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PRÉSENTÉE À
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Résumé

La popularité croissante des applications Internet très gourmandes en bande passante (P2P, stream-

ing,...) nous pousse à considérer le problème suivant : Comment construire des systèmes de com-

munications collectives efficaces sur une plateforme à grande échelle ?

Le développement de schéma de communications collectives dans le cadre d’un réseau distribué

à grande échelle est une tâche difficile, qui a été largement étudiée et dont de multiples solutions

ont été proposées. Toutefois, une nouvelle approche globale et systématique est nécessaire, une

approche qui combine des modèles de réseaux et la conception algorithmique.

Dans ce mémoire nous proposons l’utilisation de modèles capables de capturer le comporte-

ment d’un réseau réel et suffisamment simples pour que leurs propriétés mathématiques puissent

être étudiées et pour qu’il soit possible de créer des algorithmes optimaux.

Premièrement, nous considérons le problème d’évaluation de la bande passante disponible

pour une connexion point-à-point donnée. Nous étudions la façon d’obtenir des jeux de données

de bande passante, utilisant plateforme PlanetLab. Nous présentons aussi nos propres jeux de

données, jeux obtenus avec bedibe, un logiciel que nous avons développé. Ces données sont

nécessaires pour évaluer les performances des différents algorithmes de réseau. Bien qu’on trouve

de nombreux jeux de données de latence, les jeux de données de bande passante sont très rares.

Nous présentons ensuite un modèle, appelé LastMile, qui estime la bande passante. En profi-

tant des jeux de données décrits précédemment, nous montrons que cet algorithme est capable de

prédire la bande passante entre deux noeuds donnés avec une précision comparable au meilleur

algorithme connu de prédiction (DMF). De plus le modèle LastMile s’étend naturellement aux

prédictions dans le scénario de congestion (plusieurs connexions partageant un même lien). Nous

sommes effectivement en mesure de démontrer, à l’aide des ensembles de données PlanetLab, que

la prédiction LastMile est préférable dans des tels scénarios.

Dans le troisième chapitre, nous proposons des nouveaux algorithmes pour résoudre le problème

de diffusion. Nous supposons que le réseau est modélisé par le modèle LastMile. Nous montrons

que, sous cette hypothèse, nous sommes en mesure de fournir des algorithmes avec des ratios

d’approximation élevés. De plus nous étendons le modèle LastMile, de manière à y intégrer des

artéfacts de connectivité, dans notre cas ce sont des firewalls qui empêchent certains nœuds de

communiquer directement entre eux. Dans ce dernier cas, nous sommes également en mesure de

fournir des algorithmes d’approximation avec des garanties de performances prouvables.

Les chapitres 1 à 3 forment les trois étapes accomplies de notre programme qui visent trois buts.

Premièrement, développer à partir de zéro un modèle de réseau de communication. Deuxièmement,

prouver expérimentalement sa performance. Troisièmement, montrer qu’il peut être utilisé pour
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développer des algorithmes qui résolvent les problèmes de communications collectives.

Dans le 4e chapitre, nous montrons comment on peut concevoir des systèmes de communica-

tion efficaces, selon différents modèles de coûts, en utilisant des techniques combinatoires, tout

en utilisant des hypothèses simplificatrices sur la structure du réseau et les requêtes. Ce travail est

complémentaire au chapitre précédent puisque auparavant, nous avons adopté l’hypothèse que les

connections étaient autonomes (i.e. nous n’avons aucun contrôle sur le routage des connexions

simples). Dans le chapitre 4, nous montrons comment résoudre le problème du routage économe

en énergie, étant donnée une topologie fixée.

Mots clés: PlanetLab, LastMile, diffusion, partage de bande passante, système de prédiction

réseau, streaming, pare-feu, routage efficace en énergie, requêtes découpables

Discipline: Informatique
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351, cours de la libération

33405 Talence Cedex (FRANCE)
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Abstract

The increasing popularity of Internet bandwidth-intensive applications prompts us to consider fol-

lowing problem: How to compute efficient collective communication schemes on large-scale plat-

form?

The issue of designing a collective communication in the context of a large scale distributed net-

work is a difficult and a multi-level problem. A lot of solutions have been extensively studied and

proposed. But a new, comprehensive and systematic approach is required, that combines network

models and algorithmic design of solutions.

In this work we advocate the use of models that are able to capture real-life network behavior,

but also are simple enough that a mathematical analysis of their properties and the design of optimal

algorithms is achievable.

First, we consider the problem of the measuring available bandwidth for a given point-to-

point connection. We discuss how to obtain reliable datasets of bandwidth measurements using

PlanetLab platform, and we provide our own datasets together with the distributed software used

to obtain it. While those datasets are not a part of our model per se, they are necessary when

evaluating the performance of various network algorithms. Such datasets are common for latency-

related problems, but very rare when dealing with bandwidth-related ones.

Then, we advocate for a model that tries to accurately capture the capabilities of a network,

named LastMile model. This model assumes that essentially the congestion happens at the edges

connecting machines to the wide Internet. It has a natural consequence in a bandwidth prediction

algorithm based on this model. Using datasets described earlier, we prove that this algorithm is able

to predict with an accuracy comparable to best known network prediction algorithm (Distributed

Matrix Factorization) available bandwidth between two given nodes. While we were unable to

improve upon DMF algorithm in the field of point-to-point prediction, we show that our algorithm

has a clear advantage coming from its simplicity, i.e. it naturally extends to the network predictions

under congestion scenario (multiple connections sharing a bandwidth over a single link). We are

actually able to show, using PlanetLab datasets, that LastMile prediction is better in such scenarios.

In the third chapter, we propose new algorithms for solving the large scale broadcast prob-

lem. We assume that the network is modeled by the LastMile model. We show that under this

assumption, we are able to provide algorithms with provable, strong approximation ratios. Taking

advantage of the simplicity and elasticity of the model, we can even extend it, so that it captures the

idea of connectivity artifacts, in our case firewalls preventing some nodes to communicate directly

between each other. In the extended case we are also able to provide approximation algorithms

with provable performance.

The chapters 1 to 3 form three successful steps of our program to develop from scratch a

mathematical network communication model, prove it experimentally, and show that it can be

applied to develop algorithms solving hard problems related to design of communication schemes

in networks.

In the chapter 4 we show how under different network cost models, using some simplifying

assumptions on the structure of network and queries, one can design very efficient communica-

tion schemes using simple combinatorial techniques. This work is complementary to the previous
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chapter in the sense that previously when designing communication schemes, we assumed atomic-

ity of connections, i.e. that we have no control over routing of simple connections. In chapter 4 we

show how to solve the problem of an efficient routing of network request, given that we know the

topology of the network. It shows the importance of instantiating the parameters and the structure

of the network in the context of designing efficient communication schemes.

Keywords: PlanetLab, LastMile, broadcast, bandwidth sharing, network prediction, streaming,

firewalls, power aware routing, splittable requests

Discipline: Computer Science
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Résumé étendu

Internet à haut débit est omniprésent dans notre vie quotidienne. Des connexions de plusieurs

gigaoctet par seconde sont fréquentes, et des nouvelles applications gourmandes en bande passante

sont apparues. Parmi ces services, on trouve les réseaux peer-to-peer, le streaming de vidéo, le

stockage dans des clouds. Chacun de ces services, est utilisé par un grand nombre d’utilisateurs

et manipule de grand volumes de données, laissent leurs créateurs avec un ensemble de défis à

relever. Voici quelques exemples de questions à réoudre : comment modéliser le comportement

du réseau ? Comment prédire le comportement du réseau ? Comment concevoir des réseaux de

recouvrement efficaces ?

Même si le progrès technologique permet d’apporter des nouvelles solutions pour les utilisa-

teurs, le facteur crucial dans leur développement réside dans le progrès algorithmique. C’était

le développement d’architectures décentralisées, qui ont fait les solutions comme Gnutella [22]

ou BitTorrent [54] un grand succès. La transition a eu lieu grâce à une meilleure utilisation des

ressources, comme la bande passante, le temps CPU et la mémoire des machines connectées au

réseau.

Ces solutions reposent sur la transmission de grandes quantités de données entre les nœuds du

réseau. Le Broadcast est un scénario qui apparait souvent, où un nœud veut envoyer un (volu-

mineux) message à tous les autres nœuds du réseau, ou plus généralement le multicast, où seul un

sous-ensemble nœuds souhaite recevoir le bloc de données. Par exemple, dans un réseau peer-to-

peer, où les données sont initialement présentes sur un seul nœud (la source) et puis distribuées

à chaque nœud ces données. Dans un tel cadre de coopération, les nœuds qui ont obtenu des

blocs de données peuvent commencer à les redistribuer eux-mêmes, accélérant ainsi le processus

de diffusion.

Nous trouvons un autre exemple avec les sites de streaming vidéo. Les sites de streaming

vidéo sont basés sur une architecture hautement centralisé, où le fournisseur doit investir dans

une infrastructure énorme (comme c’est le cas de YouTube, en s’appuyant sur l’infrastructure de

Google), et doit s’appuyer sur les solutions comme les serveurs géographiquement dispersés (afin

de réduire la charge du centre de données). Il n’y a pas beaucoup d’espace pour la coopération entre

les clients dans un tel service. Le nombre d’utilisateurs simultanés est massif, mais ils sont répartis

sur un grand nombre de vidéos. Une situation tout à fait différente est présente pour les services

de vidéo en streaming fonctionnant comme la télévision, (dédié aux événements en direct : sport,

musique, jeux), puisqu’un très grand nombre de téléspectateurs peut coopérer de manière peer-

to-peer. Cependant, même dans ce scénario, différentes solutions sont nécessaires. Ce n’est pas

comme dans le cas de la diffusion classique. Dans le cas de video-streaming l’ordre de réception
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des données possède un rôle crucial. Les données sont produites et consommées en direct. Des

solutions théoriques ont été proposés : CoolStreaming [69], PPLive [65] ou SplitStream [17].

Comme nous l’avons vu, le développement des systèmes/méthodes efficaces est un problème

complexe et repose sur plusieurs niveaux. Il est d’une grande importance de proposer des so-

lutions en prenant en considération la bande passante disponible sur la plateforme sous-jacente.

Beaucoup de travail a été fait pour développer ces solutions à un niveau algorithmique, qui con-

siste à présenter un modèle abstrait du réseau, puis à formaliser un problème et enfin à proposer

une solution algorithmique pour la dernière. Internet lui-même est trop complexe pour permettre

une approche ”directe”, d’où la nécessite d’introduire une couche d’abstraction.

Par conséquent, si nous représentons le réseau avec un modèle simple, par exemple, si nous

faisons l’hypothèse que la structure sous-jacente du réseau n’intervient pas, nous permettons aux

nœuds de communiquer librement et nous supposons qu’aucune interaction entre les différentes

connexions ne prendra place, nous ne serons pas capable de capturer le comportement complexe

et sophistiqué du réseau (par exemple l’apparition de contentions). Cependant, nous ne pouvons

pas nous attendre à des résultats raisonnables des algorithmes reposant sur des modèles qui ne

prennent pas en compte la contention.

D’un autre côté, en s’appuyant sur des modèles trop complexes, par exemple les réseaux

représentés par un graphe pondéré, on risque de se retrouver incapable de développer des al-

gorithmes d’optimisation raisonnables pour l’allocation des ressources sur ces réseaux (car déjà

de nombreux problèmes de base sont trop difficiles à résoudre). Nous rencontrons également le

problème d’être incapable d’instancier les paramètres du modèle, c’est-à-dire incapable de trou-

ver une bonne représentation dans l’espace des paramètres d’un modèle donné pour un réseau

donné. Les modèles trop précis sont également incapables de s’adapter aux différentes variations

de réseaux que nous pourrions rencontrer, donc ils peuvent se révéler inutiles. En outre, les dif-

ficultés que nous rencontrons avec les opérations de base (telles que les mesures de point à point

étant très variable au fil du temps) font que des modèles sophistiqués sont inutiles en pratique.

Le juste milieu que nous trouvons ici (nous devons sacrifier soit la force du modèle, soit la

capacité de concevoir un algorithme efficace en utilisant le modèle) nous amène à un examen

attentif des propriétés du réseau, que nous aimerions garder dans notre modèle et de développer des

modèles en fonction de nos besoins. Dans le reste de cette thèse, nous aimerions (à partir des idées

simples et en augmentant progressivement la complexité tout en montant l’échelle d’abstraction)

construire méthodiquement des modèles et des algorithmes agissants à la base de ces modèles. Le

sujet n’a pas été épuisé dans ce travail, mais nous avons tracé un cadre général qui pourrait être

réutilisé dans les travaux futurs.

Motivation

La motivation principale de ce travail est le développementde schémas de communications col-

lectives dans le cadre des réseaux distribués à grande échelle. Nous mettons la bande passante au

centre de nos considérations. Les systèmes de diffusion provenant de la littérature ne sont pas satis-

faisants dans notre contexte. Soit ils supposent une connaissance détaillée de la topologie détaillée

du réseau (par exemple des solutions de Broadcast dans des réseaux maillés), soit les solutions
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conçues sont compliquées, comme dans SplitStream [17].

Dans cette étude nous visons à trouver l’équilibre entre les deux approches décrites ci-dessus

(à savoir des modèles simples rendant des solutions algorithmiques possibles, ou des modèles

complexes et exact), et de proposer une approche nouvelle et globale. Nous allons commencer

par l’approche très basique : la communication entre seulement deux nœuds sur Internet. Une

telle communication simple peut déjà montrer un comportement complexe, que nous verrons en

analysant le déroulement de l’envoi d’un message. Nous allons essayer de modéliser le réseau et de

proposer un modèle qui représente fidèlement le réseau, même en cas de plusieurs communications

simultanées.

Nous voulons abandonner l’idée d’une parfaite connaissance de la topologie du réseau . C’est

pourquoi la prochaine étape est d’essayer de proposer des algorithmes afin d’instancier et d’évaluer

les paramètres réels du modèle dans un vrai réseau. Nous sommes en mesure de le faire par

l’usage de systèmes de prédictions (Network Prediction Systems), qui sont des systèmes conçus

pour prévoir diverses mesures de performance du réseau. Ces systèmes attribuent généralement

un nombre de paramètres pour les nœuds, et font une évaluation des paramètres du réseau (la-

tence, bande passante) en fonction des paramètres des extrémités de la liaison. Les systèmes

que nous trouvons dans la littérature dépendent soit sur le plongement du réseau dans un espace

métrique, soit utilisent des approches plus synthétiques, comme la factorisation des matrices [42]

ou le plongement sur un arbre (tree embedding) [57]. Nous plaidons pour l’utilisation de LastMile,

où chaque nœud possède des paramètres associés ayant une interprétation dans la réalité (capacités

des liaisons reliant les nœuds périphériques au centre d’Internet). Cette interprétation permet une

simple instanciation des paramètres et rend naturel le développement des algorithmes base sur

notre modèle.

Notre dernière étape sera de développer des algorithmes avec des bonnes garanties de perfor-

mance (facteur d’approximation). Le but de ces algorithmes est de créer des systèmes de com-

munications collectives. Notre objectif est de montrer qu’il n’est pas nécessaire de connaı̂tre la

topologie complète du réseau, et que la possibilité d’instancier quelques paramètres suffit pour

concevoir des systèmes de communication efficaces. Nous construisons ces algorithmes en sup-

posant que rien de plus que la connaissance des liens extrêmes qui caractérisent les capacités du

nœud à transférer des données dans le réseau. Grâce à notre approche, nous sommes en mesure

de réduire le problème de la construction des réseaux logique à des problèmes combinatoires très

simples et de le résoudre en conséquence. Le cadre que nous construisons est assez large, et à titre

d’exemple, nous montrons comment intégrer la notion de connectivy artefact, sous la forme de

firewall (nous classons les nœuds comme ”open” ou ”guared”, et nous supposons que deux nœuds

guared ne peuvent pas se communiquer directement).

Une fois le réseau logique construit (ensemble de connexions entre les nœuds) et les débits qui

devraient être alloués à toutes les connexion sont déterminés, la solution peut être décomposée en

un ensemble d’arbres de diffusion pondérés. Cette décomposition précise quelles données doivent

être envoyées sur quelle connexion. Afin d’éviter cette étape de décomposition, qui est difficile à

utiliser en pratique, nous nous appuyons sur un algorithme randomisé de Broadcast, proposé par

Massoulié dans [47]. Cet algorithme est entièrement décentralisé et est capable de résoudre des

cas avec des légères variations des ressources, grâce à son caractère aléatoire et dynamique. Cet
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algorithme nécessite la connaissance de la topologie du réseau et des bandes passantes sur les arêtes

et pas de contention sur les nœuds, ce qui est complètement irréaliste dans une plateforme à grande

échelle. Cependant, le réseau logique que nous construisons possède exactement ces propriétés,

par construction. Le réseau logique que nous construisons peut donc être utilisé comme une entrée

directe dans l’algorithme de Massoulié.

L’originalité de cette thèse est d’étudier le problème d’un point de vue global, en partant des

mesures pour arriver aux modèlex et aux algorithmes basés sur ces modèles. Toutes les étapes

décrites ci-dessus peuvent être combinées en une plus grande image qui permet à notre solution

d’avoir des applications pratiques :

• La méthodologie d’évaluation de la bande passante point-à-point,

• Le modèle de réseau, validé par ensemble de données expérimentales,

• L’instanciation des paramètres du modèle à partir des mesures,

• L’algorithme pour une construction d’un réseau logique efficace en termes d’énergie, ayant

les paramètres du modèle de Broadcast en tant qu’entrée,

• L’algorithme de Massoulié pour une détermination randomisée du paquets routage réelle.

Comme un travail complémentaire, seulement partiellement lié au reste de la thèse, nous four-

nissons également une étude où nous analysons la façon de concevoir un système de routage effi-

cace en termes d’énergie dans une classe spéciale de graphes. Ce travail est motivé par la nécessité

de concevoir un nouveau type de solutions lorsqu’il s’agit de routage et des problèmes de flot

dans les réseaux. Les solutions classiques analysent généralement des situations où les arêtes d’un

réseau sont limitées de manière brutale. Nous avons des solutions de conception où à chaque lien

est associée une fonction de coût convexe, et la forme de la fonction impose que les solutions à

faible coût soient bien équilibrés et aucun arête ne recevra de bande passante élevée. Notre moti-

vation provient du besoin d’assurer un routage des messages efficace dans un system-on-chips, où

la fonction de coût représente la consommation d’énergie par rapport à un transfert de données sur

l’arête.
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Introduction

Recent years have made a high speed Internet ubiquitous. Connections of speed gigabytes per

second are common, and new bandwidth-intensive applications have arisen. Examples of such

services are peer-to-peer networks, video-streaming, cloud storage. Such services, massive in

amount of users and data usage, put their creators with a set of challenges to overcome. Examples

of such challenges are: how to model network behavior? How to predict network behavior? How

to design efficient overlay networks?

Even though the technological progress makes possible to bring new solutions to users, the

crucial factor in developing them lies in an algorithmic progress. It was the development of de-

centralized architectures that made the solutions like Gnutella [22] or BitTorrent [54] highly suc-

cessful and made file-sharing a massive phenomenon. The transition occurred in better usage of

given resources, i.e. bandwidth, CPU time and disk space of collective of machines connected to

the network.

Such solutions rely on transmitting large chunks of data between nodes of the network. Broad-

cast is a common scenario, where one node wants to send a chunk of data to all other nodes in the

network, or more general multicast, where there exists helper nodes but they do not need to receive

the whole message. We can imagine, for example, a peer-to-peer network, where the data that is

initially seeded by a single node (source) is finally distributed across every node wanting to obtain

it. In such a cooperative setting, nodes that got some chunks of data can start redistributing them

on their own, thus speeding the whole process.

Another example is provided by video-streaming sites. Popular video sites are based on highly

centralized architecture, where the provider has to invest in a huge infrastructure (as it is the case

of Youtube, relying on Google’s infrastructure), and rely on the solutions like geographically dis-

tributed caching servers (to reduce the load of the data-center). There is not much space for cooper-

ation between the clients in such a service: while the number of simultaneous users is massive, they

are spread over huge number of different videos. Different situation is present for video-streaming

services functioning tv-like, (dedicated for live events: sport, music, gaming), as even the massive

number of viewers can cooperate in a peer-to-peer fashion. However even in this scenario different

solutions are necessary, as in classical broadcast we do not care about the order of incoming data, as

long as we finally get all of it, and in video-streaming, the data is produced and consumed live, and

has short life-span. Theoretical solutions have been proposed: CoolStreaming [69], PPLive [65]

or SplitStream [17].

As we saw, designing efficient schemes is a complex and a multi-level problem. It is of high

importance to make such solutions bandwidth-aware, that is taking into consideration available

5



bandwidth of the underlying platform when constructing solution. Plenty of work has been done

to develop such solutions on an algorithmic level, that is to present an abstract model of network,

formalize a problem, and propose an algorithmic solution to it. Abstracting through a model is

necessary, as the Internet itself is too complex to allow any ”direct” approach.

Therefore, if we represent the network with a simple model, e.g. if we do not assume anything

about the underlying structure, and allow nodes to communicate freely, and assume no interactions

between various connections, it fails to capture complex and sophisticated behavior of the network

(e.g. contention). However, we cannot expect any reasonable results from the algorithms relying

on models that do not take contention into account.

On the other side, if relying on too complicated models, for example networks represented

as a weighted graph, we are left unable to develop any reasonable optimization algorithms for

resource allocation on those networks (as many basic problems became too hard to solve). We

also encounter a problem of being unable to instantiate the parameters of the model, by which we

mean being able to find a good representation in a parameter space of a given model for the given

actual network. Too precise models are also unable to adapt to different variations of networks we

could encounter, which may prove them useless. Also, the difficulties that we encounter with basic

operations (such as point-to-point measurements being highly variable and changing over time)

make sophisticated models useless.

The trade-off we are dealing here (we have to sacrifice either strength of the model, or ability

to design efficient algorithm using the model) leads us to a careful examination of what network

properties we would like to have in our model and develop models according to our needs. In the

rest of this thesis we would like to (starting with simplest ideas and gradually increasing complex-

ity while we move upward in abstraction layers) methodically construct models and algorithms

working on them. The topic is not exhausted in this work, but a general framework that could be

emulated in future work is provided.

Motivation for a study

The main motivation for this work is the design of collective communications in the context of

large sale distributed networks. We put emphasis on being bandwidth-aware in our design. State-

of-the-art content distribution systems are unsatisfactory. They either assume knowledge of the

detailed topology of the network, e.g. broadcast solutions for meshes, or the designed solutions are

complicated, as in SplitStream [17].

We aim in this study at finding the balance between the two approaches described above

(namely simple models making algorithmic solutions possible, and complex and exact models),

and to propose a new and comprehensive approach. We will start with the very basic, atomic ap-

proach of understanding the communication between just two nodes on the Internet. Such a simple

communication can already show complex behavior, which we will see by analyzing bandwidth-

time plots of communications. We will try to model the network and to propose a model that

accurately captures the bandwidth-related capabilities of the network, e.g. contention, bottleneck

links and bandwidth sharing.

We want to abandon the idea of perfect knowledge of the network topology. That is why our
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next step is to try to propose algorithms in order to instantiate and evaluate the actual parameters of

the model in a real network. We are able to do it by usage of Network Prediction Systems, which are

systems built to predict various performance metrics of the network. Such systems usually assign

a few parameters to the nodes, and evaluate network parameters (latency, bandwidth) as a function

of parameters of the endpoints of the link. State-of-the-art systems either depend on embedding

the network into a metric space, or use more synthetic approaches like matrix factorization [42]

or tree embedding [57]. We advocate for the usage of LastMile, where each node has associated

parameters having real-life interpretation (capacities of links connecting peripheral nodes to the

core Internet). Such interpretation allows for simple instantiation of the parameters, as well as for

natural usage in the design of algorithms operating on the model.

Our last step will be to design algorithms building collective communication schemes with

good approximation guarantees. Our aim is to show that it is not necessary to know the full topol-

ogy of the network, and that the ability to instantiate few parameters provides enough knowledge

to design efficient communication schemes. We build those algorithms assuming nothing more

than the knowledge of the end-links characterizing the capabilities of the node to transfer data in

the network. In our approach we are able to reduce the problem of building overlay networks into

a very simple combinatorial problem and solve it accordingly. The framework we build there is

broad enough, and as an example we show how to incorporate the notion of connectivity artifact,

in the form of firewalls (we classify the nodes into ”open” and ”behind firewall”, and we assume

that two nodes behind firewalls cannot communicate directly).

Once the network is built (which nodes communicate together) and the bandwidths that should

be allocated to each edge create an overlay are determined, the solution can be decomposed into

a set of weighted broadcast trees. This decomposition specifies which data should be sent on

which edge at a given time step. In order to avoid this decomposition step, which is difficult to

use in practice, we rely on the randomized broadcasting algorithm proposed by Massoulié in [47].

This algorithm is fully decentralized and is even able to deal with small variations of resource

performance due to its randomized and dynamic nature. This algorit hm requires the knowledge

of the topology of the network with bandwidths on edges and no contentions on the nodes, that

is in general not realistic. On the other hand, the overlay network that we build has exactly, by

construction, these properties. The overlay network that we build in this chapter can therefore be

used as direct input to Massoulié’s algorithm.

The originality of this thesis is to consider the problem on the complete chain, from measure-

ments to model and algorithms. All of the steps described above can be combined into a ”bigger

picture” which allows our solution to be applicable in practice:

• methodology of point-to-point bandwidth measurements,

• network model, validated through experimental dataset,

• instantiation of model parameters from measurements,

• algorithm for construction of efficient broadcast overlay network having model parameters

as an input,

• Massoulié’s algorithm for randomized determining actual packet routing.
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As a complementary work, only partially related to rest of the thesis, we also provide a study

where we analyze how to design an efficient, power-aware routing scheme in a special class of

graphs. This work is motivated by a necessity to design a new kind of solutions when dealing with

routing and flow-related network problems. Classical solutions usually analyze situations where

links on a network are capped in a hard way. We design solutions where with every link there is

associated a convex cost function, and the shape of the function enforces that low-cost solutions

will be well-balanced ones and no edge will receive high bandwidth. Our motivation comes from

need of efficient routing of messages in system-on-chips, where cost function represents the power

usage in relation to data transfer over edge.
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Structure of the thesis

This thesis is structured as follow:

In Chapter 1, we discuss the measurements of network parameters, e.g. latency and available

bandwidth. We discuss techniques for measuring available-bandwidth. We also describe

PlanetLab platform, a large-scale, worldwide distributed platform for performing network-

related experiments. We discuss how to obtain reliable datasets of bandwidth measurements

using a PlanetLab platform. The S3 project from HP aimed at monitoring the PlanetLab

platform, provides us an example of such datasets. We also provide our own datasets,

and we discuss them together with the distributed software used to obtain them. While

those datasets are not a part of our model per se, such datasets prove necessary when eval-

uating performance of various network algorithms. We also discuss differences between

bandwidth-related and latency-related datasets, and the problems we encountered when try-

ing to obtain the former ones. In this chapter we also describe our experiments concerning

bandwidth sharing measurements. We provide a detailed discussion of the setting, methodol-

ogy, software and platform concerning those datasets. We believe such datasets are important

to validate models when it comes to predicting congestion.

In Chapter 2, we introduce the idea of Network Prediction Systems. These systems are an al-

gorithmic approach to the problem of predicting the values of various network metrics (for

instance latency or available bandwidth between nodes). They are typically used in a sit-

uation when only partial measurements are available, to be able to infer value for every

point-to-point communication. Each algorithm is discussed together with its pro and cons,

and for each system we also discuss the network model that it is based upon.

We start by discussing earlier approaches, based on embeddings into metric space. Such

embedding rely on assigning to each node in network an appropriate point in the parameter

space, and network metric we are estimating is read as the distance between points in the

metric space. We present various systems based on such an approach, like GNP (embedding

into Euclidean high dimension space) or Vivaldi (embedding into Euclidean space + height).

Another approach is basis of the Sequoia system, which tries to embed network into the

virtual tree, trying to mimic the hierarchical structure of the network.

We also describe approaches based on a matrix factorization. This is a synthetic approach

based on a treating the full set of measurements as an unknown, partially filled matrix of

values, that we try to represent as a low rank matrix (a matrix product P×Q where P and
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Q are respectively n×d and Q is d×n matrices, for some d≪ n). Our experimental com-

parison on datasets we obtained shows that this approach yields best estimation from known

prediction systems. This is despite the fact that there is no underlying network model sup-

porting this form of a calculation and effectiveness of the algorithm is only due to the matrix

approximation as a low rank being very efficient.

Then, we advocate for a network model that tries to accurately capture the capabilities of

the network, named LastMile model. This model assumes that essentially the congestions

happen at the edges connecting machine to the wide Internet. It has a natural consequence

in bandwidth prediction algorithm based on this. Using datasets described earlier, we prove

that this algorithm is able to predict with an accuracy comparable to best known network

prediction algorithm (Distributed Matrix Factorization) available bandwidth between two

given nodes. While we were unable to improve upon DMF algorithm on the field of point-

to-point prediction, we show that our algorithm naturally extends to the network predictions

under the congestion scenario. We are actually able to show that LastMile predicts better in

such scenarios, using PlanetLab datasets.

We also show the use of another strength of LastMile approach, i.e. the easiness of extending

the model. We show how the model can be generalized to incorporate the notion of well-

connected core Internet. The division into small, well-connected core and large, sparse, tree-

like peripheral Internet is supported by various empirical evidences (for example measures

of treewidth and hyperbolicity of the Internet). We show that LastMile is elastic enough

to incorporate such notions into its model, and that this extension leads to similarly simple

algorithms.

We end the chapter with description of a bedibe tool, that we developed as a response to a

growing need to prototype and evaluate different algorithms over various datasets. We used

this tool to obtain datasets, as well as analyzing performance of the algorithms with respect

to this datasets.

Chapter 3 describes the next step of our work, of developing specific optimization algorithms for

networking problems. We consider the classical problem of broadcasting a large message

at an optimal rate in a large scale distributed network under the LastMile communication

model. In this context, we are interested in both building an overlay network and providing

an explicit algorithm for scheduling the communications. From an optimization point of

view, we aim both at maximizing the throughput (i.e. the rate at which nodes receive the

message) and minimizing the degree of the participating nodes (i.e. the number of TCP

connections they must handle simultaneously). We propose new algorithms solving this

massive scale broadcast problems. We show that under that type of assumption, we are able

to provide algorithms with provable, strong approximation ratios.

Taking advantage of the simplicity and elasticity of the model, we can even extend it, so that

it captures the idea of connectivity artifacts, in our case firewalls preventing some nodes to

communicate directly between each other. In the extended case we are also able to provide

approximation algorithms with provable performance.
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In Chapter 4, we show how under different network cost models, using some simplifying as-

sumptions on the structure of the network and of the queries, we can design very efficient

communication schemes using simple combinatorial techniques. We investigate designing

routing of the communication algorithms, using some simplifying assumptions on the envi-

ronment (the graph where the communication takes place is a grid graph) and cost model (we

investigate the power-aware model). This work is complementary to the previous chapter in

the sense that previously when designing communication schemes, we assumed atomicity of

connections, i.e. that we have no control over routing of simple connections. In this chapter

we show that the knowledge of topology of the network or well-specified cost model allows

us to solve efficiently the problem of routing the network requests. It shows the importance

of being able to efficiently instantiate the parameters and the structure of the model, as such

detailed instantiation gives us very strong tools to design efficient communication schemes.
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Chapter 1

Measuring the Network

In large scale Internet platforms (e.g. peer-to-peer, streaming networks, clouds), measuring the

available bandwidth between nodes of the platform is difficult and costly. In many Internet applica-

tions, network-awareness is an important part of achieving good performance or lowering resource

usage. In the case of delivering video on demand [63], or performing peer-assisted streaming [44]

for example, estimations of available bandwidth allow the construction of an efficient overlay

topology. Efficient algorithms for broadcasting or for organizing master/slave communications

have been proposed [8, 6]. Examples of such overlays will be the topic of Chapter 3.

Those algorithms rely on an accurate representation of the performance of the network. In

all these applications, large amounts of data need to be exchanged between nodes, and hence the

available bandwidth is the important metric for application performance. However, the naive ap-

proach, that is measuring available bandwidth between nodes which are geographically distributed

over the Internet usually incurs a high cost, both in terms of measuring time and induced network

load. It is thus not desirable to perform periodic explicit end-to-end path measurements. Another

downside of this direct approach is that the number of possible scenarios we have to consider grows

quickly with the size of the network. Taking into account isolated point-to-point communication,

the number grows quadratically with the number of nodes (which already is impractical for large

networks), that is a full matrix of values indexed by starting and ending points of communica-

tions. If we consider congestion scenarios (where one node can communicate with a set of nodes),

the number can be even exponential. This forces us to provide other solutions than measuring in

advance network performance in every possible communication scenario, and directly measuring

every value of the communication matrix can be too much. Furthermore, we should consider that

network environment is a highly dynamic one, which implies that such explicit path measurements

provide a representation of the platform that is never up-to-date. We should be able to reevaluate

our measures, and take into consideration the high volatility of the measures.

As we will see in section 1.5.1, having the measures over the same edge varying twofold or

even larger is not that uncommon. We will discuss the methodology of bandwidth measurement in

Section 1.2.

To remedy problems highlighted above, we should consider the following solution. Firstly, for

each node, just keep track of partial data only, trying to capture the behavior of the node in the

network with only few essential measurements. We should be able to perform those measures for
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example when new nodes are introduced to the network (in a peer-to-peer networks), or period-

ically, to keep track of changes of network topology. Second, we should be able to extrapolate

this small data to predict the behavior of connections in more complicated situations. We will

discuss problem of predicting the network in Chapter 2. Having access to those predictions about

the performance of the platform, and especially about the available bandwidth, allows us to design

efficient algorithms that optimize resource usage for different types of collective communications.

In fact, whenever designing broadcasting algorithms or organizing master/slave computations, it

seems essential to obtain this type of information from the underlying network.

We will discuss point-to-point predictions with introduction of Network Coordinate Systems,

and more generally, Network Prediction Systems in Chapter 2. We will cover them deeper further

in the thesis, but the way both topics interact is worth noting. On the one hand, it is essential to have

reliable datasets when designing, prototyping and testing various Network Prediction Systems. On

the other hand, using reliable prediction algorithm, we can measure network only partially, for

some landmark edges, and recover the rest of the data using predictions.

Available bandwidth datasets are quite rare in the literature. The S3 project [67], which mea-

sured available bandwidth with the Spruce tool [62] between PlanetLab nodes, is now discontinued,

and we are not aware of other similar projects which are still active. Several tools exist for measur-

ing available bandwidth (i.e. the minimum remaining capacity on all links on the path) [55], while

keeping the load incurred to the network low. Furthermore, available bandwidth is not identical

to the available TCP throughput, which is the metric that actually influences the performance of

applications. State-of-the art methods for measuring available TCP throughput (such as Iperf [25])

are much more intrusive, and generally rely on mimicking the behavior of TCP, by sending as

much data as possible, and measuring how much data is actually received in a given amount of

time, once steady-state has been reached.

In this chapter, we describe our effort to obtain complete and reliable datasets of two differ-

ent types. First, we present datasets measuring point-to-point bandwidth over larger collection of

nodes, then we follow with datasets measuring bandwidth sharing over smaller sets of nodes. Both

datasets were collected on PlanetLab platform. We discuss the methodology we used for perform-

ing both experiments, what we aimed for and what we obtained. We also provide broad discussion

of obstacles we encountered while obtaining datasets, originating from either networking envi-

ronment characteristic, or being specific to PlanetLab. Finally, in this chapter we also provide

statistical analysis of the datasets, followed with reasoning about possible models for the behavior

of underlying network.

1.1 Context

In this section, we discuss our measurements in a wider context. We discuss platforms and software

used for obtaining datasets. In contrary to latency datasets, bandwidth datasets are rare. Neverthe-

less we discuss already existing bandwidth dataset, i.e. S3 [68]. Please note that we use a collective

term bandwidth for both TCP throughput and available bandwidth.
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1.1.1 PlanetLab

The measures have been performed on the PlanetLab platform1 [19]. PlanetLab is a large-scale,

worldwide distributed platform which provides an access to nodes on more than 500 sites across

the world, with more than 1000 nodes. PlanetLab was created in order to support the design and

evaluation of various Internet related applications, such as peer-to-peer file sharing or content dis-

tribution networks. PlanetLab is designed with a heavy emphasis on virtualization. The center of

PlanetLab architecture is a slice, a horizontal cut of global PlanetLab resources. Each service runs

in a slice of PlanetLab. Each slice is allocated a certain amount of resources (processing, memory,

network resources) across a set of individual nodes, and can be viewed as a network of virtual

machines, with resource bound to each virtual machine. Nodes of PlanetLab are geographically

distributed, connected by a diverse collection of links, including edge sites, co-location and rout-

ing centers, and low-profile machines. It has also become a de facto standard for conducting large

scale Internet experiments, and is thus well suited for our purpose. Furthermore, its accessibility

makes it relatively easy to conduct the required measurements.

However, there are still several downsides associated to the choice of PlanetLab for performing

measurements. The nodes are not the best representation of the Internet, with majority of the nodes

connected to the Global Research and Education Network (GREN). While there were various

efforts to improve the diversity, most of the nodes are still connected through the GREN (with only

26 nodes connected through the commercial Internet). The heavy load that the nodes of PlanetLab

experience is another source of problems.

1.1.2 SPLAY

The measurements were performed using the SPLAY middleware2 [40]. SPLAY was created with

aim of simplifying the prototyping and development of large scale distributed applications and

overlay networks. It provides a set of libraries and interfaces for writing applications. SPLAY also

provides web and command-line interfaces for job management on platform, node selection tools,

or for control of the behavior of testbed itself. We used SPLAY service on PlanetLab running on its

own PlanetLab slice. Using SPLAY helped us to write really lightweight and error-less networking

code, and concentrate on the logic of experiments and measures themselves. It is also a great tool

for automatic deployment of code on tens or hundreds of PlanetLab nodes.

1.1.3 S3

The S3 project from HP [68] was aimed at monitoring the large scale distributed platform Planet-

Lab, and in particular at providing available bandwidth measurements between pairs of nodes of

this platform, obtained with the Spruce tool [62]. These datasets have been used by the community

to validate bandwidth estimation tools [35]. However, this project is now discontinued, and we

are not aware of other similar projects which are still active. We decided not to use Spruce by

ourselves, because it requires some extra knowledge on the measured link, that is capacities of

1http://www.planet-lab.org
2http://www.splay-project.org
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individual links on the edge. We use S3 datasets as a reference point for checking validity of our

point-to-point measures.

1.2 Measurement methodology

In this chapter we focus on application-level measurements, in order to observe the platform as it

would be accessible to the application. Hence, we measure available TCP throughput, which is the

steady-state reachable throughput that can be achieved with a TCP connection.

1.2.1 Available bandwidth

It is a nontrivial problem to define the ”available bandwidth” for a fixed Internet path P. It is

common to define it as the maximum rate of transmission that could be achieved without reducing

rate of the rest of the traffic in P [30]. However, in our experimental setting, we have no control

on other traffic that goes over the same path. But we can safely assume that the network we

are operating on (PlanetLab) is coupled with the Congestion Control mechanisms appropriate for

systems under heavy usage [53]. So we assume, that the bandwidth we achieve when we ”flood”

the path with our transfer, is in fact the maximum achievable one that does not prevent other

communications from taking place.

1.2.2 Intrusive vs. non-intrusive measures

Efficiently measuring the available bandwidth on a path has been addressed in several works (see

for example [30]). A simple and natural method consists in sending as much data as possible, and

measuring how much data we are able to send in a given time. The major downside of this method

is that it incurs a very heavy load on the network for the whole duration of the experiment, that

needs to be long enough to ensure that steady-state has been reached. By necessity, several less

intrusive methods for measuring available bandwidth have been developed, like pathload, IGI or

pathchirp [55]. Pathload tool relies on a Self-Loading Periodic Streams (SLoPS) methodology.

The methodology involves sending periodic packet streams of fixed size, and then monitoring

variations in the one way delays of the probing packets. If the stream rate is larger than the path’s

available bandwidth, the stream will cause a short term overload in the queue of the tight link. On

the other hand, if the stream rate is lower than the available bandwidth, the probing packets will go

through the path without causing an increase in the delays. The sender can thus try and estimate

the highest possible sending rate that will not increase the packet delays. IGI and pathchirp rely on

Trains of Packet Pairs (TOPP) methodology, which is a modification of SLoPS, based on statistical

analysis of behavior of pairs of packets. TOPP sends many packets pairs at gradually increasing

rates from the source to the sink. If the offered rate of the packets (L/∆S, where L is size of packet,

∆S is the dispersion rate, that is the time between first and second packet) exceeds end-to-end

available bandwidth, the second probing packet will be queued behind the first probing one, and

measured rate will smaller than offered rate. On the other hand, if offered rate does not exceed

available bandwidth, the measured rate will be the same.
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Figure 1: Plot of total cumulative data sent or received, with one node sending simultaneously: to

one node (on the left) or to two nodes (on the right).

To summarize, those tools rely on sending a few packets along the path, and analyze the ef-

fects of intermediate nodes and cross traffic on these probe packets. Although they do not require

privilege access, these tools require a fine grain access to the network. However, using them on

PlanetLab is not easy and is not reliable [39], at least not more reliable than brute force approach,

since the main source of failures of measurement between nodes is the inability to establish con-

nection, without distinction for non-intrusive and intrusive measures. Even though these methods

are much more efficient in terms of resource usage, we decided to rely on simple, yet intrusive,

measures. This decision is motivated by two points. Firstly, since the goal of our study is to analyze

several methods for predicting bandwidth from a limited number of measurements, it is important

to introduce as few measurement errors as possible in the data. Furthermore, we could not find

bandwidth datasets obtained with a direct method, since the S3 dataset was obtained with Spruce.

Secondly, and most importantly, our study of congestion with several connections requires direct

intrusive measures.

1.2.3 Protocol limitations

The biggest obstacle to overcome is the slow start of a TCP connection [29]. TCP protocol con-

tains Congestion Control mechanisms. As a result, during the initial phase of the connection the

transmission rate increases exponentially with time, by doubling the congestion window with each

received acknowledgment. So, when measuring bandwidth, we must make sure not to take into

account the initialization period of connection, as it will make measures underestimated. On the

left side of the Figure 1 we provide a plot of both total number of bytes send and received as a

function of time, during a single transmission session between two nodes, one sending and another

one receiving. It provides an example of behavior described above, where we can clearly see that

all sending nodes achieve full available transmission speed a few seconds after the connection we

established, as constant slope means constant throughput. After a while, the sending speed gets

adjusted, also as a result of a Slow Start mechanism. The delay between sending and receiving the

data can be attributed to the TCP buffers. Situation becomes more unpredictable, when there are

multiple simultaneous connections. We observed that the bandwidth share allocated to a unique
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Figure 2: Plot of total cumulative data sent or received when one sending node transmits simulta-

neously to three receiving nodes.

connection, during a single transmission session is fluctuating heavily over time. Since the starting

behavior is chaotic, we arrange the measures of the connection speed for sufficiently long enough

to make averages overcome local fluctuations. However, even with the long snapshots, the be-

havior varies strongly, even when trying to reproduce the same scenario. Plot on the right of 1

provides an example of sharing a connection between two transmissions. The steps we see on the

plot are another effect of TCP Congestion Control.

Figure 2 shows an example of such a behavior, where multiple outgoing connections compete

over share in more or less constant stream of outgoing data in one sending node to three receiving

ones. We observe that while the sender quickly saturates its outgoing link and transmission is

performed at constant speed, the share that is assigned to each receiver varies in time. We see

that one connection (only after 12s since start) saturates and effectively kills both other competing

connections (their speed drops to zero).

Another obstacle to overcome comes from the fact that TCP is not stateless. When performing

series of measures, closing and reopening the connection can be not enough to reset the connec-

tion. To avoid encountering traces of old connections in the network when repeating the same

connection, we made sure to wait a sufficient amount of time between measurements on the same

edge (5min wait was implemented).

1.2.4 PlanetLab limitations

Our choice to perform the experiments on PlanetLab influenced heavily how they were performed.

The PlanetLab platform itself, because of the fact that it is shared among a large number of users,

comes with a number of restrictions.

In order to avoid flooding, PlanetLab has a policy fixing for each node a daily data transfer
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limit. Together with our measurement methodology which requires to send data for 20 seconds to

perform one measurement, this means that it takes several days to gather an exhaustive and broad

enough dataset, even for a small number of nodes. Hence, the number of nodes must be kept at

reasonable size if we want our datasets to span relatively short periods of time.

PlanetLab nodes are under heavy usage, both in terms of CPU and bandwidth. Because of

heavy CPU usage, and special process scheduler, time measures are unreliable (under 10ms error),

which makes latency measures over network unpractical, and makes it very difficult to use state-

of-the art available bandwidth estimation tools, that rely on precise timings of packet arrival times

(see [55, 30]). Our bandwidth measures however do not suffer from this problem, since we measure

time at a much coarser scale. Heavy bandwidth usage from other PlanetLab users yields a very

high variability of the measures, even when performing one measure just after another. Example

of how variable individual measurements over single edge can be seen on the Plot 5.

The PlanetLab platform is not a “typical” Internet platform, in the sense that it consists of

servers hosted by universities or research institutions, often connected through high-speed and

high-bandwidth academic networks. They are also usually close to the main Internet routes. It

is important to keep in mind that this platform is thus not representative of a typical peer-to-peer

situation. However, its size and its geographically distributed nature make it interesting to observe

and to analyze. Furthermore, when we will introduce LastMile model in Chapter 2, we will see

that this situation is a “worst-case” for that model, since typical peer-to-peer platforms with DSL

connected nodes are more likely to follow the LastMile model than PlanetLab (due to their slower

”last-mile” links more likely being a bottleneck of transmission, which is a central assumption for

this model).

1.3 Experiment design

We performed two types of experiments: individual end-to-end throughput measurements, as well

as contention experiments for measuring the performance achieved when multiple communications

take place at the same time. To keep them as simple as possible, we concentrated on the particular

situation with one sender and two receivers. On the considered platform, such a situation is enough

to generate contention, and thus allows us to capture congestion and sharing mechanisms. The

situation with two senders and one receiver would be interesting to observe as well, but we left

it open as a possible extension to our work in the future. The original scenario already cost us

much in terms of effort and time, and provided us with enough data to analyze extensively. It is

also important to point that, due to asymmetry of Internet download vs. upload, the one-to-two

scenario is much more likely to generate congestion than the two-to-one scenario.

In order to make sure that we observe steady-state, and thus avoid the slow-start mechanisms

of TCP, the setting for measuring individual connection was as following: data is sent from the

sending node to the receiving node on a TCP socket for 20 seconds . The first 15 seconds are not

measured, and only used to “warm-up” the connection. The receiver measures how much data is

received for the last 5 seconds, and uses this value to compute an average throughput over these

5 seconds. We present an example of such a measurement on Figure 3. Notice, that the sending

node sends data only for 20 seconds, and even if receiving nodes still receive the data after 20
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Figure 3: Plot of total cumulative data sent or received when one sending node transmits simulta-

neously to two receiving nodes.

seconds have passed, it doesn’t count towards measured values. The length of measure was chosen

as a compromise between usage of resources (daily cap on used bandwidth per node of PlanetLab)

and precision of measurement. Contention experiments used a similar setting, with both receivers

measuring how much data they receive on the last 5 seconds. This is a major difference from S3

datasets, that were obtained using the Spruce tool [62].

With the dynamic nature of the PlanetLab platform, both kinds of measurements suffer from

high variability. In order to overcome this variability, we perform at least 10 repetitions of the

measurement for each configuration (the same sender-receiver pair for end-to-end measures, and

the same sender-receivers triplet for contention measures). The variability of measures is analyzed

in Section 1.5.

1.4 Datasets

The measurements performed are grouped into two datasets. The first dataset contains our end-to-

end bandwidth measures. It was obtained by randomly selecting 50 nodes of PlanetLab, among

which we performed measures over the course of one month, with the objective of having 10 mea-

sures for each sender/receiver pair. Due to PlanetLab limitations and in order to avoid exceeding

daily limits for a node transfer, each node could be involved only in a few measurements daily.

With a daily limits around 8GB of download, and one measurement taking even up to 200MB,

or sometimes larger if the nodes involved happen to be in a network close proximity. The total

transfer limitations of PlanetLab created a situation, where even with all nodes available all the

time and with no connection problems, obtaining the full matrix would have taken months. Such a

large timespan contradicts the idea of obtaining snapshot of network parameters at one precise mo-

ment. Even worse, because of unavailability and connection problems, we abandoned the starting

target of the experiment, that is to obtain a complete matrix over a larger set of nodes. A subset of
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Figure 4: Two examples of shared bandwidth distributions when connecting repeatedly to the same

two nodes.

15 most reliable nodes was selected (based on already obtained partial data), among which it was

possible to obtain a complete set of measurements. This data was collected between December

20th, 2012 and January 16th, 2013.

The second dataset contains our congestion measurements. It consists of 87 measures of band-

width shared between triplets of nodes (one sender and two receivers), where each measure over

each triplet was performed 10 times in about 10 minutes of time. Triplets were selected at random

among the set of 15 nodes which had been selected for the complete end-to-end measurements as

described above. This data was collected between January 4th, 2013 and February 4th, 2013.

Examples of results of this type of measurements are on plots on Figure 4, where we plot

measured source-to-first node bandwidth vs. measured source-to-second node bandwidth in a

bandwidth sharing experiment. On both those plots the results seem to cluster on a X +Y = const

line, however we see strong variability of a distribution of individual values.

Both of these datasets are available as part of a larger project named bedibe, and can be down-

loaded at the following address: https://gforge.inria.fr/frs/download.php/32092/data.

zip. We will discuss bedibe more thoroughly in a Chapter 2.

1.5 Data analysis

In this section, we perform statistical analysis of datasets mentioned above. We provide basic

statistical analysis of point-to-point datasets, followed with analysis of bandwidth sharing datasets.

We perform them to increase our confidence that we are in fact measuring network parameters,

even when faced with noise and highly volatile environment on a large scale.

1.5.1 Point-to-point measurements

In order to evaluate the variability of our measurements, we focus on the subset of 15 nodes,

for which we have performed a larger number of measurements. Between all pairs of nodes, a
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Figure 5: Plot of variability of individual measurements.

total of 10 individual bandwidth measurements were performed. This allows to compute mean

and standard deviation for each given source/destination pair, and we express how variable the

results of a measurement between two given nodes can be by computing the relative standard

deviation (the standard deviation divided by the mean). On Figure 5, we plot relative standard

deviation as a function of mean bandwidth, and distribution of relative standard deviation among

all source/destination pairs. We can see that only a fraction of measures are stable. However, in

significant number of cases the variability is high, with relative standard error around or above

0.5. This means that on average, we can be certain of the measure only up to a factor of 2. This

variability is not a surprise, given that the PlanetLab platform is shared among many users, and

this shows that providing estimates for the bandwidth is certainly challenging.

1.5.2 Bandwidth sharing measurements

In the bandwidth sharing experiments, we measure the throughput received by both receivers. Here

also, we want to observe the variability of these measurements. For each configuration (i.e. for

each choice of one sending and two receiving nodes), the measurement was performed 10 times

during 1 hour, and reports the throughput received by each receiving node (b1 and b2), as well

as the sum of these throughputs btot = b1 + b2. Similarly to the previous paragraph, for each

configuration we compute the relative standard error for b1, b2 and btot , as an indication of how

variable these measures are. The results are shown on Figure 6, where we plot distribution of the

relative standard error of the throughput received by the first node, by the second node, and of

the total throughput received by both of them. We can see on the plot, that the total throughput is

much more stable than the individual throughput received by a given node. This high variability

for individual values is the reason why, in Chapter 2, we will not attempt to predict how the sharing

is done between the two receivers, but instead focus on predicting the total throughput.
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Figure 6: Plot of variability of sharing bandwidth measurements.

1.6 Conclusion

We have been able to get a consistent, reliable data in a reasonable time, using PlanetLab. Our

initial aim to obtain data on how the bandwidth is shared between individual connections in a con-

tention scenario proved to be too ambitious. As we saw on the results, even if the total throughput

of a sending node is stable, the individual share of bandwidth is unpredictable when we repeat-

edly perform the same node connection configuration. However, higher stability of total sending

throughput is a strong indicator of saturation of the sending node and applicability of the LastMile

model in this scenario. Our point-to-point measurements provide better results, however scale of

influence of various parameters is noticeable. Level of errors we obtain on this measurement is

also a reason, that when we will be performing network predictions, we should not distinguish

between perfect prediction, and prediction with a relative error of 50%, as that is usual error ratio

the measurements come with.

Further work in this area is needed, as there is not enough bandwidth datasets publicly avail-

able to the research community. On the measurement side, it would be very useful to obtain larger

datasets for available TCP throughput. But to achieve this, it seems necessary to use other plat-

forms, since we believe we have achieved the limits of what is possible within PlanetLab. While it

might be possible to use existing tools for obtaining point-to-point measurements, and thus obtain

larger datasets, no tools for measuring bandwidth sharing is known to us. As there exists S3 point-

to-point dataset obtained on PlanetLab, using Spruce, we saw no point in duplicating that work.

For congestion measurements, it would be interesting to perform measures of congestion/band-

width sharing in more general settings. In this chapter, we concentrated on scenarios with one

sender and two receivers. Scenarios with two (or more) senders and one receiver would allow to

explore congestion on links to receiving nodes, instead of sending nodes. Our work allowed to

observe congestion with no more than 3 nodes involved. Considering larger scenarios, e.g. one

sender and many receivers or many senders and one receiver, would also be interesting, in order to

confirm the results obtained in this chapter in more general settings.
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Chapter 2

Evaluation of Bandwidth Network

Prediction Algorithms

2.1 Introduction

In many Internet applications, network awareness is an important part of achieving good perfor-

mance or lowering resource usage. In the case of delivering video on demand [63], or performing

peer-assisted streaming [44] for example, estimations of available bandwidth allow the construc-

tion of an efficient overlay topology (e.g. SplitStream [17]). In this chapter, we cover the topic

of estimating available bandwidth between the nodes located in the network. We present systems

(centralized algorithms and their decentralized versions), that can be deployed onto the platform

and allow us to ask for estimated available bandwidth between any two given nodes. Such a system

should take into account the dynamic nature of the network, nodes entering or leaving.

In many applications (such as content delivery or video streaming), large amounts of data need

to be exchanged between nodes, making available bandwidth the important metric for application

performance. However, as we saw in Chapter 1, it is often not desirable to perform explicit end-

to-end path measurements because of the high cost of such measurements. Single measurements

are both time and resource consuming, and exhibit large discrepancy. Moreover the number of

possible scenarios that should be covered by measures grows quickly with the size of the platform,

typically as N2, where N is the number of nodes in the platform. The solution provided should take

care of a dynamic nature of the platform, e.g. nodes added or leaving. Also, the dynamic of the

network itself is another challenge that a naive approach has trouble dealing with, as the edges can

change its throughput in time or new edges can appear thus changing topology of the networks.

In the light of problems stated above, and in order to perform resource optimization in large

scale platforms, it is thus necessary to summarize the network performance in the platform, in a

way that providing such a summary can be done with a reasonable amount of measurements. In

a topic of the latency-awareness, this idea has led to the design of Network Coordinate Systems

(NCS), which embed the nodes of the platform in a metric space. Appropriate metric spaces and

efficient algorithms have been proposed for estimating latency over the Internet (Vivaldi [20] is

a good example). The idea of designating some nodes as a landmark nodes lead to the Global
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Network Positioning (GNP) system, which embeds subset of nodes into a (high) dimension Eu-

clidean space [51]. High dimension required for successful Euclidean embedding gave rise to the

hyperbolic spaces embeddings [60]. Such systems should capture the large-core and long-tendrils

structure of the Internet. A study measuring hyperbolicity, and treewidth of the Internet [49],

resulting in a finding a large, well connected, inseparable core of the Internet (large treewidth),

and high hyperbolicity (so the peripheral Internet tends to be separated from each other). Main

problem with metric space embeddings are the triangle-inequality-violations: a situation where

a direct distance measured between two nodes A and B is larger than sum of two distances be-

tween a third node C and both of nodes A and B. Works measuring the range and effect of the

phenomenon have been done, and solution by weakening the distance function into a inframetric

has been proposed [23]. Another worth noting solution is Sequoia [57], which tries a different

approach of embedding network into tree structure. The tree Sequoia embeds is built from virtual

nodes, that does not necessarily reflect physical network infrastructure, and only leaves of the tree

reflect actual network nodes.

As we will see in Section 2.2, the metric space embedding is an approach that translates poorly

into the bandwidth estimation, and a new approach is required. In order to predict bandwidth, our

main focus in this chapter is on the LastMile model [10] and on Decentralized Matrix Factorization

(DMF) [43]. Both are good candidates for available bandwidth prediction algorithms, mainly

because they are able to give asymmetric estimation, which is impossible for all NCS based on

a metric space embedding. In Section 2.2 we will discuss several other prediction algorithms

(Vivaldi, Sequoia, Iterated LastMile).

In Section 2.3, we analyze the estimation precision of both DMF and LastMile algorithms,

based on measurements datasets obtained on PlanetLab from S-cube [67]. We show that matrix

factorization techniques are quite efficient at predicting point-to-point available bandwidth. Last-

Mile provides slightly less accurate estimation, but we also provide a variant of the algorithm

which improves the predictions quality and provides ones comparable to DMF ones. Both DMF

and LastMile outperform previously existing algorithms.

Then, in Section 2.4, we go beyond estimation of point-to-point performance and address the

problem of congestion. The challenge is: is it possible to predict the performance obtained when

several communications take place at the same time? When several large communications take

place at the same time, they are expected to interfere with each other. Being able to predict and

model these interferences is crucial for optimizing the resource usage of an application. On the

one hand, algorithms like DMF or Sequoia do not seem to easily deal with such scenarios. On

the other hand, the LastMile model actually specifies that communications can happen in parallel,

as long as both the outgoing and the incoming bandwidth limits of each node are fulfilled. In this

chapter, we evaluate performance of bandwidth prediction algorithms on a data described in details

in Chapter 1, that is bandwidth sharing data, a dedicated measurements performed on PlanetLab

specifically to study this question. Using this data, we show that LastMile allows to perform this

prediction with a reasonable accuracy.

The Chapter 3 will cover the topic of algorithms constructing an efficient overlay networks for

such a platform, under the assumption that LastMile model applies.
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2.2 Network Prediction Algorithms

In this section, we present different models for network predictions. Several models have been

developed for latency estimations (Vivaldi, GNP, DMF). We also present models for general net-

work distance estimation (Sequoia). In such a situation, one tries to estimate the general network

distance function d, that can be defined either in terms of latency d(Ci,C j) = latency(Ci,C j) or

in terms of bandwidth d(Ci,C j) =
1

BW (Ci,C j)
or d(Ci,C j) = maxbw−BW (Ci,C j). With this trans-

formation in mind, we can even try to apply latency estimation into the bandwidth estimation

(for example we will do such with DMF). The only model designed purely for bandwidth is the

LastMile model.

Network Coordinate Systems have received a lot of attention recently, especially in the context

of latency estimation. Original systems, like GNP [50], relied on landmarks to make the pre-

dictions – landmarks are special nodes whose positions are computed first, and all nodes of the

system compute their position with respect to these landmark nodes. Afterwards, more distributed

systems, like Vivaldi [20], have been designed, in which all nodes have the same role, leading to

more precise and robust estimations. The term Network Coordinate System comes from the fact

that all those systems embed the nodes in a metric space, hence assigning coordinates to all nodes,

and use the distance in this space as an approximation of latency.

A notable exception to this is the Matrix Factorization [43] technique, in which the rationale

is to approximate the distance matrix by a low rank matrix by assigning a column and a row

vectors to all the nodes of the system. Matrix Factorization has been originally designed for latency

estimation [46], and later extended to estimate network performance classes [41]. However, in this

chapter we are interested in estimating available bandwidth, and it seems natural to observe how

well Matrix Factorization performs in this context.

Another exception to this is Sequoia, in which the algorithm tries to embed the nodes of the

network into one or several (virtual) trees. Sequoia has been the first attempt to provide bandwidth

estimation, but in fact it provides general network distance estimations. Plenty of work [49] has

been done in the area of treeness, as well as the connectivity of the Internet, measuring various

metrics of the Internet.

Hyperbolic space has been proposed as a replacement for the Euclidean space embeddings.

The rationale behind this is that when trying to embed Internet into the Euclidean space, one has

either to choose high dimension of the space, or suffer from the problem of having not enough

space on the periphery to represent ending nodes of the network as having high distance between

themselves.

2.2.1 Shape of the Internet

In this section we will present various results of experiments performed to define the ”shape” of

the Internet. Those results, while not applicable in a small scale solutions (platforms deployed

locally), are important when designing solutions working not in an arbitrary network, but in a

geographically distributed hosts deployed over the Internet, e.g. peer-to-peer networks or live

streaming.
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An experimental evaluation measuring the treewidth of the Internet has been done [49]. An

evaluation was performed on the experimental datasets, obtained as follow. For a router level, a

set of Internet hosts (IP addresses) was chosen. For those hosts a connectivity graph was obtained,

containing as vertices both hosts and intermediate nodes. Paths were discovered using traceroute

utility tool. For Autonomous System (AS) level, the IP interconnections between two IP addresses

can be used to infer an AS interconnection between two ASes who advertise IP prefixes (such links

are observed at the BGP routing level or at IP level).

A tree decomposition of G = (V,E) consists of a tree T and a subset Vt ⊂ V associated with

each node t of T (called a ”bag”), that satisfies following properties

• every node of G belongs to at least one bag of T ,

• for every edge e ∈ E, there is a bag Vt containing both ends of e,

• the collection of bags containing a given node of G induces a connected subtree of T .

The width of the tree decomposition (T,{Vt}) is defined to be one less than the maximum size of

a bag. The Treewidth of the G is the minimum width of a tree decomposition of G. Intuitively, a

treewidth of a graph answers the question of how far away the structure of the graph is from the

tree one. Calculating of exact value is NP-complete, however heuristic approach can be applied

to get bounds on the value. Treewidth can be seen as a measure of the global connectivity of the

graph. Tree has treewidth of 1, while n vertices grid graph has a treewidth of
√

n.

Treewidth of connectivity graphs described as above show follows the growth of

treewidth(G) ≈√n, which means that a rather large number of vertices need to be removed from

the graph to disconnect it. That is a strong evidence for existing of a well connected core of the

Internet, composed of a small set of very well connected set of hosts.

Another evaluation of the Internet graph (with distances defined as a number of hops), was

performed as follow. Hyperbolicity of a graph G, denoted as δ (G) is defined as follow: first, for

arbitrary quadruple of nodes x,y,z, t, we define:

δ (x,y,z, t) =
d1−d2

2
,

where d1 ≥ d2 ≥ d3 are sorted in a nondecreasing order values of d(x,y)+d(z, t), d(x,z)+d(y, t),
d(x, t)+d(y,z). Then, we simply define δ (G) = maxx,y,z,t δ (x,y,z, t). Hyperbolicity measures how

far graph is from the tree.

Even stronger finding is that, if one takes not max, but the average over all quadruples of

pairs, that the average hyperbolicity is relatively small. The conclusion of the measures is that the

distances (in hop counts) between any four hosts in the Internet is on average behaving like they

were vertices of a tree, with almost all quadruples having δ (x,y,z, t) either 0 or 1.

2.2.2 Symmetry violations

One of the major steps in improvement over bandwidth predictions was moving from symmetrical

algorithms to asymmetrical ones. It is no longer a valid assumption, that BW(Ci,C j)≈BW(C j,Ci),
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Figure 7: An asymmetry ratio cumulative distribution function (CDF), taken for all edges in the

dataset. Calculated for S3 dataset and bedibe dataset.

while it was a valid assumption for latencies. On Figure 7, we present a CDF plot of an asymmetry

ratio (a relative error between two symmetrical measured bandwidth) taken for all possible pairs:

max

(
BW (Ci,C j)

BW (C j,Ci)
,
BW (C j,Ci)

BW (Ci,C j)

)

.

So, we in fact plot what fraction of pairs have the error equal-or-less than a given value. As we can

see, errors can be of a rather large magnitude. For example, in S3 dataset, 40% of values measured

differ by a factor 4 or larger from their symmetrical counterparts, and almost 20% have a factor 9

or larger. This means, that the best we can hope for when estimating using symmetrical algorithm,

is that for 40% values measured we will have an error of a factor 2 or larger, and that for 20%

values measured we will have an error of a factor 3.

2.2.3 Global Network Positioning

Global Network Positioning (GNP) was the first proposed network prediction system. It models

the Internet as an Euclidean space, where any end host is assigned coordinates [51]. Small number

of distributed hosts called landmarks measure inter-landmark distances. The system then computes

the coordinates of each landmark in the Euclidean embedding, by minimizing the discrepancy be-

tween measured distances and computed distances. Each host in the platform knows the landmark

nodes, and their coordinates. When localizing itself in the network (for example, node enters the

network), node has to measure its actual distance to each landmark. Node then computes its own

coordinates that minimize the overall discrepancy between measured distances to the landmarks

and computed distances.

Actual performance of the algorithm depends on policy of choosing landmarks. Experimental

evaluation shows that it achieves reasonable predictions on latencies. But the dimension of the

Euclidean space has to be set to at least values of d = 7.
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2.2.4 Vivaldi

Vivaldi was presented first in [20], and is a latency prediction algorithm. It is meant to be simple

and lightweight algorithm for assigning a synthetic coordinates to the hosts. Basic idea that the

algorithm was developed around is embedding the hosts into an Euclidean metric space, to mimic

the geographic-related behavior of a large scale Internet.

Vivaldi works by searching for coordinates x1, . . . ,xn minimizing the value of an error function:

E = ∑
i, j

(
Li, j−‖xi− x j‖

)2

for a given L as an input matrix. Minimization is performed by mass-spring simulation. Based on

Hooke’s law, for each pair of nodes i, j, the force generated by j on i by the displacement of the

spring connecting them is:

−→
F i, j =

(
Li, j−‖xi− x j‖

)
×u(xi− x j).

Note that u(−→v ) is the unit vector in the direction of −→v . The algorithm simulates the ”movement”

of the nodes in the parameter space, by calculating total force at each step of iteration

−→
F i = ∑

j

−→
F i, j

and by simulating the small progression of time

x′i = xi +δ t ·−→F i.

Algorithm is adapted to work with a partial input matrix, and it handles in an easy way updates

of information. It can be also easily adapted into a decentralized environment, where each node

computes its own coordinates, and performs its own set of measures. This way the algorithm can

also handle the changing environment and other nodes joining/leaving the network.

The general algorithm presented here can be adapted to a various metric spaces. It works best,

when the metric space is an Euclidean one paired with directionless height assigned to each node,

that is included to capture latency overhead on the access links of single-homed hosts.

2.2.5 Sequoia

In general, algorithms specialized in latency predictions have poor performance when applied

to bandwidth estimations. Sequoia was the first attempt to develop bandwidth estimation algo-

rithms [57], but it can be used for latencies also. It uses the notion of distance between two nodes

of the network, being it either the latency measure, inverse bandwidth measure, or constant minus

bandwidth measure. Note, that the distance is not necessarily a metric distance, as it can violate

triangle inequality, having

d(Ci,C j)> d(Ci,Ck)+d(C j,Ck)
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In fact, various analysis of latency datasets show that between 10% and 40% of triplets violate

the triangle inequality [57]. We also have seen previously that bandwidth distance also violates

symmetry, having d(Ci,C j) 6= d(C j,Ci).
Sequoia relies on embedding network latency and bandwidth onto trees, using the notion of

prediction trees, where end hosts at the leaf level connected via a network of virtual inner nodes

model latency or bandwidth. This work differs from system trying to reconstruct internal topology

of the Internet, in the sense that it operates using virtual nodes, that doesn’t necessarily reflect

existing gateways and routers. Sequoia virtual trees could be used to construct a hierarchically

organized distributed system if required.

For each virtual tree, Sequoia designates one node as a lever, that acts as a reference for the

tree. It means that for every other node in this tree, the distance in the tree between this node and

lever is the same as real-life measured metric (bandwidth or latency, depending which one we are

estimating).

In each virtual tree Sequoia chooses another node, named anchor. Having lever R, anchor A,

while adding node Ci, algorithm will try to preserve exact distances d(R,A), d(R,Ci) and d(A,Ci).It
achieves it by connecting Ci to the tree through new virtual node S on a path connecting R and A,

such that it preserves all three distances. The node S should be selected that

d(s,R) =
1

2
(d(A,R)+d(Ci,R)−d(A,Ci)) .

The virtual construction proposed above has one disadvantage, that is the trees constructed

there are of very poor structure (path with attached single edges). That is why Sequoia itself

uses another abstraction, called anchor trees. It represents exactly the same set of predictions

as corresponding prediction tree, but is a well balanced structure. It does not use virtual nodes,

and network nodes can be intermediate nodes in the tree. On those type of trees, every operation

(joining/leaving of a node, new measurement) can be performed with a time efficient computation.

A different architecture version of the algorithm have been proposed [57], ranging from fully

centralized one, through partially centralized (one machine builds prediction trees, machines can

perform queries by itself), to fully decentralized one.

An advantage of Sequoia is that it mimics the treeness of the Internet in its prediction trees.

Another strong point is that it does not assume much about the distance on the network, and works

fine even on datasets with a lot of triangle-inequality-violations. The applicability of the algorithm

to any form of network distance is an advantage, as the system is very generic, but it is also a source

of disadvantage, as Sequoia does not use any specific properties of bandwidth measurements and

bandwidth related metrics. This proves important when we compare the performance of Sequoia

to other, more bandwidth-specific algorithms.

2.2.6 Decentralized Matrix Factorization

Matrix Factorization (MF) has recently been proposed as a novel approach for distance estimation

in the Internet [46]. This approach strongly differs from other models, as it does not attempt

to make any assumption on the underlying network. Rather, the objective is to approximate the

bandwidth matrix (i.e. the n by n matrix M such that Mi, j is the measured available bandwidth
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between Ci and C j) by a low rank matrix. In MF, we thus search for matrices P and Q (of dimension

n× d and d× n respectively, where d is a fixed parameter) such that the product P×Q is “close

to” the measured matrix M . If the closeness property is defined by the quadratic error

err(P,Q) = ∑
i, j

(Mi, j− (P×Q)i, j)
2,

then optimal P and Q can be computed from M by SVD (Singular Value Decomposition), or by

iterative optimization if some values are missing.

A fully distributed algorithm has also been proposed [43],[42], named DMF, in which each

node is in charge of its own values in matrices P and Q, and iteratively, nodes optimize their values

based on the current values of their neighbors. The algorithm uses method named Stochastic

Gradient Descent (SGD), founded on the stochastic optimization theory. The decentralized setting

features neither requirement for explicit construction of matrices nor special landmark nodes and

central servers. The network nodes exchange messages with each other, and matrix factorization

is collaboratively and iteratively achieved at all nodes.

It has been shown experimentally that this algorithm converges [42], and gives actually better

latency estimates that Vivaldi algorithm; this algorithm has also been used to perform classification

of paths in either “good” or “bad” performance [41]. As far as we know, there is no experimental

evaluation validation of DMF for bandwidth estimation.

2.2.7 LastMile

The LastMile model [10] was derived with aim at simplicity and easiness of derivation of al-

gorithms operating on it. The LastMile model is based on the assumption that contention only

happens at the periphery of the network (on the “last-mile” link that connects each participating

node to the core network). This assumption is realistic in many scenarios (like for example when

the system consists of home computers connected to the network by DSL connections), hence

this model has been used in several studies to design or analyze communication algorithms for

video-on-demand [16], peer-assisted streaming [44] or master-slave tasking [9].

The LastMile model assigns to each node Ci an outgoing bandwidth bout
i and an incoming

bandwidth bin
i , and then the available bandwidth between two nodes BW (Ci,C j) can be estimated

by LM(Ci,C j), which by definition is equal to

LM(Ci,C j) = min(bout
i ,bin

j ).

Below, we present experimental evidences for the correctness of the LastMile model. If we

take a fixed node Ci (that has associated value of bout
i ), and look at all the predicted bandwidth

values ”to” all the possible nodes C j (with associated values of bin
j ), the value treated as a function

of bin
j , is either equal to bin

j (for values of bin
j smaller than bout

i ), or is equal to a (constant) value

bout
i (for values of bin

j greater than bout
i ).

On the Figure 8 we show evidence supporting that behavior described above takes place. We

plot there, for a selected node, all the values of outgoing measured bandwidth, sorted. On the left

plot, we see that smallest 50 values resemble even distribution of values. We also see that 50th
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Figure 8: Plots showing values of measured outgoing bandwidth, sorted, for a given selected node

from a S3 dataset (planetlab7.millennium.berkeley.edu on the left,planetlab3.hiit.fi on the right).

Plots taken from [10].

smallest value is very close to the 300th one, and only few values marginally exceed that value.

We interpret it as the outgoing bandwidth of that node is limited by a value, and it determines the

speed of connection for all connections except 50 smallest ones, where the other node limitations

determine the speed.

The plot on the right of Figure 8 shows a different behavior, with few values greatly exceeding

the speed limit we could otherwise infer. We can explain this fluctuation by a few nodes being in a

very close network proximity, for example the same campus network, or other WAN.

Basic LastMile

LastMile bandwidth estimation algorithm is a simple approach to calculating the corresponding

values of bout ,bin. It relies on the fact, that in the scenario where measured values BW (Ci,C j) are

perfectly predicted by LM(Ci,C j) calculated as above, we would have

bout
i = max

j
LM(Ci,C j),

bin
j = max

i
LM(Ci,C j).

This finding gives us a first initial assignment of

bout
i = max

j
BW (Ci,C j),

bin
j = max

i
BW (Ci,C j).

However, such a setting is potentially dangerous, as only one bogus measurement is enough to

obtain wrong prediction for a node. Furthermore, the last-mile assumption is not always satisfied

in practice, as it may happen that some nodes share a bottleneck link. This observation motivates

the removal of a few extremal values before computing bout and bin values. The solution proposed

is to define bout
i an (1−α) percentile for some small α constant, of all measured values BW (Ci,C j).

This solution is a generalization of previous approach, with α = 0 reducing it to taking max.
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Iterated LastMile

In order to improve on basic LastMile algorithm, a following approach, similar to Vivaldi approach,

is proposed. We will iteratively change the values of bout and bin, to minimize the value of:

E = ∑
i, j

(
BW (Ci,C j)−LM(Ci,C j)

)2
.

Particularly, substituting bout
i as x, above takes the form:

E(x) = const+∑
j

(
min(x,bin

j )−BW (Ci,C j)
)2

for which calculating value of x minimizing above function can be done in O(n) time.

By iterating above steps, we eventually end with a set of new values bout and bin, which give

us optimal values of LM(Ci,C j) in the sense of square-sum-difference from BW (Ci,C j).

2.3 Evaluation of point-to-point Prediction Algorithms

In this section, we present an evaluation of the precision of LastMile (both in its plain and iterated

versions, as described in 2.2.7) and DMF, obtained using a software named bedibe (which itself

will be described in a Section 2.5).

2.3.1 Comparison methodology

There are many ways to measure the efficiency of a bandwidth prediction system. On the one

hand, we should be able to compare the predictions to the actual data, and on the other hand, be

able to simulate fact that algorithms are only given partial data. Our methodology involves taking a

(possibly) full matrix of measurements M, and taking a partial measurement M′. Algorithm returns

prediction matrix P(M′). We can then calculate some metric d(M,P(M′)). For example, we could

use:

d(A,B) = ∑
1≤i, j≤n

(Ai, j−Bi, j)
2

However, one downside of a single value metric is that it does not give us insight on detailed

performance of an algorithm. To remedy this problem, we use different evaluation technique. To

evaluate the precision of estimation algorithms, we use the standard relative error metric, which is

defined as e = max( p
v
, v

p
), where p is the predicted value and v is the actual measured value. This

relative error is computed for every corresponding pair of matrix elements, and we are interested

in the distribution of all relative error values on all pairs.

2.3.2 DMF and LastMile

In our comparisons there are two datasets used: the first one is a snapshot of the PlanetLab platform

of April 2th, 2010 taken from the (now discontinued) S-cube project [67], which contains available
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Figure 9: Comparison of performance of DMF (d = 10) and LastMile, done on S-cube dataset (on

the left), bedibe dataset (on the right), full information (top) and partial information (bottom).

bandwidth measurements between 426 hosts, with many missing measurements, and we extracted

a set of 308 hosts for which the complete measurement matrix was available. The second one is

obtained with bedibe measurement methodology (described in Section 1.4), and contains achiev-

able TCP throughput between 50 hosts of PlanetLab. In this dataset, about 17% of measurements

are unavailable. In order to account for the fact that performing all end-to-end measurements is not

reasonable in a practical setting, a subset of 20% of values are randomly chosen and given to the

estimation algorithms. Note however that algorithms provide estimations for all values, and that

the relative errors are computed on the whole matrix (for comparison, we also provide plots how

algorithms perform given full matrix as an input).

These results are shown on Figure 9, where we plot the Cumulative Distribution Function of

relative error for each estimation algorithm. For example, a point at coordinates (1.5,0.8) for DMF

on the S-cube dataset means that for this dataset, 80% of all source/destination pairs are predicted

with an error below 1.5. Hence, plots closer to the upper left corner of the graph represent better

estimations.

The analysis of Figure 9 shows several facts. On the S-cube dataset, DMF (with d = 10)

clearly outperforms other algorithms, and provides reasonably good predictions, even when partial

information only is available. Matrix Factorization technique is actually a very strong approach,
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as it packs the necessary information (measurement matrix) in the least available space. We expect

DMF to consistently outperform other methods.

We can also see, as in [10], that the iterated improvement of LastMile helps to obtain better

predictions, but the improvement is not that significant.

On the bedibe dataset, DMF is only able to provide reasonable predictions if given the full

matrix, and its performance drops by a large factor when given only partial data. The precision

of LastMile suffers a much smaller drop and outperforms DMF on partial data. We suspect it is

the result of sensitivity to the parameter selection of DMF, as bedibe dataset is small in size in

comparison to S3 one.

The bedibe dataset is harder to estimate than the S-cube dataset: the 80th percentile relative

error is less than 1.5 for all algorithms on the S-cube dataset, but is around 2 for the bedibe dataset.

It is worth remembering that S3 dataset measured available bandwidth, but bedibe one measured

throughput. Also, S3 one was obtained using external tools, while bedibe one using the brute-

force approach. We believe it leads to less self-correlation, more noise and less smoothness of the

bedibe dataset, making it overall harder to estimate. Size of the dataset also makes difference, as

larger datasets should be more self-consistent.

2.4 Evaluation of one-to-many Prediction Algorithms

In this section, we study the possibility to predict the total achievable throughput when a sending

node sends data to several receiving nodes. Being able to predict how the bandwidth is shared

between several connections, or how the network behaves in the case of congestions is important, as

single isolated connections are an artificial assumption. Congestion can happen in various different

scenarios:

• at the first edge of connection, i.e. one node sending to several nodes at once,

• in the middle of connection (the general case),

• at the last edge of connection, i.e. one node receiving from several nodes at once.

In light of all the experimental evidences supporting LastMile, it seems reasonable to consider only

first and last case, as those cases are most likely to cause congestion. Also, experimental evaluation

of congestion happening in the middle seems out of our reach.

As we have seen in the Sections 2.2.2 and 2.2.1, Internet seems to be dominated by asymmetri-

cal links connecting peripheral nodes to the core Internet, with download dominating over upload

capacity. This way it seems reasonable to experimentally evaluate the case where the congestion

is going to happen on the sender side, as two receivers are more likely to saturate one sender than

in the opposing scenario. By similar argument we restrict ourselves to the case of two receiving

nodes, because this is already enough to achieve congestion and thus obtain meaningful results.

For this study, we use both bedibe datasets described previously, in Section 1.5.2. The datasets

were collected on the PlanetLab platform, by selecting at random three nodes, one as a sender,

two as a receivers, and measuring the achieved bandwidth to both of the receiving nodes when
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establishing connection simultaneously and trying to push as much as possible data. For all the

nodes used in this experiment, we also have full matrix of point-to-point bandwidth measurements,

so we are able to look at what LastMile algortihms or DMF can deduce from the matrix and

compare it to actually achieved measurements.

We will try to predict the value T Ti, j,k, being the amount of data node i is able to transmit

to nodes j and k simultaneously. The reasoning behind this is that, as seen in the Section 1.5.2,

total throughput achieved by the sender has smaller variability than the individual values per each

receiver.

For this prediction, we tried several possibilities:

• LastMile: we compute LastMile values (incoming and outgoing parameters) for all nodes,

and we use the LastMile assumption to predict the available bandwidth: it is either limited by

the sending capacity of the sender, or by the sum of the receiving capacities of the receivers:

PLM
i, j,k = min(bout

i ,bin
j +bin

k ).

• Avg, Sum, Max: we use end-to-end individual measurements between the sender and each

of the receivers, and use the average, total, or maximum value as a prediction:

P
avg
i, j,k =

BW (Ci,C j)+BW (Ci,Ck)

2

P
sum
i, j,k = BW (Ci,C j)+BW (Ci,Ck)

P
max
i, j,k = max(BW (Ci,C j),BW (Ci,Ck))

• AvgDMF, SumDMF, MaxDMF: we compute the DMF predictions for the available band-

width between the sender and each of the receivers, and similarly use the average, total, or

maximum value as a prediction.

P
avgDMF
i, j,k =

DMF(Ci,C j)+DMF(Ci,Ck)

2

P
sumDMF
i, j,k = DMF(Ci,C j)+DMF(Ci,Ck)

P
maxDMF
i, j,k = max(DMF(Ci,C j),DMF(Ci,Ck))

For this analysis, we have set the dimension value of DMF to d = 5.

We then compute the relative error of each prediction, with the same definition as in Section 2.2:

eX
i, j,k =max(

T Ti, j,k

PX
i, j,k

,
PX

i, j,k

T Ti, j,k
). To evaluate all prediction techniques, we thus analyze the distribution of

the error ratios for all the measured triplets in our experiments. The results are shown on Figure 10,

and mean and median values are reported in Table 1.

The results show that Sum and SumDMF provide very bad estimations. This comes from the

fact that in PlanetLab nodes, the congestion often takes place at the sending node, even with only
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Figure 10: Distribution of error ratios for 7 estimates of total throughput when one sender sends to

two receivers.

Est. LM Avg Sum Max AvgDMF SumDMF MaxDMF

Mean 0.851 1.32 1.62 0.983 1.89 2.04 0.941

Median 0.236 0.217 0.823 0.15 0.564 0.755 0.218

Table 1: Mean and median relative error for 7 estimation techniques
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two receivers. Hence summing the individual performance of both receivers yields a large over-

estimate of the actual total throughput. This explains why using average or maximum values give

better predictions. Actually, using the Max estimate gives the best results in most cases, because

the maximum measured individual throughput is very often close to the outgoing bandwidth of the

sender. This explains that the median error ratio of Max is much lower than all other estimates.

For the same reasons, MaxDMF also has a rather good median error ratio, not as good as Max

because of the imprecisions incurred by DMF. However, in some cases Max and MaxDMF provide

estimates which are off by a larger factor, whereas LastMile predictions are more stable, as can be

seen by the lower mean error ratio.

It is important to note that in a practical setting, Max estimates can only be obtained by actually

performing both individual end-to-end measures, whereas by design LastMile and MaxDMF can

be computed for all possible triplets by using only a smaller number of measurements. Further-

more, from an algorithmic point of view, these results encourage the use of the LastMile model for

the design of bandwidth allocation algorithms, even in settings where the “LastMile” assumption

is not completely valid.

2.5 Bedibe

We aim at keeping our results accessible and reproducible. That is why we decided to make the

datasets used in this work publicly available (https://gforge.inria.fr/frs/download.php/

32092/data.zip). We also decided to make available the software package used for generating

the results available.

bedibe is a tool for benchmarking bandwidth and latency estimations. We created it with

a purpose of the development, testing, benchmarking and visualization of bandwidth estimation

algorithms. It is written in Python, a very popular scripting language. It can be downloaded at

http://bedibe.gforge.inria.fr/. Below in this section we provide motivation for creation

of this tool, followed with technical details.

Our basic motivation for the creation of bedibe was to create an environment, where we could

evaluate the performance of different network prediction algorithms in an automated way. When

working on possible improvements to algorithms like LastMile, we found ourselves without either

a unified collection of datasets, or implementations of algorithms that would work on datasets we

had access to. Thus, the first step was to standardize the format of datasets (and convert existing

other ones), and provide implementation of state-of-the art prediction algorithms. From then, we

followed with providing ways to visualize results of prediction algorithm.

Data is read from CSV files (Comma Separated Values), with source and target hostnames, and

measured values. For example we provide S3 datasets (see Section 1.1.3) and our SPLAY datasets

(see Section 1.4) in this format. Because network measures admit large variations, datasets often

contain multiple values per pair of nodes. Because of this, we provide a set of functions for easily

picking representative value or set of values (in case of fuzzy computation) from several of them.

We provide implementations of the state-of-the art estimation algorithms: DMF, LastMile,

Sequoia, Vivaldi (described in Section 2.2). LastMile is provided in both its basic and iterated
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versions. We also provide our implementation of two-level LastMile. To further simplify im-

plementation of the algorithms, we also provide a library of decorators (function transformation,

idea borrowed from a functional programming paradigm) that for example, allow us to transform

functions that operate on matrices into ones working in our environment of CSV style data. Other

decorators allow easy control over what type of preprocessing an algorithm supports.

Estimations done by algorithms can be stored into CSV files, or used in several comparison

tools. Our module for comparing allows easy comparison of the error ratio between different mea-

sures or estimations, or calculation of various standard metrics (stress, 80th percentile error. . . ).

Visualization tools allow to create images out of the computed matrices (assigning different colors

to high/low bandwidth, or accurate/inaccurate estimation). Additionally, a plotting module can be

used to produce (using gnuplot) different types of plots, for example a CDF of the dataset, or a

CDF of relative error of the estimates. Various parameters of the plots can also be customized from

inside the code.

In summary, we created a tool that greatly simplifies the implementation of an algorithm, and

with a few extra lines of code it allows the algorithm to be tested on datasets we provide, tweaked,

analyzed or compared to other algorithms. Finally, the tool can be used to output plots useful for

performance visualization. The plots provided in this thesis were generated using this tool.

Below we provide an example of a python code used to generate plots in a scientific paper.

The code shows how in a few lines, a program can read the dataset, prepare the partial dataset (by

choosing subset of measurements), run a set of prediction algorithms on partial dataset and then

generate the CDF plots of comparison between original dataset and prediction results.

Listing 2.1: bedibe - example of usage

def main ( a r g s ) :

[V] = i n p . i n i t ( [ a r g s [ 1 ] ] )

M = make comple te (V)

M = s e l e c t (M, g e t f i r s t )

A = n e i g h b o u r s (M, 32)

LM = l a s t m i l e (A, l og ex p = F a l s e , i t e r a t e d =True , a l p h a = 0 . 1 )

DMF = dmf (A, l og exp = F a l s e , d =10)

SEQ = s e q u o i a (M, t h e o r e t i c a l =True , n b t r e e s = 15)

wi th p l o t . P l o t ( ” F i g u r e 4 a ” ) a s p :

p . a d d p l o t ( p l o t . s imple comp (LM,M) , ” l a s t m i l e −0.1−32” )

p . a d d p l o t ( p l o t . s imple comp (DMF,M) , ”DMF−10−32” )

p . a d d p l o t ( p l o t . s imple comp (SEQ ,M) , ” Sequo ia ” )

2.6 Future works: improving LastMile

In this chapter we advocate for usage of the LastMile model when dealing with algorithmic prob-

lems related to bandwidth. One of the strengths of the LastMile model lies in its simplicity. This,

and the fact that we are not predicting generic network distances, just bandwidth, gives us a lot of
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room for improving and tweaking the model and algorithms.

Our aim is to have a model that can give reliable predictions. But we also would like the model

to reflect somehow real structure of the network. Our belief is that by using a network model

that is close to the real life structure of the network, we could obtain better predictions. As we

saw, opposite implication is not true: DMF gives very synthetic and abstract representation of the

network, but does not give us any ”knowledge” on the structure of the network. For every node of

the network i, the model encodes its parameters as a vector vi. DMF states that prediction is the

scalar product of the vectors,

DMF(Ci,C j) = vi · v j.

It is hard to imagine a model of network that would lead us to such a prediction scheme, both for

latencies and bandwidth.

Apart from DMF and LastMile, every other model we presented in this thesis is using somehow

the ideas of metric, distance and embedding. This way of constructing predictions is a result of

those models being created mainly with aim of predicting latencies. The intuition comes from the

treating the latency as a measure of a distance signal has to travel in the network. This leads to the

way we combine edges into the paths in those types of models:

dist(p) = dist(e1)+ . . .+dist(ek)

for a path p composed of edges e1, . . . ,ek and where dist() represents the latency incurred by this

path or edge.

If we translate previous equation by the usual way the generic network distance prediction

algorithms translate latency to bandwidth, that is by taking inverse, we get:

1

BW(p)
=

1

BW(e1)
+ . . .+

1

BW(ek)
.

LastMile is based on a simpler principle, which we believe to be closer to the actual network:

BW(p) = min(BW(e1), . . . ,BW(ek)) .

Two-level LastMile

We discussed in Section 2.2.1 what structure the Internet exhibits when measuring various param-

eters, i.e. strongly interconnected core of the network, and larger peripheral network having more

of a tree-like structure. LastMile model captures the second behavior (see Figure 11), but fails to

take into account the structure of the core itself. Also, LastMile model fails to take into account

the possibility of nodes sharing a bottleneck link (for example belonging to the same academic

network).

In light of problems listed above, we would like to propose the following improvement upon

the LastMile model, a two-level LastMile. The way the model works is to group existing nodes

C1, . . . ,Cn into k distinct sets G1,G2, . . . ,Gk. Let us name the function assigning node to the corre-

sponding sets containing it a GID (a Group ID):

GID(Ci) = G j iff Ci ∈ G j.

Our model can be represented as a graph of (see Figure 12):
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Figure 11: Picture of a graph representation of a LastMile model, with thick red edges used to

communicate between nodes in black.

Figure 12: Picture of a graph representation of a Two-level LastMile model, with red edges used

to communicate between nodes in black.

• virtual nodes G1, . . . ,Gk represent the core of the Internet, and they form a full clique graph

with edges

(Gi,G j) for 1≤ i, j ≤ k,

• nodes C1, . . . ,Cn represent the peripheral Internet, and they are connected to the core by the

edges

(Ci,GID(i)) for 1≤ i≤ n.

Since each edge is weighted (in fact, it represents two directed weighted edges), our model

reduces to a set of values bin
1 ,b

out
1 , . . . ,bin

n ,b
out
n and a full k× k matrix F [i, j] for 1 ≤ i, j ≤ k. The

prediction of bandwidth between nodes i and j is

LM(Ci,C j) = min(bout
i ,F [GID(Ci),GID(C j)],b

in
j ).

It is worth noticing that if we set k = 1, our model collapses back into LastMile model. On the

opposite, if we choose k = n, we can then encode any n×n matrix into the G matrix. We suspect

that setting k≈√n is a fine choice, making the number of parameters of both parts of model equal.
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Notice that if we have been given in advance the values of cluster, finding a best match for

a given set of measurements is solvable by an algorithm analogous to the one used in Iterative

LastMile Algorithm (Section 2.2.7). However, we could not find a ”good” method to perform

the clusterization step. On the one hand, assigning nodes to clusters at random resulted in very

poor performance. On the other hand, performing any non-random clusterization requires ability

to decide if nodes are close (so they should be in the same cluster) or distant (so they should be in

different clusters), which brings us back to the problem of predicting network distance. Probably

a new approach is required if we want to develop this idea further.

2.7 Conclusion

In this chapter, we analyzed the possibility to provide estimations for available bandwidth in large

scale platforms. Estimation techniques and models exist for the latency metric, but their extension

to available bandwidth is not always possible. We focused on the LastMile model, widely used as

a communication model in algorithmic works, and on Decentralized Matrix Factorization (DMF),

originally designed for latency estimation. We show that DMF is able to provide very good esti-

mations for available bandwidth as well, but that its precision drops when fewer measurements are

available.

DMF provides better bandwidth predictions than any other algorithm. That should not be

surprising, as DMF is in some sense optimal as an algorithm to encode matrix in a compressed

form of a low rank matrix. However, this performance comes at a cost, that DMF has no intuitive

model underlying. It does not rely at all on the fact that the estimated values are bandwidth,

and exactly the same algorithm is used for latencies. The LastMile model, on the opposite, was

developed with bandwidth in mind. It assumes a certain model of the underlying network. That will

prove advantageous in Chapter 3, in which we develop an overlay network construction algorithm

for broadcast on large-scale platforms.

Furthermore, we analyzed contention in the presence of multiple simultaneous communica-

tions. We used data obtained from the PlanetLab platform, and we observed that the total through-

put can be predicted by the LastMile model with a precision almost comparable to estimations

based on the complete set of measurements. That is another strong point of LastMile based al-

gorithms, as the model of the network it is based upon takes into account naturally the multiple

simultaneous communications, and that is not the case for other algorithms.

We already saw, in Chapter 1, how to perform measures over network parameters (bandwidth,

latency). In this chapter we covered the topic of efficiency of measures, e.g. that we do not need

to measure every single edge in case of point-to-point measures. We were able to perform predic-

tions over the network when we assumed a certain model of a physical behavior of the network.

By assuming LastMile model, we were able to predict both point-to-point communications, and to

a certain degree also congestions. A natural step would be to try and apply this model in a more

general setting. However, as we move up in the layers of networking, we lose control over certain

details of communication (e.g. routing). When designing large scale communication scheme over

large networks (e.g. Internet), we are unable to control routes used by point-to-point communica-

tions. This situation shows a clear advantage that LastMile model have in such setting over other
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models, that is no matter what routing would be chosen for fixed point-to-point communications,

links connecting node to a network are always used by this communication. Another advantage of

the LastMile model is that it does not contain any assumption about the inner structure of network.
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Chapter 3

Broadcasting over LastMile

3.1 Introduction

3.1.1 Context and Motivation

Data dissemination in distributed platforms has been the subject of a vast literature. The problem

comes into two flavors, depending on the context. On the one hand, if the topology of the platform

is known (in the case of computer networks or parallel machines for example), the goal is to

organize data transfers so as to maximize the throughput (or minimize the makespan for a given

message size). On the other hand, in the context of a large scale Internet level platforms, the goal

is to find the topology (i.e. the overlay network) that maximizes the throughput.

The one-to-all broadcast, or single-node broadcast, is the most primary collective communica-

tion pattern: initially, only the source processor holds the data that needs to be broadcast; at the

end, there is a copy of the original data residing at each processor. Parallel algorithms often require

to send identical data to all other processors, in order to disseminate global information (typically,

input data such as the problem size or application parameters). Numerous broadcast algorithms

have been designed for parallel machines such as meshes, hypercubes, and variants (see among

others [32, 66, 64, 47]).

The same framework applies for broadcasting a live stream of data, such as a movie or a TV

show. In the context of content distribution systems, it is at the core of live streaming distribution

systems such as CoolStreaming [69], PPLive [65] or SplitStream [17]. In this case also, we are

interested in the distribution of a large message to all the nodes of a large scale platform, made of a

large number of computers, geographically distributed, and interconnected by the Internet. In the

context of this work, it is thus not possible to obtain the actual topology of the core of the network,

and we are rather interested in application-level solutions. Thus, the goal is to build an overlay

network that makes the best possible use of the communication capabilities of all participating

nodes, so as to maximize the overall streaming rate (once steady-state has been reached).

In the context of large scale Internet platforms, it is common to assume that the communication

between two nodes is only limited by the available outgoing bandwidth of the sender and by the

incoming bandwidth of the receiver. This assumption is also very suited to the case where nodes

are connected to the Internet with low bandwidth links, like DSL for example. In that case, the
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bandwidth limitation is either physical (from the link capacity) or logically enforced at the user’s

request. In large scale platforms, it is also desirable to limit the number of connections that must

be handled simultaneously at each node. Both of these assumptions are common in the context

of data dissemination in large scale platforms. However, they fail to correctly model the behavior

of the nodes located behind a NAT or a firewall. As we will see, adding this constraint on node

connectivity capabilities strongly modifies both the algorithms and the theoretical results.

In previous chapters we justified LastMile as a network model. Because it deals with a problem

of congestion, and discards any knowledge on inner structure of the network, LastMile model

seems well suited for dealing with the problem of broadcasting over a network. In this setting,

we will deal with an optimization problem, where each node has fixed limit on both incoming and

outgoing bandwidth. We are interested in designing a communication scheme where we maximize

the size of a message that one node is able to broadcast to all other nodes, in a steady streaming

fashion (we discard in our analysis the notion of time, assuming that transmissions are defined

by a rate of data transfer), while keeping limits imposed on bandwidth used by nodes. In our

communication scheme, we try to use all available resources to a network, not only the upload of

the source, by making other nodes exchange parts of original message in a peer-to-peer fashion.

Secondary way to measure efficiency of the solution is to keep track of the number of nodes a given

node has to communicate with, that is the degree of a node. We will both try to develop solutions

with unconstrained degree, and with small degrees.

In this chapter, we use the notion of ”acyclic” solution, meaning that the solution treated as a

graph can be sorted topologically. By ”cyclic” solution, we mean any solution, not just necessarily

non-acyclic. The main novelty of our approach is the classification of the set of participating

nodes into two parts: open nodes that stay in the open-Internet and ”guarded” nodes that lie behind

firewalls or NATs. Two guarded nodes cannot communicate directly, but rather need to use an

open node as a gateway for transmitting a message. In the presence of guarded nodes our main

contributions are a closed form formula for the optimal cyclic throughput and the proof that the

optimal solution may require arbitrarily large degrees. In the acyclic case, we propose an algorithm

that reaches the optimal throughput with almost optimal degree used. Then, we prove a worst

case ratio between the optimal acyclic and cyclic throughput and show through simulations that

this ratio is on average very close to 1, what makes acyclic solutions efficient both in terms of

throughput maximization and degree minimization.

This broadcast problem was introduced in [7], however in a slightly different version, with

nodes having both bandwidth and strict degree constraints, and open nodes only. The solutions

provided are based upon resource augmentation, through relaxation of the degree constraint while

still enforcing strict bandwidth constraint. Results from sections 3.3.1, 3.3.2 and Theorem 3.5.2 ,

where we prove that it is possible to reach the optimal throughput, at the price of a quasi-optimal

(up to a small additive increase) degree of the participating nodes, are based upon [7], but reworked

to a new setting without strict (independent from bandwidth) degree constraints.

In summary, our goal is first to design an overlay network and to determine the bandwidths

associated to the edges of the overlay, such that both degree and capacity constraints are satisfied,

such that nodes behind a NAT or a firewall use third party nodes to communicate and such that the

overall throughput that can be reached using this overlay network is close to the optimal one. One
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of the major contributions of this chapter is to study, under a realistic communication model and

for a classic communication scheme, the impact on the complexity and on the performance of the

algorithms of having nodes lying behind NATs and firewalls.

3.1.2 Outline

Below we summarize the results presented in this chapter, in the context of previous results. We

either provide new results, or adapt results from [7] into a modified model of degree constraints.

1. In the presence of open and guarded nodes or with open nodes only, finding the best

acyclic solution and finding the best cyclic solution are both NP-Complete in the strong

sense (this is a new result, presented in Section 3.3.1).

2. In the presence of open nodes only, the optimal acyclic throughput can be achieved at the

price of a small linear increase of 1 in the degree of the nodes (see Section 3.3.2, where we

recall results from [7]).

3. In the presence of open and guarded nodes, the optimal acyclic throughput can be achieved

at the price of a small linear increase of 3 in the degree of the nodes (see Section 3.4, this is

a new result).

4. In the presence of open nodes only, the optimal cyclic throughput can be achieved at the

price of a small linear increase of 2 in the degree of the nodes (in Section 3.5, we briefly

recall the result from [7]).

5. In the presence of open and guarded nodes, the optimal cyclic throughput can be achieved

only with an unbounded increase in the degree of the nodes (see Section 3.5, this is a new

result).

6. For any instance, the optimal acyclic throughput is at least 5/7 of the optimal cyclic through-

put (see Section 3.6, this is a new result).

7. On average (see Section 3.6), for a wide variety of realistic scenarios, the throughput of

the low degree acyclic solutions proposed by our algorithms are very close to the optimal

cyclic throughput (at most 5% decrease).

Therefore, except in the cyclic case with open and guarded nodes, and despite the strong NP-

Completeness result, it is possible to build low degree solutions that achieve optimal throughput at

the price of a small increase in the degree bound. Moreover, if the complexity of proofs dramati-

cally increases from the acyclic open case to the cyclic open case and to the acyclic guarded case,

all proposed algorithms are very efficient in time complexity and can therefore be used in practice.

The situation strongly differs in the cyclic guarded case: since arbitrarily large degrees are re-

quired in order to achieve the optimal throughput, so that we cannot rely on small degree increases

to obtain optimal performance. Nevertheless, we prove in Section 3.6 that the algorithm that re-

turns low degree solutions in the acyclic guarded case is a 5
7
-approximation algorithm for the cyclic

guarded case.
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3.2 Models and Related Works

3.2.1 Platform Modeling

The bounded multiport model has already been advocated by Hong et al. [27] for independent tasks

distribution on heterogeneous platforms. In this model, node Ci can communicate with any number

of nodes C j simultaneously, each using a bandwidth ci, j, provided that its outgoing bandwidth is

not exceeded, i.e., ∑ j ci, j ≤ bout
i . Similarly, node Ci can receive messages from any number of

nodes C j simultaneously, each using a bandwidth c j,i, provided that its incoming bandwidth is not

exceeded, i.e., ∑ j c j,i ≤ bin
i . This corresponds well to modern network infrastructure, where each

communication is associated to a TCP connection.

This model strongly differs from the traditional one-port model used in scheduling literature,

where connections are made in exclusive mode: each node can communicate with a single node at

any time step. But in the context of large scale platforms, in which the networking heterogeneity

ratio may be high, it is unreasonable to assume that a 10GB/s server may be kept busy for 10

seconds while communicating a 10MB data file to a 1MB/s DSL node. Therefore, in our context,

we will assume that all communications are directly handled at TCP level. Nevertheless, in order

to keep the flavor of the one-port model, we will minimize the number of connections that need to

be handled simultaneously at a given node. This constraint is particularly important in a context

where QoS mechanisms are used to fix or bound the bandwidth associated to each communication

(each TCP connection in practice). It is worth noting that at the operating system level, several QoS

mechanisms enable a prescribed sharing of bandwidth [21, 1, 70]. In particular, it is possible to

handle simultaneously several connections and to fix the bandwidth allocated to each connection.

In our context, it has been proved in [12] that these mechanisms are necessary since the bandwidth

allocated to the connection between Ci and C j may be lower than both bout
i and bin

j . Therefore, the

variant of the LastMile model we propose encompasses the benefits of both the bounded multi-port

model and the one-port model. It enables several communications to take place simultaneously,

which is compulsory in the context of large scale distributed platforms. Practical implementation

is achieved by using TCP QoS mechanisms and by bounding the number of connections.

However, this model fails to correctly model the behavior of the nodes located behind a NAT or

a firewall. This issue is crucial in the context of Peer-to-Peer applications running over the Internet.

For instance, in distributed applications such as Skype [5, 26] or Bittorent [31], NATs play a crucial

role, since in certain situations where ”hole punching” techniques [61] fail, it can be impossible for

a pair of nodes to communicate directly. In this case, the technique consists in using a third party

node that acts as a relay for the packets. At a higher level, we can classify the nodes between open

and guarded nodes, where open-open, open-guarded (and guarded-open) connections are possible,

but not guarded-guarded. As we will see, adding this constraint on node connectivity capabilities

strongly modifies the algorithms and the theoretical results.

3.2.2 Related works

Broadcast and streaming optimization have already been the subject of several studies in the liter-

ature. However, none of them has considered the constraint added by the presence of firewalls in
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the system. The work closest to our approach is by Liu et al [45] in which they provide bounds for

the streaming rate, the upload rate of the source needed to ensure a given stream rate, and the depth

of the distribution trees produced. Degree constraints are also considered in their work, but with

specific limitations. In particular, the degree of the source is not limited, and the degree constraint

on nodes is considered separately for each tree of the solution, which means that the actual degree

of each node is not limited.

More applied studies have been published, which focus on designing distributed algorithms to

build the streaming overlay. For example, CoolStreaming [69] builds upon a gossip-based overlay

to propose a distributed streaming algorithm. This algorithm inherently includes degree limita-

tions, and provides a guarantee on the diameter of the overlay, but no guarantee about the streaming

rate is available. On the other hand, SplitStream [17] is based on a distributed hash table and builds

an overlay made of k different distribution trees, with a probabilistic guarantee on the streaming

rate. Furthermore, SplitStream allows multicast (some nodes may only receive the data from a

subset of the k trees – but they do not choose which part) and also includes a degree limitation,

which is typically k times larger than the degree of our solutions.

3.2.3 Positioning

In this chapter, we assume that the network can be represented using the LastMile model. We

already presented ways to obtain this representation in previous chapters.

Our contribution consist in computing, using this instantiated model, the overlay network

(which nodes communicate together) and the bandwidths that should be allocated to each edge of

the overlay in order to maximize the overall throughput of the collective communication scheme,

given the bandwidth, the degree and the connectivity constraints of the network. The resulting

weighted graph can be decomposed into a set of weighted broadcast trees [58, vol B, Chapter 53].

This decomposition specifies which data should be sent on which edge at a given time step.

In order to avoid this decomposition step, which is difficult to use in practice, we rely on

the randomized broadcasting algorithm proposed by Massoulié in [47]. This algorithm is fully

decentralized and is even able to deal with small variations of resource performance due to its

randomized and dynamic nature. This algorithm requires knowledge of the topology of the network

with bandwidths on edges and no contentions on the nodes, which is in general not realistic. On

the other hand, the overlay network that we build has exactly, by construction, these properties,

provided that bandwidth sharing mechanisms are used for the communications in order to limit the

bandwidth of a communication to the weight of the edge, such as proposed in [21, 1, 70]. The

overlay network that we build can therefore be used as direct input of Massoulié’s algorithm.

Therefore, on the one hand by relying on measurements to instantiate the parameters of the

LastMile model and on the other hand on Massoulié’s algorithm to actually perform the broad-

cast operation, our algorithmic contribution provides a practical solution to the streaming problem

whose approximations (due to the model, to the use of approximation algorithms for NP-Complete

problems and to the decentralized and randomized implementation of the broadcast) can be rigor-

ously analyzed and controlled. In this work, we focus on the approximation algorithms perspective.
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Figure 13: An instance with n = 2 open nodes (in green) plus the source (in gray), m = 3 guarded

nodes (in red) together with an optimal broadcast scheme of throughput 4.4. In this broadcast

scheme, the outdegree of the source is o0 = 5, the outdegree of every guarded node is o3 = o4 =
o5 = 2 and the outdegree of the two open nodes is o1 = o2 = 3.

3.2.4 Model and notations

We consider a situation in which a source node, denoted as C0, wants to broadcast a message. The

recipients are partitioned into two sets: on the one hand some nodes belong to the open-Internet,

and can communicate with each other freely (we call them open nodes); on the other hand some

nodes can communicate only with nodes of the open-Internet, because they are behind a firewall

or behind a NAT router (we call them guarded nodes). The source itself is supposed to be an open

node.

An instance of our problem is specified by the number n and m of open and guarded nodes, and

by the outgoing bandwidth bi of each node Ci for i ∈ J0,n+mK. The source node is C0, nodes Ci

for i ∈ O = J1,nK are open nodes, and nodes Ci for i ∈ G = Jn+1,n+mK are guarded nodes.

The output of the problem is a broadcast scheme, defined by values {ci, j|(i, j) ∈ J0,n+mK2},
where ci, j indicates the rate at which node Ci sends data to node C j, subject to the following

constraints:

• ∀i ∈ J0,n+mK,∑ j ci, j ≤ bi (bandwidth constraint)

• ∀(i, j) ∈ G 2,ci, j = 0 (firewall constraint).
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Figure 14: An acyclic broadcast scheme of throughput 4 on the instance of Figure 13. The order

associated with this acyclic broadcast scheme is σ = 031245.

We implicitly assume that the input bandwidth of each participating node is large enough. The

throughput of a broadcast scheme is given by T = mini∈J1,n+mK{max f low(C0→ Ci)}, where the

flows are computed on the weighted graph described by the ci, js. Furthermore, given a broadcast

scheme, we can define the outdegree of a node Ci as the number of nodes to which Ci actually

sends some data, i.e. oi = |{ j, ci, j > 0}|. Notations are illustrated in Figure 13.

As stated above, we want to provide broadcast schemes with small degree. To define what

small degree may mean, let us note that in a solution of throughput T , the weight of any edge ci, j

is at most T (indeed, receiving data at a rate larger than T is useless). Hence, if node i uses all of

its outgoing bandwidth, then its outdegree oi is at least
⌈

bi

T

⌉

and small degree therefore means oi

close to
⌈

bi

T

⌉

. A solution that achieves (a fraction of) T ∗ by using an outdegree oi ≤
⌈

bi

T ∗

⌉

+ d is

thus a d-additive resource augmentation (approximation) algorithm. As a consequence, we do not

consider strict degree constraints, but rather analyze the outdegrees used by our solutions in terms

of
⌈

bi

T

⌉

.

Computing a solution that achieves throughput T ∗ and such that the degree of each node is at

most
⌈

bi

T ∗

⌉

turns out to be an NP-complete problem (see Section 3.3.1), even for the special case

where all nodes are open (m = 0). We are thus interested in this chapter in approximate solutions,

both in terms of throughput (with respect to T ∗) and additive resource augmentation on the degrees

(with respect to
⌈

bi

T ∗

⌉

).

We prove that the situation differs if we concentrate on acyclic or more general cyclic solutions.

A broadcast scheme is said to be acyclic if its communication graph (represented by the matrix c)

is acyclic, which is equivalent to the existence of an order σ on the nodes such that

∀i, j ∈ J0,n+mK, i > j⇒ cσ(i),σ( j) = 0.

This condition states that σ(i), the node at position i in the ordering σ cannot feed σ( j), the node

at position j, if i > j. Figure 14 shows an example of an acyclic broadcast scheme associated with

the order σ = 031245.

For a given instance and a given order σ , we denote by T ∗ac(σ) the optimal acyclic scheme

compatible with the order σ . For a given instance, we denote by T ∗ac the optimal acyclic throughput:

T ∗ac = max
σ

T ∗ac(σ).
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3.3 Simple Case

As we have already noted, the problem comes into several flavors. Among the parameters that

strongly influence the complexity of the problem are (i) the presence of guarded nodes (nodes

behind firewalls) and (ii) the acyclicity of the solution, what leads to four different problems. In

Section 3.3.1, we recall from [7] the proof that all four problems are NP-Complete. Because we

use slightly different model, that leads to modified proofs, not using arbitrary degree constraints di

(that are not present in our model, but were present in [7]). In Section 3.3.2, we concentrate on the

easiest case, i.e. the case where we are looking for an acyclic solution with open nodes only.

3.3.1 Complexity Results

Introduction

In the case where guarded nodes are present, some of the communications are forbidden, what

makes the combinatorial structure of the problem more complex. On the other hand, searching for

an acyclic solution limits the search space and we will see throughout this chapter that it actually

makes the problem easier. Of course, cyclic solutions can achieve higher throughput than acyclic

ones, but we will see later in Section 3.6, that this only holds up to a (small) ratio 5/7.

NP-Completeness

We prove in this section that the problem of finding an optimal allocation while satisfying the

degree constraints (keeping oi ≤
⌈

bi

T

⌉

) is strongly NP-Hard. We prove this result by reduction to

the 3 PARTITION problem.

3 PARTITION: Let ai, 1≤ i≤ 3p be 3p integers, such that ∑
3p
1 ai = pT and ∀i, T

4
< ai <

T
2

.

Is there a partition of the ais into p disjoint sets S j, 1 ≤ j ≤ p containing exactly 3 elements and

such that each set sums up to exactly T ?

3 PARTITION is well-known to be NP-Hard in the strong sense [24]. Given a particular in-

stance of 3 PARTITION, let us consider the following instance I of our problem (see Figure 15),

in which all nodes are open.

• The source (the upper node in Figure 15) has outgoing capacity b0 = 3pT ;

• 3p intermediate nodes (middle nodes in Figure 15), where ∀1≤ i≤ 3p, bi = ai;

• p final nodes (lower nodes in Figure 15), where ∀3p+1≤ i≤ 4p, bi = 0;

• The target throughput to achieve is T .

If a solution to the 3 PARTITION instance exists, then it is easy to build a solution to I : the

source serves all intermediate nodes with rate T , and intermediate nodes that correspond to the

same set S j serve a final node C3p+ j at their full capacity (see Figure 15).
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b3p
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b1 +b3 +b3p = T

b0 = 3pT

b1

C0

C1 C3p

C3p+1 C4p

Figure 15: Solution used for the instances used in the reduction.

Conversely, let us assume that there exists a solution to I . We first note that since the total

outgoing bandwidth is exactly 4pT and 4p nodes need to receive the message at rate T , it is not

possible to waste any bandwidth. Hence, the source necessarily sends data at rate exactly T (i.e.

the maximal useful possible rate) to 3p nodes (i.e. the maximal number of clients since
⌈

b0

T

⌉

= 3p),

and each intermediate node Ci sends data at rate ai (its maximal rate) to exactly another client (the

maximal number of clients since
⌈

ai

T

⌉
= 1). On the receiving side, at most 3p nodes are served

by the source, and the intermediate nodes collectively serve the remaining p nodes (note that

nodes served by intermediate nodes may be intermediate nodes themselves, so that the situation is

slightly more complicated than depicted in Figure 15). Since no bandwidth is wasted, the sum of

the weights of the incoming edges for such a node is exactly T . Furthermore, since ∀i, T
4
< ai <

T
2

,

there are exactly 3 such incoming edges. It is thus possible to build a solution to the original 3

PARTITION instance.

Note that this NP-Completeness result applies to all four different situations. Indeed, let us

first remark that considered instances only contain open nodes, so that the NP-Completeness a

fortiori holds in (the more complicated case in) presence of guarded nodes. Second, we a priori

search for a general cyclic solution but we nevertheless prove that the optimal throughput (for our

instances) can be reached using an acyclic solution (see Figure 15), so that above proof also shows

that finding the optimal acyclic solution is NP-Hard.

The problem belonging in NP follows from the fact that Maxflow in arbitrary graphs is in P

(and therefore in NP). This plus strong NP-Hardness shown above gives desired NP-Completeness.
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3.3.2 Acyclic Solution with open nodes only

Introduction

We consider the simplest case, where all nodes are open and we search for an acyclic solution. As

we have just proved it, despite its apparent simplicity, this problem is NP-Complete in the strong

sense. Nevertheless, it is possible to achieve the optimal throughput at the price of a very small

additive increase of the degree of the nodes. To establish this result, we recall the proof of an upper

bound on the achievable throughput of any acyclic solution. Then, we recall exhibit an algorithm

that achieves this throughput while keeping the degree of the nodes small. This algorithm is used

as a starting point to build a cyclic solution for instances without guarded nodes in Section 3.5, and

it introduces some of the ideas that will be later adapted in Section 3.4 for instances with guarded

nodes.

Upper Bound

The first idea which will be used throughout the chapter is that nodes should be ordered by non-

increasing order of bandwidth. In the remainder, we will thus consider that nodes are ordered so

that b1 ≥ . . .≥ bn and we will denote Sk = ∑
k
i=0 bi. In any acyclic solution, nodes can be sorted in

topological order such that a node only feeds nodes with larger indexes. In particular, there exists at

least one node that does not send data to any other node. Therefore, the overall throughput achieved

by any acyclic solution T ∗ is upper bounded by
Sn−1

n
since bn denotes the smallest capacity and n

nodes C1, . . . ,Cn must receive the message at a rate T ∗. Additionally, it is clear that T ∗ ≤ b0.

Algorithm

Let us now describe an algorithm that provides an optimal acyclic solution for instances without

guarded nodes.

The algorithm takes as input T ∗ = min(b0,
Sn−1

n
), and returns a broadcast scheme that achieves

throughput T ∗. Let us first remark that since the bis are sorted in non-increasing order, and since

T ∗ ≤ b0, then ∀0≤ k < n,Sk ≥ (k+1)T ∗.
The basic principle of the algorithm formalized in Algorithm 1 is to satisfy (i.e. send a complete

message to) the nodes one after the other (considered in the previously defined sorting order), while

maintaining the property that after each step, at most one node receives the message only partially,

i.e. all previous nodes receive the message at rate T ∗ and all following ones do not receive anything

yet. Ci thus sends data to a consecutive set of nodes, say from Cαi
to Cβi

. All intermediate nodes,

except possibly αi and βi, will be served at rate T ∗. Since the total bandwidth used by Ci is bi,

there are at most
⌈

bi

T ∗

⌉

− 1 such intermediate nodes. Hence the number of nodes served at least

partially by Ci, i.e. its outdegree, is at most
⌈

bi

T ∗

⌉

+1.

The behavior of Algorithm 1 is depicted in Figure 16.

Furthermore, this algorithm produces an acyclic graph. Indeed, before each step i, the property

Si−1 ≥ iT ∗ ensures that the bandwidth available so far (Si−1) is always large enough to satisfy all
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C0 C3 C4 C5

T b1
b3c2,4

C1 C2

Figure 16: Solution returned by Algorithm 1. The upper part represents how the capacity of Ci is

used (in column i) and the lower part describes which nodes the data sent to Ci (in column i) come

from.

nodes from 1 to i. Hence, each Ci will only serve nodes with strictly larger indexes (i.e. αi > i with

above notations).

Algorithm 1 Acyclic Algorithm on open nodes only.

Set t = 1 and ∀i,ri = T ∗ and ∀i,si = bi

for i = 0 to n do

while si > 0 do

ci,t := min(rt ,si)
si := si− ci,t ; rt := rt− ci,t

if rt = 0 then

t := t +1

end if

end while

end for

From above remarks, we can conclude that Algorithm 1 builds an acyclic communication graph

such that each node receives exactly T ∗ from nodes with smaller indexes and that the degree of

Ci is at most
⌈

bi

T ∗

⌉

+1. Therefore, Algorithm 1 returns a solution of optimal throughput in which

nodes have a degree that is larger by at most an additive factor of 1 with respect to the lower bound.

Clearly, given the strong NP-Completeness of the problem, Algorithm 1 returns the best achievable

result, with respect to the additive degree increase (provided, of course, that P 6= NP).

3.4 Acyclic algorithm with guarded nodes

In this section, we describe how to build an acyclic broadcast scheme with a small increase in the

degree constraint in presence of guarded nodes:

Theorem 3.4.1. Given an instance I and a throughput T , it is possible to decide in linear time

if T ≤ T ∗ac. Moreover if T ≤ T ∗ac, it is possible to compute in linear time a broadcast scheme of

throughput T such that
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• for every guarded node j ∈ G , outdegree o j is bounded: o j ≤
⌈

b j

T

⌉

+1;

• for at most one open node i, oi ≤
⌈

bi

T

⌉

+3;

• for all other open nodes, oi ≤
⌈

bi

T

⌉

+2.

For instances with guarded nodes, there is no closed formula for T ∗ac, but the algorithm of Theo-

rem 3.4.1 can be combined with a dichotomic search (on T ) to find the optimal acyclic throughput.

The proof of Theorem 3.4.1 can be decomposed into three steps: we start by proving dominance

relations in order to characterize optimal acyclic schemes (Lemma 3.4.3). We then provide an

algorithm for testing if throughput T is achievable. If this is the case, a valid ordering is computed

(Lemma 3.4.4). Then, we show how to compute a low degree solution from the computed valid

ordering (Lemma 3.4.8).

3.4.1 Dominance relations

Before entering into the details of the algorithm, let us start with an intuitive property of ordering

of nodes. An ordering σ is said to be increasing if its restriction to O is the identity on O , and

its restriction to G is the identity on G . This means that nodes of the same color are ordered by

non-increasing order on their bandwidth. The order σ = 031245 is an increasing order for the

instance of Figure 14 whereas σ = 041235 is not increasing.

In Section 3.3, we have proved (in the open nodes only case) that good solutions can be built

with increasing orderings, and the next lemma shows that this also holds in the general case.

Lemma 3.4.2.

T ∗ac = max
σ :increasing

{T ∗ac(σ)}.

Proof. Let c be an acyclic solution with order σ which is not increasing. Then, there exist two

indices x < y such that p = σ(x) > q = σ(y) (and thus bp ≤ bq). We will exhibit another acyclic

solution c′ with order σ ′ = σ ◦ (x,y) (where (x,y) denotes the transposition that exchanges x and y,

which means that the nodes in position x and y are swapped) and whose throughput is not smaller

than c.

The transformation is depicted on Figure 17. For most indices i, j, it is sufficient to set

c′σ ′(i),σ ′( j) = cσ(i),σ( j). However, this would break the bandwidth constraint of node p = σ(x),

and the solution is to give the connections in excess (denoted as E in Figure 17) to node q = σ ′(x).
Since x < y, this does not break acyclicity.

Recursively, we can thus transform any acyclic solution into an increasing acyclic solution with

at least the same throughput.

An increasing order can be naturally encoded by a binary word π with n letters© (correspond-

ing to open nodes) and m letters � (corresponding to guarded nodes): it is sufficient to specify if

σ(i) belongs to O or to G . We denote by |π| the length of the word π , and by |π|© (resp. |π|�) the
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Figure 17: Exchange argument for dominance of increasing solutions

number of letters© (resp. �) in π . For instance, the word π =�©©�� encodes the increasing

order σ = 031245 for the instance of Figure 14.

The notation π ′ ⊑ π (resp. π ′ ⊏ π) means that π ′ is a prefix (resp. a strict prefix) of π .

From now on, when no confusion is possible, π will be identified with its corresponding in-

creasing order. For instance, T ∗ac(π) corresponds to the optimal acyclic throughput associated with

the order encoded by π . A word π is said to be valid (with respect to an instance I and a throughput

T ) if T ∗ac(π)≥ T .

A solution c is said to be conservative with respect to order σ , if there are no triplets of dis-

tinct indices i, j,k, such that i < k and j < k, σ(i) ∈ G , σ( j),σ(k) ∈ O , and cσ( j),σ(k) > 0 and

∑
k
l=i+1 cσ(i),σ(l) < bσ(i) simultaneously. The idea behind this definition is to consider solutions

that feed the open nodes from guarded nodes as soon as possible. Indeed, the firewall constraint

prevents transfer from guarded nodes to guarded nodes: transfer from open nodes is thus a valu-

able resource, and it is a ”waste” to use it to feed open nodes when it is not necessary. Figure 14

shows an example of a conservative acyclic broadcast scheme and Figure 18 shows an example of

a non-conservative one.

This means that when creating a conservative solution incrementally (by satisfying the nodes

in a given order σ ), there is no choice for the type of nodes that should feed the next node to add:

a guarded node must be fed by open nodes (because of the firewall constraint), and an open node

should be fed by guarded nodes as long as some of them have remaining outgoing capacity.

Lemma 3.4.3. For every order σ there exists a conservative solution c that achieves T ∗ac(σ).

Proof. Let c be a solution that achieves T ∗ac(σ). If there exists a triplet of indices i, j,k that violates

conservativeness, we can build a solution c′ that is conservative with respect to these indices. Let
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C0 C3 C2 C4 C5
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4 2 2 1

b0 = 6 b3 = 4 b1 = 5 b2 = 5 b4 = 1 b5 = 1

C1

22

Figure 18: A non-conservative acyclic broadcast scheme: if we take i = 1, j = 0,k = 2, we see that

node C1 =Cσ(k) could be totally fed by a guarded node C3 =Cσ(i), but it uses the open bandwidth

of the source C0 =Cσ( j).

γ = min(bσ(i)−∑
k
l=i+1 cσ(i),σ(l),cσ( j),σ(k)), and set:

c′σ( j),σ(k) = cσ( j),σ(k)− γ

c′σ(i),σ(k) = cσ(i),σ(k)+ γ.

and as in the proof of Lemma 3.4.2, σ( j) will be in charge in c′ of the upload toward nodes σ(l)
with l > k that the node σ(i) will no longer be able to feed in c′; on all other indices c and c′

coincide. It is easy to see that c′ is a valid solution of the same throughput, and that the number of

triplets of indices violating conservativeness is lower in c′. Recursively, we create a conservative

acyclic solution with respect to order σ , with throughput T ∗ac(σ).

Given a throughput T , and a coding word π with 0≤ i≤ n letters© and 0≤ j ≤ m letters �,

let Cπ be the set of partial conservative solutions on the partial increasing order encoded by π (that

feeds nodes C1, . . . ,Ci and Cn+1, . . . ,Cn+ j).

All partial conservative solutions of Cπ have the same amount of available throughput of each

type. Let us denote by O(π) (respectively G(π)) the open (respectively guarded) bandwidth avail-

able at the end of the partial solutions of Cπ . O and G satisfy the following recursive equations:

O(ε) = b0,

G(ε) = 0,

O(π�) = O(π)−T,

G(π�) = G(π)+bn+ j+1,

O(π©) = O(π)+bi+1−max(0,T −G(π)),

G(π©) = max(0,G(π)−T ).

The values O and G encompass all the capacity constraints of solutions in Cπ . Indeed, it is easy

to see that a coding word π is valid for a throughput T if and only if

• for any prefix π ′� of π,O(π ′)≥ T , and

• for any prefix π ′© of π,O(π ′)+G(π ′)≥ T .
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π ε � �© �©� �©�© �©�©�

O(π) 6 2 7 3 5 1

G(π) 0 4 0 1 0 1

W (π) 0 0 0 0 3 3

Table 2: Execution of Algorithm 2 on the instance of Figure 13. Observe that the amount of open-

open transfer (W (π)) is only 3 whereas in the acyclic scheme proposed in Figure 14 this amount is

4.

Another parameter that is common to each partial conservative solution of Cπ is W (π), the

amount of transfer going from open nodes to other open nodes. This parameter satisfies the fol-

lowing recursive equations

W (ε) = 0,

W (π�) = W (π),

W (π©) = W (π)+max(0,T −G(π)).

From above, we obtain

G(π) = bn+1 + . . .+bn+ j− i ·T +W (π) (1)

O(π) = b0 +b1 + . . .+bi− j ·T −W (π) (2)

and O(π)+G(π) = ∑
|π|©
k=0 bk +∑

n+|π|�
k=n+1 bk−|π|T .

3.4.2 Greedy algorithm

In this section, we present Algorithm 2 that decides whether a given throughput T is feasible. If T

is feasible, Algorithm 2 also outputs a valid coding word. It works by iteratively building a partial

conservative solution π , deciding at each step how to extend the partial solution (by© or by �).

This decision is made greedily, by choosing � if it is possible. The algorithm is forced to take©
(see line 12):

• when it is not possible to choose � at the current step (O(π)< T );

• or when choosing � would make it impossible to continue afterwards

(O(π�)+G(π�)< T ).

Of course, if all guarded nodes have been used (line 6), the algorithm chooses ©. Another

special case is when only one guarded node is left. In that case (see lines 8-11), the algorithm

chooses at each step the node with the largest bi (unless it is guarded and O(π)< T ).

Table 3.4.2 shows an execution of Algorithm 2 on the instance of Figure 13. The generated

scheme is shown in Figure 19.

The following lemma states that this algorithm is valid.
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Algorithm 3 GreedyTest(T ), Acyclic Algorithm on open/guarded nodes.

1: π ← ε

2: while |π|< n+m do

3: if O(π)+G(π)< T then return FAIL

4: i← |π|©; j← |π|�; l←�

5: if i 6= n then

6: if j = m then

7: l←©
8: else if j = m−1 then

9: if O(π)< T or bn+ j+1 < bi+1 then

10: l←©
11: end if

12: else if O(π)< T or O(π�)+G(π�)< T then

13: l←©
14: end if

15: end if

16: π ← πl

17: if O(π)< 0 then return FAIL

18: end while

19: return π

2

C0 C3 C5

4 4 4 1

b0 = 6 b3 = 4 b1 = 5 b5 = 1

C1

b2 = 5

C2C4

b4 = 1

1

4

Figure 19: The acyclic broadcast scheme of throughput 4 built by Algorithm 2. The order associ-

ated with this scheme is σ = 031425.
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Lemma 3.4.4. Given an instance I and a throughput T , Algorithm 2 returns a valid word (a word

π such that T ∗ac(π)≥ T ) if and only if T is feasible for this instance (T ∗ac ≥ T ).

In order to prove Lemma 3.4.4, we now need to state two preliminary lemmas. The first one

shows that this algorithm uses open nodes as late as possible, and is as conservative as possible.

Lemma 3.4.5. Let πk be the value of π in Algorithm 2 when the k-th open node has just been

added. (|πk|© = k, and πk ends with a©).

If |πk|� < m−1, then for every π ′k ending with a© such that |π ′k|© = k, we have

W (π ′k)≥W (πk) and |π ′k|� ≤ |πk|�.
Proof. We prove this lemma by induction on k. Clearly the lemma holds true for k = 0, since

π0 = ε = π ′0. (We treat source node as 0-th© node.)

Assume now that lemma holds true for k− 1, and let us decompose the words maximally as

follows

πk = πk−1�
a© and note δ = πk−1�

a,

π ′k = π ′k−1�
a′© .

Let l = |πk|� and l′ = |π ′k|�. From (1) and (2), we get

O(δ ) = b1 + . . .+bk−1− l ·T −W (πk−1),

G(δ ) = bn+1 + . . .+bn+l− (k−1) ·T +W (πk−1).

Since Algorithm 2 chooses © (after choosing δ ), and |δ |� < m− 1, we have O(δ ) < T or

O(δ )+G(δ )+bn+l+1 < 2T .

Let us first prove by contradiction that |π ′k|� ≤ |πk|�. Assume that |π ′k|� > |πk|�. In this

case, there exists δ ′ ⊑ π ′k such that |δ ′|= |δ |. By induction assumption, |πk−1|� ≥ |π ′k−1|�, which

implies that |π ′k−1| ≤ |πk−1| ≤ |δ |. Hence, |δ ′|© = |π ′|©−1 = k−1. We can thus compute

O(δ ′) = b1 + . . .+bk−1− l ·T −W (π ′k−1)

≤ b1 + . . .+bk−1− l ·T −W (πk−1) = O(δ ),

O(δ ′)+G(δ ′) =
k−1

∑
i=1

bi− l ·T +
n+l

∑
i=n+1

bi− (k−1) ·T

= O(δ )+G(δ ).

So, either O(δ ′) < T or O(δ ′)+G(δ ′)+ bn+l+1 < 2T . Both lead to a contradiction when we

try to continue δ ′ with �. This proves that |π ′k|� ≤ |πk|�.

Let us now prove that W (π ′k)≥W (πk). As πk and π ′k end with©,

W (πk) =W (πk−1)+max(0,T −G(δ ))

= max(W (πk−1),T · k− (bn+1 + . . .+bn+l)),

W (π ′k) = max(W (π ′k−1),T · k− (bn+1 + . . .+bn+l′)).

Since l′ ≤ l and W (π ′k−1)≥W (πk−1) (the inductive assumption), we have W (π ′k)≥W (πk).
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Lemma 3.4.6. Let π1,π2 be two conservative partial solutions such that |π1|© = |π2|© and

|π1|� = |π2|�. If W (π1)≤W (π2), then ∀ω ∈ {©,�}∗,W (π1ω)≤W (π2ω).

Proof. To prove the lemma, we only have to consider the cases where ω ∈ {©,�}. The case

ω =� is trivial since W (π�) =W (π).
Let us consider now the case ω =©.

W (π1©) = max(W (π1),W (π1)+T −G(π1))

= max(W (π1),T + i.T −bn+1− . . .−bn+ j)

≤ max(W (π2),T + i.T −bn+1− . . .−bn+ j)

≤ W (π2©).

Proof. of Lemma 3.4.4. The first implication is trivial, since the tests performed at each step of

Algorithm 2 ensure that the returned word is always valid.

For the reverse implication, we prove that if Algorithm 2 fails to find a solution, then there does

not exist a valid ordering of the nodes with respect to throughput T . According to Lemmas 3.4.2

and 3.4.3, we only consider encoding words.

Let ω be the partial solution built by Algorithm 2 (before it failed), and let i = |ω|© and

j = |ω|�.

There are four different cases to consider:

• j < m−1 and ω ends with©.

Since Algorithm 2 failed after ω , O(ω)+G(ω) < T . On the other hand, O(ω) ≥ bi, what

implies bi < T and ∀k ≥ i, bk < T .

Let π be any encoding word, and let us consider the largest sub-word π ′ ⊑ π such that

|π ′|� = |ω|�. If |π ′|© < |ω|©, then there exists a word ρ ⊑ π such that |ρ|© = |ω|© and

|ρ|� > |ω|�. Since this violates the conclusions of Lemma 3.4.5, π is not valid.

If |π ′|© ≥ |ω|©, then

O(π ′)+G(π ′) = O(ω)+G(ω)+
|π ′|©
∑

k=i+1

(bk−T )

≤ O(ω)+G(ω)< T.

In conclusion, O(π ′)< T and thus π is not valid.

• j ≤ m−1 and ω ends with �.

Because of the test at line 12, this implies that the last � was added by the instruction on

line 4, and thus |ω|© = n.
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Let π be an encoding word. We can decompose ω and π as ω ′©�a and π ′©�b, and we

can apply Lemma 3.4.5 to words ω ′© and π ′©

W (ω) =W (ω ′)≤W (π ′) =W (π)

Since |ω|© = n and since Algorithm 2 failed, then either O(ω)+G(ω)< T or O(ω�)< 0.

In both cases, O(ω) < T , and since O(ω) = O− jT −W (ω), we get O < mT +W (π), and

thus O(π)< 0. Hence π is not valid.

• j = m. The main argument is that the bandwidth of the remaining open nodes is lower than

that of the last guarded node. Since Algorithm 2 chose the last guarded node at some point

(line 11), we have bi+1 ≤ bn+m.

The failure of the algorithm implies O(ω)+G(ω)< T . Let ω =ω ′α . We know that O(ω ′)+
G(ω ′)≥ T , and also:

O(ω)+G(ω) = O(ω ′)+G(ω ′)−T +bi if α =©,

O(ω)+G(ω) = O(ω ′)+G(ω ′)−T +bn+m if α =�.

So either bn+m < T or bi < T . In both cases, we have

bn ≤ bn−1 ≤ . . .≤ bi+1 < T.

Let π = π ′β be any encoding word. If β =©, then

O(π ′)+G(π ′) = b0 +O−bn− (n−1)T +G−mT

= O(ω)+G(ω)+
n−1

∑
k=i+1

(bk−T )

≤ O(ω)+G(ω)< T

Hence π is not valid. Otherwise, β = �, and O(π ′)+G(π ′) = b0 +O− nT +G− bn+m−
(m−1)T . Since bn+m ≥ bn, we get the same conclusion.

• j = m− 1 and ω ends with ©. The main argument is that the last guarded node can be

delayed: minimizing waste is not so important since only open nodes remain to be fed. Just

like in the first case, we have ∀k ≥ i,bk < T . Let us decompose ω as ω = ω ′©a (a≥ 0).

We begin by showing that words π(x) = ω ′�©x �©a−x are invalid for throughput T . The

following lemma shows that it is possible to consider only words where the last � is followed

only by© with smaller bandwidth.

Lemma 3.4.7. If word π = π1�©©a is a valid word in which the last � has bandwidth g,

the following© has bandwidth o, and o≥ g, then the word π ′ = π1©�©a is also valid.
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Proof. Let G = O(π1),R = G(π1) and π2 =©a. Since π is valid, we have O ≥ T and

O−T +G+ r ≥ T . We can thus bound O(π1©)

O(π1©) = O+o−max(T −G,0)

= min(O+o+G−T,O+o)≥ T.

This ensures that π1©� is a valid sequence.

Since π2 is composed only of©, and O(π1�©)+G(π1�©) = O(π1©�)+G(π1©�),
π1©�π2 is a valid sequence.

So if π(x) is valid, we can iteratively use Lemma 3.4.7 to prove the existence of a valid π(y)
in which the last � is followed by a© with smaller upload. If y < a, since Algorithm 2 at

that point chose© instead of �, we know that O(ω ′�©y)< T and π(y) is invalid. If y = a,

then π(y) = ω�, which is invalid because Algorithm 2 failed.

Consider now any encoding word π . Let π = π1π2�©k be the decomposition with mini-

mal π1 having |π1|© = |ω ′|© (applying Lemma 3.4.5 we have |π1|� ≤ |ω ′|� = m− 2, so

decomposing is always possible).

For any word δ we have

W (δ©�) =W (δ©) =W (δ )+max(0,T −G(δ ))≥

≥W (δ�)+max(0,T −G(δ�)) =W (δ�©).

We can apply it to word π

W (π1π2)≥W (π1�
|π2|�©|π2|©).

Furthermore, since Lemma 3.4.5 applies to π1 and ω ′

W (π1)≥W (ω ′).

so by Lemma 3.4.6, (since |π1|© = |ω ′|©, |π1π2|� = m−1 = |ω ′�|�)

W (π1�
|π2|�©|π2|©)≥W (ω ′�©|π2|©).

Composing it, we have

W (π1π2)≥W (ω ′�©|π2|©)and

∀x,W (π1π2�©x)≥W (ω ′�©|π2|©�©x).

So if π = π1π2�©k is valid, then ω ′�©|π2|©�©k is also valid. But we proved previously

that no such solution can exist. Thus, we reached a contradiction.
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β

α
T

bi

Figure 20: 3 examples of upload node repartition. A guarded node feeds at most 2 nodes partially

(first example). An open node that is the first to feed the last guarded node (second example).

General case for an open node (last example).

3.4.3 Low degree scheme for a word π

The output of Algorithm 2 is an encoding word and an ordering, together with the amounts of

guarded or open bandwidths used for this purpose, but not the actual values of the ci, js. There are

several possibilities for the ci, js. However, in order to prove bounds on the degree of the nodes, we

will feed each node by the earliest possible nodes with unused upload bandwidth (as in the open

nodes case described in Section 3.3.2).

Lemma 3.4.8. From the word π given by Algorithm 2, it is possible to build a broadcast scheme

such that

• for every guarded node j ∈ G , outdegree o j is bounded: o j ≤
⌈

b j

T

⌉

+1;

• for at most one open node i, oi ≤
⌈

bi

T

⌉

+3;

• for the other open nodes, oi ≤
⌈

bi

T

⌉

+2.

Proof. Since guarded nodes can only upload to open nodes, and open nodes always receive from

the earliest guarded node available, every guarded node uploads to a consecutive interval of open

nodes. So at most 2 nodes will be partially fed by a specific guarded node: the first and the last

one of the interval (see first example of Figure 20).

Let us now consider an open node i. Because Algorithm 2 rather chooses guarded nodes when

it is possible, as long as there is enough open bandwidth available, node i will feed a consecutive

interval of guarded nodes. When the amount of open upload available gets low, there are two cases

to consider:
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• i is the earliest open node that feeds the last guarded node.

The sequence of nodes fed by i first consists in a sequence of guarded nodes, then a sequence

of open nodes, then the last guarded node and another sequence of open nodes (see second

example of Figure 20). Since conservatism implies that G(π©) = 0 after feeding an open

node from node i, a partially fed open node can only take place as the first node after guarded

nodes. Hence, the only nodes partially fed by i are the first one, the last one and the opening

nodes of the 2 open sequences. In total, at most 4 nodes are partially fed by node i.

• Otherwise (see last example of Figure 20), Algorithm 2 feeds guarded nodes with the upload

of i as long as there is enough bandwidth. At some point, O+G+ gnext < 2T , where gnext

is the bandwidth of the next guarded node to be fed. Let β be the remaining bandwidth of

node i at that point. By the definition of O, β ≤ O. At this moment, Algorithm 2 decides

to switch to open nodes. Open nodes are fed using guarded bandwidth at first. If any open

node is fed using α = T −G upload from i, the remaining upload of i is equal to β −α ≤
O+G−T ≤ T − gnext ≤ T . Thus, the next node fed by i uses all the remaining bandwidth

of node i. Hence, node i feeds partially at most 3 nodes: the first node, one open node and

the last node.

This concludes the proof of Theorem 3.4.1.

3.5 Cyclic case

This section considers cyclic broadcast schemes. We start by giving an upper bound on the optimal

cyclic throughput T ∗:

Lemma 3.5.1.

T ∗ ≤min

(

b0,
b0 +O

m
,
b0 +O+G

n+m

)

,

where O = ∑
n
i=1 bi and G = ∑

n+m
i=n+1 bi.

For the instance of Figure 13, O = 10, G = 6. Hence, from this lemma, we know that the

throughput of the broadcast scheme of Figure 13 is optimal since min(6,16/3,22/5) = 4.4.

Proof. Clearly T ∗ ≤ b0, since the whole message has to be sent at least once by the source. Then,

the m guarded nodes have to receive the message at rate T ∗ and therefore consume mT ∗ bandwidth.

Since this bandwidth must come from the source and the open nodes, then mT ∗ ≤ b0 +O. Finally,

all n+m nodes must receive the whole message at rate T ∗ and the bandwidth must come from the

source, the open and the guarded nodes, so that (m+n)T ∗ ≤ b0 +O+G.

As shown in Figure 21, it is not always possible to achieve a solution of optimal throughput

with low degree in presence of guarded nodes. However, after [7]:

Theorem 3.5.2 ([7]). There exists an algorithm which takes as input any instance without guarded

nodes and a target value of T ≤ T ∗ = min
(

b0,
b0+O

n

)

, and which builds a cyclic solution of

throughput T , in which any node has outdegree oi ≤max
(⌈

bi

T

⌉

+2,4
)

.
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.
.
.

m−1
m

1
m

1
m

b0 = 1

bi =
1
m

b1 = m−1

Figure 21: An instance with guarded and open nodes where the optimal cyclic throughput is T ∗ =

min
(

b0,
b0+b1

m
, b0+b1+mb2

m+1

)

= 1. In the optimal solution, the source has degree m, whereas
⌈

b0

T ∗

⌉

=

1.

Proof is a constructive one. It relies on incremental building of an acyclic solution (in a style

resembling the Algorithm 1), and performing necessary local fixes when unable to perform another

acyclic step.

3.6 Cyclic/Acyclic throughput comparison

In this section, we compare the optimal acyclic throughput with the optimal (cyclic) throughput.

On the one hand we show that the ratio
T ∗ac

T ∗ can be as small as 5
7
≈ 0.71 for (small-size) instances

and as small as 1+
√

41
8
≈ 0.925 for arbitrary large instances (by contrast, when there are only open

nodes, this ratio tends to one when the number of nodes is large). On the other hand, we show

that this ratio is larger than 5
7

for any instance, so that this bound is tight. Finally we present

experimental results on the ratio
T ∗ac

T ∗ on random instances, that prove that acyclic solutions achieve

much better results than the 5
7

bound in practice.

3.6.1 Worst cases

Without guarded nodes

Theorem 3.6.1. For any instance I of size n and without guarded nodes,

T ∗ac

T ∗
≥ 1− 1

n
.
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Proof. Let I be an instance of size n without guarded nodes. From Section 3.3 we know that

T ∗ac = min

(

b0,
b0 +O−bn

n

)

.

From Lemma 3.5.1 we have

T ∗ ≤min

(

b0,
b0 +O

n

)

.

If T ∗ac = b0 then it is also the case for T ∗ and the result holds. Else we have

T ∗ac

T ∗
≥ b0 +O−bn

b0 +O
≥ 1− bn

b0 +O
.

Because of the ordering of nodes we have O≥ nbn. This concludes the proof.

With guarded nodes

We start this section by characterizing a special class of instances which are the worst possible

cases for the acyclic throughput. An instance is said to be homogeneous if all open nodes except

the source have the same throughput o and all guarded nodes have the same throughput g. An

instance is said to be tight if b0 =
b0+O+G

n+m
= T ∗ (i.e. if no bandwidth can be wasted in the optimal

cyclic solution). The instance of Figure 13 is tight but not homogeneous and the instance of

Figure 21 is tight and homogeneous.

Lemma 3.6.2. Let α > 0. If for every tight homogeneous instance,
T ∗ac

T ∗ ≥ α , then for every instance
T ∗ac

T ∗ ≥ α .

Proof. To prove this lemma we will show that given an instance, we can associate with it a tight

homogeneous instance with the same optimal throughput T ∗ and with no greater optimal acyclic

throughput T ∗ac.

First, if the instance is such that

b0 +O+G

n+m
> T ∗,

by reducing the throughput of the guarded nodes it is possible to make this inequality an equality.

This transformation does not change the optimal throughput T ∗ and any acyclic solution for the

transformed instance is also an acyclic solution for the original one.

Consider now a non-homogeneous instance I such that

b0 +O+G

n+m
= T ∗.

Let I′ be the homogeneous instance obtained from I as follows:

b′0 = T ∗,b′i = o =
N +b0−T ∗

n
for i ∈ J1,nK,
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b′i = g =
M

m
for i ∈ Jn+1,n+mK,

where b′i is the throughput of the node Ci in I′. Clearly I and I′ have the same optimal throughput

T ∗ and I′ is tight and homogeneous. Observe that since nodes of same type are ordered in the

non-increasing order of their throughput,

∀k∈J0,nK

k

∑
i=0

bi ≥
k

∑
i=0

b′i

and

∀k∈Jn+1,n+mK

k

∑
i=1

bi ≥
k

∑
i=1

b′i.

Hence, any acyclic scheme of I′ can be turned into a scheme where I communications previously

ensured by the k-th open (resp. guarded) node in I′ are now ensured by the k first open (resp.

guarded) nodes in I. The resulting scheme is acyclic and achieves the same throughput.

Our first result states that the optimal acyclic (low degree) solutions achieve a throughput that

is at least 5
7

of the optimal cyclic solution (with possibly arbitrarily large degree) and that this 5
7

bound is tight.

Theorem 3.6.3. For any instance,
T ∗ac

T ∗ ≥ 5
7
. Moreover, there exists an instance such that this ratio

is reached.

Let us first show that the ratio 5/7 can be reached. For this purpose, let us consider the following

instance (see Figure 22) consisting of one source of throughput 1, one open node of throughput

b1 = 1+2ε and two guarded nodes with throughput of b2 = b3 = 1/2− ε each. For this instance,

T ∗ = 1 (see Lemma 3.5.1). There also exist 3 increasing orderings σ1 = 0123,σ2 = 0213 and

σ3 = 0231. Ordering σ1 achieves a throughput of T ∗ac(σ1) = (2/3).(1+ε) and ordering σ2 achieves

a throughput of T ∗ac(σ2) = 3/4−ε/2 (see Figure 22). The throughput of the last ordering is always

smaller than the maximum of the two previous ones. When ε = 1/14, orderings σ1 and σ2 achieve

the same throughput T ∗ac = 5/7.

Let us now prove that for any instance
T ∗ac

T ∗ ≥ 5
7
. Without loss of generality, we can consider

only tight homogeneous instances. We can also assume that n ≥ 1, m ≥ 2 and n+m ≥ 4 since

other cases are trivial or have been considered above.

Let us consider the following two words

ω1(n,m) =©�
α1©�

α2 . . .©�
αn ,

ω2(n,m) =�©β1 �©β2 . . .�©βn .

where αi = ⌊i · m
n
⌋−⌊(i−1) · m

n
⌋ and βi = ⌈i · n

m
⌉−⌈(i−1) · n

m
⌉. Intuition of introduction of those

two encoding words is as follow: to spread � or © (whichever is necessary) almost uniformly

on the whole word. Such words encode almost optimal acyclic solutions, however they represent

much more regular inner structure.
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σ1

2/3+2ε/3

2/3+2ε/3

1
3
+ 4ε

3

1/3−2ε/3

σ2

1/4+ ε/2

1/2− ε3/4− ε/2

3/4− ε/2

C0

C0 C2 C1 C3

C3C2C1

Figure 22: Optimal acyclic schemes of σ1 and σ2.

As observed in Section 3.4, these words encode increasing orders on vertices. To conclude

the proof we only have to show that at least one of these two words encodes a valid scheme of

throughput 5/7

max(T ∗ac(ω1(n,m)),T ∗ac(ω2(n,m)))≥ 5/7.

Recall that we consider tight homogeneous instances with b0 = 1 such that n ≥ 1, m ≥ 2 and

n+m ≥ 4. Without loss of generality, we can also assume that b0 = 1,b0 +O ≥ m and b0 +O+
G = n+m. Hence for some 0 ≤ ∆ ≤ n, the bandwidth of each open node is o = m−1+∆

n
and the

bandwidth of each guarded node is g = n−∆
m

. To show that max(T ∗ac(ω1(n,m)),T ∗ac(ω2(n,m))) ≥
5/7, we will show a more precise statement

if o≥ 1,T ∗ac(ω1(n,m))≥ 5/7

otherwise T ∗ac(ω2(n,m))≥ 5/7. (3)

Let us start with two additional technical lemmas.

Lemma 3.6.4. For a tight homogeneous instance, a word ω is valid for throughput T if and only if

• (c1) ∀π©⊑ω b0 +o · |π|©+g · |π|�−|π©| ·T ≥ 0

• (c2) ∀π ′©⊑π�⊑ω b0 +o · |π|©+g · |π ′|�−|π�|� ·T −|π ′©|© ·T ≥ 0

Proof. As shown in Section 3.4, a word ω is valid for a throughput T if and only if

for any prefix of ω of the form π�,G(π)≥ T,

for any prefix of ω of the form π©,G(π)+R(π)≥ T.

For homogeneous instances, the second condition can be written as

∀π©⊑ω b0 +o · |π|©+g · |π|�−|π©| ·T ≥ 0
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which is exactly (c1).

And the first condition is

∀π�⊑ωb0 +o · |π|©−|π�|� ·T −W (π)≥ 0.

From the recursive equations which define W and G, we can deduce

W (π©) = max(W (π), |π©|© ·T − (bn+1 + . . .+bn+|π|�)).

Together with W (π�) =W (π), this implies

W (π) = max
π ′©⊑π

{|π ′©|© ·T − (bn+1 + . . .+bn+|π ′|�)},

hence the first condition can be rewritten to

∀π ′©⊑π�⊑ω ,b0 +o · |π|©g · |π ′|�−|π�|� ·T −|π ′©|© ·T ≥ 0.

Lemma 3.6.5. If ω is an encoding word for a valid solution of a homogeneous instance with (b0 =
b′0,o = o′,g = g′) with throughput T , and ω is also encoding a valid solution of a homogeneous

instance with (b0 = b′′0,o = o′′,g = g′′) with throughput T , and 0 ≤ λ1,λ2 ≤ 1 are such that λ1 +
λ2 = 1, then ω is also a valid solution for homogeneous instance with (b0 = λ1 · b′0 +λ2 · b′′0,o =
λ1 ·o′+λ2 ·o′,g = λ1 ·g′+λ2 ·g′′) with throughput T .

Proof. For fixed π©, we can write (c1) as

b′′0 +o′′ · |π|©+g′′ · |π|�−|π©| ·T = λ1(b0 +o · |π|©+g · |π|�−|π©| ·T )+
+λ2(b

′
0 +o′ · |π|©+g′ · |π|�−|π©| ·T )≥ 0.

Condition (c2) is proved analogously.

Now let us go back to the proof of statement (3).

Since when m > n, it is impossible to have o < 1, we need to consider only 3 cases

• m≥ n+1 and o≥ 1,

• m≤ n and o≥ 1,

• m≤ n and o≤ 1.

Using Lemma 3.6.5, we can eliminate the parameter ∆ from each of the cases, reducing each

of them to two extreme cases

• m≥ n+1 and o≥ 1

– (A1) o = m−1
n

, g = n
m

,
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– (A2) o = n+m−1
n

, g = 0.

• m≤ n and o≥ 1

– (B1) o = 1, g = m−1
m

,

– (B2) o = n+m−1
n

, g = 0.

• m≤ n and o≤ 1

– (C1) o = m−1
n

, g = n
m

,

– (C2) o = 1, g = m−1
m

.

We now check for each case that the appropriate word (ω1(n,m) or ω2(n,m)) satisfies the condi-

tions (c1) and (c2) of Lemma 3.6.4.

Lemma 3.6.6. In cases (A2) and (B2), T ∗ac ≥ 5/7.

Proof. Merging cases (A2) and (B2) together, we consider the following instance

o =
n+m−1

n
,g = 0,

(o≥ 1 obviously holds), and the encoding word ω1(n,m).
It is enough to verify condition (c1), because open bandwidth is the only available bandwidth

in this case. If we denote |π|© as i, 0≤ i < n, (c1) becomes then

∀0≤i<n1+
n+m−1

n
· i−

(

i+1+
⌊m

n
i
⌋)

· 5
7
≥ 0.

Since ⌊m
n

i⌋ ≤ m
n

i, it is enough to prove

1+
n+m−1

n
· i−

(

i+1+
m

n
· i
)

· 5
7
≥ 0

which simplifies to
2

7
+

2

7
· i+ 2

7
· m

n
· i− i

n
≥ 0

2+(2n+2m−7) · i≥ 0

which holds, since n+m≥ 4.

Lemma 3.6.7. In cases (B1) and (C2), T ∗ac ≥ 5/7.

Proof. Increasing n in those cases only results in adding open nodes with bandwidth 1 ≥ 5
7
. So it

is enough to prove the two conditions for n = m.

So we now assume n = m. If m≥ 4, then g≥ 3
4
, and

ω1(n,n) = (©�)n
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ω2(n,n) = (�©)n,

and every node is able to feed the next node.

If m ≤ 3, we can easily verify that the words ω1(2,2) and ω2(2,2) are valid for the case o =
1,g = 1

2
with throughput T = 5

7
, and that the words ω1(3,3) and ω2(3,3) are valid for the case

o = 1,g = 2
3

with throughput T = 5
7
.

Lemma 3.6.8. In case (A1), T ∗ac ≥ 5/7.

Proof. Let us check condition (c1). For the sake of readability, let us denote by i the value |π|©
(0≤ i < n). Condition (c1) can be rewritten to

1+ i · m−1

n
+
⌊

i · m
n

⌋

· n

m
≥ 5

7
·
(

1+ i+
⌊

i · m
n

⌋)

which is equivalent to
2

7
+ i ·

(
m−1

n
− 5

7

)

≥
⌊

i · m
n

⌋

·
(

5

7
− n

m

)

.

Since m−1
n
≥ 1, the left-hand side is always positive. We can safely assume that 5

7
≥ n

m
(other-

wise, the right-hand side is negative). And since ⌊i · m
n
⌋< i · m

n
, it is enough to prove

2

7
+ i ·

(
m−1

n
− 5

7

)

≥ i · m
n
·
(

5

7
− n

m

)

.

Simplifying, we get
2

7
+ i ·

(
2

7
+

2

7
· m

n
− 1

n

)

≥ 0.

Since 2
7
+ 2

7
· m

n
≥ 2

7
+ 2

7
· 7

5
≥ 1

2
≥ 1

n
, condition (c1) holds.

Let us now check condition (c2). We denote |π|© = i and |π ′|© = j (it is enough to consider

the longest such π ′), 0≤ j < i≤ n.

1+ i · m−1

n
+
⌊m

n
· j
⌋

· n

m
−
⌊m

n
· i
⌋

· 5
7
− ( j+1) · 5

7
≥ 0.

Simplifying, we get

(
2

7
+
⌊m

n
· j
⌋

· n

m
− 5

7
· j

)

+
5

7
·
(m

n
· i−

⌊m

n
· i
⌋)

+
i

n
·
(

2

7
·m−1

)

≥ 0.

Now, we can also use this

∀x≥0⌊x⌋= ⌊x⌋ ·
⌊x⌋+1

⌊x⌋+1
≥ x · ⌊x⌋
⌊x⌋+1

.

So we have
⌊m

n
· j
⌋

≥ m

n
· j · ⌊

m
n
· j⌋

⌊m
n
· j⌋+1

≥ m

n
· j · j

j+1
.
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Using this, condition (c2) holds if

(
2

7
+ j · j

j+1
− 5

7
· j

)

+
5

7
·
(m

n
· i−

⌊m

n
· i
⌋)

+
i

n
·
(

2

7
·m−1

)

≥ 0.

The case m≤ 3 can be checked separately (m = 3,n = 2,o = 1,r = 2
3
). When m≥ 4, we have

2
7
m−1 > 0, and it remains to prove that

2

7
+ j · j

j+1
− 5

7
· j ≥ 0

For j ∈ {0,1,2,3} it can be checked, and for j ≥ 4 the following inequality allows us to conclude

j · j

j+1
≥ 5

7
· j.

Lemma 3.6.9. In case (C1), T ∗ac ≥ 5/7.

Proof. If we denote i = |π|� (the case i = 0 is trivial, so we can assume 0 < i < m), condition (c1)

can be written as

1+
n

m
· i+ m−1

n

⌈

i · n

m

⌉

≥ 5

7

(

1+ i+
⌈

i · n

m

⌉)

which simplifies to
2

7
+

(
n

m
− 5

7

)

i≥
(

5

7
− m−1

n

)

·
⌈

i · n

m

⌉

.

We can safely assume that 5
7
− m−1

n
≥ 0, because otherwise the right-hand side would be negative,

while the left-hand side remains positive. Since ⌈x⌉ ≤ x+1, the following equality implies (c1)

2

7
+

(
n

m
− 5

7

)

i≥
(

5

7
− m−1

n

)

·
(

i · n

m
+1
)

And simplifies to
(

2

7
· n

m
+

m−1

m
− 5

7

)

· i+ m−1

n
≥ 3

7
.

We can observe that 2
7
· n

m
+ m−1

m
− 5

7
≥ 2

7
+ 1

2
− 5

7
> 0, so that the left-hand side of this inequality

is minimized with i = 1. It is thus enough to check that

2

7
· n

m
+

m−1

m
+

m−1

n
≥ 8

7
.

This is what we do here:

2

7
· n

m
+

m−1

m
+

m−1

n
≥ 2

7
· n

m
+

1

2
+

m−1

m
· m

n
≥
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≥ 1

2
+

2

7
· n

m
+

1

2
· m

n
≥ 1

2
+2 ·

√

2

7
× 1

2
≥ 8

7
.

Let us now check condition (c2). Here, we denote |π|� by i and |π ′|� by j (0≤ j ≤ i < m≤ n)

(We only have to consider the longest π ′). Condition (c2) becomes ∀0≤ j ≤ i < m≤ n

1+
⌈

i · n

m

⌉

· m−1

n
+ j · n

m
− 5

7
·
(

1+
⌈

j · n

m

⌉

+ i
)

≥ 0.

Simplifying, and substituting ⌈x⌉ by x we get

2

7
+ i · m−1

m
+ j · n

m
− 5

7
·
⌈

j · n

m

⌉

− 5

7
· i≥ 0.

First, we solve the case when j = 0

2

7
+ i ·

(
m−1

m
− 5

7

)

≥ 0

• m = 2
2

7
+ i ·

(
1

2
− 5

7

)

≥ 0

i≤ 4

3

that holds true since i < m = 2

• m = 3
2

7
+ i ·

(
2

3
− 5

7

)

≥ 0

i≤ 6

that holds true since i < m = 3

• m > 3
m−1

m
≥ 5

7
.

Which solves case j = 0.

Now we can safely assume j ≥ 1. Using ⌈a
b
⌉ ≤ a+b−1

b
, it is sufficient to prove that

2

7
+ i · m−1

m
+ j · n

m
− 5

7
·
(

j · n

m
+

m−1

m

)

− 5

7
· i≥ 0,

which simplifies to
2

7
· i+ 2

7
· j · n

m
+

5

7
· 1

m
≥ i · 1

m
+

3

7
.

Obviously, the left-hand side is minimized for j = 1:

2

7
· i+ 2

7
· n

m
+

5

7
· 1

m
≥ i · 1

m
+

3

7
.

We consider three cases:
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• m = 2 (then, i = 1 must hold):

2

7
+

2

7
· n

2
+

5

7
· 1

2
≥ 1

2
+

3

7

which is equivalent to n≥ 2 (that holds).

• m = 3 (then, 1≤ i < 3 must hold)

2

7
· m

3
+

5

7
· 1

3
≥ 1

21
· i+ 3

7

which is equivalent to 2n≥ i+4 (that holds).

• m≥ 4 (
2

7
− 1

m

)

· i+ 2

7
· n

m
+

5

7
· 1

m
≥ 3

7

right-hand side minimizes for i = 1

2

7
− 1

m
+

2

7
· n

m
+

5

7
· 1

m
≥ 3

7

which simplifies to 2n≥ 2+m, that also holds.

We just proved that acyclic solutions have throughput at least 5
7

of the optimal solution. Look-

ing at Figure 23, we see that the worst case happens for small n and m, and ratio grows with size

of instances. One could hope, that ratio goes arbitrarily close to 1, but unfortunately that is not the

case.

The second result states that the optimal acyclic throughput does not get arbitrarily close to the

optimal cyclic throughput when the size of the instances grows.

Theorem 3.6.10. For every ε > 0 and every K ∈ N, there exist instances with at least K open

nodes and K guarded nodes such that

T ∗ac

T ∗
≤ 1+

√
41

8
+ ε ≈ 0.925+ ε.

Proof. of Theorem 3.6.10. For a given α = p
q
< 1, (p and q have integer values), and for any k, let

us consider the instance I(α,k) such that:

• b0 = 1;

• n = kq open nodes have bandwidth α; and

• m = kp guarded nodes have bandwidth 1
α .
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The first observation is that for all α and k, Lemma 3.5.1 implies that the optimal throughput

T ∗ is equal to 1.

For the second observation, let S be any acyclic solution to I(α,k) and x be the number of open

nodes before the second guarded node in S. In other words, S starts with a prefix π =©u�©v �

with u+ v = x. The throughput T achievable by S is bounded by two constraints

• the source and the first x open nodes should be able to feed the first two guarded nodes, ie.

αx+1≥ 2T , and

• the bandwidth of the source and of the first x+ 1 nodes should be enough to feed the x+ 2

nodes, ie. αx+ 1
α +1≥ (x+2)T .

Hence T ≤ αx+1
2

= fα(x) and T ≤ αx+ 1
α +1

x+2
= gα(x). Since any optimal acyclic scheme must

satisfy these two constraints for some x, we have T ∗ac ≤maxx∈Nmin( fα(x),gα(x)).
Observe now that the function fα is increasing, and gα is decreasing (since α < 1), and that

they coincide (with value 1) for x = 1
α . The minimum is thus achieved by fα for x < 1/α , and by

gα for x > 1/α , and this minimum is maximized for x = 1/α . However, 1
α is not necessarily an

integer, so the maximal value is achieved for x =
⌊

1
α

⌋
or x =

⌈
1
α

⌉
:

T ∗ac ≤max

(

fα

(⌊
1

α

⌋)

,gα

(⌈
1

α

⌉))

.

If α =
√

41−3
8

, simple computations show that
⌊

1
α

⌋
= 2,

⌈
1
α

⌉
= 3, and fα(2) = gα(3) =

√
41+1
8

.

Since this value of α can be approximated arbitrarily close with a rational number, and since the

expressions fα(2) and gα(3) are continuous in α , we get the claimed result.

To conclude this subsection, we show an exhaustive exploration of all possible tight and homo-

geneous instances, for n and m between 0 and 100. For each of them we compute the ratio T ∗ac/T ∗

(see Figure 23).

On the one hand, we can observe the result of Theorem 3.6.10: when m≃
√

41−3
8

n (for example

n = 100 and m = 42), the ratio remains below 1, even for large values of n and m. On the other

hand we can observe that except for few small instances, the ratio T ∗ac/T ∗ is larger than 0.8.

3.6.2 Average cases

In addition to this worst-case analysis, we also analyze the average ratio between acyclic and

cyclic throughput of randomly generated instances. In order to explore the performance of our

algorithms in different heterogeneity conditions, we consider several probability distributions for

the bandwidths of the nodes

1. a uniform distribution between 1 and 100 (Unif100);

2. power-law (Pareto) distributions with average value 100 and standard deviation 100 (Power1)

or 1000 (Power2);
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Wort case ratio between Cyclic and Acyclic
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Figure 23: Worst case ratio between cyclic and acyclic optimal solutions on tight homogeneous

instances. The bottom plane is 5
7
≃ 0.714.

3. log-normal distributions with average value 100 and standard deviation 100 (LN1) and 1000

(LN2);

4. a uniform sampling from outgoing bandwidth values that were computed from measure-

ments performed on the PlanetLab platform [11] (PLab).

In each case, each node is independently chosen to be an open node with probability p (and a

guarded with probability (1− p)). In order to concentrate on difficult instances, the bandwidth of

the source node is chosen equal to the optimal cyclic throughput – what ensures that the source is

not a strong limiting bottleneck, and that it is also not sufficient by itself to feed all nodes. The

results are shown on Figure 24, for different numbers of nodes and different values of p. For each

set of parameters, 1000 random instances were generated, and the figure shows average values

(connected by black lines) and boxplots with median, quantiles, and confidence intervals at 5%

(the black dots are outliers, outside these confidence intervals).

The first conclusion of these simulations is that the average behavior of acyclic solutions is

very close to the optimal cyclic throughput, and that this is true in a wide variety of scenarios.

Furthermore, the results are very stable. We can note that more open nodes and moderate hetero-

geneity (with the Power1 and Power2 distributions) make the problem slightly more difficult for

small size instances. Overall, however, we can see that even in these cases, producing low degree

solutions comes at very little cost (at most 5%) with respect to the achievable throughput.
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Figure 24: Average ratio between cyclic and acyclic optimal solutions of randomly generated

instances.

The second conclusion is related to the acyclic throughput obtained considering only the best

solution among those encoded by words ω1 and ω2 (blue lines on Figure 24). In all cases, these

solutions are almost as competitive as the best acyclic ones and for all large instances they are as

competitive. From a practical point of view these simpler schemes are of interest since they are

easier to build in a distributed context once nodes have been ordered according their bandwidth.

For comparison, the average throughput obtained by the word (either ω1 or ω2) used in the case

analysis of the proof of Theorem 3.6.3 is shown by the red lines on Figure 24. We can see that

there is a significant gap for smaller instances, hence it can be actually worthwhile to compute the

best throughput among both words.
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3.7 Conclusion

We have considered the classical problem of broadcasting a large message at an optimal rate in

a large scale distributed and heterogeneous network. We have advocated the use of the LastMile

model, that encompasses the advantages of both the bounded multiport model and the 1-port model.

The main originalities of our work are that we consider the case where some broadcast nodes

lie in the open Internet whereas other broadcast nodes are guarded (behind NATs or firewalls), and

that we search for either cyclic or acyclic solutions.

We propose algorithms that provide solutions with low degree (optimal up to a small constant

additive term) and that achieve optimal throughput for the acyclic case. For the problem of finding

cyclic solution, we prove that reaching the optimal throughput may require arbitrarily large degree

at some nodes, but on the other hand, we prove a tight worst-case bound of 5/7 for the ratio between

acyclic and cyclic cases. We also show, using a large set of simulations, that this ratio is even closer

to 1 in practice, so that acyclic low degree solutions can be used for the cyclic case also.

Therefore, we provide low complexity algorithms (even if their proofs of correctness are some-

times sophisticated) that achieve optimal throughput (or quasi-optimal in the cyclic case) and where

each node is connected to a minimal number of neighbors (up to a small additive constant ranging

from 1 to 4 depending on the case), what makes implementation more efficient. We believe that

this makes the proposed algorithms efficient both theoretically and practically.

Work presented in this chapter opens many perspectives. On the practical side, we rely on

the LastMile model whose parameters can be easily evaluated at runtime, as shown in previous

chapter, and we provide low degree acyclic solutions. Therefore, we expect that the theoretical

results proved here can indeed be achieved in practice. On the theoretical side, since the use

of the LastMile model enables to design (quasi-)optimal solutions with respect to both degree

and throughput, we can introduce new objectives, such as dealing with the dynamicity of the

platform (changing dynamically the set of participating nodes, or their communication abilities) or

optimizing the depth of produced schemes in order to minimize delays.
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Chapter 4

Power efficient communication over grid

topologies

4.1 Introduction

4.1.1 Context

In previous chapters, we saw how the problem of instantiating the network parameters can be

solved, when we assume certain models of networks. Also, when given such a model, we saw how

we can solve certain combinatorial problems connected with efficient communication allocation

over the network. That is the typical problem we will encounter when trying to model large scale

communication over an unknown platform, e.g. peer-to-peer networks. However, when we try to

move to different type of platforms, e.g. cloud computing, there arises a dual problem, concerning

how to allocate transmission for just a known set of communications, or even a single commu-

nication. Previously we were free to decide on the amount of flow going through a given node,

or the structure of point-to-point communication, without control of the actual routing of node to

node communication. Now we will fix the endpoints of communication, and actually try and find

efficient routing. We are free to do so, because it is possible to know the topology of the underlying

network, or the infrastructure, when previously we could only assume the minimal knowledge. If

we are going to analyze just the structure of communication over known network, we usually know

in advance the transfer we want to achieve. Also, the maximal possible transfer in the flow related

models is usually easy to compute (if we know bandwidth constraints over the edges), or infinite

(when there are no constraints). So we have to provide a realistic cost function that will evaluate

efficiency of the solution.

4.1.2 Motivation

In this chapter, we present results from our research on cost efficient routing over high performance

computing platforms. Our point of interest is the search for power-efficient routing on rectangu-

lar grid topologies. We investigate the problem of routing communications between CMP (Chip
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Multiprocessors) cores using shortest paths, in a model where the power cost associated with ac-

tivating a communication link at a transmission speed of f bytes/second is proportional to f α , for

some constant exponent α > 2. Power usage is a natural factor to optimize when investigating chip

multiprocessors (CMP). For them, a significant part of power consumption is attributed to com-

munications between cores, and power inefficiency is one of main limits preventing from further

miniaturization of CMP [52]. Grid topology was chosen because it reflects well high performance

platforms topologies. It can also be a basis for more complicated ones, and we hope for possible

extensions of our results (for example planar topologies).

The starting point for our work in this chapter was the publication [13], that provided the set-

ting (topology with power–transmission rate function) with an extensive theoretical and practical

analysis of the problem. Key elements of the setting were already known and analyzed before.

In [13], those ideas were for the first time put together and used to examine a wide category of

routing algorithms. However, we felt that the part regarding efficient splitting of messages into

atomic parts to be sent over single paths was underdeveloped, and we chose it as a way to improve

this work.

With this research, we aimed at finding a balance between the simplicity of a model (that allows

a deep mathematical analysis), and the complexity of actual processes (captures the real life setting

of the problem). The setting we found allowed us for a very efficient theoretical analysis, while

still reflecting the real life setting of high performance computing power efficiency.

Our main result is a trade-off showing how the power required for communication in CMP

grids depends on the ability to split communication requests between a given pair of nodes, and

then route each such request along multiple paths. For a pair of cores in a n×n grid, the number of

available communication paths between them grows exponentially with n. By contrast, we show

that the optimal power consumption (up to constant factors) can be achieved by splitting each com-

munication request into k paths, starting from a threshold value of k = Θ(n1/(α−1)). This threshold

is much smaller than n for typical values of α ≈ 3, and may be considered practically feasible in

routing schemes on the grid. More generally, we provide efficient algorithms for routing multiple

k-splittable communication requests between any two cores in the grid, providing solutions within

a constant approximation of the optimum cost. We support our results with simulations, showing

that for practical instances, our approach using k-splittable requests leads to a power cost close to

the one of the optimal solution with arbitrarily splittable requests, starting from the stated threshold

value of k.

4.1.3 Setting

The increase in the level of integration of single chip multiprocessors (CMPs) creates demand

for high-speed communications on-chip, which in turn increases the power consumption on CMP.

This trend is expected to continue in the future [15]. Numerous studies concern the optimization of

power cost in integrated chip designs, taking into account that both processors and communication

buses may operate at variable frequency, determining the speed of computations or transmissions

(cf. [28, 37, 48, 56]). The increase of power cost P as a wα for α ≈ 3 (where w is a workload) in

such designs is a well-established relation (cf. e.g. [56, 4, 18]).
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A significant part of power in CMPs is consumed by maintaining communications within the

chip, and that makes efficient allocation of communication routes a very important issue [52]. On

CMP grids, links with dynamic frequency and/or voltage scaling are used ([38, 59]), and power

P dissipated on a link is related to the frequency f and voltage V on it by the following relation

supported by both theory and experiments P ∼ f ·V 2 (cf. e.g. [3]). However, for most designs,

an increase in operating frequency also results in an increase in voltage, roughly according to the

relation V ∼ f (cf. e.g. [59]), which results in the relation between power cost and transmission

speed given as P∼ f 3 ([13, 14]).

Such a model of power consumption was recently studied in the context of splittable

Manhattan-path routing by Benoit et al. [13]. They introduced several routing schemes in an effort

to minimize the overall power cost, but observed that this may require splitting each communi-

cation request, and routing its fragments along a potentially very large number of communication

paths. Splitting a request, taking care of the route for each part, and merging it at the target imposes

additional time and power overhead.

In this work, our goal is to show how to limit path splitting as much as possible, without increas-

ing too much the communication power cost. Specifically, we consider the problem of optimizing

the power consumption cost of a communication between two given cores, that may sometimes

require the routing of multiple requests. Our power consumption model assumes that if an edge

is transmitting at rate v, the power cost of maintaining the frequency over an edge is proportional

to vα for a given constant α > 2, identical for every edge. We make the practically-motivated

assumption [38, 59] that only the dynamic part (associated with transmission) is dominant for high

communication rate, and static effects do not have to be considered in optimization. We stud-

ied more general case of vα instead of fixed v3 one, to provide much stronger argument for our

analysis, that obtained results are not related to any ’special’ properties of cubic function.

4.1.4 Outline and results.

Our study concerns routing between a single source-sink pair of nodes using Manhattan paths

on a grid CMP. Communication between these nodes is assumed to be static, i.e. constant over

time, and the cost of a transmission along an edge is assumed to be proportional to a fixed power

function of the transmission rate. The considered model, power cost function, and rules of routing

are formally presented in Section 4.2. We briefly outline the theory of Manhattan-path routing with

arbitrarily splittable requests (Max-MP). We provide an optimal convex programming formulation

of the problem, leading to a routing scheme denoted as OPT, and recall the properties of the routing

scheme C introduced in [13]. We also provide a convenient formulation of Manhattan routings in

terms of transmission through nodes.

Our main results are given in Section 4.3. They concern the variant of the Manhattan routing

problem in which each request can be satisfied by at most k communication paths, where k is a

parameter of the model (k-MP). We study the value of the ratio of the cost of the optimal solution

in this case, denoted OPTk, to the cost of the routing scheme OPT with arbitrarily splittable paths.

We establish that in general, cost(OPTk)/cost(OPT) = O(1+ n
kα−1 ), whereas for the special case of

d ≥ 1 identical requests of the same size, this ratio is given precisely as Θ(1+ n
(kd)α−1 ). This means
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Figure 25: Notations used in the CMP grid model.

that for k = o(n1/(α−1)), the requirement that requests can be split into at most k paths impacts

the cost of the routing scheme asymptotically, i.e., increases the cost by an unbounded factor

for sufficiently large n. On the other hand, for k larger than the threshold value of Θ(n1/(α−1)),
the obtained k-splittable routings are within a constant factor of the optimal solution to Max-MP

routing problem.

The proposed bounds are obtained through the analysis of three efficiently implementable al-

gorithmic schemes for solving k-MP: Fk routing and Dk routing for uniform requests (requests of

same size), and Ak routing for non-uniform requests. The latter two are shown to have a constant

approximation ratio with respect to the cost of OPTk for all k, while the former converges to the

cost of OPT as k goes to infinity. The design of such approximate techniques results from the

observation that solving optimally the non-uniform k-MP routing problem is NP-hard.

Finally, in Section 4.4, we perform an experimental validation through simulations, of the

determined threshold value of k = Θ(n1/(α−1)), showing the effect of smaller and larger values

of k on the routing cost. We also experimentally compare the performance of Fk routing and Dk

routing, studying their convergence to asymptotic behavior for increasing values of k and different

values of the power cost exponent α ≈ 3.

4.2 Framework

4.2.1 Platform and power consumption model.

We model the platform as a grid graph on a set of m× n uniform nodes Vi, j, with 1 ≤ i ≤ m and

1≤ j ≤ n. Without loss of generality, we assume that m≥ n. We will also assume for the purpose

of analysis that the sides of the grid are of the same order of magnitude, i.e., m = O(n). Nodes are

connected by bidirectional edges. The horizontal edge Ei, j connects Vi, j and Vi, j+1 (for 1≤ i≤ m,

1 ≤ j ≤ n− 1), and the vertical edge E ′i, j connects Vi, j and Vi+1, j (1 ≤ i ≤ m− 1, 1 ≤ j ≤ n), see

the Figure 25 for an illustration.

The power consumed on each edge is closely related to the amount of data sent through this

edge in a unit of time. To simplify the analysis of the model, we discard constant factors, and

(following [13]) set the cost of transmission at rate x as C (x) = xα , where α > 2 is an absolute
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Figure 26: Example of 3-MP routing on 6×4 grid with a single request of size 1 being split into 3

paths of sizes s1 =
1
2
,s2 =

1
4

and s3 =
1
4

constant of the model.

4.2.2 Communication and routing rules.

The study of routing with Manhattan-type paths (of shortest length) is motivated by practical con-

cerns, in particular, the need to minimize communication latency, and to confine communications

between nearby processors to a local area of the grid. For the purpose of the study of single source-

sink communications, it is assumed that the source and target are placed in the opposite corners of

the grid; for communications between a different pair of nodes, considerations can be restricted to

the respective rectangular sub-grid.

A routing R of a single communication request of size s is a weighted set of paths,

{(w1, p1) , . . . ,(wk, pk)}, where each path pi starts at the same source vertex V1,1, and ends at the

same target vertex Vm,n in the opposite corner of the grid. The real-valued weights wi satisfy wi ≥ 0

and ∑i wi = s. This definition of a routing naturally extends to a set of d ≥ 1 requests, which may

be uniform (with identical request size s = K/d, where K is total size of requests), or non-uniform

(with possibly distinct request sizes s1, . . . ,sd).

Given a routing R, we define R(e) as the size of the transmission going through an edge e, i.e.:

R(e) = ∑i : e∈pi
wi. We will adapt this notation accordingly for routings denoted by letters different

from R.

The routing policy is expressed by the bound k on the splitability of each request:

• In 1-Paths Manhattan Routing (1-MP), single communications are atomic and we are not

allowed to divide them into smaller parts. However, there may be several requests between

the same pair of endpoints, so in fact this model doesn’t differ much from the following ones.

• In k-Path Manhattan Routing (k-MP), communication for each request can be split into any

number of k′ ≤ k (partially overlapping) source-sink paths, where k is a parameter of the

model. Example of such a routing is on the Figure 26.

• In Max-Paths Manhattan Routing (Max-MP), the number of paths allowed for each request

is unbounded (k =+∞).
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4.2.3 Problem definition.

For a given routing policy with parameter k and power coefficient α , we define our optimization

problem as follows: Given a m×n grid and a set of requests of sizes (s1, . . . ,sd), with ∑
d
i=1 si = K,

find a routing R of this set of requests minimizing the total power cost of transmission through all

the edges of the grid, expressed by the cost function:

cost(R) =
m

∑
i=1

n−1

∑
j=1

R
(
Ei, j

)α
+

m−1

∑
i=1

n

∑
j=1

R
(
E ′i, j
)α

.

4.2.4 Solution to Max-MP Routing.

For Max-MP, the routing policy does not impose a bound on k. We will denote the optimal solution

to Max-MP by OPT and use it as a reference for k-splittable routing algorithms. The adopted

definition of routing cost leads directly to a convex-programming formulation of Max-MP routing

(see Algorithm 4), and thus applications of convex programming algorithms lead to polynomial-

time schemes with arbitrarily good approximation of OPT (cf. e.g. [2, 34] for a discussion of convex

programming in the context of finding min-cost flows).

Algorithm 4 OPT routing {for Max-MP}
Input: A set of arbitrarily splittable requests of total size K in a m×n grid.

Solve:

Minimize

(

∑
i, j

OPT
(
Ei, j

)α
+∑

i, j

OPT
(
E ′i, j
)α

)

Subject to:

OPT
(
Ei, j

)
≥ 0

OPT
(
E ′i, j
)
≥ 0

OPT
(
Ei, j−1

)
+OPT

(
E ′i−1, j

)
= OPT

(
Ei, j

)
+OPT

(
E ′i, j
)

OPT (E1,1)+OPT
(
E ′1,1

)
= K

Output: values of OPT
(
Ei, j

)
,OPT

(

E ′i, j
)

We remark on the following lower bound on the cost of the OPT routing. Consider any Max-MP

routing that transmits requests of total size K. The edges adjacent to node V1,1, i.e., {E1,1,E
′
1,1},

have to transmit requests of size K in total. It follows that:

cost(OPT)≥
(

K
2

)α
= Θ(Kα) . (4)

Remarkably, as shown in [13], this lower bound is tight regardless of the size of the grid, since

it can be achieved using a specific routing scheme. We will provide a definition of a scheme
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Figure 27: Visualization of lower bound argument, where we also clearly see infeasibility of the

construction. For example, for vertex V2,2, there is incoming transmission of 1
2
, while outgoing of

1
3
.

called C which has equivalent properties, but is described from a different perspective, based on

load balancing on so-called vertex diagonals. We will then use this scheme as a starting point for

schemes solving k-MP.

A better lower bound (in terms of constant) for max-MP routing can be obtained by a carefull

estimation. Based on a remark that every diagonal DEk has to transmit K in total.

lower(K) =
n+m−2

∑
i=1

|DEi| ·
(

K

|DEi|

)α

= (m−n) · (2n+1) ·
(

K

2n+1

)α

+2 ·
n−1

∑
i=1

2i ·
(

K

2i

)α

≥ (m−n) · (2n+1) ·
(

K

2n+1

)α

+2 ·
∫ n

1

Kα

(2x)α−1
dx

= Kα

(
m−n

2n+1
· 1

(2n+1)α−2
+

1

2α−2(α−2)

(

1− 1

nα−2

))

≥ (m−n) · (2n+1) ·
(

K

2n+1

)α

+2 ·
∫ ∞

1

Kα

(2x)α−1
dx

= Kα

(
m−n

2n+1
· 1

(2n+1)α−2
+

1

2α−2(α−2)

)

.

However, one can easily see that this construction is unfeasible in Manhattan Paths, even for

small values of n (it violates network flow property of equal incoming and outgoing transmission

for vertices). We give example of the construction in the Figure 27.

4.2.5 Our approach: load balancing on vertex diagonals.

In all of the routing schemes we propose in this chapter, we will attempt to perform “load balanc-

ing” of paths with respect to transmission through vertices rather than edges. Hence, in a similar
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Figure 28: Vertex diagonal DVi and edge diagonal DEi

fashion to the notation R(e) for an edge e, we define R(v) as the total transmission size going

through a vertex v in routing R.

We introduce the notion of the l-th vertex diagonal, denoted as DVl (1 ≤ l ≤ n+m− 1) by

splitting the set of vertices according to their distance from the source, as follows (see Fig. 28

for an illustration): Vi, j ∈ DVl , iff i+ j = l +1. Likewise, by the l-th edge diagonal, denoted DEl

(1 ≤ l ≤ n+m−2), we mean the set of edges connecting vertices from DVl and DVl+1, namely:

Ei, j,E
′
i, j ∈ DEl , iff i+ j = l +1.

It is worth noting that

|DVl|=







l if 1≤ l ≤ n,

n if n≤ l ≤ m,

n+m− l if m≤ l ≤ n+m−1

(5)

and

|DEl|=







2 · l if 1≤ l < n,

2 ·n−1 if n≤ l < m,

2 · (n+m−1− l) if m≤ l < n+m−1.

(6)

We start by observing that the values of R(v) uniquely determine the values of R(e). This

property will allow us to design routing schemes simply by setting R(v) for all nodes.

Lemma 4.2.1. Given arbitrary Manhattan-Paths routing R, we can compute the values of R(e)
from the values of R(v).

Proof. We will look at DE j for various values of j. We denote DV j = {v1,v2, . . .} and

DV j+1 = {u1,u2, . . .}, with vertices reverse-ordered by first coordinate. Also, the edges in

DE j = {e1, . . .}∪{e′1, . . .} are assumed to be reverse-ordered by first coordinate respectively hori-

zontal and vertical edges.
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1. Let 1≤ j < n, and 1≤ i≤ j.

R(ei) = (R(v1)+ . . .+R(vi))− (R(u1)+ . . .+R(ui)) ,

R
(
e′i
)
= (R(u1)+ . . .+R(ui))− (R(v1)+ . . .+R(vi−1)) .

2. For n≤ j < m, we can perform similar reasoning

R(ei) = (R(v1)+ . . .+R(vi))− (R(u1)+ . . .+R(ui−1)) ,

R
(
e′i
)
= (R(u1)+ . . .+R(ui))− (R(v1)+ . . .+R(vi)) .

3. For m≤ j < n+m

R(ei) = (R(v1)+ . . .+R(vi))− (R(u1)+ . . .+R(ui−1)) ,

R
(
e′i
)
= (R(u1)+ . . .+R(ui))− (R(v1)+ . . .+R(vi)) .

Furthermore, there are close connections between the costs measured in terms of nodes and

edges. For any Manhattan routing R we have

R
(
Ei, j−1

)
+R

(
E ′i−1, j

)
= R

(
Vi, j

)
= R

(
Ei, j

)
+R

(
E ′i, j
)
.

Since the cost function f (x) = xα is convex, we get

R
(
Vi, j

)α ≥ R
(
Ei, j

)α
+R

(
E ′i, j
)α

,

what leads to useful inequalities between the costs related to vertices and edges:

∑
v∈DVl

R(v)α ≥ ∑
e∈DEl

R(e)α
and (7)

∑
v∈DVl

R(v)α ≥ ∑
e∈DEl−1

R(e)α . (8)

4.2.6 Routing scheme C for Max-MP.

We define the routing scheme C for Max-MP by putting a limit on the transmission going through

vertices. Since each diagonal of vertices has a total transmission of exactly K, we set an equal

value of transmission for all vertices in the layer:

∀v∈DV j
C(v) = K

|DV j| . (9)
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Figure 29: Example of C routing on a 5×7 grid, with highlighted values of transfer on edges (on

the left) and vertices (on the right)

Taking into account equation (5), this gives us the following value of transmission for vertices of

the grid:

C
(
Vi, j

)
=







K
i+ j−1

if 1≤ i+ j−1≤ n,
K
n

if n≤ i+ j−1≤ m,
K

n+m+1−i− j
otherwise.

(10)

To verify that this routing is well-defined, we compute transfers over each edge based on the

transfers on vertices. Examples of transfers obtained using this algorithm are shown in Fig. 29.

Algorithm 5 C routing {for Max-MP, cf. [13]}
Input: A set of arbitrarily splittable requests of total size K in a m×n grid.

Solution: For each diagonal DE j of the grid, 1≤ j < n+m, set the flow on its successive horizontal

edges ei and vertical edges e′i, 1≤ i≤ j, as follows:

• If 1≤ j < n, set

C(ei) := K i
j
−K i

j+1
and C(e′i) := K i

j+1
−K i−1

j
.

• If n≤ j < m, set

C(ei) := K i
n
−K i−1

n
= K

n
and C(e′i) := 0.

• If m≤ j < n+m, set

C(ei) := K i
n+m− j

−K i−1
n+m− j−1

and C(e′i) := K i
n+m− j−1

−K i
n+m− j

.

The scheme C is a reformulation of the algorithm studied in [13], where it was shown that it

admits a constant (depending only on α) approximation ratio for Max-MP.

Theorem 4.2.2 ([13]). cost(C) = Θ(Kα) = Θ(cost(OPT)).
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Proof. To analyze the cost of C, we have:

cost(C) =
n+m−2

∑
k=1

∑
e∈DEk

C(e)α =
m−1

∑
k=n

∑
e∈DEk

C(e)α +2
n−1

∑
k=1

∑
e∈DEk

C(e)α

≤ (m−n) ·n ·
(

K

n

)α

+2
n

∑
k=2

∑
v∈DVk

C(v)α = (m−n)
Kα

nα−1
+2

n

∑
k=2

Kα

kα−1

≤ (m−n)
Kα

nα−1
+2

∫ ∞

1

Kα

xα−1
dx = Kα ·

(
m−n

n

1

nα−2
+

2

(α−2)

)

= Θ(Kα) .

Although such a solution has (up to a constant factor) optimal power cost, it can result in a

single request being split into a very large number of paths. Indeed, for a given graph G = (V,E)
and any flow f on G, f can be represented as the union of at most |E| weighted paths. It follows

that both OPT routing (computed through convex optimization) and C routing require O(nm) splits

per request. We conjecture that those routings require in fact Θ(nm) requests. In the next section,

we will show that it is possible to preserve a constant approximation ratio of the optimal cost, while

using a much smaller number of splits, sublinear in the dimensions of the grid.

4.3 Schemes for k-Splittable Routing

In this section, we present three schemes for solving the k-Path Manhattan Routing problem

(k-MP). The first two, denoted Fk and Dk, are designed for uniform sets of requests. As the

bound k on the number of allowed paths per request tends to infinity, these approaches will be

shown to converge to the performance of schemes OPT and C for Max-MP, respectively. The third

scheme, denoted Ak, is an extension of Dk which also works for non-uniform sets of requests.

4.3.1 1-splittable routing with uniform requests

Let us start by considering the 1-MP routing policy, meaning that requests cannot be split. We can

treat this problem as a discrete version of a continuous Max-MP problem. First, we will consider

uniform requests (of equal sizes); without loss of generality, we can assume that the input consists

of d requests of size 1, each.

This considered problem can be solved by the flow-based F1 routing approach presented in

Algorithm 6. The obtained solution is optimal, i.e. for uniform instances, we have

cost(OPT1) = cost(F1). Moreover, using a classical min-cost flow algorithm, a F1 routing can

be found in polynomial time with respect to parameters n, m, and d. It is worth noting, that

while designing F1 algorithm, we did not use either the topology of the graph, or Manhattan Paths

restriction. Thus, this approach (based on a folklore knowledge) will work in more general setting.

We will now provide asymptotic bounds on the size of the (optimal) solution to the uniform

1-MP problem. We obtain the lower bound by combining the lower bound for problem Max-MP

(formula (4) with K = d), with an additional factor resulting from the discrete nature of 1-MP.
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Algorithm 6 F1 routing scheme {optimal solution to uniform 1-MP}
Input: A set of d unsplittable requests of size s = 1 in a m×n grid.

Solution:

1. Construct a multigraph G′ such that V (G′) =V (G).

2. For every directed edge e ∈ E(G), add d weighted directed edges to G′, having the same

endpoints as e, and weights given as: 1α ,2α −1α , . . . ,dα − (d−1)α .

3. Return the min-cost flow of size d in G′, using the two opposite corners of the grid as the

source and sink.

Lemma 4.3.1. For every R ∈ uniform 1-MP: cost(R) = Ω(dα)+Ω(nd).

Proof. The bound Ω(dα) holds since we cannot get a better solution than the one of Max-MP with

the same set of requests. Since each message of size 1 induces a cost at least n+m− 2, by the

convexity of the cost function, we get a total cost of Ω(nd) for d of them.

To provide a complementary upper bound on the size of 1-MP routings, we do not analyze the

optimal scheme F1, but instead propose an approximation scheme called D1 routing, which turns

out to be easier to analyze.

We design the D1 routing through a discretization of the construction of C routing proposed

in the previous section for Max-MP. Similarly to equation (9), we will place limits on the size of

the transfer going through vertices. Consider the vertex diagonal DVp with 1 ≤ p ≤ n+m− 1,

and let i =
∣
∣DVp

∣
∣. Suppose that the vertices of DVp are ordered by decreasing first coordinate,

as DVp = {v1, . . . ,vi}. Then, for 1 ≤ j ≤ i, we successively set D1

(
v j

)
so that at each step, the

following condition holds: D1 (v1)+ . . .+D1

(
v j

)
= ⌊d · j

i
⌋. This is achieved by setting

D1

(
v j

)
=
⌊

d · j
i

⌋

−
⌊

d · j−1
i

⌋

. (11)

To verify the correctness of this construction, we deduce transfer values over vertical and horizontal

edges from values over vertices; a formal implementation of D1 routing is provided in Algorithm 7.

An exemplary comparison of the vertex and edge transfers for C routing and D1 routing is shown

in Fig. 30.

We start the analysis of the cost of D1 routing with the following lemma.

Lemma 4.3.2. Let DV be an arbitrary vertex diagonal, and let |DV|= i. Then

∑
v∈DV

D1 (v)
α =

{

i
((

d
i

)α
+O

((
d
i

)α−2
))

, for i < d

d, for i≥ d.

Proof. By equation (11) we get (substituting d′ = d mod i)

∑
v∈DV

D1 (v)
α =

i

∑
j=1

(⌊

d · j

i

⌋

−
⌊

d · j−1

i

⌋)α

=

⌊
d

i

⌋α

·
(
i−d′

)
+

(⌊
d

i

⌋

+1

)α

·d′.
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Algorithm 7 D1 routing scheme {for uniform 1-MP}
Input: A set of d unsplittable requests of size s = 1 in a m×n grid.

Solution: For each diagonal DE j of the grid, 1≤ j < n+m, set the flow on its successive horizontal

edges ei and vertical edges e′i, 1≤ i≤ j, as follows:

• If 1≤ j < n, set:

D1 (ei) =
⌊

d i
j

⌋

−
⌊

d i
j+1

⌋

and D1 (e
′
i) =

⌊

d i
j+1

⌋

−
⌊

d i−1
j

⌋

.

• If n≤ j < m, set

D1 (ei) =
⌊
d i

n

⌋
−
⌊
d i−1

n

⌋
and D1 (e

′
i) = 0.

• If m≤ j < n+m, set

D1 (ei) =
⌊

d i
n+m− j

⌋

−
⌊

d i−1
n+m− j−1

⌋

and D1 (e
′
i) =

⌊

d i
n+m− j−1

⌋

−
⌊

d i
n+m− j

⌋

.

Figure 30: Comparison of transfer values over one diagonal for a C routing with K = 14 (on the

left) and a D1 routing with d = 14 (on the right)

We consider two cases:

• (i < d) Substituting x = d
i
, λ = d

i
−
⌊

d
i

⌋
= d′

i
, we obtain

∑
v∈DV

D1 (v)
α = (x−λ )α (1−λ ) i+(x+1−λ )α λ i
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(using Taylor’s series theorem, for some x−λ ≤ u1 ≤ x≤ u2 ≤ x+1−λ )

=

(

xα −λαxα−1 +
λ 2

2
α (α−1)uα−2

1

)

(1−λ ) i+

+

(

xα +(1−λ )αxα−1 +
(1−λ )2

2
α (α−1)uα−2

2

)

λ i

(since u1 ≤ x and u2 ≤ x+1−λ ≤ 2x)

≤ ixα + iα (α−1)

(

λ 2

2
(1−λ )+

(1−λ )2

2
λ2α

)

xα−2

= i
(
xα +O

(
xα−2

))
= i

((
d

i

)α

+O

((
d

i

)α−2
))

.

• (i≥ d) The sum simplifies to

∑
v∈DV

D1 (v)
α = 0 · (i− (d mod i))+1 · (d mod i) = d.

Using the above lemma, we compute the cost of a D1 routing as cost(D1) = Θ(dα)+Θ(nd).
By Lemma 4.3.1, this cost is asymptotically the best possible for 1-MP.

Theorem 4.3.3. For a uniform set of d requests (with total size K = d):

cost(D1) = Θ(dα)+Θ(nd)

and

cost(F1) = Θ(dα)+Θ(nd) .

Proof. The lower bound follows from Lemma 4.3.1. We observe that cost(F1)≤ cost(D1). Now,

to provide an upper bound on cost of the D1 routing scheme, we will consider two cases:

• (d ≥ n) Then, using Lemma 4.3.2 and inequalities (7-8), we have

cost(D1) =
n+m−2

∑
i=1

∑
e∈DEi

D1 (e)
α =

m−1

∑
i=n

∑
e∈DEi

D1 (e)
α +2

n−1

∑
i=1

∑
e∈DEi

D1 (e)
α

≤ (m−n) ∑
v∈DVn

D1 (v)
α +2

n

∑
i=2

∑
v∈DVi

D1 (v)
α

= (m−n)n

((
d

n

)α

+O

((
d

n

)α−2
))

+2
n

∑
i=2

i

((
d

i

)α

+O

((
d

i

)α−2
))

.
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Moreover, we have

(m−n) ·n ·
(

d

n

)α

+2
n

∑
i=2

i

(
d

i

)α

= (m−n)
dα

nα−1
+2

n

∑
i=2

dα

iα−1

≤ (m−n)
dα

nα−1
+2

∫ n

1

dα

xα−1
dx

= dα ·
(

m−n

n

1

nα−2
+

2

(α−2)

(

1− 1

nα−2

))

= Θ(dα).

It follows that

cost(D1)≤Θ(dα)+(m−n)n ·O
((

d

n

)α−2
)

+O

(
n

∑
i=2

i

(
d

i

)α−2
)

= Θ(dα)+O
(
dα−2n4−α

)
+O

(
n ·max

(
dα−2,dα−2n3−α

))

= Θ(dα)+O
(
dα−2n4−α

)
+O

(
dα−2n

)
+O

(
dα−2n4−α

)
= Θ(dα) ,

where the last step holds since 1≤ n≤ d and α > 2.

• (d < n) In this case, we have:

cost(D1) =
n+m−2

∑
i=1

∑
e∈DEi

D1 (e)
α =

n+m−d+1

∑
i=d

∑
e∈DEi

D1 (e)
α +2

d−1

∑
i=1

∑
e∈DEi

D1 (e)
α ≤

≤ (n+m−2d +2)d +2
d

∑
i=2

∑
v∈DVi

D1 (v)
α = O(nd)+2

d

∑
i=2

i

((
d

i

)α

+O

((
d

i

)α−2
))

=

= O(nd)+Θ(dα)+O
(
d max

(
dα−2,d

))
= O(nd)+Θ(dα) .

4.3.2 k-splittable routing with uniform requests

We now extend the results of the previous section to the case of k-MP uniform routing. We will

consider uniform sets of d requests of total size K, i.e., of size K/d each. A natural generalization

of D1 routing, called Dk routing, is presented in Algorithm 8.

Since in a Dk routing, we split the transmission of each request equally along its k paths, the

cost of such a routing is the same as that of a D1 routing on the extended set of kd requests of size
K
kd

each. Hence, the following result follows directly from Theorem 4.3.3 by a scaling argument:

cost(Dk) =Θ(Kα)+Θ(Kα n

(kd)α−1 ). Next, we show that although Dk only splits requests into paths
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Algorithm 8 Dk routing scheme {for uniform k-MP}
Input: A set of d k-splittable requests, of size K/d each, in a m×n grid.

Solution: Split each of the requests into k smaller ones, each of size K
kd

. Return the D1 routing of

this new set of requests.

of equal weight, one cannot achieve a better asymptotic result by using unequal splits, i.e. for any

R ∈ uniform k-MP : cost(R) = Ω(Kα) +Ω(Kα n

(kd)α−1 ). Combining these results, we obtain the

following theorem, stating the optimality of Dk in the class of k-splittable routings.

Theorem 4.3.4. For a uniform set of d requests with total size K, cost(Dk)=Θ(Kα)+Θ

(

Kα n
(kd)α−1

)

,

cost(OPTk) = Θ(Kα)+Θ

(

Kα n
(kd)α−1

)

, where OPTk denotes the optimal cost solution of the con-

sidered set of requests for k-MP.

Proof. We have already established that for R ∈Max-MP, cost(R) is in Ω(Kα), which also holds

for k-MP. For the second part of the lower bound, we use the convexity of the cost function and

the fact that on any diagonal, the stream of the routing of the d requests can be split into at most

kd distinct paths, i.e.

∑
e∈DE

R(e)α ≥ (kd)

(
K

kd

)α

.

Thus

cost(R) =
n+m−2

∑
i=1

∑
e∈DEi

R(e)α ≥ (n+m−2)(kd)

(
K

kd

)α

= Ω

(

Kα n

(kd)α−1

)

.

Combining the bound on cost(OPTk) in the above Theorem with the bound on cost(OPT) in

Theorem 4.2.2 for Max-MP routing, we obtain our main result: the threshold value of k for which

imposing a limit of k into which each request can be split does not affect the asymptotics of power

cost.

Theorem 4.3.5. For uniform requests, imposing a routing policy with a split limit of k=Θ

(
1
d
·n 1

α−1

)

does not affect the power cost, i.e. cost(OPTk) = Θ(cost(OPT)), and 1
α−1

is the smallest possible

exponential.

Proof. To prove that Θ

(
1
d
·n 1

α−1

)

is enough, we set k = Ω( 1
d
· n 1

α−1 ) and by Theorem 4.3.4 we

obtain:

cost(OPTk) = Θ(Kα)+Θ

(

Kα n

(kd)α−1

)

= Θ(Kα)+o(Kα) = Θ(Kα) .

To prove that Θ

(
1
d
·n 1

α−1

)

is required, we observe that with k = o( 1
d
· n 1

α−1 ), the lower bound

on cost becomes:

cost(OPTk) = Ω(Kα)+Ω

(

Kα n

o(n)

)

= ω(Kα).
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We end this subsection with a remark on the asymptotic behavior of the considered routing

schemes for uniform instances, when k→+∞. Taking into account Theorems 4.2.2 and 4.3.4, we

obtain the following proposition.

Proposition 4.3.6. For a grid of fixed dimension: limk→+∞ cost(Dk) = cost(C).

Proof. Let us denote by C′ an assignment of transfer sizes to edges of G obtained by rounding up

the value of the transfer size in an C routing to the nearest integer multiple of 2K
kd

, i.e., for all edges

e, C′(e) = 2K
kd
⌈ kd

2K
OPT(e)⌉. By the properties of the rounding operation used in the design of Dk,

the assignment C′ dominates the cost of the Dk routing for the considered instance. Thus, we have,

cost(Dk)≤ cost(C′)≤ cost(C)+O

(

nm ·
(

K

kd

)α−1
)

.

Taking the limit when k→+∞, the claim follows.

Since in general, cost(C) > cost(OPT), it is natural to ask for a different routing scheme for

k-MP with improved limit behavior. A natural candidate is Fk routing, obtained by a natural

generalization of F1 routing, as given by Algorithm 9.

Algorithm 9 Fk routing scheme {for uniform k-MP}
Input: A set of d k-splittable requests, of size K/d each, in a m×n grid.

Solution: Split each of the requests into k smaller ones, each of size K
kd

. Return the F1 routing of

the new set of requests.

This algorithm turns out to by asymptotically optimal when k→+∞.

Proposition 4.3.7. For a grid of fixed dimension, limk→+∞ cost(Fk) = cost(OPT).

Proof. Let us denote by OPT
′ an assignment of transfer sizes to edges of G obtained by rounding

up the value of the transfer size in an OPT routing to the nearest integer multiple of K
kd

, i.e., for all

edges e, OPT
′(e) = K

kd
⌈ kd

K
OPT(e)⌉. By the properties of the min-cost flow used in the design of

Fk, the assignment OPT
′ dominates the cost of the Fk routing for the considered instance. Thus,

we have,

cost(Fk)≤ cost(OPT
′)≤ cost(OPT)+O

(

nm ·
(

K

kd

)α−1
)

.

Taking the limit when k→+∞, the claim follows.
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4.3.3 k-splittable routing with non-uniform requests

We close our considerations with a discussion of the general (non-uniform) case, where no as-

sumptions are made about the sizes of the routed requests. We first observe that the considered

problem is computationally hard.

Theorem 4.3.8. The following decision version of non-uniform 1-MP routing is (weakly-)NP-

complete: “Given (n,m,K = (K1, . . . ,Ki) ,C,α), decide if it is possible to perform 1-MP routing

with cost ≤C.”

Proof. The problem is obviously in NP, as one can easily calculate the cost of any solution in

polynomial time.

The proof proceeds by reduction from PARTITION PROBLEM [33]: “Given a set I of integers,

decide if it is possible to partition I into subsets I1 and I2 such that ∑ I1 = ∑ I2.”

For such an instance, we select the instance of 1-MP routing as follows: n = 2, m = 2, K = I

and C = 4
(

1
2 ∑s∈I s

)α
.

Observe that by identifying the sets of requests routed along the 2 different paths of the grid

with I1 and I2, we have:

cost(I1, I2) = 2

(

∑
s∈I1

s

)α

+2

(

∑
s∈I2

s

)α

≥ 4

(

1

2
∑
s∈I

s

)α

=C

and equality in the bound is achieved only if ∑s∈I1
s = ∑s∈I2

s.

Despite the hardness of the considered problem, one can try to look for approximate solutions.

Note that applying Dk routing naively to a set of non-uniform requests could lead to excessive

additional cost. However, by applying a careful modification of Dk routing, called the Ak routing

scheme (Algorithm 10), we obtain a good tool for routing non-uniform requests on the grid.

For example, in the case of unsplittable requests (1-MP) of sizes {1, . . . ,1
︸ ︷︷ ︸

t

,ε, . . . ,ε
︸ ︷︷ ︸

n·t

}, D1 treats

each request equally, and so it could lead to grouping all t large requests into one path, giving:

cost = Θ(n · tα)

while the following cost is achievable by routing t requests of size 1+n · ε ≈ 1:

cost = Θ(n · t + tα)

However, the Algorithm 10 gives an approximate solution for non-uniform k-MP routing.

Theorem 4.3.9. For non-uniform requests, Ak finds a solution to k-MP whose cost is within a

constant factor of the optimum k-splittable routing: cost(Ak)≤
(
24α−2

)
· cost(OPTk).

Proof. It is enough to prove that for each edge diagonal DE, the cost induced by Ak on this diagonal

is bounded by a constant with relation to the possible cost of the optimal solution OPTk ∈ k-MP on

this diagonal.
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Algorithm 10 Ak routing scheme {for non-uniform k-MP}
Input: A set of d k-splittable requests, of given sizes S = (s1,s2, . . . ,sd) (with 1 = s1 ≤ s2 ≤ . . .≤
sd), in a m×n grid.

Solution:

1. Partition the set of request sizes into the union of disjoint subsets, S = S0∪S1∪ . . ., such that

∀s∈Si
2i ≤ s < 2i+1.

2. For all non-empty sets Si:

• Find a Dk routing for the uniform instance consisting of |Si| requests of size 2i+1 each.

• For all 1≤ j≤ |Si|, route the j-th input request belonging to Si using the paths assigned

to the j-th request in the corresponding Dk routing.

We keep the notation ci = |Si|, and recall that DV denotes the vertex diagonal adjacent to DE. Also,

let p = |DV |, and let D[Si] refer to the discrete D1 routing scheme applied inside Si. We have

cost(DE,Ak) = ∑
e∈DE

Ak (e)
α ≤ ∑

v∈DV

Ak (v)
α

(taking into account that for s ∈ Si we have s < 2 ·2i)

≤ ∑
v∈DV

(

∑
i

D[ci] (v) ·
2 ·2i

k

)α

= 2α ∑
v∈DV

(

∑
i : ci·k≤p

(

D[ci] (v) ·
2i

k

)

+ ∑
i : ci·k>p

(

D[ci] (v) ·
2i

k

))α

(taking into account that ∀a,b≥0 (a+b)α ≤ 2α−1 (aα +bα))

≤ 22α−1 ∑
v∈DV

((

∑
i : ci·k≤p

D[ci] (v) ·
2i

k

)α

+

(

∑
i : ci·k>p

D[ci] (v) ·
2i

k

)α)

.

Observe that D[ci](v)≤ ⌈ ci·k
p
⌉.

Consequently, for ci · k ≤ p, we have D[ci](v) ∈ {0,1}, and since 2d +2d−1 + . . . < 2 ·2d:

∑
v∈DV

(

∑
i : ci·k≤p

D[ci] (v) ·
2i

k

)α

≤ ∑
v∈DV

(

2 · max
i : cik≤p

{

D[ci] (v) ·
2i

k

})α

≤ 2α ∑
v∈DV

∑
i : ci·k≤p

(

D[ci] (v) ·
2i

k

)α

= 2α ∑
i : ci·k≤p

k · ci

(
2i

k

)α

For cik > p, we have D[ci](v)≤ ⌈ ci·k
p
⌉ ≤ 2 cik

p
:

∑
v∈DV

(

∑
i : ci·k>p

D[ci] (v) ·
2i

k

)α

≤ ∑
v∈DV

(

∑
i : cik>p

2 · ci · k
p
· 2

i

k

)α

= 2α ·
(

1

p
∑

i : cik>p

ci ·2i

)α

· p.
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Adding the two sums, we can write in general:

cost(DE,Ak)≤ 23α−1 ·
(

∑
i : cik≤p

ci

(
2i

k

)α

+ p ·
(

1

p
∑

i : cik>p

ci ·2i

)α)

Now we proceed to bound the cost induced on diagonal DE by OPTk routing. By OPTk[Si], we

will denote OPTk restricted to requests from Si, and by OPTk[s] we will understand OPTk restricted

to request s. We have

cost(DE,OPTk) = ∑
e∈DE

OPTk (e)
α ≥ 1

2α−1 ∑
v∈DV

OPTk (v)
α

=
1

2α−1 ∑
v∈DV

(

∑
i : cik≤p

OPTk[Si] (v)+ ∑
i : cik>p

OPTk[Si] (v)

)α

≥ 1

2α−1 ∑
v∈DV

((

∑
i : cik≤p

OPTk[Si] (v)

)α

+

(

∑
i : cik>p

OPTk[Si] (v)

)α)

.

We put bounds on both parts of sum:

∑
v∈DV

(

∑
i : cik≤p

OPTk[Si] (v)

)α

= ∑
v∈DV

(

∑
i : cik≤p

∑
s∈Si

OPTk[s] (v)

)α

≥ ∑
i : cik≤p

∑
s∈Si

∑
v∈DV

OPTk[s] (v)
α

(observing that ∑v∈DV OPTk[s](v) = s, and s can be split into at most k parts)

≥ ∑
i : cik≤p

∑
s∈Si

k ·
( s

k

)α
≥ ∑

i : cik≤p

cik

(
2i

k

)α

In the second part, we obtain:

∑
v∈DV

(

∑
i : cik>p

OPTk[Si] (v)

)α

≥ p ·
(

1

p
∑

v∈DV
∑

i : cik>p

OPTk[Si] (v)

)α

=

= p ·
(

1

p
∑

i : cik>p

∑
s∈Si

s

)α

≥ p ·
(

1

p
∑

i : cik>p

ci ·2i

)α

.

Merging both results, we get

cost(DE,OPTk)≥
1

2α−1

(

∑
i : cik≤p

cik

(
2i

k

)α

+ p ·
(

1

p
∑

i : cik>p

ci ·2i

)α)

.

Combining the lower-bound on the cost of OPTk and the upper bound on the cost of Ak, we finally

obtain

cost(DE,Ak)≤ 24α−2cost(DE,OPTk),

which proves that Ak is a (24α−2)-approximation algorithm for non-uniform k-MP.
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We end this section with a similar threshold theorem as Theorem 4.3.5 for the uniform case,

obtaining bounds on value of k for which a split limit of k does not affects the asymptotics of the

routing cost. However, in this case, the threshold depends on the structure of the set of requests,

hence we only provide lower and upper bounds.

Theorem 4.3.10. For non-uniform requests, imposing a routing policy with a split limit of k

1. always increases the asymptotic power cost (i.e. cost(OPTk)=ω (cost(OPT))) if k= o
(

1
d
·n 1

α−1

)

.

2. does not affect the asymptotic power cost (i.e. cost(OPTk) = Θ(cost(OPT))) as long as

k = Ω

(

n
1

α−1

)

,

Proof.

1. The optimal-cost routing for a set of d requests of total size K, each of which can be split

into k paths, cannot be better than the optimal-cost routing on a single request of size K,

which can be split into kd parts. The latter routing problem belongs to uniform (k ·d)-MP

and so, using Theorem 4.3.4, we can write

cost(OPTk) = Ω

(

Kα +Kα n

(kd)α−1

)

= Ω

(

Kα +Kα n

o(n)

)

= ω (Kα) = ω (cost(OPT)) .

2. Only the upper bound needs to be shown. Observe that the cost of an optimal k-MP routing

cannot decrease if we replace a pair of requests of size s1,s2 by a single request of size s1+s2.

By iterating the argument, we can upper-bound the value of OPTk for a given instance of d

requests of total size K by the value of OPTk for an instance consisting of a single request of

size K. Once again, the claim follows by an application of Theorem 4.3.4.

4.4 Experimental results

In this section we provide the results of experimental evaluation of the algorithms presented in the

previous section. We analyze the effect of n,k and α on the efficiency of solutions found for k-MP

routing of instances with uniform (identical-size) requests. Throughout the section, we choose the

number of requests as d = 1 (for uniform instances, other values result only in a scaling factor for

k in k-MP, and do not affect Max-MP).

We focus on the approximation ratio, looking at the cost of the routing obtained using the two

schemes designed for uniform k-MP (Dk, Fk), relative to the cost of the optimal solution OPT to

Max-MP, which is treated as the reference solution. In some graphs, we also provide the cost of

the sub-optimal Max-MP routing C as an additional reference.

We recall that the cost of the optimal solution to Max-MP, cost(OPTk), is bounded from below

by cost(OPT), and from above by both cost(Dk) and cost(Fk).

101



 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 10  20  30  40  50  60  70  80  90  100

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

k

C
Fk
Dk

Figure 31: Effect of k on the cost of Fk and Dk routing for a 30×30 grid.

The implementation and tests were implemented in GNU C++. The min-cost flow subrou-

tines were implemented using the standard cycle-canceling method [36].The results of the tests

are deterministic and fully reproducible, independent of the test environment and the details of the

implementation of the flow algorithms.

4.4.1 Impact of k on the routing cost.

We start by studying the approximation ratio of algorithms Fk and Dk for increasing values of k,

the allowed number of splits of each requests. In the first plot (Fig. 31), we fix the dimensions of

the grid n,m = 30, model power cost exponent α = 2.5, plotting the values of cost(Fk)/cost(OPT)
and cost(Dk)/cost(OPT) for k in the range k ∈ [10,100]. For reference, we also provide the ap-

proximation ratio of C routing for the studied instance.

We observe that, as predicted by theory (Theorems 4.3.6 and 4.3.7), limk→+∞ cost(Fk) =
cost(OPT) and limk→+∞ cost(Dk) = cost(C), and the respective costs converge to their limits

quickly, reaching a point 10% over the respective limit already for k < n. In general, the con-

vergence need not be monotone for either of the approximation algorithms, since partitioning a

request into k+1 equally-weighted paths may give worse results than partitioning it into k equally-

weighted paths.

In our second plot (Fig. 32), we present more compelling evidence of the relation k=Θ

(

n1/(α−1)
)

for the threshold split value resulting in asymptotically-optimal cost, derived theoretically as Theo-

rem 4.3.5. Once again, we choose model parameter α = 2.5. In the experiment, we consider square

grids of increasing size in the range n = m ∈ [10,120], testing three different relations between n

and k (k =
⌊

2n1/2
⌋

, k =
⌊

3
2
n2/3

⌋

, k = n). For each of these relations, we plot the approximation

ratios cost(Fk)/cost(OPT) and cost(Dk)/cost(OPT). Based on the plot, we can presume that:
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Figure 32: Approximation ratio for Fk and Dk routing schemes in a n×n grid. We considered split

parameter k ∼ nβ , for β greater, equal and smaller than 1/(α−1), [α = 2.5].
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• For the relation k ∼ n1/2, we have asymptotically:

cost(Fk)/cost(OPT)→+∞, cost(Dk)/cost(OPT)→+∞.

• For the relation k ∼ n2/3, we have asymptotically:

cost(Fk)/cost(OPT)→ const, cost(Dk)/cost(OPT)→ const.

• For the relation k ∼ n, we have asymptotically:

cost(Fk)/cost(OPT)→ 1, cost(Dk)/cost(OPT)→ const.

We remark that the relation k ∼ n2/3 precisely corresponds to the threshold exponent 1/(α−1) =
2/3 for the considered value of α . Thus, the limit behavior of all the algorithms is consistent with

the theory derived in the previous section. We note that the cost achieved by both Fk routing and

Dk routing is highly satisfactory, and that the performance of Fk routing shows to be better than of

Dk in all of performed tests.

4.4.2 Effect of power exponent α .

In auxiliary experiments, we studied the effect of the power exponent α (which is a constant of

the model) on the required threshold value of split parameter k. We tested the rate of convergence

of the approximation ratio cost(Fk)/cost(OPT) to 1 in a grid of dimensions n = m = 30 for three

different values of the power exponent, α ∈ {2.5,3,3.5}. It was observed that the convergence is

faster for larger values of α . This is consistent with the theoretical threshold, k = Θ

(

n1/(α−1)
)

,

whose growth rate decreases with the increase of α . (Results are depicted in Figure 33.)

4.5 Conclusion

The contribution of our study is twofold. On the one hand, we advance the theory of splitting of

requests in Manhattan routing on the grid, and point out that in practice, only a relatively small

number of splits per request will be beneficial from a power-cost perspective. On the other hand,

we propose efficient approximation schemes for such a k-path routing problem. Experimental

evidence corroborates the theoretical results, showing that the designed algorithms lead to routings

with a cost which is, in practice, even superior to that resulting from our theoretical bounds.

In future work, it would be beneficial to improve the constant bounds on the approximation

ratios of our algorithms, establishing more tightly their dependence on the power exponent α .

Another promising direction of study would consist in extending the model to be more general.

We have put several limitations on grid topology, requests, routing policies and cost function, in

order to simplify the problem. However, lifting or weakening some of the restrictions would make

the model more realistic. One of possible ways of extending is allowing routing requests between

multiple sources and targets on the grid. In such a study, we could try to repeat the framework
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Figure 33: Effect of α on cost(Fk)/cost(OPT), working on a 30×30 grid.

used here, that is, start with continuous solutions and try a discretization. Starting point could

be multi-commodity flows, or convex programming formulation. Another way of extending the

model is by taking in consideration more general network topologies. The techniques used here

could be translated into planar graphs.
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Conclusion

Summary of the Results

In this work we present results concerning various topics.

In Chapter 1, we discuss bandwidth measurements between hosts over the Internet. First, we

present point-to-point measurements. Such measurements are available in the form of datasets.

We provide our dataset, named bedibe, together with measurement methodology that was

used to obtain it. The platform used was PlanetLab, together with SPLAY middleware used

to deploy Lua code.

We also present a new kind of dataset, a bandwidth sharing dataset. We discuss why is it

enough to collect data in the form of one-to-two experimental setting. This dataset was also

obtained using PlanetLab and SPLAY.

Our bandwidth sharing dataset shows very high variability, when looking at the repeated

measures over the same configuration of nodes, of individual values over the edges. This

variability is greatly reduced when looking at the sum of bandwidth achieved to both receiv-

ing nodes. We conjecture that this is due to the fact that the output bandwidth of the sending

node is the limiting factor in those scenarios.

Chapter 2 introduces the notion of Network Prediction Systems. We describe various existing

algorithms used for latency and bandwidth predictions. We show that DMF algorithm, based

on matrix factorization, can be successfully adapted from predicting latencies to bandwidth

predictions. We also describe LastMile model, together with several algorithms to instantiate

this model, varying in form of complexity.

We also provide in this chapter an evaluation of these prediction algorithms using two

datasets, S3 (obtained by HP project on PlanetLab) and bedibe. We analyze the differences

between the performance of the algorithms (in general DMF outperforms other algorithms),

and also we analyze the differences between these datasets (S3 proved easier to predict).

We also discuss the topic of predicting bandwidth in a scenario with congestion. We show

that the LastMile model naturally extends its usability to such scenarios. We also provide

validation of such predictions using one-to-two datasets described above.

Another contribution presented in this chapter is bedibe, a software created to automatize

prototyping, testing and evaluation of various prediction algorithms. This software package,

in the form of Python libraries, was extensively used when preparing this work.
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In Chapter 3, we describe algorithms for the construction of efficient broadcast overlay networks.

We consider the setting under LastMile model, where each node has strict incoming and out-

going connection capabilities. This broadcast problem is time-independent, i.e. we consider

steady-state solutions. While incoming limits can be trivially discarded from the model, we

name the outgoing capabilities of node i by bi. We also put restriction, that out-degree of

each node di is limited by
⌈

bi

T

⌉

, where T is the achieved throughput. Such a limitation of the

out-degree is justified by assuring that on average the outgoing edges of each node are close

to T .

We show, that under such constraints, it is in general NP-Complete to decide if a given

instance is feasible for given value of T . If we consider the problem of finding maximal

possible T , our results are as follow. On the one hand, by dropping either degree constraints

we can give simple expression for maximal possible T without those constraints, thus putting

upper limit on the value of solution to the original problem. On the other hand, by restricting

solutions to be represented by acyclic graph, we reduce original problem to one solvable by

polynomial time algorithms, if we allow resource augmentation, that is di ≤
⌈

bi

T

⌉

+O(1).

Such a solution is in a constant ratio from our upper bound (factor of 2), thus giving us a

provable constant ratio approximation algorithm under degree augmentation.

We also consider the original problem with an extended model, by introducing a classifica-

tion of nodes into open and behind firewalls. The nodes behind firewalls are prohibited to

communicate between each other, and can only communicate with open ones, which are un-

der no restriction whatsoever. We repeat the same reasoning, providing on the one hand sim-

ple upper bound by analyzing unrestricted communication, and on the other hand a greedy

algorithm for finding best acyclic solution. We end the chapter with a lengthy proof of a

upper bound on ratio between both of them equal to 7
5
, thus proving that the greedy acyclic

algorithm provides a constant approximation ratio to the original problem when considering

firewalls.

Chapter 4 considers the problem of finding optimal routing strategies in a platform corresponding

to a grid graph, with costs being power-usage aware (in the sense of integrated circuits scale).

Thus, we assume that power usage on each edge is proportional to f α (for α ≈ 3), where f

is the data transmission rate. Such assumption is justified by physical model of power usage

and data transmission.

We are able to show, that in such a model, when considering simple model of routing con-

nections between two endpoints only, and considering only Manhattan Paths, one can solve

the underlying combinatorial problem, and achieve simple and elegant solutions when con-

sidering just one highly splittable request. We were able to reduce problem of unsplittable

requests to solved problem of routing one splittable request, thus getting similar combinato-

rial schemes for routing. For the problem of routing several different requests, we provide

an approximation algorithm.
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Concluding Remarks

Based on our findings, we conclude that LastMile is a proper model to be used for construction of

bandwidth-aware algorithms. The experimental evaluation done in Chapter 2 shows that LastMile

performs worse than Matrix Factorization based algorithms, when we compare prediction ability

for point-to-point scenarios. However, by sacrificing strength of prediction, we can gain a model

with an intuitive interpretation of parameters, that can be easily instantiated. and that is much

better suited for algorithmic design.

Experimental data described in Chapter 1 exhibit high variability (in point-to-point case), and

prove it impossible to predict the bandwidth sharing scenario. Still, we can derive prediction

models from LastMile able to predict with ratio similar to variability of original data, the value of

total bandwidth used by the sender.

We believe that this is advantageous, as it makes algorithmic analysis as presented in Chapter 3

possible. The model coupled with a method of instantiation of its parameters leads us to an algo-

rithm for constructing an efficient broadcast overlay network. This overlay does not specify which

chunk of data to be transferred when, and gives us only information on usage of edges between any

two given nodes of the network. We resolve the issue by using Massoulié’s distributed algorithms

([47]), which by a simple randomized algorithm achieves optimal broadcast throughput.

We believe that this framework, where we start with proposing a model, then we design al-

gorithms to instantiate a parameters of the model, use them to construct efficient overlay broad-

cast network, and finally apply distributed broadcast algorithm to achieve optimal broadcast rate,

proves to be an important contribution in creation of bandwidth-aware solutions deployable over

the Internet.

Future works

There are many topics left for future work.

Our datasets described in the Chapter 1 are relatively small. We feel that it would be very

valuable to obtain larger ones. It might be hard to use highly limited platform as PlanetLab and

still use brute-force method of measures. We consider two possible routes, either usage of different

measure methodology, or moving to a different platform. The former solution, while still feasi-

ble when obtaining point-to-point measures (in fact S3 dataset was obtained this way), may prove

impossible when performing one-to-many measures. The latter one may prove a huge organiza-

tional problem, as the machines used in the platform should be spread across the globe to provide

insightful measures over the Internet.

Chapter 2 leaves open question of designing improved version of LastMile prediction algo-

rithm. We hope that the model we presented (2-level LastMile) or other models (one can think

for example of trying to merge LastMile with a multi-level structures) can be proven to be easily

instantiable and provide significantly better predictions than those based on basic LastMile model.

We encountered similar problem in the Chapter 3, in the sense of finding extension to the

LastMile model. We would hope to develop further algorithmic approach derived there. We hope

that either another extension to the LastMile model can be made (similar to the firewalls one), or
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a stronger model can be analyzed algorithmically. Our various attempts to solve similar problems

to the ones considered in this chapter, but for a more general problem of trees (instead of star-like

topology) proved unsuccessful: analogous approach of considering acyclic solutions does not lead

to problems being easily solvable in polynomial time.

The model described in Chapter 4 is simplistic, as it allows only a very limited cost function,

limited routing policies, and considers only one pair of endpoints for requests. However there are

plenty of possible routes to improve it. One can either try to solve similar problems, but for a

more general class of graphs, for example planar graphs instead of grids. We believe this can be

achieved using the same ”analyze partial sums on diagonals” approach. A different approach would

be to consider more general cost functions, for example with the incorporation of constant factors,

or with weights varying between different edges. This seems necessary if we want the model

and solutions derived here to better reflect real-life behaviors, furthermore the solution proposed

considers pairs of endpoints as isolated and not interfering. This seems restrictive, and we hope to

be able to derive solutions that can handle multiple arbitrary communications.
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