666

(W/M)M444
(W/M)M222

VG,M444

67.56µm/2 105.6µm/3 27.165µm/1 8.84µm/2 0.74665 V

Table 7.3: Results in 0.13µm technology with VDD = 1.2V for the integrator.

CAIRO+ Simulation

Parameter M444 M666 M444 M666

IDS(µA) 10.0 -10.0 10.0 -10.0

VGS(V) 0.435081 -0.441122 0.43508 -0.44112

VDS(V) 0.188431 -0.253032 0.18849 -0.25297

VBS(V) -0.311569 0.0 -0.31157 0.0

Vth(V) 0.335081 -0.341122 0.33508 -0.34112

Veg(V) 0.1 -0.1 0.1 -0.1

Vdsat(V) 0.103219 -0.107179 0.10322 -0.10718

gm(mA/V) 0.150713 0.145678 0.15072 0.14568

gds(µA/V) 3.81164 0.609771 3.8070 0.61024

gmb(mA/V) 0.0285239 0.0353451 0.028524 0.035345

Cgd(fF) 23.0918 64.748 23.082 64.765

Cgs(pF) 0.989024 3.52396 0.98901 3.5235

Csd(fF) 7.52865 15.6389 7.5207 15.652

Cbd(fF) 5.60069 10.5656 5.5948 10.574

7.3 Fully Differential Common-Mode Feedback Amplifier

The output balancing behavior of the fully differential common-mode feedback amplifier

[Banu88] shown in Fig. 7.6 will be illustrated. The amplifier consists of 8 devices shown in dashed

boxes. The amplifier possesses the balancing input voltage VBAL. This input voltage compensates

the lack of symmetry that exists in the differential pair (M6C ,M6A,M6B) of the common-mode

circuit. The differential pair (M6C ,M6A,M6B) will not be synthesized separately. Instead, it will

be sized and biased identically to the differential pair (M1A,M1B) of the differential-mode input

circuit by introducing extrinsic device constraints.

Let us first synthesize the amplifier in the designer mode, the design parameters of the

amplifier are chosen: TEMP , VDD, VSS , LM5,M8
, LM4B ,M4A

, LM3B ,M3A
, LM1B ,M1A

, LM1BC ,M1AC
,

LM7,M2B ,M2A
, Veg,M3B ,M3A

, Veg,M1B ,M1A
, Veg,M1BC ,M1AC

, Veg,M5,M8
, Veg,M2B ,M2A

, VD,M1
, VOUTCM ,

VINCM , IBIAS and K. Their values are shown in Table 7.4.

After synthesizing the amplifier in the designer mode, the amplifier dependency graph is ob-

144 Case Studies

Table 7.4: Input Parameters for the Amplifier in Designer Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 IBIAS (µA) 10.0

VINCM (V) 0.5 VOUTCM (V) 0.5

Veg,M5,M8
(V) -0.12 LM5,M8

(µm) 0.3

Veg,M3B ,M3A
(V) 0.1 LM3B ,M3A

(µm) 0.3

Veg,M1B ,M1A
(V) -0.12 LM1B ,M1A

(µm) 0.3

Veg,M1BC ,M1AC
,(V) -0.12 LM1BC ,M1AC

(µm) 0.3

Veg,M2B ,M2A
(V) 0.12 LM7,M2B ,M2A

(µm) 0.3

VD,M1
(V) 0.7 LM4B ,M4A

(µm) 0.3

K =
IM4B
IM5

5.0

tained as shown in Fig. 7.7. The design plan represented by this graph is described as follows:

1. VS,M1B is computed using the operator OPV S(Veg,M1B
, VB,M1B

) in node

(C6,{VS,M1B, VD,M5
},54).

2. Then, VD,M5
is used to compute VG,M5

and WM5
using operator OPV G(Veg,M5

) in nodes

(C7,{VG,M5
, VG,M4B

},44) and (C8,{WM5
,WM8

},63) respectively.

3. Then, VG,M3B
and WM3B

are computed using operator OPV G(Veg,M3B
) in nodes

(C6,{VG,M3B
, VD,M1BC

, VD,M2B
},15) and (C8,{WM3A

,WM3B
},35) respectively.

4. Node (C6,{VG,M3B
, VD,M1BC

, VD,M2B
},15) is used to compute the biasing voltage VG,M1BC

and

the width WM1BC
using the operator OPV G(Veg,M1BC

, VB,M1BC
) in nodes (C8,VG,M1BC

,26)

and (C8,{WM1BC
,WM1AC

},22) respectively.

5. VG,M2B
and WM2B

are computed using the operator OPV G(Veg,M2B
) in nodes

(C7,{VG,M2B
, VG/D,M7

},3) and (C8,{WM2B
,WM2A

},14) respectively.

6. Node (C7,{VG,M2B
, VG/D,M7

},3) is used to compute WM7
using the operator

OPW (VG,M7
, VS,M7

) in node (C8,WM7
,0).

7. The remaining widths are computed in nodes (C8,{WM4B
,WM4A

},43) and

(C8,{WM1B
,WM1A

},51).

Let us study now the output balancing behavior of the amplifier in the simulator mode. Since

the widths were computed from the designer mode, those will be used as input parameters for

the simulator mode. Table 7.5 shows the values of widths computed in the designer mode.

7.3 Fully Differential Common-Mode Feedback Amplifier 145

Table 7.5: Input Parameters for the Amplifier in Simulator Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 VBAL(V) unknown

(W/M)M5
(µm) 3.96/12 LM5

(µm) 0.3

(W/M)M8
(µm) 3.96/12 LM8

(µm) 0.3

(W/M)M4A
(µm) 17.6/40 LM4A

(µm) 0.3

(W/M)M4B
(µm) 17.6/40 LM4B

(µm) 0.3

(W/M)M3A
(µm) 8.12/8 LM3A

(µm) 0.3

(W/M)M3B
(µm) 8.12/8 LM3B

(µm) 0.3

(W/M)M1A
(µm) 1.905/1 LM1A

(µm) 0.3

(W/M)M1B
(µm) 1.905/1 LM1B

(µm) 0.3

(W/M)M6C
(µm) 1.9/2 LM6C

(µm) 0.3

(W/M)M6A
(µm) 0.95/2 LM6A

(µm) 0.3

(W/M)M6B
(µm) 0.95/2 LM6B

(µm) 0.3

(W/M)M7
(µm) 0.56/1 LM7

(µm) 0.3

(W/M)M2A
(µm) 0.94/1 LM2A

(µm) 0.3

(W/M)M2B
(µm) 0.94/1 LM2B

(µm) 0.3

(W/M)M1AC
(µm) 2.905/7 LM1AC

(µm) 0.3

(W/M)M1BC
(µm) 2.905/7 LM1BC

(µm) 0.3

VOUTM (V) unknown VOUTP (V) 0.5

VB1
(V) 0.724257 VB2

(V) 0.143221

VINP (V) 0.5 VINM (V) 0.5

VG/D,M7
(V) unknown VS,M1A

(V) unknown

The first attempt to simulate the amplifier in the simulator mode will be performed with both

inputs and one output fixed to their common-mode voltage levels. The main objective is to com-

pute the output balancing level VBAL for correct common-mode input and output voltages. There-

fore, Newton-Raphson constraints are setup for the amplifier as follows:

• To solve for the Kirchhoff’s current law at the drain of M5, we choose to solve for VS,M1A
in:

FKCL,1(VS,M1A
) = IDS,M5

(VS,M1A
) − IDS,M1A

(VS,M1A
) − IDS,M1B

(VS,M1A
) = 0 (7.1)

• To solve for the Kirchhoff’s current law at the drain of M1A, we choose to solve for VOUTM

in:
FKCL,2(VOUTM) = IDS,M1AC

(VOUTM) − IDS,M1A
(VOUTM) − IDS,M6A

(VOUTM) = 0 (7.2)

• To solve for the Kirchhoff’s current law at the drain of M1B , we choose to solve for VBAL in:

FKCL,3(VBAL) = IDS,M1BC
(VBAL) − IDS,M1B

(VBAL) − IDS,M6B
(VBAL) = 0 (7.3)

146 Case Studies

• To solve for the Kirchhoff’s current law at the drain of M8, we choose to solve for VG/D,M7

in:

FKCL,4(VG/D,M7
) = IDS,M8

(VG/D,M7
) − IDS,M6C

(VG/D,M7
) − IDS,M6A

(VG/D,M7
) − IDS,M6B

(VG/D,M7
) = 0

(7.4)

Therefore Table 7.5 contains the four unknowns VS,M1A
, VOUTM , VBAL and VG/D,M7

. The negative

feedback constraint is treated differently by adding a designer-defined procedure that computes

the gate voltage of M6C as VOUTP +VOUTM
2 . This procedure accounts for the functionality of the

resistive networks connected at the differential output.

After simulating the amplifier in simulator mode, the amplifier module dependency graph

is obtained as shown in Fig. 7.8. The design plan represented by the dependency graph simply

computes the currents for all transistors and then solves the Newton-Raphson constraints in the

nodes of column C8.

Evaluating the dependency graph using the values in Table 7.5, the four unknowns are com-

puted as shown in Table 7.6. Note that VOUTP is set at its correct common-mode level. In this case,

the systematic offset in the output balancing level VBAL is 3.267mV.

Table 7.6: Computed Parameters for the Amplifier in Simulator Mode with VOUTP = 0.5V .

VS,M1A
VOUTP VBAL VG/D,M7

1.01062 V 0.5 V 0.496733 V 0.476428 V

Now, we see what happens to the common-mode output level if the inputs and the balancing

level are kept at their correct common-mode levels. To examine what happens, the design plan is

kept the same, with the exception of changing the Newton-Raphson constraints as follows:

• To solve for the Kirchhoff’s current law at the drain of M5, we choose to solve for VS,M1A
in:

FKCL,1(VS,M1A
) = IDS,M5

(VS,M1A
) − IDS,M1A

(VS,M1A
) − IDS,M1B

(VS,M1A
) = 0 (7.5)

• To solve for the Kirchhoff’s current law at the drain of M1A, we choose to solve for VOUTM

in:
FKCL,2(VOUTM) = IDS,M1AC

(VOUTM) − IDS,M1A
(VOUTM) − IDS,M6A

(VOUTM) = 0 (7.6)

• To solve for the Kirchhoff’s current law at the drain of M1B , we choose to solve for VOUTP

in:
FKCL,3(VOUTP) = IDS,M1BC

(VOUTP) − IDS,M1B
(VOUTP) − IDS,M6B

(VOUTP) = 0 (7.7)

• To solve for the Kirchhoff’s current law at the drain of M8, we choose to solve for VG/D,M7

in:

FKCL,4(VG/D,M7
) = IDS,M8

(VG/D,M7
) − IDS,M6C

(VG/D,M7
) − IDS,M6A

(VG/D,M7
) − IDS,M6B

(VG/D,M7
) = 0

(7.8)

7.4 Fully Differential Transconductor 147

Table 7.7: Computed Parameters for Amplifier in Simulator Mode with VBAL = 0.5V .

VS,M1A
VOUTP VOUTM VG/D,M7

1.01062 V 0.503095 V 0.503095 V 0.476358 V

For this purpose, the input parameters are kept the same as in Table 7.5, except that VBAL =

0.5V and VOUTP becomes an unknown. After synthesizing the amplifier and evaluating the graph,

we get the value of the four new unknowns as in Table 7.7

It is clear that the output common-mode level has moved to 0.503095V +0.503095V
2 = 0.503095V

with an output systematic offset of 3.095mV. Note that this value is equal to the gate voltage of

M6C which is the other branch of the differential-input of the common-mode circuit. Hence, it is

expected to have an offset value similar to the one found from Table 7.6. The difference comes

from the lack of symmetry between the differential-mode inputs of the common-mode circuit.

Now what happens if the output offset is brought to the differential-mode inputs of the am-

plifier circuit. To examine this case, the amplifier outputs and the balancing level voltage are kept

at their correct common-mode voltage levels. Only, the inputs are allowed to change. To perform

this, the Newton-Raphson constraints were setup as follows:

• To solve for the Kirchhoff’s current law at the drain of M5, we choose to solve for VS,M1A
in:

FKCL,1(VS,M1A
) = IDS,M5

(VS,M1A
) − IDS,M1A

(VS,M1A
) − IDS,M1B

(VS,M1A
) = 0 (7.9)

• To solve for the Kirchhoff’s current law at the drain of M1A, we choose to solve for VINM in:

FKCL,2(VINM) = IDS,M1AC
(VINM) − IDS,M1A

(VINM) − IDS,M6A
(VINM) = 0 (7.10)

• To solve for the Kirchhoff’s current law at the drain of M1B , we choose to solve for VINP in:

FKCL,3(VINP) = IDS,M1BC
(VINP) − IDS,M1B

(VINP) − IDS,M6B
(VINP) = 0 (7.11)

• To solve for the Kirchhoff’s current law at the drain of M8, we choose to solve for VG/D,M7

in:

FKCL,4(VG/D,M7
) = IDS,M8

(VG/D,M7
) − IDS,M6C

(VG/D,M7
) − IDS,M6A

(VG/D,M7
) − IDS,M6B

(VG/D,M7
) = 0

(7.12)

For this purpose, the input parameters are kept the same as in Table 7.5, except that VBAL =

VOUTM = VOUTP = 0.5. Also both VINM and VINP become unknowns. After evaluating the

amplifier graph, we get the value of the four new unknowns as in Table 7.8.

From the table, the common-mode input voltage is equal to 0.396834V which accounts for a

systematic input offset 103.166mV. Comparing this with the offset obtained in Table 7.6, we con-

clude that the differential gain of the common-mode circuit is 33 times higher than the common-

mode gain of differential-mode of the amplifier.

148 Case Studies

Table 7.8: Computed Parameters for Amplifier in Simulator Mode with VOUTP = VOUTM = 0.5V .

VS,M1A
VINP VINM VG/D,M7

0.927481 V 0.396834 V 0.396834 V 0.478045 V

7.4 Fully Differential Transconductor

The complex hierarchy of the fully differential transconductor [Chamla05] shown Fig. 7.9 will be

explored. The transconductor consists of four subcircuits as shown in Fig. J.1:

1. One instance of the differential transconductance subcircuit (GMD).

2. Two instances of the amplifier feedback subcircuit (AMP).

3. One instance of the common-mode feedback circuit (CMC).

The transconductor will be synthesized as follows: each subcircuit will be synthesized as a

standalone subcircuit. This step will result in one dependency graph for each subcircuit. To

obtain the dependency graph for the whole transconductor, the dependency graphs of the four

subcircuits will be merged using the method of equipotentials described in section 6.4.1.

Let us examine in more details how each subcircuit is synthesized in the designer mode. For

convenience, the graphs are given in appendix J. The dependency graph of GMD subcircuit is

obtained as shown in Fig. J.2. The dependency graph of CMC subcircuit is obtained as shown in

Fig. J.3. Moreover, the dependency graph of AMP subcircuit is obtained as shown in Fig. J.4. For

convenience, the figures related to this section have been placed in appendix J. After merge , the

dependency graph of the transconductor, its module dependency graphs contains 375 nodes.

The hierarchical interconnection between subcircuits is shown in Fig. J.1. The parameters

shown in this figure are key parameters since they allow to construct each subcircuit separately

and then combine the four subcircuits to construct the transconductor. Table 7.9 shows the in-

put parameters for each subcircuit. The set of parameters of the transconductor is the addi-

tion of all the subcircuit parameters. Fig. J.1 names some connectors that becomes internal to

the transconductor instead of being external for standalone subcircuits. For example, connector

(GMD/VCMFB) becomes internal to the transconductor. Therefore, its corresponding parameter

disappears from the final parameter list of the transconductor.

The transconductor dependency graph is then evaluated. The resulting dimensions and biases

are then used to simulate the transconductor in the simulator mode.

In the simulator mode, we would like to plot the effective transconductance of the transcon-

ductor which is defined as follows:

GMeff =
∂(∆IDS,OUTP −∆IDS,OUTN)

∂(VIN+ − VIN−)
(7.13)

=
∂{(IDS,M9AN − IDS,M2N)− (IDS,M9AP − IDS,M2P)}

∂(VIN+ − VIN−)
(7.14)

7.4 Fully Differential Transconductor 149

Table 7.9: Input Parameters for the Transconductor in Designer Mode.

Differential Transconductance Subcircuit (GMD)

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 VINCM (V) 0.8

V 1

OUTCM (V) 0.8 VC (V) 0.4

V 1

CMFB(V) 0.8 IDS,M1AP
(µA) 40.0

Veg,M2P
(V) 0.05 LM1AP

(µm) 3.0

LM2P
(µm) 1.0 LM9AP

(µm) 1.0

Amplifier Feedback Subcircuit (AMP)

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 VC (V) 0.4

IC,BIAS (µA) 12.0 IS,BIAS (µA) -6.0

Veg,M4BP
(V) -0.1 LM4BP

(µm) 3.0

Veg,M8BP
(V) -0.1 LM8BP

(µm) 1.0

Veg,M3BP
(V) 0.1 LM3BP

(µm) 3.0

Veg,M7BP
(V) -0.1 LM7BP

(µm) 1.0

Veg,M5BP
(V) -0.1 LM5BP

(µm) 1.0

Veg,M10AP
(V) 0.1 LM10AP

(µm) 3.0

V 2

D,M3BP
(V) 0.84 LM6BP

(µm) 1.0

Common-Mode Feedback Subcircuit (CMC)

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 IBIAS (µA) 12

Veg,M11AP
(V) 0.1 LM11AP

(µm) 1

Veg,M12AP
(V) 0.1 LM12AP

(µm) 3

Veg,M13
(V) -0.1 LM13

(µm) 1

VREF (V) 0.8 V 3

CMFB(V) 0.8

1,2,3 disappears in the final list of the full transconductor

For this purpose, we need to perform a DC sweep analysis by sweeping control voltage VC

while drawing GMeff versus the difference between the common-mode voltages at the two input

terminals of GMD. The input parameters for the transconductor have been selected as shown in

Table7.10.

To simulate the full transconductor in simulator mode, Newton-Raphson constraints have

been set in each subcircuit. Then the dependency graph of the four subcircuits are merged to pro-

150 Case Studies

Table 7.10: Input Parameters for the Transconductor in Simulator Mode.

Differential Transconductance Subcircuit (GMD) Common-Mode Feedback Subcircuit (CMC)

Parameter Value Parameter Value Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2 TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 VCMFB(V) 0.8 VSS (V) 0.0 VCMFB(V) 0.8

VS,M2N
(V) 0.4 VS,M2P

(V) 0.4 VS,M11AN
(V) 0.415 VS,M11AP

(V) 0.415

VINN (V) 0.8 VINP (V) 0.8 (W/M)M13
(µm) 24.64/77 LM13

(µm) 1.0

VG,M2N
(V) 0.842 VG,M2P

(V) 0.842 (W/M)M11AP
(µm) 3.4/8 LM11AP

(µm) 1.0

(W/M)M1AN
(µm) 3.445/1 LM1AN

(µm) 3.0 (W/M)M11BP
(µm) 3.4/8 LM11BP

(µm) 1.0

(W/M)M1AP
(µm) 3.445/1 LM1AP

(µm) 3.0 (W/M)M11AN
(µm) 3.4/8 LM11AN

(µm) 1.0

(W/M)M2N
(µm) 50.44/8 LM2N

(µm) 1.0 (W/M)M11BN
(µm) 3.4/8 LM11BN

(µm) 1.0

(W/M)M2P
(µm) 50.44/8 LM2P

(µm) 1.0 (W/M)M12AP
(µm) 21.59/17 LM12AP

(µm) 3.0

(W/M)M9AN
(µm) 145.46/28 LM9AN

(µm) 1.0 (W/M)M12AN
(µm) 21.59/17 LM12AN

(µm) 3.0

(W/M)M9AP
(µm) 145.46/28 LM9AP

(µm) 1.0

VOUT (V) 0.8

Amplifier Feedback Subcircuit (AMP)

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.2

VSS (V) 0.0 VC (V) 0.4

VS,M3BP
(V) 0.439 VD,M3BP

(V) 0.842

VS,M4AP
(V) 0.887 VS,M4BP

(V) 0.887

VG,M4AP
(V) 0.4 VG,M10AP

(V) 0.363

VG,M5BP
(V) 0.763 VG,M7BP

(V) 0.577

(W/M)M5BP
(µm) 12.92/8 LM5BP

(µm) 1.0

(W/M)M5AP
(µm) 12.92/8 LM5AP

(µm) 1.0

(W/M)M6BP
(µm) 50.4/32 LM6BP

(µm) 1.0

(W/M)M6AP
(µm) 50.4/32 LM6AP

(µm) 1.0

(W/M)M7AP
(µm) 12.92/19 LM7AP

(µm) 1.0

(W/M)M7BP
(µm) 12.92/19 LM7BP

(µm) 1.0

(W/M)M8BP
(µm) 12.73/19 LM8BP

(µm) 1.0

(W/M)M8AP
(µm) 12.73/19 LM8AP

(µm) 1.0

(W/M)M4BP
(µm) 39.76/16 LM4BP

(µm) 3.0

(W/M)M4AP
(µm) 39.76/16 LM4AP

(µm) 3.0

(W/M)M3BP
(µm) 10.56/16 LM3BP

(µm) 3.0

(W/M)M3AP
(µm) 10.56/16 LM3AP

(µm) 3.0

(W/M)M10AP
(µm) 21.44/32 LM10AP

(µm) 3.0

7.4 Fully Differential Transconductor 151

duce the transconductor dependency graph. In this case, the transconductor dependency graph

inherits the Newton-Raphson constraints of all subcircuits. This way, knowledge reuse for firm IP

is capitalized.

For a complete description, we give the Newton-Raphson constraints for each subcircuit sep-

arately.

For the GMD subcircuit, the dependency graph shown in Fig. J.5 contains the following

Newton-Raphson constraints:

• To solve for the Kirchhoff’s current law at the source of M2P , we choose to solve for VS,M2P

in:
FKCL,1(VS,M2P

) = IDS,M2P
(VS,M2P

) − IDS,M1AP
(VS,M2P

) = 0 (7.15)

• To solve for the Kirchhoff’s current law at the source of M2N , we choose to solve for VS,M2N

in:
FKCL,2(VS,M2N

) = IDS,M2N
(VS,M2N

) − IDS,M1AN
(VS,M2N

) = 0 (7.16)

• To compute the GMeff in the simulator mode, we connect VOUT+ and VOUT− with a short

circuit forming one node VOUT . Since the output current of both branches are equal, we

choose to solve for VOUT in:

FKCL,3(VOUT) = −IDS,M9AN
(VOUT) − IDS,M2N

(VOUT) − IDS,M2P
(VOUT) − IDS,M9AP

(VOUT) = 0 (7.17)

For the CMC subcircuit, the dependency graph shown in Fig. J.6 contains the following

Newton-Raphson constraints:

• To solve for the Kirchhoff’s current law at the source of M11AP , we choose to solve for

VS,M11AP
in:

FKCL,1(VS,M11AP
) = IDS,M12AP

(VS,M11AP
) − IDS,M11AP

(VS,M11AP
) − IDS,M11BP

(VS,M11AP
) = 0 (7.18)

• To solve for the Kirchhoff’s current law at the source of M11AN , we choose to solve for

VS,M11AN
in:

FKCL,2(VS,M11AN
) = IDS,M12AN

(VS,M11AN
) − IDS,M11AN

(VS,M11AN
) − IDS,M11BN

(VS,M11AN
) = 0 (7.19)

• To solve for the Kirchhoff’s current law at the drain of M13, we choose to solve for VCMFB

in:
FKCL,3(VCMFB) = −IDS,M13

(VCMFB) − IDS,M11AN
(VCMFB) − IDS,M11BP

(VCMFB) = 0 (7.20)

For the AMP subcircuit, the dependency graph shown in Fig. J.7 contains the following

Newton-Raphson constraints:

• To solve for the Kirchhoff’s current law at the source of M4BP , we choose to solve for VS,M4BP

in:
FKCL,1(VS,M4BP

) = IDS,M5BP
(VS,M4BP

) − IDS,M4BP
(VS,M4BP

) = 0 (7.21)

152 Case Studies

• To solve for the Kirchhoff’s current law at the source of M4AP , we choose to solve for VS,M4AP

in:
FKCL,2(VS,M4AP

) = IDS,M5AP
(VS,M4AP

) − IDS,M4AP
(VS,M4AP

) = 0 (7.22)

• To solve for the Kirchhoff’s current law at the drain of M3BP , we choose to solve for VD,M3BP

in:
FKCL,3(VD,M3BP

) = IDS,M3BP
(VD,M3BP

) + IDS,M6BP
(VD,M3BP

) = 0 (7.23)

• To solve for the Kirchhoff’s current law at the drain of M3AP , we choose to solve for VD,M3AP

in:
FKCL,4(VD,M3AP

) = IDS,M3AP
(VD,M3AP

) + IDS,M6AP
(VD,M3AP

) = 0 (7.24)

• To solve for the Kirchhoff’s current law at the source of M3AP , we choose to solve for VS,M3AP

in:
FKCL,5(VS,M3AP

) = IDS,M10AP
(VS,M3AP

) − IDS,M3BP
(VS,M3AP

) − IDS,M3AP
(VS,M3AP

) = 0 (7.25)

It is important to note that the final transconductor dependency graph contains 598 nodes and

11 Newton-Raphson constraints. To simulate the transconductor in simulator mode, a procedure

is written to sweep the control voltage VC . At each sweep point, the graph is evaluated by chang-

ing the input common-mode voltages in opposite directions.

After simulation in the simulator mode, the computed effective transconductance is compared

against a simulation using an analog simulator. The plot in Fig. 7.10 shows that our proposed

methodology achieves results that are identical to commercial simulators. Slid lines ar issued

from an analog simulation and points are issued from our proposed methodology. Moreover, the

resulting linearity of the transconductor fully agrees with the results obtained in the work related

to [Chamla05] for 0.13µm CMOS technology with VDD = 1.2V .

7.5 0.5V Power Supply Fully Differential Body-Input Operational Am-

plifier

In this section, we present the fully differential body-input operational amplifier [Chatterjee05]

used for very low supply voltages. This circuit has be chosen since it has uncommon circuit

topology and it operates under very low voltage. The amplifier is shown in Fig. 7.11. It consists

of 7 transistor devices. The resistances RA and RB will be accounted for using a designer-defined

procedure that computes the drain voltage of M4 using RA and IDS,M4
.

The design parameters for the amplifier are chosen to be TEMP , VDD, VSS , VOUTCM , VINCM ,

LM1A,M1B
, LM2A,M2B

, LM3A,M3B
, LM4

, IDS,M4
= IBIASI , IDS,M2A,M2B

= IBIASN , Veg,M2A,M2B
,

Veg,M4
, K and RA,B . The parameter values are given in Table 7.11.

After synthesizing the amplifier, the design plan is represented by the dependency graph

shown in Fig. 7.12. The computed parameters of the amplifier are given in Table 7.12.

7.5 0.5V Power Supply Fully Differential Body-Input Operational Amplifier 153

Table 7.11: Input Parameters For Body-Input Amplifier in Designer Mode.

Parameter Value Parameter Value

TEMP (Kelvin) 300.15 VDD(V) 1.0

VSS (V) 0.0 VOUTCM (V) 0.25

VINCM (V) 0.25 RA,B(KOhms) 100

IBIASN (µA) 40.0 IBIASI (µA) 4.0

K =
IDS,M1A,M1B
IDS,M3A

,M3B
6 LM4

(µm) 2.0

Veg,M2A,M2B
(V) 0.1 LM1A,M1B

(µm) 1.0

Veg,M4
(V) 0.1 LM3A,M3B

(µm) 1.0

LM2A,M2B
(µm) 1.0

Table 7.12: Computed Parameters for The Amplifier.

(W/M)M1A,M1B
(W/M)M2A,M2B

(W/M)M3A,M3B
(W/M)M4

VG,M4
VG,M2A,M2B

35.94µm/3 22.03µm/2 6.375µm/3 7.25µm/1 0.391658 V 0.4137 V

Synthesis results are compared against the simulation results as shown in Table 7.13. The

results show that the proposed methodology can still be used for very low voltage applications of

future analog circuits.

Table 7.13: Operating Point for The amplifier.

Parameter Synthesis Simulation

M1A M3A M4 M2A M3A M4

IDS(µA) -36.0 -6.0 4.0 -36.004 -6.0036 4.0011

VGS(V) -0.45 -0.45 0.391658 -0.45 -0.45 0.39166

VDS(V) -0.25 -0.25 0.05 -0.24995 -0.24995 0.05

VBS(V) -0.25 -0.25 0.0 -0.24997 -0.24995 0.0

Vth(V) -0.29615 -0.296361 0.291658 -0.29615 -0.29637 0.29166

Veg(V) -0.15385 -0.153639 0.1 -0.15385 -0.15363 0.1

Vdsat(V) -0.13744 -0.13571 0.1 -0.13744 -01.3571 0.1

gm(mA/V) 0.397796 0.0664513 0.0481461 0.39784 0.066493 0.048159

gds(µA/V) 6.51391 1.05594 53.3472 6.5184 1.0572 53.362

gmb(µA/V) 59.0094 8.90347 10.5272 59.020 8.91 10.530

Cgd(fF) 16.9596 3.00258 25.2097 16.964 3.0048 25.217

Cgs(pF) 0.290907 0.0513384 0.100128 0.29093 0.051367 0.10015

(Operating Region) saturation saturation linear saturation saturation linear

154 Case Studies

7.6 Conclusion

In this chapter, the proposed methodology has been used to synthesize four different analog in-

tellectual properties: fully differential current-mode integrator, fully differential common-mode feedback

amplifier, fully differential transconductor and 0.5V power supply fully differential body-input operational

amplifier. The different aspects of analog design discussed in the previous chapter have been

demonstrated in each case study. The proposed methodology proved to be efficient and accu-

rate allowing to automatically produce design plans that respect designer’s hypotheses.

7
.6

C
o

n
clu

sio
n

1
5
5

M888

M666

M444

M222

M44

M22

M88 M8

M6

M4

M2

BIAS
V

CP
V

OUT+
V

V
BC

IN+
V

M3

M1

M77

M55

M11

M33

M777

M555

M333

M111

V
OUT−

CC

V
DD

M66 M5

M7

F
ig

u
re

7.1:
F

u
lly

differen
tial

cu
rren

t-m
ode

in
tegrator.

156 Case Studies

M666/VG

M666/VS,VB

M666/W

M666/TEMP M666/IDS M666/L M666/VEG M666/VD

54321

0

6

7

Figure 7.2: Directed cycle for the transistor M666.

M444/LM444/IDSM444/TEMP M444/VEG M444/VD M444/VB

M444/VG

M444/VS

M444/W

654321

0

7

8

Figure 7.3: Directed cycle for the transistor M444.

7.6 Conclusion 157

M333/TEMP
M444/TEMP

M3_M33/TEMP

M222/W
M111/W

M111/TEMP
M222/TEMP

M22_M2/TEMP
M1_M11/TEMP

M44_M4/TEMP

M333/W
M444/W

M333/VG
M444/VG

M3_M33/VG
M44_M4/VG M3_M33/W

M44_M4/W

M1_M11/W
M22_M2/W

INT/TEMP

temp

M88_M8/TEMP
M7_M77/TEMP
M888/TEMP
M777/TEMP

M888/W

M88_M8/W

M7_M77/W

M777/W

M666/TEMP
M66/TEMP
M6/TEMP
M5/TEMP
M55/TEMP
M555/TEMP

M888/VD
M666/VS,VB

M666/VG

M66/VG

M6/VG

M5/VG

M55/VG

M555/VG

M666/W

M66/W

M6/W

M5/W

M55/W

M555/W

M444/VS
M222/VD

1

0

7

13

8

3

14

15

30

20

19
21

22

53

Figure 7.4: Directed cycles in the integrator dependency graph.

158 Case Studies

C1 C2 C3 C4 C5

35

36

37

43

44

45

46

47

51

52

54

57

30

38

39

40

41

42

55

56

53

50

49

48

34

33

32

31

29

28

27

19

18

17

16

15

12

2

3

4

5

6

8

9

11

10

22

20

23

24

25

26 21

14

13

7

01

INT/L_M222

INT/L_M888

veg_m5

l_m5

ids

temp

vcp

M666,M66,M6/TEMP
M555,M55,M5/TEMP

M555,M55,M5/IDS
M666,M66,M6/IDS

M555,M55,M5/L
M666,M66,M6/L

M555,M55,M5/VEG
M666,M66,M6/VEG

l_m7

l_m3

l_m1

M444,M666/VD

ibias

veg_m3

vbias

vdd

M111/W
M222/W
M1_M11/W
M22_M2/W

M333/W
M444/W
M3_M33/W
M44_M4/W

M333/VG
M444/VG
M3_M33/VG
M44_M4/VG

M22_M2/TEMP

M222/TEMP
M111/TEMP

M1_M11/TEMP

M111/L
M222/L
M1_M11/L
M22_M2/L

M888/W
M777/W
M7_M77/W
M88_M8/W

M888/IDS
M777/IDS
M7_M77/IDS
M88_M8/IDS

M88_M8/VG
M777/VG

M7_M77/VG

M888/VG

M88_M8/VS,VB
M7_M77/VS,VB
M777/VS,VB
M888/VS,VB

M88_M8/L
M7_M77/L

M777/L
M888/L M7_M77/TEMP

M88_M8/TEMP
M777/TEMP
M888/TEMP

M888/VD
M666/VS,VB

M333/VEG
M444/VEG
M3_M33/VEG
M44_M4/VEG

M333,M444/L
M3_M33/L
M44_M4/L

M333,M444/IDS
M3_M33/IDS
M44_M4/IDS

M333,M444/TEMP
M3_M33/TEMP
M44_M4/TEMP

M111,M222/IDS
M1_M11/IDS
M22_M2/IDS

M111,M222/VS,VB
M22_M2/VS,VB
M1_M11/VS,VB

M333,M444/VB
M44_M4/VB
M3_M33/VB

M222/VD
M444/VS

OPVG(VEG,VB)

OPVG(VEG,VB)

OPW(VG,VS)

OPW(VG,VS)

OPVS(VEG)

M666/W
M66/W
M6/W
M5/W
M55/W
M555/W

OPVS(VEG)

VCP(...)

vds_m1

vss

INT/TEMP

INT/L_M666

INT/L_M444

INT/IBIAS

INT/VSS

INT/VEG_M222

INT/VBIAS

INT/VDD

INT/VEG_M444

INT/VEG_M888

INT/VEG_M666

M666,M66,M6/VG
M555,M55,M5/VG

VS_M444(...)

M6,M55/VD
M22_M2/VG
M222/VG

NI(IBIAS)

INT/VOUTCM

voutcm

INT/VINCM

vincm

Figure 7.5: Module dependency graph of the fully differential current-mode integrator in designer mode:

(a) Rectangles are integrator parameters, (b) Thin circles are variables and parameters used for parameter

mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is

a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

7
.6

C
o

n
clu

sio
n

1
5
9

M8 M5 M4B M4A

RM RM

CM CM

M1A M1B

VBAL

M6C M6A M6B

M1AC M1BC

M2A M2BM7

M3B

M3A
RCA

CCA

CCB

RCB

VB2

VB1 VB1 VB1 VB1

VIN− VIN+

IBIAS IBIAS

VOUTP

VOUTM

F
ig

u
re

7.6:
F

u
lly

differen
tial

com
m

on
-m

ode
feedback

am
plifi

er..

160 Case Studies

47

45

36

33

31

29

27

25

84

83

60

58

56

53

52

49

4

7

9

11

13

24

M7/VS,VB

M3B/VS,VB

M2B/VS,VB

DP_M3B_M3A/VB

DP_M2B_M2A/VS,VB

0

14

22

26

35

43

51

6344

41

39

37

23

20

18

16

2

1

3

6

8

10

12

15

17

19

21

38

40

57

59

61

284272

66
30

32

34

68

69

77

80

81

46

48

50

62

64

65

67

70

75

76

78

79

82

73

74

89

90

93

101

94

85

86

87

91

96

97

98

99

100

92

95

88

71

5

M1A,M1B/W

DP_M1B_M1A/W

DP_M6C_M6A_M6B/W

DP_M4B_M4A/W

M4A,M4B/W

M3A,M3B/W

DP_M3B_M3A/W

MTR_M1BC_M1AC/VG

M1BC/VG

M1AC,M1BC/W

M2A,M2B/W

M7/W

DP_M6C_M6A_m6B/VD

DP_M5_M8/W

M5,M8/W

M1BC/VEG

DP_M2B_M2A/IDS

DP_M4B_M4A/L

DP_M5_M8/L

DP_M5_M8/TEMP

M1A,M1B/VEG

AMP/IBIAS ids_m4b_m4a

AMP/VEG_M1B_M1A

AMP/VEG_M3B_M3A

AMP/L_M1B_M1A

AMP/L_M3B_M3A

AMP/K AMP/TEMP AMP/VDD

AMP/VSS

AMP/VOUTCM

AMP/VINCM

AMP/L_M5_M8

AMP/L_M7_M2B_M2A

AMP/VEG_M5_M8

AMP/VEG_M2B_M2A

AMP/VD_M1

veg_m1b_m1a

l_m1b_m1a

ids_m5_m8

l_m3b_m3a

veg_m3b_m3a

temp

DP_M4B_M4A/IDS

DP_M3B_M3A/TEMP

DP_M3B_M3A/L

DP_M3B_M3A/VEG

AMP/L_M4B_M4A

AMP/L_M1BC_M1AC

AMP/VEG_M1BC_M1AC

vdd

vincm

vd_m1

l_m5_m8

veg_m5_m8

voutcm

vss

veg_m2b_m2a

DP_M5_M8/IDS

DP_M1B_M1A/VEG

DP_M6C_M6A_M6B/TEMP

DP_M1B_M1A/TEMP

DP_M3B_M3A/IDS

DP_M2B_M2A/TEMP

DP_M2B_M2A/L

DP_M2B_M2A/VEG

veg_m1bc_m1ac

l_m1bc_m1ac

l_m4b_m4a

DP_M5_M8/VEG

DP_M6C_M6A_M6B/VG

DP_M1B_M1A/VG

M1B/VG

DP_M1B_M1A/IDS

DP_M6C_M6A_M6B/IDS

M1B/IDS

M1A,M1B/L

M1A,M1B/TEMP

DP_M4B_M4A/VD

l_m7_m2b_m2a

DP_M3B_M3A/VD

M3B,M4B/VD

M3A,M3B/IDS

M3A,M3B/VEG

M3A,M3B/L

DP_M1B_M1A/L

DP_M6C_M6A_M6B/L

M3A,M3B/TEMP

DP_M1B_M1A/VD

DP_M1BC_M1AC/VS

M1BC/VS M1B/VD

DP_M1B_M1A/VS,VB

DP_M6C_M6A_M6B/VB
DP_M1BC_M1AC,M1BC/VB

M1B/VB

DP_M4B_M4A,M4B/VS,VB

DP_M5_M8,M5/VS,VB

M2A,M2B/TEMP

M2A,M2B/L

M2A,M2B/VEG

MTR_M1BC_M1AC/TEMP

DP_M2B_M2A/VD

MTR_M1BC_M1AC/VD

M2B,M1BC/VD

M3B/VG

DP_M3B_M3A/VG

M2A,M2B/IDS

MTR_M1BC_M1AC/L

MTR_M1BC_M1AC/VEG

DP_M4B_M4A/TEMP

M5,M8/IDS

M5,M8/VEG

M5,M8/L

M5,M8/TEMP

55

DP_M5_M8/VD
DP_M1B_M1A/VS
DP_M6C_M6A_M6B/VS

M5/VD
M1B/VS

M4A,M4B/IDS

M4A,M4B/L

M4A,M4B/TEMP

MTR_M1BC_M1AC/IDS

M1BC/IDS

M1AC/VEG

M1BC/L
M1AC/L

M1BC/TEMP

M1AC/TEMP

M7/IDS

M7/L

M7/TEMP

DP_M2B_M2A/VG

M7,M2B/VG

M7/VD

DP_M2B_M2A/W

I(K,IBIAS)

IDS_BIAS(IBIAS)

OPW(VG,VS)

OPVG(VEG)

OPVG(VEG,VB)

OPVG(VEG)

OPVG(VEG,VB)

OPW(VG,VS)

OPVS(VEG,VB)

OPVG(VEG)
M5,M4B/VG

DP_M5_M8/VG

DP_M4B_M4A/VG

OPVG(VEG)

OPVG(VEG)

54

OPVS(VEG,VB)

OPVG(VEG)

C1 C2 C3 C4 C5 C6 C7 C8

Figure 7.7: Module dependency graph of the fully differential common-mode feedback amplifier in designer

mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for param-

eter mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node

is a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

7.6 Conclusion 161

M6C,M6A,M6B/VB

M5,M8/VS,VB

M1AC,M1BC/VB

M1A,M1B/VB

M4A,M4B/VS,VB

162

161

160

146

145

144

135

76

71

29

19

13

0
1

2

3

6

14

15

16

17

18

20

21

22

23

30

31

32

33

72

73

74

75

77

78

79

80134

133

130

129

128

113

112

132

131

127

126

125

124

123

91

122

4

5

35

36

37

38

40

41

42

43

34

39

82

89

90

92

93

106

121

120

119

108

107

105

53

52

51

50

48

47

11

45

46

8

10

12

44

49

55

56

57

59

60

61

116

115

114

98

97

96

95

94

88

84

7

24

25

26

27

28

62

63

64

65

66

67

68

69

70

99

100

101

102

103

104

109

110

111

86

117

136

149

150

165

166

173

172

171

154

153

138

137

139

140

141

155

156

157

AMP/VB1

AMP/VOUTN

AMP/VOUTP

AMP/W_M4B

AMP/W_M4A

AMP/L_M4B

AMP/L_M4A

AMP/VDD

AMP/TEMP vb1

vdd

w_m4b

l_m4b

voutp

w_m4a

l_m4a

temp

AMP/VSS

AMP/L_M3A

AMP/L_M3B

AMP/W_M3B

AMP/W_M3A

M4A/W

M3A,M4A/VD

M4A/L

M4A/TEMP

M4B/W

M3B,M4B/VD

M4B/L

M4B/TEMP

M4B,M4A/VG
M8,M5/VG

M8/IDS

M6B/IDS

M6A/IDS

M5/IDS

M1A/IDS

M1B/IDS

M8/TEMP

M8/L

M8/W

M6B/TEMP

M6B/L

M1B,M6B/VD
M1BC/VS

M6A,M6B/VG

M6B/W

M6A/L

M6A/W

M5/TEMP

M5/L

M1A,M1B/VS

M5/VD

M5/W

M1B/TEMP

M1B/L

M1B/VG

M1B/W

M1A/TEMP

M1A/L

M1A/VG

M1A/W

w_m5

l_m5

vs_m1a

w_m8

l_m8

w_m6a

l_m6a

vbal

l_m6b

w_m6b

w_m1a

l_m1a

w_m1b

l_m1b

vinp

M1AC/W

M1AC/L

M1AC/IDS

M6A/TEMP
M1AC/TEMP

M1BC/W

M1AC/VG
M1BC/VG

M1BC/L

M1BC/IDS

M1BC/TEMP

M6C/W

M6C/TEMP

M6C/IDS

M6C/L

M6C/VG

vinn

AMP/L_M8

AMP/L_M5

AMP/L_M1A

AMP/L_M1B

AMP/L_M6A

AMP/L_M6B

AMP/W_M8

AMP/W_M5

AMP/VINN

AMP/VINP

AMP/W_M1A

AMP/W_M1B

AMP/W_M6B

AMP/W_M6A

w_m6c

l_m6c

w_m1ac

l_m1ac

vb2

w_m1bc

l_m1bc

170

169

168

167

164

163

159

158

152

151

148

147

143

142

54

M7/IDS

M2B/IDS

AMP/L_M7

AMP/L_M2A

AMP/L_M2B

AMP/W_M7

AMP/W_M2A

AMP/W_M2B

w_m3b

l_m3a

w_m3a

vss

l_m3b

AMP/VG_M7

M4B/IDS

w_m2a

l_m2a

l_m2b

w_m2b

w_m7

118

l_m7

M3B/IDS

M3B/L

M3B/W

M3A/TEMP

M3A/IDS

M3A/L

M3A/W

voutn

M7/VS,VB

M3B/VS,VB

M3A/VS,VB

M2B/VS,VB

M2A/VS,VB

M7/TEMP

AMP/L_M1AC

AMP/W_M1BC

AMP/W_M1AC

AMP/L_M6C

AMP/L_M1BC

AMP/VB2

AMP/W_M6C

vg_m7 M2A/W

M2A/L

M2A/TEMP

M2A/TEMP

M2B/W

M3B/VG

M7/W

9

M7/L

58
M2A/IDS

83

85

NRC

NRC

81
NRC

87
NRC

AMP/VBAL

AMP/VS_M1A

OPIDS(VG,VS)

OPIDS(VG,VS)

OPIDS(VG,VS,VB)

OPIDS(VG,VS,VB)

OPVS(VG,VB,W)

M8/VD
M6C,M6A,M6B/VS

OPIDS(VG,VS)

M4A/IDS

OPIDS(VG,VS) OPIDS(VG,VS)

OPVS(VG,VB,W)

M1A,M6A/VD
M1AC/VS

OPVS(VG,VB,W)

OPIDS(VG,VS,VB)

OPIDS(VG,VS,VB)

VG_M6C(...)

OPVG(VS,W)

M1BC,M2B/VD

M1AC,M2A/VD
M3A/VG

OPVG(VS,W)

M2B/L vg_m6c

M3B/TEMP M2A,M2B/VG
M6C/VD M7/VG,VD

OPIDS(VG,VS)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

VG_M7’

VBAL’

VS_M1A’

VOUTN’

Figure 7.8: Module dependency graph of the fully differential common-mode feedback amplifier in simu-

lator mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for

parameter mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each

node is a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are

not shown for clarity.

1
6
2

C
a
se

S
tu

d
ie

s

��
��
��

��
��
��

�
�����

���		

���

���

�����

�����

�����

��
��
�� ��

��
��

��
��
��

��
��
��

�
� �� ����

� �� ����

 �!!

""�##

$$�%%

& && &
& &�
''

'

((�)) **�++

, ,, ,�--
..�//

00�11

2 22 2�33

44�55 66�77

8 88 8
8 8�
99

9

::�;;

<<
<<

<<
==

==
=

Vref

M4BP

M3BP M3AP

M4AP

M1AP

M2P M2N

M1AN

M4AN

M3AN M3BN

M4BN

M5BP M5APM6APM6BP

M8BPM7BP M8AP M7AP

M5AN

M7AN

M6AN

M8AN

M6BN M5BN

M7BN
M8BN

M11AP M11AN M11BNM11BP

M10AP M10AN

M9AP M9AN

CANCAP

M12AP M12AN

M13

CINT CINT

VOUT−VOUT+

VB12AP VB12AN

VOUT+

VIN+ VIN−

VC

VCMFB

VB7

VB5

VC

VB13

VB10AP VB10AN

VOUT−

GMD

CMC

AMP AMP

F
ig

u
re

7.9:
F

u
lly

differen
tial

tran
scon

du
ctor.

7
.6

C
o

n
cl

u
si

o
n

1
6
3

Figure 7.10: Fully differential transconductor response.

164 Case Studies

B
IA

S
I

V
O

U
T

+

V
IN

−

V
O

U
T

−

V
IN

+

B
IA

S
N

M
2

A
M

2
B

M
4

M
1

A
M

1
B

M
3

A
M

3
B

R
A

R
B

Figure 7.11: Fully differential body-Input operational amplifier.

7.6 Conclusion 165

27

28

29

30

31

32

33

34

38

39

40

41

42

43

44

45 26

25

22

15

24

23

21

20

19

18

1417

16

13

12

11

10

8

7

01

2

3

4

5

6

9

35

36

37

46

47

48

49

50

51

52

53

54

55

56

57

AMP/IBIASI

AMP/IBIASN

AMP/K

AMP/RA_RB

AMP/VOUTCM

AMP/VEG_M4

AMP/L_M4

AMP/L_M3A_M3B

AMP/L_M2A_M2B

AMP/L_M1A_M1B

AMP/VINCM

AMP/VSS

AMP/VDD

AMP/TEMP

vd_m4

ibiasi

veg_m4

l_m4

temp

voutcm

ids_m3a_m3b

l_m3a_m3b

ibiasn

AMP/VEG_M2A_M2B

veg_m2a_m2b

l_m2a_m2b

vss

ids_m1a_m1b

vincm

l_m1a_m1b

vdd

VD_M4(IBIASI,VOUTCM,RA_RB)

I_M3A_M3B(K,IBIASN,IBIASI)

I_M1A_M1B(K,IBIASN,IBIASI)

M4/W

M4/VG

M2A,M2B/W

M2A,M2B/VG

M3A,M3B/W

M1A,M1B/W

C1 C2 C3 C4

OPVG(VEG)

OPVG(VEG)

OPVG(VEG)

OPVG(VEG)

OPW(VG,VS,VB)

OPW(VG,VS,VB)

M4/L

M4/TEMP

M4/VEG

M4/IDS

M4/VD

M2A,M2B,M4/VS,VB

M2A,M2B/TEMP

M2A,M2B/IDS

M2A,M2B/L

M2A,M2B/VEG

M1A,M2A,M3A/VD
M3B/VB

M3A,M3B/TEMP

M3A,M3B/L

M1B,M2B,M3B/VD
M3A/VB

M1A,M1B,M3A,M3B/VS

M1A,M1B,M3A,M3B/VG

M1A,M1B/TEMP

M3A,M3B/IDS

M1A,M1B/L

M1A,M1B/IDS

M1A,M1B/VB

Figure 7.12: Module dependency graph of the fully differential body-input operational amplifier in designer

mode: (a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for param-

eter mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node

is a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

Chapter 8

Knowledge-Aware Synthesis

8.1 Introduction

The main motivation of this chapter is to prove the benefits of introducing the hierarchical sizing

and biasing inside an optimization loop of a knowledge-based synthesis system. Traditionally,

simulation-based synthesis systems use transistor widths as their main optimization variables.

This is due to the fact that these systems interface with simulators in order to evaluate circuit per-

formances. Inherently, the choice of widths as optimization variables is not optimal. Since the

range of widths is large and generally chosen arbitrarily, the design space becomes large. Conse-

quently, synthesis systems spend an important amount of execution time in evaluating infeasible

designs. A more convenient set of variables that can be used for optimization consists of voltages,

currents and lengths. These variables have a very narrow range: voltages range from VSS to VDD,

current ranges are determined from system specifications and lengths are fixed by the designer.

Hence, these variables represent a much smaller design space for the same circuit. Moreover, since

widths are always computed from these variables, the synthesized designs tend to be feasible.

Section 8.2 describes the concept of the knowledge-aware optimization-based synthesis.

Section 8.3 illustrates some optimization results. An OTA amplifier is first synthesized using

our proposed methodology. A comparison with the results of the state-of-art knowledge-based

and simulation-based synthesis tools is discussed. Then, the proposed methodology is used to

migrate the OTA amplifier by changing one specification.

Finally, section 8.4 draws some conclusions about the effectiveness of the proposed methodol-

ogy.

168 Knowledge-Aware Synthesis














Temp

VIN,i

Veg,i

IB,i

VOUT,i

Li














︸ ︷︷ ︸

Design

Parameters

⇒














W1

Vgs1

Vds1

.

Wn

.














︸ ︷︷ ︸

Biases+

Sizes

⇒














gm,1

gds,1

Cgs,1

.

gm,n

.














︸ ︷︷ ︸

Small− Signal

Parameters

⇒














Ad

φm

Ft

.

Sth,in

.














︸ ︷︷ ︸

Linear

Performances

Figure 8.1: Parameter mappings in the design space..

8.2 Knowledge-Aware Optimization-Based Synthesis

8.2.1 The Choice of Optimization Variables

The hierarchical sizing and biasing method performs the parameter mappings shown in Fig. 8.1.

Since voltages, currents and lengths have a narrow range of variation, they represent a much re-

duced design space for the same circuit compared to design spaces using widths. Consequently,

the first vector is favorably used for optimization. In the second vector, the sizes and biases are

computed out of the first vector. Therefore elements of the second vector tend to be feasible com-

pared to the simulation-based synthesis where they are arbitrarily chosen causing some execution

time to be lost in evaluating infeasible designs.

8.2.2 The Reduction Factor

To quantify the reduction in the design space due to the selection of appropriate optimization

variables, we deduced a simple figure of merit called the reduction factor which is defined as the

ratio between the number of possible values of a width Wi = Wmin
i : Wmax

i : λw
i and a voltage

Vi = V min
i : V max

i : λv
i ,

Reduction Factor =
n∏

i=1

λv
i

λw
i

· W
max
i −Wmin

i

V max
i − V min

i

(8.1)

where n is the number of widths variables to be exchanged by voltage variables, λw
i is the step

size of the width that varies between Wmin
i and Wmax

i , and λv
i is the step size of the voltage that

varies between V min
i and V max

i . We conclude that exchanging a width with a voltage leads to an

important reduction factor in the design space. This is due to the more limited supply voltage

as well as the broader choice of widths for shrinking physical grid, accompanying technology

advances. This reduction factor is described by the contour shown in Fig. 8.2 for one dimensional

problem, i.e. n = 1. The figure was produced for 0.13µm CMOS technology with Wmin
i = 0.15µm,

Wmax
i = 100µm, V min

i = 0V and V max
i = 1.2V . Around the voltage step size of 1mV and the

8.2 Knowledge-Aware Optimization-Based Synthesis 169

width step size of 10nm, the design space is reduced by at least nine times. Applying equation 8.1

for n > 1, we get a very important reduction factor for the n-dimensional design space.

Figure 8.2: Reduction factor for 0.13µm CMOS technology.

Some designers may disagree with the reduction in design space argument, since it is unfair

to compare discrete spaces (defined by widths) to continuous spaces (defined by voltages). On

the other hand, one might discretize a voltage by estimating the minimum permissible voltage

error in the circuit. Note that the minimum permissible voltage error is much lower than errors

due to mismatch. It should be mentioned also that the voltage precision should not affect the

functionality of the circuit, otherwise the circuit is not robust.

170 Knowledge-Aware Synthesis

8.2.3 Optimization Engine

To achieve the potential reduction in the design space during synthesis, the hierarchical sizing and

biasing have been introduced into the optimization loop as shown in Fig. 8.3.

Search Engine

Li

V
eg,i

V
IN,i

I
B,i

V
OUT,i

TEMP W
1

W
n

V
GS,1

V
DS,1

g
m,1

g
ds,1

Cgs,1

g
m,n

A
d0

F
T

PM

th,inSP
e

rf
o

rm
a

n
c

e

E
q

u
a

ti
o

n
s

B
S

IM
3

V
3

 M
o

d
e

l

S
iz

in
g

 a
n

d
 B

ia
s

in
g

Figure 8.3: Block diagram of the proposed synthesis system.

The optimizer generates the elements of the first vector of Fig. 8.1. Next, all widths and biases

of the second vector are computed from the first one using the generated design plan. Then, the

small-signal parameters of the third vector are computed from the second one by evaluating the

BSIM3V3 model equations. The linear performance equations in the fourth vector are evaluated

in the root circuit level. These equations are manually coded by the designer inside a procedure

called performance procedure which is called by the optimizer to evaluate performances. Finally,

the performance values are sent back to the optimizer to estimate new parameter values for the

first vector. The loop continues until it converges to a solution vector that satisfies all performance

constraints.

If a solution becomes infeasible during optimization, a very large value is returned back for

the cost function causing the solution to be rejected. This is done immediately after evaluating

the module dependency graph during optimization in order to get sizes and biases in the second

vector.

The optimization algorithm used is the Nelder-Mead Simplex [Nelder65, Lagarias98]. The

Nelder-Mead algorithm attempts to minimize a scalar-valued nonlinear cost function of n

real variables using only function values, without any derivative information. The algorithm

maintains at each step a non-degenerate simplex, a geometric figure in n dimensions of nonzero

volume that is the convex hull of n + 1 vertices. In two dimensions, a simplex is a triangle. In

three dimensions it is a tetrahedron, not necessarily regular tetrahedron.

The method starts by defining an initial simplex consisting of n + 1 points. If one of these

points is the initial starting point P0, then one can take the other n points to be:

Pi = P0 + λ · ei (8.2)

8.2 Knowledge-Aware Optimization-Based Synthesis 171

where the ei’s is the n units vector, and where λ is a constant which is our guess of the problem’s

characteristic length scale. Or, one could have different λi’s for each vector direction.

To start the method we need to choose the initial simplex to start. The algorithm starts by

ordering the n + 1 vertices to satisfy:

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1) (8.3)

where f(.) is the cost function. The algorithm is then supposed to make its own way downhill

through the complex n-dimensional response surface, until it encounters an (at least local) min-

imum. The Nelder-Mead algorithm takes a series of steps, most steps just moving the point of

the simplex where the function is highest xn+1 (the point of simplex where the function is largest)

through the opposite face of the simplex to a lower point xr. This step is called reflection, and it

is constructed to conserve the volume of the simplex. This is shown in Fig. 8.4(b). The reflection

point xris computed from:

xr = x̄ + ρ(x̄− xn+1) (8.4)

where:

x̄ =
n∑

i=1

xi

n

is the centroid of the n best points, i.e. all vertices except for xn+1 and ρ is the reflection coefficient.

The cost function fr is evaluated at xr, fr = f(xr). If f1 ≤ fr ≤ fn, the reflected point xr is accepted

and the iteration is terminated.

When the value of function in point xr is lower than or equal to the lowest point of the simplex,

it means that we have better estimation of the minimum. Therefore, the value is checked in point

xe to see if the function drops further in direction of xr. This is called expansion. It is shown

as a further movement in the direction of minimization in Fig.8.4(b). The expansion point xe is

computed from:

xe = x̄ + χ(xr − x̄) (8.5)

where χ is the expansion coefficient. The cost function is valuated at xe, fe = f(xe). If fe < fr, the

expansion point xe is accepted, otherwise (if fe ≥ fr), the reflection point xr is accepted and the

iteration is terminated.

If after a reflection, xr is still the worst point, then a simple contraction step is made between x̄

and the better of xn+1 and xr.

1. If fn ≤ fr < fn+1, an outside contraction is performed. The outside contraction point xc is

shown if Fig. 8.4(c). It is computed from

xc = x̄ + γ(xr − x̄) (8.6)

where γ is the contraction coefficient. The function is evaluated fc = f(xc). If fc ≤ fr the

contraction point xc is accepted and the iteration is terminated.

172 Knowledge-Aware Synthesis

2. If fr ≥ fn+1, perform an inside contraction. The inside contraction point xcc is computed from

xcc = x̄− γ(x̄− xn+1) (8.7)

The function is evaluated fcc = f(xcc). If fcc < fn+1 , the contraction point xcc is accepted

and the iteration is terminated.

If a simple contraction step does not improve the situation, then all the points are moved

towards the current lowest point x1. This step is called multiple contractions. This is computed

from

vi = x1 − σ(xi − x1), i = 2, · · · , n + 1 (8.8)

where σ is the shrinkage coefficient. This results in the new set of vertices x1, v2, · · · ,vn+1. This

process is called shrinkage or multiple contractions and is illustrated in Fig. 8.4(d).

In our proposed method, equation (8.2) is adopted to create the initial simplex. Let n be the

dimension of the design space. We start by randomly generating Xrandom points in the design

space. The cost function is evaluated at each of the Xrandom points. The best point is retained and

is assumed to be in the vicinity of the global optimum of the cost function. This process is shown

in Fig. 8.5.

The initial simplex is created around the best point as follows. Assume that the best point,

given by n dimensions, is xbest = (x0, x1, x2, ... , xn−1). n + 1 points are generated by adding two

units of length λ = 2 for each dimension, generating the following N + 1 points:

x0 = xbest = (x0, x1, x2, ..., xn−1) (8.9)

x1 = (x0 + 2 · e0, x1, x2, ..., xn−1) (8.10)

x2 = (x0, x1 + 2 · e1, x2, ..., xn−1) (8.11)

x3 = (x0, x1, x2 + 2 · e2, ..., xn−1) (8.12)

· · · = · · ·
xn = (x0, x1, x2, ..., xn−1 + 2 · en−1) (8.13)

Then the gravity point is computed by averaging all the n + 1 points:

xgravity =
1

n + 1

n∑

i=0

xi (8.14)

The translation vector between the gravity point Xgravity and the best point is computed

∆xgravity = xgravity − xbest (8.15)

8.2 Knowledge-Aware Optimization-Based Synthesis 173

X
2

X
3

X
3

X
1

X
1

X
1

X
3

X
1

X
3

(a)

(b)

(c)

(d)

X
2

Reflection (with Expansion)

Contraction

Multiple Contractions

X
2

X
2

X

X

X

Original Simplex

V

V
 2

 3

(Lowest)

(Highest)

X r

X

X r

X

e

X ccc

Figure 8.4: Nelder-Mead Simplex Method.

The n + 1 points are moved so that the best point xbest is at their center of gravity using

x̃0 = x0 −∆xgravity (8.16)

x̃1 = x1 −∆xgravity (8.17)

x̃2 = x2 −∆xgravity (8.18)

· · · = · · ·
x̃n = xn −∆xgravity (8.19)

174 Knowledge-Aware Synthesis

b

1

0.9

0.7

0.8

0.7

0.6

0.5

0.4 0.3

X
best

Figure 8.5: Selection of the best point in the design space.

An example is shown in Fig.8.6 for N=2.

X

X

X
X

1

2

3
best

Figure 8.6: For n = 2, a simplex consisting of the 3 points (x1, x2,x3) is created having xbest at its center

of gravity..

Once created, the initial simplex is evolved using the simplex method until it converges. At

the end of convergence, the simplex size is sufficiently small and the solution point is chosen to be

the average of n + 1 simplex points. Note that the above optimization method works well if the

initial sampling of the design space is sufficiently dense, i.e. Xrandom is sufficiently large.

8.2.4 Definition of the Cost Function

The Nelder-Mead optimization function requires a cost function to evaluate at each of the N + 1

vertices of the simplex. The difficulty lies in how to express cost functions that incorporates both

constraints and objectives. In general, the form of the cost function is difficult to determine since in

many problems the solution space is very difficult to determine. It was proved in [Richardson89]

8.2 Knowledge-Aware Optimization-Based Synthesis 175

that a good cost function should incorporate the amount of violation, not only the number of

evaluations. Following this principle, penalty functions [Richardson89, Coello00, Iskander03] are

used to convert a constraint optimization problem (with constraints and objectives) into an un-

constrained formulation. Suppose that the constraint optimization problem has the form:

min
i

fi(x) < ftarget,i (8.20)

max
j

fj(x) > ftarget,j (8.21)

where gk(x) > Ak (8.22)

lp(x) < Bp (8.23)

hm(x) = Dm (8.24)

yn(x) ∈ [yn,min, yn,max] (8.25)

where x is the parameter vector, fi are the objective functions to minimize, ftarget,i are its minimum

target values, fj are the objective functions to maximize, ftarget,i are its maximum target values,

gk are the greater-than constraints, Ak are its lower bounds, lp are the less-than constraints, Bp are

its upper bounds, hm are the equality constraints, Dm are its boundary values, yn are the range

constraints and [yn,min, yn,max] are its boundary values. This problem can be solved using an

unconstrained formulation having the form:

min
i,j,k,p,m,n

∑

i

Umin(fi(x)) (8.26)

+
∑

j

Umax(fj(x)) (8.27)

+
∑

k

Ug(gk(x)) (8.28)

+
∑

p

Ul(lp(x)) (8.29)

+
∑

m

Uh(hm(x)) (8.30)

+
∑

n

Uy(yn(x)) (8.31)

+

(
∑

k

Ng(gk(x)) +
∑

p

Nl(lp(x)) +
∑

m

Nh(hm(x)) +
∑

n

Ny(yn(x))

)2

(8.32)

where Umin, Umax, Ug, Ul, Uh and Uy are acceptability functions

and Ng, Nl, Nh and Ny are violation indicators

In the following, we define the acceptability functions U(.) and the violation indicators N(.).

176 Knowledge-Aware Synthesis

To do this, we use the bracket operator < p, r > defined as:

< p, r >=

{

pr p > 0

0 otherwise
(8.33)

This operator will be used to define the feasible regions where objectives and constraints have

acceptable values. Now let us study the form of the acceptability functions adapted for every

constraint type:

1. Greater-than: In this type, the constraint value g(x) is required to be greater than a lower

bound value A, i.e. g(x) > A. We define the acceptability function for this type to be:

Ug(g(x)) =<
A− g(x)

A
, 2 > (8.34)

This function returns a zero value only if g(x) > A, otherwise it returns the square of the

amount of the normalized violation (normalized by dividing it with the commensurate value

A). The acceptability function is illustrated in Fig.8.7(a). In the figure, the acceptability

function is shown for r = 1 and r = 2. The value of r = 2 is selected for this constraint type

to reflect its importance w.r.t objective types which have r = 1, i.e. constraints should be

satisfied before minimizing or maximizing objective functions.

2. Less-than: In this type, the constraint value l(x) is required to be less than an upper bound

value B , i.e. l(x) < B. We define the acceptability function for this type to be:

Ul(l(x)) =<
l(x)−B

B
, 2 > (8.35)

This function returns a zero value only if l(x) < B, otherwise it returns the square of the

amount of the normalized violation. The acceptability function is illustrated in Fig.8.7(b).

3. Equality: In this type, the constraint value h(x) is required to be equal to a boundary value

D, i.e. h(x) = D. This constraint is equivalent to adding the two constraints:

h(x) > (1− ǫ) ·D (8.36)

h(x) < (1 + ǫ) ·D (8.37)

where ǫ tends to an infinitely small positive value. In this case, the acceptability function is

defined to be the contribution of each of the constraints above. It has the following form:

Uh(h(x)) =<
(1− ǫ) ·D − h(x)

D
, 2 > + <

h(x)− (1 + ǫ) ·D
D

, 2 > (8.38)

This function returns a zero value only if (1 − ǫ) · D < h(x) < (1 + ǫ) · D, otherwise it

returns the squares of the amount of the normalized violation for each added constraint.

The acceptability function is illustrated in Fig.8.7(c).

8.2 Knowledge-Aware Optimization-Based Synthesis 177

4. Range: In this type, the constraint value y(x) is required to be in the target range [ymin, ymax],

i.e. ymin < y(x) < ymax. This constraint is equivalent to adding the two constraints:

y(x) > ymin (8.39)

y(x) < ymax (8.40)

In this case, the acceptability function is defined to be the contribution of each of the con-

straints above. It has the following form:

Uy(y(x)) =<
ymin − y(x)

ymin
, 2 > + <

y(x)− ymax

ymax
, 2 > (8.41)

This function returns a zero value only if ymin < y(x) < ymax, otherwise it returns the

squares of the amount of the normalized violation for each added constraint. The accept-

ability function is illustrated in Fig.8.7(d).

Objectives functions are expressed in the cost function using the same formulation defined for

constraints. Two types of objectives exist:

1. Maximize: In this type, the objective value f(x) is required to be greater than a target value

ftarget, i.e. f(x) > ftarget. We define the acceptability function for this type to be:

Umax(f(x)) =<
ftarget − f(x)

ftarget
, 1 > (8.42)

This function returns a zero value only if f(x) > ftarget, otherwise it returns the amount of

the normalized violation (normalized by dividing it with the commensurate value ftarget).

The acceptability function is illustrated in Fig.8.7(a) for r = 1. The value of r = 1 is selected

for this objective type to reflect its lower importance w.r.t constraints which have r = 2, i.e.

constraints should be satisfied before minimizing or maximizing objective functions.

2. Minimize: In this type, the objective value f(x) is required to be less than a target value

ftarget , i.e. f(x) < ftarget. We define the acceptability function for this type to be:

Umin(f(x)) =<
f(x)− ftarget

ftarget
, 1 > (8.43)

This function returns a zero value only if f(x) < ftarget, otherwise it returns the amount of

the normalized violation. The acceptability function is illustrated in Fig.8.7(b) for r = 1.

The above discussion computes the amount of violation for each constraint and objective type.

To compute the violation count for constraint types, we define the function N(.) to be

N(C(x)) =

{

1 C(x) is not satisfied

0 otherwise
(8.44)

178 Knowledge-Aware Synthesis

C(x)
(1+)ε

<C(x)>

r=2

r=1

r=2

r=1

(c)

Dε(1−)D

C(x) = D

C(x)

<C(x)>

r=1

r=2 r=2

r=1

(d)
min

C(x) = [y , y]
max

y y
min max

C(x)

<C(x)>

r=2

r=1

(b) C(x) > B

B
C(x)

<C(x)>

r=2

r=1

A

C(x) < A(a)

Figure 8.7: Acceptability functions: (a) Greater-than type, (b) Less-than type, (c) Equality type, and (d)

Range type. Dotted arrows point to feasible regions of interest.

where C(x) represent the constraint function. The square of the violation count is added for all

the constraints (without objectives) in order to make a pressure on the optimizer to compute first

feasible regions, i.e. where all the constraints are satisfied without objectives. This way, objectives

are considered of less importance than constraints by using lower exponent for objective violation

(r = 1) and by adding the square of violation count only for constraints.

8.2.5 Optimizing an Analog IP

In order to optimize an analog IP, a testbench has to be configured. The testbench, shown in

Fig. 8.8 consists of five main parts:

1. Analog IP instantiation: The analog IP is instantiated inside the testbench. The analog IP

8.2 Knowledge-Aware Optimization-Based Synthesis 179

SetupSetup

Procedure Optimizer

Performance

Procedure
Optimizer

Layout Reshape and Generation

Influence Exploration Tool

Testbench Configuration

Analog IP Instantiation

Analog IP Optimization

Figure 8.8: Testing an analog IP.

is accessible through its input/output parameters and its procedures, especially the perfor-

mance procedure coded by the designer to evaluate circuit performances.

2. Optimizer and performance procedure setup: The optimization variables, representing

some analog IP parameters, are selected . Their ranges of variation are specified. Constraints

and objectives are added to the optimizer setup. The optimizer is then created at the root

level of the analog IP and bound to procedure computing performances called performance

procedure.

3. Analog IP optimization: The analog IP is optimized by executing the optimizer in a loop

with the performance procedure. This results in altering some input parameters in the ana-

log IP in order to satisfy objectives and constraints. At the end, a solution is achieved and

the resulting analog IP instance is preserved.

4. Layout reshape and generation: The layout is generated for the preserved analog IP.

5. Influence exploration tool: The influence exploration tool is displayed for the designer to

allow the exploration and characterization of the preserved analog IP.

180 Knowledge-Aware Synthesis

In the following section, the Application Program Interface API used to perform optimization

setup and execution will be explained in further details.

8.2.6 API for Knowledge-Aware Synthesis

In order to configure an analog IP for the purpose of optimization, an Application Program Interface

API has been developed. Table. 8.1 gives the C/C++ macros definitions consisting the API. The

source code for knowledge-aware synthesis for the OTA amplifier is listed in appendix H. This

code is used to produce the results in section 8.3.

8.3 Results

8.3.1 Synthesizing an Analog IP

In this subsection, our proposed methodology for optimization, shown in Fig. 8.3, is used to syn-

thesize the two-stage amplifier shown in Fig. 8.9.

REF
I

M2M1

IN+
VV V

OUT

C
L

IN−

M4 M6

1:KI
BIAS

V
DD

M3

M5
M7M8

C c

Figure 8.9: Two-stage amplifier.

After applying it to the amplifier, the module dependency graph of the amplifier is obtained

as shown in Fig. 8.10. This graph assumes :

1. The amplifier is to be designed for nonzero systematic offset, i.e VD,M3
6= VG,M6

.

2. WM8 = WM5.

3. LM5 = LM7 = LM8 = L{M8,M5,M7}.

To perform optimization, some parameters have been fixed such as TEMP , VDD, VSS , VICM ,

VOUTCM . Other parameters have been allowed to vary by the optimizer such as IBIAS , Veg,CM ,

LCM , LM6
, Veg,M6

, Veg,DP , LDP , Veg,M5
, L{M8,M5,M7}, K. In addition, the compensation capacitance

CC was allowed to vary.

8.3 Results 181

We recall the amplifier graph shown in Fig. 6.34 for convenience. In the following, we analyze

the graph and explain how it sizes and biases the two-stage amplifier:

1. The amplifier parameters needed to execute the graph are: TEMP , VDD, VSS , IBIAS , Veg,CM ,

LCM , LM6, Veg,M6
, Veg,DP , LDP , VICM , VOUTCM , Veg,M5, L{M8,M5,M7} and K. These are

represented by rectangle nodes.

2. The variables and parameters used for parameter mapping are represented as thin circle

nodes. As an example, variable (C2,vegcm,61) maps the amplifier parameter (C1,Veg,CM ,67)

into the current mirror parameter (C3,Veg,CM ,8).

3. Device parameters are propagated to transistors forming the device. As an example, the

current mirror parameter (C3,Veg,CM ,8) is propagated to M3 via (C4,Veg,M3,7) and to M4 via

(C4,Veg,M4,7). Note that M3 and M4 share the same effective gate-source voltage (C4,Veg,7).

4. Transistor widths are computed in nodes (C8,WM1,M2
,21), (C8,WM3,M4

,11), (C8,WM6
,31),

(C7,WM5,M8
,36) and (C8,WM7

,25).

5. Since WM8 = WM5, they share the same node (C7,WM5,M8
,36).

6. Since VD,M3
6= VG,M6

is imposed for nonzero systematic offset, they are split to nodes

(C5,{VD,M1
,2) and (C7,VG,M6

},1).

7. The design plan is represented by the graph as follows:

(a) VG/D,M3 is computed using OPVGD(Veg,M3) in node (C5,VG/D,M3,2).

(b) VD,M3 is used to compute VD,M5, which is the same as VS,M1, using OPVS(Veg,M1,VB,M1)

in node (C6,VS,M1,24).

(c) VD,M5 is then used to compute VG,M5 using OPVG(Veg,M5) in node (C7,VG,M5,29).

(d) VG,M5 is used to compute IDS,M8
using OPIDS(VG,M8

, VS,M8
) in node (C8,IDS,M8

,41).

The optimization loop of Fig. 8.3 is executed using the amplifier module dependency graph

of Fig. 8.10. The optimization is performed with the number of parameters N = 9 shown in

Table 8.2, the initial points Xrandom = 100 and a constant λ = 2. Performance equations have

been extracted from OCEANE [Porte08] and manually coded inside the performance procedure.

Table 8.2 shows the target specifications of the amplifier, the synthesis and the simulation results in

130nm CMOS technology. The average runtime on an Intel Centrino 1.7GHz with 2MB Cache is 76

seconds. This runtime is due to the small ranges of variation of the optimization variables. These

small ranges relief us from the burden of using sophisticated optimization algorithms. Moreover,

the simulation results agree with the synthesized design. The results show that our approach

produces simulator-like accurate designs with a very reasonable amount of time, thus allowing

interactive design of analog circuits. It is important to mention that the synthesis is performed

182 Knowledge-Aware Synthesis

74 72 65 73 52 42 41

40

51

57

58

54

53

56

50

49

48

47

43

39

38

37

36

31

2529

30

20

23

3561

60 10

55 18

16

14

34 27 21

11

22

19 33

12
17

32 26

44

6

4

8

7

5

3 2

13

15

28

24 1

9

45

67

71

70

64

68

62

63

69

46

AMP/IBIAS

AMP/VEG_CM

AMP/L_CM

AMP/TEMP AMP/L_DP

AMP/VEG_DP

AMP/VDD

veg_cm

l_cm

ids_cm

temp CM/TEMP

CM/L

CM/VEG

CM/IDS

AMP/VSS

vdd

veg_dp

l_dp

ids_dp

M3,M4/TEMP

M3,M4/L

M3,M4/VEG

M3,M4/IDS

CM,M3,M6/VB,VS

DP/TEMP

DP/L

DP/VEG

DP/IDS

AMP/K

vss

AMP/VEG_M6

AMP/L_M8_M5_M7

AMP/L_M6

66

ibias

veg_m6

l_m6

ids_m6

l_m8_m5_m7

DP,M1/VG

DP,M1/VB

M8,M5,M7/VB,VS

M1,M2/IDS

M1,M2/VEG

CM,M3/VG,VD

M6,M7/VD

M6/TEMP

M6/IDS

M6/L

M8/TEMP

M5/TEMP

M5/IDS

M5,M8/L

M5/VEG

ids_m7

M7/TEMP

M7/L

M8,M5,M7/VG

M8/VD

M7/IDS

M5,M8/W

M1,M2/TEMP

M1,M2/L

OPVGD(VEG) OPVS(VEG,VB) OPVG(VEG)

OPVG(VEG)

OPVG(VEG)

OPVGD(VEG)

M6/VEG

C1 C2 C3 C4 C5 C6 C7 C8

AMP/VEG_M5

veg_m5

DP,M1/VD

AMP/VOUTCM

voutcm

AMP/VINCM

vincm

0

59

OPW(VG,VS)

OPVG(VEG)

OPIDS(VG,VS)

OPVS(VEG,VB)

DP,M1/VS

M5/VD
VOFFSET

CM,M3,M4/W

DP,M1,M2/W

M7/W

M6/W

M8/IDS

M6/VG

IDS_CM(IBIAS)

IDS_DP(IBIAS)

NI(K,IBIAS)

I(K,IBIAS)

Figure 8.10: Module dependency graph of the amplifier for nonzero systematic offset in designer mode:

(a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter

mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is

a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

in the designer mode and is coupled with a layout generation phase which truncates of widths

to the physical grid. Therefore, some differences exist between the simulation and synthesis. In

addition, some inaccuracy exists in performance equations.

8.4 Conclusions 183

8.3.2 Comparison to the State-of-Art

The measured runtime for the amplifier is compared against state-of-art knowledge-based and

simulation-based analog synthesis systems published during the last two decades. The compari-

son is summarized in table 8.3. The obtained runtime is found to be better over previously pub-

lished work, except for OASYS [Harjani87, Harjani88, Harjani89b, Harjani89a]. OASYS is con-

sidered the fastest since knowledge is manually coded and optimized inside the synthesis tool.

AMGIE [Plas01], which adopts similar strategies is in the same order of speed. The highest run-

time is obtained in the case of simulation-based synthesis systems like ASTRX/OBLX [Ochotta96],

ASF [Krasnicki01] and ANACONDA [Phelps00]. Our proposed methodology proves to be effi-

cient compared to other state-of-art synthesis systems.

8.3.3 Changing the Specifications

Since an analog IP is a reusable building block, it is easy to re-synthesize it using different specifi-

cations. Suppose that the unity gain frequency is to be increased by at least a factor of 2. For this

purpose, the range of IBIAS is doubled. Table 8.4 shows the synthesis versus simulation results

for this case. The unity gain frequency is required to be above 12Mhz for a doubled IBIAS that can

reach 60µA. The results show that IBIAS , hence IBIAS has doubled and the unity gain frequency

has increased compared to table 8.2. The average runtime on Intel Centrino 1.7GHz with 2MB is

87 secs. This proves that the proposed methodology can be used for interactive design efficiently.

8.4 Conclusions

The hierarchical sizing and biasing have been introduced into an optimization loop. It automat-

ically generates design plans which reduce the design space of the circuit by using optimiza-

tion variables that have narrow ranges of variation. The results show that our approach pro-

duces simulator-like accurate designs with a very reasonable amount of time, thus allowing in-

teractive design of analog circuits. Our approach is in good position compared to the state-of-

art knowledge-based and simulation-based synthesis tools previously published. The proposed

methodology have been called Knowledge-aware synthesis since knowledge is automatically ex-

tracted for the analog circuits and applied directly into the optimization loop.

1
8
4

K
n

o
w

le
d

g
e
-A

w
a
re

S
y

n
th

e
sis

Macro Definition

CAIRO SET PARAM(”<inst-name>”, ”<param-name>”, <value>) This macro is called to set an input parameter, where <inst-name> is the analog

IP instance name, <param-name> is the parameter name and <value> is the

floating-point value given to the parameter.

CAIRO SET PARAM DOMAIN(”<inst-name>”, ”<param-name>”, <min-value>,

<max-value>, <step>)

This macro is called to set the range of variation for an input parameter where

<inst-name> is the analog IP instance name, <param-name> is the parame-

ter name, <min-value> is the minimum permissible value, <max-value> is the

maximum permissible value and <step> is the step of change.

CAIRO SET PARAM CONSTRAINT(”<inst-name>”, ”<param-name>”, [CP ABOVE

| CP BELOW | CP EQUAL | CP WITHIN],<value> [, <value>])

This macro is called to set a constraint for a performance parameter, where <inst-

name> is the analog IP instance name, <param-name> is the parameter name,

[CP ABOVE | CP BELOW | CP EQUAL | CP WITHIN] is a constraint type,

and <value> is the boundary value. For the constraint types: CP ABOVE or

CP BELOW or CP EQUAL, one boundary value is specified. For the constraint

type CP WITHIN, two boundary values specify the range of variation.

CAIRO OPTIMIZER USE(”<inst-name>”) This macro is called to create an optimizer for the analog IP, where <inst-name>

is the analog IP instance name.

CAIRO OPTIMIZE PROCEDURE(”<inst-name>”, ”<proc-name>”) This macro is called to set the name of the procedure used to compute perfor-

mances, where <inst-name> is the analog IP instance name and <proc-name>

is the name of the performance procedure. The procedure computes all the per-

formances shown in the vector in Fig. 8.3.

CAIRO OPTIMIZE(”<inst-name>”,<pop-length>, [CP DESIGN | CP SYNTHESIS]) This macro is called to start the optimization process by specifying the length

of population and the synthesis mode, where <inst-name> is the analog IP in-

stance name, <pop-length> is the length of the population of random points

and [CP DESIGN | CP SYNTHESIS] is the execution mode. If CP DESIGN is

specified, the analog IP dependency graph is not evaluated and the performance

procedure is called for performance evaluation. Otherwise, if CP SYNTHESIS is

specified, then the analog IP dependency graph is evaluated before calling the

performance procedure.

CAIRO OPTIMIZER RELEASE(”<inst-name>”) This macro is called to free the optimizer, where <inst-name> is the analog IP

instance name.

Table 8.1: Macros definitions for knowledge-aware synthesis.

8.4 Conclusions 185

Table 8.2: Synthesis Results in 130nm CMOS with VDD = 1.2V in Designer Mode.

Circuit Performances Target Synthesis Simulation

(with Layout)

Dynamic Gain (dB) > 65 71.22 70.83

Common-Mode Gain (dB) < 17 5.59 8.82

Unity Gain Frequency (MHz) > 6 10.79 10.66

Phase Margin (degrees) > 76 76.69 76.9

Input Offset Voltage (mV) < 2 -1.03 -1.07

Input Noise @1Hz (µV/
√

Hz) < 20 10.86 10.14

Input Noise @UGF (µV/
√

Hz) < 0.02 0.014 0.015

Slew Rate (V/µs) > 6 8.25 9.16

Transistors in Saturation = 8 8 8

Power (mW) < 1 0.176 0.176

Common-Mode Rejection Ratio (dB) – 65.63 62.01

Minimum Common-Mode Input (V) – 0.53 0.53

Maximum Common-Mode Input (V) – 1.04 1.04

Maximum Output Voltage (V) – 1.12 1.12

Minimum Output Voltage (V) – 0.10 0.10

Area (µm2) – 69 69

Average Runtime over 10 runs (secs) - 76 -

Variable Parameter Domain Synthesis

LM5
= LM7

= LM8
(µm) 0.2:3:0.1 0.6

LCM (µm) 0.2:3:0.1 0.6

LM6(µm) 0.2:3:0.1 0.2

LDP (µm) 0.2:3:0.1 0.8

Veg,M5
(V) 0.01:0.2:0.01 0.1

Veg,DP (V) 0.01:0.2:0.01 0.08

Veg,CM (V) -0.2:-0.01:0.01 -0.15

Veg,M6
(V) -0.2:-0.01:0.01 -0.04

IBIAS(µA) 10:30:1 25.0

K 1:5:0.5 4.5

CC (pF) 1:5:0.1 2.9

Constant Parameter Value Synthesis

TEMP (degrees) 300.15 300.15

VDD (V) 1.2 1.2

VSS (V) 0.0 0.0

VICM (V) 0.6 0.6

VOUTCM (V) 0.6 0.6

CLOAD (pF) 3.0 3.0

186 Knowledge-Aware Synthesis

Table 8.3: Comparison With State of Art Synthesis Tools.

Tool Performance Evaluator Synthesis Time Machine

OASYS [Harjani89b] Equations 5 seconds VAX 8800

OCEANE[Porte08] Equations 1 minute Centrino 1.7GHz, 2MB Cache

This Work Equations 76 seconds Centrino 1.7GHz, 2MB Cache

OPASYN [Koh90]1 Equations 1 minute VAX 8800

AMGIE [Plas01] Equations Few minutes SUN Ultra 1-170

ASTRX/OBLX [Ochotta96] Asymptotic Waveform simulator 16 minutes IBM RS/6000-550

ASF [Krasnicki01] Spice Simulator 74 minutes 10 Ultra Sparc Solaris

ANACONDA [Phelps00] TI Spice Simulator 2.8 hours 16 (300 Mhz) Ultra 10 +

4 (300 Mhz) dual-processor Ultra 2

1. OPASYN requires simulation for fitting performances.

8.4 Conclusions 187

Table 8.4: Synthesis Results in 130nm CMOS with VDD = 1.2V in Designer Mode.

Circuit Performances Target Synthesis Simulation

(with Layout)

Dynamic Gain (dB) > 65 72.04 71.49

Common-Mode Gain (dB) < 17 15.91 18.13

Unity Gain Frequency (MHz) > 12 17.2 17.09

Phase Margin (degrees) > 76 76.44 76.59

Input Offset Voltage (mV) < 2 -0.67 -0.6882

Input Noise @1Hz (µV/
√

Hz) < 20 8.31 7.02

Input Noise @UGF (µV/
√

Hz) < 0.02 0.0125 0.0127

Slew Rate (V/µs) > 6 18.61 20.0

Transistors in Saturation = 8 8 8

Power (mW) < 1 0.432 0.432

Common-Mode Rejection Ratio (dB) – 56.13 53.36

Minimum Common-Mode Input (V) – 0.58 0.58

Maximum Common-Mode Input (V) – 1.03 1.03

Maximum Output Voltage (V) – 1.1 1.1

Minimum Output Voltage (V) – 0.09 0.09

Area (µm2) – 155 155

Average Runtime over 10 runs (secs) - 87 -

Variable Parameter Domain Synthesis

LM5
= LM7

= LM8
(µm) 0.2:3:0.1 0.3

LCM (µm) 0.2:3:0.1 0.9

LM6(µm) 0.2:3:0.1 0.3

LDP (µm) 0.2:3:0.1 1.8

Veg,M5
(V) 0.01:0.2:0.01 0.07

Veg,DP (V) 0.01:0.2:0.01 0.17

Veg,CM (V) -0.2:-0.01:0.01 -0.17

Veg,M6
(V) -0.2:-0.01:0.01 -0.09

IBIAS(µA) 10:60:1 56

K 1:5:0.5 5

CC (pF) 1:5:0.1 2.6

Constant Parameter Value Synthesis

TEMP (degrees) 300.15 300.15

VDD (V) 1.2 1.2

VSS (V) 0.0 0.0

VICM (V) 0.6 0.6

VOUTCM (V) 0.6 0.6

CLOAD (pF) 3.0 3.0

Chapter 9

Conclusion and Future Directions

9.1 Conclusion

The complexity of integrated electronic circuits being designed is continuously increasing as ad-

vances in process technology make it possible to create mixed-signal integrated SoC designs. To

manage such huge complexity, design reuse tools and methodologies need to be developed to

deal with high levels of complexity. Since AMS blocks cannot be easily synthesized from a high-

level specification without low-level support, AMS-IP blocks still represent a real bottleneck in

the mixed-signal design process of SoC designs. It is believed that firm intellectual properties (IP)

are the most appropriate format to represent AMS-IP blocks. It is clear that the identification of

an intermediate design representation for firm IPs acquires analog design automation tools lots of

insight to deal with different problems of analog circuit design.

In this context the methodology presented in this thesis work focuses on departing from a firm

IP unsized schematic and automatically generate and store its design knowledge in an appropriate

design representation. The propose methodology is fivefold:

Transistor sizing and biasing methodology: In this part, we developed a methodology for ac-

curately sizing and biasing a MOS transistor based on the BSIM3V3 transistor model. The concept

of the sizing and biasing operators have been introduced for this purpose. Each operator compute

an unknown electrical parameter by numerically inverting the standard BSIM3V3 MOS transistor

model. The sizing and biasing operators have been implemented in CAIRO+ framework. These

have been introduced to enhance the architecture of the MOS engine. The methodology proved

its precision and efficiency in sizing and biasing MOS transistors.

Device sizing and biasing methodology: In this part, we developed a methodology for defining

basic building blocks called devices. This step is essential to tackle the problem of hierarchy in ana-

log design. Some key concepts like the transistor packing, the reference transistor, the device constraints

have been introduced. These concepts have been used to automatically generate design plans for

190 Conclusion and Future Directions

devices and represent design plans using device dependency graphs. The methodology proved to be

efficient and accurate in sizing and biasing devices.

Circuit sizing and biasing methodology: In this part named hierarchical sizing and biasing, we

developed a methodology for automatically generating suitable design plans for complex circuit

topologies. Analog firm IP are first described as unsized schematic. Then the methodology au-

tomatically extracts design plans for the whole circuit topology by merging dependency graphs

of devices and lower-level modules. The mering process is done in a bottom-up fashion. The

resulting circuit design plan is stored in module dependency graphs. The circuit is then sized and

biased by evaluating the module dependency graph in a top-down fashion. The methodology

also dealt with different aspects in analog design, namely, incomplete knowledge in under-specified

designs, systematic offset in over-specified designs and negative feedback circuits. The methodology have

been successfully applied to different analog firm IP intellectual properties and proved it precision

and efficiency in sizing and biasing complete analog firm IPs.

Knowledge-aware synthesis methodology: This part has been developed as an application to

prove the efficiency of the proposed methodologies. This was demonstrated by introducing our

hierarchical sizing and biasing methodology inside an optimization loop using the Nelder-Mead Sim-

plex as it search method. It was shown that this step contributed to a considerable speed-up in

optimization time, since the designs that have been generated by the optimizer tended to be feasi-

ble. In addition, the methodology allowed the use of more intuitive set of optimization variables

consisting of voltages, lengths and currents. These variables have narrow ranges of variation.

This led to a reduction in the design space of the optimized circuits. Consequently, the execution

time obtained was very reasonable allowing interactive designs of analog circuits. Moreover, the

generated designs had the same quality of a simulator-generated designs. Finally, the proposed

synthesis platform was successfully used to migrate an analog IP for different specifications.

Case studies: In order to explore the effectiveness of the proposed methodologies, four case

studies have been investigated: a fully differential cascode current-mode integrator, a fully differential

common-mode feedback amplifier, a fully differential transconductor and a fully differential body-input

operational amplifier. Each case study presented different class of analog design problems. The

problem of incomplete knowledge has been successfully illustrated for the fully differential cascode

current-mode integrator. The problem of systematic offset and negative feedback have been success-

fully illustrated for the fully differential common-mode feedback amplifier. The problem of very

complex analog design hierarchies has been successfully demonstrated for the fully differential

transconductor. Finally, the problem of circuit sizing in nanotechnology, very low-power design

and uncommon circuit interconnections have been successfully demonstrated for the fully differ-

ential body-input operational amplifier. In all the case studied presented, the hierarchical sizing

9.2 Future Work 191

and biasing methodology has successfully synthesized the analog firm IPs.

9.2 Future Work

The presented work has tackled different aspects in analog design automation. Different research

directions have emerged from the type of problems explored. In particular, the following points

seem interesting to investigate:

Transistor sizing and biasing: In order to adapt the proposed work to explore issues in nan-

otechnology, more advanced compact models like PSP, BSIM4, ... should be integrated. It is im-

portant also to deal with passive elements like resistors since they conduct current in steady state.

Therefore, a resistor engine based on industrial level compact models should be developed.

Device sizing and biasing: The devices implemented so far are based on the MOS transistor.

More complex devices that are based on passive elements, e.g. matched resistor arrays, should be

integrated with their intrinsic constraints.

Circuit sizing and biasing: This part can be enhanced as follows:

• Instead of asking the designer to document Kirchhoff’s current and voltage laws. These

equations should be automatically extracted as in analog simulator. On the other hand,

documenting these equations makes the designers think about how their circuits operate,

rather than allowing them to simulate blindly. This should be an option not a requirement.

• The circuit sizing and biasing may produce non-physical results if the parameters supplied

are not correct. Therefore, strong error detection strategies should be put in place so that a

designer would like to feel that he/she is dealing with program that understands circuits.

• The methodology deals only with DC analysis, DC sweep and small-signal analysis. More

complex analysis types such as transient analysis, Monte-Carlo analysis, mismatch analysis,

sensitivity analysis, ... , should be implemented. The execution time for these analyses

should be optimized.

• The methodology should integrate worst-case analysis and tolerance analysis techniques to

ensure robustness of produced designs.

• The methodology should answer designer questions like: why is the exact value of a param-

eter he started with, and the resulting exact value of the same parameter, is useful ?

192 Conclusion and Future Directions

Knowledge-aware synthesis: This part can be enhanced as follows:

• More search algorithms need to be integrated such as genetic algorithms, simulated anneal-

ing, ... etc.

• Instead of using random starting points at the initial population, uniformly distributed pop-

ulation members can be generated.

Tool usage: The following points are considered as future enhancements that relates tool archi-

tecture and usage:

• The program lacks schematic capture, and in general a mature graphical interface. Designers

are now used to such interfaces and they would expect them of any program they are likely

to use. Therefore, a Cadence interface would be desirable.

• Diagnostic messages need to be easy-to-understand diagnostics. Engineers at companies are

short of time, and any such delay is likely to be viewed as a serious drawback.

• During design documentation, an engineer often modifies the circuit, e.g. adding a tran-

sistor, removing a resistor, etc. This would create a new topology, and it would have to be

debugged and compiled again. This should be compared against the ease of doing the above

using Spice or Cadence. Consequently, the language issues should be highly reduced.

• The program should plot virtually anything versus anything else. For example, one could

ask it to plot the voltage at a node versus the width of a transistor. Some viewing capabilities

should be integrated to visually explore results.

• The tool usage need to be compared against some modern programs like MATLAB and the

simulation-based synthesis tool NeoCircuit.

Future projects: Many research projects are now emerging as a direct application of the pro-

posed methodology:

• MOCSA project: This project is a two year research project that started with a collabora-

tion with Pierre-Fouilhoux and Safia-Kedad Sidhom of the LIP6/DESIR/RO team. The project

aims at optimally modeling knowledge for analog systems. MOCSA stands for Modélisation

Optimale par la Connaissance des Systèmes Analogiques. The project was financed in 2007 and

is accepted for finance extension for 2008.

• Technology migration: A collaboration is established with Nöelle Lewis from IMS, Bordeaux

to integrate the technology migration algorithm inside CAIRO+. This algorithm scales a

circuit in a newer technology depending on a figure of merit defined by the designer. This

can be used to eliminate the generation of initial population. Hence, optimize around the

scaled solution and decrease considerably optimization time.

9.2 Future Work 193

• Standardization efforts for SystemC-AMS language are now progressing. The proposed

methodology can define a new model of computation that is adapted for SystemC-AMS

language. This allows the documentation and execution of a system described fully in

SystemC-AMS. Synthesis and simulation tasks are then conducted using the unified plat-

form of SystemC-AMS.

• Performance modeling: This field is very complementary with the proposed methodology.

Since performance equations should be supplied by the designer, several performance mod-

eling techniques can be introduced to fully automate the design process of analog intellec-

tual properties. These methods includes influence exploration, response surface modeling,

support-vector machines, behavioral model generation, ... etc.

• System level modeling: A system level modeling should be developed to allow expressing

design constraints and performance equations in the system level. This way, a complete

design representation from system level to performances is made possible.

Appendix A

Second-Order Effects in Deep Submicron

Since our proposed method for transistor sizing and biasing relies on identifying design errors

in early design stages, common sources of error have to be identified. Years ago, long-channel

devices were used in circuit design. Since transistor lengths were big, the dependence of the

threshold voltage Vth on the length was neglected and Vth was considered constant. Today this

assumption is no longer valid for deep-submicron technologies. For shrinking devices, Vth is be-

coming more and more dependant on device geometries and biases. However, designers may

still assume constant Vth, during hand calculations. To eliminate such sources of errors, the ef-

fects impacting the threshold voltage should be taken into account in automated design flows. In

subsequent sections, the effects impacting the threshold voltage will be discussed [Cheng99].

A.1 Normal Short-Channel Effects

The threshold voltage of a long channel device (with channel length (L ∼ 10µm) is independent

of the channel length L and the drain voltage Vd. However, experimentally it is observed that Vth

decreases as L decreases or Vd increases, as shown in Fig. A.1. This effect is called the short channel

effect [Duvvury86]. In this figure, the normal short channel effect, that is, Vth decreases monoton-

ically as the channel length L decreases. It s also known as the Vth roll-off. The dependence of

Vth on L and Vds in short-channel devices cannot be ignored. If the value of Vth drops greatly as

the L and Vds vary, the device may exhibit excessive drain leakage current even when Vgs = 0V

[Chan87].

A.2 Reverse Short Channel Effects

In devices using halo or packet implantation, it has been found that, as shown in Fig. A.2, Vth ini-

tially increases with decreasing channel length. This is called the reverse short channel effect (RSCE),

or Vth roll-up [Nishida81]. Vth reaches a maximum value at a certain channel length, and as L

decreases further, Vth starts to decrease . This last phenomenon is called the Vth roll-off. The com-

196 Second-Order Effects in Deep Submicron

V
BS

 = −3V

V
BS

 = 0

Dashed Line:

Solid Line: V
DS = 0.05V
DS

V = 3V

0.0 2.00.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

Leff (µm)

V
th

 (
V

)

Figure A.1: Profile of Vth versus Leff for normal short-channel effects.

bined RSCE and Vth roll-off effects result in a hump in the characteristics of Vth versus L, as shown

in Fig.A.2. The cause of RSCE is the non-uniform lateral doping [Hanafi93]. For some technologies

such as pocket implantation the channel doping concentration near the source an drain is higher

than in the middle of the channel. The increased doping concentration in these regions can result

in an increase in Vth if the channel length becomes small.

0.4

1.0

0.9

0.5

0.6

0.7

0.8

0.1 1 10 100

Log Leff (µm)

V
th

 (
V

)

Figure A.2: Profile of Vth versus Leff for reverse short-channel effects.

A.3 Normal Narrow-Width Effects

Device width has been found to have a significant effect on Vth. Under the field oxide, a field

implantation may be performed to prevent surface inversion by the gate electrode. This process

is known as Localized oxidation of silicon (LOCOS). For the devices fabricated with the widely used

LOCOS isolation process, it has been found that Vth increases as the channel width decreases

as shown in Fig. A.3. This is considered the normal narrow width effect and is explained by the

contribution of charges in the depletion layer region or in the edge of the filed implant region. As

A.4 Reverse Narrow-Width Effects 197

the width increases, this contribution becomes larger, leading to increased Vth [Ji83].

0.2 2.00.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
th

 (
V

)

W (x 10 µm)

Figure A.3: Profile of Vth versus W for normal narrow-width effects.

A.4 Reverse Narrow-Width Effects

Another narrow width effect, in which Vth decreases as the width channel decreases as shown n

Fig. A.4, has been observed in devices with certain new isolating techniques such fully recessed

or trench isolation technologies[Hsueh88]. For a device with trench isolation, the field oxide is

buried in the substrate and the field lines from the gate electrode are focused by sharp geometry

of the channel edge. Thus at the edges of the channel an inversion layer is formed at a lower

voltage than at the center. As a result, Vth is lower in devices with smaller W’s. This behavior is

called the reverse narrow-width effect, in deference to the ”normal” narrow width effect.

V
BS

= −2V

BS
V = 0

0 102 4 6 8

1.0

0.2

0

0.4

0.6

0.8

V
BS

= −1V

V
BS

= −3V

V
BS

= −4V

W (µm)

V
th

 (
V

)

Figure A.4: Profile of Vth versus W for reverse narrow-width effects.

198 Second-Order Effects in Deep Submicron

A.5 Body Bias Effect

The body effect [Cheng99] refers to the influence of Vbs on Vth. The body effect results in an

increase in the threshold voltage of a MOSFET when a reverse bias Vbs is applied. This effect is

expressed by

Vth = VFB + 2φB + γ
√

2φB − Vbs (A.1)

A.6 Bulk charge Effect

The bulk charge effect [Cheng99] is closely related to the body bias effect and refers to the changing

threshold voltage along the channel when Vds > 0. Vth is not constant along the channel because

the width is of the depletion region along the channel is not uniform in the presence of a nonzero

Vds. In that case, Vth will be a function of the position, that is, a function of V (y) along the channel,

where V (y) is the channel potential voltage. This is expressed by,

Vth(y) = Vth(0) + γ(
√

φB − Vbs + V (y)−
√

φB − Vbs) (A.2)

where Vth(0) is the threshold voltage at the source and y is the distance from the source.

Appendix B

Device API

In the following sections, our proposed Application Program Interface (API) for a device will be

described. These API are integrated to the CAIRO+ framework and are called only inside a device

to configure it properly for the task of sizing and biasing.

B.0.1 Declaring the Reference Transistor

To declare the reference transistor inside a device, the API

CAIRO SET DEVICE REFERENCE LOTRS(”<tr-name>”)

is called during the creation phase of the device by passing to it the name of the reference transistor

<tr-name>.

B.0.2 Adding Device Constraints

To add an intrinsic constraint inside a device, the API

CAIRO ADD CONSTRAINT(”<cnstr-expression>”)

is called inside the device SIZE procedure.

The API gets a constraint expression <cnstr-expression> that is built using the macros defined

in Table B.1.

B.0.3 Synthesizing the Device

In order to size and bias the device, the API

CAIRO AUTO SIZE AND BIAS()

is called during the synthesis phase of a device. The API implements the SYNTHESIZE routine,

shown in Fig. B.1. For a device, lines 5-6 are the most relevant steps. Line 5 simply says that if the

underlying part of the circuit is a device, then in line 6, the dependencies are generated for the ref-

erence transistor. The generated dependencies will depend on the interconnection configuration

of the reference transistor.

200 Device API

Macro Description

IDS(”<tr-name>”) The drain-source current of the transistor whose name

is <tr-name>, e.g. IDS(”M1”). This macro is used any-

where in an expression.

W1(”<tr-name>”) The width of the transistor whose name is <tr-name>,

e.g. W1(”M1”). This macro is used anywhere in an ex-

pression.

W2(<constant-weight>,”<tr-name>”) The weighted width of the transistor whose name is <tr-

name>, e.g. W2(2.0,”M1”). The weight is a floating-

point constant. This macro should be the last one used

in an expression.

PARAM1(”<param-name>”) Device parameter whose name is <param-name>. This

macro should be the last one used in an expression, e.g.

PARAM1(”IDS”).

PARAMD(”<param-name>”) Device parameter whose name is <param-name>.

This macro is used anywhere in an expression, e.g.

PARAMD(”IDS”).

PARAM2(<constant-weight>,”<param-name>”) Weighted device parameter whose name is <tr-name>,

e.g. PARAM2(2.0,”IDS”). The weight is a floating-point

constant. This macro should be the last one used in an

expression.

PARAM2V(<variable-weight>,”<param-name>”) Weighted device parameter whose name is <tr-name>,

e.g. PARAM2V(var,”IDS”). The weight is a floating-

point variable. This macro should be the last one used

in an expression.

PARAMIO(”<tr-name>”,”<param-name>”) Parameter <param-name> of transistor named <tr-

name>, e.g. PARAMIO(”M1”,”IDS”). This macro is

used anywhere in an expression.

EQ, EQUAL Mathematical equality operators.

Table B.1: Macros definition for adding intrinsic device constraints.

201

1 function synthesize(generator)

2 for every child of generator

3 call synthesize(child)

4 end for

5 if generator is a device

6 generate dependencies for the reference transistor

7 eliminate all redundant dependencies

8 else if generator is a module

9 merge dependencies of all children generators

10 eliminate all redundant dependencies

11 if generator is the root generator then

12 resolve all external conflicts

13 end if

14 end if

15 end function

Figure B.1: Pseudo-code of the SYNTHESIZE routine.

Appendix C

Device Implementation

C.1 CREATE procedure

In CAIRO+, each device has its own CREATE procedure. Inside the CREATE procedure, the

device declares which transistor is the reference transistor. The device also declares the sizing

and biasing operators that are needed to size and bias its reference transistor depending on its

interconnection. Finally, the device declares a SIZE procedure that creates the design plan for the

device. An example for the CREATE procedure of a differential pair is shown in Fig. C.1.

CAIRO BEGIN CREATE(DP, char * trName1, char *trName2, ...)

// Declare Operators

CAIRO DECLARE PROCEDURE(”OPVS(VEG)”, ...) ;

. . .

// Declare SIZE procedure

CAIRO DECLARE PROCEDURE(”SIZE”, ...) ;

. . .

// Declare Reference Transistor

CAIRO SET DEVICE REFERENCE LOTRS(trName1) ;

. . .

CAIRO END CREATE(DP)

Figure C.1: Example of the implementation of the CREATE procedure of a differential pair.

204 Device Implementation

C.2 SIZE procedure

In CAIRO+, each device has its own SIZE procedure that is declared in the CREATE procedure.

Inside the SIZE procedure, intrinsic device constraints are specified and the SYNTHESIZE routine,

shown in Fig. C.3, is called to build the sizing procedure of the device based on the specified

design parameters. An example for the SIZE procedure of a differential pair is shown in Fig. C.2.

In this procedure, the parameter Veg is checked if it was specified for the device from a higher

module level. If specified, the constraint Veg,M1
= Veg,M2

= Veg,DP is added to the device. Then

the SYNTHESIZE routine is called via CAIRO AUTO SIZE AND BIAS() to generate the sizing

procedure for the device.

CAIRO BEGIN PROCEDURE(”SIZE”)

double veg;

. . .

// Add Intrinsic Constraints to the Device

CAIRO TRY GET VALUE(”VEG”,veg)

string expr = PARAMIO(trName1,”VEG”) EQ PARAMIO(trName2,”VEG”) EQ PARAM1(”VEG”) ;

CAIRO ADD CONSTRAINT(expr.c str()) ;

IF NO VALUE

ENDIF NO VALUE

. . .

// Generate Sizing Procedure of the Device

CAIRO AUTO SIZE AND BIAS();

. . .

END PROCEDURE

Figure C.2: Example of the implementation of the SIZE procedure of a differential pair.

C.3 The SYNTHESIZE routine

The SYNTHESIZE routine is outlined in Fig. C.3. The SYNTHESIZE routine is called via

CAIRO AUTO SIZE AND BIAS() to generate the sizing procedure for the device. When called,

the steps depicted at lines 2-7 are executed:

1. In lines 2-4, the routine is called recursively for all children generators

2. In line 5, the generator is checked if it represents a device level.

C.3 The SYNTHESIZE routine 205

1 function synthesize(generator)

2 for every child of generator

3 call synthesize(child)

4 end for

5 if generator is a device

6 generate dependencies for the reference transistor

7 eliminate all redundant dependencies

8 else if generator is a module

9 merge dependencies of all children generators

10 eliminate all redundant dependencies

11 if generator is the root generator then

12 resolve all external conflicts

13 end if

14 end if

15 end function

Figure C.3: Pseudo-code of the SYNTHESIZE routine.

3. In line 6, the reference transistor dependencies are generated as depicted in subsection 6.4.2.

4. In line 7, the redundant dependencies are eliminated in devices as explained in appendix

D.6.

Appendix D

CAIRO+: A Dependency Language for

Modeling and Design

It is essential for the proposed methodology to express knowledge. We propose to express knowl-

edge using constraints, operators and designer-defined procedures. More important we show

how the language joins expressed knowledge to create a reusable, consistent, and top-down de-

sign plan. Our aim is to create design plans respecting circuit structure and designer’s hypotheses

by construction.

The API described in this appendix existed initially in CAIRO+ language[Tuong06]. Our pro-

posed work focused on augmenting the semantics of the API to deal with dependency graphs.

D.1 Capturing module input parameter using GET VALUE

A module input parameter is captured in the current module level by issuing the API function:

CAIRO GET VALUE(”<mod-param>”, <link-var>)

The GET VALUE will create the dependency rule:

<link-var>
1.0←−− (<cur-mod-name>/<mod-param>)

which states that the parameter <mod-param> of the current module named <cur-mod-name>

will affect the link variable defined by the designer. An example code and its corresponding de-

pendency graph are shown in Fig. D.1 and Fig. D.2 respectively.

D.2 Setting a device input parameter using SET PARAM

Once a module parameter has been read into a link variable, it can affect a proper device parameter

by setting it into the device using SET PARAM which has the syntax

CAIRO SET PARAM(”<dev-name>”,”<param-name>”,<link-var>)

where <dev-name> is the device name in the next lower level, <param-name> is the parameter

name of the device and <link-var> is the link variable that holds the proper value. In this case,

208 CAIRO+: A Dependency Language for Modeling and Design

the SET PARAM will create the dependency rule:

(<dev-name>/<param-name>,<dev-name>/<con-name>)
1.0←−− <link-var>

which states that the link variable will directly affect the named device parameter that is referring

to the external device connector <dev-name>/<con-name> connected to the reference transistor

terminals. To illustrate a device, the differential pair device and its external connectors are shown

in Fig. D.3 with the gate connection in bold line. In addition, an example code using the differential

pair and its corresponding dependency graph are shown in Fig. D.4 and Fig. D.5 respectively.

D.3 Declaring and defining designer-defined procedures (DDP)

A design can express his own knowledge using designer-defined procedure (DDP). In DDP, sev-

eral input parameters u1, u2, u3, .., un are permitted but only one output parameter v is allowed.

The DDP expresses the dependence of the single output parameter on the several input parame-

ters:

v
1.0←−− u1, u2, u3, .., un

An example code for declaring and defining a DDP is illustrated in Fig. D.6. In the CREATE sec-

tion, the DDP procedure names I(K,IBIAS) is declared. It has K andIBIAS as input parameters, and

Q as the output parameter. The DDP procedure is defined in a special section named the Design

Space Exploration(DSES) section. It reads the two input parameters K and IBIAS from the higher

module level using GET VALUE and computes the output parameter Q as the multiplication of K

and IBIAS. The result is set back to the higher level using a SET VALUE.

double vin cm;

. . .

// Capture Common-Mode Input Parameter VIN+ into vin cm

CAIRO TRY GET VALUE(”VIN+”, vin cm);

. . .

Figure D.1: An example code of GET VALUE.

vin_cm

1.0

<link−var>

AMP/VIN+

<cur−mod−name>/<mod−param>

Figure D.2: Dependency graph representation for GET VALUE.

D.4 Retrieving an output parameter from designer-defined procedures (DDP) using

GET PARAM 209

M2M1

d2d1 b

g2g1

s
Figure D.3: External connectors for a differential pair.

double vin cm;

. . .

// Set gate voltage of the differential pair DP

CAIRO SET PARAM(”DP”, ”VG”, vin cm);

. . .

Figure D.4: An example code of SET PARAM.

<link−var>

1.0

vin_cm DP/VG

DP/g1

<dev−name>/<param−name>

<dev−name>/<con−name>

Figure D.5: Dependency graph representation for SET PARAM.

D.4 Retrieving an output parameter from designer-defined procedures

(DDP) using GET PARAM

A designer executes the DDP procedure only inside the current module level. Once evaluated

the output parameter is read using GET PARAM. An example code is shown in Fig. D.8 . Inside

the SYNTHESIZE procedure, the floating-point variable ids 2nd stage is declared. Then the DDP

procedure is called using COMPUTE. After DDP computation, the output parameterQ is read in

the variable ids 2nd stage.

210 CAIRO+: A Dependency Language for Modeling and Design

CAIRO BEGIN CREATE(AMPLIFIER, ...)

. . .

// Declare Designer-Defined Procedure called ”I(K,IBIAS)”

// Having K and IBIAS As Inputs and Q As The Only Output

CAIRO DECLARE PROCEDURE(”I(K,IBIAS)”, , ”K”, CP IN, ”IBIAS”, CP IN, ”Q”, CP OUT);

. . .

CAIRO END CREATE(AMPLIFIER)

CAIRO BEGIN DSES(AMPLIFIER, ...)

CAIRO BEGIN PROCEDURE(”I(K,IBIAS)”)

double k;

double ibias;

double result;

CAIRO TRY GET VALUE(”K”,k)

IF NO VALUE

FATAL ERROR PARAM(”K”,”K not set in AMPLIFIER”,LOCATION) ;

ENDIF NO VALUE

CAIRO TRY GET VALUE(”IBIAS”,ibias)

IF NO VALUE

FATAL ERROR PARAM(”IBIAS”,”IBIAS not set in AMPLIFIER”,LOCATION) ;

ENDIF NO VALUE

result = k * ibias;

CAIRO SET VALUE(”Q”, result, CP VALID) ;

CAIRO SET RETURN PROCEDURE(CP OK);

END PROCEDURE

CAIRO END DSES(AMPLIFIER)

Figure D.6: An example code for declaring and defining DDP.

D.5 Using GET PARAM inside designer-defined procedures (DPP) 211

When using a DDP procedure, GET PARAM will deduce that the link variable used in the

module level depends on the input parameters of the DDP procedure. This will create the depen-

dency:

<link-var>
1.0←−− (<cur-mod-name>/<mod-param1>, <cur-mod-name>/<mod-param2>, · · ·)

In the example code shown in Fig. D.8, the link variable ids 2nd stage depends on the two input

parameters K andIBIAS of the DDP procedure. The corresponding dependency graph is shown in

Fig. D.7.

ids_2nd_stage

<link−var>1.0

AMP/K

<cur−mod−name>/<mod−param1>

AMP/IBIAS

<cur−mod−name>/<mod−param2>

1.0

Figure D.7: Dependency graph generated using DDP mechanism.

As discussed in section D.1, one dependency rules that corresponds to a GET VALUE inside the

DDP will be created. In the case of DDP, this dependency is considered as redundant. Therefore

it will be ignored and eliminated from the dependency graph.

D.5 Using GET PARAM inside designer-defined procedures (DPP)

Inside a DDP procedure, the designer may use GET PARAM to retrieve a device parameter. An

example is shown in Fig. D.9, where device parameters Veg,M8
and VD,M8

are used to compute

VD,M6
.

Inside the SYNTHESIZE procedure, the floating-point variable vd m6 is declared. Then the

DDP procedure is called using COMPUTE. After DDP computation, the module output parameter

Q is read in the variable vd m6.

When using GET PARAM inside the DDP procedure, GET PARAM will deduce that the link

variable used in the module level depends on the device parameters. This will create the depen-

dencies:

<cur-mod-name>/<mod-param>
1.0←−− (<cur-mod-name> <dev1-name>/<dev1-param>, · · ·)

<link-var>
1.0←−− <cur-mod-name>/<mod-param>

In the example code shown in Fig. D.9, the link variable vd m6 depends on the two device param-

eters Veg,M8
and VD,M8

. The corresponding dependency graph is shown in Fig. D.10.

212 CAIRO+: A Dependency Language for Modeling and Design

CAIRO BEGIN CREATE(AMPLIFIER, ...)

. . .

// Declare Designer-Defined Procedure called ”I(K,IBIAS)”

// Having K and IBIAS As Inputs and Q As The Only Output

CAIRO DECLARE PROCEDURE(”I(K,IBIAS)”, ... , ”K”, CP IN, ”IBIAS”, CP IN, ”Q”, CP OUT);

. . .

// Declare SYNTHESIZE procedure

CAIRO DECLARE PROCEDURE(”synthesize”, ...);

. . .

CAIRO END CREATE(AMPLIFIER)

CAIRO BEGIN DSES(AMPLIFIER, ...)

CAIRO BEGIN PROCEDURE(”synthesize”)

. . .

double ids 2nd stage = 0.0;

CAIRO COMPUTE(”I(K,IBIAS)”);

CAIRO GET PARAM(”Q”,ids 2nd stage);

. . .

END PROCEDURE

CAIRO BEGIN PROCEDURE(”I(K,IBIAS)”)

double k;

double ibias;

double result;

CAIRO TRY GET VALUE(”K”,k)

IF NO VALUE

FATAL ERROR PARAM(”K”,”K not set in AMPLIFIER”,LOCATION) ;

ENDIF NO VALUE

CAIRO TRY GET VALUE(”IBIAS”,ibias)

IF NO VALUE

FATAL ERROR PARAM(”IBIAS”,”IBIAS not set in AMPLIFIER”,LOCATION) ;

ENDIF NO VALUE

result = k * ibias;

CAIRO SET VALUE(”Q”, result, CP VALID) ;

CAIRO SET RETURN PROCEDURE(CP OK);

END PROCEDURE

CAIRO END DSES(AMPLIFIER)

Figure D.8: An example code for retrieving a DDP parameter using GET PARAM.

D.5 Using GET PARAM inside designer-defined procedures (DPP) 213

CAIRO BEGIN CREATE(AMPLIFIER, ...)

. . .

// Declare Designer-Defined Procedure called ”VD M6BP”

// Having Q As The Only Output

CAIRO DECLARE PROCEDURE(”VD M6”, ... , ”Q”, CP OUT);

. . .

// Declare SYNTHESIZE procedure

CAIRO DECLARE PROCEDURE(”synthesize”, ...);

. . .

CAIRO END CREATE(AMPLIFIER)

CAIRO BEGIN DSES(AMPLIFIER, ...)

CAIRO BEGIN PROCEDURE(”synthesize”)

. . .

double vd m6 = 0.0;

CAIRO COMPUTE(”VD M6”);

CAIRO GET PARAM(”Q”,vd m6);

. . .

END PROCEDURE

CAIRO BEGIN PROCEDURE(”VD M6BP”)

double veg m8;

double vd m8;

double result;

CAIRO GET PARAM(”M8”,”VEG”,veg m8);

CAIRO GET PARAM(”L8”,”VD”,vd m8);

result = vd m8 - veg m8 + 0.1 ;

CAIRO SET VALUE(”Q”, result, CP VALID) ;

CAIRO SET RETURN PROCEDURE(CP OK);

END PROCEDURE

CAIRO END DSES(AMPLIFIER)

Figure D.9: An example code for using GET PARAM inside a DDP.

214 CAIRO+: A Dependency Language for Modeling and Design

<link−var>
1.0

1.0

<cur−mod>/<mod−param>

AMP/Q

AMP_M8/VEG

AMP_M8/VD

AMP/vd_m6

<cur−mod>_<dev1−name>/<dev1−param>

<cur−mod>_<dev2−name>/<dev2−param>

Figure D.10: Dependency graph generated for DDP using GET PARAM.

D.6 Elimination of Redundant Dependencies in Devices

Initially, CAIRO+ language was not intended to be a dependency language for circuit modeling

and design. Therefore, some mechanisms had to be implemented in order to be able to express

dependencies. As a side effect, some redundancies had to be generated and then filtered. Looking

at appendix C.2, one may notice that GET VALUE was used inside the SYNTHESIZE procedure.

The syntax of the GET VALUE is:

CAIRO TRY GET VALUE(”<param-name>”, <link-var>)

The GET VALUE will create the dependency rule:

<link-var>
1.0←−− (<cur-dev-name>/<param-name>)

which states that the parameter <param-name> of the current device named <cur-dev-name>

will affect the link variable defined by the device designer. This is a redundant rule that results

from the common semantics of GET PARAM for devices and modules. Therefore, it should be

eliminated and removed. The detection of this type of rule is performed as follows: every rule

that a link node that is referenced only once as an affected node and never as an affecting node, should be

eliminated. After generating the dependencies of the reference transistor of a device, the redundant

rules has to be detected and eliminated from the pool of dependency rules of a device.

D.7 Elimination of Redundant Dependencies in Modules

Similar to devices, redundant dependency rules has to be eliminated from the pool of dependency

rules of a module. Several types of redundant rules are distinguished:

1. A dependency rule that has no affecting nodes is created for each equipotential node, for

debugging and tracing purposes. These redundant rules has to be eliminated.

2. Another example of redundant dependencies was mentioned in D.6. This type of redun-

dant rules is created as the semantics of GET VALUE created them. Since these rules do not

D.7 Elimination of Redundant Dependencies in Modules 215

impose dependencies for a DPP, those should be eliminated. The detection of such rules is

performed in as follows: every rule that a link node that is referenced only once as an affected node

and never as an affecting node, should be eliminated.

3. A more important class of redundant rules can be eliminated in order to make the design

plan independent from the order used to synthesize devices. This type of redundancy has

been explained in further details in section 6.4.4.

Appendix E

Module Implementation

E.1 CREATE procedure

In CAIRO+, each root module has its own CREATE procedure. Inside the CREATE procedure,

devices and lower-level modules are instantiated and interconnected to form the target topology.

The root module also declares the SIZE procedure that is required to synthesize the whole mod-

ule by synthesizing each child device and lower-level module consisting the root module. The

designer-defined procedure is also declared in the CREATE procedure. A detailed example of the

CREATE procedure is given for the OTA amplifier in appendices F and G.

E.2 SIZE procedure

In the SIZE procedure, the following essential steps are performed:

1. The equipotentials are identified and preserved.

2. A synthesis section is started.

3. Module input parameters are captured using GET VALUE.

4. For each device or lower-level module:

(a) Extrinsic device constraints are declared, if any.

(b) Some input parameters are computed using designer-defined procedures.

(c) All the known input parameters are set in every child device and lower-level module.

(d) The SIZE procedure of every child device and lower-level module, is called in order to

generate the corresponding dependency graph

5. Extrinsic module constraints are declared, if any.

6. Newton-Raphson constraints are declared, if any.

218 Module Implementation

7. The SIZE procedure calls the SYNTHESIZE routine to generate the root module dependency

graph.

8. The module dependency graph is displayed.

9. The synthesis section is ended.

10. The module dependency graph is evaluated.

11. The module dependency rules are displayed.

12. The output module parameters are set back to the caller.

A detailed example of the SIZE procedure is given for the OTA amplifier in appendices F and G.

Appendix F

The OTA Amplifier CAIRO+ Generator

for Designer Mode

/***/

/* File : ota_designer_mode.cpp */

/* */

/* Description : Two-stage Operational Transconductance Amplifier */

/* */

/* Language : C/C++ et CAIRO+ Version : 1.0 */

/* */

/* Author : Ramy ISKANDER */

/* */

/* Licence : QPL */

/* */

/* History : */

/* */

/* Function : Synthesis in designer mode */

/* */

/***/

#include "cairoplus.h"

/***/

/* Function: CREATE */

/***/

/* */

/* This is the CREATE section of the CAIRO+ generator */

/* */

/***/

CAIRO_BEGIN_CREATE(OTAS2ET, char *name, char type, bool bulk)

/***********************\

| Initialization |

***********************/

if (type != TRANSN)

{

cerr << "Error: Only OTA2ET/IREF of type TRANSN is allowed." << endl;

exit(0);

}

// ---

// Save generator options in local variables

// ---

CAIRO_SET_LOCAL_VARIABLE("TYPE", type);

CAIRO_SET_LOCAL_VARIABLE("BULK", bulk);

// -----------------

// Default Values

220 The OTA Amplifier CAIRO+ Generator for Designer Mode

// -----------------

CAIRO_SET_LOCAL_VARIABLE("TEMP", 300.15);

/***********************\

| Connectors |

***********************/

// -------

// Inputs

// -------

CAIRO_IO("VEP", CP_WEST);

CAIRO_IO("VEN", CP_WEST);

CAIRO_IO("VDDT", CP_NORTH);

CAIRO_IO("VSST", CP_SOUTH);

// --------

// Outputs

// --------

CAIRO_IO("VOUT", CP_EAST);

/**************************************\

| NETLIST TEMPLATE |

**************************************/

// ------------------------------

// Instantiation of Devices

// ------------------------------

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m8", "tr_m8", TRANSN, true,true,false,true);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m5", "tr_m5", TRANSN, true,true,false,true);

CAIRO_CREATE ("libTRANSISTOR", "DP_CC" , "dp_m1_m2", "tr_m1", "tr_m2", TRANSN, true,true,!bulk,1,false);

CAIRO_CREATE ("libTRANSISTOR", "CM_ID" , "cm_m3_m4", "tr_m3", "tr_m4", TRANSP, true,true,!bulk,1);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m6", "tr_m6", TRANSP, true,true,false,true);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m7", "tr_m7", TRANSN, true,true,false,true);

// ------------------------------

// Netlist Connectivity

// ------------------------------

CAIRO_IMPLICIT_CONNECT("tr_m8" , "nd8", "nd8", "VSST");

CAIRO_IMPLICIT_CONNECT("tr_m5" , "nd5", "nd8", "VSST");

CAIRO_IMPLICIT_CONNECT("tr_m6" , "VOUT", "nd2", "VDDT");

CAIRO_IMPLICIT_CONNECT("tr_m7" , "VOUT", "nd8", "VSST");

if (bulk)

{

CAIRO_IMPLICIT_CONNECT("dp_m1_m2", "nd1", "nd2", "VEN", "VEP", "nd5","VSST");

CAIRO_IMPLICIT_CONNECT("cm_m3_m4", "nd1", "nd2", "VDDT", "VDDT");

}

else

{

CAIRO_IMPLICIT_CONNECT("dp_m1_m2", "nd1", "nd2", "VEP", "VEN", "nd5");

CAIRO_IMPLICIT_CONNECT("cm_m3_m4", "nd1", "nd2", "VDDT");

}

/**************************************\

| LAYOUT TEMPLATE |

**************************************/

CAIRO_HORIZONTAL_CONTAINER("OTAS2ET_V1" , "cm_m3_m4", NOSYM, 0.0, 0.0, 0.0, 0.0

, "tr_m6" , NOSYM, 0.0, 0.0, 0.0, 0.0);

CAIRO_HORIZONTAL_CONTAINER("OTAS2ET_V2" ,"tr_m8", NOSYM, 0.0, 0.0, 0.0, 0.0

,"tr_m5", NOSYM, 0.0, 0.0, 0.0, 0.0

,"tr_m7", NOSYM, 0.0, 0.0, 0.0, 0.0);

CAIRO_VERTICAL_CONTAINER(name ,"OTAS2ET_V2", NOSYM, 0.0, 0.0, 0.0, 0.0

,"dp_m1_m2", NOSYM, 0.0, 0.0, 0.0, 0.0

,"OTAS2ET_V1", NOSYM, 0.0, 0.0, 0.0, 0.0);

/**************************************\

221

| DECLARATION OF PARAMETERS |

**************************************/

// -------------------

// Input Parameters

// -------------------

CAIRO_DECLARE_PARAM("TEMP") ; // Temperature

CAIRO_DECLARE_PARAM("VDD") ; // Positive supply

CAIRO_DECLARE_PARAM("VSS") ; // Negative supply

CAIRO_DECLARE_PARAM("L_BIAS") ; // Length

CAIRO_DECLARE_PARAM("L_DP") ; // Length

CAIRO_DECLARE_PARAM("L_CM") ; // Length

CAIRO_DECLARE_PARAM("L_M6") ; // Length

CAIRO_DECLARE_PARAM("VSP") ; // Common-mode output voltage

CAIRO_DECLARE_PARAM("VEG_DP") ; // Overdrive-gate voltage

CAIRO_DECLARE_PARAM("VEG_CM") ; // Overdrive-gate voltage

CAIRO_DECLARE_PARAM("VEG_BIAS") ; // Overdrive-gate voltage

CAIRO_DECLARE_PARAM("VEG_M6") ; // Overdrive-gate voltage

CAIRO_DECLARE_PARAM("VMC") ; // Common-mode input voltage

CAIRO_DECLARE_PARAM("IBIAS") ; // Biasing current

CAIRO_DECLARE_PARAM("IREF") ; // Reference current

CAIRO_DECLARE_PARAM("K") ; // Factor of currents between the two stages

CAIRO_DECLARE_PARAM("CCAP") ; // Compensation capacitance

CAIRO_DECLARE_PARAM("CL") ; // Load capacitance

CAIRO_DECLARE_PARAM("RL") ; // Load resistance

// -------------------

// Output Parameters

// -------------------

CAIRO_DECLARE_PARAM("VBIAS") ;

CAIRO_DECLARE_PARAM("Q") ;

// ---------------------------------

// Primary Performance Parameters

// ---------------------------------

CAIRO_DECLARE_PARAM("AD0") ; // Static differential-mode gain

CAIRO_DECLARE_PARAM("AC0") ; // Static common-mode gain

CAIRO_DECLARE_PARAM("FT") ; // Transition frequency

CAIRO_DECLARE_PARAM("PM") ; // Phase margin

CAIRO_DECLARE_PARAM("POWER") ; // Power consumption

CAIRO_DECLARE_PARAM("AREA") ; // Area

CAIRO_DECLARE_PARAM("SR"); // Slew rate

CAIRO_DECLARE_PARAM("SNE_1HZ"); // Input-referred noise @ 1HZ

CAIRO_DECLARE_PARAM("SNE_FT"); // Input-referred noise @ FT

CAIRO_DECLARE_PARAM("SATURATIONS"); // Transistors in saturation

CAIRO_DECLARE_PARAM("ED0"); // Systematic input offset

// ---------------------------------

// Secondary Performance Parameters

// ---------------------------------

CAIRO_DECLARE_PARAM("CMRR"); // Common-mode rejection ratio

CAIRO_DECLARE_PARAM("COUT"); // Output capacitance

CAIRO_DECLARE_PARAM("FPND") ; // First non-dominant pole

CAIRO_DECLARE_PARAM("FPD") ; // First dominant pole

CAIRO_DECLARE_PARAM("FZ") ; // First zero

CAIRO_DECLARE_PARAM("CIN-"); // Negative-input capacitance

CAIRO_DECLARE_PARAM("CIN+"); // Positive-input capacitance

CAIRO_DECLARE_PARAM("VICMMAX"); // Maximum input common-mode voltage

CAIRO_DECLARE_PARAM("VICMMIN"); // Minimum input common-mode voltage

CAIRO_DECLARE_PARAM("VOUTMAX"); // Maximum output voltage

CAIRO_DECLARE_PARAM("VOUTMIN"); // Minimum output voltage

/**************************************\

| DECLARATION OF PROCEDURES |

**************************************/

// DESIGNER MODE

CAIRO_DECLARE_PROCEDURE("synthesize_with_offset", CP_COMPLETE, "TEMP", CP_IN,

"VDD", CP_IN,

"VSS", CP_IN,

222 The OTA Amplifier CAIRO+ Generator for Designer Mode

"L_M6", CP_IN,

"L_DP", CP_IN,

"L_CM", CP_IN,

"L_BIAS", CP_IN,

"VEG_BIAS", CP_IN,

"VEG_CM", CP_IN,

"VEG_DP", CP_IN,

"VEG_M6", CP_IN,

"VMC", CP_IN,

"VSP", CP_IN,

"IBIAS", CP_IN,

"K", CP_IN,

"VBIAS", CP_OUT) ;

// HELPERS

CAIRO_DECLARE_PROCEDURE("I(K,IBIAS)" ,CP_UNCOMPLETE , "K", CP_IN, "IBIAS", CP_IN, "Q", CP_OUT);

CAIRO_DECLARE_PROCEDURE("NI(K,IBIAS)" ,CP_UNCOMPLETE , "K", CP_IN, "IBIAS", CP_IN, "Q", CP_OUT);

CAIRO_DECLARE_PROCEDURE("IDS_CM(IBIAS)" ,CP_UNCOMPLETE , "IBIAS", CP_IN, "Q", CP_OUT);

CAIRO_DECLARE_PROCEDURE("IDS_DP(IBIAS)" ,CP_UNCOMPLETE , "IBIAS", CP_IN, "Q", CP_OUT);

// DISPLAY

CAIRO_DECLARE_PROCEDURE("DISPLAY" ,CP_UNCOMPLETE);

// EXPLORER

CAIRO_DECLARE_PROCEDURE("explorer" ,CP_COMPLETE);

// PERFORMANCES

CAIRO_DECLARE_PROCEDURE("PERFORMANCES" ,CP_UNCOMPLETE, "TEMP", CP_IN,

"VDD", CP_IN,

"VSS", CP_IN,

"L_DP", CP_IN,

"L_M6", CP_IN,

"L_CM", CP_IN,

"L_BIAS", CP_IN,

"IREF", CP_IN,

"VEG_BIAS", CP_IN,

"VEG_CM", CP_IN,

"VEG_DP", CP_IN,

"VEG_M6", CP_IN,

"VMC", CP_IN,

"VSP", CP_IN,

"K", CP_IN,

"IBIAS", CP_IN,

"CCAP", CP_IN,

"CL", CP_IN,

"RL", CP_IN,

"AD0", CP_OUT,

"AC0", CP_OUT,

"FT", CP_OUT,

"PM", CP_OUT,

"SR", CP_OUT,

"SNE_1HZ", CP_OUT,

"SNE_FT", CP_OUT,

"SATURATIONS", CP_OUT,

"ED0", CP_OUT,

"POWER", CP_OUT,

"AREA", CP_OUT)

// MEASURES

CAIRO_DECLARE_PROCEDURE("MEASURES" ,CP_UNCOMPLETE , "TEMP", CP_IN,

"VDD", CP_IN,

"VSS", CP_IN,

"L_M6", CP_IN,

"L_DP", CP_IN,

"L_CM", CP_IN,

"L_BIAS", CP_IN,

"IREF", CP_IN,

"VEG_BIAS", CP_IN,

"VEG_CM", CP_IN,

"VEG_DP", CP_IN,

"VEG_M6", CP_IN,

"VMC", CP_IN,

"VSP", CP_IN,

"K", CP_IN,

"IBIAS", CP_IN,

223

"CCAP", CP_IN,

"CL", CP_IN,

"RL", CP_IN,

"FPND", CP_OUT,

"FPD", CP_OUT,

"FZ", CP_OUT,

"VOUTMAX", CP_OUT,

"VOUTMIN", CP_OUT,

"VICMMAX", CP_OUT,

"VICMMIN", CP_OUT,

"CIN-", CP_OUT,

"CIN+", CP_OUT,

"COUT", CP_OUT,

"CMRR", CP_OUT);

CAIRO_END_CREATE(OTAS2ET)

/***/

/* Function: DSES */

/***/

/* */

/* This is the DESIGN SPACE EXPLORATION section of the CAIRO+ generator */

/* */

/***/

CAIRO_BEGIN_DSES(OTAS2ET,char *name)

/**************************************\

| SIZING PROCEDURES |

**************************************/

// ----------------------------------

// Procedure: synthesize_with_offset

// ----------------------------------

CAIRO_BEGIN_PROCEDURE("synthesize_with_offset")

double temp;

double ibias;

double vdd;

double vss;

double l_m6;

double l_dp;

double l_cm;

double l_bias;

double veg_bias;

double veg_cm;

double veg_dp;

double veg_m6;

double vmc;

double vsp;

CAIRO_CREATE_EQUIPOTENTIALS;

CAIRO_BEGIN_SYNTHESIS

/***************************************\

| Reading Parameters from higher level |

***************************************/

CAIRO_TRY_GET_VALUE("TEMP",temp)

IF_NO_VALUE

FATAL_ERROR_PARAM("TEMP","TEMP not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("IBIAS",ibias)

IF_NO_VALUE

FATAL_ERROR_PARAM("IBIAS","IBIAS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M6",l_m6)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M6","L_M6 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_DP",l_dp)

224 The OTA Amplifier CAIRO+ Generator for Designer Mode

IF_NO_VALUE

FATAL_ERROR_PARAM("L_DP","L_DP not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_CM",l_cm)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_CM","L_CM not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_BIAS",l_bias)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_BIAS","L_BIAS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VEG_M6",veg_m6)

IF_NO_VALUE

FATAL_ERROR_PARAM("VEG_M6","VEG_M6 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VEG_DP",veg_dp)

IF_NO_VALUE

FATAL_ERROR_PARAM("VEG_DP","VEG_DP not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VEG_CM", veg_cm)

IF_NO_VALUE

FATAL_ERROR_PARAM("VEG_CM","VEG_CM not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VEG_BIAS", veg_bias)

IF_NO_VALUE

FATAL_ERROR_PARAM("VEG_BIAS","VEG_BIAS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VMC", vmc)

IF_NO_VALUE

FATAL_ERROR_PARAM("VMC","VMC not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VSP", vsp)

IF_NO_VALUE

FATAL_ERROR_PARAM("VSP","VSP not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VDD",vdd)

IF_NO_VALUE

FATAL_ERROR_PARAM("VDD","V not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VSS",vss)

IF_NO_VALUE

FATAL_ERROR_PARAM("VSS","VSS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

// --------------

// Synthesize CM

// --------------

cout << "Synthesizing CM ..." << endl;

double ids_cm = 0.0;

CAIRO_COMPUTE("IDS_CM(IBIAS)");

CAIRO_GET_PARAM("Q",ids_cm);

CAIRO_SET_PARAM("cm_m3_m4","TEMP",temp) ;

CAIRO_SET_PARAM("cm_m3_m4","VEG",veg_cm) ;

CAIRO_SET_PARAM("cm_m3_m4","L",l_cm) ;

CAIRO_SET_PARAM("cm_m3_m4","IDS",ids_cm) ;

CAIRO_SET_PARAM("cm_m3_m4","VS",vdd) ;

CAIRO_COMPUTE("cm_m3_m4","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize CM") ;

END_ON_PROCEDURE_STATUS

225

// --------------

// Synthesize DP

// --------------

cout << "Synthesizing DP ..." << endl;

double ids_dp = 0.0;

CAIRO_COMPUTE("IDS_DP(IBIAS)");

CAIRO_GET_PARAM("Q",ids_dp);

CAIRO_SET_PARAM("dp_m1_m2","TEMP",temp) ;

CAIRO_SET_PARAM("dp_m1_m2","VEG",veg_dp) ;

CAIRO_SET_PARAM("dp_m1_m2","L",l_dp) ;

CAIRO_SET_PARAM("dp_m1_m2","IDS",ids_dp) ;

CAIRO_SET_PARAM("dp_m1_m2","VG" ,vmc) ;

CAIRO_SET_PARAM("dp_m1_m2","VB",vss) ;

CAIRO_COMPUTE("dp_m1_m2","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize DP") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR5

// ---------------

cout << "Synthesizing TR5 ..." << endl;

CAIRO_SET_PARAM("tr_m5","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m5","VEG",veg_bias) ;

CAIRO_SET_PARAM("tr_m5","L",l_bias) ;

CAIRO_SET_PARAM("tr_m5","IDS",ibias) ;

CAIRO_COMPUTE("tr_m5","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR5") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR6

// ---------------

cout << "Synthesizing TR6 ..." << endl;

double ids_m6 = 0.0;

CAIRO_COMPUTE("NI(K,IBIAS)");

CAIRO_GET_PARAM("Q",ids_m6);

string expr = DPARAM("tr_m6","VG") EQ DPARAM("dp_m1_m2","VD");

CAIRO_ADD_CONSTRAINT(expr.c_str());

CAIRO_SET_PARAM("tr_m6","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m6","VEG",veg_m6) ;

CAIRO_SET_PARAM("tr_m6","L",l_m6) ;

CAIRO_SET_PARAM("tr_m6","IDS",ids_m6) ;

CAIRO_SET_PARAM("tr_m6","VD" ,vsp) ;

CAIRO_COMPUTE("tr_m6","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR6") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR7

// ---------------

cout << "Synthesizing TR7 ..." << endl;

double ids_m7 = 0.0;

CAIRO_COMPUTE("I(K,IBIAS)");

CAIRO_GET_PARAM("Q",ids_m7);

CAIRO_SET_PARAM("tr_m7","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m7","L" ,l_bias) ;

CAIRO_SET_PARAM("tr_m7","IDS",ids_m7) ;

226 The OTA Amplifier CAIRO+ Generator for Designer Mode

CAIRO_COMPUTE("tr_m7","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR7") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR8

// ---------------

cout << "Synthesizing TR8 ..." << endl;

expr = DPARAM("tr_m8","TEMP") EQ DPARAM("tr_m5","TEMP");

CAIRO_ADD_CONSTRAINT(expr.c_str());

expr = DPARAM("tr_m8","W") EQ DPARAM("tr_m5","W");

CAIRO_ADD_CONSTRAINT(expr.c_str());

expr = DPARAM("tr_m8","L") EQ DPARAM("tr_m5","L");

CAIRO_ADD_CONSTRAINT(expr.c_str());

CAIRO_COMPUTE("tr_m8","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR8") ;

END_ON_PROCEDURE_STATUS

// -------------------

// Synthesize device

// -------------------

CAIRO_AUTO_SIZE_AND_BIAS();

// -------------------

// Display Graphs

// -------------------

CAIRO_DISPLAY_GRAPHS();

CAIRO_END_SYNTHESIS

// -------------------

// Execute design plan

// -------------------

CAIRO_EXECUTE_DESIGN_PLAN();

// -------------------

// Display Rules

// -------------------

CAIRO_DISPLAY_RULES();

// -----------------------------

// Call direct size for devices

// -----------------------------

CAIRO_COMPUTE("cm_m3_m4","direct_size");

CAIRO_COMPUTE("dp_m1_m2","direct_size");

CAIRO_COMPUTE("tr_m5","direct_size");

CAIRO_COMPUTE("tr_m6","direct_size");

CAIRO_COMPUTE("tr_m7","direct_size");

CAIRO_COMPUTE("tr_m8","direct_size");

// ------------------------

// Return polarization

// ------------------------

double vbias = 0.0;

CAIRO_GET_PARAM("tr_m5","VG" ,vbias) ;

227

CAIRO_SET_VALUE("VBIAS", vbias, CP_VALID) ;

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// ----------------------------

// Procedure: IDS_CM(IBIAS)

// ----------------------------

CAIRO_BEGIN_PROCEDURE("IDS_CM(IBIAS)")

double ibias;

CAIRO_TRY_GET_VALUE("IBIAS",ibias)

IF_NO_VALUE

FATAL_ERROR_PARAM("IBIAS","IBIAS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

double result = -ibias / 2.0;

CAIRO_SET_VALUE("Q", result, CP_VALID) ;

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// ----------------------------

// Procedure: IDS_DP(IBIAS)

// ----------------------------

CAIRO_BEGIN_PROCEDURE("IDS_DP(IBIAS)")

double ibias;

CAIRO_TRY_GET_VALUE("IBIAS",ibias)

IF_NO_VALUE

FATAL_ERROR_PARAM("IBIAS","IBIAS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

double result = ibias / 2.0;

CAIRO_SET_VALUE("Q", result, CP_VALID) ;

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// ----------------------------

// Procedure: NI(K,IBIAS)

// ----------------------------

CAIRO_BEGIN_PROCEDURE("NI(K,IBIAS)")

double k;

double ibias;

CAIRO_TRY_GET_VALUE("K",k)

IF_NO_VALUE

FATAL_ERROR_PARAM("K","K not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("IBIAS",ibias)

IF_NO_VALUE

FATAL_ERROR_PARAM("IBIAS","IBIAS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

double result = - k * ibias;

CAIRO_SET_VALUE("Q", result, CP_VALID) ;

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

228 The OTA Amplifier CAIRO+ Generator for Designer Mode

// ----------------------------

// Procedure: I(K,IBIAS)

// ----------------------------

CAIRO_BEGIN_PROCEDURE("I(K,IBIAS)")

double k;

double ibias;

CAIRO_TRY_GET_VALUE("K",k)

IF_NO_VALUE

FATAL_ERROR_PARAM("K","K not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("IBIAS",ibias)

IF_NO_VALUE

FATAL_ERROR_PARAM("IBIAS","IBIAS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

double result = k * ibias;

CAIRO_SET_VALUE("Q", result, CP_VALID) ;

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// ----------------------------

// Procedure: explorer

// ----------------------------

CAIRO_BEGIN_PROCEDURE("explorer")

CAIRO_BEGIN_EXPLORE

// ------------------

// Execute IE

// -------------------

CAIRO_IE_USE();

CAIRO_IE_ADD_INDEPENDENT_PARAMETERS();

// Performances

CAIRO_IE_ADD_WATCH("PERFORMANCES","AD0");

CAIRO_IE_ADD_WATCH("PERFORMANCES","AC0");

CAIRO_IE_ADD_WATCH("PERFORMANCES","SATURATIONS");

CAIRO_IE_ADD_WATCH("PERFORMANCES","ED0");

CAIRO_IE_ADD_WATCH("PERFORMANCES","SNE_1HZ");

CAIRO_IE_ADD_WATCH("PERFORMANCES","SNE_FT");

CAIRO_IE_ADD_WATCH("PERFORMANCES","PM");

CAIRO_IE_ADD_WATCH("PERFORMANCES","SR");

CAIRO_IE_ADD_WATCH("PERFORMANCES","FT");

CAIRO_IE_ADD_WATCH("PERFORMANCES","POWER");

CAIRO_IE_ADD_WATCH("PERFORMANCES","AREA");

// Measures

CAIRO_IE_ADD_WATCH("MEASURES","CMRR");

CAIRO_IE_ADD_WATCH("MEASURES","FPND");

CAIRO_IE_ADD_WATCH("MEASURES","FPD");

CAIRO_IE_ADD_WATCH("MEASURES","FZ");

CAIRO_IE_ADD_WATCH("MEASURES","CIN-");

CAIRO_IE_ADD_WATCH("MEASURES","CIN+");

CAIRO_IE_ADD_WATCH("MEASURES","COUT");

CAIRO_IE_ADD_WATCH("MEASURES","VICMMIN");

CAIRO_IE_ADD_WATCH("MEASURES","VICMMAX");

CAIRO_IE_ADD_WATCH("MEASURES","VOUTMIN");

CAIRO_IE_ADD_WATCH("MEASURES","VOUTMAX");

// Wrappers

CAIRO_IE_SET_DISPLAY_WRAPPER("DISPLAY");

CAIRO_IE_SET_DISPLAY_FUNCTION("ALL(VGS,W,L)");

229

CAIRO_IE_DISPLAY(name);

CAIRO_IE_RELEASE();

CAIRO_END_EXPLORE

if (CAIRO_IE_EXIT == false)

{

// -------------------

// Execute design plan

// -------------------

CAIRO_EXECUTE_DESIGN_PLAN();

// -----------------------------

// Call direct size for devices

// -----------------------------

CAIRO_COMPUTE("cm_m3_m4","direct_size");

CAIRO_COMPUTE("dp_m1_m2","direct_size");

CAIRO_COMPUTE("tr_m6","direct_size");

CAIRO_COMPUTE("tr_m7","direct_size");

CAIRO_COMPUTE("tr_m5","direct_size");

CAIRO_COMPUTE("tr_m8","direct_size");

}

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// -------------------------------

// Procedure: DISPLAY

// -------------------------------

CAIRO_BEGIN_PROCEDURE("DISPLAY")

// -------------------------------------

// Calculate small signals for DP

// -------------------------------------

double vs_dp;

double vd_dp;

double vg_dp;

double vb_dp;

CAIRO_GET_PARAM("dp_m1_m2","VD",vd_dp);

CAIRO_GET_PARAM("dp_m1_m2","VS",vs_dp);

CAIRO_GET_PARAM("dp_m1_m2","VG",vg_dp);

CAIRO_GET_PARAM("dp_m1_m2","VB",vb_dp);

CAIRO_SET_PARAM("dp_m1_m2","VDS", vd_dp - vs_dp);

CAIRO_SET_PARAM("dp_m1_m2","VBS", vb_dp - vs_dp);

CAIRO_SET_PARAM("dp_m1_m2","VGS", vg_dp - vs_dp);

CAIRO_SET_PARAM("dp_m1_m2","SIF_FREQ", 1.0);

CAIRO_COMPUTE("dp_m1_m2","ALL(VGS,W,L)");

// To repeat similarly for the rest of devices

. . .

// -------------------------------------

// Return Code

// -------------------------------------

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

230 The OTA Amplifier CAIRO+ Generator for Designer Mode

// -------------------------------

// Procedure: PERFORMANCES

// -------------------------------

CAIRO_BEGIN_PROCEDURE("PERFORMANCES")

// Compute primary performances here

. . .

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// -------------------------------

// Procedure: MEASURES

// -------------------------------

CAIRO_BEGIN_PROCEDURE("MEASURES")

// Compute secondary performances here

. . .

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// ----------------------------

// ------------- Default

// ----------------------------

CAIRO_DEFAULT_PROCEDURE

FATAL_ERROR_PROCEDURE(PROCEDURE_NAME,"unknown procedure",LOCATION) ;

END_DEFAULT_PROCEDURE

CAIRO_END_DSES(OTAS2ET)

/***/

/* Function: LAYOUT */

/***/

/* */

/* This is the ROUTE section of the CAIRO+ generator */

/* */

/***/

CAIRO_BEGIN_LAYOUT(OTAS2ET, char *name)

// Perform procedural routing here

. . .

CAIRO_END_LAYOUT(OTAS2ET)

Appendix G

The OTA Amplifier CAIRO+ Generator

for Simulator Mode

/***/

/* File : ota_simulator_mode.cpp */

/* */

/* Description : Two-stage Operational Transconductance Amplifier */

/* */

/* Language : C/C++ et CAIRO+ Version : 1.0 */

/* */

/* Author : Ramy ISKANDER */

/* */

/* Licence : QPL */

/* */

/* History : */

/* */

/* Function : Synthesis in simulator mode */

/* */

/***/

#include "cairoplus.h"

/***/

/* Function: CREATE */

/***/

/* */

/* This is the CREATE section of the CAIRO+ generator */

/* */

/***/

CAIRO_BEGIN_CREATE(OTAS2ET, char *name, char type)

/***********************\

| Initialization |

***********************/

if (type != TRANSN)

{

cerr << "Error: Only OTA2ET/IREF of type TRANSN is allowed." << endl;

exit(0);

}

// ---

// Save generator options in local variables

// ---

CAIRO_SET_LOCAL_VARIABLE("TYPE", type);

// -----------------

// Default Values

// -----------------

232 The OTA Amplifier CAIRO+ Generator for Simulator Mode

CAIRO_SET_LOCAL_VARIABLE("TEMP", 300.15);

/***********************\

| Connectors |

***********************/

// -------

// Inputs

// -------

CAIRO_IO("VEPT", CP_WEST);

CAIRO_IO("VENT", CP_WEST);

CAIRO_IO("VDDT", CP_NORTH);

CAIRO_IO("VSST", CP_SOUTH);

// --------

// Outputs

// --------

CAIRO_IO("VSP", CP_EAST);

/**************************************\

| NETLIST TEMPLATE |

**************************************/

// ------------------------------

// Instantiation of Devices

// ------------------------------

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m8", "tr_m8", TRANSN, true,true,false,true);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m5", "tr_m5", TRANSN, true,true,false,true);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m1", "tr_m1", TRANSN, true,true,false,false);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m2", "tr_m2", TRANSN, true,true,false,false);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m3", "tr_m3", TRANSP, true,true,false,true);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m4", "tr_m4", TRANSP, true,true,false,true);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m6", "tr_m6", TRANSP, true,true,false,true);

CAIRO_CREATE ("libTRANSISTOR", "TR_MOS", "tr_m7", "tr_m7", TRANSN, true,true,false,true);

// ------------------------------

// Netlist Connectivity

// ------------------------------

CAIRO_IMPLICIT_CONNECT("tr_m8" , "nd8", "nd8", "VSST");

CAIRO_IMPLICIT_CONNECT("tr_m5" , "nd5", "nd8", "VSST");

CAIRO_IMPLICIT_CONNECT("tr_m6" , "VSP", "nd2", "VDDT");

CAIRO_IMPLICIT_CONNECT("tr_m7" , "VSP", "nd8", "VSST");

CAIRO_IMPLICIT_CONNECT("tr_m1" , "nd1", "VENT", "nd5", "VSST");

CAIRO_IMPLICIT_CONNECT("tr_m2" , "nd2", "VEPT", "nd5", "VSST");

CAIRO_IMPLICIT_CONNECT("tr_m3" , "nd1", "nd1", "VDDT");

CAIRO_IMPLICIT_CONNECT("tr_m4" , "nd2", "nd1", "VDDT");

/**************************************\

| LAYOUT TEMPLATE |

**************************************/

CAIRO_HORIZONTAL_CONTAINER("OTAS2ET_CM" , "tr_m3", NOSYM, 0.0, 0.0, 0.0, 0.0

, "tr_m4", NOSYM, 0.0, 0.0, 0.0, 0.0);

CAIRO_HORIZONTAL_CONTAINER("OTAS2ET_DP" , "tr_m1", NOSYM, 0.0, 0.0, 0.0, 0.0

, "tr_m2", NOSYM, 0.0, 0.0, 0.0, 0.0);

CAIRO_HORIZONTAL_CONTAINER("OTAS2ET_H1" , "tr_m8", NOSYM, 0.0, 0.0, 0.0, 0.0

, "tr_m5", NOSYM, 0.0, 0.0, 0.0, 0.0);

CAIRO_VERTICAL_CONTAINER("OTAS2ET_V1" , "OTAS2ET_H1", NOSYM, 0.0, 0.0, 0.0, 0.0

, "OTAS2ET_DP", NOSYM, 0.0, 0.0, 0.0, 0.0

, "OTAS2ET_CM", NOSYM, 0.0, 0.0, 0.0, 0.0);

CAIRO_VERTICAL_CONTAINER("OTAS2ET_V2" , "tr_m7", NOSYM, 0.0, 0.0, 0.0, 0.0

, "tr_m6", NOSYM, 0.0, 0.0, 0.0, 0.0);

CAIRO_HORIZONTAL_CONTAINER(name , "OTAS2ET_V1", NOSYM, 0.0, 0.0, 0.0, 0.0

233

, "OTAS2ET_V2", NOSYM, 0.0, 0.0, 0.0, 0.0);

/**************************************\

| DECLARATION OF PARAMETERS |

**************************************/

// -------------------

// Input Parameters

// -------------------

CAIRO_DECLARE_PARAM("TEMP") ; // Temperature

CAIRO_DECLARE_PARAM("VDD") ; // Positive supply

CAIRO_DECLARE_PARAM("VSS") ; // Negative supply

CAIRO_DECLARE_PARAM("W_M1") ; // Width

CAIRO_DECLARE_PARAM("W_M2") ; // Width

CAIRO_DECLARE_PARAM("W_M3") ; // Width

CAIRO_DECLARE_PARAM("W_M4") ; // Width

CAIRO_DECLARE_PARAM("W_M5") ; // Width

CAIRO_DECLARE_PARAM("W_M6") ; // Width

CAIRO_DECLARE_PARAM("W_M7") ; // Width

CAIRO_DECLARE_PARAM("W_M8") ; // Width

CAIRO_DECLARE_PARAM("L_M1") ; // Length

CAIRO_DECLARE_PARAM("L_M2") ; // Length

CAIRO_DECLARE_PARAM("L_M3") ; // Length

CAIRO_DECLARE_PARAM("L_M4") ; // Length

CAIRO_DECLARE_PARAM("L_M5") ; // Length

CAIRO_DECLARE_PARAM("L_M6") ; // Length

CAIRO_DECLARE_PARAM("L_M7") ; // Length

CAIRO_DECLARE_PARAM("L_M8") ; // Length

CAIRO_DECLARE_PARAM("VOUT") ; // Common-mode output voltage

CAIRO_DECLARE_PARAM("VEN") ; // Negative terminal common-mode input

CAIRO_DECLARE_PARAM("VEP") ; // Positive terminal common-mode input

CAIRO_DECLARE_PARAM("IREF") ; // Reference current

CAIRO_DECLARE_PARAM("CCAP") ; // Compensation capacitance

CAIRO_DECLARE_PARAM("CL") ; // Load capacitance

CAIRO_DECLARE_PARAM("RL") ; // Load resistance

CAIRO_DECLARE_PARAM("VG_M3") ; // Gate node voltage of M3

// -------------------

// Output Parameters

// -------------------

CAIRO_DECLARE_PARAM("VBIAS") ;

CAIRO_DECLARE_PARAM("Q") ;

// ---------------------------------

// Primary Performance Parameters

// ---------------------------------

CAIRO_DECLARE_PARAM("AD0") ; // Static differential-mode gain

CAIRO_DECLARE_PARAM("AC0") ; // Static common-mode gain

CAIRO_DECLARE_PARAM("FT") ; // Transition frequency

CAIRO_DECLARE_PARAM("PM") ; // Phase margin

CAIRO_DECLARE_PARAM("POWER") ; // Power consumption

CAIRO_DECLARE_PARAM("AREA") ; // Area

CAIRO_DECLARE_PARAM("SR"); // Slew rate

CAIRO_DECLARE_PARAM("SNE_1HZ"); // Input-referred noise @ 1HZ

CAIRO_DECLARE_PARAM("SNE_FT"); // Input-referred noise @ FT

CAIRO_DECLARE_PARAM("SATURATIONS"); // Transistors in saturation

CAIRO_DECLARE_PARAM("ED0"); // Systematic input offset

// ---------------------------------

// Secondary Performance Parameters

// ---------------------------------

CAIRO_DECLARE_PARAM("CMRR"); // Common-mode rejection ratio

CAIRO_DECLARE_PARAM("COUT"); // Output capacitance

CAIRO_DECLARE_PARAM("FPND") ; // First non-dominant pole

CAIRO_DECLARE_PARAM("FPD") ; // First dominant pole

CAIRO_DECLARE_PARAM("FZ") ; // First zero

CAIRO_DECLARE_PARAM("CIN-"); // Negative-input capacitance

CAIRO_DECLARE_PARAM("CIN+"); // Positive-input capacitance

CAIRO_DECLARE_PARAM("VICMMAX"); // Maximum input common-mode voltage

CAIRO_DECLARE_PARAM("VICMMIN"); // Minimum input common-mode voltage

234 The OTA Amplifier CAIRO+ Generator for Simulator Mode

CAIRO_DECLARE_PARAM("VOUTMAX"); // Maximum output voltage

CAIRO_DECLARE_PARAM("VOUTMIN"); // Minimum output voltage

/**************************************\

| DECLARATION OF PROCEDURES |

**************************************/

// SIMULATOR MODE

CAIRO_DECLARE_PROCEDURE("simulate_with_input_offset_and_feedback", CP_COMPLETE, "TEMP", CP_IN,

"VDD", CP_IN,

"VSS", CP_IN,

"W_M1", CP_IN,

"W_M2", CP_IN,

"W_M3", CP_IN,

"W_M4", CP_IN,

"W_M5", CP_IN,

"W_M6", CP_IN,

"W_M7", CP_IN,

"W_M8", CP_IN,

"L_M1", CP_IN,

"L_M2", CP_IN,

"L_M3", CP_IN,

"L_M4", CP_IN,

"L_M5", CP_IN,

"L_M6", CP_IN,

"L_M7", CP_IN,

"L_M8", CP_IN,

"IREF", CP_IN,

"VEN", CP_IN,

"VEP", CP_IN,

"VOUT", CP_IN,

"VG_M3", CP_IN,

"VBIAS", CP_OUT);

// DISPLAY

CAIRO_DECLARE_PROCEDURE("DISPLAY", CP_UNCOMPLETE);

// EXPLORER

CAIRO_DECLARE_PROCEDURE("explorer", CP_COMPLETE);

// PERFORMANCES

CAIRO_DECLARE_PROCEDURE("PERFORMANCES", CP_UNCOMPLETE, "TEMP", CP_IN,

"VDD", CP_IN,

"VSS", CP_IN,

"W_M1", CP_IN,

"W_M2", CP_IN,

"W_M3", CP_IN,

"W_M4", CP_IN,

"W_M5", CP_IN,

"W_M6", CP_IN,

"W_M7", CP_IN,

"W_M8", CP_IN,

"L_M1", CP_IN,

"L_M2", CP_IN,

"L_M3", CP_IN,

"L_M4", CP_IN,

"L_M5", CP_IN,

"L_M6", CP_IN,

"L_M7", CP_IN,

"L_M8", CP_IN,

"IREF", CP_IN,

"VEN", CP_IN,

"VEP", CP_IN,

"VOUT", CP_IN,

"VG_M3", CP_IN,

"CCAP", CP_IN,

"CL", CP_IN,

"RL", CP_IN,

"AD0", CP_OUT,

"AC0", CP_OUT,

"FT", CP_OUT,

"PM", CP_OUT,

"SR", CP_OUT,

"SNE_TH", CP_OUT,

"SNE_1/F", CP_OUT,

"SATURATIONS", CP_OUT,

235

"ED0", CP_OUT);

// MEASURES

CAIRO_DECLARE_PROCEDURE("MEASURES", CP_UNCOMPLETE, "TEMP", CP_IN,

"VDD", CP_IN,

"VSS", CP_IN,

"W_M1", CP_IN,

"W_M2", CP_IN,

"W_M3", CP_IN,

"W_M4", CP_IN,

"W_M5", CP_IN,

"W_M6", CP_IN,

"W_M7", CP_IN,

"W_M8", CP_IN,

"L_M1", CP_IN,

"L_M2", CP_IN,

"L_M3", CP_IN,

"L_M4", CP_IN,

"L_M5", CP_IN,

"L_M6", CP_IN,

"L_M7", CP_IN,

"L_M8", CP_IN,

"IREF", CP_IN,

"VEN", CP_IN,

"VEP", CP_IN,

"VOUT", CP_IN,

"VG_M3", CP_IN,

"CCAP", CP_IN,

"CL", CP_IN,

"RL", CP_IN,

"FPND", CP_OUT,

"FPD", CP_OUT,

"FZ", CP_OUT,

"POWER", CP_OUT,

"AREA", CP_OUT,

"VOUTMAX", CP_OUT,

"VOUTMIN", CP_OUT,

"VICMMAX", CP_OUT,

"VICMMIN", CP_OUT,

"CIN-", CP_OUT,

"CIN+", CP_OUT,

"COUT", CP_OUT,

"CMRR", CP_OUT);

CAIRO_END_CREATE(OTAS2ET)

/***/

/* Function: DSES */

/***/

/* */

/* This is the DESIGN SPACE EXPLORATION section of the CAIRO+ generator */

/* */

/***/

CAIRO_BEGIN_DSES(OTAS2ET,char *name)

/**************************************\

| SIZING PROCEDURES |

**************************************/

// ---

// Procedure: simulate_with_input_offset_and_feedback

// ---

CAIRO_BEGIN_PROCEDURE("simulate_with_input_offset_and_feedback")

double temp;

double vdd;

double vss;

double l_m1;

double l_m2;

double l_m3;

double l_m4;

double l_m5;

double l_m6;

double l_m7;

236 The OTA Amplifier CAIRO+ Generator for Simulator Mode

double l_m8;

double w_m1;

double w_m2;

double w_m3;

double w_m4;

double w_m5;

double w_m6;

double w_m7;

double w_m8;

double iref;

double ven;

double vep;

double vout;

double vg_m3;

CAIRO_CREATE_EQUIPOTENTIALS;

CAIRO_BEGIN_SYNTHESIS

/***************************************\

| Reading Parameters from higher level |

***************************************/

CAIRO_TRY_GET_VALUE("TEMP",temp)

IF_NO_VALUE

FATAL_ERROR_PARAM("TEMP","TEMP not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M1",l_m1)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M1","L_M1 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M2",l_m2)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M2","L_M2 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M3",l_m3)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M3","L_M3 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M4",l_m4)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M4","L_M4 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M5",l_m5)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M5","L_M5 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M6",l_m6)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M6","L_M6 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M7",l_m7)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M7","L_M7 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("L_M8",l_m8)

IF_NO_VALUE

FATAL_ERROR_PARAM("L_M8","L_M8 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("W_M1",w_m1)

IF_NO_VALUE

FATAL_ERROR_PARAM("W_M1","W_M1 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("W_M2",w_m2)

IF_NO_VALUE

237

FATAL_ERROR_PARAM("W_M2","W_M2 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("W_M3",w_m3)

IF_NO_VALUE

FATAL_ERROR_PARAM("W_M3","W_M3 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("W_M4",w_m4)

IF_NO_VALUE

FATAL_ERROR_PARAM("W_M4","W_M4 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("W_M5",w_m5)

IF_NO_VALUE

FATAL_ERROR_PARAM("W_M5","W_M5 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("W_M6",w_m6)

IF_NO_VALUE

FATAL_ERROR_PARAM("W_M6","W_M6 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("W_M7",w_m7)

IF_NO_VALUE

FATAL_ERROR_PARAM("W_M7","W_M7 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("W_M8",w_m8)

IF_NO_VALUE

FATAL_ERROR_PARAM("W_M8","W_M8 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("IREF", iref)

IF_NO_VALUE

FATAL_ERROR_PARAM("IREF","IREF not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VEN", ven)

IF_NO_VALUE

FATAL_ERROR_PARAM("VEN","VEN not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VEP", vep)

IF_NO_VALUE

FATAL_ERROR_PARAM("VEP","VEP not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VOUT", vout)

IF_NO_VALUE

FATAL_ERROR_PARAM("VOUT","VOUT not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VDD",vdd)

IF_NO_VALUE

FATAL_ERROR_PARAM("VDD","V not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VSS",vss)

IF_NO_VALUE

FATAL_ERROR_PARAM("VSS","VSS not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

CAIRO_TRY_GET_VALUE("VG_M3",vg_m3)

IF_NO_VALUE

FATAL_ERROR_PARAM("VG_M3","VG_M3 not set in OTAS2ET",LOCATION) ;

ENDIF_NO_VALUE

// ---------------

// Synthesize TR8

// ---------------

cout << "Synthesizing TR8 ..." << endl;

CAIRO_SET_PARAM("tr_m8","TEMP",temp) ;

238 The OTA Amplifier CAIRO+ Generator for Simulator Mode

CAIRO_SET_PARAM("tr_m8","L",l_m8) ;

CAIRO_SET_PARAM("tr_m8","W",w_m8) ;

CAIRO_SET_PARAM("tr_m8","IDS",iref) ;

CAIRO_SET_PARAM("tr_m8","VS",vss) ;

CAIRO_COMPUTE("tr_m8","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR8") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR7

// ---------------

cout << "Synthesizing TR7 ..." << endl;

CAIRO_SET_PARAM("tr_m7","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m7","L" ,l_m7) ;

CAIRO_SET_PARAM("tr_m7","W" ,w_m7) ;

CAIRO_SET_PARAM("tr_m7","VD" ,vout) ;

CAIRO_COMPUTE("tr_m7","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR7") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR6

// ---------------

cout << "Synthesizing TR6 ..." << endl;

string expr = DPARAM("tr_m6","IDS") EQ DPARAM3(-1.0,"tr_m7","IDS");

CAIRO_ADD_CONSTRAINT(expr.c_str());

CAIRO_SET_PARAM("tr_m6","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m6","L", l_m6) ;

CAIRO_SET_PARAM("tr_m6","W", w_m6) ;

CAIRO_SET_PARAM("tr_m6","VS",vdd) ;

CAIRO_COMPUTE("tr_m6","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR6") ;

END_ON_PROCEDURE_STATUS

// --------------

// Synthesize TR4

// --------------

cout << "Synthesizing TR4 ..." << endl;

CAIRO_SET_PARAM("tr_m4","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m4","L",l_m4) ;

CAIRO_SET_PARAM("tr_m4","W",w_m4) ;

CAIRO_SET_PARAM("tr_m4","VG",vg_m3) ;

CAIRO_COMPUTE("tr_m4","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR4") ;

END_ON_PROCEDURE_STATUS

// --------------

// Synthesize TR2

// --------------

cout << "Synthesizing TR2 ..." << endl;

expr = DPARAM("tr_m2","IDS") EQ DPARAM3(-1.0,"tr_m4","IDS");

CAIRO_ADD_CONSTRAINT(expr.c_str());

CAIRO_SET_PARAM("tr_m2","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m2","L",l_m2) ;

CAIRO_SET_PARAM("tr_m2","W",w_m2) ;

CAIRO_SET_PARAM("tr_m2","VG",vep) ;

239

CAIRO_COMPUTE("tr_m2","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize M2") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR3

// ---------------

cout << "Synthesizing TR3 ..." << endl;

CAIRO_SET_PARAM("tr_m3","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m3","L",l_m3) ;

CAIRO_SET_PARAM("tr_m3","W",w_m3) ;

CAIRO_COMPUTE("tr_m3","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR3") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR1

// ---------------

cout << "Synthesizing TR1 ..." << endl;

expr = DPARAM("tr_m1","IDS") EQ DPARAM3(-1.0,"tr_m3","IDS");

CAIRO_ADD_CONSTRAINT(expr.c_str());

CAIRO_SET_PARAM("tr_m1","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m1","L",l_m1) ;

CAIRO_SET_PARAM("tr_m1","W",w_m1) ;

CAIRO_SET_PARAM("tr_m1","VG",ven) ;

CAIRO_COMPUTE("tr_m1","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR1") ;

END_ON_PROCEDURE_STATUS

// ---------------

// Synthesize TR5

// ---------------

cout << "Synthesizing TR5 ..." << endl;

CAIRO_SET_PARAM("tr_m5","TEMP",temp) ;

CAIRO_SET_PARAM("tr_m5","L",l_m5) ;

CAIRO_SET_PARAM("tr_m5","W",w_m5) ;

CAIRO_COMPUTE("tr_m5","synthesize");

ON_PROCEDURE_STATUS

CAIRO_ERROR_MESSAGE("cannot synthesize TR5") ;

END_ON_PROCEDURE_STATUS

// ---

// Newton Raphson Constraint: Solve Feedback VEN - F(VEN) = VEN - VOUT = 0

// ---

expr = NREQ(MPARAM("VEN") WITH DPARAM("tr_m1","VG") WITH DPARAM("tr_m7","VD"));

CAIRO_ADD_CONSTRAINT(expr.c_str());

// ---

// Newton Raphson Constraint: Solve Ids,m5(Vg,m3) - Ids,m1(Vg,m3) - Ids,m2(Vg,m3) = 0

// ---

expr = NREQ(MPARAM("VG_M3") WITH DPARAM("tr_m5","IDS") WITH DPARAM("tr_m1","IDS") WITH DPARAM("tr_m2","IDS")) ;

CAIRO_ADD_CONSTRAINT(expr.c_str());

// -------------------

// Synthesize device

// -------------------

CAIRO_AUTO_SIZE_AND_BIAS();

// ---

240 The OTA Amplifier CAIRO+ Generator for Simulator Mode

// Newton Raphson Constraint: Solve Vs,m1(VEP) - Vs,m2(VEP) = 0

// ---

expr = NREQ(MPARAM("VEP") WITH DPARAM("tr_m1","VS") WITH DPARAM("tr_m2","VS")) ;

CAIRO_ADD_CONSTRAINT(expr.c_str());

// -------------------

// Display Graphs

// -------------------

CAIRO_DISPLAY_GRAPHS();

CAIRO_END_SYNTHESIS

// -------------------

// Execute design plan

// -------------------

CAIRO_EXECUTE_DESIGN_PLAN_USING_NR(true);

// -------------------

// Display Rules

// -------------------

CAIRO_DISPLAY_RULES();

// ----------------------

// Set Number of fingers

// ----------------------

CAIRO_SET_PARAM("tr_m1","M_VALUE",4L);

CAIRO_SET_PARAM("tr_m2","M_VALUE",4L);

CAIRO_SET_PARAM("tr_m3","M_VALUE",2L);

CAIRO_SET_PARAM("tr_m4","M_VALUE",2L);

CAIRO_SET_PARAM("tr_m6","M_VALUE",20L);

CAIRO_SET_PARAM("tr_m7","M_VALUE",16L);

CAIRO_SET_PARAM("tr_m5","M_VALUE",4L);

CAIRO_SET_PARAM("tr_m8","M_VALUE",4L);

// -----------------------------

// Call direct size for devices

// -----------------------------

CAIRO_COMPUTE("tr_m1","direct_size");

CAIRO_COMPUTE("tr_m2","direct_size");

CAIRO_COMPUTE("tr_m3","direct_size");

CAIRO_COMPUTE("tr_m4","direct_size");

CAIRO_COMPUTE("tr_m6","direct_size");

CAIRO_COMPUTE("tr_m7","direct_size");

CAIRO_COMPUTE("tr_m5","direct_size");

CAIRO_COMPUTE("tr_m8","direct_size");

// ------------------------

// Return polarization

// ------------------------

double vbias = 0.0;

CAIRO_GET_PARAM("tr_m5","VG",vbias);

241

CAIRO_SET_VALUE("VBIAS", vbias, CP_VALID) ;

CAIRO_GET_VALUE("VG_M3", vg_m3) ;

cout << "VG_M3 value is " << vg_m3 << endl;

CAIRO_GET_VALUE("VEN", ven) ;

cout << "VEN value is " << ven << endl;

CAIRO_GET_VALUE("VEP", vep) ;

cout << "VEP value is " << vep << endl;

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// ----------------------------

// Procedure: explorer

// ----------------------------

CAIRO_BEGIN_PROCEDURE("explorer")

CAIRO_BEGIN_EXPLORE

// -------------------

// Execute IE

// -------------------

CAIRO_IE_USE();

CAIRO_IE_ADD_INDEPENDENT_PARAMETERS();

// Performances

CAIRO_IE_ADD_WATCH("PERFORMANCES","AD0");

CAIRO_IE_ADD_WATCH("PERFORMANCES","AC0");

CAIRO_IE_ADD_WATCH("PERFORMANCES","SATURATIONS");

CAIRO_IE_ADD_WATCH("PERFORMANCES","ED0");

CAIRO_IE_ADD_WATCH("PERFORMANCES","SNE_TH");

CAIRO_IE_ADD_WATCH("PERFORMANCES","SNE_1/F");

CAIRO_IE_ADD_WATCH("PERFORMANCES","PM");

CAIRO_IE_ADD_WATCH("PERFORMANCES","SR");

CAIRO_IE_ADD_WATCH("PERFORMANCES","FT");

CAIRO_IE_ADD_WATCH("PERFORMANCES","KCL_BIAS");

// Measures

CAIRO_IE_ADD_WATCH("MEASURES","CMRR");

CAIRO_IE_ADD_WATCH("MEASURES","FPND");

CAIRO_IE_ADD_WATCH("MEASURES","FPD");

CAIRO_IE_ADD_WATCH("MEASURES","FZ");

CAIRO_IE_ADD_WATCH("MEASURES","CIN-");

CAIRO_IE_ADD_WATCH("MEASURES","CIN+");

CAIRO_IE_ADD_WATCH("MEASURES","COUT");

CAIRO_IE_ADD_WATCH("MEASURES","VICMMIN");

CAIRO_IE_ADD_WATCH("MEASURES","VICMMAX");

CAIRO_IE_ADD_WATCH("MEASURES","VOUTMIN");

CAIRO_IE_ADD_WATCH("MEASURES","VOUTMAX");

CAIRO_IE_ADD_WATCH("MEASURES","POWER");

CAIRO_IE_ADD_WATCH("MEASURES","AREA");

// Wrappers

CAIRO_IE_SET_DISPLAY_WRAPPER("DISPLAY");

CAIRO_IE_SET_DISPLAY_FUNCTION("ALL(VGS,W,L)");

CAIRO_IE_DISPLAY(name);

CAIRO_IE_RELEASE();

CAIRO_END_EXPLORE

if (CAIRO_IE_EXIT == false)

{

// ----------------------

// Set Number of fingers

242 The OTA Amplifier CAIRO+ Generator for Simulator Mode

// ----------------------

CAIRO_SET_PARAM("tr_m1","M_VALUE",4L);

CAIRO_SET_PARAM("tr_m2","M_VALUE",4L);

CAIRO_SET_PARAM("tr_m3","M_VALUE",2L);

CAIRO_SET_PARAM("tr_m4","M_VALUE",2L);

CAIRO_SET_PARAM("tr_m6","M_VALUE",20L);

CAIRO_SET_PARAM("tr_m7","M_VALUE",16L);

CAIRO_SET_PARAM("tr_m5","M_VALUE",4L);

CAIRO_SET_PARAM("tr_m8","M_VALUE",4L);

// -------------------

// Execute design plan

// -------------------

CAIRO_EXECUTE_DESIGN_PLAN_USING_NR(true);

// -----------------------------

// Call direct size for devices

// -----------------------------

CAIRO_COMPUTE("tr_m1","direct_size");

CAIRO_COMPUTE("tr_m2","direct_size");

CAIRO_COMPUTE("tr_m3","direct_size");

CAIRO_COMPUTE("tr_m4","direct_size");

CAIRO_COMPUTE("tr_m6","direct_size");

CAIRO_COMPUTE("tr_m7","direct_size");

CAIRO_COMPUTE("tr_m5","direct_size");

CAIRO_COMPUTE("tr_m8","direct_size");

// ------------------------

// Return polarization

// ------------------------

double vep = 0.0;

double ven = 0.0;

CAIRO_GET_PARAM("tr_m1","VG",ven);

CAIRO_GET_PARAM("tr_m2","VG",vep);

cout << " VEP = " << vep << endl;

cout << " VEN = " << ven << endl;

}

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// -------------------------------

// Procedure: DISPLAY

// -------------------------------

CAIRO_BEGIN_PROCEDURE("DISPLAY")

// -------------------------------------

// Calculate small signales for TR1

// -------------------------------------

double vs_m1;

double vd_m1;

double vg_m1;

243

double vb_m1;

CAIRO_GET_PARAM("tr_m1","VD",vd_m1);

CAIRO_GET_PARAM("tr_m1","VS",vs_m1);

CAIRO_GET_PARAM("tr_m1","VG",vg_m1);

CAIRO_GET_PARAM("tr_m1","VB",vb_m1);

CAIRO_SET_PARAM("tr_m1","VDS", vd_m1 - vs_m1);

CAIRO_SET_PARAM("tr_m1","VBS", vb_m1 - vs_m1);

CAIRO_SET_PARAM("tr_m1","VGS", vg_m1 - vs_m1);

CAIRO_SET_PARAM("tr_m1","SIF_FREQ", 1.0);

CAIRO_COMPUTE("tr_m1","ALL(VGS,W,L)");

. . .

// -------------------------------------

// Return code

// -------------------------------------

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// -------------------------------

// Procedure: PERFORMANCES

// -------------------------------

CAIRO_BEGIN_PROCEDURE("PERFORMANCES")

// Compute primary performances here

. . .

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// -------------------------------

// Procedure: MEASURES

// -------------------------------

CAIRO_BEGIN_PROCEDURE("MEASURES")

// Compute secondary performances here

. . .

CAIRO_SET_RETURN_PROCEDURE(CP_OK);

END_PROCEDURE

// ----------------------------

// ------------- Default

// ----------------------------

CAIRO_DEFAULT_PROCEDURE

FATAL_ERROR_PROCEDURE(PROCEDURE_NAME,"unknown procedure",LOCATION) ;

END_DEFAULT_PROCEDURE

CAIRO_END_DSES(OTAS2ET)

/***/

/* Function: LAYOUT */

/***/

/* */

/* This is the ROUTE section of the CAIRO+ generator */

/* */

/***/

CAIRO_BEGIN_LAYOUT(OTAS2ET, char *name)

// Perform procedural routing here

. . .

CAIRO_END_LAYOUT(OTAS2ET)

244 The OTA Amplifier CAIRO+ Generator for Simulator Mode

Appendix H

Knowledge-Aware Synthesis Code for

the OTA Amplifier

/***/

/* File : test_OPTIMIZE_OTA.cpp */

/* */

/* Description : File for optimizing the OTA amplifier */

/* */

/* Language : C++ Version : 1.0 */

/* */

/* Author : Ramy ISKANDER */

/* */

/* License : QPL */

/* */

/* History : */

/* */

/* Function : Knowledge-Aware synthesis of the OTA amplifier */

/* */

/***/

#include "cairoplus.h"

int main(int argc, char *argv[])

{

// ---------------- //

// Create new chip //

// ---------------- //

CAIRO_NEW_CHIP("test_OPTIMIZE_OTA") ;

// --//

// Create an amplifier instance "OTA2ET" from model "OTAS2ET" //

// in module library "libOTA2ET_iref" //

// --//

CAIRO_CREATE("libOTA2ET_iref","OTAS2ET","OTA2ET",TRANSN, true) ;

// ---------------------------------- //

// Set initial values for parameters //

// ---------------------------------- //

CAIRO_SET_PARAM("OTA2ET","TEMP", 300.15) ;

CAIRO_SET_PARAM("OTA2ET","VDD", 1.2) ;

CAIRO_SET_PARAM("OTA2ET","VSS", 0.0) ;

CAIRO_SET_PARAM("OTA2ET","L_BIAS", 2.0e-6) ;

CAIRO_SET_PARAM("OTA2ET","L_DP", 2.0e-6) ;

CAIRO_SET_PARAM("OTA2ET","L_CM", 2.0e-6) ;

CAIRO_SET_PARAM("OTA2ET","L_M6", 2.0e-6) ;

CAIRO_SET_PARAM("OTA2ET","VSP", 0.6) ;

CAIRO_SET_PARAM("OTA2ET","VEG_BIAS", 0.12) ;

CAIRO_SET_PARAM("OTA2ET","VEG_DP", 0.12) ;

246 Knowledge-Aware Synthesis Code for the OTA Amplifier

CAIRO_SET_PARAM("OTA2ET","VEG_CM", -0.12) ;

CAIRO_SET_PARAM("OTA2ET","VEG_M6", -0.1) ;

CAIRO_SET_PARAM("OTA2ET","VMC", 0.6) ;

CAIRO_SET_PARAM("OTA2ET","K", 3.0) ;

CAIRO_SET_PARAM("OTA2ET","CL", 3.0e-12) ;

CAIRO_SET_PARAM("OTA2ET","RL", 1.0e6) ;

CAIRO_SET_PARAM("OTA2ET","CCAP", 3.0e-12) ;

CAIRO_SET_PARAM("OTA2ET","IBIAS", 25.0e-6) ;

// -- //

// Call the synthesis procedure to synthesize with offset //

// -- //

CAIRO_COMPUTE("OTA2ET","synthesize_with_offset");

// --- //

// Setup domain of the parameters for optimization //

// --- //

CAIRO_SET_PARAM_DOMAIN("OTA2ET","L_BIAS", 0.2e-6, 3e-6, 0.1e-6) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","L_DP", 0.2e-6, 3e-6, 0.1e-6) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","L_CM", 0.2e-6, 3e-6, 0.1e-6) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","L_M6", 0.2e-6, 3e-6, 0.1e-6) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","VEG_BIAS", 0.01, 0.2, 0.01) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","VEG_DP", 0.01, 0.2, 0.01) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","VEG_CM", -0.2, -0.01, 0.01) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","VEG_M6", -0.2, -0.01, 0.01) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","K", 1.0,5.0,0.5) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","CCAP", 1.0e-12, 5.0e-12, 0.1e-12) ;

CAIRO_SET_PARAM_DOMAIN("OTA2ET","IBIAS", 10.0e-6, 30.0e-6, 1.0e-6) ;

// --------------------------------- //

// Setup constraints on parameters //

// --------------------------------- //

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","AD0", CP_ABOVE, 65.0) ; // in dB

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","AC0", CP_BELOW, 17.0) ; // in dB

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","FT", CP_ABOVE, 6.0e6) ; // in MHz

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","PM", CP_ABOVE, 76.0) ; // in degree

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","SNE_1HZ", CP_BELOW, 20.0e-6) ; // in V/SQRT(Hz)

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","SNE_FT", CP_BELOW, 2.0e-8) ; // in V/SQRT(Hz)

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","SR", CP_ABOVE, 6.0e6) ; // in V/?S

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","SATURATIONS", CP_EQUAL, 8.0) ; // Unitless

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","POWER", CP_BELOW, 0.001) ; // in Watts

CAIRO_SET_PARAM_CONSTRAINT("OTA2ET","ED0", CP_BELOW, 0.002) ; // in Watts

// ----------------- //

// Start Optimizer //

// ----------------- //

CAIRO_OPTIMIZER_USE("OTA2ET");

// ----------------------------- //

// Setup procedures to optimize //

// ----------------------------- //

CAIRO_OPTIMIZE_PROCEDURE("OTA2ET","PERFORMANCES");

// ----------------- //

// Create CPU Timer //

// ----------------- //

time_t start_time;

time_t end_time;

start_time = time(0);

// ------------------- //

// Optimize in a loop //

// ------------------- //

CAIRO_OPTIMIZE("OTA2ET", 100, CP_SYNTHESIS);

247

// ---------------- //

// End clock timer //

// ---------------- //

end_time = time(0);

// ------------------ //

// Display CPU Time //

// ------------------ //

double cpu_time_used = difftime(end_time,start_time) ;

cout << "-------------------------------" << endl;

cout << "OPTIMIZATION CPU TIME: " << cpu_time_used << " secs" << endl;

cout << "-------------------------------" << endl;

// ------------------ //

// Release Optimizer //

// ------------------ //

CAIRO_OPTIMIZER_RELEASE("OTA2ET");

// ----------------------- //

// Set priority procedure //

// ----------------------- //

CAIRO_SET_PRIORITY_PROCEDURE("OTA2ET","explorer");

// --------------- //

// Reshape layout //

// --------------- //

CAIRO_RESHAPE() ;

// ----------------------------------- //

// Display Influence Exploration Tool //

// ----------------------------------- //

while (CAIRO_IE_EXIT == false)

{

CAIRO_RESET_STABILITY();

CAIRO_COMPUTE("OTA2ET","explorer");

if (CAIRO_IE_EXIT == false)

{

if (CAIRO_IE_STABILITY)

{

CAIRO_STABILITY();

}

}

}

// -------------- //

// Save new chip //

// -------------- //

CAIRO_SAVE_CHIP("test_OPTIMIZE_OTA") ;

return(0) ;

}

Appendix I

Graphical User Interfaces for Modules

I.1 Influence Exploration Tool

Figure I.1: Influence Explorer User Interface.

One potential application driven by the generation of module dependency graphs is the au-

tomatic creation of a simple influence exploration tool that can characterize circuit performances

given the input parameters of the module dependency graph. The input parameters are the mini-

mum number of parameters that has to be specified in order to fully evaluate the module depen-

dency graph. The input parameters are the set of graph nodes that has no incident arcs. This set

appears in the left pane of the interface window shown in Fig. I.1. The right pane shows all the per-

formances evaluated using values from the left pane. Some buttons exist, namely <Characterize>,

<CPU Time>, <Display>, <Cadence>, <Save Netlist> and <Exit>:

• <Characterize> button: evaluates the module dependency graphs for the values of the

input parameters given in the left pane. The graph can be evaluated in either the designer

mode or the simulator mode. It can generate the layout of the module after completing the

graph evaluation.

• <CPU Time> button: displays the time taken to evaluate the whole graph.

250 Graphical User Interfaces for Modules

• <Display> button: displays all DC and small signal parameters for the reference transistors

in all instantiated devices of the module.

• <Cadence> button: back-annotates the computed dimensions in the schematic view of the

module in Cadence.

• <Save Netlist> button: saves the sized hierarchical netlist of the module in spice format for

the used technology.

• <Exit> button: exits the interface.

An example code of an OTA amplifier for starting an influence exploration tool will be briefly

illustrated in Fig. I.3:

1. In line 1, the definition of the procedure called EXPLORER is started

2. In line 3, the start of an exploration section is marked.

3. In line 5, an influence explorer is allocated for use.

4. In line 7, all the input parameters with no incident arcs are added to the left pane of the

influence exploration tool.

5. In lines 9-17, all primary performances are asked to be computed using the procedure PER-

FORMANCES and added to the right pane of the influence exploration tool.

6. In lines 19-25, all secondary measurements are asked to be computed using the procedure

MEASURES and added to the right pane of the influence exploration tool.

7. In line 28, the name of a procedure is supplied to compute the small signal parameters. Here,

it has the name DISPLAY.

8. In line 29, display all the input and output parameters bound to the predefined CAIRO+

procedure ALL(VGS,W,L).

9. In line 30, display the main window of the influence exploration tool.

10. In line 32, release all resources used by the influence exploration tool.

11. In line 34, mark the end of an exploration section.

12. In line 36-40, if the <Exit> button was not pressed, the module dependency graph is re-

evaluated.

13. In line 42, the procedure returns a success code to the caller.

14. In line 44, the procedure definition ends.

I.2 Displaying Graphs Using GOBLIN 251

I.2 Displaying Graphs Using GOBLIN

Nodes

and

Rules

CAIRO+

Executable

pipe out

pipe in pipe out

pipe in

Nodes

and

Arcs

SGSL

SGSL

GOBLIN

Shared Library

SGSL : Small Graph Specification Language

CAIRO_DISPLAY_GRAPHS()

Directed Cycles

+

Detection Algorithm

Figure I.2: Architectural independence from graphical packages.

Numerous graph packages that deal with all of the standard graph optimization problem exist

in LGPL license. After studying many packages, we chose the GOBLIN project [Fremuth-Paeger].

The GOBLIN project consists of a C++ class library for a large series of graph optimization prob-

lems, called GOSH, an extension of the Tcl/Tk scripting language to graph objects, and GOBLET,

a graphical user interface to the library functions. GOBLET includes a graph editor and supports

the standard graph layout methods.

One potential problem is how to make CAIRO+ framework independent from the GOBLIN

architecture and internal data structures. To achieve this, an executable program is developed for

each independent graph package. This executable deals with the internal aspects of the package

like data structures, package API, algorithms, drawing, ... etc. In Fig. I.2, the executable links

to the shared library of GOBLIN and deals with GOBLIN graph manipulation details inside the

executable. The executable is expected to have two standard bidirectional pipes. The first pipe

send commands issued from CAIRO+ to the executable. The commands are issued using simple

graph commands that were defined for this purpose, called Small Graph Specification Language

(SGSL). The executable reads each command from its input pipe and executes a special routine

related to the command. The output of the command execution is sent to CAIRO+ through the

second pipe. Again, SGSL is used to specify the input to CAIRO+. The mechanism implements a

handshaking protocol between CAIRO+ and the executable. It is important to note that the graph

representation in CAIRO+ is at higher level of abstraction. It deals with dependency nodes and

dependency rules which are not supported by GOBLIN. The mechanism allows to map the nodes

and rules of the dependency graphs in CAIRO to the nodes and arcs in GOBLIN graphs.

As an example for implanting algorithms is shown in Fig. I.2, the direct cycles detection algo-

rithm [Tiernan70] was developed in the executable which deals with simple nodes and arcs. It is

called during dependency graph display. The detected directed cycles are sent back to CAIRO+

and mapped to the original dependency graph.

252 Graphical User Interfaces for Modules

1 CAIRO BEGIN PROCEDURE(”explorer”)

2

3 CAIRO BEGIN EXPLORE

4

5 CAIRO IE USE();

6

7 CAIRO IE ADD INDEPENDENT PARAMETERS();

8

9 // Performances

10 CAIRO IE ADD WATCH(”PERFORMANCES”,”AD0”);

11 CAIRO IE ADD WATCH(”PERFORMANCES”,”AC0”);

12 CAIRO IE ADD WATCH(”PERFORMANCES”,”ED0”);

13 CAIRO IE ADD WATCH(”PERFORMANCES”,”SNE 1HZ”);

14 CAIRO IE ADD WATCH(”PERFORMANCES”,”SNE FT”);

15 CAIRO IE ADD WATCH(”PERFORMANCES”,”PM”);

16 CAIRO IE ADD WATCH(”PERFORMANCES”,”SR”);

17 . . .

18

19 // Measures

20 CAIRO IE ADD WATCH(”MEASURES”,”CMRR”);

21 CAIRO IE ADD WATCH(”MEASURES”,”VICMMIN”);

22 CAIRO IE ADD WATCH(”MEASURES”,”VICMMAX”);

23 CAIRO IE ADD WATCH(”MEASURES”,”VOUTMIN”);

24 CAIRO IE ADD WATCH(”MEASURES”,”VOUTMAX”);

25 . . .

26

27 // Display IE

28 CAIRO IE SET DISPLAY WRAPPER(”DISPLAY”);

29 CAIRO IE SET DISPLAY FUNCTION(”ALL(VGS,W,L)”);

30 CAIRO IE DISPLAY(name);

31

32 CAIRO IE RELEASE();

33

34 CAIRO END EXPLORE

35

36 if (CAIRO IE EXIT == false)

37 {
38 CAIRO EXECUTE DESIGN PLAN();

39 . . .

40 }
41

42 CAIRO SET RETURN PROCEDURE(CP OK);

43

44 END PROCEDURE

Figure I.3: Example code for using an influence exploration tool.

Appendix J

Module Dependency Graphs of the Fully

Differential Transconductor

(GMD)

Subcircuit

Differential Transconductance

VOUT+ VOUT−VCMFB

V
D,M13

(CMC)

Feedback− Subcircuit

Common−Mode

V
REF

V
IN+ V

IN−

G,M4AP
V

V
IN+

V
IN−

V
D,M1AP

V

D,M1AN
VV

C

V
G,M2P V

G,M2PD,M3AP

V
G,M13

V
G,M12AP V

G,M12AN

V
G,M10AP

Amplifier Feedback

Subcircuit

(AMP)

V
D,M3AN

V
G,M4AN

V
C

V
G,M10AN

Amplifier Feedback

Subcircuit

(AMP)

Figure J.1: Hierarchy of subcircuits for the transconductor.

254 Module Dependency Graphs of the Fully Differential Transconductor

C1 C2 C3 C4 C5

35

33

32

31

30 1

40

36

3

5

7

14

16

18

23

25

27

34

37

38

41

42

43 29

26

24

22

21

20

17

15

13

11

10

9

6

4

2

0 8

12

19

2854

48

49

47

45

39

44

46

50

51

52

53

GMD/IDS_M1AP

GMD/VEG_M2P

GMD/L_M9AP

GMD/L_M2P

GMD/L_M1AP

GMD/TEMP

veg_m2p

l_m2p

temp

ids_m1ap

l_m1ap

ids_m9ap

l_m9ap

GMD/VINCM

GMD/VCMFB

GMD/VSS

GMD/VDD

GMD/VC

GMD/VOUTCM

MTR_M2P_M2N/TEMP

MTR_M2P_M2N/L

MTR_M2P_M2N/VEG

MTR_M2P_M2N/IDS

vcmfb

vdd

vss

vc

vincm

voutcm

DP_M1AP_M1AN/TEMP

DP_M1AP_M1AN/L

DP_M1AP_M1AN/IDS

M2P,M2N/TEMP

M2P,M2N/L

M2P,M2N/VEG

M2P,M2N/IDS

M2P,M9AP/VD

DP_M9AP_M9AN/VD

DP_M9AP_M9AN/TEMP MTR_M2P_M2N/VD

DP_M9AP_M9AN/L

M1AP,M1AN/VB,VS

M2P/VB

MTR_M2P_M2N/VB

DP_M1AP_M1AN/VB,VS

DP_M9AP_M9AN/IDS

DP_M1AP_M1AN/VD
MTR_M2P_M2N/VS

M1AP/VD
M2P/VS

M9AP,M9AN/TEMP

M9AP,M9AN/L

M9AP,M9AN/IDS

M9AP/VB,VS

DP_M9AP_M9AN/VB,VS

M9AP/VG

DP_M9AP_M9AN/VG

M1AP,M1AN/IDS

M1AP,M1AN/L

M1AP,M1AN/TEMP

DP_M1AP_M1AN/VG

M1AP/VG

M2P,M2N/W

M1AN,M1AP/W

DP_M1AP_M1AN/W

OPVG(VEG,VB)

OPVG(VEG,VB)

OPW(VG,VS)

OPW(VG,VS)

DP_M9AP_M9AN/W
M9AP,M9AN/W

MTR_M2P_M2N/VG

M2P,M2N/VG

NI(IDS_M1AP)

Figure J.2: Module dependency graph of GMD of the fully differential transconductor in designer mode:

(a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter

mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is

a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

255

35

34

33

30

9

11

13

15

36

41

43

40

39

38

29

28

27

26

18

17

14

12

10

8

1

2

3

4

5

6

20

21

22

23

24 31

25

19

16

7

0

50

45

44

37

49

32

48

47

46

42

CMC/IBIAS

CMC/TEMP

DP_M11AN_M11BN/TEMP
DP_M11AP_M11BP/TEMP

CMC/VREF

l_m11ap

CMC/VEG_M11AP

temp

ids_m11ap

veg_m11ap

CMC/L_M11AP

CMC/VDD

DP_M11AP_M11BP/IDS
DP_M11AN_M11BN/IDS

DP_M11AN_M11BN/L
DP_M11AP_M11BP/L

DP_M11AP_M11BP/VEG

vref

vdd

CMC/VEG_M12AP

CMC/L_M12AP

CMC/L_M13

CMC/VSS
veg_m13

ids_m13

l_m13

veg_m12ap

ibias

l_m12ap

vss

M11AP,M11BP/TEMP

M11AP,M11BP/L

M11AP,M11BP/IDS

M11AP,M11BP/VEG

M11BP/VG

DP_M11AP_M11BP/VG

DP_M11AP_M11BP/VD

M13/VS,VB

DP_M11AN_M11BN/VG

M13/VG

M13/W

M12AP/W
M12AN/W

M12AN/VG
M12AP/VG

M11AP,M11BP/W

DP_M11AP_M11BP/W

M13/VEG

M13/L

M13/IDS

M13/TEMP

M12AN,M12AP/VS,VB

DP_M11AP_M11BP/VS,VB
DP_M11AN_M11BN/VS,VB

M12AP,M12AN/VD

M12AP,M12AN/IDS

M12AP,M12AN/TEMP

M12AP,M12AN/L

M12AP/VEG

NI(IBIAS)

IDS_M11AP(IBIAS)

OPVG(VEG)

OPVG(VEG)

OPVS(VEG)
OPVS(VEG)

OPVG(VEG)

OPVG(VEG)

C1 C2 C3 C4 C5 C6

CMC/VEG_M13

CMC/VCMFB

Figure J.3: Module dependency graph of CMC of the fully differential transconductor in designer mode:

(a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter

mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is

a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

256 Module Dependency Graphs of the Fully Differential Transconductor

C1 C2 C3 C4 C5 C6 C7 C8 C9

78 18 70 1

81

82

102

108

107

105

101

99

97

94

90

89

80

77

74

71

3

5

7

14

16

73

20

75

76

79

86

87

88

91

92

103

106

72

69

68

59

57

55

53

32

30

28

26

23

22

19

17

15

13

11

10

9

6

4

2

0

12 34

8

35

24

21

37
27

25

29

3339

31

36

42

41
38

40 44

43

46 50

45

47

49

48

61

51

52

54

63 60

56

58
64

62

65

83

84

85 66 67

95

96

109

104

110 100

93

98

AMP/VEG_M8BP veg_m8bp MTR_M8BP_M8AP/VEG

MTR_M8BP_M8AP/VD

DP_M6BP_M6AP/VG

DP_M3BP_M3AP/VD

AMP/ICBIAS

AMP/TEMP

AMP/ISBIAS

AMP/L_M4BP

AMP/L_M8BP

AMP/VEG_M4BP

isbias

temp

ids_m6bp

l_m8bp

AMP/Q

l_m4bp

veg_m4bp

AMP/VDD

AMP/L_M7BP

AMP/VSS

AMP/L_M3BP

AMP/VC

AMP/VEG_M3BP

MTR_M4BP_M4AP/TEMP

MTR_M4BP_M4AP/L

MTR_M4BP_M4AP/VEG

MTR_M8BP_M8AP/TEMP

MTR_M8BP_M8AP/IDS

MTR_M8BP_M8AP/L

vdd

veg_m7bp

l_m7bp

ids_m3bp

l_m3bp

veg_m3bp

vc

AMP/L_M5BP

AMP/L_M6BP

AMP/VEG_M5BP

vss

M4BP/W
M4AP/W

M8AP/W
M8BP/W

M7AP/W
M7BP/W

M5AP/W
M5BP/W
DP_M5BP_M5AP/W

M5BP/VG
DP_M5BP_M5AP/VG

M3AP/W
M3BP/W
DP_M3BP_M3AP/W

M10AP/VG

M10AP/W

AMP/L_M10AP

l_m6bp

veg_m5bp

l_m5bp

DP_M3BP_M3AP/L

DP_M3BP_M3AP/VEG

DP_M3BP_M3AP/IDS

DP_M3BP_M3AP/TEMP

MTR_M7BP_M7AP/VEG

MTR_M7BP_M7AP/L

M6BP/VD

M3BP,M3APVD

MTR_M8BP_M8AP/VS

M8BP/VS
DP_M6BP_M6AP/VD

M8BP,M8AP/IDS

M4BP,M4AP/TEMP

M4BP,M4AP/L

M4BP,M4AP/VEG

MTR_M4BP_M4AP/IDS

M4BP,M4AP/IDS

M8BP,M8AP/L

M8BP,M8AP/VEG

M8BP,M8AP/TEMP

M5BP/VB,VS, ... etc

M3BP,M3AP/VB
M4BP/VD M10AP/VS,VB

MTR_M8BP_M8AP/VD
DP_M6BP_M6AP,M6BP/VG

DP_M3BP_M3AP/VD
M8BP/VD

M8BP/VS, ... etc

MTR_M4BP_M4AP/VS
MTR_M7BP_M7AP/VD
DP_M3BP_M3AP/VG
M7BP/VD
M3BP/VG
M4BP/VS

M7BP/VS
M5BP/VD
MTR_M7BP_M7AP/VS

MTR_M5BP_M5AP/VD

MTR_M7BP_M7AP/VG
MTR_M8BP_M8AP/VG
M8BP/VG
M7BP/VG

M7BP,M7AP/L

M7BP,M7AP/VEG

M7BP,M7AP/IDS

DP_M6BP_M6AP/TEMP

DP_M6BP_M6AP/L

DP_M6BP_M6AP/IDS

DP_M5BP_M5AP/TEMP

DP_M5BP_M5AP/L

DP_M5BP_M5AP/VEG

MTR_M7BP_M7AP/IDS
DP_M5BP_M5AP/IDS

M3AP,M3BP/TEMP

M3AP,M3BP/L

M3AP,M3BP/VEG

M3AP,M3BP/IDS

AMP/VEG_M10AP

l_m10ap

icbias

veg_m10ap M10AP/VEG

M10AP/L

M10AP/IDS

M10AP/TEMP

M3BP/VS
M10AP/VD
DP_M3BP_M3AP/VS

M5AP,M5BP/IDS

M5AP,M5BP/VEG

M5AP,M5BP/L

M5AP,M5BP/TEMP

M6BP,M6AP/IDS

M6BP,M6AP/L

OPVS(VEG,VB)

OPVS(VEG,VB)

M7BP,M7AP/TEMP

OPVG(VEG,VB) M6BP,M6AP/TEMP

OPVG(VEG,VB)

OPVS(VEG,VB)

OPVS(VEG,VB)

OPW(VG,VS)

DP_M6BP_M6AP/W
M6BP/W
M6AP/W

OPVG(VEG)

OPVG(VEG)

OPVS(VEG,VB)

OPVS(VEG,VB)

OPVG(VEG)

OPVG(VEG)

MTR_M4BP_M4AP/VD

IDS_M3BP(ICBIAS)AMP/VEG_M7BP

IDS_M6BP(ICBIAS)

vs_m8bp

VD_M6BP(VEG_M8BP)

MTR_M7BP_M7AP/TEMP

111AMP/VD_M3BP

Figure J.4: Module dependency graph of AMP of the fully differential transconductor in designer mode:

(a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter

mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is

a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

257

C3C1 C2 C4 C5

35

37

39

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62 33

32

30

31

29

28

24

27

26

25

23

22

21

19
20

18

17

16

13

15

14

12

11

10

9

8

6

5

4

3

2

1 0

7

38

36

34

OPIDS(VG,VS)

OPIDS(VG,VS)

OPIDS(VG,VS,VB)

OPIDS(VG,VS,VB)

OPIDS(VG,VS)

OPIDS(VG,VS)

GMD/VOUT

GMD/VS_M2N

GMD/VS_M2P

GMD/VINN

GMD/VINP

GMD/L_M2N

GMD/W_M2N

GMD/L_M2P

GMD/W_M2P

GMD/W_M1AP

GMD/L_M1AP

GMD/W_M1AN

GMD/L_M1AN

GMD/VG_M2P

GMD/VG_M2N

GMD/VCMFB

GMD/L_M9AN

GMD/W_M9AN

GMD/L_M9AP

GMD/W_M9AP

GMD/TEMP

GMD/VDD

GMD/VSS

vcmfb

vout

vdd

w_m9ap

l_m9ap

w_m9an

l_m9an

vg_m2p

vs_m2p

vss

w_m2p

l_m2p

vg_m2n

vs_m2n

l_m2n

w_m2n

l_m1an

w_m1an

vinn

temp

l_m1ap

w_m1ap

vinp

M1AN/IDS

M1AP/IDS

M2N/IDS

M2P/IDS

M9AN/IDS

M9AP/IDS

M9AP/W

M9AP/L

M9AP/TEMP

M9AN/W

M9AP,M9AN/VG

M9AP,M9AN/VS,VB

M9AN/L

M9AN/TEMP

M2P/W

M2P/VG

M2P/L

M2P/TEMP

M2N/W

M2N/VG

M2P,M2N/VD
M9AP,M9AN/VD

M2N/TEMP

M2N/L

M1AP/W

M1AP/VG

M1AP/VD
M2P/VS

M1AP/L

M1AP/TEMP

M1AN/W

M1AN/L

M1AN/TEMP

M1AN/VG

M1AN/VD
M2N/VS

M1AP,M1AN/VS,VB
M2N,M2P/VB

NRC

NRC

NRC VOUT’

VS_M2N’

VS_M2P’

Figure J.5: Module dependency graph of GMD of the fully differential transconductor in simulator mode:

(a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter

mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is

a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

258 Module Dependency Graphs of the Fully Differential Transconductor

OPIDS(VG,VS)

OPIDS(VG,VS)

OPIDS(VG,VS,VB)

OPIDS(VG,VS,VB)

OPIDS(VG,VS,VB)

OPIDS(VG,VS,VB)

OPIDS(VG,VS)

VCMFB’

CMC/VCMFB

CMC/VS_M11AN

CMC/VS_M11AP

CMC/VINN

CMC/VINP

CMC/VG_M12AN

CMC/VG_M12AP

CMC/VG_M13

CMC/L_M12AN

CMC/W_M12AN

CMC/TEMP

CMC/VREF

CMC/VSS

CMC/VDD

CMC/W_M13

CMC/L_M13

CMC/W_M11AP

CMC/L_M11AP

CMC/W_M11BP

CMC/L_M11BP

CMC/W_M11AN

CMC/L_M11AN

CMC/W_M11BN

CMC/L_M11BN

CMC/W_M12AP

CMC/L_M12AP

vcmfb

vg_m13

vdd

w_m13

l_m13

vinp

vss

vs_m11ap

w_m11ap

l_m11ap

vref

w_m11bp

l_m11bp

vs_m11an

w_m11an

vinn

l_m11an

w_m11bn

l_m11bn

w_m12ap

l_m12ap

vg_m12ap

temp

vg_m12an

l_m12an

w_m12an

M12AN/IDS

M12AP/IDS

M11BN/IDS

M11AN/IDS

M11BP/IDS

M11AP/IDS

M13/IDS

M13/W

M13/L

M13/VG

M13/TEMP

M11AP/W

M11AP/VG

M11AP/L

M11AP/TEMP

M11BP/W

M11BP/L

M11BP/TEMP

M11AN/W

M11AN,M11BP/VG

M13,M11BP,M11AN/VD

M11AN/L

M11AN/TEMP

M11BN/W

M11BN/VG

M13/VS,VB
M11AP,M11BN/VD

M11BN/L

M11BN/TEMP

M12AP/W

M12AP/VG

M12AP/L

M12AP/VD
M11AP,M11BP/VS

M12AP/TEMP

M12AN/W

M12AN/TEMP

M12AN/L

M12AN/VG

M11AN,M11BN/VS
M12AN/VD

M12AP,M12AN/VB,VS
M11BN,M11BP/VB
M11AN,M11AP/VB

NRC

NRC

NRC

VS_M11AN’

VS_M11AP’34

29

25

19

13

7

01

2

3

4

5

6

8

9

10

12

11

14

15

16

17

18

20

21

22

23

24

26

27

28

30

31

32

33

35

36

37

3870

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

40

42

44

74

73

72

71

76

75

77

78

79

80

81

82

83

84

85

86

87

93

92

91

90

89

88

39

41

43

C1 C2 C3 C4 C5

Figure J.6: Module dependency graph of CMC of the fully differential transconductor in simulator mode:

(a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter

mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is

a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

259

NRC

NRC

NRC

NRC

NRC

AMP/VD_M3BP

AMP/VS_M3BP

AMP/VD_M3AP

AMP/VS_M4BP

AMP/VS_M4AP

AMP/L_M3AP

AMP/VSS

AMP/W_M3AP

AMP/TEMP

AMP/W_M3BP

AMP/L_M3BP

AMP/W_M4BP

AMP/L_M4BP

AMP/W_M4AP

AMP/L_M4AP

AMP/VDD

AMP/VG_M4AP

AMP/VC

vs_m4bp

vs_m4ap

vss

vd_m3bp

vd_m3ap

vs_m3bp

w_m3bp

l_m3bp

temp

l_m3ap

w_m3ap

AMP/L_M7BP

AMP/W_M7BP

AMP/W_M8BP

AMP/L_M8BP

AMP/W_M8AP

AMP/L_M8AP

AMP/W_M7AP

AMP/L_M7AP

AMP/VG_M7BP

vdd

vc

l_m4ap

w_m4ap

vg_m4ap

l_m4bp

w_m4bp

M3BP/W

M6AP,M6BP/VG

M8BP,M3BP/VD

M3BP/L

M3BP/TEMP

M3AP/W

M8AP,M3AP/VD

M3AP/L

M3AP/TEMP

M3BP,M3AP/VS
M10AP/VD

M10AP/IDS

M5AP/IDS

M6AP/IDS

M6BP/IDS

M5BP/IDSM5BP/W

M5BP/L

M5BP/TEMP

M6BP/W

M6BP/L

M6BP/TEMP

M6AP/W

M6AP/L

M6AP/TEMP

M5AP/W

M5BP,M5AP/VG

M5AP/L

M5AP/TEMP

M5BP/VD
M7BP/VS

M6BP/VD
M8BP/VS

M8AP/VS
M6AP/VD

M5AP/VD
M7AP/VS

M10AP/W

M10AP/VG

M10AP/L

M10AP/TEMP

M4AP/IDS
M7AP/IDS

M7AP/TEMP

M7AP/L

M8AP,M8BP/VG

M7BP,M7AP/VG

M8AP/TEMP

M7AP/W

M8AP/IDS

M8AP/L

M8AP/W

M8BP/TEMP

M8BP/IDS

M8BP/L

M8BP/W

M7BP/TEMP

M7BP/L

M7BP/W

l_m10ap

w_m10ap

vg_m10ap

l_m6ap

w_m6ap

l_m6bp

w_m6bp

w_m5ap

l_m5ap

w_m5bp

l_m5bp

vg_m5bp

AMP/W_M5BP

AMP/L_M5BP

AMP/W_M6BP

AMP/L_M6BP

AMP/W_M5AP

AMP/L_M5AP

AMP/L_M6AP

AMP/W_M6AP

AMP/W_M10AP

AMP/L_M10AP

VG_M5BP

VG_M10AP

l_m7ap

w_m7ap

l_m7bp

w_m7bp

vg_m7bp

w_m8bp

l_m8bp

l_m8ap

w_m8ap

M3BP/IDS

M3AP/IDS

M4BP/W

M4BP/VG

M4BP/L

M4BP/TEMP

M4AP/W

M4AP/TEMP

M4AP/L

M5BP,M5AP/VS,VB
M6BP,M6AP/VS,VB
M7BP,M7AP/VB
M4BP,M4AP/VB
M8BP,M8AP/VB

M4AP/VG

M4BP/VS
M3BP/VG
M7BP/VD

M4AP/VS
M3AP/VG
M7AP/VD

M4BP,M4AP/VD
M3AP,M3BP/VB

M10AP,VB,VS

OPIDS(VG,VS)

OPIDS(VG,VS,VB)

OPIDS(VG,VS,VB)

M4BP/IDS
M7BP/IDS

OPIDS(VG,VS,VB)

OPIDS(VG,VS,VB)

OPVS(VG,VB,W)

OPVS(VG,VB,W)

OPVS(VG,VB,W)

OPVS(VG,VB,W)

OPIDS(VG,VS)

OPIDS(VG,VS)

OPIDS(VG,VS)

OPIDS(VG,VS)

VS_M4BP’

VD_M3BP’

VD_M3AP’

VS_M3BP’

146

67

69

71

73

75

120

124

125

126

148

127

131

130

129

128

121

118

119

107

104

100

94

87

84

83

82

81

80

79

3

4

11

113

101

99

98

97

96

95

29

28

27

26

24

23

22

21

17

138

139

137

136

135

134

133

132

116

8

10

12

13

15

16

18

19

20

25

85

86

88

89

102

103

105

106

108

117

115

122

123

142

143

144

145

147

7

14

31

32

33

34

36

37

38

39

114

112

111

110

109

93

92

91

90

78

77

76

48

47

46

44

43

42

41

1

2

5

6

30

35

40

45

50

51

52

53

55

56

57

59

60

61

63

64

65

58

54

49

0

62

74

72

70

68

66

140

141

9

C1 C2 C3 C4 C5 C6 C7 C8

Figure J.7: Module dependency graph of AMP of the fully differential transconductor in simulator mode:

(a) Rectangles are amplifier parameters, (b) Thin circles are variables and parameters used for parameter

mapping, (c) bold circles with arrows are operators, (d) Thin circles with arrows are DDPs. Each node is

a represented by a triplet (column, name, index). Device connectors, equipotentials and weights are not

shown for clarity.

List of Publications

The following publications can be downloaded from: http://www-asim.lip6.fr/publications/.

Methodology and CAD Tools

• Ramy Iskander, Marie-Minerve Louërat and Andreas Kaiser, ”Automatic DC Operating

Point Computation and Design Plan Generation for Analog IPs”, Analog Integrated Circuits

and Signal Processing Journal., Vol. 56, No. 1-2, pp. 93-105, August 2008.

• Ramy Iskander, Marie-Minerve Louërat and Andreas Kaiser, ”Computing Systematic Offset

in Amplifiers Using Hierarchical Graph-Based Sizing and Biasing”, The 19th IEEE Interna-

tional Conference on MicroElectronics (ICM’07), pp. Cairo, Egypt, December 2007.

• Ramy Iskander, Marie-Minerve Louërat and Andreas Kaiser, ”Détection et évaluation des

tensions de décalage d’un circuit analogique”, 8ème Colloque sur le Traitement Analogique de

l’Information, du Signal et ses Applications (TAISA’07), Lyon, France, Octobre 2007.

• Ramy Iskander, Marie-Minerve Louërat and Andreas Kaiser, ”Systematic Offset Detection

and Evaluation Using Hierarchical Graph-Based Sizing and Biasing”, The 14th IEEE Interna-

tional Conference on Electronics, Circuits and Systems (ICECS’07), Marrakech, Morocco, Decem-

ber 2007,.

• Ramy Iskander, Dimitri Galayko, Marie-Minerve Louërat and Andreas Kaiser, ”Knowledge-

Aware Synthesis of Analog Cells using Hierarchical Graph-Based Sizing and Biasing, The

50th IEEE MidWest Symposium on Circuits and Systems (MWSCAS07), Québéc, Canada, Au-

gust 2007.

• Ramy Iskander, Dimitri Galayko, Marie-Minerve Louërat et Andreas Kaiser, ”Connaissance

et Optimisation pour la Synthése Analogique”, 1er Colloque National du GDR SOC-SIP, Paris,

France, Juin 2007.

• Ramy Iskander, Marie-Minerve Louërat and Andreas Kaiser, ”Hierarchical Graph-Based Siz-

ing for Analog Cells Through Reference”, IEEE Ph.D. Research in Microelectronics and Electron-

ics (PRIME’06), Otronto, Italy, June 2006. Winner of the Bronze Leaf Certificate.

LIST OF PUBLICATIONS 261

• Ramy Iskander, Marie-Minerve Louërat et Andreas kaiser, ”Dimensionnement automatique

d’un circuit analogique à l’aide des transistors de référence”, 7ème Colloque sur le Traitement

Analogique de l’Information, du Signal et ses Applications (TAISA’06), Strasbourg, France, Octo-

bre 2006.

• Ramy Iskander, Marie-Minerve Louërat and Andreas Kaiser, ”Automatic Biasing

Point Extraction and Design Plan Generation for Analog IPs”, 48th IEEE MidWest

Symposium on Circuits and Systems (MWSCAS’05), Cincinnati, Ohio USA, August 2005.

Selected for Publication in Analog Integrated Circuits and Signal Processing Journal.

• Ramy Iskander, Laurent de Lamarre, Pierre Nguyen Tuong, Andreas Kaiser et Marie-

Minerve Louërat, ”Synthése d’un IP Amplificateur Analogique CMOS avec CAIRO+”, 6éme

Colloque sur le Traitement Analogique de l’Information, du Signal et ses Applications (TAISA’05),

Marseille, France, Octobre 2005.

• Ramy Iskander, Laurent de Lamarre, Andreas Kaiser and Marie-Minerve Louërat, ”Design

Space Exploration for Analog IPs using CAIRO+”, The International Conference on Electrical

Electronic and Computer Engineering 2004 (ICEEC’04), pp. 473-476, Cairo, Egypt, September

2004.

Additional Publications

• Dimitri Galayko, Ramy Iskander, Marie-Minerve Louërat et Alain Greiner, ”Réutilisation et

migration d’amplificateurs avec CAIRO+”, Coordination Nationale pour la Formation en Micro-

nanoélectronique (CNFM’06), Saint Malo, France, Novembre 2006.

• Ramy Iskander, Mohamed Dessouky, Maie Aly, Mahmoud Magdy, Noha Hassan, Noha Soli-

man, and Sami Moussa, ”Synthesis of CMOS Analog Cells Using AMIGO”, Design Automa-

tion and Test in Europe (DATE’03), vol. 02, no. 2, pp. 20297-20302, Messe Munich, Germany,

March 2003.

• Aida El-Sabban, Ramy Iskander, Hisham Haddara, and Hani Ragai, ”GA-Based Analog Syn-

thesis of CMOS Power Amplifiers in the 2.45 GHz Band”, Mediterranean Microwave Sympo-

sium (MMS’03), Cairo, Egypt, May 2003.

• Ramy Iskander, Somaya Kayed and Hany Ragai, ”Study of Technology Migration on 2nd

Generation Current Conveyors Performance, IEEE 44th MidWest Symposium On Circuits And

Systems (MWSCAS’01), Vol. 01, pp. 286-289, Dayton, Ohio, August 2001.

Bibliography

[Aboushady01] H. Aboushady and M.-M. Louërat. Low-power design of low-voltage

current-mode integrators for continuous-time ∆Σ modulators. Proc. IEEE

Int. Symposium on Circuits and Systems, pages 276–279, May 2001.

[Acosta02] R. Acosta, F. Silveira, and P. Aguirre. Experiences on analog circuit technol-

ogy migration and reuse. Proc. of the 15th Symposium on integrated circuits and

Systems Design, pages 169–174, September 2002.

[Balarin03] F. Balarin, Y. Watanabe, and et al. Metropolis: An integrated electronic system

design environment. Computer, 36(4):45–52, April 2003.

[Banu88] M. Banu, J. M. Khoury, and Yannis Tsividis. Fully differential operational

amplifiers with accurate output balancing. IEEE J. of Solid-State Circuits,

23(6):1410–1414, December 1988.

[Bernardinis03] F. De Bernardinis, M. Jordan, and A. Sangiovanni Vincentelli. Support vector

machines for analog circuit performance representation. Proc. Design Automa-

tion Conf., pages 964–969, 2003.

[Bernardinis04] F. De Bernardinis, S. Gambini, F. Vincis, F. Svelto, R. Castello, and

A. Sangiovanni-Vincentelli. Design space exploration for a UMTS front end

exploiting analog platforms. Proc. IEEE Int. Conf. on Computer-Aided-Design,

pages 923–930, 2004.

[Bernardinis05a] F. De Bernardinis, P. Nuzzo, and A. Sangiovanni-Vincentelli. Mixed signal

design space exploration through analog platforms. Proc. Design Automation

Conf., pages 875–880, 2005.

[Bernardinis05b] F. De Bernardinis and A. Sangiovanni Vincentelli. Efficient analog platform

characterization through analog constraint graphs. Proc. IEEE Int. Conf. on

Computer-Aided-Design, pages 415–421, 2005.

[Binkley03] D. M. Binkley, C. E. Hopper, S. D. Tucker, B. C. Moss, J. M. Rochelle, and

D. P. Foty. A CAD methodology for optimizing transistor current and sizing

264 BIBLIOGRAPHY

in analog CMOS design. IEEE Trans. Computer-Aided Design, 22(2):225–237,

February 2003.

[Boser92] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. Proc. 5th Annu. ACM Workshop COLT, D. Haussler, Ed.,

pages 144–152, 1992.

[Bourguet04] V. Bourguet, L. de Lamarre, and M. M. Louërat. A layout-educated ana-

log design flow. The 47th IEEE Midwest Symposium on Circuits And Systems,

1(I):485–488, July 2004.

[Brayton81] R. Brayton, D. Hachtel, and A. Sangiovanni-Vincentelli. A survey of op-

timization techniques for integrated circuits. IEEE Press, 69(10):1334–1362,

1981.

[Brooks99] B. Brooks. Standardizing compact models for IC simulation. IEEE Circuits

and Devices Magazine, 15(4):10–13, July 1999.

[Carley90] Richard L. Carley. Automated design of operational amplifires: A case study.

In Mohammed Ismail and José Franca, editors, Introduction to Analog VLSI

Design Automation, pages 45–78. Kluwer Academic Publishers, 1990.

[Carley93] L. R. Carley, P. C. Maulik, E. S. Ochotta, and R. A. Rutenbar. Analog Cell-Level

Synthesis Using a Novel Problem Formulation. Advances in Analog Circuit Design.

Kluwer Academic Publishers, 1993.

[Chamla05] David Chamla, Andreas Kaiser, Andreia Cathelin, and Didier Belot. A Gm−C

low-pass filter for zero-IF mobile applications with very wide tuning range.

IEEE J. of Solid-State Circuits, 40(7):1443–1450, July 2005.

[Chan87] T. Y. Chan, J. Chen, P. K. Ko, and C. Hu. Impact of gate-induced dain leakage

current on device scaling. IEDM Tech. Dig., pages 718–721, 1987.

[Chang97] H. Chang, E. Charbon, U. Choudhury, A. Casotto, and A. Sangiovanni-

Vincentelli. A top-down constrained-driven design methodology for analog inte-

grated circuits. Kluwer Academic Publishers, 1997.

[Chatterjee05] S. Chatterjee, Y. Tsividis, and P. Kinget. 0.5-V analog circuit techniques and

their application in OTA and filter design. IEEE J. of Solid-State Circuits,

40(12):2373– 2387, December 2005.

[Cheng99] Y. Cheng and C. Hu. MOSFET Modeling and BSIM3 User’s Guide. Kluwer

Academic Publishers, 1999.

BIBLIOGRAPHY 265

[Ciranova] Ciranova. http://www.ciranova.com/ .

[Coello00] Carlos A. Coello. An updated survey of GA-based multiobjective optimiza-

tion techniques. ACM Computing Surveys, 32(2):109–143, 2000.

[Coughran83] W. M. Coughran, E. Grosse, and D. J. Rose. CAzM: A circuit analyzer with

macromodeling. IEEE Trans. on Electron Devices, 30(9):1207– 1213, September

1983.

[de Lamarre02] L. de Lamarre. CAIRO+ : Intégration du modèle BSIM3V3, stage de DEA. Uni-

versité Pierre et Marie Curie, Lab. LIP6, dept. SOC, Paris, 2002.

[DeGrauwe84a] M. DeGrauwe and W. M. Sansen. A synthesis program for operational am-

plifiers. Proc. IEEE Int. Solid State Circuit Conf., pages 18–19, 1984.

[DeGrauwe84b] M. G. R. DeGrauwe and W. M. C. Sansen. The current efficiency of MOS

transconductance amplifiers. IEEE J. of Solid-State Circuits, SC-19(3), June

1984.

[DeGrauwe87a] M. G. DeGrauwe and et al. An Analog Expert Design System. Proc. IEEE Int.

Solid State Circuit Conf., 1987.

[DeGrauwe87b] M. G. R. DeGrauwe, E. Dijkstra O. Nys, J. Rijmenants, S. Bitz, B. L. A. G.

Goffart, E. A. Vittoz, S. Cserveny, C. Meixenberger, G. van der Stappen, and

H. J. Oguey. IDAC: An Interactive Design Tool for Analog CMOS Circuits.

IEEE J. of Solid-State Circuits, SC-22(6):1106–1116, December 1987.

[Degrauwe87c] Marc G. R. Degrauwe and et. al. IDAC: An Interactive Design Tool for Ana-

log CMOS Circuits. IEEE J. of Solid-State Circuits, 22(6):1106–1115, December

1987.

[DeGrauwe89] M. G. R. DeGrauwe, B. L. A. G. Goffart, C. Meixenberger, M. L. A. Pierre,

J. B. Litsios, J. Rijmenants, O. J. A. P. Nys, E. Dijkstra, B. Joss, M. K. C. M.

Meyvaert, T. R. Schwarz, and M. D. Pardeon. Towards an analog system

design environment. IEEE J. of Solid-State Circuits, SC-24(3):659–672, June

1989.

[Dessouky01] M. Dessouky. Design for Reuse of Analog Circuits. Case Study : Very Low-Voltage

∆Σ Modulator. PhD thesis, Université Pierre et Marie Curie, Lab. LIP6, Paris,

2001.

[Doboli03] A. Doboli and R. Vemuri. Behavioral modeling for high-level synthesis of

analog and mixed-signal systems from VHDL-AMS. IEEE Trans. Computer-

Aided Design, 22(11):1504–1520, November 2003.

266 BIBLIOGRAPHY

[Duvvury86] C. Duvvury. A guide to short channel effects in MOSFETs. IEEE Circuits and

Systems Magazine, page 6, 1986.

[Foty97] D. Foty. MOSFET modelling with SPICE, Principales and Practices. Prentice-

Hall, 1997.

[Fremuth-Paeger] C. Fremuth-Paeger. http://www.math.uni-augsburg.de/ fremuth/goblin.html.

[Galup-Montoro00] C. Galup-Montoro and M. C. Schneider. Resizing rules for the reuse of MOS

analog design. Proc. of the 15th Symposium on integrated circuits and Systems

Design, pages 89–93, September 2000.

[Galup-Montoro02] C. Galup-Montoro, M. C. Schneider, and R. M. Coitinho. Resizing rules for

MOS analog-design reuse. IEEE Design and Test of Computers, 19(2):50–58,

March-April 2002.

[Gielen89] G. E. Gielen, H. C. C. Walscharts, and W. M. C. Sansen. ISAAC: A symbolic

simulator for analog circuits. IEEE J. of Solid-State Circuits, 24(6):1587–1597,

December 1989.

[Gielen90a] G. E. Gielen. Design Automation for Analogue Integrated Circuits. PhD thesis,

Katholieke Universiteit Leuven, October 1990.

[Gielen90b] G. E. Gielen, H. C. Walscharts, and W. C. Sansen. Analog circuit design op-

timization based on symbolic simulation and simulated annealing. IEEE J. of

Solid-State Circuits, 25(3):707–713, June 1990.

[Gielen91] G. E. Gielen and W. Sansen. Symbolic Analysis for Automated Design of Analog

Integrated Circuits. Kluwer Academic Publishers, 1991.

[Gielen93] George Gielen, Koen Swings, and Willy Sansen. Open analog synthesis sys-

tem based on declarative methods. In Johan H. Huijsing, Rudy J. van der

Plassche, and Willy Sansen, editors, Analog Circuit Design: Operational Am-

plifiers, Analog to Digital Converters and Analog Computer Aided Design, pages

421–445. Kluwer Academic Publishers, 1993.

[Gielen94] G. Gielen, P. Wambacq, and W. Sansen. Symbolic analysis methods and ap-

plications for analog circuits: A turotial overview. IEEE Press, 82(2):287–304,

February 1994.

[Gielen95] Georges Gielen, Geert Debyser, Piet Wambacq, Koen Swings, and Willy

Sansen. Use of symbolic analysis in analog circuit synthesis. In ?, pages

2205–2208, February 1995.

BIBLIOGRAPHY 267

[Gielen00] G. Gielen and R. Rutenbar. Computer-aided design of analog and mixed-

signal integrated circuits. IEEE Press, 88(12):1825–1854, December 2000.

[Graeb01] H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich. The sizing rules method

for analog integrated circuit design. Proc. IEEE Int. Conf. on Computer-Aided-

Design, pages 343–349, November 2001.

[Guindi95] R. S. Guindi and M. I. Elmasry. High-level analog synthesis using signal flow

graph transformations. IEEE Press, pages 366–369, September 1995.

[Hamour03] A. Hamour, R. Saleh, S. Mirabbasi, and A. Ivanov. Analog IP design flow for

SoC applications. Proc. IEEE Int. Symposium on Circuits and Systems, IV:676–

679, 2003.

[Hanafi93] H. Hanafi. A model for anomalous short channel behavior in MOSFETs. IEEE

Electron Device Letters, EDL-14:575, 1993.

[Harjani87] R. Harjani, R. A. Rutenbar, and L. R. Carley. A prototype framework for

knowledge-based analog circuit synthesis. Proc. Design Automation Conf.,

pages 42–49, June 1987.

[Harjani88] R. Harjani, R. A. Rutenbar, and L. R. Carley. Analog circuit synthesis for per-

formance in oasys. Proc. IEEE Int. Conf. on Computer-Aided-Design, November

1988.

[Harjani89a] R. Harjani. OASYS: A Framework for Analog Circuit Synthesis. PhD thesis,

Carnegie Mellon University, Pittsburgh PA, March 1989.

[Harjani89b] R. Harjani, R. A. Rutenbar, and L. R. Carley. OASYS: A framework for analog

circuit synthesis. IEEE Trans. Computer-Aided Design, 8(12):1247–1266, Decem-

ber 1989.

[Harvey92] J. P. Harvey, M. I. Elmasry, and B. Leung. STAIC: An interactive framework

for synthesizing CMOS and BiCMOS analog circuits. IEEE Trans. Computer-

Aided Design, CAD-11(11):1402–1418, November 1992.

[Ho83] C. W. Ho, A. E. Ruehli, and P. A. Brennan. The modified nodal approach

to network analysis. IEEE Trans. on Circuits and Systems, 22(6):504–509, June

1983.

[Hsueh88] K. K. Hsueh, J. J. Sanchez, T. A. Demassa, and L. A. Akers. Inverse-narrow-

width effects and small geometry MOSFET threshold voltage model. IEEE

Trans. on Electron Devices, ED-35:325–338, 1988.

268 BIBLIOGRAPHY

[Hu05] B. Hu, C. Wakayama, L. Zhou, and C.-J. R. Shi. Developing device models.

IEEE Circuits and Devices Magazine, 21(4):6–11, July 2005.

[Iskander03] Ramy Iskander, Mohamed Dessouky, Maie Aly, Mahmoud Magdy, Noha

Hassan, Noha Soliman, and Sami Moussa. Synthesis of CMOS analog cells

using AMIGO. Proc. Design Automation and Test in Europe Conf., Designer’s

Forum, 2(2):20297–20302, March 2003.

[Iskander04] Ramy Iskander, Laurent de Lamarre, Andreas Kaiser, and Marie-Minerve

Louërat. Design space exploration for analog IPs using CAIRO+. Proc. of the

IEEE Conf. on Electrical, Electronic and Computer Engineering, pages 473–476,

September 2004.

[Iskander08] R. Iskander, M. M. Louërat, and A. Kaiser. Automatic DC operating point

computation and design plan generation for analog IPs. Analog Integrated

Circuits and Signal Processing, Kluwer Academic Publishers, 56(1-2):93–105, In-

stitut für Mathematik,Lehrstuhl für Diskrete Mathematik, Optimierung und

Operations Research,Universität Augsburg 2008.

[Jancke06] R. Jancke and P. Schwarz. Supporting analog synthesis by abstracting cir-

cuit behavior using a modeling methodology. Proc. IEEE Int. Symposium on

Circuits and Systems, pages 1471–1474, May 2006.

[Ji83] C. R. Ji and C.T. Sah. Analysis of the narrow gate effect in submicrometer

MOSFET’s. IEEE Trans. on Electron Devices, ED-30:1672–1677, 1983.

[Ju91] Y. C Ju, V. Rao, and R. Saleh. Consistency checking and optimization of

macromodels. IEEE Trans. Computer-Aided Design, 10(8):957–967, Institut für

Mathematik,Lehrstuhl für Diskrete Mathematik, Optimierung und Opera-

tions Research,Universität Augsburg 1991.

[Kayal06] M. Kayal and M. Blagojevic. Design methodology based on the analog blocks

retargeting from bulk to FD SOI using ekv model. Proc. of the Int. Conf. on

Mixed Design, pages 131–135, June 2006.

[Keating02] M. Keating and P. Bricaud. Reuse Methodology Manual: For System-on-a-Chip

Designs. Kluwer Academic Publishers, third edition, 2002.

[Keutzer00] K. Keutzer, S. Malik, R. Newton, J. Rabaey, , and A. Sangiovanni-Vincentelli.

System level design: Orthogonalization of concerns and platform-based de-

sign. IEEE Trans. Computer-Aided Design, 19(12):1523–1543, December 2000.

BIBLIOGRAPHY 269

[Koh87] Han Young Koh, Carlo H. Sequin, and Paul R. Gray. Automatic Synthesis

of Operational Amplifiers Based on Analytic Circuit Models. Proc. IEEE Int.

Conf. on Computer-Aided-Design, pages 502–505, November 1987.

[Koh90] Han Young Koh, Carlo H. Sequin, and Paul R. Gray. OPASYN: A Com-

piler for CMOS Operational Amplifiers. IEEE Trans. Computer-Aided Design,

9(2):113–125, February 1990.

[Krasnicki99] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Carley. MAELSTROM:

Efficient simulation-based synthesis for custom analog cells. Proc. Design Au-

tomation Conf., pages 945–950, June 1999.

[Krasnicki01] M. J. Krasnicki, R. Phelps, J. R. Hellums, M. McClung, R. A. Rutenbar, and

L. R. Carley. ASF: A practical simulation-based methodology for the synthe-

sis of custom analog circuits. Proc. IEEE Int. Conf. on Computer-Aided-Design,

pages 350–357, 2001.

[Kundert00] K. Kundert, H. Chang, D. Jeffries, G. Lamant, E. Malasavi, and F. Sendig. De-

sign of mixed-signal systems-on-a-chip. IEEE Trans. Computer-Aided Design,

19(12):1561–1571, December 2000.

[Kung85] S. Y. Kung, H. J. Whitehouse, and T. Kailath. VLSI and Modern Signal Process-

ing. Englewood Cliffs, NJ: Prentice Hall, 1985.

[Lagarias98] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence

properties of the Nelder-Mead simplex algorithm in low dimensions. SIAM

Journal on Optimization, 9:112–147, 1998.

[Lee74] A. Y. Lee. Signal flow graphs: Computer-aided system analysis and sensi-

tivity calculations. IEEE Trans. on Circuits and Systems, CAS-21(2):209–216,

March 1974.

[Levi07a] T. Levi, J. Tomas, N. lewis, and P. Fouillat. Resizing methodology for cmos

analog circuit. Proc. of SPIE, 6590, May 2007.

[Levi07b] T. Levi, J. Tomas, N. lewisa, and P. Fouillat. IP-based design reuse for ana-

logue systems: a case study. Proc. of SPIE, 6590, May 2007.

[Leyn98] F. Leyn, G. Gielen, and W. Sansen. An efficient DC root solving algorithm

with guaranteed convergence for analog integrated CMOS circuits. Proc.

IEEE Int. Conf. on Computer-Aided-Design, pages 304–307, November 1998.

[Li03] Z. Li, L. Luo, and J. Yuan. A study on analog IP blocks for mixed-signal SoC.

IEEE Int. Conf. on ASIC, 1:564–567, 2003.

270 BIBLIOGRAPHY

[Liu02] H. Liu, A. Singhee, R. Rutenbar, , and L. Carley. Remembrance of circuit past:

Macromodeling by data mining in large analog design spaces. Proc. Design

Automation Conf., pages 437–442, 2002.

[Lopez04] R. C. Lopez. Metodologı́as y Herramientas de Reusabilidad en el Diseño de Cir-

cuitos Integrados Analógicos y de Señal Mixta. PhD thesis, Universidad de

Sevilla, December 2004.

[Lopez05] R. Castro Lopez, F. V. Fernandez, and A. R. Vazquez. A reuse-based frame-

work for the design of analog and mixed-signal ICs. Proc. of SPIE, 5837(3):25–

36, May 2005.

[Madrid01] N. Madrid, E. Peralias, A. Acosta, and A. Rueda. Analog/mixed-signal IP

modeling for design reuse. Proc. Design Automation and Test in Europe Conf.,

pages 766–767, March 2001.

[Makris92] C. A. Makris and C. Toumazou. Qualitative reasoning in analog IC design

automation. Proc. IEEE Custom Integrated Circuits Conf., pages 8.3/1–4, May

1992.

[Makris95] C. A. Makris and C. Toumazou. Analog IC design automation: Part II - auto-

mated circuit correction by qualitative reasoning. IEEE Trans. Computer-Aided

Design, 14(2):239–254, February 1995.

[Martens08] Ewout S. J. Martens and Georges G. E. Gielen. High-Level Modeling and Syn-

thesis of Analog Integrated Systems. Analog Circuits and Signal Processing,

Springer, 2008.

[Mason56] Samuel J. Mason. Feedback theory-further properties of signal flow graphs.

Proc. of the I.R.E., 44(7):920–926, July 1956.

[MathWorks] The MathWorks. http://www.mathworks.com.

[Maulik91] P. C. Maulik and L. R. Carley. Automating analog circuit design using con-

strained optimization techniques. Proc. IEEE Int. Conf. on Computer-Aided-

Design, pages 390–393, November 1991.

[Maulik92a] P. C. Maulik. Formulations for Optimization-based Synthesis of Analog Cells. PhD

thesis, Carnegie Mellon University, Pittsburgh PA, September 1992.

[Maulik92b] P. C. Maulik, L. R. Carley, and R. A. Rutenbar. A mixed integer non-linear

programming approach to analog circuit synthesis. Proc. Design Automation

Conf., pages 698–703, June 1992.

BIBLIOGRAPHY 271

[Maulik93] P. C. Maulik, L. R. Carley, and D. J. Allstot. Sizing of cell-level analog cir-

cuits using constrained optimization techniques. IEEE J. of Solid-State Circuits,

28(3):233–241, March 1993.

[McConaghy05] T. McConaghy, T. Eecklaert, , and G. Gielen. CAFFEINE: Template-free sym-

bolic model generation of analog circuits via canonical form functions and

genetic programming. Proc. Design Automation and Test in Europe Conf., pages

1082–1087, 2005.

[MOS-AK] MOS-AK. http://www.mos-ak.org/ .

[Nelder65] J. A. Nelder and R. Mead. A simplex method for function minimization.

Computer Journal, 7:308–313, 1965.

[Nishida81] M. Nishida and H. Onodera. An anomalous increase of threshold voltage

with shortening of the channel lengths fo deeply boron-implanted n-channel

MOSFETs. IEEE Trans. on Electron Devices, ED-28:1101, 1981.

[Ochotta96] E. S. Ochotta, R. A. Rutenbar, and L. R. Carley. Synthesis of high-

performance analog circuits in ASTRX/OBLX. IEEE Trans. Computer-Aided

Design, 15(3):273–294, March 1996.

[Ochotta98] Emil S. Ochotta, Tamal Mukherjee, Rob A. Rutenbar, and L. Richard Carley.

Practical Synthesis of High-Performace Analog Circuits. Kluwer Academic Pub-

lishers, first edition, 1998.

[Phelps00] R. Phelps, M. Krasnicki, R. A. Rutenbar, L. R. Carley, and J. R. Hellums. ANA-

CONDA: Robust synthesis of analog circuits via stochastic pattern search.

IEEE Trans. Computer-Aided Design, pages 567–570, 2000.

[Pillage95] L. T. Pillage, R. A. Rohrer, and C. Visweswariah. Electronic Circuit and System

Simulation Methods. McGraw-Hill, 1995.

[Plas01] G. Van der Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche, G. Gie-

len, W. Sansen, P. Veselinovic, and D. Leenaerts. AMGIE-A synthesis envi-

ronment for CMOS analog integrated circuits. IEEE Trans. on Circuits and

Systems, 20(9):1037–1058, September 2001.

[Porte08] J. Porte, 2008. OCEANE, http://www-asim.lip6.fr/recherche/oceane.

[Rabaey06] J. M. Rabaey, F. De Bernardinis, A. M. Niknejad, B. Nikolic, and

A. Sangiovanni-Vincentelli. Embedding mixed-signal design in systems-on-

chip. IEEE Press, 94(6):1070–1088, June 2006.

272 BIBLIOGRAPHY

[Rajsuman00] R. Rajsuman. System-on-Chip Design and Test. Kluwer Academic Publishers,

2000.

[Rashinkar01] P. Rashinkar, P. Paterson, and L. Singh. System-on-a-Chip Verification. Kluwer

Academic Publishers, 2001.

[Richardson89] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard. Some guidelines

for genetic algorithms with penalty functions. Proc. 3rd Int. Conf. on Genetic

Algorithms, pages 191–197, June 1989.

[Roychowdury04] J. Roychowdury. An overview of automated macromodeling techniques for

mixed-signal systems. Proc. IEEE Custom Integrated Circuits Conf., pages 109–

116, 2004.

[Sagantec] Sagantec. http://www.sagantec.com/ .

[Saleh06] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Memieux,

P. Pande, C. Grecu, and A. Ivanov. System-on-chip: Reuse and integration.

IEEE Press, 94(6):1050–1069, June 2006.

[Savio04] A. Savio, L. Colalongo, , Z. M. Kovacs-Vajna, and M. Quarantelli. Scaling

rules and parameter tuning procedure for analog design reuse in technology

migration. Proc. IEEE Int. Symposium on Circuits and Systems, 5:V 117–V 120,

May 2004.

[Savio06] A. Savio, L. Colalongo, M. Quarantelli, and Z. M. Kovacs-Vajna. Automatic

scaling procedures for analog design reuse. IEEE Trans. on Circuits and Sys-

tems, 53(12):2539–2547, December 2006.

[Sedra91] Adel S. Sedra and Kenneth C. Smith. Microelectronic Circuits. Hold, Rinehart

and Winston, third edition, 1991.

[Semiconductors] International Technology Roadmap for Semiconductors. http://www.itrs.net.

[SIA98] SIA. SIA Roadmap update, 1998.

[Silveira96] F. Silveira, D. Flandre, and P. G. A. Jespers. A gm/ID based methodology

for the design of CMOS analog circuits and its application to the synthe-

sis of a silicon-on-insulator micropower OTA. IEEE J. of Solid-State Circuits,

31(9):1314–1319, September 1996.

[Simucad] Simucad. http://www.simucad.com/ .

BIBLIOGRAPHY 273

[Smith96] S. Smith and E. Sanchez-Sinencio. Low voltage integrators for high-frequency

CMOS filters using current mode techniques. IEEE Trans. on Circuits and Sys-

tems, 43(1):39–48, January 1996.

[Spence99] Robert Spence. The facilitation of insight for analog design. IEEE Trans.

Computer-Aided Design, 46(5):540–548, May 1999.

[Starzyk86] J. A. Starzyk and A. Konczykowska. Flowgraph analysis of large electronic

networks. IEEE Trans. on Circuits and Systems, CAS-33(3):302–315, March

1986.

[Stefanovic03] D. Stefanovic, M. Kayal, M. Pastre, and V. B. Litovski. Procedural analog

design (PAD) tool. Proc. of the 4th Int. Symposium on Quality Electronic Design,

pages 313–318, March 2003.

[Stefanovic05] D. Stefanovic, M. Kayal, and M. Pastre. PAD: A new interactive knowledge-

based analog design approach. Analog Integrated Circuits and Signal Processing,

Kluwer Academic Publishers, pages 291–299, March 2005.

[Stefanovic07] D. Stefanovic, S. Pesenti, M. Pastre, and M. Kayal. Structured design based

on the inversion factor parameter: Case study of ∆Σ modulator system. Proc.

of the 14th Int. Conf. on Mixed Design, pages 95–102, June 2007.

[Swings91a] K. Swings, S. Donnay, and W. Sansen. HECTOR: A hierarchical topology-

construction program for analog circuits based on a declarative approach to

circuit modelling. Proc. IEEE Custom Integrated Circuits Conf., pages 5.3/1–5,

1991.

[Swings91b] K. Swings, G. Gielen, and W. Sansen. An intelligent analog IC design sys-

tem based on manipulation of design equations. Proc. IEEE Custom Integrated

Circuits Conf., pages 8.6/1–5, 1991.

[Swings91c] Koen Swings and Willy Sansen. DONALD: A workbench for interactive de-

sign space exploration and sizing of analog circuits. In Proc. European Design

Automation Conf., pages 475–479, 1991.

[SystemC-AMS] SystemC-AMS. http://www.systemc-ams.org/ .

[Tiernan70] J. C. Tiernan. An efficient search algorithm to find the elementary circuits of

a graph. Communications of the ACM, 13(12):722–726, December 1970.

[Toumazou90] C. Toumazou, C. A. Makris, and C. M. Berrah. ISAID- a methodology for

automated analog IC design. Int. Symp. on Circuits and Systems, pages 531–

533, 1990.

274 BIBLIOGRAPHY

[Tuong06] P. N. Tuong. Définition et Implémentation d’un Langage de Conception de Com-

posants Analogiques Réutilisables. PhD thesis, Université Pierre et Marie Curie,

Lab. LIP6, Paris, 2006.

[Verilog-AMS] Verilog-AMS. http://www.eda.org/verilog-ams/ .

[VHDL-AMS] VHDL-AMS. http://www.vhdl.org/analog/ .

[Vlach94] J. Vlach and K. Singhal. Computer methods for circuit analysis and design, Second

Edition. Van Nostrand Reinhold, 1994.

[Wambacq91] P. Wambacq, J. Vanthienen, G. Gielen, and W. Sansen. A design tool for

weakly nonlinear analog integrated circuis with multiple inputs (mixers,

multipliers). Proc. IEEE Custom Integrated Circuits Conf., pages 5.1/1–5, 1991.

[Wambacq95] P. Wambacq, F. Fernandez, G. Gielen, W. Sansen, and A. Rodriguez-Vazquez.

Efficient symbolic computation of approximated small-signal characteristics.

IEEE J. of Solid-State Circuits, 30:327–330, March 1995.

[Wan03] B. Wan, B. P. Hu, L. Zhou, and C.-J. R. Shi. MCAST: an abstract-syntax-tree

based model compiler for circuit simulation. Proc. IEEE Custom Integrated

Circuits Conf., pages 249–252, September 2003.

[Watts06] J. Watts. Enhancing productivity by continuously improving standard com-

pact models. Proc. IEEE Custom Integrated Circuits Conf., pages 623–630,

September 2006.

[Wu94] C.-H. Wu, S.-J. Lee, and H.-S. Chou. Dependency analysis for knowledge

validation in rule-based expert systems. Proc. of the 10th Conf. on Artificial

Intelligence for Applications, pages 327–333, March 1994.

