
HAL Id: tel-00960990
https://theses.hal.science/tel-00960990v1

Submitted on 19 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards higher speed decoding of convolutional
turbocodes

Oscar David Sanchez Gonzalez

To cite this version:
Oscar David Sanchez Gonzalez. Towards higher speed decoding of convolutional turbocodes. Elec-
tronics. Télécom Bretagne, Université de Bretagne-Sud, 2013. English. �NNT : �. �tel-00960990�

https://theses.hal.science/tel-00960990v1
https://hal.archives-ouvertes.fr

No d’ordre : 2013telb0270

Sous le sceau de l’Université européenne de BretagneSous le sceau de l’Université européenne de Bretagne

Télécom Bretagne

En habilitation conjointe avec l’Université de Bretagne-Sud

École Doctorale – SICMA

La montée en débit dans les architectures de turbo-décodage de
codes convolutifs

Thèse de Doctorat

Mention : « STIC (Science et technologies de l’information et de la communication) »

Présentée par Oscar David Sánchez González

Département : Electronique

Laboratoire : Lab – STICC Pôle : CACS

Directeur de thèse : Michel Jézéquel

Co-directeur de thèse : Christophe Jégo

Soutenue le 15 Mars 2013

Jury :

M. Guy Gogniat, Professeur des Universités, Lab-STICC, UBS (Président / Examinateur)

M. Pierre Pénard, Ingénieur, Orange Labs (Examinateur)

M. Bertrand Granado, Professeur des Universités, LIP6, UPMC (Rapporteur)

M. Daniel Chillet, Maître de conférence HDR, CAIRN, ENSSAT (Rapporteur)

M. Michel Jézéquel, Professeur Institut Télécom, Télécom Bretagne (Directeur de thèse)

M. Christophe Jégo, Professeur des Universités, IMS, IPB (Co-directeur de thèse)

2

DEDICATION

A mis profesores de física y química del colegio. Todo ha sido posible gracias a ellos.

i

ii

ACKNOWLEDGEMENTS

Je tiens à exprimer ici toute ma reconnaissance aux personnes qui m’ont aidé, en-
couragé et soutenu tout au long de mon travail de thèse.

Je remercie tout d’abord Guy Gogniat, professeur à L’UBS pour m’avoir fait l’honneur
de présider le jury de cette thèse, et Pierre Pénard, ingénieur à Orange labs, pour avoir
accepté d’examiner ces travaux de recherche.

J’adresse également mes remerciements à Bertrand Granado, professeur à l’UPMC-
LIP6, et à Daniel Chillet, Maître de conférence à l’ENSSAT, qui ont accepté d’être
rapporteurs de ces travaux de thèse.

J’ai aussi eu la chance et le plaisir d’avoir Michel Jézéquel, directeur d’études à
Telecom Bretagne, comme directeur de thèse : je lui suis reconnaissant pour son accueil
au sein du Département Electronique, son écoute et son soutien tout au long de mes
travaux de thèse. Les nombreux échanges que nous avons eu tout au long de ce travail
m’ont beaucoup apporté et motivé.

Je tiens à remercier également Christophe Jégo, co-directeur de thèse et professeur
à L’IMS-IPB, pour son soutien permanent au cours de mes travaux de recherche, et
sa disponibilité toujours exceptionnelle malgré une période de travail à distance. Il m’a
permis de trouver la bonne direction dans mes activités de recherche. Son implication
et son enthousiasme ont été une grande source de motivation.

Je voudrais aussi remercier Yannik Saouter, chercheur associé à Telecom Bretagne,
pour les échanges très intéressants que nous avons eu concernant les architectures de
décodage de radix élévé.

Je remercie tous les membres du département Electronique pour leur accueil chaleureux
et leur convivialité lors de différents moment partagés au bâtiment K2.

Je tiens à saluer les doctorants du département que j’ai eu le plaisir de rencontrer
durant cette thèse : Daoud, Roa, Atif, Purush, Salim, Haifa, Ammar, Ronald, Daniel,
Quang, Rasheed, Vincent, Ali, Tristan, Meng et Nicolas.

Quiero igualmente agradecer a todos mis amigos por hacer de mi paso por Brest
una experiencia agradable y muy divertida: Jorge, Victoria, July Paola, Juan David,
Santiago, Juan Pablo, Patricia, Luiz, Soraya, Isabel, Elisa, Roa, Pedro, Yenny, Daniel,
Ronald, Javier, Kedar, Vinicius, Omar, Fabian, Manuel. Gracias por todo!

Un agradecimiento muy especial a Hélène por su comprensión, apoyo y ayuda durante
estos ya tres años.

Finalmente quiero agradecer toda a mi familia. Gracias a Myriam y Fernando por el
buen ejemplo y apoyo. Muchas gracias a Andrés por los consejos y motivación en los
momentos más oportunos.

iii

iv

ABSTRACT
La montée en débit dans les architectures de turbo-décodage de codes

convolutifs

Oscar David Sánchez González
Department Electronique, Telecom - Bretagne

15 Mars 2013

The turbo codes are a well known channel coding technique widely used because of
their outstanding error decoding performance close to the Shannon limit. These codes
were proposed using a clever pragmatic approach where a set of concepts that had been
previously introduced, together with the iterative processing of data, are successfully
combined to obtain close to optimal decoding performance capabilities. However, pre-
cisely because this iterative processing, high latency values appear and the achievable
decoder throughput is limited.

At the beginning of our research activities, the fastest turbo decoder architecture
introduced in the literature achieved a throughput peak value around 700 Mbit/s. There
were also several works that proposed architectures capable of achieving throughput val-
ues around 100 Mbit/s. Research opportunities were then available in order to establish
architectural solutions that enable the decoding at a few Gbit/s, so that the industrial
requirements are fulfilled and future high performance digital communication systems
can be conceived.

The first part of this work is devoted to the study of the turbo codes at an algo-
rithmic level. Several SISO decoder algorithms are explored, and different parallel turbo
decoder techniques are analyzed. The convergence of parallel turbo decoder is specially
considered. To this end the EXtrinsic Information Transfer (EXIT) charts are used.
Conclusions derived from these kind of diagrams have served to propose a novel SISO
decoder schedule to be used in shuffled turbo decoder architectures.

The architectural issues when implementing high parallel turbo decoder are consid-
ered in the second part of this thesis. We propose a high throughput low complexity
radix-16 SISO decoder. This decoder is intended to break the bottleneck that appears
because of the recursive operations in the heart of the turbo decoding algorithm. The
design of this architecture was possible thanks to the elimination of parallel paths in
a radix-16 trellis diagram transition. The proposed SISO decoder implements a high
speed radix-8 Add Compare Select (ACS) unit which exhibits a lower hardware com-
plexity and lower critical path compared with a radix-16 ACS unit. Our radix-16 SISO
decoder degrades the turbo decoder error correcting performance. Therefore, we have
proposed two techniques so that the architecture can be used in practical applications.
Thus, architectural solutions to build high parallel turbo decoder architectures, which
integrate our SISO decoder, are presented. Finally, a methodology to efficiently explore
the design space of parallel turbo decoder architectures is described. The main objective
of this approach is to reduce the time to market constraint by designing turbo decoder
architectures for a given throughput.

v

vi

RÉSUMÉ
La montée en débit dans les architectures de turbo-décodage de codes

convolutifs

Oscar David Sánchez González
Département Electronique, Telecom - Bretagne

15 Mars 2013

Les turbocodes sont des codes correcteurs d’erreurs qui présentent des performances
remarquables, proches de la limite théorique de Shannon. Ils utilisent un décodage
itératif qui permet d’avoir une complexité matérielle limitée. Cependant, à cause de ce
traitement itératif le débit de décodage est fortement réduit.

Au début de nos activités de recherche l’architecture la plus rapide de turbo-décodage
dans la littérature atteignait un débit autour de 700 Mbit/s. Plusieurs autres travaux
proposaient des architectures capables d’atteindre des débits d’environ 100 Mbit/s. Des
travaux de recherche devaient donc se faire pour concevoir des architectures qui per-
mettaient le décodage à plusieurs Gbit/s. Ainsi, les besoins de l’industrie peuvent être
atteints et des systèmes de communication de haute performance peuvent être conçus
dans le futur.

La première partie de cette thèse étudie les turbocodes à partir d’un point de vue
algorithmique. Plusieurs algorithmes pour les décodeurs SISO sont explorés, ainsi que les
techniques de parallélisme de turbo-décodage. L’analyse de la convergence des turbo-
décodeurs parallèles est effectuée, et un nouvel ordonnancement pour turbo-décodeurs
shuffled est présenté. Pour ce faire, les diagrammes d’EXIT (EXtrinsic Information Trans-
fer) sont utilisés. Leur emploi nous a permis de concevoir un nouvel ordonnancement
pour turbo-décodeurs shuffled.

Dans la seconde partie de la thèse nous considérons les problèmes architecturaux
qui apparaissent lors de la mise en oeuvre de turbo-décodeurs. Ainsi, un décodeur
SISO radix-16 est conçu pour briser le goulot d’étranglement de l’algorithme de turbo-
décodage. C’est un décodeur SISO de faible complexité qui est utilisé comme le principal
bloc de calcul d’une architecture turbo-décodage hautement parallèle. Ce décodeur SISO
est basé sur l’élimination des chemins parallèles dans le diagramme d’un treillis radix-16.
Pour maîtriser la complexité il utilise une unité ACS (Add Compare Select) radix-8, ce qui
nous permet aussi de réduire le chemin critique. Deux techniques complémentaires sont
introduites afin de surmonter la dégradation qui apparaît lorsque des turbo-décodeurs
basés sur le décodeur SISO proposé sont considérées. Nous proposons également des
solutions architecturales pour concevoir des turbo-décodeurs hautement parallèles radix-
16. Enfin, nous présentons une méthodologie pour explorer efficacement l’espace de
conception des différentes architectures de turbo-décodage. Le but principal est de
réduire le temps de conception de manière à pouvoir estimer le débit qui peut être
attendu dès le début du processus de conception.

vii

viii

Contents

List of Figures xiii

List of Tables xvii

Introduction 1

1 Context of Channel Coding 7

1.1 Channel Coding generalities . 8
1.1.1 Introduction . 8
1.1.2 Channel Model . 8
1.1.3 Channel Decoding Process . 10
1.1.4 Channel Code Performance . 10
1.1.5 Soft Decoding . 12
1.1.6 Block Codes . 13

1.2 Convolutional Codes . 14
1.2.1 Definition . 14
1.2.2 Polynomial Representation . 16
1.2.3 Trellis Diagram Representation 19
1.2.4 Puncturing . 20
1.2.5 Convolutional Code Termination 21

1.3 Decoding of Convolutional Codes . 23
1.3.1 Viterbi Based Decoding . 26
1.3.2 MAP Based Decoding . 33

1.4 Convolutional Turbo Codes . 43
1.4.1 Overview . 43
1.4.2 Turbo Encoding . 43
1.4.3 Turbo Decoding . 45

ix

x CONTENTS

1.5 Conclusion . 48

2 Parallel Processing Exploration for Turbo Decoding 51

2.1 Context . 52
2.1.1 The Interest of Parallelism in the Turbo Decoding Process 52
2.1.2 Parallel Architecture Evaluation 53

2.2 Parallel Processing in Turbo Decoding 56
2.2.1 Parallelism at the Turbo Decoder Level 57
2.2.2 Parallelism at the SISO Decoder Level 57
2.2.3 Parallelism at the Metric Level 63
2.2.4 Gathering Parallel Turbo Decoding Techniques 68

2.3 Convergence of Parallel Turbo Decoders 70
2.3.1 The EXIT Charts . 70
2.3.2 EXIT Chart Diagram Extension 71
2.3.3 EXIT Chart Based Analysis . 75

2.4 Exploring SOVA Based Turbo Decoders 79
2.4.1 Overview . 79
2.4.2 Improving the SOVA Based Turbo Decoder Performance 82

2.5 Conclusion . 86

3 High Throughput SISO Decoder Architectures 89

3.1 Overview . 90
3.2 Radix-2 SISO Decoder Architecture . 92

3.2.1 Branch Metric Unit . 92
3.2.2 Add Compare Select Unit . 93
3.2.3 Soft Output Unit . 95
3.2.4 Implementation Results for the Radix-2 SISO Decoder 96

3.3 Exploration of High Radix SISO Decoders 96
3.3.1 High Radix BMU and SOU . 97
3.3.2 High Radix ACS Units . 98

3.4 High Radix Architectures Complexity Reduction 102
3.4.1 Low Complexity Radix-16 SISO Decoder 102
3.4.2 Low Hardware Complexity Radix-16 SISO Decoder Performance . 107
3.4.3 Implementation Results . 112

3.5 Conclusion . 113

4 High Throughput Turbo Decoder Architectures 115

4.1 Generic Parallel Turbo Decoder Architecture 116
4.2 Memory Access Conflicts . 117

CONTENTS xi

4.2.1 Conflict-Free Interleavers . 118
4.2.2 Memory Organization for Conflict-Free Interleavers 121
4.2.3 Shuffled Turbo Decoders Memory Conflict Problems 126

4.3 LTE High Throughput Turbo Decoder Architecture 128
4.3.1 SISO Decoder Architecture . 128
4.3.2 Extrinsic Information Memory Access 129
4.3.3 FPGA Prototyping of the Turbo Decoder 131

4.4 Turbo Decoder Design Space Exploration 133
4.4.1 Turbo Decoder Architecture Model 135
4.4.2 A Dedicated Approach to Explore the Design Space 136
4.4.3 Case study: Turbo Decoder for LTE Standard 138

4.5 Conclusion . 141

5 Conclusion and Perspectives 143

Bibliography 149

List of Publications 165

*

xii

List of Figures

1.1 Elements of a classical digital communication system. 9
1.2 BER typical curves for a coded and uncoded system. 11
1.3 General convolutional encoder architecture. 15
1.4 Non recursive convolutional encoder (3,1,2) with generator polynomials

(13,15). 17
1.5 Example of a Recursive Systematic Convolutional (RSC) encoder. 18
1.6 Trellis diagram of a RSC code. 19
1.7 Puncturing pattern example . 20
1.8 Architecture used to force the encoder state to the all zero state. 22
1.9 Convolutional code trellis diagram. 23
1.10 RSC SISO decoder black box diagram. 26
1.11 The VA operation. 27
1.12 SOVA soft values update process. 29
1.13 SOVA soft values update process for double binary codes. 31
1.14 SOVA operations. 32
1.15 Graphical representation of the operations carried out by the SOVA. . . . 33
1.16 BCJR algorithm operations. 34
1.17 Architecture for the implementation of the function max∗ (x, y). 37
1.18 FOMAP algorithm operation. 40
1.19 Classical BJCR algorithm schedules. 42
1.20 FOMAP algorithm schedule. 43
1.21 Concatenation of two RCS codes using an interleaver. 44
1.22 Turbo decoder block diagram. 46

2.1 Sequential turbo decoding approach. 52
2.2 Initialization by acquisition. 59
2.3 Shuffled turbo decoding principle. 61

xiii

xiv LIST OF FIGURES

2.4 Architecture based on shuffled and sub-block parallelism. 62
2.5 Architecture for the implementation of the function max∗ (x, y). 64
2.6 Butterfly-Forward schedule. 65
2.7 Butterfly-Replica schedule. 66
2.8 Sliding window technique considering the Butterfly scheduled. 68
2.9 Transfer function computation by Monte-Carlo simulation. 72
2.10 Exit chart for a SISO decoder. Parallelism ΦB,1

128,NoSh
. 74

2.11 Convergence of turbo decoders with sub-block parallelism. 76
2.12 Decoding trajectory for a SISO decoder implementing the sub-blocks

parallelism. 76
2.13 Convergence of shuffled turbo decoders 77
2.14 Shuffled turbo decoders decoding trajectories. 78
2.15 VA block diagram. 80
2.16 REA method circuit. 81
2.17 SOVA architecture. 82
2.18 BER performance for the LTE turbo code using SOVA and Max-Log-MAP. 85
2.19 BER and FER for a double binary turbo code using SOVA and Max-Log-

MAP. 86

3.1 SISO decoder architecture. MAP algorithm schedules. 90
3.2 SISO architectures . 91
3.3 Convolutional Code in the LTE standard. 92
3.4 BMU radix-2 architecture. 93
3.5 Modulo normalization technique for a 8 state binary code 94
3.6 High speed radix-2 ACS unit . 95
3.7 SOU radix-2 architecture . 95
3.8 Radix-16 SOU comparison tree. 97
3.9 Radix-4 ACS unit architectures . 99
3.10 CT characteristics of ACS units with different radix values. 100
3.11 Radix-8 ACS unit architecture . 101
3.12 Radix-16 ACS unit trellis diagram transition. 103
3.13 Proposed radix-16 BMU architecture. 104
3.14 Proposed low complexity radix-16 SOU. 106
3.15 Frame shift principle to avoid interference between symbols in a radix-16

trellis transition. 109
3.16 Initialization of Mα values for the first radix-16 trellis transition when

ns = 2. 110
3.17 Fixed point simulation for the LTE turbo decoder (1024 bits per frame),

with a radix-2 and the proposed radix-16 SISO decoders. 112

LIST OF FIGURES xv

4.1 Generic parallel turbo decoder architecture block diagram. 116
4.2 Architecture to generate the QPP address in the forward direction. . . . 120
4.3 Architecture to generate the ARP addresses in the forward direction. . . 121
4.4 Extrinsic memory structure for a rotatable interleaver. 124
4.5 Interconnection network for QPP interleavers. 124
4.6 Shuffled turbo decoder memory issues. 127
4.7 Frame shift principle when the sub-block technique is used, for radix-16

SISO decoders. 130
4.8 Conflict free access for a turbo decoder implementing radix-16 SISO

decoders and a QPP interleaver. 130
4.9 Turbo Encoder/Decoder on-board prototype. 132
4.10 BER and FER of the SISO decoder measured on on-board prototype with

6 Iterations. 133
4.11 Resources for a parallel turbo decoder with Q = 32 sub-blocks and the

proposed radix-16 SISO decoder. 134
4.12 Turbo decoder architecture model. 135
4.13 Data access matrices for a shuffled turbo decoder architecture. 136
4.14 Design Flow for architectural space exploration. 138
4.15 Area estimations in function of the number of clock cycles for different

parallel turbo decoder architectures. 140

xvi

List of Tables

1.1 Punctured table that defines different punctured code rate encoders from
the mother code in figure 1.5. 21

2.1 Required hardware units and state metric size for radix-2 to implement
the different SISO decoding schedules. 67

2.2 Correlation coefficient between intrinsic and extrinsic information for the
Max-Log-MAP and SOVA algorithms. 83

2.3 Correlation Coefficient between intrinsic and extrinsic information for
SOVA algorithm. b1 = 0.7 and b2 = 0.9. 84

2.4 Correlation Coefficient for double binary SOVA between intrinsic and
extrinsic information for each possible symbol (dk) at different SNR.
b1 = b2 = 1. 85

2.5 Correlation Coefficient for double binary SOVA between intrinsic and
extrinsic information for each possible symbol (dk) at different SNR.
b1 = 0.7, b2 = 0.9. 86

3.1 Hardware complexity of the Max-Log-MAP algorithm. Radix-2. RSC
code with parameters p = 3, m = 1, n = 2. Quantization wr = 6,
wSM = 10, wext = 9. 96

3.2 Hardware area in terms of equivalent 2-input (NAND) gate count for
different SISO decoders (Input and β buffer not included). 113

4.1 Logic synthesis results of the FPGA Xilinx Virtex 5 xc5vlx330 device. . . 134

xvii

xviii

Introduction

Research works carried out through many decades have enable the design of mod-
ern digital communication systems that exhibit reliable communication performance and
high transmission speed. These works have followed the guidelines originally given by
Shannon [1], who established the fundamental principles of the reliable digital trans-
mission of information. Shannon demonstrated that, thanks to an appropriate error
correcting code, it is possible to achieve reliable digital transmission of information as
long as the information rate of the source is less than the channel capacity. However,
this error correcting code was not found by him, attracting in this way the interest of
researchers around the world in order to propose efficient error correcting code construc-
tions. Berrou et al., in what is now considered as a remarkable breakthrough in the
channel coding theory, have introduced the turbo codes [2]. These codes were proposed
using a clever pragmatic approach, where a set of concepts that had been previously
introduced, together with the iterative processing of data, are successfully combined in
order to approach the theoretical limit established by Shannon. The iterative processing
provides good error correction performance with an acceptable computational complex-
ity. However, it induces high latency and limits the achievable decoder throughput. The
discovery of the turbo codes has prompted the investigation of other iterative decod-
ing schemes. Thus, the turbo decoding principle has been extended to the product
codes [3], and the rediscovery of the Low Density Parity Check (LDPC) codes [4] was
carried out [5].

The remarkable performance of the turbo codes in terms of the error correcting ca-
pabilities, and their feasibility to be implemented, have led to the adoption of them in
several wireless communication standards: Consultative Committee for Space Data Sys-
tems (CCSDS) for spatial communications; Universal Mobile Telecommunications Sys-
tem (UMTS), Third Generation Partnership Project 2 (3GPP2), Long Term Evolution
(LTE) and LTE-Advanced for mobile phones; Worldwide Interoperability for Microwave
Access (WiMAX) for wide area networks and Digital Video Broadcasting - Return Chan-
nel via Satellite (DVB-RCS) for digital video broadcasting. The requirements in terms

1

2 CHAPTER 0. INTRODUCTION

of the throughput rate have evolved form a few Mbit/s in the first practical applications,
to a few hundred Mbit/s in WiMAX and LTE, up to data rates around 1 Gbit/s in four
generation cellular communication systems, such as LTE-Advanced. The proposition of
efficient architectural solutions to achieve high throughput turbo decoding rates is then
a major challenge to accomplish, so that the industrial requirements are fulfilled and
future high performance digital communication systems can be conceived. Since mobile
devices are of high interest, besides the high throughput requirements, reduction in the
system complexity and power consumption is also required. Indeed, in mobile commu-
nication systems, the adoption of turbo codes has consistently increased the share of
channel decoding in the total receiver energy budget from around 30% to almost 50%.
This means that the channel decoder is becoming the main energy bottleneck in the
mixed-signal receiver [6].

PROBLEMATIC AND CONTRIBUTIONS

At the beginning of our research activities, the fastest turbo decoder architecture intro-
duced in the literature achieved a throughput peak value around 700 Mbit/s. There were
also several works that proposed architectures capable of achieving throughput values
around 100 Mbit/s. Research opportunities were then available in order to establish
architectural solutions that enable the decoding at a few Gbit/s. These architectural so-
lutions should optimize the required hardware resources, so that the architectures can be
exploited in practical applications. In this context, we have made different contributions
during our work. These contributions are proposed at the algorithmic and architectural
levels.

CONTRIBUTIONS AT THE ALGORITHMIC LEVEL

• A review of different Soft Input Soft Output (SISO) decoder algorithms suitable for
turbo decoders implementation has been carried out. We have explored alterna-
tive algorithms that can be applied to reduce the hardware complexity or increase
the throughput of a SISO decoder architecture. Soft Output Viterbi Algorithm
(SOVA) based turbo decoders have been studied. The error correction perfor-
mance degradation, their main drawback in order to implement practical system,
is addressed. Thus, some techniques to reduce the performance degradation are
explored.

• An extension of the EXtrinsic Information Transfer (EXIT) charts method in or-
der to take into account the constraints introduced by parallel turbo decoder

3

implementations has been proposed. The analysis performed with this type of dia-
grams, associated with Monte-Carlo simulations, gives additional understanding of
the convergence process for the design of parallel architectures dedicated to turbo
decoding.

• A SISO decoder schedule for the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm has
been introduced. This schedule has been proposed based on the convergence
analysis carried out with the aid of the EXIT charts. It consists in employing the
Butterfly-Replica schedule during the early turbo decoder iterations, and then, use
the Butterfly schedule.

• Techniques to reduce the hardware complexity of high radix SISO decoder archi-
tectures are proposed. SISO decoders implemented with these techniques exhibit
an important error correction performance degradation. Thus, complementary
techniques to overcome this problem are also developed.

• A dedicated approach to efficiently explore the design space of parallel turbo de-
coder architectures has been presented. This approach has been proposed after
a collaboration work carried out with the Université de Bretagne-Sud, at Lori-
ent. Using this approach, a tradeoff between the hardware complexity and the
throughput can be established in the early stages of the architecture design pro-
cess. Our approach especially considers memory conflict issues, as well as SISO
decoder architectures.

• We have performed a complexity and error correction performance study of re-
ceivers that implement full shuffled demapping with turbo decoding. This con-
tribution was the result of a collaboration with a Ph.D student at the electronic
engineering department of Telecom Bretagne. A reduction in the complexity in
terms of the arithmetic operations performed is achieved when an appropriate SISO
decoder schedule is applied.

CONTRIBUTIONS AT THE ARCHITECTURAL LEVEL

• A high speed radix-8 Add Compare Select (ACS) unit architecture has been pro-
posed. It enables to increase the throughput of high radix SISO decoder architec-
tures.

• A high speed low complexity radix-16 Max-Log-MAP SISO decoder architecture
has been designed. Based on the elimination of parallel paths in the radix-16 trellis
diagram, architectural solutions to reduce the hardware complexity of the different

4 CHAPTER 0. INTRODUCTION

blocks of the SISO decoder are proposed. In this way the radix-16 SISO decoder is
able to use a radix-8 ACS unit. Thus, an increase in the SISO decoder throughput
is possible with respect to conventional radix-16 architectures.

• A low complexity extrinsic memory architecture for high radix values has been
presented. Taking advantage of the conflict free interleaver properties, a low com-
plexity architecture to generate the memory address is designed. Beside, different
banks are arranged in order to provide concurrent access to all the SISO decoders
in the system.

• A high parallel turbo decoder architecture targeting throughput values of 1 Gbit/s
and beyond is designed. It contains high speed radix-16 SISO decoders. A conflict
free memory address architecture is also adopted.

• Field Programmable Gate Array (FPGA) prototyping of high radix turbo decoder
architecture was carried out. A first prototype has been done in order to validate
our propositions. Currently, a prototype that integrates 32 SISO decoders is under
development. Results from this prototype will help to establish the advantages of
our architecture with respect to other architectures in the literature.

THESIS BREAKDOWN

This document starts by a study at the algorithmic level of the convolutional turbo
decoders. This study is intended to explore alternative decoding algorithms that can
be convenient to reduce the decoder hardware complexity, or to increase the decoder
throughput. Then, an analysis of the turbo decoder parallelism techniques is performed.
The convergence of parallel turbo decoder architectures is also studied. In the last part of
this work, architectural solutions to design high throughput turbo decoders architectures
are introduced. This document is divided in different chapters organized as follows.

Chapter 1 is devoted to the presentation of the general context of our work. Initially,
the basic concepts regarding the error correcting codes are presented. Special attention
is given to the convolutional codes, since they are the heart of the turbo codes that we
considered. A survey on the SISO decoder algorithms is also presented. For the BCJR
algorithm, equivalent and simplified algorithms in the logarithmic domain are derived.
The chapter ends with the presentation of the turbo decoding principle.

In Chapter 2, a comprehensive review of the parallel turbo decoding techniques is
presented. These techniques are classified according to their granularity level. After-
wards, the turbo decoder transfer characteristics, analyzed by means of the EXIT chart
diagrams, are given. Thus, the study of the convergence properties of parallel turbo

5

decoder architectures is presented. Based on this study, we propose a novel SISO de-
coder schedule for the Max-Log-MAP algorithm, suitable to increase the convergence of
shuffled turbo decoder architectures. The chapter concludes with some results in terms
of the error correcting performance for SOVA based turbo decoders.

Our first contribution at the architectural level is presented in Chapter 3. This chapter
starts by a presentation of the SISO decoder structure for the Max-Log-MAP algorithm.
Then, the architectural issues of high radix SISO decoders are explored. Afterwards, by
considering high radix values, we propose the elimination of parallel paths in the trellis
diagram in order to overcome the SISO decoder bottleneck. This elimination of parallel
paths is further extended to reduce the SISO decoder hardware complexity. Thus, we
present a low hardware complexity high speed radix-16 SISO decoder architecture. The
use of this SISO decoder in a turbo decoder architecture degrades its error correction
performance. Therefore, at the end of the chapter, we introduce two techniques to
overcome this problem. In this way, our SISO decoder can be exploited in practical
turbo decoding applications.

Chapter 4 concentrates in the issues that prevent a turbo decoder architecture to
achieve high throughput values when multiple SISO decoders are implemented. Thus,
the main bottleneck is identified as the concurrent access to the extrinsic memory.
Consequently, architectural solutions considering the properties of the Almost Regular
Permutation (ARP) and Quadratic Polynomial Permutation (QPP) interleavers are pro-
posed. A memory organization to support high radix SISO decoder is explained. Also,
a simplified architecture to address the memories is introduced. The memory conflict
problems in shuffled architectures are considered as well. We adopt the SISO decoder
architecture proposed in Chapter 3 in order to design a high throughput turbo decoder
for the LTE standard. This architecture implements the required techniques in order
to avoid error correcting performance degradation due to the considered radix-16 SISO
decoder. A first FPGA prototype done to validate our ideas is described. The Chapter
4 ends with the presentation of a methodology that have been introduced to explore
the turbo decoder design space. Thus, estimations in terms of the achievable through-
put and hardware complexity of the final turbo decoder architecture can be established.
This methodology is oriented to resolve concurrent access memory conflicts for any turbo
decoder parallelism and interleaver.

In the last Chapter, a summary of our contributions is presented. A conclusion and
some perspectives for future works are also given.

6

Chapter 1

Context of Channel Coding

This first chapter starts with an introduction of the main concepts of error correcting
codes. Then, the soft decoding is presented. Afterwards, the convolutional codes are
introduced by describing their structure and representation diagrams. The decoding of
convolutional codes, with a special emphasis on the Recursive Systematic Codes (RSC),
is also presented. Different types of convolutional code decoding algorithms are then
described. Finally, the turbo coding and the turbo decoding principle are introduced.

7

8 CHAPTER 1. CONTEXT OF CHANNEL CODING

1.1 CHANNEL CODING GENERALITIES

1.1.1 INTRODUCTION

Digital communication systems are designed to transmit information over noisy channels
in order to provide reliable links between the source and the destination. Due to the noise
disturbances, errors may appear during the transmission process, causing the messages
produced by the source not to be well interpreted at the destination side. Channel
coding techniques are used in order to reduce the probability of transmission errors by
adding redundant information to the original message. These coding techniques seek to
approach as much as possible the correction capabilities of the communication system
to the theoretical limits established by Shannon in his pioneer work [1].

Figure 1.1 depicts the diagram of a classical digital communication system. The
source generates a flow of bits d representing a particular message. This message can
be related for instance to a video or voice signal, to digital data, or be the samples of a
particular analog signal, where an analog to digital converter is needed. At the receiver
side, estimates d̂ of those bits are provided to the destination. In an ideal scenario,
the transmitted and estimated bits are such that d = d̂ with high probability, i.e, a low
error rate is achieved. To accomplish this objective, the channel encoder implements
a code C. Let dk = (dk,1, . . . , dk,mc

) be a source message composed of mc bits at
time k. The channel encoder maps each information symbol onto a nc bit codeword
ck = (ck,1, . . . , ck,nc

), with nc ≥ mc. The ratio R = mc/nc denotes the code rate.
The coded information is then processed by the digital modulator that transforms digital
signals representing codewords, into signals waveforms u to be transmitted through the
communication channel. At the receiver side, after the demodulator, noisy symbols r try
to be recovered by the channel decoder. Thus, the most probable transmitted symbol
d̂k, equivalent to the most probable coded symbol ĉk, is found.

1.1.2 CHANNEL MODEL

For the purpose of our study we have chosen a simple modulation scheme and channel
model without compromising the final goal of the work. Therefore, a zero mean memo-
ryless Additive White Gaussian Noise (AWGN) channel is assumed. Furthermore, Binary
Phase Shift Keying (BPSK) mapping is used with ideal modulator, demodulator and
perfect synchronization. Hence, each codeword bit ck,i ∈ {0, 1} originates a modulated
symbol uk,i ∈ {−1, +1}, for i = 1, 2, · · ·nc. Let σ2

n be the noise variance. Thus, after
transmission over the noisy channel the demodulator outputs are rk,i = uk,i + ηk,i with
ηk,i ∼ N (0, σ2

n). The conditional probability density function (pdf) of the demodulated
symbol rk = (rk,1, · · · , rk,nc

) is then given by:

1.1. CHANNEL CODING GENERALITIES 9

d c

u

rd̂

Source

Figure 1.1: Elements of a classical digital communication system.

p(rk|ck) = p(rk|uk) =
nc
∏

i=1

p(rk,i|uk,i) (1.1)

with the conditional probability for each received bit rk,i given by:

p(rk,i|uk,i) =
1

σn

√
2π
· exp

(

−(rk,i − uk,i)
2

2σ2
n

)

(1.2)

For convenience, it can be appropriate to express the logarithm of probabilities rather
than the probability itself. Thus, combining (1.1) and (1.2), and taking the natural
logarithm of the resulting expression we obtain:

log (p(rk|uk)) = −nc log
(

σn

√
2π
)

− 1

2σ2
n

nc
∑

i=1

(rk,i − uk,i)
2 (1.3)

The sum in (1.3) is the square of the Euclidean distance ED:

E2
D(rk, uk) =

nc
∑

i=1

(rk,i − uk,i)
2 (1.4)

10 CHAPTER 1. CONTEXT OF CHANNEL CODING

Let Eb/N0 be the Signal to Noise Ratio (SNR) with Eb the energy per information
bit and N0 the real power spectrum density of the noise. Therefore, the noise variance
can be expressed in terms of the SNR and it depends on the code rate:

σ2
n =

1

2R · Eb/N0

(1.5)

1.1.3 CHANNEL DECODING PROCESS

In order to find the more reliable transmitted bits, two decoding principles can be applied:
Maximum A Posteriori (MAP) and Maximum Likelihood (ML) decoding. MAP decoding
enables to maximize the probability:

P (uk|rk) = P (ck|rk) (1.6)

Therefore, from the received channel output values rk, we try to find the most
reliable transmitted signals uk, that corresponds to the codeword ck. Using Bayes’ rule
we have:

P (uk|rk) =
p(rk|uk)P (uk)

p(rk)
(1.7)

with p(rk|uk) the conditional pdf of the channel output values given uk, and P (uk)
the probability that the signals uk were transmitted. P (uk) is also called the a-priori
probability. It gives additional information to the decoding process. Contrary to the
MAP decoding principle, the ML decoding principle seeks to maximize p(rk|uk) instead
of P (uk|rk). Both decoding principles lead to a similar decoding performance as long
as no a-priori information exists.

From (1.3), note that the ML decoding principle is equivalent to minimize the Eu-
clidean distance in (1.4). Thus, the ML decoding principle enables to converge to the
closest transmitted waveforms uk to rk. MAP decoding is optimum in the sense that
it maximizes the symbol by symbol probability, i.e, it finds the most probable transmit-
ted bit. On the other hand, ML decoding principle minimizes the errors regarding the
sequence of transmitted information as a whole.

1.1.4 CHANNEL CODE PERFORMANCE

The channel code performance indicates the ability of a code to detect and eventually
correct possible transmission errors. It depends on the SNR value. It can be improved by
a careful selection of the code parameters. The code performance is presented in terms

1.1. CHANNEL CODING GENERALITIES 11

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1 2 3 4 5 6 7 8 9 10 11

B
E

R

Eb/N0 (dB)

Coding gain for BER=10
−4

Waterfall Region

Error floor Region

Uncoded
Coded

Figure 1.2: BER typical curves for a coded and uncoded system.

of the Frame Error Rate (FER) and Bit Error Rate (BER) values. Unfortunately their
analytical expressions are usually very complex. Therefore, Monte-Carlo simulations are
frequently used. The analytical expressions are reserved to describe the asymptotical
behavior of the code for high Eb/N0 values.

Figure 1.2 shows a typical BER performance curve. More specifically the BER per-
formance curve of a concatenated code as presented in section 1.4. This curve can be
divided into three different regions:

• Low Eb/N0 region: In this region the code presents bad correction capabilities,
having error rates even higher than the uncoded scheme.

• Waterfall region: Range of Eb/N0 values for which a major reduction in the error
rate can be achieved by small increases in the SNR.

• Error floor region: Medium to high Eb/N0 values. A change in the slope is observed
with respect to the waterfall region, reducing the improvement of the error rate as
Eb/N0 grows. For very high Eb/N0 values, the slope of the coded curve approaches
asymptotically the slope of the uncoded curve.

The benefits that a code provides are quantized in terms of the coding gain. It is
defined as the SNR difference, usually expressed in decibels (dB), between the coded

12 CHAPTER 1. CONTEXT OF CHANNEL CODING

and uncoded curves for a given error rate value. For instance, in Figure 1.2 the coding
gain for a BER= 10−4 is about 4.4 dB.

1.1.5 SOFT DECODING

The information provided by the demodulator to the channel decoder may have different
levels. Let us first consider the simplest case were the demodulator is only able to
determine if each received waveform corresponds to two possible levels, high or low.
In this case the channel decoder receives a sequence of binary (hard) values. From
this sequence the source message should be recovered. Such decoding process is called
hard-decision decoding. Now, let us increase the demodulator capabilities so that it is
able to provide, additionally to the sequence of binary values, reliability (soft) values
for each hard value. The soft values represent how confident the demodulator is that
each hard value is correctly estimated. The decoder has then more information that,
intuitively, allows it to improve the decisions taken all over the decoding process. Even
more, the channel decoder can generate reliability values itself. Such a decoder is called
a Soft Input Soft Output (SISO) decoder, and the algorithm that it implements a SISO
decoding algorithm.

When soft values are considered in the whole communication system, important
improvements in the system performance can be observed [7]. It has been shown to be
convenient in order to improve the error correction capabilities of the communication
system. Specifically, SISO decoding algorithms has been proposed as part of the channel
decoder to carry out iterative decoding. The main idea is to replace long and complex
codes by simple codes that cooperate between them through an exchange of soft values
[2, 8, 9]. The Turbo Codes, presented in section 1.4, are based on this idea.

Log-likelihood ratio and soft channel outputs.

Let V be a random variable in the Galois Field GF(2) with elements {+1,−1} and v
a realization of V . The probability that the random variable V takes the value v = ±1 is
denoted by P (v = ±1). Soft values can be represented by Log Likelihood Ratio (LLR)
values, defined by:

L(v) = log

(

P (v = +1)

P (v = −1)

)

(1.8)

The sign and the magnitude |L(v)| denote the hard and soft values of the random
variable V , respectively. A large |L(v)| value means that there is high certainty that the
value estimated for v is correct. LLR values can be defined for conditional variables as
well. Let V depends on the random variable Y . Thus, the LLR is:

1.1. CHANNEL CODING GENERALITIES 13

L(v|y) = log

(

P (v = +1|y)

P (v = −1|y)

)

= log

(

P (v = +1, y)

P (v = −1, y)

)

(1.9)

Using Bayes’ rule, equation (1.9) can be written as:

L(v|y) = log

(

P (v = +1|y)

P (v = −1|y)

)

= log

(

P (v = +1)

P (v = −1)

)

+ log

(

p(y|v = +1)

p(y|v = −1)

)

= L(v) + L(y|v)

(1.10)

Let us consider once more Figure 1.1. Assuming BPSK mapping, each waveform uk,i

transmits one bit. After the transmission over a Gaussian channel, using (1.2), the LLR
value of uk,i conditioned on the matched filter output rk,i is then:

L(uk,i|rk,i) = L(uk,i) + L(rk,i|uk,i)

= L(uk,i) + log

exp
(

− 1
2σ2

n
(rk,i − 1)2

)

exp
(

− 1
2σ2

n
(rk,i + 1)2

)

= L(uk,i) + Lc · rk,i

(1.11)

With Lc = 2/σ2
n. Lc is called the reliability value of the channel. The largest the

value of Lc is, the less errors will occur.

1.1.6 BLOCK CODES

The block codes are a family of codes without memory dependency, i.e., each codeword
depends only on the current source message, and not on previous messages. Thus, a
C(nc, mc) block code maps an information block dk of mc information symbols into
a codeword ck of nc coded symbols. R = mc/nc is the code rate. The information
and coded symbols are defined in GF(2q). Thus, the code can generate 2q·mc different
codewords.

A block code C is linear if it is a mc-dimensional subspace of the nc-dimensional vector
space of GF(2q)nc . Thus, for each information block dk, a codeword ck is generated
following the linear expression ck = dk ·G, with G a mc × nc matrix. This matrix is
called the generator matrix of the code. Its rows form a basis of the code.

14 CHAPTER 1. CONTEXT OF CHANNEL CODING

Let us consider a binary (q = 1) linear block code C. The Hamming distance, denoted
by dH(ci, cj), between two different codewords ci, cj ∈ C is defined as the number of
bits in which these two codewords are different. The minimal code distance is then the
minimum Hamming distance between all possible pair of codewords:

dmin = min
ci,cj∈C

(

dH(ci, cj)
)

, i 6= j (1.12)

The Hamming weight wH(ci) is defined as the number of nonzero symbols in ci.
Thus, the Hamming distance of two codewords is equal to the Hamming weight of their
modulo-2 sum. Since the sum of two codewords is also a codeword for a linear code, we
have:

dmin = min
ci∈C

(

wH(ci)
)

, ci 6= 0 (1.13)

The minimal distance of a code is a parameter that determines the code correction
capabilities. Indeed, the maximum numbers of errors that can be detected by a linear
code with minimal distance dmin is (dmin − 1). Furthermore, a maximum of ⌊dmin−1

2
⌋

errors can be corrected. In the next section, another type of powerful error correcting
codes is presented.

1.2 CONVOLUTIONAL CODES

The convolutional codes are a well-known channel coding family proposed for the first
time by Elias in [10]. They are widely used in current digital communication systems
because of their important error correction capabilities. We present this family of codes
in the rest of this section.

1.2.1 DEFINITION

Let m and n be the number of input and output bits of a convolutional code, respectively.
Contrary to the block codes, the n bit convolutional encoder output ck = (ck,1, · · · , ck,n)
at time k does not only depend on the m bit information block dk = (dk,1, · · · , dk,m),
but also on the information blocks di for earlier times i < k. The convolutional encoder
receives an infinite sequence of information blocks d = (d0, d1, d2 . . .), and produces
an infinite sequence of coded blocks c = (c0, c1, c2 . . .). However, these sequences may
in practice be finite as presented in section 1.2.5.

The convolutional encoder can be implemented using a set of flip-flops and XOR
gates. A general representation of this encoder is presented in Figure 1.3, adapted
from [11]. p flip-flops F1, F2, . . . Fp are arranged as presented in this figure. Each one

1.2. CONVOLUTIONAL CODES 15

a1,ma1,1 a1,2 a2,1 a2,2 a2,m ap,1 ap,2 ap,m

b1 b2

bp

g1,1

g1,0

g1,2 g1,p

g2,1

g2,0

g2,2 g2,p

gl,1

gl,0

gl,2 gl,p

dk,1

dk,2

dk,m

ck,1

ck,2

ck,m

ck,e·m+1

ck,e·m+2

ck,n

fk,1 fk,2 fk,p

F1 F2 Fp

Figure 1.3: General convolutional encoder architecture.

of them stores one bit fk,i ∈ {0, 1}, that define the encoder state at time k. Let S be
the set of possible states of the encoder. Therefore, the state sk ∈ S, the encoder state
at time k, can be expressed as follows:

sk ≡
p
∑

i=1

fk,i · 2p−i (1.14)

The value p + 1 is called the code constraint length. Since m bits are encoded at
each time instant, the code is called a m-binary code. A convolutional code is therefore
noted as (p, m, n).

When the encoder is fed with the information block dk, the state transition sk → sk+1

occurs. The next state sk+1 depends on dk, on the current state sk and on the code
parameters aij, bi ∈ {0, 1} for 1 ≤ i ≤ p and 1 ≤ j ≤ m. Note that there is a feedback
loop due to bi. Indeed, if at least one code parameter bi 6= 0, the code is called recursive.
Besides, a convolutional code is systematic if each codeword can be expressed as follows:

ck = (ck,1 . . . ck,n) = (dk,1, dk,2 . . . dk,m, ck,m+1, ck,m+2 . . . ck,n) (1.15)

Actually, in a systematic code, the first m bits of the coded block are equal to the

16 CHAPTER 1. CONTEXT OF CHANNEL CODING

information bits dk. In Figure 1.3, the parameter e ∈ {0, 1} defines if the convolutional
code is systematic (e = 1) or not. The number of coded bits is then given by n = e·m+l
with l the number of redundant bits generated by the encoder. These l bits depend on
the encoder state and the flip-flop F1 input. The set of coefficients gij ∈ {0, 1} for
1 ≤ i ≤ l and 0 ≤ j ≤ p establishes the encoder structure to generate the l redundant
bits from ck,e·m+1 up to ck,n.

1.2.2 POLYNOMIAL REPRESENTATION

A convolutional encoder is a discrete Linear Time Invariant (LTI) system. Its outputs are
the convolution between the input sequence and the encoder impulse response. Thus,
the output ck,i can be expressed as follows:

ck,i = dk,1 ∗ g
(1)
i + dk,2 ∗ g

(2)
i + · · ·+ dk,m ∗ g

(m)
i =

m
∑

j=1

dk,j ∗ g
(j)
i (1.16)

where ∗ is the convolution operation, and g
(j)
i is the impulse response of the system

considering only the input dk,j and the output ck,i, i.e., the output sequence ck,i when
dk,j = (1, 0, 0, . . .) and all the other inputs are set to the zero sequence (0, 0, 0, . . .).
Applying the Z-transform, Z {xk} = X(z) =

∑∞
k=0 xkz−k, to (1.16):

Ci(z) =
m
∑

j=1

Dj(z)G
(j)
i (z) (1.17)

where Ci(z), Dj(z) and G
(j)
i (z) are the Z-transform of ck,i, dk,j and g

(j)
i , respectively.

For convenience (1.17) can be arranged in a matrix form:

C(z) = D(z)G(z) (1.18)

where D(z) = (D1(z), D2(z), . . . , Dm(z)), C(z) = (C1(z), C2(z), . . . , Cn(z)) and
G(z), called polynomial generator matrix, is the m× n matrix:

G(z) =

G
(1)
1 (z) G

(1)
2 (z) . . . G(1)

n (z)

G
(2)
1 (z)

. . .
...

...
. . .

...

G
(m)
1 (z) G(m)

n (z)

(1.19)

In the literature, the convolutional codes are ussualy represented using the delay
operator D introduced by Forney [12]. In this document, we have used the variable
z−1 to avoid misunderstanding with the transform of the input D(z). In all cases, both

1.2. CONVOLUTIONAL CODES 17

F1 F2 F3
dk,1

ck,2

ck,1

Figure 1.4: Non recursive convolutional encoder (3,1,2) with generator polynomials
(13,15).

representations are equivalents and we can pass from one to the other by replacing z−1

by D.

1.2.2.1 NON RECURSIVE CONVOLUTIONAL CODES

Figure 1.4 depicts a binary non systematic non recursive (bi=0) convolutional encoder
with constraint length 4 and a code rate R = 1/2. This encoder has the parameters
(g1,0, g1,1, g1,2, g1,3) = (1, 0, 1, 1) and (g2,0, g2,1, g2,2, g2,3) = (1, 1, 0, 1). Since there is no
feedback loop, the impulse response can be is easily expressed. Indeed, it corresponds
to:

g
(1)
1 = (g1,0, g1,1, g1,2, g1,3, 0, 0, . . .) = (1, 0, 1, 1, 0, 0, . . .)

g
(1)
2 = (g2,0, g2,1, g2,2, g2,3, 0, 0, . . .) = (1, 1, 0, 1, 0, 0, . . .)

(1.20)

Thus, the polynomial generator matrix is:

G
NonRec(z) =

[

G
(1),NonRec
1 (z) G

(1),NonRec
2 (z)

]

=
[

g1,0 + g1,1z
−1 + g1,2z

−2 + g1,3z
−3 g2,0 + g2,1z

−1 + g2,2z
−2 + g2,3z

−3
]

=
[

1 + z−2 + z−3 1 + z−1 + z−3
]

(1.21)

The generator polynomials can be expressed in binary form. For this particular case,
10112 and 11012 are the binary representation of G

(1),NonRec
1 (z) and G

(1),NonRec
2 (z),

respectively. An octal representation is more common: G
(1),NonRec
1 = 138, G

(1),NonRec
2 =

158, or in a more compact form (13,15).

18 CHAPTER 1. CONTEXT OF CHANNEL CODING

F1 F2 F3
dk,1

ck,2

ck,1

xk

Figure 1.5: Recursive Systematic Convolutional (RSC) encoder (3,1,2) with generator
polynomials [1 1 + z−1 + z−3/1 + z−2 + z−3].

1.2.2.2 RECURSIVE SYSTEMATIC CONVOLUTIONAL CODES

The Recursive Systematic Convolutional (RSC) codes are of special interest due to the
properties that the introduction of the feedback loop provides. Figure 1.5 show a binary
RSC code built by applying some transformations to the non recursive code in Figure 1.4.
Thus, one of the outputs of the original non recursive code is fed back to the flip-flop
F1 input, and a systematic output is added.

A RSC encoder has an infinite impulse response, and thus the definition of the gener-
ator polynomials is not straightforward. Since the encoder is systematic, the polynomial
related to the systematic output ck,1 is trivial G

(1),Rec
1 (z) = 1. In order to deduce the

second polynomial let us introduce the variable x (input to the filp-flop F1). Thus we
have:

dk,1 = xk + xk−2 + xk−3

ck,2 = xk + xk−1 + xk−3
(1.22)

Accordingly, the next equation holds:

dk,1 + dk−1,1 + dk−3,1 = ck,2 + ck−2,2 + ck−3,2 (1.23)

Applying the Z-transform to (1.23) the second polynomial can be found:

G
(1),Rec
2 (z) =

C2(z)

D1(z)
=

1 + z−1 + z−3

1 + z−2 + z−3
(1.24)

Therefore, for this RSC code, the polynomial generator matrix is:

G
Rec(z) =

[

G
(1),Rec
1 (z) G

(1),Rec
2 (z)

]

=
[

1 1+z−1+z−3

1+z−2+z−3

] (1.25)

1.2. CONVOLUTIONAL CODES 19

sk = 0

sk = 1

sk = 2

sk = 3

sk = 4

sk = 5

sk = 6

sk = 7
k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

dk = 0 dk = 1

Figure 1.6: Trellis diagram for the RSC code in given in Figure 1.5.

Note that this polynomial generator matrix corresponds to the non recursive generator
matrix given in (1.21) divided by G

(1),NonRec
1 (z).

1.2.3 TRELLIS DIAGRAM REPRESENTATION

Since the behavior of a convolutional encoder depends on its state sk, given by (1.14),
it is important to analyze how the encoder state evolves in function of the time. The
polynomial representation, as presented in section 1.2.2, is convenient to describe the
structure of an encoder. However, using it, it is difficult to clearly see the encoder
state evolution. Some representation diagrams have been proposed to overcome this
limitation.

In the literature, three representation diagrams exist: state diagram, tree diagram and
trellis diagram. The state and tree diagrams will not be treated in this document. We
refer the reader interested in details about them to [11]. The trellis diagram introduced in
[13] is the most commonly scheme used to represent convolutional codes. It is especially
convenient to illustrate the operation of the decoding algorithms as will be shown in
sections 1.3.1 and 1.3.2.

Figure 1.6 shows the trellis diagram of the convolutional encoder detailed in Figure
1.5. The encoder states are represented by black dots • arranged in columns for each
time k. Each possible state transition sk → sk+1 is represented by an arc connecting
two states in two columns at time instant k and k + 1. Dashed and continuous arcs
correspond to transitions due to the input symbol dk = 0 and dk = 1, respectively. Each
arc is labeled with the corresponding encoder output. For instance, when the transition
(sk = 0)→ (sk+1 = 0) occurs, the encoder output is (ck,1, ck,2) = (dk, ck,2) = (0, 0).

20 CHAPTER 1. CONTEXT OF CHANNEL CODING

c0,1

c0,2

k = 0

c1,1

c1,2

k = 1

c2,1

c2,2

k = 2

c3,1

c3,0

k = 3

Figure 1.7: Puncturing pattern that enables to build a convolutional code with rate
Rp = 2/3 from the mother code (3,2,1) in figure 1.5.

A path in the trellis diagram is defined as a sequence of states transitions defined by
the structure of the encoder, when a particular sequence of blocks d is coded. Let us
assume that the encoder state, at time k = 0, is sk = 0. Thus, for time k < 3 there
are some states that are not permitted. For k ≥ 3, the encoder can have any state,
and therefore any state transition in the trellis diagram may occur. In Figure 1.6, only
the possible paths are shown. Note a specific property of this trellis diagram: there are
always two arcs arriving to any state, corresponding to the input symbol dk = 0 and
dk = 1. This characteristic is due to the recursive structure of the code. Furthermore, a
butterfly pattern exist. Thus, each trellis section from time instant k to k + 1 consists
of four butterfly structures.

1.2.4 PUNCTURING

In order to reduce the number of redundant bits generated by a convolutional encoder,
and thus increase the system throughput, it is possible to periodically remove certain
bits at the encoder output (punctured code). Naturally, this process has an impact on
the error correction capabilities. Puncturing codes are convolutional codes with a code
rate Rp that arise from a mother code with code rate R = 1/n < Rp.

Let us consider the RSC code in Figure 1.5 with the polynomial generator matrix in
(1.25) and a code rate R = 1/2. From this mother code, we can derive a punctured
code with rate Rp = 2/3 by removing the redundant bit ck,2 every two input blocks
as shown in Figure 1.7. The puncturing pattern is defined by a puncturing table. For
this particular case the puncturing table is given in (1.26) where “1” means that the bit
is transmitted and “0” that the bit is discarded. Table 1.1 shows different puncturing
tables for others code rates. Note that it is also possible to puncture the systematic bit
ck,1. Thus, the puncturing table is not unique for a given punctured code rate Rp.

Mp =

[

1 1
1 0

]

(1.26)

1.2. CONVOLUTIONAL CODES 21

Punctured code rate Rp Mp

3/4

[

1 1 0
1 0 1

]

4/5

[

1 1 1 1
1 0 0 0

]

6/7

[

1 1 0 1 1 0
1 0 1 0 0 1

]

Table 1.1: Punctured table that defines different punctured code rate encoders from the
mother code in figure 1.5.

1.2.5 CONVOLUTIONAL CODE TERMINATION

The convolutional codes were originally proposed to code an infinite sequence of infor-
mation, were future coded blocks depend on the encoder state for previous time instants.
On the other hand, the block codes were introduced to be applied over a defined quantity
of information bits, generating codewords that do not depend on the previous inputed
blocks. Research works were then carried out in order to establish a common framework
between both classes of codes.

Let us consider a convolutional code (p, m, n) that receives L m-binary information
blocks d = (d0, d1, . . . , dL−1) generating L n-binary coded blocks c = (c0, c1, . . . , cL−1).
We can consider this truncated convolutional code to be a block code C(n·(L+v), m·L),
with v · n the number of bits that are generated when the frame is truncated as pre-
sented below. In this document the input blocks d are called the information frame.
Consequently, the output blocks c are called the coded frame.

The operation of a truncated convolutional encoder can be described as follows.
First, the encoder state is initialized to s0 = sInit. Then, the L information blocks of
the information frame are encoded. Finally, the termination of the frame is performed
in order to take the encoder to a specific and known final state. The initial and final
states of the convolutional encoder provide important information to improve the decoder
performance. Three alternatives have been proposed in the literature for the termination.

1.2.5.1 DIRECT TRUNCATION

This is the simplest termination method. Once the information frame is encoded, the
final encoder state is not modified and thus no additional bits are produced (v = 0).
Since the final state depends on the information frame, the decoder will not be able
to establish it if noise disturbances affect the transmitted information. This lack of

22 CHAPTER 1. CONTEXT OF CHANNEL CODING

F1 F2 F3
dk,1

ck,2

ck,1

xk

Figure 1.8: Architecture used to force the encoder state to the all zero state.

information has an negative impact on the decoder performance, reducing the asymptotic
gain of the code.

1.2.5.2 RETURN TO THE all zero STATE

In this approach the initial state is set to the all zero state sInit = 0. Then, at the
end of the frame, the encoder is forced to go back to the same initial state by coding
v additional information blocks. This approach reduces the code rate since more bits
should be sent for the same amount of information bits. The term v/(v + L) is called
the rate loss.

For this approach sL+v = 0. This can be done for a non recursive convolutional code
by inputting p = v zero blocks1 (tail bits). However, if the code is recursive, the tail bits
depend on the state sL, and thus it is not possible to assure sL+v = 0 using the same set
of v information block for all possible information frames. In [14] a simple method was
proposed to force the encoder state to the all zero state, by a small modification to the
encoder circuit. This approach is shown in Figure 1.8 for the recursive code considered
so far in Figure 1.5. The switch is in position “B” if the information frame is received.
Then, it is set to position “A” to put “0” in the flip-flop F1 input. Therefore, after v = 3
clock cycles, the encoder is driven to the state 0.

1.2.5.3 CIRCULAR CODES

This method does not need additional bits for the frame termination (v = 0). The
encoder is initialized to a state s0 = sc such that, after coding the information frame,
the encoder retrieves the same state sL = sc. sc is called the circular state. It depends
on the information frame and also on the encoder polynomials. Since the frame can be
seen as a circular frame, all information bits afford the same amount of error protection

1Remember that p corresponds to the number of flip-flops used to build the convolutional coder.

1.3. DECODING OF CONVOLUTIONAL CODES 23

sk = 0

sk = 1

sk = 2

sk = 3

k k + 1
(sk → sk+1) ∈ Γ1

(sk → sk+1) ∈ Γ0

p
(0)
0,L ∈ T k

0,L(s0, 0, sL) p
(1)
0,L ∈ T k

0,L(s0, 1, sL)

0 L

Figure 1.9: Convolutional code trellis diagram.

eliminating undesirable effects in the frame limits. The circular codes were first proposed
for non recursive codes in [15], and later extended to recursive codes in [16] in the context
of concatenated codes.

1.3 DECODING OF CONVOLUTIONAL CODES

In this section we introduce the basic notation that is going to be used to describe the
convolutional decoding algorithms as presented in sections 1.3.1 and 1.3.2, where we
show the decoding of convolutional codes considering path probabilities in the trellis
diagram.

For convenience, each information block dk is also represented by the integer value
δk ≡

∑m
i=1 dk,i · 2m−i. Thus, δk ∈ {0, 1, . . . , 2m − 1}. Let Γ be the set of possible state

transitions (branches) sk → sk+1 in the trellis diagram, and Γδ ⊂ Γ the set of branches

corresponding to the information block δk = δ. A path p
(h)
i,j in the trellis diagram is a

sequence of states s
(h)
i , s

(h)
i+1, . . . s

(h)
j that takes the convolutional encoder for a particular

sequence of information blocks δ
(h)
i , δ

(h)
i+1, . . . δ

(h)
j−1, such that

(

s
(h)
k → s

(h)
k+1

)

∈ Γ
δ

(h)
k

. Let

T k
i,j(s

′, δ, s) be the set of paths p
(h)
i,j with s

(h)
i = s′ and s

(h)
j = s, such that the transition

corresponding to the time k is
(

s
(h)
k → s

(h)
k+1

)

∈ Γδ. For instance, Figure 1.9 presents

two paths belonging to T k
0,L(s′, 0, s) (thicker line) and T k

0,L(s′, 1, s), for a convolutional
code C(2, 1, n). Note that the number of paths in each set T k

0,L(s′, δ, s) grows very fast
with L.

Let γk(s′, s) = p(sk+1 = s, rk|sk = s′) be the branch metric for the transition
(sk = s′)→ (sk+1 = s), i.e., the probability that the transition occurs. If no transition

24 CHAPTER 1. CONTEXT OF CHANNEL CODING

between s′ and s exists in the trellis diagram, γk(s′, s) = 0. Using Bayes’ relation twice
we have:

γ(s′, s) = p(sk+1 = s, rk|sk = s′)

= p(rk|sk = s′, sk+1 = s)p(sk+1|sk = s′)
(1.27)

The first term in this equation is the conditional probability of the channel (equation
(1.1)). The second term corresponds to the transition s′ → s given that the encoder is
already in the state s′. Therefore, this term is equal to the probability that the symbol
δk = δ was sent, with δ the symbol that produces the transition from s′ to s. Thus,
(1.27) becomes:

γ(s′, s) = p(rk|uk)p(δk = δ) (1.28)

This probability can be conveniently expressed in the logarithm domain:

Mγ
k (s′, s) ≡ σ2

n log(γk(s′, s))

= σ2
n log(p(rk|uk)p(δk = δ)) (1.29)

=
n
∑

i=1

rki · uki + σ2
n log(p(δk = δ)) + Ak

where Ak is a constant that affects all the state transitions in the same manner
at time k. Thus, it can be removed from (1.29). Based on the branch metric, the
probability of a path in the trellis diagram can be established. Assuming a memoryless
channel, the probability of any path in the trellis diagram is:

p(p
(h)
i,j) =

j−1
∏

k=i

γ
(

s
(h)
k , s

(h)
k+1

)

(1.30)

This probability can also be expressed in the logarithm domain using (1.29):

Θ(p
(h)
i,j) = log(p(p

(h)
i,j))

=
1

σ2
n

j−1
∑

k=i

Mγ
k

(

s
(h)
k , s

(h)
k+1

)

(1.31)

The convolutional decoding algorithms use the path probability to perform the de-
coding operation. They consider, by different approaches, the different paths that the

1.3. DECODING OF CONVOLUTIONAL CODES 25

encoder can take. Thus, they establish the most reliable information frame d̂ according
to the ML or MAP decoding principle as discussed in section 1.1.3. We can describe the
operations of a decoding algorithm from the mid-constraint path-partitioning problem
as presented in [17]:

For all 0 ≤ k < L and all 0 ≤ δ < 2m, the probability of the paths that
belong to T k

0,L(s0, δ, sL),∀s0, sL has to be found.

Thus, the probability of each information symbol is p(δk = δ) =
∑

p(p
(h)
0,L), with

p
(h)
0,L ∈ T k

0,L(s0, δ, sL),∀s0, sL. The decoded information symbol is then δ̂k = δ′ such
that p(δk = δ′) > p(δk = δ),∀δ 6= δ′. Find the paths belonging to T k

0,L and their
probabilities is not straightforward. When L is large, there is a huge amount of possible
paths to consider, and thus, an exhaustive research is not feasible in practical systems.
To overcome this constraint, the decoding algorithms are based on different approaches
to reduce the number of paths. The path probabilities in only a section of the trellis
diagram are partially computed. In [17] it was shown how different trellis based decoding
algorithms can be formulated as path partitioning algorithms, where recursive operations
are performed to find the probability of the paths belonging to different sets T k

0,L. These
recursive operations are performed in the forward (starting at time instant k = 0 up to
k = L) or backward (k = L towards k = 0) directions.

The Viterbi Algorithm (VA) [18] is an optimal ML algorithm that can be applied
to the decoding of convolutional codes. It performs recursive operations only in the
forward direction to compute the path metric (related to the path probability) values2.
Regarding the MAP decoding principle, we can consider two types of decoding algorithms
[13,19]. Type-I MAP algorithms perform backward and forward recursions while Type-II
are forward-only recursion algorithms. Let us consider codes applied over an information
frame of L symbols. For Type-I MAP algorithms, in their basic operation without
considering any memory optimization technique, the whole sequence should be received
before taking any decision about the transmitted symbols. Their memory requirements
grow linearly with the frame size. On the other hand, Type-II MAP algorithms take
decisions after a delay, and present memory requirements that grow, for the most part
of them, exponentially with the decision delay. From a high throughput decoder point of
view, forward-only algorithms may be of interest due to their inherent pipelined structure
[20]. For the sake of completeness in our study, we have explored the convenience of
the VA, Type-I and Type-II MAP decoding algorithms in a high decoding throughput
context.

2The VA algorithm must also perform an operation in the backward direction: traceback operation.
However, it does not consist in a recursive computation of metric values.

26 CHAPTER 1. CONTEXT OF CHANNEL CODING

Lc · rk,1

Lc · rk,m

Lc · rk,m+1

Lc · rk,n

P a
k (0)

P a
k (2m − 1)

Pk(0)

Pk(2m − 1)

Figure 1.10: RSC SISO decoder black box diagram.

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [21] is the most popular Type-I
MAP algorithm due to its convenience in turbo decoding (section 1.4). In [22] and [23]
Type-II MAP algorithms have been proposed. These algorithms are inspired in the VA
but exhibit additional complexity. The Soft-Output Algorithm (OSA) is proposed in [19].
It is another forward-only soft-output MAP algorithm where the memory requirements
increase linearly with the decision delay. Unfortunately, works in [19, 22, 23] are only
applicable to non recursive codes. Therefore, they are not interested in our context.
In [24] and [17] SISO forward-only MAP algorithms suitable to be used in turbo decoders
are presented.

We restrict our study to RSC codes. Figure 1.10 shows the black box diagram of the
convolutional RSC SISO decoder that we consider. P a

k (δ) = p(δk = δ) is the a-priori
probability of the symbol δ ∈ {0, 1, . . . , 2m − 1} at time k. The SISO decoder receives
the channel information (systematic and redundant bits) in LLR form (equation (1.11)).
After the decoding algorithm, the decoder provides a-posteriori Pk(δ) values, expressed
as probabilities, for the different possible information block values.

1.3.1 VITERBI BASED DECODING

1.3.1.1 OVERVIEW

The VA was proposed as a process to achieve maximum likelihood decoding of convo-
lutional codes [18]. This algorithm finds a solution to estimate the state sequence of
a finite state discrete time Markov process observed under the presence of memoryless
noise [13]. The VA handles the high number of possible paths in the trellis diagram by
keeping only the most probable path for each state at each time k. Let Mα

k (s) be the
metric of the state s, representing a measure of the probability that the encoder is in

1.3. DECODING OF CONVOLUTIONAL CODES 27

k −D k

ACS

Traceback

δk−D−1

δk−D−2

δk−D−3

Figure 1.11: The VA operation.

the state s at time k. This metric corresponds to the logarithm of the probability of the
most probable path p

(h)
0,k such that s

(h)
k = s. It can be computed recursively as follows:

Mα
k (s) = max

(s′→s)∈Γ

(

Mα
k−1(s

′) + Mγ
k−1(s

′, s)
)

(1.32)

Equation (1.32) is a forward recursive operation. It is performed by the so called Add
Compare Select (ACS) unit. In the ACS operation, the VA finds the metrics of the paths
ending at each state. It stores the largest path metric and discards the others. The path
whose metric is stored, for each state, is called survivor path. The other paths are called
concurrent paths. Additional to the survivor path metric, the algorithm has to memorize
the information symbols for each survivor path at each time. For a sufficiently large
number of transitions D in the trellis diagram, it is highly probable that all paths merge
when they are rebuilt back [25]. Thus, from time k back to time k − D, a traceback
operation is carried out by taking the information symbols of the survivors at each state.
By this way, a path and the decoded symbol for time k−D is found. Figure 1.11 depicts
the VA operation.

The initial state metrics values Mα
0 (s) depend on the knowledge of the initial con-

volutional encoder state. If at time k = 0 the state of the encoder is s0 = s′, the
state metrics are Mα

0 (s′) = 0, and Mα
0 (s) = −∞ for s 6= s′. Otherwise, if there is

no knowledge about the initial conditions of the encoder, all state metrics are initialized
to the same value Mα

0 (s) = 0,∀s. In this case, after some iterations in the forward
recursion process, the algorithm converges to a correct value for the states metrics.

28 CHAPTER 1. CONTEXT OF CHANNEL CODING

1.3.1.2 THE SOFT OUTPUT VITERBI ALGORITHM

The Soft Output Viterbi Algorithm (SOVA) [26] is an improvement of the VA in order
to provide, additional to the estimated information bits, reliability values for each hard
decision. Let us define the path metric difference ∆k(s) =

∣

∣

∣Θ(p
(h0)
0,k)−Θ(p

(h1)
0,k)

∣

∣

∣ with

s
(h0)
k = s

(h1)
k = s, i.e., the difference between the path metrics of the two paths that

arrive to the state s at time k. Let s
(ML)
k be the state that belong to the ML path at time

k, and p
(h1)
0,k its concurrent. Therefore, s

(ML)
k = s

(h1)
k . Let us assume that δ

(ML)
k = 1

and δ
(h1)
k = 0. Thus, using (1.31), the probability that the decision of the survivor path

is correct at time k, taking into account all the received symbols ri<k, is:

p1 =
p(p

(ML)
0,k)

p(p
(h1)
0,k) + p(p

(ML)
0,k)

=
exp(Θ(p

(ML)
0,k))

exp(Θ(p
(h1)
0,k)) + exp(Θ(p

(ML)
0,k))

=
exp(∆k(s

(ML)
k))

1 + exp(∆k(s
(ML)
k))

(1.33)

Thus, the reliability value expressed as likelihood ratio is:

L(δk) = log

(

p(δk = 1)

p(δk = 0)

)

= log

(

p1

p0

)

= log

(

p1

1− p1

)

= ∆k(sML
k) (1.34)

Therefore, the path metric difference gives the reliability value of the decoded infor-
mation symbols at time k. However, this reliability value does not take into account the
received symbols after time k. The SOVA tries to solve this problem in a rather intuitive
way. After the computation of each path difference, once the optimal path is known,
two methods are proposed to find soft values: Battail [27] and Hagenauer-Hoeher [26]
methods. The first one is more complex compared to the second one. This additional
complexity does not provide significative improvements in terms of BER.

Figure 1.12 depicts different paths through the trellis diagram. The ML path, p
(ML)
0,L ,

merges with the paths p
(h1)
0,L and p

(h2)
0,L at time k − j + 1 and k, respectively. Thus,

δ
(ML)
k−j 6= δ

(h1)
k−j and δ

(h2)
k−j 6= δ

(h3)
k−j . Note that it does not impose any relation between

δ
(h2)
k and δ

(h3)
k−j nor between δ

(ML)
k−j and δ

(h3)
k−j . Let us suppose that at time k − j the

symbol chosen by the ML path and by the path p
(h2)
0,L are different. Let us also assume

1.3. DECODING OF CONVOLUTIONAL CODES 29

p
(h1)
0,L

kk − j + 1

p
(h2)
0,L

p
(h3)
0,L

∆k−j(s
(ML)
k−j)

∆k−j(s
(h2)
k−j)

∆k(s
(ML)
k)

s
(ML)
k−j

s
(h2)
k−j

s
(ML)
k

p
(ML)
0,L

Figure 1.12: SOVA soft values update process.

that, at the same time k − j, the soft value of the ML path is much larger that the
soft value of the path p

(h2)
0,L . We have then ∆k−j(s

(ML)
k−j)≫ ∆k−j(s

(h2)
k−j). If for instance

∆k(s
(ML)
k)→ 0, the probability of choosing the ML path at time k is low, and thus, the

VA could have chosen the path p
(h2)
0,L instead. This change in the decision would produce

a completely different decoded bit and reliability value at time k − j. This example
illustrates the need to appropriately update the soft values in order to avoid reliability
overestimations. The update process of soft values is described as follows, where D and
U are defined as the traceback and update length, respectively.

Let p
(MLc)
0,k be the concurrent path of the ML path at time k. Thus, s

(ML)
k = s

(MLc)
k

and δ
(ML)
k 6= δ

(MLc)
k . The update process is performed from time k − D to time

k − D − U . We denote by L′(δ̂k) the temporary reliability value for the systematic

bit estimation at time k. Initially, |L′(δ̂k)| = ∆k(s
(ML)
k) and, when the update process

ends, L(δ̂k) = L′(δ̂k). The algorithm 1 presents the Battail update process. In this

algorithm, the reliability value actualization when δ
(MLc)
j = δ

(ML)
j does not improve

significantly the algorithm performance, and thus it can be removed [28]. In this case,
the update process corresponds to the Hagenauer-Hoeher approach.

1.3.1.3 SOVA FOR NON-BINARY CONVOLUTIONAL CODES

The concepts introduced so far present the SOVA decoding process for binary codes
where each information symbol is equal to one bit. Some works have also been carried

30 CHAPTER 1. CONTEXT OF CHANNEL CODING

Algorithm 1 - Update process for soft information for the binary SOVA

for each time k do

for all j ∈ [k −D − U, k −D], do

if δ
(MLc)
j 6= δ

(ML)
j then

L′(δ̂j)← min
(

L′(δ̂j), ∆k(s
(ML)
k)

)

else

L′(δ̂j)← min
(

L′(δ̂j), ∆k(s
(ML)
k) + ∆j(s

(MLc)
j

)

end if

end for

end for

out in order to extend the SOVA to double binary codes. In [29] an extension of the
bidirectional SOVA algorithm [30] is proposed. This algorithm is a MAP like algorithm
with forward and backward recursions. The algorithm complexity is claimed to be 1.5
times the VA complexity. In [31] and [32] a transformation of the MAP algorithm is
presented with the aid of the path metric values calculated as in the VA. In this case,
the algorithm complexity is slightly lower than the MAP algorithm complexity. Thus, no
significant advantages exist. The work detailed in [33] presents a windowing SOVA like
decoding algorithm where reliability values are defined as the difference of path metric
values. For the time k, these paths are not the paths of each state at time k, but those
that are connected to the ML state some trellis diagram sections later (at time k + D).
This algorithm maximizes symbol probability and not the path metric probability. The
algorithm complexity is slightly lower than the for simplified MAP like algorithms with
similar performance. In [34] a direct extension of the original SOVA in [26] is detailed.

Let us consider a double binary convolutional code. Therefore, there are four arcs in
the trellis diagram from time k to time k+1 for each state. Consider now the information
symbol δk = δ. The path metric difference related to this information symbol is defined
as:

∆
(δ)
k (s) = max

(

Θ(p
(h)
0,k)

)

−Θ(p
(i)
0,k) (1.35)

where the path p
(i)
0,k is such that δ

(i)
k = δ, i.e, this path ends in the state s

(i)
k with the

information symbol δ, and s
(h)
k = s

(i)
k = s for all the paths p

(h)
0,k ending in the state s.

Thus, the soft output value expressed as log-likelihood ratio with respect to the symbol
δk = 0, considering the state s

(ML)
k that belongs to the ML path, is:

L(δk = δ) = log

(

p(δk = δ)

p(δk = 0)

)

= ∆
(0)
k (s

(ML)
k)−∆

(δ)
k (s

(ML)
k) (1.36)

1.3. DECODING OF CONVOLUTIONAL CODES 31

kk − jk − j − 1

ML Path

Concurrent paths at time k

p
(h1)
0,k−j

δ
(h1)
k−j−1 = δ

∆
(δl)
k (s

(ML)
k)

∆
(δ)
k−j(s

(h2)
k−j)

s
(ML)
k−j

s
(h2)
k−j

s
(ML)
k

p
(h2)
0,k

p
(h3)
0,k−j

δ
(h3)
k−j−1 = δ

∆
(δ)
k−j(s

(ML)
k−j)

Figure 1.13: SOVA soft values update process for double binary codes.

Figure 1.13 depicts different paths in a trellis diagram for a double binary convo-
lutional code. The ML path at time k − j has the concurrent path p

(h1)
0,k−j such that

its information symbol at time k − j − 1 is δ
(h1)
k−j−1 = δ. The initial reliability value

for the symbol δ at time k − j − 1 can then be computed as presented in (1.35):

L′(δk−j−1 = δ) = ∆
(δ)
k−j(s

(ML)
k−j). If the path p

(h2)
0,k is concurrent to the ML path at

time k, this path has three concurrent paths at time k − j. One of them is p
(h3)
0,k−j that

corresponds to the state s
(h2)
k−j when the information symbol is δ

(h3)
k−j−1 = δ. Thus, the

reliability for the information symbol δ considering the state s
(h2)
k−j is ∆

(δ)
k−j(s

(h2)
k−j). The

initial reliability is then updated as follows:

L′(δk−j−1 = δ) = min
(

L′(δk−j−1 = δ), ∆
(δ)
k−j(s

(h2)
k−j) + ∆

(δl)
k (s

(ML)
k)

)

(1.37)

where δl is the information symbol of the concurrent path p
(h2)
0,k at time k. Equation

(1.37) should also be applied to the two other concurrent paths at time k. Since

∆
δ

(ML)
k

k = 0, we can write this equation in a general form as follows:

32 CHAPTER 1. CONTEXT OF CHANNEL CODING

L′(δk−j−1 = δ) = min
∀δl

(

∆
(δ)
k−j(s

δl) + ∆
(δl)
k (s

(ML)
k)

)

(1.38)

where sδl is the state of the concurrent path at time k − j that corresponds to the
information symbol δk = δl. Let us consider a binary code. Without lost of generality
the path with all the information symbols equal to 0 is taken to be the ML path. In this
case (1.38) can be written as:

L′(δk−j−1 = 1) = min(∆
(1)
k−j(s

(ML)
k), ∆

(1)
k (s

(ML)
k) + ∆

(1)
k−j(s

1)) (1.39)

Thus, if the decision taken by the concurrent path at time k−j is 1 then ∆
(1)
k−j(s

1) = 0

and therefore (1.39) is reduced to min(∆
(1)
k−j(s

(ML)
k), ∆

(1)
k (s

(ML)
k)). This is exactly the

same algorithm 1 that describes the actualization process for binary codes. Thus, coher-
ent results exist between the update processes for binary and double binary convolutional
codes.

1.3.1.4 SOVA SCHEDULING

Forward recursion

k −D

sk = 0

sk = 1

sk = 2

sk = 3

Mγ
k−D−1

Forward recursion

kk −D − U

p(δ̂k−D−U |r0 . . . rk−D)

ki

p(δ̂ki
|r0 . . . rki

)

TracebackUpdate

Figure 1.14: SOVA operations.

The diagram in Figure 1.14 depicts the operation of the SOVA on a binary code
in a similar way than the diagram in Figure 1.11 for the VA. The forward recursion is
performed in order to compute Mα

k and the initial reliability values (equations (1.32) and
(1.35) respectively). The traceback operation is performed from time k back to time

1.3. DECODING OF CONVOLUTIONAL CODES 33

k−D. Then, the survivor and the concurrent paths are found from time k−D back to
time k−D−U . Afterwards, the update process is executed as described by the algorithm
1. We adopt the graphical representation introduced in [35] in order to illustrate the
SOVA operations as presented in Figure 1.15. The horizontal axis represents the time
and the vertical axis the symbols in the frame.

L

D

k

D + U

Figure 1.15: Graphical representation of the operations carried out by the SOVA.

1.3.2 MAP BASED DECODING

In this section, two types of MAP based decoding algorithms are presented. Section
1.3.2.1 details a well known Type-I MAP algorithm. In section 1.3.2.2, two versions of
this algorithm, suited for hardware implementations, are described. Afterwards, a Type-II
MAP algorithm is considered in section 1.3.2.3.

1.3.2.1 BCJR ALGORITHM

The BCJR algorithm [21] is an optimal solution for the decoding of convolutional codes.
It provides, besides to the hard decisions, soft values associated to each decoded bit.
Thus, no additional manipulation, as done for example in the VA to obtain the SOVA, are
required to build a SISO decoder. Moreover, since the BCJR is a MAP algorithm, once
the L symbols of one frame are decoded, the path that is reconstructed not necessarily
corresponds to a valid path in the trellis diagram.

The BCJR algorithm computes 2m A-posteriori probability (APP) values correspond-
ing to each possible information symbol. These probabilities are expressed as follows:

Pk(δk = δ|r) =
p(δk = δ, r)

p(r)
=

p(δk = δ, r)
∑2m−1

δ′=0 p(δk = δ′, r)
(1.40)

34 CHAPTER 1. CONTEXT OF CHANNEL CODING

α β
k k + 1

sk = 0
sk = 1

sk = 2

sk = 3

γk

P (δk|r)

0 L

Initial State Final State

Figure 1.16: BCJR algorithm operations.

where δ ∈ {0, 1, . . . 2m − 1} is one of the possible information symbols. The de-
nominator in (1.40) is just a normalization factor, since it equally affects all the possible
a-posteriori probabilities. Thus, it can be removed from this equation. Therefore, in
practice, only the join probability p(δk = δ, r) is computed. This probability can be
calculated by considering all the possible transitions in the trellis diagram from time k
to time k + 1 that are related to the information symbol δk = δ:

p(δk = δ, r) =
∑

(s→s′)∈Γδ

p(sk = s, sk+1 = s′, r) (1.41)

Let us consider the Figure 1.16. It represents the BCJR algorithm operation over the
corresponding convolutional encoder trellis diagram. Since we consider a memoryless
channel, the join probability in (1.41) can be expressed from three independent terms:

• Forward recursion αk(s) = p(sk = s, r0≤j<k): It corresponds to the probability
that the convolutional encoder is in the state s at time k, considering only the
channel information from time 0 up to k − 1.

• Transition probability γk(s, s′) = p(sk+1 = s′, rk|sk = s): This term is the proba-
bility that the transition (s→ s′) ∈ Γδ occurs at time k.

• Backward recursion βk+1(s
′) = p(rj>k|sk+1 = s′): It equals the probability that

the convolutional encoder is in the state s′ at time k + 1, considering only the
channel information received after the time k.

1.3. DECODING OF CONVOLUTIONAL CODES 35

Thus, (1.41) can be expressed as follows:

p(δk = δ, r) =
∑

(s→s′)∈Γδ

p(sk = s, sk+1 = s′, r)

=
∑

(s→s′)∈Γδ

αk(s)γk(s, s′)βk+1(s
′) (1.42)

=
∑

(s→s′)∈Γδ

p(sk = s, rj<k)p(sk+1 = s′, rk|sk = s)p(rj>k|sk+1 = s′)

With this equation the APPs in (1.40) can be expressed as follows:

P (δk = δ|r) =

∑

(s→s′)∈Γδ

αk(s)γk(s, s′)βk+1(s
′)

∑

(s→s′)∈Γ

αk(s)γk(s, s′)βk+1(s
′)

(1.43)

αk(s) and βk(s′) are also referred as state metrics. These metrics are computed by
means of the following recursive processes:

αk(s) =
∑

(s′→s)∈Γ

αk−1(s
′)γk−1(s

′, s) (1.44)

βk(s′) =
∑

(s′→s)∈Γ

βk+1(s)γk(s′, s) (1.45)

Regarding the transition probability γk(s, s′), note that it corresponds to the branch
metric for the transition (s→ s′) already defined in (1.27) and (1.28). For convenience,
we write an explicit expression for this transition probability by using the conditional
probability of the channel in (1.1):

γk(s, s′) = p(rk|uk)p(δk = δ)

= p(δk = δ)
n
∏

i=1

(

1

σn

√
2π

exp

(

−(rki − uki)
2

2σ2
n

))

(1.46)

Developing this expression, and using the channel reliability definition, the next equa-
tion holds:

γk(s, s′) = Bk · p(δk = δ) · exp

(

1

2
Lc

n
∑

i=1

rki · uki

)

(1.47)

where Bk is a constant. The reliability computed by the BCJR algorithm becomes:

L(δk = δ) = log

(

p(δk = δ, r)

p(δk = 0, r)

)

= log

∑

(s→s′)∈Γδ

αk(s)γk(s, s′)βk+1(s
′)

∑

(s→s′)∈Γ0

αk(s)γk(s, s′)βk+1(s
′)

(1.48)

36 CHAPTER 1. CONTEXT OF CHANNEL CODING

where the symbol 0 is taken as reference. Note that the BCJR algorithm equa-
tions require the noise variance. Thus, channel estimation is required, what may be
inconvenient in practical communication systems. Indeed, this is a disadvantage for this
algorithm that is overcome with suboptimal algorithms as presented in section 1.3.2.2.

MAP algorithm recursion initialization: The initial conditions for the forward and
backward recursions, α0 and βL, depend on the knowledge of the encoder initial and
final states. If for example the encoder state at time k = 0 is s0, then α0(s0) = 1 and
α0(s) = 0 for s 6= s0. If the initial state is unknown, α0(s) = 1/2p,∀s, i.e., all the
states have the same probability. A similar criterion is applied to the initial values for the
backward recursion at time L, βL(s). Note that initial and final state are established by
the termination method chosen as presented in section 1.2.5.

1.3.2.2 LOG-MAP AND MAX-LOG-MAP ALGORITHMS

From the implementation point of view, the BCJR algorithm is quite complex due to the
large number of multiplications and exponentiations that should be performed. For this
reason, a logarithmic version of the algorithm is generally preferred where multiplications
become additions and exponentiations are eliminated.

Let us express the forward recursion and backward recursion in the logarithm domain
as follows:

Mα
k (s) ≡ σ2

n log(αk(s)) (1.49)

Mβ
k (s) ≡ σ2

n log(βk(s)) (1.50)

Let us also define the soft values at the input and output of the decoder in the
logarithm domain. Thus, the a-posteriori log-likelihood and the a-priori log-likelihood are

respectively Lk(δ) = σ2
n

2
log P (δk = δ|r) and La

k(δ) = σ2
n

2
log p(δk = δ). The transition

probability in the logarithm domain was already presented in (1.29). For convenience,
we rewrite here this expression using the a-priori log-likelihood definition:

Mγ
k (s, s′) =

n
∑

i=1

rki · uki + 2La
k(δ) + Ak (1.51)

We recall that the constant Ak can be eliminated since it affects all the state tran-
sitions in the same manner. Thus, we can expand (1.49) as follows:

1.3. DECODING OF CONVOLUTIONAL CODES 37

y

x

x− y

Figure 1.17: Architecture for the implementation of the function max∗ (x, y).

Mα
k (s) = σ2

n log

∑

(s′→s)∈Γ

αk−1(s
′)γk−1(s

′, s)

= σ2
n log

∑

(s′→s)∈Γ

exp

(

1

σ2
n

Mα
k−1(s

′)

)

exp

(

1

σ2
n

Mγ
k−1(s

′, s)

)

= σ2
n log

∑

(s′→s)∈Γ

exp

(

1

σ2
n

(Mα
k−1(s

′) + Mγ
k−1(s

′, s))

)

 (1.52)

The backward recursion Mβ
k (s) can be expressed similarly. Note that the summation

in (1.52) is of the form: log(exp(x) + exp(y)), and thus it can be computed as follows:

log(exp(x) + exp(y)) = max(x, y) + log(1 + exp(−|y − x|))
= max∗ (x, y) (1.53)

for x, y ∈ R. The function max∗ (x, y) can be implemented using the architec-
ture presented in Figure 1.17, where a Look Up Table (LUT) is used to compute the
function log(1 + exp(−|y − x|)). Thanks to the associative property of this function,
max∗ (x, y, z) = max∗ (max∗ (x, y), z), (1.53) can be easily extended to more that two
operands. Thus, by replacing (1.53) in (1.52) we obtain:

Mα
k (s) = σ2

n max∗

(s′→s)∈Γ

(

1

σ2
n

(

Mα
k−1(s

′) + Mγ
k−1(s

′, s)
)

)

(1.54)

A similar expression for the backward recursion can also be established:

Mβ
k (s′) = σ2

n max∗

(s′→s)∈Γ

(

1

σ2
n

(

Mβ
k+1(s) + Mγ

k (s′, s)
)

)

(1.55)

38 CHAPTER 1. CONTEXT OF CHANNEL CODING

These two last equations represent the recursive operations of the BCJR algorithm
in the logarithm domain. They are analogous to (1.44) and (1.45). Now, let us consider
the logarithm of the joint probability in (1.42):

λk(δ) = σ2
n log(p(δk = δ, r)) = σ2

n log

∑

(s→s′)∈Γδ

αk(s)γk(s, s′)βk+1(s
′)

= σ2
n max∗

(s′→s)∈Γδ

(

1

σ2
n

(Mα
k (s) + Mγ

k (s, s′) + Mβ
k+1(s

′))

)

(1.56)

Finally, the soft output information, expressed in log likelihood value and normalized
to the symbol 0 is given by the next equation:

Lk(δ) = λk(δ)− λk(0) (1.57)

The decoded symbol (hard output) is such that it maximizes λk(δ) in (1.56):

d̂k = argmax
δ

(λk(δ)) (1.58)

The algorithm described by the equations (1.51)-(1.58) is the Log-MAP algorithm. If
an exact computation of the function max∗ is carried out, i.e, if the LUT in Figure 1.17
is implemented without any approximation, the result of the BCJR and the Log-MAP
algorithms is the same. However, a high precision for the LUT is usually not required.
The works in [36] and [37] propose a two output and four output LUT architecture
respectively. It is observed that the degradation introduce by these architectures can be
acceptable.

On the other hand, in order to reduce the complexity of convolutional decoders, the
LUT can be completely removed. Thus, max∗ (x, y) is replaced by finding the maximum
between x and y. The resulting algorithm is called the Max-Log-MAP algorithm. This
sub-optimal algorithm is typically used in the most part of practical implementations
since its performance is acceptable compared to that of the Log-MAP algorithm. When
iterative decoders are considered (see section 1.4), degradation of about 0.5 dB are
observed for the Max-Log-MAP algorithm with respect to the BCJR algorithm for binary
codes. When double binary convolutional codes are considered, a degradation below 0.1
dB for the Max-Log-MAP algorithm appears [38].

Note that, when max∗ (x, y) is replaced by max in all the Log-MAP equations, the
term σn disappears. This is an important advantage of the Max-Log-MAP algorithm.
Actually, it does not require to know the noise variance. Therefore, no channel estimators
are necessary.

1.3. DECODING OF CONVOLUTIONAL CODES 39

The suboptimal behavior of the Max-Log-MAP algorithm is due to two factors [39]:
First of all, the simplification of the max∗ (x, y) function leads to information lost impos-
sible to recover in later stages of the algorithm. Secondly, values in the decoding process
are supposed to be probabilities representation. However, in the suboptimal algorithm
this probability representation in not longer valid. In the context of iterative decoding
systems, the soft output values produced by the Max-Log-MAP algorithm are scaled by
coefficients smaller or equal than 1.0, as proposed for instance in [39–41]. In practical
systems, the scaling factors are fixed to 0.5, 0.75 or 1.0. Indeed, they can be easily
implemented using a binary shift and addition operations.

Log-MAP and Max-Log-MAP recursion initialization: The initial values for the
state metrics Mα

0 (s) and Mβ
M(s) are given by the logarithms of the initial values of the

forward and backward recursion of the BCJR algorithm. If there is no knowledge of the
initial and final state of the encoder, Mα

0 (s) = Mβ
L(s) = 0,∀s. On the other hand,

if the initial and final conditions are known: Mα
0 (s0) = Mβ

L(sL) = 0, Mα
0 (s) = −∞

for s 6= s0, and Mβ
0 (s) = −∞ for s 6= sL, where s0 and sL are the initial and finale

convolutional encoder states, respectively.

1.3.2.3 FOMAP ALGORITHMS

In [17] the Forward Only MAP (FOMAP) has been proposed. This algorithm can be
used as a particular example of other Type-II MAP algorithms. Consider Figure 1.18
which depicts the basic operations of the FOMAP algorithm. This algorithm, similarly
to the Viterbi algorithm, stores a set of values for each state at each time, that are
updated later in consecutive steps of the algorithm. The FOMAP algorithm is executed
by performing three operations: Extend, Update and Collect. The Extend operation
carries out a forward recursion in order to process the new received symbol. During the
second operation, the values inside a window of length DF O are updated. Finally, the
Collect operation computes soft values and take the hard decision for the symbols at the
beginning of a window.

Let α̂k(s) = p(sk = s|r0≤j<k) be the forward recursion state metrics at time k, and

let α̂k,i(s, δ) = p(sk = s, δi = δ|r0≤j<k) be the sum of the probability of the paths p
(h)
0,k

such that δ
(h)
i = δ and s

(h)
k = s, i.e, the probability that the encoder state is s at time

k and that the information symbol is δ at time i. Let us consider the branches in the
trellis diagram due to the information symbol δk−DF O

= δ (thicker lines in Figure 1.18).
For a window size DF O large enough we can apply the following approximation:

40 CHAPTER 1. CONTEXT OF CHANNEL CODING

k −DF O

sk = 0
sk = 1
sk = 2

sk = 3

k

P (δk−DF O
= δ|r0, . . . , rk−1)

Figure 1.18: FOMAP algorithm operation.

α̂k,k−DF O
(s, δ) = p(sk = s, δk−DF O

= δ|r0≤j<k) ≈ p(sk = s, δk−DF O
= δ|r) (1.59)

Therefore, considering α̂k,k−DF O
(s, δ) ∀s, the probability p(δk−DF O

= δ|r) can be
computed. The three operations that compose the FOMAP algorithm are detailed as
follows.

Extend Assume that the state metrics α̂k−1,i(s, δ) are known for time i ∈ [k−DF O, k−
2]. The extend operation finds the probability α̂k−1(s) as the sum of the probabilities of
all the paths associated to the state s at time k − 1:

α̂k−1(s) =
2m−1
∑

δ′=0

p(sk−1 = s, δk−2 = δ′|r0≤j<k−1)

=
2m−1
∑

δ′=0

α̂k−1,k−2(s, δ′) (1.60)

Equation (1.60) is now used to find the probability of being in the state s at time k,
when δk−1 = δ. Let the transition (s′ → s) ∈ Γδ, we have:

α̂k,k−1(s, δ) = p(sk = s, δk−1 = δ|r0≤j<k)

= p(sk−1 = s′|r0 . . . r0≤j<k−1)p(sk = s, rk−1|sk−1 = s′)

= α̂k−1(s
′)γk−1(s

′, s) (1.61)

1.3. DECODING OF CONVOLUTIONAL CODES 41

In (1.61) it is assumed that only one path can be associated to the state sk = s with
δk−1 = δ, as is the case for RSC codes.

Update In this operation, the values αk,i(s, δ) are updated in the window k−DF O ≤
i ≤ k − 2 to include the contribution of the new received symbol rk−1:

α̂k,i(s, δ) = p(sk = s, di = δ|r0 . . . rk−1)

=
∑

s′→s

p(sk−1 = s′, di = δ|r0 . . . rk−2)p(sk = s, rk−1|sk−1 = s′)

=
∑

s′→s

α̂k−1,i(s
′, δ)γk−1(s

′, s) (1.62)

Collect The collect operation enables to compute the soft values and to find the hard
decision. By taking the contribution of the probabilities of all the paths connected to all
the states at time k, the APP of the information symbol δk−DF O

is found:

p(δk−DF O
= δ|r0≤j<k) =

2p−1
∑

s=0

αk,k−DF O
(s, δ) (1.63)

The hard decision corresponds to find the symbol δ that maximizes (1.63):

δ̂k = argmax
δ

(p(δk−DF O
= δ|r0≤j<k)) (1.64)

A characteristic of the FOMAP algorithm is its capacity to execute the update oper-
ation in parallel for all the values in the window of length DF O, contrary to the SOVA,
which carries out a sequential update process thanks to a traceback operation. The
updated value, α̂k,i(s, δ), depends only on the value that has not yet been updated,
α̂k−1,i(s

′, δ), and on the branch metric γk−1(s
′, s). No dependence exists between values

inside the window, for example between α̂k,i(·, ·) and α̂k,j(·, ·) for i 6= j.

1.3.2.4 MAP BASED ALGORITHM SCHEDULES

Depending on the execution order of the equations (1.44), (1.45) and (1.48), two
straightforward schedules for the BCJR algorithm are possible as presented in Figure
1.19. In this Figure, continuous lines symbolize α or β computation, and dashed lines
state metrics along with a-posteriori information computation. Since to compute the
a-posteriori information, both forward state metric α and backward state metric β are
required, a memory is necessary. The dashed area represents the time interval when the

42 CHAPTER 1. CONTEXT OF CHANNEL CODING

L

L 2L
t

S
ym

b
ol

s

(a)

L

L

L/2

t

S
ym

b
ol

s

(b)

Memorization of α or βRecursion metrics initialization.

β metric recursion.α metric recursion.

β metric recursion and
a-posteriori values.

α metric recursion and
a-posteriori values.

Figure 1.19: Classical BJCR algorithm schedules: (a) Backward-Forward and (b) But-
terfly.

memory keeps α or β values. Finally, black dots • represent initial forward or backward
state metric values.

The schedule in Figure 1.19(a) is called Backward-Forward. Initially, β state metrics
are computed recursively starting from the end until the beginning of the frame. β
values are then memorized. When all β values for the frame composed of L information
symbols are computed, α state metrics computation can start. In parallel, thanks to the β
values previously computed, a-posteriori values are calculated. In the Backward-Forward
schedule, the decoding process duration is equal to twice the length L of a frame. This
duration is halved by using a Butterfly schedule (Figure 1.19(b)), at the cost of doubling
the hardware resources to compute α, β and the a-posteriori information.

Let us consider the schedule for the FOMAP algorithm as presented in Figure 1.20.
The Extend operation is performed in the forward direction in order to compute α̂k and
α̂k,i as described above. In parallel, the Update operation takes place over all the values
inside the window of size DF O. Once the Extend operation have been done for DF O

transitions in the trellis diagram, the a-posteriori values are generated when the Collect
operation is performed. When Extend and Update operations are done, at time k = L,
the calculation of the soft information continues until time L + DF O. The delay of
the algorithm is equal to the length of the window DF O. Note the similarities between
the schedules depicted in Figures 1.15 and 1.20 for the SOVA and FOMAP schedules,

1.4. CONVOLUTIONAL TURBO CODES 43

L

Ex
te

nd

DF O

t
DF O

Update

L + DF O

Collect

Figure 1.20: FOMAP algorithm schedule.

respectively. However, for the FOMAP algorithm the Update operation is carried out
in parallel for all the values of the window, while for the SOVA the Update operations
take some time to be performed over the windows of size U since the ML path has to
be rebuild back.

1.4 CONVOLUTIONAL TURBO CODES

In this section, we present the convolutional turbo codes basic concepts. The structure
of the turbo encoder is introduced. Then, using the SISO decoder algorithms presented
section 1.3, the basic ideas behind the turbo decoders behavior are detailed.

1.4.1 OVERVIEW

The turbo principle originally proposed for parallel concatenated codes [2] and later
extended to serial concatenated codes [42,43], has demonstrated to be a powerful tech-
nique to improve the performance of decoding systems. A turbo encoder is composed
of two RSC codes connected through an interleaver. In the decoder side, two convo-
lutional SISO decoders work together by exchanging the so called extrinsic information
during an iterative process. Thus, iteration after iteration both convolutional decoders
converge to an estimated codeword. In order to do a coherent exchange of information,
an interleaved/de-interleaved should be used between the SISO decoders.

1.4.2 TURBO ENCODING

Figure 1.21 shows the structure of a turbo encoder. It consists of a parallel concatenation
of two identical recursive systematic convolutional encoders RSC1 and RSC2 with code

44 CHAPTER 1. CONTEXT OF CHANNEL CODING

d

dπ

r1

r2

Figure 1.21: Concatenation of two RCS codes using an interleaver.

rate R = m/n. An interleaver is used to implement the bijective permutation function
(or interleaver function) i = π(j) over the information frame d prior to the RSC2
encoding. Thus, at the interleaver output, the interleaved order frame dπ is produced.
The turbo encoder operation consists then in coding twice the information frame, once
in the natural order, carried out by RSC1, and an other time in the interleaved order,
done by RSC2. For each information symbol dk, two redundant symbols, r1,k and r2,k,
are produced. These redundant symbols are sent with the original information symbol
(systematic code). Depending on the system requirements, puncturing schemes are also
possible. In this case, the redundant symbols are periodically eliminated at the output
of the turbo encoder.

The concatenated codes have been adopted in many digital communication stan-
dards due to their outstanding error correction capabilities. In satellite communications,
such as Digital Video Broadcasting - Return Channel via Satellite (DVB-RCS), Eutelsat
(skyplex) and Inmarsat, they have been implemented. Additionally, they are present
in mobile communication standards such as Universal Mobile Telecommunications Sys-
tem (UMTS), CDMA2000, Worldwide Interoperability for Microwave Access (WiMAX)
(IEEE 802.16), 3GPP-Long Term Evolution (LTE) and LTE-Advanced.

Interleaving

The interleaver plays a key role in the turbo code performance. It is used to scatter
in the time the information frame that is going to be coded. By this way, some disorder
is introduced in the coding process. The data interleaving helps to mitigate the negative
effects of fading channels and burst errors that may occur due to the presence of noise
in the channel.

The information frame in the natural order d= (d0, d1, . . . dL−1) is inputed to
the interleaver which produces the information frame in the interleaved order dπ=
(dπ(0), dπ(1), . . . dπ(L−1)). The interleaver tries to separate as much as possible the
information symbols that are mutually affected in the natural order, so that in the inter-
leaved order their mutual effects are significantly reduced. Let us consider an interleaver

1.4. CONVOLUTIONAL TURBO CODES 45

function π. For this interleaver, the dispersion factor is defined as the minimal difference
between two symbols in the natural and interleaved order:

S = min
i,j

(|i− j|, |π(i)− π(j)|) (1.65)

Random and pseudo-random interleavers were first proposed in the literature in or-
der to achieve good (high) dispersion factors. In [44] the S-random interleaver has been
proposed. This interleaver presents good characteristics in the water-fall region. How-
ever, since it does not lead to a large enough Hamming distance, the convergence in
the error-floor region is rather poor. In [45], a criterion for the design of pseudo-random
interleavers, based on the correlation properties of the extrinsic information, has been
introduced. This criterion improves the convergence and the asymptotic gain compared
with the S-random interleaver approach.

Unfortunately, from an implementation point of view, random and pseudo-random
interleavers involve the memorization of a large amount of data, specially for large
frames. Thus, the required memories increase the power consumption and area cost
of the turbo encoder/decoder architecture. Structured interleavers have been proposed
to overcome this problem. In this type of interleavers, π is easily generated from a
small set of parameters. As efficient structural interleavers we can mention the Almost
Regular Permutation (ARP) [46], Dithered Relative Prime (DRP) [47] and Quadratic
Permutation Polynomial (QPP) [48]. Among them, the ARP and QPP interleavers are of
special interest since they have been adopted in some communication systems standards.
Additionally, under certain conditions, they are suitable for parallel implementation of
turbo decoders as presented in Chapter 3.

1.4.3 TURBO DECODING

The decoding of turbo codes is carried out through an iterative process where two SISO
convolutional decoders cooperate by exchanging soft information. Let us consider the
basic turbo decoder structure as presented in Figure 1.22. For i = 1, 2, the SISOi
decoder computes the a-posteriori information Li,k in the form of LLR values, taking
as input the systematic LLR values Ls

k, the redundant LLR values Lri

k , and the so
called a-priori information La

i,k. For each SISO, a-priori information is provided by the
other decoder through an interleaver or de-interleaver. The extrinsic information, Le1

k =
L1,k − (Ls

k + La
1,k) and Le2

k = L2,k − (Ls
π(k) + La

2,k), is computed from the a-posteriori
information by taking out what is already known by the other decoder. These extrinsic
values are an estimation of the hard value (the certainty that the hard value is correct),
when the channel and a-priori informations are removed. Since the SISO decoders work
in different orders, the extrinsic values are additional knowledge of the communication

46 CHAPTER 1. CONTEXT OF CHANNEL CODING

π π−1

π

Lr1
k

Ls
π(k)

Ls
k

Lr2
k

L2,k

L1,k

Le1
k

Le2
k

La
2,k

La
1,k

Figure 1.22: Turbo decoder block diagram.

process that can be provided to the SISO decoder in the other order, and thus improve
its opportunities to take better decoding decisions. Hence, after interleaving or de-
interleaving steps, extrinsic values are used as a-priori information: La

1,k = Le2

π−1(k) and
La

2,k = Le1

π(k).

Continuous information exchange is done between the decoders in successively stages
referred in this work as half iterations. Each half iteration represents the time that is
necessary by any SISO decoder to produce all the extrinsic values in natural or interleaved
order. After a certain number of half iterations the iterative process stops and the turbo
decoder generates estimates for the systematic symbols. Note that in the half iteration
definition only the time is considered. If for example both SISO decoders work in parallel,
during a half iteration the extrinsic values for both orders are generated. This definition is
adopted since we are mainly concerned with the study of high throughput turbo decoders.

Different SISO convolutional decoder algorithms can be used during the decoding of
each constituent convolutional code in the turbo decoder architecture. In section 1.3
we have detailed three algorithms that can be associated to the black box diagram in
Figure 1.10, and thus fit perfectly in the turbo decoder architecture. We describe the
generation of the extrinsic information by two of the three algorithms (SOVA and BCJR)
in the following sub-sections.

1.4.3.1 SOVA SISO DECODER AS TURBO DECODER ELEMENT

The a-priori information expressed as LLR value is given by the following equation:

1.4. CONVOLUTIONAL TURBO CODES 47

La
k(δ) = log

(

p(δk = δ)

p(δk = 0)

)

(1.66)

For the SOVA algorithm, the branch metric was previously defined in (1.29). We can
re-write this equation by splitting the terms due to the systematic and redundant bits:

Mγ
k (s′, s) =

m
∑

i=1

rki · uki +
n
∑

i=m+1

rki · uki

+ σ2
n log(p(δk = δ)) + Ak (1.67)

Let us consider the ML path in the trellis diagram up to the time k, pML
0,k . Its

probability in the logarithm domain is:

Θ
(

pML
0,k

)

= Θ
(

pML
0,k−1

)

+
m
∑

i=1

r(k−1)i · u(ML)
(k−1)i +

n
∑

i=m+1

r(k−1)i · u(ML)
(k−1)i

+ σ2
n log(p(δk = δ

(ML)
k)) + Ak (1.68)

where u
(ML)
(k−1)i and δ

(ML)
k correspond to the information symbol in the ML path.

Considering the concurrent path p
(h)
0,k such that δ

(h)
k = 0, the path metric difference at

time k, that determines the a-posteriori information, can be expressed as follows:

Lk−1(δ) = Θ
(

p
(ML)
0,k

)

−Θ
(

p
(h)
0,k

)

= Θ
(

p
(ML)
0,k−1

)

−Θ
(

p
(h)
0,k−1

)

+
n
∑

i=m+1

r(k−1)i ·
(

u
(ML)
(k−1)i − u

(h)
(k−1)i

)

+
m
∑

i=1

r(k−1)i ·
(

u
(ML)
(k−1)i − u

(h)
(k−1)i

)

+ La
k−1(δ) (1.69)

The last two terms in (1.69) correspond to the intrinsic information, i.e., information
that has to be removed from Lk−1(δ) in order to find the extrinsic information that has
to be exchanged with the other SISO decoder.

48 CHAPTER 1. CONTEXT OF CHANNEL CODING

1.4.3.2 BCJR BASED SISO DECODER AS TURBO DECODER ELEMENT

The branch metrics used for the BCJR algorithm in (1.47) can be written as follows
(note that the terms due to the systematic and redundant bits are split):

γk(s, s′) = Bk · p(δk = δ) · exp

(

1

2
Lc

m
∑

i=1

rki · uki

)

· exp

1

2
Lc

n
∑

i=m+1

rki · uki

(1.70)

= Bk · p(δk = δ) · exp

(

1

2
Lc

m
∑

i=1

rki · uki

)

· γr
k(s, s′)

where γr
k(s, s′) is the contribution of the redundant bits to the branch metric. Now,

replacing (1.70) in (1.48), the a-posteriori information becomes:

Lk(δ) = Lc

(

m
∑

i=1

rki · uki

)

+ log

p(δ̂k = δ)

p(δ̂k = 0)

+ log

(
∑

(s→s′)∈Γδ
αk(s)γr

k(s, s′)βk+1(s
′)

∑

(s→s′)∈Γ0
αk(s)γr

k(s, s′)βk+1(s′)

)

(1.71)

The last term in this equation corresponds to the extrinsic information. Log
(

p(d̂k=δ)

p(d̂k=0)

)

is the a-priori information, expressed as log likelihood, that is inputed to the SISO de-
coder. Finally, the first term is the information due to the systematic symbols. Since this
information is also known by the SISO decoder in the other domain, it is also removed
from the a-posteriori inforamation to find the extrinsic information.

1.5 CONCLUSION

In this first chapter, we have presented the basic definitions of channel coding. Spe-
cific considerations were given for the Recursive Systematic Convolutional (RSC) codes.
Indeed, this family of codes is the basis of the turbo codes that have been studied
in this thesis. A deep study concerning the convolutional codes decoding algorithms,
as presented in the literature, has been carried out. The basics of these algorithms
were presented in order to establish the type of computations they should perform, and
the schedule of these computations. Some comments about their convenience in high
throughput decoding were also given. In the last part of the chapter, we have presented
the turbo codes as a parallel concatenation of two RSC codes through an interleaver.
The decoding algorithms of convolutional codes were then used to describe the decoding

1.5. CONCLUSION 49

process performed by the turbo decoder. Some well known interleavers were also men-
tioned. In the next chapters, two of these interleavers (ARP and QPP) are considered
in the context of parallel turbo decoders.

50

Chapter 2

Parallel Processing Exploration for
Turbo Decoding

This chapter presents different approaches that have been proposed in the literature in
order to design high throughput turbo decoder architectures. The chapter starts by pre-
senting the drawbacks that prevent the achievement of high throughput turbo decoding
rates. We define a set of metrics useful to evaluate different architectural solutions.
Then, a comprehensive review of the parallel turbo decoding techniques is given. After-
wards, a section of this chapter is devoted to study the convergence of different parallel
turbo decode techniques with the aid of EXIT charts diagrams. Finally, we also consider
the SOVA based turbo decoders. We describe the structure of a SOVA based SISO
decoder, and we give the results obtained in terms of the decoding performance.

51

52CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

Figure 2.1: Sequential turbo decoding approach.

2.1 CONTEXT

2.1.1 THE INTEREST OF PARALLELISM IN THE TURBO DECODING
PROCESS

The decoding of turbo codes is carried out through an iterative process where two SISO
decoders, operating in natural and interleaved order, exchange extrinsic information. The
turbo decoding approach originally proposed in [2] is sequential: a half iteration in the
interleaved (natural) order is performed only when the natural (interleaved) half iteration
is completed. This sequential decoding approach is illustrated in Figure 2.1, where SISO1
and SISO2 decoders are assigned to the natural and the interleaved constituent convo-
lutional codes, respectively1. In this figure, the iterative process starts by performing a
half iteration in the natural order. However, as no preference exists, the interleaved half
iteration can be also executed in the first place. For the first half iteration, the SISO1
decoder a-priori information is set to a constant value such as zero. Afterwards, the
first natural order half iteration is performed. Then, the interleaved order half iteration
starts. During this half iteration the SISO2 decoder exploits the extrinsic information
previously produced by the SISO1 decoder to improve its error correcting performance.
The decoding process continues in this way for a fixed number of half iterations, or until
the conditions established by a stop criterion are met. In Figure 2.1, the time required
to transmit the extrinsic information is explicitly considered. This time depends on the
turbo decoder architecture. Moreover, the transmission of extrinsic information can start

1Note that this sequential decoding approach enables to implement pipelined architectures as pro-
posed in [49]. In this case, multiples frames are decoded concurrently thanks to the pipelined structure.

2.1. CONTEXT 53

during the operation of each SISO decoder, i.e, it does not necessary starts once each
half iteration is completed.

This sequential decoding approach presents two main drawbacks when high through-
put is required. First of all, since the half iterations cannot be executed simultaneously,
due to the data dependency imposed by the exchange of extrinsic information, the de-
coding of an information frame is limited by the time required to execute a half iteration.
Secondly, the SISO decoder algorithms contain, as presented in section 1.3, recursive
operations that prevent a parallel execution of each half iteration. To overcome these
constraints, several parallel decoding techniques have been investigated in the literature.

The benefits provided by a parallel turbo decoding technique cannot be only estab-
lished by considering the gain in terms of throughput. Some others aspects such as the
flexibility, the architecture hardware complexity and the power consumption, have also
to be taken into account. Consequently, suitable metrics should be defined in order to
correctly assess the parallelism techniques.

2.1.2 PARALLEL ARCHITECTURE EVALUATION

The main objective of our work is to design high speed turbo decoders. Hence, the turbo
decoder throughput is regarded as the main characteristic to optimize. Additionally, to
validate an architectural solution, two other criteria are also considered: error decoding
performance and hardware complexity. Flexibility and power consumption are not con-
sidered in our work. However, the cost in terms of power consumption is related to the
hardware complexity.

2.1.2.1 ALGORITHMIC COMPLEXITY ANALYSIS

With regard to the hardware implementation, there is not an unique measure of the
algorithmic complexity. Its definition has to be adapted depending on the application
domain where the system designed will be applied. The most common approach to
evaluate the algorithmic complexity consists in determining the number of elementary
operations performed by the algorithm. In [50], this approach is followed in order to
establish the complexity of the Max-Log-MAP algorithm. In this case, additions and
comparison-selections correspond to the elementary operations. In [51], in the con-
text of iterative processing, a normalization technique was applied where each addition,
subtraction and multiplication is converted into the equivalent number of one-bit full
additions. Therefore, the complexity of the receiver is expressed as a multiple of the
complexity of a one-bit full adder block. In [52], the algorithmic complexity is deter-
mined by the number of algorithmic operations that should be performed per time unit.

54CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

It is then expressed in Giga Operations Per second (GOPs). In [53], two metrics are
proposed to compare the algorithmic complexity of different Forward Error Correction
(FEC) schemes: one based on the arithmetic operations and the other on the storage
requirements per decoded bit.

2.1.2.2 ARCHITECTURAL COMPLEXITY ANALYSIS

The architectural complexity can be defined as the number of hardware resources, related
to a specific target technology, required to implement a given algorithm. For instance, if
an Application Specific Integrated Circuit (ASIC) target is considered, the area (in mm2)
is a direct measure of the architecture complexity. This area can also be given in terms
of the number of equivalent logic gates of the overall circuit. If a Field Programmable
Gate Array (FPGA) target is used, the complexity is therefore measured as the number
of functional units in the device that are occupied (RAM blocks, LUTs, Flip-Flops, etc).

It is possible to estimate the hardware complexity from the algorithmic complexity.
In this case, the complexity of each elementary operation is first established. Then, the
equivalent hardware complexity is computed by multiplying the number of operations by
their respective complexities. However, this approach is inaccurate because it assumes
that one hardware resource is assigned to each operation. This inaccuracy is specially
true for applications dominated by data transfer and with high storage requirements,
where the arithmetic computations play a secondary role in the overall complexity. In
this case, the hardware complexity should be obtained after logic synthesis.

2.1.2.3 ERROR DECODING PERFORMANCE

As presented in section 1.1.4, the performance of a digital communication system is
expressed in terms of its BER and FER for different SNR values. A turbo decoder
improves its performance during the iterative process. Classically, if no stop criterion is
applied, 6 to 8 iterations are performed by a turbo decoder, providing a good tradeoff
between the error correction capabilities and the time required to decode a frame. When
parallel turbo decoding process is considered, decoding performance degradation may
appear. To limit this degradation, additional iterations may be required, impacting
negatively the turbo decoder throughput.

In the context of high throughput architectures, a high parallelism level is neces-
sary. The designer should therefore especially consider the adverse impact on the error
decoding performance. In the literature, as presented hereinafter, some techniques are
proposed to palliate the performance degradation that may appear, keeping as low as
possible the number of additional iterations. However, in some cases, if high throughput

2.1. CONTEXT 55

is the most important constraint to achieve, some degradations with respect to a non
parallel architecture may be accepted. It depends on the design specifications in accord
with the application domain. In our study, we have defined a reference turbo decoder
architecture that does not exhibit any parallelism degree. Its decoding performance
is established for a fixed number of iterations. Then, the performance of the parallel
architectures is compared to that of this reference architecture.

2.1.2.4 METRICS ASSOCIATED TO THE ARCHITECTURE DESIGN

The use of some metrics helps to perform a fair comparison between different archi-
tectures so that the most appropriate solution can be selected. The use of algorithmic
complexity metrics for this purpose is not sufficient because important implementation
issues are not considered.

As stated in [54], the comparison of different decoder architectures is a challenging
task. This is specially true when a comparison of published decoder architectures is
made, since all the design information is usually not available. We introduce some useful
definitions to describe the turbo decoder architectures as follows.

Let I denote the number of iterations executed by a turbo decoder, and t the time
necessary to decode a frame. The architecture throughput, defined as the number of
decoded bits per time unit, depends on t. It can be expressed as:

Throughput = Th =
m · L

t
[Mbit/s] (2.1)

where m · L corresponds to the number of bits in a frame2. Let us consider a
reference turbo decoder architecture with Thr and tr the throughput and the frame
decoding time, respectively. This reference architecture does not have any parallelism
degree. Now, consider a parallel architecture with values Thp and tp. For these two
architectures, we denote the relative acceleration as:

A =
tr

tp

(2.2)

Let Cr and Cp be the architectural hardware complexities for the reference and the
parallel architecture, respectively. In order to achieve an increase in the turbo decoder
throughput (A > 1), the parallel architecture presents a higher hardware complexity. We
define the relative cost in terms of the hardware complexity between both architectures
as follows:

2Recall that m and L are the number of bits per information symbol and the number of symbols
per information frame, respectively.

56CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

ρ =
Cp

Cr

(2.3)

In [54], the importance of a good definition of the metrics to evaluate the efficiency
of FEC codes has been highlighted. In this work it has been shown how the use of
algorithmic complexity metrics, such as GOPs, is inconvenient for this purpose. Thus,
two metrics have been defined. One is based on the architecture energy efficiency, and
the other one on the hardware complexity (expressed as the overall circuit area in mm2)
efficiency. Since we do not consider the power consumption, in our study we only use
the complexity efficiency metric. It is defined as the achievable throughput per area unit:

η =
Th

C
[Mbit/s/mm2] (2.4)

This metric corresponds to an estimation about how well the hardware resources
are utilized by the architecture in order to provide high throughput rates. Since the
overall architectural complexity is considered, all the implementation issues such as the
memory size and data transfer are entirely considered. Furthermore, the proposed metric
is normalized to the number of information bits. Thus, this metric enables to compare
competing architectures since the hardware complexity efficiency is independent of the
type of operations and the data types used to execute the algorithm [54].

We have also defined the relative efficiency between two architectures by regarding
the complexity efficiency in (2.4):

E =
ηp

ηr

=
Thp · Cr

Cp · Thr

=
tr · Cr

tp · Cp

=
A

ρ
(2.5)

where ηr and ηp are the complexity efficiencies for the reference and the parallel
architecture, respectively.

The metrics and definitions introduced above are useful to assess the different turbo
decoder parallelism techniques and architectural solutions. We have defined absolute
metrics in (2.1) and (2.4) that can be use to compare published decoder architectures.
On the other hand, the relative expressions in (2.2), (2.3) and (2.5) help to estimate the
impact of the parallelism techniques as presented below.

2.2 PARALLEL PROCESSING IN TURBO DECODING

In [55], a multi-level classification of parallel turbo decoding techniques with three hi-
erarchical levels has been proposed: turbo decoder level parallelism, SISO decoder level
parallelism and metric computation level parallelism. These three levels are defined ac-
cording to the their granularity. Thus, the turbo decoder level parallelism exhibits a

2.2. PARALLEL PROCESSING IN TURBO DECODING 57

coarse-grained parallelism, while the metric computation parallelism level is fine-grained.
The SISO decoder level parallelism corresponds to an intermediate granularity value.
Following this classification, a complete review of the parallel turbo decoder techniques
is presented in the rest of this section. We also include a technique not considered
in [55].

2.2.1 PARALLELISM AT THE TURBO DECODER LEVEL

The parallelism at the turbo decoder level corresponds to a replication of the overall
turbo decoder architecture in order to simultaneously decode different frames. In this
case, even though a high acceleration is possible, the architectural complexity increase
becomes, for the most part of practical applications, unacceptable. This parallelism level
provides a linear increase in the throughput with a corresponding linear increase in terms
of hardware complexity. Therefore, the relative efficiency is E = 1.

Two approaches exist: concurrent frame approach and concurrent iteration approach.
In the former approach, multiples dedicated turbo decoders are assigned to decode
iteratively multiple information frames. In the latter approach, multiples iterations are
executed simultaneously for different information frames. In this case, the decoder
consists in a structure composed of 2 · I stages. The ith stage executes the ith half
iteration of a given frame. When it is completed, it executes the ith half iteration for
the next incoming frame. The architecture presented in [49] is based on this approach
for a 16-state double binary turbo code.

An intermediate parallelism level between the turbo decoder level and the SISO
decoder level (described in section 2.2.2) can also be proposed. In this case, the hard-
ware resources that are available are assigned, during their idle time, to process other
frames. In [56], a high throughput turbo decoder architecture exploiting this approach
is presented. An appropriate scheduling for the Max-Log-MAP algorithm is proposed
to process simultaneously two frames. Even though all the computation resources are
not duplicated, the architecture requires a duplication of the whole extrinsic and channel
memories, that represent the major hardware cost of the overall architecture.

2.2.2 PARALLELISM AT THE SISO DECODER LEVEL

In the case of parallelism at the SISO decoder level, multiples SISO decoders are assigned
to decode a frame. These SISO decoders work simultaneously, and each one is respon-
sible of the decoding operations over a set of transitions in the trellis diagram. There
are two approaches at this parallelism level: sub-blocks parallelism [57,58], and shuffled
parallelism [59]. Let P denote the number of SISO decoders that compose the turbo

58CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

decoder architecture. We consider a reference turbo decoder architecture with no par-
allelism at the SISO decoder level. This architecture executes Ir iterations. Therefore,
the frame decoding time can be expressed as:

tr ∝ L · Ir (2.6)

2.2.2.1 SUB-BLOCKS PARALLELISM

Considering the drawbacks that the sequential decoding approach presents, the sub-
block technique has been proposed in order to reduce the time required to perform
a half iteration. Thus, the frame to decode, composed of L symbols, is divided into
Q sub-blocks, each one having N = L/Q symbols. Therefore, the number of SISO
decoders should be P = Q to decode simultaneously all the sub-blocks. The sub-blocks
are processed in parallel in each order and between both orders sequentially. It means
that all the SISO decoders perform a half iteration and, when it is completed, all of them
perform a half iteration in the other order. This process is repeated iteratively until all
the iterations are executed.

Since the SISO decoder algorithms perform recursive operations along the trellis
diagram, the sub-blocks are not independent. Therefore, the sub-block processing im-
poses a major constraint: the sub-block initialization of state metrics in the limits of
each sub-block. A survey of sub-block initialization can be found in [60]. This work
is particularly oriented to the BCJR algorithm. However, the techniques can also be
applied to the SOVA as explained in [61]. Actually, three initialization methods have
been proposed: initialization by acquisition, initialization by message passing and initial-
ization by combining the two previous methods. They will be detailed in the rest of this
sub-section.

Initialization by Acquisition This initialization method enables to estimate the state
metrics values at the beginning of each sub-block by performing recursive computations
in the adjacent blocks. Figure 2.2 depicts this method for the BCJR algorithm. Over a
window of length AL (Acquisition Length) in the sub-blocks limits, forward and backward
recursive operations are performed. At the end of these recursions, β and α values are
estimated for the previous and next block, respectively. In Figure 2.2, the convolutional
code is assumed to be circular. Thus, the forward recursion in the last sub-block is used
to estimate α0(s), required to decode the first sub-block. Furthermore, the backward
recursion in the first sub-block defines βL(s) used in the last sub-block.

For this initialization, the frame decoding time is:

2.2. PARALLEL PROCESSING IN TURBO DECODING 59

0 L− 1N − 1

AL AL

2N − 1

α2N−1(s) β2N (s)
βL(s) α0(s)

Figure 2.2: Initialization by acquisition.

td ∝
(

L

Q
+ AL

)

Id (2.7)

where Id is the number of iterations. Therefore, the acceleration with respect to the
reference architecture with decoding time in (2.6) is:

A =

(

Q

1 + Q·AL
L

)

(

Ir

Id

)

(2.8)

If the acquisition and sub-block length are long enough, the degradation induced by
the sub-blocks parallelism can be neglected, and thus no additional iterations are required
(Ir = Id). Empirically, the acquisition length to avoid additional iterations should be
about 3 to 6 times the convolutional code constraint length [62,63].

Initialization by Message Passing In this method, also called Next Iteration Ini-
tialization (NII), the state metric values in the sub-blocks limits are initialized with the
state metrics computed in the adjacent sub-blocks during the previous iteration. For
the first half iteration, in the natural and interleaved order, the initial state metrics are
set to equiprobable values. In this case, no significative hardware resources or control
mechanism are required, contrary to the initialization method by acquisition. We have
the frame decoding time:

td ∝
(

L

Q

)

Id (2.9)

Consequently, the acceleration is:

A =
(

Ir

Id

)

Q (2.10)

60CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

The acceleration is proportional to the number of sub-blocks in the architecture.
However, if no performance degradation with respect to the reference architecture is de-
manded, additional iterations should be performed (Id > Ir), which limit the achievable
acceleration. The message passing method can be complemented by performing, during
the first iteration, recursive computations as in the acquisition method [64, 65]. Thus,
the number of additional iterations to overcome a decoding performance degradation
can be reduced.

In [60, 62] a thoroughly study has been carried out in order to establish the best
initialization method by considering their efficiency. We present the main conclusions
regarding this point as follows:

• The message passing method is more efficient than the acquisition method. It
is especially true when a high parallelism degree (large number of sub-blocks) is
considered.

• For a low number of sub-blocks, apply the acquisition method during only the
first iteration, and the message passing method in the rest of the iterations, is
convenient. It has a positive impact on the system efficiency due to the reduction
in the number of required iterations. This positive impact is more important for
high code data rates.

• When the parallelism degree increases, by augmenting the number of sub-blocks,
the acquisition operation during the first iteration is undesirable. In this case, since
the block size is small (high parallelism level), the time required to perform the
acquisition operation is comparable to the time required to decode each sub-block.
This fact is contrary to what is observed for a low parallelism degree, where the
acquisition time is, comparatively, negligible. Therefore, the benefits of a reduction
in the number of iterations have an important weight.

• In general, for all three initialization methods, the efficiency decreases with the
increase of the number of sub-blocks.

From a high throughput turbo decoding point of view, based in these conclusions,
the message passing initialization is the most attractive method to manage the state
metrics in the sub-blocks limits. Besides, since the acquisition operation during the first
iteration is only convenient for a low parallelism degree, its application should be avoided.
Thus, we can simplify some architectural constraints such as memory access problems
as described in Chapter 3.

2.2. PARALLEL PROCESSING IN TURBO DECODING 61

Figure 2.3: Shuffled turbo decoding principle.

2.2.2.2 SHUFFLED PARALLELISM

The basic idea of shuffled decoding is to decode both constituent convolutional codes
simultaneously, exchanging extrinsic values as soon as created between both orders.
Thus, each SISO component has faster access to update a-priori values, what would
enable a faster decoding algorithm convergence. It means that fewer iterations are
necessary to achieve the same BER performance with respect to a non-shuffled decoding
approach.

Figure 2.3 depicts the shuffled technique principle. SISO1 and SISO2 decoders are
assigned to operate in the natural and interleaved order, respectively. Along the de-
coding of their respective constituent convolutional codes, each decoder sends extrinsic
information to the other decoder, and receives from it information used as a-priori infor-
mation. During each half iteration, the extrinsic values for both orders are generated,
contrary to the sequential decoding process. Thus, the duration of a half iteration is the
same in the shuffled and sequential approach.

For this parallelism technique the frame decoding time is td ∝ L · Id. Consequently,
the acceleration is just the ratio between the number of iterations:

A =
Ir

Id

(2.11)

Since the convergence is improved, Id < Ir, an increase in the throughput is possible
[59,66,67]. Furthermore, sub-block and shuffled parallelism techniques can be combined.
Thanks to this combination, several SISO decoders work simultaneously on different sub-
blocks in the natural and interleaved domain. This approach is shown in Figure 2.4, were

62CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

SISON
1

SISON
2

SISON
Q

Ie

Ia

Ψ(Φ, i)

SISOI
1

SISOI
2

SISOI
Q

Figure 2.4: Architecture based on shuffled and sub-block parallelism.

SISON
i and SISOI

i , for 0 < i ≤ Q, are the decoders in the natural and interleaved
order, respectively. An extrinsic memory is necessary to transfer extrinsic values between
the decoders in both orders. Two permutation networks are also necessary in order
to provide interleaver and de-interleaver functions. In this figure, the message passing
method is used to manage the state metric initialization of each sub-block.

The reduction in terms of iterations provided by a shuffled architecture, is possible
thanks to the duplication of the number of SISO decoders with respect to a sequential
decoder. Thus, the benefits of a shuffled architecture over a sequential one are not
easy to spot. Let us detail this point. The number of SISO decoders in a Q sub-block
sequential turbo decoder is Psequential = Q. In this case, the same set of SISO decoders
can be used to decode both orders. With the same hardware cost, without considering
any extrinsic memory issue, it is possible to build a shuffled architecture having Q/2
sub-blocks. Thus, Pshuffled = Psequential = Q SISO decoders are required. In this case,
the shuffled architecture would require less iterations than the sequential architecture to
achieve the same decoding performance. However, since there are more sub-blocks in
the sequential architecture, a sequential half iteration is executed faster than a shuffled
half iteration. Therefore, the architecture that provides the best throughput-hardware
complexity relation is not straightforward determined.

In [68], sequential and shuffled turbo decoder architectures have been compared by
considering their efficiency. In this work, it has been concluded that for a low parallelism
degree (low number of SISO decoders) the sequential architectures exhibit a higher
efficiency compared with the shuffled architectures. However, when the parallelism grows,
for a certain number of sub-blocks, the shuffled architecture becomes more efficient.
Thus, if we need a high number of SISO decoder to build a hight throughput turbo
decoder, we would prefer to distribute them in the natural and interleaved order to

2.2. PARALLEL PROCESSING IN TURBO DECODING 63

design a shuffled decoder, rather than design a sequential decoder, where all the SISO
decoders work in only one order at the same time. This conclusion is reached with
an analysis performed at the algorithm level, without regarding important architectural
issues that arise when the system is implemented. Indeed, the work in [68] targets a
flexible multi-ASIP architecture. Since in our work we consider specific architectures, we
have to be careful to establish the convenience of shuffled decoders.

2.2.3 PARALLELISM AT THE METRIC LEVEL

This level of parallelism considers the operations performed inside each SISO decoder.
Thus, by exploring the trellis diagram structure and the SISO decoder algorithm prop-
erties, it is possible to reduce the sub-block execution time. Let us first consider the
parallelism that can be extracted from the trellis diagram structure. The SISO decoder
algorithms, during each transition in the trellis diagram, execute a set of identical opera-
tions for each convolutional encoder state. Since these operations are independent, they
can be executed in parallel. We can then assign 2p blocks that perform these operations
for each state.

Regarding the SISO decoder algorithm, the first high speed SISO decoder architec-
tures were proposed in [69,70] for nonsystematic codes, and later extended to recursive
systematic codes in [71, 72]. In these works, high parallel high pipelined structures that
provide real time characteristics are proposed. However, due to their high hardware
complexity, we do not consider this solution any further in this document3. We describe
parallel SISO decoding techniques that increase the throughput rate for an acceptable
complexity in the following sections.

2.2.3.1 RADIX-2NT PARALLELISM TECHNIQUE

All the SISO decoder algorithms are based on recursive computations through the trellis
diagram. For the BCJR, Log-MAP and Max-Log-MAP algorithms, these computations
are performed in the forward and backward directions, while for the Viterbi algorithm
they are only performed in the forward direction. This recursive property is the bottleneck
for a high throughput implementation of convolutional decoding algorithms. Thus, it
plays a major role to achieve high turbo decoding throughput rates.

The implementation of the recursive operations for the Log-MAP algorithm can be
carried out with the architecture presented in Figure 2.5, first shown in Chapter 1,

3In chapter 5 we present an idea based in these works that can be explored as a long term perspective
of our work

64CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

y

x

x− y

Figure 2.5: Architecture for the implementation of the function max∗ (x, y).

that performs the computation of the max∗ function. On the other hand, the Max-
Log-MAP and Viterbi algorithm recursive operations can be implemented with the so
called Add Compare Select (ACS) unit as already mentioned in section 1.3.1.1, that
can be build from the architecture in Figure 2.5 by eliminating the LUT. Since the ACS
unit implements a feedback loop, pipelined architectures do not increase the decoding
speed. However, a pipelined ACS unit can be employed in order to reduce the hardware
complexity of a decoder implementing the sub-block technique, as proposed for instance
in [73, 74] and [50, Ch. 5]. In this case, the pipelined ACS unit can be shared between
as much sub-blocks as the number of pipeline stages.

In order to effectively break the bottleneck imposed by the ACS unit, the Radix-2NT

technique can be applied4 [37, 56, 75–81]. This technique consists in processing during
each clock cycle NT transitions in the trellis diagram. Thus, if the critical path of the
resulting Radix-2NT ACS unit is lower than NT times the critical path of a non parallel
ACS unit (radix-2), a gain for the decoding speed is achieved. Furthermore, since only
the state metric values corresponding to time k multiple of NT are computed, the size
of the state metric memories can also be reduced. This memory reduction is achieved
with a corresponding increase of the ACS unit complexity.

2.2.3.2 MAP ALGORITHM PARALLELISM: ALGORITHM SCHEDULES

A parallel execution of the BCJR algorithm can be achieved by considering the schedule
in which the main computations α, β and extrinsic information are performed. Since
the SISO decoding algorithms are intrinsically recursive and data dependent, some con-
straints are imposed in order to define valid schedules. In section 1.3.2.4 two straightfor-
ward schedules for the BCJR algorithm have been introduced: Backward-Forward and
Butterfly schedules. In this section, we present two additional schedules that have been
proposed in order to improve the convergence of shuffled turbo decoder architectures.

4This parallelism technique has not been originally included in the parallelism level classification
proposed in [55].

2.2. PARALLEL PROCESSING IN TURBO DECODING 65

N

N/2

t

S
ym

b
ol

s

Half iteration i Half iteration i + 1

β values for half iteration i + 2
β values from half iteration i

β values half iteration i + 1

Figure 2.6: Butterfly-Forward schedule.

Let us consider a shuffled turbo decoder with an arbitrary number of sub-blocks.
During a half iteration, the shuffled technique seeks to provide to each SISO decoder
updated a-priori values that help to improve the efficiency of the decoding algorithm
computations. For the information symbol di, this objective can be achieved if the
updated a-priori values are available when:

• The state metrics related to di (αi(s) or βi+1(s)) are computed.

• The extrinsic value for di is calculated.

The Backward-Forward and Butterfly schedules generate extrinsic information only
in the second half of the sub-block decoding process. Thus, during the first half the
use of the shuffled technique does not provide any advantage. In the second half of
the sub-block decoding process, extrinsic values are generated and exchanged between
SISO decoders in both domains. However, this exchange may not benefit the most part
of the symbols in the sub-block. To solve this problem, two additional schedules have
been proposed. These schedules perform an intensive exchange of extrinsic information
all over the sub-block decoding process.

Figure 2.6 depicts the Butterfly-Forward schedule [62]. At the beginning of the de-
coding process, β values for the first half of the sub-block (from symbol 0 to symbol
N/2), computed during the previous half iteration, are stored in the state metric mem-
ory. Then, the α and β recursions are performed simultaneously. In parallel, thanks to
the β values available in memory, extrinsic values are generated in the forward direction.

66CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

N

N/2

t

S
ym

b
ol

s

Half iteration i Half iteration i + 1

β values half iteration i + 1

α values half iteration i + 1

α values for half iteration i + 2

β values for half iteration i + 2

Figure 2.7: Butterfly-Replica schedule.

When the decoding process overpasses the half of the sub-block (symbol N/2), extrin-
sic values are computed with the β values that have been calculated in the backward
recursion process during the current half iteration. Note that β values for the first half
of the sub-block are stored so that they can be used in the next half iteration. In Figure
2.7, the Butterfly-Replica schedule is shown. In this schedule extrinsic values are contin-
uously generated during all the sub-block decoding process in the forward and backward
direction. Thus, for each information symbol, two extrinsic values are generated.

Replica schedules have been introduced in [66]. They consist in producing more
than one extrinsic value for each information symbol. The schedule presented in this
last work is different of the schedule given in Figure 2.7. In [66], the proposed schedule
corresponds to the simultaneous execution of the schedules Backward-Forward (Figure
1.19(a)) and Forward-Backward (α computation is carried out prior to β computations).
Thus, the decoding time for this schedule is twice by comparison with the Butterfly-
Replica schedule decoding time. Because of this larger decoding time, this schedule is
not considered any further in this document.

The different schedules presented so far can be implemented using the three main
hardware units:

• Branch Metric Unit (BMU): used to compute the state metric transition γk(s, s′).

• ACS unit.

2.2. PARALLEL PROCESSING IN TURBO DECODING 67

Schedule Nb. of BMU Nb. of ACS Nb. of SOU Mem. Size

Backward-Forward 1 1 1 N
Butterfly 2 2 2 N

Butterfly-Forward 2 2 1 N/2
Butterfly-Replica 2 2 2 N

Table 2.1: Required hardware units and state metric size for radix-2 to implement the
different SISO decoding schedules.

• Soft Output Unit (SOU): in charge of the computation of the extrinsic information
and of taking the hard decoding decisions.

These hardware units will be detailed in Chapter 3. Here, we restrict ourselves to
indicate each schedule implementation complexity by considering the number of required
hardware units, as presented in Table 2.1. In this table, the state metric memory size
is also given. In terms of hardware units required, the Backward-Forward schedule is
the less complex. This happens since this schedule does not increase the parallelism
of the BCJR algorithm schedule. The other three schedules require two BMUs and
two ACS units due to the parallel execution of the forward and backward state metric
recursions. Note that for the Butterfly and Butterfly-Replica schedules, two SOUs are
also required since two extrinsic values are generated simultaneously. Regarding the
state metric memory size, the Butterfly-Forward schedule exhibits the lower hardware
complexity. This schedule requires a memory block size equal to the half of the sub-block
size (maximum shaded area heigh in Figure 2.6) while for the other schedule the state
metric memory size should be equal to the sub-block size.

For all the four schedules, the decoding delay and memory requirements grow linearly
with the sub-block size. Thus, for a large sub-block size N , the decoding delay, and
specially, the memory requirements may be prohibitive in practical decoder implementa-
tions. To overcome this problem the sliding window technique has been proposed. Note
that it can be applied to the BCJR algorithm [82,83] and to the Viterbi algorithm [84] as
well. For the sliding window technique, the sub-block is divided into different windows,
each one is composed of W symbols. Consecutive windows are decoded sequentially,
and thus, the same hardware blocks can be used to decode all the windows. Since the
window size is usually much lower than the sub-block size, the state metrics memory
can be significantly reduced.

Figure 2.8 depicts the Butterfly schedule when the sliding window technique is ap-
plied. Since four sliding windows are used, the required state metric memory size is
W = N/4. In this figure the black dots • and black squares � represent respectively the
initial forward and backward state metric values in the window limits. The black dots

68CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

N

t

N/2

W

Half iteration 1 Half iteration 2

Figure 2.8: Sliding window technique considering the Butterfly scheduled.

also represent the initial state metrics in the sub-block limits, computed with one of the
methods as described in section 2.2.2.1. Note that the computation of α is performed
continuously through the sub-block length, what is not possible in the β computation.
Thus, appropriate initial β values for each window have to be estimated. In figure 2.8
two methods are shown for this purpose. In the first half iteration, an initialization by
acquisition is performed, while in the second half iteration a message passing technique
is applied.

The window size and the state metric initialization method have an impact on the
decoder performance. For a small window size, the initialization by acquisition is required
during each half iteration in order to avoid an important performance degradation [85,
86]. In this case, the decoding speed is negatively affected. In the context of high
throughput turbo decoders, the acquisition operation is avoided, using the message
passing initialization instead. In [87], adjacent windows are not processed sequentially,
so that the next half iteration in the other domain can be started at the end of the
current half iteration, as originally proposed in [88].

2.2.4 GATHERING PARALLEL TURBO DECODING TECHNIQUES

Let the 4-tuple Φξ,NT

Q,Sp
= {Q, Sp, ξ, NT} denotes a parallel turbo decoder architecture,

with Q ≥ 1 representing the number of blocks in the natural and interleaved order,
Sp the shuffled (Sh) or not shuffled (NoSh) parallelism, ξ the SISO decoder schedule
-Backward-Forward schedule (B-F), Butterfly schedule (B), Butterfly-Forward schedule
(B-FW) or Butterfly-Replica schedule (B-R)-, and NT the number of transitions that

2.2. PARALLEL PROCESSING IN TURBO DECODING 69

the ACS unit executes during each clock period (radix-2NT).

We consider the reference turbo decoder architecture Φr = ΦB,1
1,NoSh, i.e. the turbo

decoder is composed of one SISO decoder implementing the Butterfly schedule, and with
no parallelism at any other level. After I(Φr) iterations, this turbo decoder provides a
decoding performance that will be taken as reference. Thus, in an ideal scenario, a paral-
lel decoder Φ should have at least the same decoding performance after I(Φ) iterations.
For this parallel architecture, let t(Φ) denote the time required to decode a frame and
A(Φ) = t(Φr)/t(Φ) its acceleration. Besides, C(Φ) and ρ(Φ) = C(Φ)/C(Φr) are the
architectural complexity and relative complexity, respectively. Let τ(Φ) be the ACS unit
critical path. Therefore, τ(Φ)/NT is the time required to execute one transition in the

trellis diagram. Thus, the frame decoding time is t(Φ) = 2·I(Φ)·τ(Φ)·L
Q·NT

. Consequently,

from (2.1), the architecture throughput can be expressed as follows:

Th(Φ) =
m ·Q ·NT

2 · I(Φ) · τ(Φ)
=

m ·Q ·NT · fclk

2 · I(Φ)
(2.12)

where fclk is the architecture clock frequency. We assume that all the different
turbo decoder blocks are pipelined, so that the ACS unit critical path corresponds to the
decoder critical path. The message passing method has been selected when the sub-
block parallelism is used. For this reason, the acquisition length AL does not appear in
(2.12). The turbo decoder architectural complexity can be expressed as follows [54,62]:

C(Φ) = Cctl

+ Cnet(Q, S, NT)

+ P · CSISO(ξ, NT , W)

+ Cmem(Q, NT , S, L, W)

(2.13)

Cctl is the control logic complexity which is usually smaller compared to the other
terms. Cnet is the complexity due to the interconnection network between the SISO
decoders and the memory banks. CSISO is the SISO decoder complexity. It is multiplied
by the number of SISO decoder that are used in the architecture. Finally, Cmem denotes
the memory complexity. It encompasses the extrinsic memory complexity Cext

mem, the
channel information memory complexity Cchannel

mem , and internal SISO decoder memory
complexity5 CSISO

mem :

5The internal SISO memory corresponds to the state metric memory used to store α and β, and to
the memories used to temporally store a-priori values, as described in Chapter 3.

70CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

Cmem(Q, NT , S, L) =Cext
mem(Q, NT , S, L)

+Cchannel
mem (Q, NT , S, L)

+P · CSISP
mem (ξ, NT , W)

(2.14)

Note that the channel and extrinsic memories complexity do not only depend on the
frame length L, but also on the parallelism at the SISO decoder level and the radix value.
Indeed, different memory blocks should be assigned in order to solve memory conflicts.
Thus, the complexity of the resulting memory structure is more complex than a single
memory that has the same storing capabilities.

In the next section we present a study of the convergence properties of turbo decoders
implementing the parallelism techniques described in this section.

2.3 CONVERGENCE OF PARALLEL TURBO DECODERS

The information exchanged during the iterative turbo decoding process is not easy to
analyze and to describe. A useful technique to help the designer is the EXtrinsic In-
formation Transfer (EXIT) chart [89]. Unfortunately, this method cannot be directly
applied to the decoding convergence analysis if parallel processing has to be exploited
for the design of turbo decoders. In this section, an extension of the EXIT chart method
is proposed in order to take into account the constraints introduced by parallel turbo
decoder architectures. The corresponding analysis associated with Monte-Carlo simula-
tions gives additional understanding of the convergence process for parallel turbo decoder
architectures. The results presented in this section have been published in [90].

In section 2.3.1 we present the basic concepts related with the EXIT charts. After-
wards, in section 2.3.2, an extension of the EXIT chart method to analyze parallel turbo
decoders is introduced. In section 2.3.3 parallel turbo decoder schemes are analyzed
considering their transfer characteristics. Note that a modified schedule for shuffled
turbo decoders is also proposed.

2.3.1 THE EXIT CHARTS

The EXIT charts are a useful kind of diagram proposed to analyze the convergence
process of iterative decoding systems. It is assumed that both channel observations
and extrinsic values can be modeled as conditional Gaussian random variables. Let
Lc, Le and La denote respectively the channel information (systematic and redundant
bits), the extrinsic information and the a-priori information. Since an AWGN channel is

2.3. CONVERGENCE OF PARALLEL TURBO DECODERS 71

assumed, we can express the channel information as: Lc = p(r|u=+1)
p(r|u=−1)

= 2
σ2

n
(u + η), with

η ∼ N (0, σ2
n). Moreover, it can be expressed as follows:

Lc = µc · u + ηc (2.15)

with µc = 2/σ2
n and ηc being Gaussian distributed with mean zero and variance

σ2
c = 2 · µc. This last equation corresponds to the consistency condition6 [91]. By a

similar analysis the next equation for the a-priori information can be derived:

La = µa · u + ηa (2.16)

where σ2
a = 2 ·µa. Hence, the consistency condition is also satisfied. Equation (2.16)

is based on two observations:

• The a-priori values La can be assumed as uncorrelated from the channel observa-
tions Lc over many iterations.

• The extrinsic values Le are Gaussian distributed.

Let Ia denote the mutual information between the information bits d and the a-
priori information. Besides, let Ie be the mutual information between d and the extrinsic
information Le. The transfer function that defines the relation between Ia and Ie is
denoted by:

Ie = Y (Ia, Eb/N0) (2.17)

The EXIT chart consists then in the plotting of Ie vs Ia for the natural and interleaved
orders. For a sequential turbo decoder, since both constituent convolutional codes are
identical, a transfer characteristics of only one domain can be plotted. Then, the transfer
characteristics in the other domain is found by swapping the axes. In order to eliminate
possible tail effects due to the code termination, a long information frame should be
used during the computation of the mutual information.

2.3.2 EXIT CHART DIAGRAM EXTENSION

Figure 2.9 shows a scheme that illustrates the transfer characteristics computation as
presented in [67], by Monte-Carlo simulation, considering a no parallel turbo decoder.
In this figure, Lc and La are given by (2.15) and (2.16) respectively, and they satisfy
the consistency condition. The SISO decoder receives Lc and La and performs the

6A Gaussian density distribution is say to be consistent iff its mean µ and variance σ2 meet the
equation: σ2 = 2 · µ.

72CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

d

σc

σa

c Lc

La

Le

Figure 2.9: Scheme that illustrates the computation of the transfer function by Monte-
Carlo simulation of a turbo decoder.

decoding operations in order to generate the extrinsic information Le. Then, the mutual
informations is calculated and the EXIT chart can be plotted.

In the following we consider that W = N , i.e. the sliding windows technique is not
applied. Let us consider the turbo decoder architecture Φξ,NT

1,NoSh, i.e. a turbo decoder
with any SISO decoder schedule ξ and without any parallelism at the SISO decoder level.
For this particular case, the mutual information can be computed as shown in Figure 2.9,
with the transfer function in (2.17). For a shuffled turbo decoder Φξm,NT

1,Sh with a SISO
decoder schedule ξm ∈ {B-F, B} the transfer function in (2.17) holds as well. However,
the structure for computing the transfer function should be modified. In [67] a method
to generate EXIT charts of shuffled turbo decoders has been introduced. Three Gaussian
random noise generators are used: one for the channel information and two others to
generate the a-priori information. Thus, in Figure 2.9, we can no longer consider only
one SISO decoder. We have to replace it by the whole shuffled turbo decoder.

Regarding, the sub-block parallelism in shuffled or not shuffled schemes, (2.17) is
not valid anymore. Similarly, this equation cannot be applied to schedules B-FW and
B-R with a shuffled parallelism. For these configurations, some values have to be kept
during each half iteration in order to execute the next half iteration. It means that the
transfer function has to take into account the dependency on additional parameters.

Let Ψ(Φ, i) denote the state of a turbo decoder Φ at the beginning of the half
iteration i. For a sub-block parallelism, Ψ(Φ, i) represents the initial state metric values
α and β in the limits of the sub-blocks (dots • in the schedule diagrams). If schedules
B-FW or B-R are considered, Ψ(Φ, i) also symbolizes α and β values inside the sub-
blocks at the beginning of the decoding process of each half iteration (height of the
shaded area at the beginning of each half iteration in Figures 2.6 and 2.7). Thus, the

2.3. CONVERGENCE OF PARALLEL TURBO DECODERS 73

expression of the transfer function becomes:

Ie = Y (Ia, Eb/N0, Ψ(Φ, i)) (2.18)

Figure 2.4 depicts the transfer of information in a parallel turbo decoder architecture.
For each SNR value, we obtain a set of transfer curves that depends on the half iteration
i. Thus, the transfer function between the input and the output of the SISO decoders
in each order depends on the initial turbo decoder state Ψ(Φ, i) at the beginning of the
half iteration i. This initial state corresponds to the final turbo decoder state at the
end of the iteration i − 1. We can then find the mutual information as presented in
the algorithm 2. This process is repeated a sufficient number of times. Afterwards, one
point in the EXIT chart, corresponding to the mutual input information I ′

a, is found by
taking the average mutual information at the output for each iteration i. Taking the
average of the mutual information is justified. It was also done in previous works [51,92].

Algorithm 2 - Mutual information computation

for a particular mutual information I ′
a do

Set the initial conditions Ψ(Φ, 0) (α and β values are set to equiprobable values)
for i = 0 to maximum number of iterations do

Generate a-priori information corresponding to a mutual input information I ′
a

Perform a half turbo decoder iteration
Compute mutual information Ie

Set Ψ(Φ, i + 1) to the actual turbo decoder state
end for

end for

Recall that the EXIT chart method assumes that the extrinsic values produced by
the SISO decoders have a Gaussian probability density distribution that satisfies the
consistency condition. This Gaussian distribution assumption is valid for large frames.
However, for short frames, the Gaussian distribution does not hold. In [93] it was
observed that for short frames the extrinsic values have a distribution with two modes.
This not Gaussian distribution is more evident for SNR values in the water-fall region
and for a high number of iterations. Nevertheless, in [93] it is observed that for each
channel realization the extrinsic values have a roughly Gaussian histogram with mean
and variance that depend on the seed used to generate the channel noise values. Besides,
applying a normalization technique, it is shown how the extrinsic values for a channel
realization can be considered a realization sequence of a Gaussian random variable with
the consistency property. Therefore, the transfer characteristics have to be defined for
each seed that defines the channel realization. Considering these observations, in [94]

74CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

the EXIT band charts are proposed. These EXIT charts are composed of a band that
contains the transfer characteristics for all the possible channel realizations. The band
is depicted by using the mean and the standard deviation of the transfer characteristics.

Thus, when sub-blocks parallelism is considered, with shuffled or non-shuffled paral-
lelism, the Gaussian assumption is not very accurate. However, each sub-block can be
considered as a SISO decoder working on a short frame, where the Gaussian assumption
holds for each channel realization. Thus, the EXIT charts that we propose, correspond
to the mean values of the EXIT band charts proposed in [94].

Figure 2.10(a) shows the extrinsic information transfer characteristics for several
iterations of the LTE turbo decoder with parallelism ΦB,1

128,NoSh
at Eb/N0 = 1dB, for a

frame size L = 6144 and a code rate R = 1/2. During the first iteration, the mutual
information at the output is never equal to one, not even when the mutual information
at the input is maximal. Iteration after iteration, the transfer characteristics improve so
that the turbo decoder converges. When few iterations are performed, the metrics in
the limits of the sub-blocks after each iteration (Ψ(ΦB,1

128,NoSh
, i)) are not good enough.

Hence, even with a perfect knowledge of the information to decode (Ia = 1) at the
input of the SISO decoders, the decision taken is wrong (Ie < 1). As more iterations
are executed, better values for Ψ(ΦB,1

128,NoSh
, i) are obtained, which enables the turbo

decoder to converge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ia1, Ie2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I e
1
,
I a

2

1 It

2 It

3 It

4 It

5 It

10 It

15 It

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ia1, Ie2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I e
1
,
I a

2

1 It

2 It

3 It

4 It

5 It

10 It

15 It

(b)

Figure 2.10: (a) EXIT chart for a SISO decoder. (b) Decoding trajectory. (Parallelism
ΦB,1

128,NoSh
, Eb/N0 = 1dB, L = 6144 bits).

2.3. CONVERGENCE OF PARALLEL TURBO DECODERS 75

The decoding trajectory for the turbo decoder ΦB,1
128,NoSh

is given in Figure 2.10(b).
For convenience the turbo decoder characteristics are only shown for some particular
iterations. Each transfer curve is plotted up to its first intersection. The decoding
trajectory is thus plotted by “jumping” between the different transfer curves as the
iterations are carried out. Thus, the EXIT chart or decoding trajectory of any parallel
turbo decoder Φ can be plotted. In this way, convergence of any parallelism scheme can
be analyzed.

2.3.3 EXIT CHART BASED ANALYSIS

Let us consider the reference architecture Φr = ΦB,1
1,NoSh. The BER performance of this

architecture after I(Φr) = 8 iterations is taken as reference for an unconstrained turbo
decoding process. This performance is within 0.1dB compared to that achieved by an
ideal turbo-decoding algorithm compliant with the LTE standard. Thus, any parallel
turbo decoder Φ has to achieve similar BER performance after I(Φ) iterations.

2.3.3.1 SUB-BLOCKS PARALLELISM

The convergences of the turbo decoders Φr, ΦB,1
32,NoSh, ΦB,1

128,NoSh and ΦB,1
512,NoSh, at

SNR = [0.75dB, 1dB], are shown in Figure 2.11. For SNR = 1dB, the num-
ber of iterations required for no BER performance degradation are I(ΦB,1

32,NoSh
) = 9,

I(ΦB,1
128,NoSh

) = 11, I(ΦB,1
512,NoSh) = 20, for each parallel decoder, respectively. Therefore,

the sub-blocks technique reduces the decoder convergence, and thus, it is necessarily to
execute more iterations to overcome the degradation that is introduced. However, since
the duration of an iteration is reduced when more sub-blocks are employed, it is still
possible to increase the turbo decoder throughput.

EXIT charts of the different parallel turbo decoders for whom convergence has been
shown are presented in Figure 2.12. The EXIT chart at SNR = 0.75dB of the archi-
tecture Φr is depicted in Figure 2.12(a). For this SNR value, the diagram just starts
to open. It corresponds to the beginning of the water-fall region. The decoding trajec-
tory of the turbo decoder ΦB,1

512,NoSh for different iterations is plotted as well. Note that
additional iterations are necessary. Figure 2.12(b) shows the decoding trajectories of
turbo decoders with sub-block parallelism for SNR = 1dB. The decoding trajectory of
ΦB,1

32,NoSh is very close to the one that would follow Φr. For thirteen iterations, the BER

performance of ΦB,1
512,NoSh is worse than that of ΦB,1

32,NoSh with six iterations, which is also

worse than that of ΦB,1
128,NoSh with eight iterations. Coherent results between Figure 2.11

and Figure 2.12(b) confirm the correctness of the decoding trajectories that have been
plotted as described in section 2.3.2.

76CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

1e−03

1e−02

1e−01

2 4 6 8 10 12 14 16 18 20 22 24

B
E

R

Iterations

1dB

0.75dB
Φr

Φ
B

32,NoSh

Φ
B

128,NoSh

Φ
B

512,NoSh

Figure 2.11: Convergence of turbo decoders with sub-block parallelism (L = 6144 bits).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ia1, Ie2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I e
1
,
I a

2

Φr

Φ
B

512,NoSh

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ia1, Ie2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I e
1
,
I a

2

Φr

Φ
B

32,NoSh

Φ
B

128,NoSh

Φ
B

512,NoSh

Φ
B

32,NoSh
, 6It

Φ
B

128,NoSh
, 8It

Φ
B

512,NoSh
, 13It

(b)

Figure 2.12: a) Decoding trajectory for ΦB,1
512,NoSh

at 0.75dB. b) Decoding trajectories
for 32, 128 and 512 sub-blocks no shuffled turbo decoders.

2.3.3.2 SHUFFLED PARALLELISM

Convergence of shuffled turbo decoders Φξn,1
1,Sh with schedule ξn ∈ {B, B−FW, B−R}

is shown in Figure 2.13. B-R schedule reduces significantly the number of iterations

2.3. CONVERGENCE OF PARALLEL TURBO DECODERS 77

1e−03

1e−02

1e−01

1 2 3 4 5 6 7 8 9 10 11 12

B
E

R

Iterations

1dB

0.75dB
Φr

Φ
B

1,Sh

Φ
B−FW

1,Sh

Φ
B−R

1,Sh

Figure 2.13: Convergence of shuffled turbo decoders (L = 6144 bits).

(almost to the half with respect to Φr). B and B-FW schedules have similar behaviors.
However, the latter needs about one additional half iteration. For low SNR values both
schedules behave almost identically.

Shuffled turbo decoders EXIT charts for SNR = 1dB are presented in Figure
2.14(a). EXIT chart of ΦB,1

1,Sh
is wider than the EXIT chart of Φr. For the B-R schedule

the decoding trajectory exceeds that of the Butterfly schedule in shuffled mode (ΦB,1
1,Sh

).

Even if ΦB,1
1,Sh and ΦB-R

1,Sh behave similarly after the first half iteration, the decoding trajec-

tory of the B-R schedule moves forward faster. ΦB-FW,1
1,Sh

presents the worst characteristics
to reduce the number of iterations. This occurs mainly due to the poor behavior during
the very first half iteration. Since during this half iteration β values of the first half
of the sub-block are unknown (Figure 2.6), the a-posteriori values generated during the
decoding of this part of the sub-block are not appropriate. After the first half iteration,
all values α and β of the sub-block are properly calculated, and the decoding trajectory
of the schedule B-FW tries to approach that of the EXIT chart of ΦB,1

1,Sh. However, the
decoding trajectory cannot reach that of the Butterfly schedule and keeps at about one
half iteration lower. This behavior does not appear for ΦB-R,1

1,Sh . Indeed for the schedule
B-R, the a-posteriori values are computed with appropriate α and β values calculated
during each half iteration.

Since the EXIT chart (or the corresponding trajectory) for the shuffled architecture
is wider than the EXIT chart of the reference architecture, shuffled turbo decoders
reach the region of waterfall at lower SNR values with respect to non-shuffled turbo
decoders. Figure 2.14(b) illustrates how the decoding trajectory with schedule B-R can

78CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ia1, Ie2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I e
1
,
I a

2

Φr

Φ
B

1,Sh

Φ
B−FW

1,Sh

Φ
B−R

1,Sh

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ia1, Ie2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I e
1
,
I a

2

Φr

Φ
B

1,Sh

Φ
B−R

1,Sh

Φ
B−R&B

1,Sh

(b)

Figure 2.14: a) Decoding trajectories for shuffled turbo decoders at 1dB. b) Decoding
trajectories for schedules B-R, B and a combination of both at 0.75dB.

easily converge where the EXIT chart of Φr becomes tight. Even more, for ΦB,1
1,Sh the

EXIT chart is slightly wider than the EXIT chart of Φr. It can be seen however that the
decoding trajectory of ΦB-R,1

1,Sh narrows for high mutual input information.

When the schedule B-R is applied, at the beginning of each half iteration, α and
β values inside the sub-block correspond to the initial state of the turbo decoder. If
those values are not enough accurate, they might prompt decoding errors even though
the mutual information at the input of the SISO decoder is high. This behavior is
similar to the one observed in Figure 2.10(a), where not so good α and β values in the
sub-block limits lead to errors in the early iterations for high input mutual information.
No similar result is observed for ΦB,1

1,Sh since no initial values are kept from iteration
to iteration. By taking into account this result, a new schedule can be proposed. It
consists in employing B-R schedule during the early iterations, and then switching to
Butterfly schedule. The decoding trajectory obtained for this new schedule (B-R&B) is
presented in Figure 2.14(b) where after 5 iterations the schedule is switched from B-R to
B. Indeed, during the first 5 iterations the decoding trajectories of ΦB−R,1

1,Sh and ΦB−R&B,1
1,Sh

are similar. Thus, fast convergence can be achieved, and since the hardware resources
are the same for both schedules, no additional hardware complexity is required.

2.4. EXPLORING SOVA BASED TURBO DECODERS 79

Butterfly-Replica schedule in shuffled iterative receivers As a collaboration work
with Salim Haddad, a Ph.D student at the electronic engineering department of Telecom
Bretagne, we have studied the convenience of using the B-R schedule in shuffled iterative
receivers. The results of this work have been published in [95]. We consider a full
shuffled receiver. It consist in a shuffled sub-block turbo decoder with shuffled iterative
demapping. In this case, when the B-R schedule is implemented by the SISO decoders,
a reduction in the number of arithmetic operations is observed with respect to the B
schedule. Details of this work are no longer discussed in this document. The reader is
referred to [95] for additional information.

2.4 EXPLORING SOVA BASED TURBO DECODERS

In this section, we present a general view of the SOVA as SISO decoder algorithm for
turbo decoder architectures. The main motivation to consider the SOVA is its lower
hardware complexity compared to Max-Log-MAP algorithm implementations. Thus, for
a given area budget, a larger number of SOVA based SISO decoders could be imple-
mented compared to the number of Max-Log-MAP based SISO decoders that would fit
in the same area. In this way, a higher sub-block parallelism degree would be possible.
Considering a binary code (m = 1), the Max-Log-MAP algorithm exhibits about twice
the complexity of the SOVA [96]. However, for double binary codes (m = 2), the SOVA
is not attractive from a hardware complexity point of view since its hardware complexity
is comparable to the Max-Log-MAP algorithm implementations [97].

Since the introduction of the SOVA, different works have been carried out in order
to design VLSI SOVA based SISO decoders [28,98,99]. However, the main drawback of
these works in practical applications is the poor BER decoding performance. Indeed, a
degradation of 0.7 dB or more for the SOVA based turbo decoders compared to MAP
based turbo decoders is classically observed.

In this section we present the results obtained in order to improve the decoding
performance of SOVA based turbo decoders, so that they can be considered as a valid
alternative for practical implementations. We explore binary and double binary turbo
decoders. At the beginning of the section we briefly present the SOVA decoder structure.
Then, the approach selected to improve the error correction performance is shown.

2.4.1 OVERVIEW

The architecture of a VA decoder is composed of three main blocks as presented in
Figure 2.15. The BMU computes the state metric transition Mγ(·, ·) between each pair
of states in the trellis diagram. The ACS unit decides for the survivor path at each

80CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

r Mγ(·, ·) ddec(s) d̂

Figure 2.15: VA block diagram.

state s and outputs the corresponding decision bits ddec(s). These decisions are then
processed by the Survivor Memory Unit (SMU) which can find the paths associated to
each state. Then, it traces back all the paths until they all merge together.

A SOVA decoder can be built with the same structure of a hard decoding VA.
However, it is necessary to add to the SMU the update process of soft information as
described in section 1.3.1.2. Besides, the ACS unit has to compute the path metric
difference ∆k(s), that is taken as the initial reliability value. Since this path metric
difference is already computed in order to choose the best path associated with each
state, no additional hardware resources are required.

2.4.1.1 SMU IMPLEMENTATION

Two algorithms have been proposed for the design of the SMU: Register Exchange
Algorithm (REA) and Traceback Algorithm (TBA). The first one enables to increase the
throughput, while the second one is adopted for low power designs [61]. The TBA was
originally proposed in [100], where an infinite memory is considered. Therefore, some
modifications have been proposed for realistic implementations. In [101] several TBA
methods are proposed. They execute three types of operations:

• Traceback Write New Data (TWR): New data from the ACS unit is saved in the
traceback memory. A write pointer controls the free memory positions where new
decision bits can be stored.

• Traceback Read (TR): A bit from the memory is read and, together with the
present state, a pointer to the previous state is found. No decision bits are gener-
ated.

• Traceback Decode Read (TDR): In a similar way to TR, this operation executes
a traceback operation but in older data. This operation generates decoded infor-
mation bits.

In [101–103] four versions of the TBA are proposed. They are based on a set of
memory banks organized as a matrix-like structure. In [104] a pipeline TBA architecture
based on a REA architecture is introduced.

2.4. EXPLORING SOVA BASED TURBO DECODERS 81

D
ec

is
io

n

k − 1k − 2k −D + 1

d̂k−D

dk(s0)

dk(s1)

dk(s2)

dk(s3)

Figure 2.16: REA method circuit.

The REA algorithm can be implemented as a set of registers and multiplexers follow-
ing the topology of the trellis diagram. A global clock controls all the register. Therefore,
the system throughput is determined by the clock frequency. The registers and multi-
plexers are organized as a matrix-like structure composed of 2p rows and D columns7,
as presented in Figure 2.16 for a 4-state convolutional code. D is called the survivor
depth. Thus, there is a high probability that all the survivors merge, and the symbol of
any path that is build back at a depth D can be chosen as the ML path. The memory
requirements for the REA algorithm are then D · 2p bits.

2.4.1.2 SOVA IMPLEMENTATION

Figure 2.17 present a general block diagram to implement the SOVA [28, 98]. The
BMU and ACS unit perform the forward recursion (Figure 1.14). Then, a hard decoding
SMU execute the Traceback operation to find the state that belongs to the ML path at
time k −D. Finally, the Update operation of the soft output values takes place. This
operation is executed by finding the surviving and concurrent paths considering the state
sk−D. When the Update operation is finished, the soft value for the information symbol

7Recall that p is the number of flip-flops in the corresponding convolutional encoder, and D the
Traceback length in the Viterbi Algorithm.

82CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

ddec(s)

∆k(s)

∆k−D(sk−D)

d̂k−D

δ̂k−D−U
sk−D

Lk−D−U

Figure 2.17: SOVA architecture.

at time k − D − U is found. Note that two delay blocks (FIFO) of length D are also
necessary to provide the correct values from the ACS unit to the blocks that perform
the Update operation.

2.4.2 IMPROVING THE SOVA BASED TURBO DECODER PERFOR-
MANCE

SOVA Turbo Decoder Performance for Binary Codes

Two factors are responsible of the low decoding performance of the SOVA [105,106]:

• The SOVA generates too optimistic reliability values.

• There is an inherit correlation between the intrinsic information (SOVA input) and
the extrinsic information.

In the literature, several works have addressed these problems. In [106] an attenuator
to SOVA output, in order to reduce the distortion produced in the soft values, is applied.
In [107], too optimistic extrinsic values are limited by establishing a maximum value.
In [61] an attenuator to SOVA output associated with an adaptive upper bound for
the metric difference between competing paths is proposed. The attenuator value is a
simplification of the method proposed in [106]. In [105] two attenuators are used to
reduce the correlation between intrinsic and extrinsic information. Between all these
works, those that present the best results are [61] and [105]. Both of them are based
on empirical parameters and approximations. Based in these works we have adapted a

2.4. EXPLORING SOVA BASED TURBO DECODERS 83

technique to improve the error correction performance of SOVA based turbo decoders.
It is described as follows.

From (1.69), the SOVA extrinsic information can be computed as:

Le
k(δ) = Lk(δ)− Li

k(δ) (2.19)

where Le
k and Lk are the extrinsic and a-posteriori information. Li

k denotes the
intrinsic information related to the systematic and a-priori information. For an AWGN
channel, Le and Li follow approximated Gaussian distributions [26], and are Gaussian
correlated [105]. This correlation is claimed to be one of the reasons that explain the
poor SOVA behavior. Table 2.2 shows the mean value of the correlation for the Max-
Log-MAP and SOVA algorithms obtained after simulating a high enough number of
frames. Different iterations are considered.

Iterations
Max-Log-MAP SOVA

SNR (dB) SNR (dB)
0.75 1 1.25 1.5 0.75 1 1.25 1.5

1 0.001 0 0.001 0.003 0.364 0.353 0.287 0.257
3 0.011 0.016 0.018 0.019 0.438 0.337 0.277 0.252
8 0.018 0.028 0.033 0.031 0.440 0.360 0.242 0.253
10 0.019 0.030 0.030 0.027 0.462 0.392 0.324 0.203

Table 2.2: Correlation coefficient between intrinsic and extrinsic information for the
Max-Log-MAP and SOVA algorithms.

In order to reduce the correlation coefficient in the SOVA, (2.19) is transformed into
(2.20), where Le′

k is the new extrinsic information.

Le′

k (δ) = b1 ·
(

b2 · Lk(δ)− Li
k(δ)

)

(2.20)

In this equation b1 and b2 are variables used to reduce the correlation between ex-
trinsic and intrinsic information. They depend on each frame to decode. However, we
approximate these variables with constants values. From extensive simulations we have
found that values around b1 = 0.7 and b2 = 0.9 are optimal for different frame sizes and
code rates. Table 2.3 presents the correlation coefficient between Le′

k and Li
k when the

variables b1 and b2 are implemented. The LTE turbo code is considered with a frame
size of L = 2048 bits.

The correlation coefficient decreases specially for a high number of iterations and SNR
value. The proposed technique significantly improves the error correction performance
of SOVA turbo decoders in the waterfall region. Degradations of about 0.1dB with

84CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

Iterations
SNR in dB

0.75 1 1.25 1.5

1 0.269 0.246 0.194 0.163
3 0.305 0.254 0.174 0.171
8 0.281 0.153 0.041 0.027
10 0.210 0.086 0.038 0.020

Table 2.3: Correlation Coefficient between intrinsic and extrinsic information for SOVA
algorithm. b1 = 0.7 and b2 = 0.9.

respect to Max-Log-MAP algorithm can be achieved for BER of 10−5. However, a
bad convergence in the error floor region is observed. For high SNR values (error floor
region), extrinsic values grow fast during the iterations, and thus, it is highly probable
that the turbo decoder converges to a particular codeword in the very first iterations of
the decoding process. If the SOVA algorithm is used, this problem is more critic. Thus, a
high error floor may appear. To overcome this problem, we have noticed that an effective
solution is to limit the path metric difference between the survivor and the concurrent
paths. Furthermore, this limit can be dynamic. Thus, during the first iteration the path
metric difference is upper bounded to a given value that is increased as more iterations
are performed.

Figure 2.18 shows the BER for the LTE turbo code with a frame size L = 2048
bits. There is a degradation of about 0.2dB between SOVA and Max-Log-MAP for a
BER= 10−7 when 6, 8 and 10 iterations are performed. In the error floor region, the
degradation is about 0.25dB.

SOVA Turbo Decoder Performance for Double Binary Codes

In a similar way to the SOVA for binary codes, we have explored the improvement
of the error correction performance for double binary codes. The use of the coefficients
b1 and b2 is extremely important to achieve performance close to those of MAP based
algorithms. Figure 2.19 shows the BER performance for the SOVA and Max-Log-MAP
algorithms, considering the double binary turbo code with a frame size of 5376 bits.
The code rate is set to R = 1/3. In this particular case SOVA has a degradation
within 0.1dB with respect to the Max-Log-MAP algorithm. The curves are potted in
the waterfall region, where the SOVA exhibits and adequate performance. We expect a
larger degradation when arriving to the error floor region.

Table 2.4 and 2.5 show the correlation coefficient between intrinsic and extrinsic
information for each information symbol, when b1 = b2 = 1 and b1 = 0.7, b2 = 0.9,

2.4. EXPLORING SOVA BASED TURBO DECODERS 85

1e−09

1e−08

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1 1.25 1.5 1.75 2 2.25 2.5

B
E

R

Eb/N0 (dB)

M−L−MAP. 6 It
M−L−MAP. 8 It
M−L−MAP. 10 It
SOVA. 6 It
SOVA. 8 It
SOVA. 10 It
Union Bound

Figure 2.18: BER performance for the LTE turbo code using SOVA and Max-Log-MAP.
2048 bits per frame.

It.

SNR in dB
0.2 0.3 0.4 0.5
dk dk dk dk

01 10 11 01 10 11 01 10 11 01 10 11

1 0.218 0.228 0.196 0.228 0.249 0.185 0.196 0.242 0.168 0.202 0.235 0.198

3 0.380 0.353 0.200 0.268 0.283 0.273 0.348 0.313 0.201 0.323 0.305 0.240

8 0.315 0.332 0.244 0.386 0.292 0.316 0.319 0.358 0.190 0.299 0.324 0.221

10 0.346 0.349 0.266 0.338 0.273 0.217 0.339 0.331 0.226 0.222 0.297 0.250

Table 2.4: Correlation Coefficient for double binary SOVA between intrinsic and extrinsic
information for each possible symbol (dk) at different SNR. b1 = b2 = 1.

respectively. In this case, the use of b1 and b2 significantly reduces the correlation
coefficient. For all the 3 symbols the correlation coefficient is similar for each iteration
at different SNR values.

86CHAPTER 2. PARALLEL PROCESSING EXPLORATION FOR TURBO DECODING

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

0 0.25 0.5 0.75

B
E

R

Eb/N0 (dB)

M−L−MAP. 6 It
M−L−MAP. 8 It
M−L−MAP. 10 It
SOVA. 6 It
SOVA. 8 It
SOVA. 10 It

Figure 2.19: BER and FER for a double binary turbo code using SOVA and Max-Log-
MAP. L = 5376 bits per frame. Code rate R = 1/3.

It.

SNR in dB
0.2 0.3 0.4 0.5
dk dk dk dk

01 10 11 01 10 11 01 10 11 01 10 11

1 0.114 0.100 0.124 0.108 0.090 0.129 0.096 0.075 0.102 0.079 0.085 0.095

3 0.158 0.136 0.050 0.123 0.110 0.022 0.075 0.067 0.023 0.035 0.055 0.029

8 0.023 0.073 0.017 0.081 0.038 0.033 0.072 0.023 0.050 0.080 0.015 0.043

10 0.038 0.016 0.050 0.065 0.025 0.062 0.093 0.027 0.042 0.102 0.023 0.049

Table 2.5: Correlation Coefficient for double binary SOVA between intrinsic and extrinsic
information for each possible symbol (dk) at different SNR. b1 = 0.7, b2 = 0.9.

2.5 CONCLUSION

This chapter presents a complete overview of the parallel turbo decoder techniques
considering three hierarchical levels: turbo decoder level parallelism, SISO decoder level
parallelism, and metric level parallelism. A set of metrics have been defined in order
to evaluate parallel turbo decoder architectures. The EXIT chart diagram have been
extended in order to be able to study the parallel turbo decoder architecture convergence.

2.5. CONCLUSION 87

Thanks to this study, we were able to propose a new SISO decoder schedule for the
BCJR algorithm, convenient to increase the convergence of shuffled turbo decoders.
Finally, we have presented a brief overview of the SOVA based turbo decoders. We
have considered the main problem in SOVA based decoders, i.e. the poor decoding
performance. A technique to reduce the performance degradations have been tested.
Thus, a degradation of about 0.2dB is observed for binary and double binary turbo codes
in the water fall region.

88

Chapter 3

High Throughput SISO Decoder Ar-
chitectures

As presented in the previous chapters, the SISO decoder is a fundamental part of a turbo
decoder architecture. It implements the operations that are the heart of the decoding
algorithm, and thus, it largely determines the achievable throughput and overall turbo
decoder hardware complexity. In this chapter, the architectures of different constituent
SISO decoder blocks are detailed.

At the SISO decoder parallelism level, the sub-blocks technique has shown to be an
appropriate alternative to increase the turbo decoder throughput with an additional cost
in terms of the hardware complexity. Thus, for a low number of sub-blocks Q, it is
possible to achieve an acceleration close to Q with respect to a non parallel architecture.
However, as the number of sub-blocks grows, the achievable throughput is limited by the
additional number of iterations that should be executed in order to avoid a performance
degradation. In the context of high throughput turbo decoders, architectures with a
high number of sub-blocks should be considered, where a further increase of Q is not
possible. In this case, parallelism techniques at the metric level, that do not affect the
turbo decoder convergence, can be used. For this reason, radix-2NT architectures are
explored in this chapter. We demonstrate that the radix technique is useful to increase
the SISO decoder throughput by reducing the sub-block decoding time.

This chapter is organized as follows. First, an overview of the general SISO decoder
architecture is given. Afterwards, the structure of the different units in a radix-2 SISO
decoder is detailed. Then, higher radix architectures are analyzed. Finally, a low com-
plexity radix-16 SISO decoder architecture is proposed. This architecture achieves high
throughput values, increasing the radix technique efficiency with respect to conventional
high radix decoder implementations.

89

90 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

N

τwr

t

S
y
m

b
o
ls

Wτrd

(a)

N

τwr

t

S
y
m

b
o
ls

Wτrd

(b)

N

τwr

t

S
y
m

b
o
ls

Nτrd

(c)

Figure 3.1: SISO decoder architecture. MAP algorithm schedules: (a) Backward-
Forward, (b) Butterfly, (c) Butterfly-Replica.

3.1 OVERVIEW

Since hardware implementations are required, a fixed-point representations of the differ-
ent variables in the SISO decoder algorithm is necessary. This fixed-point representation
has been extensively studied in the literature [35, 108–111], where a tradeoff between
the decoding performance and the hardware complexity is established. In this document,
for the Max-Log-MAP based SISO decoders, wr, wSM and wext represent the number
of bits required to represent the channel information, the state metrics (Mα and Mβ),
and the extrinsic information, respectively. These parameters have an important impact
on the hardware complexity due to the cost in terms of computation logic. Besides, they
are a major constraint on the size of the overall memory in the turbo decoder.

The implementation of the Max-Log-MAP algorithm implies the execution of three
main operations: branch metric, state metric and extrinsic values computation. Thus,
a high throughput implementation assigns hardware resources to execute concurrently
these operations. Figure 3.1 shows the SISO decoder schedules that we consider.
Backward-Forward and Butterfly schedules are presented in Figures 3.1(a) and 3.1(b)
respectively. In these cases, the sliding window technique is considered with a window
size W . Butterfly-Replica schedule is depicted in Figure 3.1(c). Since Butterfly-Forward
schedule has not a good convergence behavior, as explained in section 2.3, it is not
considered. These schedule diagrams explicitly consider the time required to provide to
the ACS units the values to perform the state metric recursions, and the time spent to
compute the extrinsic information once Mα and Mβ are available. Let τrd denote the
number of clock cycles necessary to read the a-priori information and to compute the
state metric transitions. Besides, τwr represents the pipeline latency to compute the
extrinsic information and write it to the corresponding memory bank outside the SISO

3.1. OVERVIEW 91

decoder. τrd and τwr model the pipeline stages in the different SISO decoder units and
in the network assigned to access the extrinsic information.

(a)

(b)

Figure 3.2: SISO architectures: (a) Backward-Forward schedule, (b) Butterfly and
Butterfly-Replica (boundary state metric buffer not required) schedules.

Figure 3.2(a) shows the SISO block diagram for the Backward-Forward schedule.
Butterfly and Butterfly-Replica schedules can be implemented with the block diagram in
Figure 3.2(b). When the sliding window technique is implemented, additional registers
should be included in order to store the window boundary state metrics (squares � in
Figures 3.1(a) and 3.1(b)). Note that since for the Butterfly-Replica schedule the state
metrics for all the sub-block should be kept at the end of each half iteration, the sliding
window technique cannot be implemented. In this case, the boundary state metric buffer
should be removed from Figure 3.2(b). Internal SISO Mem is a buffer that temporally
stores extrinsic values. This component enable to avoid a second access to the memory
banks for each information symbol. Moreover, this buffer can alleviate collision problems
since less memory accesses are necessary. The Branch Metric Unit (BMU) computes

92 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

F1 F2 F3

dk,1

ck,2

ck,1

xk f1 f2 f3

Figure 3.3: Recursive Systematic Convolutional (RSC) encoder (3,1,2) with generator

polynomials
[

1 1+z−1+z−3

1+z−2+z−3

]

.

metric transition values used by the Add Compare Select (ACS) unit to execute state
metrics recursions. State Metric Memories enable to keep Mα and Mβ values (shaded
area in Figures 3.1(a), 3.1(b) and 3.1(c)). Finally, the Soft Output Unit (SOU) computes
extrinsic values and takes hard decisions. It receives the state metric plus the metric
transition values previously computed in the ACS unit. The different SISO decoder
architecture blocks are pipelined in order to have the critical path in the ACS unit.

3.2 RADIX-2 SISO DECODER ARCHITECTURE

In this section, the architectures of the different SISO decoder blocks are detailed. To
illustrate our propositions, we consider the 8-state binary turbo code compliant with the
LTE standard, already considered in Chapter 1. For convenience, the structure of the
constituent convolutional encoder is also given in this chapter in Figure 3.3.

Inputs to the SISO decoder are the channel information − systematic Ls
k and redun-

dant Lr
k − and the a-priori information La

k. All of them are expressed as LLR values.

The SISO decoder computes the extrinsic values Le
k, and takes hard decisions d̂k.

3.2.1 BRANCH METRIC UNIT

The BMU consists of a set of adders for computing the branch metrics of each possible
transition in the trellis diagram representation of the code. For example, in the considered
convolutional code, there are four different branches corresponding to the possible values
of the coded symbol. Thus, the BMU can be implemented with the architecture proposed
in Figure 3.4, where M

γi,j

k is the branch metric for the coded symbol (ck,0, ck,1) = (i, j).

3.2. RADIX-2 SISO DECODER ARCHITECTURE 93

La
k

Ls
k

Ls
k

M
γ0,0

k

M
γ0,1

k

M
γ1,0

k

M
γ1,1

k

Figure 3.4: BMU radix-2 architecture.

3.2.2 ADD COMPARE SELECT UNIT

Regarding the equations that define the forward and backward state metric recursion,
it is clear that the magnitudes of Mα and Mβ increase during the recursive operations
along the trellis diagram. Therefore, numeric problems may arise if these values are not
bounded so that arithmetic overflows are avoided. Mα and Mβ state metric values should
be bounded to be represented with wSM bits. This problem has been widely studied for
the Viterbi algorithm [112,113], where rescaling techniques have been proposed. In this
case, when all the state metrics exceed a certain threshold, this threshold is subtracted
to all the state metrics. Another rescaling technique consists in the substitution of the
minimum state metric, at each time k, to all the state metrics. Note that these rescaling
techniques do not affect the decoding performance. However, they are implemented
inside the ACS unit, and thus, they have an impact on the ACS unit critical path.
Since the ACS unit contains the turbo decoder critical path, the rescaling techniques are
inconvenient to achieve high throughput values.

We have decided to avoid rescaling operations by applying the modulo normaliza-
tion technique. This technique was first proposed for Viterbi decoders [113], and later
extended to Log-MAP [114] and Max-Log-MAP [115] SISO decoders. Compared to so-
lutions that employ renormalization techniques, the modulo normalization has proven to
be effective in order to reduce the ACS unit critical path [78,115]. Moreover, the number
of bits wSM required to represent the state metric scales only logarithmically with the
number of encoder states [112]. Thus, the decoder throughput is slightly affected when
the number of states increases [116]. Therefore, high throughput decoders with a large
number of states can be designed.

Modulo normalization technique is depicted in Figure 3.5. Two’s complement rep-
resentation is used for the state metric values. A state metric value is depicted as a

94 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

(a)

Mα
k (s′)

Mγ
k (s′, s)

Mα
k (s)

Mγ
k (s, s)

Mα
k+1(s)

(b)

Figure 3.5: Modulo normalization technique for a 8 state binary code a) State metric
evolution. b) ACS unit.

point on the circumference in Figure 3.5(a). As the transitions in the trellis diagram
are executed, the state metrics move in the clockwise direction over the circumference.
Each quadrant corresponds to a range of values determined by the two more significative
bits of the state metrics. Since no normalization is performed, the state metric values
overflow and pass from the quadrant 01x...x to the quadrant 10x...x. Modulo normal-
ization technique is based in the fact that the maximum difference between all the state
metrics at a given time is bounded [113]. Thus, if the number of bits wSM is large
enough, all the state metrics at a given time are in adjacent quadrants. In Figure 3.5(b),
a radix-2 ACS unit architecture (binary code) implementing the normalization technique
is presented. The adequate value is selected at each time, i.e. the state metric that has
advanced the most over the circumference. In this scheme, the critical path is indicated
with a dashed line. Compared with a conventional ACS unit without any normalization
nor rescaling technique, the critical path is only increased by a two input XOR gate.

In order to reduce the ACS unit critical path, the addition and comparison operations
can be performed in parallel. First, by reorganizing the operations in the design, the
Compare Select Add (CSA) unit in Figure 3.6(a) can be build. With this architecture no
improvements on the critical path is achieved. However, from this design, we can devise
the architecture shown in Figure 3.6(b). In this case, the adders were moved before the
multiplexer, so that the additions can be executed in parallel with the comparison. Thus,
one adder is removed from the critical path. However, the number of adders, registers
and multiplexors is increased in the architecture.

3.2. RADIX-2 SISO DECODER ARCHITECTURE 95

Mγ
k+1(s, s)

Mγ
k+1(s′, s)

Mα
k+1(s)

(a)

Mγ
k+1(s, s)

Mγ
k+1(s′, s)

(b)

Figure 3.6: (a) radix-2 CSA unit. (b) High speed radix-2 ACS unit.

3.2.3 SOFT OUTPUT UNIT

Mα
k + Mγ

k + Mβ
k

dk = 0 dk = 1

Lkd̂k

L0 L1

Figure 3.7: SOU radix-2 architecture.

The SOU computes the extrinsic information associated with the systematic bit ck,0,
that corresponds to the information bit dk. It consists of a comparison tree as shown in
Figure 3.7. The state metrics plus the branch metrics are computed for each possible
transition in the trellis diagram. Afterwards, the maximum values corresponding to the
information symbols dk = 0 (L0) and dk = 1 (L1) are calculated. Note that since the
modulo normalization technique has been applied, the maximum values are found by

96 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

Decoder Unit Hardware complexity (gates)

BMU 635
ACS (Area for all the 8 states) 3.4k

SOU 2.2k

Table 3.1: Hardware complexity of the Max-Log-MAP algorithm. Radix-2. RSC code
with parameters p = 3, m = 1, n = 2. Quantization wr = 6, wSM = 10, wext = 9.

using the Compare-Select (CS) block of the ACS unit (Figure 3.5(b)). Once L0 and L1

are found, the a-posteriori information is computed by the subtraction of L0 from L1.
However, if these two values are in the quadrants 01x...x and 10x...x, the subtraction
leads to a wrong result. Therefore, the block Rot (rotation) is necessary to move both
values to two other adjacent quadrants. This operation is easily done by adding 01 to
the two most significative bits of L1 and L0. After the block Rot, the hard decision d̂k

and the a-posteriori Lk information are computed. From Lk, the extrinsic information
is computed by the subtraction of the channel and a-priori information.

3.2.4 IMPLEMENTATION RESULTS FOR THE RADIX-2 SISO DECODER

Table 3.1 presents the hardware complexity in terms of the equivalent 2-input (NAND)
gate count for the different units that compose a radix-2 SISO decoders. The ACS
unit in Figure 3.5(b) is considered. These hardware complexity results were obtained
using the 90nm CMOS technology from STMicroelectronics. Thus, without consider-
ing the sliding window technique (no registers needed to store the window’s boundary
state metrics), neither the memory cost (Input buffer and state metrics memory), the
hardware complexity for a SISO decoder implementing the Backward-Forward schedule
is equivalent to 10.3k logic gates1. Similarly, when the Butterfly or the Butterfly-Replica
schedules are considered, the SISO decoder hardware complexity is equal to 12.5k logic
gates. Note that the complexity estimation for the different schedules are obtained by
individual logic synthesis of the different units.

3.3 EXPLORATION OF HIGH RADIX SISO DECODERS

In this section, we present an overview of different SISO decoders for high radix architec-
tures. Different ACS units are considered. Their hardware complexity and critical path
characteristics are discussed.

1This schedule requires 2 BMUs, 2 ACS units and a SOU.

3.3. EXPLORATION OF HIGH RADIX SISO DECODERS 97

L0
0000 L7

0000 L0
0001 L7

0001 L0
1111 L7

1111

L0000 L0001 L1111

L
0

0
0

0

L00xx L01xx Lxx11

L00xx L01xx

L0xxx

L10xx L11xx

L1xxx

Lxx01 Lxx11

Lxxx1

L
0

0
0

1

L
0

0
1

0

L
0

0
1

1

L
0

1
0

0

L
0

1
0

1

L
0

1
1

0

L
0

1
1

1

L
0

0
1

1

L
0

1
1

1

L
1

0
1

1

L
1

1
1

1

Figure 3.8: Comparison tree for a radix-16 SOU that minimizes the number of
Comparison-Selection operation.

3.3.1 HIGH RADIX BMU AND SOU

Considering the hardware complexity of the SISO decoder units in Table 3.1, the BMU
represents a rather small fraction of the overall SISO decoder complexity dominated by
the SOU and the ACS unit. The SOU accounts for a relative high hardware complexity
due to number of CS blocks that are necessary to build the comparison tree, as shown
in Figure 3.7. When higher radix values are considered, the percentages of the SISO
decoder complexity related to the BMU and SOU become more significative. It is
specially true for the SOU, that exhibits a higher complexity than the ACS unit in a
radix-16 architecture, if a straightforward implementation is carried out.

For a first estimation of the overhead due to the radix value, we consider the number
of Mα + Mγ + Mβ values that has to be processed during a clock cycle for a radix-2NT

trellis transition: Nb = 2p+NT . Thus, (Nb−2)·NT 2-inputs Selection-Comparison opera-
tions have to be performed by the SOU to generate all the extrinsic values corresponding
to the information symbols in a radix-2NT trellis transition. This is a huge number of
comparisons, that involves a high hardware complexity. However, if a careful organiza-
tion of the comparison operations is done, some intermediate values can be reused. In
this way, an important reduction of the SOU hardware complexity can be achieved.

Figure 3.8 shows a radix-16 SOU with minimum hardware complexity. In this figure,
Ldk,dk+1,dk+2,dk+3

denotes the maximum Mα + Mγ + Mβ value corresponding to the
information symbols dk, dk+1, dk+2, dk+3 in the radix-16 trellis diagram transition. This
architecture exhibits 28% of the complexity of a straightforward architecture, and is

98 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

14% less complex than the SOU architecture proposed in [81]. Regarding a radix-4
SOU, a similar comparison tree structure leads to a reduction of 46% with respect to
a straightforward implementation. Note that the rotation blocks required to deal with
the modulo normalization technique, as explained in section 3.2.3, are required at the
output of the comparison tree.

Regarding the BMU, the number of path metrics that should be computed is 22·NT

for NT = 1, 2, 3, and 128 for a radix-16 architecture2. Thus, an increase close to an
exponential trend is expected for the BMU hardware complexity as NT grows.

3.3.2 HIGH RADIX ACS UNITS

Different works in the literature have explored the convenience of radix-2NT SISO de-
coders for NT = 1, 2, 3, 4 transitions in the trellis diagram. These works are mainly
focused on the optimization of the decoding speed. Only a few number of works con-
sider hardware complexity reduction. Regarding the Log-MAP algorithm, radix-4 ACS
units have been proposed in [37,76,77], a radix-8 ACS unit is introduced in [79], and a
low power radix-16 SISO decoder is detailed in [81]. For the Max-Log-MAP algorithm,
radix-4 architectures are proposed in [56, 78]. Also, a two-dimensional radix-16 ACS
unit has been introduced in [80]. This architecture consists in the concatenation of
two radix-4 ACS units that are able to perform in parallel the comparison and addition
operations, thanks to a retiming technique. Thus, high throughput rates are achieved
with a hardware complexity that is about the half of a conventional radix-16 ACS unit.

Figure 3.9 depicts three different radix-4 ACS unit architectures. A straightforward
radix-4 ACS unit (Figure 3.9(a)), consists in a comparison tree composed of three CS
blocks. The architecture shown in Figure 3.9(b), proposed in [78], performs in parallel
the comparison of all the possible pairs of values Mα+Mγ in the radix-4 trellis transition.
Then, a LUT is used to select the final value. For this ACS unit, the critical path is
increased by the LUT with respect to a radix-2 ACS unit. Finally, in Figure 3.9(c) a
radix-2x2 ACS unit is presented [56]. In this architecture, following a similar approach
to the one used in order to design the architecture presented in Figure 3.6(b), the adders
are reallocated in order to perform the addition and comparison operations in parallel.

The retiming technique used to design the radix-2 and radix-4 architectures in Figures
3.6(b) and 3.9(c), respectively, can be extended in order to design a radix-16 ACS unit.
Thus, two radix-4 ACS units that execute the comparisons and additions in parallel are
necessary. We refer to this architecture as a radix-4x4 ACS unit. In this case, there is
an additional cost due to number of adders that are required to anticipate the additions.

2For NT = 4, the number of branch metrics to compute is 128 instead of 256, since in this case all
the values for the coded symbol in the radix-16 trellis transition are not valid.

3.3. EXPLORATION OF HIGH RADIX SISO DECODERS 99

CS Radix-4

Figure 3.9: Radix-4 ACS unit architectures. (a) Straightforward architecture. (b) Parallel
comparison of every pair of α + γ values in the radix-4 transition [78]. (c) Radix-2x2
ACS unit [56].

But, the additions are removed from the critical path.
Figure 3.10 shows the Complexity-Timing (CT) characteristics of the radix-2, radix-4

and radix-16 ACS units discussed so far. In this case, the hardware complexity corre-
sponds to eight ACS units (one for each possible convolutional encoder state). Since the
state metrics dynamic range is larger if higher radix values are considered, in the radix-4
and radix-16 architectures more bits are required for Mα and Mβ. In this way, correct
operation of the modulo normalization technique is ensured. Thus, for radix-2 and radix-
4 architectures, wSM = 10 and wSM = 11, respectively. For the radix-16 architectures,
wSM = 12. The time required to perform one transition in the trellis diagram (τ/NT) is
shown in the horizontal axis3. Thus, we compare the convenience of the architectures to
improve the SISO decoder throughput. The complexity (C) is expressed in terms logic
gates number. In dashed lines, curves for constant CT product are plotted. Note that
the parallel execution of the addition and comparison operations in the radix-2 architec-
ture enables to improve the throughput with an acceptable cost in terms of the hardware
complexity. The radix-4 architectures achieve a similar maximum throughput than the
fast radix-2 architecture, with the half of the clock frequency. An important increase of
the radix-16 (4x4) architecture complexity is observed with respect to the radix-2 archi-
tectures. Considering the throughput per area unit, η = Th/C = NT /(τ · C) = 1/CT ,

3Recall that τ is the ACS unit critical path.

100 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
C

S
 u

n
it

 h
ar

d
w

ar
e

co
m

p
le

x
it

y
 (

k
G

E
)

Time per trellis diagram transition (ns)

CT=4.3 −>

CT=8.2 −>

CT=12.2 −> <− CT=16.0

<− CT=26.0

Conventional radix−2. Fig. 3.5(b).
Fast radix−2. Fig. 3.6(b).
Radix−4. Fig. 3.9(b).
Radix−4. Fig. 3.9(c).
Radix−8. Fig. 3.11.
Radix−16 Unit using radix−8 arch.
Radix−4x4.

Figure 3.10: Complexity-timing characteristics for radix-2, radix-4, radix-8 and radix-16
ACS units. The architectures are synthesized for 90nm technology. Complexity expressed
in terms of the number of logic gates. Horizontal axis: time required to perform a trellis
diagram transition τ/NT .

the radix-4 (η = 0.121) and radix-16 (η = 0, 038) architectures are, respectively, 48%
and 83% less efficient with respect to the conventional radix-2 ACS unit (η = 0.232).

For low radix values, a high throughput SISO decoder has to be designed with a
high clock frequency ACS unit. In this case, since the state metrics generated during
the ACS unit operation should be stored in a memory, high speed RAM memories are
required. Besides, for high clock frequency values, design challenges in all the other
turbo decoder blocks appear, so that the critical path is kept inside the ACS unit. In
contrast, high radix values architectures enable to remove the requirements of high clock
frequency circuits. Thus, with a relative high critical path, a high radix ACS unit is able
to achieves high throughput rates. Moreover, due to the larger ACS unit critical path, a
pipeline architecture is possible in order to share the hardware resources between different
sub-blocks, as mentioned in section 2.2.3.1. However, the implementation results show

3.3. EXPLORATION OF HIGH RADIX SISO DECODERS 101

Figure 3.11: Radix-8 ACS unit architecture.

that the radix technique is inefficient in terms of how well the hardware resources are
used to improve the decoder throughput. Furthermore, high radix architectures are also
energy inefficient, i.e. more energy per decoded bit is required when NT increases [116].
The additional hardware complexity, and the lost in efficiency, are accepted in sake
of the achievement of high throughput rates. Nevertheless, the hardware complexity
reduction of high radix architectures should be explored in order to increase, if possible,
the efficiency.

We propose then, based on the high speed ACS unit given in Figure 3.9(b), the radix-
8 ACS unit presented in Figure 3.11. This ACS unit is composed of four radix-2 ACS
units and one radix-4 CS unit. First, eight additions are performed (state metrics plus
branch metrics). Then, four values are selected. These values are sent to the radix-4 CS
to produce the final state metric value. With respect to a conventional radix-2 ACS unit,
the critical path is increased by only a CS radix-4 critical path, while performing three
transitions in the trellis diagram during each clock cycle. In Figure 3.10, the complexity-
timing behavior for this architecture is also presented. It is 73% less efficient with respect
to the conventional radix-2 ACS unit. Since for a radix-8 architecture an odd number
of transitions are performed during each clock cycle, this radix value is inconvenient to
divide the frame to decode in an integer number of transitions. Thus, problems in the
limits of the frame may appear. However, we propose to use the presented radix-8 ACS
unit to build a high speed low complexity radix-16 SISO decoder. This particular case
is also plotted in Figure 3.10. Note that there is an improvement on the maximum
achievable throughput with respect to the original radix-8 architecture, since for the
same clock frequency and additional trellis diagram transition is performed. The ACS
unit efficiency is also improved. In the following section, a low complexity SISO decoder
that implements the presented radix-8 ACS unit is detailed.

102 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

3.4 HIGH RADIX ARCHITECTURES COMPLEXITY REDUC-
TION

In this section we present a low complexity radix-16 Max-Log-MAP based SISO decoder
intended to increase the efficiency of the radix technique. Moreover, two complementary
techniques are proposed in order to overcome BER/FER performance degradation when
turbo decoders based on the proposed SISO decoder are considered. The work presented
in this section has been published in [117].

3.4.1 LOW COMPLEXITY RADIX-16 SISO DECODER

We recall that the convolutional code given in Figure 3.3 is considered as example. Let
S = {s(0), . . . , s(7)} denote the set of possible encoder states expressed in decimal as

s(i) =
∑p

h=1 f
(i)
h · 2p−h, with f

(i)
h ∈ {0, 1} the value of the flip-flops in the encoder. For

the encoder, the next equation holds:

D1(z) =
(

1 + z−2 + z−3
)

·X(z) (3.1)

where D1(z) and X(z) are the Z-transform of dk,1 and xk, respectively. Since in the
z domain, a multiplication by z−l corresponds to a time shifting, equation (3.2), where
b ∈ {0, 1}, describes the encoder transition from state s(0) (all zero-state) to the state
s(i), then to the state s(j), and finally back to the state s(0). Note that during the state
transition s(i) → s(j), four information bits are encoded. Therefore, it corresponds to a
radix-16 trellis diagram transition.

D1(z) = (1 + z−2 + z−3) · (f (i)
3 + f

(i)
2 z−1 + f

(i)
1 z−2 + bz−3+

f
(j)
3 z−4 + f

(j)
2 z−5 + f

(j)
1 z−6)

(3.2)

By considering only the terms related to z−3, z−4, z−5, z−6, which correspond to
the radix-16 transition s(i) → s(j), we obtain the systematic bit sequence:

d
(b)
i,j =

(

d
(i,j,b)
k , d

(i,j,b)
k+1 , d

(i,j,b)
k+2 , d

(i,j,b)
k+3

)

=
(

f
(i)
3 + f

(i)
2 + b, f

(i)
2 + f

(i)
1 + f

(j)
3 , f

(i)
1 + f

(j)
2 + b, f

(j)
3 + f

(j)
1 + b

) (3.3)

This systematic bit sequence produces the following sequence for the redundant bit:

c
(b)
i,j =

(

c
(i,j,b)
k , c

(i,j,b)
k+1 , c

(i,j,b)
k+2 , c

(i,j,b)
k+3

)

=
(

f
(i)
3 + f

(i)
1 + b, f

(i)
2 + f

(j)
3 + b, f

(i)
1 + f

(j)
3 + f

(j)
2 , f

(j)
2 + f

(j)
1 + b

) (3.4)

3.4. HIGH RADIX ARCHITECTURES COMPLEXITY REDUCTION 103

k k + 4

s(j)

s(i)

{

d
(0)
i,j , c

(0)
i,j

}

→ γ
(0)
i,j

{

d
(1)
i,j , c

(1)
i,j

}

→ γ
(1)
i,j

Figure 3.12: Radix-16 ACS unit trellis diagram transition.

d
(b)
i,j and c

(b)
i,j are the systematic and redundant bits that are generated during a radix-

16 transition, from the state s(i), at time k, to the state s(j) at time k + 4. Since b has
two possible values, there are two paths in this transition, as presented in Figure 3.12.
Let γ

(b)
i,j be the branch metric value for the path b. As pointed out in [75], parallel paths

should be eliminated prior to the ACS unit. Thus, it is possible to replace a radix-16
ACS unit by a less complex radix-8 ACS unit where each pair of states (s(i), s(j)), at
time k and k + 4 respectively, are connected only by one path. The branch metric value
for this path is then:

γmax
i,j = max

(

γ
(0)
i,j , γ

(1)
i,j

)

(3.5)

Note that this simplification does not affect the result of the ACS unit operation.
Furthermore, since a radix-8 ACS unit has a lower critical path compared to a radix-16
ACS unit, it enables to increase the clock frequency of the SISO decoder. Note also that
although a radix-8 ACS unit is used, the SISO decoder is equivalent to a true radix-16
architecture (NT = 4). We exploit this idea in order to design a novel low complexity
high throughput radix-16 SISO decoder as presented in the following sections.

3.4.1.1 BRANCH METRICS UNIT ARCHITECTURE

From (3.3) and (3.4), for any pair of parallel paths, d
(i,j,0)
k+1 = d

(i,j,1)
k+1 and c

(i,j,0)
k+2 = c

(i,j,1)
k+2

because they are independent of b. Therefore, the channel values of bits dk+1 and
ck+2 do not affect the choice of the maximum branch metric in the radix-16 ACS unit
transition s(i) → s(j). γmax

i,j can be then computed as follows. First, a partial term ξi,j,
due to the bits that are different in both paths, for b = 0, is calculated. If ξi,j < 0 then

γ
(1)
i,j is the maximum branch metric and ǫi,j = −ξi,j. Otherwise, the maximum branch

104 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

γmax

ξ

ǫ

Ls
k+2

Lr
k+1

La
k+2

Ls
k

Lr
k

La
k

Ls
k+3

Lr
k+3

La
k+3

Ls
k+1

Lr
k+2

La
k+1

Figure 3.13: Proposed radix-16 BMU architecture.

metric is γ
(0)
i,j and ǫi,j = ξi,j. Afterwards, γmax

i,j is obtained by adding to ǫi,j the values
of the bits dk+1 and ck+2. The proposed BMU architecture is presented in Figure 3.13.
Note that there are three radix-2 BMUs (Figure 3.4), and a reduced radix-2 BMU (only
two outputs are computed) to reduce the hardware complexity.

The proposed BMU architecture only computes 16 values ξi,j for all the 64 state
transitions s(i) → s(j), i, j = 0, . . . , 7. It only costs 53% of the hardware resources of
a conventional implementation. A low complexity adder-sharing BMU is also proposed
in [81]. It requires a memory to store 128 branch metrics. In our BMU architecture,
this memory is reduced to the half (64 γmax

i,j values). Moreover, the BMU in [81] needs
additional registers that increase the latency. Indeed, more execution cycles are required
to share the adders. In our architecture, this disadvantage is overcome.

3.4.1.2 ACS UNIT ARCHITECTURE

The proposed SISO decoder implements the radix-8 ACS unit depicted in Figure 3.11.
Since four transitions in the trellis diagram are performed during each clock cycle, the
efficiency is increased by about 31% with respect to the original radix-8 architecture per-
forming three trellis diagram transitions per clock cycle. Note that the achieve maximum

3.4. HIGH RADIX ARCHITECTURES COMPLEXITY REDUCTION 105

decoder throughput is higher that in the radix-4 ACS unit architectures.

3.4.1.3 SOFT OUTPUT UNIT ARCHITECTURE

The elimination of parallel paths in the BMU enables to design a faster and less complex
radix-8 ACS to be used as part of a radix-16 SISO decoder, without impacting the
computations of the forward and backward state metrics. However, since only the half
of the branch metrics are produced by the BMU, all the 128 values Mα+Mγ+Mβ cannot
be computed by the SOU. Thus, different extrinsic values with respect to a conventional
implementation are calculated. We propose a SOU that only uses the 64 branch metrics
produced by the low hardware complexity BMU presented in section 3.4.1.1. It reduces
the hardware complexity required to compute the extrinsic values and generate the hard
decisions.

Since it is not possible to a priori determine the paths to eliminate in each state
transition, a static comparison structure such as the one presented in Figure 3.8 cannot
be used for the SOU. Note however that we can group the 64 state transitions s(i) → s(j)

in eight sets Ql, for l = 0, 1, . . . , 7. Each set is compose of eight elements (pair of states).
Thus, the set Ql is defined as follows:

Ql = {(s(i), s(j)) : d
(0)
i,j = (a

(l)
0 , a

(l)
1 , a

(l)
2 , a

(l)
3)} (3.6)

where a(l)
n ∈ {0, 1}, for n = 0, 1, 2, 3. Therefore, the eight branch metric values

γmax
i,j from the state s(i) to the states s(j), such that (s(i), s(j)) ∈ Ql, correspond to

only two possible systematic bit sequences, according to d
(b)
i,j in (3.3). For instance, if

(a
(0)
0 , a

(0)
1 , a

(0)
2 , a

(0)
3) = (0, 0, 0, 0), then the values of γmax

i,j related to the elements of Q0

are for the systematic bit sequence (0, 0, 0, 0) or (1, 0, 1, 1). Based on this observation
we propose in Figure 3.14 an original SOU architecture that contains comparing-routing
elements. The structure of this SOU is explained as follows.

First, the 64 values L = Mα
k + γmax + Mβ

k+4, corresponding to the non discarded
paths, are computed4. These values are then sent to eight Max-L blocks. The eight
inputs of the l-th Max-L block correspond to the values L for the paths defined by the
states (s(i), s(j)) ∈ Ql. Each Max-L block processes its inputs in three stages. In the
first stage, four Switch-I blocks (Figure 3.14(b)) either find in parallel the maximum
values of their inputs or directly send the inputs to the outputs. In the two other stages,
Switch-II blocks are used (Figure 3.14(c)). These blocks have to find the maximum
value or let one of the inputs to pass through them. Thus, at the output of the Max-L

4Note that Mα

k
+ γmax values are already computed inside the ACS unit.

106 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

y

Mα
k + γmaxMβ

k+4

Le
k Le

k+1 Le
k+2 Le

k+3

(a)

(b) (c)

Figure 3.14: (a) Proposed radix-16 SOU. (b) Switch-I block. (c) Switch-II block. Se-
lection of the maximum value is carried out with a modulo normalization block (Block
Comp in Figure 3.5(b)).

3.4. HIGH RADIX ARCHITECTURES COMPLEXITY REDUCTION 107

blocks the maximum value for each sequence of systematic bits is found5. These values
are then compared thanks to a fixed tree structure composed of Switch-II blocks. This
comparison tree uses a minimum number of Switch-II blocks. Finally, the four extrinsic
values are computed.

Due to the elimination of paths, values Le
k+h, for h = 0, 2, 3, may not be valid. In

this case, a multiplexer enables to replace them by y · qk+h, where qk+h = ±1, y > 0,
and d̂k+h = (qk+h + 1)/2 is the hard decision of the systematic bit dk+h. An expression
for y is proposed in Section 3.4.2. Since the systematic bit dk+1 does not change in the
parallel paths, the value Le

k+1 is always valid. Thus, a multiplexor to compute Le
k+1 is

not necessary.

3.4.2 LOW HARDWARE COMPLEXITY RADIX-16 SISO DECODER
PERFORMANCE

In section 3.4.1 we have successfully applied the elimination of parallel paths in the radix-
16 trellis transition in order to reduce the hardware complexity of all the constituent SISO
decoder units. However, when the proposed SISO decoder is used as part of a turbo
decoder architecture, a BER/FER performance degradation appears. We have observed
a penalty around 0.2 dB for coder rates R = 1/2 and 1/3, at FER of 10−6, with an
error floor that remains high compared to the error floor of a radix-2 turbo decoder
architecture.

The loss of information due to the elimination of parallel paths is responsible of the
performance degradation. Since the SOU cannot consider all the paths in the radix-16
trellis diagram transition, extrinsic values are approximately computed. Thus, during the
iterative decoding process, the negative effects of this approximation are amplified, lead-
ing to wrong decoding decisions. Let us consider how the extrinsic values are computing
in a radix-16 trellis diagram transition.

For high SNR values (error floor region), a-priori values grow fast during the iterative
decoding process. Thus, it is more probable to eliminate all the paths for a specific
bit value. For instance, if the a-priori value for dk (La

k) is high and positive, it is
highly probable that all the paths corresponding to dk = 1 are chosen. It means that
there is not enough information to compute Le

k, since there is no value L corresponding
to dk = 0. Furthermore, the selection of the paths that correspond to dk = 1 also
affects the computation of the extrinsic values Le

k+2 and Le
k+3. Therefore, an undesirable

correlation may appear between the hard decisions d̂k, d̂k+2 and d̂k+3, and between
their respective extrinsic values, during the iterative decoding process. To reduce the

5Note that it is possible that there is no valid value for a specific systematic bit sequence, since all
its related paths could have been eliminated in the BMU unit.

108 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

degradation introduced by the proposed SISO decoder architecture, we propose two
techniques:

• Select an appropriate value for y in Figure 3.14(a). It is used when there is not
enough information to compute a determinate extrinsic value.

• Reduce the mutual interference between symbols in each radix-16 trellis diagram
transition.

These techniques are discussed in the two following sections.

3.4.2.1 EXPRESSION OF y FOR UNKNOWN EXTRINSIC VALUES

Let us consider the four information symbols dk, dk+1, dk+2, dk+3 in a radix-16 trellis
transition. Also, let us consider that all the paths corresponding to the information
symbol dk = 1 are eliminated. In this case, the turbo decoding process is converging to
the hard decision d̂k = 0. Thus, our architecture produces the extrinsic value Le

k = −y.
In the iterative decoding process, wrong decision may be taken during the first iterations.
Theses decisions may be then corrected during the next iterations. Thus, in order to
prevent the turbo decoder to take a possible wrong decoding decision, the y value should
not be too high.

We have established an expression for y following a similar approach to the one
presented in [118] for the decoding of Block Turbo Codes. In [118], when there is not
competing codeword in order to compute the reliability value of a certain bit, the soft
output is calculated as the sum of the magnitude of a channel observation set at the
input of the decoder. In our case, since there are only four systematic bits for each
radix-16 trellis transition, we have modified the summation by a minimum operation.
Thus, we avoid too optimistic extrinsic values that are inconvenient during the iterative
process. The value of y corresponds to the minimum reliability value at the SISO decoder
input (absolute value of the systematic plus the a-priori LLR values) between all the four
bits in the radix-16 trellis transition:

y = min
i=0,1,2,3

(∣

∣

∣La
k+i + Ls

k+i

∣

∣

∣

)

(3.7)

Extensive Monte-Carlo simulations have demonstrated the convenience of the ex-
pression in (3.7).

3.4. HIGH RADIX ARCHITECTURES COMPLEXITY REDUCTION 109

ns = 0

ns = 1

ns = 2

ns = 3

Figure 3.15: Frame shift principle to avoid interference between symbols in a radix-16
trellis transition.

3.4.2.2 REDUCE THE INTERFERENCE OF BITS IN THE SAME TRELLIS TRANSI-
TION

Note that the elimination of parallel paths in the radix-16 trellis diagram transition
does not affect the computation of the extrinsic value Le

k+1. Hence, the decoding
operations corresponding to the bit dk+1 are not affected if the proposed radix-16 SISO
decoder architecture is implemented. Thus, we can consider the bit dk+1 as having better
properties to be correctly decoded, compared to the others bits in the radix-16 trellis
transitions. Based in this property, we propose to apply a shift operation on the frame
processed by the SISO decoder, as presented in Figure 3.15. In this figure, a frame size
of 1024 bits is considered. Let ns denote the number of shifted bits. When no shifting
is applied (ns = 0), bits 1, 5, 9, . . . , 1021 in the frame are not affected by the simplified
architecture. When ns = 1, the first forward radix-16 trellis diagram transition starts
one trellis diagram transition before the beginning of the information frame. In this case,
bits 0, 4, 8, . . . , 1020, 1023 would be better decoded. Similarly, for ns = 2 and ns = 3,

110 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

dk = 0 dk = 1

Mα
0 (s5)

Mα
0 (s0)

Mα
0 (s1)

Mα
0 (s2)

Mα
0 (s3)

Mα
0 (s4)

Mα
0 (s6)

Mα
0 (s7)

Mα
0 (s0)

Mα
0 (s4)

Mα
0 (s5)

Mα
0 (s1)

Mα
0 (s2)

Mα
0 (s6)

Mα
0 (s7)

Mα
0 (s3)

Mα
2 (s0)

Mα
2 (s1)

Mα
2 (s2)

Mα
2 (s3)

Mα
2 (s4)

Mα
2 (s5)

Mα
2 (s6)

Mα
2 (s7)

k = 0 k = 1 k = 2 k = 3 k = 4

Figure 3.16: Initialization of Mα values for the first radix-16 trellis transition when
ns = 2.

other bits in the frame are unaffected by the elimination of parallel paths.

In Figure 3.15, shaded squares denote bits in a given radix-16 trellis transition that
mutually interfere when parallel paths are eliminated. The bits that interfere depend on
the values of ns. For instance, when no shifting is applied, bits 4,6 and 7 are mutually
affected in the second forward radix-16 trellis transition. When ns = 1, bits 3,5 and 6
affect each other in the same radix-16 trellis transition. Furthermore, when ns = 2 or
ns = 3, different bits interfere.

Based on these observations, we propose to perform consecutive turbo decoder itera-
tions with different shift values. Thus, the first, second and third iterations are performed
with the information frame shifted by zero, one and two bits, respectively. In the follow-
ing iterations other shift values are considered. By applying this simple technique, we
are able to eliminate the correlation that may appear between bits in the same radix-16
trellis transition. Furthermore, it introduce a diversity since different bits in the frame
are protected in function of the iteration.

The number of radix-16 trellis transitions that should be performed when the frame
is not shifted, is L/4. However, when ns > 0, one additional radix-16 trellis transition
should be performed in the forward and backward recursions. In this case, some bits do

3.4. HIGH RADIX ARCHITECTURES COMPLEXITY REDUCTION 111

not belong to the information frame for the first and last radix-16 trellis transition. For
instance, for ns = 3, bits dk, dk+1, dk+2 are outside the information frame for the first
forward radix-16 trellis transition. Also, during the last forward radix-16 trellis transition,
the bit dk+3 is not part of the information frame. If a circular code is considered, bits
outside the frame in the first (last) transition correspond to bits inside the frame in
the last (first) transition. Thus, during all the radix-16 trellis transitions, a-priori values
are easily obtained. However, if the code is not circular, as in the LTE standard, a
specific attention should be given to the a-priori values provided to the SISO decoder
during the first and last transitions. By this way, Mα and Mβ values at the frame limits
are not altered. Figure 3.16 depicts the initialization of Mα values if ns = 2. At the
beginning of the information frame, the forward recursion metrics (Mα

0) are known for
all the states. Since the recursion process starts two trellis transition before, Mα

0 values
are moved backward two trellis transition following the branches corresponding to the
information symbol dk = 0, as shown in the figure. Thus, for the transitions outside the
information frame, the a-priori values are negative and their magnitude large enough. In
this case, Mα values at the beginning of the information frame are not modified. Note
that Mα values at the beginning of the information frame are not re-computed in the
first forward radix-16 trellis transition. Actually, the next values computed are Mα

2 . A
similar initialization process should be applied to Mβ values at the end of the information
frame if ns > 0.

3.4.2.3 SIMULATIONS FOR LTE TURBO DECODER

Monte-Carlo simulations were performed in order to determinate the performance degra-
dation of turbo decoders using the proposed radix-16 SISO decoder architecture. The
parallelism at the SISO decoder level is not applied. Thus, there is Q = 1 sub-block, and
the decoding is carried out in non-shuffled mode. Besides, the sliding window technique
is not considered. Two turbo decoder architectures have been analyzed: one based on a
radix-2 SISO decoder, and another one based on the proposed radix-16 SISO decoder.
Two different code rates R = 1/3 and 1/2 have been used. The code rate R = 1/2
is achieved by puncturing the original code. wr = 6 and wext = 9 bits have been used
for the channel and extrinsic values representation, respectively. For the radix-2 SISO
decoder, wSM = 10. For the radix-16 SISO decoder wSM = 12.

Figure 3.17 shows the BER/FER performance curves after six iterations for the LTE
turbo decoder, with 1024 bits per frame. The curve with circles corresponds to the
performance of our radix-16 SISO decoder using for y the expression in (3.7). In this
case, an error floor appears for both code rates. However, for a BER of 10−7, the
performance is acceptable by comparison with the radix-2 architecture performance. On

112 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

1e−08

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

B
E

R
 /

 F
E

R

Eb/N0 (dB)

R=1/2

R=1/3

BER − Radix−2
FER − Radix−2
BER − Radix−16, y
FER − Radix−16, y
BER − Radix−16, y, Shift SISO
FER − Radix−16, y, Shift SISO

Figure 3.17: Fixed point simulation for the LTE turbo decoder (1024 bits per frame),
with a radix-2 and the proposed radix-16 SISO decoders.

the other hand, when the shifting technique is also applied, the architecture based on
the proposed radix-16 SISO decoder exhibits a negligible degradation.

3.4.3 IMPLEMENTATION RESULTS

Table 3.2 presents the hardware complexity for the different units of the proposed radix-16
SISO decoder. In order to compare the SISO decoder hardware complexity as function
of NT , the hardware complexity of a radix-4 SISO decoder is also given. The logic
synthesis results are obtained for a clock frequency of 200MHz. Even though it is a low
clock frequency, the synthesis results give good estimations about the improvements in
terms of the complexity provided by our SISO decoder architecture. We also present
the hardware complexity results for an alternative radix-16 SISO decoder architecture.
For the radix-4 SISO decoder, the ACS unit in Figure 3.9(b) has been used. For the
radix-16 SISO decoder, the two-dimensional radix4x4 ACS unit was chosen. Besides, a
SOU implementing the static comparison tree that minimizes the number of comparisons
(Figure 3.8) has been implemented. Table 3.2 also shows an estimation of the overall

3.5. CONCLUSION 113

Radix-4 Radix-16 (radix-16 ACS unit) Radix-16 (proposed)

BMU 3.2k 28.6k 15.3k
ACS (Area for all the 8 states) 8.2k ([78], 11 bits) 34.1k ([80], 12 bits) 16.6k (12 bits)

SOU 5.3k 23.5k 18.3k
Total estimated SISO area 28.1k 148.9k 82.1k

Table 3.2: Hardware area in terms of equivalent 2-input (NAND) gate count for different
SISO decoders (Input and β buffer not included).

SISO decoder complexity when the architecture in Figure 3.2(a) is considered. The input
and β buffer complexities are not included in the comparison since their values depend on
the window size. However, a radix-2NT ACS unit enables to reduce the β buffer size by
a factor of NT . Thus, low radix architectures are penalized by the memory complexity.

Thanks to the complexity reduction performed in all the SISO decoder blocks, our
radix-16 SISO decoder is about 55% less complex than the considered radix-16 implemen-
tation. The proposed ACS unit helps considerably to achieve this result. Furthermore,
the proposed BMU and SOU enable to overcome the hardware penalty cost introduced
by a radix-16 approach. Compared to radix-2 and radix-4 SISO decoders, the proposed
architecture is about 7.8 and 2.9 more complex, respectively. With this additional hard-
ware complexity, the proposed SISO decoder improves by a factor of 4 and 2 the radix-2
and radix-4 SISO decoder throughput, respectively6.

3.5 CONCLUSION

This chapter details the internal SISO decoder structure. Hence, the architectures of the
blocks that compose the decoder are presented. The hardware implementation of high
radix architectures was discussed. Thus, the benefits that the radix technique provides
in order to improve the SISO decoder throughput are demonstrated. It was observed
how this technique is not efficient in terms of throughput per hardware complexity.
However, with a high throughput goal in mind, the extra hardware complexity is accepted
if throughput improvements are possible.

In the last section of the chapter, a low complexity radix-16 SISO decoder for the
Max-Log-MAP algorithm is presented. Besides, two complementary techniques have
been proposed in order to limit the BER/FER performance degradation introduced by
a turbo decoder architecture based on the proposed radix-16 SISO decoder. We have
proposed the elimination of parallel paths in the trellis diagram to be able to implement a
radix-8 ACS unit as part of a radix-16 SISO decoder. Even though this idea is not new, we

6These throughput improvements factors are achieved if the same clock frequency is considered for
all the architectures.

114 CHAPTER 3. HIGH THROUGHPUT SISO DECODER ARCHITECTURES

have exploited it in order to reduce the hardware complexity of all the blocks in the SISO
decoder. It corresponds to an original contribution, published in ICECS conference [117].
Note that the ideas presented in this chapter can be applied to design higher radix SISO
decoders. In this case, the SISO decoder critical path would correspond to a radix-8 ACS
unit, but more than four transitions in the trellis diagram would be performed during
each clock cycle. In this case, a similar approach as the one presented in this chapter can
be used to reduce the hardware complexity of the BMU and SOU. Thus, very significant
improvement in throughput rates would be possible with an acceptable efficiency.

Chapter 4

High Throughput Turbo Decoder Ar-
chitectures

In the previous chapter we have explored the architectural issues that have to be con-
sidered for the design of high throughput SISO decoders. We have discussed the conve-
nience of high radix decoders. We have also proposed a low complexity high throughput
radix-16 SISO decoder architecture. However, we have not yet detailed the whole turbo
decoder architecture, neither the drawbacks that arise in order to achieve high turbo
decoding throughput rates. Therefore, this chapter is devoted to the presentation of the
architectural solutions that we propose so that multiples SISO decoders, implementing
any parallelism at the metric level, can be integrated in a high throughput turbo decoder
architecture.

The first part of this chapter describes the extrinsic memory conflicts that are a
major bottleneck in the turbo decoder. Then, the different approaches that have been
proposed in the literature to overcome this problem are described. Afterwards, the
conflict free interleavers are introduced. Thanks to the properties of these interleavers,
we propose an optimized extrinsic memory organization. In the second part of the
chapter, the design of a high throughput turbo decoder for the LTE standard is detailed.
The architectural features are described, and a first prototype to validate our propositions
is presented. Finally, at the end of the chapter, a methodology intended to explore the
turbo decoder design space is proposed. This methodology allows the designer to reduce
the architectural design time. However, high hardware complexity architectures may be
designed. Nevertheless, the methodology can be applied as an approach to assess all the
parallel turbo decoding techniques presented in Chapter 2.

115

116 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

Mα
0 , Mβ

L

Figure 4.1: Generic parallel turbo decoder architecture block diagram.

4.1 GENERIC PARALLEL TURBO DECODER ARCHITECTURE

Let us consider the turbo decoder architecture in Figure 4.1. With this architecture
model, any combination of parallel turbo decoding techniques can be implemented. It
is composed of P SISO decoders that implement a given schedule. These decoders
can work in shuffled or non-shuffled mode. Each one of them is assigned to decode a
sub-block. Through an interconnection network, the SISO decoders have access to M
memory banks (single port or dual-port RAM), assigned to store the extrinsic information
values produced during each half iteration of the decoding process. The addressing of
the memory blocks depends on the interleaver function π(i). It also depends on the data
required by the SISO decoders during each clock cycle. The network controller produces
the required signals in order to correctly exchange the extrinsic values between the SISO
decoders and the RAM memory banks. Note that the LLR values received from the
channel are store in a memory. In this case, multiples buffers may be required if the
frames are received faster than the turbo decoding execution time. The state metrics in
the frame limits (Mα

0 and Mβ
L), whether a circular or non cicular code is being considered,

are computed by a different block. Then, they are provided to the SISO decoders at the
beginning of the turbo decoding process. For simplicity, in Figure 4.1 the communication
links required to implement the message passing sub-block initialization are not shown.

4.2. MEMORY ACCESS CONFLICTS 117

4.2 MEMORY ACCESS CONFLICTS

Since each SISO decoder implements the same decoding schedule, the extrinsic memory
banks are acceded simultaneously, for reading or writing, by all the SISO decoders in the
architecture. Therefore, due to the interaction of both constituent convolutional codes
through interleaver and de-interleaver functions, conflict accesses may appear. For high
parallel turbo decoder architectures, these memory conflicts are a major bottleneck.

We recall that d= (d0, d1, . . . dL−1) and dπ= (dπ(0), dπ(1), . . . dπ(L−1)) denote the
information frame in the natural and interleaved order, respectively. For convenience,
in this chapter we refer to each extrinsic information value Le

k, corresponding to the
systematic symbol dk, by its index 0 ≤ k < L. Consider the extrinsic value 0 ≤ h < N ,
with N = L/Q the size of each sub-block, and Q the number of sub-blocks in the natural
and interleaved order. Let Vh and Vπ

h be the set of extrinsic values that are acceded
simultaneously by the SISO decoders in the natural and interleaved order, respectively.
For instance, if we consider that each SISO decoder implements the Backward-Forward
schedule with a radix-2 architecture, then Vh = {h, N + h, · · · , (Q − 1)N + h} and
Vπ

h = {π(h), π(N + h), · · · , π((Q− 1)N + h)}.
In order to prevent a reduction in the achievable throughput due to the extrinsic

memory, the turbo decoder architecture should permit a concurrent access to all the
elements of Vh and Vπ

h . Three classes of approaches have been proposed in the literature
to tackle this problem [119]. The approaches are explained as follows.

Solution during the execution: In this approach, conflict problems are solved ei-
ther through the addition of extra memory elements and/or complex interconnection
networks. Works in [120–124] have adopted this approach with specific structures con-
sisting in buffers, networks and routers.

Solution during the compilation: The objective of this solution is to find a memory
mapping that provides conflict free concurrent access. This memory mapping specifies
the RAM memory where each extrinsic value can be stored. This kind of approaches
where first proposed in [125, 126]. In these works, it was demonstrated that, for any
interleaver function π(i) and any number of sub-blocks Q, it is possible to find a conflict
free memory mapping. Besides, an algorithm to find a memory mapping is proposed.
This technique was later extended in [127–129], where other algorithms to find a memory
mapping have been proposed.

Solution during the design: In this type of solutions the interleavers are designed
under certain constraints, so that the conflict problems can be solved with minimum

118 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

amounts of additional hardware resources. Hence, with a trivial memory mapping, the
SISO decoders have access to the extrinsic memory without any memory access conflict.
The works in [46–48,130–134] are based in this approach. Thus, very good performance
interleavers, in terms of the turbo decode error correction capabilities, have been pro-
posed. In [135] it was demonstrated that only a small fraction of all possible interleavers
present conflict-free properties. Thus, a relative low number of parameters should be
established to define the interleavers. In this case, an exhaustive search among all the
configuration parameters can be done [119]. It enables to find an optimum interleaver
configuration for each frame length.

Solutions during the execution or compilation stage have to be applied when the
interleaver is already established. Indeed, the designer does not have the possibility to
modify its structure in this case. Note that, since the solution during the execution
stage requires the use of buffers, the decoder throughput may be reduced. On the other
hand, the solutions during the compilation allow high throughput rates. However, since
the memory mapping in most of the cases cannot be analytically described, important
amount of memories are required to store it. This is specially true for long frames, where
the hardware complexity of this approach may be prohibitive.

The solutions during the design are preferred if the interleaver function is not imposed.
In this case, the designer is able to use an interleaver that provides a good error correction
performance, getting rid of the memory conflict problems for a given turbo decoder
parallelism degree. In current digital communication standards, conflict-free interleavers
have been adopted since the high throughput is a major constraint. Indeed, future
standards have to be proposed following this type of solution.

In the following sections we introduce the conflict-free interleavers, proposed by
following a solution at the design stage. The properties of the Quadratic Polynomial
Permutation (QPP) and Almost Regular Permutation (ARP) interleavers are specially
discussed.

4.2.1 CONFLICT-FREE INTERLEAVERS

An interleaver function applied over a frame of size L is Conflict-Free (CF) for Q sub-
blocks (N = L/Q symbols per sub-blocks) if the equation in (4.1) holds, where g(·) is
either π(·) or π−1(·), 0 ≤ i < N and 0 ≤ a1 < a2 < Q [133]. In this equation, we
assume that a radix-2 architecture is used.

⌊

g(i + a1N)

N

⌋

6=
⌊

g(i + a2N)

N

⌋

(4.1)

This CF interleaver definition guaranties that there is no conflicts when extrinsic

4.2. MEMORY ACCESS CONFLICTS 119

values are acceded through both interleaver and de-interleaver functions. Thus, inter-
leavers that meet this condition are well suited for turbo decoder architectures where
the exchange of extrinsic information is not carried out through a bank of memories, but
through a Network-on-Chip (NoC) [62]. However, for the architecture that we consider
in Figure 4.1, if a trivial memory mapping is applied1, the memory conflicts in the natural
order are resolved. Thus, we only need that (4.1) is satisfied for g(·) = π(·).

An interleaver is said to be Maximum Conflict-Free (MCF) [134] if it is CF for each
sub-block length N which is a factor of the information frame length L. Interleavers
that fall into this category are very interesting in order to design high throughput turbo
decoders. Indeed, the sub-block technique can be used at a high parallelism degree2.

Let us assume that the SISO decoders have the Internal SISO Mem given in Figure
3.2. Let us also consider a non-shuffled architecture. Hence, to avoid memory conflict
problems, M = Q (M = 2Q) memories are required when the Backward-Forward
(Butterfly) schedule is implemented, if a CF schedule is applied. For an ASIC technology,
if these memories are physically separated, an important complexity cost is added due to
the logic implemented inside each memory. Besides, the Memory Address Generator in
Figure 4.1 has to produce, for each memory, a different address for each memory access.
As pointed out in [136], it is possible to implement a single memory that stores, in each
memory position, Q extrinsic values if the following equation is satisfied:

π(a1N + i)(modN) = π(i)(modN), for 0 ≤ a1 < Q, 0 ≤ i < N . (4.2)

An interleaver that fulfills (4.2) is refered to as vectorizable. It is important to
mention than an interleaver is CF if and only if it is vectorizable [136]. In the rest of
this section, we present the QPP and ARP interleavers, and their relevant properties to
design high throughput turbo decoders.

4.2.1.1 QPP INTERLEAVER

The QPP interleaver is defined by a quadratic polynomial function:

π(i) = f1i + f2i
2(modL) (4.3)

where f1 and f2 are nonnegative integers, selected from a restricted set defined by
L. The de-interleaver π(i)−1 is also a polynomial function, but not necessarily quadratic

1In this trivial mapping, the extrinsic value 0 ≤ k < L is assigned to the memory bank ⌊k/N⌋ at
the memory location k − ⌊k/N⌋N .

2It is important to keep in mind that a very high sub-blocks parallelism implies an important number
of additional iterations. Thus, the decoding performance is the major constraint for very high sub-block
parallelism architectures.

120 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

π(i0)

f(i0)2f2NT
2(modL)

π(i)

f(i)

Figure 4.2: Architecture to generate the QPP address in the forward direction.

[137]. In [134], it was demonstrated that any valid interleaver defined by (4.3) is MCF,
and thus, also vectorizable. The QPP interleaver function can be computed recursively
[136, 138]. Let us consider the interleaver value for i + NT , expressed in terms of the
interleaver value for i:

π(i + NT) = f1(i + NT) + f2(i + NT)2(modL)

= f1i + f2i
2 + f1NT + 2f2iNT + f2N

2
T (modL)

= (π(i) + f(i))(modL)

(4.4)

where f(i) = f1NT + 2f2iNT + f2N
2
T (modL). Note that f(i) can also be expressed

recursively:

f(i + NT) = f(i) + 2f2N
2
T (modL) (4.5)

With (4.4) and (4.5), and inspired by the architecture proposed in [138], we designed
the architecture detailed in Figure 4.2. We propose this architecture in order to generate
the interleaver address in the forward direction. Thus, starting at the value i0, this
architecture enables to generate, during each clock cycle, the interlever address every
NT trellis diagram transitions. The modulo blocks are easily designed with an adder and
a multiplexor. This architecture should be replicated two and four times if radix-4 and
radix-16 architectures are considered, respectively. Note that a similar architecture can
be applied in order to generate the addresses in the backward direction.

4.2.1.2 ARP INTERLEAVER

The expression in (4.6) defines an ARP interleaver, where P0 is an integer prime with
L, and ω(i) is a periodical function with period T . T is called the disorder cycle. It has

4.2. MEMORY ACCESS CONFLICTS 121

i0P0

iP0

ϕ

NT P0

π(i)

i0 mod T

NT

Figure 4.3: Architecture to generate the ARP addresses in the forward direction. T = 4.

to be a divider of L.

π(i) = iP0 + ω(i)(modL) (4.6)

The periodical function can be expressed as follows.

ω(i) = E[i mod T] + P0F [i mod T] (4.7)

where E and F are vectors of length T . It is assumed that the elements of E and
F are multiples of T . Indeed, it is a sufficient, but not a necessary condition, to ensure
that the interleaver function is valid [46]. An ARP interleaver is CF and vectorizable,
if the number of symbols in each sub-block, N = L/Q, is a multiple of T . Thus, this
interleaver is less parallelizable than the QPP interleaver, which is MCF.

Figure 4.3 shows the architecture used to generate the interleaver values every NT

trellis diagram transitions, starting at i0, in the forward direction. A period T = 4 is
considered. A similar architecture can be applied in order to generate the interleaver
addresses in the backward direction.

4.2.2 MEMORY ORGANIZATION FOR CONFLICT-FREE INTERLEAVERS

The definition of CF interleavers in (4.1) guarantees that no conflict problems appear
when the sub-block technique is used, as long as a radix-2 architecture is considered.
However, for higher radix values, the conflict free property is not necessarily true. For
instance, in general the QPP and ARP interleavers are no CF if radix-4 or radix-16
architectures are implemented [124]. Since the results of Chapter 3 have shown the

122 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

convenience of high radix values architectures to achieve high throughput rates, we
have to propose solutions for radix-4, and specially radix-16 architectures. Moreover, an
appropriate architecture for addressing all the memory blocks should be designed, trying
to reduce as much as possible its hardware complexity. Let us first tackle the addressing
scheme of all the memory banks.

4.2.2.1 MEMORY ARCHITECTURE FOR SUB-BLOCKS TECHNIQUE

In this section, we consider a non-shuffled turbo decoder, where each SISO decoder
implements a radix-2 Backward-Forward schedule. We recall that the QPP and ARP
interleavers are vectorizable. Therefore, these interleaver functions can be expressed
as [135]:

π(i) = ϕ(i mod N) + N · φ⌊i/N⌋(i mod N) (4.8)

ϕ(i mod N) = π(i)(modN) is a fixed function that defines the position inside each
sub-block. φ⌊i/N⌋ is a function which depends on the the sub-block ⌊i/N⌋. This last
function determines in which sub-block the extrinsic value i is mapped. Therefore, the
set of functions:

φ(j) = {φ0(j), φ1(j), · · · , φQ−1(j)} (4.9)

for 0 ≤ j < N defines the j-th size-Q permutation that determines the sub-block
where the j-th data inside each sub-block is mapped. Thus, the j-th data of the sub-
block 0 ≤ h < Q is mapped to the sub-block 0 ≤ φh(j) < Q.

Let π(i) be an interleaver function that is CF for Q sub-blocks. In this document,
we refer to this interleaver as rotatable with degree np, if np is the minimum number

of permutations φ(l) =
{

φ
(l)
0 , φ

(l)
1 , · · · , φ

(l)
Q−1

}

, for l = 1, 2, · · · , np, such that for any j

the permutation φ(j) in (4.9) can be obtained with a barrel shift operation over φ(l) for
a particular value of l. We refer to the set of permutations Λ = {φ(0), φ(1), · · · , φ(np)}
as the kernel. Let us explain this definition with an example. Suppose that π(i) is a
rotatable CF interleaver for Q = 4. Let the two permutations in the kernel be:

φ(1) = {1, 2, 0, 3}
φ(2) = {0, 2, 1, 3}

(4.10)

Therefore, for any 0 ≤ j < N , φ(j) is equal to either {1, 2, 0, 3}, {3, 1, 2, 0},
{0, 3, 1, 2}, {2, 0, 3, 1}, {0, 2, 1, 3}, {3, 0, 2, 1}, {1, 3, 0, 2}, or {2, 1, 3, 0}. np = 2 is the
minimum number of permutations that can be defined as kernel.

4.2. MEMORY ACCESS CONFLICTS 123

For the size-Q permutation φ we define the distance between the sub-blocks 0 and
1 as:

Ω (φ) = max (φ1 − φ0, Q + φ1 − φ0) (4.11)

We do not provide a mathematical proof to establish the conditions under which
an interleaver is rotatable. However, following a pragmatic approach, we have tested
this property for all the frame sizes in the LTE and DVB-RCS standards. Indeed, for
the DVB-RCS standard, the ARP interleaver is always rotatable with degree np = 1.
Regarding the LTE standard, for Q ≤ 64, the ARP interleaver is rotatable with degree
np ≤ 16. It is worth to mention that for the LTE interleaver, if np > 1, for any two
different permutations φ(l1),φ(l2) ∈ Λ, the following is valid:

Ω
(

φ(l1)
)

6= Ω
(

φ(l2)
)

(4.12)

Therefore, the permutation φ(j) for any j can be established by only computing
φ0(j) and φ1(j). With these two values, the permutation in the kernel φ(l) that, after a
barrel shifter operation generates φ(j), can be unambiguously determined. Furthermore,
if np = 1, as in the DVB-RCS or in some cases for LTE, only the computation of φ0(j)
is required.

Based on these observations, we propose the architecture in Figure 4.4 to generate
the extrinsic memory address, and to control the interconnection network. This scheme
considers a rotatable interleaver with degree 2 ≤ np. It is assumed that the condition
in (4.12) is fulfilled. Thus, the Memory Address Generator receives the interleaver
addresses for the two first sub-blocks. It is composed of two blocks named Get Interleaver
Functions, that compute ϕ(·) and φ(·) according to (4.8). Thanks to the vectorizable
property, ϕ(·) corresponds to the extrinsic memory address. This memory stores in each
memory location Q extrinsic values. Note that the output of the priority encoders are sent
to the Network Controller. This block generates the Interconnection Network control
signals in three steps. First, the permutation φ(l) in the kernel, such that Ω(φ(l)) =
Ω(φ(i mod N)), is found3. Afterwards, the number of positions that φ(l) should be
shifted in the barrel shifter operation in order to get φ(i), is determined. Finally, the
control signals to perform the barrel shifter operation are generated.

Regarding the interconnection network, we have adopted the architecture proposed
in [139], shown in Figure 4.5 for Q = 8. In this case, seven control signals c0, c1, · · · , c6

are required. It has been demonstrated that this network is able to manage conflict free
memory access in QPP interleavers [139]. Moreover, note that this network is able to

3Note that Ω(φ(i mod N)) can be easily computed with φ0(i mod N) and φ1(i mod N) according
to (4.11).

124 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

π(i)
ϕ(i mod N)

φ1(i mod N)

- N

- 2N

-
(Q − 1)N

Q×N

π(i + N)

φ0(i mod N)

π(j + a1N)

ϕ(j mod N)

φa1(j mod N)

Figure 4.4: Extrinsic memory structure for a rotatable interleaver with degree 2 ≤ np,
assuming that the condition in (4.12) is fulfilled. A radix-2 architecture is considered
with Q sub-blocks. If the degree is np = 1, only one block Get Inteleaver Functions is
required.

c0

c1

c2

c4
c3

c5
c6

Figure 4.5: Three-stage network proposed in [139] for QPP interleavers.

4.2. MEMORY ACCESS CONFLICTS 125

perform a barrel shift operation for any number of positions up to Q− 1. Thus, It can
be used for any CF rotatable interleaver with degree 1. Note that in [78] a master-slave
network has been proposed. It can be used for any CF interleaver. However, more stages
are required, at least for Q = 8, with a higher hardware complexity. Similarly, in [140], a
butterfly network is proposed. In this case, the function φ(·) in (4.8) should be defined
under certain restrictions.

With the architecture in Figure 4.4, we have eliminated the necessity of computing
the interleaver function for all the sub-blocks, contrary to the architectures proposed
in [78, 138]. For high number of sub-blocks, an important reduction in terms of the
hardware complexity to generate the extrinsic memory address is achieved4.

4.2.2.2 MEMORY ACCESS WITH RADIX TECHNIQUE

In order to obtain conflict free memory access in the architectures that contain radix-2NT

schemes using the sub-blocks technique, the condition in (4.1) has to be fulfilled with
the following restriction:

⌊

g(i + j)

N

⌋

6=
⌊

g(i + j)

N

⌋

(4.13)

with i(mod NT) = 0 and j = 1, 2, · · · , NT − 1. Regarding the ARP interleaver in
the DVB-RCS standard, the odd/even rule is satisfied [141]. Thus, if i is even, then π(i)
is odd and vice-versa. Therefore, radix-4 architectures conflict free can be achieved if
the memory is divided to store even and odd values in different memories. Considering
the QPP interleaver in the LTE standard, the parameter f1 and f2 are always odd and
even, respectively. Thus, π(2i)(mod2) = 0 and π(2i + 1)(mod2) = 1. This property
enables to implement conflict free radix-4 turbo decoder architectures. Furthermore, the
following equations are valid [138]:

π(4i)(mod4) = 0

π(4i + 1)(mod4) =

{

1 if (f1 + f2)(mod4) = 1
3 if (f1 + f2)(mod4) = 3

π(4i + 2)(mod4) = 2

π(4i + 3)(mod4) =

{

3 if (f1 + f2)(mod4) = 1
1 if (f1 + f2)(mod4) = 3

(4.14)

4However, we have to keep in mind that the address generator generally represent a small percentage
of the overall turbo decoder complexity.

126 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

Considering a radix-16 architecture, memory conflict problems can be avoided by
implementing four memory banks. The size of each memory is N/4. In each position,
Q extrinsic values are stored. Each memory is assigned to store the values determined
by the conditions in (4.14). In this case, we can implement the simplified addressing
architecture proposed in section 4.2.2.1.

When iterleavers that are not well suited to avoid memory conflicts in high radix
architectures, a solutions during the execution or the compilation has to be applied.
Since the latter one is more appropriated for high throughput decoding, this solution is
adopted in this study. Thus, in section 4.4 we introduce a methodology applied during
the compilation, to design high throughput turbo decoders for any interleaver function.

4.2.3 SHUFFLED TURBO DECODERS MEMORY CONFLICT PROBLEMS

Shuffled turbo decoder implementations impose additional memory constraints. A care-
ful analysis of the extrinsic information values exchanged between SISO decoders in
the natural and interleaved order has to be carried out in order to avoid a complete
duplication of the extrinsic information memory.

The memory access sequence performed by a shuffled turbo decoder with one sub-
block Q = 1 (P = 2) is presented in Figure 4.6. Both SISO decoders implement the
Butterfly-Replica schedule. In the left side of the figure, the SISO decoder schedules are
depicted − natural order SISO decoder in the top and interleaved order SISO decoder in
the bottom −. In the right side of the figure, the memory accesses performed by both
SISO decoders are represented. Indeed, in the figure two possible cases are depicted.
First, let us consider the information symbol j in the natural order, that is mapped by
the interleaved to π−1(j). For this information symbol, the extrinsic value is read by the
SISO decoder in the natural order, followed by a writing operation done by the same
SISO decoder. After that, the SISO decoder in the interleaved order performs twice a
reading operation followed by a writing operation. Afterwards, the natural SISO decoder
reads and writes the extrinsic value. In this case, the first data written by the SISO
decoder in the interleaved order is not consumed by the SISO decoder in the natural
order. Thus, it can be removed without affecting the turbo decoder performance. If the
SISO decoder contains an internal memory (Figure 3.2(b)), the second reading operation
executed by the interleaved SISO decoder can also be removed. In this case, the extrinsic
memory architecture is simplified thanks to an additional SISO decoder internal memory.

Information symbol i in Figure 4.6 presents what is called a consistency problem.
During the decoding process, a reading operation done by a SISO decoder in one domain
is followed by a reading operation performed by the SISO decoder in the other domain.
This occurs for a writing operation as well. Thus, if only one memory position is used for

4.2. MEMORY ACCESS CONFLICTS 127

i

j

π−1(i)

π−1(j)
t

t

t

t

Extrinsic memory access
for information symbol j

Extrinsic memory access
for information symbol i

Figure 4.6: Shuffled turbo decoder memory issues.

the extrinsic information of symbol i, the same extrinsic value is read in both orders, and
the extrinsic value that has to be produced by one SISO decoder is missed. In this case,
a sever performance degradation in terms of the correction capabilities occurs. Note also
that the interleaved order SISO reads always the same data that it has written before.

Concurrently access to the same extrinsic value is also possible in a shuffled turbo
decoder. Indeed, the extrinsic information for the same symbol can be computed in
the natural and interleaved orders during the same clock cycle. However, this kind of
memory conflict does not appear in non-shuffled architectures, since any information
symbol does not belong to more than one sub-block.

In order to solve consistency conflicts and concurrent accesses to the same memory
location, additional extrinsic memory locations are required. Note that by avoiding
unnecessary reading and writing operations, as long as it does not affect the turbo
decoder performance, the whole extrinsic memory is not duplicated.

128 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

4.3 LTE HIGH THROUGHPUT TURBO DECODER ARCHITEC-
TURE

In the previous section we have described the memory conflict problems in parallel turbo
decoder architectures. Conflict free interleavers were specially considered, and a novel
architecture to address the extrinsic memory was introduced. In this section, we present
some architectural solutions to design a high throughput turbo decoder for the LTE
standard. They take advantage of the QPP interleaver properties. The SISO decoder
presented in the previous chapter is used.

4.3.1 SISO DECODER ARCHITECTURE

We adopt the radix-16 SISO decoder architecture presented in Chapter 3, section 3.4.
This architecture enables to achieve high throughput rates. However, since the shifting
technique described in section 3.4.2.2 has to be implemented, some architectural con-
straints appear in the turbo decoder architecture design. Let us first consider the most
appropriate SISO decoder schedule for the implementation.

We implement a non-shuffled turbo decoder. The justification for this choice is
presented latter on, from the results obtained in section 4.4. Thus, we have to decide
for the best schedule between Butterfly and Backward-Forward. It is also necessarily
to choose if the sliding window technique is applied, and the sub-blocks and windows
initialization method.

Considering the sliding windows technique, the Butterfly schedule is less efficient than
the Backward-Forward schedule when medium to large sub-blocks are used [50]. How-
ever, if the sub-block size decreases, the Butterfly schedule becomes more efficient. It is
due to the larger sub-block decoding time required by the Backward-Forward schedule,
by comparison with the Butterfly schedule. This decoding time becomes more significant
for small sub-blocks. For high throughput turbo decoders, the sub-block technique with
a large number of SISO decoders is mandatory. Hence, the sub-blocks have a medium
to small size. In this case, the Butterfly schedule becomes more attractive.

The sliding window technique is necessary to reduce the hardware complexity over-
head due to the implementation of large state metric memories. This is specially true
when a low number of sub-blocks is used. However, as the number of SISO decoders
increases, and thus, the sub-block size decreases, the benefits of the sliding window
technique are less important. In [138], the Butterfly and Backward-Forward schedules,
without and with sliding windows, respectively, have been compared. It has been reported
that for a large sub-block size, the hardware complexity of the non-sliding window But-
terfly schedule is much larger compared to hardware complexity of the sliding window

4.3. LTE HIGH THROUGHPUT TURBO DECODER ARCHITECTURE 129

Backward-Forward schedule. In this case, the state metric memory accounts for a very
high hardware complexity if the sliding windows is not used. However, as the num-
ber of SISO decoders increases significantly, the difference in complexity between both
schedules decreases rapidly. Thus, for a frame size L = 6144 and Q = 64 sub-blocks,
the non sliding window Butterfly schedule is more efficient than the sliding window
Backward-Forward schedule (window size W = 64), in terms of the Complexity-Timing
(CT) product. Note that in [138] it was also reported that the use of a radix-4 architec-
ture improves the CT product of the Butterfly schedule, but not necessarily that of the
Backward-Forward schedule. Thus, for a low number of sub-blocks, the CT product of
both schedules becomes closer as the radix values increases.

We propose then to use the Butterfly schedule. The sliding window technique is
avoided as long as a high number of sub-blocks are implemented (small sub-block size),
and a high radix value is used. Regarding the sub-block initialization technique, from the
conclusions presented in section 2.2.2.1, the message passing initialization is required.
It should be avoided any acquisition operation, since it penalizes the throughput for a
high number of SISO decoders [62,142].

4.3.2 EXTRINSIC INFORMATION MEMORY ACCESS

Since we are using a radix-16 SISO decoder implementing the Butterfly schedule, eight
extrinsic values are produced or consumed during each clock cycle (four in the top
and four in the bottom of the Butterfly). Thus, the extrinsic memory architecture
has to be designed with conflict free access to all the 8P extrinsic values required by
the SISO decoders in the turbo decoder architecture. Also, note that since we are
using the proposed low complexity radix-16 SISO decoder, the shift technique has to be
implemented in order to avoid decoding performance degradation. Figure 4.7 depicts
the decoding operations over a frame, when a shift of ns = 2 bits is applied. Four SISO
decoders are considered. In each sub-block, four radix-16 trellis diagram transitions
should be performed. Due to the shifting operation, the SISO decoder 4 performs five
radix-16 trellis diagram transitions, while the other SISO decoders perform only four. In
this case, memory conflict problems appear if all the SISO decoders start to work at the
same time. In order to overcome this problem, the SISO decoder 4 has to perform the
first backward radix-16 trellis diagram transition prior to any other SISO decoder in the
architecture. Then, all the SISO decoders operate simultaneously. Thus, the conflict
free properties of the interleaver can be exploited. Note that this solution works well for
ns = 1, 2, 3.

Figure 4.8 presents the turbo decoder architecture that we propose. For simplicity,
only the communication links from the extrinsic memories to the SISO decoders are

130 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

Figure 4.7: Frame shift principle when the sub-block technique is used. Radix-16 SISO
decoder architecture. ns = 2, Q = P = 4. Four radix-16 trellis diagram transition per
sub-block.

Figure 4.8: Conflict free access for a turbo decoder that is composed of radix-16 SISO
decoders and a QPP interleaver.

4.3. LTE HIGH THROUGHPUT TURBO DECODER ARCHITECTURE 131

plotted. Note that some logic has to be added in order to perform the message passing
between adjacent SISOs. Indeed, due to the shift technique, the limits of the sub-blocks
are different in consecutive iterations with different ns values. In this case radix-2 BMUs
and ACS units are used to compute α and β in the limits of the sub-blocks for the next
iteration.

Eight memories are required to avoid memory conflicts. Each one store the extrinsic
values for a given value i mod 4. In each memory location Q extrinsic values are stored.
Therefore, WRAM = N/8 different values can be addressed in each memory.

The Memory Address Generator is based on the architecture proposed in section
4.2.2.1. Eight interconnection networks, implemented with the architecture in Figure
4.5, are used. Note that the SISO decoders receive the extrinsic values through a
Barrel Shifter. It is required due to the shift technique. Therefore, when ns > 0, the
barrel shifters have to rotate the extrinsic values ns positions. By this way, we are
able to simplify the interconnection network architecture, since no additional constraints
between any pair of extrinsic values i and j have to be taken into account if (i mod 4) 6=
(j mod 4). Note that three multiplexors are necessary at the input of the first and
P -th SISO decoder. They are used to select either the values that come form the
extrinsic memories, or a negative value with a large magnitude. Thus, the radix-16
trellis transitions in the frame limits are correctly managed, as previously explained in
section 3.4.2.2.

4.3.3 FPGA PROTOTYPING OF THE TURBO DECODER

In order to validate the architectural solutions proposed in this section, an FPGA pro-
totype has been carried out. The board DN9000K10PCI 5, available at the electronics
department of Telecom Bretagne, has been used. This board is composed of 6 Xilinx
Virtex 5 devices with appropriate communication channels. Also, an USB interface is
available to communicate with a host computer.

Two different FPGAs in the board were assigned to implement the transmitter, the
channel and the receiver, as shown in Figure 4.9. In the transmitter side, a pseudo-
random bit sequence is generated by a Linear Feedback Shift Register (LFSR) in order
to emulate the information frame produced by the source. This sequence of bits is
then received by the turbo encoder. Two buffers are implemented in order to store the
information frame in the natural and interleaved order before the convolutional encoders
operation. In order to emulate the communication channel, a Gaussian noise generator,
based in the Wallace method [143], was implemented as presented in [144]. The host
computer sets the noise variance in function of the SNR value. In the FPGA dedicated

5http://www.dinigroup.com/new/DN9000k10PCI.php

132 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

σ2
n

6=

Figure 4.9: Turbo Encoder/Decoder on-board prototype.

to the implementation of the receiver, a memory stores the LLR values that correspond
to the channel information. After the turbo decoding, the number of bits incorrectly
decoded is computed. An LFSR, identical to the LFSR in the transmitter, is implemented
to enable to do the comparison. The host computer has access to the number of
erroneous bits and computes the BER and FER values. It contains a graphical user
interface in order to setup various parameters of the board, download the corresponding
configuration bitstreams, and display the BER/FER decoding performance.

Table 4.1 presents the synthesis results of a first FPGA implementation when Q = 1
sub-block is considered. The frame size is set to L = 1024 bits. The required hardware
resources for both FPGAs are given. The architecture can work at a frequency of 100
MHz. The measured BER and FER performance are shown in Figure 4.10 after 6 turbo
decoder iterations.

To assess our ideas in a very high parallel context, the turbo decoder complexity
when Q = 32 sub-blocks are used was estimated using 90nm ASIC technology from
STMicroelectronics. A frame size of L = 1024 bits was considered. Thus, for a clock
frequency of 200MHz a throughput of 1,13Gbit/s is expected. Taking advantage of the
pipeline stages of the SISO decoders, it is possible to decode two frames simultaneously

4.4. TURBO DECODER DESIGN SPACE EXPLORATION 133

Figure 4.10: BER and FER of the SISO decoder measured on on-board prototype with
6 Iterations.

by duplicating the extrinsic and channel memory resources. In this case the expected
throughput is about 2,27Gbit/s with an estimated complexity of 5,13M logic gates. The
system complexity is distributed as presented in figure 4.11.

4.4 TURBO DECODER DESIGN SPACE EXPLORATION

The impact on the hardware complexity and throughput, that results when a set of
parallel turbo decoding techniques are combined, is usually determined at the end of
the design process, after the turbo decoder architecture has been synthesized. Thus,
the time to market is penalized and the probability of designing a suboptimal system
increases. In this section we address this problem by introducing a dedicated approach
to efficiently explore the design space of parallel turbo decoder architectures. Thanks

134 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

Transmitter & Channel Receiver

Slice Registers (out of 207,360) 746 (<1%) 5,948 (<3%)
Slice LUTs (out of 207,360) 1,419 (<1%) 19,382 (9%)

DSP48Es (out of 192) 7 (3%) 0

Table 4.1: Logic synthesis results of the FPGA Xilinx Virtex 5 xc5vlx330 device. The
achievable frequency is 100 MHz.

Figure 4.11: Resources for a parallel turbo decoder with Q = 32 sub-blocks and the
proposed radix-16 SISO decoder.

to this approach, a tradeoff between the hardware complexity and the throughput can
be established in the early stages of the architecture design process. The approach,
contrary to the architecture presented in the previous section, implements a solution
during the compilation to solve the memory access conflicts. In this way, we are able
to design a high throughput architecture for any parallelism and interleaver. However,
a penality in terms of the hardware complexity is expected. Note that the most part of
the contents of this section have been published in [145]. This work has been carried
out in collaboration with S. ur Rehman, A. Sani, C. Chavet and P. Coussy, who are with
the Université de Bretagne-Sud, at Lorient.

4.4. TURBO DECODER DESIGN SPACE EXPLORATION 135

SISO1

SISO2

SISOP

RAM1

RAM2

RAMM

ROM1

ROM2

ROMM

Figure 4.12: Turbo decoder architecture model.

4.4.1 TURBO DECODER ARCHITECTURE MODEL

Our approach considers P SISO decoders, that can implement any parallelism at the
metric level, and that can work in either shuffled or non-shuffled mode. The turbo
decoder architecture is given in Figure 4.12. In order to reduce the memory complex-
ity, single port RAM are allocated to store the extrinsic information values. Read only
memories are used to address each memory block and also to control the signals of the
interconnection network. The addressing of the memory blocks is based on the inter-
leaved function and on the data required by the SISO decoders during each clock cycle.
Thus, a controller has to be designed to address the ROM memories and to generate
the control signals of the memory blocks. Note that channel information memories are
omitted in Figure 4.12.

We recall that each sub-block is formed by N = L/Q symbols with Q = P for
non-shuffled turbo decoders, and Q = P/2 for shuffled turbo decoders. Let Tc denotes
the number of clock periods during which each SISO decoder performs writing or reading
memory access in order to execute one iteration (for a non-shuffled turbo decoders), or
a half iteration (for a shuffled turbo decoders). Let WRAM represents the size of each
RAM memory. Then, the size of each addressing ROM is: Tc ∗ ⌈log2(WRAM)⌉. Note
that an iteration in a shuffled and non-shuffled turbo decoders has the same duration if
both turbo decoders have the same sub-block size N .

We consider Butterfly and Backward-Forward schedules for non-shuffled architecture,
and Butterfly-Replica schedule for shuffled architectures. The SISO decoder architectures
that are detailed in Chapter 3, section 3.1, are used. Radix-2NT ACS architectures are
considered. Let σ be the maximum number of reading or writing extrinsic values accesses
performed by each SISO decoder during each clock cycle. If the Internal SISO Mem is
used in the Backward-Forward schedule, then a maximum of σ = NT extrinsic values
should be accessed simultaneously from the memory banks. However, if this memory

136 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

Tc1 2 3 Tc

2

1
2

σ · P
Tc

2 + 1

1
2

σ · P

(a)

1 2 3 Tc

1

σ · P

(σ · P)/2
(σ · P)/2 + 1

(b)

Figure 4.13: Data access matrices. (a) Non-shuffled turbo decoders. (b) Shuffled turbo
decoders.

type is not used, or if the other two schedules are considered, then σ = 2NT . Thus,
the number of memories that should be assigned to facilitate a contention free memory
mapping is given in (4.15). Radix values for NT = 1, 2, 4 are considered.

M = σ · P (4.15)

4.4.2 A DEDICATED APPROACH TO EXPLORE THE DESIGN SPACE

In the first part of this section the adopted solution to solve memory conflict problems
is presented. The second part is devoted to present the approach that we propose.

4.4.2.1 SOLVING MEMORY CONFLICTS

Shuffled and non-shuffled turbo decoders have two different types of memory conflict
problems. To tackle them, two approaches are proposed in this section: one for non-
shuffled decoding and another one for shuffled decoding in turbo decoders with any radix
value and any schedule. Both approaches can be applied to find conflict free memory
mappings.

The algorithm proposed in [129], based on the transportation problem, is executed
to solve memory conflicts for non-shuffled turbo decoders. Data access order can be
illustrated through data access matrices as shown in Figure 4.13(a). In this Figure,
one matrix is related to the natural order access and another one is related to the

4.4. TURBO DECODER DESIGN SPACE EXPLORATION 137

interleaved order access. Each matrix has σ · P rows for the extrinsic values accessed
by the SISO decoders, and Tc/2 columns for the time instances. Data elements in each
row are processed by the same SISO (each SISO accesses σ data elements, σ rows in
the matrix). Similarly, the σ · P data elements in each column have to be accessed in
parallel by P SISO decoders.

The algorithm presented in [129] finds memory mapping in two steps. In a first step,
a bipartite graph = (Tc ∪ F, E) is built in which vertex set Tc represents all the time
instances and vertex set F represents all the data elements. An edge (tc, f) is incident
to the data element vertex f and to the time instance vertex tc, if f has to be processed
at tc. During a second step, transportation problem is used to partition this bipartite
graph into different semi 2-factors and to allocate data in different memory banks.

For shuffled turbo decoders, both natural and interleaved orders are processed con-
currently as shown through data access matrix in Figure 4.13(b). The approach proposed
in [128], based on edge coloring of tripartite graph, is used to solve the memory mapping
problem. In this approach, data can be read from one memory bank and then it can
be written in a different bank, in order to allocate data in minimum number of memory
banks. Initially, data access matrix is modeled as a tripartite graph G = (TR∪TW∪F, E)
in which vertex sets TR and TW represent all the time instances during which data are
read and written, respectively. In this graph model, vertex set F represents all the data
used in the computation. After the construction of the tripartite graph G, subgraph par-
titioning technique is applied to divide this graph into different subgraphs with specific
characteristics to solve mapping problem. Finally, edges of each subgraph are colored
separately to allocate data in different memory banks.

4.4.2.2 PROPOSED DESIGN FLOW

The proposed design flow is detailed in Figure 4.14. Inputs are the interleaver function
π(i), the parallelism type of the turbo decoder architecture (P , shuffled/non-shuffled),
the selected SISO architecture (schedule, window size W if any, internal SISO Mem,
number of pipeline stages and NT that defines the radix used) and the parameters of
the interconnection network (number of pipeline stages that defines τrd). Note that the
number of pipeline stages in the SOU and in the interconnection network define the
value of the parameter τwr.

The first step in the design flow is the generation of the memory access description
files. These files contain the sequence of extrinsic information values that are read or
written by each SISO decoder during each clock cycle. They are generated in three steps:
extrinsic values that are acceded concurrently by all the SISO decoders (depending on P ,
NT and π(i)) are listed for each clock cycle, eliminating unnecessary reading and writing

138 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

π(i)

Figure 4.14: Design Flow for architectural space exploration.

accesses (section 4.2.3). Additional extrinsic memory locations are used if concurrent
access to the same extrinsic value occur ensuring that a correct exchange between natural
and interleaved order is achieved. Finally, consistency problems are resolved by adding
extrinsic memory locations as well. Let l denotes the number of additional memory
positions used to solve concurrent access to the same extrinsic value and consistency
problems. Note that the memory access description files are generated automatically by
the executions of some scripts.

Memory access description files enable to carry out conflict free memory mapping as
presented in section 4.4.2.1. Thus, L + l extrinsic values are assigned to M memory
banks. From this memory mapping, the controller can be designed and the content
of ROM memories (Figure 4.12) can be established. Finally, estimations of the turbo
decoder throughput and hardware complexity are done.

4.4.3 CASE STUDY: TURBO DECODER FOR LTE STANDARD

To illustrate our approach, we have applied it to a turbo decoder for the LTE standard.
A frame size L = 1024 and a code rate R = 1/2 are considered. Parallelism is explored
for P = 16 and 32 SISO decoders that can implement radix-2, radix-4 or radix-16 ACS
unit architectures. Shuffled and non-shuffled architectures are considered with schedule
Butterfly-Replica and Butterfly, respectively. In non-shuffled case, there are Q = 16

4.4. TURBO DECODER DESIGN SPACE EXPLORATION 139

and 32 sub-blocks. In shuffled case, since the processors are distributed in both orders,
Q = 8 and 16. Thus, we consider sub-blocks sizes N = 32, 64 and 128. Sliding window
technique is used in non-shuffled decoders with a window size of 32. We have chosen
wr = 5 bits to quantify the channel information, and wext = 6 bits to represent the
extrinsic information. wSM = 9 bits are fixed for Mα and Mβ state metrics values in
radix-2 architectures. These quantization values where established through Monte Carlo
simulations. Here we have accepted a degradation lower than 0.1 dB with respect to a
floating point model in order to reduce the hardware complexity.

The interconnection network is implemented by a M ×M beneš network [146], with
M given by (4.15). To prevent the critical path of the turbo decoder to be in the
interconnection network, pipelining stages have to be introduced. From logic synthesis
results we have established that one pipeline stage is enough for M = 32 and 64, while
two stages are necessary for M = 128 and 256. These pipeline stages define the value
of τrd.

For the design space exploration, we have fixed the clock frequency to 500MHz,
where an ASIC target (90nm) is considered. All the blocks in the SISO decoder, other
than the ACS unit, are pipelined to respect the clock frequency constraint. Thus, the
critical path is in the ACS unit. 6 pipeline stages are necessary for radix-2 and radix-4
SISO decoders. Since the radix-16 version is more complex in terms of logic gates, 8
pipeline stages are required.

Turbo decoders with different parallelism levels are compared as long as there is no
performance degradation. To this end, a non-shuffled turbo decoder with Q = 1 sub-
block with 6 decoding iterations is taken as reference. All the parallel turbo decoders
should execute a certain number of iterations such than their BER performance is not
worst by comparison with the reference. Through extensive Monte-Carlo simulations,
the number of iterations for each turbo decoder architecture was determined. Shuffled
decoders should execute 3.5 and 4 iterations when 16 and 32 SISO processors are chosen
respectively, if the SISO decoder internal memory is not used. Furthermore, 2 additional
iterations are required when internal memories are added. Non-shuffled turbo decoders
should execute 7 and 9 iterations for 16 and 32 SISO decoders, respectively. Note
that, contrary to shuffled architectures, the use of internal memory in the non-shuffled
configurations does not affect the turbo decoder performance.

Nine turbo decoder configurations are selected. They have been studied for 16 and
32 SISO decoders. The approach presented in section 4.4.2.2 has been applied to the
nine configurations. The hardware cost of the different components of the resultant
architecture was estimated using 90nm ASIC technology from STMicroelectronics. The
corresponding area is expressed in terms of logic gates. Figure 4.15 shows the equivalent
number of logic gates for all the configurations with respect to the number of clock

140 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

2

4

6

8

10

500 1000 1500 2000 2500

E
st

im
at

ed
ar

ea
(M

ill
io

n
of

ga
te

s)

Cycles to decode a frame

Shuffled

Non-Shuffled

224

4

16

16

2

2
4

4

2

22

242
4

44

Figure 4.15: Area estimations of the considered turbo decoder architectures in function
of the number of clock cycle to decode a frame. The numbers by each point indicate
the radix value.

cycles necessary to decode a frame (directly related to the turbo decoder throughput),
for equivalent BER performance. Numbers by each point denotes the radix value. In
blue and red are indicated the configurations that implement or not an internal memory,
respectively.

Note that non-shuffled configuration with internal memory are Pareto-optimal archi-
tectures for 2, 4 and 16 radix values. In non-shuffled turbo decoder configurations, the
use of internal SISO decoder memories is convenient since it has a positive impact on
the turbo decoder throughput. Indeed, it reduces the number of reading accesses. It
also helps to reduce the hardware complexity of the whole architecture. However, for the
shuffled configurations, the turbo decoder hardware complexity is slightly reduced. But
the throughput is significantly affected due to the 2 additional iterations that should be
executed in order to avoid BER performance degradation. Since less reading accesses
are performed when the internal SISO memory is used, the sizes of the ROM memo-
ries in Figure 4.12 can be decreased. Consequently, the whole turbo decoder hardware
complexity is reduced.

For radix-2 and radix-4 configurations, a significant decoding time enhancement is
obtained when switching from 16 towards 32 SISO decoders with minimal area overhead.
It leads to the conclusion that the relative area of the SISO decoders is not the dominant

4.5. CONCLUSION 141

term in the whole turbo decoder complexity. However, for the radix-16 architecture
this area overhead becomes more important, since the SISO decoders exhibit a higher
complexity.

From the considered configurations, no advantage was observed for the shuffled
turbo decoder architectures. They correspond to more complex architectures, that do
not present significative throughput improvements. This is due to the additional extrinsic
memory positions used to solve consistency problems and concurrent access to the same
memory position. Additionally, since single port RAM memories have been considered,
reading and writing accesses can not be performed simultaneously. This penalizes the
number of cycles per iteration in the Butterfly-Replica schedule, that performs intensive
reading and writing operations. ROM memories in the designed architecture are the
most costly element. Since they are used to address the RAM memories, future works
have to be oriented toward the proposition of alternative addressing schemes. Conclusion
from this investigation could restore the interest in shuffled turbo decoders.

4.5 CONCLUSION

In this chapter an effort is made in order to overcome the architectural problems that
arise when multiples SISO decoders are assigned in a parallel turbo decoder. Regarding
the extrinsic memory conflicts, we have proposed two approaches to build high through-
put turbo decoders. In the first one, taking advantage of the conflict free interleavers
properties, we propose a low complexity memory addressing architecture, a memory or-
ganization scheme, and an interconnection network architecture in order to use radix-16
SISO decoders. Besides, we have demonstrated that the low complexity radix-16 SISO
decoder proposed in Chapter 3, can be integrated in high parallel turbo decoder archi-
tectures. In the second approach, a solution during the compilation is adopted. In this
case, a dedicated approach is proposed to explore the design space, and propose archi-
tectures that support any parallel turbo decoding technique, regardless the properties of
the interleaver function.

The main objective of the dedicated approach introduced in section 4.4.2.2 is to
reduce the time to market constraint by designing turbo decoder architecture for a given
throughput. To validate our approach, different configurations based on shuffled and
non-shuffled schemes have been investigated. A novel architecture to decode turbo
codes using shuffled scheduling is also proposed. Memory conflict problem, concurrent
memory access problem and consistency conflict problem are considered to guarantee
the BER performance and also to reduce the hardware architecture cost. In future
works, an optimization in the addressing and control logic has to be proposed. Note
that the shuffled architectures have not shown significative improvements with respect

142 CHAPTER 4. HIGH THROUGHPUT TURBO DECODER ARCHITECTURES

to non-shuffled ones.
This chapter has also presented the results of a first prototype designed to validate

our propositions. This prototype has demonstrated the feasibility of using the radix-16
SISO decoder architecture presented in the previous chapter. Currently, a prototype
that integrates 32 SISO decoders is under development. Results from this prototype
would help to establish the advantages of our architecture as presented in section 4.3. A
throughput of 1Gbit/s is expected for 6 turbo decoder iterations. Besides, since the SISO
decoder complexity has been reduced, an efficient architecture in terms of the achieved
throughput per hardware complexity is anticipated with respect to other architectures
proposed in the literature.

Chapter 5

Conclusion and Perspectives

The work accomplished during this Ph.D is motivated by the increasing demand of
high throughput decoders that are required in current and future digital communication
systems. We concentrate our efforts in the design of high speed convolutional turbo
decoder architectures. For this purpose, a complete exploration of the design space,
from the algorithmic level to the architecture details, has been performed.

The turbo codes are a well known channel coding technique widely used because
of their outstanding error decoding performance close to the Shannon limit. Their
discovery occurred around twenty years ago. At present, their understanding has reached
a mature level thanks to the huge number of research works that have been carried
out. The turbo codes consist in a concatenation of several constituent codes related
by interleaver functions. Their decoding is performed throughout an iterative process
where different Soft Input Soft Output (SISO) decoders exchange the so-called extrinsic
information. This iterative decoding process enables to achieve excellent error decoding
performance. However, it prevents the achievement of high throughput values. While
turbo decoder architectures that provide low (a few Mbit/s) and medium (around 100
Mbit/s) throughput rates have been already proposed, there is a lack of architectural
solutions that support high (1 Gbit/s and higher) throughput rates. Therefore, design
challenges appear in order to cope with the high speed requirements of current digital
communication systems.

We have started by an introduction of the basic concepts concerning the convolu-
tional codes and the turbo decoding principle. Then, a review of different convolutional
decoding algorithms was done. The main motivation of this review was to establish the
convenience of other decoding algorithms, different to the de-facto Bahl-Cocke-Jelinek-
Raviv (BCJR) algorithm, in order to reduce the hardware complexity or increase the
decoding speed. Thus, algorithms based on the Maximum Likelihood (ML) and Maxi-
mum A Posteriori (MAP) principles have been considered. Regarding the ML principle,
the Soft Output Viterbi Algorithm (SOVA) has been analyzed. This algorithm is spe-

143

144 CHAPTER 5. CONCLUSION AND PERSPECTIVES

cially interesting for binary codes, where a reduction in the hardware complexity can be
achieved. Since the main problem of the SOVA is its poor error correcting performance,
techniques to reduce the algorithm degradation have been explored. Thus, degradations
around 0.2dB are observed for SOVA based binary and double binary turbo decodes in
the water fall region, when AWGN channels are considered. However, a bad convergence
in the error-floor region exists.

MAP based algorithms are classified depending on the kind of recursive operations
that they perform.Type-I MAP algorithms, such as the BCJR algorithm, implement
recursive operation in the forward and backward direction. On the other hand, Type-
II algorithms execute recursive operations in only one direction. The Forward Only
MAP (FOMAP), which implements a forward-only recursion, falls in this last category.
This algorithm is suitable for a high pipelined structure. However, since its memory
requirements grow exponentially with the decision delay, a high hardware complexity is
required for its implementation. Moreover, its forward-only recursion characteristic does
not provide significative advantages over the BCJR algorithm, which can execute the
backward and forward recursions in parallel. We have then kept the BCJR algorithm as
the SISO decoding algorithm. Consequently, the Max-Log-MAP algorithm, suitable to
be implemented, is applied.

The turbo decoder parallelism have been explored following a multi-level classifica-
tion. Different parallel turbo decoding techniques have been studied. The convergence
of a turbo decoder was identified as a major characteristic to improve the throughput.
Therefore, a study of the convergence of parallel turbo decoder architectures was per-
formed with the aid of the EXtrinsic Information Transfer (EXIT) chart diagrams. From
this study, a novel SISO decoder schedule for the BCJR algorithm was proposed. It
enables an increase of the convergence of shuffled turbo decoders.

We have demonstrated that the radix technique provides an effective way to over-
come the bottleneck in the SISO decoder architecture. This bottleneck is due to the
feedback loop required to implement the forward and backward recursive operations.
The implementation of the radix technique enables to achieve high throughputs with a
relative low clock frequency. It also helps to decrease the number of pipeline stages in
the different turbo decoder blocks. Besides, the required state metric memory can be
significantly reduced: to a half and to a quarter for radix-4 and radix-16 architectures,
respectively. However, radix architectures have shown to be inefficient in terms of the
energy per decoded bit and achieved throughput per area unit. In order to overcome this
problem, we have proposed a low complexity radix-16 SISO decoder architecture. The
design of this architecture was possible thanks to the elimination of parallel paths in a
radix-16 trellis diagram transition. The proposed SISO decoder implements a high speed
radix-8 Add Compare Select (ACS) unit which exhibits a lower hardware complexity

145

compared with a radix-16 ACS unit architecture. Also, improvements in the critical path
are possible. The elimination of parallel paths has been further extended to reduce the
hardware complexity of the Branch Metric Unit (BMU) and Soft Output Unit (SOU). It
corresponds to an original contribution of our work. Since the proposed radix-16 SISO
decoder degrades the turbo decoder error correcting performance, we have proposed two
techniques so that the architecture can be used in practical applications: 1) an heuristic
parameter to compute the extrinsic information for a given bit when there is not enough
information due to the elimination of paths, 2) a shift technique to reduce the correlation
between extrinsic values computed during the same radix-16 trellis diagram transition.

When considering a whole turbo decoder architecture, the main issue that prevents
the achievements of high throughput rates corresponds to the memory conflicts. They
appear when multiple SISO decoders have simultaneous access to the extrinsic memory
in the system. To overcome this problem, solutions during the execution, the compilation
and the design have been proposed in the literature. Our contributions correspond to
solutions during the compilation and the design. In the former kind of solutions, we
have proposed a dedicated approach to explore the turbo decoder design space. This
approach enables conflict free memory access for any turbo decoder parallelism and
interleaver function. The main objective of the dedicated approach is to reduce the time
to market constraint by designing turbo decoder architectures for a given throughput.
Regarding the solution at the design, we have proposed an extrinsic memory architecture
for conflict free interleavers. To this end, we have introduced the definition of a rotatable
interleaver. The properties of these interleavers have been exploited in order to simplify
the extrinsic memory addressing logic.

Shuffled turbo decoding parallelism has been studied as well. This parallelism tech-
nique has been proposed in order to increase the turbo decoder convergence. Thus, an
increase of the throughput is possible for the same Bit Error Rate (BER)/Frame Error
Rate (FER) performance. Prior to this thesis, the benefits of shuffled turbo decoders
were observed as long as a high number of sub-blocks was considered. This statement
is based on an analysis performed at the algorithm level, leaving out important turbo
decoder implementation issues. In a shuffled turbo decoder architecture, additional ex-
trinsic memory problems appear: concurrent access to the same memory location and
consistency problems. Besides, to ensure conflict free memory access, more complex
extrinsic memory structures are required. We have analyzed the exchange of extrinsic
information in a shuffled turbo decoder architecture. Thus, we are able to avoid a com-
plete duplication of the extrinsic memory and reduce the number of writing and reading
access. However, shuffled turbo decoder architectures are in general more complex, with-
out demonstrating a significant advantage in terms of a higher throughput with respect
to non-shuffled ones.

146 CHAPTER 5. CONCLUSION AND PERSPECTIVES

In a high throughput turbo decoding context, the use of the sub-block technique with
a high parallelism degree is required. In this case, the best schedule to be implemented by
the SISO decoders is the Butterfly schedule without sliding windows. The use of the radix
technique is then required in order to improve the (Complexity-Timing) (CT) product of
the architecture. Using this schedule, a high parallel turbo decoder architecture for the
Long Term Evolution (LTE) standard has been designed. The proposed low complexity
high speed radix-16 SISO decoder architecture has been adopted to perform the Max-
Log-MAP algorithm computations. The QPP interleaver properties have been exploited
in order to avoid memory conflicts. We have taken advantages of the vectorizable
and rotatable properties of the interleaver in order to reduce the memory addressing
architecture complexity. A set of barrel shifters are also used in order to implement the
shift technique with minimum hardware complexity overhead.

A first FPGA prototype using the development board DN9000K10PCI, which inte-
grate Xilinx Virtex 5 devices, has been carried out. This prototype demonstrates the
suitability of the proposed radix-16 SISO decoder as part of a turbo decoder architec-
ture. Besides, a high turbo decoder architecture, which integrates 32 SISO decoders,
has been designed and synthesized to demonstrate the validity of our ideas.

PERSPECTIVES

SHORT TERM PERSPECTIVES

The main bottlenecks in a parallel turbo decoder architecture are the memory access
conflicts and the recursive computations performed by the ACS units inside each SISO de-
coder. To tackle the ACS bottleneck, we have successfully used the elimination of parallel
paths in a radix-16 trellis diagram transition to increase the SISO decoder throughput.
It is also possible to further extend this idea to radix-2NT SISO decoder architectures,
for NT > 4. Thus, a fast radix-8 ACS unit is used, while performing NT trellis diagram
transitions per clock cycle. For high NT values, very high throughput improvements
would be possible. Since an important increase in the hardware complexity is expected,
the elimination of parallel paths should be also exploited in order to reduce the com-
plexity of the BMU and SOU, as it was done for the proposed radix-16 SISO decoder.
The techniques introduced to avoid error correcting performance degradation should be
study in this high radix context as well. We believe that this approximation would be
very useful in order to design even higher throughput turbo decoder architectures for
future digital communication systems.

Future turbo decoder architectures should implement CF interleavers. They provide
excellent error correction performance, relieving the memory access bottleneck. Since

147

CF properties are usually ensured for low radix values, extrinsic memory structure and
interconnection networks should be proposed for NT > 4.

LONG TERM PERSPECTIVES

In [72], complementing the ideas in [71], highly pipelined SISO decoder architectures
are considered. In this case, a feedback loop in the ACS unit is not implemented.
Instead, a set of ACS units serially connected through pipeline registers are designed. At
the beginning of our research activities, we have considered this architectural solution
because of the high throughput values that it provides. However, due to the excessive
hardware complexity overhead, we did not continue exploring this ideas any further.

In a very recent work [147], a deeply pipelined digital-serial Low Density Parity Check
(LDPC) decoder is proposed. Very high throughput values are reported. The digit-online
arithmetic [148] is exploited to reduce the hardware complexity of the computations units,
and also to enable the use of a high number of pipeline stages.

We propose then, as a long term perspective, to explore the convenience of digital-
serial highly pipelined SISO decoder architectures, that use the digital-online arithmetic
in order to keep the hardware complexity in an acceptable value. Thus, a high number of
pipeline stages can be applied, what may enable to increase the throughput, for example,
by processing several information frames simultaneously.

148

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Tech-
nical Journal, vol. 27, pp. 623–656, 1948.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: turbo-codes,” in IEEE ICC ’93, Geneva, pp. 1064
– 1070, 1993.

[3] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum decoding of
product codes,” in Global Telecommunications Conference, 1994. GLOBECOM
’94. Communications: The Global Bridge., IEEE, pp. 339 –343 vol.1, nov- 2 dec
1994.

[4] D. MacKay, “Low Density Parity Check Codes,” Transactions of the IRE Profes-
sional Group on Information Theory, vol. IT-8, pp. 21–28, jan 1962.

[5] D. MacKay, “Good error-correcting codes based on very sparse matrices,” Infor-
mation Theory, IEEE Transactions on, vol. 45, pp. 399 –431, mar 1999.

[6] B. Bougard, Cross-layer energy management in broadband wireless transceivers.
PhD thesis, Katholieke Universiteit Leuven, 2006.

[7] J. Hagenauer, “Soft-in soft-out the benefits of using soft values in all stages of dig-
ital receivers,” in Proceedings of the 3rd Int Workshop on Digital Signal Process.
Techniques Applied to Space Comm., ESTEC, Noordwijk, Institute for Communi-
cations Technology. German Aerospace Reseach Establishment, Sept 1992.

[8] G. Battail, “Building long codes by combination of simple ones, thanks to
weighted-output decoding,” in Proc. URSI ISSSE (Erlangen, Germany), pp. 634–
637, Sept 1989.

149

150 BIBLIOGRAPHY

[9] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Transactions on information theory, vol. 42, no. 2,
1996.

[10] P. Elias, “Coding for noisy channels,” IRE Convention Record, vol. 4, pp. 37–47,
1955.

[11] C. Berrou, K. A. Cavalec, M. Arzel, A. G. I. Amat, M. Jezequel, C. Langlais,
R. L. Bidan, Y. Saouter, E. Maury, G. Battail, E. Boutillon, A. Glavieux, Y. O. C.
Mouhamedou, S. Saoudi, C. Laot, S. Kerouedan, F. Guilloud, and C. Douillard,
Codes and Turbo Codes. IRIS international series, Paris: Springer-Verlag, 2010.
Ouvrage collectif sous la direction de Claude Berrou.

[12] J. Forney, G., “Convolutional codes I: Algebraic structure,” Information Theory,
IEEE Transactions on, vol. 16, pp. 720 – 738, nov 1970.

[13] J. Forney, G.D., “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, pp. 268
– 278, march 1973.

[14] D. Divsalar and F. Pollara, “Turbo codes for PCS applications,” in Communica-
tions, 1995. ICC ’95 Seattle, ’Gateway to Globalization’, 1995 IEEE International
Conference on, vol. 1, pp. 54 –59 vol.1, jun 1995.

[15] H. Ma and J. Wolf, “On tail biting convolutional codes,” Communications, IEEE
Transactions on, vol. 34, pp. 104 – 111, feb 1986.

[16] C. Berrou, C. Douillard, and M. Jézéquel, “Multiple parallel concatenation of cir-
cular recursive convolutional (CRSC) code,” Ann. Telecomm, pp. 166–172, March-
April 1999.

[17] X. Ma and A. Kavcic, “Path partitions and forward-only trellis algorithms,” Infor-
mation Theory, IEEE Transactions on, vol. 49, pp. 38 – 52, jan 2003.

[18] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 260 – 269,
April 1967.

[19] Y. Li, B. Vucetic, and Y. Sato, “Optimum soft-output detection for channels
with intersymbol interference,” IEEE Transactions on Information Theory, vol. 41,
pp. 704–713, 1995.

BIBLIOGRAPHY 151

[20] R. Ratnayake, A. Kavcic, and G.-Y. Wei, “A high-throughput maximum a poste-
riori probability detector,” IEEE Journal of solid-state circuits, vol. 43, pp. 1846–
1858, 2008.

[21] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 284–
287, 1974.

[22] L. Lee, “Real-time minimal-bit-error probability decoding of convolutional codes,”
Communications, IEEE Transactions on, vol. 22, pp. 146 – 151, feb 1974.

[23] J. Hayes, T. Cover, and J. Riera, “Optimal sequence detection and optimal symbol-
by-symbol detection: Similar algorithms,” Communications, IEEE Transactions on,
vol. 30, pp. 152 – 157, jan 1982.

[24] B. Bai, X. Ma, and X. Wang, “Novel algorithm for continuous decoding of turbo
codes,” Communications, IEE Proceedings-, vol. 146, pp. 271 –274, oct 1999.

[25] I. Onyszchuk, “Truncation length for Viterbi decoding,” Communications, IEEE
Transactions on, vol. 39, pp. 1023 –1026, jul 1991.

[26] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and
its applications,” in Global Telecommunications Conference, 1989, and Exhibition.
Communications Technology for the 1990s and Beyond. GLOBECOM ’89., IEEE,
pp. 1680 –1686 vol.3, nov 1989.

[27] G. Battail, “Pondération des symboles décodés par l’algorithme de viterbi,” Ann.
Télécommun., pp. 31–38, Jan 1987.

[28] C. Berrou, P. Adde, E. Angui, and S. Faudeil, “A low complexity soft-output
Viterbi decoder architecture,” in Communications, 1993. ICC 93. Geneva. Techni-
cal Program, Conference Record, IEEE International Conference on, vol. 2, pp. 737
–740 vol.2, may 1993.

[29] D. Bera and J. Sen, “SOVA based decoding of double-binary turbo convolutional
code,” in Wireless Communication, Vehicular Technology, Information Theory and
Aerospace Electronic Systems Technology, 2009. Wireless VITAE 2009. 1st Inter-
national Conference on, pp. 757 –761, may 2009.

[30] V. Branka and Y. Jinhong, Turbo codes : principles and applications / Branka
Vucetic, Jinhong Yuan. Kluwer Academic, Boston ; London :, 2000.

152 BIBLIOGRAPHY

[31] J. Tan and G. Stuber, “Soft output Viterbi algorithm (SOVA) for non-binary turbo
codes,” in Information Theory, 2000. Proceedings. IEEE International Symposium
on, p. 483, 2000.

[32] J. Tan and G. Stuber, “A MAP equivalent SOVA for non-binary turbo codes,” in
Communications, 2000. ICC 2000. 2000 IEEE International Conference on, vol. 2,
pp. 602 –606 vol.2, 2000.

[33] J. Liu and G. Tu, “Iterative decoding of non-binary turbo codes using symbol
based SOVA algorithm,” in Communications, Circuits and Systems Proceedings,
2006 International Conference on, vol. 2, pp. 689 –693, june 2006.

[34] L. Gong, W. Xiaofu, and Y. Xiaoxin, “On SOVA for nonbinary codes,” Communi-
cations Letters, IEEE, vol. 3, pp. 335 –337, dec. 1999.

[35] E. Boutillon, W. Gross, and P. Gulak, “VLSI architectures for the map algorithm,”
Communications, IEEE Transactions on, vol. 51, pp. 175 – 185, feb 2003.

[36] W. Gross and P. Gulak, “Simplified MAP algorithm suitable for implementation
of turbo decoders,” Electronics Letters, vol. 34, pp. 1577 –1578, aug 1998.

[37] Z. Wang, “High-speed recursion architectures for MAP-based turbo decoders,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 15,
pp. 470 –474, april 2007.

[38] C. Douillard and C. Berrou, “Turbo codes with rate-m/(m+1) constituent convo-
lutional codes,” Communications, IEEE Transactions on, vol. 53, pp. 1630 – 1638,
oct. 2005.

[39] A. Alvarado, V. Nunez, L. Szczecinski, and E. Agrell, “Correcting suboptimal met-
rics in iterative decoders,” in Communications, 2009. ICC ’09. IEEE International
Conference on, pp. 1 –6, june 2009.

[40] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,” Electronics
Letters, vol. 36, pp. 1937 –1939, nov 2000.

[41] J. Chen and M. Fossorier, “Near optimum universal belief propagation based de-
coding of ldpc codes and extension to turbo decoding,” in Information Theory,
2001. Proceedings. 2001 IEEE International Symposium on, p. 189, 2001.

[42] S. Benedetto and G. Montorsi, “Serial concatenation of block and convolutional
codes,” Electronics Letters, vol. 32, pp. 887 –888, may 1996.

BIBLIOGRAPHY 153

[43] S. Benedetto and G. Montorsi, “Iterative decoding of serially concatenated con-
volutional codes,” Electronics Letters, vol. 32, pp. 1186 –1188, jun 1996.

[44] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random
and nonrandom permutations,” pp. 56–65, 1995.

[45] J. Hokfelt, O. Edfors, and T. Maseng, “A turbo code interleaver design criterion
based on the performance of iterative decoding,” Communications Letters, IEEE,
vol. 5, pp. 52 –54, feb 2001.

[46] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel, “Designing
good permutations for turbo codes: towards a single model,” in Communications,
2004 IEEE International Conference on, vol. 1, pp. 341 – 345, june 2004.

[47] S. Crozier and P. Guinand, “Distance upper bounds and true minimum distance
results for Turbo-Codes designed with DRP interleavers,” Annales des Télécom-
munications, vol. 60, no. 1-2, pp. 10–28, 2005.

[48] J. Sun and O. Takeshita, “Interleavers for turbo codes using permutation poly-
nomials over integer rings,” Information Theory, IEEE Transactions on, vol. 51,
pp. 101 –119, jan. 2005.

[49] M. Jezequel, C. Berrou, C. Douillard, and P. Penard, “Characteristics of a sixteen-
state turbo-encoder/decoder (turbo4),” in International Symposium on Turbo
Codes & Related Topics, 3-5 September 1997 - Brest, France, pp. 280 – 283,
1997.

[50] D. Gnaedig, High Speed decoding of convolutional turbo Codes. PhD thesis,
L’université de Bretagne du Sud, 2005.

[51] S. Haddad, A. Baghdadi, and M. Jezequel, “On the convergence speed of turbo
demodulation with turbo decoding,” Signal Processing, IEEE Transactions on,
vol. 60, pp. 4452 –4458, aug. 2012.

[52] C. van Berkel, “Multi-core for mobile phones,” in Design, Automation Test in
Europe Conference Exhibition, 2009. DATE ’09., pp. 1260 –1265, april 2009.

[53] S. Galli, “On the fair comparison of FEC schemes,” in Communications (ICC),
2010 IEEE International Conference on, pp. 1 –6, may 2010.

[54] F. Kienle, N. Wehn, and H. Meyr, “On complexity, energy- and implementation-
efficiency of channel decoders,” Communications, IEEE Transactions on, vol. 59,
pp. 3301 –3310, december 2011.

154 BIBLIOGRAPHY

[55] O. Muller, A. Baghdadi, and M. Jezequel, “On the parallelism of convolutional
turbo decoding and interleaving interference,” in Global Telecommunications Con-
ference, 2006. GLOBECOM ’06. IEEE, pp. 1 –5, 27 2006-dec. 1 2006.

[56] C.-C. Wong, M.-W. Lai, C.-C. Lin, H.-C. Chang, and C.-Y. Lee, “Turbo decoder
using contention-free interleaver and parallel architecture,” Solid-State Circuits,
IEEE Journal of, vol. 45, pp. 422 –432, feb. 2010.

[57] J.-M. Hsu and C.-L. Wang, “A parallel decoding scheme for turbo codes,” in
Circuits and Systems, 1998. ISCAS ’98. Proceedings of the 1998 IEEE International
Symposium on, vol. 4, pp. 445 –448 vol.4, may-3 jun 1998.

[58] Z. Wang, Z. Chi, and K. Parhi, “Area-efficient high speed decoding schemes for
turbo/MAP decoders,” in Acoustics, Speech, and Signal Processing, 2001. Pro-
ceedings. (ICASSP ’01). 2001 IEEE International Conference on, vol. 4, pp. 2633
–2636 vol.4, 2001.

[59] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” Communications, IEEE
Transactions on, vol. 53, pp. 209 – 213, feb. 2005.

[60] O. Muller, A. Baghdadi, and M. Jezequel, “Exploring parallel processing levels for
convolutional turbo decoding,” in Information and Communication Technologies,
2006. ICTTA ’06. 2nd, vol. 2, pp. 2353 –2358, 0-0 2006.

[61] Z. Wang and K. Parhi, “High performance, high throughput turbo/SOVA decoder
design,” Communications, IEEE Transactions on, vol. 51, pp. 570 – 579, april
2003.

[62] O. Muller, Architectures multiprocesseurs monopuces génériques pour turbo-
communications haut-débit. PhD thesis, Université de Bretagne-Sud, 2007.

[63] T. Wolf, “Initialization of sliding windows in turbo decoders,” in International
Symposium on Turbo Codes & Related Topics, pp. 219–222, sep 2003.

[64] A. Dingninou, F. Raouafi, and C. Berrou, “Organisation de la mémoire dans
un turbo decodeur utilisant l’algorithme SUB-MAP,” in Dix-septième colloque
GRETSI, pp. 71–74, sep 1999.

[65] J. Dielissen and J. Huisken, “State vector reduction for initialization of sliding
windows MAP,” in International Symposium on Turbo Codes & Related Topics,
pp. 387–390, sep 2000.

BIBLIOGRAPHY 155

[66] J. Zhang, Y. Wang, M. Fossorier, and J. Yedidia, “Replica shuffled iterative de-
coding,” in Information Theory, 2005. ISIT 2005. Proceedings. International Sym-
posium on, pp. 454 –458, sept. 2005.

[67] J. Zhang, Y. Wang, M. Fossorier, and J. Yedidia, “Iterative decoding with repli-
cas,” Information Theory, IEEE Transactions on, vol. 53, pp. 1644 –1663, may
2007.

[68] O. Muller, A. Baghdadi, and M. Jezequel, “Parallelism efficiency in convolutional
turbo decoding,” EURASIP journal on advances in signal processing, november
2010.

[69] H. Dawid, G. Gehnen, and H. Meyr, “Map channel decoding: Algorithm and vlsi
architecture,” in VLSI Signal Processing, VI, 1993., [Workshop on], pp. 141 –149,
oct 1993.

[70] H. Dawid and H. Meyr, “Real-time algorithms and VLSI architectures for soft
output MAP convolutional decoding,” in Personal, Indoor and Mobile Radio Com-
munications, 1995. PIMRC’95. ’Wireless: Merging onto the Information Super-
highway’., Sixth IEEE International Symposium on, vol. 1, pp. 193 –197 vol.1, sep
1995.

[71] A. Worm, H. Lamm, and N. Wehn, “A high-speed MAP architecture with opti-
mized memory size and power consumption,” in Signal Processing Systems, 2000.
SiPS 2000. 2000 IEEE Workshop on, pp. 265 –274, 2000.

[72] M. Mansour and N. Shanbhag, “VLSI architectures for SISO-APP decoders,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 11, pp. 627
–650, aug. 2003.

[73] S.-J. Lee, N. Shanbhag, and A. Singer, “A 285-MHz pipelined MAP decoder in
0.18-µm CMOS,” Solid-State Circuits, IEEE Journal of, vol. 40, pp. 1718 – 1725,
aug. 2005.

[74] S.-J. Lee, N. Shanbhag, and A. Singer, “Area-efficient high-throughput MAP de-
coder architectures,” Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, vol. 13, pp. 921 –933, aug. 2005.

[75] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm implementation: breaking the
ACS-bottleneck,” Communications, IEEE Transactions on, vol. 37, pp. 785 –790,
aug 1989.

156 BIBLIOGRAPHY

[76] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s radix-4
logMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in Solid-State Circuits
Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International,
pp. 150 – 484 vol.1, 2003.

[77] Y. Zhang and K. Parhi, “High-throughput radix-4 logMAP turbo decoder archi-
tecture,” in Signals, Systems and Computers, 2006. ACSSC ’06. Fortieth Asilomar
Conference on, pp. 1711 –1715, 29 2006-nov. 1 2006.

[78] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and implementation of
a parallel turbo-decoder ASIC for 3GPP-LTE,” Solid-State Circuits, IEEE Journal
of, vol. 46, pp. 8 –17, jan. 2011.

[79] F. Jin, J. Tang, Z. F. Wang, and L. Guo, “A radix-8 Log-MAP recursion VLSI
architecture,” in Communication Technology, 2008. ICCT 2008. 11th IEEE Inter-
national Conference on, pp. 347 –350, nov. 2008.

[80] C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin, and H.-C. Chang, “A 952MS/s
Max-Log MAP decoder chip using radix-4 x 4 ACS architecture,” in Solid-State
Circuits Conference, 2006. ASSCC 2006. IEEE Asian, pp. 79 –82, nov. 2006.

[81] K.-T. Shr, Y.-C. Chang, C.-Y. Lin, and Y.-H. Huang, “A 6.6pj/bit/iter radix-
16 modified log-MAP decoder using two-stage ACS architecture,” in Solid State
Circuits Conference (A-SSCC), 2011 IEEE Asian, pp. 313 –316, nov. 2011.

[82] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “A Soft-Input Soft-Output
Maximum A Posteriori (MAP) Module to Decode Parallel and Serial Concatenated
Codes,” Telecommunications and Data Acquisition Progress Report, vol. 127,
pp. 1–20, July 1996.

[83] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimization of MAP turbo
decoder algorithms,” Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, vol. 9, pp. 305 –312, april 2001.

[84] A. Viterbi, “An intuitive justification and a simplified implementation of the map
decoder for convolutional codes,” Selected Areas in Communications, IEEE Journal
on, vol. 16, pp. 260 –264, feb 1998.

[85] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design and VLSI archi-
tecture for low-latency MAP turbo decoders,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 13, pp. 427 –438, april 2005.

BIBLIOGRAPHY 157

[86] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, “Architectural
strategies for low-power VLSI turbo decoders,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 10, pp. 279 –285, june 2002.

[87] C.-C. Wong and H.-C. Chang, “High-efficiency processing schedule for parallel
turbo decoders using QPP interleaver,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 58, pp. 1412 –1420, june 2011.

[88] D. Gnaedig, E. Boutillon, J. Tousch, and M. Jezequel, “Towards an optimal parallel
decoding of turbo codes,” in 4th International Symposium on turbo codes and
related topics, April 3-7, Munich, Germany, 2006.

[89] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
codes,” Communications, IEEE Transactions on, vol. 49, pp. 1727 –1737, oct
2001.

[90] O. Sánchez, C. Jégo, and M. Jézéquel, “Analysis of the convergence process
by EXIT charts for parallel implementations of turbo decoders,” Accepted for
publication. To appear on IEEE Communications Letters.

[91] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably good low-
density parity check codes,” in Information Theory, 2000. Proceedings. IEEE In-
ternational Symposium on, p. 199, 2000.

[92] C. Nour and C. Douillard, “Cth11-4: On lowering the error floor of high order turbo
bicm schemes over fading channels,” in Global Telecommunications Conference,
2006. GLOBECOM ’06. IEEE, pp. 1 –5, 27 2006-dec. 1 2006.

[93] J. W. Lee and R. E. Blahut, “Convergence analysis and ber performance of finite-
length turbo codes,” Communications, IEEE Transactions on, vol. 55, pp. 1033
–1043, may 2007.

[94] J. Lee and R. Blahut, “Lower bound on BER of finite-length turbo codes based
on EXIT characteristics,” Communications Letters, IEEE, vol. 8, pp. 238 – 240,
april 2004.

[95] S. Haddad, O. Sánchez, A. Baghdadi, and M. Jezequel, “Complexity reduction of
shuffled parallel iterative demodulation with turbo decoding,” in Telecommunica-
tions (ICT), 2012 19th International Conference on, pp. 1 –6, april 2012.

158 BIBLIOGRAPHY

[96] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-
optimal MAP decoding algorithms operating in the log domain,” in Communica-
tions, 1995. ICC ’95 Seattle, ’Gateway to Globalization’, 1995 IEEE International
Conference on, vol. 2, pp. 1009 –1013 vol.2, jun 1995.

[97] Y. Saouter and C. Berrou, “Fast soft-output Viterbi decoding for duo-binary turbo
codes,” in Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium
on, vol. 1, pp. I–885 – I–888 vol.1, 2002.

[98] O. Joeressen, M. Vaupel, and H. Meyr, “High-speed VLSI architectures for soft-
output viterbi decoding,” in Application Specific Array Processors, 1992. Proceed-
ings of the International Conference on, pp. 373 –384, aug 1992.

[99] D. Garrett and M. Stan, “Low power architecture of the soft-output Viterbi algo-
rithm,” in Low Power Electronics and Design, 1998. Proceedings. 1998 Interna-
tional Symposium on, pp. 262 –267, aug. 1998.

[100] C. M. Rader, “Memory management in a viterbi decoder,” IEEE Transactions on
communications, vol. COM-29, pp. 1399–1401, September 1981.

[101] O. Collins and F. Pollara, “Memory management in traceback Viterbi decoders,”
TDA Progress Report 42-99, July-September 1989.

[102] G. Feygin and P. Gulak, “Architectural tradeoffs for survivor sequence mem-
ory management in Viterbi decoders,” Communications, IEEE Transactions on,
vol. 41, pp. 425 –429, mar 1993.

[103] R. Cypher and C. Shung, “Generalized trace back techniques for survivor memory
management in the Viterbi algorithm,” in Global Telecommunications Conference,
1990, and Exhibition. ’Communications: Connecting the Future’, GLOBECOM
’90., IEEE, pp. 1318 –1322 vol.2, dec 1990.

[104] E. Angui, Conception d’un circuit intégré VLSI turbo-décodeur. PhD thesis,
L’Université de Bretagne Occidentale, 1994.

[105] C. X. Huang and A. Ghrayeb, “An improved SOVA algorithm for turbo codes over
AWGN and fading channel,” in Personal, Indoor and Mobile Radio Communica-
tions, 2004. PIMRC 2004. 15th IEEE International Symposium on, vol. 2, pp. 1121
– 1125 Vol.2, sept. 2004.

[106] L. Papke, P. Robertson, and E. Villebrun, “Improved decoding with the SOVA in
a parallel concatenated (turbo-code) scheme,” in Communications, 1996. ICC 96,

BIBLIOGRAPHY 159

Conference Record, Converging Technologies for Tomorrow’s Applications. 1996
IEEE International Conference on, vol. 1, pp. 102 –106 vol.1, jun 1996.

[107] L. Lin and R. Cheng, “Improvements in SOVA-based decoding for turbo codes,”
in Communications, 1997. ICC 97 Montreal, ’Towards the Knowledge Millennium’.
1997 IEEE International Conference on, vol. 3, pp. 1473 –1478 vol.3, jun 1997.

[108] G. Montorsi and S. Benedetto, “Design of fixed-point iterative decoders for con-
catenated codes with interleavers,” Selected Areas in Communications, IEEE Jour-
nal on, vol. 19, pp. 871 –882, may 2001.

[109] Y. Wu and B. Woerner, “The influence of quantization and fixed point arithmetic
upon the BER performance of turbo codes,” in Vehicular Technology Conference,
1999 IEEE 49th, vol. 2, pp. 1683 –1687 vol.2, jul 1999.

[110] G. Masera, G. Piccinini, M. Roch, and M. Zamboni, “VLSI architectures for turbo
codes,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 7,
pp. 369 –379, sept. 1999.

[111] J.-M. Hsu and C.-L. Wang, “On finite-precision implementation of a decoder for
turbo codes,” in Circuits and Systems, 1999. ISCAS ’99. Proceedings of the 1999
IEEE International Symposium on, vol. 4, pp. 423 –426 vol.4, jul 1999.

[112] C. Shung, P. Siegel, G. Ungerboeck, and H. Thapar, “VLSI architectures for metric
normalization in the Viterbi algorithm,” in Communications, 1990. ICC ’90, Includ-
ing Supercomm Technical Sessions. SUPERCOMM/ICC ’90. Conference Record.,
IEEE International Conference on, pp. 1723 –1728 vol.4, apr 1990.

[113] A. Hekstra, “An alternative to metric rescaling in Viterbi decoders,” Communica-
tions, IEEE Transactions on, vol. 37, pp. 1220 –1222, nov 1989.

[114] Y. Wu, B. Woerner, and T. Blankenship, “Data width requirements in SISO decod-
ing with module normalization,” Communications, IEEE Transactions on, vol. 49,
pp. 1861 –1868, nov 2001.

[115] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and optimization of
an HSDPA turbo decoder ASIC,” Solid-State Circuits, IEEE Journal of, vol. 44,
pp. 98 –106, jan. 2009.

[116] C. Studer, S. Fateh, C. Benkeser, and Q. Huang, “Implementation Trade-Offs
of Soft-Input Soft-Output MAP Decoders for Convolutional Codes,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 59, pp. 2774 –2783, nov.
2012.

160 BIBLIOGRAPHY

[117] O. Sánchez, C. Jégo, M. Jézéquel, and Y. Saouter, “High Speed Low Complexity
Radix-16 Max-Log-MAP SISO Decoder,” in Electronics, Circuits, and Systems,
2012. ICECS 2012. 16th IEEE International Conference on, dec. 2012.

[118] P. Adde and R. Pyndiah, “Recent simplifications and improvements in Block
Turbo Codes,” in 2nd International Symposium on Turbo Codes & Related Topics,
September 4-7, Brest, France, pp. 133 – 136, 2000.

[119] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative decoding of concatenated
convolutional codes: Implementation issues,” Proceedings of the IEEE, vol. 95,
pp. 1201 –1227, june 2007.

[120] M. Thul, F. Gilbert, and N. Wehn, “Optimized concurrent interleaving architecture
for high-throughput turbo-decoding,” in Electronics, Circuits and Systems, 2002.
9th International Conference on, vol. 3, pp. 1099 – 1102 vol.3, 2002.

[121] M. Thul, N. Wehn, and L. Rao, “Enabling high-speed turbo-decoding through
concurrent interleaving,” in Circuits and Systems, 2002. ISCAS 2002. IEEE Inter-
national Symposium on, vol. 1, pp. I–897 – I–900 vol.1, 2002.

[122] M. Thul, F. Gilbert, and N. Wehn, “Concurrent interleaving architectures for high-
throughput channel coding,” in Acoustics, Speech, and Signal Processing, 2003.
Proceedings. (ICASSP ’03). 2003 IEEE International Conference on, vol. 2, pp. II
– 613–16 vol.2, april 2003.

[123] C. Neeb, M. Thul, and N. Wehn, “Network-on-chip-centric approach to interleav-
ing in high throughput channel decoders,” in Circuits and Systems, 2005. ISCAS
2005. IEEE International Symposium on, pp. 1766 – 1769 Vol. 2, may 2005.

[124] G. Wang, Y. Sun, J. Cavallaro, and Y. Guo, “High-throughput Contention-
Free concurrent interleaver architecture for multi-standard turbo decoder,” in
Application-Specific Systems, Architectures and Processors (ASAP), 2011 IEEE
International Conference on, pp. 113 –121, sept. 2011.

[125] A. Tarable and S. Benedetto, “Mapping interleaving laws to parallel turbo decoder
architectures,” Communications Letters, IEEE, vol. 8, pp. 162 – 164, march 2004.

[126] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws to parallel
turbo and LDPC decoder architectures,” Information Theory, IEEE Transactions
on, vol. 50, pp. 2002 – 2009, sept. 2004.

BIBLIOGRAPHY 161

[127] C. Chavet, P. Coussy, P. Urard, and E. Martin, “Static Address Generation Easing:
a design methodology for parallel interleaver architectures,” in Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference on, pp. 1594
–1597, march 2010.

[128] A. Sani, P. Coussy, C. Chavet, and E. Martin, “An approach based on edge coloring
of tripartite graph for designing parallel LDPC interleaver architecture,” in Circuits
and Systems (ISCAS), 2011 IEEE International Symposium on, pp. 1720 –1723,
may 2011.

[129] A. Sani, P. Coussy, C. Chavet, and E. Martin, “A methodology based on trans-
portation problem modeling for designing parallel interleaver architectures,” in
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Con-
ference on, pp. 1613 –1616, may 2011.

[130] A. Giulietti, L. van der Perre, and A. Strum, “Parallel turbo coding interleavers:
avoiding collisions in accesses to storage elements,” Electronics Letters, vol. 38,
pp. 232 –234, feb 2002.

[131] D. Gnadieg, E. Boutillon, V. Gaudet, P. G. Gulak, and M. Jezequel, “On multiple
slice turbo codes,” 3rd International Symposium On Turbo Codes and Related
Topics, pp. 343 – 346, sept 2003.

[132] Y.-X. Zheng and Y. Su, “A new interleaver design and its application to turbo
codes,” in Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall.
2002 IEEE 56th, vol. 3, pp. 1437 – 1441 vol.3, 2002.

[133] A. Nimbalker, T. Fuja, J. Costello, D.J., T. Blankenship, and B. Classon,
“Contention-free interleavers,” in Information Theory, 2004. ISIT 2004. Proceed-
ings. International Symposium on, p. 54, june-2 july 2004.

[134] O. Takeshita, “On maximum contention-free interleavers and permutation poly-
nomials over integer rings,” Information Theory, IEEE Transactions on, vol. 52,
pp. 1249 –1253, march 2006.

[135] A. Nimbalker, T. Blankenship, B. Classon, T. Fuja, and D. Costello, “Contention-
Free Interleavers for High-Throughput Turbo Decoding,” Communications, IEEE
Transactions on, vol. 56, pp. 1258 –1267, august 2008.

[136] A. Nimbalker, Y. Blankenship, B. Classon, and T. Blankenship, “ARP and QPP
Interleavers for LTE Turbo Coding,” in Wireless Communications and Networking
Conference, 2008. WCNC 2008. IEEE, pp. 1032 –1037, 31 2008-april 3 2008.

162 BIBLIOGRAPHY

[137] J. Ryu and O. Takeshita, “On quadratic inverses for quadratic permutation poly-
nomials over integer rings,” Information Theory, IEEE Transactions on, vol. 52,
pp. 1254 –1260, march 2006.

[138] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a highly-parallel
3GPP LTE/LTE-advance turbo decoder,” Integration, vol. 44, no. 4, pp. 305–315,
2011.

[139] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2 reconfigurable
turbo decoder chip with parallel architecture for 3GPP LTE system,” in VLSI
Circuits, 2009 Symposium on, pp. 288 –289, june 2009.

[140] C.-C. Wong, C.-H. Tang, M.-W. Lai, Y.-X. Zheng, C.-C. Lin, H.-C. Chang, C.-Y.
Lee, and Y.-T. Su, “A 0.22 nj/b/iter 0.13 µm turbo decoder chip using inter-block
permutation interleaver,” in Custom Integrated Circuits Conference, 2007. CICC
’07. IEEE, pp. 273 –276, sept. 2007.

[141] ETSI, “Digital video broadcasting (DVB): interaction channel for satellite distri-
bution systems.” Standard, EN 301 790 (V1.3.1), 2003.

[142] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15GBit/s turbo code decoder
for LTE advanced base station applications,” in Turbo Codes and Iterative Infor-
mation Processing (ISTC), 2012 7th International Symposium on, pp. 21 –25,
aug. 2012.

[143] C. S. Wallace, “Fast pseudorandom generators for normal and exponential vari-
ates.,” ACM Trans. Math. Softw., vol. 22, no. 1, pp. 119–127, 1996.

[144] O. Sánchez, M. Arzel, C. Jégo, A. García, and M. Guerrero, “Design and im-
plementation of a MIMO channel emulator onto FPGA device,” in XV Iberchip
Workshop, IWS’09, Argentina, March. 2009.

[145] O. Sánchez, S. ur Rehman, A. Sani, C. Chavet, P. Coussy, C. Jego, and M. Jeze-
quel, “A dedicated approach to explore design space for hardware architecture of
turbo decoders,” in Signal Processing Systems, 2012. SiPS 2012. IEEE Workshop
on, oct. 2012.

[146] V. E. Benes, Mathematical Theory of connecting network and telephone traffic.
Academic Press, 1965.

[147] P. A. Marshall, V. C. Gaudet, and D. G. Elliott, “Deeply pipelined digit-serial
LDPC decoding,” Circuits and Systems I: Regular Papers, IEEE Transactions on,
vol. 59, pp. 2934 –2944, dec. 2012.

BIBLIOGRAPHY 163

[148] M. Ercegovac, “Online arithmetic: An overview,” Proc. SPIE V.495: Real Time
Signal Processing VII, pp. 86–93, 1984.

164

List of Publications

JOURNALS

• O. Sánchez, C. Jégo, and M. Jézéquel, “Analysis of the convergence process
by EXIT charts for parallel implementations of turbo decoders,” Accepted for
publication. To appear on IEEE Communications Letters.

CONFERENCES

• O. Sánchez, M. Arzel, C. Jégo, A. García, and M. Guerrero, “Design and im-
plementation of a MIMO channel emulator onto FPGA device,” in XV Iberchip
Workshop, IWS’09, Argentina, March. 2009.

• S. Haddad, O. Sánchez, A. Baghdadi, and M. Jézéquel, “Complexity reduction of
shuffled parallel iterative demodulation with turbo decoding,” in Telecommunica-
tions (ICT), 2012 19th International Conference on, pp. 1 –6, april 2012.

• O. Sánchez, S. ur Rehman, A. Sani, C. Chavet, P. Coussy, C. Jégo, and M. Jézéquel,
“A dedicated approach to explore design space for hardware architecture of turbo
decoders,” in Signal Processing Systems, 2012. SiPS 2012. IEEE Workshop on,
oct. 2012.

• O. Sánchez, C. Jégo, M. Jézéquel, and Y. Saouter, “High Speed Low Complexity
Radix-16 Max-Log-MAP SISO Decoder,” in Electronics, Circuits, and Systems,
2012. ICECS 2012. 16th IEEE International Conference on, dec. 2012.

• O. Sánchez, C. Jégo, and M. Jézéquel, “Décodeur radix-16 à entrées et sorties
pondérées pour un turbo-décodage à haut débit,” XXIVème Colloque Gretsi, Brest,
sep 2013.

165

	List of Figures
	List of Tables
	Introduction
	Context of Channel Coding
	Channel Coding generalities
	Introduction
	Channel Model
	Channel Decoding Process
	Channel Code Performance
	Soft Decoding
	Block Codes

	Convolutional Codes
	Definition
	Polynomial Representation
	Trellis Diagram Representation
	Puncturing
	Convolutional Code Termination

	Decoding of Convolutional Codes
	Viterbi Based Decoding
	MAP Based Decoding

	Convolutional Turbo Codes
	Overview
	Turbo Encoding
	Turbo Decoding

	Conclusion

	Parallel Processing Exploration for Turbo Decoding
	Context
	The Interest of Parallelism in the Turbo Decoding Process
	Parallel Architecture Evaluation

	Parallel Processing in Turbo Decoding
	Parallelism at the Turbo Decoder Level
	Parallelism at the SISO Decoder Level
	Parallelism at the Metric Level
	Gathering Parallel Turbo Decoding Techniques

	Convergence of Parallel Turbo Decoders
	The EXIT Charts
	EXIT Chart Diagram Extension
	EXIT Chart Based Analysis

	Exploring SOVA Based Turbo Decoders
	Overview
	Improving the SOVA Based Turbo Decoder Performance

	Conclusion

	High Throughput SISO Decoder Architectures
	Overview
	Radix-2 SISO Decoder Architecture
	Branch Metric Unit
	Add Compare Select Unit
	Soft Output Unit
	Implementation Results for the Radix-2 SISO Decoder

	Exploration of High Radix SISO Decoders
	High Radix BMU and SOU
	High Radix ACS Units

	High Radix Architectures Complexity Reduction
	Low Complexity Radix-16 SISO Decoder
	Low Hardware Complexity Radix-16 SISO Decoder Performance
	Implementation Results

	Conclusion

	High Throughput Turbo Decoder Architectures
	Generic Parallel Turbo Decoder Architecture
	Memory Access Conflicts
	Conflict-Free Interleavers
	Memory Organization for Conflict-Free Interleavers
	Shuffled Turbo Decoders Memory Conflict Problems

	LTE High Throughput Turbo Decoder Architecture
	SISO Decoder Architecture
	Extrinsic Information Memory Access
	FPGA Prototyping of the Turbo Decoder

	Turbo Decoder Design Space Exploration
	Turbo Decoder Architecture Model
	A Dedicated Approach to Explore the Design Space
	Case study: Turbo Decoder for LTE Standard

	Conclusion

	Conclusion and Perspectives
	Bibliography
	List of Publications

