
HAL Id: tel-00865795
https://theses.hal.science/tel-00865795v1

Submitted on 25 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-based Software Architectures and
Multi-Agent Systems: Mutual and Complementary

Contributions for Supporting Software Development
Victor Noël

To cite this version:
Victor Noël. Component-based Software Architectures and Multi-Agent Systems: Mutual and Com-
plementary Contributions for Supporting Software Development. Artificial Intelligence [cs.AI]. Uni-
versité Paul Sabatier - Toulouse III, 2012. English. �NNT : �. �tel-00865795�

https://theses.hal.science/tel-00865795v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l'obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSEDOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par
l'Université Toulouse III - Paul Sabatier

Discipline ou spécialité :
Informatique

JURY
Mourad Chabane Oussalah – Professor, Université de Nantes, France (examiner)

Andrea Omicini – Professor, Università di Bologna, Italy (examiner)
Jean-Michel Bruel – Professor, Université de Toulouse, France (president)

Tom Holvoet – Professor, Katholieke Univesiteit Leuven, Belgium (member)
Marie-Pierre Gleizes – Professor, Université de Toulouse, France (supervisor)

Jean-Paul Arcangeli – Associate Professor, HDR, Université de Toulouse, France (co-supervisor)

Ecole doctorale : Mathématiques Informatique Télécommunications (MITT)
Unité de recherche : Institut de Recherche en Informatique de Toulouse (IRIT)

Directeur(s) de Thèse : Marie-Pierre Gleizes and Jean-Paul Arcangeli
Rapporteurs : Mourad Chabane Oussalah and Andrea Omicini

Présentée et soutenue par
Victor Noël

Le July 18th 2012

Titre :
Component-based Software Architectures and Multi-Agent Systems:

Mutual and Complementary Contributions
for Supporting Software Development

THÈSETHÈSE
En vue de l'obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSEDOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par
Université Toulouse III - Paul Sabatier

Discipline ou spécialité :
Informatique

JURY
Mourad Chabane Oussalah – Professeur, Université de Nantes, France (rapporteur)

Andrea Omicini – Professeur, Università di Bologna, Italie (rapporteur)
Jean-Michel Bruel – Professeur, Université de Toulouse, France (président)

Tom Holvoet – Professeur, Katholieke Univesiteit Leuven, Belgique (membre)
Marie-Pierre Gleizes – Professeur, Université de Toulouse, France (directeur)

Jean-Paul Arcangeli – Maître de Conférences, HDR, Université de Toulouse, France (co-directeur)

Ecole doctorale : Mathématiques Informatique Télécommunications (MITT)
Unité de recherche : Institut de Recherche en Informatique de Toulouse (IRIT)

Directeur(s) de Thèse : Marie-Pierre Gleizes et Jean-Paul Arcangeli
Rapporteurs : Mourad Chabane Oussalah et Andrea Omicini

Présentée et soutenue par
Victor Noël

Le 18 juillet 2012

Titre :
Architectures logicielles à base de composants et systèmes multi-agents :

contributions mutuelles et complémentaires
pour supporter le développement logiciel

Abstract
In this thesis, we explore the various aspects of the mutual and complementary con-

tributions that multi-agent systems (MASs) and component-based software architectures
(CBSAs) can provide to each other. In a way, this work is the study of how both worlds can
be integrated together, either by supporting MAS implementation using component-based
abstractions or by supporting CBSA construction and adaptation using self-adaptive MASs.

As a pragmatic starting point, we study how MAS development is currently done in the
field and propose an understanding of the general methodology of development of MASs
from an architecturally-oriented point of view. This results in the distinction between two
main activities in MAS development. The first one, which we call macro-level design, is
concerned with requirements and design choices tackled by multi-agent approaches as a
way to decompose the solution in terms of agents and their interactions. The second one,
which we call micro-level design, is concerned with requirements and design choices that
accompany and more importantly support the result of the first activity to bridge the gap
between design and implementation. From this conclusion, we infer that it is necessary to
support this micro-level architectural activity with adequate abstractions that favour reuse,
separation of concern and maintenance. In particular, an abstraction called “species of agent”
is introduced for this purpose. It integrates with traditional component-oriented abstractions
and acts both as an architectural abstraction and as an implementation. We define, illustrate,
analyse and discuss a component model (SpeAD), an architectural description language
(SpeADL) and a design method (SpEArAF) that ease and guide the description and the
implementation of MASs using species of agents. This complete answer to the question of
MAS development, which is supported by a tool (MAY) to exploit SpeADL with Java, has
been applied to many applications in our research team.

Then, by setting back such a solution in the context of the CBSA field, we show how MASs
differ and relate to traditional means of development in terms of structural abstractions.

To complete this study, we explore through various experiments how self-adaptive MASs
can be used to support the building and the adaptation of CBSAs. Here, the agents and
their continuous reorganisation act on one hand as the engine of the construction and of the
dynamic adaptation of the architecture, and on the other hand as the runtime container that
actually connects these elements together and maintains the architecture alive and working.
This makes such an approach, even though it is exploratory and prototypal, a completely
integrated solution to architecture building, execution and adaptation. This work opens
several interesting research paths to build tools to support the development and the evolution
of software architectures at design and at runtime.

v

Remerciements

Il paraît que l’écriture de cette partie du mémoire de thèse est celle où l’on doit se faire le
plus plaisir. Or, ce passage sera certainement le plus lu de ces quelques 200 pages, c’est donc
ici que la pression est la plus forte.

Je vais d’ailleurs commencer par remercier ceux qui sont à même d’émettre un avis sur
l’intégralité de mon travail, c’est-à-dire chacun des membres de mon jury de thèse. Merci
pour l’investissement que vous avez mis dans l’évaluation de mes écrits et de ma soutenance,
je suis très fier d’avoir eu votre approbation et vos noms associés à ma production. Parmi
ceux-ci, je remercie en particulier ma directrice de thèse, Marie-Pierre, pour m’avoir fait
confiance tout au long de ces quatre années et pour avoir su gérer au mieux mon potentiel
procrastinateur. Et puis bien sûr, il y a Jean-Paul, qui a, avant tout, eu la patience de me suivre
sans faille dans mes délires et élucubrations. Merci pour l’investissement que tu as mis dans
chacun de nos nombreux échanges, cela m’a à chaque fois permis de faire des bonds en avant
dans mon travail de recherche.

D’une façon générale, je ne peux que remercier l’intégralité de l’équipe SMAC qui
applique chaque jour dans la vie réelle les préceptes de coopération utilisés dans leur travaux
de recherche. Une aide importante m’a été en particulier apportée par mon pool de cobayes
de compét’. Sans vous je n’aurais jamais pu faire de MAY, et tout ce qui se cache derrière, ce
qu’il est maintenant (mais préparez-vous, la v3 arrive, il va falloir tout reprendre de zéro ! !).
De plus, toutes nos discussions autour du développement des SMA m’ont permis d’avoir
un minimum de confiance dans la qualité et l’utilité de mon travail. Dans cette équipe, il
est difficile de mettre en place une compartimentation entre collègues et amis, et ces mêmes
personnes m’ont aussi grandement accompagné dans des activités de détente au labo et
en dehors. La personne la plus méritante est certainement Jérémy avec qui je partage un
bureau depuis plusieurs années et qui me supporte tel un moine zen. Et puis, sans ordre
particulier, nous retrouvons Valérian, François, Luc, Arnaud, Noélie, Nicolas, Sylvain, Önder,
Raja, Simon, Julien, Elsy, Zied et autres stagiaires de passage.

Puisque l’on parle de stagiaires, il est nécessaire de souligner le plaisir que j’ai eu à
travailler avec Grégoire. Son travail, complété d’ailleurs par l’aide de Pierre, a énormément
nourri le chapitre 7 de ce mémoire. Ce chapitre contient aussi le résultat d’une collaboration
avec l’équipe AgentWise de KULeuven qui a eu la gentillesse de m’accueillir pendant 2 mois
durant ma thèse. En particulier, ces résultats s’appuient sur les travaux de mon ami Mario
qui m’a beaucoup apporté, autant sur le plan personnel que professionnel. L’accueil que

vii

m’ont réservé Tom Holvoet et Danny Weyns m’a aussi été très cher et ces personnes ont
nourri certaines des réflexions qui sont exposées dans ce mémoire. Mon passage à Leuven a
marqué un tournant dans mon travail de recherche et a en particulier orienté mon attention
en direction des architectures logicielles. Un simple merci aussi à Maroussia qui a eu la
patience de passer un certain nombre d’après-midi en ma compagnie pour me guider dans
l’implémentation d’un modèle SMA d’écoulement de l’eau :)

Maintenant, passons aux choses sérieuses, ou plutôt, à LA chose sérieuse : Christine !
Même si je pars, sachez que vous, votre pancake et le lambda-calcul resterez toujours dans
mon cœur ! Plus sérieusement : Christine, Frédéric et Celia, merci pour l’amitié journalière
que nous avons partagée durant nos repas et pauses thé. Et surtout, merci pour les modèles
que vous avez été tout les trois pour moi autant dans l’enseignement que dans la participation
à la vie de l’université. C’est grâce à vous que je me suis (un peu) impliqué dans la collectivité
et que je peux me considérer comme ayant une utilité sociale.

Si je sors le nez du boulot, je peux maintenant me tourner vers les nombreux amis que
j’ai rencontré à Toulouse. Je ne citerai personne, mais vous vous reconnaîtrez (je suis trop
malin hein, comme ça je n’oublie personne ;). Merci pour votre support mais surtout pour
m’avoir permis de faire évoluer ma personnalité pendant 4 ans : je pense qu’avec vous, j’ai
autant gagné en expérience personnelle que ce que la thèse a pu m’apporter en expérience
professionnelle.

Ma famille, que je n’ai pas beaucoup vu ces quatre dernières années : merci mes parents
pour m’avoir fait suffisamment intelligent pour arriver jusque-là sans encombres, merci mes
petite et grande sœurs pour m’avoir appris à craindre et à respecter les femmes (oui, cela n’a
aucun rapport avec la thèse).

Et puis merci à tout ceux qui sont venus me soutenir lors de ma soutenance (je sais que
vous n’êtes là que pour le pot !), amis et famille, ainsi qu’à ceux qui m’ont bien aidé pour
l’organisation.

Et enfin, pour conclure, ma seconde famille, qui me supporte et me façonne jour après
jour. Timomo, en plus de m’avoir fait rencontrer plein de gens supers, jusqu’ici tu m’as appris
pas mal de trucs utiles sur la vie. Jojo, merci encore pour ta gentillesse qui cache une sagacité
et une écoute dont j’ai pu apprécier les bienfaits ces derniers mois, et puis surtout pour ton
débit de blagues (drôles) qui est le plus impressionnant jamais entendu ! Et puis il y a Tibtib,
la seule personne au monde qui arrive à me suivre jusque dans mes raisonnements les plus
tordus : merci pour tes cours de piano (et puis pour tout le reste).

viii

Contents

Contents ix

List of Figures xv

List of Tables xvii

Introduction to the Thesis xix
Main Motivations . xx
Main Contributions . xx
Plan of the Thesis . xxi
Scientific Results . xxiii
Editorial Notice . xxiv

1 Engineering Software: Software Architectures and Multi-Agent Systems 1
1.1 Software Engineering . 2

1.1.1 General Terms . 2
1.1.2 Modelling the Solution . 2
1.1.3 Methods and Methodologies . 3
1.1.4 Reuse of Development Artefacts and Tools 4

1.2 Software Architectures . 4
1.2.1 Component-Based Software Architectures 5
1.2.2 Design of Software Architecture . 6
1.2.3 Capturing Experience . 8

1.3 Multi-Agent Systems . 9
1.3.1 Agents . 9
1.3.2 Multi-Agent Systems . 10
1.3.3 AMAS: Adaptive Multi-Agent Systems 11
1.3.4 Scope . 12

1.4 Conclusion . 12

ix

Contents

I Software Architectures for Multi-Agent Systems 15

2 State of the Art on MAS Development 17
2.1 Characterisation of MAS Meta-Models from an Architectural Viewpoint 18
2.2 Walking Through the Different Aspects of MAS Development 19

2.2.1 The Design Point of View . 19
2.2.2 Diversity of Requirements . 22
2.2.3 Commonality of Requirements and Elements of Solution 24
2.2.4 The Implementation Point of View . 25
2.2.5 From Design to Implementation . 28
2.2.6 Practical Observations . 29

2.3 Analysis: Should We Tweak or Build?! . 30
2.3.1 The Gap, Again . 31
2.3.2 Types of Agents and Adequate Abstractions 33
2.3.3 Two Levels of Architectural Design . 34
2.3.4 Evidences from the Literature . 34
2.3.5 Existing Answers . 36
2.3.6 Revisiting the Different Works . 37

2.4 Challenges: Meta Micro-Level Design . 39

3 Dedicated Micro-Level Software Architectures for MAS Development 43
3.1 Characterizing MAS Development: Architecture-Centric Methodology 45

3.1.1 Multi-Level Architectural Design . 45
3.1.2 Operative and Business Concerns . 48
3.1.3 Implementation . 49
3.1.4 Illustrating the Methodology . 50
3.1.5 Conclusion on the Methodology . 53

3.2 Component-Based Micro-Level Architectures . 54
3.2.1 The SpeAD− Base Component Model . 55
3.2.2 The SpeAD Component Model . 61

3.3 Capturing Reusable Experience . 68
3.3.1 What and How . 68
3.3.2 Components Library . 70

3.4 The SpEArAF Method . 82
3.4.1 Component-Based Architectures for MASs 85
3.4.2 Iterative and Incremental Micro-Architectural Design 85
3.4.3 Additional Guidelines . 87

3.5 Conclusion . 88

4 Application 91
4.1 Context and Requirements . 92

4.1.1 Environment of the System . 92

x

Contents

4.1.2 Functional and Non-Functional Requirements for the VGD 93
4.1.3 Non-Functional Requirements for the Development 94

4.2 Macro-level Architectural Design . 94
4.2.1 Macro-Level Requirements Extraction . 95
4.2.2 Problem Domain Model . 95
4.2.3 Temporal Interactions of the VGD with its Environment 96
4.2.4 Multi-Agent System . 96

4.3 Micro-Level Requirements Extraction . 98
4.3.1 Assumptions Made during the Design 98
4.3.2 Supplementary Design Choices . 98

4.4 Micro-Level Architectural Design . 99
4.4.1 Operative Requirements . 99
4.4.2 Business Requirements . 100
4.4.3 Incremental Design . 100
4.4.4 Complete Design and Implementation 106

4.5 Conclusion . 106

5 Positioning, Analysis and Experimental Feedbacks 109
5.1 Positioning the Contribution . 109
5.2 Analysis . 110

5.2.1 Architectural Abstraction . 111
5.2.2 Implementation Abstraction . 112
5.2.3 Why and When to Use SpeAD . 112

5.3 Experimental Applications and Users Feedbacks 113
5.4 Conclusion . 115

II Integrating Multi-Agent Systems and Software Architectures 117

6 MASs and CBSAs Side by Side: Component-based Component Containers 119
6.1 Related Works in the Software Architecture Field 120

6.1.1 Reusing High-Level Design . 120
6.1.2 Dynamic Component Creation and Connection 122

6.2 Relations between Component-based Architectural Concepts 123
6.3 Defining and Using Dedicated Component Models and Containers 125

6.3.1 Defining the Component Model . 125
6.3.2 Defining the Component Container . 126
6.3.3 Implementing the Component Container 126
6.3.4 Using the Component Container . 127
6.3.5 Going Further . 127

6.4 Building Dedicated Component-Based Component Containers 127
6.5 Revisiting MASs Design as a Family of Paradigms 129

xi

Contents

6.6 Horizontally Integrating CBSAs, MASs and Other Paradigms 130

7 From Self-Composing Components to Self-Designing Software Architectures 133
7.1 MASs for Self-Adaptive Software Architectures 134

7.1.1 Why MAS . 134
7.1.2 MAS-based Containers . 135

7.2 The CASAS Experiment: Non-Functional Adaptation 136
7.2.1 Scenario . 137
7.2.2 The Macodo Organisation Model . 139
7.2.3 Mapping Macodo Organisations to Composite Services in BPEL 140
7.2.4 Defining the CASAS Component Model 141
7.2.5 Multi-Agent System . 142
7.2.6 Defining the CASAS Component Container 143
7.2.7 Implementation of the CASAS Component Container 143
7.2.8 Using the CASAS Component Container 144
7.2.9 Discussion and Possible Evolutions . 144

7.3 The Greg Experiment: Opportunistic Composition 145
7.3.1 Motivating Scenario . 146
7.3.2 Modelling the Problem Domain . 146
7.3.3 Defining the Greg Component Model . 147
7.3.4 Defining the Greg Component Container 151
7.3.5 Implementation of the Greg Component Container 152
7.3.6 Use of the Greg Component Container 152
7.3.7 Discussion and Possible Evolutions . 152

7.4 Discussion: MASs for CBSAs . 153
7.4.1 Adaptation and Emergence . 153
7.4.2 Component Models and Containers . 154
7.4.3 Better Adaptation for CBSAs . 155

7.5 Towards Human-Assisted Self-Designing Software Architectures 155
7.5.1 Styles and Patterns that Emerge . 155
7.5.2 Generalisation to Architectural Views . 156

Back 159

8 Conclusions and Perspectives 161
8.1 Contributions of the Thesis . 161

8.1.1 Software Architectures for Multi-Agent Systems 161
8.1.2 Component-Based Software Architectures 162
8.1.3 Multi-Agent Systems and Component-Based Software Architectures

Side by Side . 163
8.1.4 Multi-Agent Systems for Software Architectures 163

xii

Contents

8.2 Open Problems and Perspectives . 164
8.2.1 Methodological Perspectives . 164
8.2.2 Architectural Perspectives . 165
8.2.3 Evaluation Perspectives . 165

A Design and Implementation MAS Meta-Models 167
A.1 Agent and MAS Meta-Models . 167
A.2 Development Support Meta-Models . 170

A.2.1 Languages . 170
A.2.2 Frameworks and Platforms . 170

B Implementation of SpeAD: Make Agents Yourself 175
B.1 Make Agents Yourself . 175
B.2 From SpeADL to Java . 176

Author’s Bibliography 179

Bibliography 181

xiii

List of Figures

2.1 Activities in MASs development . 35

3.1 Abstract process followed by MAS development in general, described using SPEM 46
3.2 Different sources for requirements . 47
3.3 Different types of micro-level requirements . 49
3.4 Meta-model of the SpeAD− component model . 55
3.5 Components descriptions in SpeADL− and interfaces description in Java 56
3.6 Component specialization in SpeADL− . 58
3.7 Component implementations in Java . 59
3.8 Component implementation in Java with parts . 60
3.9 Component instantiation and usage . 60
3.10 Meta-model of the SpeAD component model . 61
3.11 Ecosystem description for an interconnection mechanism in SpeADL 63
3.12 Ecosystem description for a simple MAS in SpeADL 64
3.13 Ecosystem implementation in Java for an interconnection mechanism 65
3.14 Ecosystem implementation in Java . 67
3.15 Interfaces descriptions in Java . 71
3.16 Sequential dispatcher description in SpeADL . 73
3.17 Sequential dispatcher implementation in Java . 73
3.18 Forward component . 74
3.19 Direct references mechanism description in SpeADL 75
3.20 Direct references mechanism implementation in Java 76
3.21 Interconnection mechanisms descriptions in SpeADL 77
3.22 The ReliableObserve and Observe interfaces in Java 77
3.23 Value Publishing interconnection mechanism implementation in Java 78
3.24 An ecosystem for agents referenced by names and observing each other values in

SpeADL . 79
3.25 The NamedPublishMASFactory interface in Java . 80
3.26 Implementation of NamedPublishMAS and one of the behaviour class in Java 81
3.27 Use of NamedPublishMAS in Java . 82
3.28 Template of an AMAS agent architecture in SpeADL 83
3.29 Implementation of the template for an AMAS agent architecture in Java 84

xv

List of Figures

3.30 The Species to Engineer Architectures for Agent Frameworks (SpEArAF) Method. 86

4.1 Use Cases for the VGD in UML . 93
4.2 Sequences diagram for the VGD and its environment interactions in UML 96
4.3 Micro-architecture, Cycle 1: Constraint Agents Internal Architecture 101
4.4 Micro-architecture, Cycle 1: MAS Ecosystem . 103
4.5 Clock component and its specialisation in SpeADL 104
4.6 Micro-architecture, Cycle 1: Common Scheduling Ecosystem 104
4.7 Micro-architecture, Step 1, Ecosystem Cycle: Scenario Manager Ecosystem 105
4.8 Micro-architecture, Cycle 2: Scenario Manager Ecosystem 106

6.1 Relations between frameworks, components models, architectures, components,
architectural patterns, architectural styles and paradigms 124

6.2 Interaction mechanisms definition in SpeADL . 128

7.1 Transportation plan deployed in a BPEL engine . 138
7.2 Domain Model of the Macodo Context-Driven Organisational Model (Weyns,

Haesevoets, and Helleboogh 2010) . 139
7.3 Conceptual solution integrating Macodo organisations, BPEL, and agents 142
7.4 Composition example . 147

B.1 MAY in Eclipse . 176
B.2 Component description for a component named EcosystemX in SpeADL 176
B.3 Generated classes from SpeADL to Java for a component named EcosystemX in

UML2 . 177

xvi

List of Tables

2.1 Characterisation of Design Models in terms of available Features of Architectural
Elements . 20

2.2 Classification of Development Supports in terms of available Features of Architec-
tural Elements . 26

2.3 Research Works Organised Following the Proposed Classification 38

5.1 Contributions positioned in the proposed classification 110

6.1 Mapping between frameworks and partially abstract architectures concepts 121

7.1 Mapping between web-services and Macodo concepts 141

xvii

Introduction to the Thesis

This thesis recounts the result of my Ph.D. studies on the synergy between Multi-Agent
Systems (MASs) and Software Architectures. I spent this time in the SMAC (Systèmes Multi-
Agents Coopératifs) research team of the University of Toulouse under the supervision of
Marie-Pierre Gleizes and Jean-Paul Arcangeli.

In the SMAC team, researchers, among other things, investigate an approach to software
engineering called Multi-Agent Systems. This approach and the way it is promoted by people
here, under the name of Adaptive Multi-Agent Systems (AMAS), is particularly directed
at modelling complex systems and solving complex problems. It is characterised by the
building of self-adaptive systems whose global behaviour emerges from the behaviours and
interactions of the agents that compose it. In exchange of this “collective intelligence”, it
becomes difficult to prove the correctness of such systems and the best way of verifying that
they work is through experimental evaluations. It thus becomes important to guarantee the
quality of the development process that is followed to produce such software in order to
have meaningful evaluations. In this context, I participated in a topic of research focused on
producing tools, models, methods and development supports useful to support the design
and the implementation of such systems.

As far as software engineering is concerned, one important mean of succeeding in the
production of a software system is by using software architectures. Software architectures
promote a set of practices for organising the development and producing the documen-
tation of software systems from design to deployment, but more pragmatically, they are
also instantiated with Component-Based Software Architectures (CBSAs), an approach that
tackles the question of considering software architectures only as a composition of software
components. This is why the initial objective of this Ph.D. was to contribute to the field of
MAS development in order to support the transition between design and implementation by
exploiting software architectures. And the more I progressed in my research, and the more
I became convinced of the importance of using such a complete approach for design and
implementation in the context of MASs.

Inversely, being myself before and everything an advocate of traditional and provable
software engineering techniques, the more I participated in and studied the building of
self-adaptive MASs, the more I became convinced that such an approach will be a key
element of the future of software computing. This gave me even more incentive to improve
the quality, productivity and maintainability of the development of MAS-based products. But

xix

Introduction to the Thesis

more importantly, this brought me to investigate how it is possible to build a conceptual
bridge between MASs and software architectures, and how MASs can support the design, the
adaptation and the evolution of software architectures.

Thus, the ultimate objective of this work is to see how these two ways of making software
can complement and mutually support each other. My desire is to be able to integrate the two
by providing an understanding of what links them together and by providing abstractions
that make it possible in practice.

This thesis is organised into two parts, each tackling an aspect of the synergy between
MASs and software architectures, namely the exploitation of software architectures to support
MASs development and the integration of MASs and software architectures. Before presenting
the different chapters of these two parts, I present the main motivations and the main
contributions of this thesis.

Main Motivations

The first motivation for this thesis is to ease the development of MASs by improving the
quality and productivity of the software process. The idea being that as MAS design is a
complex activity, people that practice it should have their life simplified as much as possible
in order for them to focus on their high-level concerns without bothering with low-level and
technical problems. This separation of concerns is important so that MAS development can
be more productive but also to obtain an organisation of the development that can be of a
better quality.

Strongly linked to that point, the second motivation for this work is to improve the quality
and the maintainability of MASs themselves as software products. Indeed, in order to be able
to validate correctly the results obtained with MASs, it is necessary to be certain that their
implementation actually realises what their design describes. The maintenance and evolution
of such software products must also be eased.

A third and last motivation for this thesis is more theoretical and exploratory and is
concerned with the understanding of the links between MASs and software architectures,
with a focus on Component-Based Software Architectures. On top of the fact it appeared as
an interesting subject of discussions during my researches, a farther reached incentive is to
study how self-adaptive MASs can provide more adaptivity to software architecture, in their
execution but also in their development.

Main Contributions

An analysis of current practices in MAS development pointed up a particularity in
the general methodology of MAS development. For MAS, development mainly relies on
development supports that are not adapted to the need of the people that build MASs. They
are not adapted because every application of MASs has its own specificities, which are not

xx

Plan of the Thesis

adequately answered by the tools available. There is thus a need to build an architecture
dedicated to the development.

Then, an answer to this need is given in the form of a component-based architectural
approach to MAS development. This approach emphasises on the different roles in MAS
development and gives a focus on software quality, productivity, reusability, maintainability
and other properties of software architecture practices. In particular, I propose a component
model that can be used to support the implementation of MASs in practice by following this
approach. This model is supported by an iterative and incremental development process and
a tool for describing the architectures and implementing them in Java.

Finally, with this contribution as a starting point, I come back to works in the field of
software architectures in order to establish our vision of the relations that exist between
architectural concepts and MASs. On one hand, I show how our component model can be
exploited to use MASs side by side with CBSAs, and on the other hand, I also show how
MASs can be used to make software architectures more adaptive.

Plan of the Thesis

Chapter 1 introduces the scientific context both parts of this thesis rely on. It contains
an understanding of software engineering, software architectures and MASs that I shaped
during my research. It also serves as an introduction to the motivation for the rest of the
thesis.

Then this thesis is divided in two parts.

Software Architectures for Multi-Agent Systems. The hypothesis I make in this part of
the thesis is that all the matters that are tackled in the field of software architectures also
exist while developing MAS-based applications and thus, must be dealt with. In this context,
the motivation of this work is to help the development and find ways to improve the
quality, maintainability, reusability of produced software. The content of this part is in
the continuation of previous works of the SMAC research team (Leriche 2006; Leriche and
Arcangeli 2010).

Chapter 2 looks at existing means of development in the MAS field. It analyses them,
extracts and identifies shortcomings of current practices by proposing a classification of
research works in the MAS field. It proposes a set of methodological and technical challenges
to overcome in order to improve MAS development. This chapter is also the result of studying
MASs produced in the SMAC team and participating in its research work.

Chapter 3 presents a coherent set of solutions to the previously identified challenges:

– A general methodology of MAS development

– A component model with abstractions adapted to the technical challenges

– A development method to exploit in practice the component model within the scope of
the methodology

xxi

Introduction to the Thesis

– A tool that implements the component model

This chapter is the result of applying the various intermediate versions of the contribution in
the SMAC team and in the UPETEC 1 start-up company, which is a company that applies the
research results of the team for the industry.

Chapter 4 applies the contribution to a real MAS developed by researchers of the SMAC
team in the context of a research project. It concludes with some remarks on what would
have happened if the contribution had not been used.

Chapter 5 concludes this part by presenting an analysis of the contribution. It positions
it in the classification defined Chapter 2 and comes back on the identified challenges to
highlight the advantages of its use. It also presents all the academic and industrial works that
exploited the contribution and accompanies them with experimental feedbacks from their
authors.

Integrating Multi-Agent Systems and Software Architectures. In this part, I am analysing
the proposed contribution from the point of view of the software component and software
architecture field. In this context the motivation of this work is to see how MASs relate
to concepts manipulated in the software architecture field and what role they can play in
their dynamic adaptation and construction, in particular for Component-Based Software
Architectures (CBSAs). This part is mostly exploratory and contains a lot of ideas I think
worth spreading even though they may lake maturity for being published as such. I consider
this part as a research agenda from which different exploration paths can be deepened.

Chapter 6 starts from the contribution and positions it with respect to the main concepts
used for design in the CBSA field. It shows how the contribution can be re-understood in
order to define and build dedicated component-based component models and containers.
This actually gives me the possibility to reconsider MAS design and programming into this
broader frame. I conclude by advocating for the use side to side of MASs and CBSAs as a
mean to design software using adequate abstractions.

Chapter 7 takes a more dynamic and runtime stance. It first justifies the use of MASs as
the engine of adaptation of software systems. Then, it proposes, through the study of two
examples of self-adapting software architectures, an analysis of the role that MASs plays in it.

One of these examples is the result of a collaboration with the AgentWise research team,
which I present next section, on the adaptation of composite web-services. The second
example is the result of a Research Master internship on the opportunistic self-composition
of components in ambient context using the AMAS approach we promote in the team.

As a conclusion, I advocate for an integrated and self-organising design, construction and
runtime adaptation of software architectures. I present my vision of a MAS-based tool that
helps to organise the development of software architectures, that supports design decision
making and software evolution, and that makes the bridge with the running system.

1. UPETEC (Emergence Technology for Unsolved Problems): http://www.upetec.fr/

xxii

http://www.upetec.fr/

Scientific Results

Scientific Results

During my Ph.D., I had the opportunity to produce various scientific results and to
participate in academic collaborations that are summarised here.

Publications and Collaborations. Since my research subject is in-between two different
fields of computer science, namely MASs and Software Architectures, I had the opportunity
to present my works to both communities.

In the beginning of my Ph.D., I published a poster in a French-speaking annual event
on software engineering (Noël et al. 2009) to present the objectives of my work. In parallel,
the results of my research Master thesis, that has no link with this thesis, were presented at
LNMPR (“Logic Programming and Nonmonotonic Reasoning”), an international conference on
logic programming (Noël and Kakas 2009).

I presented the first version of the contribution of this thesis at AT2AI (“From Agent
Theory to Agent Implementation”), an international symposium dedicated to the development of
agent-based systems (Noël, Arcangeli, and Gleizes 2010a). It evolved and was then presented
at EUMAS (“European Workshop on Multi-Agent Systems”), the main European workshop on
MASs (Noël, Arcangeli, and Gleizes 2010b).

Then I presented a more mature version of the contribution at CAL (“Conférence francophone
sur les Architectures Logicielles”), the main French-speaking conference on software architectures
(Noël and Arcangeli 2011). An extended and improved version of the article, and thus the most
mature published results of my thesis, appeared in RNTI (“Revue des Nouvelles Technologies de
l’Information”), a French journal (Noël, Arcangeli, and Gleizes 2012).

During my Ph.D., I visited the AgentWise research team. AgentWise, headed by Tom
Holvoet, is part of the DistriNet research group of the Computer Science Department of the
University of Leuven in Belgium.

I spent two months with them to work with Mario Henrique Cruz Torres, a Ph.D. there.
The result of this work is detailed Chapter 7 and was presented at EUMAS (Cruz Torres et al.
2010a), then at MONA+ (“International Workshop Series on Monitoring, Adaptation and Beyond”),
an International workshop of the web-service community (Cruz Torres et al. 2010b). I also
interacted with Tom Holvoet and Danny Weyns, two leading European figures on the matter
of, among other things, the relations between MASs and software architectures.

I participated in the regional research project ROSACE 2. I first worked on adaptive
communication where I took part in the redaction of a book chapter (Lacouture, Rodriguez,
et al. 2011). Then I worked on cooperative self-organisation where we used my contribution
to develop a prototype of self-organising robots that self-allocate tasks (Georgé et al. 2010;
Lacouture, Noël, et al. 2011).

2. ROSACE (Robots and Embedded Self-Adaptive Communicating Systems): http://www.irit.fr/Rosace,
737, funded by the RTRA STAE (Fondation de coopération scientifique, Sciences et Technologies pour
l’Aéronautique et l’Espace)

xxiii

http://www.irit.fr/Rosace,737
http://www.irit.fr/Rosace,737

Introduction to the Thesis

I also participated in the research project AmIE 3 on ambient intelligence and systems. In
this context, Jean-Paul Arcangeli and I supervised the internship of a Master student that
was presented at UBIMOB (“Journées Francophones Mobilité et Ubiquité”), a French-speaking
annual event on ubiquity and mobility (Denis et al. 2012). The result of this work is detailed
Chapter 7.

Software. The contribution, in particular the component model I propose in this thesis, has
been implemented and is presented Appendix B. This tool is named MAY (Make Agents

Yourself) and is released under the GNU General Public License (GPL). It is incorporated in
the Eclipse IDE (Integrated Development Environment) and provides an editor to describe
components and architectures conform to the component model. It generate Java code usable
to implement the components in a flexible and typesafe way. It comes together with a library
of reusable components released under the GNU Lesser General Public License (LGPL). The
website of MAY 4 contains tutorials for installing the tool and using the component library.

Teaching. In my last year of Ph.D., I had the opportunity to present the knowledge I
gathered on the design and documentation of software architectures to Master students. It
resulted in a 2 hours lecture and a 4 hours tutorial for 60 students. Moreover, MAY, the
implementation of the component model, was used to conduct 8 hours of practical tutorials
to introduce component-based programming to the same students. The teaching material, in
French, that was given to the students can be found on my personal homepage 5.

Editorial Notice

Even though this thesis is the result of my own work, some parts of it could not have been
done without the help of a lot of people. Thus, in the rest of my thesis, even though I take
responsibility for everything written in it, I switch to a “royal we” to not have to constantly
choose between pronouns, which eases the flow of the discourse.

In order to ease the reading, every chapter ends with a summary of my contributions.

3. AmIE (Ambient Intelligent Entities): http://www.irit.fr/AmIE,1003, funded by a scientific program of
the University of Toulouse III (Université Paul Sabatier)

4. http://www.irit.fr/MAY
5. http://www.irit.fr/~Victor.Noel/

xxiv

http://www.irit.fr/AmIE,1003
http://www.irit.fr/MAY
http://www.irit.fr/~Victor.Noel/

CHAPTER 1
Engineering Software: Software

Architectures and Multi-Agent
Systems

And (repeat after me) we all promise to
stop using the phrase “detailed design”.
Try “nonarchitectural design” instead.

Paul Clements
Clements et al. (2003)

In this chapter, we introduce background concepts and definitions that are employed in
the thesis. The objective is to get a clear picture of the context into which our contribution
fits, but also to present works that influenced it.

It starts with a part on software engineering in general as we understand it. Then, we
develop the different aspects of the field of software architecture as a mean to do software
engineering. Finally, we present Multi-Agent Systems (MASs), also as a mean to produce
software.

Software architectures and MASs are two ways of producing software but each tackle
different aspects of it. In this sense they are non-competing and non-conflicting. One of the
incentives for this thesis is to study how they can be combined together and what advantages
they can bring to each other. More particularly, the motivations are, for the first part of
this thesis, how software architectures can support the development of MASs and, for the
second part, what are the links between MASs and software architectures and how MASs
can help to make software architectures more “intelligent”. In both parts, the focus is put on
how practically these questions can be answered using adequate abstractions for design and
implementation.

1

1. Engineering Software: Software Architectures and Multi-Agent Systems

1.1 Software Engineering

In the field of software engineering, the objective of development could be summarised as
producing a software solution to a problem. This definition contains three important concepts:
the problem, the solution and the process. We now detail these concepts and what evolve
around them during software development.

This section mostly contains definitions that are important from our point of view and,
even though they can be considered as subjective, they only act as a set of concepts needed to
share a common language for the rest of this thesis, without being axioms or hypothesis.

1.1.1 General Terms

The development starts with a problem to solve. There exists several ways of expressing
the problem, we will see the most well-known one Section 1.2. The solution is the result of
answering the problem. A software solution, that we also sometimes call the application or
the system, is the main artefact that results from the development. In practice, a software
solution is something that, when it is executed, solves the problem it was made for. Ultimately,
it takes the form of a source code implementation and is deployed to be used.

An artefact is anything that is produced during the development. The solution is a
software artefact, but other artefacts are produced during the development, such as documen-
tation of the application or tests. But more importantly, the development itself produces a lot
of different design artefacts that describe intermediary solutions to the problem. Indeed, in
order to build the solution, the software developers follow, as we are going to see, a process
that helps to answer the problem by producing these intermediate design artefacts.

1.1.2 Modelling the Solution

In any way, when doing software development, the design artefacts represent the complete
solution, or parts of it, using high-level models that are bit by bit refined.

A model, for example as defined by Bézivin and Gerbé (2001), is a simplified representa-
tion of a system. The system modelled is called the subject of study. The model is always
made with a specific objective in mind, for example in our case, a model of the system is
meant to help its building. Most of the time, the manipulated model abstracts over some of
the elements of the solution in order to ease its manipulation and to focus on what we are
interested in.

There exists a reflexive relation between models, some of them are called meta-models and
are meant to describe how to model models that conform to them. They are also sometimes
considered as modelling languages. For example, the most known meta-model for building
software is the Unified Modeling Language (UML). In the next chapter, the models studied
are all meta-models for modelling MASs.

2

1.1. Software Engineering

A semantics is often associated to a meta-model to describe the meaning of the different
types of elements that can be modelled with it. For example, we can talk about the semantics
of the concepts provided by a meta-model.

The term design is often used both as the process of producing these models of the
solution and as the result — i.e. an artefact — of this phase of the development. Software
development is mainly about producing a design answering the problem, and then about
implementing this design. The design potentially undergoes successive refinements, and
the implementation is often the translation — for example by programmers, or using model
transformation — of the most detailed design into code. This implementation is expressed in
terms of the programming abstractions made available to the implementers by the chosen
development support.

A development support is something that is used to program the solution. Development
supports propose models of programming, often called programming paradigms, i.e. a
coherent set of concepts on which the developers can rely on when programming (Van Roy
2009). Such concepts are also called programming abstractions. In our opinion — which
follows the idea that everything is model — what fundamentally distinguishes models
proposed by development supports from models used for design is that the former provide
an implementation for the semantics of their model in order to render their instantiation
executable. Such implementation of their semantics can be considered as an abstract machine
that can execute the program expressed using the model (a programming language for
example).

1.1.3 Methods and Methodologies

In order to help the design or the implementation, methods are used. A method is often
seen as the combination of meta-models (to represent the solution) and a complete process,
which is a succession of activities that guides the designers towards the solution (Arlow and
Neustadt 2005). Methods cover different aspects of the development, among them common
ones are: analysis, design, implementation, testing, evolution. . . Some methods only cover
design, other go up to the implementation, some cover analysis or evolution, etc. Methods
provide guidelines that help the developer to take decisions in order to find a solution to the
problem, or well organise the development.

A term often used in the software engineering field along with the one of method is
methodology. As the American Heritage Dictionary of the English Language explains:

Methodology can properly refer to the theoretical analysis of the methods ap-
propriate to a field of study or to the body of methods and principles particular
to a branch of knowledge. [. . .] In recent years, however, methodology has been
increasingly used as a pretentious substitute for method in scientific and technical
contexts, as in The oil company has not yet decided on a methodology for restoring
the beaches. [. . .] the misuse of methodology obscures an important conceptual
distinction between the tools of scientific investigation (properly methods) and the
principles that determine how such tools are deployed and interpreted.

3

1. Engineering Software: Software Architectures and Multi-Agent Systems

In this thesis we try to use the terms properly, and more specifically we consider a methodol-
ogy as the set of practices and principles pertaining to a specific field, but also as something
that is instantiated by methods of this field. For example Chapter 2, some methods and their
models are studied, and Chapter 3 presents a general methodology of MAS development,
which is then partially instantiated into a method.

1.1.4 Reuse of Development Artefacts and Tools

Software development is then concerned with producing software and design artefacts
that conform to some meta-models by following methods and process, and using development
supports. During the development, artefacts can not only be produced, but also used after
they were produced in past developments. This reuse is often of great importance.

In order to be reusable, an artefact has to be generic in some way: the reusability of an
artefact thus ranges from specific to generic. The concept of generality is actually relative to
the point of view: indeed, something that is generic in a context can be specific to the same
context in a wider context. In order to denote this kind of context, we talk about domains. A
domain is a class of problems, applications, etc, that have common characteristics and thus,
that can have generic solutions reusable between developments. Also, sometimes, reusable
artefacts are not specific to a domain, but to the expertise of a class of developers.

We can then talk about domain-specific artefacts, but also about domain-specific methods
or development supports. Dedicated is another word for specific, such as “dedicated develop-
ment support” that denotes a development support dedicated to a specific task or domain.
Sometimes artefacts or tools are also said to be specific to a method, a model, a development
support, etc.

In particular, development supports are actually most often specific to a domain. We can
of course find general programming languages such as the famously known Java, C or Scala.
But lately Domain Specific Languages (DSLs) have been put in the light as a mean to ease the
development by providing programming abstractions adapted to a specific need (Ghosh 2010).
Frameworks are also a good example of domain-specific development support. Frameworks
are “application generators” that are directly related to a specific domain (Johnson 1997;
Markiewicz and Lucena 2001). Their points of flexibility are called hotspots. The developer
implements them to specify application-specific logic that will be executed by the frozenspots,
which are the parts of the framework already implemented.

Some methods are made so that use and reuse are both taken into account during the
development. Actually, the problem of reusing abstract experiences for specific problems or
elements of solution in the form of code artefacts composable together is one of the objectives
of software architectures that we now present.

1.2 Software Architectures

As we said, software engineering is mainly about designing a solution that answers an
expressed problem. In the software architecture field, the idea is to design the solution as a

4

1.2. Software Architectures

structure made of elements and relationships.
A good introduction to the problem of software architecture can be found in the work

of Bass, Clements, and Kazman (2003) for example, where they precisely define a software
architecture of a program or computing system as:

[. . .] the structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships among
them.

As we are going to see in this section, elements and relationships between them can be of
different natures depending on which part of the architecture has to be expressed and for
which purpose. The first chapter of the thesis of Fielding (2000) contains a quite complete
and clear survey of the different views and opinions on the matter. It explains the terms used
in the field, and presents the different problems that are tackled by works of the domain.

As a general introduction, the software architectures field is mainly motivated by:

– The desire of succeeding in the construction of a software system by making it as close
as possible to what it was made for under the constraints of its environment.

– The desire of being able to organise its building, maintain it after production, make it
evolve over time when needs and constraints change.

The two founding works on the matter, which each proposes its definition for software
architectures, are those of Perry and Wolf (1992) and Garlan and Shaw (1993). Perry and Wolf
(1992) qualify the difference between the two by arguing that their work is a properties-based
approach, i.e. with a focus on characterising the properties of architectures and means to
study them, while Garlan and Shaw (1993) work is a type-based approach, i.e. with a focus on
characterising elements of architectures and means to compose them. Fielding (2000) explains
this difference by saying that Perry and Wolf (1992) approach is focused on the architecture
as a runtime system, while Garlan and Shaw (1993) approach is focused on architecture
description as a mean to model the system and its elements.

These two works are the main origin of what we present now. We look at software
architectures from two different points of view: compositional and methodological. The first
is about Component-Based Software Architectures, which are practical ways of easing the
composition of software, while the second is about means to design software architectures.

1.2.1 Component-Based Software Architectures

A great part of the software architecture field focuses on Component-Based Software
Architecture (CBSA). These architectures are composed of elements which can be components
or connectors. Components are the units of computation while connectors are the unit of
communication between components. In the following we elude connectors as our work did
not rely on this concept: we considered, by oversimplification, that components can replace
them in most of the places we would have needed them.

Components are defined by Szyperski, Gruntz, and Murer (2002) as reusable implementa-
tions subject to third-party composition with contractually defined required and provided

5

1. Engineering Software: Software Architectures and Multi-Agent Systems

interfaces, which are the points of interoperability when composing software components to-
gether. Component-oriented programming proposes to directly implement component-based
architecture using architecture-oriented programming abstractions.

Software components are often defined as conforming to a component model. A com-
ponent model, as defined in a famous survey (Crnković et al. 2011), “defines standards
for 1) properties that individual components must satisfy and 2) methods for composing
components.” Among other, it considers models where components are architectural units as
in the definition of Szyperski, Gruntz, and Murer, and these are those that interest us here.

In particular, in this category of component models, Architecture Description Languages
(ADLs) are means to describe more or less formally a component-based architecture in
order to analyse, document or implement it. Some of them are only interested in static
properties, others introduce dynamism in the description, and other even include behavioural
descriptions of the elements. Medvidovic and Taylor (2000) is a famous survey of existing
ADLs.

Components are executed at runtime in component containers (Crnković et al. 2011) that
enforce the constraints they must respect as well as give them access to their environment
and other components. Component containers are also called component frameworks or
component platforms. In this thesis, at least in the first part, we prefer to consider frameworks
in a more general way as defined previously and keep the term component container for the
software that executes the components.

Our own understanding of the relation between these different concepts is as follow.
Components and compositions of components can be described with ADLs. Such descriptions
are conform to a component model. Once implemented, these descriptions of components
can be instantiated at runtime into a component container that takes care of implementing the
semantics of the component model. Other relations exist, but they are the subject of Chapter 6
and are not needed before.

To conclude, we present the definition that Bachmann et al. (2000) propose for what
they call architectural components. They are at the same time architectural abstractions that
support design, and implementation abstractions that support reuse and composition. They
are “an opaque implementation of a functionality, subject to third-party composition and
conformant (sic) with a component model.”

This shows that components are also a mean to help the design of a software architecture.
In that context, components and connectors are not the only means available to define
software architectures. The research field built on top of these concepts to more broadly
define software architecture practices.

1.2.2 Design of Software Architecture

In order to understand better what architectures are meant to be, we first propose to see
why they are built. The primary motivation behind the building of software architecture,
even before the problem itself, is what are called the stakeholders. They are the people that
have any interest in the system to be built: they can be the clients, the users, but also the

6

1.2. Software Architectures

developers, the project manager, the shareholders providing money, and even the architect
himself. The stakeholders are the ones that express the requirements that drive the building
of the software architecture.

Requirements describe what the solution must do and under which constraints, but not
how it is actually realised. Requirement engineering is the field concerned with analysis
of problems and requirements extractions. Often requirements are said to be either func-
tional, i.e. that pertain to the functionality that the system must realise, or non functional.
The latter concerns system properties (such as performance, distribution, security, etc.) as
well as development properties (costs, organisation, maintainability, reusability, etc.). Of
course, requirements can have interdependencies between each other, which complicates their
handling.

An architecture answering requirements is said to have the corresponding quality at-
tributes. Requirements are strongly linked to architecture and works show well the rela-
tionships existing between the two. The way requirements and architectures are linked to
each other are well showed in works such as Nuseibeh (2001) that presents the “Twin Peaks”
model where requirements and architecture can be incrementally refined in parallel.

This helps to understand how architecture and design are related to each other: as Paul
Clements says in Clements et al. (2003), architecture is design, but all design is not architecture.
In particular, from the point of view of an architect:

[. . .] architectural decisions are ones that permit a system to meet its quality
attribute and behavioural requirements. All other decisions are non-architectural.

In other words, architectural decisions are all the design decisions that answer the require-
ments. And thus, the architecture can also be defined as the result of taking a given set of
architectural decisions. Obviously, this is relative to the point of view taken on the designed
element: for the developer of a subsystem of an architecture, its design can be architectural
with respect to the requirements of hos element and not of the whole system.

Another motivation for software architectures is that they help to take into account as
early as possible these requirements, and that producing a model of an architecture eases
its maintenance and evolution. Indeed, as advocated by Clements et al. (2003) designing
an architecture cannot be dissociated from producing the documentation that describes this
design, records the decisions taken, their rational and the requirements they answer. This
helps to build the system, but also to register information on its structure in order to, for
example, analyse the impacts of future evolution, allocate tasks to developers or plan costs.

Clements et al. (2003) see the produced documentation as a set of views on the architecture
of a system that each concerns a part of the system or a point of view on it. Each view is
expressed in terms of elements and their relationships, but different types of views exist each
with a different meaning. In that work, the three main identified types of view are:

– Component and connector views: they describe the structure of the system in terms of
runtime entities and their connections.

– Module views: they describe the structure of the system in terms of implementation
units and their relations, dependencies, etc.

7

1. Engineering Software: Software Architectures and Multi-Agent Systems

– Allocation views: they describe the structure of the system in terms of the links between
what is software and what is not, such as hardware, but also teams of developers or
deployment units

There exist methods to help to take “good” architectural decisions such as ADD (Attribute-
Driven Design) (Bass, Clements, and Kazman 2003) that, roughly, proposes to answer re-
quirements by order of importance, and to design and refine iteratively the architecture until
no more requirement have to be answered. Clements et al. (2003) distinguish two types of
refinements: implementation and decomposition. The first one is about replacing sets of
elements of the design by different ones, while the second one is about decomposing elements
by zooming in.

Such method relies on other means to help building an architecture that people found
to capture their experience for specific domains, requirements, problems, etc. Well-known
examples of this are architectural styles, reference architectures, pattern languages or Software
Product Lines.

1.2.3 Capturing Experience

As the most famous way of capturing experience in software architectures, architectural
styles (Abowd, Allen, and Garlan 1993) organise the architecture in a particular way in order
for it to have some wanted qualities. Roughly, an architectural style is a way to constrain the
elements of an architecture in order to get in exchange some properties and to answer some
types of requirements. Architectural styles are formalised in the context of component-based
architectures with ADLs. But it is also considered as a mean to drive the documentation of an
architecture. For example, in the work of Clements et al. (2003), all types of views are seen as
instances of architectural styles. For example, service-oriented architectures, that has become
famous lately, are one style of architecture where dynamics and flexibility are emphasised.

Less abstracts, architectural patterns provide best practices for a specific family of applica-
tions, i.e. for a specific domain. Patterns are well-known in the object-oriented field (Gamma
et al. 1995) but we are more interested in architectures, and in particular component-oriented
architectures, even though patterns can be used for any type of view as with styles.

Here, we consider patterns as more specialised than styles (Monroe et al. 1997): a pattern
is more a reusable known composition of a set of elements, while a style only constrains the
types of elements and how they can be connected to each other. Architectural patterns and
styles can also be differentiated by following the locality criterion (Eden and Kazman 2003):
styles are non-local and patterns are local, i.e. styles concern the whole architecture while
patterns concern parts of the architecture.

There exist works that link up patterns, styles, ADLs, component model, frameworks, etc,
but this is going to be the subject of Chapter 6.

Other works focus on applying the knowledge coming from the field of Software Product
Lines (SPLs) (Clements and Northrop 2001). Also called domain and application engineering,
the objective of product lines engineering is to identify commonalities and variabilities in
lines of products in order to reuse as much software artefacts as possible when building an

8

1.3. Multi-Agent Systems

application. By building an architecture reusable across the domain, one can then build on
top of it application-specific architectures that reuse and extends the domain architecture.
In the same way, reference architectures (Reed 2002) and pattern languages (Kerth and
Cunningham 1997) regroup sets of architectural patterns.

As we are going to see in the next section, a specific family of architectures — i.e. a set
of architectures that conform to an architectural style, or more broadly here, to a family of
architectural styles — interests us particularly here: Multi-Agent Systems.

1.3 Multi-Agent Systems

As we just said, MASs can be considered as a family of architectures with its own
properties and advantages, as it is well explained by Weyns et al. (2004). Research on MASs
took a different path than research on software architecture and the two communities are
very distinct. Some works tried to reconcile the two, such as the book of Weyns (2010) that
covers very well the whole matter of MASs from a software architecture point of view. As it
advocates, MASs are used to organise an architecture from a component and connector point
of view in terms of agents and their interactions. This thesis also takes a shot at the question
and we come back on this last point in the following chapter as well as in the second part.

For now we focus on the point of view of the MAS community that mainly sees MASs
as a way to solve problems. In this sense, they are situated at the level of the design in
software engineering as presented in the first section of this chapter. We provide here some
general definitions and we show the outline of what interests us in the field. The next chapter
contains a thorough state of the art on MAS development and implementation.

1.3.1 Agents

There is not one admitted definition for agents and MASs, but some common characteris-
tics can be found in the literature. A commonly used definition for an agent is the following,
taken from Ferber (1995):

An agent is an autonomous physical or virtual entity able to act (or communi-
cate) in a given environment given local perceptions and partial knowledge. An
agent behaves in order to reach a local objective given its local competences.

Thus, designing agent-based systems means to build systems made of these entities that
interact together using diverse interaction means. What differentiates agent-based systems
from MASs, that we present next, is that the latter is founded on methodological concerns that
aim at giving the system a behaviour through the definition of the agents’ behaviour. Agent-
based systems are mostly focuses on the structure of the systems in terms of its elements, the
agents, the available means of interaction they can use and possibly the dynamics that drive
their internal execution.

9

1. Engineering Software: Software Architectures and Multi-Agent Systems

1.3.2 Multi-Agent Systems

A MAS is an abstract entity that only exists through its agents, their organisation and
their local interactions. Indeed, by interacting together, agents form an organisation, and
this organisation is what makes the system to exhibit a global functionality. By changing the
organisation of the agents, the system changes the way it realises the functionality (Camps,
Gleizes, and Glize 1998). While this can actually characterise any system made of elements
connected together, for example a software architecture, in MAS the focus is put on the
re-organisation in an autonomous way by the agents. Inversely, more traditional approaches
decompose the problem into independents sub-problems and thus address the question in a
reductionist way. Most of the time this implies static connections between the elements.

A few words can be dedicated to the terms reductionismand emergence that are going
to be used in this thesis, even though we don’t really relies on their meaning. Roughly,
what we mean by that is that a reductionist decomposition of a problem or a solution
is a decomposition in independent sub-elements, which when taken altogether gives the
possibility to understand the whole of their composition. On the other hand, emergence
characterises the fact that from the elements of a composition, some phenomena can be
observed that is not understandable directly from the sum of the elements of the composition.
Obviously, the subject is much more complex to that, and in particular these terms are not
really opposite, but we think this is enough for understanding the discussions that use these
terms.

As Demazeau (1995) says, in MASs, the “operational part of how the solution [of the
problem] is found” is taken in charge by the (self-)organisation of the agents of the system and
not by the designer of the system. This is what is sometimes called the collective intelligence
(Camps et al. 1994; Ferber 1995) or the collective behaviour (Demazeau 1995) of the system.

Organisation is possible through means of interaction that the agents use as well as the
environment in which they interact. An important aspect of the interactions is that they are
mostly locals. Locality can express itself in terms of social relations between agents, virtual
spatial abstractions or symbolic proximity, depending on the problems and on the way chosen
to solve it. Thus, a focus has been put in the community on interactions first, and then lately
on environments. As we see in the next chapter, there exists a quantity of proposed models
to describe a solution expressed using MASs.

The hard part when designing a MAS is to find what is going to be an agent in the
system, and what is going to be their behaviours. In a way this is about finding the adequate
decentralized coordination algorithms for the agents to organise in an adequate way to solve
the problem. This confers adaptability to the system in the sense that the functionality of the
system is not decomposed in distinct sub-problems in a reductionist fashion. Instead, the
functionality of the system emerges from the interaction of the agents and failure in parts of
the system can be absorbed by re-organisation (Capera et al. 2003).

Thus, combined with the models, different approaches exist to design such system. An
approach is a way to help to design MASs, possibly backed up by a formal or informal theory.
Approaches are sometimes accompanied by development methods. For example, we present

10

1.3. Multi-Agent Systems

next the AMAS approach, which is backed-up by the ADELFE (Atelier de Développement de
Logiciels à Fonctionnalité Emergente) (Bernon, Camps, et al. 2005) method. ADELFE is also
presented and used Chapter 3 to illustrate an aspect of the contribution.

These approaches propose specific ways to design the system by helping to find the right
behaviours for the agents. Each of these approaches and methods have their pros and cons.
Some of them target specific domains, some other don’t.

Then, the question of implementing MASs has had an important coverage by the commu-
nity. The following chapter is dedicated to this question, we thus don’t detail it here.

1.3.3 AMAS: Adaptive Multi-Agent Systems

We briefly present the AMAS (Adaptive Multi-Agent System) approach (Gleizes et al.
2008; Georgé, Gleizes, and Camps 2011) to MASs as it is one of the main design approach
that we used when applying the contribution of this thesis. In this approach, often referred
to as self-organizing MASs, the sole purpose of the agents, who have very local behaviours,
is to participate in a self-organizing system from which the collective intelligence emerges.
The main engine of the adaptation in this approach is based on a theory of cooperation: this
relies on the idea that a system that acts cooperatively, with respect to what it has to do, is
adequately functional. In terms of design, it means to identify situations where the system is
not likely to be functioning properly (and thus considered not being in a cooperative state)
that are called Non-Cooperative Situations (NCSs). When agents find themselves in these
NCSs, they try to fix them in order for the system to stabilise in a cooperative state, which
corresponds to a state where the system is adequately performing its function.

There exist several mechanisms to describe and handle cooperation used in the AMAS:

– First, the agents have two aspects: the nominal behaviour and the cooperative behaviour.
The former describe what the agent do when the system is functioning properly, i.e.
when the system is in a cooperative state and stabilised. The latter describe how the
agents can be cooperative in terms of anticipation or correction of NCS.

– Then, in order to represent diverse degree of non-cooperation, agents use the concept
of criticality. The criticality represents how important is a request an agent sends. The
difficulty is thus, for the problem domain, to find the best way of representing this
criticality. Indeed, agents always favour requests the more critical requests over the
others, and thus it is the main way to control the direction into which the system goes.

– Agents communicate with each other and thus have what is called a neighbourhood:
the set of agents they communicate with. In a way, this neighbourhood represents the
links that exist between the agents, and thus the organisation of the system. When
the agents reorganise the system, they actually change the sets of their neighbours.
And when they only apply their nominal behaviour, they do so with respect with their
current neighbourhood.

11

1. Engineering Software: Software Architectures and Multi-Agent Systems

By giving agents the capacity to adapt their behaviour and their organisation — always
favouring solutions that are the most cooperative—, the system self-organises. Within this
approach, the system can self-adapt at three different levels:

– Internal adaptation of the agents

– System reorganisation (modification of the links between agents)

– System evolution (creation and destruction of agents)

All of these adaptations are always triggered by the agents themselves based on their be-
haviour.

The approach is used Chapter 4 in an application used to illustrate the contribution, but an
example of how this really work and how functionality can emerge from the local interactions
of the agents is detailed Chapter 7.

1.3.4 Scope

The kind of systems targeted in this thesis are mostly situated (but not restricted to) in the
Agent-Based Modelling (ABM) or the Multi-Agent-Based Simulation (MABS) fields. In these
fields the focus is really put in MASs as a mean to model a problem or its solution in terms
of agents, their interactions and their behaviours. It is said that the entities of the domain of
the problem are agentified. This is to be put in opposition to other fields where agents are
mainly a way to design elements of the system in terms of intelligent entities that interacts
together without a focus on the aforementioned collective intelligence.

1.4 Conclusion

As we see in this chapter, MASs and software architectures each tackles different aspects
of software development. In all these works, our particular interests are the means and
abstractions that are available to ease the implementation of systems. In software architectures,
these are Component-Based Software Architectures (CBSAs) and component models that
provide abstractions that act as a bridge between a software architecture in terms of design
and concrete implementation of the design. In MASs, these are development supports that
provide abstractions that act as a bridge between a MAS design and a concrete implementation
of it. We identified two different axis of relationships between them as highlighted in the
introduction of this thesis.

First, while software architectures are mainly about organising the development of a
complete system in a realistic way, MASs focus on finding a way to solve the problem itself.
As we are going to see in the next chapter, MASs have specificities that make them difficult to
implement, mainly because of the gap that exists between the models of design and those of
the available development supports. This is the subject of the first part of this thesis: how
can software architecture practices can be used to ease the development of MASs and more
particularly their implementation by exploiting a component-based approach.

12

1.4. Conclusion

Second, software architectures, and in particular component-based software architectures,
which are the closest the field has come to implementation, are mainly rooted in static
composition of components. More and more interest is expressed towards dynamicity,
adaptivity, robustness, etc, by the community. MASs, as an approach with these precise
objectives, has the potential to help to tackle this question. This is the subject of the second
part of this thesis: how do MASs relate to CBSAs, how can they support the adaptation of
such architectures, and as we are going to see, how can the contribution of the first part plays
a role in answering both these points.

13

Part I

S O F T WA R E A R C H I T E C T U R E S F O R M U LT I - A G E N T S Y S T E M S

CHAPTER 2
State of the Art on MAS Development

Work It Harder, Make It Better
Do It Faster, Makes Us Stronger
More Than Ever, Hour After Hour
Work Is Never Over

Harder Better Faster Stronger
Daft Punk

Encouraged by the numerous evidences of the existence of a gap between design and
implementation in MASs development, we thoroughly study and analyse the various existing
means of development that exist in the field of MAS development, both for design and imple-
mentation. This gives us the possibility to understand the specificities of such systems and
the challenges that should be tackled to ease MAS design, implementation and maintenance
as well as improve the quality and productivity of the development process.

As it is explained in the next sections, the main way of tackling MAS development can be
separated into two important phases.

The first one focuses on designing the system in terms of agents and their environment
by defining their behaviours. The MAS community focused a lot of energy on that matter
and in the last 10 years a huge quantity of methods and models were produced to support
the design (architectural and non-architectural) of MASs. These models and methods target
different applications, domains, approaches or problems. Quite complete surveys on the
matter of agent-oriented development methods have been proposed (Bergenti, Gleizes, and
Zambonelli 2004; Henderson-Sellers and Giorgini 2005).

Then, the second phase focuses on implementing the design. To do so, developers can
either use development supports that help them to focus on high-level concepts, or do it
by hand using a general programming language. Again, many development supports were
proposed by the community and studied in reference surveys (Bordini et al. 2005; Bordini
et al. 2006; Bordini et al. 2009).

17

2. State of the Art on MAS Development

Unfortunately, as it has been highlighted several times in all these works and as we are
going to see, the gap between design and implementation is one of the challenges of MAS
development. The main problem here is to make the concepts manipulated at design coincide
with those available for implementation. For example, the paper of Bernon, Cossentino, and
Pavón (2005), which covers most of the known works on the trends in the field on methods,
models and tools, shows and explains this point particularly well.

Thus, always with the motivation brought up by software architectures — take into account
functional and non-functional requirements for better software quality, maintainability, reuse
and explicit structure — this chapter first gives a general tour of the three different problems
of MAS development — design, implementation and the gap between them — in order to
spot ways of easing the development and of bridging the aforementioned gap.

In the following, we first present a characterisation of existing works that support the
design and the implementation of MAS from an architectural viewpoint. This data serves
as a basis to present the different important matters that have to be tackled during MAS
development. Finally, from this survey of existing means of development for MASs, we
propose an analysis of these works and conclude it with a classification that puts the focus
on the research works themselves. This helps us to spot important points of research and
motivate the contribution presented in the next chapter.

2.1 Characterisation of MAS Meta-Models from an Architectural
Viewpoint

In order to analyse the existing works, we first propose to characterise them in order to
understand what their meta-models provide in term of architecture. In the following, the
term “model” is a central concept used to describe and analyse the works surveyed. AsFor a defini-

tion of Model,
see p. 2

For a defini-
tion of Model,
see p. 2 defined previously, a model is used to describe a system, and a meta-model (which itself is a

model) is used to describe models.
We focus here on the meta-models that help us to describe MASs during their design

but also implementation using existing development supports. This helps to show the
relation between design and implementation, as well as to highlight the specificities of these
meta-models. To talk about them and differentiate the two categories, we talk about MAS
meta-models and development support meta-models. They are all detailed Appendix A.

This characterisation is actually exploited in the following sections, we only present the
general ideas now. Concerning development support meta-models, we only looked at those
with a freely available implementation.

The meta-models are categorised based on which of the three following types of elements
of a MAS they can model: internal agent architecture, environment architecture and interac-
tion architecture. The first one focuses on the way agents are architectured in order to behave
as a part of a MAS. The second one focuses on the way the environment is architectured:
it concerns all the elements of the system that are not considered as agents. The last one is

18

2.2. Walking Through the Different Aspects of MAS Development

about mechanisms that let the agents interact with each other or the environment and that
lies in-between the two previous elements.

We chose this categorisation as it is well admitted that MAS from an architectural point
of view is “designed as a set of autonomous software entities (agents) that are embedded
in shared structure (the environment)” as it is for example presented in the Preface of the
Multiagent Systems and Software Architecture (MASSA) workshop (Weyns and Holvoet 2006) by
its organisers. The interaction architecture is introduced because it is of first importance to us
as it will be shown in this thesis.

In each category, different features characterise the meta-models. Moreover, a special
meta-feature named “definable” is introduced. All of these are explained when needed in the
rest of this chapter where the result of the characterisation, presented Table 2.1 and Table 2.2,
is exploited.

2.2 Walking Through the Different Aspects of MAS Development

In this section, we propose to look at the different aspects of the state of the art on MAS
development that are important with respect to our objectives.

This walk-through is decomposed in two parts. The first part focuses on the different
aspects of importance linked to all the works interested in modelling artefacts during the de-
velopment. We cover here the different MAS meta-models, the different kinds of requirements
that are answered and not answered by these meta-models and the different development
support meta-models. The second part is about bridging the gap between these different
aspects and in particular the design and the implementation.

We restrain ourselves in this section from expressing any judgements on these work: we
are more interested in painting a global view of the important aspects of MAS development.
This serves Section 2.3 as evidences to infer a critical analysis of the field and an incentive for
the contribution.

2.2.1 The Design Point of View

Be it in development methods or not, what particularly interest us are the different MAS
meta-models existing in this field that are usable to describe the produced MAS and its
structure (by opposition to meta-models used for requirements analysis for example). They
concern the description of the agents, their internal organisation, the system organisation, the
environment, etc. This is interesting here because they are what is needed to be implemented
at one point or another.

As presented previously, Table 2.1 shows the different MAS meta-models and which
features they provide for each type of architectural elements. We detail these features now:

– Agents Internal Architecture: how the designer can model the internal architecture of
the agents.

– Goal: behaviour of agents is described in terms of goals and planning.

19

2. State of the Art on MAS Development

Table 2.1: Characterisation of Design Models in terms of available Features of Architectural
Elements

Internal Architecture

Design Model Goal UML-like BDI Rules Aptitudes Recursion

SeSAmUML X X
PASSI2 X

ASPECS X X Holons
AgentUML X

AML X
ADELFE X X X X

A&A
Macodo

AGR
MASQ

VOWELS
MOISE+

Opera
MESSAGE

GAIA
CRIO

Tropos X

Environment Architecture

Design Model Org. Struct. Org. Dyn. Situated Entities Definable

SeSAmUML X
PASSI2

ASPECS X X
AgentUML

AML
ADELFE X

A&A artefacts
Macodo X X

AGR X
MASQ brute space, objects

VOWELS AEIO bricks
MOISE+ X

Opera X scenes
MESSAGE

GAIA
CRIO

Tropos X

Interaction Architecture

Design Model Messages Action/Perception Role Play Definable

SeSAmUML X
PASSI2

ASPECS X X
AgentUML X

AML X
ADELFE X

A&A X Artefacts Use
Macodo X

AGR X
MASQ bodies

VOWELS X AEIO bricks
MOISE+ X

Opera X
MESSAGE X X

GAIA X X
CRIO X

Tropos X X

20

2.2. Walking Through the Different Aspects of MAS Development

– UML-like: the behaviour of the agents is described using an UML-like abstraction
such as sequencing diagrams, state diagram, etc.

– BDI: the behaviour of the agents is described in terms of Beliefs-Desires-Intentions.

– Rules: the behaviour of the agents is described using rules.

– Aptitudes: aptitudes, skills and other kind of mechanisms that agents can refer to
in their behaviour can be modelled.

– Recursion: agents can be recursively modelled as MASs.

– Environment Architecture: how the designer can model the environment of the agents.

– Organisation Structure: the structure of the agents organisation can be described,
often in terms of roles and their relations.

– Organisation Dynamics: at the environment level, a dynamics for the organisation
not managed by the agents themselves can be described.

– Situated: consider agents are in a situated environment.

– Entities: entities in the environment with which the agents can interact can be
defined.

– Interaction Architecture: which interaction means the designer can use to model the
interactions between the agents.

– Messages: consider agents can communicate using message passing.

– Action/Perception: consider agents can perceive their environment and act on it.

– Role Play: consider agents play roles in an organisation.

The definable meta-feature has the following meaning: when no feature is available to
directly describe an element of the solution, MAS meta-models with a meta-feature provide
means to define abstractions adapted to describe the solution instead of using the (potentially
inadequate) features of the meta-model. The boundary between a feature and a meta-feature
can be fuzzy, but as an example, message passing is typically not a mean to define new
abstractions, while an abstraction usable to define new action and perception mechanisms is.

The important point to notice in this characterisation is that the features tackled by these
meta-models are very different depending on the work. Some of them focus more on the
internals of the agents, while others tackle the environment itself. There are some works
about the environment as an interaction medium, others try to define a way to describe
the organisation the agents operate in. Moreover, in terms of architecture, be it internal or
external, MAS meta-models have overlapping features or at different levels of abstraction.
But at the same time, not two of them actually share the same set of features, except for
a few exceptions. Thus they all cover different parts of what a MAS is, some of them are
complementary, while others are exclusive.

A second point, which is not directly highlighted by the characterisation, is that the
semantics of the MAS meta-models are more or less precise. This is actually linked to the
fact that they cover different parts of what a MAS is: a MAS meta-model focused on the

21

2. State of the Art on MAS Development

environment does obviously not say anything about the internal architecture of agents, but
maybe constrains the way agents can communicate. But moreover, even when a meta-model
defines how a specific part of the architecture is structured, it can omit details of the semantics
of it. A good example is about all the MAS meta-models defining that an agent has a
perceive-decide-act cycle: does it mean the agent is reactive and reacts to every percept that
occurs following this cycle, or does it means that there is a general loop where in the perceive
step, the agent checks its percepts? This has to be defined at one point or another, but some
MAS meta-models don’t provide any information on that. We come back on the implication
of that matter later.

The third and last point on these works is about the architecture style that MAS meta-
models follow. Indeed, MASs are made of agents and their environment, which are inter-
acting together in a dynamic and peer-to-peer way. From a software architecture point of
view, this is seen as a family of architectural styles — as highlighted Chapter 1 — respected by
almost all the MAS meta-models, even though they all focus on different parts of it. Elements
of the system are the agents, they have autonomy, but more importantly, they are not directly
connected to other particular agents: they only have access to interaction means that give them
the possibility to communicate with whoever they know. That last point contrasts particularly
with common means of interaction between software elements in other existing approaches
for software decomposition. For example, in component-based programming, elements are
connected explicitly with connectors, and in object-oriented programming, elements directly
know each other and interact only by synchronous calls. This is of importance because this
fact has an impact on the implementation as we are going to see.

To conclude, there is a lot of diverse meta-models that are used to design MASs. They are
usable to describe the system in diverse ways at different levels, but all with the same kind
of architectural style. They do so in a more or less precise way giving some latitude to the
designer and developers for choosing a specific semantics for it.

In terms of our objectives of easing the development, something else is of importance:
these MAS meta-models are the support of numerous works and MAS approaches, and thus
their use cannot simply be avoided. They are tools that researchers and engineers want and
should use to build applications based on MASs. This is of first importance since it constrains
the solutions that can be proposed to ease the development of MASs.

2.2.2 Diversity of Requirements

The previous section presented MAS meta-models where all of them act as a mean to
capture a way to realise a system for a specific problem. At the start of every development,
what these systems should do is expressed using requirements. This is the subject of thisFor a defi-

nition of Re-
quirements,
see p. 7

For a defi-
nition of Re-
quirements,
see p. 7

section.
The first thing to say about these requirements is that depending on the MAS meta-model

used, different kinds of requirements are answered. Some works see MAS approaches as
a mean to provide some quality attributes for the system to be built and analyse them in
order to help choosing a development method. For example, Silva et al. (2004) proposes

22

2.2. Walking Through the Different Aspects of MAS Development

categories of non-functional qualities that a MAS can have and classifies some development
methods in these categories. The preface of the Multiagent Systems and Software Architecture
(MASSA) workshop (Weyns and Holvoet 2006) also states that MAS are meant to answer
quality attributes such as adaptivity, robustness or scalability. This idea is also defended
by Weyns (2010). On top of these, which are mostly non-functional requirements, the MAS
meta-models are obviously able to describe solutions answering the functional requirements
of the application. A work that is well known for emphasising the importance and diversity
of requirements is the Tropos method (Giorgini et al. 2005).

Actually, MAS meta-models only answer a subset of them: for example the use cases
(which are expressions of functional requirements) involving the user of the application are
often not fully answered by the MAS methods and their meta-models themselves. Parts of
them are left at the discretion of the developer. Indeed, in MASs, there are requirements that
are answered by the MAS itself, such as the main functionality of the application, or the quality
attributes previously referred to. But there are also more traditional functional requirements
such as Graphical User Interface (GUI) for interacting with the system or the agents, or for
monitoring them. There are also other non-functional requirements more concerned with
organisation of the development such as modularity, reusability, cost management, etc. Thus,
every MAS meta-model in the literature tackles requirements, but none of them ever answers
all the requirements of one application at once: this means there is always requirements
that must still be answered after an approach and its MAS meta-model has been applied.

Moreover, a point often forgotten about requirements in MASs is that the choice of a
MAS meta-model and the resulting design both introduce new requirements that have
to be tackled during implementation. Indeed, as we said earlier, all MAS meta-models
make hypothesis on the way agents are internally organised, or on the kind of interaction
means they can use, or the interaction language they exploit. When the design is done and
implementation has to start, new requirements and constraints have appeared and must
be taken into account. Be it using an existing development platform, as we see after, or by
building everything by hand, this has to be done. For example, a MAS meta-model can
assume that agents are all synchronised in their execution, as it is always done in simulation,
for the result of the design to be valid. In a way, these introduced requirements are the
expression of the semantics of the MAS meta-model.

To conclude, the MAS meta-models help to tackle diverse requirements and also introduce
other new requirements that constrain the implementation. When developing a MAS, a
design approach, and thus a MAS meta-model, is chosen and this has an impact on what can
be answered, and how it will be answered. Of course, this question of requirements is very
common in the software architecture field as being the main reason why an architecture is
defined.

What is important to notice from this section is that all of these requirements have to be
taken into account, as early as possible, and as easily as possible. This must be remembered
to be able to propose an adequate solution for easing the development of MASs.

23

2. State of the Art on MAS Development

2.2.3 Commonality of Requirements and Elements of Solution

As we saw, all the requirements that we talked about must be taken into account. What
can now be said is that some requirements are mostly common to MASs while other are very
specific to some applications. Also, some are very common to software in general, while other
are only found in specific sub-domain of the MAS field. For example, adaptivity is often a
known requirement answered by MASs, while execution fairness or monitoring of the agent
execution is mostly a problem in the simulation domain. Security finds itself more in the web
and internet applications, performance in the optimisation domain. Then, as we said earlier,
different approaches and MAS meta-models are also introducing new requirements, which
are thus specific to them.

In practice, these requirements are answered by some elements of the built solution. These
elements can manifest themselves as bit of code such as mechanisms, datatypes but also
high-level designs. When one wants to reuse in order to not reinvent the wheel every time an
application is developed, one can use code, patterns or other means of reusing knowledge as
it was presented Chapter 1. On the other hand, some elements have to be implemented on
purpose for the application.

To get a clear vision of the specificity or generality of requirements and elements of
solution, we propose a simple classification as following, going from the problem to software
development in general:

– Problem/Application/Project: they are specific to the problem at hand, they often con-
cern functionality, but also requirements for the development itself such as modularity
and organisational constraints. They are about GUIs, behaviours of the agents, etc.

– Domain: they are concerned by a set of problems or application, examples of do-
mains are optimisation or simulation. They are about monitoring GUIs, scheduling
mechanisms, environment management.

– Approach: they are concerned with specific approaches and MAS meta-models, they
constraint the implementation for example for the lifecycle of the agents or the way they
can interact. An example is rule engines for executing behaviours described using a
specific method.

– MAS: they are about MAS in general, for example the adaptivity requirements or the
fact that the system is architectured as agents and environment.

– Others: they are anything that is not concerned with the previous ones.

Some works focused on applying the SPL approach to tackle this commonality: mainFor a defini-
tion of Soft-
ware Product
Line, see p. 8

For a defini-
tion of Soft-
ware Product
Line, see p. 8

works on the matter of MAS Product Line (MAS-PL) are DDEMAS (Girardi and Lindoso
2006), MaCMAS (Peña et al. 2007), Nunes et al. (2011) (based on PASSI) and GAIA-PL
(Dehlinger and Lutz 2011). The differences between them are on the phase of design, the
types of variability points identified and the methods and techniques they were inspired by.

A second set of works are about design or architectural patterns. Some of them focus onFor a defini-
tion of Archi-
tectural Pat-
tern, see p. 8

For a defini-
tion of Archi-
tectural Pat-
tern, see p. 8

organisation of agents for specific objectives, while others are about coordination mechanisms,
mainly environment-mediated, to tackle some common problems. Huge surveys of existing

24

2.2. Walking Through the Different Aspects of MAS Development

patterns in MAS were produced (Oluyomi 2006; Oluyomi, Karunasekera, and Sterling 2007).
These works classify them depending on the phases of development they are useful for and
the tasks that are tackled in these phases. Some works regrouped sets of patterns in reference
architectures or in pattern languages. Most of these works focused on the environment-
mediated types of MASs (Weyns, Omicini, and Odell 2006; Viroli et al. 2007). This can be
explained by the diversity of interaction means and the few development supports available
for implementing this kind of MASs.

As a conclusion, there is a lot of diverse requirements, but a lot of them can be recurring
in different applications. The answer to these requirements can be found as reusable mecha-
nisms, patterns or any other way to capture experience. This at the design level, but also at
the implementation level.

Thus, this is an important point to take into account to ease the development: if possible,
development by and for reuse must be possible.

2.2.4 The Implementation Point of View

A common mean of reuse existing known way to implement MAS — and thus by the
way to answer some recurring requirements — is to use development supports. The MASs
community proposed several platforms, frameworks and programming languages adapted to
MAS development.

In a rough way, the link between these three means of implementation is as follow.
Programming languages and frameworks are means to declaratively or imperatively describe
elements of a MAS. The difference is that languages have programming primitives dedicated
to their domain while frameworks provide their programming abstractions to their hotspots
in a more general programming language such as an object-oriented one. In order to execute
these descriptions, there exist execution platforms for them. In the case of frameworks,
it is comprised in their frozenspots. For the languages, it is more like abstract machines
that can execute the language or compiler that can transform the language into executable
code. Moreover, platforms provide the infrastructure needed for the agents to work, such as
communication or spatial interactions for example.

Available agent programming languages are usable to specify agent behaviours with
adapted programming primitives. The main origin of programming languages in the MAS
field comes from the Agent-Oriented Programming paradigm (Shoham 1993) that proposes
to describe agents in terms of their states and mind. The most famous known applications of
this approach are the Belief-Desire-Intention (BDI) languages (Bratman 1999).

Table 2.2 shows development supports meta-models categorised as presented previously.
Only those with an existing and available implementation are present. Moreover, in the case
of development supports relying on others, the name of the development support relied on is
written in italics in features it provides.

We now detail the different features existing for each of the types of architecture elements:

– Agents Internal Architecture: how the programmer can implement the behaviour of the
agents or elements of its internal architecture.

25

2. State of the Art on MAS Development

Table 2.2: Classification of Development Supports in terms of available Features of Architec-
tural Elements

Internal Architecture

Dev Model UML-like BDI Aptitudes Recursion Event Scheduling Definable

JADE X
Jadex X X
JACK X X
Jason X

J-MOISE+ Jason Jason
S-MOISE+

Janus X Capacities Holons X
MadKit X
SeSAm X

NetLogo Methods
Cartago

MAGIQUE Hierarchy Skills
MALEVA X Components

Malaca X Components

Environment Architecture

Dev Model Org. Struct. Org. Dyn. Situated Msg Ref Directory Scheduling Definable

JADE X X X
Jadex JADE JADE JADE
JACK
Jason X X

J-MOISE+ S-MOISE+ Jason Jason
S-MOISE+ X

Janus Holons X X X X
MadKit X X X System Agents
SeSAm X

NetLogo X X Methods
Cartago Workspaces Artefacts

MAGIQUE Hierarchy
MALEVA X

Malaca X X X

Interaction Architecture

Dev Model Messages Action/Perception Role Play Definable

JADE X
Jadex X
JACK
Jason X

J-MOISE+ Jason X
S-MOISE+

Janus X X
MadKit X X
SeSAm X

NetLogo Method calls
Cartago Artifacts Use

MAGIQUE
MALEVA

Malaca X

26

2.2. Walking Through the Different Aspects of MAS Development

– UML-like: can execute behaviours described using an UML-like abstraction.

– BDI: can execute behaviours described in terms of Beliefs-Desires-Intentions.

– Aptitudes: abstractions to implement unit of aptitude, skill or other mechanisms.

– Recursion: usable to define agents as MASs.

– Event: provide abstractions to implement and execute behaviours triggered by
events.

– Scheduling: provide specific scheduling means for executing behaviours, often
adapted to the other means of internal architecture implementation.

– Environment Architecture: how the programmer can implement elements of the envi-
ronment.

– Organisation Structure: abstractions to describe the organisation structure and take
care of its management.

– Organisation Dynamics: abstractions to describe and execute the organisation
dynamics.

– Situated: to execute and manage situated agents and visualise them.

– Directory: provide a directory to register and find agents.

– Scheduling: implement scheduling mechanisms for executing the system in a
coherent (not necessarily synchronised) way.

– Interaction Architecture: which interaction means the programmer can use to implement
the agents.

– Messages: provide means for agents to exchange messages.

– Action/Perception: provide abstractions to describe way of interacting with the
environment.

– Role Play: provide abstractions to take part in an explicit organisation.

The definable meta-feature has the following meaning: they are abstractions provided by
the development support meta-model to define features instead of defining elements of the
solution directly using a given feature. We can clearly see the difference between these two
ways through their use when no feature is adapted to the elements to be implemented: a
meta-feature can be used to produce their implementation in a direct way, possibly through
the definition of a new feature, while without a meta-feature, an existing feature have to be
adapted or extended to implement the element.

These meta-models provide abstractions to program a MAS design. They range from
very specific such as adapted to a MAS meta-model, to very general such as a general
programming language. Others take an orthogonal stance and provide their own meta-model
that can be used with a subset of all the available MAS meta-model.

In any way, this classification shows the same kind of conclusion than with the MAS
meta-models. They also have overlapping features at different levels of abstraction, and at the
same time not two of them actually share the same set of features, except for a few exceptions.

27

2. State of the Art on MAS Development

But differently than with the MAS meta-models, the architectural styles followed by the
implementation meta-models are much more diverse. For example, in simulation platforms,
agents are just behaviours that are executed in a sequential and synchronised way without
any independence from each other or the environment in terms of software elements. Other
development supports enforce the separation and have a clear distinction between the agents
as software entities and the platform as the environment infrastructure as called by Weyns
and Holvoet (2006).

What is important here is that when choosing a specific development support meta-
model (if one wants to implement its design) the developer have to rely on its semantics
for implementing his application. This means that there is an effort to make the concepts
manipulated at design and at implementation coincide.

A second interesting point about development supports is that they have an other objective
than just reusing implementation and design. They also are a mean to ease the development
by providing adequate abstractions to the MAS developer. The MAS developer does want to
focus on his design, on his problem, or, should we say, on his business concerns. In the world
of MAS design, the user of the MAS meta-models and approaches are not always expert
programmers on the subject of concurrency or distribution. He does not want to bother with
technical problems — such as synchronisation between agents, spatial movement management,
etc — but to work using high-level abstractions. They can be sociologists studying social
behaviours, people interested in constraint optimisation, etc. That’s why existing development
support are used extensively to abstract over the details of the implementation in order to
focus on what is their business. They of course are usable to implement the MAS design, but
also other things that are linked to any of the requirements they can have. Example of this
are the need for having control on how data is shown in simulation.

2.2.5 From Design to Implementation

The previous sections highlight the gap between the concepts manipulated at design and
those manipulated at implementation that was implicitly present since the beginning of this
walk-through. The gap is well presented by Molesini, Denti, and Omicini (2007): they explain
that while the MAS meta-models are interested in agent-oriented solutions, the development
support meta-models are more inspired by object-oriented languages and practical concerns.
A huge quantity of works try to solve this problem.

Some of them are dedicated to specific MAS and development support meta-models
(Amor, Fuentes, and Vallecillo 2005; Sudeikat et al. 2005; Molesini, Denti, and Omicini 2007;
Pavón, Gómez-Sanz, and Fuentes 2006; Rougemaille et al. 2009). Others try to compose existing
MAS meta-models in order to adapt the process to the development support (Mariachiara
et al. 2010). Others provide kind of IDEs to support the implementation of specific MAS
meta-models such as INGENIAS Development Kit (IDK) (Pavón, Gómez-Sanz, and Fuentes
2005), which supports INGENIAS, or Shell for Simulated Agent Systems (SeSAm) (Klügl,
Herrler, and Oechslein 2003), which supports SeSAmUML.

28

2.2. Walking Through the Different Aspects of MAS Development

Finally other works focus on unifying, generalising or composing existing MAS meta-
models. Works (Beydoun et al. 2005; Bernon, Cossentino, Gleizes, et al. 2005; Dalpiaz
et al. 2008) propose to unify a set of MAS meta-models by finding common concepts in
them. By doing so, only one development support adapted to this meta-model can be
proposed. Another (García-Magariño 2009) proposes to easily transform between existing
MAS meta-models by defining instantiation of meta-concept using powertype modelling.
Hahn, Madrigal-Mora, and Fischer (2009), on the other hand, propose a general development
support meta-model to which should be provided instantiations depending on the used MAS
meta-model. From this general meta-model it is possible to generate an implementation.

To conclude, these works try to answer this matter either by proposing unifying MAS
or development support meta-models that can either be used with a generic development
support or at least that can be used to generate what is not generic. But as we highlighted
earlier, even though these are meant to be generic, MASs meta-models are so diverse that
generic solutions to the matter are actually specific in the sense that they only focus on one
MAS meta-model. And as we said, each MAS meta-model can not completely answer the
requirements of one particular problem to be solved. While this bridges the gap between
design and implementation, it only does so in an ad-hoc (although adapted to a MAS
meta-model) way.

2.2.6 Practical Observations

All of this has practical implications of the development when combined with our own
observations and assumptions on how development is done.

First, as we observed, assumed from existing works in the literature or personally experi-
enced, it seems that the actual practice in MAS development is to use one of the following
sequence of tasks:

– Choose a development support before the design, choose a MAS meta-model that fits
to it, do the design constrained by these and finally implement the system.

– Choose a MAS meta-model, do the design, choose a development support that fits to it,
and finally implement the system.

– Choose a MAS meta-model, do the design and directly and completely implement the
system by hand.

In all the cases, the meta-model chosen can be one of those presented previously and the way
used to implement the system can be using one of the tools or transformation presented here,
or by hand.

What is interesting with that is that in the first two cases this means that it is needed to
either adapt the design to the development support, or to either adapt the development
support to the design. This has several impacts, of course as we just saw for actually bridging
the gap, but also on the ease of development itself. There is people that use the existing
development support as a mean to have high-level abstraction adequate to their expertise.
Inversely, the people that implemented these supports are expert on implementing such

29

2. State of the Art on MAS Development

abstractions. They know what are the best way of tackling some of the requirements that are
answered by the development support.

These two different sets of developers depend on each other: the users of the develop-
ment support highly depend on their creators to have something adapted to their design.
This is particularly important in MAS because of the diversity of available meta-models for
designing as well as implementing. Furthermore, all of this is exaggerated by the fact that the
concepts at design are not always semantically very precise as it was said earlier.

Also, another fact that makes the previous even more problematic is that methods and
approaches try to make the design more and more refined during the development and not
only as a first step of it. Indeed, when developing MAS, it has been observed that the process
of implementing and design is a very iterative, agile process. This is visible in methods
where a quantity of iterative phases exists. In the specific case of MAS, the need for such an
iterative approach to design has been highlighted by Georgé et al. (2003). In this work, the
authors go further than just design and implementation, and talk about living design: the
idea of running the system and modifying it until it realises the wanted functionality.

In practice, when participating in developments and interacting with people developing
MASs, observations, experiences and feedbacks are that people are constantly revising their
design during the implementation of their system.

Something else we noticed is the fact that some requirements are taken into account
too late in the development process. A very common example of such requirements is the
scheduling of the system, the way agents are synchronised, and their execution is ordered.
Even though this has an important impact on the behaviour of the system as a whole, this is
often kept implicit during MAS design and taken care of at implementation time when it is
too late to handle the impacts on the MAS design of a choice of scheduling strategy. Such bad
practices are mostly caused by the fact that existing methods does not take such requirements
in account as it was highlighted for example by Weyns et al. (2004).

2.3 Analysis: Should We Tweak or Build?!

In this section, we propose an analysis of the previously presented state of the art of MAS
development. We give our opinion and criticise the way things are currently done in order to
motivate the contribution of this thesis.

From the matter of requirements, which are the input of the development, and mov-
ing towards the problem of the gap between design and implementation, we look at the
architectural implications of these aspects of MAS development.

With a general point of view, when building a MAS we can differentiate several phases.
The development starts from the requirements and specifications that describe what the

system as a whole must do. Based on these requirements, an analysis followed by a design
phase are done in order to define a MAS architecture made of agents and their environment.
This is where the existing MAS method and their meta-models are used and the result of it is
a system described in terms of the agents, their environment and their interactions. It defines

30

2.3. Analysis: Should We Tweak or Build?!

what are the agent behaviours, which interaction means they use, what is the dynamics of
the environment and the potential entities existing in it.

At this point of the design, the work of the MAS designer is finished and the MAS
architecture has to be implemented:

– Sometimes the concepts used at the level of the MAS architecture can be used directly
to program the final application: these programming abstractions, adapted to those
needed by the MAS architecture, are provided by a development support. For example,
a design expressed in terms of rules “perception implies action” is implementable using
a development support where one can express only the rules and not how they are
processed.

– Sometimes some adjustments have to be made, either to extend existing development
supports (adding or modifying the abstractions) or to connect them to existing software
systems. For example, a design can rely on a communication protocol that must be
implemented on top of the messages passing abstraction available in the development
support.

– Some other times the final application is totally implemented, including what would
have been provided by a development support.

The first case does unfortunately never happen, except maybe when building a first
prototype, as we did show that every application has its particular requirements. The second
case, which we call “tweaking”, is maybe the most widespread, the idea being to reuse as
much code as possible. The third case, which we call “building”, does actually also often
happen, in particular in the ABM field where the design is strongly linked to the domain of
the problem and the abstractions needed are thus very specific to it.

2.3.1 The Gap, Again

The explanation for the existence of these two approaches to implementation is that, as we
highlighted, not every type of requirement is tackled by every MAS meta-model and some
of them are even introduced by MAS meta-models themselves. This is again the question
of bridging the gap: how to take all of these requirements into account? We start from this
question to detail the two approaches.

“Tweaking”. The most widespread solution taken by current practices is to use a MAS
meta-model, answering a subset of these requirements, and choose a development support
and its meta-model (compatible with the MAS meta-model) that answers another subset
of them. Then, the design is done according to the constraints given by the two chosen
meta-models and finally the implementation is adapted by hand to answer the remaining
requirements.

Such practices often destroy the original intent of the MAS designer by constraining the
way his system is designed with the development support. They don’t promote adequate
abstractions at the level of the expertise of the MAS developer. In a much broader way, every

31

2. State of the Art on MAS Development

time any development support is used, either one has to adapt the design to the development
support meta-model, or the development support meta-model has to be modified for the
specific design. When directly using the development support abstractions in the MAS design,
the latter is polluted with unwanted concepts that do not fit the design. When modifying
abstractions provided by the development support, there are two possibilities. Either it means
going into the inside of the development support, which is not meant to be modified by any
MAS developer but mainly by the software authors. Or it means building new abstractions
using existing ones, which is not always adapted and introduces complexity in the software
produced.

And even if the development support perfectly fits the MAS meta-model, which is the case
only when using a development support made for a MAS meta-model and an application
domain, as we highlighted before there is much more requirements that can have an impact on
the implementation and that need again adaptation of the development support meta-model
for the specific problem that is solved. A simple example of that is the integration of the MAS
with other systems: that cannot possibly be already present in the development support.

“Building”. The other solution available is to build by hand the development support.
Obviously, this is a time consuming and inefficient activity. As we highlighted, there is a lot
of things that are generic with respect to some aspects of the system to build, and thus with
“building” reuse is not easily done.

In a less extreme way, “building” is currently often done when using a development
support that covers just a part of the architecture of the system. For example when using a
development support focused on the internal architecture of the agents and the MAS design
relies on environment-mediated interactions. This part of the implementation is often done
using a general programming language, which means that it involves a lot of low-level and
complex expertise that every MAS developer does not have. For the sake of completeness,
choosing a development support that introduces environment-mediated abstractions still
means there can be other things to “build” or “tweak”. For example scheduling of the system
is often imposed by the chosen development support, and thus is not always adapted. And if
it is not imposed, it thus have to be implemented.

So What? The point here is not to say that all the development supports should be thrown
away, but that in a general vision of MAS development, existing development supports are
too constraining to cover all the possibilities and that there always exists a class of applications
that does not fit the meta-models provided by existing development supports.

What we argue here is that meta-models of development supports should not be con-
sidered in the same way than meta-models for MAS design. While the latter are something
that developers want to use, because they answer some of their requirements, the former are
something they spend a lot of time to adapt, tweak, modify, extend to fit the rest of their
requirements as well as the MAS design. Since it is not possible to have a “one-size-fits-all”
development support, it means that it is necessary to ease the building or tweaking of

32

2.3. Analysis: Should We Tweak or Build?!

the adapted development support. There is thus a need for defining and implementing
such development support in an easy, composable and flexible way, and with reuse. Not
surprisingly, that’s the admitted goal of software architectures engineering and that’s what
we are going to do.

Before entering into the details of that point, we briefly come back to our analysis.

2.3.2 Types of Agents and Adequate Abstractions

What we noticed, when doing this state of the art is that if we accept that MAS has to
be done using existing MAS meta-models and methods for its design, then something must
help to bridge the gap between design and implementation. Moreover this something must
do it in a way that it is adapted to all the requirements of the problem, as well as those
introduced by the design itself. This something is what we call a type of agent. Every
application has its own type of agents, with its own specificities but also commonalities with
other types of agents. A type of agent is a precise semantics given to the abstractions used
to implement the design, inferred from the latter, from all the requirements of the problem
to solve, from the expertise of the developer, etc. For example, defining one type of agent
is to say that the agents of one application are interacting by exchanging messages, moving
between distributed computers where artefacts (as in Agents and Artifacts) are usable with
specific interfaces, executed concurrently in a reactive manner to a set of events such as
messages received and timers. Of course, nothing prevents a given application to have several
different types of agents using overlapping interaction means.

While MAS design is about building an architecture made of agents and their environment,
now the question is about building the architecture that supports the abstractions used by
this design. It means building the types of agents and the platform that makes them live.
Actually, every development support studied here is an instance of such an approach, but we
argue there is a need to do that more easily, faster, better and with more reuse in order to
apply it to every MAS development. As we saw, these development supports are based on
one meta-model, or, as we can now say, one type of agents. To do so, these supports have their
own architecture, made of software entities that are dynamically created, interacting using
diverse interaction means, and made of a platform through which this interaction takes place
and that contains the environment and all the other tools such as GUIs, monitoring tools,
etc. Thus, we need to be able to build a kind of application-specific development support
adapted to the types of agents of the application to build.

The second point that this application-specific development support must answer, is
related to the different expertises of the MAS developers. Indeed, we saw that depending
on the field or the problem, the developers do not have the same expertise, and we actually
noticed that there is two main kinds of developers in the MAS world: those that are concerned
with the business aspects of the problem they are tackling, and those that are concerned
with the operative aspects of the solution to build. There is thus a need for having adequate
abstractions for the first set of developers. Moreover, this question coupled to the more
methodological one of the iterative development bring us another need. This kind of agile

33

2. State of the Art on MAS Development

development can be interpreted as needing the development support to ease the modification
of certain aspects of the application, while others stay fixed during the whole development.

2.3.3 Two Levels of Architectural Design

These two points make something clear that wasn’t before: there are two different points
of view on the architecture of the final application:

– The one describing the abstractions themselves and their semantics.

– The one describing the MAS using the abstractions.

These abstractions are sometimes very specific to the problem, to the domain or to the
approach, and sometimes very generic. More importantly, the first is highly constrained by
the second, since the second is the one defining what are the types of agents of the application.

Based on that vision, we can differentiate the following three different major development
tasks in the MASs field:

1. Design (architecture) of the system by using abstractions such as agents defined by
approaches: this is what we call the macro-level design.

2. Design (architecture and implementation) of the abstractions: this is what we call the
micro-level design.

3. Implementation of the system using the abstractions.

Implementation of the abstractions is included into micro-level design because we didn’t find
the need to separate them in the rest of the thesis.

As a side note, even though the use of the terms macro and micro are sensitive as in the
MAS field, we chose these terms for reasons that will be better explained Chapter 6.

Micro-level design and implementation should be particularly differentiated: implemen-
tation is about implementing the MAS itself, i.e. the macro-level design, for example by
using a development support, while micro-level design is about defining and implementing
development supports. Actually, what is implemented at micro-level design is are operative
concerns and what is implemented during implementation is are business concerns. This is
more detailed later.

Within this vision, requirements in MASs are first tackled at the macro-level design of
the MAS, by using an appropriate method or approach and its MAS meta-model. But as we
highlighted, not every type of requirement is tackled by every MAS meta-model and some
of them are even introduced by MAS meta-models themselves. Thus, those that were not
answered previously or introduced late are tackled at the micro-level design.

Figure 2.1 shows the development activities corresponding to these phases. The arrow
represents the global order of their execution.

2.3.4 Evidences from the Literature

The first evidence of the reality of these needs is the actual research done by the MAS
community on implementation.

34

2.3. Analysis: Should We Tweak or Build?!

MAS
Implementation

Development Support
Design and Implementation

MAS
Design

non-architectural architectural

business

operative

Figure 2.1: Activities in MASs development

When focusing on one development meta-model at a time, the community has provided
means and ways to ease the implementation of MASs. Indeed, every time a new type of agents
has been defined, either a new development support has been created from scratch, when
possible an existing one has been extended, or a transformation from the MAS meta-model to
a specific development support has been defined. In all these works, the produced tool was
dedicated to a specific type of agents or to a specific domain. These works, see for example
Jade, Janus or NetLogo, actually are ad-hoc solutions for specific domains or approaches that
ease implementation of the design of MASs.

The problem is even more complex when combining different meta-models together, i.e.
covering more requirements. A good evidence about that is that the problem of creating
a development support for a composition of meta-models is currently so difficult that it is
considered a research effort by the community: see for example the JaCaMo, the S-MOISE+
or the SimpA development supports. As we highlighted previously, because every system
has its specific requirements, it seems this is actually something MAS developers have to do
everyday. This thus shows a real need for easing it.

Then, all the works on patterns (Oluyomi 2006; Oluyomi, Karunasekera, and Sterling 2007)
and architectures (Weyns, Omicini, and Odell 2006; Viroli et al. 2007; Weyns 2010) highlight
the importance of having an architectural approach and show that every application has its
own requirements to satisfy. One particular work on patterns (Schelfthout et al. 2002) caught
our attention because it supports what we argue by saying that even if there is a lot of works
on bridging the gap, when implementing MAS, there is still some works to do in order to
really implement the mechanisms used in the agents and the environment. It makes clear the
link between patterns at design and the impacts they have in terms of implementation.

35

2. State of the Art on MAS Development

Finally, Weyns et al. (2004) show that existing methods for MASs do suffer from two
problems: lake of coverage of the complete architecture of the MAS by the proposed MAS
meta-models and abstractions that are inadequate for the level of abstraction needed by
non-architectural design. While the conclusions and criticisms are aimed at the methods
and the way they tackle software development, this work shows well that there is a need
for more ways of going farther in architectural design than what is currently proposed by
existing methods and their MAS meta-models. It also confirms the idea that the architectural
design of a MAS should take into account the whole system and its requirements, and thus
existing development supports are not enough by themselves. Moreover, it supports the idea
that some requirements are not taken into account soon enough as we highlighted in our
observations Section 2.2.6.

2.3.5 Existing Answers

To support principles of software architectures — better software quality, maintainability
and reuse —, which we argue as being necessary to build a development support, few works
tried to apply component-based or aspect-oriented approaches. The problem with these is
that they only focus on specific type of agents and mainly on the behavioural part of them.
The most famous examples of these are Generic Agent Model (GAM) (Brazier, Jonker, and
Treur 1999), MALEVA (Briot, Meurisse, and Peschanski 2007), Magique (Routier, Mathieu,
and Secq 2001) and Malaca (Amor and Fuentes 2009).

Nevertheless, three other works caught our attention. They try to tackle directly the matter
of the environment, but also shows some interesting points for easing the building of adapted
development supports. They appear 2.2 as providing what we called the definable meta-feature.
The first one is Volcano (Ricordel and Demazeau 2002), the second one is CArtAgO (Ricci,
Viroli, and Omicini 2007) and the last one is Agent-Environment Interface (AEI) (Behrens
et al. 2011).

Volcano is particularly interesting because it makes explicit the need for building a specific
architecture supporting the system. Actually, it covers part of our objectives, as the authors
highlight, by enabling to build dedicated types of agents for the application, at the agent
but also at the environment level. The main problem with this work is actually that no
implementation is available and that it seems to be discontinued. Except from the cited article,
nothing has been found that clearly explains how things work in detail. It at least comfort us
in the idea that it is the right way to go.

Then, CArtAgO, by proposing a general model of interaction of agents in any given
environment, coined some interesting abstractions to build, using what they call artefacts,
elements of the system adapted to the modelled solution. But artefacts are entities that exist
as macro-level abstractions, they are not building blocks for defining new abstractions as it is
done with Volcano. Thus, although it is one of the closest solution to the questions we are
asking, we are not convinced by it as a general approach to MAS micro-level design, mainly
because it still constrains the model of MAS and agents that has to be followed, and because
it does not take an architectural approach.

36

2.3. Analysis: Should We Tweak or Build?!

Finally, AEI proposes something different than the previous works because it does not
tackle the building of the agents or the environment but just the interface between them. It
still provides interesting insight on the problems that arises between the agents and their
environment, or should we say, as we are talking about actual implemented software, between
the agents and their runtime platform. In particular, we notice that the main problem when
connecting several agents to one platform is the fact that the agents have to be kind of
“referenced” by the platform in order for the signals coming from it to go to the right agent.

This is mostly that last point about the way things can be implemented to connect agents
to their runtime platform that motivates the need for a “good” definable meta-feature. This
particularity is also highlighted by the patterns proposed in (Schelfthout et al. 2002) or in
works about answering visualisation requirements in simulation (Louloudi and Klügl 2011).
And of course, this is more generally visible in implementation of development supports or
applications.

2.3.6 Revisiting the Different Works

Before exploiting in the next section this analysis to extract challenges to answer for
bridging the gap between design and implementation, we first propose a frame into which
the state of the art as well as our contribution can now fit.

As we said, there are three different tasks during development: macro-level design, micro-
level design and implementation. What interests us in these tasks are their products in terms
of software artefacts in order to understand which research work is done for each of them.

We see two levels of understanding where research has been done for these tasks: base and
meta. The main idea behind these two levels is that some works try to solve some challenges
— for example applying a MAS approach to a specific problem —, while other works try
to propose means to help solving such challenges in a more general way — for example
proposing a development method dedicated to a class of problems —.

Table 2.3 shows how all the different works studied in this chapter fit in this classification.
In this table, B1 stands for the base macro-level design, M2 for the meta micro-level design, etc.
Every pair task/level contains a description of the kind of works that fit in it, then research
works are categorised by their general subject of study. The category Jobs is about the kind of
job researchers and engineers do without being subject to publication.

As a global introduction, this classification does not take into account works on method-
ologies since it itself actually reflects a methodological vision of MAS development that is not For a def-

inition of
Methodology,
see p. 4

For a def-
inition of
Methodology,
see p. 4

followed by existing works. We now look at each pair one by one to comment them.
Base macro-level design (B1) is about producing specific MAS application to solve prob-

lems. It is empty, not because there is no work to put in it, but only because they are out of
scope of this thesis. Practical applications of MASs can be found in an extensive quantity of
conferences, workshops and journals on MASs.

Base micro-level design (B2) is about defining and implementing development supports.
It is thus concerned with all the development supports and their meta-models presented
Section 2.2.4.

37

2. State of the Art on MAS Development

Table 2.3: Research Works Organised Following the Proposed Classification

Base Meta

Macro-level B1: to design new MASs in order to
answer specific problems

M1: to define approaches and MAS meta-models to build
better systems to support B1

Jobs Everyday de-
sign work for
researchers and
engineers

Surveys Bergenti, Gleizes, and Zambonelli
(2004); Henderson-Sellers and Giorgini
(2005)

Methods See Table 2.1

Requirements Silva et al. (2004)

SPL Girardi and Lindoso (2006); Peña et al.
(2007); Nunes et al. (2011); Dehlinger
and Lutz (2011)

Architecture Weyns (2010)

Micro-level B2: to design and implement new de-
velopment supports and patterns us-
able to implement B1

M2: to define ways of better build artefact such as develop-
ment supports and patterns usable to implement B1 and/or
M1 to support B2

Surveys Bordini et al.
(2006); Bordini
et al. (2009)

Development
Supports

See Table 2.2

Jobs Everyday imple-
mentation work
for researchers
and engineers

Only Be-
haviour

Brazier, Jonker, and Treur (1999);
Routier, Mathieu, and Secq (2001);
Briot, Meurisse, and Peschanski (2007);
Amor and Fuentes (2009)

Whole Sys-
tem

Ricordel and Demazeau (2002)

Architecture Weyns, Omicini, and Odell (2006); Vi-
roli et al. (2007); Weyns (2010)

Patterns Schelfthout et al. (2002); Oluyomi
(2006); Oluyomi, Karunasekera, and
Sterling (2007)

Implementation B3: to implement the design from B1
using B2

M3: to define means to systematically generate an imple-
mentation from B1 and/or M1 and using B2 and/or M2 in
order to support B3

Jobs Everyday imple-
mentation work
for researchers
and engineers

M1/B2
to B3

Klügl, Herrler, and Oechslein (2003);
Amor, Fuentes, and Vallecillo (2005);
Sudeikat et al. (2005); Pavón, Gómez-
Sanz, and Fuentes (2005); Beydoun et
al. (2005); Bernon, Cossentino, Gleizes,
et al. (2005); Pavón, Gómez-Sanz,
and Fuentes (2006); Molesini, Denti,
and Omicini (2007); Dalpiaz et al.
(2008); García-Magariño (2009); Hahn,
Madrigal-Mora, and Fischer (2009);
Mariachiara et al. (2010)

M1/M2/B2
to B2/B3

(Rougemaille et al. 2009)

38

2.4. Challenges: Meta Micro-Level Design

Base implementation (B3) is about concrete implementation of such systems. It is also
empty, but only because it concerns implementation of systems, which is not a subject of
publication nowadays.

Meta macro-level design (M1) is about defining methods to support base macro-level design.
Thus, it is concerned with all the methods, approaches and MAS meta-models presented
Section 2.2.1.

Let’s take a pause and first comment these. We can see that meta-models for MAS design
(and accompanying methods) in M1 and for development supports in B2 are not considered
in the same way that it was in the beginning of this chapter. While the former is considered
meta, the latter is considered base: this relates to our argument that it is possible to improve the
building of development support at an higher level than just proposing one-shot development
supports.

Meta micro-level design (M2) is about meta-models to support the building of base
micro-level design, i.e. development supports. It is thus concerned with all the meta-models
presented Section 2.3.4 and Section 2.3.5. Not surprisingly, we can also find among them the
development support meta-models with the definable meta-feature of Table 2.2. Works on
patterns provide ways to informally describe recurring solutions to recurring problems. Those
on architecture focus more on how to do macro-level and micro-level design, without going
up to the implementation itself in a practical way. These lasts are still the most interesting ones
the design of MAS and bridging the gap towards implementation, which is not surprising
since they follow a software architecture approach. Works in other fields than MASs exist and
can also fit in M2, but not without adaptations. This matter is actually presented extensively
Chapter 6 by relying on the contribution.

Meta implementation (M3) is about easing the implementation MASs and automatising
the transition between different meta-models. It is separated in two categories depending on
which kind of meta-models it bridges. The first one, M1/B2 to B3, is concerned with the works
surveyed Section 2.2.5. They go from a MAS meta-model to an existing development support
(even if this one is a generic programming language). The second one, M1/M2/B2 to B2/B3,
is concerned with works for a combination of a meta-model for design and a meta-model
for defining adapted development supports. They automatise the production of micro-level
design but also implementation of the macro-level design, possibly by reusing previously
realised piece of micro-level design. The only work present in M3 is based on a prototype
version of the contribution of this thesis. It does not actually completely answer the problem
but is a first step in this direction.

2.4 Challenges: Meta Micro-Level Design

From the survey of this classification, we argue that the problem to the gap from design to
implementation can only be tackled by providing complete models for meta micro-level
design in order to later automatise the production of software by proposing works for meta
implementation.

39

2. State of the Art on MAS Development

The contribution of this thesis mainly tackles such meta micro-level design by helping to
build application-specific development support. Actually, what is presented in this thesis fits
in several places of the classification. This will be developed Chapter 5, but in few words, the
contribution consists of a general methodology of MAS development that covers the whole
meta axis, a model and a method that fit into meta micro-level design, and all the software
artefact that can be produced using this model, in particular a library of reusable artefacts, fit
into base micro-level design as well as base implementation.

In order to be able to provide ways to build application-specific development support, a
set of challenges have to be answered.

First, because of the way MASs, as a macro-level design, is architectured, there is a specific
but broadly defined architectural style that has to be followed: agents as software entities
are interacting together using interaction means provided by their runtime platform, which
also has the role of executing them. Moreover, they are not only connected to their platform
for business interaction means: there is also operative connection between agents and their
platform. For example when a GUI shows information from all the agents of a system, or
when the agents are all synchronously executed by the a global scheduler as in simulation
applications. This is the way things are done in existing development platform, even if there
is variations about it depending on the requirements they cover.

To simplify the discourse when talking about these two usages of the abstraction, we
name them interconnection mechanisms.

By looking at existing answers to the problem — analysed in the previous section —, after
studying existing development supports and building actual MASs from scratch, we have
identified the following architectural and implementation challenges, tackled in this thesis:

– Define and implement interconnection mechanisms for connecting agents to the runtime
platform and vice-versa.

– Define and implement types of agents with specific internal architecture and connected
to the runtime platform using the previously defined interconnection mechanisms.

– Provide dynamic creation of instance of these types of agents, as well as their dynamic
connection and initialisation.

– Make the reuse of such interconnection mechanisms and architectures easy.

In particular, with respect to the features presented Section 2.2.4, the main difficulty here
is to propose a “good” definable meta-feature for the interaction architecture. Indeed, it is
not about proposing a good abstraction for representing environment and interactions at
the macro-level design, but to be able to define new interconnection mechanisms and to
compose them in the architecture of the agent. This then supports the implementation of
the macro-level design using reusable adapted abstractions. Some of these challenges are
illustrated in the next chapter.

Then, more on the methodological side, in order to do this micro-level design and
integrate it in a more general vision of MAS development, we propose to answer the following
challenges:

40

2.4. Challenges: Meta Micro-Level Design

– Propose a general vision of MAS development integrating macro-level and micro-level
design, and implementation with iterative and incremental development.

– Provide guidelines to identify the requirements that help the micro-level design.

– Provide guidelines to identify abstractions needed to build a dedicated development
support for the MAS developer.

Of course, always with architectural concerns in mind, in order to increase the qual-
ity of the produced software by applying software architecture practices and to make its
development realistic, these challenges have to be considered within the following constraints:

– Take all the requirements into account as early as possible in the development process.

– Improve software quality and in particular reuse, maintainability and evolution.

Recap of the Contributions⊕
We highlights the particularity of MAS development characterised by the inadequateness
of using pre-built development supports.⊕
We propose a classification of the research works in MAS development highlighting the
current lakes.⊕
We extracts from the state of the art a set of architectural and implementation challenges
for building dedicated architectures usable in place of development supports.

41

CHAPTER 3
Dedicated Micro-Level Software

Architectures for MAS Development

Now that ain’t working
That’s the way you do it

Money for Nothing
Dire Straits

This chapter presents a coherent set of answers to the different needs of MAS develop-
ment by focusing on the specificities of MASs that were uncovered previously. It proposes
architecture-centric methodological solutions to organise development and an approach based
on software components to support the design and the implementation of the system.

Our objective here is to ease the development of MASs, ease their maintenance and
evolution, as well as increase reuse of produced artefacts. For that, we aim at building systems
with software quality in mind by applying well-known software architecture practices.

As the previous chapter concluded, in order to reach these objectives it is needed to
propose means to ease what we called micro-level design. Micro-level design is about
producing an architecture usable as a development support on which the implementation
of the MAS design — also called macro-level design — can rely. Indeed, when producing
a MAS, the macro-level design is able to answer only a subset of all the requirements of
the application, the rest has to be tackled after the design is done. Depending on the MAS
meta-model and approach chosen, as well as the design choices made, the abstractions needed
to implement the MAS design vary a lot. We named such abstractions types of agents: they
are the bridge between the macro-level design, that relies on them, and the micro-level design
that realises them.

This development phase is thus interested in producing such a micro-level design in order
to answer the remaining requirements as well as those introduced by the design itself. This
micro-level design, once implemented, is then usable to implement the macro-level design.

43

3. Dedicated Micro-Level Software Architectures for MAS Development

This highlights the existence of two different roles in the development process, we characterise
them as interested in business and operative concerns.

We identified methodological and technical challenges that a solution to this problem
must answer:

– First, in order for this solution to be usable and integrable in a more general development
process, it is necessary to clearly identify when it should be used with respect to existing
MAS methods and MAS meta-models. It is also necessary to be able to identify the
requirements that are tackled either by the macro-level design, those tackled by the
micro-level design, those that pertain to the business concerns, those that pertain to the
operative concerns and how they all impact the architecture.

– Then, MASs are systems that conform to a family of architectural styles where agents
— the components —, that can dynamically be created and destroyed, are interacting
together and with their environment. For that they use interconnection mechanisms
through a runtime platform without being directly connected to each other. This
introduces the question of how to define such interconnection mechanisms in order to
be able to instantiate agents and connect them to their platform, how to implement
them and how to make them reusable.

All of this should be answered in a way that the micro-level design results into an architecture
usable as a development support adapted to the expertises of the MAS developers and their
business concerns.

In the rest of this chapter, when using the terms agents and (runtime) platform we talk
about the runtime entities of the system. As we are going to see, what we propose here are
means to describe and implement such entities.

The present chapter is thus organised as follow.

First, we introduce a general methodological vision of MAS development. We introduce
terms and concepts that are meant to facilitate communication between stakeholders during
MAS development. This methodology gives a frame into which the rest of the contribution
fits and identifies the different types of requirements that have to be tackled during MAS
development. It is illustrated by being instantiated with the ADELFE development method.
The example developed in this illustration also serves as a mean to illustrate the architectural
and implementation challenges identified Chapter 2.

Second, we present a component model that supports the micro-level design and an-
swers the identified technical challenges. Third, we propose a method that instantiate the
methodology with this component model as a foundation. Then, in order to complete these
three main contributions, we present how and what experience could be captured during the
exploitation of the approach, and in particular how partially abstract architecture are realised.
This manifests itself through reusable software artefacts and patterns.

Chapter 4 develops a complete application of the approach on a real world example, and
Chapter 5 discusses the contribution with respect to the objectives and challenges.

44

3.1. Characterizing MAS Development: Architecture-Centric Methodology

3.1 Characterizing MAS Development: Architecture-Centric
Methodology

In this section, we propose our vision of the methodology of MAS development. As
explained Chapter 1, by methodology we mean the set of principles that pertain to MAS For a def-

inition of
Methodology,
see p. 4

For a def-
inition of
Methodology,
see p. 4

development in general and into which works on design and implementation methods from
the field can fit it. Of course, the contribution that follows the presentation of these principles
also fits in.

More precisely, in this chapter we present the following things that altogether constitute
this methodology:

– We clearly identify the different phases that can exist when designing and implementing
MASs and how they relate to each other.

– We provide clear terms to talk about requirements, design and implementation artefacts.

– We identify the different types of requirements and how they relate to the different
artefacts produced in the development.

This methodology and the vocabulary that we present here are meant to facilitate com-
munication among stakeholders in MAS development. It also serves as a basis to introduce
Section 3.2 the SpeAD (Species-based Architectural Design) model and Section 3.4 SpEArAF
(Species to Engineer Architectures for Agent Frameworks) method that together practically
answer the challenges collected previously.

We conclude this section by illustrating the methodology with the ADELFE method and
illustrate some of the technical challenges identified previously.

3.1.1 Multi-Level Architectural Design

Figure 3.1 shows the kind of process followed in MAS development as considered by this
methodology of development. We now describe the different important phases, roles and
elements that constitute the methodology used in this process.

As stated previously, during MAS development, requirements are expressed about the
software system to develop. These initial requirements describe what the solution should
comply to.

We introduce two types of views when designing a MAS architecture, each of them taking
into account two different subsets of these requirements. These views take an orthogonal
stance compared to other architectural views and complete them to describe what interest us For a defini-

tion of the
different Ar-
chitectural
Views, see p. 7

For a defini-
tion of the
different Ar-
chitectural
Views, see p. 7

here. In the rest of the chapter, when and if needed, we will make it clear which produced
design artefacts concern which architectural views.

The first type of views, called the macro-level architectural view, is concerned with
expressing the result of the design of the MAS using existing development approaches and
methods. Most of the time, this result in the definition of types of agents exploiting interaction
means, their behaviours, their states, the elements of their environment, etc. Each method,

45

3. Dedicated Micro-Level Software Architectures for MAS Development

Macro-Level
Requirements

Micro-Level Operative
Implementation

Application-specific
Development Support

Development Support
Developer

Application
Developer

Micro-Level Business
Implementation

Application

Micro-Level
Requirements

Micro-Level Architectural
Design

Micro-level
Architectural View

Micro-Level
Requirements

Extraction

Micro-Level
Designer

Macro-Level
Architectural View

Initial
Requirements

MAS
Design

Macro-Level
Requirements Extraction MAS

Designer

Figure 3.1: Abstract process followed by MAS development in general, described using SPEM

46

3.1. Characterizing MAS Development: Architecture-Centric Methodology

and its MAS meta-model, has its own way of instantiating such a type of view. This view is
produced by the MAS developer as a MAS designer.

This view records the architectural decisions that answer what we call the macro-level
requirements. By definition, the macro-level requirements are the requirements that are
answered by the MAS design itself. Obviously, depending on the approach or the method,
for a same problem, the requirements that can be answered won’t be the same. Most of the
time, they at least contain the functionality of the system to be produced, quality attributes
such as adaptivity, scalability, performance and others that are known to be easily tackled by
MAS approaches.

The second view, called the micro-level architectural view, is the view introduced here
and which is mainly studied in the rest of this chapter. This phase is concerned with
expressing the result of the design of the micro-architecture, which is the name we give
to the architecture of the system taken from a micro-level architectural point of view. This
view is produced by the micro-level designer. The differentiation between the macro-level
and micro-level views reflects both a separation of concerns and a sequencing of activities
during MAS development.

The micro-level view refines the macro-level view by following the two types of refine-
ments: it decomposes some of the elements of the system, such as the agents with their For a defini-

tion of Refine-
ment, see p. 8

For a defini-
tion of Refine-
ment, see p. 8internal architecture, and details others and their links, such as the interconnection mecha-

nisms and the environment with the platform. This view records the architectural decisions
that answer what we call the micro-level requirements.

Micro-level requirements are the requirements that appear to be not yet answered after
the MAS design has been done. We can distinguish two different sources for these require-
ments. The first one is the set of initial requirements, and the second one is the MAS design
itself, i.e. the macro-level view. This is illustrated Figure 3.2 that we now detail.

Requirements

Micro-Level

From Design

Explicit (design choices)Implicit (approach, method, MAS meta-model)

Initial

Macro-Level

Figure 3.2: Different sources for requirements

On one hand, initial requirements are requirements that must be answered by the applica-
tion to be built. As we explained previously, a subset of these are tackled by the macro-level
view, as macro-level requirements. However, the rest of them are taken care of during the
implementation of this design, for example matters such as GUI, connection to external

47

3. Dedicated Micro-Level Software Architectures for MAS Development

systems, but also organisational matters such as modifiability or testability requirements.
On the other hand, the MAS design itself introduces many requirements that impact its

implementation. For example, the choice of specific interaction means, the way agents are
meant to be executed internally or at the system level, the contents of the environment, etc.
These requirements can come from the choices of the designer, or can come from the method
that was followed. For example, some methods impose that agents have a perceive-decide-act
lifecycle, while others only rely on the fact that agents are exchanging asynchronous messages.
In the latter case, designers then can choose the way they describe the behaviour of their
agents, and thus also impact the way it is implemented.

All of these are requirements taken care of after MAS design has been done, i.e. after the
macro-level architectural view has been elicited.

3.1.2 Operative and Business Concerns

Orthogonally to these previous matters, in order for the implementation of the system
to be eased, we propose to take into account the fact that MAS development has other
methodological implications. First, MAS developers are not experts in the matters of the
micro-architecture and want to focus on their business and macro-level design. Second, there
is an important use of agile and iterative development.

Both concerns result on the following facts:

– The built architecture have parts that are likely to change during development, reflecting
changes in the macro-level design, and thus changes in the micro-level requirements.

– These parts must be easily programmable, i.e. using adequate abstractions, for the MAS
developer and his concerns.

Thus, in order to have adequate abstractions and reduce the impacts on the micro-
architecture of changes in the requirements during development, we propose to distinguish
the micro-requirements that are likely to change during the implementation — they are those
manipulated by the MAS developer — from the requirements that won’t. This results into two
sets of elements and choices in the micro-architecture that reflect the separation of concerns
between, respectively, the implementation of the MAS design by the MAS developer and
the implementation of what supports it. The idea is to build a micro-architecture that is
flexible enough to ease its modification during the life of the application. The question to
answer is which requirements are they and how they manifest themselves in the architecture.
Obviously, the question of the modifiability quality attribute of an architecture is well studied
in the software architecture field, but we focus here on what concerns MAS development and
its identified particularities.

As we said earlier, the design resulting from applying a MAS method introduces a set
of design decisions. But the design also relies on a quantity of implicit and explicit design
constraints and decisions emanating from this very same method.

Thus, some micro-requirements are deeply related to the MAS method used and are not
meant to change. The method enforces some constraints on the way the design is made and is

48

3.1. Characterizing MAS Development: Architecture-Centric Methodology

meant to be a fixed point in the design of the system. Furthermore, other micro-requirements
are related to the initial requirements that were not tackled by the design: as requirements
coming from before the MAS is designed, they are not meant to change either from the point
of view of the MAS designer.

Then, apart from these said micro-requirements, what are left are all the requirements
introduced by the MAS designer in the macro-level view. And those that are likely to change
can be found among them. They are for example requirements about the behaviour of
the agents. We call these business micro-level requirements, while all the other are the
operative micro-level requirements. In particular, the second set is supporting, but also
constraining, the first set. This is illustrated Figure 3.3.

Micro-Level Requirements

OperativeBusiness

Figure 3.3: Different types of micro-level requirements

While micro-level requirements can be seen as a refinement of the initial requirements,
in the context of the micro-level view, business and operative requirements are two distinct
categories of requirements that can be used to drive the definition of a micro-architecture
usable as a development support dedicated to the application being developed.

In order to materialise these two different sets of requirements in the micro-architecture,
the basic idea behind this point is to find and define what are the elements of the architecture
that pertain to each of them. The bridge between the two sets of concepts is the idea of
programming abstraction: the requirements that are meant to evolve should be expressible as For a defini-

tion of Pro-
gramming Ab-
straction, see
p. 3

For a defini-
tion of Pro-
gramming Ab-
straction, see
p. 3

directly as possible using some abstractions.
For example, if one of the business requirement is to implement the agents’ behaviour

in terms of messages and sequential handling of received messages, then the programming
abstractions must be usable to implement the behaviour in terms of a function taking a new
message as input, and must provide a way to send messages in its body. A stated constraint
on this abstraction is that this function is called for every message, and that messages are
treated sequentially and indefinitely.

We show Section 3.4 how this can be done using component-based architectures and the
component model we propose.

3.1.3 Implementation

During implementation, we differentiate:

– The application developer, which is often the same person as the MAS developer, that
implements the business elements of the architecture using the dedicated programming
abstractions.

49

3. Dedicated Micro-Level Software Architectures for MAS Development

– The development support developer that implements or reuses the operative elements
of the architecture.

We don’t detail the implementation phases themselves as the design must be sufficiently
detailed so that implementation is straightforward. Of course, as we are going to see, the
model and process we propose in this chapter are made with that in mind.

3.1.4 Illustrating the Methodology

In order to illustrate the different parts of the proposed methodology, we study how
the ADELFE (Atelier de Développement de Logiciels à Fonctionnalité Emergente) method can be
framed into it. At the end of it, we take the opportunity of this example to illustrate a bit
more the architectural and implementation challenges.

We take an example about foraging ants that was developed to present the method in
Rougemaille et al. (2009). This paper does not detail some of the requirements and activities:
for these we fill the blank using information gathered from the authors. Indeed, the main
idea here is that the application of the method only covers part of the presented methodology
and some important points must be taken into account in order to implement it completely.

3.1.4.1 Applying the ADELFE Method

ADELFE is broken down in four main phases:

1. Preliminary and Final Requirements: gather requirements and constraints for the
application to build, user needs, etc. It is needed to identify the environment in the
system and the different elements that populate it, as well as the different use cases for
the user of the system. In the case of this example, we take them as they are presented
and we organise them in different categories:

– Requirements

– R1: Develop a simulation of foraging ants to provide a tool for ethologists.

– R2: Evaluate the AMAS (Adaptive Multi-Agent System) approach for defining
the behaviours of the system (sic).

– R3: The colony must bring food to the nest as efficiently and quickly as
possible.

– Constraints

– The environment of the ants is composed of a nest, obstacles, pheromones,
patches of food and ants.

– Pheromones accumulate and self-evaporate with time.

– Ants can deposit and sense pheromones.

– Ants have different degrees of perception for obstacles, ants, food and pheromones,
but they always know where the nest is located.

– Ants can carry food in a limited quantity.

50

3.1. Characterizing MAS Development: Architecture-Centric Methodology

– Ants can be a limited time outside and must rest at the nest.

– Ants explore the environment, avoid obstacles and harvest food when they
find some.

– Use cases (those are not explicit in the paper)

– The state of simulation must be viewable in a GUI.

– Ants creation parameters can be changed by the user of the GUI.

– The simulation can be stopped, run step by step or accelerated.

– Entities

– Passive: obstacles, food and nest

– Active: ants, pheromones (evaporate)

– Environment

– Non-deterministic, accessible (its complete state is viewable for simulation
purpose), discrete (grid), dynamic (it is in particular modified by the ants and
the pheromones evaporate)

2. AMAS Analysis: determine if the AMAS approach is adapted to the problem and
identify which entities can be agents. We will just skip the details of this phase as it is
not interesting for us. This phase is also where we identify that ants are actually agents
as defined by the AMAS approach: conceptually distributed autonomous interacting
entities with limited perception and range of action in an ever changing environment
and with an individual goal (harvest food).

3. Design: define the cooperative behaviour of the agents, here the ants, and the behaviour
of the environment (for example pheromones evaporation). ADELFE uses a model-
driven approach based on a DSML (Domain Specific Modelling Language) named
AMAS-ML and UML. The result of this phases is:

– A diagram called agent diagram that represents the internal structure of the agents
in terms of representations, characteristics, skills, aptitudes, actuators, sensors
and communication. The relations of this structure to the passive entities of
the environment is also given (for example the “mandible actuator” of the ants
is connected to “food”). At this point, already some information about how
to implement and store data in the agents is given, but only from an internal
point of view. Also, representations are implicitly meant to be inferred from
percepts, characteristics are intrinsic to the agents but depending on the problem
can be modified by the environment or the agent itself, skills and aptitudes
are mechanisms that the agent can use internally while actuators, sensors and
communication are meant to interact with the outside.

– A set of behavioural rules decomposed in standard behaviour and cooperative
behaviour. These rules are expressed in terms of the agent state at a given time
and the actions to undertake when its conditions are met. These conditions are
expressed using the previously presented available mechanisms of the agent.

51

3. Dedicated Micro-Level Software Architectures for MAS Development

– Sequence diagrams for detailing how the different mechanisms work and interact
with the environment and between agents.

4. Implementation: from the previously defined meta-models, the internal code structure
of the agent is automatically generated, the behaviour too and only the different
elements of the internal structure such as the implementation of the representations,
characteristics, skills, aptitudes, actuators, sensors and communication have to be done.
Moreover, the environment itself, the GUI and the interaction means also have to be
implemented.

3.1.4.2 Framing ADELFE in the Methodology

Based on this, we can now discuss how ADELFE fits into the proposed methodology.
The requirements, constraints and use cases presented are our initial requirements.
A subset of them is clearly tackled by the method as the macro-requirements, in particular

the requirements R2 and R3, the constraints, the entities and the environment.
Already we can spot some future micro-architectural requirements: the use cases and the

requirement R1. They of course have a partial impact on the MAS design itself, for example
for defining which characteristics of the agents must be represented. For example, the fact
that it is a simulation and that it must be viewable means that the environment has to be
accessible. But there is more to it, for example building the GUI and putting in place all the
infrastructure needed to access the state of the environment, the agents, etc.

The macro-level architectural view is clearly the result of ADELFE design step, although
it contains too much details about implementation.

From this view, we can actually identify micro-level requirements that were not previously
defined:

1. The AMAS approach dictates that agents actually have the following cycle: first percep-
tion to update the representations from the percepts, then decision using the behaviour
rules to choose which action to do, and then action to actually apply them.

2. Based on that, it means that the parts that are meant to be highly modified are the
perception and the rules.

3. The agents have to be scheduled, one choice is to have a global clock and agent execution
synchronised, for example one point of synchronisation for each of the step of the agent
cycle to ease concurrent modification of the environment.

4. There must be a way to access the internal state of the agents such as the quantity of
pheromones and food they have, or other internal informations useful for the system
observer.

5. Inversely, there should be a way to modify some of the characteristics of the agents for
the ethologists to test different configurations.

6. The environment must implement all of the entities and make their state viewable (such
as the quantity of pheromone in one place).

52

3.1. Characterizing MAS Development: Architecture-Centric Methodology

7. The clock must also control pheromones evaporation, for example after agents have
acted and before they can perceive.

By making explicit all these micro-level requirements, we avoid taking care of important
requirements too late. Of course, it mostly means that some requirements should actually be
made explicit by the MAS method used instead of staying implicit like that.

In terms of business requirements, for the developer of the application, it seems the second
micro-level requirement is of first importance. The implementation and modification of these
parts must be easy.

The micro-level architectural view can then be defined based on that information. The
paper does not detail so much the equivalent of this view, but in practice the implementation
for the managing the environment as well as the interconnection mechanisms were done
by hand. On the other hand, the structure of the agent is automatically generated as well
as the code for the rules. This last point concurs with the fact it is one of the business
requirements. By exploiting code generation, this illustrates how iterations between design
and implementation can happen, while the operative parts of the micro-architecture don’t
change.

3.1.4.3 Illustrating the Technical Challenges

The identified micro-level requirements shows the complexity in implementing all the
interconnections existing between the agents of the system and the runtime platform, in
particular the environment managing the pheromones. In particular, a point worth noticing
is the interdependencies that exist between the interaction mean to move and the interaction
mean to deposit pheromones. Indeed, the latter relies on the position of the agent to
implement pheromone depositing. At implementation time, it could first mean to have them
implemented together, which doesn’t promote reuse, since the move interaction mean could
be used alone. It could also mean to implement the clear separation of concerns between the
two in the agents (since the position is proper to each agent) and in the environment (since
the pheromones are deposited in it).

Such questions also arise for visualising agents and their environment, or for the depen-
dencies that can exist between pheromones evaporation and scheduling of the system.

There is thus needs to manage such complexity and to explicit dependencies between
interaction means and more generally for all the interconnection mechanisms. And these
needs must be answered both at the agent and platform levels, for mechanisms that exist
in-between the two, that must be reusable and composed together easily. This is tackled by
the component model we present next.

3.1.5 Conclusion on the Methodology

This methodology is meant to be instantiated by existing methods for MAS development.
Current methods mostly focus on the macro-level architectural view, which is not surprising

53

3. Dedicated Micro-Level Software Architectures for MAS Development

since this is the main challenge in the MAS field, because these methods mostly do not take a
complete architectural stance and of course also because this distinction wasn’t coined before.

We now present a component model to ease the design and implementation of the micro-
level architectural view and then we continue with a method that relies on this model to
guide this design.

3.2 Component-Based Micro-Level Architectures

In order to design and implement the micro-architecture of MASs, we propose to use a
component model that answers the technical challenges identified Chapter 2. We recall these
here:

– Define and implement interconnection mechanisms for connecting agents to the runtime
platform and vice-versa.

– Define and implement types of agents with specific internal architecture and intercon-
nected to the runtime platform.

– Provide dynamic creation of instance of these types of agents and their dynamic
connection and initialisation.

– Make the reuse of such interconnection mechanisms and architectures easy.

At runtime, the differentiation between the agents and the runtime platform executing
them is of first importance: the macro-architectural view is made of agents interacting together
through an environment, and when refining this view with the micro-architectural view,
it is necessary to keep this separation explicit in order to retain the property of the MAS
design in terms of interaction, autonomy, dynamics, etc. As we highlighted in the previous
chapter, this has an impact on the way to organise the micro-architecture so that the dynamic
creation and execution of the agents is possible. In terms of runtime entities, each agent has
its own architecture: they are instantiated by and connected to the platform architecture so
that interactions between the agents and the environment and between them are possible.

Some ideas are given about how this model is used to support MAS development, but the
details are presented Section 3.4 on the SpEArAF method.

This section presents the SpeAD (Species-based Architectural Design) component model
incrementally: we start by defining a base component model — named SpeAD−— resembling
existing component model, and then we introduce on top of it the specific abstractions
proposed in this work. This has two advantages: first this eases the presentation of the new
concepts, second this helps to easily identify the novelty in the contribution.

The general plan followed to present each of the aspects of the model is as follow. First, weFor a presen-
tation of the
relations be-
tween Com-
ponent Mod-
els, ADLs and
Component
Container, see
p. 6

For a presen-
tation of the
relations be-
tween Com-
ponent Mod-
els, ADLs and
Component
Container, see
p. 6

present how elements are described used SpeADL (Species-based Architectural Description
Language), an ADL we propose. Second, we present how these elements can be implemented
using the Java programming language by relying on code generated from the ADL. Finally,
we present how these elements can be instantiated and are executed by the component
container, which is completely constituted of the generated code.

54

3.2. Component-Based Micro-Level Architectures

 name : String
 namespace : String

Component Class
 name : String

Component Part

ProvPort ReqPort

 name : String
 type : JavaInterface

Port

Binding

Part2Part Part2ParentParent2Part

specializes

0..1

f romt o t ot o f romfromt ofrom

0..1

t o

class

t of romfrom

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.4: Meta-model of the SpeAD− component model

To situate these produced software artefacts, we can consider component descriptions
with their implementation as modules views on the system. Even though compositions of For a defini-

tion of Mod-
ules Views, see
p. 7

For a defini-
tion of Mod-
ules Views, see
p. 7

components resemble components and connectors views and are actually usable to document

For a defini-
tion of C&C
Views, see p. 7

For a defini-
tion of C&C
Views, see p. 7

them, they still are implementation units.
All the concepts that we don’t define here are those traditionally admitted in ADLs

(Medvidovic and Taylor 2000). In particular we consider a component as an element that
can be composed with others inside architectures, itself considered as a composition of
components. Such compositions take the form of components called composites. We only
introduce a distinction between classes and types of components: a class of component is
defined by its description and its implementation. The description plays the role of a type,
but also of implementation in the case of composite components. Moreover, depending on the
context, if we are talking about implementation or runtime, a component is either considered
as a class or an instance.

Finally, this section focuses on using the component model, details about its implementa-
tion are given Appendix B.

3.2.1 The SpeAD− Base Component Model

The base component model that we present in this section is depicted Figure 3.4. It shows
the different elements a software architecture described with SpeAD− can consist of. The
ADL (Architecture Description Language) for SpeAD− is SpeADL−.

55

3. Dedicated Micro-Level Software Architectures for MAS Development

import f r . i r i t . smac . example . i n t e r f a c e s .∗

namespace f r . i r i t . smac . example . c l i e n t {
import j ava . lang .∗

component C l i e n t {
provides runCl ient : Runnable
requires serverOps : ServerOperat ions [S t r i n g]

}
}

(a) Client component description.

import f r . i r i t . smac . example . i n t e r f a c e s .∗

namespace f r . i r i t . smac . example . server {
component Server [Param] {

provides ops : ServerOperat ions [Param]
}

}

(b) Server component description.

package f r . i r i t . smac . example . i n t e r f a c e s

public i n t e r f a c e ServerOperations <T> {
public void p r i n t (T message) ;

}

(c) ServerOperations interface.

namespace f r . i r i t . smac . example {
import j ava . lang .∗

component CSComposite {
provides runApp : Runnable = c l i e n t . runCl ient

part c l i e n t : c l i e n t . C l i e n t {
bind serverOps to server . ops

}
part server : server . Server [S t r i n g]

}
}

(d) Composite component description with parts and bindings.

Figure 3.5: Components descriptions in SpeADL− and interfaces description in Java

Note: to define this model, which serves as a basis to introduce the contribution, many
design choices were made. We got ideas from other component models, our practical needs
and personal preferences. The idea behind it was to ease the development of component-
based architecture with a focus on flexibility, ease of use and reuse. Ideally, it could be
replaced by an existing component model that has proved its maturity.

Architectures defined with SpeAD− are made of components connected together with
simple connectors. The components externally provide ports, for which they have an imple-
mentation, and require ports, that they can use in their implementation.

3.2.1.1 Component Description with SpeADL−

In SpeADL−, a component description is located in a namespace and is composed
of a name, a set of type parameters, a set of provided ports, a set of required ports
and possibly a configuration. The namespace has the same role that packages have in
Java. The component name uniquely identifies a component description in the namespace.
For example, Figure 3.5a shows a component named Client, residing in the namespace
fr.irit.smac.example.client, without any type parameters and with one provided port
and one required port.

A port is described with a name (that uniquely identifies it in the component description)
and refers to an interface type. Theoretically, an interface type is described with a name

56

3.2. Component-Based Micro-Level Architectures

and a set of operations, in practice interface types are represented using Java interfaces. For
example, Figure 3.5c shows the description of a generic interface used Figure 3.5a. In the
latter, the type argument of the interface is bound to the String Java class.

The type parameters of a component description can be used as arguments of the interface
type or directly as an interface type. For example, Figure 3.5b shows a component with a
type parameter named Param, which is passed as an argument to ServerOperations.

The configuration of a component is made of parts connected together with simple
call-return connectors 1. A part is described with a name (that uniquely identifies it in
the component description) and refers to a component description by its name. The type
parameters of the component description can be used as arguments to its parts component
descriptions. For example, Figure 3.5d is a component named CSComposite, it has one part
named client whose component description is Client, and a part named server whose
component description is Server.

For each of the required ports of a part a binding must be defined. It connects the port to
either the provided port of another part, or to a required or provided port of the component
description. Moreover, the provided ports of the component description can be delegated to
the provided ports of one of its part. All the bindings must respect the types of the ports by
following the way type conformance is done in Java (including subtyping).

For example, the part client has one binding to the server part named server. It also
shows provided port delegation to a part such as with runApp.

Finally, it is possible to refine component description using a simple specialisation mecha-
nism. Only component descriptions without parts can be specialized. Component description
specializing others can only add parts and bindings but no new ports can be added to the
description. When specializing, the previously defined provided ports can be delegated to the
added parts, and bindings can refer to them. The idea is that a specialization does not change
the external visible properties of the component, but only its internal configuration. The
objective of this mechanism is to be able to specialise a component description with different
composite components. Specialization does not have any implication on implementation
except for the fact that implementation of a component specializing another one can be used
in place of the latter.

For example, Figure 3.6 shows a specialization of Client by ClientComposite, which
contains two parts. One of them is bound to one of the required ports defined in the
description of Client. An implementation of ClientComposite can thus be used in place of a
an implement of Client.

3.2.1.2 Component Implementation with Java

Descriptions of components made with SpeADL− are then translated to Java. The objective
of this translation is to be able to implement the component directly without any difference
between what was described and what is available in Java. Thus the generated code from a
description has two important characteristics:

1. The model does not support the definition of custom connectors.

57

3. Dedicated Micro-Level Software Architectures for MAS Development

component ClientComposite s p e c i a l i z e s C l i e n t {
provides runCl ient : Runnable = one . p1

part one : ComponentOne {
bind p2 to two . p1

}
part two : ComponentTwo {

bind p2 toThis serverOps
}

}

component ComponentOne {
provides p1 : Runnable
requires p2 : Runnable

}

component ComponentTwo {
provides p1 : Runnable
requires p2 : ServerOperat ions [S t r i n g]

}

Figure 3.6: Component specialization in SpeADL−

– It has the exact same semantics 2 than the description and acts as an invisible bridge
between description and implementation.

– It eases the implementation by well integrating it into the Java language and exploiting
the type system to catch errors as early as possible.

In this section, we only describe what is needed to understand how components are
implemented. The details of the internal working of the component model and of the
transformation from SpeADL (and thus SpeADL−) to Java is described Appendix B.

Each component description becomes a Java class, that we call the description class, with
the same name, type parameters and namespace (package in Java). The general idea behind
this translation is that the implementation provides a set of methods. These methods return
instances of the implementation of the different elements of a component (parts and ports).
These instances are used to construct an actual instance of the component.

In the description class, each of the provided ports (that are not already delegated to
another port) is translated to an abstract method without parameters named after the port
and prefixed by make_. The method returns an instance of the type of the port. Moreover,
to access the provided ports from within the implementation, a protected method named
after the port and returning an instance of the type of the port is also present. To access
the required ports, each of them is translated to a protected method without parameters
named after the port and returning an instance of the type of the port. Each of the parts is
translated to an abstract method without parameters named after the part and prefixed by
make_. It returns an instance of an implementation of the component description of the part.
Moreover, to access the parts from within the implementation, a protected method without
parameters named after the part and returning an instance of the Component interface of its
class description is present. Finally, the description class provides a method (which is not
abstract) named start that can be overridden to implement initialisation logic.

2. Even though this semantics is limited to the structure and the types of the ports.

58

3.2. Component-Based Micro-Level Architectures

package f r . i r i t . smac . example . c l i e n t . impl ;

import f r . i r i t . smac . example . c l i e n t . C l i e n t ;

public c l a s s ClientImpl extends C l i e n t {

private f i n a l S t r i n g name ;

public ClientImpl (S t r i n g name) {
t h i s . name = name ;

}

/ / a b s t r a c t method o f t h e p a r e n t c l a s s
@Override
protected Runnable make_runClient () {

return new Runnable () {

@Override
public void run () {

System . out . p r i n t l n (" c l i e n t before ") ;
/ / us ing t h e r e q u i r e d p o r t s
serverOps () . p r i n t (" message from "+name) ;
System . out . p r i n t l n (" c l i e n t a f t e r ") ;

}
} ;

}
}

(a) Client using required port.

package f r . i r i t . smac . example . server . impl ;

public c l a s s ServerImpl <T> extends Server <T> {

@Override
protected ServerOperations <T> make_ops () {

return new ServerOperations <T> () {

@Override
public void p r i n t (T message) {

System . out . p r i n t l n (" server before ") ;
System . out . p r i n t l n (" got : " + message) ;
System . out . p r i n t l n (" server a f t e r ") ;

} ;
} ;

}

@Override
protected void s t a r t () {

super . s t a r t () ;
System . out . p r i n t l n (" server s t a r t ") ;

}
}

(b) Server with type parameters and initialisation
logic.

Figure 3.7: Component implementations in Java

Thus, to provide an implementation for a component, one extends this description
class. The abstract methods, corresponding to the provided port and the choice of the
implementation of the parts, must be implemented, and the start method can be overridden
if needed. In these implementations, the implementer can use the required ports and access
the parts and their provided ports through the protected methods. While the constructor of
the implementation must not rely on the required ports and parts, the start method can. If
the component must have parameters passed to it at initialization, then they must be added
to the implementation.

For example, Figure 3.7a shows an implementation for the component Client presented
Figure 3.5a. The class Client is the description class that has been generated. In order to
implement its provided port, a method overrides an abstract method of the latter class. It
returns an implementation for the port, here of type Runnable. We can notice the use of the
required ports in the body of the implementation of the provided port. The implementation
also takes a parameter for this instance. Figure 3.7b shows how the start method can be
overridden and how type parameters translate to Java.

Figure 3.8 shows an implementation of the composite component CSComposite presented
Figure 3.5d. The method make_client is overridden to specify the implementation of the
part, where ClientImpl is an implementation for the component Client. We can also notice
the type parameter of Server which is bound to String as within the description, and the

59

3. Dedicated Micro-Level Software Architectures for MAS Development

public c l a s s CSCompositeImpl extends CSComposite {

@Override
protected C l i e n t make_cl ient () {

return new ClientImpl (" a simple c l i e n t ") ;
}

@Override
protected Server <Str ing > make_server () {

return new ServerImpl <Str ing > () ;
}

}

Figure 3.8: Component implementation in Java with parts

/ / i n s t a n t i a t i o n o f a component i m p l e m e n t a t i o n
CSComposite . Component compo =

CSComposite . newComponent (new CSCompositeImpl ()) ;

/ / s t a r t i n g t h e component
compo . s t a r t () ;

/ / us ing a p r o v i d e d p o r t
compo . runApp () . run () ;

(a) Program in Java.

server s t a r t
c l i e n t before
server before
got : message from a simple c l i e n t
server a f t e r
c l i e n t a f t e r

(b) Output.

Figure 3.9: Component instantiation and usage

parameters for the instance of the component ClientImpl.

3.2.1.3 Component Instantiation and Runtime Behaviour

While the description class corresponds to the set of the implementations for the com-
ponent, an interface named Component corresponds to the set of the component instances
themselves. This interface is present as an inner interface of every description class. At
runtime, the instances of the component description are of the type of this interface.

Only components without required ports can be instantiated by hand from Java. The
generated code acts as the container of the components and takes care of all the wiringFor a defini-

tion of Compo-
nent Container,
see p. 6

For a defini-
tion of Compo-
nent Container,
see p. 6

described with SpeADL−. In particular, the description class provides a static method that,
given an implementation, returns an instance of its Component interface (which only exposes
the provided ports). This instantiates recursively all the parts of the component.

Figure 3.9a shows how the implementation of the component CSComposite is instantiated
and used. Figure 3.9b shows the output of this program.

After a component has been instantiated, it is in an initialised state: it means that all
the parts of the components were initialised (the constructors of their implementation were
called and instance of the components were created) as well as all the provided ports. At that
point, all the wiring is done. The component can then be put in a started state by calling

60

3.2. Component-Based Micro-Level Architectures

 name : String
 namespace : String

Component Class
 name : String

Component Part

 name : String
 bindings : Binding[]
 params : Param[]
 ports : Port[]

Species

 name : String

Species PartSpecies Part
(Component)

Species Part
(Use)

species

Ecosystem Class Ecosystem Part

owned by a species

0..1

class

class

specializes

0..1

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.10: Meta-model of the SpeAD component model

its start method. This one starts each of the part and then call the start method of the
implementation.

This state only exists conceptually but does not have any existence except for the fact that
the start method is called and the provided ports of the component can then be accessed.

3.2.2 The SpeAD Component Model

We now present the SpeAD (Species-based Architectural Design) component model that
introduces the abstractions needed to tackle the technical challenges we presented. These
abstractions are built on top of SpeAD−.

The SpeAD component model, that we present in this section, is depicted Figure 3.10. The
ADL (Architecture Description Language) for SpeAD is SpeADL.

We start with an informal definition of the concepts before moving to the SpeAD compo-
nent model.

The main abstraction introduced is the species. A species is similar to a component
description, but while the latter is made to be instantiated inside a static configuration,
the former is made to be dynamically instantiated and connected from inside an already
instantiated component. Thus instances of species are dynamically created: their ports
are connected at runtime by the component container upon creation. Species can only be
described inside other component descriptions: we call such components ecosystems, which

61

3. Dedicated Micro-Level Software Architectures for MAS Development

extend components of SpeAD−. They are the only one capable of creating instances of the
species they declare. The species instances then exist inside the instance of these ecosystems.

In the context of MASs, type of agents are described using species, while their ecosystem
acts as their runtime platform. More on this matter is given Section 3.4 about the SpEArAF
method. However, using this definition of species is not enough to cover the needs the
contribution must answer. Instances of species must be connected to their ecosystem: we
introduce an additional concept that realises such connection.

In order to understand this concept, we first present a simplified idea of its use and
purpose. The idea is that when a species is instantiated, it is desired that its instance is
connected to its ecosystem. At runtime, for the instance to be correctly connected, two things
are important:

– The elements connecting the instance to its ecosystem must already exist in the ecosys-
tem.

– These elements have to instantiate a part of themselves within the instance in order to
establish a link between the two.

This element is then composed of two different “sides”: one that is instantiated within the
ecosystem, and one that is instantiated for every instance of the species described in the
ecosystem.

In the context of MASs, interaction mechanisms and other links between an agent and
its platform can be realised using such “two-sides” elements. For example, a mechanism for
depositing pheromones as has a side in the ecosystem for managing the pheromones and
their evaporation, and a side in the agent for handling its personal stock of pheromones. The
side in the agent also has to be aware of the location of the agents in a virtual space, etc.
The same is possible for operative interconnection mechanisms between the agents and their
platform, such as GUIs for visualising agents, or global control of the execution of the agents.
Such other examples are given in the rest of this section as well as Section 3.3.

Back to SpeAD, we can model such “two-sides” elements by using the concepts of species
and ecosystem in a recursive way. In order to do so, we propose that when a species is
defined, it can “use” species of one of the parts of its declaring ecosystem. This means that
when an instance of a species is dynamically created, instances of all the species it uses are
also dynamically instantiated recursively.

Thus, even though the term species was historically introduced as a mean to characterise a
type of agent, it does not only refer to that idea. It must also be noted that the term ecosystem
used here should not be mixed up with the concepts of software ecosystem (Bosch 2009): even
if they share an ecological origin, our ecosystem is the product of the development and not
the context into which the development happens and is constrained. From this point of
view, the term ecosystem is well adapted to characterise the entity that defines species and is
responsible of maintaining their instances “alive”.

Based on these definitions, we now detail how species and their connections are described
in ecosystem, how they are implemented and how they are instantiated and executed.

62

3.2. Component-Based Micro-Level Architectures

import j ava . u t i l . concurrent . Executor

ecosystem Scheduler {
species Agent {

provides exec : Executor
provides stop : Do

}

requires executor : Executor
}

Figure 3.11: Ecosystem description for an interconnection mechanism in SpeADL

As a general introduction, when realising such components, the developer focuses on
defining ecosystems, species, providing implementations for the ports of the descriptions and
choosing implementation for their parts. The mechanism of instantiation itself is managed by
the container and can be directly used from within the implementation of the ecosystem.

3.2.2.1 Species and Ecosystem Description in SpeADL

Like a component description, an ecosystem description is located in a namespace and is
composed of a name, a set of type parameters, a set of provided ports, a set of required ports
and possibly a configuration. On top of that, it contains a set of species descriptions: only
this last point differs from a component description in SpeADL−.

A species description resembles a component description in SpeADL−: it is composed of a
name, a set of type parameters, a set of provided ports, a set of required ports and possibly a
configuration, although the latter is different from those of SpeADL−. A species configuration
have parts, but of two different types: either they are normal part as in SpeADL−, or they use
and refer to a species description declared in one of the parts of its ecosystem. The bindings
follow the same rules as in SpeADL−.

Figure 3.11 shows an ecosystem for an interconnection mechanism that gives the agents
internal architecture the possibility to execute tasks. Secondarily, it manages the set of tasks of
each agent — which justifies the fact it is modelled using ecosystem-species abstraction — in
order for them to be able to stop all their own running tasks. When using such an ecosystem
into another one, as in Figure 3.12, the species declared in the latter can use the species
of the Scheduler in order to use the interconnection mechanism it realises. For example
SimpleAgent uses the sched.Agent species and binds to it one of its part required port. Any
instance of the SimpleAgent species can then manage its own set of running tasks.

Next section clarifies some of the advantages of the model with the implementation of
Scheduler.

Contrary to the implementations of parts in SpeAD−, in SpeAD passing parameters to
species implementations can not be handled at implementation time. Since the implementa-
tions of species are only declared in the implementation of their ecosystem, when a species
uses another species it does not manipulate directly its implementation. Thus, it is necessary

63

3. Dedicated Micro-Level Software Architectures for MAS Development

ecosystem MasExample [Msg] {

provides send : Send [Msg , DirRef] = msg . send
provides f a c t o r y : SimpleFactory [Msg]

part msg : MessageDirectRef [Msg]
part sched : Scheduler {

bind executor to executor . exec
}
part executor : ExecutorServ ice

species SimpleAgent (beha : AbstractAgentBehaviour [Msg] , name : S t r i n g) {

provides stop : Do
provides me: Pul l [DirRef] = msg .me

use msg : msg . Receiver (name) {
bind handler to seq . dispatch

}

use exec : sched . Agent

part seq : Sequent ia lDispatcher [Msg] {
bind executor to exec . exec
bind handler to beh . c y c l e

}

part beh : AgentBehaviour [Msg , DirRef] {
bind send to msg . send
bind die toThis stop
bind me to msg .me

}
}

}

Figure 3.12: Ecosystem description for a simple MAS in SpeADL

to bring species parameters declaration at the ADL level 3. Species declarations thus also have
a set of parameters (with a name and a datatype, here represented using a Java type). These
parameters are used when using species.

For example the species visible Figure 3.12 have parameters. Some of them are given to
the species they use as arguments. More details are given how this impact the implementation
in the following section.

No specialisation mechanism is introduced for the species. However, component descrip-
tions can be specialised by ecosystem descriptions.

3.2.2.2 Species and Ecosystem Implementation in Java

The translation of SpeADL to Java follows the same approach than with SpeADL−. It
only differs on the way species are implemented and instantiated.

In the description class of an ecosystem, each of the species is translated to an inner class,
which we call the species description class, named after their name. Each species description

3. It could already have been added in SpeAD− but wasn’t in order to show why it was needed now.

64

3.2. Component-Based Micro-Level Architectures

public c l a s s SchedulerImpl extends Scheduler {

public c l a s s AgentSide extends Scheduler . Agent {

private f i n a l AtomicBoolean run = new AtomicBoolean (t rue) ;
private f i n a l Set <Future <?>> s = new HashSet<Future <? > >() ;

@Override
protected Executor make_exec () {

return new Executor () {
public void execute (f i n a l Runnable command) {

i f (run . get ()) {
f i n a l FutureTask <?> f = new FutureTask <Object >(command, null) ;
s . add (f) ;
eco_executor () . execute (f) ;

}
}

} ;
}

@Override
protected Do make_stop () {

return new Do () {
public void doIt () {

run . s e t (f a l s e) ;
for (Future <?> f : s) {

i f (! f . isDone ()) f . cance l (t rue) ;
}
s . c l e a r () ;

}
} ;

}
}

@Override
protected Agent make_Agent () {

return new AgentSide () ;
}

}

Figure 3.13: Ecosystem implementation in Java for an interconnection mechanism

class have to be extended to provide an implementation for the species. Each of the species is
also translated in the ecosystem description class to an abstract method taking as parameters
the parameters of the species, named after the species name and prefixed by make_. It must
return an instance of an implementation for the species. This method gives the ability to the
container to automatically create new instances of species.

A species description class is identical to a component description class except that it
adds a way to access the provided ports, required ports and parts of its ecosystem, which are
prefixed by eco_.

Figure 3.13 shows the implementation of the Scheduler ecosystem presented Figure 3.11.
For each species, there is an overridden method with the same parameters as the species:
it must instantiate an implementation of it. The class AgentSide implements for example
the species Scheduler.Agent. In the specific case of this ecosystem, which realises an
interconnection mechanisms, we can see how the ecosystem abstraction can be used: the

65

3. Dedicated Micro-Level Software Architectures for MAS Development

implementation exploits the fact that every time a species that uses the Agent species is
instantiated, then an instance of the Agent species is also instantiated. This has two main
advantages:

– The initialisation logic related to this particular interconnection mechanism can be
encapsulated into the implementation without filtrating externally.

– The state related to each instance of this species is encapsulated in it.

Figure 3.14 shows a part of the implementation of the ecosystem MasExample presented
Figure 3.12. Parts of ecosystem, such as sched here in the overridden make_sched method, are
specified as any other component part and no specific boilerplate code has to be implemented
on top of that for connecting it to a species. The overridden method make_SimpleAgent illus-
trates parameter passing to a species implementation. On the other hand, the implementation
of the port factory shows how to actually create an instance of a species, again with the
parameters.

3.2.2.3 Species and Ecosystem Instantiation and Runtime Behaviour

The instances of ecosystems follow the same runtime behaviour as components in SpeAD−

and the instances of species are created from already started instances of ecosystems.
From within an ecosystem implementation, it is possible for every species without required

ports to be instantiated using a protected method available in the ecosystem description class.
This method takes as parameters the arguments for the species. Instances of species, which
are components, can then be started and their provided ports accessed to.

When an instance of a species is created (using the available mechanisms from inside
the ecosystem implementation) its parts are created as with components in SpeAD−, and
the species it uses are recursively instantiated in the same way using the instances of the
ecosystem that declares them. At this point, the instance of the species is in the initialised
state. Then, by calling its start method, all of its parts are started (species and non-species),
and the instance is in the started state.

Concerning agent creation, Figure 3.14 illustrates different aspects of it for SimpleAgent:

1. The call to the method newSimpleAgent inside the implementation of the port factory
is used to create an instance of the species, the creation of the species it uses is handled
automatically by the container.

2. We can also see in this port implementation how the provided port introduced in the
SimpleAgent species is useful to encapsulate the way agents are represented inside
the ecosystem and only exposes its messaging reference (using the MessageDirectRef
ecosystem, not detailed here, that realises message passing using direct references).

We presented the SpeAD component model that can be exploited using SpeADL and
Java. We showed how to define ecosystems and species to ease the description of micro-
architectures as well as their implementation. It is of course possible with this model to reuse
produced code artefacts, this is the subject of the following section.

66

3.2. Component-Based Micro-Level Architectures

public c l a s s MasExampleImpl<Msg> extends MasExample<Msg> {

/ / . . .

@Override
protected Scheduler make_sched () {

return new SchedulerImpl () ;
}

@Override
protected SimpleAgent<Msg> make_SimpleAgent (

f i n a l AbstractAgentBehaviour <Msg> beha , S t r i n g name) {
return new AbstractSimpleAgent () {

@Override
protected AgentBehaviour <Msg , DirRef > make_beh () {

return beha ;
}

} ;
}

private a b s t r a c t c l a s s AbstractSimpleAgent extends SimpleAgent<Msg> {

@Override
protected Do make_stop () {

return new Do () {
@Override
public void doIt () {

msg () . stop () ;
exec () . stop () ;

}
} ;

}

@Override
protected Sequent ia lDispatcher <Msg> make_seq () {

return new Sequentia lDispatcherImpl <Msg> () ;
}

}

private AtomicInteger n = new AtomicInteger (0) ;

@Override
protected SimpleFactory <Msg> make_factory () {

return new SimpleFactory <Msg> () {
@Override
public DirRef c r e a t e (AbstractAgentBehaviour <Msg> beh) {

SimpleAgent . Component<Msg> agent = newSimpleAgent (beh , " agent "+n . getAndIncrement ()) ;
agent . s t a r t () ;
return agent .me () . pul l () ;

}
} ;

}
}

Figure 3.14: Ecosystem implementation in Java

67

3. Dedicated Micro-Level Software Architectures for MAS Development

3.3 Capturing Reusable Experience

During the application of the contribution, several recurring components and patterns
were identified.

This section has three main objectives:

1. Show how experience can be captured and reused in the context of the SpeAD model.

2. To illustrate the contribution presented until here.

3. To present a library of components and patterns usable in MAS development.

We first show what can be captured and how, then specific components and patterns
are presented. In particular, we introduce a way to capture architectural patterns using
component-based architecture templates.

3.3.1 What and How

When developing component-based software architectures, the abstractions that can be
reused exist at different levels: interfaces, code and design.

3.3.1.1 Capturing Reusable Interfaces

First, at the finest grain, we have interfaces: they represent points of interoperability
between components. Without common interfaces with common semantics, it is not possible
to connect components together.

The reusable artefact is the interface description, obviously it is a very common practice
in software architectures in general. In this work, the Java language is used as a mean to
describe interfaces, which are used in component descriptions to specify the types of the
ports.

On top of the syntactic description, interfaces described in Java can also be documented
to clearly specify their semantics. When defining interfaces, a trade-off must be found
between genericity and expressiveness: a too much generic interface has a different meaning
in different situations, while a more specific interface has a clear meaning and semantics but
isn’t usable in a lot of situations. We don’t detail how to do such things since they are out of
the scope of this work.

3.3.1.2 Capturing Reusable Code

Then, at a bigger grain, we have components themselves: they represent reusable pieces
of code that can be composed together in composite components. Reusable components
are one of the motivations behind the introduction of software components in the software
engineering field and are thus a common practice in software architectures.

Reusable artefacts are components descriptions and implementations. Along with aFor a defini-
tion of Mod-
ule View, see
p. 7

For a defini-
tion of Mod-
ule View, see
p. 7

component description and implementation, one can find datatypes and interfaces introduced
with it. Altogether these artefacts constitute a module that can have dependencies towards

68

3.3. Capturing Reusable Experience

other components. Such dependencies can concern datatypes, interfaces or components
defined in other modules.

In our specific case, this is done using the SpeADL and Java languages. When possible,
they often exploit type parametrisation for enhancing genericity. Type parametrisation can be
exploited in two different ways in SpeAD:

– For datatypes; the type parameters can abstract over the data manipulated by the
component as it is often done in Java for example.

– For interfaces; the type parameters can also be used to abstract over interfaces. Obvi-
ously, an implementation of such a component has to concretise such types, and if not
it cannot implement them. This reduces the possibility of use of the interface, but in
specific cases it can be useful for engineering reusable components. In particular, the
next section exploits this to describe templates. Advanced use of this approach includes
using Java reflection to implement components that provide such interfaces.

3.3.1.3 Capturing Reusable Design

At architectural level, design can be reused: we mean a common composition of com-
ponents, but described in an abstract way in order to be instantiated in specific situations.
A common mean of capturing them in the software architecture field is using architectural
patterns. For a defini-

tion of Archi-
tectural Pat-
tern, see p. 8

For a defini-
tion of Archi-
tectural Pat-
tern, see p. 8

Most of the time, patterns are described using textual descriptions in a natural language.
But in the specific case of component-based architectures, it is possible to have reusable
implementations for patterns. Indeed, a pattern is a kind of composition of components
where some of them are kept abstracts and other could well be already implemented. The
patterns that interest us are about describing a common organisation of components for
achieving a specific functionality or quality attribute. Ideally, we want to reduce the code to
develop by reusing parts of architectures while letting other open to the user of the patterns.

We present two ways of doing that. The first one is based on producing partially abstract
architectures and the second one is based on using required ports to represent abstract parts
of the patterns.

Templates. We introduce the concept of template, which is specific to SpeAD. The idea
here is to use templates as a mean to implement patterns in the form of partially abstract
architectures. As a side note, this is different from templates in ACME (Garlan, Monroe, and
Wile 1997) where component and connector templates can be instantiated in architectures
and regrouped in styles.

Actually, a template is not an abstraction provided by SpeAD but a way of using the
abstractions it provides. Here a template is a reusable abstract description and implementation
of a composition of components: it has concrete components with implementations and other
components that are left abstract. It is thus actually a component itself. A more detailed
discussion of the relations between templates, patterns and other means of reusing design is
given Chapter 6.

69

3. Dedicated Micro-Level Software Architectures for MAS Development

Templates are exploiting SpeAD in order to be able to abstract over components and
interfaces (i.e. ports types): by combining the two it is possible to describe compositions
where what we call abstract components with abstract interfaces are connected together.

Abstract components are defined as component descriptions with ports and no part. The
interfaces of the ports are chosen in order to express the contract its implementation must
respect. The programming abstractions that can be used to implement it are the required
ports of the component.

When such abstract component is put with other components, this gives us a partially
abstract architecture. Using type parametrisation, the types of the ports can be left abstract in
order to define generic abstract components and thus templates.

Then, a partially implemented version of the template can be provided. Only the abstract
components are left to be implemented — i.e. the corresponding methods are not overridden
—, while the implementation of the others are provided.

Finally, instantiating the template is just a matter of extending the partial implementation
for the template in order to specify the implementation of the abstract components. Imple-
menting the abstract components can be done either directly in Java or by specialising the
abstract component with a composite component.

Components. This approach can be put in opposition to the use of required ports to
represent the components that must be abstracted over. The idea would be to represent the
reusable implementation of the pattern with a completely implemented components. Then,
to exploit such a component, one has to describe and implement a component that provides
the port that would be composed with the reusable component. Compared to the previous
approach, this allows for more flexibility and composability, since there is no constraint on
the structure of the composition nor on the structure of the components to implement, but
it is thus more complex to use. Instead of encoding a specific design using a composition,
this design must be explained in the documentation of the ports. Moreover, when reusing
complex composition, the relation between the different components must then be explained,
and the user of the reusable composition must be careful to not go out of the tracks when
using the component, while with templates, the user is constrained by the composition itself.

This last approach is actually more like component reuse than design reuse, but can
achieve the same and is sometimes more adequate for reusing design. Indeed, design reuse
with templates is quite limited because of the lake of specialisation support for ecosystem
and species.

3.3.2 Components Library

We now present the practical interfaces, components and patterns that are reusable
and available in the component library distributed with the implementation of the SpeADL
language.

70

3.3. Capturing Reusable Experience

public i n t e r f a c e Send<T , R> {
/∗∗

∗ Send message t o r e c e i v e r .
∗ Asynchronous and not r e l i a b l e .
∗ Should not b l o c k .
∗
∗ @param message t h e message t o send
∗ @param r e c e i v e r t h e r e c e i v e r o f t h e message
∗ /

public void send (T message , R r e c e i v e r) ;
}

(a) Send interface.

public i n t e r f a c e ReliableSend <T , R>
extends Send<T , R> {
/∗∗

∗ Send message t o r e c e i v e r .
∗ Asynchronous and r e l i a b l e .
∗ Should not b l o c k .
∗
∗ @param message t h e message t o send
∗ @param r e c e i v e r t h e r e c e i v e r o f t h e message
∗ @throws A g e n t D o e s N o t E x i s t E x c e p t i o n when
∗ t h e r e c e i v e r d o e s not e x i s t in t h e sys t em
∗ /

public void r e l i a b l e S e n d (T message , R r e c e i v e r)
throws AgentDoesNotExistException ;

}

(b) ReliableSend interface.

Figure 3.15: Interfaces descriptions in Java

3.3.2.1 Interfaces

To start, several interfaces were used during the development of components when
applying our approach. We detail some of them here in order to ease the understanding of
the rest of the chapter. Obviously this does not consist in a contribution by itself.

We can see two sets of interfaces : the very generic ones and the MAS-oriented ones. In
practice, the generic ones are very close to functions types: for example we have Push with a
method that can take an element as parameter, Pull with a method that returns an element,
or Do with a method that takes no parameter nor return anything. This can be generalised to
any number of parameters although we just had the need for those ones. Ideally, one would
exploit as much as possible the language standard library to ease interoperability, but Java

library is quite limited concerning this kind of need. Languages such as Scala 4 or libraries
such as FunctionalJava (FJ) 5 are good alternatives. We chose to use FJ when needed.

The MAS-oriented interfaces are useful to describe messages sending, messages broad-
casting, system clock controls, tasks executions, etc. For example we defined Send, see
Figure 3.15a, to send messages to a receiver (the interface is parametrised by the types of these
two datatypes) with the following semantics documented in the comments: the operation
must be asynchronous and reliability is not guaranteed. We also defined ReliableSend, see
Figure 3.15b, that extends Send with the following semantics: the operation must be reliable,
i.e. failure of delivery means the receiver does not exist.

3.3.2.2 Components

We have then reusable components and again, some of them are mostly generic, while
others are very specific to MAS.

4. http://scala-lang.org
5. http://functionaljava.org/

71

3. Dedicated Micro-Level Software Architectures for MAS Development

In particular, we found the following categories of components:

– Scheduling: in this category we have different components needed for scheduling a
system, be it at the platform level or agent level. In the platform level, we have clocks to
synchronise the agents of the system in their execution, GUI for controlling the clocks,
executors as thread pools, etc. At the agent level, we have ecosystem and species to
have a set of agents be scheduled together in a synchronised way or unsynchronised
way as needed. The latter also takes care of stopping execution of agents when they are
killed.

– Interaction: these components provide means for agent to communicate together, they
implement message sending by direct references or by name, but also synchronous call
by references, broadcasting (coupled with a mechanism for resolving receivers at the
platform level).

– Distribution: here we have components for realising distributed platforms with seriali-
sation, platform naming and referencing, etc.

– Agent dynamics: these components implement some common mechanisms used inter-
nally by agents, such a lifecycle like sequential handling of messages, or loops.

– Meta: these components provide some generic mechanisms that are useful to build
other mechanisms.

All these components can be used to build architectures, but also to build templates that
implement common patterns.

We now detail some components in order to clearly show how they are realised and
what are the advantages of using the abstractions introduced with SpeAD. We present an
agent dynamics component to execute sequentially a behaviour on messages that arrive
concurrently, an ecosystem to give access to a port in an ecosystem to one of its species,
two interaction ecosystems to reference agents and one interaction ecosystem to publish and
observe values from agents. We conclude with an example of MAS with agents that can
publish and observes values by being referenced with names.

Sequential Dispatcher. The first one is a component for handling sequentially messages in
an agent. To achieve that, it is made of several parts: a queue to buffer messages arriving
concurrently and a mechanism that takes elements (potentially messages in the case of a
MAS) sequentially and forwards them to be processed until there is no more. This example
shows the use of composite components, reuse of a generic queue component and type
parametrisation.

Figure 3.16 shows the description of the component. It was used in the examples shown
Section 3.2.2. It has a part that reuses another component for a Queue to store the elements.
The dispatch port, with the interface Push, receives the element to sequentially process and
implements the mechanism of dispatching by exploiting queue, and the two required ports.
The executor port is needed for executing tasks concurrently (typically, this is bound to a

72

3.3. Capturing Reusable Experience

component Sequent ia lDispatcher [Thing] {
/ / t o g i v e e l e m e n t s t o d i s p a t c h , can be c a l l e d c o n c u r r e n t l y
provides dispatch : Push [Thing]
requires executor : Executor
part queue : Queue [Thing]
/ / t o h a n d l e e l e m e n t s , g u a r a n t e e d t o n e v e r be c a l l e d c o n c u r r e n t l y
requires handler : Push [Thing]

}

Figure 3.16: Sequential dispatcher description in SpeADL

public c l a s s Sequent ia lDispatcherImpl <Thing>
extends Sequent ia lDispatcher <Thing> {

private AtomicBoolean working = new AtomicBoolean (f a l s e) ;

@Override
protected Push<Thing> make_dispatch () {

return new Push<Thing > () {
public void push (Thing t) {

queue () . put () . push (t) ;
i f (working . compareAndSet (fa lse , t rue)) {

emptyQueue () ;
}

} ;
} ;

}

private void emptyQueue () {
f i n a l Thing t = queue () . get () . pu l l () ;
i f (t != null) {

executor () . execute (new Runnable () {
public void run () {

handler () . push (t) ;
emptyQueue () ;

}
}) ;

} e lse {
working . s e t (f a l s e) ;

}
}

@Override
protected Queue<Thing> make_queue () {

return new ConcurrentQueueImpl<Thing > () ;
}

}

Figure 3.17: Sequential dispatcher implementation in Java

73

3. Dedicated Micro-Level Software Architectures for MAS Development

/∗∗
∗ Simply f o r w a r d a p o r t from
∗ t h e a g e n t s t o t h e i n f r a s t r u c t u r e
∗ /

ecosystem Forward [I] {
species Agent {

provides a : I
}

requires i : I
}

(a) Description in SpeADL.

public c l a s s ForwardImpl<I > extends Forward<I > {

public c l a s s AgentSide extends Agent<I > {
@Override
protected I make_a () {

return i () ;
}

}

@Override
protected Agent<I > make_Agent () {

return new AgentSide () ;
}

}

(b) Implementation in Java.

Figure 3.18: Forward component

thread pool at the platform level or other mechanisms to execute tasks) and the handler port
is the port to which the elements to be processed are given.

Figure 3.17 shows the implementation for the component. As it can be seen, the part
can be accessed as well as the required ports. The implementation chosen for the Queue is a
concurrent queue in order to respect the specification of the dispatch port.

Forwarding from a Species to its Ecosystem. Before presenting interesting components for
interconnection, we show first a component for enabling an instance of a species to access a
port in its ecosystem.

Figure 3.18a shows its description. A species that uses the Agent species of Forward is
able to access, thought the port a, whatever is connected to the port i in the ecosystem. The
implementation is presented Figure 3.18b. We can notice that under certain conditions, it is
possible, when making a port in the implementation of a component (here Agent), to directly
return another port: this is only possible because the port i was already initialised in the
ecosystem.

Another example of component for interconnected is the Scheduler component presented
Section 3.2.2.

Referencing Agents. When agents interact, they need ways to refer to each other. There exist
different ways to reference agents in MASs, we implemented two of them: direct references
and named references. The idea is to be able to use either of them with interconnection
mechanisms such as those presented next.

Figure 3.19 shows the description of the DirectReferences ecosystem. It defines a species
that can be used in a species to denote that instances of the latter have a reference. The me port
gives an agent access to its reference, the stop port is needed to execute dereferencing of the
agent. The toCall port is the port that is accessible through a reference using the call port
available in the ecosystem (and possibly accessible to an agent using the previously presented

74

3.3. Capturing Reusable Experience

ecosystem Di rec t Refer ence s [I] {

/ / name i s on ly used f o r p r e t t y
/ / p r i n t i n g t h e r e f e r e n c e wi th t o S t r i n g ()
species Cal lee (name : S t r i n g) {

/ / a p o r t p r o v i d e d by t h e
/ / d y n a m i c a l l y c r e a t e d component
/ / and c a l l a b l e us ing t h e r e f e r e n c e
requires t o C a l l : I
/ / t h e d y n a m i c a l l y c r e a t e d
/ / component r e f e r e n c e
provides me: Pul l [DirRef]
/ / t o c a l l when t h e d y n a m i c a l l y
/ / c r e a t e d component i s s t o p p e d
provides stop : Do

}

/ / t o c a l l a d y n a m i c a l l y c r e a t e d
/ / component by r e f e r e n c e
provides c a l l : Ca l l [I , DirRef]

}

Figure 3.19: Direct references mechanism description in SpeADL

Forward ecosystem). We present an example of that after we present the last interconnection
mechanism.

Figure 3.20 presents the implementation of the DirectReferences component. We don’t
detail all of the implementation, but present the idea to illustrate advantages of the SpeAD
component model. First DirRef is an empty marker interface for a reference and this is the
only type that is visible from outside of the implementation. Thus, agents implementations
that manipulate such reference can only see an object without any particular method. This
implies that casts has to be done inside this implementation, this is a price to pay for hiding
implementation 6. The implementation of DistRef is responsible of making a bridge between
the mechanism implemented in call at the ecosystem level and the port toCall at the species
level.

We also present briefly another referencing component that can play the same role as
DirectReferences. This mechanism is map referencing where the agents are referenced not
with a direct reference but with a key that maps to them.

Figure 3.21a shows its description. Here we can notice two different species, they represent
each a different way of getting the key for mapping, either as a parameter of the species
or through a required port. Except from that, their behaviour is similar, and equivalent to
DirectReference. We don’t detail the implementation but it is available in the library of
components.

Publishing Observable Values. We now present an interconnection mechanism at a higher
level of abstraction than referencing.

6. Cleaner ways of solving this problem exists, but would require to change the ADL and are out of scope of
our work.

75

3. Dedicated Micro-Level Software Architectures for MAS Development

public c l a s s DirectReferencesImpl <I > extends Direc tReferences <I > {

@Override
protected Call <I , DirRef > make_call () {

return new Call <I , DirRef > () {
public I c a l l (DirRef r e f) throws RefDoesNotExistsException {

i f (r e f instanceof RefImpl) {
/ / n e ed ed t o not e x p o s e e x t e r n a l l y
/ / a d a t a t y p e p a r a m e t e r i s e d by I
RefImpl r e a l R e f = (RefImpl) r e f ;
return r e a l R e f . c a l l () ;

} e lse throw new RefDoesNotExistsException () ;
}

} ;
}

@Override
protected Callee <I > make_Callee (S t r i n g name) {

return new CalleeImpl (name) ;
}

private c l a s s CalleeImpl extends Callee <I > {

private f i n a l RefImpl me;
private CalleeImpl (S t r i n g name) {

t h i s .me = new RefImpl (this , name) ;
}

@Override
protected Pull <DirRef > make_me () {

return new Pull <DirRef > () {
public DirRef pul l () { return me; }

} ;
}

@Override
protected Do make_stop () {

return new Do () {
public void doIt () { me . stop () ; }

} ;
}
public I p_toCal l () { return t o C a l l () ; }

}
private c l a s s RefImpl implements DirRef {

private CalleeImpl r e f ;
private f i n a l S t r i n g name ;
private RefImpl (CalleeImpl re f , S t r i n g name) {

t h i s . r e f = r e f ;
t h i s . name = name ;

}
private void stop () {

/ / a l l o w f o r g a r b a g e c o l l e c t i o n and r e l i a b i l i t y c h e c k s
t h i s . r e f = null ;

}
private I c a l l () throws RefDoesNotExistsException {

i f (r e f != null) return r e f . p_toCal l () ;
e lse throw new RefDoesNotExistsException () ;

}

@Override
public S t r i n g t o S t r i n g () {

return t h i s . name + (t h i s . r e f == null ? " (stopped) " : " ") ;
}

}
}

Figure 3.20: Direct references mechanism implementation in Java

76

3.3. Capturing Reusable Experience

ecosystem MapReferences [I ,K] {

species Cal lee (key : K) {
requires t o C a l l : I
provides me: Pul l [K]
provides stop : Do

}

species CalleePullKey {
requires t o C a l l : I
requires key : Pul l [K]

provides me: Pul l [K]
provides stop : Do

}

provides c a l l : Ca l l [I ,K]

}

(a) Map references

ecosystem ValuePublisher [T ,K] {

species PublisherPush {
provides s e t : Push [T]
provides get : Pul l [T]

}

species P u b l i s h e r P u l l {
provides get : Pul l [T]
requires getValue : Pul l [T]

}

requires c a l l : Ca l l [Pul l [T] ,K]
provides observe : Rel iableObserve [T , K]

}

(b) Value publishing and observing

Figure 3.21: Interconnection mechanisms descriptions in SpeADL

public i n t e r f a c e Observe<V, R> {
public Option<V> observe (R r e f) ;

}

public i n t e r f a c e ReliableObserve <V, R> extends Observe<V, R> {
public V r e l i a b l e O b s e r v e (R r e f)

throws RefDoesNotExistsException ;
}

Figure 3.22: The ReliableObserve and Observe interfaces in Java

Figure 3.21b shows the description of such a component. As we can see, it relies on the
existence of a mechanism to call a reference but for a specific type of port linked to its function.
It allows, through the observe port, to observe an agent using its reference, whatever it is
(abstracted by the K type parameter). There exist two ways of publishing a value: either with
PublisherPush that stores the value or either with PublishPull that pulls the value from the
agent.

Figure 3.23 shows the implementation of the component. It only implements the logic be-
hind its functionality while relying on its required ports to realise the referencing. Figure 3.22
shows the interfaces provided by the component. We can notice the use of the Option class
from FJ that is used to represent container of values that can either be empty or full. It is
used in the implementation of the observe port of the component.

Composing the Interconnection Mechanisms. Figure 3.24 shows an ecosystem using the
two interconnection mechanisms we defined previously for a MAS where the agents that
can observe each other using the publishing mechanisms and are named using String

77

3. Dedicated Micro-Level Software Architectures for MAS Development

public c l a s s ValuePublisherImpl <T , K> extends ValuePublisher <T , K> {

@Override
protected ReliableObserve <T , K> make_observe () {

return new ReliableObserve <T , K> () {
public Option<T> observe (K r e f) {

t r y {
return Option . some (s e l f () . observe () . r e l i a b l e O b s e r v e (r e f)) ;

} catch (RefDoesNotExistsException e) {
return Option . none () ;

}
}

public T r e l i a b l e O b s e r v e (K r e f)
throws RefDoesNotExistsException {
return c a l l () . c a l l (r e f) . pu l l () ;

}
} ;

}

@Override
protected Publ i sherPul l <T , K> make_PublisherPull () {

return new Publ i sherPul l <T , K> () {
@Override
protected Pull <T> make_get () {

return new Pull <T> () {
public T pul l () {

return getValue () . pul l () ;
}

} ;
}

} ;
}

@Override
protected PublisherPush <T , K> make_PublisherPush () {

return new PublisherPush <T , K> () {

private T value ;

@Override
protected Push<T> make_set () {

return new Push<T> () {
public void push (T thing) {

value = thing ;
} ;

} ;
}

@Override
protected Pull <T> make_get () {

return new Pull <T> () {
public T pul l () {

return value ;
}

} ;
}

} ;
}

}

Figure 3.23: Value Publishing interconnection mechanism implementation in Java

78

3.3. Capturing Reusable Experience

namespace namedPublish {

component ObservedBehaviour {
provides c y c l e : Do
requires changeValue : Push [I n t e g e r]

}

component ObserverBehaviour [Ref] {
provides c y c l e : Do
requires observe : Observe [Integer , Ref]

}

ecosystem NamedPublishMAS {

provides c r e a t e : NamedPublishMASFactory

part r e f s : MapReferences [Pul l [I n t e g e r] , S t r i n g]
part observeds : ValuePublisher [Integer , S t r i n g] {

bind c a l l to r e f s . c a l l
}
part observers : Forward [Observe [Integer , S t r i n g]] {

bind i to observeds . observe
}

part executor : ExecutorServ ice
part schedule : Scheduled {

bind sched to executor . exec
}
part c lock : Clock {

bind sched to executor . exec
bind t i c k to schedule . t i c k

}
part gui : SchedulingControllerGUI {

bind c o n t r o l to c lock . c o n t r o l
}

species Observed (name : Str ing , beha : AbstractObservedBehaviour) {

use sched : schedule . Agent {
bind c y c l e to beh . c y c l e

}
part beh : ObservedBehaviour {

bind changeValue to observed . s e t
}
use r e f : r e f s . Ca l lee (name) {

bind t o C a l l to observed . get
}
use observed : observeds . PublisherPush

}

species Observer (beha : AbstractObserverBehaviour [S t r i n g]) {

use sched : schedule . Agent {
bind c y c l e to beh . c y c l e

}
part beh : ObserverBehaviour [S t r i n g] {

bind observe to observer . a
}
use observer : observers . Agent

}
}

}

Figure 3.24: An ecosystem for agents referenced by names and observing each other values
in SpeADL

79

3. Dedicated Micro-Level Software Architectures for MAS Development

public i n t e r f a c e NamedPublishMASFactory {

public void createObserver (AbstractObserverBehaviour <Str ing > beh) ;

public void createObserved (S t r i n g name , AbstractObservedBehaviour beh) ;
}

Figure 3.25: The NamedPublishMASFactory interface in Java

references. It also contains mechanisms for scheduling the agents in a synchronised way.
ExecutorService is the equivalent of the Java standard library ExecutorService. Scheduled
executes concurrently all the agents of the system, Clock is a clock responsible of instructing
the Scheduled component to do one step of execution, and SchedulingControllerGUI control
the Clock with a GUI. All of these components are available in the library.

The composition of the previously presented mechanisms is done at the ecosystem level
(between refs, observeds and observers) and at the species level (between ref, observed
and observer). As we can see, only what is needed for a species is included in its definition:
the Observer species does not publish anything and thus does not use the PublisherPush
species. With this, different combinations are possible depending on the need.

The ecosystem provides a way to create new agents of each species, this is possible
through the use of the create port with the NamedPublishMASFactory Java interface presented
Figure 3.25.

The implementation, Figure 3.26, shows the species related part of the implementation.
The rest of the implementation only reference the implementation of each of the parts, which
are all available in the library. We now focus on the Observed species as they are both
similar. The only information that has to be provided is how to construct one instance of
the implementation of the species. It relies on a component for the behaviour of each of the
species. A partial implementation of these to ease behaviour definitions is provided by the
class AbstractObservedBehaviour. Thus, this example also shows a simple template for a
MAS where the agents behaviours are the hoptspots.

An example of the use of such an ecosystem is given Figure 3.27.

3.3.2.3 Templates

To illustrate the use of templates to implement patterns, we present now an example. Be-
cause the specialisation mechanism used in SpeAD is not usable for ecosystem and species, we
don’t present any template for interconnection mechanisms. Those we previously presented
can also actually be used together to form architectural patterns as explained Section 3.3.1.3.

ADELFE Agents Template In the AMAS approach, when applied using the ADELFE
method, agents all have the same kind of internal architecture. In this example, templates are
used to provide pre-made agent architectures for easily starting new AMAS-based applica-
tions.

80

3.3. Capturing Reusable Experience

public a b s t r a c t c l a s s AbstractObserverBehaviour <Ref> extends ObserverBehaviour <Ref> {

@Override
protected Do make_cycle () {

return new Do () {
public void doIt () {

behaviour () ;
}

} ;
}

protected a b s t r a c t void behaviour () ;

}

public c l a s s NamedPublishMASImpl extends NamedPublishMAS {

/ / . . . p a r t s make_∗ . . .

/ / . . . make_Observer . . .

@Override
protected Observed make_Observed (S t r i n g name , f i n a l AbstractObservedBehaviour beh) {

return new Observed () {
@Override
protected ObservedBehaviour make_beh () {

return beh ;
}

} ;
}

@Override
protected NamedPublishMASFactory make_create () {

return new NamedPublishMASFactory () {

public void createObserver (AbstractObserverBehaviour <Str ing > beh) {
Observer . Component agent = newObserver (beh) ;
agent . s t a r t () ;

}

public void createObserved (S t r i n g name , AbstractObservedBehaviour beh) {
Observed . Component agent = newObserved (name , beh) ;
agent . s t a r t () ;

}
} ;

}
}

Figure 3.26: Implementation of NamedPublishMAS and one of the behaviour class in Java

81

3. Dedicated Micro-Level Software Architectures for MAS Development

public c l a s s Test {
public s t a t i c void main (S t r i n g [] args) {

NamedPublishMAS . Component mas =
NamedPublishMAS . newComponent (new NamedPublishMASImpl ()) ;

mas . s t a r t () ;

mas . c r e a t e () . createObserved (" agent1 " , new AbstractObservedBehaviour () {
@Override
protected void behaviour () {

i n t v = new Random () . n e x t I n t (1 0) ;
System . out . p r i n t l n (" observed : changing value to "+v) ;
changeValue () . push (v) ;

}
}) ;

mas . c r e a t e () . createObserver (new AbstractObserverBehaviour <Str ing > () {
@Override
protected void behaviour () {

System . out . p r i n t l n (" observer : observing value of "+
observe () . observe (" agent1 ") . orSome (−1)) ;

}
}) ;

}
}

Figure 3.27: Use of NamedPublishMAS in Java

Figure 3.28 shows an example of a template for the kind of internal architecture used
by AMAS agents. It has to be composed with other components to have a fully complete
architecture: this template focuses on the lifecycle of the agent and constrains the way
its behaviour is implemented. Its implementation is shown Figure 3.29. In particular it
mixes a reusable component named Buffer with the components AbstractPerception and
AbstractDecision that are meant to be implemented by the user of the template. Buffer
is available in the library, it buffers the calls to a port until they are released (see the
implementation of the port cycle). This template can be combined with a component that
manages the knowledge of the agent and a component that executes the behaviour.

3.4 The SpEArAF Method

We now present SpEArAF (Species to Engineer Architectures for Agent Frameworks) that
instantiates the methodology by using SpeAD as a mean to build the micro-architecture.

SpEArAF does not rely on any specific MAS design method to produce the macro-
architectural view, it only relies on the fact that after doing this part of the design, the MAS is
at least described in terms of:

– Types of agents: depending on the approach, different types of agents can be defined for
a given application, and for each of them the running application has several instances
of it. Obviously there is always at least one type of agents. They may have difference in
the way they have to be internally organised, their dynamics, their behaviours, etc.

82

3.4. The SpEArAF Method

import f r . i r i t . smac . may . l i b . i n t e r f a c e s .∗
import f r . i r i t . smac . may . l i b . components . meta .∗

/ / an a b s t r a c t component
component Abstrac tPercept ion [Sensors , Knowledge] {

provides perce ive : Do
requires sensors : Sensors
requires kb : Knowledge

}

/ / an a b s t r a c t component
component Abstrac tDec is ion [Knowledge , Actuators] {

provides decide : Do
requires kb : Knowledge
requires a c t u a t o r s : Actuators

}

/ / a c o n c r e t e component
component ActionBuffer [Actuators] {

provides a c t : Do
provides a c t u a t o r s : Actuators
requires r e a l A c t u a t o r s : Actuators

}

/ / Knowledge : o p e r a t i o n s t o a c c e s s and modi fy knowledge
/ / S e n s o r s : o p e r a t i o n s t o a c c e s s s e n s o r s
/ / A c t u a t o r s : o p e r a t i o n s t o a c c e s s a c t u a t o r s
component AMASAgent[Knowledge , Sensors , Actuators] {

/ / t o implement in o r d e r t o s p e c i f y how t o up da t e knowledge
/ / b a s e d on s e n s o r s
part percept ion : Abst rac tPercept ion [Sensors , Knowledge] {

bind sensors toThis sensors
bind kb toThis kb

}

/ / t o implement in o r d e r t o s p e c i f y which a c t i o n s t o do
/ / b a s e d on knowledge
part d e c i s i o n : Abstrac tDec is ion [Knowledge , Actuators] {

bind kb toThis kb
bind a c t u a t o r s to a c t i o n . port

}

/ / a l r e a d y implemented , i t b u f f e r s t h e a c t i o n s t o e x e c u t e them
/ / a f t e r d e c i s i o n has been done
part a c t i o n : Buf fer [Actuators] {

bind r e a l P o r t toThis a c t u a t o r s
}

requires a c t u a t o r s : Actuators
requires sensors : Sensors
requires kb : Knowledge

provides c y c l e : Do
}

Figure 3.28: Template of an AMAS agent architecture in SpeADL

83

3. Dedicated Micro-Level Software Architectures for MAS Development

public a b s t r a c t c l a s s AbstractAMASAgentImpl<K, S ,A> extends AMASAgent<K, S ,A> {

private f i n a l Class c l a z z ;

/∗∗
∗
∗ I f I i s a c t u a l l y M y P o r t I n t e r f a c e ,
∗ th en t h i s c l a s s s h o u l d be used with
∗ new B u f f e r I m p l (M y P o r t I n t e r f a c e . c l a s s)
∗ J u s t omit t y p e p a r a m e t e r s o f t h e p o r t i n t e r f a c e
∗
∗ @param c l a z z i s t h e c l a s s o f t h e c o n c r e t e I
∗ /

public AbstractAMASAgentImpl (Class c l a z z) {
t h i s . c l a z z = c l a z z ;

}

@Override
protected Do make_cycle () {

return new Do () {
@Override
public void doIt () {

percept ion () . perce ive () . doI t () ;
d e c i s i on () . decide () . doI t () ;
a c t i o n () . r e l e a s e () . doI t () ;

}
} ;

}

@Override
protected Buffer <A> make_action () {

return new BufferImpl <A>(c l a z z) ;
}

}

Figure 3.29: Implementation of the template for an AMAS agent architecture in Java

– The interaction means they use: strongly linked to the types of agents, but also to the
environment, agents are meant to use interaction means. There is again at least one
interaction means, but several approaches include the use of different interaction means
at the same time. Different types of agents can use different interaction means for
example.

– The runtime platform: the result of design can also introduce some environmental
elements, such as spaces or organisations that have their own dynamics. In term of
runtime software element, the runtime platform is what mediates the interactions, let
agents be created and let them live.

For example, Section 3.1.4 that illustrates the methodology with the ADELFE method,
the type of agents identified are the ants. They are defined using a perceive-decide-act
lifecycle that is executed by the platform for all the agents concurrently in a loop. They
use an interaction mean to move in a 2D space, an interaction mean to deposit and sense
pheromones. The runtime platform has a GUI to visualise the state of the 2D space, the
position of the agents and the quantities of pheromones in the different cells.

84

3.4. The SpEArAF Method

In the following we map the concepts of types of agents, interaction means and run-
time platform to those available in SpeAD in order to realise a partially abstract micro-
architecture. We then present an iterative and incremental design process for building this
micro-architecture. We conclude with guidelines that are useful when applying the method
in practice.

3.4.1 Component-Based Architectures for MASs

The platform is implemented using an ecosystem: its sub-components represent different
mechanisms at the environment level, such as 2D plan, extra-agent organisation dynamics,
but also scheduling, distribution, visualisation GUI, etc.

Types of agents are implemented using species and are created and maintained “alive” by
the ecosystem: components in the species represent internal mechanisms and dynamics such
as lifecycles, adaptation, GUI, capabilities, knowledge management etc.

Interconnection mechanisms are implemented using a combination of ecosystem and
species, used inside the environment ecosystem and composed into the different types of
agents species. They can be sensors, actuators, messages passing and other interaction
means, but also scheduler, visualisation and other operative links between the agents and the
platform.

As we said, we propose to describe the micro-architecture as an architecture with holes,
that we also call partially abstract architecture: some components of the architecture are
provided implemented, while others are left abstracts for implementation by the MAS
developer. The way to describe such architecture using templates is presented Section 3.3.
The basic idea behind this point is to find what are the concrete and the abstract components
of the architecture. The programming abstractions, as presented Section 3.1, that the MAS
developer can use to focus on his business concerns are then provided by the architecture in
the form of abstract components. Concrete components would be the rest of the architecture,
not meant to be modified by the MAS developer.

3.4.2 Iterative and Incremental Micro-Architectural Design

The following gives a process to build the partially abstract micro-architecture that can
then be used as a development support.

This process is driven by the requirements. When the process starts, the requirements are
those we identified in the methodology Section 3.1, but the more the micro-architecture get
refined, the more detailed requirements are elicited and are what need to be implemented at
one point or another. This process is mainly inspired by the ADD (Attribute-Driven Design) For a pre-

sentation of
ADD, see p. 8

For a pre-
sentation of
ADD, see p. 8method for the iterative refinement of the architecture and the “Twin Peaks” model for the

For a presen-
tation of the
Twin Peaks
Model, see
p. 7

For a presen-
tation of the
Twin Peaks
Model, see
p. 7

incremental definition of both requirements and architecture.
The iterated cycles of the process are separated in two phases: species and ecosystem.

Every step helps identifying new elements to define the architectures. They must be repeated
until no more requirement is present. Each phase of a cycle starts with a set of requirements

85

3. Dedicated Micro-Level Software Architectures for MAS Development

Species
Architecture

Species
Requirements

Ecosystem
Requirements

Ecosystem
Architecture

Detailled

General

General

Figure 3.30: The SpEArAF Method.

and potentially ends with new requirements. At the beginning, we start with all the require-
ments, business and operative, then more requirements for the micro-architecture get elicited
during the design. The more detailed the design gets, the more the requirements that are left
to be answered are operative ones.

Figure 3.30 illustrates this process.

Species Phase. The focus is on each of the species internal architecture: we don’t describe a
species but the main component that is its internal architecture.

The first step is to identify mechanisms used by the agents to interact with the platform. It
means any mechanism that may need the platform to operate. In the first cycle, this is mostly
about interaction means with the MAS environment and other agents. This step sets the
external boundary of the species architecture. This takes the form of required and provided
ports of the species internal architecture.

The second steps is to identify the abstract component that the MAS developer uses to
program its agents. They are mainly elicited from the business requirements by taking the
form of abstract component definitions that are parts of the species internal architecture. This
step sets the internal boundary of the species.

The third step is to define or refine the internal architecture of the species based on these
two boundaries. In the first cycle, this is mostly about the internal dynamics of the agents.
This step introduces a set of elements used for the actual execution of the agents. This may
introduce new external and internal boundaries.

86

3.4. The SpEArAF Method

All the external boundaries are requirements towards the ecosystem for the species to
properly operate.

Ecosystem Phase. Starting from the external boundary of each of the species, as well as the
other requirements, a new version of the ecosystem architecture can be defined. For example,
at the beginning, the dynamics of the platform should be devised.

For every species internal architecture, a species is defined and must be refined to link
it to the ecosystem. New elements are introduced in the ecosystem and in the species. In
order to realise the links between the ecosystem and the species, some of these elements are
themselves ecosystems whose species are used in the agents’ species and connected to its
internal architecture ports. Most of the time, these elements are reused, but when needed,
new one may have to be defined. These mechanisms, because they are meant to be part of
other species, may have required and provided ports to be usable. In complex cases, the
current process can be applied recursively to them.

In the same way than the species internal architectures, it is advised to start with business
requirements and materialise them using abstract components at the ecosystem level.

All of this can add new requirements towards the species internal architectures.
After this phase, a cycle ends and it may be needed to go back to start a new cycle and so

on until all the requirements are answered.

3.4.3 Additional Guidelines

We now present several guidelines that were discovered during the application of such a
process to design the micro-architecture of MASs. These are informally detailed.

What should be a Species Based on the macro-level architectural, several types of agents
are identified with their interaction mechanisms and other explicit and implicit requirements
related to how agents at runtime are connected to the runtime platform. But other entities
identified at the macro-level design may also be modelled with species at micro-level design.
The main guidelines is to see if the type of entities concerned is likely to be:

1. Created dynamically.

2. Interacting with agents (or other entities, depending on the MAS approach) using
interaction mechanisms such as those used by agents.

Decomposition. When decomposing the architecture in different parts, the question of
where to put some of the components and their functionality occurs. For example, should the
GUI controlling a MAS be inside the ecosystem with the species or outside the ecosystem in
a composite that contains the ecosystem and other components.

As a general guideline, it seems that it is preferable to keep the ecosystem focused on
MAS mechanisms, and thus any element not directly concerned with the agents and their
interactions would gain to be composed with the ecosystem in a component representing the
application itself.

87

3. Dedicated Micro-Level Software Architectures for MAS Development

Actually, often in MAS approaches, MASs are considered to exist inside a computational
environment that gives feedback to it or gets results from it. This environment is not aware of
the fact it is interacting with a MAS but sees it as a blackbox with clearly defined interfaces.
But on top of the agents and their platform, what is considered the MAS also contains parts
aware of the fact they are interacting with a MAS without themselves being part of the MAS.
A common way of decomposing this kind of systems is:

1. One ecosystem for the MAS itself exposing MAS-oriented ports.

2. One component containing it and representing the part of the system aware of the fact
it is a MAS and exposing MAS-agnostic ports.

3. One component for the actual final application that contains it.

Mapping between Views. It is a good practice, when applying the process, to keep track of
the mapping between the elements of the micro-architectural view and the macro-architectural
view as it is often recommended in software architecture practice.

In particular, in the context of MAS development, this is particularly important to record
the mapping between types of agents and the corresponding species.

3.5 Conclusion

We presented in this chapter a coherent set of answers to the challenges identified
previously.

First, we detailed our vision of the methodology of MAS development as a direct response
to the analysis made Chapter 2. By separating the design of the MAS itself — called macro-
architectural design — from the design of the architecture that support its implementation
— called micro-architectural design —, this highlighted architectural and implementation
challenges for building the latter.

The SpeAD component model we present next answers such challenges while taking
into account our desire of easing the development and improving the quality and reuse of
software produced during MAS development. By choosing a component-oriented approach,
it is possible to build an architecture adapted to the needs of the application to be built,
but also to the concerns of the MAS developer. This thus gives the possibility, when doing
macro-architectural design to focus on the business concerns of the application. At the same
time, by making explicit the micro-architectural design and all the requirements it answers,
this helps to make a bridge between design and implementation.

Finally, to build such micro-architecture, the SpEArAF development method positions
the exploitation SpeAD into the general proposed methodology and provides guidelines to
incrementally and iteratively use it.

To better understand how all of this can be used in combination with existing MAS
development methods and how practically it is applied, next chapter presents an example of
a real MAS-based application for a research project with industrial partners. This application
ends with a quick discussion on the advantages of using our contribution, and a complete

88

3.5. Conclusion

analysis of the contribution is then presented Chapter 5. It is accompanied by a presentation
of academic and industrial works using our contribution and a positioning with respect to
other research works on MAS development.

Furthermore, Chapter 6 proposes a positioning of the contribution with respect to existing
works in the software architecture field.

Summary of the Contributions⊕
We propose a methodology of MAS development that allows to take into account all
the specific types of requirements that exist in MAS development.⊕
We propose the SpeAD (Species-based Architectural Design) component model that
enables to design and implement the micro-level architecture of a MAS.⊕
We propose the SpEArAF (Species to Engineer Architectures for Agent Frameworks)
method that instantiates the methodology using SpeAD.⊕
We present guidelines on how to reuse knowledge and experience using SpeAD.⊕
We present reusable components that are part of a component library.

89

CHAPTER 4
Application

En mai, fais ce qu’il te plaît.

Proverbe français

In this chapter, to illustrate the whole lifecycle of the development of a MAS, we now
apply SpEArAF with SpeAD after following a macro-level design method on an example.
This was completely applied in practice to implement this example using MAY (Make Agents

Yourself), the tool presented Appendix B that supports the SpeAD component model.
This example is taken from a real world application developed in our research team for

a research project with industrial partners named GAMBITS 1. The objective of this project
is to provide training to maritime surveillance operators. These operators use a software
system that assists them to supervise maritime zones and detect suspicious behaviours. In
order to train them to the software, the project exploits a serious game approach. A serious
game is “a mental contest, played with a computer in accordance with specific rules that uses
entertainment to further government or corporate training, education, health, public policy,
and strategic communication objectives” (Zyda 2005). In our case, the type of game used is a
tower defence game were the objective is to protect a zone from enemies by placing defence
towers on a map. For example, the enemies are the lawbreaker boats and the towers are static
radars, mobile radars or patrols.

The objective of our research team in the project is to provide an intelligent self-adaptive
MAS able to control the game in order to adapt at runtime its difficulty and behaviour to the
level of the operators in training. The idea is that such a game provides a lot of informations
on a running session, from which it is possible to infer the learning success of the player.
Based on that information and on domain-specific constraints elicited by the trainers, the
system must control continuously the parameters of the game so that the learning curve of
the player is progressive and that some wanted educational objectives are reached.

1. Game-Based Intelligent Strategies: http://www.gambits.fr/, financed by the French DGCIS (Direction
Générale de la Compétitivité, de l’Industrie et des Services).

91

http://www.gambits.fr/

4. Application

The MAS approach used to design this MAS is the AMAS (Adaptive Multi-Agent System)
approach and the ADELFE method. Here, we present the results of the diverse phases of theFor a pre-

sentation of
the AMAS
approach, see
p. 11

For a pre-
sentation of
the AMAS
approach, see
p. 11

For a pre-
sentation of
ADELFE, see
p. 50

For a pre-
sentation of
ADELFE, see
p. 50

development from the point of view of our methodology and not from the point of view of
the ADELFE method.

In few words, the main reason behind the choice of the AMAS approach to solve this
problem is (on top of the obvious fact that the approach is promoted by our research team)
that, as we are going to see, the problem is not precisely specifiable. Indeed, using an
approach that agentifies the domain entities of the problem is well adapted to the solving
of this kind of complex problem. We don’t discuss here the legitimacy of using such an
approach or method, as it is out of scope of this work, but the ADELFE method has a step
to check that point. During the presentation of the macro-level architectural view, we don’t
detail the rationale behind every design choices.

The presented MAS actually controls an open-source game that has the same characteris-
tics than the project game. Using a game that wasn’t the one the system was originally made
for actually adds a bit of stress on the development, which can only give more credit to the
reusability of the solution built with our development tools.

4.1 Context and Requirements

In the following, we call “system” the software to build, including the MAS, but also
anything needed to answer the requirements.

We divide the set of initial requirements expressed at the beginning of the developmentFor a defini-
tion of Initial
Requirements,
see p. 45

For a defini-
tion of Initial
Requirements,
see p. 45

in several categories: the environment of the system, the functional and non-functional
requirements pertaining to the system to build, the non-functional requirements pertaining to
the development and its organisation. On top of that, in each of these categories, we present
diverse constraints. At the same time, we introduce the vocabulary used in the domain by
emphasising it in italics.

4.1.1 Environment of the System

The system interacts with a game platform responsible of executing the game. For a given
session of training, the system controls, by communicating with the game platform, how the
session evolves, which are the objectives to attain, etc.

Such interactions between the system and the game platform must be done through the
network.

In the project, the game platform is divided in two parts: the game engine and the
behaviour of the entities of the game. In practice here, the game platform is a simpler tower
defence game in one block where the objective is to protect a zone from invasions of enemy
waves of different types by placing defence towers of different types on a map.

The system is controlled by the game trainer through a GUI. The system under development
is called the Virtual Game Designer (VGD) as its role is to assist the game trainer.

92

4.1. Context and Requirements

Game
Trainer

via Editor

Give
scenario

Visualise
scenario

Modify
scenario

Get
scenario

Player via
Game

Platform

Give
results

System

Visualise
player perf.

Figure 4.1: Use Cases for the VGD in UML

The player only interacts with the VGD through the use of the game platform. The VGD
thus does not have any information on the player other than his actions in the game visible
through the scenario accessed and updated by the game platform.

4.1.2 Functional and Non-Functional Requirements for the VGD

The VGD manipulates a scenario under the supervision of the game trainer in order to
maximise the educational objectives expressed by him.

The scenario is the set of informations needed by the game platform for a given session of
training. In other words, it is a big quantity of interdependent parameters that influence the
execution of a session. Depending on the design of the VGD, the scenario has to be modelled
in a specific way that we thus detail later.

In our case, parameters can be enemy strength, enemy types ratio, tower range, etc, and
objectives can be to get high scores, to survive a certain number of waves, etc. In any way,
the VGD controls the game platform by continuously updating the scenario and retrieving
informations on the player through it.

Use Cases. The most easier things to formally specify are the interactions of the system
with its environment, i.e. the game trainer through the interface of the VGD and the player
through the game platform. Figure 4.1 shows such use cases for the system. On top of that,
there is other functional and non-functional requirements for the system.

Functional. The VGD gives the possibility to the game trainer to modify the scenario,
including the educational objectives, through a GUI. It applies the modification of the game
parameters based on the scenario. It proposes modifications for the scenario in relation to the
observed behaviour of the player in order to maximise the expressed objectives.

93

4. Application

Non-Functional. The propositions of the VGD must be given in real time. The modification
of the parameters must be done in real time. The VGD must self-adapt its control to the
player’s behaviour.

Comments. As we can see, the requirements for the system itself are difficult to specify
precisely. Indeed, we don’t have any formal way of specifying what it means to maximise
the expressed objectives in another way than saying, for example, that the score goes up,
or what it means to adapt to the player in another way than saying, for example that the
parameters should be modified in order for the game to be easier and that the score goes up.
Such a specification is useless if we were to decompose the system in sub-parts following a
reductionist approach. Here, as we are going to see, the idea here is to model the problemFor a re-

minder on
reductionism,
see p. 10

For a re-
minder on
reductionism,
see p. 10

itself and let its various entities self-organise to find a good solution. This is actually one of
the reasons the AMAS approach is used to tackle such a problem.

4.1.3 Non-Functional Requirements for the Development

Even though the presented solution is using a simpler game than in the project, this
change happened only at the end of the development in order to have a working prototype.
Thus the development followed the organisation of the project that we now present with its
requirements and constraints.

The development team is organised in three groups. One of them focuses on the VGD,
with one developer, whose work we describe here. Another group is responsible for the
realism of the behaviour of the game platform (exploiting the parameters of the scenario) and
the last one is taking care of the game engine itself.

The main requirement for the development is about tuning: the developer needs to
visualise the internal execution of the VGD to support its tuning during the development.
Such visualisation must be removable when working with the other teams during integration.
As we are going to see, this manifests itself in a particular way when using MASs.

Other requirements actually appear later in the development. Indeed, the methodology of
MAS we propose relies on the fact that after the MAS design is done, it is needed to extract
new requirements from it in order to tackle implementation. They are thus detailed when
needed.

4.2 Macro-level Architectural Design

As we said, the approach chosen is the AMAS approach with the ADELFE method. In
this approach, the idea is to agentify the entities of the domain problem and give them the
behaviours that will drive them to collectively find a solution.

The first need is thus to extract the micro-requirements the approach answers, and then
precisely define the domain problem, which here is the scenario and its adaptation. Based on
that, the MAS design can be done.

94

4.2. Macro-level Architectural Design

4.2.1 Macro-Level Requirements Extraction

Some of the requirements presented Section 4.1 are directly be answered by the MAS
design: they form the set of the macro-level requirements. For a defini-

tion of Macro-
Level Require-
ments, see
p. 47

For a defini-
tion of Macro-
Level Require-
ments, see
p. 47

These requirements are:

– The functional requirements, except for the GUI interactions with the game trainer and
the scenario transmission to the game platform.

– The non-functional requirements, in particular those about adaptivity.

All the rest is not directly tackled by the MAS design except for the fact that the state
of the agents must be easily accessible for tuning: for example it means it is not possible to
distribute the agents on a lot of machines. Happily, this is not needed here, but this shows
the kind of implication some requirements can have on the design.

4.2.2 Problem Domain Model

A scenario is composed of parameters whose values exist inside a range specific to it. The
values of these parameters define how the session goes on. For example, some parameters for
the game platform can be the speed of the enemy entities and the defences efficiency.

On top of these low-level informations, the scenario is also composed of higher-level
informations that influence the orientations the scenario should take during the session. They
are used by the game trainer to define the objectives to attain and under which conditions.
The difference is made between the measured criteria, which represent information coming
from the game platform, and the criteria, which represent aggregations of the other domain
entities. The concept of criterion is not directly represented in the game platform itself but is
expressible using the low-level parameters and the other, possibly measured, criteria. For
example, a criterion for our game platform can be the ratio of a specific type of enemy entities.
The measured criteria are typically used to represent things like the score, i.e. the number of
killed entities per wave.

Then, some dependencies between parameters and between parameters and criteria are
used to express how their values should evolve during the scenario. They are expressed
through the use of a matrix that says in which direction (positive or negative) the evolution of
a parameter should influence another one. The actual strength of the influence is something
that can evolve at runtime and is controlled by the VGD. The dependencies are domain-
specific knowledge expressed by the game trainer. An example of dependencies is that the
score is inversely dependent to the speed of the enemy entities.

All these informations are provided by the expert. The system manipulates and controls
them to make the player reach the wanted objectives. Constraints can be expressed on each
criterion and parameter: they can for example be desired values, ranges, etc. Objectives are
constraints on criteria that can’t be directly controlled. They must be enforced by the system
and trigger its self-adaptation.

95

4. Application

:Game Trainer :System :Game Platform

Initial
Scenario Creation

turn 1

Scenario Transmission

turn n

...

f inal turn

(a) A session.

:System :Game Platform

Results

Scenario
Adjustment

:Game Trainer

New Scenario
Transmission

Modification

New Scenario

Turn
Execution

Opt

[manual mode]

(b) One turn.

:System :Game Platform

Results

:Game Trainer

Turn
Execution

End of the
Adjustement

Process

(c) The final turn.

Figure 4.2: Sequences diagram for the VGD and its environment interactions in UML

4.2.3 Temporal Interactions of the VGD with its Environment

Thus, during a session, for a given scenario:

– Some values are updated, based on:

– What changed in the game platform (parameters and measured criteria).

– Desires of the game trainer (constraints).

– The parameters values are read by the game platform.

On the side of the VGD, the different entities are encapsulated by the agents and live in
the same memory space and process than the MAS. They can thus be accessed directly by the
game trainer GUI. Differently, the interactions with the game platform should be decoupled
in order for the system to work through a network.

Figure 4.2 shows a specification of the interaction of the system with its environment.

4.2.4 Multi-Agent System

We now describe the macro-level architectural view, the result of the application of theFor a defini-
tion of Macro-
Level Architec-
tural View, see
p. 45

For a defini-
tion of Macro-
Level Architec-
tural View, see
p. 45

ADELFE approach. The solution is described in terms of its structure — types of agents,
environment and interaction means —, and in terms of the agents’ behaviour.

We actually present the behaviour of the entities first, as it is the way it is done in practice.
We don’t describe it in details since, except for what is needed to understand how the system
is working, as this does not influence so much the micro-architectural design.

96

4.2. Macro-level Architectural Design

The criteria, parameters and constraints are modelled as agents and interact to compute or
change their value with respect to the dependencies in order for the constraints to be enforced
as much as possible. Dependencies represent who knows who in the system: for each agent,
it is its neighbourhood. All the agent-entities have their value, either computed (parameters
and criteria), coming from the game platform (measured criteria) or coming from the game
trainer (constraints). They try to change it, either by influencing other agents that may have
an impact on them, or by directly changing them if they can.

As we said Chapter 1, in the AMAS approach, the engine of adaptation is the cooperative
behaviours of the agents. One way to represent that is by using the concept of criticality:
when agents have requests, they associate a criticality to them in order for the answering
entities to be able to know which is the more critical request to answer first. Of course the
difficulty is to find the best way to compute the criticality of a request. We don’t detail that
here.

In our case, constraints generate more or less critical requests by expressing that they are
not enough enforced and in which direction the other entities must change so they can. At
the same time dependencies are also followed in order to request change between parameters
and criteria, while propagating criticality. The most critical requests are answered in priority
until the system stabilizes. Since there are continuously new values for measured criteria, the
system continuously self-adapts and reorganizes to tend towards the adequate solution.

The ADELFE method organises the internal of the agents in several parts: the knowledge,
the skills and aptitudes, the nominal behaviour and the cooperative behaviour. Agents follow
an iterated perceive-decide-act lifecyle where the behaviours are executed in the decision
based on the knowledge and choosing actions to execute. Knowledge is manipulated by
perception and decision. Decision and action uses the skills and aptitudes.

Available action means are sending messages and changing own value. Available active
perception mean is observing other agents. Available passive perception means are receiving
messages and having own value externally changed.

Without entering into the details, the behaviour of the parameters, criteria and measured
criteria is to receive requests asking them to change their value, observing other agents
and choosing to change or not their values as well as request other agents to change their.
Concerning the constraints, they observe other agents and request for them to change their
values.

All of this is what is produced by the application of the AMAS approach and the ADELFE
method. They are some of the requirements needed to build the micro-architecture. These
micro-level requirements are those that are explicitly introduced by the design, but a lot For a def-

inition of
Micro-Level
Requirement,
see p. 47

For a def-
inition of
Micro-Level
Requirement,
see p. 47

of information is missing to be able to implement it: what is the exact semantics of the
interaction means, how are agents executed, in what order, when does update of values
happen, how information is accessed by the GUIs, etc.

97

4. Application

4.3 Micro-Level Requirements Extraction

We first present what are the assumptions made here, then the supplementary design
choices that must be taken to go towards implementation. All of these will form the set of
implicit micro-level requirements. By making them explicit now, we prevent ourselves to
discover them too late during implementation, and we can already see if there is things to
change in the macro-level design to be able to answer them.

4.3.1 Assumptions Made during the Design

To be executed, agents have to alternate between perception/decision and action repeat-
edly. Also, in order for the agents to know each other, it is necessary to give them the list of
their neighbours (inferred from the dependencies). This must be done at agent creation time,
and as we are going to see, depending on the way references of agents are implemented, this
can have impacts on the way this initialisation is done.

Furthermore, the agents need to interact, for that they use:

– Messages passing: asynchronous communication, uses references for agents, messages
are received in the mailbox of the agents that they can consult.

– Observation: synchronous interaction, uses references for agents, read access on the
values of the agents.

In both cases, the agents must know the other agents to interact with them.
Finally, depending on the type of agents, some are observable, some are not, some receive

messages, some only send them, etc. Precisely, parameters are observed and receive messages;
measured criteria are observed, send and receive messages; criteria are observed, observe,
send and receive messages; and constraints only send messages and observe. It could be
relevant to use all the mechanisms for the first three in case they become needed during
the evolution of design, but the constraints, because they do not have any value, cannot be
observed.

4.3.2 Supplementary Design Choices

On top of these assumptions made during design, other choices have to be made. Some of
them are actually linked to the initial requirements, while others are linked to the macro-level
design.

Scheduling. About the execution of the agents, the choice made is to schedule the agents
and the system in the following order in a loop:

1. All the agents execute one step of perception/decision.

2. All the agents execute one step of action.

3. Values are sent to the game platform.

4. Values are updated from the game platform.

98

4.4. Micro-Level Architectural Design

This is needed because the macro-level design relies on the fact that no action is applied
before every agent has taken a decision.

Game Trainer GUI. The GUI used by the game trainer to modify the system in real time
only interacts with the system to get and update values. The way the GUI manipulates the
values is directly through the references of the entities objects encapsulated by the agents
without any decoupling. This GUI is also responsible for triggering the sending of the new
scenario to the game platform.

Tuning GUI. In AMAS, the driver of the adaptation being the criticality, in term of tuning,
it is necessary to have an easy way of visualising the state of criticality of the agents and of
the system (which is the maximum of the criticality of every agents). This means that we
need a GUI that shows that information on top of the entities values. This GUI must be easily
removable from the system.

4.4 Micro-Level Architectural Design

Based on all these design choices and requirements, which form the set of micro-
requirements, we can now design the micro-architecture of the system. From this set, we For a defini-

tion of Micro-
Level Architec-
tural View, see
p. 47

For a defini-
tion of Micro-
Level Architec-
tural View, see
p. 47

extract precise specifications of the types of agents and their requirements for implementation.
In particular we categorise the requirements as business or operative. They will drive the

For a defini-
tion of Busi-
ness and Oper-
ative Require-
ments, see
p. 49

For a defini-
tion of Busi-
ness and Oper-
ative Require-
ments, see
p. 49

building of the partially abstract micro-architecture so that it is easily usable by the MAS
developer to work on his MAS design.

4.4.1 Operative Requirements

Different GUIs have to be integrated with the system: for tuning and for the game trainer
interactions. The first one has to be removable and needs access to internal values from
the agents, the second one only needs access to the domain entities that are shared and
encapsulated by the agents.

Interactions with the game platform must be doable through the network and should thus
be decoupled as much as possible from the system execution. They only concern the domain
entities encapsulated by the agents.

The system is synchronised; the agents’ execution and the updates of values are alterna-
tively executed by the platform:

– Update of values must be buffered before they can be sent to agents.

– Agents must be externally triggered by the platform.

– Their behaviour must be separated in two different steps.

The initialisation of the system must inject in the agents their list of neighbours.

99

4. Application

There are four different types of agents: parameters, criteria, measured criteria and
constraints. They all use either or both messages sending and observation as described
previously. They all are synchronised at the two different steps in the same way.

They are all operative requirements since their implementation is not of the concern of
the MAS developer.

4.4.2 Business Requirements

To implement his design, the MAS developer needs to describe the behaviours of the
agents. In our case, this is mostly about describing what to do when agents have to perceive
and decide, and what to do when agents have to act. The developer also wants to be able to
choose the implementation of the exchanged messages.

In the first phase, the developer wants to be able to access the mailbox as well as perceive
other agents using their references (independently of the implementation of such references).
In the second phase, he wants to be able to send requests and/or change their value.

This should be usable to implement directly his design without bothering about operative
details. He wants to exploit mechanisms to manage neighbours and manage the values.
Possibly he wants to implement the mechanism to construct new requests for all their
neighbours.

There is no business requirements for the runtime platform.

4.4.3 Incremental Design

We present now the resulting design in an incremental way using the SpEArAF method.For a presen-
tation of the
SpEArAF
method, see
p. 82

For a presen-
tation of the
SpEArAF
method, see
p. 82

We start from the species, we focus on the criteria agent type as it is the most complete one
and the constraint agent type as it is the most different from the other three.

4.4.3.1 Cycle 1, Species Phase

In this cycle, we focus on the constraint agent type. The chosen implementation for the
messages is Request provided by the developer, not detailed here, it contains informations
that requests between agents must contain. The agent references, for messaging as well as
observing (not visible in this cycle but that can be different than those for messaging), are not
chosen yet and stay abstract.

External Boundaries. The interaction means needed by the agents are message passing and
observation. We already know they should also provide two steps for execution. This is
represented by the required and provided ports of ConstraintAgentComponent Figure 4.3.

Internal Boundaries. The abstract components for the agents should permit to answer the
business requirements: implement the two steps of behaviour by exploiting the available
mechanisms. This is represented by ConstraintBehavior Figure 4.3.

100

4.4. Micro-Level Architectural Design

component Constra intBehavior {
requires c r i t i c a l i t y : Pul l [Double]
requires sendRequest : Push [Request]
requires whichWay : Pul l [VariationWay]
requires getObservedValue : Pul l [Double]

provides perceiveAndDecide : Do
provides a c t : Do

}

component ConstraintAgentComponent [MsgRef] {
provides perceiveAndDecide : Do = beh . perceiveAndDecide
provides a c t : Do = beh . a c t

requires getValue : Pul l [Double]
requires send : Send [Request , MsgRef]
requires die : Do

part beh : Constra intBehavior {
bind c r i t i c a l i t y to c r i t i c a l i t y M a n a g e r . c r i t i c i t y V a l u e
bind sendRequest to requestSender . sendRequests
bind whichWay to c r i t i c a l i t y M a n a g e r . wichWay
bind getObservedValue toThis getValue

}
part c r i t i c a l i t y M a n a g e r : C r i t i c a l i t y M a n a g e r {

bind value toThis getValue
}
part requestSender : RequestSender [MsgRef] {

bind neighboursInfo to neighboursMan . neighboursInfo
bind send toThis send

}
part neighboursMan : NeighboursManager

}

Figure 4.3: Micro-architecture, Cycle 1: Constraint Agents Internal Architecture

Internal Architecture. Figure 4.3 shows a choice of decomposition with the behaviour itself
separated from the management of neighbours, from the management of the criticality and
from the building and sending of requests. All the components not prefixed by Constraint
are actually used in other species internal architectures.

4.4.3.2 Cycle 1, Ecosystem Phase

Figure 4.4 presents the result of this step that we now comment.
For each of the types of agents a species is defined.

Interactions. To implement their interaction means, we choose to use the components
available in the library, they are both described Chapter 3, Section 3.3.2:

– AsyncReceiver that implements asynchronous messages reception: it proposes a species
that puts messages in a mailbox accessible to the agent.

– ValuePublisher that implements direct synchronous concurrent access to a value man-
aged by an agent: it proposes a species PublisherPull that delegates the management
of the data to the internal architecture of the agent.

101

4. Application

To work, they must be coupled with a mechanism to manage agent references and to
use them. As presented Chapter 3, there exist two of such mechanisms: MapReferences and
DirectReferences. The first one is easier to use because the references do not need to be
created before being used as they are strings, while the second is more efficient as it uses
direct references, but must be created before being used. For various reasons, the choices are
to use named references with string (corresponding to the entities names in the scenario) for
observation and direct references for messaging.

These mechanisms enable to receive messages and be observed. In order to send messages
and to observe, the complementary mechanisms are available from the previously presented
components at the ecosystem level. We choose to use the Forward component to give access
to them to the agents.

Scheduling. For the execution, there exists an interconnection mechanism in the library to
give control of the agent execution to the platform named Scheduled. We use one instance of
it respectively for the perceive/decide phase and for the act phase. Since they are used by all
the species, we factorise them together in an ecosystem shown Figure 4.6. While we are on the
design of the execution aspect of the system, we use the component Clock to synchronise the
system. We introduce the component AgentSequencer to decompose one cycle of the system
in two steps. We use the component ExecutorService to execute these in a thread pool; and
finally we introduce the component ClockController presented Figure 4.5. This last one
answers the requirement of removable GUI by providing two different implementations, one
without GUI and one reusing the library component SchedulingControllerGUI providing a
GUI. The species Agent of the ecosystem Scheduling encapsulates all of that.

Scenario Management. For creating agents from a scenario, we introduce the interconnec-
tion mechanisms ScenarioManager shown Figure 4.7 that itself introduces the need for ports
to create new agents in the ecosystem and to add neighbours to agents. It encapsulates
the logic of creation of agents: in particular it needs to have access to the agents references
(through the port me for example) in order to get and give them to the agent they must know.
In practice, the implementation of the loadScenario port creates every agent of the scenario,
while their direct references are stored upon creation, then, when all agents are created, the
needed references are injected in each agent using their species port addNeighbour.

On top of that, it provides ports to update agents values.

Tuning GUI. We introduce an interconnection mechanisms named TuningGUI responsible
of encapsulating everything linked to this concern in order to make it easily removable. It is
included as a part named gui in ScenarioManager, shown Figure 4.7, since its concerns are
linked to those of the scenario. The species is responsible of receiving debugging information
from the agents, showing it in the GUI, and the ecosystem is responsible of aggregating it.
The species can be added only to the species we want to visualise, in this case, the species
Constraint of ScenarioManager.

102

4.4. Micro-Level Architectural Design

ecosystem Proto {
provides agentFactory : AgentFactory

part mrVP : MapReferences [Pul l [VariableValue] , S t r i n g]
part vp : ValuePublisher [VariableValue , S t r i n g] {

bind c a l l to mrVP . c a l l
}
part vr : meta . Forward [Rel iableObserve [VariableValue , S t r i n g]] {

bind i to vp . observe
}
part drR : Dir ec tR efer ence s [Push [Request]]
part r e c e i v e : AsyncReceiver [Request , DirRef] {

bind c a l l to drR . c a l l
}
part sender : meta . Forward [Send [Request , DirRef]] {

bind i to r e c e i v e . deposi t
}
part sched : Scheduling
part s c e n a r i o : ScenarioManager [DirRef] {

bind agentFactory toThis agentFactory
}

species Cri ter iaAgent (e l : I C r i t e r i a , name : S t r i n g) {
provides stop : Do

part arch : CriteriaAgentComponent [DirRef , S t r i n g] {
bind send to sender . a
bind me to drR .me
bind die toThis stop
bind getValueOf to vr . a
bind incoming to r e c e i v e . g e t A l l

}
use sched : sched . Agent {

bind a c t to arch . a c t
bind pAd to arch . perceiveAndDecide

}
use drR : drR . Cal lee (name) {

bind t o C a l l to r e c e i v e . t o C a l l
}
use r e c e i v e : r e c e i v e . ReceiverBuf
use sender : sender . Agent
use mrVP : mrVP . Cal lee (name) {

bind t o C a l l to vp . t o C a l l
}
use vp : vp . P u b l i s h e r P u l l {

bind getValue to ???
}
use vr : vr . Agent
use s c e n a r i o : s c e n a r i o . C r i t e r i a (e l) {

bind addNeighbour to ???
bind me to drR .me

}
}
species ConstraintAgent (e l : IScenarioElement , name : S t r i n g) {

part arch : ConstraintAgentComponent [DirRef] {
bind send to sender . a
bind die to sched . stop
bind getValue to valueObserver . getValue

}
part valueObserver : Speci f icValueObserver [S t r i n g] {

bind getValueOf to vr . a
}
use sched : sched . Agent {

bind a c t to arch . a c t
bind pAd to arch . perceiveAndDecide

}
use s c e n a r i o : s c e n a r i o . Constra int (e l) {

bind addNeighbour to arch . addNeighbour
}
use sender : sender . Agent
use vr : vr . Agent

}
}

Figure 4.4: Micro-architecture, Cycle 1: MAS Ecosystem

103

4. Application

component ClockContro l ler {
requires c o n t r o l : i n t e r f a c e s . SchedulingControl
provides startRunning : Do
provides stopRunning : Do

}

component Graphica lClockContro l ler s p e c i a l i z e s ClockContro l ler {
part gui : SchedulingControllerGUI {

bind c o n t r o l toThis c o n t r o l
}

}

Figure 4.5: Clock component and its specialisation in SpeADL

ecosystem Scheduling {
species Agent {

provides stop : Do

requires pAd : Do
requires a c t : Do

use scheduledPAndD : scheduledPAndD . Agent {
bind c y c l e toThis pAd

}
use scheduledAct : scheduledAct . Agent {

bind c y c l e toThis a c t
}

}

provides stop : Do = executor . stop
provides s tar tAgents : Do = c l o c k C o n t r o l l e r . startRunning

part scheduledAct : Scheduled {
bind sched to executor . exec

}
part scheduledPAndD : Scheduled {

bind sched to executor . exec
}

part executor : ExecutorServ ice
part sequencer : proto . AgentSequencer {

bind t ickPerceiveAndDecide to scheduledPAndD . t i c k
bind t i c k A c t to scheduledAct . t i c k

}
part c lock : Clock {

bind sched to executor . exec
bind t i c k to sequencer . g loba lT ick

}
part c l o c k C o n t r o l l e r : ClockContro l ler {

bind c o n t r o l to c lock . c o n t r o l
}

}

Figure 4.6: Micro-architecture, Cycle 1: Common Scheduling Ecosystem

104

4.4. Micro-Level Architectural Design

ecosystem ScenarioManager [MsgRef] {

part gui : TuningGUI

species C r i t e r i a (e l : I C r i t e r i a) {
requires addNeighbour : Push [AgentNeighbourInformation]
requires me: Pul l [MsgRef]

}

species Constra int (e l : IScenarioElement) {

use gui : gui . Agent (e l)
provides l o g A c t i v i t y : Push [AgentLog] = gui . l o g A c t i v i t y

requires addNeighbour : Push [AgentNeighbourInformation]
}

provides updateMeasuredCriteria : Push [IMeasuredCri ter ia]
provides updateParameter : Push [IParameter]
provides loadScenar io : Push [I S c e n a r i o]

requires agentFactory : AgentFactory
}

Figure 4.7: Micro-architecture, Step 1, Ecosystem Cycle: Scenario Manager Ecosystem

This component needs that the values to visualise are pushed by the agent itself, a required
port in their internal architecture should thus be added in a following step.

New Requirements. In the end, we notice that the description that new requirements
towards the internal architecture of the species were introduced. First in the form of required
ports by vp.PublisherPull, scenario.Criteria and scenario.Constraint. But also in the
form of the provided port logActivity for scenario.Constraint that should be exploited
by the internal architecture of the species. Interestingly, new requirements in the micro-level
architecture are not only materialised as required ports, but also as provided ports.

4.4.3.3 Cycle 2, Species Phase

The second step is to refine the internal architecture of the species to add the needed
port from the previous cycle. On top of that, we add a required port for the behaviour
and the internal architecture of the species named logActivity that must be bound in the
following ecosystem cycle to TuningGUI through ScenarioManager. Since the tuning GUI can
be activated for any species, this required port should be added to all of them.

4.4.3.4 Cycle 2, Species Phase

As an answer to the previously added requirement ports, for the species ConstraintAgent,
we bind it to the port provided by the use scenario. Inversely, for the species CriteriaAgent
where we didn’t add the TuningGUI species, it is needed to add something that provides
a fake port that does nothing when called. We choose to take care of that directly in

105

4. Application

ecosystem ScenarioManager {

/ / . . .

species C r i t e r i a (e l : I C r i t e r i a) {
part voidp : meta . Void [Push [AgentLog]]
provides l o g A c t i v i t y : Push [AgentLog] = voidp . port

requires addNeighbour : Push [AgentNeighbourInformation]
requires me: Pul l [MsgRef]

}

/ / . . .
}

Figure 4.8: Micro-architecture, Cycle 2: Scenario Manager Ecosystem

ScenarioManager. It takes the form of a component such as Void that have a generic port
doing exactly that. Figure 4.8 shows the new species.

To complete the ecosystem, the game trainer GUI must be added as well as a component
to communicate with the game platform. In particular, they would exploit ports provided by
the component ScenarioManager to get and update the values of the agents.

As advised in the previous chapter, it is better to keep these concerns outside of the MAS
ecosystem and uses MAS-agnostic ports and interfaces to manipulate entities of the scenario
without knowing that they are agents. Such ports should be added at that point of the design,
possibly introducing new requirements for the ecosystem.

4.4.4 Complete Design and Implementation

From this design, the implementation should be as straightforward as possible. Obviously,
in practice, roundtrips between implementation and micro-level architectural design were
done to get the solution presented here. In particular, this was useful to find out which was
the best decomposition in components and which were the exact requirements of each of the
components.

The complete architectural description and implementation is available as an example on
the website of the MAY tool.

4.5 Conclusion

In theory, once the proposed design is finished, the MAS developer can focus on imple-
menting the behaviours of his agents. In practice, the whole design was done by the same
developer. But an effort was done to actually explicitly differentiate business and operative
elements of the architecture, mainly because operative components were already available
from the library, but also as a way to make the business part of the implementation as close
as possible to the MAS design.

106

4.5. Conclusion

Several conclusions can be extracted from this example, in particular with respect to what
would have had happened if the contribution wasn’t used:

1. If SpeAD had not been used, then it would have been much more difficult to keep the
mapping between the macro-level design and the micro-level design, in particular for
types of agents. Furthermore, in order to reuse interaction means, most certainly an ex-
isting development support would have been used. In particular its integration with the
domain-specific logic for initialising the MAS and its agent realised by ScenarioManager
would have been much more difficult in our opinion. Then, the composition of the
two means for interaction is most certainly not provided by any existing development
support for MAS, and thus two solutions would have had been possible:

a) Compose two development supports, which wouldn’t have been too much complex,
but still not straightforward.

b) Only use messages, which would most certainly, from our observations of current
practices, what would have been done.

Finally, the specific way the system is scheduled would have had to be either imple-
mented by triggering agents using messages, as we already witnessed in the past, or
by manipulating directly the objects implementing the agents from the code of the
platform. The latter case would have introduced a lot of implicit synchronisation logic
at different places.

2. If the general methodology of MAS development that we propose had not been applied,
we think, as we often witnessed in practice and from what we assumed from the
works we read in the field, that the implementation would have started just before
micro-level requirements extraction presented Section 4.3. Moreover, because macro-
level requirements would not have had been clearly identified, it would have been
more difficult to identify which were the requirements that needed to be tackled after
the MAS design. Thus, as we saw, what was uncovered in these sections have been
useful to explicit assumptions that were made on the MAS design itself and thus to
ease the implementation. This also makes the whole design much more readable and
analysable, and most certainly, evolutions of the MAS design are easier to apply to the
implementation.

This concludes the example of application of the approach, the next chapter draws more
general conclusions on the contribution.

Summary of the Contributions⊕
We propose a complete application of the methodology of MAS development using
SpeAD and SpEArAF.⊕
We exploit the reusable components of the library.⊕
We propose a short analysis of the advantages of using our contribution.

107

CHAPTER 5
Positioning, Analysis and

Experimental Feedbacks

In this chapter, we present an analysis of the contribution presented Chapter 3 and Chap-
ter 4. We position the whole contribution and the example with respect to the classification
of the works presented Chapter 2. Then, we present how the contribution and in particular
the proposed component model answers the challenges identified Chapter 2. This analysis
is discussed to extract the motivations and advantages of using our component model. Fi-
nally, we present academic and industrial works that used our contribution and detail some
experimental feedbacks from our users.

5.1 Positioning the Contribution

Chapter 2, we presented a classification that presented six classes of research works about For a detailed
presentation
of the Classi-
fication, see
p. 37

For a detailed
presentation
of the Classi-
fication, see
p. 37

MAS development. On the other hand, our contribution is decomposable in elements, each
potentially positionable in the classification. To that, we add the example as well as the
method used for its development. This gives us the following set of elements to position:

– The architecture-centric methodology, Section 3.1

– The SpeAD component model, Section 3.2

– The guidelines for capturing and reusing experiences, Section 3.3.1

– The library of components produced with SpeAD, Section 3.3.2

– The SpEArAF design method, Section 3.4

– The ADELFE method and the AMAS approach, Section 1.3.3

– The macro-level design of the VGD, Section 4.2

– The micro-level design of the VGD, Section 4.4

– The implementation of the VGD, Section 4.4.4

109

5. Positioning, Analysis and Experimental Feedbacks

Table 5.1: Contributions positioned in the proposed classification

Base Meta

Macro-level Macro-level design of MASs applications

VGD macro-level design

Methods, approaches, models and tools
to support macro-level design

ADELFE
AMAS

Micro-level Micro-level design, including in particular
development supports for implementation of MAS

Library of components
VGD micro-level design

Methods, approaches, models and tools
to support micro-level design

SpeAD
Reuse guidelines
SpEArAF

Implementation Implementation of macro-level design
using the micro-level design

VGD implementation

Methods, approaches, models and tools
to support this implementation

Table 5.1 summarizes the different classes of research works and shows the result of this
positioning. Obviously, the methodology doesn’t fit into the classification since the latter is
extracted from the vision expressed by the methodology.

5.2 Analysis

The proposed methodology answers directly the specificities of MAS development we
identified Chapter 2. But it is necessary to question the SpeAD component model, because
it is far enough from the challenges we identified. We thus present here an analysis of the
different aspects of the component model in order to justify its relevance. We illustrate it
using the example developed Chapter 4. We don’t evaluate the method itself as it relies
entirely on the component model concerning the identified challenges.

We recall the identified architectural and implementation challenges:

– Define and implement interconnection mechanisms for connecting agents to the runtime
platform and vice-versa.

– Define and implement types of agents with specific internal architecture and intercon-
nected to the runtime platform.

– Provide dynamic creation of instance of these types of agents and their dynamic
connection and initialisation.

– Make the reuse of such interconnection mechanisms and architectures easy.

Following the characterisation of architectural components presented by Bachmann et al.For a defini-
tion of Archi-
tectural Com-
ponent, see
p. 6

For a defini-
tion of Archi-
tectural Com-
ponent, see
p. 6

2000, we look at two aspects of the abstractions introduced in SpeAD: architectural and
implementation. The former is meant to see the species and ecosystem as a design abstraction
for answering architectural objectives and describing the architecture. The latter is meant to

110

5.2. Analysis

see the species and ecosystem as means of implementing component-based architectures with
respect to their role as architectural abstractions.

For both of these aspects, we look at two points of view: agents and interconnection. The
first one is about answering the need to realise types of agents, while the second one is about
answering the need to realise interaction and interconnection mechanisms. This gives us
the possibility to differentiate between a species in an ecosystem as a type of agents, and a
species in a ecosystem as an architectural element located inside agents.

We focus on the MAS aspect of the solution and do not comment the possible advantage
of the model for component-oriented programming.

5.2.1 Architectural Abstraction

From the agent point of view, species are first and foremost a way to explicit the types
of agents at the architectural level. Indeed, in MASs, it is obvious that having agents is an
important design choice and thus should be made explicit in the software architecture of the
built system. They explicit the existence of dynamically created entities that interact together
using specific interaction means. Furthermore, by doing so, the species drives the definition
of the rest of the architecture, i.e. the ecosystem and the species internal architectures. It
also helps to identify what must be in the agents or outside of them, what is going to be
duplicated in every agent and what is centralised in the runtime platform.

From the interconnection point of view, obviously, species play the same role of making
explicit the use of specific interaction mechanisms and the existence of needed links between
the agents and the runtime platform. In a way, such explicitly specified interconnection
mechanisms are a guarantee of the autonomy of the agents, which is an important feature of
the MASs and often forgotten point during implementation. Indeed, when implementing
MASs, it is easy to introduce runtime dependencies between what is inside the agents and
what is in the platform: for example environment entities directly manipulating data in the
agents, which could breaks the assumption made at design. Thus, by having species use
species of their ecosystem parts, the places were the autonomy of the agents is threatened are
clearly identified. The TuningGUI in the previous chapter is a good example of this: without
such abstraction, the answer to this requirement would have most certainly be hidden in
the implementation of the system. This is particularly important also when implementing
prototypes Furthermore, this abstraction enables to clearly identify reusable and composable
components realising recurring interconnection mechanisms. The examples of interconnection
mechanisms in the previous chapter are self-explaining.

Finally, the composition of these interconnection mechanisms in species to represent types
of agents act as a way to encapsulate the definition of a type of agents behind a clearly
defined interface. Indeed, everything not explicitly needed outside of the description of a
type of agents does not have to filtrate out, and in particular not to the components that
wants to create new instances of agents. A good example of this is the status of the reference
of agents, which are used internally in the species as well as in the used species, but not
needed to create an agent. In particular, this separate the concern of creating an agent and

111

5. Positioning, Analysis and Experimental Feedbacks

implementing this creation. Indeed, they do not have to know how the agents that are created
are linked to the ecosystem and what is their internal architecture.

5.2.2 Implementation Abstraction

From the interconnection point of view, the species is a way to implement, either directly
or by composition of other species, a 1 − N link. It contains an implementation for the unique
part, for the duplicated part, and more importantly for the initialisation of the latter. Indeed,
by encapsulating the initialisation of new elements meant to exist in agents, it abstract over
the dynamic creation of these elements. Using the ports, it gives the possibility to explicit
the needed mechanisms to work with the other dynamically created elements of the species
architecture. For example, the references mechanism composed with the messages receiving
mechanism let the definition of the internal architecture be independent of the way these
mechanisms are realised. In a way, it is a mean to implement the functionality required
by the internal architecture of agents by abstracting over their multiplicity. It is a way to
implement individual-centric mechanisms so that the user does not bother with questions
about dynamicity or multiplicity. Again, TuningGUI is a good example of that.

From the agent point of view, the species allows to compose interconnection mechanisms.
Describing which ones are used and how they are connected is enough to have a working
implementation for the species. Moreover, it abstracts over the dynamic creation of instances
of the species as well as the creation of all of the species used. Furthermore, such composition
of interconnection mechanisms enables to easily add or remove elements from the species
without changing the rest of the system. This is well illustrated by the TuningGUI which is
easily removable.

In other words, what our model introduces are abstractions that are a way of realising
a kind of recurring pattern that answers the recurring problem of dynamically creating
and connecting entities to a platform. This is particularly interesting in the case of agents
creating other agents. Because the agent construction mechanisms is taken care in each of
the interconnection mechanisms, composed together in an ecosystem through the definition
of a species and hidden behind a port definition, there is then no need to manage the fact
that the creating entity is itself an agent that was created dynamically. Implementing such
things using for example object-oriented abstractions is difficult because the links between
the created entity and the platform would have had to be handled by the creating entity.

5.2.3 Why and When to Use SpeAD

Thereby, ecosystem and species are seen as abstractions that are useful, in the context of
MASs, for expliciting architectural choices, enforcing them and implementing them. Even
though this is of first importance for developing software in a realistic way, this does not
completely justify the use of the specific component model proposed here for any kind of
applications.

112

5.3. Experimental Applications and Users Feedbacks

Indeed, to build MASs, a lot of existing development supports provide means to connect
agents together using a diversity of interconnection mechanisms. The precepts presented in
this thesis could be applied with these without reinventing these very common interconnection
mechanisms as we did in the previous chapters. This also questions the interest of building a
complete platform for every application. For a def-

inition of
Agent-Based
Modelling, see
p. 12

For a def-
inition of
Agent-Based
Modelling, see
p. 12

But as we showed in the state of the art and with the example, there is sometimes the need
for building such interconnection mechanisms adapted to the MAS design. The TuningGUI,
that we used a lot as an example in the previous section, is a good motivation: it shows a
development-specific requirements answered easily thanks to the abstractions. This point
also manifests itself in ABM (Agent-Based Modelling), which is one of the type of MASs we
are particularly interested in. Indeed, for this class of application, the MAS design is strongly
influenced by the domain model.

In all these situations, our model provides what is needed to build such adapted inter-
connection mechanisms. But even more importantly, it makes possible to compose them in a
coherent and adapted way, while at the same time making such mechanisms reusable. From
our point of view, this last point is maybe the most challenging technical objective that the
model answers.

Thus, coupled with the need for following software architecture principles, all of this
justify the need for starting back from a cleaner and clearer development model for MAS
engineering.

5.3 Experimental Applications and Users Feedbacks

We now present the different academic and industrial works that used our tools and
approaches, and present some feedbacks we got.

Our contribution was mainly applied internally in the SMAC research team, but also in
the UPETEC start-up company. For a pre-

sentation of
SMAC and
UPETEC, see
p. xxii

For a pre-
sentation of
SMAC and
UPETEC, see
p. xxii

As it was said in the introduction, our contribution has been been published in two
versions before we ended up with the contribution in this thesis. For each of these, we
released tools, mainly focused on component-based engineering for agents and MASs. These
tools promoted the use of the methodological concerns we expressed in this thesis.

The first version of the contribution (Noël, Arcangeli, and Gleizes 2010a; Noël, Arcangeli,
and Gleizes 2010b) is mainly focused on the methodological separation between macro-
architectural design and micro-architectural design with a tool that supported the definition
of component-based internal agent architectures. The tool was used in several works and
projects with industrial partners such as:

– Biological simulation (Bonjean, Bernon, and Glize 2009).

– Dynamic ontology construction (Sellami and Camps 2012) in the context of the national
DYNAMO 1 project.

1. DYNAMic Ontology for information retrieval: http://www.irit.fr/dynamo/

113

http://www.irit.fr/dynamo/

5. Positioning, Analysis and Experimental Feedbacks

– Naval surveillance (Georgé et al. 2009) in the context of the national SISMARIS 2 project.

– Self-organising team of robots self-allocating tasks (Lacouture, Noël, et al. 2011) in the
context of the regional ROSACE 3 project.

– Distributed constraint optimization (Kaddoum 2011).

– Cabling optimisation for planes in the context of the regional SMART 4 project.

Then, the second version of the contribution (Noël and Arcangeli 2011; Noël, Arcangeli,
and Gleizes 2012) introduced the species and ecosystem components abstractions. It is very
close to what is presented here and is fully compatible with it. This version of the contribution
is broadly and currently used: the tool implementing it is the current main and most stable
version of it. In particular, it was used:

– In the context of research projects with industrial partners such as the ID4CS 5, GAM-
BITS 6, ORIANNE 7.

– By Ph.D. students of the team in applications such as dynamic management of context
in ambient systems (Guivarch, Camps, and Péninou 2012), self-composed method
fragments (Bonjean et al. 2012), adaptive combustion motor calibration, adaptive energy
regulation, multi-disciplinary constraint optimization, etc.

– By a Master student during its internship that resulted in the system for opportunistic
self-composition of ambient components (Denis et al. 2012) presented Chapter 7.

– To introduce component-based programming to Master students.

– In the context of a Master student project for university schedule timetabling using
MASs.

Moreover our methodology of MAS development was used to organise the development of
the system for dynamic workflow adaptation (Cruz Torres et al. 2010b; Cruz Torres et al.
2010a) presented Chapter 7.

It would have been interesting to do an evaluation, with our users, of the proposed
contribution, of its implementation itself and of the systems that were produced using it.
Unfortunately, this has not been possible, but

The general feedback is positive, once a time of learning has passed. Indeed, they
all are discovering software architectures as a design approach and component-oriented
programming as an implementation approach.

The main advantages expressed by the users are about reuse and maintenance. The library
of components along with the help of people (including us) familiar with the approach are

2. Système d’Information et de Surveillance MARitime pour l’Identification des comportements Suspect:
http://www.sismaris.org/

3. RObots et Systèmes Auto-adaptatifs Communicants Embarqués: http://www.irit.fr/Rosace,737
4. SMart-hARness Technologies: http://www.irit.fr/SMART,1178
5. Integrative Design for Complex Systems: http://www.irit.fr/id4cs/
6. GAMe-Based IntelligenT Strategie: http://www.gambits.fr/
7. Outil numéRIque pour le mAquettage de foNctions de coNtrôle motEur: http://www.irit.fr/ORIANNE,

1176

114

http://www.sismaris.org/
http://www.irit.fr/Rosace,737
http://www.irit.fr/SMART,1178
http://www.irit.fr/id4cs/
http://www.gambits.fr/
http://www.irit.fr/ORIANNE,1176
http://www.irit.fr/ORIANNE,1176

5.4. Conclusion

very useful in starting a new application. Once people have a working base, they become
more independent and build their software on top of it. For example, we got a feedback of
someone happy to be able to easily change the way their system was scheduled with as little
actions as possible. Or another told us they built their own set of reusable components for
rapid prototyping and debugging.

Concerning teaching, the tool was well accepted in the classroom and proved to be robust
enough to pass the “student crashtest”.

5.4 Conclusion

We presented a positioning of the contribution with respect to other works for MAS
development. We draw an analysis from which we drew a conclusion on the advantages of
using our component model. We presented the academic and industrial works that applied
our approaches and used our tools.

From all of that we concluded that what we propose in this first part of the thesis is useful
to MAS development and positively accepted by people that actually design and implement
MASs. We are confident, from the feedbacks we got from them, that the tools we gave them
helped them in producing better software.

As a conclusion, we also have the feeling, through our observations, that applying the
methodological aspects of our approach helps the design of MASs itself. Indeed, by applying
such software architecture principles to the development of a MAS-based application, it
clarifies what is the MAS really answering and what relations it has to the rest of the software
being built. Even if it is most certainly too soon to conclude that, in our opinion, all of this
is particularly useful when presenting results to other researchers that are familiar with the
work we do in the team.

We also take this opportunity to raise the attention on research works published lately
in notorious interdisciplinary journal (Ince, Hatton, and Graham-Cumming 2012; Morin
et al. 2012). They argue that systematically making the implementation freely available with
research papers would be beneficial to the research community. We think that our contribution
goes towards such objective for the following reasons:

– It makes the design and the implementation of MASs much more accessible to external
observers by emphasising on architectural documentation.

– It proposes a frame to which the diverse people can refer to when talking about MASs
as a software.

– It makes reuse and sharing in the community easier.

Summary of the Contributions
⊕

We position the contribution as well as the produced software artefacts in the classifica-
tion presented Chapter 2.

115

5. Positioning, Analysis and Experimental Feedbacks

⊕
We analyse the contribution with respect to the architectural and implementation chal-
lenges identified Chapter 2 using a recognized frame of characterisation for architectural
components.⊕
We show that the contribution was used in many different works and that we got
positive feedbacks about it.

116

Part II

I N T E G R AT I N G M U LT I - A G E N T S Y S T E M S A N D S O F T WA R E
A R C H I T E C T U R E S

CHAPTER 6
MASs and CBSAs Side by Side:

Component-based Component
Containers

More is not better (or worse)
than less, just different.

The paradigm paradox
Peter Van Roy (2004)

In this chapter, we look back at the proposed approach of producing dedicated develop-
ment support and at the SpeAD component model from the point of view of the software
architecture field. Indeed, even though the contribution of this thesis is inspired by many
works from a diversity of fields, its main innovations are at first only meant to answer the
challenges identified Chapter 2. The contribution of the first part of this thesis — namely
the definition of partially abstract component-based architectures to produce development
supports dedicated to applications and the definition of explicit dynamically created entities
connected to a runtime platform — can thus now be positioned with respect to existing works
to see in which points they are alike or different.

All of this brings us to reinterpret the contribution with respect to component models
and containers, and all the works evolving around Component-Based Software Architectures
(CBSAs). In particular we:

– revisit MASs design approaches as a family of architectural styles and design paradigms.

– reconsider MASs as components in CBSAs.

Based on that we show how SpeAD helps to achieve horizontal integration between MASs
and components-based architectures and gives the possibility to software system designers to
choose and combine relevant design approaches when building applications.

119

6. MASs and CBSAs Side by Side: Component-based Component Containers

Secondarily to that, in order to reach this conclusion, we explore the relations that exist
between frameworks, components models, component containers, architectural patterns,
architectural styles, architectures and components. This brings us to propose a way of
defining and using dedicated component containers that can be implemented using SpeAD.

The content of this chapter is exploratory and mostly exists to draw some, in our opinion
interesting, axis of research on the general matter of design and implementation of devel-
opment supports for the component-oriented development field. Although, some of the
works tackling such questions in that field try to get as formal as possible, here we only
are manipulating abstract, and thus sometimes imprecise, concepts in order to reinterpret
concepts from the MAS field in the broader context of software architectures.

In a way the present chapter has a focus on the relations between architectural concepts
and MASs, but considering the latter at design, while next chapter considers MASs at runtime.

6.1 Related Works in the Software Architecture Field

6.1.1 Reusing High-Level Design

In this section, we first compare our work to Software Product Lines and then to object-
oriented frameworks. We actually don’t rely on the ecosystem and species abstractions,
but only on the idea of producing partially abstract architectures with component-oriented
abstractions.

6.1.1.1 Software Product Line

One of the objectives of the contribution presented Part I is to reuse experience along
different domains, applications, problems, etc, of MASs. In this sense, our work comes
within the scope of Software Product Lines (SPLs) and ultimately could result in easing theFor a re-

minder on
Software Prod-
uct Lines, see
p. 8

For a re-
minder on
Software Prod-
uct Lines, see
p. 8

development of SPLs for MASs.
Nevertheless, while SPLs propose to define reusable architectures from which dedicated

architectures are built, our current contribution only focuses on the reuse of components to
build dedicated architectures. From this point of view, the experience reused is only at the
level of components and not architectures.

On the other hand, as we noted Chapter 3, it is possible to reuse design using templates.For a pre-
sentation of
Template, see
p. 69

For a pre-
sentation of
Template, see
p. 69

However, this approach has some shortcomings, which are mostly concerned with the SpeAD
component model. Indeed, in its current state, it is not possible to specialise ecosystems nor
species. This thus means that the model is not able to represent reusable ecosystem with
abstract components in the species.

For example, if building a MAS development support where the agents behaviours are left
open, this would be represented with an ecosystem where the behaviours of the species are
abstract components and where the implementation makes concrete all the other components
of the ecosystem and the species. But it is not possible to use such an ecosystem and its
implementation directly with concrete behaviours for the agents without modifying either

120

6.1. Related Works in the Software Architecture Field

Table 6.1: Mapping between frameworks and partially abstract architectures concepts

Frameworks Concepts Partially Abstract Architecture Concepts

Framework Composite component with a partial implementation
Hotspot Abstract component (without implementation)
Frozenspot Concrete component (with an implementation)
Hotspot Contracts Provided ports and interfaces definitions
Hotspot Programming Abstractions Required ports and interfaces definitions

its description or its implementation. A wanted feature would be to be able to specialise the
reusable ecosystem without modifying it and to be able to specialise its species in order to
specify their behaviours.

6.1.1.2 Object-Oriented Frameworks

On a different note, but still in the domain of reusing experience, code and design, frame-
works are known to be a way of implementing reference architectures for SPL (Greenfield
and Short 2003). Frameworks, as presented by Markiewicz and Lucena (2001) or Johnson
(1997), are partially implemented object-oriented application that can be reused to create
full-fledged applications: they are application “generators”. They are also considered as
in-between code and design: high-level design can be reused along with code. They have
hotspots and frozenspots: the former are the places where application-specific code goes,
while the latter are generic parts already implemented by the framework. Implementing
the hotspots implies respecting the contracts the framework imposes on them, but in return
allows to exploit programming abstractions the framework provides.

Frameworks have always been promoted as a way to reuse code using object-oriented
abstractions. In a similar way, as highlighted in the previous section, Chapter 3 explains how
partially abstract architectures can be modelled using templates: components left abstract in
a composition of components.

We thus think that partially abstract architectures are a way to model component-based
frameworks where abstract components represent the concepts of hotspots and their con-
straints. And thus, SpeAD is usable to describe and implement such component-based
frameworks.

Table 6.1 shows the mapping between the concepts of the two. In order to implement an
hotspot, one must implement its corresponding component provided ports. The framework
gives access to its functionalities through programming abstractions that are represented
by the required ports of the abstract component. And the concrete components are the
frozenspots of the framework.

Even though we don’t study in detail this way of defining and building frameworks, we
think that it is interesting enough to be highlighted and commented. Our opinion on the
matter is that such an approach eases the description and the exploitation of frameworks

121

6. MASs and CBSAs Side by Side: Component-based Component Containers

because:

– It uses explicit provided interfaces to define the hotspots.

– It uses explicit required interfaces to define the programming abstractions usable to
program the hotpots.

– It takes the advantages of component-oriented abstractions for reuse and separation of
concerns to build frameworks.

– It makes possible to more easily define hierarchically frameworks and compose them
together.

To conclude on the last point, as it was coined in several works (Johnson 1997; Bachmann
et al. 2000; Crnković et al. 2002), components and frameworks are conceptually reifiable in
the sense that frameworks are themselves usable as components and are at the same time
containers for components. We think that our proposition of component-based frameworks
makes this feasible in practice with real component-oriented abstractions. Indeed, it is possible
with it to describe frameworks that are themselves components, possibly with hotspots kept
open. They can thus be composed together in composites, but also used as the building
blocks of other component-based frameworks. Obviously more studying should and must
be done on the matter, first to ease the use of such approach, for example using SpeAD, but
also in the MAS field as SpeAD has limitations regarding partially abstract ecosystems and
species.

6.1.2 Dynamic Component Creation and Connection

In this section, we look at the fact that SpeAD species are descriptions of classes of
components and that these components instances can be created dynamically. We position
this abstraction with those proposed in ADLs (Architecture Description Languages) andFor a re-

minder on
Architecture
Description
Languages, see
p. 6

For a re-
minder on
Architecture
Description
Languages, see
p. 6

in more general programming languages. We focus on means to describe declaratively
and structurally how components can be dynamically created because for other means, our
contribution does not radically differ.

In ADLs, a good example of such mean is the direct dynamic instantiation mechanism
offered by Darwin (Magee and Kramer 1996). We focus on this one since we consider it a
good stereotype of what is generally provided in ADLs. In these works, the idea is that it
is possible to describe that an element of an architecture can be dynamically instantiated by
another component. The latter triggers the creation of instances whenever it wants by using
the mechanism provided by the component model. Both dynamically created components
and creator components are at the same level in a composition.

In Darwin, dynamic component creation is triggered by other components that requires
a special type of port. In order to keep the architecture valid — i.e. that all required ports
of components are connected to the provided port of another one — it is possible to define
how the instantiable type of component is connected to the rest of the architecture. As
Darwin authors point out, only the required ports connections of a dynamically instantiable
component can be described, as there wouldn’t be any way to describe how provided ports are

122

6.2. Relations between Component-based Architectural Concepts

connected (since this would mean requiring multiple provided ports). The way to alternatively
do that is to use what they call service references that bring down the concept of ports at the
programming level and thus are not handled at the description level.

Inversely, with SpeAD, the relation between the created component — instance of a
species — and the creating component — the ecosystem declaring the species — is the one of
contained and containing. Thus, the dynamically created component is connected to the rest
of the world through its ecosystem, which, by the choice of uses of its parts in the species,
constrains the way the instantiated component can interact with others. Obviously, this is
completely different from what is done in traditional ADLs since the uses of the species
describe the interaction means available to it and not just how it is connected. We come back
on that point Section 6.4 to show what can be expressed with that.

Here, the important point is that we define how instances of species are created and
connected by relying on the semantics of their uses. This gives the possibility to be much
more expressive than traditional ADLs, while guaranteeing that the composition is valid
by construction. In exchange, the point where uncertainty is present is the interconnection
mechanism, the use, and its semantics. We come back on that point Section 6.6 to discuss why
and how to use such solution instead of others.

When looking at component-oriented programming as an evolution of object-oriented
programming, this resembles a lot non-static inner classes (Gosling et al. 2005) from object-
oriented languages such as Java: these inner classes can only be instantiated from an existing
object. We can thus say that with species, we ported the inner class concept to component-
oriented programming.

6.2 Relations between Component-based Architectural Concepts

In order to prepare to what is presented in the rest of this chapter, we now present
our vision of the relations existing between architectural concepts such as frameworks,
components models, component containers, architectural patterns, architectural styles, ar-
chitectures and components. As with the rest of the thesis and explained Chapter 1, we
elude connectors. Moreover, in this section we completely put SpeAD aside.

Figure 6.1 illustrates such relations that we now detail. Next chapter comes back on these
relations in a runtime context in the next chapter.

Monroe et al. (1997) present styles as providing specialized design languages for specific
classes of systems. They define a set of authorised types of components and constraints that
an architecture must instantiate to be well-formed with respect to the style. But they can also
constrain and be instantiated by more abstract architectures expressed as patterns.

As presented by Bachmann et al. (2000), architectural styles and component models are
similar in that they try to answer the same problems in the sense that they provide abstractions
adapted to a specific need. More precisely, it seems that architectural styles are more diverse,
and that there exists a specialisation relation between them as defended by Fielding (2000). We
consider that existing component models allow to express architectures that instantiates one or

123

6. MASs and CBSAs Side by Side: Component-based Component Containers

Pattern

Components

Style /
Paradigm

Component Model

Component Container / Framework

Micro-Architecture
(itself recursively an architecture)

allowsspecialises

instantiates

instantiates

conforms to

made of

implemented with usable with

implements semantics

Architecture

instantiates

constrains realises

Figure 6.1: Relations between frameworks, components models, architectures, components,
architectural patterns, architectural styles and paradigms

several styles, but that styles do not all directly correspond to a component model. However,
a style can be a specialisation of a style that directly corresponds to a component model. Thus,
styles and component models both define abstractions usable to express architectures, and
the elements of these architectures, the components, conforms to the corresponding component
model.

Frameworks, as development supports, realise component models (and thus styles) (Johnson
1997; Bachmann et al. 2000) in the sense that they permit to use the component model. In other
words, using a framework, one can implement components that conforms to a model/style.
The hotspots of the frameworks are used to express such implementation.

But frameworks, as runtime entities, realise component containers (Bachmann et al. 2000) of
component models. Using a framework, one can execute components within the constraints
of this model. The implementation of the framework, the frozenspots, is the implementation
of the component container. Such an implementation is realised by an architecture, internal
to the framework, called micro-architecture 1 (Johnson 1997; Monroe et al. 1997; Crnković et al.
2002) in order to differentiate it from the architectures built using the frameworks.

To these relations, we add another one between paradigms and component models, andFor a re-
minder on
Paradigms, see
p. 3

For a re-
minder on
Paradigms, see
p. 3

thus styles. A component model can be seen as a dedicated programming and design

1. As we are going to see below, the use of the same term Part I is not accidental.

124

6.3. Defining and Using Dedicated Component Models and Containers

paradigm, or specialised design language as said above. Like a paradigm, a component model
defines a coherent set of programming abstractions. The components that conform to the
component model are implementable using such a paradigm using the abstractions provided
by the hotspots of the framework/container. The container acts as the abstract machine that
executes such programs/components.

6.3 Defining and Using Dedicated Component Models and
Containers

We now look at what must be done when one wants to define a component model and
the container that allows to use it to implement components. The need for such a thing is
developed in the next chapter where we use self-organising MASs as the semantics of diverse
component models.

We rely on the relations between component-based architectural concepts identified in the
previous section to help the identification of the important elements to define. The reader can
relate to Figure 6.1 for a better understanding of the concepts manipulated here. Again, in
this section we put SpeAD aside.

This section proposes our own understanding of how to:

– Define a component model.

– Define a component container/framework, i.e. define the hotspots to implement compo-
nents.

– Use them for programming and executing components that conform to and rely on the
model and container.

As we said in the introduction, this is done in a quite abstract way that cannot be considered
a formal demonstration, but only an informal presentation of our ideas.

A simple example is used to illustrate these different activities. Next chapter shows more
complex examples that exploit them.

6.3.1 Defining the Component Model

It is first needed to define the dedicated component model and its semantics. There exist
a lot of works in the field proposing definition for the semantics of component model, we
don’t dare to concurrent them, but we only present what interests us here in order to define
component containers next. As a basis for discussion, by semantics, we could mean “the
set of component types, their interfaces, and, additionally a specification of the allowable
patterns of interactions among component types” as proposed by Bachmann et al. (2000),
but we also mean, inspired by the definition of architectural styles, the constraints that the
components must conform to. But what interests us the most here is the semantics of the
composition: what are the means of expressing how components are composed, following
which dynamics, etc.

125

6. MASs and CBSAs Side by Side: Component-based Component Containers

For example, a traditional event-based component model could be defined as allowing
that components, executed each in their own process, are defined with provided and required
ports to send and receive events, and are composable in static configurations. This then
means that components must only be implemented in terms of their ports, reactions to and
sending of events, or in terms of compositions of components.

6.3.2 Defining the Component Container

As we previously highlighted, a good way of realising and implementing a component
model is to build a component framework, also called component container. In other words
the component framework/container is the development support usable to describe and
implement the components, including the description of how they are composed together.

The idea is to define clear hotspots to represent how to program the components, but
also to potentially “configure” the container itself. These hotspots should be elicited from the
component model defined previously.

The general idea is to have what we call component hotspots to describe each type of
components that can be programmed with the container. Indeed, as we said, a component
conforming to a component model must comply to some constraints and are allowed to use
some patterns of interactions. For example, for a traditional ADL there could be two different
component hotspots:

– Both would give the possibility to define the set of provided and required ports and a
way to identify the component.

– One would give:
– The possibility to implement the different provided ports.

– Access to the required ports.
– The other would give the possibility to express how components, themselves expressed

with the hotspots, are composed with each other.

On top of that, there can exist container hotspots. Indeed, depending on the context, there
could be specific things to express about the container itself and not the components that live
inside it. For example for a component model that let distributed components communicate
together transparently, this could contain the information needed for every instances of the
container to know each other.

6.3.3 Implementing the Component Container

Then, based on the defined hotspots, the container/framework can be implemented to
realise the semantics of the component model. This corresponds to the building of the micro-
architecture of the component container, or in other words, implementing the frozenspots.
We don’t detail here how to implement containers, but this approach is obviously consistent
with how object-oriented languages can be used to build frameworks, and thus component
frameworks/containers. Section 6.4 shows how this is also actually practicable with the
abstraction introduced in SpeAD.

126

6.4. Building Dedicated Component-Based Component Containers

6.3.4 Using the Component Container

Based on that container, one can now realise an application that relies on the defined
component model. In particular, it clearly separates the concerns of composition or adaptation
provided by the model from those of the application and its business objectives. Examples of
such applications are given in the next chapter.

6.3.5 Going Further

To conclude, all of this is just an introduction to the question of defining and using
dedicated component models, but a lot of things can be investigated in this domain. In
particular, we think about the links with existing works and in particular DSLs (Domain
Specific Languages), which is a proven solution to make the use of a dedicated language For a defini-

tion of Do-
main Specific
Language, see
p. 4

For a defini-
tion of Do-
main Specific
Language, see
p. 4

programmatically practicable (Ghosh 2010). They are an interesting alternative to frameworks
for defining and building component containers.

6.4 Building Dedicated Component-Based Component Containers

Section 6.1 identifies in SpeAD the role of species and ecosystem respectively as contained
and containing as well as the fact that it is usable to build component-based frameworks.
Section 6.2 examines the relations between architectural concepts to build and reuse software.
Section 6.3 shows how one can define and use dedicated component models and containers.
We can now get a new way of interpreting the things we can build with SpeAD.

Indeed, the main idea of this section is that by defining species with abstract components,
we actually realise the micro-architecture of component containers/frameworks for component
models. In particular, the uses, possibly coupled with parts, realises the implementation of the
allowable “interaction patterns” for the components that conform to the component model.

In other words we are building dedicated component-based component containers.
Several works defend a vision where component models, programming paradigms or

architectural styles are things that can be built in order to be dedicated to a specific need.

(1) Bachmann et al. (2000) say that “what is needed is a technique for constructing com-
ponent models from a kit of model fragments known to support particular quality
attributes”.

(2) Van Roy and Haridi (2004) say that programming paradigms are actually a composition
of programming concepts adapted to some needs in term of expressiveness.

(3) Fielding (2000) proposes to define styles as incrementally built by adding constraints in
order to get particular qualities for the architectures that instantiate it.

Our opinion is that the composition of several species into one composite species with
the use relation corresponds to such idea. Indeed, we can see the uses as the fragments of
(1), as providing the concepts of (2) or as providing the qualities of (1) and (3). The internal
architecture of a species is a component of (1), a program of (2) and conforms to a style of (3).
The ecosystem of the species is the container of (1) or the abstract machine of (2).

127

6. MASs and CBSAs Side by Side: Component-based Component Containers

ecosystem Dir ec tR efer ence s [I] {

/ / name i s on ly used f o r p r e t t y
/ / p r i n t i n g t h e r e f e r e n c e wi th t o S t r i n g ()
species Cal lee (name : S t r i n g) {

/ / a p o r t p r o v i d e d by t h e
/ / d y n a m i c a l l y c r e a t e d component
/ / and c a l l a b l e us ing t h e r e f e r e n c e
requires t o C a l l : I
/ / t h e d y n a m i c a l l y c r e a t e d
/ / component r e f e r e n c e
provides me: Pul l [DirRef]
/ / t o c a l l when t h e d y n a m i c a l l y
/ / c r e a t e d component i s s t o p p e d
provides stop : Do

}

/ / t o c a l l a d y n a m i c a l l y c r e a t e d
/ / component by r e f e r e n c e
provides c a l l : Ca l l [I , DirRef]

}

(a) Direct references mechanism.

/ / an e c o s y s t e m r e a l i s i n g
c o l l e c t i o n ports
ecosystem C o l l e c t i o n I n t e g e r [I] {

species Indexed {
/ / a p o r t p r o v i d e d by t h e
/ / d y n a m i c a l l y c r e a t e d component
/ / and made a c c e s s i b l e by
/ / t h e c o l l e c t i o n p o r t
requires p : I
/ / t o g e t t h e i n d e x o f t h e d y n a m i c a l l y
/ / c r e a t e d component in t h e
/ / c o l l e c t i o n p o r t
provides idx : Pul l [I n t e g e r]
/ / t o c a l l when t h e d y n a m i c a l l y
/ / c r e a t e d component i s s t o p p e d
provides stop : Do

}

/ / t o a c c e s s t h e p o r t o f a
/ / d y n a m i c a l l y c r e a t e d component
/ / us ing i t s i n d e x
provides get : MapGet [Integer , I]
provides s i z e : Pul l [I n t e g e r]

}

(b) Collection port.

Figure 6.2: Interaction mechanisms definition in SpeADL

If we now focus on the relation with (1), as we said, by the choice of a composition of uses
into a species, we can define dedicated component models.

As promised Section 6.1, we present two examples of what can be expressed using our
species and their uses. They are proposed as ecosystems, with their species, can be used inside
other species to give them specific “interaction patterns” similar to those that can be found
with traditional ADLs or programming paradigm.

The first one was actually already presented Chapter 3: it is the DirectReferences
component, whose description is reproduced Figure 6.2a. It realises a limited version of
the interaction mean used in the object-oriented programming paradigm. An instance of a
species that uses Callee is then accessible through a DirRef reference. Then it is possible,
using this reference and the call port provided by the component DirectReferences, to
make a synchronised call to the port bound to toCall in the dynamically created component
instance.

The second one shows how we can realise the concepts of collection ports, i.e. a port that
gives access not to one component but to a set of component indexed by integers. This type of
ports would give a way of solving the question raised Section 6.1.2 by Darwin of connecting
the provided port of dynamically created component instances. Figure 6.2b depicts the
description of such an ecosystem called CollectionInteger. An instance of a species that
uses Indexed is then accessible through the get port of the CollectionInteger component
using an index. This is an interesting example because this concept of collection port is

128

6.5. Revisiting MASs Design as a Family of Paradigms

traditionally encoded directly in the component model of ADLs, while here it is defined
using only the abstraction provided by SpeAD.

Obviously these relations and the examples are an over-simplification of the reality, but
as with the previous sections, we don’t go into the details of all these relations and how a
model like SpeAD can help build component models. In our opinion, this matter should be
studied more thoroughly, and a lot of things could be said, explored and improved about it.
In particular, we think there exist links to identify with existing works that have equivalent
objectives (Hofer and Ostermann 2010; Loiret et al. 2011).

6.5 Revisiting MASs Design as a Family of Paradigms

Obviously, a perfect instantiation of what is said in the previous section, when going back
to the main subject of this thesis, are agents and MASs. As we said Chapter 1, MASs are
a family of architectures: they are conform to a family of architectural styles characterised
by an emphasis on direct peer-to-peer interactions, environment-mediated interactions and
reorganisation. One example of a style of this family is the one that was defined in the
example developed Chapter 4 where:

– Agents interact using messages passing and values observation.

– Agents are scheduled together in two synchronised separate steps.

In this vision, then, building a dedicated development support as we advocate is actually
defining the precise architectural style, or component model, needed for programming the
agents. In that case, the agents are the components at runtime, and their behaviours are the
implementation of the components. In another words, designing and implementing a MAS
is, amongst other things, building a dedicated abstract machine for processing the agents’
behaviours, programmed in a programming paradigm dedicated to the MAS design. For
example, the dedicated programming paradigm of the previous example gives the possibility
to:

– Express the two steps of the behaviour of the agents.

– Access their mailbox.

– Publish observable information.

– Send messages.

– Observe some other agents.

This thus shows an interesting point about MAS approaches: they actually are not one
design paradigm, but a family of such. Indeed, every type of agents (and thus species)
introduces its own set of interaction means and semantics for the execution dynamics of the
agents’ behaviours.

In particular, it is worth noticing that the choice of this dedicated programming paradigm For a def-
inition of
ADELFE, see
p. 50

For a def-
inition of
ADELFE, see
p. 50

is strongly linked to the choice of the approach as well as the choices made during macro-level
design. Indeed, if we look at systems built with an approach such as ADELFE as in the

129

6. MASs and CBSAs Side by Side: Component-based Component Containers

example above, the choice of the types of agents is very dependent on the domain problem
and the dynamics of the agents is mainly enforced by the approach itself. This point of view
on MASs approaches as paradigms should be explored to extract knowledge on the impacts
the choices at macro-level design have on the micro-level design.

More precisely, in terms of programming paradigm, the contribution presented in
the first part of this thesis is actually aimed at defining a dedicated MAS programming
paradigm and its corresponding container. In that context, this better explains why the
words micro-level architectural design is well adapted to denote the design of the architec-
ture that provides the abstraction needed to implement the macro-level design.

Finally, this reinterpretation of MASs as architectures defined using dedicated component
containers, and the fact that such component containers are themselves defined using SpeAD
enables us to see a MAS as a component that can take part in a software architecture. Indeed,
with SpeAD it is possible to use such containers/frameworks as components, and thus to
build MASs that are externally considered as components. Such components can then be
composed with traditional components in composites.

6.6 Horizontally Integrating CBSAs, MASs and Other Paradigms

As we showed here, it is possible to integrate the two approaches in an easy and well
organised way using our abstractions. One can exploit the SpeAD component model to
define traditional component-based architectures where some of the components are actually
themselves MASs. But the opposite is also possible, as it is actually one of the motivations of
the first part of this thesis, and the different elements composing a MAS can themselves be
described using static and verifiable component-based architectures.

To conclude we now advocate for using design paradigms that are adapted to the needs,
and in particular MASs approaches, as they are our primary interest, when dynamicity or
adaptivity is required. When it is necessary to build static architectures whose reliability
should be formally verified, component-oriented architectures described and implemented
with traditional ADLs should be used. When it is necessary to build very dynamic, emergent,
adaptive architectures whose reliability can be validated by experimentation, MASs should
be used.

As we illustrated it, other kinds of dedicated component models and containers than those
for MASs can be built using this approach. And thus, different component containers can live
side to side and be composed using the abstractions provided by SpeAD. We characterise that
as an horizontal integration between different components, including MASs, each possibly
with their own dedicated component model.

However, it obviously looks like this vision of dedicated component-based component
models and container is aimed at building component models different from what is tradition-
ally done. For example, building something usable to define configurations of components as
in ADLs would be using a sledge-hammer to crack a nut. Within such a context, it would

130

6.6. Horizontally Integrating CBSAs, MASs and Other Paradigms

be even more difficult then to tackle adaptivity and complex behaviours of dynamicity in
component-based architectures.

This is why we don’t advocate for adapting architectures by extending existing and
traditional ways of defining compositions of components. As we just said, one should use
design paradigms adapted to their problems. But, the horizontal integration that we propose
here keeps clear and hermetic walls between component-based architectures and MASs. The
next chapter thus proposes to study how both approaches can be integrated vertically and
having software components self-organising like agents in a MAS. In particular, it presents
two experiments introducing dedicated component models and containers whose semantics
is inspired by MASs approaches.

Summary of the Contributions⊕
We position the contribution of Part I with respect to related works in the software
architecture field.⊕
We propose an integrated understanding of the different concepts used in the CBSA
(Component-Based Software Architecture) field.⊕
We propose a way to define and use dedicated component models and containers.⊕
We show how the SpeAD component model can be used to build dedicated component-
based component containers.⊕
We show how MASs fit in this vision and how MASs as design approaches can be
considered a family of design paradigms.⊕
We show why the SpeAD component model well adapted for horizontal integration of
MASs and CBSAs.

131

CHAPTER 7
From Self-Composing Components to

Self-Designing Software Architectures

In the previous part of this thesis, we focused our interest on the development of MASs,
which resulted, among other things, into the definition of a novel component model named
SpeAD. We studied this model in the previous chapter, which directed our interest towards
the realisation of dedicated component containers.

In the present chapter, we completely put aside the concern of micro-level MAS devel-
opment and the SpeAD model. Instead, we now focus on the use of MASs as a mean to
ultimately build self-designing software architectures.

We present here experiments of self-adaptive Component-Based Software Architectures
(CBSAs) with various degrees of adaptivity. This brings us to conclude on the interest of
generalising such approaches for software architectures, and not limited to CBSAs.

In opposition to the previous chapter, our concern here is clearly to vertically integrate
CBSAs approaches with MASs ones. In other words, we want to use MASs as a support for
connecting components to each other, but also to organise their composition in a way adapted
to functional or non-functional objectives. To do so, we exploit the idea that agents can act as
containers for components at runtime. The important point here is that our objective is not to
replace components with agents, which would result on applying MAS approaches as they
are normally applied, but rather to see how the principles and abstractions used in MASs
can support the construction of CBSAs and maintain them in activity with respect to some
requirements.

Such an idea has already been proposed in the past and declined in different ways. What
mainly differentiate what we propose here from other works are the following points:

– We exploit agents as part of a MASs in the sense that the emerging collective intelligence
is the engine of the self-adaptation of the system. In particular, as we are going to see,
this has the advantages of having adaptive systems that can handle underspecified
compositions.

133

7. From Self-Composing Components to Self-Designing Software Architectures

– We integrate our solutions with the idea of building dedicated component models and
containers:

– In terms of design and implementation, it eases the understanding and the identifi-
cation of clear points of variability of the solutions. This ensures that the solutions
are actually applicable in practice.

– In term of runtime architecture, agents really encapsulate the components and
mediate their interactions. The process of adaptation is not only conceptual but is
integrated with the executed system.

– We identify what features our solutions provide and how they relate to functional and
non-functional requirements.

The chapter is organised as follow. First we present the different arguments that justify the
use of the MAS technology to adapt software architectures and systems. Based on that, we
present how agents and MASs can be used in this context. Then, we detail two experiments
that each instantiates different aspects of this vision.

The first was developed in collaboration with the AgentWise research team. It proposes toFor a pre-
sentation of
AgentWise,
see p. xxiii

For a pre-
sentation of
AgentWise,
see p. xxiii

adapt a composition of web-services using MASs organisational coordination mechanisms. It
shows a simple degree of adaptivity where the focus is put on non-functional requirements.

The second was developed with a Research Master student during an internship we
supervised (Denis 2011). In the context of ubiquitous computing, it proposes to let components
existing in a distributed environment opportunistically self-compose to form applications
that are not a priori specified. It shows a higher degree of adaptivity where the focus is not
only put on non-functional requirements, but also on functional ones.

We conclude the chapter by extracting from these experiments an analysis of the links
between self-adaptivity, emergence, functional and non-functional requirements. This brings
us to generalise the content of this chapter to the design of software architectures in general
and not only limited to CBSAs.

It must be noted that in this chapter, we consider compositions of, on one hand, compo-
nents, and on the other hand, services. In this work, they are both examples of CBSAs in the
sense that services and components participate in a composition of runtime elements. But as
highlighted by Hock-koon and Oussalah (2011), component-based and service-oriented soft-
ware engineering are two different aspects of the design of software architectures. Obviously,
this difference has impacts on how elements of each approach can be composed together.
More importantly, the motivations that drive such a composition are different in each case.
Nevertheless, we think this does not contradict with what is presented in this chapter.

7.1 MASs for Self-Adaptive Software Architectures

7.1.1 Why MAS

As we previously highlighted, as practitioners of MAS approaches, we are particularly
convinced by the validity and legitimacy of using approaches that provide collective intel-

134

7.1. MASs for Self-Adaptive Software Architectures

ligence. The global idea behind what is presented in this chapter is that instead of relying For a re-
minder on
Collective in-
telligence, re-
ductionism and
emergence, see
p. 10

For a re-
minder on
Collective in-
telligence, re-
ductionism and
emergence, see
p. 10

on traditional and reductionist ways of composing elements to form a software architecture,
we should look at more emergent ways of doing so. Such a concern has been expressed in
the software engineering field for systems considered as coalitions (Sommerville et al. 2011).
What characterises such systems is that the different elements that compose them were not
produced together as a whole in order to be composed into one given application. We think
this shows a kind of underspecification in the sense that it is difficult to know in advance, for
example when building the components, what is going to be the problem answered by their
composition and how it should be solved efficiently.

Indeed, even though some functional or non-functional specifications are attached to
the components, the services, or any other elements used in a composition, there is still
underspecified requirements pertaining to the composition itself or to the way it should be
executed. This underspecification is one of the main motivation for the current chapter and
the experiments we detail in it.

But furthermore, simply the problem of having self-adaptive software architecture with
respect to clearly identified requirements has also been highlighted in several works. We don’t
detail them here, but only selected two of those that identify points we consider important:

– The need for self-managed systems without external intervention (Van Roy 2007).

– The need for being able to distribute the “algorithm” that drives the adaptation of the
system (Sykes, Magee, and Kramer 2011).

Because in MASs the control is decentralised by nature and because they showed their
efficiency for self-adaptivity and self-organisation for solving underspecified problems (Di
Marzo Serugendo, Gleizes, and Karageorgos 2011), all these aspects of the problem are
particularly well supported by MASs.

7.1.2 MAS-based Containers

The main idea in this proposition is that since systems are made of compositions of
components, there is thus a need for choosing the right composition depending on the
functional and non-functional requirements 1. Instead of doing this step completely by
hand, we propose to use agents as a mean to assist in their composition, or at least in their
adaptation once it has been done or specified. In this vision, agents acts as the container of
the components, but the mapping between agents and components does not have to be one
to one. For example, in the following experiments, the runtime components are encapsulated
in agents, but there exist other agents in the system participating in the collective intelligence.

Components can then interact together without taking care of selecting or choosing other
components. We thus relate this idea to the building of a component model and container
whose semantics is realised by a MAS. Indeed, the fact that decentralised coordination
mechanisms are introduced into the components of the system implies that the way to

1. Even though a decomposition normally answers some requirements itself, we consider here already defined
components.

135

7. From Self-Composing Components to Self-Designing Software Architectures

define such elements must change. It is not possible, with this way of doing, to continue to
implement components as it is traditionally done. In exchange of the profit gained by the
self-organisation, it is necessary to coin what are the implications in terms of the components
definitions. For example, if components can find themselves in situation where they are
connected to nothing, a way of expressing how it will behave must be available to the
component developer. Of course, a lot of work has to be done to be able to attain a good
ratio between adaptability and ease of definition. We don’t cover such question here: we only
present what we found in the experiments we use to illustrate the approach.

The main idea is to enable as much separation as possible between the adaptation and the
business logic of the element. By business logic, we mean the real role of the component in
the system, independently of its self-organising behaviour as an agent.

Thus, in order to describe our solution, we follow the approach proposed in the previous
chapter, Section 6.3, to define and use component models and containers. The container takes
care of the adaptation matter, potentially in a decentralised way, and enforces the component
model that was defined. By expressing the proposition like that, we clearly identify the role
of the system that realises the self-adaptation, with respect to the role of the components that
takes part in such system. In another words, such an approach is useful to clearly identify
the points of variability in the solutions proposed.

This abstract approach is to be instantiated for specific settings, MAS approaches and
problems, and we present in this chapter two examples of such things. For each of them, an
example of application that can use such container is shown. We identify the semantics of the
model and the abstractions provided by the container.

7.2 The CASAS Experiment: Non-Functional Adaptation

The globalised world of business has created new demands for the architecture of dis-
tributed applications. These demands were shifted again with the creation of globally
distributed supply chains (Pereira 2009). The service-oriented computing paradigm provides
concepts satisfying the demands in this distributed environment (Papazoglou et al. 2007).

Service-oriented computing considers that services are provided by business organisations
through the use of clearly defined interfaces. From a third-party point of view, the focus
is put on using several services from different partners in order to answer its own needs.
The most famous way of defining and accessing services are web-services. Web-services are
defined using a specific interface format called WSDL (Web Service Description Language)
that gives the possibility to express what are the operations proposed by a service. Then they
are accessed through the internet, and more precisely using the abstractions provided by the
web such as HTTP.

Nowadays, complex business processes are modelled as composite services using the de
facto standard for service composition BPEL (Business Process Execution Language). Such
compositions are also often called workflows as they describe a sequence of partner’s services
invocations to represent a complete business process. However, BPEL is not suited to work

136

7.2. The CASAS Experiment: Non-Functional Adaptation

in very dynamic environments, leading to research on how to adapt processes written in
this language. BPEL can deal with primitive forms of adaptation, using Dynamic Partner
Links and Endpoint References (Gudgin, Hadley, and Rogers 2006). However, it is hard, if
not impossible, to model the adaptations and its constraints required by a composite service
using only BPEL. We focus on the problem of adapting a composite service in order to deal
with global constraints, such as the End-to-End Quality of Service (QoS), and the problem of
preventing SLA (Service Level Agreement) violations. In a few words, a QoS can be specified
with a SLA that describe the service provided by a partner and is composed of SLOs (Service
Level Objectives) that specify what can be measured to characterise the SLA.

We add another level of abstraction to the composite service model to solve the adaptation
problem. This layer, called the organisation layer, explicitly represents the interactions between
all the services participating in the composition, the adaptation constraints and the expected
behaviour of the composition.

To link with the objectives introduced in this chapter, we define a component model
named CASAS (Composable, Adaptive, Service, Agent System) that can represent such a
composition and its adaptation. We thus focus here on the self-adaptation of a predefined
composition in the form of a workflow. This self-adaptation takes the form of the selection of
the best partners at a given time with respect to some global QoS. The components here are
traditional web-services provided by partners that are not under our control: thus in practice,
the components are not the web-services themselves but bridges to the real web-services.

We first present a scenario for an example application that motivates the existence of
CASAS. Then we present CASAS by following the proposed process for defining component
models and containers.

7.2.1 Scenario

To illustrate the core ideas of this experiment, we use a simple scenario from the Supply
Chain Management domain based on interviews with the industrial partners of the DiCoMAS
project 2.

A fourth-party logistics company (4PL) takes care of its clients’ logistic procedures such
as the transportation of materials between the client’s factories. A 4PL has contracts with
many carriers, called third-party logistics companies (3PLs), that do the actual transportation.
The 4PL’s goal is to save time and money for its clients, by optimising transportation and
business processes.

Each time our example 4PL receives a transportation request, it creates a transportation
plan using an Advanced Planning System (APS). The transportation plan is composed
of many activities, each representing a transportation that should be made between two
locations. The planning system splits the original transportation request in several sub-
transports, because, normally, 3PLs are specialised in specific geographical regions. Finally

2. DiCoMAS (Distributed Collaboration using Multi-Agent System Architectures) is a SBO (Strategisch Ba-
sisOnderzoek – Strategic Basic Research) project funded by IWT (Instituut voor de Aanmoediging van Innovatie door
Wetenschap – Technologie in Vlaanderen - Belgium)

137

7. From Self-Composing Components to Self-Designing Software Architectures

<<WSDL>>
Composite Service

Start

Invoke

<<BPEL>>
4PL

<<WSDL>>
3PL-TransportPortType

Carrier 3

Invokes operation

Implements WSDL

Invoke

...

<<WSDL>>
3PL-TransportPortType

Carrier 0

Carrier 2

Carrier 1

KEY

...

<<BPEL>>

<<WSDL>>

Carrier X

WSDL Interface
BPEL Process

Carrier X web-service

... BPEL activity

Figure 7.1: Transportation plan deployed in a BPEL engine

the transportation plan is written as a BPEL process and, after a first selection of 3PLs,
deployed in a BPEL engine.

To execute this process, the 4PL’s BPEL engine invokes the selected 3PL’s web-services,
informing them about the constraints, such as time constraints, monitoring constraints, etc.

How can we meet the quality requirements of executing a BPEL process within a specific
time frame, even in the presence of partner failures, is the problem that we want to solve.

This problem is illustrated by our example 4PL, that needs to do the transportation within
a limited time period, as specified in the plan, but sometimes a partner that previously
committed to do a transportation has problems and is not able to execute its part in the plan.
For example, a small carrier, that has just one truck, is assigned a sub-transportation, but,
suddenly, has a broken truck that needs to be repaired. In this situation, the 4PL needs to
find another carrier capable of doing the transportation for that specific sub-transportation,
preferably within the same quality constraints.

Figure 7.1 depicts a simplified transportation plan. The transportation plan is deployed
on a BPEL engine and is seen as an internal service within the 4PL, simply called Composite
Service here. Each Invoke activity in the transportation plan is executed by an external
service, through the 3pl-TransportPortType interface, which is implemented by partner
companies web-services. Each 3PL must comply to the specified QoS, in this case the time to
do the transportation.

138

7.2. The CASAS Experiment: Non-Functional Adaptation
4 · The MACODO Middleware for Context-Driven Dynamic Agent Organizations

Fig. 2. MACODO organization model.

Traffic jams can span the viewing range of multiple cameras and can dynamically grow
and dissolve. By default each camera monitors the traffic state within its viewing range
which makes up its context. When a traffic jam occurs, the camera has to collaborate with
other cameras detecting the same traffic jam. Because there is no central point of control,
cameras have to aggregate the data monitored by each of the cameras to determine the
position of the traffic jam on the basis of the head and tail of it. One of the cameras will
be responsible to distribute the aggregated data of the traffic jam to the interested clients.
Cameras will enter or leave the collaboration whenever the traffic jam enters or leaves their
viewing range.

2.2 Overview of the MACODO Organization Model

In this section we explain the basic abstractions MACODO offers to the application devel-
oper to describe dynamic organizations. We use a graphical notation and give an informal
description of the abstractions. [Weyns et al. 2009] gives a detailed formal specification of
the organization model.

Figure 2 shows an overview of the basic abstractions of the MACODO organization
model. We explain the abstractions using the scenario shown in figure 3.

Context. Context represents information in the environment of an agent that is relevant
for the organizations in which the agent participates. In the scenario, context includes
the actual traffic state in the viewing range of the camera and the names of the agents on
neighboring cameras. The traffic state has three possible values: free flow, bound flow, and
congestion. In a free flow state, vehicles can drive at the maximum allowed speed. In a
bound flow state this speed is limited. Finally, in a congested state, vehicles are standing
ACM Journal Name, Vol. V, No. N, November 2009.

Figure 7.2: Domain Model of the Macodo Context-Driven Organisational Model (Weyns,
Haesevoets, and Helleboogh 2010)

We now present the organisational concepts used in our solution and the mapping between
these concepts and those of the problem. It then serves as a basis to present the CASAS
component model, its semantics and the constraints it introduces on the components.

7.2.2 The Macodo Organisation Model

The MASs research community has a body of knowledge on Organisational Models. In
this community, there are two distinct visions regarding these models:

– Organisation being a first class entity, with its properties, states, laws (Weyns, Hae-
sevoets, and Helleboogh 2010)

– Organisation mainly as a process, composed by a set of steps to be taken by different
actors (Dignum 2009b)

MASs Organisational Models cope with collaboration between autonomous entities, called
agents, working and interacting together, cooperatively or not, to achieve an organisation goal
(DeLoach 2009). In our work we rely on the Macodo (Middleware Architecture for COntext-
driven Dynamic agent Organizations) Organisation Model, which defines the organisation as
a first class entity with its own dynamics and separated from the participating agents.

The Macodo Organisation Model copes with context-driven dynamic organisations. With
it we can model complex collaborations between different entities, the agents, and specify
the rules that will trigger actions to adapt these collaborations (Weyns, Haesevoets, and
Helleboogh 2010).

139

7. From Self-Composing Components to Self-Designing Software Architectures

Figure 7.2 depicts the domain model of the Macodo Organisation Model. The main
concepts of the model are: Organisation, which contains roles and role positions; OrgContext
which keeps the context information needed by the organisation; Role, which constrains
the behaviour expected from the agents; and Context, which is the contextual information
needed by the organisation.

When joining an Organisation, an Agent takes a RolePosition in order to play a Role:
this is represented by a RoleContract.

An Organisation encapsulates organisation rules used to adapt the collaboration. It
actively inspects its context (OrgContext), i.e. the set of all the participating agent contexts, to
enforce the organisation rules that need to deal with global constraints. A Role constrains the
agent behaviour towards the organisation, requiring the agent to provide a set of capabilities
and context. Using the Roles and agents’ Context, the Organisation allows or denies the
participation of the Agents in the collaboration.

There are two possible ways for an organisation to adapt and a well balanced combination
of the two is the key to an adaptive organisation:

1. The organisation can access the context information of the agents and check if the rules
are being satisfied. That way, the adaptation is triggered by the organisation that keeps
monitoring the collaboration between the agents. If one rule is not satisfied, it can
change the state of a role or open a new role position, so that another agent can try to
play that role in the organisation.

2. The agents can have a pro-active behaviour and monitor their own state. They can
actively decide to leave or join an organisation. When an agent leaves an organisation,
the organisation changes the state of the played role, opening a new role position,
leading to its adaptation.

7.2.3 Mapping Macodo Organisations to Composite Services in BPEL

A BPEL process consists of:

– The BPEL code, which defines the execution flow.

– WSDL interfaces for the different consumed services.

– WSDL interface for the provided service (the composite service itself).

A composite service specified in BPEL is made of a set of activities that are executed in a
specific order. One special type of activity is declared using the Invoke construct, which
invokes an operation in a partner link web-service. In BPEL the communication with other
web-services is done through the PartnerLinks, which define the relation between the BPEL
process and partner web-services. Partner web-services are referenced by their Port Type,
which is a set of abstract operations defined in WSDL.

We established a mapping between Web-services and Macodo Organisation concepts in
order to create the organisation layer. This mapping is illustrated in Table 7.1.

One BPEL process corresponds to one analogous Macodo Organisation. For each Partner
Link specified in the BPEL process, we have a Role Position in the organisation. We have a

140

7.2. The CASAS Experiment: Non-Functional Adaptation

Table 7.1: Mapping between web-services and Macodo concepts

Web-services Macodo

BPEL process Organisation
PortType Role
PartnerLink Role Position
SLA Capability
SLO Agent Context

Role for each Port Type in the BPEL process. The SLAs are specified in terms of required
Capabilities and, finally, SLOs are specified as Agent Context.

As we are going to see, these informations are then used to describe under which
constraints the composition should adapt.

7.2.4 Defining the CASAS Component Model

The CASAS component model uses this mapping and the BPEL process description to
define the structure, such as the number of Roles and Role Positions of an organisation.
Each BPEL process instance provides the correct flow of activities needed by the composite
service and can be seen as the organisation functional behaviour. The agents operate the
runtime binding to the real service providers and act as their representatives in the system.

Based on this mapping, separately from the BPEL process definition, the organisation
provides a way to define adaptation rules that deal with the runtime adaptation that can
occur during the process execution. For that, the agents provide context information to the
organisation. They also contain monitoring mechanisms and have pro-active behaviour to
trigger adaptations (e.g. an agent can monitor its SLOs and predict that an SLA will be
broken).

Figure 7.3 shows all the entities that collaborate in the system to create an adaptive
composite service. It shows a BPEL process, the adaptation rules, the Macodo Organisation,
and the Agents that can participate in the organisation. The leftmost Agent is taking the
position2 RolePosition, the other RolePosition, called position1, is not taken by any
Agent. An Agent taking a RolePosition means that the agent is playing a specific Role in
one Macodo Organisation. When the BPEL engine invokes an operation in a PartnerLink,
the CASAS system intercepts and redirects that invocation to the right Agent, which will, in
turn invoke the operation on the actual web-service.

From a service-oriented point of view, the CASAS system is responsible for dynamically
providing the best partner services to the workflow instances. This selection is done in
compliance to the SLA of each partner web-service. The BPEL engine doesn’t know about the
changes that can happen to the partner web-services, since it communicates with endpoints
provided by the CASAS system. The CASAS system makes the connection between the BPEL
engine and the real partner web-services, acting as a type of evolved proxy.

141

7. From Self-Composing Components to Self-Designing Software Architectures

Organisaton

position1 position2

BPEL

Rules
Maintain
RolePosition1.Property <= 10

<<Context>>
Property = y

...

Agent

Associate Agent to RolePosition
KEY

<<Context>>
Property = y

<<Context>>
Property = y

position x RolePosition

Figure 7.3: Conceptual solution integrating Macodo organisations, BPEL, and agents

When the service realised by a workflow is requested, CASAS instantiates it with an
organisation and the agents that represent the web-service that can participate in the workflow.
Thus from an agent-oriented point of view, the MAS is composed of the agents and their
environment, i.e. the organisation that regulates their interactions. The MAS, explained in the
next section, is transparent to the BPEL process and to the partner web-services, being used
just internally by the CASAS system.

7.2.5 Multi-Agent System

The agents are responsible for joining the organisation if they can take open role positions.
They play their role when asked by the organisation and maintain a context that can be
consulted by the organisation when required. There is one agent for each existing web-service
that can be used in the workflow. Describing the MAS is decomposed in describing the
organisation behaviour and the agents behaviours.

Behaviour of the Organisation. The organisation uses the agent’s context and its own con-
text to continuously enforce the adaptation rules. It accepts, refuses and revises RoleContracts
based on this context information. If one agent does not comply with the organisation rules
anymore, the organisation closes its role position and opens a new one.

It also gives agents the possibility to join and leave positions, as well as play their role
and thus to participate in the workflow.

Behaviours of the Agents. There are two parts in the agent behaviour:

– Social behaviour for joining and leaving the organisation

142

7.2. The CASAS Experiment: Non-Functional Adaptation

– Monitoring behaviour for managing the context

An agent that receives an event for an open position will try to start a contract if he has
the capability of playing this role, i.e. he has a matching PortType and the required SLA. If
the agent decides to take a role position already taken, if the organisation refuses to give the
position to him, or if the position is closed while playing it, then the agent waits for new open
positions.

The monitoring behaviour is strongly dependent to the type of context required by the
organisation.

7.2.6 Defining the CASAS Component Container

Thus, from the previous sections, we can extract the definition of the different types of
hotspots of our component container. There exists two types of components in this component
model: organisation and agent. There is no container hotspots.

Organisation Hotspot. For a given organisation, i.e. a given workflow, it is needed to give:

– The provided interface definition in WSDL.

– The functional behaviour for the organisation: the workflow definition in BPEL.

– The adaptation rules that have to be enforced. For example they can take the form
of functions per role position responsible for checking that the QoS indicators of the
agents (its context) satisfies the defined SLA for the partner (a threshold). Or could be
more complex as accepted by the Macodo system.

Agent Hotspot. This hotspot is very simple as most of the adaptation is done at the
organisation level. Moreover, the agents mostly play the roles of bridge towards the real
services.

What should be provided for a service is:

– The provided interface definition in WSDL.

– A reference to the web-service they represent.

– An implementation for extracting the context information.

7.2.7 Implementation of the CASAS Component Container

We don’t detail the implementation of the CASAS component container, but details can
be found in Cruz Torres et al. (2010a).

The prototype was written in Java, according to the described architecture. To handle
the service-oriented concerns, CASAS rests on the Apache ServiceMix ESB (Enterprise
Service Bus). In particular, this ESB provides the Apache Ode BPEL engine to execute
the workflows and the Apache CXF component to access external web services. The ESB
provides mechanisms that can be used by CASAS to intercept messages exchanged in the
ESB and redirect them to the correct recipients.

Thus, the system is usable directly with real web-services and workflows.

143

7. From Self-Composing Components to Self-Designing Software Architectures

7.2.8 Using the CASAS Component Container

If we instantiate the proposed container with the scenario presented earlier, this gives us
the following. The delivery time of the 3PLs are the context of our agents. The threshold that
shouldn’t be exceeded is determined by the APS for each role position.

The BPEL workflow and WSDL interfaces presented Figure 7.1 are provided with the
organisation hotspot. The adaptation rules are expressed per role position as not exceeding
the threshold.

Dynamically, for each web-service that can play in the workflow, the creation of an agent
is parametrised by its interface and an implementation for computing the context information
using the operations of the interfaces.

Thus, when web-services goes online or offline, their corresponding agents comes in or out
of the system. They try to join the organisation and depending on their context information
they are accepted or not.

7.2.9 Discussion and Possible Evolutions

As we can see, the current state of the proposition is very primitive and doesn’t show so
much intelligence. But, as the auditors of the web-service community workshop, where this
work was presented (Cruz Torres et al. 2010b), told us, what is interesting in that solution
is the abstractions it provides. The community is in need for such high-level abstractions in
the context of business processes where workflows actually represent collaborations between
several business partners. This experiment shows that it is possible to do so.

We see several evolutions that can be applied to this work. First, related to the Macodo
model, the more it is evolved, and the more advanced the adaptation our system provides
can be. For example, it would be interesting to specify global constraints for the whole
organisation, and not only per role position. Furthermore, the Macodo model is capable of
creating role positions, expressing relations between them and how the the organisation can
evolve: in that context, Macodo could be used to model the reorganisation of the sequence
of activities by moving away from the static aspects of workflows as they are currently
considered. Second, in terms of the mapping between organisational concepts and workflow
concepts, we think it could be interesting to have agents not only act as bridges to the web-
services, but also as bridge from the web-services participating in the organisation. Finally,
interactions directly between agents could also be interesting. The next experiment illustrate
particularly well this last point in a different context.

It must also be noted that this work was continued with a focus on decentralised coordi-
nation mechanisms by the AgentWise task force (Cruz Torres and Holvoet 2011a; Cruz Torres
and Holvoet 2011b).

144

7.3. The Greg Experiment: Opportunistic Composition

7.3 The Greg Experiment: Opportunistic Composition

Ambient systems are complex systems composed of interacting (potentially mobile)
artificial and humans entities. They are distributed, open, decentralised, heterogeneous,
dynamic, etc. Ambient intelligence reflects the capacity of the ambient environment to
provide relevant and adequate services to the humans living within. As it was imagined it 20
years ago (Weiser 1991), we are now faced with a new computing environment that asks for
new techniques to build, deploy and maintain applications in production.

In this context, mainly because of mobility and openness, we can imagine that systems
could opportunistically self-construct only because communicating devices are present si-
multaneously in the same space. New applications (or software systems) can emerge simply
because the entities that compose them are in interaction at a given time. For example, a
multimedia application such as “watching and controlling a movie” can result from the
composition between a remote control, a media box, a display device and an audio device.
The sole presence of these hardware devices, at a given time and in a given space, should
allow a system to self-construct without any human intervention. We can thus imagine an
application that autonomously self-composes, directly from its elements initiative, without
having the composition expressed by a designer or a user beforehand, or even without having
the different components made on purpose for such a composition.

The objective of this work is to explore such question of autonomous self-composition
and to evaluate its feasibility.

As we imagine it, self-composition (at the initiative of the components themselves) raises
original questions compared with more traditional design and programming approaches and
their context:

– There is no client that express a need nor any design that tries to answer them. There
is thus no validation that can be done in its traditional meaning (showing that a
product answers the initial needs). There is neither any specification of the product,
thus no possible verification of the conformity of the product with respect with these
requirements.

– There is no designer that creates the compositions and that controls them.

– There exist human users that themselves are part of the system and that can play a role
in the acceptance of the applications that dynamically appear.

The question that interests us here is relative to the opportunistic composition of applica-
tions that can be characterised as emergent in an ambient context. But once created, such
application must also be dynamically adapted, controlled and maintained in a functional
state. In this context, we look at how this can be automated and self-adapted.

As with the previous experiment, we first present scenario that motivates it, then the
concepts manipulated, then we propose a solution that we describe using the process we
proposed for building and using component models and containers.

145

7. From Self-Composing Components to Self-Designing Software Architectures

7.3.1 Motivating Scenario

This scenario takes place in the context of multimedia ambient application. We imagined
the following.

(1) David is in his living room and his objective is to watch a HD video on his TV by
choosing one of the movies available on the disk of its internet media box. His TV is on
standby and his hi-fi system is off. He starts the interface to access multimedia content
from his smartphone. The system finds two mediacenter (one from his internet box
and one included in its TV) and proposes to David to make a choice. David choose
the mediacenter of its internet box. A browser appears on its screen. He selects the
video he wants to watch and validates his choice. The video appears on the TV and the
sound comes out from the TV integrated speakers. Since he wants to profit from the
better quality of his hi-fi system that provides 5.1 surround sound, he turns it on and
the sound switches to the speakers of the hi-fi system.

(2) Later in the evening, David turns off the TV (the movie is automatically paused) and
moves to his room because he wants to finish the movie in his bed. He turns on his
computer and use his smartphone to start the movie again. The sound comes out from
the computer speakers. He turns on his headphones and puts them on. The sound
switches to them.

(3) It is 10pm and someone tries to call him. Because David has his headphones on, and he
is watching his screen, the phone does not ring but a feedback is sent to the tv. Because
of that, the movie is put on pause and a visual feedback is shown on screen.

The first part (1) of this scenario should validate that our solution is able to create
applications, that it can resolve problems such as the choice between several boxes, and that
it can propose always the best composition with respect to the user needs (5.1 sound better
than tv speakers).

The second part (2) should validate the dynamic of the composition (moving between
places, new devices appearing) after it has been created.

The last part (3) should validate that the system can handle conflicts between resources
(feedback of the phone versus movie already playing on it).

It is important to notice that the applications that are built during this scenario are not
a priori specified. The user only expresses his needs through the use of devices and the
components self-compose until they form a working composition.

Figure 7.4 shows an example of a composition that should be self-built by the system
according to this scenario. There is several components composed together in a given
configuration and thus forming an application. We now present the domain model and the
way such components are structured.

7.3.2 Modelling the Problem Domain

In an ambient environment, we can find devices such as a TV set, a media box, etc.
Resources are physical entities directly linked to a device, for example the screen of a

146

7.3. The Greg Experiment: Opportunistic Composition

Figure 7.4: Composition example

smartphone, the CPU of a media box, etc. These resources have several non-functional
properties, such as the audio quality of a speaker, or the video qualities a screen can display,
etc.

Devices can embed software components, such as the applications of a smartphone, the
video player of a media box, etc. Components uses resources to function. The kind of
components that interest us are providing services through their provided ports. Ports have
a name and an interface. For implementing their provided port, they require services through
their required ports, potentially with specific non-functional constraints. A component is
able to provide a service only if all its required ports are “resolved”, i.e. all its required
ports are connected to another component that provides it. A component instance is to a
component what an object is to a class: during the life of the ambient system, it is possible
for a same component in a device to have several instances. Such a component instance is the
elementary building block of our self-composed applications. A resource can be shareable
(several component instances can use it at the same time) infinitely or up to a certain point
(for example a CPU). An application is the result of the composition, in a distributed ambient
environment, of several component instances whose required ports are resolved.

One of the objective of our system is to define a est of autonomous agents able to build
and connect dynamically the instances of the components. However, its role doesn’t end with
that objective: it continues during the execution of the application, manages and reconfigures
dynamically the compositions that it maintains depending on diverse events. These events
come from the environment (new devices, change of location of a device, etc), but also from
the middleware that connects in practice the instances together to let them communicate
(interrupted connections fro example).

Finally, we simplify the problem by considering that:

– Each components provides only one port.

– Interoperability is not taken into account: the semantic matching of interface is reduced
to the simplest string name matching.

7.3.3 Defining the Greg Component Model

Our solution relies on the use of the AMAS (Adaptive Multi-Agent System) approach to For a defini-
tion of AMAS,
see p. 11

For a defini-
tion of AMAS,
see p. 11assemble in a dynamic and autonomous way the components of the ambient environment. On

147

7. From Self-Composing Components to Self-Designing Software Architectures

top of the fact that such systems seems a priori adequate to tackle such question, as presented
in the introduction of the chapter, we think that in a general way, AMAS are particularly
adapted to the development and the design of application whose specification is not or not
completely known.

As we presented Chapter 1, in the AMAS approach, the engine of adaptation is the
cooperative behaviours of the agents. This behaviour is elicited by identifying NCSs (Non-
Cooperative Situations) and by exploiting the concept of criticality.

Cooperative agents have a nominal and a cooperative behaviour. In our solution, the
nominal behaviour of the agents is the business concerns of the components they encapsulate.
For example, the nominal behaviour of an agent containing a media player component is to
actually play the video. In order to apply their nominal behaviour, the agents must be in a
state that makes it possible. Obviously if a media player has nowhere to send video, it cannot
operate properly. This is where the cooperative behaviour is used. The cooperative behaviour,
expressed in the form of atomic and individual NCS detections and solving, takes care of
putting the system in a usable state. There exist different types of NCSs but we don’t detail
them here.

Of course, depending on the business concern of the encapsulated component, the way to
solve a NCS can vary. In the following, we present the cooperative behaviours of the agents,
and when needed we explain how it can vary depending on the business concern of the
agents. This later serves as a basis to define the component container and its hotspots.

It must be noted that this solution is perfectible and its main objective is to show the
feasibility of using such a bottom-up approach to self-composition.

7.3.3.1 Types of Agents

In our system, we have two types of agents: class agents and instance agents. The idea
is that in each device, there is one class agent responsible for each software component that
can be instantiated. When needed, by interacting with other agents as we are going to see,
such an agent can create instance agent of its components.

These instance agents are responsible of playing their role in a given application, by
resolving conflicts and dependencies with other instances in the system. Instances can be
completely, partially or not resolved: it means their required ports are, respectively, all, not
all or not connected to another instance.

7.3.3.2 Neighbourhood

Devices are on a network, and thus can “see” each other using traditional broadcast
means used on local networks, such as the IP protocol. When a device is started in a given
environment, then for all the software components in it, their class agent is created and thus
are in the physical neighbourhood of other agents in their range. Inversely, if the device is
stopped or stops working for any reason, then the class and instance agents disappear and
thus disappear from the physical neighbourhood of other agents. If the device goes out of
range of other devices, the same happens.

148

7.3. The Greg Experiment: Opportunistic Composition

A class agent is interested in a subset of its physical neighbourhood: the requires neigh-
bourhood contains class agents that have interfaces it requires. These neighbourhood are
maintained internally by each class agent, while the physical neighbourhood is induced by
the physical network. A class agent also have its instances neighbourhood composed of all
the instance agents it created.

An instance agent has a potential neighbourhood of instance agents that it can potentially
connect to. It also knows its class agent.

7.3.3.3 Agents Behaviours

We now detail the different informations managed by the agents, the events that can
happen and what are the agents actions. These “behavioural rules” are induced from the
Non-Cooperative Situations that were identified but not detailed here.

In our solution, the questions of constructing the application and adapting it are considered
the same problem. For example, either at construction or after a composition has been fully
constructed, an instance that finds itself with one of its port not resolved anymore will handle
the problem in the same way.

Instance Behaviours. An instance agent is responsible of a component instance. Its main
objective is to find the “best” instance agents to resolve its required services.

Every time an instance is requested to be potentially used by another instance, it is
able to compute its capability level with respect to the request. Such a capability level is
computed from the non-functional properties of the resources used by the instance agent, the
non-functional constraints of the request and from the best capability level of its resolved
required ports. Indeed, for each of its required ports, an instance agent maintains its potential
neighbourhood (using various ways that we describe after) and store the capability level of
each of the instance it can use. For example, a video player trying to play a 5.1 video could
have a capability of 80% if its required port for streaming sound is not resolved to an instance
that can handle 5.1. And thus, the “best” instance for a given required port is the instance
with the best capability.

On the other hand, an instance agent also have a criticality level. This level represents
how critical is an agent in resolving its required ports. It is used to solve conflicts over
resources and to drive the reorganisation by having agents leaving their current role in
order to answer more critical requests. The main difficulty here is to find the best way to
compute such a criticality. First, it is partially inherited from other instances that requested its
service. But this information also varies with the business concerns of the components. For
example, a request emanating from an instance agent that was created after a user launched
an application can have a criticality that increases until it is not answered, while a request
from a component created automatically by the system wouldn’t change.

There is 10 behavioural rules that are roughly decomposed in three different aspects: main-
taining the potential neighbourhood, handling connection to other instances and resolving
conflicts over resources.

149

7. From Self-Composing Components to Self-Designing Software Architectures

Maintaining the potential neighbourhood:

1. After it is started, it regularly sends requests for its required ports along with the
interface type and the non-functional constraints.

2. When it receives a request for potentially using its provided port, it answers positively
with a capability level computed functions of the request.

3. When it receives an answer for one of its required ports or when there is a capability
update, it updates its potential neighbourhood and their capabilities.

4. When its capability changes, it propagates it to the instance using it, which in turn is
likely to do so, which can trigger reorganisation somewhere in the system.

Managing connections to other instances:

5. When another instance request to connect to it:

– (1) If it is in a completely resolved state:

– (2) If there is no conflict with another instance on its needed resources, then it
accepts.

– Else, for each resources it needs, if there is a conflict with other instances:

– It asks them to leave the resources with its criticality as information.

– When a positive answer comes back, go to (2).

– Else, for each of the unresolved ports:

– It notifies the “best” instance, along with its criticality level, that it wants to
connect to it.

– When a positive answer come back, go to (1).

6. When there is a new “best” instance agent to connect to and it is already connected:

– The agent notifies the new one, along with its criticality level, that it wants to
connect to it.

– When a positive answer comes back, it notifies its previous “best” that it disconnects
it.

7. When its criticality changes, it propagates it to the agents it is connected to, which in
turn are likely to do so, which can trigger reorganisation somewhere in the system.

8. When it receives a disconnection notification for a required ports (from an agent or from
the middleware), it notifies the instance using it that it is disconnecting its provided
port, and it updates its criticality (and thus propagates it).

9. When it receives a disconnection notification for its provided port (from an agent or
from the middleware), it updates its criticality (and thus propagates it).

Resolving conflicts over resources:

10. When it receives a request to leave a resource and if its criticality is lower than the
requester:

150

7.3. The Greg Experiment: Opportunistic Composition

– It leaves the resource.

– It notifies the requester.

– It updates its capability (and thus propagates it).

– It notifies the instance using it that it is disconnecting its provided port.

At different times, the components can have a behaviour that varies depending on their
business concerns. As previously highlighted, to compute their capabilities or to compute
their criticality. But also, it is needed to specify the components behaviours when they
find themselves in a non working state. Indeed, when a component is executed and the
implementation tries to use the required ports after being called on their provided port,
everything is connected. But if there is a failure at one moment, the component must define
how it should be handled in its particular case.

For example, with required ports that get disconnected, a video player would just go into
pause, while a remote control would show an error message. Actually, with the way things
are current handled, in other all the cases, any instance we could think of would terminate.
Then when a new composition would be formed, new instances would take the relay.

A more complex and mature solution would most certainly introduces more interesting
points of variability. For example the computation of the capability could be business-specific
and would help drive the composition towards something that better answer the users needs.

Class Behaviours. Class agents are much more simple.
After it is started, it regularly broadcasts the existence of its provided port.
When it receives a broadcast about the existence of a provided port with the same interface

as one of its required ports, it stores it in its requires neighbourhood.
When it receives a request for potentially using its provided port, it creates an instance

and forwards the request to it.
Depending on the business concern of the components, the reason for creating instances

are different. For example an instance of a component for a user interface is created when the
user launch the application.

7.3.4 Defining the Greg Component Container

Thus, from the previous sections, we can extract the definition of the different types of
hotspots for our component model.

Since all the dynamics of the model is managed from inside the agents, and thus the
components, the container would only have some configurations about the resources of a
given device.

For each of the component, it is needed to provide:

– An implementation for its provided port, that can use the required ports.

– An implementation for computing the criticality (or a part of it) of the component.

– An implementation for the different hooks corresponding to specific actions to execute
when special events happen:

151

7. From Self-Composing Components to Self-Designing Software Architectures

– When getting disconnected for provided port.

– When no instance is found to resolve the required ports (and thus when they are
disconnected).

7.3.5 Implementation of the Greg Component Container

We don’t detail the implementation of the container but information about it can be found
in Denis (2011).

The prototype is actually realised using SpeAD and SpEArAF. A home made simulator
was built for the networks, the devices and the resources.

7.3.6 Use of the Greg Component Container

The only thing that must be predetermined beforehand and that should be shared by every
implementation of components conform to the container is the meaning and normalisation of
the criticality. This is one prerequisite of the AMAS approach. There could be a standard that
define its meaning, for example that defines which are the default values for a user requested
action, for an automatically created component, for an urgency, or things like that.

In the scenario, there are two types of ports: streams such as video, audio, etc, and
call-return. The latter are the ports prefixed by cmd Figure 7.4.

We now show how a component for a video player is implemented using the component
container.

Its provided port can accept commands to control the execution of the video, i.e. play,
pause, stop, etc. It has two required ports: one to stream sound and one to stream video. Its
implementation is a process that streams video and sound when the play signal is sent to its
provided port, stops streaming when the pause signal is received and terminates when the
stop signal is received.

The criticality function is the default one for automatically created components. The
implementation of what to do when the provided port is disconnected is to terminate. The
implementation of what to do when required ports are not resolved, is to put the video on
pause.

It is a cooperative behaviour towards the users but also towards other components of the
system in the sense that:

– If it is not controlled by anything, then it does not have any reason to exist.

– If it is still controlled but can’t stream, then it should not play the video, which would
be against user’s desire.

7.3.7 Discussion and Possible Evolutions

What this system proposes is enough to demonstrate that it is possible to have components
that self-compose in a physical and conceptual distributed context. On the other hand, we
have a lot of ideas on how to improve it.

152

7.4. Discussion: MASs for CBSAs

First, concerning the ways to express users needs in terms of components behaviours, it
seems relevant to consider that a component providing a port is as much as important than
a component requiring a port. For example, a user putting headphones on means a new
provided port is announced in the system, and thus, the user need is that this provided port
should be connected.

Then, even though components should be encapsulated by agents, it would much more
interesting to have agents encapsulating each of their ports to introduce even more local and
emergent behaviour. For example, this would be useful for expressing dependencies between
ports that should be connected together to a same device.

7.4 Discussion: MASs for CBSAs

We presented two MASs-based component containers. In order to conclude this chapter
we comment them and discuss their differences. This gives us the opportunity to draw some
conclusions on the links between functional and non-functional requirements, self-adaptation,
emergence and the aforementioned underspecification. Furthermore, we also conclude on the
advantages of explicitly defining the proposed solutions as component models and containers.

7.4.1 Adaptation and Emergence

In the CASAS experiment, the functionality of the composition is completely specified
beforehand using a workflow description. The system provides the “intelligence” that chooses
the right partners. Indeed, the organisation, by the definition of adaptation rules, enforces the
global constraints of the composition and drives the reorganisation. But furthermore, as we
explained, the agents can, by themselves, decide to leave the organisation, when individual
constraints are not respected. Thus, in this system, what drives the reorganisation and thus
the self-adaptation of the system is clearly the non-functional requirements expressed by the
Service Level Agreements and Service Level Objectives.

In the Greg experiment, the functionality of the composition is not specified at all, but
this doesn’t mean the functionality emerges from nothing. Indeed, because the elements of
the composition are functional components, the relation between the self-built application
functionality and the functionality of the elements is purely reductionist. However, the
composition process itself can be said to be emergent: indeed, what emerges from the
interaction of the agents is the selection of the components, and in which configuration. And
then some conflicts at a point of the composition is propagated to another place and can
trigger reorganisation. Thus, the functional requirements drive the self-composition of the
components and the non-functional requirements guide it towards the most adapted one. The
ways this can be controlled is through the notion of cooperation, expressed by the criticality,
that implies some specific choices by the agents at some points, and the capabilities that
represent the level of satisfaction of the functional requirement. Thus, to conclude, in this
system, what drives the reorganisation is:

153

7. From Self-Composing Components to Self-Designing Software Architectures

– The functional requirements expressed by the required ports of the components and
their interfaces.

– The non-functional requirements expressed by the capabilities of the components and
their non-functional constraints.

– The user needs that are some kind of functional requirements not formally specified,
expressed in a cooperative way by the notion of criticality.

The two first points are what, in our opinion, enables the self-composition of components
in a completely decentralised way. That last point is what, in our opinion, introduces an
adaptation to the underspecification of the system highlighted in the beginning of this chapter.

In the end, the two systems are not so far from each other in their objective because
they both optimise the selection of the components to compose. To better understand
the links between the two, we can use the differentiation coined by Bouziane, Pérez, and
Priol (2008) between workflows as defining a temporal relation between the elements of the
composition and component-based compositions as defining a spatial relation between the
elements of the composition. Indeed, in the first system, the functionality is described using
a temporal relation between the elements, while in the second system, their composition is
spatial. Obviously, the first one seems to be much more complex to handle in terms of self-
composition and reorganisation of the sequence because of the complexity of the semantics
of such composition. But what this also highlights is that actually in the second case, this
temporality is hidden in the component and expressed through the way a component is
implemented and uses its required ports. This just opens the discussion on the matter, and
we think this should be better explored to better understand how we can better adapt these
kinds of software architectures at runtime. Moreover, as highlighted in the introduction of the
chapter, this discussion should most certainly also take into account the differences between
component-based and service-based approaches to composition.

7.4.2 Component Models and Containers

Concerning the definition of the component models and containers, these examples show
that when using a semantics for the component models that is very different to what is
traditionally done in the software architecture field, there are impacts on the information
needed to be provided for the implementation of the components. It supports the argument
that if new methods of composition are used, then it would be vain to keep using always
the same traditional abstractions to define components. In particular this is visible with the
second solution where the concept of cooperation leaks out at the business level. We think
this point is strongly linked to the question of underspecification as it is one of the main
reason we novel different semantics for the component models.

It also shows that by expressing these details about the container hotspots, it clarifies for a
given component model the points of variability and eases its documentation.

But moreover, by using the component container abstraction to realise such system, we
built systems that integrate together the decision and its actual execution. Indeed, as we said,

154

7.5. Towards Human-Assisted Self-Designing Software Architectures

what emerges from these systems is the choices of the components to use, and the choices of
how to connect them. The system applies these choices in order for the system to be executed
in direct. This is interesting because such an approach makes the bridge between, on one
hand, the concepts and the reasons behind the existence of a particular organisation, and, on
the other hand, the elements of this organisation and their actual composition.

7.4.3 Better Adaptation for CBSAs

Finally, we think, as it is highlighted by the methodological precepts of Agent-Based Mod-
elling as instantiated by the AMAS approach, that a good definition of the problem domain
is what is important for having a good self-adaptive system that answers its requirements in
an adequate way. There is thus most certainly more works to do to spot the right abstractions
for representing components and their dependencies. We think in particular about the work
of Desnos et al. (2007) that raises and answers some of these questions by proposing the same
kind of compositions than the second experiment, except for the underspecification of the
user needs, but in a totally centralised way.

7.5 Towards Human-Assisted Self-Designing Software
Architectures

To illustrate how MASs could be used to support the self-adaptation of systems, we
presented the idea of building MAS-based containers. This approach is principally based on
a runtime adaptation and only for components. On the other hand, in the previous chapter,
Section 6.2, we presented how the concepts used in architectures are related to each others.
In particular, it highlighted that a given component model allowed a number of architectural
styles instantiated by architectures and patterns.

In this section, we propose to first give an understanding of the relations between the
state of a CBSA at runtime and the architectural styles and patterns that it instantiates. Then,
we generalise that idea to software architectures in general as a mean to support the design
of software systems.

7.5.1 Styles and Patterns that Emerge

If the elements of an architecture can self-organise at runtime, then at a given time, their
organisation is in a particular configuration. Such a configuration is possibly an instantiation
of an architectural style or pattern. For example, a set of components could all be using the
same other one: this would instantiate the client-server style.

And thus, the runtime architecture has several qualities that are induced by this configura-
tion, or in another words, the runtime architecture answers some non-functional requirements.
Inversely, we could imagine that a wanted quality would drive the self-organisation so that
an adapted configuration of components is reached by the self-adaptive architecture.

155

7. From Self-Composing Components to Self-Designing Software Architectures

The main problem with such an idea is that most of the architectural styles that exists
constrains so much the way components are implemented that it becomes difficult, for
an already defined component, to be used in different styles. There must still exist some
examples of styles and components for which this approach would work, but this is a question
we won’t answer here.

More interesting in our opinion, if we generalise this vision to software architectures
building, we think that creating self-designing architectures is more realistically feasible.

7.5.2 Generalisation to Architectural Views

Indeed, nothing prevents this approach to be applied to all the aspects of software
architectures such as the design, the decision making, the application of design choices to
actually build the architecture, the matching between the views, the solving of conflicts, etc.
The idea would be to have a tool that helps elicit the different views of a software architectureFor a defini-

tion of Archi-
tectural Views,
see p. 7

For a defini-
tion of Archi-
tectural Views,
see p. 7

by answering feedbacks from the designer as well as from a repository of knowledge either
domain-specific or generic.

By using the designer as a way to give feedback to the tool, it becomes much more
easy to automatise the adaptation of all the structures of the system in a coherent way.
Indeed, the tool would then provide the intelligence needed to manage the application of the
modifications or to keep the architecture coherent, while the designer would act as the driver
of the self-organisation.

From the point of view of the elements of the architectures, i.e. modules or components,
they would act as the components of the previously presented experiments. They would
try to form coherent structures that answer the expressed functional and non-functional
requirements. But they would do so from different views at the same time. One of them
could for example be a decomposition view, and the modules could try to find the better
decomposition with the help of the designer feedbacks. In parallel, we could have layered
view that would enforce the constraints expressed by the designer, or maybe found by the
system itself. Then, we could have a mapping view between modules and components,
components views, etc. This could even go to the point where one of the views is the actual
running system made of the real instantiated components, encapsulated by agents as in our
previous examples.

Such a system could be used to assist in the decision making for designing the architecture,
but also in the actual application of the changes to the running system. Knowledge about
known patterns and styles could also be made available to such a system to better support
the design.

Approaches for assisting evolution has already been proposed in different works such as
Le Goaer et al. (2008) or Garlan et al. (2009). What differentiate our proposition from these
are, on one hand, the links that exist between the runtime and design-time self-organisation,
and, on the other hand, the fact that the system would be totally integrated to tackle together
all the aspects of the software architecture. Such a tool would then gracefully make the bridge
between design, deployment and maintenance.

156

7.5. Towards Human-Assisted Self-Designing Software Architectures

Summary of the Contributions⊕
We highlight the reasons that motivate the use of technologies such as MASs for the
adaptation of software architectures.⊕
We propose MAS-based component containers to have self-adaptive self-composing
Component-Based Software Architecture.⊕
We illustrate that vision with an experiment that adapt a composition of services.⊕
We illustrate that vision with an experiment that let components opportunistically
self-compose in a completely decentralised and distributed way.⊕
We present an understanding of the relations between self-adaptation, emergence, func-
tional and non-functional requirements, and highlight the role of the underspecification
in a the adaptation of a composition.⊕
We present challenges that these experiments raise.⊕
We present the idea of a support tool for self-designing architecture that tackles in
an integrated way the design of the software architecture up to its its deployment,
maintenance and evolution.

157

B A C K

159

CHAPTER 8
Conclusions and Perspectives

The initial objective of this Ph.D. was to contribute to the field of MAS development in
order to support the transition between design and implementation. In order to reach such
results, we uncovered several elements of contributions in the field of MASs and software
architectures.

We propose to present these contributions from four different points of views that each
pertain to a specific field or combination of field. The balance in size between the first part
and the second part is not reflected by these four points of view. Indeed, the first part, which
is the biggest of the two, answers the two main motivations of this thesis, that is improving
the development process followed in MASs as well as its products, the MASs themselves.
Then, on the other hand, the second part answers the third motivation, that is understanding
the relations that exists between MASs and software architectures with a focus on CBSAs.
This is mainly due to the fact that this part is mostly exploratory and results on set of axis of
research that have to be deepened.

To close this thesis, we present some open questions and perspectives of research.

8.1 Contributions of the Thesis

8.1.1 Software Architectures for Multi-Agent Systems

Encouraged by the numerous evidences of the existence of a gap between design and
implementation in MASs development, we thoroughly studied and analysed the various
existing means of development that exist in the field, both for design and for implementation.
This brought us to point up a particular specificity in MASs development: all the requirements
that are expressed initially when developing a MAS are not all answered by the design, and
thus must be answered at implementation. Moreover, the choice of a given approach to MAS
development, and there are many, introduces supplementary requirements that also must be
answered at implementation. On top of that, the choices made during the design by the MAS

161

8. Conclusions and Perspectives

designer are themselves new requirements towards the implementation. The combination of
all those requirements makes each development very specific to the problem answered, to
the MAS developer, to the chosen design approach, etc. The main conclusion here is that it
is not possible to have a “one-size-fits-all” development support that would support every
development and its specificities. The second conclusion is that every time a MAS design is
being produced, the requirements that have an important impact on the implementation can
be expressed as the definition of the types of agents of the application being developed. Such
types of agents describe what are the interaction means that the agents use, what are their
internal dynamics, but also more operative constraints that are important for the design and
the implementation. We thus extracted challenges for the design and the implementation of
such types of agents in order to better support the implementation of the MAS design itself.

To answer that, we proposed a coherent set of answers that takes its inspiration from
software architectures as a mean to organise the development, and Component-Based Software
Architectures (CBSAs) as a mean to support the development with quality, productivity
and maintainability in mind. It takes the form of our own understanding of the general
methodology of MAS development. This methodology separates the development into two
phases. The first one is what we call the macro-level architectural design, focused on applying
a MAS approach to define the system in terms of agents, their behaviours, their interactions,
etc. The second one is what we call micro-level architectural design, focused on building an
architecture adapted to the specific types of agents of the development and providing the
abstractions needed to implement the MAS design in a straightforward way.

In order to ease the construction of such a micro-level architecture as well as make reuse
and maintenance possible, we proposed next a novel component model, named SpeAD
(Species-based Architectural Design), that introduces specific abstractions, namely species
and ecosystem, that are usable to define and implement the types of agents of a given
application and their computational environment. We showed how SpeAD can be used
to model common interaction means as well as more operative ones. We also proposed a
method, named SpEArAF (Species to Engineer Architectures for Agent Frameworks) that
instantiates the general methodology of MAS development with SpeAD. To illustrate all
of that, we presented a real MAS-based application from a research project developed in
our research team. We analysed the contribution with respect to the state of the art, to the
previously identified implementation challenges and to experimental feedbacks from users to
conclude on the advantages of using our contribution for MAS development.

8.1.2 Component-Based Software Architectures

From this contribution, we proposed to compare it to existing works from the software
architecture field, and in particular the Component-Based Software Architectures (CBSAs)
field. This brought us to draw a set of ideas on the production of development supports for
CBSAs without considering MASs at all.

To support the proposed ideas, we presented an integrated understanding of the different
concepts used in the CBSA field, namely frameworks, components models, component

162

8.1. Contributions of the Thesis

containers, architectural patterns, architectural styles, architectures and components.
We first compared our use of the proposed component model with object-oriented frame-

works to conclude that our model could be used to define component-based frameworks.
In particular, this idea is used in the first part to provide reusable architectures with partial
implementation for MAS development.

Then, we compared the abstractions we introduced in our model to the dynamic in-
stantiation of components as it can be found in works of the field, and then, by relating to
several works in the literature, we showed how our component model could be used to build
dedicated component-based component containers.

These results are of course still in the rough and we thus tried to show for each which
were the directions to explore.

8.1.3 Multi-Agent Systems and Component-Based Software Architectures Side
by Side

In the light of the previous results, we then re-examined MASs development with respect
to CBSAs.

The main conclusion we drew is that, coherently with the conclusions of the state of the
art, MASs approaches are not one design paradigm, but a family of such. And linking that
to our component model and CBSAs, when doing micro-architectural level design, we are
actually building models and containers for components that are the agents.

In this context, a MAS from a macro-level architectural point of view is seen as a CBSA, but
more interestingly, because of the fact that such a CBSA is implemented using a component
container realised with our component model, a MAS is also seen as a component that can be
used together with more traditional components.

This brought us to conclude that our component model was well adapted for horizontal
integration of MASs and CBSAs, which is important for choosing a relevant design paradigm
depending on the type of problems that appear in a same application.

8.1.4 Multi-Agent Systems for Software Architectures

Independently from the previous set of results, we also investigated how MASs, as an
approach for designing self-adaptive complex systems, can be used to support the construction
of self-adaptive software architectures. We focused most of that investigation towards CBSAs.
Using two experiments, we presented how we could first adapt a composition of services using
organisational abstractions for MASs, and on the other hand, how we could let components in
an ambient environment self-compose opportunistically by physically distributing the control
and let adapted compositions appear.

The main new challenges supported by these experiments was to use agents as the runtime
containers of the components. An important point here is that the agents do not replace
components but support the adaptation of their composition. The MAS formed by these
agents, and potentially others, was providing the self-organisation needed to adapt the system

163

8. Conclusions and Perspectives

to the non-functional and functional requirements, but also to the unspecified needs of the
users.

Using these experiments as a starting point, we proposed the idea of pushing the inte-
gration between MASs and software architectures further to produce self-design software
systems where MASs would support decision making for design, adaptation of the system at
runtime, and even evolution of the design and of the system in an integrated way.

8.2 Open Problems and Perspectives

As we can see from this summary of the contributions, a subset of them are already
perspectives of further research. But on top of that, there exist open problems that are closer
to the contribution we proposed in the first part of this thesis.

We mainly see three main types of perspectives related to MAS development: method-
ological, architectural and evaluative. We conclude this section with one open problem that
connects all the different perspectives together.

8.2.1 Methodological Perspectives

As it is highlighted in the state of the art of this thesis and in the methodological aspect
of the contribution, MASs have specificities in term of methodology of development. This
matter should be investigated even more. First, it is necessary to deepen the question of how
current practices and methods instantiate this methodology and which are the implications
it has on the development. Then, the previous point should be a starting point to better
integrate tools and models in the context of model-driven engineering. Furthermore, the field
of requirements engineering specialises in studying requirements in software engineering.
Our contribution could most certainly be improved by seeing how they both relate.

This brings up the matter of the macro-level architectural design and its documentation.
Indeed, we noticed that MAS researchers do not always know how to document and describe
their designs to other researchers. We think there are guidelines, linked to the methodology
of MAS development, that could be elicited on how to properly present a MAS design in a
complete way.

More on the side of proposing dedicated architectures and development supports to
the MAS developers, an interest has grown in the MAS development community towards
method fragments to build tailored development processes for a given the problem. With a
focus on MAS macro-level architectural design, it would be interesting to investigate how our
approach for building tailored micro-level architectures is linked to it.

Finally, on the matter of reusing design and implementation products, the field of Multi-
Agent Systems Software Product Lines has investigated ways to build reusable architectures
for lines of products. Again, it would be interesting to see how our contribution integrates
with these works and can contribute to the question.

164

8.2. Open Problems and Perspectives

8.2.2 Architectural Perspectives

We proposed an architectural solution to the question of the micro-level architectural
design. In that context, it is necessary to continue to investigate how the architectural
abstractions proposed answer the challenges, and how they can do it better. In particular,
we think about the various research directions developed Chapter 6 on reusing design and
patterns as code using templates.

Of course, on a technical side, the tool that supports the application of our contribution
can also be improved by providing better ease of use. The component library that was
produced must also be further extended and documented. In particular, we think there is a
strong need for tools helping to find adequate reusable components when developing MASs
since a great diversity of mechanisms usable by agents exists.

8.2.3 Evaluation Perspectives

One of the regret we have with the contribution is the fact that it has not been evaluated as
thoroughly as possible. We think it is necessary to clearly evaluate what its different aspects
provide to MAS developers, but also how the tool we provide actually succeeds in supporting
its application.

165

APPENDIX A
Design and Implementation MAS

Meta-Models

A.1 Agent and MAS Meta-Models

AGR. AGR (Agents, Groups, Roles) (Ferber, Gutknecht, and Michel 2004), previously called
AALAADIN, is focused on describing the organisation of the agents partitioned in groups
where agents take roles. No assumption is made on the internal structure or capabilities of
the agents except that they communicate by messages inside groups. The difference is made
between the structure of the organisation and its concrete realisation by agents at runtime.

MOISE+. MOISE+ (Hübner, Sichman, and Boissier 2002) is a meta-model based on the
notion of roles and organisation, with a focus on the definition of laws and norms to regulate
the organisation. Agents are able to reason about the organisation, but apart from that, no
assumption is made on their internal working.

OperA. With the same objectives as MOISE+, OperA (Organization per Agents) (Dignum
2004) proposes to design the organisation of the agents and define norms and law.

Macodo. Macodo (Middleware Architecture for COntext-driven Dynamic agent Organiza-
tions) (Weyns, Haesevoets, and Helleboogh 2010) is a meta-model based on the notion of roles
and organisation, with a focus on the organisation as a first class runtime entity responsible
of enabling and enforcing its laws and norms.

CRIO. The CRIO (Capacity, Roles, Interaction, Organisation) meta-model, present in the
ASPECS method (Cossentino et al. 2010) along with holons, is an evolution of the RIO meta-
model (Hilaire et al. 2000). In this meta-model, it is proposed to represent the organisation

167

A. Design and Implementation MAS Meta-Models

and its roles, but it distinguishes from other works by integrating these concepts with the one
of holons.

AEIO. The VOWELS approach (Demazeau 1995; Da Silva and Demazeau 2002), which
proposes the AEIO (Agent, Environment, Interaction, Organisation) meta-model, was one of
the first to underline the importance of interaction and its modelling to build MASs. This
approach tackles the matter of coordinating agents activity by proposing an integrated coor-
dination meta-model for all the four components of MASs: Agent, Environment, Interaction
and Organisation instead of focusing on one at a time.

A&A. The A&A (Agents and Artifacts) meta-model (Ricci, Viroli, and Omicini 2008),
strongly linked to the SODA method (Molesini et al. 2006), proposes to represent arte-
facts. Artefacts are abstractions to represent means for the agents to interact, perceive and act.
Situated agents use the artefacts that abstract whatever is present in the environment.

ORA4MAS. Based on A&A and MOISE+, ORA4MAS (Organisational Artefacts for Multi-
Agent Systems) (Hübner et al. 2010) proposes to use artefacts to represent an organisation
and to give to the agents the power to perceive and act on it.

MASQ. The MASQ (MASs based on Quadrants) meta-model (Stratulat, Ferber, and Tranier
2009) tries to put concepts of organisations and environments together. It proposes to
model four aspects of MASs: interior-individual (what happens inside the agents), exterior-
individual (how the agents interact with the outside), interior-collective (how the environment
is considered by the entities participating in it) and exterior-collective (how the environment
is by itself). This meta-model stays at an abstract and high level of representation of these
different aspects of MASs.

SeSAmUML. SeSAmUML (Shell for Simulated Agent Systems UML) (Oechslein et al. 2001),
with a focus on MABS, extends UML to describe a simulation in terms of agents and their
behaviours (with activity diagrams), their environment and its resources.

IODA. IODA (Interaction Oriented Design of Agent simulations) (Kubera, Mathieu, and
Picault 2011) is an approach and a meta-model focused on interactions as first-class entity
for MABS (Multi-Agent-Based Simulation) where everything is agent. The argument is that
interactions should be modelled and realised independently of the agents acting in them
(what they call interaction polymorphism). Agents (and resources which are considered as
agents because they can take part in interactions) are situated in spaces. Interactions are
modelled using conditions, initiators and effects and agents can chose between the possible
interactions to initiate when their turns come.

168

A.1. Agent and MAS Meta-Models

FIPA. The FIPA (Foundation for Intelligent Physical Agents) standards (Poslad and Charlton
2006) are the most known and used meta-model in the MAS field. Their meta-model is focused
on the agents themselves. They communicate by messages, without any explicit environment
defined at all or particular action and perception capabilities. They also propose an Agent
Communication Language (ACL) for the agents and a reference infrastructure with message
transport, execution, agent and service directories, etc. A lot of other meta-models rely on the
FIPA meta-model to model the agents.

GAIA. In GAIA (Zambonelli, Jennings, and Wooldridge 2003), a MAS is described as agents
taking roles in an organisation. The design results in the definition of the agents and their
behaviours. The agents interact using messages and protocols with a FIPA-like architecture.

INGENIAS. INGENIAS (Pavón, Gómez-Sanz, and Fuentes 2005) proposes the same kind
of abstractions than GAIA and uses UML to model them. It also has FIPA-like agents.

PASSI. The PASSI2 method (Cossentino and Seidita 2009), an evolution of the PASSI method
(Cossentino 2005), proposes the same kind of meta-models than GAIA with FIPA-like agents.

ADELFE. The ADELFE (Atelier de Développement de Logiciels à Fonctionnalité Emergente)
method (Bernon, Camps, et al. 2005) is based on the AMAS (Adaptive Multi-Agent System) For a pre-

sentation of
the AMAS
approach, see
p. 11

For a pre-
sentation of
the AMAS
approach, see
p. 11

approach (Gleizes et al. 2008). It proposes the AMAS-ML meta-model to define the behaviour
of the agents in terms of rules. The meta-model also defines the environment of the MAS as
being made of passive and active entities.

Tropos. Tropos (Giorgini et al. 2005) models agents as taking part in an organisation that is
extracted from the requirements of the problem to solve. Agents interact by taking roles in
the organisation and their behaviour is modelled using plans extracted from the organisation.

AUML. AUML (Agent UML) (Bauer, Müller, and Odell 2001) extends UML to model
protocols for multi-agent interactions. It was later extended in two different works (Bauer
2002; Huget 2003) to model the behaviours of the agents. Both describe agents in terms of
behaviour, states and actions, and link it to the roles of the protocols. AUML has been used
in numbers of other methods, mainly for describing interactions.

AML. AML (Agent Modeling Language) (Trencansky and Cervenka 2005) also extends UML
to model MAS in terms of agents, resources and environment. It dissociates behavioured,
mental and socialized entities to describe these elements of the system.

Actors The actor meta-model (Hewitt 1977; Agha 1986) — which has not originated from
the MAS field but inversely that may be considered the first ancestor of the MAS approach
to design — proposes to model actors (the equivalent of agents) as entities that can receive

169

A. Design and Implementation MAS Meta-Models

messages and treat them sequentially and reactively. The meta-model is very precise and has
strong theoretical formal foundations. It is often used as a means to implement agents that
exchange messages, mostly in reactive MASs.

A.2 Development Support Meta-Models

A.2.1 Languages

In this category we can find the AgentSpeak(L) language (Rao 1996) supported by the
platforms Jason (Bordini, Hübner, and Wooldridge 2008), the JAL language supported by
JACK (Howden et al. 2001), the 3APL language (Hindriks et al. 1999), the Jadex platform
(Pokahr, Braubach, and Lamersdorf 2005), and so on.

All of these languages and corresponding platforms focus on the internal architecture of
the agents, and are to be integrated with other platforms providing the execution platform
for the agents (except for the Jadex that is tied to JADE).

A.2.2 Frameworks and Platforms

Existing frameworks (and their platforms) are providing means to implement a MAS
using a given meta-model. These meta-models either directly correspond to a method’s
meta-model or are provided by the framework.

Follows a list of these platforms and the meta-models they provide.

MadKit for AGR. MadKit (Gutknecht and Ferber 2001) provides means for the agents to
live in an AGR-like world. In particular it provides agent life-cycle management, messages
transport and provides them identifier to communicate. These services are actually realised
using agents called system agents (by opposition to application agents) that are able to interact
with the core kernel of the platform by using event-based hooks. The platform can thus be
extended by defining system agents exploiting these special mechanisms.

JADE for FIPA. JADE (Bellifemine, Poggi, and Rimassa 1999) is a very famous Java platform
used as the implementation target of a lot of methods to handle agents execution and
interaction. It provides means to execute the behaviours of the agents in a concurrent way
(with primitives to trigger behaviours depending on the message received). It also provides
means to construct messages using the FIPA ACL and exchange messages with other agents
thanks to a message transport service. It provides the agents with identifier. It is usable
to have several networked agents communicating together. Then it also provides directory
services according to the FIPA meta-model that are realised by agents (thus they can be
accessed by messages even if the framework provides shortcuts to ease their use). The
platform can not really be easily extended except by providing more advanced behaviour
management as in the Jadex case.

170

A.2. Development Support Meta-Models

CArtAgO for A&A. CArtAgO (Common ARTifact infrastructure for AGents Open environ-
ments) (Ricci, Viroli, and Omicini 2007) is usable to realise artefact-based environment in Java.
It distinguishes the workspace (where agents and artefacts are situated), agents’ “bodies” and
artefacts themselves. The agent “mind” (which can be any platform focused on internal agent
architecture, for example a Jason bridge is distributed with CArtAgO) controls the body
using its effectors and sensors. The bodies gives access to the artefacts in the workspaces. In
particular sensing dynamics is decoupled by the body: events from artefacts are collected
by sensors, and the body explicitly asks for the collected percepts. Artefacts are referenced
by an identifier provided by the platform and can generate events and provide the way
to use interface (which are described in terms of their function and how to use them, for
now represented as strings without semantics). Because of the use of artefacts, CArtAgO
can actually be extended by defining new artefacts and new ways to use them. In a way,
CArtAgO provides a means to define any abstraction by reformulating it in terms of artefacts.
This is done for example for the implementation of ORA4MAS in JaCaMo presented later.

SimpA for A&A and activity-oriented behaviours. SimpA (Ricci, Mirko, and Giulio 2011)
is based on CArtAgO and on top of it provides means to describe the agents behaviours by
atomic and structured activities that are automatically scheduled by the platform.

S-MOISE+ for MOISE+. S-MOISE+ (Hübner, Sichman, and Boissier 2006) is usable to
realise MOISE+ kind of organisations. Part of S-MOISE+, the OrgBox, gives agents access
to the organisation primitives such as joining groups, accepting goals or roles, etc. Then a
special agent is responsible of executing these primitives and changing the organisation while
verifying constraints of MOISE+ are respected. The SACI 1 middleware is used to let agents
communicate by messages, but theoretically any other message transport service can be used.
Nothing is available to extend S-MOISE+ except for the internal architecture of agents that is
not pre-specified.

J-MOISE+ for MOISE+ within BDI agents. J-MOISE+ (Hübner, Sichman, and Boissier
2007) is usable to manipulate and reason about MOISE+ abstraction (from S-MOISE+) from
within Jason. It lets Jason handle communication middleware and relies on S-MOISE+ for
handling the organisation itself.

JaCaMo for ORA4MAS and BDI agents. JaCaMo is the surname given by its author of the
combination of Jason, CArtAgO and MOISE+. The main platform here is an implementation
of MOISE+ with CArtAgO as presented in ORA4MAS.

Janus for ASPECS. Janus (Gaud et al. 2009) is a platform providing the concepts developed
in CRIO and Holons meta-models and that is mostly FIPA-compatible. It contains a kernel
where agents are represented either as atomic agents or holons. Several execution mechanisms

1. http://www.lti.pcs.usp.br/saci/

171

http://www.lti.pcs.usp.br/saci/

A. Design and Implementation MAS Meta-Models

exist either using one thread by agent or a more lightweight mechanisms. It provides also
identification, messages transport and directory services to respectively refer to, communicate
with and find other agents. It should be noted that communication receivers are roles and
not directly on agents’ addresses. A part of the kernel is responsible of maintaining the
organisation in terms of roles, groups, etc. For the agents, if they are atomic, they are
implemented by a set of capabilities that are invoked (synchronously or asynchronously)
depending on the role they play in the groups they are in. The roles are triggered based on
received messages.

MAGIQUE. Magique (Bensaid and Mathieu 1997; Routier, Mathieu, and Secq 2001) is
a platform which permits the construction of agents by gathering reusable units of code
representing skills. Agents are actually made of agents and requests for performing actions
are sent to the set of their contacts (which are their sub-agents) without explicit receiver
specified. Thus, the set of skills of an agent can change dynamically but the inversely
availability of skills at runtime is not guaranteed.

JEDI for IODA. JEDI (Kubera, Mathieu, and Picault 2008) is a platform for IODA with
euclidean spaces and discrete time. It takes as input the interactions definitions as well as
agents description and applies a generic algorithm to update the agents’ states, makes them
perceive their neighbours, choose an interaction and apply the chosen interaction. Agents act
sequentially but in randomized order.

MALEVA. MALEVA (Briot, Meurisse, and Peschanski 2007) is a meta-model of software
components for the building of complex behaviours of agents by composing elementary ones.
MALEVA targets the behaviour of the agents with an explicit notion of control flow, without
taking care of the environment.

Malaca. Malaca (Amor and Fuentes 2009) exploits a combination of components and aspects
to define the internal mechanisms of agents. Interactions are done using message passing.

NetLogo. NetLogo (Wilensky 1999), very used in MABS, proposes to model a MAS using
agents and patches. Agents can be of different races (kind of classes or types) and move
between patches that represent places in a situated environment. Agents are defined using
methods that can be executed by a general system loop definable by the developer. NetLogo
is very generic and powerful, kind of object oriented language where the objects are situated
and scheduled by the system. NetLogo introduces a set of tools for easing the visualisation
and the execution of all the agents of the system in a synchronous way.

GAMA and GAML. GAML (GAMA Modeling Language), the language behind the GAMA
(Gis & Agent-based Modelling Architecture) simulation platform (Taillandier et al. 2010),
proposes to describe a situated environment where species (class of agent that can be

172

A.2. Development Support Meta-Models

instantiated) are described in terms of actions they can do, behaviour (described with one of
the following formalisms: imperative, final state machines and etho-modeling framework,
which is a task-based behaviour meta-model) and state. The environment can be multiple and
described either with grids or continuous spaces. The platform can then execute the agents
according to their species and take care of synchronisation between agents and environments,
while presenting visual informations about the simulation. GAMA can be extended by
providing new internal architectures for the behaviour of the agents.

JavAct. JavAct (Arcangeli et al. 2004) is an implementation of the actor meta-model with
mobility. Actors are implemented as pattern matching behaviour executed depending on the
messages received. They have the simple actor programming abstractions such as “become”
to change their behaviour, “send” to send an asynchronous message, “move” for mobility
and “die” for disappearing.

173

APPENDIX B
Implementation of SpeAD: Make

Agents Yourself

In this appendix, we present a brief description of the implementation of the SpeADL
component model. It is available as a tool named MAY (Make Agents Yourself) that we
present. It takes the form of a transformation from SpeADL to Java and the generated code is
the one used to implement components as described Section 3.2.

B.1 Make Agents Yourself

SpeADL was completely implemented as a textual editor and code generator. This tool
is named MAY (Make Agents Yourself) and is released under the GNU General Public
License (GPL) 1. The implementation relies on Eclipse and the Xtext 2 framework. The
editor provides syntactic colouration, automatic completion, type verification for components
bindings (including the parametric types and the Java types).

All the code generated by the tool does not have to be modified and every implementation
is done through class extension as presented in this chapter. Thus, with it component
programming is flexible and incremental: component descriptions are considered as code,
every modification on it is reflected on the generated code, and the implemented code is
directly impacted by these updates through the generated class.

Figure B.1 shows an instance of Eclipse with a SpeADL description on the left and a
component implementation on the right.

1. http://www.irit.fr/MAY
2. http://www.eclipse.org/Xtext/

175

http://www.irit.fr/MAY
http://www.eclipse.org/Xtext/

B. Implementation of SpeAD: Make Agents Yourself

Figure B.1: MAY in Eclipse

ecosystem EcosystemX {
provides portX : I n t e r f a c e X
requires portY : I n t e r f a c e Y

part partZ : EcosystemZ

species SpeciesY
}

Figure B.2: Component description for a component named EcosystemX in SpeADL

B.2 From SpeADL to Java

Figure B.3 shows the set of classes generated from the SpeADL description shown Fig-
ure B.2. The formalism used is UML2 with some adaptations. The dependency labelled is
between SpeciesY and EcosystemX means that the way the class SpeciesY is generated follows
the same schema as EcosystemX (except for having species itself obviously). The $ character
represents containment of classes (inner classes): for example EcosystemZ$Component is an
inner class of the class EcosystemZ. The two classes SpeciesY and BridgePartZImpl would be
duplicated respectively for every species and parts of the ecosystem. Since the species follow
the same schema than ecosystem for the generated classes, the species’s uses are represented
in the same way than the parts.

EcosystemX is what we previously called the description class. It is an abstract class that
must be extended to implement the component. It contains all the abstract methods that
must be implemented to specify an implementation for the parts, the provided ports and
the species. It also contains methods to access the required ports, to access the parts as

176

B.2. From SpeADL to Java

#self() : EcosystemX$Component
+make_portX() : InterfaceX
#portY() : InterfaceY
+make_partZ() : EcosystemZ
#partZ() : EcosystemZ$Component
+make_SpeciesY() : EcosystemX$SpeciesY
#newSpeciesY() : EcosystemX$SpeciesY
+newImplementationOfSpeciesY() : EcosystemX$SpeciesY

EcosystemX

+portX() : InterfaceX
+start()

<<Interface>>
Component

+portY() : InterfaceY

<<Interface>>
Bridge

-partZ : EcosystemZ$Component

ComponentImpl

#eco_self() : EcosystemX$Component
#eco_portY() : InterfaceY
#eco_partZ() : EcosystemZ$Component

SpeciesY

BridgePartZImpl

eco_self

bridge

self

impl

bridge

impl

self

is

eco_self

Visual Paradigm for UML Community Edition [not for commercial use]

Figure B.3: Generated classes from SpeADL to Java for a component named EcosystemX in
UML2

components, to access its provided ports and to create new instances of its species. Finally it
contains the start method that can be overridden if needed.

The EcosystemX$Bridge interface represents the set of required ports of the component.
It is meant to be implemented by composites that contain parts of the type of this component.

By opposition to EcosystemX that represents an implementation for the component,
the inner interface EcosystemX$Component represents the component itself. It contains the
provided ports of the component as well as the start method used to start the component.
Internally to EcosystemX, a class, named EcosystemX$ComponentImpl, actually implements
this interface to realise the configuration of the components such as the parts and the bindings.

For each of the parts an implementation of its bridge is present and realises the bindings
to other parts or to ports of EcosystemX. For example with partZ, the class
EcosystemX$ComponentImpl$BridgePartZImpl implements EcosystemZ$Bridge, which is not
represented here but similar to EcosystemX$Bridge. Indeed, EcosystemZ, the generated
classes for the component used in EcosystemZ as partZ, follows the same schema than
EcosystemX.

The abstract class SpeciesY, that we previously called the species description class,
represents an implementation for the species. The rest of its related inner classes — Component,
ComponentImpl and Bridge — are not represented here but follow the same schema than
EcosystemX. On top of the methods present in the description class, some additional methods
are present in order to get access to the species’ ecosystem during implementation. The
method newImplementationOfSpeciesY returns an instance of the species and initialises its
uses implementation recursively.

177

Author’s Bibliography

French Journals

Noël, Victor, Jean-Paul Arcangeli, and Marie-Pierre Gleizes (2012). « Une approche archi-
tecturale à base de composants pour l’implémentation des Systèmes Multi-Agents ». In:
Revue des Nouvelles Technologies de l’Information. In press (cit. on pp. xxiii, 114).

International Conferences and Workshops

Cruz Torres, Mario Henrique, Victor Noël, Tom Holvoet, and Jean-Paul Arcangeli (2010a).
« MAS Organisation at your Composite Service ». In: Proceedings of the 8th European
Workshop on Multi-Agent Systems (EUMAS’10), Paris (France). Université Paris Descartes
(cit. on pp. xxiii, 114, 143).

Cruz Torres, Mario Henrique, Victor Noël, Tom Holvoet, and Jean-Paul Arcangeli (2010b).
« MAS Organisation at your Composite Service ». In: Proceedings of the 3rd International
Workshop on Monitoring, Adaptation and Beyond (MONA+), Ayia Napa (Cyprus). Ed. by Dimka
Karastoyanova, Raman Kazhamiakin, and Andreas Metzger. ACM, pp. 33–39 (cit. on
pp. xxiii, 114, 144).

Georgé, Jean-Pierre, Marie-Pierre Gleizes, Francisco Garijo, Victor Noël, and Jean-Paul Ar-
cangeli (2010). « Self-adaptive Coordination for Robot Teams Accomplishing Critical
Activities ». In: Advances in Practical Applications of Agents and Multiagent Systems, 8th
International Conference on Practical Applications of Agents and Multiagent Systems (PAAMS
2010), Salamanca (Spain). Ed. by Yves Demazeau, Frank Dignum, Juan M. Corchado, and
Javier Bajo. Vol. 70. Advances in Soft Computing. Springer, pp. 145–150 (cit. on p. xxiii).

Lacouture, Jérôme, Victor Noël, Jean-Paul Arcangeli, and Marie-Pierre Gleizes (2011). « En-
gineering Agent Frameworks: An Application in Multi-Robot Systems ». In: Advances
in Practical Applications of Agents and Multiagent Systems, 9th International Conference on
Practical Applications of Agents and Multiagent Systems (PAAMS 2011), Salamanca (Spain).
Ed. by Yves Demazeau, Michal Pechoucek, Juan M. Corchado, and Javier Bajo Pérez.
Advances in Intelligent and Soft Computing. Springer (cit. on pp. xxiii, 114).

179

Author’s Bibliography

Noël, Victor, Jean-Paul Arcangeli, and Marie-Pierre Gleizes (2010a). « Component-Based
Agent Architectures to Build Dedicated Agent Frameworks ». In: Proceedings of the 7th
International Symposium “From Agent Theory to Agent Implementation” (AT2AI-7), Vienna
(Austria). Ed. by Robert Trappl. Austrian Society for Cybernetic Studies, Apr. 2010, pp. 483–
488 (cit. on pp. xxiii, 113).

Noël, Victor, Jean-Paul Arcangeli, and Marie-Pierre Gleizes (2010b). « Between Design and
Implementation of Multi-Agent Systems: A Component-Based Two-Step Process ». In:
Proceedings of the 8th European Workshop on Multi-Agent Systems (EUMAS’10), Paris (France).
Université Paris Descartes, Dec. 2010 (cit. on pp. xxiii, 113).

Noël, Victor and Antonis Kakas (2009). « Gorgias-C: Extending Argumentation with Constraint
Solving ». In: Proceedings of the 10th International Conference on Logic Programming and
Nonmonotonic Reasoning (System Descriptions) (LPNMR 2009), Potsdam (Germany). Ed. by
Esra Erdem, Fangzhen Lin, and Torsten Schaub. Vol. 5753. Lecture Notes in Computer
Science. Springer, Sept. 2009, pp. 535–541 (cit. on p. xxiii).

French Conferences and Workshops

Denis, Grégoire, Victor Noël, Jean-Paul Arcangeli, Sylvie Trouilhet, and Charles Triboulot
(2012). « Composition opportuniste et ascendante à base d’agents coopératifs ». In: 8èmes
Journées Francophones Mobilité et Ubiquité (UBIMOB 2012). In press (cit. on pp. xxiv, 114).

Noël, Victor and Jean-Paul Arcangeli (2011). « Frameworks, architectures et composants:
revisiter le développement de systèmes multi-agents ». In: Conférence Francophone sur les
Architectures Logicielles (CAL), Lille (France), pp. 23–32 (cit. on pp. xxiii, 114).

Noël, Victor, Sylvain Rougemaille, Jean-Paul Arcangeli, Jean-Pierre Georgé, Frédéric Migeon,
and Stephane Dudouit (2009). « MAY : Make Agents Yourself. Un générateur d’API agent
à base de composants ». In: Journées du GDR GPL (Session Outils et Posters) (GDR GPL),
Toulouse (France). Ed. by Yves Ledru and Marc Pantel. IRIT Press, Jan. 2009, pp. 262–263
(cit. on p. xxiii).

Books Parts

Lacouture, Jérôme, Ismael Rodriguez, Jean-Paul Arcangeli, Christophe Chassot, Thierry
Desprats, Khalil Drira, Francisco Garijo, Victor Noël, Michelle Sibilla, and Catherine-
noel Tessier (2011). « Mission-Aware Adaptive Communication for Collaborative Mobile
Entities ». In: Handbook of Research on Mobility and Computing: Evolving Technologies and
Ubiquitous Impacts. Ed. by Maria Manuela Cruz-Cunha and Fernando Moreira. IGI Global.
Chap. 64, pp. 1056–1076 (cit. on p. xxiii).

180

Bibliography

Abowd, Gregory, Robert Allen, and David Garlan (1993). « Using Style to Understand
Descriptions of Software Architecture ». In: Proceedings of SIGSOFT’93: Foundations of
Software Engineering. Software Engineering Notes 18(5). ACM Press, Dec. 1993, pp. 9–20
(cit. on p. 8).

Agha, Gul (1986). Actors: a model of concurrent computation in distributed systems. Cambridge,
MA, USA: MIT Press (cit. on p. 169).

Amor, Mercedes and Lidia Fuentes (2009). « Malaca: A Component and Aspect-Oriented
Agent Architecture ». In: Information & Software Technology 51.6, pp. 1052–1065 (cit. on
pp. 36, 38, 172).

Amor, Mercedes, Lidia Fuentes, and Antonio Vallecillo (2005). « Bridging the Gap Between
Agent-Oriented Design and Implementation Using MDA ». In: Agent-Oriented Software
Engineering V. Ed. by James Odell, Paolo Giorgini, and Jörg Müller. Vol. 3382. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 93–108 (cit. on pp. 28, 38).

Arcangeli, Jean-Paul, Vincent Hennebert, Sébastien Leriche, Frédéric Migeon, and Marc Pantel
(2004). JavAct. http://javact.org/. Institut de Recherche en Informatique de Toulouse,
Toulouse University. Toulouse, FR. (cit. on p. 173).

Arlow, Jim and Ila Neustadt (2005). UML 2 and the Unified Process. 2nd Edition (cit. on p. 3).
Bachmann, Felix, Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred Long, John Robert,

Robert Seacord, and Kurt Wallnau (2000). Volume II: Technical Concepts of Component-Based
Software Engineering, 2nd Edition. technical CMU/SEI-2000-TR-008. Software Engineering
Institute, Carnigie Mellon University (cit. on pp. 6, 110, 122–125, 127).

Bass, Len, Paul Clements, and Rick Kazman (2003). Software Architecture in Practice. 2nd.
Boston, MA, USA: Addison-Wesley (cit. on pp. 5, 8).

Bauer, Bernhard (2002). « UML Class Diagrams Revisited in the Context of Agent-Based
Systems ». In: Agent-Oriented Software Engineering II. Ed. by Michael Wooldridge, Gerhard
Weiß, and Paolo Ciancarini. Vol. 2222. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, pp. 101–118 (cit. on p. 169).

Bauer, Bernhard, Jörg Müller, and James Odell (2001). « Agent UML: A Formalism for
Specifying Multiagent Software Systems ». In: Agent-Oriented Software Engineering. Ed. by
Paolo Ciancarini and Michael Wooldridge. Vol. 1957. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, pp. 109–120 (cit. on p. 169).

181

http://javact.org/

Bibliography

Behrens, Tristan, Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Jürgen Dix, Koen Hindriks,
Jomi F. Hübner, and Alexander Pokahr (2011). « An Interface for Agent-Environment
Interaction ». In: Proceedings of International Workshop on Programming Multi-Agent Systems
(ProMAS-8). Springer (cit. on p. 36).

Bellifemine, Fabio, Agostino Poggi, and Giovanni Rimassa (1999). « JADE - A FIPA-Compliant
Agent Framework ». In: 4th Proceedings of International Conference on the Practical Applications
of Intelligent Agents, pp. 97–108 (cit. on p. 170).

Bensaid, Nourredine and Philippe Mathieu (1997). « A Hybrid and Hierarchical Multi-Agent
Architecture Model ». In: In Proceedings of PAAM’97, pp. 145–155 (cit. on p. 172).

Bergenti, Federico, Marie-Pierre Gleizes, and Franco Zambonelli, eds. (2004). Methodologies
and Software Engineering for Agent Systems. Klüwer Academic Press (cit. on pp. 17, 38).

Bernon, Carole, Valérie Camps, Marie-Pierre Gleizes, and Gauthier Picard (2005). « Engi-
neering Adaptive Multi-Agent Systems: The ADELFE Methodology ». In: Agent-Oriented
Methodologies. Ed. by Brian Henderson-Sellers and Paolo Giorgini. Idea Group Publishing,
pp. 172–202 (cit. on pp. 11, 169).

Bernon, Carole, Massimo Cossentino, Marie-Pierre Gleizes, Paola Turci, and Franco Zam-
bonelli (2005). « A Study of Some Multi-agent Meta-models ». In: Agent-Oriented Software
Engineering V. Ed. by James Odell, Paolo Giorgini, and Jörg Müller. Vol. 3382. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 62–77 (cit. on pp. 29, 38).

Bernon, Carole, Massimo Cossentino, and Juan Pavón (2005). « An overview of current trends
in european aose research ». In: Informatica 29, pp. 379–390 (cit. on p. 18).

Beydoun, Ghassan, Cesar Gonzalez-Perez, Graham Low, and Brian Henderson-Sellers (2005).
« Synthesis of a generic MAS metamodel ». In: SIGSOFT Softw. Eng. Notes 30 (4 May 2005),
pp. 1–5 (cit. on pp. 29, 38).

Bézivin, Jean and Olivier Gerbé (2001). « Towards a Precise Definition of the OMG/MDA
Framework ». In: 16th IEEE International Conference on Automated Software Engineering (ASE
2001), 26-29 November 2001, Coronado Island, San Diego, CA, USA. IEEE Computer Society,
pp. 273–280 (cit. on p. 2).

Bonjean, Noélie, Carole Bernon, and Pierre Glize (2009). « Engineering Development of Agents
using the Cooperative Behaviour of their Components ». In: MAS&S @ MALLOW’09, Turin.
Ed. by Giancarlo Fortino, Massimo Cossentino, Marie-Pierre Gleizes, and Juan Pavón.
Vol. 494. CEUR Workshop Proceedings (cit. on p. 113).

Bonjean, Noelie, Marie-Pierre Gleizes, Christine Maurel, and Frederic Migeon (2012). « For-
ward Self-Combined Method Fragments ». In: Workshop on Agent Oriented Software Engi-
neering (AOSE), Valencia, Spain, 04/06/2012-08/06/2012. Springer (cit. on p. 114).

Bordini, Rafael H., Lars Braubach, Mehdi Dastani, Amal El Fallah Seghrouchni, Jorge J. Gomez-
Sanz, J. Leite, G. O’Hare, Alexander Pokahr, and Alessandro Ricci (2006). « A Survey of
Programming Languages and Platforms for Multi-Agent Systems ». In: Informatica 30,
pp. 33–44 (cit. on pp. 17, 38).

182

Bibliography

Bordini, Rafael H., Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni, eds. (2005).
Multi-Agent Programming: Languages, Platforms and Applications. Vol. 15. Multiagent Systems,
Artificial Societies and Simulated Organizations. Springer (cit. on p. 17).

Bordini, Rafael H., Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni, eds. (2009).
Multi-Agent Programming: Languages, Tools and Applications. 1st. Springer Publishing Com-
pany, Incorporated (cit. on pp. 17, 38).

Bordini, Rafael H., Jomi F. Hübner, and Michael Wooldridge (2008). Programming multi-agent
systems in AgentSpeak using Jason. Vol. 8. Wiley-Interscience (cit. on p. 170).

Bosch, Jan (2009). « From software product lines to software ecosystems ». In: Proceedings of
the 13th International Software Product Line Conference. San Francisco, California: Carnegie
Mellon University, pp. 111–119 (cit. on p. 62).

Bouziane, Hinde L., Christian Pérez, and Thierry Priol (2008). « A software component model
with spatial and temporal compositions for grid infrastructures ». In: Euro-Par 2008–Parallel
Processing, pp. 698–708 (cit. on p. 154).

Bratman, Michael E. (1999). Intention, Plans, and Practical Reason. Cambridge University Press,
Mar. 1999 (cit. on p. 25).

Brazier, Frances M. T., Catholijn M. Jonker, and Jan Treur (1999). « Compositional Design and
Reuse of a Generic Agent Model ». In: Applied Artificial Intelligence Journal 14, pp. 491–538
(cit. on pp. 36, 38).

Briot, Jean-Pierre, Thomas Meurisse, and Frédéric Peschanski (2007). « Architectural Design
of Component-Based Agents: A Behavior-Based Approach ». In: Programming Multi-
Agent Systems. Ed. by Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah
Seghrouchni. Vol. 4411. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
pp. 71–90 (cit. on pp. 36, 38, 172).

Camps, Valérie, Bernard Carpuat, Marie-Pierre Gleizes, Pierre Glize, André Machonin,
Christine Piquemal, Jo Link-Pezet, Christine Régis, and Sylvie Trouilhet (1994). « Vers
l’intelligence artificielle collective ». In: Journée Systèmes Multi-Agents du PRC-GRD I.A.,
Paris, 16/12/94-16/12/94 (cit. on p. 10).

Camps, Valérie, Marie-Pierre Gleizes, and Pierre Glize (1998). « A self-organization process
based on cooperation theory for adaptive artificial systems ». In: Problems of Evolution in
Real and Virtual Systems: Proceedings of the First International Conference on Philosophy and
Computer Science, November 2-4, 1998. Krakow, Poland: Jagiellonian University, University
of Mining, and Metallurgy (cit. on p. 10).

Capera, Davy, Jean-Pierre Georgé, Marie-Pierre Gleizes, and Pierre Glize (2003). « The AMAS
Theory for Complex Problem Solving Based on Self-organizing Cooperative Agents ».
In: International Workshop on Theory And Practice of Open Computational Systems (TAPOCS).
IEEE Computer Society Press, pp. 389–394 (cit. on p. 10).

Clements, Paul, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Robert
Nord, and Judith Stafford (2003). Documenting Software Architectures: Views and Beyond.
Addison-Wesley (cit. on pp. 1, 7, 8).

183

Bibliography

Clements, Paul and Linda Northrop (2001). Software product lines. Addison-Wesley (cit. on
p. 8).

Cossentino, Massimo (2005). « From requirements to code with the PASSI methodology ». In:
Agent-Oriented Methodologies. Ed. by Brian Henderson-Sellers and Paolo Giorgini. Idea
Group Publishing, pp. 79–106 (cit. on p. 169).

Cossentino, Massimo, Nicolas Gaud, Vincent Hilaire, Stéphane Galland, and Abderrafiâa
Koukam (2010). « ASPECS: an agent-oriented software process for engineering complex
systems ». In: Autonomous Agents and Multi-Agent Systems 20 (2 2010), pp. 260–304 (cit. on
p. 167).

Cossentino, Massimo and Valeria Seidita (2009). PASSI 2 - Going Towards Maturity of the PASSI
Process. Tech. rep. 09-02. ICAR-CNR, Dec. 2009 (cit. on p. 169).

Crnković, Ivica, Brahim Hnich, Torsten Jonsson, and Zeynep Kiziltan (2002). « Specification,
implementation, and deployment of components ». In: Commun. ACM 45.10 (Oct. 2002),
pp. 35–40. doi: 10.1145/570907.570928 (cit. on pp. 122, 124).

Crnković, Ivica, Séverine Sentilles, Aneta Vulgarakis, and Michel Chaudron (2011). « A
Classification Framework for Software Component Models ». In: IEEE Transactions on
Software Engineering 37.5 (Sept. 2011), pp. 593–615. doi: 10.1109/TSE.2010.83 (cit. on
p. 6).

Cruz Torres, Mario Henrique and Tom Holvoet (2011a). « Composite service adaptation: a
QoS-driven approach ». In: Comsware (cit. on p. 144).

Cruz Torres, Mario Henrique and Tom Holvoet (2011b). « Towards robust service workflows:
a decentralized approach ». In: CoopIS - Cooperative Information Systems (cit. on p. 144).

Dalpiaz, Fabiano, Ambra Molesini, Mariachiara Puviani, and Valeria Seidita (2008). « Towards
Filling the Gap between AOSE Methodologies and Infrastructures: Requirements and
Meta-model ». In: 9th Workshop "From Objects to Agents" (WOA 2008) – Evolution of Agent
Development: Methodologies, Tools, Platforms and Languages. Ed. by Matteo Baldoni, Massimo
Cossentino, Flavio De Paoli, and Valeria Seidita. Palermo, Italy: Seneca Edizioni, Nov.
2008, pp. 115–121 (cit. on pp. 29, 38).

Da Silva, Joao Luis T. and Yves Demazeau (2002). « Vowels co-ordination model ». In: Proceed-
ings of the first international joint conference on Autonomous agents and multiagent systems: part
3. AAMAS ’02. Bologna, Italy: ACM, pp. 1129–1136 (cit. on p. 168).

Dehlinger, Josh and Robyn R. Lutz (2011). « Gaia-PL: A Product-Line Engineering Approach
for Efficiently Designing Multi-Agent Systems ». In: ACM Transactions on Software Engi-
neering and Methodology (TOSEM) (cit. on pp. 24, 38).

DeLoach, Scott A. (2009). « OMACS: A framework for adaptive, complex systems ». In:
Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational
Models. Ed. by Virginia Dignum. IGI Global, pp. 76–98 (cit. on p. 139).

Demazeau, Y. (1995). « From interactions to collective behaviour in agent-based systems ». In:
Proceedings of the First European conference on cognitive science. Saint Malo, France, Apr. 1995,
pp. 117–132 (cit. on pp. 10, 168).

184

http://dx.doi.org/10.1145/570907.570928
http://dx.doi.org/10.1109/TSE.2010.83

Bibliography

Denis, Grégoire (2011). « Composition autonome et émergence au moyen d’agents-composants
coopératifs ». MA thesis. Université Paul Sabatier, June 2011 (cit. on pp. 134, 152).

Desnos, Nicolas, Marianne Huchard, Christelle Urtado, Sylvain Vauttier, and Guy Tremblay
(2007). « Automated and Unanticipated Flexible Component Substitution ». In: Proceedings
of the 10th ACM SIGSOFT Symposium on Component-Based Software Engineering. Ed. by
Heinz Schmidt, Ivica Crnkovic, George Heineman, and Judith Stafford. Vol. 4608. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 33–48. doi: 10.1007/978-
3-540-73551-9_3 (cit. on p. 155).

Dignum, Virginia (2004). « A Model for Organizational Interaction: Based on Agents, Founded
in Logic ». PhD thesis. Universiteit Utrecht (cit. on p. 167).

Dignum, Virginia, ed. (2009a). Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global.

Dignum, Virginia (2009b). « The Role of Organization in Agent Systems ». In: Handbook of
Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models. Ed. by
Virginia Dignum. IGI Global, pp. 1–17 (cit. on p. 139).

Di Marzo Serugendo, Giovanna, Marie-Pierre Gleizes, and Anthony Karageorgos, eds. (2011).
Self-organising Software. Natural Computing Series. Springer Berlin Heidelberg. doi: 10.
1007/978-3-642-17348-6 (cit. on p. 135).

Eden, Amnon H. and Rick Kazman (2003). « Architecture, design, implementation ». In:
Software Engineering, 2003. Proceedings. 25th International Conference on. May 2003, pp. 149–
159. doi: 10.1109/ICSE.2003.1201196 (cit. on p. 8).

Ferber, Jacques (1995). Les systèmes multi-agents : vers une intelligence collective. InterEditions
(cit. on pp. 9, 10).

Ferber, Jacques, Olivier Gutknecht, and Fabien Michel (2004). « From Agents to Organizations:
An Organizational View of Multi-agent Systems ». In: Agent-Oriented Software Engineering
IV. Ed. by Paolo Giorgini, Jörg Müller, and James Odell. Vol. 2935. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, pp. 443–459 (cit. on p. 167).

Fielding, Roy Thomas (2000). « Architectural Styles and the Design of Network-based Software
Architectures ». PhD thesis (cit. on pp. 5, 123, 127).

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series. A. Wesley (cit. on p. 8).

García-Magariño, Iván (2009). « Towards the Coexistence of Different Multi-Agent System
Modeling Languages with a Powertype-Based Metamodel ». In: International Symposium
on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Ed. by Juan Corchado,
Sara Rodríguez, James Llinas, and José Molina. Vol. 50. Advances in Soft Computing.
Springer Berlin / Heidelberg, pp. 189–193 (cit. on pp. 29, 38).

Garlan, David, Jeffrey M. Barnes, Bradley Schmerl, and Orieta Celiku (2009). « Evolution
styles: Foundations and tool support for software architecture evolution ». In: Software
Architecture, 2009 European Conference on Software Architecture. WICSA/ECSA 2009. Joint
Working IEEE/IFIP Conference on. Oct. 2009, pp. 131–140. doi: 10.1109/WICSA.2009.
5290799 (cit. on p. 156).

185

http://dx.doi.org/10.1007/978-3-540-73551-9_3
http://dx.doi.org/10.1007/978-3-540-73551-9_3
http://dx.doi.org/10.1007/978-3-642-17348-6
http://dx.doi.org/10.1007/978-3-642-17348-6
http://dx.doi.org/10.1109/ICSE.2003.1201196
http://dx.doi.org/10.1109/WICSA.2009.5290799
http://dx.doi.org/10.1109/WICSA.2009.5290799

Bibliography

Garlan, David, Robert T. Monroe, and David Wile (1997). « Acme: an architecture description
interchange language ». In: Proceedings of the 1997 conference of the Centre for Advanced
Studies on Collaborative Research, November 10-13, 1997, Toronto, Ontario, Canada. Ed. by
J. Howard Johnson. IBM, p. 7 (cit. on p. 69).

Garlan, David and Mary Shaw (1993). « An introduction to software architecture ». In: Advances
in Software Engineering and Knowledge Engineering. Publishing Company, pp. 1–39 (cit. on
p. 5).

Gaud, Nicolas, Stéphane Galland, Vincent Hilaire, and Abderrafiâa Koukam (2009). « An
Organisational Platform for Holonic and Multiagent Systems ». In: Programming Multi-
Agent Systems. Ed. by Koen Hindriks, Alexander Pokahr, and Sebastian Sardina. Vol. 5442.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 104–119 (cit. on
p. 171).

Georgé, Jean-Pierre, Marie-Pierre Gleizes, and Valérie Camps (2011). « Cooperation ». In:
Self-organising Software. Ed. by Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and
Anthony Karageorgos. Natural Computing Series. Springer Berlin Heidelberg, pp. 193–226.
doi: 10.1007/978-3-642-17348-6_9 (cit. on p. 11).

Georgé, Jean-Pierre, Gauthier Picard, Marie-Pierre Gleizes, and Pierre Glize (2003). « Living
Design for Open Computational Systems ». In: International Workshop on Theory And
Practice of Open Computational Systems (TAPOCS at IEEE 12th International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2003) (TAPOCS),
Linz, Austria, 09/06/2003-11/06/2003. http://www.computer.org: IEEE Computer Society,
June 2003, pp. 389–394 (cit. on p. 30).

Georgé, J.-P., J.-P. Mano, Marie-Pierre Gleizes, M. Morel, A. Bonnot, and D. Carreras (2009).
« Emergent Maritime Multi-Sensor Surveillance Using an Adaptive Multi-Agent System ».
In: Cognitive systems with Interactive Sensors (COGIS), Paris. SEE/URISCA, Nov. 2009 (cit. on
p. 114).

Ghosh, Debasish (2010). DSLs in action. Manning Publications Co. (cit. on pp. 4, 127).
Giorgini, P., J. Mylopoulos, A. Perini, and A. Susi (2005). « The Tropos Metamodel and its

Use ». In: Informatical journal (cit. on pp. 23, 169).
Girardi, Rosario and Alisson Lindoso (2006). « An Ontology-Driven Technique for the Archi-

tectural and Detailed Design of Multi-agent Frameworks ». In: Agent-Oriented Information
Systems III. Ed. by Manuel Kolp, Paolo Bresciani, Brian Henderson-Sellers, and Michael
Winikoff. Vol. 3529. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
pp. 124–139 (cit. on pp. 24, 38).

Gleizes, Marie Pierre, Valérie Camps, Jean-Pierre Georgé, and Davy Capera (2008). « Engineer-
ing Systems Which Generate Emergent Functionalities ». In: EEMMAS 2007. Ed. by Danny
Weyns, Sven A. Brueckner, and Yves Demazeau. Vol. 5049. Lecture Notes in Computer
Science (Lecture Notes in Artificial Intelligence). Springer, pp. 58–75 (cit. on pp. 11, 169).

Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha (2005). Java(TM) Language Specification,
The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley (cit. on p. 123).

186

http://dx.doi.org/10.1007/978-3-642-17348-6_9

Bibliography

Greenfield, Jack and Keith Short (2003). « Software factories: assembling applications with
patterns, models, frameworks and tools ». In: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications. OOPSLA ’03.
Anaheim, CA, USA: ACM, pp. 16–27. doi: 10.1145/949344.949348 (cit. on p. 121).

Gudgin, Martin, Marc Hadley, and Tony Rogers (2006). Web Services Addressing 1.0 - Core.
World Wide Web Consortium, Recommendation REC-ws-addr-core-20060509. May 2006
(cit. on p. 137).

Guivarch, Valérian, Valérie Camps, and André Péninou (2012). « Amadeus : sensibilité
au contexte et adaptation dans les systèmes ambiants par une approche multi-agent
adaptative ». In: 8èmes journées francophones Mobilité et Ubiquité (UBIMOB 2012). Ed. by
Stéphane Lavirotte and Makhlouf Derdour (cit. on p. 114).

Gutknecht, Olivier and Jacques Ferber (2001). « The MadKit Agent Platform Architecture ».
In: Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems. Ed. by
Tom Wagner and Omer Rana. Vol. 1887. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, pp. 48–55 (cit. on p. 170).

Hahn, Christian, Cristián Madrigal-Mora, and Klaus Fischer (2009). « A platform-independent
metamodel for multiagent systems ». In: Autonomous Agents and Multi-Agent Systems 18 (2
2009), pp. 239–266 (cit. on pp. 29, 38).

Henderson-Sellers, Brian and Paolo Giorgini, eds. (2005). Agent-Oriented Methodologies. Idea
Group Publishing (cit. on pp. 17, 38).

Hewitt, Carl (1977). « Viewing Control Structures as Patterns of Passing Messages ». In:
Artificial Intelligence 8.3, pp. 323–364 (cit. on p. 169).

Hilaire, Vincent, Abder Koukam, Pablo Gruer, and Jean-pierre Müller (2000). « Formal
Specification and Prototyping of Multi-Agent Systems ». In: In ESAW ’00: Proceedings of
the First International Workshop on Engineering Societies in the Agent World. Springer Verlag,
pp. 114–127 (cit. on p. 167).

Hindriks, Koen V., Frank S. De Boer, Wiebe Van der Hoek, and John-Jules Ch. Meyer (1999).
« Agent Programming in 3APL ». In: Autonomous Agents and Multi-Agent Systems 2 (4 1999),
pp. 357–401 (cit. on p. 170).

Hock-koon, Anthony A. and Mourad Oussalah (2011). « The Product-Process-Quality Frame-
work ». In: 37th EUROMICRO Conference on Software Engineering and Advanced Applications,
SEAA 2011, Oulu, Finland, August 30 - September 2, 2011. IEEE, pp. 20–27 (cit. on p. 134).

Hofer, Christian and Klaus Ostermann (2010). « Modular domain-specific language compo-
nents in Scala ». In: Proceedings of the 9th international conference on Generative programming
and Component engineering. GPCE’10. Eindhoven, The Netherlands: ACM, pp. 83–92. doi:
10.1145/1868294.1868307 (cit. on p. 129).

Howden, Nick, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas (2001). « JACK
Intelligent Agents - Summary of an Agent Infrastructure ». In: In 5th International conference
on autonomous agents (cit. on p. 170).

187

http://dx.doi.org/10.1145/949344.949348
http://dx.doi.org/10.1145/1868294.1868307

Bibliography

Hübner, Jomi F., Olivier Boissier, Rosine Kitio, and Alessandro Ricci (2010). « Instrumenting
multi-agent organisations with organisational artifacts and agents ». In: Autonomous Agents
and Multi-Agent Systems 20 (3 2010), pp. 369–400 (cit. on p. 168).

Hübner, Jomi F., Jaime S. Sichman, and O. Boissier (2007). « Developing organised multiagent
systems using the MOISE+ model: programming issues at the system and agent levels ».
In: International Journal of Agent-Oriented Software Engineering 1.3, pp. 370–395 (cit. on
p. 171).

Hübner, Jomi F., Jaime S. Sichman, and Olivier Boissier (2002). « A Model for the Structural,
Functional, and Deontic Specification of Organizations in Multiagent Systems ». In: Ad-
vances in Artificial Intelligence. Ed. by Guilherme Bittencourt and Geber Ramalho. Vol. 2507.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 439–448 (cit. on
p. 167).

Hübner, Jomi F., Jaime Simão Sichman, and Olivier Boissier (2006). « S-moise+: A middleware
for developing organised multi-agent systems ». In: COIN I, volume 3913 of LNAI. Springer,
pp. 64–78 (cit. on p. 171).

Huget, Marc-Philippe (2003). « Agent UML Class Diagrams Revisited ». In: Agent Technologies,
Infrastructures, Tools, and Applications for E-Services. Ed. by Jaime Carbonell, Jörg Siekmann,
Ryszard Kowalczyk, Jörg Müller, Huaglory Tianfield, and Rainer Unland. Vol. 2592.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 49–60 (cit. on
p. 169).

Ince, Darrel C., Leslie Hatton, and John Graham-Cumming (2012). « The case for open
computer programs ». In: Nature 482.7386 (Feb. 23, 2012), pp. 485–488. doi: 10.1038/
nature10836 (cit. on p. 115).

Johnson, R.E. (1997). « Frameworks = (components + patterns) ». In: Communications of the
ACM 40.10, pp. 39–42 (cit. on pp. 4, 121, 122, 124).

Kaddoum, Elsy (2011). « Optimisation sous contraintes de problèmes distribués par auto-
organisation coopérative ». PhD thesis. Université de Toulouse, Toulouse, France, Nov.
2011 (cit. on p. 114).

Kerth, N.L. and W. Cunningham (1997). « Using patterns to improve our architectural vision ».
In: Software, IEEE 14.1, pp. 53–59 (cit. on p. 9).

Klügl, Franziska, Rainer Herrler, and Christoph Oechslein (2003). « From Simulated to Real
Environments: How to Use SeSAm for Software Development ». In: Multiagent System
Technologies. Ed. by Michael Schillo, Matthias Klusch, Jörg Müller, and Huaglory Tianfield.
Vol. 2831. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 1097–1098
(cit. on pp. 28, 38).

Kubera, Yoann, Philippe Mathieu, and Sébastien Picault (2008). « Interaction-Oriented Agent
Simulations : From Theory to Implementation ». In: Proceedings of the 18th European Confer-
ence on Artificial Intelligence (ECAI’08). Ed. by Malik Ghallab, Constantine Spyropoulos,
Nikos Fakotakis, and Nikos Avouris. IOS Press, pp. 383–387 (cit. on p. 172).

188

http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1038/nature10836

Bibliography

Kubera, Yoann, Philippe Mathieu, and Sébastien Picault (2011). « IODA: an interaction-
oriented approach for multi-agent based simulations ». In: Autonomous Agents and Multi-
Agent Systems 23 (3 2011), pp. 303–343 (cit. on p. 168).

Le Goaer, Olivier, Dalila Tamzalit, Mourad Chabane Oussalah, and Abdelhak-Djamel Seriai
(2008). « Evolution styles to the rescue of architectural evolution knowledge ». In: Proceed-
ings of the 3rd international workshop on Sharing and reusing architectural knowledge. SHARK
’08. Leipzig, Germany: ACM, pp. 31–36 (cit. on p. 156).

Leriche, Sebastien (2006). « Architectures à composants et agents pour la conception d’applications
réparties adaptables ». PhD thesis. Université Paul Sabatier, Toulouse, France (cit. on p. xxi).

Leriche, Sébastien and Jean-Paul Arcangeli (2010). « Flexible Architectures of Adaptive Agents
: the Agent-Phi Approach ». In: International Journal of Grid Computing and Multi-Agent
Systems 1.1 (Jan. 2010), pp. 51–71 (cit. on p. xxi).

Loiret, Frédéric, Romain Rouvoy, Lionel Seinturier, and Philippe Merle (2011). « Software
Engineering of Component-Based Systems-of-Systems: A Reference Framework ». In: 14th
International ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE’11).
Ed. by Springer. June 2011, pp. 61–65 (cit. on p. 129).

Louloudi, Athanasia and Franziska Klügl (2011). « Towards a Generic Connection Between
Agent Behaviour and Visualisation ». In: Proceedings of the 9th European Workshop on
Multi-Agent Systems (EUMAS’11). Maastricht University (cit. on p. 37).

Magee, J. and J. Kramer (1996). « Dynamic structure in software architectures ». In: ACM
SIGSOFT Software Engineering Notes. Vol. 21. 6. ACM, pp. 3–14. doi: 10.1145/250707.
239104 (cit. on p. 122).

Mariachiara, Puviani, Massimo Cossentino, Giacomo Cabri, and Ambra Molesini (2010).
« Building an agent methodology from fragments: the MEnSA experience ». In: Proceedings
of the 2010 ACM Symposium on Applied Computing. SAC ’10. ACM, pp. 920–927 (cit. on
pp. 28, 38).

Markiewicz, Marcus Eduardo and Carlos J. P. de Lucena (2001). « Object Oriented Framework
Development ». In: Crossroads 7 (4 July 2001), pp. 3–9. doi: http://doi.acm.org/10.1145/
372765.372771 (cit. on pp. 4, 121).

Medvidovic, N. and R.N. Taylor (2000). « A classification and comparison framework for
software architecture description languages ». In: Software Engineering, IEEE Transactions
on 26.1 (Jan. 2000), pp. 70–93 (cit. on pp. 6, 55).

Molesini, Ambra, Enrico Denti, and Andrea Omicini (2007). « From AOSE Methodologies to
MAS Infrastructures: The SODA Case Study ». In: 8th International Workshop “Engineering
Societies in the Agents World” (ESAW’07). Ed. by Alexander Artikis, Gregory O’Hare, Kostas
Stathis, and George Vouros. Workshop Notes. Athens, Greece: NCSR “Demokritos”, Oct.
2007, pp. 283–298 (cit. on pp. 28, 38).

Molesini, Ambra, Andrea Omicini, Enrico Denti, and Alessandro Ricci (2006). « SODA: A
Roadmap to Artefacts ». In: Engineering Societies in the Agents World VI. Ed. by Oguz
Dikenelli, Marie-Pierre Gleizes, and Alessandro Ricci. Vol. 3963. Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, pp. 49–62 (cit. on p. 168).

189

http://dx.doi.org/10.1145/250707.239104
http://dx.doi.org/10.1145/250707.239104
http://dx.doi.org/http://doi.acm.org/10.1145/372765.372771
http://dx.doi.org/http://doi.acm.org/10.1145/372765.372771

Bibliography

Monroe, R.T., A. Kompanek, R. Melton, and D. Garlan (1997). « Architectural styles, design
patterns, and objects ». In: Software, IEEE 14.1, pp. 43–52. doi: 10.1109/52.566427 (cit. on
pp. 8, 123, 124).

Morin, A., J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz (2012). « Shining
Light into Black Boxes ». In: Science 336.6078 (Apr. 13, 2012), pp. 159–160. doi: 10.1126/
science.1218263 (cit. on p. 115).

Nunes, Ingrid, Carlos de Lucena, Uirá Kulesza, and Camila Nunes (2011). « On the De-
velopment of Multi-agent Systems Product Lines: A Domain Engineering Process ». In:
Agent-Oriented Software Engineering X. Ed. by Marie-Pierre Gleizes and Jorge Gomez-Sanz.
Vol. 6038. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 125–139
(cit. on pp. 24, 38).

Nuseibeh, B. (2001). « Weaving together requirements and architectures ». In: Computer 34.3
(Mar. 2001), pp. 115 –119. doi: 10.1109/2.910904 (cit. on p. 7).

Oechslein, Christoph, Franziska Klügl, Rainer Herrler, and Frank Puppe (2001). « UML for
Behavior-Oriented Multi-Agent Simulations ». In: in Multi-Agent Systems LNAI; Second
International Workshop of Central and Eastern Europe on MultiAgent Systems, CEEMAS 2001,
pp. 26–29 (cit. on p. 168).

Oluyomi, A. (2006). « Protocols and patterns for agent-oriented software development ».
PhD thesis. University of Melbourne (cit. on pp. 25, 35, 38).

Oluyomi, Ayodele, Shanika Karunasekera, and Leon Sterling (2007). « A comprehensive view
of agent-oriented patterns ». In: Autonomous Agents and Multi-Agent Systems 15 (3 2007),
pp. 337–377 (cit. on pp. 25, 35, 38).

Papazoglou, Michael P., Paolo Traverso, Schahram Dustdar, and Frank Leymann (2007).
« Service-Oriented Computing: State of the Art and Research Challenges ». In: Computer
40.11, pp. 38–45. doi: 10.1109/MC.2007.400 (cit. on p. 136).

Pavón, Juan, Jorge J. Gómez-Sanz, and Rubén Fuentes (2005). « The INGENIAS Methodology
and Tools ». In: Agent-Oriented Methodologies. Ed. by Brian Henderson-Sellers and Paolo
Giorgini. Idea Group Publishing, pp. 236–276 (cit. on pp. 28, 38, 169).

Pavón, Juan, Jorge J. Gómez-Sanz, and Rubén Fuentes (2006). « Model Driven Development of
Multi-Agent Systems ». In: Model Driven Architecture – Foundations and Applications. Ed. by
Arend Rensink and Jos Warmer. Vol. 4066. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, pp. 284–298 (cit. on pp. 28, 38).

Peña, Joaquin, Michael G. Hinchey, Manuel Resinas, Roy Sterritt, and James L. Rash (2007).
« Designing and managing evolving systems using a MAS product line approach ». In: Sci.
Comput. Program. 66 (1 Apr. 2007), pp. 71–86 (cit. on pp. 24, 38).

Pereira, Jorge Verissimo (2009). « The new supply chain’s frontier: Information management ».
In: International Journal of Information Management 29.5, pp. 372–379. doi: 10.1016/j.
ijinfomgt.2009.02.001 (cit. on p. 136).

Perry, Dewayne and Alexander L. Wolf (1992). « Foundations for the Study of Software
Architecture ». In: ACM SIGSOFT Software Engineering Notes 17, pp. 40–52 (cit. on p. 5).

190

http://dx.doi.org/10.1109/52.566427
http://dx.doi.org/10.1126/science.1218263
http://dx.doi.org/10.1126/science.1218263
http://dx.doi.org/10.1109/2.910904
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1016/j.ijinfomgt.2009.02.001
http://dx.doi.org/10.1016/j.ijinfomgt.2009.02.001

Bibliography

Pokahr, Alexander, Lars Braubach, and Winfried Lamersdorf (2005). « Jadex: A BDI Reason-
ing Engine ». In: Multi-Agent Programming: Languages, Platforms and Applications. Ed. by
Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni. Vol. 15.
Multiagent Systems, Artificial Societies and Simulated Organizations. Springer, pp. 149–
174 (cit. on p. 170).

Poslad, Stefan and Patricia Charlton (2006). « Standardizing Agent Interoperability: The
FIPA Approach ». In: Multi-Agent Systems and Applications. Ed. by Michael Luck, Vladimír
Marík, Olga Štepánková, and Robert Trappl. Vol. 2086. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, pp. 98–117 (cit. on p. 169).

Rao, Anand (1996). « AgentSpeak(L): BDI agents speak out in a logical computable language ».
In: Agents Breaking Away. Ed. by Walter Van de Velde and John Perram. Vol. 1038. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 42–55 (cit. on p. 170).

Reed, P (2002). « Reference Architecture: The best of best practices ». In: The Rational Edge
(cit. on p. 9).

Ricci, Alessandro, Viroli Mirko, and Piancastelli Giulio (2011). « simpA: An agent-oriented
approach for programming concurrent applications on top of Java ». In: Science of Computer
Programming 76.1 (Jan. 2011). Ed. by Pascal Poizat Mirko Viroli Carlos Canal, pp. 37–62
(cit. on p. 171).

Ricci, Alessandro, Mirko Viroli, and Andrea Omicini (2007). « CArtAgO: A Framework for
Prototyping Artifact-Based Environments in MAS ». In: Environments for Multi-Agent
Systems III. Ed. by Danny Weyns, H. Parunak, and Fabien Michel. Vol. 4389. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, pp. 67–86 (cit. on pp. 36, 171).

Ricci, Alessandro, Mirko Viroli, and Andrea Omicini (2008). « The A&A Programming Model
and Technology for Developing Agent Environments in MAS ». In: Programming Multi-
Agent Systems. Ed. by Mehdi Dastani, Amal El Fallah Seghrouchni, Alessandro Ricci,
and Michael Winikoff. Vol. 4908. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 89–106 (cit. on p. 168).

Ricordel, Pierre-Michel and Yves Demazeau (2002). « Volcano, a Vowels-Oriented Multi-agent
Platform ». In: From Theory to Practice in Multi-Agent Systems. Ed. by Barbara Dunin-Keplicz
and Edward Nawarecki. Vol. 2296. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 742–742 (cit. on pp. 36, 38).

Rougemaille, Sylvain, Jean-Paul Arcangeli, Marie-Pierre Gleizes, and Frédéric Migeon (2009).
« ADELFE Design, AMAS-ML in Action: A Case Study ». In: Post-Proceedings of the Interna-
tional Workshop on Engineering Societies in the Agents World (ESAW 2008). Vol. 5485. Lecture
Notes in Computer Science (Lecture Notes in Artificial Intelligence). Springer, pp. 97–112
(cit. on pp. 28, 38, 50).

Routier, Jean-Christophe, Philippe Mathieu, and Yann Secq (2001). « Dynamic Skills Learning:
A Support to Agent Evolution ». In: Proceedings of the Artificial Intelligence and the Simulation
of Behaviour, Symposium on Adaptive Agents and Multi-agent systems (AISB’01). Ed. by Daniel
Kudenko and Eduardo Alonso (cit. on pp. 36, 38, 172).

191

Bibliography

Schelfthout, K., T. Coninx, A. Helleboogh, T. Holvoet, E. Steegmans, and D. Weyns (2002).
« Agent Implementation Patterns ». In: Proceedings of the Workshop on Agent-Oriented Method-
ologies, 17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’02), pp. 119–130 (cit. on pp. 35, 37, 38).

Sellami, Zied and Valérie Camps (2012). « DYNAMO-MAS: A Multi-Agent System for Build-
ing and Evolving Ontologies from Texts (short paper) ». In: International Conference on
Practical Applications of Agents and Multiagent Systems (PAAMS), Salamanca, 28/03/2012-
30/03/2012. Vol. 155. 4240. Springer, pp. 283–286 (cit. on p. 113).

Shoham, Y. (1993). « Agent-oriented programming ». In: Artificial intelligence 60.1, pp. 51–92
(cit. on p. 25).

Silva, C., P. Tedesco, J. Castro, and R. Pinto (2004). « Comparing agent-oriented methodologies
using NFR approach ». In: IEE Seminar Digests 2004.916, pp. 1–9 (cit. on pp. 22, 38).

Sommerville, I., D. Cliff, R. Calinescu, J. Keen, T. Kelly, M. Kwiatkowska, J. McDermid,
and R. Paige (2011). « Large-scale Complex IT Systems ». In: ArXiv e-prints (Sept. 2011).
arXiv:1109.3444 [cs.SE] (cit. on p. 135).

Stratulat, Tiberiu, Jacques Ferber, and John Tranier (2009). « MASQ: towards an integral
approach to interaction ». In: Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2. Ed. by Carles Sierra, Cristiano Castelfranchi,
Keith Decker, and Jaime Sichman. AAMAS ’09. International Foundation for Autonomous
Agents and Multiagent Systems, pp. 813–820 (cit. on p. 168).

Sudeikat, Jan, Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf (2005). « Evaluation
of Agent-Oriented Software Methodologies – Examination of the Gap Between Modeling
and Platform ». In: Agent-Oriented Software Engineering V. Ed. by James Odell, Paolo
Giorgini, and Jörg Müller. Vol. 3382. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 126–141 (cit. on pp. 28, 38).

Sykes, Daniel, Jeff Magee, and Jeff Kramer (2011). « FlashMob: distributed adaptive self-
assembly ». In: 2011 ICSE Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2011, Waikiki, Honolulu , HI, USA, May 23-24, 2011. Ed. by Holger Giese
and Betty H. C. Cheng. ACM, pp. 100–109 (cit. on p. 135).

Szyperski, C., D. Gruntz, and S. Murer (2002). Component Software: Beyond Object-Oriented
Programming. Addison-Wesley / ACM Press (cit. on pp. 5, 6).

Taillandier, Patrick, Alexis Drogoul, Duc-An Vo, and Edouard Amouroux (2010). « GAMA: a
simulation platform that integrates geographical information data, agent-based modeling
and multi-scale control ». In: The 13th International Conference on Principles and Practices in
Multi-Agent Systems (PRIMA). India (cit. on p. 172).

Trencansky, Ivan and Radovan Cervenka (2005). « Agent Modeling Language (AML): A
Comprehensive Approach to Modeling MAS ». In: Informatica 29, pp. 391–400 (cit. on
p. 169).

Van Roy, Peter (2007). « Self Management and the Future of Software Design ». In: Electronic
Notes in Theoretical Computer Science 182. Proceedings of the Third International Workshop

192

http://arxiv.org/abs/1109.3444

Bibliography

on Formal Aspects of Component Software (FACS 2006), pp. 201 –217. doi: 10.1016/j.
entcs.2006.12.043 (cit. on p. 135).

Van Roy, Peter (2009). « Programming Paradigms for Dummies: What Every Programmer
Should Know ». In: New Computational Paradigms for Computer Music. Ed. by Gérard
Assayag and Andrew Gerzso. France: IRCAM/Delatour (cit. on p. 3).

Van Roy, Peter and Seif Haridi (2004). Concepts, Techniques, and Models of Computer Programming.
MIT Press, Mar. 2004 (cit. on pp. 119, 127).

Viroli, Mirko, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout, and Franco Zambonelli (2007).
« Infrastructures for the environment of multiagent systems ». In: Autonomous Agents and
Multi-Agent Systems 14 (1 2007), pp. 49–60 (cit. on pp. 25, 35, 38).

Weiser, Mark (1991). « The Computer for the 21st Century ». In: Scientific American 256.3,
pp. 66–75 (cit. on p. 145).

Weyns, Danny (2010). Architecture-Based Design of Multi-Agent Systems. 1st. Springer Publishing
Company, Incorporated (cit. on pp. 9, 23, 35, 38).

Weyns, Danny, Robrecht Haesevoets, and Alexander Helleboogh (2010). « The MACODO
organization model for context-driven dynamic agent organizations ». In: ACM Trans.
Auton. Adapt. Syst. 5 (4 Nov. 2010), 16:1–16:29 (cit. on pp. 139, 167).

Weyns, Danny, Alexander Helleboogh, Elke Steegmans, Tom De Wolf, Koenraad Mertens,
Nelis Boucké, and Tom Holvoet (2004). « Agents are not part of the problem, agents can
solve the problem ». In: Proceedings of the OOPSLA Workshop on Agent-Oriented Methodologies,
pp. 101–102 (cit. on pp. 9, 30, 36).

Weyns, Danny and Tom Holvoet, eds. (2006). Multiagent Systems and Software Architecture
(MASSA) (cit. on pp. 19, 23, 28).

Weyns, Danny, Andrea Omicini, and James Odell (2006). « Environment as a first class
abstraction in multiagent systems ». In: Autonomous Agents and Multi-Agent Systems 14.1,
pp. 5–30. doi: 10.1007/s10458-006-0012-0 (cit. on pp. 25, 35, 38).

Wilensky, Uri (1999). NetLogo itself. http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling, Northwestern University. Evanston,
IL. (cit. on p. 172).

Zambonelli, Franco, Nicholas R. Jennings, and Michael Wooldridge (2003). « Developing
multiagent systems: The Gaia methodology ». In: ACM Trans. Softw. Eng. Methodol. 12 (3
July 2003), pp. 317–370 (cit. on p. 169).

Zyda, Michael (2005). « From visual simulation to virtual reality to games ». In: Computer 38.9
(Sept. 2005), pp. 25 –32. doi: 10.1109/MC.2005.297 (cit. on p. 91).

193

http://dx.doi.org/10.1016/j.entcs.2006.12.043
http://dx.doi.org/10.1016/j.entcs.2006.12.043
http://dx.doi.org/10.1007/s10458-006-0012-0
http://ccl.northwestern.edu/netlogo/
http://dx.doi.org/10.1109/MC.2005.297

Victor Noël

Component-based Software Architectures and Multi-Agent
Systems: Mutual and Complementary Contributions for

Supporting Software Development

Thesis Supervisor:
Marie-Pierre Gleizes — Professor, University of Toulouse, France

Jean-Paul Arcangeli — Maître de Conférences, HDR, University of Toulouse, France

PhD defended June 15, 2012 at IRIT - Université Paul Sabatier

Abstract

In this thesis, we explore the various aspects of the mutual and complementary con-
tributions that multi-agent systems (MASs) and component-based software architectures
(CBSAs) can provide to each other. On one hand, we define, illustrate, analyse and discuss
an architecture-oriented methodology of MAS development, a component model (SpeAD),
an architectural description language (SpeADL) and a design method (SpEArAF) that ease
and guide the description and the implementation of MASs. This complete answer to MAS
development is supported by a tool (MAY) and has been applied to many applications. On
the other hand, we explore through various experiments how self-adaptive MASs can be used
to support CBSAs. The agents and their continuous reorganisation act both as the engine
of the construction and of the dynamic adaptation of the architecture, and as the runtime
container that practically connects its elements together.

Keywords:

Discipline: Informatique

Institut de Recherche en Informatique de Toulouse — UMR 5505
Université Paul Sabatier, 118 route de Narbonne, 31 062 Toulouse Cedex 4, France

Victor Noël

Architectures logicielles à base de composants et systèmes
multi-agents : contributions mutuelles et complémentaires pour

supporter le développement logiciel

Directeurs de thèse :
Marie-Pierre Gleizes — Professeur, Université de Toulouse, France

Jean-Paul Arcangeli — Maître de Conférences, HDR, Université de Toulouse, France

Thèse soutenue le 15 juin 2012 à l’IRIT — Université Paul Sabatier

Résumé

Dans cette thèse, nous explorons les diverses contributions que les systèmes multi-agents
(SMA) et les architectures à base de composants (CBSA) peuvent mutuellement et complé-
mentairement s’apporter l’un à l’autre. Dans un premier temps, nous définissons, illustrons,
analysons et discutons une méthodologie du développement des SMA, un modèle de com-
posants (SpeAD), un langage de description d’architecture (SpeADL) et une méthode de
conception (SpEArAF) qui facilitent et guident la description et l’implémentation des SMA.
Cette réponse complète au développement des SMA est assistée par un outil (MAY) et a été
appliquée à un grand nombre d’applications. Dans un second temps, nous explorons à travers
divers expériences l’aide que peuvent apporter les SMA auto-adaptatif aux CBSA. Les agents
et leur réorganisation continuelle jouent à la fois le rôle de moteur de la construction et de
l’adaptation dynamique de l’architecture, mais aussi du conteneur qui connecte ses éléments
en pratique.

Mots-clés :

Discipline : Informatique

Institut de Recherche en Informatique de Toulouse — UMR 5505
Université Paul Sabatier, 118 route de Narbonne, 31 062 Toulouse Cedex 4

	Contents
	List of Figures
	List of Tables
	Introduction to the Thesis
	Main Motivations
	Main Contributions
	Plan of the Thesis
	Scientific Results
	Editorial Notice

	Engineering Software: Software Architectures and MAS
	Software Engineering
	General Terms
	Modelling the Solution
	Methods and Methodologies
	Reuse of Development Artefacts and Tools

	Software Architectures
	CBSA
	Design of Software Architecture
	Capturing Experience

	MAS
	Agents
	MAS
	AMAS: AMAS
	Scope

	Conclusion

	I Software Architectures for Multi-Agent Systems
	State of the Art on MAS Development
	Characterisation of MAS Meta-Models from an Architectural Viewpoint
	Walking Through the Different Aspects of MAS Development
	The Design Point of View
	Diversity of Requirements
	Commonality of Requirements and Elements of Solution
	The Implementation Point of View
	From Design to Implementation
	Practical Observations

	Analysis: Should We Tweak or Build?!
	The Gap, Again
	Types of Agents and Adequate Abstractions
	Two Levels of Architectural Design
	Evidences from the Literature
	Existing Answers
	Revisiting the Different Works

	Challenges: Meta Micro-Level Design

	Dedicated Micro-Level Software Architectures for MAS Development
	Characterizing MAS Development: Architecture-Centric Methodology
	Multi-Level Architectural Design
	Operative and Business Concerns
	Implementation
	Illustrating the Methodology
	Conclusion on the Methodology

	Component-Based Micro-Level Architectures
	The model- Base Component Model
	The model Component Model

	Capturing Reusable Experience
	What and How
	Components Library

	The method Method
	Component-Based Architectures for MAS
	Iterative and Incremental Micro-Architectural Design
	Additional Guidelines

	Conclusion

	Application
	Context and Requirements
	Environment of the System
	Functional and Non-Functional Requirements for the VGD
	Non-Functional Requirements for the Development

	Macro-level Architectural Design
	Macro-Level Requirements Extraction
	Problem Domain Model
	Temporal Interactions of the VGD with its Environment
	MAS

	Micro-Level Requirements Extraction
	Assumptions Made during the Design
	Supplementary Design Choices

	Micro-Level Architectural Design
	Operative Requirements
	Business Requirements
	Incremental Design
	Complete Design and Implementation

	Conclusion

	Positioning, Analysis and Experimental Feedbacks
	Positioning the Contribution
	Analysis
	Architectural Abstraction
	Implementation Abstraction
	Why and When to Use model

	Experimental Applications and Users Feedbacks
	Conclusion

	II Integrating Multi-Agent Systems and Software Architectures
	MAS and CBSA Side by Side: Component-based Component Containers
	Related Works in the Software Architecture Field
	Reusing High-Level Design
	Dynamic Component Creation and Connection

	Relations between Component-based Architectural Concepts
	Defining and Using Dedicated Component Models and Containers
	Defining the Component Model
	Defining the Component Container
	Implementing the Component Container
	Using the Component Container
	Going Further

	Building Dedicated Component-Based Component Containers
	Revisiting MAS Design as a Family of Paradigms
	Horizontally Integrating CBSA, MAS and Other Paradigms

	From Self-Composing Components to Self-Designing Software Architectures
	MAS for Self-Adaptive Software Architectures
	Why MAS
	MAS-based Containers

	The CASAS Experiment: Non-Functional Adaptation
	Scenario
	The Macodo Organisation Model
	Mapping Macodo Organisations to Composite Services in BPEL
	Defining the CASAS Component Model
	MAS
	Defining the CASAS Component Container
	Implementation of the CASAS Component Container
	Using the CASAS Component Container
	Discussion and Possible Evolutions

	The Greg Experiment: Opportunistic Composition
	Motivating Scenario
	Modelling the Problem Domain
	Defining the Greg Component Model
	Defining the Greg Component Container
	Implementation of the Greg Component Container
	Use of the Greg Component Container
	Discussion and Possible Evolutions

	Discussion: MAS for CBSA
	Adaptation and Emergence
	Component Models and Containers
	Better Adaptation for CBSA

	Towards Human-Assisted Self-Designing Software Architectures
	Styles and Patterns that Emerge
	Generalisation to Architectural Views

	Back
	Conclusions and Perspectives
	Contributions of the Thesis
	Software Architectures for MAS
	CBSA
	MAS and CBSA Side by Side
	MAS for Software Architectures

	Open Problems and Perspectives
	Methodological Perspectives
	Architectural Perspectives
	Evaluation Perspectives

	Design and Implementation MAS Meta-Models
	Agent and MAS Meta-Models
	Development Support Meta-Models
	Languages
	Frameworks and Platforms

	Implementation of model: MAY
	MAY
	From language to Java

	Author's Bibliography
	Bibliography

