
THÈSE

présentée à
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Introduction

Context

Since several decades, the number of medical images produced in the world is con-
stantly increasing. Three-dimensional medical images are becoming more and more
used by the clinicians and the volume of datasets produced by the hospitals has cre-
ated the need for an efficient structure for managing and processing those datasets.
If 2D images are still useful and have numerous applications, since their acquisition
cost is limited, cost for 3D images tend to reduce, and the frequency of their use is
increasing.

3D images are produced as succession of slices that the clinician must mentally
stack, in order to reconstruct and understand the 3D information they provide. This
fact leads to misunderstanding of the 3D anatomical objects, and most of the manual
processing tools lead to loss of information, since one dimension is not taken into
account.

Automatic understanding of medical images is the underlying framework of this
PhD study. We worked upon segmentation of anatomical structures, in other words
extraction from the image of an anatomical object of interest, in order to visually
inspect it and to quantify the extent of its possible pathologies. This segmentation
process consist in isolating visible structures by recognizing their contours. The num-
ber of available methods to achieve this task in medical imaging is constantly growing.
We can roughly classify those segmentation tools in two categories: a direct approach
which consists in applying operators directly working on the image information; a
modeling approach which uses an a priori information, trying to match a pre-defined
modelization to the image in order to extract the targeted objects.

More specifically, tubular objects can be extracted and visualized, by discriminat-
ing them in the image, on the basis of their particular shape. The best way to study
this kind of objects is to extract both their shapes and underlying structures, namely
their skeletons, in order to guide a virtual inspection inside them, or to measure their
diameters for example.

Using geometrical optic techniques, and the theory of wave light propagation in
continuous medium, we are going to study more precisely fast and efficient algorithms
for tubular shape extraction, and their geometric primitives, the curves that define
their skeletons. Our methods are specifically dedicated to the particular shape of
those objects.

And we will build tools in order to fly through the objects, and to numerically
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characterize the extent of possible pathologies. Those tools will help clinicians in
taking decisions concerning surgical issues and treatments.

Contents

In the first part of the thesis, we propose a study of different problems related to path
extraction in 2D and 3D medical images. The first chapter is a review of different
techniques already used in the domain of the minimal paths, in particular techniques
related to the active contours model. We focus on the formulation derived from the
geodesic active contours and on a fast scheme for minimal path extraction, based on
the formalism of the Level-Sets. The second chapter contains most of the work that
has been done in the minimal paths domain, in particular it concerns the reduction of
the user interaction and of the computing cost needed, in order to ease the use of the
methods. The third chapter introduces two applications of the techniques developed in
the previous one. The first application concerns virtual endoscopy, where the path to
be extracted is a trajectory for a virtual camera which moves within the 3D datasets,
and the second application is the development of an interactive segmentation tool,
for real-time path extraction in 2D images, using the same minimal path principles.

Similarly, the second part of the thesis focus on surface extraction, using the same
paradigm of the Level-Sets, as done in the first part. Chapter 4 reviews applications
of the Level-Sets formalism in 3D medical imaging. Chapter 5 contains several al-
gorithms which aim are to improve several drawbacks of the Level-Sets, including:
introduction of interactivity in the segmentation process in order to make it robust,
and several ways to decrease the huge computing cost generated by those methods.
Chapter 6 is dedicated to applications of those improvements to two medical imaging
problems: first one is visualization of cerebral aneurysms, in order to derive the op-
timal surgical treatment to avoid disorders, like cerebral hemoragges that can occur;
second application is visualization of the colon polyps. The more accurate the early
detection of those tumors, the more efficient the treatment.

Third part of the manuscript focuses on the study of more specific anatomical
structures: tree structures, like vascular or bronchial trees. Our goal is to optimize
visualization and quantification of the pathologies of those objects. In chapter 7, we
detail tools which enable to see and measure pathologies on the basis of surfaces and
curves extracted in the images. Chapter 8 links all the previous algorithms, to extract,
in a single process, the surface and the skeleton of the object considered, using our
curve and shape extraction tools elaborated in the two preceding parts of the thesis. In
this chapter, tools are specifically adapted to the particular topology of the category
of object studied. This surface information and the tree centered structures inside
our tubular objects finds a natural justification in chapter 9, where its applied to
vascular tree extraction in contrast-enhanced medical images. Those techniques are
also applied to a more complex problem: bronchial tree extraction in multislice CT
scanner datasets. Another application presented concerns reconstruction of vascular
tree in 2D and 3D angiographic medical images, with methods based on perceptual
grouping techniques.
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Contributions

In the first part of the thesis, we have enhanced significantly path extraction through
the following major contributions:

• extension to 3D of the method proposed by Cohen and Kimmel [34];

• reduction of the computing cost of this method;

• reduction of the user interaction for initialization;

• design of a new method to extract centered paths;

• creation of a 3D trajectory extraction for virtual endoscopy, currently integrated
in a commercial product, after succeeding clinical validation;

• development of a training tool for interactive and real-time path extraction on
basis of the Live-Wire.

In the second part of the thesis, major contributions are

• development of a fast algorithm for pre-segmentation, on the basis of the mini-
mal path techniques, and in particular the Fast-Marching algorithm;

• developments of techniques to improve interactivity of the Level-Sets which are
able to handle topology changes but so include any interactivity property;

• design of a collaborative approach, based on the Fast-Marching and the Level-
Sets.

Moreover, these contributions find their justification in the last chapter of this part:
fast segmentation and accurate visualization of the pathologies are needed for seg-
mentation of the cerebral aneurysms, and the characterization of the colon polyps.

In the last part, we present contributions specifically dedicated to the extraction
and the quantification of tubular and tree structures:

• we adapt the minimal path formalism in order to provide a fast pre-segmentation
of the tube-shaped objects;

• we find how to obtain from a segmentation the set of useful trajectories for
inspection of those tubular objects;

• we explain how to derive the tree structure from the trajectories previously
extracted;

And finally, we detail applications of those methods to three different problems in
medical imaging:

• segmentation of vascular trees with pathologies like aneurysms and stenoses;

• creation of new segmentation methods for the complicated problem of bronchial
tree extraction;

• reconstruction of vascular trees in 3D contrast-enhanced angiographic images,
using perceptual grouping techniques derived from the minimal path formula-
tion.
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Chapter 1

Minimal Paths in Image Processing

Résumé — Les chemins minimaux sont construits à partir de l’analogie avec la
propagation de la lumière dans un milieu avec un certain indice de réfraction, suivant
le principe de Pierre de Fermat. On explique tout d’abord dans la section 1.1 le lien
entre ces chemins de lumière et la théorie de la réfraction, en montrant au passage
l’intéret de l’application de cette théorie au traitement d’images.
Dans la section 1.2, partant de la formulation classique des contours actifs de Kass,

Witkin, et Terzopoulos [82], on passe à la formulation de chemin minimal, telle
qu’elle a été présentée par Cohen et Kimmel [34].
Mettant en parallèle la formulation discrète donnée par Dijkstra [43] des chemins
minimaux dans des graphes avec le formalisme de Cohen et Kimmel [34], on ex-
plicite dans la section 1.3 différentes méthodes d’extraction de chemins, ainsi que la
définition des différents termes intervenant dans ce modèle: la force liée à l’image,
ou Potentiel.
Dans la section 1.4, on étudie le role du terme qui permet de controler la longueur
du chemin, et son influence sur la courbure de ce dernier.

Abstract — Minimal paths are built upon analogy with the theory of wave-light
propagation in a medium with a refractive index, according to the principles of
Pierre de Fermat. We first explain in section 1.1 the link between this minimal light
paths and the refraction principle, emphasizing the interest for the use of minimal
paths in image processing.
Starting from the classical formulation of the active contours called snakes of Kass,

Witkin, and Terzopoulos [82], we extend in section‘1.2 to the formulation of the
minimal path, as presented by Cohen and Kimmel [34].
Comparing the discrete version of the minimal paths given by Dijkstra [43] with the
continuous equivalent formalism of Cohen and Kimmel [34], we detail in section 1.3
several implementations of extraction techniques, and the settings of parameters
involved in the model, such as the image force, named Potential.
In section 1.4 we study the influence of the offset term which controls the length of
the minimal path (and its curvature).
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1.1 Minimal Paths theory

1.1.1 The minimal path in geometrical optic

In order to understand the underlying law of refraction, behind the minimal path
principle, let us imagine a straight seashore, separating the sea from the beach, as
shown in figure 1.1. A lifeguard sitting at a point A in the beach sees a girl drowning

A

B

beach

sea

M

Figure 1.1. Example of minimal path in a heterogeneous media

at a point B in the sea. Assuming that the lifeguard can run on the beach three times
faster than he can swim, the shortest time path is the broken line going straight from
A to a point M on the shore, then straight from M to B. Considering the two angles
of the straight lines to the normal to the shore, the ration of their sines is equal to the
ratio of the corresponding speeds (Descartes/Snell’ law of refraction). The principle
of Fermat is that light waves of a given frequency travels the path between two points
which takes the least time. The most obvious example of this is the passage of a light
through a homogeneous medium, in which the speed of light does not change with
position. In this case, shortest time is equivalent to the shortest distance between
the points, which is a straight line, as shown in figure 1.2-left. When the medium is
not homogeneous, as in figure 1.2-middle, there is a refraction angle at the interface
between the two homogeneous regions. Figure 1.2-right can illustrate a well-known
optical phenomenon, called mirage: The light source S is visible from both points
R1, and R2. But the light path between S and R2 is not a straight line, due to the
difference of index of the two media. Therefore, R2 “sees” S coming from location
M, at the interface between the two media, while the image source is far from M .
This phenomenon occurs when the variations in temperature are important enough
to deviate the light path, resulting in “visions” of an oasis in the desert, for example.
Hamilton defined optical path functions, which best known was defined by Burns as
the Eikonal equation applied to the development of a mathematical theory of optical
systems. The Eikonal equation is used to compute the minimal light paths for a
refractive index, in the sense that the minimal path is the one which integral over the
refractive index is minimal.

We are going to use this minimality property in order to extract curves in images,
giving only the two extremities of the path, and using the equation developed by
Hamilton for optical systems.
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S

R1

R2

low refractive index

high refractive index

M

Figure 1.2. Example of minimal paths in synthetic media: left image rep-
resents the propagation of a light wave in a homogeneous medium, starting from a
unique light source. The minimal paths between this light source and other position
in the plane are straight lines. Middle image represents the propagation of a light
wave in a medium where the refractive index is more important in the upper half
part of the image than in the lower, starting from a light source in the upper part.
Right image is a diagram which illustrates the mirage phenomenon on the basis of
the propagation of the light in heterogeneous media, as shown in middle image.

1.1.2 Minimal path for curve extraction

We explain how this minimal path principle can be used for curve extraction in images.
Given a refractive index P , called potential in the following, which takes lower values
near the edges or features, our goal is to find a single contour that best fits the
boundary of a given object or a line of interest. This contour, considered between
two fixed extremities, will be the one which integral over the potential P is minimal.

Looking for a path which lies in a desired region of interest, the refractive index
should model the desired properties of the targeted curve. For example, in figure 1.3,
we want to extract a path which stays inside the vessel. The dataset, a digital sub-

Figure 1.3. Example of a minimal path in a media defined by a grey
level image: The minimal path (in white) superimposed on the date is the one
that corresponds to the light wave propagation, using the grey-level information as
a refractive index.
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tracted angiography (DSA) shows vessels in lower grey levels on a bright background.
Since we want to extract a path which stays inside the vessel, a possible refractive
index to be used with the Hamilton equations for extracting minimal paths, could be
the simple image grey level values.

This ‘best fit’ question leads to algorithms that seek for the minimal path, i.e.
paths along which the integration over P is minimal. Classical path extraction tech-
niques are based on the snakes [82]. Snakes are a special case of deformable models
as presented in [174]. Snakes start from a path close to the solution and converge
to a local minimum of the energy. In this minimal path formulation, one interesting
aspect is that the user input is limited to the end points, simplifying the initialization
process. Unicity of this minimal path, for a given media avoids erroneous local min-
ima. Motivated by the ideas put forward in [86,87] Cohen and Kimmel developed an
efficient and consistent method to find the path of minimal cost between two points,
using the surface of minimal action [87, 151, 178] and the fact that operating on a
given potential (cost) function helps in finding the solution for our path of minimal
action (also known as minimal geodesic, or path of minimal potential). In the follow-
ing we show how the formulation of the minimal light path can be obtained through
a modification of the classical formulation of the active contours, and we show the
numerical implementation of the minimal path extraction.

1.2 The Cohen-Kimmel Method in 2D

Starting from the famous Snakes model, we show how can we derive a formulation of a
minimal path extraction which leads to the expression of one of the optical equations
of Hamilton, the Eikonal.

1.2.1 Global minimum for Active Contours

We present in this section the basic ideas of the method introduced by Cohen and
Kimmel [34] to find the global minimum of the active contour energy using minimal
paths. The energy to minimize is similar to classical deformable models (see [82])
where it combines smoothing terms and image features attraction term (Potential
P ):

E(C) =

∫

Ω

{

w1‖C ′(s)‖2 + w2‖C ′′(s)‖2 + P (C(s))
}

ds (1.1)

where C(s) represents a curve drawn on a 2D image, Ω = [0, L] is its domain of
definition, and L is the length of the curve. Thus the curve is under the control of
two kinds of forces:

• The internal forces (the first two terms) which impose the regularity on the
curve. The choice of constants w1 and w2 determines the elasticity and rigidity
of the curve.
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• The image force (the potential term) pushes the curve to the significant lines
which correspond to the desired attributes, for example

P (C) = g(‖∇I(C)‖). (1.2)

Here, I denotes the image and g(·) is a decreasing function. In the classical
snakes [82], we have g(x) = −x2. The curve is then attracted by the local
minima of the potential, i.e. edges (see [61] for a more complete discussion of
the relationship between minimizing the energy and locating contours). Other
forces can be added to impose constraints defined by the user. As introduced
in [29], previous local edge detection [20] might be taken into account as data
for defining the potential.

The approach introduced in [34] modifies this energy in order to reduce the user
initialization to setting the two end points of the contour C. They introduced a model
which improves energy minimization because the problem is transformed in a way to
find the global minimum. It avoids the solution being sticked in local minima. Let us
explain each step of this method.

1.2.2 Problem formulation

Most of the classical deformable contours have no constraint on the parameterization
s, thus allowing different parameterization of the contour C to lead to different re-
sults. In [34], contrary to the classical snake model (but similarly to geodesic active
contours), s represents the arc-length parameter, which means that ‖C ′(s)‖ = 1, lead-
ing to a new energy form. Considering a simplified energy model without any second
derivative term leads to the expression E(C) =

∫

{w‖C ′‖2 + P (C)}ds. Assuming
that ‖C ′(s)‖ = 1 leads to the formulation

E(C) =

∫

Ω

{w + P (C(s))}ds (1.3)

We now have an expression in which the internal forces are included in the external
potential. In [34], the authors have related this problem with the recently introduced
paradigm of the level-set formulation. In particular, its Euler equation is equivalent
to the geodesic active contours [23]. The regularization of this model is now achieved
by the constant w > 0. This term integrates as

∫

Ω
wds = w× length(C) and allows us

to control the smoothness of the contour (see [34] for details). We remove the second
order derivatives from the snake term, leading to a potential which only depends on
the external forces, and on a regularization term w. It makes thus the problem easier
to solve, and it is used in minimal paths [34], active contours using level sets [113]
and geodesic active contours as well [23]. In [34] is also mentioned how the curvature
of the minimal path is now controlled by the weight term w. This corresponds to a
first order regularization term, and the paths show sometimes angles. A second order
regularization term would give nicer paths, but it is difficult to include such a term
in the approach.
Given a potential P > 0 that takes lower values near desired features, we are looking
for paths along which the integral of P̃ = P + w is minimal. The surface of minimal
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action U is defined as the minimal energy integrated along a path between a starting
point p0 and any point p:

U(p) = inf
Ap0,p

E(C) = inf
Ap0,p

{
∫

Ω

P̃ (C(s))ds

}

(1.4)

where Ap0,p is the set of all paths between p0 and p. The minimal path between p0
and any point p1 in the image can be easily deduced from this action map. Assuming
that potential P is always positive, the action map will have only one local minimum
which is the starting point p0, and the minimal path can be found by a simple back-
propagation on the energy map. Thus, contour initialization is reduced to the selection
of the two extremities of the path.

It is possible to compute the surface U in several ways. We are going to describe
one of them that is consistent with the continuous case while implemented on a
rectangular grid. It is, however, possible to implement a simple approximation like
the shading from shape algorithm introduced in [178], or even graph search based
algorithms ( [43,151]), if consistency with the continuous case is not important.

1.3 Numerical Implementation

The numerical schemes we propose are consistent with the continuous propagation
rule. The consistency condition guarantees that the solution converges to the true
one as the grid is refined. This is known not to be the case in general graph search
algorithms that suffer from digitization bias due to the metrication error when imple-
mented on a grid [93,119]. This gives a clear advantage to our method over minimal
path estimation using graph search. Before we introduce the proposed method, let
us review the graph search based methods that try to minimize the energy given in
(1.3).

1.3.1 Graph Search Algorithms and Metrication Error

Based on the new energy definition (1.3), we are able to compute the final path
without evolving an initial contour, by using the surface of minimal action. To find
the surface of minimal action, graph search and dynamic programming techniques
were often used, where the image pixels serve as vertices in a graph [26, 53, 122],
considering the image as an oriented graph.

Oriented graph

A digital image is an array of pixels. With the optimal path approach, the pixel-
array is considered to be a directed graph. A local cost is associated with each node
of the graph, and a link cost is associated with every arc. The costs (both local and
link) are determined by the energy to minimize, therefore also called cost-function.
The problem of finding the optimal boundary segment between two image pixels
is transformed into finding the optimal path between two nodes in the graph. A
path between two points is said optimal if the sum of the cost function values at
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each of its points (called cumulative cost) is lower than the cumulative costs of any
other path between the same two points. Number of algorithms, based on dynamic
programming, are available in the graph theory literature. Dijkstra’s algorithm [43],
which computes the optimal path between a single source point to any other point
in the graph, is the basis of both the Live-Wire and the Intelligent Scissors ’s graph
search algorithms [49,127].

Dijkstra’s path search algorithm

Path extraction algorithms like Live-Wire [49] and Intelligent Scissors [127] tools
use a search method based on Dijkstra’s algorithm [43]. A description of Dijkstra’s
algorithm, applied to road detection, can be found in [53].

The algorithm (see table 1.1) is initialized by selecting a start point s (also called
seed point) in the graph. Giving this start point s, the cumulative cost of a pixel p is
the sum of the cost function values of the points of the optimal path from s to p. The
size of the active list is the total range of possible cumulative cost values, and its i-st
item contains the list of pixels with their cumulative cost valuing i. The cumulative
cost is initialized with value ∞ everywhere except at a start point s with value zero.
The active list is initialized by inserting the starting pixel into the first sub-list.

At each iteration of the algorithm, the pixel p with the lowest cumulative cost is
removed from the active list and expanded: the cumulative cost of each of its non-
expanded neighbors is updated, and the active list is reorganized. The updating of
the cumulative cost of the neighbors runs as follows: the newly computed cumulative
cost of a neighbor q is the sum of the cumulative cost of its father p and the link cost
from p to q. If this newly computed cost is lower than the previous one the cumulative
cost of q becomes the lately calculated cost, the active list is updated and a path map
structure keeps a pointer from q back to p. Since at each iteration one pixel gets a
final value, and a search for the minimal vertex to update is performed, the algorithm
complexity is O(N log2N) where N is the number of pixels in the image. In addition,
a marker registers all the expanded pixels. The optimal path between the start point
and another point in the image is obtained by following the pointers of the path map
from the end point back to the seed point.

Our approach solves a continuous version of the problem. Sethian Fast Marching
Method [161], described in section 1.3.2, has a similar complexity, yet it is consistent!

1.3.2 Fast Marching Resolution

In order to compute this map U , a front-propagation equation related to equation (1.4)
is solved :

∂C

∂t
=

1

P̃
−→n (1.5)

It evolves a front starting from an infinitesimal circle shape around p0 until each point
inside the image domain is assigned a value for U . The value of U(p) is the time t at
which the front passes over the point p.
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Algorithm for optimal path search

• Input:

– cost function P (P(p, q) = cost of the arc (p, q) in the graph);

– starting seed pixel s;

• Output: the path map M;

• Data structures:

– cumulative cost array CC

– Sorted active list L
– Boolean expanded pixels marker E

• Begin:

1. put CC(s) = 0 and CC(n) =∞ ∀n in the set of graph vertices;

2. put s in the list L;
3. while L is not empty do

(a) consider p the pixel in L with CC(p) minimal;

(b) consider Ep = TRUE;

(c) remove p from L;
(d) For each neighbor q of p such that Ep = FALSE, do

i. u = CC(p) + P(p, q);

ii. if u < CC(q) then

– CC(q) = u;

– update position of q in L;
– put a marker from q to p in M.

Table 1.1. Dijkstra Optimal Path Search Algorithm as used in [49] and [127]

The Fast Marching technique, introduced in [2], [161], and detailed in [163], was
used by [33], noticing that the map U satisfies the Eikonal equation:

‖∇U‖ = P̃ (1.6)

originally developed by Hamilton and Burns for geometrical optics (see section 1.1).
Classic finite difference schemes for this equation tend to overshoot and are unstable.
[163] has proposed a method which relies on a one-sided derivative that looks in the
up-wind direction of the moving front, and thereby avoids the over-shooting associated
with finite differences :

(max{u− Ui−1,j , u− Ui+1,j , 0})2 +

(max{u− Ui,j−1, u− Ui,j+1, 0})2 = P̃ 2i,j (1.7)

giving the correct viscosity-solution u for Ui,j . Authors of [150] also presented a direct
numerical approach to solve (1.6) and gave a convergence proof to that minimization
procedure in the viscosity solutions framework [35]. The principle of the Fast March-
ing is to introduce order in the selection of the grid points. This order is based on the
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fact that information is propagating outward, because action can only grow due to
the quadratic equation (1.7). Therefore the solution of equation (1.7) depends only
on neighbors which have smaller values than u.
The algorithm is detailed in 3D in next section in table 2.1. The Fast Marching
technique selects at each iteration the Trial point with minimum action value. This
technique of considering at each step only the necessary set of grid points was orig-
inally introduced for the construction of minimum length paths in a graph between
two given nodes in [43].
Thus it needs only one pass over the image. To perform efficiently these opera-
tions in minimum time, the Trial points are stored in a min-heap data-structure
(see [1, 89, 160,161,163] for further details on the above algorithm, as well as a proof
of correct construction). Since the complexity of the operation of changing the value
of one element of the heap is bounded by a worst-case bottom-to-top proceeding of
the tree in O(log2N), the total work is about O(N log2N) for the Fast Marching on
a N points grid.
Finding the shortest path between any point p and the starting point p0 is then simply
done by back-propagation on the computed minimal action map. It consists in gra-
dient descent on U starting from p until p0 is reached, p0 being its global minimum,
since the geodesics are orthogonal to the wave fronts (see Bellman [11] for a nice proof
on this orthogonality).

1.3.3 Back-propagation

In order to determine the minimal path between p0 and p1, we need only to calculate
U0 and then slide back on the surface U0 from (p1, U0(p1)) to (p0, 0). The surface
of minimal action U0 has a convex like behavior in the sense that starting from any
point (q, U0(q)) on the surface, and following the gradient descent direction, we will
always converge to p0. It means that U0 has only one local minimum that is of course
the global minimum and is reached at p0 with value zero.

This is a consequence of the results in [11] that show that the light rays (geodesics,
constant parameter curves) are orthogonal to the wave fronts (equal cost contours).
The gradient of U is therefore orthogonal to the wave fronts since these are its level
sets. The back propagation procedure is a simple steepest gradient descent. It is
possible to make a simple implementation on a rectangular grid: given a point q =
(i, j), the next point in the chain connecting q to p is selected to be the grid neighbor
(k, l) for which U(k, l) is the minimal, and so forth.

1.3.4 Comparing Dijkstra and Eikonal

Since there is no difference in the overal complexity of both implementations, one may
argue that using previously mentioned graph search algorithm like Dijkstra’s [43,155]
might be sufficient. This algorithm is indeed efficient, but suffers from metrication
errors. The graph based algorithms consider the image as an oriented graph in which
each pixel is a node, and the 4 (or 8) connections to the neighboring pixels are the
vertices of the graph. The different metrics used lead to very different results in a
homogeneous media (see figure 1.4). Because in the L1 metric considered for Dijkstra,
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Figure 1.4. Comparing Dijkstra and Eikonal optimal path extraction in a
homogeneous media Left image represents both paths with the iso-action levels.
Right image is the same with an added Gaussian noise.

we are limited by the distance measure imposed by the graph, how fine the grid gets.
With the ‘right’ Euclidean distance measure (L2) we get the diagonal connection
as the optimal path in this case. However, notice that the homogeneous media is a
synthetic dataset, and that in a noisy image, both discrete and continuous formulation
lead to similar results (see figure 1.4-right).

Of course the result of the graph-search could be improved by taking a larger
neighborhood as structuring element [16, 176], but there will always be an error in
some direction that will be invariant to the grid resolution, which is not the case in
the discretization of the Eikonal equation.

This error is still too important for reasons of accuracy in medical applications for
example. As an illustration, figure 1.5 shows the result of searching for the minimal
path in a test image.

Figure 1.5. Difference between Dijkstra and Eikonal on a real image: The
difference is obvious in this real image example. The potential used for computing
the action is the grey level information. Using the same extremities, the red path
corresponds to Dijkstra’s, and the blue one to Eikonal.
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1.4 The Regularity of the Path

In [34], it is proven that weight w in equation (1.3) can influence curvature and be
used as a smoothing term. An upper bound for the curvature magnitude |κ| along
the minimal path is found, I being the image domain:

|κ| ≤ supI ‖∇P‖
w

(1.8)

1.4.1 Influence on the gradient descent scheme

The exact minimal path is obtained with a gradient descent. But care must be paid
on the choice of the gradient step to avoid oscillations.

If the weight w is set to a small value ε the extracted path length is not limited
at all, nor the curvature magnitude in equation (1.8). Therefore in zones where the
action map is flattened, the slope being as small as ε, the path can have a spaggethi-like
trajectory. The minimal path being obtained by steepest gradient descent, directions
are evaluated by interpolation based on nearest neighbors on the Cartesian grid. If
the discrete gradient step ∆x is too large, the approximation of this trajectory will
produce oscillations between relative positions. Those oscillations can lead to a huge
number of path points larger than forecasted allocations.

We have made a test on a region of the data shown in figure 1.6-left where the
steepest gradient fails (with a number of path points limited). The cost map when
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Figure 1.6. Failure of the steepest gradient descent on a bolus chase reconstruction
data

tracking a vessel is displayed in figure 1.6-middle. Taking w = .1 leads to a curvature
magnitude κ ≤ 103. The steepest gradient scheme oscillates, for a given step size,
and stops as shown in figure 1.6-right. Therefore, increasing w maintains a lower
upper-bound on the curvature magnitude and makes the steepest gradient descent
scheme robust. Another method is to use more robust gradient descent techniques
like Runge-Kutta where the step size of the gradient descent can be locally adapted.



20 1 Minimal Paths in Image Processing

1.4.2 Influence on the number of points visited

This section illustrates the influence of the weight w of equation (1.3) on the necessary
number of voxels visited for a path extraction. In figures 1.7 is shown the tracking
of a vessel in a X-Ray image of the femoral vessels, using different weights w1 = 1
and w2 = 20. The smoothing done by increasing the weight can be observed in a

Figure 1.7. Smoothing the minimal path with the weight w: Left image
shows the dataset of femoral vessels with two paths superimposed. Right image
shows a zoom on the paths with w1 = 1 and w2 = 20.

zoom on the paths shown in figure 1.7-right. We can also observe the influence of
increasing the weight in figure 1.8 where each path is displayed superimposed on its
respective action map. For a small weight w1 = 1, the path is not smoothed, as shown

w1 = 1, and |κ1| ≤ 15.4 w2 = 20, and |κ2| ≤ 0.75

Figure 1.8. Smoothing the minimal path with the weight w: the action maps

in figure 1.8-left. For a weight w2 = 20, leading to the inequality |κ2| ≤ 0.75, the path
is smooth. Differences appear also in the sets of points visited during propagations: it
is smaller with weight w1 = 1. It means that propagation is quicker for small weights.
It propagates in every directions for a higher weight (see figure 1.8-right), because the
tune of w smoothes the image, as it reduces the upper-bound on curvature magnitude
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in equation (1.8).





Chapter 2

Path extraction techniques based

on the Fast-Marching algorithm

Résumé — Ce chapitre contient diverses améliorations de la méthode originale du
chapitre 1, valables aussi bien en 2D qu’en 3D.
Nous commençons par présenter en section 2.1 une extension au 3D de la méthode
classique. Nous détaillons en section 2.2 des méthodes pour accélerer l’extraction
de chemins et la rendre plus facile, en réduisant les interactions nécessaires. Nous
developpons une méthode pour extraire des chemins centrés dans des structures
tubulaires en section 2.3. En section 2.4 nous calculons des trajectoires pour des
objets en mouvement, en introduisant l’angle comme dimension supplémentaire au
problème. Finalement, nous expliquons l’introduction d’un facteur de récursivité
dans le Fast-Marching , afin d’extraire des chemins plus longs. Chaque technique
est illustrée par un exemple sur une image réelle ou de synthèse.

Abstract — This chapter will detail various improvements and modification of the
original method of chapter 1 that are useful for image analysis in 2D as well as in
3D.
In section 2.1, we extend the method detailed in section 1.3 for 2D images to 3D. In
section 2.2 we give details about our techniques to make the path extraction scheme
faster and easier, by reducing the user interaction. In section 2.3 we develop a new
method to extract a path centered in a tubular structure. In section 2.4 we compute
trajectories for moving objects, introducing a degree of freedom on their angulation.
Finally, in section 2.5, we explain the introduction of a recursivity factor in the
Fast-Marching algorithm, which enables to extract longer paths. Synthetic and real
medical images are used to illustrate each contribution.
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2.1 3D Extension

We are interested in this section in finding a minimal curve in a 3D image. One
application that can motivate this problem is detailed in section 3.1. It can also have
many other applications. Our approach is to extend the minimal path method of
previous section to finding a path C(s) in a 3D image minimizing the energy:

∫

Ω

P̃ (C(s))ds (2.1)

where Ω = [0, L], L being the length of the curve. An important advantage of level-set
methods is to naturally extend to 3D. We first extend the Fast Marching method to
3D to compute the minimal action U . We then introduce different improvements for
finding the path of minimal action between two points in 3D. In the examples that
illustrate the approach, we see various ways of defining the potential P .

Similarly to previous section, the minimal action U is defined as

U(p) = inf
Ap0,p

{
∫

Ω

P̃ (C(s))ds

}

(2.2)

where Ap0,p is now the set of all 3D paths between p0 and p. Given a start point p0,
in order to compute U we start from an initial infinitesimal front around p0. The 2D
scheme equation (1.7) is extended to 3D, leading to the scheme

(max{u− Ui−1,j,k, u− Ui+1,j,k, 0})2 +

(max{u− Ui,j−1,k, u− Ui,j+1,k, 0})2 + (2.3)

(max{u− Ui,j,k−1, u− Ui,j,k+1, 0})2 = P̃ 2i,j,k

giving the correct viscosity-solution u for Ui,j,k. The algorithm which gives the order
of selection of the points in the image is detailed in table 2.1. It should be noted that
a generalization of this algorithm was recently introduced in [92].

Considering the neighbors of grid point (i, j, k) in 6-connexity, we study the so-
lution of the equation (2.3). We note {A1, A2}, {B1, B2} and {C1, C2} the three
couples of opposite neighbors such that we get the ordering UA1

≤ UA2
, UB1

≤ UB2
,

UC1
≤ UC2

, and UA1
≤ UB1

≤ UC1
. To solve the equation, three different cases are

to be examined sequentially in table 2.2. We thus extend the Fast Marching method,
introduced in by Adalsteinsson and Sethian [2], and used by Cohen and Kimmel [34]
to our 3D problem.

2.2 Several minimal path extraction techniques

In this section, different minimal path extraction procedures are detailed. We present
new back-propagation techniques for speeding up extraction, a one end-point path
extraction method to reduce the need for interaction, and in next section, a centering
path extraction method adapted to the problem of tubular structures in images. The
methods presented in this section are valid in 2D as well as in 3D and this is an
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Algorithm for 3D Fast Marching

• Definition:

– Alive is the set of all grid points at which the action value has been
reached and will not be changed;

– Trial is the set of next grid points (6-connexity neighbors) to be exam-
ined and for which an estimate of U has been computed using equa-
tion 2.3;

– Far is the set of all other grid points, for which there is not yet an
estimate for U ;

• Initialization:

– Alive set is confined to the starting point p0, with U(p0) = 0;

– Trial is confined to the six neighbors p of p0 with initial value U(p) =
P̃ (p);

– Far is the set of all other grid points p with U(p) =∞;

• Loop:

– Let (imin, jmin, kmin) be the Trial point with the smallest action U ;

– Move it from the Trial to the Alive set (i.e. Uimin,jmin,kmin
is frozen);

– For each neighbor (i, j, k) (6-connexity in 3D) of (imin, jmin, kmin):

∗ If (i, j, k) is Far, add it to the Trial set and compute U using table
2.2;

∗ If (i, j, k) is Trial, recompute the action Ui,j,k, and update it.

Table 2.1. Fast Marching algorithm

important contribution that can be useful for image analysis in general, for example
in radar applications [8], in road detection [117], or in finding shortest paths on
surfaces [86].

Examples in 2D are used to make the following ideas easier to understand. We also
illustrate the ideas of this section on two synthetic examples of 3D front propagation
in figures 2.1 and 2.2. Examples of minimal paths in 3D real images are presented in
chapter 3.

The minimal action map U computed according to the discretization scheme of
equation (2.2) is similar to convex, in the sense that its only local minimum is the
global minimum found at the front propagation start point p0 where U(p0) = 0.
The gradient of U is orthogonal to the propagating fronts since these are its level
sets. Therefore, the minimal action path between any point p and the start point
p0 is found by sliding back the map U until it converges to p0. It can be done with
a simple steepest gradient descent, with a predefined descent step, on the minimal
action map U , choosing

pn+1 = pn − step×∇U(pn). (2.6)

More precise gradient descent methods like Runge-Kutta midpoint algorithm or Heun’s



26 2 Path extraction techniques based on the Fast-Marching algorithm

Algorithm for 3D Up-Wind Scheme

1. Considering that we have u ≥ UC1 ≥ UB1 ≥ UA1 , the equation derived is

(u− UA1)
2 + (u− UB1)

2 + (u− UC1)
2 = P̃ 2 (2.4)

Computing the discriminant ∆1 of equation (2.4) we have two possibilities

• If ∆1 ≥ 0, u should be the largest solution of equation (2.4);

– If the hypothesis u > UC1 is wrong, go to 2;

– If this value is larger than UC1 , go to 4;

• If ∆1 < 0, at least one of the neighbors A1, B1 or C1, has an action too
large to influence the solution. It means that the hypothesis u > UC1

is false. Go to 2;

2. Considering that we have u ≥ UB1 ≥ UA1 and u < UC1 , the new equation
derived is

(u− UA1)
2 + (u− UB1)

2 = P 2 (2.5)

Computing the discriminant ∆2 of equation (2.5) we have two possibilities

• If ∆2 ≥ 0, u should be the largest solution of equation (2.5);

– If the hypothesis u > UB1 is wrong, go to 3;

– If this value is larger than UB1 , go to 4;

• If ∆2 < 0, B1 has an action too large to influence the solution. It means
that u > UB1 is false. Go to 3;

3. Considering that we have u < UB1 and u ≥ UA1 , we finally have u = UA1+P .
Go to 4;

4. Return u.

Table 2.2. Solving locally the upwind scheme

method can be used for this path extraction. A simpler descent can be choosing
pn+1 = min{neighbors of pn} U(p), but it gives an approximated path in the L1 metric.
Such a descent has no more the property of being consistent. As an example, see in
figure 2.1 the computed minimal action map for a 3D Homogeneous medium defined
by P (i, j, k) = 1 ∀(i, j, k).

Figure 2.2 shows a front propagation an a synthetic binary example, based on a
spiral. We extract a path that goes from the interior of the spiral, and finds its way
out of it to the second end point outside the object.

2.2.1 Partial Front Propagation

An important issue concerning the back-propagation technique is to constrain the
computations to the necessary set of pixels for one path construction. Finding several
paths inside an image from the same seed point is an interesting task, but in case we
have two fixed extremities as input for the path construction, it is not necessary to
propagate the front on all the image domain, thus saving computing time. Figure 2.3
compares the sets of pixels visited using a classical front propagation, and a partial
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Figure 2.1. 3D visualization of an action map: these are the level sets of
the action obtained by propagating a front in a homogeneous medium (constant
Potential: ∀(x, y, z) ∈ IR3 P (x, y, z) = c > 0) , represented with different colors.
The domain is cubic, and the starting point for the wave equation is located at the
center of the cube. The iso-action surfaces are concentric spheres with the starting
point as center.

propagation on a Digital Subtracted angiography (DSA) image of the brain vessels.
It highlight the fact that the set of points visited is smaller when propagation is only
partial. We can see that there is no need to propagate further the points examined in
figure 2.3-right, the path found being exactly the same as in figure 2.3-middle where
front propagation is done on all the image domain. We used a potential P (x) =
|∇Gσ ∗ I(x)|+ w, where I is the original image (5122 pixels, displayed in figure 2.3-
left), Gσ a Gaussian filter of variance σ = 2, and w = 1 the weight of the model.
In figure 2.3-right, the partial front propagation has visited less than half the image.
This ratio depends mainly on the length of the path tracked.

2.2.2 Simultaneous Front Propagation

The idea is to propagate simultaneously a front from each end point p0 and p1. Let
us consider the first grid point p where those front collide. Since during propagation
the action can only grow, propagation can be stopped at this step. Adjoining the
two paths, respectively between p0 and p, and p1 and p, gives an approximation of
the exact minimal action path between p0 and p1. Since p is a grid point, the exact
minimal path might not go through it, but in its neighborhood. Basically, there exists
a real point p∗, which nearest neighbor on the Cartesian grid is p which belongs to
the minimal path. Therefore, the approximation done is sub-pixel and there is no
need to propagate further. This colliding fronts method is described in table 2.3.

It has two interesting benefits for front propagation:
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Figure 2.2. Front propagation in a synthetic 3D example: The left image is
a volume rendering of the synthetic dataset, a spiral image, with a very high value
(P (x, y, z) = c1 = 104) in the spiral walls and a very low value in the background
(P (x, y, z) = c2 = 1). We extract the minimal path between a starting point located
inside the spiral, and another one outside the spiral. The middle image represents
the level sets of the action, mapped on three orthogonal planes, using the same
color-map than in figure 2.1. The right image represents a transparent view of the
object and the extracted path obtained.

Algorithm

• Compute the minimal action maps U0 and U1 to respectively p0 and p1 until
they have an Alive point p2 in common;

• Compute the minimal path between p0 and p2 by back-propagation on U0

from p2;

• Compute the minimal path between p1 and p by back-propagation on U1

from p2;

• Join the two paths found.

Table 2.3. Minimal Path as intersection of two action maps

• It allows a parallel implementation of the algorithm, dedicating a processor to
each propagation;

• It decreases the number of pixels examined during a partial propagation. With
a potential defined by P = 1, the action map is the Euclidean distance.

– In 2D (figure 2.5), this number is divided by (2R)2

2×R2 = 2;

– In 3D (figure 2.1), this number is divided by (2R)3

2×R3 = 4.

Figure 2.4 compares the sets of pixels visited using a partial front propagation, as
explained in section 2.2.1, and a simultaneous propagation on a Digital Subtracted
angiography (DSA) image of the brain vessels. It highlight the fact that the set of
points visited is even smaller when propagation is done from both the extremities of
the path.
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Figure 2.3. Comparing classical and partial propagation: The left image is
the data set, used as potential to extract a path which stays inside a brain vessel of
a DSA image; the extremities of the path are located manually. The center image
is the action map obtained by propagating on the whole image domain. The right
image shows the action map resulting from a partial computation. The two paths
extracted are the same, due the minimality principle.

The potential used is P (x) = |I(x)−C|+w, where I is the original image (256×256
pixels, displayed in figure 2.4-(a)), C a constant term (mean value of the start and end
points gray levels), and w = 10 the weight of the model. In figure 2.4-(b), the partial
front propagation has visited up to 60% of the image. With a colliding fronts method,
only 30% of the image is visited (see figure 2.4-(c)), and the difference between both
paths found is sub-pixel (see figure 2.4-(d) where the paths superimposed on the data
do not differ).

The diagram in figure 2.5 represents the theoretical difference of domains visited
by the algorithm, for partial and simultaneous propagations.

2.2.3 Euclidean Path Length Computation

We have shown the ability of the front propagation techniques to compute the minimal
path between two fixed points. In some cases, only one point should be necessary, or
the needed user interaction for setting a second point is too tedious in a 3D image.
Here we derive a method that builds a path given only one end point and a maximum
path length.

As we explain below, we can compute simultaneously at each point the energy U
of the minimal path and its length. We choose as end point the first point for which
the length of the minimal path has reached a given value. Since the front propagates
faster along lower values of Potential, interesting paths are longer for a given value of
U .

The technique is similar to that of section 2.2.1, but the new condition will be to
stop propagation when the first path corresponding to a chosen Euclidean distance is
extracted. Since the front propagates in a tubular structure, all the points for which
the path length criterion is reached earlier in the process are located in the same area,
far from the start point. Therefore the first point for which the length is reached is
located in this area and is a valuable choice as endpoint.
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Figure 2.4. Comparing partial and simultaneous propagation: The left
image is the data set, used as potential to extract a path in a vessel tree in a DSA
image; the extremities of the path are located manually. The center image is the
action map obtained by partial front propagating as explained in section 2.2.1. The
right image shows the action map resulting from a simultaneous propagation from
both extremities of the path. The second path extracted is a sub-pixel approxima-
tion of the first one, as detailed in the section.

Figure 2.6 represents the propagation of a front according to the potential shown
in figure 2.6-left, with the on-the-fly computation of the approximate Euclidean length
of the paths at each pixel crossed by the front. The propagation is done on the whole
image domain, and one can observe that the resulting map, in figure 2.6-right is
non-smoothed, and very difficult to analyze.

Figure 2.7 represents the same computation of the Euclidean path length than
in figure 2.6-left, but limited to the necessary set of pixels visited in order to ex-
tract the minimal path super-imposed on the three images (the method is detailed
in section 2.2.1). One can observe that the resulting map, in figure 2.6-right is non-
smoothed, but we can clearly visualize the level-sets of the Euclidean path length
computed at the same time.

2.3 Path centering in linear objects

The path is the set of locations that minimize the integral of the potential in equa-
tion (1.3). If the potential is constant in some areas, it will lead to the shortest
Euclidean path. The same thing happens when the potential does not vary much
inside a tubular shape. The minimal path extracted is often tangential to the edges,
and would not be tuned for a problem which may require a centered path. Figure 2.8
describes the practical problem we are facing using the classical wave equation model
of [34], in tube shaped structures where the potential is approximately homogeneous
inside the object.

The general framework for obtaining a centered path is the following

• Segmentation : the first goal is to obtain the edges of the tubular region;

• Centered path : once we have this segmented region, we want to find a path
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Zone1

Zone2 Zone2

Figure 2.5. Comparing the theoretical domains for extracting a minimal
path between two points in a homogeneous medium: The area labeled
zone 1 corresponds to the needed set of pixels visited with partial propagation.
The area labeled zone 2 corresponds to the needed set of pixels with simultaneous
propagation.

Figure 2.6. Computing the approximate Euclidean path length while
propagating on the whole image: using the left image as potential, the front is
propagated on the whole image domain. Middle image and right images represent
respectively the action map starting from the bottom of the vessel, and the Euclidean
path length computed at the same time.

that is as much centered as possible in it. In order to attract the minimal path
to the center of the region, we use a distance map from the segmented edges.

In the following we are going to present our method, introduced in [42], detailing
each step and making comparisons with other existing techniques.

2.3.1 Segmentation step

In order to find the tubular structure, several approaches can be used. We can use
a balloon model [29] with a classical snake approach that inflates inside the object,
starting with the given end point. Or we can segment the object using its corre-
spondent level-sets implementation, as in [113] and like the bubbles in [172]. In fact,
this kind of region growing method can also be implemented using the Fast Marching
algorithm. This fast approximation has already been used for segmentation in [111].
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Figure 2.7. Computing the approximate Euclidean path length while
propagating partially on the image domain: Left image is the potential. Mid-
dle image and right images represent respectively the action map starting from the
bottom of the vessel, and the Euclidean path length computed at the same time.

ideal path
real path

Figure 2.8. Path extraction in a tube-like object: the path obtained using the
classical wave equation model is minimal according to the weighted metric, which
means that it is the shortest in the tube considered; the ideal path would stay in
the center of the object, as shown in the diagram.

This allows us to include the segmentation step in the same framework as our minimal
path finding: having searched for the minimal action path between two given points,
using a partial front propagation (see section 2.2.1), the algorithm provides different
sets of points:

• the points whose action is set and labeled Alive;

• the points not examined during the propagation and labeled Far;

• the points at the interface between Alive and Far points, whose actions are not
set, and labeled Trial.

This last category, the border of the visited points, is a contour in 2D and a
surface in 3D which defines a connected set of pixels or voxels. If the potential is a
lot higher along edges than it is inside the shape, the edges will act as an obstacle
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to the propagation of the front. Therefore, the front propagation can be used as a
segmentation procedure, recovering the object shapes. In this case the Trial points
define a surface which can be described as a rough segmentation. Once the front has
reached the endpoint, we use the front itself to define the edges.

2.3.2 Centering the path

Having obtained this interface of Trial points, we now want the information of distance
to the edges. This information can be either used for a skeletonization, computing
the medial-axis transform, or used as a new snake energy, that constrains the path in
the center of the tubular shape.

In order to compute this distance, we can use a second front propagation proce-
dure. The edges ares stored in the min-heap data-structure (see [163] for details), and
this is a very fast re-initialization process to compute this distance. The potential
and the initial action for this second front propagation are defined as follows:

P (i, j) = 1 ∀(i, j) inside the shape

P (i, j) =∞ ∀(i, j) outside the shape

U(i, j) = 0 ∀(i, j) ∈ {Trial} points of section 2.3.1

U(i, j) =∞ elsewhere

Starting the front propagation from all the points stored in the min-heap data-
structure, we compute the distance map, said E , very quickly, visiting only the pixels
inside the tubular object.

Our distance map E is used to create a second potential P1. Choosing a value d to
be the minimum acceptable distance to the walls, we propose the following potential:

P1(x) = max (d− E(x); 0)γ (2.7)

This distance d is illustrated on figure 2.9. We use this potential (2.7) for a new
front propagation approach: P1 weights the points in order to propagate faster a new
front in the center of the desired regions. This final propagation produces a path
centered inside the tubular structure in a very fast process.

2.3.3 Description of the method

The complete method is described in figure 2.10.

1. Segmentation: the first step is to compute the weighted distance map given the
start and end points. It is obtained by front propagation from the start to the
end point. Notice also that the end point can be determined automatically by
a length criterion as in section 2.2.3;

2. Segmentation: the second step is to consider the set of points which have same
minimal action as the endpoint. For this, we store the front position (set of trial
points) at the end of the first step.
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3. Centering Potential : the third step is to compute the distance map E to the
boundary front inside the tubular region. For this we propagate inward the
front with a uniform potential P = 1. This gives the higher values towards the
center of the object.

4. Centered path : the fourth step is to find the minimal path between start and
end points relatively to the distance potential P1 defined in (2.7) computed
from the previous step. This is obtained by applying again the minimal path
technique. The front is now pushed to propagate faster in the center of the
object.

5. Centered path : the final step is to make back-propagation from the end point
using the last minimal action map.

Figure 2.9. Thresholding the distance map: The left image shows the level
sets of the distance to the object borders; The right image is the potential obtained
by applying a threshold to the distance in order to propagate faster in a region of
the tube, at a minimum distance to the borders, given as parameter.

Figure 2.10 explains the different steps of the path centering process.
An interesting improvement is that the value of the weight w can be automatically

set to a very low value:

• During the first propagation the regularity of the path is not important, and w
can be very small;

• During the second propagation, P ′ = P + w = 1

• During the final propagation the potential based on the distance to the object
walls is synthetic and leads to smooth paths even if w << 1 .

Figure 2.11 compares the result of the classical path extraction, and the centering
process detailed below, on a potential defined by a DSA image of the brain vessels.
The two paths are represented super-imposed on the data in figure 2.11-left, in order
to highlight the result of the modification of the penalty according to the distance to
the object.
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Figure 2.10. The complete path centering process: step 1 is propagation in
the medium between the two extremities of the path; step 2 is to consider and store
the envelope of the pixels visited during step 1; step3 is to propagate backward into
the object, computing the distance to its borders; step 4 is to use the distance as a
new penalty to propagate; step 5 is to backtrack the final centered path.

In figure 2.11-middle is shown the result obtained using a potential based on the
image, where the shortest path is tangential to edges. But the front propagates only
along the vessel direction, and is rapidly stopped transversally, allowing to compute
the distance to the walls. Defining a new potential according to equation (2.7) based
on this distance map, the second front propagates faster in the center of the vessel,
at the distance d chosen. Due to the shape of the iso-action lines of the centered
minimal action shown in figure 2.11-right, the path avoids the edges and remains in
the center of the vessel.

2.3.4 Comparison with other work

Another method to obtain a centered path would be to make a classical snake min-
imization on the centering potential P1, starting from the path obtained previously,
like it is done in the thesis [36]. But too much smoothing may lead to a wrong path.
For example, in the case of thin tubular structures, smoothing the path may lead it
outside the tubular structure. Also, the unpublished work presented in [36] details an
algorithm which is applied to a tubular object which is already manually segmented
by the user, whereas our method comprises both steps of segmentation and centering.
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Figure 2.11. Path centering test on a 2D DSA image: Applying the process
detailed in figure 2.10, the two paths extracted are super-imposed on the data on
the left image; the middle image represents the level-sets of the action map with a
classical use of the Eikonal equation; the right image shows the corresponding result
with the centering strategy.

Another category of very similar centered line extraction technique is skeletoniza-
tion, and particularly the definition of the medial axis function of [15] which treats all
boundary pixels as point sources of a wave front. Considering that the Fast Marching
computes the Euclidean distance to an arbitrary set of points using a potential P = 1,
it can also be used for skeletonization.

However, the purpose of our application is to have a smooth line which always
stays inside the tubular object and which is far from the edges.

If one wishes to achieve this task with a skeletonization, like in [192], he will
need and rely on the results of post-processing techniques in order to obtain a unique
and smooth path inside this segmented object. Smoothing and removing undesirable
small parts of the skeleton can be done using techniques shown in [173]. The main
advantage of our approach is that it gives only one smooth and centered path in a
unique and fast process. Therefore, it cannot be replaced by a simple medial-axis
transform.

In [136], the authors extract first the surface of the colon, then compute a minimal
path on this surface and move this initial path to the center of the object by applying
a thinning algorithm to the object segmented and projecting the path on the resulting
surface. The algorithm developed by [90] can be applied to their methods since it
computes the minimal path on a surface defined by a manifold. Although it seems to
produce a smooth centered line, the thinning algorithm is computationally inefficient,
compared to the speed of our algorithm that needs less than a minute on a classical
inexpensive computer (300MHz CPU).

In the different techniques quoted, the main difference with our method lies in the
fact that the object is manually segmented by the user. Our method comprises steps
of segmentation and path extraction, and achieves them in a very fast way. More than
a robust and fast method, we have developed a tool that is used for segmentation,
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minimal path tracking, and even potential definition The main advantage of our
approach is that it comprises all those steps and gives only one smooth and centered
path in a unique and fast process.

2.4 Introducing the angle as a dimension

2.4.1 Principles

In [91, 92] the authors consider the problem of robot navigation with constraints
and rotation, introducing a third degree of freedom in two-dimensional applications.
Considering now an object with a given length and width, the problem is now to
extract a trajectory between two positions that are in configuration space the position
of the center of the object, plus an angle θ between 0 and 2π at the beginning and at
the end of the trajectory.

The authors consider two cases, both on constant potentials:

• In the absence of obstacles, the Fast-Marching can be applied in a straightfor-
ward manner, by discretizing the configuration space into a 3D grid, namely
griding both IR2 and [0; 2π] with periodic boundaries in θ, and solving

[

u2x + u2y + u2θ
]

1
2 = 1 (2.8)

• In the presence of obstacles, by altering the shapes of the obstacles for every
discretized angle θi, rather than maneuvering the robot. They use morpholog-
ical operations, like dilatation to alter the obstacles shapes, with a structuring
element corresponding to the robot at a given angle. A fast implementation of
these morphological operations can be found in [64].

Therefore the above path planning problem solves the Eikonal equation

|∇T | = 1

V (x, y, θ)
(2.9)

where F is binary: 1 in reachable regions and 0 inside the obstacles. As shown in [163],
there is no reason to limit ourselves to binary speed values. We may use the same
algorithm for continuously varying speed functions.

In [88], they consider the problem of obstacle avoidance navigating under a po-
tential function which penalizes the free work space [100].

We worked upon the use of the Eikonal equation, including a dimension related to
the angle of an object, in order to compute trajectories of oriented objects in domains
with a weighted metric, without obstacles.

The problem has been schematized to the following:

1. We have used very simple objects, like rectangles and triangles, in two dimen-
sional media;

2. For those objects, our strategy is to discretize them in a limited number of
positions, which means that for a triangle, we only consider the value of the
potential at its vertices.
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3. In order to make the objects move according to the weighted metric, staying in
the desired regions, at each position (x, y, θ), we take as potential for an object,
the maximum of the potential over all positions considered (i.e. vertices for the
triangle case).

We want to simulate the trajectory of an object, in a two dimensional medium,
with constraints on the direction of the object: there is now a cost for changing its
orientation. This result finds its application in the regularization of the point of view
of the object in the media, simulating for example the direction of a virtual camera.

2.4.2 Algorithmic tricks

The algorithm used is very similar to that of section 2.1, which means we are working
on a three dimensional problem. The following definitions are necessary:

1. The speed of the front is a function of the position, but not the orientation:
V (x, y, θ) = V (x, y) ∀(x, y, θ) ∈ IR2 × [0; 2π];

2. The action computed according to equation (2.9) is defined on IR2× [0; 2π], with
periodic boundaries in θ.

3. the griding of the interval [0; 2π] used in the tests was to consider 10 discretized
angle; it can be easily implemented using an array.

2.4.3 Results

Figure 2.12 represents samples of the trajectory of a triangle, using a DSA image as
weighted metric for propagating. Obviously, the object is doing several U-turns along
the trajectory and is not suitable for the applications we want to address.

We overcome the drawback of the very simple object used in figure 2.12-left by
simply adding a branch to our triangle. This branch defines a new position for es-
timating the potential, and will constrain our object to look in the direction of the
trajectory, in linear structures, like vessels. Results of this new strategy are shown in
figure 2.12-right.

2.4.4 Perspectives

Linear objects with self-intersections: in a 2D X-ray image, a linear three dimensional
structure projection can self-intersects, like a catheter in a heart image (for example
see figure 2.13). The minimal path using only the 2D spatial configuration will not
extract the loop which is created. Our method could overcome this drawback.

2.5 Introducing recursivity in the Eikonal equation

The Fast-Marching algorithm fails if the penalty is noisy, or if the objects to detect
are long thin curves, like the guide-wire shown in figure 2.14. If the offset term w and
the penalty P in Eikonal equation are not tuned efficiently, a portion of the shortest
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Figure 2.12. Movement of a two different objects in the medium defined
by the image on the background: Left image: the object is a triangle; the path
represents the trajectory of one of the vertices of the triangle. The constraint on the
angle of the object is not sufficient, and the object is doing several U-turns during
propagation; right image: the object is now a triangle with a branch connected at
one of its vertices; the constraint on the angle of the object is now sufficient, and
the object keeps looking in the direction of the trajectory.

path extracted can be a short cut to the starting point, leading to wrong results, like
in figure 2.14-left. One way to overcome this drawback is to introduce a recursivity
term in the computation in Eikonal equation : having α ∈]0; 1], we now compute

(max{u− α.Ui−1,j,k, u− α.Ui+1,j,k, 0})2 +

(max{u− α.Ui,j−1,k, u− α.Ui,j+1,k, 0})2 + (2.10)

(max{u− α.Ui,j,k−1, u− α.Ui,j,k+1, 0})2 = P̃2i,j,k

giving the value u for Ui,j,k. This recursive term, usually set to .9, reduces the values
of the action. This enables the front to propagate further in the direction of the thin
curves, without propagating in all directions. In figure 2.14, the border of the set of
visited points is drawn in red: on figure 2.14-left the algorithm has visited more than
half the image domain, leading to a wrong path which goes straight down to the end
point; on figure 2.14-right, the corresponding domain surrounds the guide-wire, and
leads to a path that stay in the vicinity of the object.

Unfortunately, the equation( 2.10) of course no more gives the solution to any
Eikonal equation computed on a penalty domain P, and the new action map U com-
puted is not convex at all. The minimal path that links the extremities is here defined
by a L1 descent on the map which stores the Fast-Marching iterations, and not with
the gradient descent on the action map. The minimality principle is lost, whereas
this algorithmic trick improves extraction. A patent has been filled on this subject
(see [54]).
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Figure 2.13. Catheter in X-Ray image of the heart: The catheter is the
linear structures in dark that self-intersects.

Figure 2.14. Guide-wire extraction with recursive Fast-Marching : The
left image is the minimal path extraction with classical Fast-Marching ; right image
is the same result with recursive Fast-Marching .



Chapter 3

Application to Virtual Endoscopy

and to Several Problems in Medical

Imaging

Abstract — Dans la première partie de ce chapitre on s’intéresse à la construction
d’une méthode d’extraction automatique de chemins pour l’Endoscopie Virtuelle.
C’est un procédé de navigation dans des images 3D, qui nécessite la définition d’une
trajectoire précise pour l’observation en image de synthèse de l’intérieur du corps
humain. Nous avons appliqué notre méthode d’extraction de chemins minimaux du
chapitre 2 pour contruire ces trajectoires rapidement et de manière la plus automa-
tique possible.
La seconde application concerne, au contraire, la construction de chemins de manière
interactive, permettant à un utilisateur de dessiner rapidement les contours d’un
objet, en ne précisant qu’un point de départ, sur le modèle des techniques appelées
Live-Wire de Falcao et Udupa [49] ainsi que de Mortensen et Barrett [127]. Sur
la base de notre méthode, nous avons développé un outil similaire, incluant une
possibilité d’adapter les paramètres du modèle, au cours de la segmentation, en
l’entrainant à reconnaitre les contours qui nous intéressent.

Abstract — First section concerns the creation of a fully automatic path tracker
for Virtual Endoscopy . Virtual Endoscopy visualizes the inner surfaces of struc-
tures present in volumetric data in 3D images. As navigation through the inner
structures quickly becomes a complicated procedure, especially when these struc-
tures are strongly curved, often a trajectory through the structure is used. We
applied our path extraction technique developed in chapter 2 in order to build an
accurate and fast tool to automatically builds those trajectories.
For the second application, we have focused on the need in many applications, as
in medical imaging, for interactive segmentation, offering the possibility to a non-
expert to draw quickly the boundary of an object, following Live-Wire technique
of Falcao and Udupa [49], and Mortensen and Barrett [127]. Live-Wire methods
restrict the intervention of the user to the setting of a start point in an image.
Using our path extraction algorithms, we have developed the same tool, including
a training method that adapt the different parameters of the model On-The-Fly .
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3.1 Virtual Endoscopy

Visualization of volumetric medical image data plays a crucial part for diagnosis and
therapy planning. The better the anatomy and the pathology are understood, the
more efficiently one can operate with low risk. Various post-processing techniques
have been available, to enable the radiologist to recognize a pathological condition,
in the shortest amount of time: three 2D orthogonal views (see figure 3.1), maxi-
mum intensity projection (MIP, and its variants, see figure 3.2), surface and volume
rendering.

Figure 3.1. 3D CT scanner of the colon: Display of the dataset of 512× 512×
121 voxels using three orthogonal views; air was injected in the colon (dark regions
of the image) before acquisition in order to inflate the object and increase accuracy
of the reconstruction of the colon.

Figure 3.2. Different rendering techniques of a 3D CT scanner of the
colon: left image is a Maximum intensity projection MIP and right image is a
curved reformat image of the dataset shown in figure 3.1.

The maximum intensity projection requires to chose a direction of projection,
therefore the volume is projected on a 2D plane, keeping only the brightest image
points (in figure 3.2-left, the brightest intensities are given by the bones).

The curved reformat image in figure 3.2-right is a particular case of a multi-planar
reformat image MPR : A MPR is a cross-sectional image of the 3D volume, along
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an arbitrary plane, and a curvilinear reformat is a section along a surface generated
by a bi-dimensional curve f : IR → IR, y = f(x),∀z ∈ IR. For a 3D trajectory, there
are 3 different ways to represent the MPR , by fixing either x, y or z. The path is
placed in the target of investigation (the colon in figure 3.1), and the organ appears
in the reconstruction in its full length. Advantage is to display the whole complex
shape of the colon on a single 2D image, but the anatomical objects are distorted,
and dimensions are not reliable on the final image.

Virtual Endoscopy allows by means of surface/volume rendering techniques to
visually inspect regions of the body that are dangerous and/or impossible to reach
physically with a camera (e.g behind an airway stenosis or obstruction, or too small).
An extensive definition of Virtual Endoscopy can be found in [80,146]. In chapter 7,
we detail visualization techniques based on volume and surface renderings.

Virtual Endoscopy techniques can be divided into two groups of methods that
can collaborate:

• techniques which deal with simulation of a real endoscope motion; In this case,
Virtual Endoscopy is very interactive, simulating the motion of a camera inside
the body, based on an extracted anatomical object that is modeled using rigid
body dynamics; good examples of this simulation are presented in [77,131].

• techniques which focus on the observation of the interior of anatomical objects
by extracting trajectories inside them, see Yeorong et al. [192] for an example.

We have focused on the second kind of techniques. However, the minimal path
techniques can also be useful for the first kind of methods: Kimmel and Sethian have
applied the Fast-Marching algorithm for a robotic application in [163], for the motion
of an object with a certain shape and orientation in an image with obstacles. We
have also investigate this field in section 2.4, modeling the movement of an object,
discretizing Eikonal equation in a space that describes the object position and orien-
tation. But adding a dimension to the problem could lead to huge computing costs
for an interactive 3D application.

Figure 3.3 is the usual framework that builds a Virtual Endoscopy facility, and is
usually composed of two parts:

• A Path construction part, which provides the successive locations of the fly-
through in the tubular structure of interest (see figure 3.3-left);

• Three dimensional interior viewing along the endoscopic path. Those views are
adjoined creating an animation which simulates a virtual fly-through through
them (see figure 3.3-right).

3.1.1 Medical relevance

In recent years, computerized post-processing techniques of image data from cross-
sectional imaging modalities has received increasing recognition in the field of medicine.
Technical developments of acquisition systems such as CT and MRI have improved
along with continuously increasing spatial resolution. But if each axial image were
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Path

Figure 3.3. Virtual Endoscopy framework: Left image shows an example of
trajectory manually drawn using the orthoviewer facility; right image is a volume
rendering of the dataset, using a ramp function manually parameterized, at a posi-
tion along this path.

to be viewed before one could proceed to the next image, the viewer would require
an enormous amount of time to shift through all slices. At the same time, growing
computer performance has created the opportunity to display anatomical structures
in a comprehensible manner. Virtual Endoscopy is one of the most recent innovations
in the spectrum of post-processing techniques. The predominant motive is to simu-
late conventional endoscopy, as in figure 3.4-left, by means of a non-invasive and safe
technique, presenting the image data included in the original slices, in a movie-mode,
in such a fashion that the radiologist is able to differentiate between that which is
healthy and that which is pathological. Figure 3.4 shows how a clinician is able to
detect pathologies using the volume rendering tool associated to the centered path
extraction. But the true diagnostic performance of Virtual Endoscopy and the ability

Figure 3.4. Pathologies detected with the volume rendering: Left image
is a conventional endoscopy image of the colon; the middle image displays a small
cavity which is a diverticulum in the colon surface; on the lower-right part of the
right image, the bumps are polyps.

to reproduce acceptable results outside of research protocol has not been established
yet. Clinical validation is still an on-going process, and researchers focus on the ap-
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plication and validation of this technique for particular organs and pathologies. For
colorectal cancer (CRC) (see figure 3.4-right), studies (see [146]) show that net effect
of the use of Virtual Endoscopy could reduce cancer-related deaths in the future.

3.1.2 Problem with the path construction

A major drawback in general remains when the path construction is left to the user
who manually has to “guide” the virtual endoscope/camera. The required interactiv-
ity can be very tedious for complex structures such as the colon for example. Actually,
on most clinical platforms the user must define all path points manually, using for
example three 2D orthogonal views, as shown in figure 3.1, leading to problems as
the following:

• Since the anatomical objects have often complex shapes, they tend to pass
in and out of the three orthogonal planes. Consequently the right location is
accomplished by successively entering the projection of the desired point in each
of the three planes;

• The path is approximated between the user defined points by lines or Bezier
splines. If the number of points is not sufficient, it can easily cross an anatomical
wall.

Path construction in 3D images is thus a very critical task and precise anatomical
knowledge of the structure is needed to set a suitable trajectory, with the minimum
required interactivity.

Numerous techniques try to automate this path construction process. Most of
them use a skeletonization technique, like in [192], in order to extract a centerline
in the dataset. But extracting the skeletons of an anatomical shape requires first to
segment it. And the skeleton often consists in lots of discontinuous trajectories, and
post-processing, as done by Tek and Kimia [173] is necessary to isolate and smooth the
final path. The front propagation techniques studied in this application in contrast to
other methods does not require any pre- or post-processing as explained in section 2.3.

It is sometimes necessary to smooth the path extracted by the front propagation.
The point of view in the volume rendering of the tubular structure is very important,
because it constrains the result of the examination. Thus, during the virtual fly
through, the point of view of the camera must change smoothly. Traditionally, the
position of the virtual camera frame at a particular path point is orthogonal to the
path. If the path is not smooth, the point of view of the virtual camera will change
in an abrupt manner. There are two ways to achieve this regularization:

• by modifying the view angle of the virtual camera, being no more orthogonal
to the path, but looking in the direction of a path point which is located far
from its current position, or using a running average of the local direction of
the camera;

• by increasing the weight w in equation (1.3) since it has a smoothing effect on
the minimal path (see appendix for details). We preferred to use this technique
in the following examples, since it is efficient and very simple to add.
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3.1.3 Proposed solution for colonoscopy

The method detailed here is illustrated by results performed on the volumetric CT
scan shown in figure 3.1.

Building a potential for virtual colonoscopy

The target is to build a potential P with the 3D data set allowing paths to stay inside
the anatomical shapes where end points are located. We thus define the potential by
a general model P̃ (x) = |I(x)− Imean|α + w.

First, the potential must be lower inside the colon in order to propagate the front
faster, and to avoid problems with crossing the edges of the anatomical object. In a
colon CT scan, an average position Imean of the colon grey level in the histogram can
be defined (see figure 3.5) as a peak in the histogram where Imean = 200. Secondly,
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Figure 3.5. Global and Local study of the image intensities: Left image is
the histogram of the whole 3D dataset where the colon can be clearly distinguished;
middle image is a slice of the colon where a profile line was drawn in order to observe
the variation of intensities that are displayed in right image.

if the path to be extracted is very long, the situation can lead to pathological cases,
and the front can go through potential walls. This is frequent for large objects that
have complex shapes and very thin edges, as colon. Then, edges should be enhanced
to enable long trajectories, with a non-linear function. We thus take α = 2 in order
to enhance the dynamic of the image with a quadratic function.

However, this potential does not produce paths relevant for Virtual Endoscopy .
Indeed, paths should remain not only in the anatomical object of interest but as far as
possible from its edges. In order to achieve this target, we use the centering potential
method as detailed in section 2.3. We first need to obtain a shape information. In fact,
a CT scan of the colon contains already a shape information sufficient to constrain
a front propagation. In figure 3.5-middle is shown a slice of a colon volumetric data
set, and figure 3.5-right shows the corresponding grey level profile. Air fills the colon
and is represented in our CT image by a grey level around 200 (see figure 3.5-right),
while edges are defined by a grey intensity around 1200. Then, using the potential
P̃ (x) = |I(x)−Imean|α+w, the front obtained through Fast Marching is stopped by the
anatomical shapes. Figure 3.6 shows the propagation of the wave equation, according
to the penalty defined previously. It also illustrates the fact that the Fast-Marching
can act also as a segmentation tool.
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Figure 3.6. Wave propagation inside the colon dataset: these are volume
renderings of the Alive points at different consecutive iterations during propagation.

Path centering technique

The edges are obtained via a first propagation: in figure 3.6 we can see the evolution
of the narrow band during propagation. It gives a rough segmentation of the colon
and provides a good information and a fast re-initialization technique to compute the
distance to the edges. Using this distance map as a potential (from equation (2.7))
that indicates the distance to the walls, we can correct the initial path as shown
in figure 3.7-left: the new path remains more in the middle of the colon. And the
value of the parameter d can be derived from anatomical characteristics. If we know
approximately the section of the colon along the path we can easily choose a value to
stay in the center of the tubular structure.

The two different figures 3.7-middle and 3.7-right display the view of the interior
of the colon from both paths shown in figure 3.7-left. With the initial potential, the
path is near the wall, and we see the u-turn, whereas with the new path, the view
is centered into the colon, giving a more correct view of the inside of the colon. The
new centered path is smooth because this final propagation is done on a synthetic
potential (the distance to the walls) where noise has been removed.
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Figure 3.7. Comparing normal and centered paths: The left image is a Tissue
Transition Projection (TTP) of the colon surface; middle image is the endoscopic
view obtained with the classical trajectory (represented with a doted curve) in the
U-turn shown in the left image; right image shows the endoscopic view resulting
from the centered path (represented with a plain curve on left image) at the same
position in the colon.

3.1.4 Results on objects filled with air

Results on Colonoscopy

Virtual colonoscopy is one of the most exciting developments in gastrointestinal radi-
ology. It is a non-invasive, well-tolerated, and safe technique for evaluating colorectal
cancer (CRC). CRC represents the third most frequently diagnosed cancer world-
wide. For the United States, it is estimated that 129,000 new cases were diagnosed
in 1999 [168]. Preliminary results indicate that the accuracy of virtual colonoscopy
exceeds that of conventional endoscopy. Our automatic path extraction provides in
a very fast process a path that remain inside the structure and avoid collisions with
the wall, following in a smooth manner the centerline of the colon. Once this path is
created, navigating is simply a matter of positioning the view along the path. Fig-
ure 3.8 shows the difference between the paths extracted with the classical method,
and the centering method.

Notice that in figure 3.8-middle, the path has been smoothed by the centering
method. This is mainly due to the fact that the noise inside the colon has been
eaten by the first propagation. The small variations in intensity allows the front
to propagate in all the colon, and considering the distance to the borders of the
object cleans the anatomical object, by considering an artificial penalty P (x, y, z) =
1 ∀(x, y, z) ∈ IN3 ∩ colon. Figure 3.8-right illustrates the complexity of the path
extracted: intersecting the same slice several time, the user who wants to extract
it manually must have strong skills in anatomy, and time. Figure 3.9 shows the
corresponding endoscopic viewings generated with those two paths.

Results on the Trachea

The virtual inspection of the trachea is the same problem as in the colon. It is even
simpler, due to the topology of the organ observed. Figure 3.10-left displays a 3D
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.

Figure 3.8. Path extraction in the 3D CT scanner of the colon: Left image
is the superposition of a path extracted from only one point manually located inside
the colon over a slice of the dataset; middle image displays the centered path in
the same configuration; right image is the representation in 3D of the trajectory
displayed in middle image intersecting three planes, where the dataset has been
mapped.

CT dataset of a trachea with three orthogonal views. Air fills the object and gives a
shape information all along from throat to lungs. Therefore, the anatomical object
having a very simple shape, the path construction with one or two fixed points is
easier than in the colon case. One example path tracks the trachea, using a nonlinear
function of the image grey levels (P̃ (x) = |I(x) − 200|2 + 1). This path has been
used to display the MPR view of figure 3.10-right. An endoscopic view along the
same path is displayed in figure 3.11. The inspection of the trachea is often part of
the inspection of the whole tracheobronchial tree. In part III, we will study more
precisely the tracheobronchial tree. The examination of the complete tree needs new
algorithms to extract the complete tree structures, and to segment the borders of the
bronchi. This implies use of more complicated algorithms than Fast-Marching and
will be further developed.

3.1.5 Results on Arteries and vessels

Is endoscopy a useful tool for artery and vessel examination?
The volume-based rendering tool use an opacity threshold which can create severe

artifacts on the endoscopic viewings. And the quality of the images is a direct result of
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Figure 3.9. Virtual Endoscopy in the colon, minimal and centered paths:
On the first two rows the trajectory being the shortest, the intersection plan of the
camera shows adjacent structures and shrinks the validity of the examination; on
the two last rows, the trajectory being centered, the point of view of the virtual
camera shows the entire tube, and the validity of the examination is increased.
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Figure 3.10. 3D CT scanner of the trachea: Left image is a dataset of 320×
320 × 234 voxels; the interior of the trachea is very easy to characterize from the
whole image since it is always filled with air; right image is a MPR image along
the trajectory extracted.

Figure 3.11. Virtual Endoscopy in the Trachea: starting from the mouth,
the virtual camera goes straight to the bifurcations between the lungs, following the
path extracted (see MPR view in figure 3.10-right).

the homogeneous opacification of the blood. The blood is made visible using contrast
products, and this image information depends now on the section of the object. It
can be also severely impaired in areas of turbulent flows.

Review of the axial slices alone is somehow sufficient for the diagnosis assessment
of several pathologies. But, still automatic path extraction provides important visu-
alization assessments on the datasets. It can be used with multi planar reformatting
MPR images, which enable to see the tubular objects with optimal slice orientation,
depicting spatial relationships between the object and its pathologies. But Virtual
Endoscopy offers an intraluminal view of the arteries and veins and allows inspection
of pathologies, like stenosis. It enhances visualization, by clearly showing the spatial
relationship between the pathology and the object, comparing those pathologies be-
fore and after treatment, as done for stent placement in abdominal aortic aneurysm
AAA . It can be also input in systems for the virtual planning of endoluminal aortic
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stents (see [186]).
This gives justification for the following study on the automatic path extraction

in veins and arteries. But the grey-level information is more complex in the case
the signal is obtained through injection of a dye product in the object of interest.
The boundaries of the object are more difficult to extract, therefore the path cen-
tering technique developed in section 2.3 and previously applied to the colon case, is
no longer valid for the following. However, automatic path extraction has remained
valid, despite the variability of the new penalty information. Centering techniques
for those kind of objects involve the use of more complex algorithms, like achieved
segmentation algorithms (see McInerney and Terzopoulos [115] for a review of med-
ical image segmentation with deformable models), and have been later developed a
posteriori in part III of the thesis.

3D MR image of the Aorta

A test was made on an aorta MR dataset. Figure 3.12-left displays this 3D MR dataset
of the abdominal aorta using three orthogonal views. Contrast product was injected

Figure 3.12. 3D MR image of the aorta: Dataset of 256× 256× 60 voxels; a
dye product has been injected before acquisition to highlight the abdominal aorta;
the right image is a threshold based volume rendering of the aorta itself, which
highlights that the anatomical object has a visible pathology: an Abdominal Aortic
Aneurysm (AAA).

before acquisition. On the MIP view, in figure 3.12-right, the important variation of
the section of the object, upon the bifurcation of the iliac arteries, clearly indicates
an an Abdominal Aortic Aneurysm AAA . The dye fills the aorta, and makes it
visible, among other soft tissues, while bones are not rendered. The propagation
measure is based on a nonlinear function of the intensity of the contrast solution that
fills the aorta. This data set is difficult since the intensity of the contrast product
will vary along the aorta (the contrast bolus dilutes during the acquisition time).
Due to this non-uniformity, paths can cross other anatomical structures with similar
intensities if the mean value inside the aorta is not set correctly by the user. Our
example path tracks one iliac artery (see figure 3.13), using the potential P̃ (x) =
|I(x) − 1000|2 + 10 in the MR scan. The dataset contains noise, and we must use
an important weight to smooth the extracted paths. We have displayed a sample of
the endoscopic views of the aorta along the path in figure 3.14. During the virtual
fly through, the observer clearly notice the important variation of the object cross-
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Figure 3.13. Path extraction in the 3D MR image of the aorta: Left image
is the superposition of one path extracted between two points manually located
inside the aorta over a slice of the dataset; middle image is a curved reformat
sagittal image along one of the paths which tracks the right iliac artery; right image
is a volume rendering view based on an opacity function parameterized manually
along the same trajectory.

section. The movie in figure 3.14 depicts this pathology, even if the threshold-based
volume rendering produces artifacts, when using the image grey level information
obtained from a contrast enhanced MR image.

3D CT Scanner of the Aorta

Figure 3.15 displays a 3D CT dataset of the abdominal aorta using three orthogonal
views. The contrast product injected before acquisition fills the aorta, and make it
visible among other objects. The problem is similar to path extraction in a MR image,
as done previously. Main difference here lies in the high resolution of the CT scanner
dataset of figure 3.15, towards the MRA dataset of figure 3.12. This high resolution
increases significantly the computing time of the method, but even if the dynamic of
the images is very different, it does not lead to major differences in the parameteriza-
tion of the path extraction process. Figure 3.16-left displays several paths extracted
with the same seed point. Figure 3.16-middle is a curved reformat view along one
of the trajectories extracted. This kind of view enables to validate trajectories by
verifying that the section drawn always intersect the structure of interest.

3D MR image of the brain vessels

Tests were performed on brain vessels in a MRA scan. Three orthogonal slices of
this dataset are shown in figure 3.17 together with a path extracted. The problem is
different, because there is only signal from the dye in the cerebral blood vessels. All
other structures have been removed. The main difficulty here lies in the variations
of the dye intensity. The example path tracks the superior sagittal venous canal (the
vein on the top of the head, as shown in figure 3.17-right), using a nonlinear function
of the image grey levels (P̃ (x) = |I(x)− 100|2 + 1). Two views of the extracted path
in 3D are displayed in figure 3.18 together with 3 orthogonal slices of the dataset. A
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Figure 3.14. Virtual Endoscopy in the Aorta: starting from one iliac artery,
the virtual camera goes to the top of the aorta, and the section of the object becomes
larger when it is located inside the aneurysm.

sample of the virtual fly-through along the brain vessel is displayed in figure 3.19.

3.1.6 Clinical study

Goal

A multi-user clinical study was performed using a prototype based on EasyVision
(Philips Medical Systems). The purpose was to measure the speed and user-dependence
of the automatic path tracker. To this aim, the path tracking tool has been evaluated
by 5 different operators :

• two physicians with manual path tracking experience (P1, P2);

• two operators with abdominal anatomy knowledge but no virtual colonoscopy
practice (M1, M2);

• one reference operator (R) familiar with the automatic path tracking tool.

As a comparison the user R also manually defined a path twice on the same dataset.

Data

Spiral CT data (5 mm slice thickness, 3 mm reconstruction interval) from 15 patients
were used, corresponding to a total of 29 scans. During the patient preparation phase
the colon was emptied as much as possible, and distended by inflating room air. In
most cases, both prone and supine scanning was done.
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Figure 3.15. 3D CT Scanner of the aorta: Dataset of 512 × 512 × 173 vox-
els; a dye product has been injected before acquisition to highlight the abdominal
aorta; the anatomical object does not have a visible pathology; the right image is a
threshold based volume rendering of the aorta itself (the MIP view is disturbed by
the intensities of the bones).

Figure 3.16. Path extraction in the 3D CT scanner of the aorta: Left
image is the superposition of several paths extracted from the same seed point at
the top of the aorta, over one slice of the dataset; middle image is a curved reformat
view along one of the trajectories extracted; right image is an endoscopic view along
this path.

Measurements

Time For each user, the wall clock time was measured using an automatic logging
mechanism. In general, path construction consisted of following steps :

1. load and inspect data

2. place starting point in the cecum

3. track + center path

4. check result and modify/continue tracking if necessary

The time necessary to perform steps 3 and 4 were measured and both user inter-
action time and calculation time were taken into account.
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Figure 3.17. 3D MR Angiography image of the brain vessels: Dataset of
256×256×150 voxels; It is obtained by subtracting two acquisition: one before, and
one after injection of a dye product; thus there is only signal coming from moving
objects; right image is a MIP view of this dataset.

Figure 3.18. Path extraction in the 3D MR Angiography image of the
brain vessels: Left image is the superposition of one path extracted between two
points manually located inside the superior sagittal sinus over a slice of the dataset;
middle and right images are the representation in 3D of this trajectory intersecting
three planes, where the dataset has been mapped.

User-dependence To measure the user-dependence of the path tracker, resulting
paths P from different users were compared to the corresponding path R obtained by
reference user in the following way :

1. Warp path P (i) and R(j) to a common length parameter k
We want to locally stretch and compress paths P (i) and R(j) using warping
functions wP (k) and wR(k). The goal is to obtain the optimal warping satisfying

(wP , wR) = arg min
w1,w2

(

∑

k

‖P (w1(k))−R(w2(k))‖
)

(3.1)

where all points of P and R are addressed by the warping. This mapping is
calculated using the Dynamic Time Warp algorithm [145].

2. Calculate Euclidean distances d between corresponding points
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Figure 3.19. Virtual Endoscopy in a brain vessel: the virtual camera goes
into the superior sagittal sinus venous canal.

After warping, the path distances d can be calculated as

dP,R(k) = ‖P (wP (k))−R(wR(k))‖ (3.2)

and are shown in Fig.3.20 as a function of the common path length k.

3. Extract the common part
To exclude the effect of the exact start and end point, we only consider the
common part of paths P and R, which is defined in Fig.3.20.

5mm threshold

warped path length

distance between
corresponding points

common part

Figure 3.20. The Euclidean difference between corresponding points plotted versus
the warped path length k. The common part is defined as the longest possible stretch
between two positions where the distance falls below the threshold of 5 mm.

4. Measure the similarity S between the paths
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We propose to measure the similarity by using the percentage of the common
path length k where the distance d is below a threshold t, written as S t(P,R).

The chosen measure for path similarity S t(P,R) is symmetrical, it is robust to a
complete different choice in starting position, and it gives a more reliable result of
similarity between paths than e.g. the maximum distance.

Results

Time The results of the time measurements are shown in Table 3.1. The average
time needed for path tracking is 4.8 minutes per scan, measuring both user interaction
time and calculation time.

time P1 P2 M1 M2 R average manual

user time 2.8 4.6 5.3 4.5 2.0 3.6 30.0

calculation time 1.0 1.0 1.2 1.7 1.3 1.2

total time 3.8 5.6 6.5 6.2 3.2 4.8 30.0

Table 3.1. Timing results of the automatic path tracker:Time expressed in
minutes per scan.

No significant differences were found between the experienced physicians (P1 and
P2) and the other users (M1, M2), excluding the reference user R. These results
are in agreement with a previously published study [147], where an average of 4.5
minutes was measured on 27 cases. The timing for the manual case has no statistical
meaning, but is merely given for comparison.

User-dependence Table 3.2 summarizes the measurements of the path correspon-
dence using the similarity measures S2 (2 mm threshold) and S5 (5 mm threshold)
as defined in section 3.1.6.

correspondence P1 P2 M1 M2 average manual

S2 79% 89% 81% 92% 85% 20%

S5 89% 97% 93% 95% 94% 68%

Table 3.2. Correspondence with reference path: Correspondence expressed
in percentage of the path length where the reference path is closer than 2 mm (first
row) or 5 mm (second row).

On the average, an automatically defined path differs less than 5 mm from the
reference over 94% of its length. Again, the results of the manual path tracking is
given for comparison. Both manually tracked paths differed less than 5 mm over only
68% of their lengths.



3.1 Virtual Endoscopy 59

Automatic path tracking provides a fast and easy way to determine the colon
centerline. The resulting path lies completely inside the colon, is as much centered as
possible and is smooth.

The path tracker can be used by less experienced operators without significant
differences in time or resulting centerline. This is an important result, since it allows
to separate the path tracking task from the actual inspection task. The former task
can be done as a preprocessing step by a different person since the results of the path
tracker are largely operator-independent. Separating path tracking and inspection
will increase the physician’s efficacy, reduce the cost and allow a more widespread
application of path-based navigation and visualization.

3.1.7 Last developments and perspectives

Figure 3.21 shows how the colon surface is unfolded using the point of view of the
virtual camera which is given by the centered path extracted. This unfolding1 enables

Figure 3.21. Unfolding the colon surface:.

to clearly see at each path position desired the rendering on each side of the camera
and behind, thus increasing the accuracy of the diagnosis. For example, in the lower
part of figure 3.21, the bump on the colon surface is a polyp that would not be
detected if the point of view given follows the trajectory direction. Therefore, the
only requirement for an accurate fly-through is to provide a trajectory that follow the
centerline of the structure, as closely as possible, as this provides the best visualization
of the surrounding walls. The path should also be smooth without unnecessary kinks.

Further work on the subject of endoscopy could be to simulate directly the trajec-
tory of an endoscope inside the anatomical objects. The introduction of the angle as

1This image was provided by Roel Truyen, from MIMIT Advanced Development, Philips Medical
Systems, Best, Netherlands.
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a dimension in Eikonal equation in section 2.4, and the algorithmic tricks developed
to compute a minimal action for a moving object in the same section, could lead to
the extraction of minimal paths in the human body for moving objects with a given
shape. A straightforward application of this angular propagation for an object tra-
jectory is to guide objects in a virtual endoscopic process. If the object is not a point,
the modification of its orientation will now represent a cost to minimize. If this cost
is also related to the refraction indices of the medium, the constraint will regularize
not the trajectory of the object, but its orientation. For a virtual endoscopic camera,
regularizing the point of view will lead to a better understanding of the scene and
of the pathologies. Of course, the computing time is multiplied by the number of
discretized angle in [0; 2π], thus the problem is now four dimensional, and the path
extraction is really time consuming. But we can forecast that the growing computer
performance in the next years will make this improvement feasible.

3.2 Live-Wire

Approaches in image segmentation are numerous, ranging from fully automatic meth-
ods to fully manual methods. The first ones totally avoid user’s interaction but still are
an unsolved problem: even if they are well adapted to specific cases their success can
not be guaranteed in more general cases. The second ones are time-consuming, unre-
peatable and inaccurate. To overcome these problems, interactive (or semi-automatic)
methods are used. They combine knowledge of the user and computer capabilities
to provide supervised segmentation, ranging from manual painting to minimal user
intervention.

The target of this application was interactive and real-time extraction of features
in medical images, independently from any acquisition modality. The aim was to de-
velop a method to offer the possibility to a non-expert to draw quickly the boundary
of an anatomical object. He could for example restrict its intervention to the deposi-
tion of a start point in an image. Then a contour had to be automatically found and
drawn in real-time between this start point and the current cursor position. This con-
tour should respond to a certain amount of constraints, such as internal and external
forces and action of the user. The developed method should let the user validate or
not the result. Taking this validation into account, the tool should be able to generate
a kind of learning to better estimate the different parameters of the model.

In contour oriented segmentation, one approach is to define a boundary as the
minimum of an energy function that comprises many components such as internal and
external forces. In the literature, there exist many techniques to perform this min-
imization. First, classical active contours (also called Snakes or Deformable Bound-
aries), introduced by Kass, Witkin and Terzopoulos [82], have received a lot of at-
tention during the past decade. But this technique presents three main problems.
First, variational methods are very sensitive to the initialization step and often get
trapped in a local minimum. Second, user’s control cannot be applied during the
extraction but only during the initialization (where the user has a whole contour to
draw) and the validation stages of the segmentation. Third, the different parameters
of the model are not meaningful enough in a user’s viewpoint, especially for clinicians.
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The application of the minimal path theory to image segmentation is a more recent
technique. With this approach the image is defined as an oriented graph character-
ized by its cost function. The boundary segmentation problem becomes an optimal
path search problem between two nodes in the graph. This approach overcomes the
problem of local minima by using either dynamic programming (Dijkstra [43]), or a
front propagation equation (Cohen and Kimmel [34]), mapping the non-convex cost
function into a convex function. Dynamic programming has also been used for classi-
cal snakes [4], but the proposed method is applied there to find the local deformation
from an initial curve that gives the best energy descent. Falcao and Udupa with their
Live-Wire [48,49] and Mortensen and Barrett with their Intelligent Scissors [126–129]
introduce interactivity into the optimal path approach. Their method is based on
Dijkstra’s graph search algorithm and gives to the user a large control over the seg-
mentation process. The idea is the following: a start point is selected by the user on
the boundary to be extracted, and an optimal path is computed and drawn in real time
between this start point and the current cursor position (see figure 3.22). Thus, user’s

Figure 3.22. Principle of interactive contour extraction with optimal path
method: the optimal trajectory is extracted in real time between a user defined
starting point and the mouse cursor.

control is applied also during the extraction. Mortensen and Barrett [10,127] also in-
troduce facilities called Path-Cooling and On-The-Fly training, which respectively
lead to the possibility of drawing a closed contour, and to partial adaptation of the
graph cost function. This technique seems to be the most adequate according to our
target. The application consisted therefore, first in the implementation of a method
based on minimal path search inspired from Live-Wire and Intelligent Scissors tools,
and second in using this implementation to go further with the idea of interaction
and learning. The optimal path approach is developed in the first part of this section
through the description of Live-Wire [49] and Intelligent Scissors [127]. The second
part explains the adaptation we made of these techniques, including adjustments and
improvements.

3.2.1 Existing methods

The aim of this work is interactive segmentation of contours in images. In contour
oriented methods, one approach is to define the boundary as the minimum of an
energy function, also called cost function. This cost function includes external energy
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terms describing the salient features that can be extracted from the image and internal
energy terms ensuring the regularization of the segmented curve. With the minimal
path approach the minimization is not global but local: the aim is to find the optimal
boundary segment between two points, that is to say the contour segment where the
energy is minimal. This can be achieved using the graph search theory, as detailed in
section 1.3.1 .

Two different version of the minimal path extraction were used in the following:

1. first one is the Dijkstra algorithm [43], which is detailed in section 1.3.1.

2. second one is the Fast-Marching implementation presented in section 1.3.2.

Once the method is chosen, the result mainly depends on the choice for an ac-
ceptable cost function.

Cost function

The optimal-path search is guaranteed to find the solution of the minimization of the
energy function between two points. But if this function does not pertain enough to
the object to extract, the contour obtained by this method won’t be right. That is
why defining a good and appropriate cost function is the essential task of this method.
In both techniques, the processes are similar: the first step is the definition of some
interesting features (F). A feature is supposed to describe certain properties of the
boundary and of its environment (gray levels of the contour, of the background, ...).
The next step is the conversion of these features into cost functions (C). A feature can
for example be the gradient magnitude of the image, and the associated cost function
can be the inverse of the gradient magnitude, giving higher cost to smaller gradients
(i.e. weak contrasts) and lower cost to higher gradients (i.e. strong contrasts). The
conversion of a feature into a cost function is achieved by a so called cost assignment
function (CAF). Figure 3.23 illustrates all these concepts.

Figure 3.23. Illustration of the cost assignment function: From left to right:
the initial image; the feature (gradient magnitude here); the CAF (an inversion);
the new defined penalty (the inverse of the gradient magnitude).

The following list records some features quoted in the Live-Wire [49] and Intelli-
gent Scissors [127] papers:
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• Gradient magnitude,

• Direction of the gradient magnitude,

• Laplacian,

• Intensity on the positive (inside) side of the boundary,

• Intensity on the negative (outside) side of the boundary,

• Intensity on the boundary (edge).

The cost assignment process depends on how one wants to emphasis one or another
value of the feature. For the gradient magnitude the inverse can for example be taken
as a CAF in order to favor high contrasts, but a Gaussian function, centered on
the gradient value one wants to highlight, could also be applied. For the Laplacian
feature, the CAF is usually a zero-crossing detector. But many other functions may
be used according to the feature values to highlight.

Once satisfying individual cost functions are available, the last step consists in
combining them into a total cost function. Let us call potential the weighted sum
of all the individual cost functions. This word of potential comes from the Active
Contours approach where the energy of the boundary is defined as the integral along
this boundary of a functional called potential. On the directed graph-arc from a pixel
p to an adjacent pixel q, the potential used by Intelligent Scissors [127] is defined by
equation:

P(p, q) = ωgCg(q) + ωLCL(q) + ωdCd(p, q) (3.3)

+ ωiCi(q) + ωoCo(q) + ωeCe(q)

where Cx are the cost functions associated to the features as follows:

• Cg: gradient feature;

• Cd: gradient direction feature;

• CL: Laplacian feature;

• CI : inside intensity feature;

• CO: outside intensity feature;

• CE : edge intensity feature;

and each ωx is the weight of the corresponding cost function.
The energy of a path is then defined by

Epath =
∑

(p,q)∈path

P(p, q) (3.4)
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On-The-Fly training

For some features it is hard to decide without prior knowledge about the boundary to
extract which values are to be preferred in the cost function. The notion of On-The-
Fly training is introduced in Intelligent Scissors [127] and consists in adapting, during
the extraction, the cost functions of the features to the specificities of the contour one
wants to segment. It is done for each feature independently from each other. The idea
is the following: assuming that the user has drawn a long enough and valid boundary
segment, the cost function of the feature has to be modified in order to favor contours
with the same feature-values than those found on the segment. An example with the
edge intensity feature is shown in table: if the extracted boundary segment is rather
dark, the cost function will be modified in order to favor dark intensities. In practice,
the process does not modify directly the cost function but the CAF : the feature values
found on the valid boundary segment (called training path) form an histogram, called
training histogram, and the cost CAF is iteratively modified by removing from it
the training histogram and scaling the result between 0 and 1. Figure 3.24 and 3.25
illustrates respectively the initialization and an iteration of this process. The interest
of On-The-Fly training is that the potential can be adapted during the extraction,
providing the possibility of following a contour with slowly changing properties.

(a) (b) (c)

Figure 3.24. Training initialization: (a) the features trained; (b) its correspond-
ing histogram at initialization; (c) its corresponding cost assignment function.

(a) (b)

(c) (d) (e)

Figure 3.25. Training iteration: (a) the trained path; (b) the histogram along
the trained path; (c) the cost assignment function at iteration i; (d) the CAF minus
the trained histogram; (e) the scaled CAF for iteration i+ 1.
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Path-Cooling

With the minimal path approach it is impossible to extract a closed contour with only
one seed point and one end point. Indeed, it would mean that two different paths
could pass through a same point. To extract a close contour two seed points, at least,
are needed. Furthermore, if the extracted path becomes too long, the path search
method will prefer shorter paths cutting through the background: it is often necessary
to fix several points to draw the expected contour. Path-Cooling was introduced in
Intelligent Scissors [10], as Bordery Cooling and achieves automatic generation of seed
points. When a new seed point is generated, the boundary segment between this new
point and the previous seed point is fixed (frozen). A new start point is generated
when a pixel in the contour is considered to be stable enough. The stability criterion
is function of both the time spent on the active boundary segment and the path
coalescence (in other terms: how many times a point has been ”drawn”). For every
pixel in the image two counts are considered: the time history (in milliseconds) counts
how long the pixel has been included in the active boundary (boundary section that
is not frozen), and the redraw history counts how many times the pixel has been
redrawn by the active boundary. When the mouse moves, drawing a new optimal
path, the redraw history of the active pixels is incremented while the redraw history
of the non-active pixels is set to 0, and the time history of the active pixels is updated
by adding to the current value the while that the boundary segment was displayed
and a gradient term (to have a link with the data).

Both histories have two thresholds: a low and a high. When a pixel in the active
boundary satisfies the two low thresholds it becomes a candidate point. The first
candidate pixel which active boundary segment contains a pixel that satisfies the two
high thresholds becomes the new seed point and the rest of the active boundary is
frozen. The low thresholds have to be small in order to select candidates as close to
the current free point as possible. The high thresholds have to be relatively large to
freeze relatively long segments.

3.2.2 Adaptations and improvements

Our work is more based on the Intelligent Scissors than on the Live-Wire. In this
way, we adopt the pixel based graph version: the nodes of the graph are the pixels,
and the oriented arcs represent the oriented links between pixels. Our cost functions
are directly inspired from the article [127] and we also use Path-Cooling and training.
The original contribution essentially lies in the introduction of a more general path
search, in the adaptation of the cooling speed, and in the way the training is achieved.

Path search algorithms

One of our tasks was to examine the possibility of using the path extraction detailed
in section 1.1.2 in the framework of 2D-Live-Wire and Intelligent Scissors. This ex-
traction method is based on Cohen and Kimmel work [34] and uses Eikonal equation
for propagation. In our implementation we use several path search methods. We
used a modified version of Dijkstra’s algorithm, which is the basis of the methods
developed in Live-Wire [49] and Intelligent Scissors [127]. We also developed another
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implementation based on the path search algorithm proposed by Cohen and Kim-
mel [34], already used for virtual endoscopy in the preceding section. We compare
the results obtained with both methods.

Modified version of Dijkstra’s algorithm On elongated objects, Dijkstra’s clas-
sical algorithm might perform poorly. This is due to the minimum cumulative cost
principle: as the cumulative cost is defined as a sum along the path, the path’s cost is
a strictly increasing function of the path’s length. Thus, the longer the object is, the
more likely will the extraction select shorter paths cutting through the background.
See an example in figure 3.26. To overcome this problem, we can use a different
expression of the cumulative cost in the Dijkstra’s algorithm (see [54]), which allows
longer paths, by means of introducing recursivity in the cumulative costs computation
(see section 2.5 for details).

Figure 3.26. Guide-wire extraction in a X-Ray image: Left image - Path
extraction with the classical Dijkstra’s algorithm between points A and B; right
image - Same path extraction with improved Dijkstra’s algorithm.

Eikonal formulation The main idea of Cohen and Kimmel [34] is that the potential
and the graph are considered to be continuous, producing a sub-pixel path. With this
approach, detailed in chapter 1, the energy to minimize is defined as the integral
of a strictly positive functional having low values close to the desired features (see
equation (1.3)).

Comparison between Dijkstra and Eikonal equation

As explained in the first chapter, the main difference between Dijkstra and Cohen and
Kimmel definition of the minimal path lies in the considered metric. In the first case,
the minimal path is the one where the sum of the potential is minimal (L1 path), and
in the second case, it is the one where the integration of the potential is minimal (L2
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path). With Dijkstra’s approach, the image is considered as a graph in which each
pixel is a node and the weights on the vertices are functions of the energy to minimize.
This method uses dynamic programming to compute the optimal path [43]. Cohen and
Kimmel approach keeps a continuous framework for the problem and computes the
path by solving the Eikonal propagation equation in real-time with a Fast Marching
algorithm. The aim of the presented work is to achieve real-time extraction. Even if
Eikonal method uses integrals to compute the optimal contour, it is not very slower
than Dijkstra’s approach that uses sums. For the guide-wire extraction shown in
figure 3.26, the computing time ration between both methods is about 0.89. And,
because Eikonal equation produces a sub-pixel path (L2 path), it is more accurate.
The continuous formulation of Cohen and Kimmel [34] method has the advantage
to keep a more general framework for the energy definition, allowing for example
applications using other kind of potentials. It also easily include an offset term w (see
equation (1.3)) to constrain the regularity of the path, while it is more difficult with
dynamic programming methods [62,117].

3.2.3 Dedicated potential

To build the potential (i.e the weighted sum of cost functions), two cases are dis-
tinguished: the object to extract is either an interface between two regions, or a
line (ridge) over a uniform background. The line approach was motivated by the
patents [55,56], which are based on a ridge filter to proceed to the extraction of linear
structures. It was therefore possible to compare quickly the two path search methods
(discrete and continuous), and have a rapid overlook over the facilities of the Live-
Wire and Intelligent Scissors tools. For the region interface approach, we use the six
features quoted previously: the gradient magnitude, the Laplacian zero crossing, the
gradient direction, the edge intensity, the inside intensity and the outside intensity,
as described in [127]. Thus, the potential at an oriented arc (p,q) is described by
the equation (3.3). In the next section, the defined costs functions have values scaled
between 0 and 1. To display the cost maps we re-scale the values between 0 and 255
in this way: if C is the cost function and MC is the cost map associated to C, at a
pixel (i,j).

Specific case: long curve extraction

A ridge-filter potential is used for line extraction and is based on local contrast esti-
mation, seen as the difference between a tangential and an orthogonal term, relatively
to the direction of the line to extract. It is similar to method described in [96]. Dis-
crete and continuous implementations can be found in [60, 109]. For more details,
see [54–56].

General case: Contour extraction

The potential used for the general case of contour extraction is the one introduced in
equation (3.3).
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• Gradient magnitude: this feature is useful to locate contrasted areas. As a first
order derivative operator, it is a representation of the spatial variations of the

image. The gradient of an image I(x,y) is defined by: ∇I =
(

∂I
∂x ,

∂I
∂y

)

and taking

Gm =
√

I2x + I2y the cost function is given by

Cg(x, y) =
maxI Gm −Gm(x, y)

maxI Gm −minI Gm
; 0 ≤ Cg ≤ 1

The image is convolved with a Gaussian kernel, before computations.

• the Laplacian zero crossing: As a second order derivative operator, the purpose
of the Laplacian zero-crossing is edge localization. The Laplacian of an image I
is defined by L(I) = Ixx+ Iyy The corresponding cost function to the Laplacian
feature is the Laplacian zero-crossing (LZC ). In theory it is defined like this:
the LZC is 0 where the Laplacian is 0 and 1 everywhere else. But in practice
such a LZC does not produce many zero-crossing points. That is why the zero-
crossing area is extended to the pixels where the Laplacian changes its sign with
a specific gap. The gap has an influence on the strength of the contrast one
wants to highlight with the cost function: the deeper the gap is, the stronger the
selected contrast will be. See figure 3.27. Therefore, a zero-crossing is defined

Figure 3.27. Influence of the depth of the gap: left image - profile of an image
intensity; middle image - profile of the associated gradient; right image - profile of
the associated Laplacian.

by two points with Laplacian of opposite signs The point with its Laplacian
closer to zero than the other is set to be the LZC . Actually, a pixel is a LZC if
its Laplacian is zero or:

– First, it is closer to zero than any of its neighbors with a Laplacian from
opposite sign,

– Then, there is at least one opposite sign neighbor so that the gap between
them is sufficient.

Consequently, the LZC map is a binary map defined by:

{ CL(p) = 0, if L(p) = 0
CL(p) = 0, if ∃q ∈ N(p) \ [(L(p).L(q) < 0) ∩ (|L(P )| < |L(q)|) ∩ (|L(p)− L(q)| < gap)]
CL(p) = 1 otherwise
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where N(p) is the neighborhood of p.

• The gradient direction: introduces a smoothness constraint into the potential.
The associated cost function is not local (i.e. defined on one pixel) but measures
the continuity of the gradient direction between two adjacent pixels. We use
the formulation as defined in Intelligent Scissors [127], for the gradient direction
cost from pixel p to pixel q:

Cd(p, q) =
2

3π
{arccos [dp(p, q)] + arccos [dq(p, q)]} ; 0 ≤ Cd ≤ 1

where arccos dp and arccos dq represent the angles between the link (p, q) and
the gradient direction in respectively p and q. dp and dq are computed with

dp(p, q) = D′(p).V (p, q)

dq(p, q) = V (p, q).D′(q)

with

D′(p) =
1

√

I2x + I2y

(Iy(p),−Ix(p))

V (p, q) =
1

‖p− q‖

{

q − p, if D′(p).(q − p) ≥ 0
p− q, otherwise

This potential associates a low cost with an edge between two adjacent pixels
where the gradient of the pixels and the link between them have similar direc-
tions. Furthermore, it associates a high cost with an edge between two adjacent
pixels that have similar gradient directions but are almost perpendicular to the
link between them. In practice, the efficacy of such a cost is not obvious and we
do not use it in the potential. Applying a smoothing operator to the extracted
curve after the extraction would probably have a better effect.

• The pixel intensities: The edge intensity is given by the scaled value of the
source image at the boundary; the inside intensity is obtained at some offset
k from the boundary in the gradient direction and the outside intensity comes
from the image intensity at the same offset k from the boundary in the opposite
of the gradient direction. Calling Ce, Ci and Co respectively the edge, inside and
outside feature costs, their formulations are:

Ce(p) =
1

255
I(p)

Ci(p) =
1

255
I(p+ k

∇I
‖∇I‖ (p))

Co(p) =
1

255
I(p− k

∇I
‖∇I‖ (p))

Without training these features are not used in the potential because it is im-
possible to decide without prior knowledge about the contour to be extracted
which values are to be preferred. The aim of training is to associate with them
an adequate CAF .
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3.2.4 Path-Cooling improvement

We tested two different Path-Cooling methods. Both are based on the same idea: if
a point in the active contour is stable enough, the corresponding boundary segment
is frozen. The first process consists in having one counter, the redraw history, and
one threshold. The other approach uses the two counters described in [127], with an
adaptation: the time history is updated by multiplying (and not adding) a scaled
potential-driven factor instead of a simple gradient-driven factor. The multiplication
has a weighting effect which gives more influence to pixels with a low potential. At a
pixel p and an iteration i of the cooling process, the time history T Hi is defined as

T Hi(p) = T Hi−1 + ti−1 × [1− P(p)]

where ti is the consecutive time the path was active until iteration i and P the penalty
in equation (3.3).

The time history is useful if we consider that when the user does not move (redraw
history fix, but time history incremented), he wants to emphasize the already drawn
contour. But, as both thresholds are to be satisfied, even if the user does move
very slow, or does not move at all, the active path will freeze slowly. In practice,
the definition of the thresholds is not obvious and the main difficulty lies in the
interpretation of the mouse movement, in terms of speed and acceleration. We can
either increase the cooling speed with the mouse cursor speed or decrease it. An
argument to increase the mouse speed is the following: if the user moves fast it is
because there is no real difficulty with the drawing and because he considers the
extracted path as valid. But if the cooling speed is proportional to the mouse speed,
and if the user has to define little areas where the contour has lots of details, he must
fix a manual seed point: in these areas he must go slow and the cooling process will
also go slower. An argument to decrease the cooling speed is the following: the areas
where the user goes slowly are the areas which are not very well defined, where the
path changes quickly its aspect... , deciding then that the slower the mouse moves
the quicker the user wants the path to freeze. The problem is that if the user goes
too slowly in other areas (hesitating, for example), he may fix false paths. Even if the
second option, with practice and taking care to remain close to the boundary, seems
to be the most adequate, no choice is totally satisfying in a general case. However,
the Path-Cooling is a very satisfying tool to extract closed boundaries, as shown in
figure 3.28.

3.2.5 On-The-Fly training improvement

In the used potential (see equation (3.3)), training can be applied to the gradient
magnitude Cg, inside Ci, outside Co and edge features costs Ce.

Training path

Training, as described in [127], is based on the distribution of the feature values on
a valid contour segment. The signification of valid is not obvious. We tested three
approaches to define such a segment (See figure 3.29):
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Figure 3.28. Path-Cooling on an ultrasound mammography image: These
are iterations of the delineation of a tumor; the blue cross is the see point at iteration
0; the green cross is the mouse cursor; the red path is the “cooled” one; the green
path is the currently drawn path between the mouse cursor and the seed point at
each iteration.

1. the training path is the last section of the frozen contour and training is applied
at each setting of a seed point (blue points in figure 3.29);

2. the training path is the last section of the active boundary and training is
applied at each mouse movement, i.e. at each path extraction (green points in
figure 3.29);

3. the training path is linked to the cursor position: it corresponds to the points
where a mouse movement event is sent to the system, and training is applied at
each mouse movement (red points in figure 3.29).

Training is effective when a new seed point is manually or automatically set. This
setting of a seed point can be seen as the validation of a path segment. The free
path, because of its high variability and dependence to the potential (and thus on
the training), cannot be a suitable training area. As well as for the mouse movement
marker, because it would make it impossible to go too far away from the contour with
the mouse cursor.

New way of training

We have developed an improvement of the classical training method (see patent [71]).
In existing methods the training area is limited to a portion of the path itself and only
takes a positive information into account (see section 3.2.1). The original technique we
use is based on the addition of another training area based on negative information.
The positive training area contains pixels that could belong to the contour, while
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Figure 3.29. Several training paths: On this fluoroscopy image, the cursor
position is represented by red crosses, the frozen part of the path is in blue, and the
current free part of the path is in green.

the negative training area contains pixels that do not belong to the contour. The
positive area has a reinforcing role while the negative area has a penalizing role in
the cost assignment process. This improvement has two consequences: firstly, the
new potential is more robust and secondly, the comparison of the distributions of
the features (i.e. of the histograms) on each area helps adapting the weights of the
individual cost functions in the total potential.

Definition of the positive and negative training areas The main problem is
to define suitable positive and negative areas that describe well enough respectively
what is and what is not a contour pixel. The definitions we use are all based on the
previously described training path. As the drawing of the user is not very accurate,
we consider the positive area in the neighborhood of the training path and we tested
four approaches for the negative area definition:

1. in the minimal box including the training path, the points closer to the path
than a certain distance d are considered to be the positive area, the other points
of the box are considered to be the negative area (see figure 3.30-(a));

2. in the minimal box including the training path, the points closer to the path
than a certain distance dp are considered to be the positive area and the points
further form the path than the distance dp and closer to the path than a certain
distance dn are considered to be the negative area (see figure 3.30-(b));

3. the positive and negative areas are made from paths coming from the neighbor-
hood of the click-position. The paths coming from the nearest neighborhood
form the positive area and the path coming from the furthest neighborhood
form the negative area (see figure 3.30-(c));

4. The training set of points is made from translations of the path: in the minimal
box including the training path, the nearest translations are the positive area
and the furthest translations are the negative area (see figure 3.30-(d));
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For each approach, it is possible to add a weighting function based on the distance to
the training path.

(a) (b) (c) (d)

Figure 3.30. Different definitions of the positive and negative areas: Posi-
tive area in white, negative area in gray, other points of the box in black. (a) Positive
area is a lane around the box, negative area is the rest of the box. (b) Positive area
is a lane around the box, negative area is a lane around the positive area. (c) Areas
built by the paths coming from a region around the mouse cursor. (d) Areas built
with translations of the training path.

The first approach is not accurate enough for the definition of the negative area.
Indeed it is possible that other points of the box belong to another right path section.
It is the motivation for introducing the second approach. The third method seemed
a priori to be the most accurate to define a negative area. But actually, all the
paths are rapidly concurrent, what on the first hand misapprehends the notion of
positive/negative training point, and on the other hand limits the size of the training
set. Second and last approaches are very similar and give the best results with this
difference that the first one is a continuous version of the second one. We therefore
choose the last approach: the positive area is the set of p nearest translations and the
negative area is the set of n next translations of the training path. The translation
direction is chosen perpendicular to the mean direction of the training path. The
different translations are weighted according to their distance to the training path
(see figure 3.31-(d)). The negative/positive areas are symmetric for the gradient
magnitude and the edge intensity features (figure 3.31-(a)). But, in order to consider
the non symmetrical aspect of the inside and outside features (in equation (3.3)),
we adopt for them non symmetric training areas, depending on the direction of the
gradient on the path, the path direction and the considered feature. See examples
with figure 3.31-(b)-(c). The positive/negative training sets of points are used to build

(a) (b) (c) (d)

Figure 3.31. Training areas: In white the positive area and in black the negative
one. The longest line is the training path. (a) Symmetric. (b) Asymmetric for inside
feature. (c) Asymmetric for outside feature. (d) Schematic weighting function.
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two distinct histograms of the features values. The function of these histograms is
twofold: to build an adapted cost function for the feature (through the construction
of an adapted CAF ) and to adapt automatically the weight of the individual cost
function in the global potential.

On-The-Fly adaptation of individual cost functions Individual cost functions
are built with a CAF applied to the feature. Training is used to dynamically modify
this cost assignment function. With our method, the algebraic difference between the
positive and the negative histograms (jointly scaled) is removed from the iteratively
modified CAF and the result is normalized to compose a new cost.

The positive and negative histograms are scaled the following way: firstly, to have
a same scale for both training histograms, the negative histogram values are multiplied
by the ratio between the number of points used to build the positive histogram and
the number of points used to build the negative histogram:

H−[i] =
card{H+}
card{H−} ×H−[i]

where H+ and H− are respectively positive and negative histograms. Then, both
histograms are normalized using their common min/max. The initialization used
in [127] favors the gray values with highest occurrence in the feature. This is incorrect
initialization for images where there is a large and homogeneous background as in
figure3.32-(a). We prefer an approach that does not carry any a priori about the
expected feature values: the CAF is initialized with a flat line, giving the same cost
to each pixel of the image, and not with the inverse of the distribution of the feature.
As a consequence, the CAF obtained during the process depends only on the past
and the present training data.

Computing a cost function using a positive and a negative information into ac-
count makes the method more robust. Actually, the positive training area describes
what is a contour and the negative training area describes what is not a contour. So if
the training contour is not enough uniform, producing a too wide positive histogram,
the classical approach will favor points that are perhaps not relevant to the expected
contour, whereas our method the negative information to localize the contour, pro-
ducing a less specific but more accurate cost function.

We show an example of On-The-Fly training on the septum wall of an echographic
left-ventricle image in figure 3.32.

Figure 3.32 illustrates the first iteration of the process of training on the septum
wall of an echographic left-ventricle image (figure 3.32-(a)) with both approaches. The
trained feature is the inside intensity one (figure 3.32-(b)). The classical method uses
a CAF initialized with the inverse of the distribution of the feature, where black levels
are predominant and thus favored (figure 3.32-(c)). The training histogram is scaled
between 0 and 1 (figure 3.32-(d)) and removed from the initial CAF to build a new
CAF (figure 3.32-(e)) favoring very specific values. With this example the training
path is homogeneous and the resulting cost function (figure 3.32-(f)) is good. But with
a not uniform enough training contour, the resulting potential will not be consistent.
Our method initializes the CAF (figure 3.32-(g)) with an arbitrary value between
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 3.32. Training on the septum wall of an echographic left-ventricle
image: (a) echographic left-ventricle image; (b) inside Feature Ci; (c to f) classical
training: (c) initial CAF ; (d) training histogram; (e) resulting CAF with (f) corre-
sponding cost function; (g to k) improved training: (g) initial CAF ; (h) positive
and (i) negative training histograms; (j) resulting CAF with (k) corresponding cost
function.

0 and 1. The positive and negative histograms (figure 3.32-(h) and figure 3.32-(i))
are jointly scaled and the difference between them is removed from the initial CAF
producing a less specific but carrying more accurate information histogram. Thus the
new cost function (figure 3.32-(k)) is more relevant.

A real case study of the On-The-Fly adaptation of the individual cost functions
is shown in figure 3.33, where iterations of the modification of the CAF of the feature
Ce are shown.

Adaptation of the weights The principal advantage of using positive and nega-
tive training areas is the evaluation of the differences between the histograms, which
helps adapting the weight of the corresponding individual cost function in the global
potential. If the histograms are enough distinct, we can assume that the considered
feature is enough discriminating and that its weight should be more important. In
a first approach we take a mean difference between both histograms as dissimilarity



76 3 Application to Virtual Endoscopy and to Several Problems in Medical Imaging

Figure 3.33. Results of the training on a left ventricle image: First row
- iterations of the real-time contour extraction with training, on a X-Ray image
of the heart left-ventricle; second row - modification of the CAF of the feature Ce

at the same iterations; third row - corresponding feature Ce potential at the same
iterations.

criteria, which expression is the following:

c =
1

256

255
∑

i=0

|H+[i]−H−[i]|

Indeed, if the histograms are very similar this criterion will be very low and if
they are different, it will be high. In practice, this criterion produces often very low
values and quite never values above 0.5. Hence we use a stretching function to exploit
efficiently this criterion and transform it into a weight ωc associated with the cost
function c in the total potential. See on figure 3.34 examples of stretching functions.

3.2.6 Conclusion

We have developed an interactive, real-time and user-guided image segmentation soft-
ware, which gives to a non-specialist the possibility to outline the contour of an object
in an image without a very precise drawing (for example with the track-ball on an
echograph). Figure 3.35 displays several example of the interactive drawing tool
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Figure 3.34. Examples of stretching functions: (a) Privileges small values of
the cost; (b) penalizes small values of the cost; (c) penalizes values of the cost below
a and favors values of the cost above a.

for medical images. Some improvements have been brought to the bibliographical

Figure 3.35. Results on different datasets: First row - Extraction of a guide-
wire in a fluoroscopy image; second row - tumor delineation in a ultrasound mam-
mography image; third row - extraction of the left ventricle in an ultrasound image.

background of interactive extraction of optimal path. A very general optimal path
extraction method has been efficiently used, producing in real-time very precise paths.
And a new method of On-The-Fly training has been developed to adapt, during the
extraction of the contour, the individual cost-functions and their relative weights in
the total potential.

3.2.7 Perspective

• Training:

1. creating a better dissimilarity criterion between information from positive
and negative histograms;
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2. ordering the importance of each different computed criteria with the train-
ing facility, knowing at each iteration what feature is really discriminant;

3. use such a method to select off-line interesting features into a large database
of them (like the size of the Gaussian kernel used to smooth the image).

• Path-Cooling : The acceleration of the mouse cursor could be an interesting
information for freezing trajectories;

• 3D extension: using a 3D path search method (as in section 2.1), or per-
haps a ”surface-search”, method instead of a slice-by-slice approach ( [46, 47]).
However, with a slice-by-slice method, a contour extracted with our technique
could be an interesting initialization for other pure 3D approaches (as simplex
meshes [38] for example).

• Interactivity: grading the level of interactivity, and limit the user interaction to
the choice of this level.
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Chapter 4

Deformable Models for Surface

Extraction in Medical Imaging

Résumé — Dans ce chapitre, nous revenons sur différentes méthodes d’extraction
de surface en imagerie médicale. Partant du déjà connu modèle des snakes de
Kass, Witkin, et Terzopoulos [82], en section 4.1, nous présentons des méthodes
basées sur une représentation explicite de la surface, comme dans les travaux de
Delingette [38]. Nous étudions ensuite en section 4.2 une représentation implicite de
la surface, à partir des travaux de Caselles, Kimmel, et Sapiro [22]. Nous détaillons
l’implémentation de ces contours actifs géodésiques dans la section 4.3, à partir de la
méthode des Ensembles de Niveaux, développée et amplement détaillée dans le livre
de Sethian [163]. On s’intéresse en section 4.4 à définir un modèle abstrait pour nos
applications, et on poursuit par son implémentation à l’aide de modèle déformables
explicites puis implicites. Nous présentons par la suite l’utilisation du Fast-Marching

comme algorithme de segmentation dans la section 4.5, et nous détaillons les appli-
cations existantes de cette méthodologie à des problèmes classiques de segmentation
en imagerie médicale 3D à la section 4.6.

Abstract — In this chapter, we recall the different methods used for surface
extraction in medical imaging. Starting from the already studied snakes framework
of Kass, Witkin, and Terzopoulos [82] in section 4.1, we mention methods based on
explicit representations of the shape, as done by Delingette [38]. Thus we extend in
section 4.2 to implicit representations of the shape, proposed by Caselles, Kimmel,

and Sapiro [22]. We detail implementation of those Eulerian active contours in
section 4.3, using the level-sets methodology developed extensively by Sethian [163].
We develop an abstract deformable model for our applications in section 4.4, and we
follow by implementations of this framework with explicit and implicit deformable
models. We further detail the use of the Fast-Marching method to segmentation
tasks in section 4.5. And we detail several applications of this methodology to
medical image segmentation problems in section 4.6.
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4.1 Classical Active Contours

4.1.1 Definition

We recall the Snake model as introduced in [82], and already mentioned in chapter 1.
For a general overview on deformable models, see [115]. See also a description and
references in [30].

The classical energy of the model which will be minimized on A the space of all
admissible curves, and has the following form:

E : A → IR

C 7→ E(C) =

∫

Ω

w1
2
‖C′(v)‖2 + w2

2
‖C′′(v)‖2 + P (C(v))dv

where Ω = [0, 1] is the parameterization interval. This model is used in the classical
formulations of deformable models [32, 102].

In this formulation, each term appears as a potential acting on the shape. Thus
the mechanical properties of the deformable model are controlled by two kinds of
constraints:

• The internal potential: C ′ and C ′′ are the smoothing terms on the curve. They
enable to control its regularity by means of w1 which quantifies its rigidity and
w2 its elasticity;

• The external potential term P represents the likelihood. This “image” potential
traps the curve towards the regions with desired attributes.

Figure 4.11 displays iterations of the heart segmentation in a 3D ultrasound image
of the heart, with simplex meshes.

4.1.2 Drawbacks

The main drawbacks of the classical deformable model approach are:

• Minimization: The functional is non-convex, and one difficulty is to find a good
local minimum. Spurious edges generated by noise may stop the evolution of
the surface, giving an insignificant local minimum of the energy;

• Initialization: The user must specify an initial shape that is close to the goal,
like a very precise polygon approximation, which may be tedious to draw;

• Topology changes: this method is unable to segment several objects simultane-
ously, and to merge different shapes;

One of the main issue in using deformable models is their initialization and mini-
mization. The solution introduced in [163] allows to solve the global minimization of
a problem. His approach considers a slightly modified problem: a curve is considered
as an interface between two media, following a particular evolution equation. We
will see that under precise assumptions, this front evolution efficiently builds a path
between two fixed points, as detailed in [34].

1Slice of a 3D ultrasound dataset acquired with a multi-plane trans-oesophagus scan-head on a
HDI 5000 ATL echograph.



4.2 Geodesic Active Contours 85

Figure 4.1. Samples of the segmentation of a heart in a 3D ultrasound
image with simplex meshes [37] : Starting with a sphere interpolated with
simplex mesh faces, we segment a heart in a 3D ultrasound image: first row shows
the intersection of the mesh with a slice of the dataset, and second row is the 3D
model at the same iterations.

4.2 Geodesic Active Contours

A geometric approach for deformable models was introduced by Caselles, Catté and
Dibos [21] and Malladi, Sethian and Vemuri [113]. The basic idea of the geometric
model is that the curve follows an evolution by expansion in the normal direction,
with lower speed when the image force P (C) is small. Hence the evolution of a planar
curve C is in the direction of its normal only is given by

∂C(s, τ)
∂τ

= P (C)(∂
2C
∂s2

+ w n) = P (C)(κ+ w)n, (4.1)

where s is the arc-length parameter of the curve C, κ is the curvature, n is the unit
normal. The constant term w is similar to the balloon force introduced in the snakes
model [29] (and also related to the dilatation transform in mathematical morphology
and the grass-fire transform [102]).

It was shown that the geometric snakes model handles topology changes better
than the classical snakes when implemented with the level set approach for curve
evolution proposed by Osher and Sethian [135,158].

But, due to the formulation of the image force, it never comes to a complete stop,
and heuristic stopping procedures are used to switch off the evolution process when
an edge is reached. In equation (4.1), the geometric snake evolution is slower when
the P is small but the curve does not necessary stop completely at the boundary,
since it never reaches an equilibrium.

Given an initial curve C(s, 0), the geodesic active contours is based on the planar
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evolution equation

∂C(s, τ)
∂τ

= (P (C)(κ+ w)− 〈∇P,n〉)n, (4.2)

where s is the arclength. The ∇P term added, in comparison to the geometric model,
is a projection of the attraction force −∇P on the normal to the curve. This force
balances the other term close to the boundary and causes the curve to stop there.

This introduction of ∇P , based on geometrical as well as energy minimization
reasoning, leads to the “geodesic active contour” proposed by Caselles, Kimmel and
Sapiro [23]. The geodesic active contours enjoy the advantages of classical as well as
geometric active contours, since it handles topology changes and reaches an equilib-
rium which is similar to the classical snakes.

The curve evolution equation is then reformulated and implemented using the
Osher-Sethian numerical algorithm [135]. Similar geometric models were also intro-
duced in [85,149,165,183] and extended to color and texture in [153].

4.3 Level-Sets Implementation of the Geodesic Ac-

tive Contours

Let Co(p) be a closed initial parameterized planar curve in an Euclidean plane, and
C(p, t) the family of curves generated by the movement of C0(p) in the direction of
its outward Euclidean normal vector n. The speed of this movement is supposed to
be a scalar function of the curvature κ:

{

∂C
∂t (p) = F (κ)n
C(p, 0) = C0(p)

(4.3)

A Lagrangian approach might be considered to implement the curve evolution ac-
cording to the above equations in motion equations of the discretized positions of
C(p).

But this formulation has several drawbacks. When tracking the motion of the
interface C propagating along its normal direction with velocity F , most numerical
techniques rely on markers, breaking it up into points connected by segments, and
moving each point with speed F (see figure 4.2-left). The solution is supposed to gain
in accuracy if the number of points is increased. Problems arise if different parts of
the front cross each other, or if the shape tries to break into two pieces (see figure 4.2-
middle and the book of Sethian [163] for details) or if two shapes try to merge into
one (see figure 4.2-right).

Therefore, the main drawback of this approach is that the evolving model is not
capable to deal with topological changes of the moving front, and external procedures
must be added to detect and deal with merging and splittings. These methods were
developed for active contour models, namely Topological Snakes (T-snakes) in [114],
for triangulated meshes in [97], and for their dual simplex meshes in [121]. There is
no suitable difference approximation scheme for the Lagrangian implementation, due
to the time-dependent parameterization of the curve model, thus leading to stability
problems.
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Cross-over

t

t + 1

Collision

Figure 4.2. Markers methods and related problems: Left image illustrates
the markers technique. Middle image shows the cross over which occur frequently.
Right image shows problems of merging two contours.

These problems are handled very elegantly by the level set methodology, originally
introduced by Osher and Sethian in [135], and now widely used in lots of applications,
ranging from computer vision problems, to semiconductor manufacturing, shape from
shading, and robotic navigation (see [163]). They embed the initial position of the
moving interface C0(x) as the zero level set of a higher dimensional function φ (the
signed distance to C0, as shown in figure 4.3), and link the evolution of this new
function φ to the evolution of the interface itself through a time-dependent initial
value problem. At each time t, the contour C(t) is given by the zero level-set of φ.

Figure 4.3. Embedding the contour in the signed distance: In this 2D
example, the initial contour C0(x, y) is a circle, and φ(x, y, 0) = ±d(C0((x, y)).

This condition states that

φ(C(t), t) = 0⇒ φt +∇φ(C(t), t) · ∂C
∂t

= 0 (4.4)

Since ∂C
∂t = Fn and the outward normal vector is given by ∇φ

|∇φ| , this yields the

following evolution equation for φ given in [135]:
{

φt + F |∇φ| = 0
φ(x, 0) = C0(x)

(4.5)

4.3.1 Advantages of this formulation

There are several advantages associated with the Level-Sets paradigm:
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1. This formulation remains unchanged in higher dimensions, as well for 2D curves,
as for hypersurface in three dimensions (and higher). Therefore the embedded
hypersurface will be denoted Γ in the following.

2. The evolving function φ remains a functions as long as F is smooth. As a conse-
quence, topological changes in the evolving front Γ(x, t) are handled naturally,
the position of the front at time t is given by the zero level-set φ(x, t) = 0 of the
evolving function φ. Γ(x, t) can be several initial curves and it can break and
merge as t advances. A 2D examples of fronts merging is shown in figure 4.4.

Figure 4.4. Easy handling of contour merging with Level-Sets : Γ(x, y, t =
0) is the representation of the three curves. Initializing φ by the distance to these
circles, and propagating φ with a constant positive speed in the outward normal
direction, φt +β|∇φ| = 0, the three circles increase and merge. The different images
represent the zero level-set of φ at several successive iterations.

3. Intrinsic geometry properties of the front are easily determined from the front
itself, like the normal to the front ∇φ

|∇φ| , and the curvature of the front κ =

∇ · ∇φ|∇φ| .

4. The evolution equation (4.5) can be approximated by efficient computational
schemes with finite different approximation for the spatial and temporal deriva-
tives. Explicit finite difference approach is possible, and other implicit and
semi-implicit approaches have been already developed [65]

Explicit representation of the surfaces can also handle topology changes. Several
attempt to achieve this tasks were developed independently.

• McInerney and Terzopoulos [114,116] propose the “T-snakes” and “T-surfaces”
with adaptive topology; the initial model is a triangulation that evolved accord-
ing to a Lagrangian evolution equation, and the triangulation is resampled by
computing its intersection with a tetrahedral griding of the image domain. By
defining an “inside” and an “outside” region, the resampling handles topology
changes when the surface self-intersect; this ad-hoc approach is limited to closed
contours and surfaces.

• Lachaud et al. [97,98] propose a very interesting technique based on the distance
between each vertices of the triangulation. But knowing this distance between
each pair of nodes is a huge computing task;



4.3 Level-Sets Implementation of the Geodesic Active Contours 89

• Montagnat and Delingette [39, 40, 121] propose topological changes based on
the simplex mesh surface representation [37]. This method that resamples the
surface on a regular grid of the image domain works well in 2D and works with
low computation times, but no 3D extension is available for the moment.

The different methods mentioned are all proposing methods to adapt the topology
of their objects. This method has advantage of reducing the importance of the a priori
on the final shape of the target of the segmentation process. Therefore, the topology of
the model at initialization do not need to be the same than the model at convergence,
thus reducing user interaction. But these methods are based on approximations,
while the Level-Sets formalism handles naturally this problem. The Level-Sets model
is evolved, and its zero level-set can be represented at several iterations, as shown in
figure 4.4. But this implicit representation has one major drawback: it severely limits
the possible interactivity of the user on the model, as mentioned in [120]. However,
we will see in the next chapter that some basic interactions can be applied to this
formalism.

4.3.2 Different Motions of the interface

The evolution of the segmentation is performed through the evolution of φ, which is
done by a flow equation:

∂φ

∂t
+ F |∇φ| = ∂φ

∂t
+V · ∇φ = 0 (4.6)

if we consider the vector flow field V(x, t) with (x, t) ∈ Ω × [0,+∞[, which evolves
φ(·, t).

Scalar flow

Any flow of the form:
V = β(x, t)n with β(x, t) ∈ IR (4.7)

will be referred as a scalar flow. Evolution under (4.6) with positive (resp. negative)
values for β yields to a normal dilatation (resp. shrinkage) of φ(0, t). Figure 4.8
displays iterations of a front, initialized with the distance to a circle, evolving under
an inflating term. In figure 4.5, φ is evolved with β = −1 in the expression of the
scalar vector field of equation (4.7). Scalar flows lead to non-linear flow equations.

Vector Flow

Any flow of the form:
V = U(x, t) with U(x, t) ∈ IRd (4.8)

and no dependency on φ will be referred to as a vector flow, or vector flow field.
Evolution under (4.6) corresponds to passive advection of the level sets of φ(·, t).
Figure 4.6 displays iterations of a front, initialized with the distance to a circle,
evolving under the influence of an advection flow only with U(x, y, t) = u = (1, 1).
The resulting contour is implicitly moved, in the direction of the vector u. Vector
flows lead to linear flow equations.
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Figure 4.5. Inflating force: First row images are consecutive iterations of the
Level-Sets evolution under external forces only; The external forces are built using
the gradient of a left-ventricle image; Bottom row shows the zero level-set superim-
posed on the gradient magnitude at the same iterations.

Curvature motion

Any flow of the form:

V = −ε(x, t)κM (x, t)n with ε(x, t) ∈ IR (4.9)

will be referred to as a curvature flow. Evolution under equation (4.6) with positive
values for ε yields to a local regularization of φ(0, t). Negative values for ε lead
to instabilities. Figure 4.7 displays iterations of a front, initialized with the signed
distance to an initial curve, evolving under the influence of its curvature only, using
the level set equation with a speed function of the form F (κ) = −κ

φt = κ|∇φ| =
[

∇ · ∇φ|∇φ|

]

|∇φ| (4.10)

If we let the iterations proceed, the zero level-set (in black) will tend to a circle, and
shrink to a point before vanishing. Equation (4.10) applied to this image illustrates
Grayson’s theorem that all simple closed curves moving under its curvature must
shrink to a point (as shown in [70]), regardless of its initial shape. This motion
resembles a non-linear heat equation (see [163]) and smoothes large oscillations, and
can be used in curve extraction as a diffusion term, to relax boundaries. Curvature
flows lead to non-linear flow equations.

Composite flow

Any flow which is the sum of flows of the preceding types will be referred to as a
composite flow. Figure 4.8 displays iterations of a front, initialized with the distance
to a circle, evolving under the following equation:

φt + gI(1− εκ)|∇φ| − β∇P · ∇φ (4.11)
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Figure 4.6. Advection flow: the level sets are represented using a colored ladder;
the zero level-set is implicitly defined by the intersection between the levels and the
white plan at height zero.

Figure 4.7. Curvature motion: the zero level-set (in black) and all the other
levels evolve according to their curvature.

where the equation contains the following terms:

1. an inflating force, as in equation (4.7), here defined by

gI(x) =
1

1 + |∇Iσ(x)|
(4.12)

where Iσ is the image convolved with a Gaussian kernel of size σ; this inflating
force vanishes to zero in region of high gradients (i.e. near object boundaries)

2. a curvature term −gIεκ which controls the smoothness of the iso-contours of
φ(·, t), originally introduced in [112];

3. an external force, which role is to attract the surface towards the boundary of
the object of interest. This term is a vector flow which denotes a projection of
an attractive force vector on the surface normal, in our case we use a potential
field defined as in [22], by

P (x) = −|∇Iσ(x)| (4.13)
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Figure 4.8. Composite flow: First row images are consecutive iterations of the
Level-Sets evolution under the equation (4.11); the external forces are built using the
gradient of a left-ventricle image; bottom row shows the zero level-set superimposed
on the gradient magnitude at the same iterations.

4.4 Region-based forces

In this chapter we present a variational framework for the segmentation on the basis
of the geodesic contour implementation of region-based forces. This framework has
been used in the following parts of the thesis.

4.4.1 Partitioning the image domain

Region-based terms have already been included in active contour models [24, 25, 27,
148] We consider an abstract deformable model, which consists of a partition of the
image domain Ω into three subsets: two open subsets Ωin(t) and Ωout(t) (the inside
and the outside of the segmented object) and their common boundary Γ(t). Γ(t) is
supposed to be as smooth as necessary (for example we may suppose that Γ(t) is a
locally Lipschitz-continuous hypersurface). This partition is a function of an evolution
parameter t ∈ [0, +∞[ that will be called time2:

{

Ω = Ωin(t) ∪ Γ(t) ∪ Ωout(t)
Γ(t) = ∂Ωin(t) = ∂Ωout(t)

(4.14)

Figure 4.9 shows an example of 2D image, with the abstract deformable model as
we would like it to look like after segmenting the image.

2this “artificial” time has nothing to do with the notion of physical time.
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Figure 4.9. Abstract Deformable Model: left image is the 2D synthetic data;
right image is the 2D abstract deformable model.

4.4.2 Region descriptors

Region descriptors are real functions of the image intensity I, and of Ωin and Ωout.
We consider:

{

kin(x, t) = − logPin(x, t)
kout(x, t) = − logPout(x, t)

(4.15)

where Pin(x, t) (resp. Pout(x, t)) is the probability that x is in Ωin(t) (resp. Ωout(t)).

Gaussian descriptors were first introduced by Zhu and Yuille [196]. They are
“fully automatic” in the sense that no user-defined parameter is necessary to their
definition. They are based on region probabilities defined by Gaussian distributions:

Pin(x, t) =
1√

2π σin(t)
exp(− (I(x)− µin(t))

2

2σ2in(t)
) (4.16)

A similar expression is used for the definition of Pout(x, t). Here µin(t) and σ2in(t) are
respectively the mean and the variance of the image intensity over Ωin(t):

µin(t) =

∫

Ωin(t)
I(x) dx

∫

Ωin(t)
dx

, σ2in(t) =

∫

Ωin(t)
(I(x)− µin(t))

2 dx
∫

Ωin(t)
dx

This means that the histograms of the intensity in Ωin(t) and Ωout(t) are modeled by
Gaussian distributions. Those descriptors were also used extensively when Paragios
introduced the concept of Geodesic Active Regions [137], for unsupervised image
segmentation, supervised texture segmentation [139], and detection and tracking of
moving objects [138].

4.4.3 Boundary descriptors

The boundary descriptor kb, which is sometimes called edge indicator, is usually a
real function of ∇I. We took the classical expression inherited from geodesic active
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contours (see for example Caselles et al. [23] or Paragios [137]):

kb(x) =
1

1 + ‖∇I(x)‖2
γ2

where γ is a user-defined parameter.

To make this descriptor “fully automatic”, it is possible to use the mean gradient
magnitude in the entire image and set:

γ =

∫

Ω(t)
‖∇I(x)‖ dx
∫

Ω(t)
dx

.

This choice gave very good results on almost all the images we segmented.

Among other possibilities for boundary-based descriptors, we must mention the
excellent work of Xu and Prince [189–191]. The construction of a new gradient infor-
mation, using a somehow anisotropic diffusion technique to extend the local gradient
information in the whole image, has been recently used together with the Level-Sets
formalism in [140].

4.4.4 Segmentation as an optimization process

Composite energy functional

We see the process of segmentation of the image as the minimization of an energy
functional, also called objective function. We decided to use a composite energy
functional which comprises region-based and boundary-based terms. We took:

J(t) = ζ

∫

Ωin(t)

kin(x, t) dx+ ζ

∫

Ωout(t)

kout(x, t) dx+ η

∫

Γ(t)

kb(x) dσ (4.17)

where dx, dσ, ζ and η are respectively the Lebesgue measures of IRd and Γ(t), and
two user-defined positive scalar parameters.

The integrands in 4.17 are called descriptors, and contain all of the information
that is being extracted from the image. The functions kin and kout are the region
descriptors, and kb is the boundary descriptor. The punctual values of the region
descriptor kin (resp. kout) are supposed to be all the smaller as the probability to be
in the interior (resp. exterior) of the object to be segmented is high. Similarly, the
punctual values of the boundary descriptor are supposed to be all the smaller as the
probability to be near a physical contour in the image is high.

The scalar parameters ζ and η may be adjusted to give more weight to the region-
based integrals or the boundary-based integrals. The choice of ζ and η depends on
the application specificities (quality and contrast of the images, image scale3, etc.)
and of the confidence of the user in the different descriptors.

3Gaussian pre-smoothing of the image.
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Minimization of the energy functional

The evolution of the partition is totally defined by the evolution of the interface Γ
between Ωin(t) and Ωout(t). The evolution (or motion) of Γ is defined by a speed field
V(p, t), where p is the parameter corresponding to the chosen parameterization of Γ:

∂Γ(p, t)

∂t
= V(p, t). (4.18)

We recall that the evolution of a hypersurface under an intrinsic (i.e. independent
of the parameterization of the hypersurface) speed field depends only on the normal
component of the speed (see Keriven [84, p. 40]).

The minimization of J is done by a gradient descent defined by the evolution
equation (4.18). Several proofs have been proposed for the derivation of J . The most
correct approach can be found in [79]. It shows that the evolution equation (4.18)
implies that the temporal derivative of J is given by:

dJ

dt
= ζ

∫

Ωin(t)
∂kin
∂t dx+ ζ

∫

Ωout(t)
∂kout
∂t dx+

∫

Γ(t)
(ζ (kin − kout) + η (kb κM (p, t) +∇kb))(V.n) dσ

where n and κM are respectively the normal (directed from Ωin(t) to Ωin(t)) and
the mean curvature of the hypersurface Γ(t). In the case of time-independent region
descriptors, the speed that minimizes the energy functional is consequently given by:

V = ζ (kout − kin)n− η (kb κM (x, t)n+∇kb). (4.19)

The evolution equation (4.18) will be embedded into the Level-Sets formulation de-
scribed in section 4.3, and the flow (4.19) will be implemented using the different flows
detailed in section 4.3.2. Note that V is intrinsic since it depends only on intrinsic
features of Γ(t). In the case of time-dependent region descriptors, other additive terms
appear in (4.19) because of the two first terms in dJ

dt . But in the particular case of
the Gaussian descriptors defined by (4.15) and (4.16), it is relatively easy to prove4

that the two first terms in dJ
dt are null, and that the speed that minimizes J is still

given by (4.19).
The segmentation process consists in applying the evolution equation defined by

(4.18) and (4.19) to a user-defined initial condition:

(Ωin(0),Ωout(0),Γ(0)) = (Ω0in,Ω
0
out,Γ

0)

The result of the segmentation process is given by the “limit” of the triplet (Ωin,Ωout,Γ).

4.5 Segmentation with Fast-Marching algorithm

If we consider in equation (4.5) the particular case of a motion equation with a speed
function F > 0, hence the interface always moves outward. One way to characterize

4All the vector analysis theorems needed for the proof are recalled in [79].
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the position of the interface is to compute the arrival time T (x) of the interface as
it crosses each point. Embedding this hypothesis in the level-set framework, a new
equation is derived that determines the evolution of the surface T (x) given by

T (C(x, t)) = t ⇒ ∇T · Ct = 1

⇒ ∇T ·
(

F
∇T
|∇T |

)

= 1

⇒ F · |∇T | = 1 (4.20)

that can be interpreted as: the gradient of arrival time is inversely proportional to the
speed of the interface. This equation is the stationary case of the Hamilton-Jacobi
formulation for propagating fronts where the time is disappeared, and if the speed is
a function of the position of the front only, the equation reduces to what is known as
the Eikonal equation equation, extensively studied in part I.

This particular equation (4.20) has also been used for surface extraction, since
it has the same advantages as the Level-Sets formulation, detailed in section 4.3.
In [111], Malladi and Sethian use the Fast-Marching algorithm in order to give a
fast and rough initialization to a costly segmentation Level-Sets formulation. The
Level-Sets model is based upon a composite flow, as shown in equation (4.11), for the
segmentation of the cortex. The result of this segmentation was popularized by being
advertised on the front cover of the American Scientist Journal [162]. They use as a
speed function the following expression

F (x) = e−α|∇Iσ(x)|, α > 0 (4.21)

where the speed has values very close to zero near high image gradients of the
smoothed image Iσ. This expression is input in the Eikonal equation equation

|∇T (x)| = 1

F (x)
(4.22)

The Fast-Marching in three dimension (see section 2.1) is then employed to march
ahead. This helps to construct very quickly a good initial guess on the final surface.
Then they input the final function T (x) as an initial condition φ(x, t = 0) = T (x), and
iterate equation (4.11) a few time-steps with finite difference approximation schemes.

In practice the marching method is employed to march until a fixed time or until
the size of the heap does not change very much (see section 1.3.2 for details on the
heap used in the Fast-Marching algorithm) between two successive time increments.

4.6 Medical imaging applications of the Level-Sets

The Level-Sets models have already been used for a wide variety of applications,
among them stereo problem [50], image classification [152], tracking of moving objects
[78], or modeling deformations of solid objects [185] among others. But the most
important set of applications of the Level-Sets has been done in medical imaging,
where their interesting properties in handling topology changes are very useful for
segmenting the very complex anatomical shapes.



4.6 Medical imaging applications of the Level-Sets 97

4.6.1 Cortex segmentation

Since initial contributions on 3D segmentation of medical images using the Level-Sets
models by Malladi and Sethian [110, 111], the very complex shape of the cortical
surface has attracted numerous contributions, due to the interesting properties of
the Level-Sets formulation. One example of brain tissue segmentation is shown in
figure 4.10, where the algorithm used is the Fast-Marching on the basis of the work
presented in [111].

Figure 4.10. Segmentation result on the brain: On the basis of the model
defined in [111], we segment the brain complex surface with the Fast-Marching

algorithm, using a speed which is a simple distance function to an a priori mean value
inside the white matter of the brain; formally P(x) = max (I(x)− Imean, 0) + w.

In [67], authors proposed a fast implementation of the Level-Sets based on a
semi-implicit formulation of the discretized evolution equation, based on similar use
of these schemes for anisotropic diffusion filtering in [182].

An original method is presented in [7] where the authors propose to segment
brain surfaces using sequentially a registration technique, and a Level-Sets model.
However, it is not a real cooperation between both techniques, since the initialization
of any parameter of the Level-Sets are tuned on the basis of the first results obtained
through the registration process. We will see in the following that the Level-Sets
can cooperate with other fast segmentation techniques to enhance their preliminary
results.

Several works have been developed on the basis of the simultaneous segmentation
of the grey and white matter of the brain, using coupled curve evolution equations
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for segmenting both complex surfaces [193]. Main idea is to introduce a term relative
to the distance between the two surfaces [194, 195]. In [68], this method is improved
with a new scheme that computes the evolution of a new function which remains
a distance function across iterations, and leads to better measurements of the dis-
tance between the two surfaces. And in [66] authors introduced the first geometric
variational formulation for the coupled surfaces.

4.6.2 Brain Vessels

In the same region of the body, brain vessels extraction has attracted lots of attention
from the computer vision community, with developments of very interesting dedicated
Level-Sets implementations for thin tubular structure extraction.

We made a test on brain vessel extraction: the model is based on Gaussian
region descriptors, and the initialization for kin and kout has been done using a MDL
(minimum description length), with hypothesis that the image grey level information
is a mixture of two Gaussian distributions. Descriptors are shown in figure 4.12.
In figure 4.12 we show iterations of the segmentation of the brain vessels, in the
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Figure 4.11. Gaussian region descriptors for brain vessels: assuming that
the image is a mixture of two Gaussian distribution, theMDL classical computation
of mean and variances has led to a model with (µin = 211.09, σin = 119.902) and
(µout = 18.9269, σout = 18.8822).

dataset already displayed in figure 3.17, with the descriptors shown in figure 4.12.
The propagation starts from one part of the vessels and propagates in the whole set.
Computing time for extracting the complete brain vessels is more than an hour, an a
standard Sun workstation (300 MHz cpu).

In this field, Lorigo et al. [107] have developed flows using the Hessian information
[108], co-dimension 2 evolution scheme for the extraction of thin curves in 3D [106],
with application to the brain vessels. Same target was followed in [177] where the
authors use a flow based on the divergence of the gradient in the image. Both works
achieve extraction of thin curves where even Level-Sets classical formulation, as shown
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in figure 4.12, fails. However, the computing cost to achieve is too important. In
the next chapter, we will settle another framework for segmentation in interactive
computing time.

4.7 Summary

In this chapter we have explained an abstract deformable representation of the bound-
ary between two regions, as used in [196]. The formulation of the evolution of the
interface between the regions, defined with region descriptors, has been already stud-
ied for image segmentation in [137] with Level-Sets models. In the following we are
going to develop improvements of this framework, introducing user interactivity on
the interface, developments of algorithms to accelerate the speed of the computations,
using the Fast-Marching first used for segmentation in [111]. On this basis we will
show several applications of our framework.
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Figure 4.12. Extracting the brain vessels with region-based forces



Chapter 5

Several Segmentation Techniques

involving Level-Sets and

Fast-Marching

Résumé — En dépit de beaucoup d’avantages, les Level-Sets souffrent de
sérieux inconvénients quand on les comparent à des représentations explicites ou
paramétrées des surfaces actives. Dans ce chapitre, nous allons essayer de fournir
une réponse à plusieurs de ces problèmes.
En ce qui concerne le manque d’interactivité, nous montrons comment implémenter
quelques techniques d’interaction avec la surface implicite en section 5.1.
Par la suite nous présentons en section 5.2 une modification des forces de “région”
sur lesquelles nous nous appuierons dans les applications.
Le coût de la segmentation d’une surface peut parfois être exhorbitant, lorsqu’on
rajoute une dimension au problème comme c’est le cas avec les Level-Sets . Nous
allons utiliser le Fast-Marching pour fournir une initialisation rapide et précise pour
que le modèle plus complexe des Level-Sets n’ait besoin que de quelques itérations
pour converger vers une solution encore plus précise. Dans les sections 5.3 et 5.4,
nous présentons un algorithme de segmentation basé sur le Fast-Marching et la mise
en oeuvre d’un algorithme combinant nos deux méthodes en une seule.

Abstract — Despite its advantages, level-set modelization suffers from several
drawbacks compared with explicit and parametric models.
No local deformations are implemented, and in section 5.1, we introduce several
techniques to include interactivity in the traditional Level-Sets framework. We
also derive variations of the region-based forces, which will be much useful for our
segmentation applications.
A large number of computations is often needed to solve the variational equations
involved in the Level-Sets model. Using the Fast-Marching as a segmentation tool,
we are going to initialize Level-Sets with a pre-segmentation near the solution,
where only a few iterations are needed to converge to a sub-pixel accurate solution.
In section 5.3 and 5.4, we present the collaboration of Fast-Marching and Level-Sets

in a single segmentation framework.
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5.1 Interactive Segmentation with the Level-Sets

Framework

In medical imaging no automatic method is known to be generally applicable, com-
pletely reliable and robust. As a consequence, interaction is a part of many seg-
mentation procedure to be combined to the automated segmentation process. No
interactions were introduced in level-sets models, and the effect of the parameters on
the model is often non-intuitive, as shown in figure 5.1.

Figure 5.1. Failed segmentation with Level-Sets paradigm - Left image: The
gradient influence is too important, and the level-sets is attracted by any spurious
edges (vessels and arteries in the lungs); middle image: the curvature forces being
too important, the inflation force is unable to reach the edges of the left ventricle;
on the lung image the edges are now not sufficiently valued in order to stop inflation
into the liver which surrounds the lung.

5.1.1 Interactivity requirements for the level-sets paradigm

As emphasized by most of the comparative study of explicit and implicit deformable
models, and particularly in the PhD thesis of J. Montagnat [120], the formalism of
the Level-Sets implicit representation restricts severely user interactivity.

The interactive requirements, when an automatic method fails, can be classified
in different categories, like

• unseen evidence: the user perceive an edge where the automatic method does
not (when the object intensity does not fit). In this case, the method should offer
a regionally different edge defining operation or a regional parameter tuning (all
examples in figure 5.1 are cases of unseen evidence);

• absence of evidence: neither the user nor the automatic method observe an
edge. Interaction should imply a nullification of the evidence from the data in
the region;

• dislocated evidence: the automatic method has found proof of an object accord-
ing to the object model, but has confused the object with a neighboring object.
Interaction should confine the admissible contours to the indicated zone.
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The definition of the correct interactivity framework is more than a difficult task,
maybe more than the settle of an automatic method for medical imaging problems.
The tremendous work of S. Olabarriaga [133,134] on the subject settled the basis for
a general interactive segmentation framework, but solutions surely lie in dedicated
approaches to specific problems.

Simple interactions have been implemented in 2D for tests. They are based on
modifications of the data or the model, which are two cases to answer the problems
of unseen evidence and absence of evidence.

5.1.2 Fixing a point of the contour

This force will attract the zero level-set of φ to a user defined point. If we apply the
classical evolution equation (4.5) of [135], with an added external force to the point
x0:

φt + F̃ |∇φ| = φt + F |∇φ|+ Fx0
|∇φ| = 0 (5.1)

with the external force compute at each pixel x by

Fx0
(x) = d(x0;x) (5.2)

This force is applied to the nearest voxels of x0 (in a user-chosen neighborhood), on
the zero level-set. In order to compute F for an undefined number of fixed point
{x0, . . .xN} in equation (5.2), we use the Fast-Marching algorithm, detailed in chap-
ter 1, as explained in table 5.1. Figure 5.2 represents iterations of the evolution

Algorithm for Computing Interactivity Force F
at iteration i, let {x0, . . . ,xN} be the N user defined fixed points, and N action
maps U0, . . . , UN . For j ∈ [1;N ]:

• Uj(xj) = 0, and Uj(x) =∞ elsewhere;

• propagate a front by computing action map Uj with ‖∇Uj‖ = 1 using Eikonal

equation (1.6);

• stop when visiting a pixel y where φ sign changes.

The additional force F is given by F(x) = minj∈[1;N ] Uj(x) if x has been visited,

in other case F(x) = 0.

Table 5.1. Fast-Marching for Computing external forces

process with On-The-Fly user interaction of a Level-Sets initialized by the distance
to a circle, and using as evolution equation:

φt + Fx0
|∇φ| = 0 (5.3)

where F = F in equation (5.1). Several comments can be added to this algorithm:

• choosing F(x) = minj∈[1;N ] Uj(x) instead of maxj∈[1;N ](Uj(x) in table 5.1, is
just a matter of convention. The force applied is not directional, because the
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Figure 5.2. Fixing a point of the contour: these images represent the defor-
mation of the zero level-set of φ, when fixing different points of the contour. The
zero level-set extracted is represented in red, and is super-imposed to the external
force F in equation 5.2

evolution of the curve is in its normal direction and do not integrate any tan-
gential term. Therefore, the zero level-set is not attracted more or less by two
neighboring pixels, and this is just the intensity of this force that can be tuned;

• concerning the different action maps U0, . . . , UN , they can be integrated in only
one action map U , according to the previously mentioned convention. This can
greatly reduce the computing cost of N float images, for each action map. This
is easily handled by taking the minimum of the different actions, because the
Fast-Marching algorithm has been built on this minimality principle. It was the
method used in figure 5.2.

5.1.3 Re-initializing the contour

The interaction we study now is a re-initialization of the contour, on the model of
the Convolution surface developed in [14], for implicit function modeling in computer
graphics (see [13]). A convolution is a modification of a signal by a filter; here the
skeleton is the signal and the filter is a Gaussian kernel. More than a deformation
process, this is a re-initialization of the model.

Considering our function φ defined on a small narrow-band, as done by Whitaker
[184], with its Sparse-Fields method the level-set function is close to a binary image, as
shown in figure 5.3. Defining a point x0 for the interaction, we compute its distance
to the zero level-set, and its corresponding nearest point x1 on this zero level-set.
In our 2D example, the segment [x0,x1] is the skeleton that we convolved with a
Gaussian kernel. We built a function F that for any point p on the image domain
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Figure 5.3. Re-initializing the contour: The initial contour which evolves
according to an equation of the form φt + κ|∇φ| = 0 is deformed by convolution.
Different steps show the curvature motion that shrinks the obtained closed curve,
as explained in [70].

gives

F(p) = a

(
∫ x1

x0

e−‖p−u‖2/2bdu− 1/2

)

(5.4)

that can be approximated by

F(p) = a

(

∑

i

e−‖p−xi‖2/2b − 1/2

)

(5.5)

where xi are the points on the skeleton, and a, b are positive constants to control the
amplitude and sharpness of the convolved object. Then we apply F by reconstructing
the new function ϕ defined by the two regions:

• ϕ− = φ−1(IR−) ∪ F−1(IR−)

• ϕ+ = φ−1(IR+) ∩ F−1(IR+)

where

• if x ∈ ϕ−, ϕ(x) = max(φ(x),F(x));

• if x ∈ ϕ+, ϕ(x) = min(φ(x),F(x)).

Applying this method to φ, we modify the zero level-set as done in figure 5.3. This
implementation of a re-initialization is rather similar to the method proposed in [141].
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5.1.4 Conclusion on the interactivity

We have shown two possible interactivity techniques, based on a modification of the
data, and on a modification of the model, both based on computer graphics ideas.
Basically, a lot of techniques first studied for computer graphics can be applied to
the Level-Sets which basis is an implicit representation. The implicit representation
in computer graphics (see [13]) has much in common with the formalism developed
in [135]. It was even studied by Cani and Desbrun in [19] and detailed in [41], with
a Level-Sets implementation for a “skin” that contains spherical particles for the
simulation of highly deformable models. But in Computer Graphics, first matter is the
rendering of animations, and not their computing costs. Unfortunately, interactivity
requires a direct and fast output of any user interaction, which is something that is
still difficult to manage with the Level-Sets paradigm.

But the solution probably lies in the combination of two different techniques: one
for segmentation, and one for interaction. A very good example of this philosophy can
be found in [188]: the authors use circular oriented particles to sample and control
implicit surfaces. This technique is also used by Szeliski et al. [171]. The model is
a force-feedback system where particles try to match the zero level of the implicit
function, and where the surface follows particles. A simple constraint locks the set
of particles onto a surface while the particles and the surface move. The particles
use mutual repulsive forces and fissioning to sample the whole surface, and the user
interactivity can be applied locally on one particle at a time, using them as control
points for direct manipulation, as shown in figure 5.41. Finally, very interesting work

Figure 5.4. Interactivity on an implicit surface : the particles track the
implicit surface, leading to an easy visualization of its zero level-set, and at the
same time input a control on this surface, in order to modify its shape.

has been done on the construction of subjective contours in [154], where the Level-
Sets extracts contours in famous test images of Kanizsa [81] that strongly requires
image completion.

1We would like to acknowledge Andrew Witkin and Paul Heckbert, for providing this sequence
that is an illustration of their article [188].
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5.2 Region Based Forces

5.2.1 Gaussian descriptors

We recall the descriptors first introduced by Zhu and Yuille [196]. They are “fully
automatic” in the sense that no user-defined parameter is necessary to their definition.
They are based on region probabilities defined by Gaussian distributions:

Pin(x, t) =
1√

2π σin(t)
exp(− (I(x)− µin(t))

2

2σ2in(t)
)

A similar expression is used for the definition of Pout(x, t). Here µin(t) and σ2in(t) are
respectively the mean and the variance of the image intensity over Ωin(t):

µin(t) =

∫

Ωin(t)
I(x) dx

∫

Ωin(t)
dx

, σ2in(t) =

∫

Ωin(t)
(I(x)− µin(t))

2 dx
∫

Ωin(t)
dx

This means that the histograms of the intensity in Ωin(t) and Ωout(t) are modeled by
Gaussian distributions.

5.2.2 Modified Gaussian descriptors

The preceding model has one major drawback: if one of the variances is much smaller
than the other one, then undesired results can be observed. For example, if the image
is composed of a bright region with a small variance (a contrast-enhanced organ for
instance) in the middle of a dark background with a large variance, then very bright
pixels may have a greater probability to be in the background than in the bright
region. This is perfectly normal from the point of view of the Gaussian model, but it
is in contradiction with our a priori knowledge about the image informational content.
In other words, the Gaussian model may be unadapted to some images.

In such cases, we can introduce an priori knowledge by modifying the two Gaussian
distributions. If we know that the image region that we want Ωin(t) to cover is
supposed to be brighter than the one covered by Ωout(t), then we take:

Pin(x, t) =

{

1√
2π σin(t)

exp(− (I(x)−µin(t))
2

2σ2
in(t)

) if I(x) < µin(t)
1√

2π σin(t)
if I(x) > µin(t)

and:

Pout(x, t) =

{ 1√
2π σout(t)

if I(x) < µout(t)

1√
2π σout(t)

exp(− (I(x)−µout(t))
2

2σ2
out(t)

) if I(x) > µout(t)

It is also possible to manually choose the means and variances instead of comput-
ing them from the region histograms, which can be very useful in some applications
(they can be obtained through an initialization process). In this case, the region
descriptors become time-independent.
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5.2.3 Sigmoid descriptors

For the images where the modified Gaussian model failed, we used user-defined time-
independent sigmoid probabilities. We took:

Pin(x, t) =
1

1 + eain (bin−I(x))
(5.6)

with a similar expression for Pout(x, t). While Gaussian have quadratic logarithms,
sigmoid functions have asymptotic linear logarithms. For example, if ain is positive,
then:

lim
I(x)→+∞

logPin(x, t) = 0

and:
logPin(x, t) ∼I(x)→−∞ ain I(x).

Those descriptors for the aorta of figure 3.12 are shown in figure 5.5.
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Figure 5.5. Sigmoidal region-based forces: they are used for discriminating
the aorta towards the background in figure 3.12.

Figure 5.6 shows iterations of the segmentation of the aorta of figure 3.12 with
sigmoidal region descriptors of figure 5.5.

5.2.4 Numerical implementation of the level-sets paradigm

Adaptive time step

We used an Euler first-order explicit time scheme for solving (4.6). We recall that
explicit time schemes often require a limitation of the time step to be stable. Here it is
possible to control the Courant-Friedrichs-Lewy (or CFL) number2 of the discretized
flow equation, by adapting the time step between each time iteration.

2Number of cells crossed by a characteristic curve during a time step.
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Figure 5.6. Extracting the aorta with region-based forces: the initialization
is a sphere located inside the aorta object. Using the a priori distribution of the
grey levels inside the aorta and boundary based forces, we segment the aorta, as
shown on the several iterations.
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The only difficulty is related to the scheme associated with the curvature flow,
which has no obvious stability conditions. We have empirically chosen to give a
stronger penalty to its contribution to the global CFL number. Explicitly in 3D, for
a composite flow of the following form:

V = (β(x, t)− ε(x, t)κM (x, t))n+U(x, t)

we ensure that:

max
(i,j,k)

(νβijk + 3 νεijk + νUijk) 6 1

where:

νβijk = ∆t |βijk|
√

∆x−2 + ∆y−2 +∆z−2

νεijk = ∆t |εijk|
√

∆x−2 + ∆y−2 + ∆z−2

νUijk = ∆t

(

|Uxijk|
∆x

+
|Uyijk|
∆y

+
|Uzijk|
∆z

)

.

The results are very satisfying, and no numerical instability has been noticed during
the segmentation tests.

Narrow Banding

For reasons of causality, it is possible to restrain the computation domain to a band of
cells around the zero-level set of φ(·, t). The result is a decrease of the computational
cost. Several approaches have already been proposed, but we have build a new one
which is adapted to our segmentation problems.

Classical approaches are referred to as narrow-band methods (see figure 5.7).
Some are based on combinatory studies in order to add or remove cells around φ(0, t)
as it moves (see Adalsteinsson and Sethian [2]). Another approach can be found in
the thesis of Keriven [84], and consists in computing the signed distance function
to φ(0, t) when it gets too close to the boundaries of the band, and re-initializing
φ(·, t) with the computed distance function. Other authors chose to initialize φ with
a distance function and maintain ‖∇φ‖ = 1 at each iteration (see Adalsteinsson and
Sethian [3], and Gomes and Faugeras [68]).

These methods cited above are efficient, especially when the initial condition
φ(·, 0) is far from the solution. Here we propose a new specific method that is very
efficient for the segmentation of fine- to medium-size tubular structures (like arterial,
venous, or bronchial trees), or when using a rough pre-segmentation for initializing φ.

The idea is simple: we start from a distance function, either associated to a
pre-defined geometric primitive, or computed from a binary pre-segmentation by a
fast-marching algorithm (see next chapter). We define a narrow-band area and a
wide-band area around φ(0, 0) = φ0 (the wide-band is larger than narrow-band and
comprises it). The calculations are then performed in every cell of the wide-band
area. If φ(0, t) gets out of the narrow-band area (i.e. the sign of φ changes somewhere
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Figure 5.7. Narrow Band Diagram: Left image shows the overview of the
narrow-band structure, and right image shows the detail.

Figure 5.8. Narrow Band reconstruction: images are samples of the evolution
and reconstruction of the narrow-band, starting from two circles that merge.

in the outside of the narrow-band area), then both bands are locally enlarged in a
spherical manner.

As a consequence, we can add cells to the computational domain, but we never
remove cells from it. If a pre-segmentation is used, the enlargements of the bands
are few and the resulting computational cost is very small. This method has also
proved to be efficient in the case of propagation in tubular structures with diameters
comparable to the wide-band width (for example 10 times a cell diagonal).

Boundary conditions

We used so-called free boundary conditions, that is to say that we extrapolate the
values of φ(·, t) in the outside vicinity of the computation domain boundaries by taking
the closest value inside the domain, and that the corresponding finite differences are
equal to zero. Some authors use other entropic boundary conditions. The main idea
is that the information that goes out of the computation domain is lost, and that no
information should be introduced into the domain through its boundaries.

5.3 Using the Fast-Marching for segmentation

Originally introduced by Malladi and Sethian [111], the Fast-Marching can be used as
a fast initialization algorithm for image segmentation. Despite the fact that it requires
low computational cost, it has several drawbacks, in particular that the speed F in
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equation (4.20) is always positive or always negative. Therefore, the front evolves and
propagates in the whole image domain, without being stop by any edge, and it cannot
be used for cases with curvature-dependent speed functions. The stopping criterion
still relies on a user perception of the segmentation, like visual inspection of the
domain visited by the algorithm during propagation, or the choice for an appropriate
stopping time, as done in [111]. But the nice segmentation properties of the Fast-
Marching algorithm shall be taken into account, as shown in figure 4.10, where we
segment a brain on the basis of the method described in [111].

Still, the stopping criterion in this case was to visually control the segmentation
process, because the automatic detection of the crossing of the interesting edges is
difficult to implement.

Noticing that Eikonal equation is used to model the continuous formulation of the
watershed transform, we have developed an interactive segmentation tool based on
the flooding process of this morphological algorithm introduced in [180]. It is based on
the same principle that segmentation boundaries are defined by pixels where several
evolving fronts collide.

5.3.1 Comparison with the watershed algorithm

The classical morphological segmentation paradigm [156] is based on the watershed
transform [181]. The method is very simple:

• the gradient image ‖∇I‖ is computed (and enhanced);

• for each object of interest, an inside particle is detected (either interactively or
automatically);

• flooding waves are propagated from the set of markers and flood the topographic
surface ‖∇I‖.

The points where the flooding waves meet each other form the segmentation bound-
aries. Different regions between boundaries are called catchment basins. Usually
markers are the regional minima of the gradient image. An example of the watershed
transform is shown in figure 5.9. Very often, the minima are extremely numerous,
leading to an over-segmentation, therefore for practical cases, the watershed trans-
form will take as seed points a smaller set of markers, identified through pre-processing
techniques.

The flooding waves are propagated according to the topographic map ‖∇I‖, where
the pixels belonging to a catchment basin are nearer to its corresponding regional
minimum than to any other minima. In this framework, the construction of catchment
basins can be seen as a shortest path problem between a marker and the image
points. It corresponds to compute the gray-weighted distance transform (GWDT) of
the image to the set of markers. There are several ways to compute this GWDT :
as shown in [118], viewing the topographic image domain as a refractive index, as
explained in chapter 1, the distance between a marker and any point in the image is
the line integral of the penalty ‖∇I‖ along the optical path length. We reformulate
Eikonal equation 4.22 with

‖∇T (x)‖ = ‖∇I(x)‖ (5.7)
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Figure 5.9. Watershed transform of a 2D X Ray image of the heart (LV):
The seed points are regional minima of the gradient of image 5.9-left; the flooding
was implemented in the continuous framework of Eikonal equation , and the regional
minima were filtered in order to have a smaller set of markers.

and the GWDT can be computed on the whole image domain, using the markers as
sources pixels p where T (p) = 0.

Maragos has shown in [118] that the continuous segmentation approach based on
the Eikonal equation outperforms the discrete segmentation results. However several
problems remain important:

• the final segmentation relies on the number of the markers: too many markers
lead to an over segmentation of the image, and merging algorithms are needed
as post-processing;

• it relies also on the quality of the edge detector applied to the real image: if
there is a gap in the edge information, the nearest marker will flood the adjacent
region.

We have devised a very simple method based on user interactivity, and different
front speeds, based on the formulation of the flooding of the whole image. Each
front, initialized by a user-defined seed point, will propagate according to its own
propagation speed, derived from local image information (and not just gradients), and
will stop when it meet other propagating fronts. This method has been implemented
to provide a quick and dirty initialization for the Level-Sets method.

5.3.2 Interactive segmentation with the Fast-Marching

Flooding algorithm

In the following, we assume that we have an undefined number of seed points for front
propagation, that can be labeled with a known number of labels. We detail below the
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flooding algorithm for multi-label front propagation.

Definition

• a set of starting point p1, . . . ,pn, located inside the image domain;

• each starting point pi is assigned a label li i ∈ [1;n] (not necessarily different);

• a label map L, for controlling collision;

• a penalty image P which will drive the front propagation, and which is a function of
the position and the label of the front;

• We initialize the usual set of data-structures for front propagation, including an action
map A and (only) one min-heap structure H;

Initialization

• we initialize a classical front propagation method, setting A(pi) = 0 ∀i ∈ [1;n] and
storing all seed points in the min-heap structure;

• L(pi) = li, L = −1 elsewhere;

Loop: at any iteration

• Let xmin be the Trial point with the smallest action A;

• Move it from the Trial to the Alive set (i.e. Axmin is frozen);

• Update P(L(xmin))

• For each neighbor x (6-connexity in 3D) of xmin:

– If x is Far

1. add it to the Trial set;

2. L(x) = L(xmin)

3. compute A according to equation

‖∇A‖ = P (L(xmin)) (5.8)

using the up-wind discretization scheme, involving only the neighbors of x
with label L(xmin);

– If (x) is Trial

1. recompute the action A(x) with equation( 5.8), involving only the neighbors
of x with label L(xmin);

2. if the new value is smaller, then L(x) = L(xmin)

Termination

• stop when all pixels on the image domain are visited;

• the label map L represents the final segmentation into k regions Rk.

In this algorithm, we have deliberately left blank the update procedure of the
potential. Using a very simple potential based on the grey level information. Having
the n seed points p1, . . . ,pn, we can set at initialization

if L(x) = L(pi) , P(x) = max(I(x)− I(pi), 0) + w (5.9)

Then the speed is inversely proportional to the difference between the grey-level of
the starting seed point and other points in the image. Result of this strategy can
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Figure 5.10. Front competition on a 2D X Ray image of the heart (LV):
The seed points were manually located on the dataset on the left image; they are
visible as white dots on the right image.

be observed in figure 5.10 where different seed points were manually located on the
image 5.10-left, leading to the segmentation of figure 5.10-right. The resulting is not
convincing, but the use of this kind of information to differentiate the different front
speeds has a bigger potential than the classical watersheds formulation. If there is a
gap in the gradients between two basins, one of the two fronts could flood completely
into the adjacent basin with the watersheds, whereas the speed in the adjacent region
could still be discriminating the unwanted flooding, in the case of our competitive
fronts algorithm. This is mainly the difference between a difference of a plateau and a
barrier in the penalty (where plateau is a region with small variations in the intensity).

Thus, different strategies can be implemented, as many as there are different
possible potentials.

Setting the penalty information

We can devise a very simple algorithm that do not use the information coming from
the seed points, but for the m first visited voxels for each label. This reduces greatly
the influence of the user interaction in setting the markers position. Therefore for
each label,

• At iteration i in the Fast-Marching we examine the point x in the min-heap whose
action is minimal;

• We remove it from the heap and we examine its label l = L(x) and its grey level I(x);

• For the front points with label l, we know Nl the number of points considered and µl

the mean grey level value of those points;

• if Nl < m, we update this mean grey level value for the label l

µl = (Nl ∗ µl + I(x))/(Nl + 1) , Nl + + (5.10)

• considering that the image grey level of the pixel in the desired region are a random
distribution of mean µl we can also update the variance with Koenig-Huyghens formula
σ2

l [X] = µl[X
2]− µl[X]2 for the random variable X;
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• we use this new mean values µl and σl in the computations of the action at each
neighbors of x.

In figure 5.11 is shown an example of using this strategy for setting the penalty
term. The speed function in the image shown is computed with m = 10 for all

Figure 5.11. Front competition on a 2D scanner slice of the lungs: The
seed points were manually located on the dataset on the left image; they are visible
as white dots on the right image.

labels. The speed function for each label l is computed with the penalty P(x) =

e−|I(x)−µl|/2σ
2
l .

Unfortunately, this algorithmic trick makes the penalty a time-dependent func-
tion, and thus the minimality principle is violated, and Eikonal equation discretization
cannot be applied in theory during the iterations where P = P(x, t). Therefore, this
heuristic must be seen as a region growing algorithm to operate a statistical study at
the beginning of the segmentation process before visiting the whole image domain. It
can also be replaced by a similar statistical study in a sphere around the seed points.

Figure 5.12 displays the result of the same strategy on the brain dataset used for
test in figure 4.10. This result was obtained by setting different seed points in the
different objects in the brain MR image which is represented on the left column of
figure 5.12. Each one of the regions was initialized with one marker, and they are
represented when all fronts collide super-imposed on three orthogonal views of the
dataset in the left column of figure 5.12. Inconvenient of this kind of segmentation
is that it assumed that the correct number of classes is known a priori and that the
user can clearly indicate to the algorithm the location of each connected components
of this class. But target here is to provide a quick and dirty initialization to a more
complex and time consuming method (like Level-Sets ).

The same test was done on a lung image, where we try to separate the airways
from the soft tissue and vessels, in figure 5.13. Results The underlying dataset is a
volume-of-interest extracted from a multi-slice CT scanner of the lungs. The dataset,
almost isotropic, contains a huge number of pixels, and even a fast algorithm like ours
is not able to achieve this result in “interactive time”. But we have shown the ability
of this simple algorithm to achieve difficult segmentation tasks.

Further, in this algorithm, there is no need to use several data-structures (like
min-heap) to store each different front. Due to the minimality principle of the Fast-
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Figure 5.12. Front competition result on the brain: Simultaneous segmenta-
tion of the white and grey matter of the brain, plus the skull and the skin; each row
corresponds to a region, and the intersection between the regions and the datasets
is represented in pink, in the left column.

Marching construction, the point with minimum energy, independently from its label,
will still be at the root of the min-heap data-structure. And each point of the image
will be visited only one time, leading to approximately the same computing cost
than the propagation of a single front in the image domain. It seems that a similar
version of the multiple front propagation algorithm has been developed in [103, 167],
for initializing color and texture segmentation with the Level-Sets methods.
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Figure 5.13. Front competition result on the lungs: separating air and soft
tissues in a multi-slice CT dataset of the Lungs; seed points are manually located in
the different parts of the image (on in the airways, on in the tissues, and on outside
the object).

5.4 Combining Fast-Marching and Level Sets

5.4.1 Advantages and Drawbacks of Fast-Marching

The Fast-Marching algorithm is used for the computation of a minimal action map,
or weighted distance transform (from the morphological point of view).

Drawbacks : monotonicity of the speed (can only propagate in one direction), no
control of the curvature of the contour to be extracted, no stopping criterion (speed
always strictly positive/negative).

Advantages

• It is a very fast algorithm (as shown in the case of path extraction for virtual
endoscopy in chapter 3);

• it can segment objects with complex topologies (see the brain example in fig-
ure 4.10);

• it can be used with simple initialization of seed points (see the competitive front
segmentation of figure 5.12);

• There are lots of Penalty definition (depending on user’s imagination, rang-
ing from grey-levels to Hessian measures [60], and other complicated measured
obtained through filtering).

• it can be used for initialization: Figure 5.14 shows images of the conversion from
an implicit representation of the object, to an explicit model.
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Figure 5.14. Combining Fast-Marching with Explicit Methods : the first
three images are samples of the segmentation process described in section 5.3; the
right image is the conversion of the implicitly defined model into a simplex mesh.

Drawbacks

• Monotonicity of the speed (can only propagate in one direction);

• No Curvature term in the Energy of the contour to be extracted;

• No stopping criterion (Speed always strictly positive/negative).

5.4.2 Advantages and Drawbacks of Level-Sets

Level-Sets implementation allows to evolve embedded curves with wide variety of
force models, and lead to high-accuracy segmentations with sub-pixel precision. But
they often use time-consuming iterative approaches. They have always been criticized
because of their computational cost. For instance being used for the segmentation
of the cortex (see for example Zeng et al. [195]), they provide very satisfying results,
but several hours of computation are needed. Several implementations try to override
this problem.

The speed of the algorithm has been increased with the use of semi-implicit dis-
cretization schemes by Goldenberg et al. [65, 67]. This method is based on the im-
plementation of a semi-implicit discretization scheme originally applied to non-linear
diffusion filtering [182]. Only drawback is the assumption that the slope of the Level-
Sets guarantees ‖∇φ‖ = 1 across iterations, with an evolving equation based on the
formulation of [23]. This condition is not met with the Level-Sets formulation, but
another model developed in [69] overcomes this drawback.

An interesting algorithm was derived in [137]: the Hermes algorithm is based on
the idea to propagate the pixel that evolves faster at each step, thus combining the
Narrow-Band and Fast-Marching approach, with propagation over a relatively small
window. However, the proposed algorithm does not solve exactly the given partial
differential equation since the evolution is computed locally, and this acceleration step
is not valid in an homogeneous media, where the whole curve is propagating with the
same speed (as shown for a pure advection flow in figure 4.6).
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5.4.3 Combining two complementary methods

In the domain of medical image analysis, time-consuming algorithms are synonymous
with non-interactive methods, and are therefore limited to a very small number of
specific applications. In others words, the computation times of level sets are an
obstacle to a wider use of these methods. The strategy we used is an original approach
which tries to go beyond this classical barrier.

Both methods have a common advantage : they have no constraints or hypothesis
on topology, which may change during convergence.

Our segmentation strategy will consist in using Fast-Marching method as a pre-
segmentation tool, and then refine the segmentation with a level set method. This ap-
proach combines the advantages of both methods: the fast-marching pre-segmentation
is rough but quick, and the level set needs only a few iterations to produce the final,
highly accurate segmentation.

By combining fast-marching and level sets, we build a tool which is able to produce
highly accurate segmentations of topologically and geometrically complex structures
in minutes where level sets alone took hours. The framework is the following

Fast-Marching will provide a fast and rough initialization, near the solution. As a
second process it will give a statistical study of the pre-segmentation (for the level-sets
forces): looking at the local distribution of the different regions extracted with the
competitive front, we are able to give the initial values of the region descriptors. Com-
puting the mean and variance of different regions, we can skip the MDL statistical
study and assume that those values are the original first and second moments of the
Gaussian probabilities in section 5.2. And Level-Sets will start from the segmentation
step achieved by Fast-Marching . In a few iterations, they will converge with more
complex external forces, including region-based terms as in sections 4.4 and 5.2. Their
particular formulation will lead to an accurate position of the sub-pixel iso-surface,
that enhances visualization and measurements of pathologies.



Chapter 6

Applications of Fast-Marching and

Level-Sets shape extraction

framework

Résumé — Dans ce chapitre, nous avons étudié deux problèmes où la mesure et
la visualisation du résultat de la segmentation sont primordiales.
Tout d’abord, on a étudié les anévrismes du cerveau, qui sont des gonflements des
artères, qui peuvent mener à une hemorragie cérébrale et plonger le patient dans le
coma. Dans ce cas, c’est la précision et la rapidité de la segmentation qui sont des
éléments fondamentaux pour préparer une intervention chirurgicale.
Le second problème est celui des polypes du colon. Dans le cas de la colonoscopie
virtuelle de la section 3.1, l’utilisateur regarde l’intérieur du colon, et la détection des
polypes repose entièrement sur ses indications. Nous avons utilisé notre méthode
de segmentation pour automatiser et rendre robuste cette tâche de détection en
améliorant la visualisation.

Abstract — In this chapter, we have studied two different problems related to
typical pathologies, where measurements and visualization are the main objectives.
First problem is the segmentation of cerebral aneurysm which are dilation of the
brain vessels that may burst and lead to coma. Accuracy and speed of the segmen-
tation process are needed in order to prepare interventional treatment. We therefore
applied successfully our methods to segment and extract a shape representation of
cerebral aneurysms.
Second problem is the already studied colon polyps visualization. In virtual
colonoscopy, as developed in section 3.1, the user observe the interior of the colon,
and detection is based on its indications. We want to automate this task, and we
give preliminary results on an interesting visualization mode that could lead to this
target.



122 6 Applications of Fast-Marching and Level-Sets shape extraction framework

6.1 Segmentation of cerebral aneurysms

What is an aneurysm?
An aneurysm is an abnormal dilatation involving the wall of an artery, a thick-
walled blood vessels that carry blood pumped from the heart, under high pressure.
Aneurysms can develop on any artery within the body. Common arteries where
aneurysms are found include the aorta, the popliteal artery (behind the knee) and
brain arteries. We focus on the brain aneurysms (see figure 6.3-right). A brain
aneurysm begins as a small thinned area at the wall of an artery at the base of the
brain (see figure 6.1). Over time the blood flow pounds against the thinned portion

Figure 6.1. Development and rupture of a brain aneurysm: The blood flow,
represented by an arrow, stresses an area of “potential” weakness at the branching
point of an artery. Over time, this point of weakness dilates into an aneurysm. The
blood enters the aneurysm itself and finally escapes from a rupture point at the top
of the aneurysm.

of the wall, and eventually it starts to dilate, inflating like a balloon, creating the
aneurysm, and as it grows, the wall of the artery gets thinner and thinner, until it
ruptures.

What causes an aneurysm to form?
This is still an open question. Aneurysms arise at an area where the wall of an artery
is thin. Most arteries in the body have walls with three layers, and brain arteries
have segments where one of the layer is absent, which can contribute to the problem.
An aneurysm may be caused or aggravated by disease such as hypertension, because
it results in high blood pressure, or may be caused by any disease which affects the
walls of the arteries (even smoking).

What dangers do aneurysms present?
The danger from an aneurysm is that it will continue to bulge and may burst. When
an aneurysm in a large blood vessel or in the heart bursts, a person could bleed to
death. When an aneurysm bursts in the brain, a stroke (brain attack) can result.

How are cerebral aneurysms diagnosed?
Biplane angiography has become a standard imaging procedure for the treatment of
cerebral aneurysms. Recently, there has been a lot of interest in 3D visualization
of intracranial vessels in interventional neuroradiology [95]. A clinical application
of 3D-Rotational Angiography (3D-RA ) has been developed by Philips, using a
standard angiographic system, with a C-arm that performs a rotational angiographic
acquisition around the patient, and provide accurate 3D reconstruction [45]. With
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classical rendering techniques, it enables the clinician to observe for example the
relationship of a parent vessel with the neck of an aneurysm, in the brain vessels.
The availability of three-dimensional information during the intervention increase the
possibilities towards a more accurate and time efficient endovascular treatment. With
volume rendering tools, the clinician is able to see structures from any angle. But
still, it relies on threshold-based visualizations techniques.

How are cerebral aneurysms treated?
There are two ways to treat an aneurysm: First one is surgical treatment, where
the clinician places the patient under general anesthesia. A window is opened in the
skull bone of the patient head. When the aneurysm is in view, it is separated from
the surroundings structures by dissection, and a metal clip is closed across the base
of the aneurysm. Therefore blood no longer flow into the aneurysm (see figure 6.2-
middle). Second way is to do endovascular coiling: this technique consists of filling the

Figure 6.2. Treatment of a brain aneurysm: Left image shows an aneurysm
at a branch point; middle image illustrates the placement of a clip across the base
of an aneurysm correctly placed; right image illustrates the packing of the same
aneurysms with coils.

aneurysm from the inside with a long length of fine platinum wire that coils around
and around inside the aneurysm, until the blood flow stops entering the aneurysm (see
figure 6.2-right). In order to reach the aneurysm, the clinician puts a fine catheter
through the artery, and advances it into the head until it reaches the aneurysm. Then
the wire is passed up into the catheter and into the aneurysm, until it is full of wire.
This treatment has its own risks and complications, since it is still a very invasive
technique. The aneurysm can burst during the treatment. In order to perform this
examination in the best condition, the clinician needs to output from the angiography
an accurate model of the aneurysm. The surface of the object segmented can be used
to do measurements, but also flow simulations in order to determine critical points of
possible rupture.

We have applied the segmentation models used in section 5.4, in order to increase
the accuracy of the visualization of the pathologies. Increasing accuracy and speed
of the computations is important for a system in an interventional environment. The
3D shape information will enhance analysis of the structures, measure of the vascular
anatomy, and preparation of the treatment.
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6.1.1 Description of the acquisition system

The system uses a standard angiographic system that is equipped with an image in-
tensifier on a C-arm which performs a rotational angiographic acquisition over a range
of 180o (see figure 6.3-middle), scanning 100 projection images. The clinician injects

Figure 6.3. 3D Rotational Angiography (3D-RA) System: Rotating around
the patient, as shown in right image, the system acquire 100 projections along the
half circular trajectory, as shown on the middle image; right image is a threshold-
based volume rendering of a cerebral aneurysm computed from the 3D dataset re-
constructed.

contrast product in the vessel during the acquisition (300 mg/ml iodinated contrast
agent at a flow rate of 4-5 ml/s), to fill the pathology of interest during the scan.
Acquired scans are then transfered to a workstation, and are automatically corrected
for the image intensifier distortion, according to an initial performed calibration step.
The reconstruction of the rotational images into a volume is performed by a modified
version of the cone-beam algorithm of Feldkamp [51] (because of the half-circular tra-
jectory). The default reconstruction procedure, from acquisition until the 3D volume
creation takes approximately 6 minutes. And the 3D result can be viewed with a
real-time volume rendering package (see figure 6.3-right).

6.1.2 Application to the segmentation of brain aneurysms

Threshold-based volume rendering is not sufficient to correctly extract valuable in-
formation from the dataset acquired (see figure 6.4 a cerebral aneurysm data, and its
MIP projection image).

On complex objects, the topology will vary according to the selected visualization
threshold on the raw volume. Some vessels will merge, and others split. It appears
unreliable to visualize raw reconstructed volumes in terms of topology and vessel size.

We apply the competitive front method, described in section 5.3 to this kind of
dataset, in order to operate a supervised fast pre-segmentation of the dataset. Only
requirement is to set a seed region inside the object of interest, and another one in
the background. The contrast-filled object being clearly bright on the dataset, it
is not difficult at all to select a voxel vin inside the aneurysm, and another voxel
vout outside it. Using our formulation of two propagating fronts Fin and Fout with
two different initial penalty functions P0in = I(vin) and P0out = I(vout) lead to the
segmentation shown in first row of figure 6.6. When the two fronts collides at time t,
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Figure 6.4. Example of 3D-RA dataset: The left image represents three or-
thogonal views of a cerebral aneurysm acquired with the 3D-RA system; right
image is a MIP of this dataset.

the new penalty Ptin and Ptout are input in our region-based geodesic active contour
framework. Knowing the two distributions (µin, σin) and (µout, σout), and that the
aneurysms are brighter than the background, we initialize the region descriptors with
the region following region probabilities:

Pin(x, t) =

{

1√
2π σin(t)

exp(− (I(x)−µin(t))
2

2σ2
in(t)

) if I(x) < µin(t)
1√

2π σin(t)
if I(x) > µin(t)

Pout(x, t) =

{ 1√
2π σout(t)

if I(x) < µout(t)

1√
2π σout(t)

exp(− (I(x)−µout(t))
2

2σ2
out(t)

) if I(x) > µout(t)

The corresponding descriptors are shown in figure 6.5-right.
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Figure 6.5. Region descriptors for the 3D-RA image: Left image shows
the estimated Gaussian distribution of the inside and the outside of the cerebral
aneurysm segmented by Fast-Marching as shown in first raw in figure 6.4; the inside
Ã N (167, 37) and the background Ã N (60, 30).

Using the region descriptors kin and kout in the model defined in section 5.2,
we iterate 20 times from the Fast-Marching initialization, to the final segmentation,
shown in second row of figure 6.6.

The variability in positioning the initial seed voxels inside and outside the object
does not have a clear impact on the final solution, since it provides an initial guess,
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Figure 6.6. Example of brain vessels segmentation with combination of
Fast-Marching and Level-Sets: First row shows iterations of the segmentation
process described in section 5.3; second row shows iterations of the final refinement
technique described in section 5.4; parameters for inside object α = η = .8 and
ζ = 0.05.

near the final converged zero level-set, and since it is the initialization of the region-
based descriptors. The independence of the region-based level-set framework from
the initialization ensures that variability in setting the initial seeds.

The measure of the variability of the positioning of the seed point, whereas it
does not have any clear impact on the final result, should be emphasized, since it
is the initialization of the region-based descriptors. The variation in the acquisition
protocol could optimized the settings of parameters of the boundary based forces,
towards region-based forces importance.

And the setting of the seed points could be automated, since the dataset is cen-
tered in the volume of interest, and it always intersects the image borders (the inter-
section could be recognized, being the section of a circular vessel).

The same process, including supervised pre-segmentation and automatic final
segmentation was applied to a set of cerebral aneurysms see figure 6.7. The descriptors
kin and kout issued from the segmentation model of the cerebral aneurysm of figure 6.4
were used for each dataset. The boundary descriptors attracted the zero-level set
of φ and converges rapidly. Parameterization was the same for each dataset, and
stability of the protocol ensured fast convergence to the aneurysms shown in last row
of figure 6.6.

The shape extraction of the aneurysm is done in less than 2 minutes on a 300MHz
Sun Workstation. Knowing that the reconstruction procedure, from acquisition until
the 3D volume creation takes 6 minutes, the added procedure value towards its cost
is not important, especially if we consider that on a classical standard commercial
PC, this cost could be divided by two. Therefore, this procedure provides all the
anatomical information required for the entire course of endovascular treatment of
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Figure 6.7. Segmentation of five 3D-RA datasets: First column contains the
MIP images of the five data-sets; The surface rendered views show, from left to
right in each row, iterations 0, 10 and 20 of the level-set segmentation process.

cerebral aneurysms. Direct benefits for interventional neuroradiology:

1. fast and accurate analysis of the morphology of the aneurysms, including de-
termination of the size and the relationship with the parent vessel, allowing



128 6 Applications of Fast-Marching and Level-Sets shape extraction framework

selection of the appropriate stent size, catheter and guide-wire thickness, or coil
length;

2. fast and safe decision regarding the feasibility of endovascular approach.

3. to reduce radiation exposure: DSA images are still the gold standard in An-
giography during interventional treatment, but when the 3D result is available,
less 2D images need to be acquired before, during, and after the treatment;

6.1.3 Perspective

The 3D shape representation of the aneurysms creates lots of investigation fields. In
particular we could reduce (or suppress) contrast agent injection: the 3D model could
be mapped/projected on the 2D image during intervention, by registration techniques,
and used as a mask for the treatment (see figure 6.8);

Figure 6.8. Live road mapping for interventional treatment: Left image
is a 3D threshold based volume rendering; middle image is a 2D X-ray image of a
guide and a catheter; right image is the superposition of those 2 images.

Another research direction could be the road-mapping of interventional treat-
ment: the segmentation of the vessel structure enables to extract trajectories inside
the vasculature, in order to efficiently reach the aneurysm (for stent placement for
example), forecasting the future problems during intervention. Path extraction tech-
niques, studied in chapter 2, could also be useful for extracting the optimal guide
shape for an intervention: during intervention, for glue injection, the clinician in-
troduces the catheter in the aneurysm, with the help of the guide. Then when the
guide is extracted, the catheter - similar to a spaghetti - can move out the aneurysm,
or eventually break it. This dangerous step can be avoided if the catheter has been
optimally shaped using a trajectory artificially extracted in the 3D model.

Finally, the explicit surface extracted from the Level-Sets representation (with
the Marching-Cubes algorithm) is a mesh that enables modeling of the blood flow
inside the aneurysm. This model can help in preventing bursting of the aneurysms,
but could be also very useful in following-up the result of an intervention.
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6.2 Detection of Colon Polyps

This problem was already mentioned in section 3.1, concerning the path extraction
tool developed specifically for virtual endoscopy. As said, colorectal cancer represents
the third most frequently diagnosed cancer worldwide. If we consider malignant
tumor, the yearly incidence of colorectal cancer probably approaches 160,000 cases
[99]. This disease begins in the cells that line the colon, as polyps.
What is a Colon Polyp?
A polyp is a growth that occurs in the colon and other organs. These growths, or
fleshy tumors, are shaped like a mushroom or a dome-like button, and occur on the
inside lining of the colon.
What dangers do polyps present?
Colon polyps start out as benign tumors but in time may become malignant. The
larger the polyp, the more likely it is to contain cancer cells.
Why do Colon Polyps and Cancer Form?
A great deal is known about why and how polyps form. There now is strong medical
evidence that there are abnormal genes for colon polyps and cancer that can be passed
from parent to child. Diet and foods may also be very important.
How are Colon Polyps diagnosed?
Importantly, colon cancer is one of the most curable forms of cancer. When detected
early, more than 90 percent of patients can be cured. Early detection of colon polyps
and cancer is performed usually with

1. study of the patient’s medical history for identification of risk factors;

2. stool examination to detect occult blood from Colon cancers and large polyps;

3. visual examination of the lower colon using a lighted, flexible endoscope;

4. colonoscopy of the entire 5-6 foot long colon, under sedation;

5. x-ray exam (Barium Enema) which outlines the shadows of polyps and cancer;

6. virtual colonoscopy (already developed in section 3.1).

But still, even the Virtual Endoscopy relies on the user observation, for the detection,
during visualization, of possible polyp existence. We already mentioned a possible
unfolded view of the interior of the colon (see figure 3.21) that enables to see in
all directions while traveling through the colon, but inspection remains a supervised
process that rely on possible miss of hidden regions, from the camera point of view.
Last drawback of endoscopy is that it relies on the choice of an opacity threshold
input in the volume-rendering tool. The choice of this threshold critically constrain
the position of the colon surface, thus the clinical validity of the observation.

6.2.1 Segmentation of the colon surface

We propose in the following to adapt the method developed in previous chapter, and
already applied to cerebral aneurysm segmentation, to develop a initial framework of



130 6 Applications of Fast-Marching and Level-Sets shape extraction framework

semi-automatic polyp extraction. We further explore possibilities of detection with
visualization techniques, using the curvature information of the object surface.

Classical CT scanner are generally very large. Instead of treating entire images, we
used small volumes of interest which were selected by specialized physicians because
of the presence of a particular pathology.

Before acquisition, the patient goes through a particular preparation during which
the colon is emptied as much as possible. During the scan it is distended by inflating
room air. The resulting image intensity in the colon lumen is rather uniform and lower
than in the rest of the image, with a relatively good contrast. Therefore, the critical
step of the segmentation process is the variability of the topology and geometry of
the pathological structures.

Since the contrast is really important, as shown in figure 6.9-(a), it is a very easy
task to set a seed point inside the colon, and another outside. Thus, supervised seg-

a b c d

Figure 6.9. Example of polyps Segmentation: image (a) is a slice of a volume
of interest (VOI) of the 3D CT scanner of the colon studied; image (b) shows the
resulting pre-segmentation obtained with the Fast-Marching competitive version;
image (c) is the result of the region-based Level-Sets at convergence, after 20 it-
erations; image (d) is an endoluminal view of the same segmented object, which
emphasizes the polyps that grows on a fold of the colon surface.

mentation with front competition, using the Fast-Marching as detailed in section 5.3,
can be easily achieved, as shown in figure 6.9-(b). Using the descriptors output by
the pre-segmentation process, we initialize our Level-Sets with sigmoidal region-based
forces. The justification of the use of those forces is the following: Pathological cases
can arise, as shown in figure 6.10 In this application, the use of sigmoidal region-
based forces is interesting because, due to the topology of the colon, that intersects
several times the same volume of interest, it is possible to obtain disconnected parts
of the colon in the same volume. Pre-segmentation being based on the setting of
an interior seed point and an exterior seed point will lead to a binary image. This
means that portions of the colon are probably included in the background. There-
fore the statistical study of the background grey-levels will lead, with the Gaussian
descriptors, to a background that have a large variance (see figure 6.11-left), whereas
local histogram in the colon, due to the contrast, will give a small variance. Values
for the example shown in figure 6.10-a, are (µin = 40, σin = 23) for the colon, and
(µout = 620, σout = 385) for the background. Unless the user finds all disconnected
parts of the colon, it is easier to use the choice of a darker region for the colon, and a
brighter one, for the background, since evolution of the Gaussian model could lead to
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a b c d

Figure 6.10. Segmentation tests with different descriptors: image a is the
underlying dataset; image b is the initialization with the Fast-Marching algorithm;
image c is the resulting segmentation after 100 iterations of the Level-Sets sigmoid
region based forces; image d is the similar segmentation with Gaussian region based
forces.
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Figure 6.11. Region descriptors for the colon polyps: The left image repre-
sents the thresholded Gaussian descriptors for the colon polyps of figure 6.9; right
image corresponds to the sigmoid descriptors of the same dataset.

unexpected results. In figure 6.10-4, the colon surface is flattened across iterations,
because the variance of the background is higher. In figure 6.12, we display the re-
sult of the application of the same framework, using the same parameters than for
example 6.9.

6.2.2 Visualization of the colon polyps

Colon polyps appear as convex regions in the lumen surface, in intraluminal 3D views
(see segmentation results in figure 6.12). We tried to enhanced these suspect regions
using a color information on the surface.

The specific shape of the colon polyps settle the use of the curvature information,
mapped on the surface of the object, using an adequate color-map to highlight the
cups. This technique has been already used in the surface of a segmented cortex,
by Zengh et al. [195], using a measure defined originally by Koenderink et al. [94].
Using the values of φ̃, φ(·, t) at convergence, we know the expressions of the mean
curvature κM and the Gaussian curvature κG for a surface propagating in three space
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Figure 6.12. Polyps segmentation: First row: the four datasets used for seg-
mentation; second row: the respective initializations given by the Fast-Marching
competition algorithm described in section 5.3; third row: visualization after 20
iterations with region-based forces of the respective zero level-set.

dimension, in terms of the level-set function φ̃. They can be easily computed using
formulations given by Sethian [163]:

κM = ∇ · ∇φ̃
|∇φ̃|

=

{

(φ̃yy + φ̃zz)φ̃
2
x + (φ̃xx + φ̃zz)φ̃

2
y + (φ̃yy + φ̃xx)φ̃

2
z

−2φ̃xφ̃yφ̃xy − 2φ̃xφ̃zφ̃xz − 2φ̃yφ̃zφ̃yz

}
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3/2

(6.1)
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(6.2)

We can use the scalars obtained and attach them to the vertices of the triangu-
lated surface extracted by the Marching-Cubes (see figure 6.13-(b) for the surface
extracted). However those values do not give valuable visible information that dis-
criminates the structures we are looking for. We know that those convex structures
have the particularity to have high principle curvatures κ1 and κ2. Knowing that
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κM = κ1 + κ2 and κG = κ1 × κ2, we deduce immediately the value of the principle
curvatures.

We can map the maximum of κ1 and κ2 on the surface of the extracted object,
as shown in figure 6.13-(c), but it does not give a clear view of the polyps.

a b c d

Figure 6.13. Example of polyps visualization: First image: the segmentation
obtained by combining Fast-Marching and Level-Sets; second image: a zoom on a
region of the colon volume; third image: the mapping of the function of the principle
curvatures computed; fourth image: the threshold of this texture which highlights
the polyps.

Furthermore, having in mind that we are looking for regions with negative cur-
vatures, we apply the following equation

f(κ1, κ2) = min(max(κ1, κ2), 0) (6.3)

which is interpolated at the vertices of the triangulated surface as shown in figure 6.13-
(d). Only the regions where the two principle curvatures are negatives (cups) have
negative f values, others get null values.

6.2.3 Perspectives

Unfortunately, other non-pathological regions are enhanced. The last row in fig-
ure 6.14 displays the result of this curvature mapping for four different datasets.
Segmentation step was achieved using the same parameters for each datasets, and
the curvature mapping is done with the same color-map. On several datasets, this
mapping highlights other non-pathological regions: folds can be highlighted because
of the sign of their principle curvatures. However our approach might be consider as
a valuable start for the automatic detection of polyps, and currently viewed as an
assisting tool for their visualization. The polyps are emphasized, and discriminated
from the whole surface. Therefore, segmentation and visualization is achieved with a
simple and fast process, leading to a pre-detection of the polyps which can already
be used by any clinician.

In conclusion, the use of this kind of curvature filter outputs information relative
to small and spherical polyps. Those polyps can grow and develop malignant tumor
with non-smooth shapes where the curvature information is not suitable. Our tool
finds its application in the early detection of the small polyps. The high precision of
the implicit level-set representation of the surface obtained through the segmentation
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process, enables to map on the surface informations for small objects like polyps. Our
curvature measure is dedicated to this visualization.

Having in mind the settle of a non-supervised method of polyps detection, next
step is recognition: Other non-pathological objects that are pre-detected can be dis-
criminated with classification of the shapes of the connected components of the subset
of the surface which corresponds to negative values of our function in equation (6.3).
In last row of figure 6.14, we can imagine that we are able to unfold the surface
of our colon, keeping the curvature information mapped on the explicit representa-
tion extracted at convergence of φ. This technique has been developed for level-sets
techniques by Hermosillo et al. [76] using an explicit representation of the surface,
with the curvature information mapped onto, which matches the implicit represen-
tation during its deformation (in this case, the mean curvature flow to unfold the
brain surface, with a constraint on volume conservation). It was also developed in a
different manner by Bertalmio et al. [12], where the region of interest is tracked as
the intersection of two level-sets. Their application is to unfold the cortex in order
to see the cerebral activity (mapped onto the surface with a given colormap) in the
hidden sulci. Another possible technique is surface warping: using a warping based
on registration methods , we can flatten the colon underlying triangulated surface of
the zero level-set, into the plane, using a conformal mapping method, as in [73], or
another mapping which preserve areas (as done in [74]).

Another possible development is the correct choice for the image scale. The image
scale is an important parameter for the aspect of the surfaces and the regularity of
the curvatures, but of course large smoothing factors can change the topology of
the resulting segmented surfaces. The use of curvature flows seem unadapted as
well [44]. A flow based on the intrinsic Laplacian of the mean curvature (see Chopp
and Sethian [28]) might be an interesting tool to experiment in the future, but the
numerical issues related to this flow are still to be explored, and no numerical scheme
is currently available.
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Figure 6.14. Polyps Visualization: First row: the four datasets used for seg-
mentation and visualization; second row: the respective initializations given by the
Fast-Marching competition algorithm described in section 5.3; third row: visual-
ization after 20 iterations with region-based forces of the respective zero level-set;
fourth row: another point of view for visualizing the polyps; fifth row: texture
mapping with the curvature information.
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Chapter 7

Visualization and Quantification

Tools

Résumé — Dans ce chapitre, nous présentons différents outils nécessaires pour la
visualisation et la quantification de pathologies dans les objets segmentés. Comme
nous l’avons déjà fait dans le cadre d’applications comme l’extraction de surfaces
d’anévrismes dans des images 3DRA, ou bien la visualisation des polypes à la surface
du colon, dans le chapitre 6, notre outil de segmentation de surface basé sur les
ensembles de niveaux et le Fast-Marching permet d’extraire et de représenter des
objets en 3D.
En premier lieu nous parlons brièvement des problèmes soulevés par la visualisation
de surfaces implicites en 3D, et en particulier des spécificités des surfaces définies
par les Level-Sets dans la section 7.1.
En s’appuyant sur un ensemble de trajectoires qui décrivent nos surfaces - comme
le squelette dans le cas de structures arborescentes - nous développons ici des outils
de mesure et d’observation des pathologies. Notamment, nous nous intéressons à la
mesure du volume en section 7.1, et à la mesure de sections de nos objets segmentés
en section 7.2. Ces outils seront utilisés dans toute la suite de cette partie.

Abstract — In this chapter we introduce the different necessary tools for visualiza-
tion and quantification of our segmented objects. The final result of a segmentation,
given by our framework as done in chapter 6 for different applications, can lead to
visualization and measures on the global object.
We first briefly present the problems of visualization of an implicit surface in 3D, and
more precisely the specific drawbacks of the Level-Sets representation in section 7.1.
Assuming that we can extract a whole set of trajectories in a tree-shaped object, we
present the different tools that will measure the pathologies, on the basis of those
trajectories. Important measurements include: volume measurements, as explained
in section 7.1, and objects cross-section measurements, as detailed in section 7.2.
Those tools are useful for the framework developed in the following chapters.
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7.1 Visualization of 3D segmentation

In the domain of medical image analysis, the segmentation tools we developed are es-
sentially interesting when applied to 3D images. This is the reason why the implemen-
tation we build is designed for this image dimensionality, and that our visualization
efforts were mainly directed to 3D techniques.

In this section the reader will first find a short presentation of the basic notions
of virtual reality needed to understand the content of our work. They are grouped
together in the first subsection, which can be skipped by the readers who are already
familiar with them.

7.1.1 Virtual reality notions

Classically, the basic techniques for computer graphics of virtual reality rely on the
computation of renderings of virtual 3D scenes. A scene is composed of virtual actors,
lights and a camera.

What are actors ?

The term actor covers everything that might be seen when properly enlighten. For
instance, in a virtual reality model of a house, each piece of furniture would be modeled
by a specific actor, and so would be the floors, walls, stairs, etc.

Traditionally, the shape of a 3D actor is explicitly modeled by a set of graphic
primitives: points, lines and surface patches. In recent and advanced models, the
surface of an actor is sometimes modeled using implicit functions.

According to the complexity of the modelization, the rendered appearance of the
surface of an actor can depend on many and various parameters:

• the position and orientation of the camera relatively to the actor surface;

• the properties of the surface which are taken into account by the illumination
model;

• the positions, orientations, colors and attenuation factors of the lights, which
can be at finite distance (punctual lights) or infinite distance;

• the positions and orientations of the other actors which may cause occlusions,
projected shades, or even reflect light sources in advanced models.

What is an illumination model ?

The illumination model is the set of equations used to compute the color and bright-
ness of a point on the surface of an actor according to:

• the angles of incidence, intensities and colors of the incident rays of light;

• the modeled properties of the surface;

• the angle of the departing ray of light.
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The surface properties usually include colors, an opacity factor, reflectance, a
specular power parameter, etc...

In addition to the illumination model, a shading model can be used to avoid the
faceted aspect of polygonal surfaces. The most popular shading models are Gouraud
and Phong shadings, although Phong shading is rarely used because of its computa-
tional cost.

What is the exact role of the camera ?

The camera plays the same role as in the making of a movie: the rays of light which
encounter the objective determine the rendered (i.e. virtually acquired) 2D image.
The usual parameters of a camera are its position, orientation, and two of the following
parameters: view angle, focal distance and image size. The rendered 2D image is a
projection of the illuminated actors in the focal plane of the camera.

Object-based and image-based rendering

The construction of the 2D image acquired by the camera may be object-based or
image-based. In the case of object-based rendering, the actors are rendered one by
one by applying the illumination model and the projection equations to the graphic
primitives they are composed of. The occlusions are generally dealt with using a so-
called Z-buffering technique: the final image is the result of the superposition of layers
which correspond to different depths (Z-coordinate) in the scene. The points that are
the closest to the camera are visible, others are more or less occluded according to
the opacity of the points that are in front of them.

Object-based rendering is not a recent technique, but it is fast, rather simple,
and can be accelerated by specialized hardware devices. For example, OpenGL hard-
ware implementations make interactive renderings of simple scenes possible even on
a low end PC. The main drawbacks of object-based rendering are that photo-realistic
images are difficult to achieve, especially in the case of complex scenes, and that mul-
tiple reflections are usually not taken into account. Moreover the actors have to be
explicitly represented using graphic primitives.

In the case of image-based rendering (or ray-tracing) the color and brightness
of each point of the rendered image is computed by tracing a ray starting from this
point. The illumination model is invoqued when the ray hits an actor, and reflections
on several actors are even possible before reaching a light source. In the most advanced
computer graphics software products based on ray-tracing, the actors can also have
implicit representations.

The images produced by ray-tracing can be of very high quality, but the major
drawback of image-based rendering is the computation cost related to the calculation
of the rays.

7.1.2 Visualization of a level-set

Visualizing a level set is nothing more than visualizing an iso-surface in 3D, or an
iso-contour in 2D. More generally the hypersurface which needs to be visualized is
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the zero-level set of φ(·, t), where t is fixed, which is a function defined over the image
domain Ω ⊂ IR3 in our applications. In figure 7.1-left, the surface of a sphere is
implicitly defined by the signed distance to itself.

Figure 7.1. The marching cubes algorithm: Left image represents the iso-
values of the signed distance to a sphere in 3D; middle image represents the different
configuration encountered by the Marching-Cubes ; right image is a smooth surface
rendering of the triangles that approximate the implicitly defined sphere of figure 7.1-
left given by the algorithm.

The 3D visualization of the zero level-set surface by object-based rendering algo-
rithms cannot be done directly. An explicit representation of the surface by polygonal
graphic primitives has to be computed first.

Several approaches are possible for the computation of a polygonal approximation
to an iso-surface. The most popular of all is certainly the Marching-Cubes (see [104]),
which computes a triangulated surface. In each cube formed by eight contiguous voxel
centers, the values of the implicit function at the vertices of the cube are compared
to the specified iso-value. The possible configurations are classified (see figure 7.1-
middle), and a look-up table is used to quickly give a triangulated approximation of
the intersection of the iso-surface with the currently examined cube. All the cubes
are examined one by one in a raster-scan “marching” fashion, in opposition to the
algorithms which try to “track” the iso-surface.

But sometimes the Marching-Cubes algorithm generates triangle sets containing
holes, due to ambiguous cases. Many authors have proposed solutions, for example
the marching tetrahedra algorithm in [166].

However, we chose the Marching-Cubes for reasons of accuracy, reliability, and
(above all) simplicity of use since efficient implementations of it are available. It
provides an accurate triangulated surface whose precision leads to high-quality ren-
derings, like in the endoscopic images shown in figure 7.2.

7.1.3 Problem with the Marching-Cubes

A classical evolution equation defined by ∂φ
∂t+V .∇φ = 0 makes no distinction between

the level sets of φ. They are all attracted by the same asymptotic hypersurface
provided that they are sufficiently “close” to it. As a result, φ gets very steep in its
vicinity, which causes the Marching-Cubes to give poor and aliased results.

In fact, the level-sets do not remain a distance function in many cases (an ex-
ception is a constant advection flow, for example see figure 4.6). This property at
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Figure 7.2. Surface rendering in the aorta: First row shows frames of an
endoscopic movie in an aorta MR dataset. Second row is the wire-frame version of
this movie, given by the Marching-Cubes where we can see the whole anatomical
object and its several branches by transparency

initialization, is lost after several iterations. Figure 7.3 shows two examples: the first
one follows a balloon forces, which is positive inside a circle, and negative outside;
the second one is a flow composed of a positive balloon force and a boundary based
force, which stops the level sets of φ.

Figure 7.3. Loosing the distance function when converging: First row shows
consecutive iterations of the level-sets of a geodesic active contour that minimizes
the distance to a circle; second row shows consecutive iterations of the level-sets of
a geodesic active contour that inflates according to a balloon force with boundary
based forces on the same circle.

7.1.4 Restoring the distance function

In conclusion, the solution to the classical Hamilton-Jacobi evolution equation pro-
posed in [135] is not a distance function. But this property is the hypothesis of several
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numerical techniques to accelerate convergence, like the fast geodesic active contours
proposed in [65] and [67]. Moreover, the practical application of the level-set method
is plagued with such questions as: when do we have to “reinitialize” the distance
function? How do we reinitialize” the distance function. In [163], the author suggests
that when the zero-level set evolves in the vicinity of the borders of the narrow-band,
the distance to the zero-level set must be re-initialized. For the authors of [68,69], this
problem reveals a disagreement between the theory and its implementation, the au-
thors propose an alternative to the use of Hamilton-Jacobi evolution equation which
eliminates this contradiction. In order to reach this goal, they look for a function
B : IR3 × IR+ → IR such that ∂φ

∂t = B and which satisfies the two constraints

• φ is a distance function

• ∂φ
∂t = βN where β is the velocity, and N the inward unit normal.

Those constraints lead to the new relation ∇φ · ∇B = 0. This efficient method
increases the computing cost.

Following the author of [84], we include the a restoration force in the Hamilton-
Jacobi flows, which not only ensures the evolution of φ(0, t) given by equation (4.6),
but also prevents φ(·, t) from getting too steep in the vicinity of φ(0, t). This new
partial differential equation is given by:

∂φ

∂t
+ V .∇φ = µ . sgnθ(φ(x, t)) . (1− ‖∇φ‖) (7.1)

where V is the flow defined by equation (4.6) and where the modified signed function
sgnθ is defined by:

sgnθ(y) =







−1 if y < −θ
y
θ if − θ ≤ y ≤ θ
1 if θ < y

The new differential operator introduced in equation (7.1) is inspired from the
distance function restoration operator used in [170]. The modification of the sign
function avoids the apparition of oscillations during the numerical approximation of
equation (7.1), without having to introduce numerical flux or slope bounds. Oth-
erwise, as signaled in [84, page 56], these oscillations are responsible for short but
annoying displacements of the zero-level set of φ(·, t). And the author of [84] pro-
poses to use another scheme, originally presented in [159], which inflates and deflates
successively the level-set in order to extract the distance to the zero level-set, without
displacing it. We choose not to add another bunch of computations to our method,
and decide to use method of [170].

The parameter denoted by θ can be set to a fixed value (we used θ = 10 in our
experiments). The parameter µ defines the weight of the newly introduced differential
operator, and has to be adapted according to the other forces parameters. If µ is too
small, then φ(·, t) is likely to get too steep for the Marching-Cubes to give good
results. But too high values of µ will increase the global CFL number, and thus cause
the convergence of φ to be slower. In practice, it is not difficult to find a good value
for µ.

The use of this new equation (7.1) is illustrated in figure 7.4, where the flow drives
the zero level-sets to a sphere.
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Figure 7.4. Aliasing when converging: Left image is the surface extracted at
convergence when the level set matches the surface; Right image is the same result
including a force to restore the distance function.

7.1.5 Volume versus Surface Rendering

Volume rendering is an advanced image-based visualization technique based on the
integration of a transfer function along rays cast in a dense volume (i.e. a 3D image).
The transfer function is generally based on the intensity and gradient of the image,
and gives an opacity value for each voxel of the image. Surface (see figure 7.5-left)
versus Volume (see figure 7.5-right) rendering is still an open question, and the choice
between those two methods depends on the application.

Figure 7.5. Comparing surface and volume rendering in the aorta: Left
image is a surface rendered view generated with the Marching-Cubes on the final
segmentation obtained; right image is a threshold based volume rendering view at
the same location in the dataset.

With the shape extraction techniques we use, surface rendering has several ad-
vantages:

1. with the segmentation framework we have developed, the visualization of the
anatomical object with surface based rendering does not need any input, any
interaction (unless the color of the surface can be considered as an important
parameter);
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2. parameterization-free means robustness. Volume-based rendering relies on the
critical choice of a suitable transfer function. Surface-based rendering is the
direct representation of the surface extracted by the segmentation whereas the
volume-based rendering relies on the user perception of the dataset;

3. Surface rendering is fast: when the triangulation has been extracted with the
Marching-Cubes , endoscopic fly-through, like in figure 7.2 are generated in real-
time, and OpenGL hardware implementations, now available on any low end
PC, accelerate the computations. The computational cost of volume rendering
is very high, and special hardware devices that might overcome this lack of
performance are still under development.

Moreover, several artifacts may occur when using Volume Rendering on volume
data (among them, aliasing, stair-casing and slicing, see [146]).

For all those reasons, we used the surface-based rendering for visualization, as
well for inspection of results, as for endoscopic viewings. Notice that if surface-based
rendering is parameter-free, it critically relies on the result of the segmentation.

7.2 Measurement Tools

The main target of our path and shape extraction framework is to measure pathologies
in tube-shaped objects, like aneurysms in brain vessels, and polyps in the colon. We
detail in this section the different tools used for quantification of those pathologies,
that are characterized by their sections and volumes. Extracting the shapes of our
objects, with the Marching-Cubes [104], we use a consequence of the Gauss theorem,
discretized on the vertices of the triangulation obtained.

7.2.1 Gauss Theorem

As classically [9], volume and section measurements are based on Gauss theorem:

Theorem 7.1 (Gauss) Let Ω be a subset of IRd, let its boundary Σ be a closed

surface, and U a differentiable vector field, then:

∫

Ω

divU dx =

∮

Σ

U.N dσ

where N is the outward normal to Σ.

A consequence of Gauss theorem is that the volume V(Ω) of Ω can be simplified
as an integral over the boundary Γ

V(Ω) =

∫

Ω

dx =
1

3

∫

Ω

div (x) dx =
1

3

∮

Γ

x.N dσ. (7.2)
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7.2.2 Volume Measurement

We assume that a 3D tubular structure has been segmented with a level set method
and that φ(·, t) is known at convergence and denoted by φ̃. We also assume that
centered paths have been computed in the tubular structure.

The volume to be measured is defined by the user who chooses a path and specifies
two points p1 and p2 on this path. The computed volume is the volume of the interior
region of the tubular structure limited by the two plane section S1 and S2 associated
to (p1,Π1) and (p2,Π2) and defined by Si = Πi ∩ φ̃−1(IR−) i = 1, 2. Here is a
step-by-step summary of our algorithm, which is illustrated by figure 7.6.

p1
n1

p2

n2

S1

S2

PI1

PI2

Figure 7.6. Volume measurement diagram.

• we compute tangent vectors to the path at p1 and p2, which are the normal vectors
−→n1 and −→n2 to the plane sections S1 and S2;

• the equations (p1,
−→n1) and (p2,

−→n2) of the plane sections S1 and S2 are considered;

• the region of interest is actually the intersection of three subsets of IR3, which are
φ̃−1(IR−) and two half-spaces limited by the plane sections;

• we deduce the signed distance functions Ψ1 and Ψ2 to the two half-spaces Π1 and Π2

from the equations of the plane sections

• Considering that the shape of the object of interest can be complex, and lead to
problems of intersection between planes Π1 and Π2 (see figure 7.8), we define a function
Ψ the following way

1. it is initialized with Ψ(x, y, z) =
√
3, ∀(x, y, z) in the image domain;

2. starting from the path point p1 (respectively p2), we apply a region growing
algorithm, that labels only the voxels v which have |Ψ1(v)| <

√
3, (respectively

|Ψ2(v)| <
√
3) and for those voxels, we set Ψ(v) = Ψ1(v) (respectively Ψ(v) =

Ψ2(v));
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3. starting from any path point p not labeled between p1 and p2, we apply a con-
nectivity filter that visits only the voxels where φ̃(v) <

√
3 and that are not

already visited by the first connectivity filter; and for each voxel visited we set
Ψ(v) = φ̃(v); it enables to avoid including the interior of undesired parallel struc-
tures in the region of interest;

• the region of interest is equal to Ψ−1(IR−), and a polygonal approximation of its
boundary is computed by extracting the zero-level set of Ψ;

• the volume of the region of interest is computed using the following decomposition of
equation (7.2) on the polygons of the extracted surface:

V(Ψ−1(IR−)) =
1

3

∑

i

gi.Ni σ(Pi)

where gi, Ni and σ(Pi) respectively denote the center of gravity, the outward normal
and the surface of the polygon Pi.

The overall computation times are very short (less than 3 seconds for a 256 ×
256× 60 image on a SunBlade 100), and the results on basic geometric primitives are
excellent in terms of accuracy.

7.2.3 Example of volume measurement: an aneurysm

In this case, shown in figure 7.7, where the problem studied is the cerebral aneurysm
of figure 6.4, the measurement of the aneurysm volume is done using one trajectory
extracted inside a mask defined by the segmentation obtained in figure6.6. Taking two

Figure 7.7. Measuring the volume of an aneurysm: The dataset used for this
segmentation is shown in figure 6.4. Left image is the segmented object obtained in
figure 6.6 by combining Fast-Marching and Level-Sets methods; middle image shows
the multiple paths extracted; right image shows a sub-volume of the aneurysm which
has been isolated.

positions along the trajectory, we can easily define a volume of interest that contains
the aneurysm. The volume shown in figure 7.7-right is not restricted to the aneurysm
itself, and contain the surrounding vessel. But a good approximation can be given, by
subtracting an approximate vessel volume, using the surfaces of the sections S1 and
S2. Advantage of using our connectivity algorithm to obtain Ψ(IR−) instead of taking
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the region delimited by φ̃−1(IR−) and the two half space Π1 and Π2 determined by
the distance functions Ψ1, Ψ2 is illustrated by figure 7.8 on the same dataset.

Figure 7.8. Advantage of the connectivity algorithm: left image shows the
result of computing the intersection of φ̃−1(IR−), Ψ−1

1 (IR−), Ψ−1
2 (IR−). Right image

is the representation of Ψ(IR−) superimposed on the segmentation along the same
trajectory, between the same extremities.

7.2.4 Section Measurement

We can also apply equation (7.2) in 2D to evaluate the surface limited by a closed
planar curve. In order to illustrate this method, we show its application to a phantom
dataset.

The data, shown in figure 7.9-left is the acquisition of a cube of Perspex (a type
of plastic) with an aluminum rod in it, inside a dead human head. It was acquired

Figure 7.9. 3D-RA Phantom: On the left image are shown three orthogonal
views of the perspex cube acquired with a 3D-RA system; right image is a MIP
view of this data-set.

with the Philips Integris 3D-RA system. A MIP view in figure 7.9-right enables to
see the variable section of the aluminum rod.

Following the results of chapter 6, we first segment the phantom with the Fast-
Marching algorithm, starting from one point at the top of the aluminum rod. Computing
the Euclidean path length while propagating, as detailed in section 2.2.3, it is very
easy to extract the largest centered path, using the method described in section 2.3,
with the thresholded distance D̃ to the object borders. This path extracted is visible
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Figure 7.10. Segmentation result on the 3D-RA Phantom of figure 7.9:
Left image is the segmented object with the combination of Fast-Marching and
Level-Sets methods; middle image is the same object with opacity < 1. and the
path extracted; right image shows the intersection of the phantom surface with the
section plan for measurements.

in figure 7.10-middle, by transparency. In a few iterations, the Level-Sets algorithm,
with region-based forces, gives the result shown in figure 7.10-left.

In the experimental tool we built, the user specifies a particular path and obtains
the section of the tubular structure according to the length of the path. The path
is supposed to have a discrete representation, i.e. is represented by a list of points.
Here we give a summary of the performed calculations for each point of the path:

• the normal of the section plane is computed using an approximation of the
tangent vector to the path;

• an orthonormal base of the section plane is deduced;

• a rectilinear 2D grid, centered on the current path point, is defined on the
section plane;

• at the center of each cell of the grid, the value of φ̃ is computed by interpolation;

• an adequate algorithm is used (we used the Marching Squares) to compute an
approximation of the zero iso-contour in the 2D grid;

• the surface enclosed in the resulting polygonal line, which in our example is
drawn on the surface in figure 7.10-right, is computed thanks to a decomposition
of equation (7.2) on the polygonal line.

Like in the case of volume measurements, the computation times are very short,
and the algorithm gives very accurate measurements of basic geometric primitives.
Concerning the phantom problem, we have computed this section at each path point
(see figure 7.11). Figure 7.11 shows the measures done along the path displayed in
figure 7.10-right. On the graphic, we have displayed the several real dimensions of the
aluminum cylinders, and we have also displayed the interval of deviation of 2% that
was indicated by a study on the accuracy of the calibration, the distortion correction,
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Figure 7.11. Section measurements along the segmented phantom of
figure 7.10: It represents the values of the section across the trajectory extracted,
with the deviation of 2% superimposed.

and the reconstruction of the 3D-RA system [83]. The section measurements of the
segmented object show that our method gives results which lie in those intervals,
when the radius is more than one millimeter.





Chapter 8

Tree Extraction framework

Résumé — Dans la partie précédente nous avons présenté un algorithme mettant
en oeuvre une collaboration entre le Fast-Marching et les Level-Sets pour la seg-
mentation. Dans ce chapitre, nous souhaitons présenter une application de cette
collaboration spécifiquement dédiée aux structures arborescentes du type arbre vas-
culaire.
Tout d’abord nous montrons comment le Fast-Marching permet de fournir une
présegmentation rapide et précise pour les structures arborescentes dans la sec-
tion 8.3.
Nous utilisons ensuite les Level-Sets de la même manière que dans la section 5.4 de
la partie précédente.
Finalement nous montrons comment le Fast-Marching, déjà utilisé pour l’extraction
de trajectoires dans la partie I, permet aussi d’extraire plusieurs trajectoires et
de remonter à l’information d’arbre ou de squelette d’un objet tubulaire avec em-
branchements multiples.

Abstract — In the previous part I, we detailed an algorithm using Fast-Marching

and Level-Sets in a collaborative manner for object segmentation. In this chapter, we
introduce an application of this collaboration specifically adapted to tree anatomical
structures, like vascular or arterial tree. First of all, we demonstrate in section 8.3
the ability to build a fast and accurate pre-segmentation for those tree structures
using a dedicated Fast-Marching algorithm.
We further apply the Level-Sets, as in section 5.4, for converging to a more accurate
solution.
Finally, we show in section 8.4 how the Fast-Marching ability to extract trajecto-
ries, as used in part I, can be extended to the simultaneous extraction of multiple
trajectories, and to obtain the underlying tree structure of a tubular anatomical
shape with several branches.
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8.1 Introduction

In the first part of the thesis, we have implemented several techniques to extract a
trajectory inside a tubular structure. We have shown application of this fast mini-
mal path-extraction process to automatic and interactive methods to extract lineic
structures in images. In the second part of the thesis, we have combined fast and
accurate methods for shape extraction, using the same kind of grey-weighted distance
transform algorithms. We have proved the ability of those techniques to extract sur-
faces, and to emphasize pathologies, in several applications. In the last part of the
thesis, we now want to integrate the path and surface extraction algorithms, in order
to present an accurate global framework for the segmentation, the visualization, and
the quantification, of anatomical objects. In the previous chapter, we have detailed
the algorithmic techniques to obtain representations and measures of our anatomical
objects, based on extracted primitives of our objects like shapes and skeletons. In
this chapter, we will present the basic framework, and extend its possibilities to the
detection of tree-like structures, and their corresponding set of multiple trajectories,
in order to enhance measures and visualization of pathologies of any tube-shaped
object.

This chapter will be illustrated by applications of the algorithms presented on the
segmentation and quantification of vessels in contrast-enhanced 3D medical images.

8.2 Motivation

We have seen in part II a method to use front competition for image segmentation.
This process involved to visit the whole image domain, and was not tuned for a
particular category of objects. Moreover, in huge images, as multi-slice CT scanners
(see application to lungs images in chapter 9.2), the visit of the whole image cannot
be done in interactive time.

8.2.1 Tree extraction

In this chapter, we are focusing on the extraction of thin tubular structures. Our
algorithms can be dedicated to this particular category of tube-shaped objects. If the
propagation of a front could be restricted to the part of the image occupied by those
structures, the computing time could be divided by almost 5, since vessels in a typical
MR-Angiography image do not exceed 10% of the whole volume.

In chapter 2, we have developed an algorithm that can be the basis of this kind
of tubular shape extraction object: a technique to evolve a front inside an object of
interest and compute at the same time the Euclidean distance to the start point. It
was used to reduce the user interaction to locating only one extremity of the path
inside a tubular structure. This Euclidean distance can be used to stop the front
propagation inside the desired object. If we have precise knowledge of its length, we
can decide to stop when this given length has been reached in the expression of the
Euclidean path length computation, as explained in section 2.2.3. The result of this
technique is shown in figure 8.1.
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Figure 8.1. Segmenting the colon volume with simple front propagation:
as in the virtual endoscopy facility, the user locate a starting point at one particular
recognizable part of the colon, then a front is propagated from this seed point until
a maximum path length is reached. Left image represents the datasets where the
intersection with the segmented object is visible in pink. Right image is the 3D
volume rendering of the final segmentation.

However, classical segmentation problems do not provide an excellent contrast
like the air-filled colon on a CT scanner, and the propagation cannot stick to the
object walls, as it is shown in figure 3.6. For example, if we apply the same kind
of propagation in the dataset shown in figure 3.12 for the endoscopy application in
chapter 3, the corresponding wave propagation looks like figure 8.2. The front floods

Figure 8.2. Wave propagation inside the aorta MR dataset: These three
images represent different steps of the propagation inside the aorta MR dataset
using Eikonal equation equation with a potential similar to the one defined for the
endoscopy application (a simple function of the grey levels either linear or non-
linear).

outside the object and cannot be used as an initialization step for a more complex
segmentation, like the combination of the Fast-Marching and the Level-Sets which
was presented in the previous part.

In the following section, we will present a new algorithm, based on the Fast-
Marching and dedicated to a quick and dirty segmentation of the tree structures in
3D medical images.
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8.3 Design of an adequate initialization algorithm

We have shown the possibility to provide efficiently an initialization for more com-
plicated methods in the previous part of the thesis. Setting up a framework for the
visualization and the quantification of thin tubular structures, based on the same
combination of the Fast-Marching and the Level-Sets, we show in this section how
the previous initialization step, which is not tuned for this kind of thin and long
objects, can be specifically optimized for this target.

8.3.1 Propagation Freezing for Thin Structures

Freezing a voxel during front propagation is to consider that it has reached the bound-
ary of the structure. When the front propagates in a thin structure, there is only a
small part of the front, which we could call the “head” of the front, that really moves.
Most of the front is located close to the boundary of the structure and moves very
slowly. For example voxels that are close to the starting point, the “tail” of the front,
are moving very slowly. However, since the structure may be very long, in order for
the “head” voxels to reach the end of the structure, the “tail” voxels may flow out of
the boundary since their speed is always positive. This is illustrated in the example of
figure 3.12. If we apply fast marching in the dataset shown in figure 3.12-top with a
potential based on the gray level with contrast enhancement the corresponding wave
propagation looks like figure 8.2. The front floods outside the object and does not
give a good segmentation.

For these reasons, it is of no use to make some voxels participate in the computa-
tion of the arrival time in Eikonal equation by setting their speed to zero, which we
call Freezing. First step is to design the appropriate criterion for selecting voxels of
the front which needs Freezing.

Concerning the application to the tree tracking, the several improvements brought
by this method are

• to accelerate the computations, by visiting a very small number of voxels during
propagation;

• to enable the segmentation of thin tubular structures;

• therefore enabling the centering inside those tubular structures.

First step is do design the appropriate criterion for Freezing voxels of the front.
We illustrate this Freezing principle on a synthetic branching structure in 2D.

Synthetic test problem

A synthetic example of a tree structure is shown in figure 8.3. In this case, setting an
initial seed point at the hierarchy, we would like to extract in a very fast process the
multiple branches of the structures, and its corresponding skeletonization, in a single
process. Figure 8.3 shows the result of the classical front propagation technique with
the Fast-Marching coupled with a maximum Euclidean path length stopping crite-
rion. The action map displayed clearly indicates that the domain visited is a whole
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Figure 8.3. Synthetic test problem: The left image is the medium where a front
has been propagated, starting at the root of the three branches, and stopping when
a maximum distance criterion of 300, computed according to method described in
section 2.2.3, has been reached; Right image is the corresponding action map.

“blob-like” structure where the underlying tubular shape is somehow lost. Therefore,
tracking a minimal path from the regional maxima of the action map will not lead
for sure to paths that stay inside the object of interest. It emphasizes the little use
of this method, without a clear constraint on the domain of points visited.

Using Time for Freezing

The heuristic presented in this section is to discriminate the points of the front that
are spending a long time in the propagating front, i.e. points that are visited but
whose action is not frozen, in the sense defined in table 2.1.

Unfortunately, this criterion is very difficult to manage, as shown in figure 8.4.
The results are non-predictable, and this is probably because the time spent in the

Figure 8.4. Instability of the Time criterion for Freezing: Left image is the
action map obtained with a maximum time criterion of 100 iterations; Other images
are freezing maps (white pixels) with respectively from left to right 100, 80 and 60
iterations as maximum time spent in the front.

front for a voxel is related to the local cost of the propagation at this voxel, but do
not have any relation with the position of the voxel relatively to the object that we
are trying to segment.
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Using Distance for Freezing

The distance to the start point is a direct output from the method we already devel-
oped for reducing user-intervention in the Virtual Endoscopy process in sections 2.2.3
and 3.1. It seems far more “natural” to use the distance to the starting point, or
relatively to the most far propagating part of the front, since this notion is com-
pletely embedded in the topology of the object we are trying to extract: the section
of a tube-shaped objects must be small towards its extent. We must discriminate the
points of the front that are near the initializing seed points while other parts of the
front are already far. It will prevent from flooding in non-desired area of the data.

We can fix several criterion for the Freezing based on the distance. Knowing
the current maximum Euclidean path length dmax in the front propagation process
we can decide that a voxel v of the propagating front (i.e. Trial voxels) should be
removed from the front (i.e. set as Alive voxel):

• if D(v) < dmax/α, with α ≥ 1 user-defined; or

• if D(v) < max (dmax− d̃, 0), with d̃ > 0 chosen.

The results are now predictable, in the sense that the Euclidean distance to the
starting point is a measure which contains information about the geometry of the
surface extracted, and in particular its length. This is less related to the local cost of
the propagation in each voxel, and more to the position of this voxel in the object.
This distance criterion has proven reliability as well in 2D as in 3D, and we worked
upon its implementation in the following. A 2D example on the synthetic test is
shown in figure 8.5.

Figure 8.5. Using Distance for Freezing: Left and middle images are action
maps with distance criterion of respectively 100 and 50; right image is a zoom on
the freezing map for a distance criterion of 50: the pruned points are set in green.

Algorithmic implementation of the Freezing

Once the criterion has been chosen, at each time step we insert our visited points both
in the classical action related heap, and in another data-structure where the ordering
key is the criterion. As for the action, we can use a min-heap data-structure, since
the partial ordering provided is sufficient.
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At each iteration, we are able to remove all the points whose keys are greater/lower
than this criterion, starting from the minimum/maximum element in the tree. It can
be implemented easily for the time criterion by recording the iteration at which any
point has been inserted in the heap, and to store this time in another min-heap data-
structure. Therefore, the element at the top of the heap will still be the point that
has spent the longest time without being evolved to the Alive set. For the distance
criterion, the min-heap key is the computed distance, which means that the element
at the top of the heap will still be the point that is the nearer Trial point to the
starting point.

In the following is detailed an algorithmic implementation of the Freezing with
the second criterion for the distance information.

Definition

• a starting point p0, located at the root of the tree structure;

• the usual set of data-structures for front propagation, including an action map A, one
min-heap structure HA and a penalty image P which will drive the front propagation,
and which is a function of the position only;

• a distance map D to compute the Euclidean minimal path length, as explained in
section 2.2.3;

• another min-heap data structure HD, where the ordering key for any point p is the
value of D(p), which means that the first element of this heap will be the Trial point
with smallest distance D;

• several counters dmax, d̃, dstop

Initialization

• initialize the classical front propagation method, setting A(p0) = D(p0) = 0 and
storing the seed point p0 in both min-heap structures HA and HD;

• dmax = 0

• d̃ and dstop are parameters for tuning the algorithm (user defined).

Loop: at any iteration

• Let pmin be the Trial point with the smallest action A;

• proceed according to the classical Fast-Marching algorithm, by examining its neigh-
bors, and updating the min-heap HA with the new action values computed;

• take dmax = max (dmax,D(pmin));

• consider qmin, the first element of HD, being the Trial point with the smallest distance
D. While D(qmin) < max (dmax − d̃, 0) do

– set D(qmin) = A(qmin) =∞;

– set qmin in the Alive set, then qmin will not be used for computing the ac-
tion/distance at its neighbors location.

– delete qmin in both HD and HA;

• if dmax > dstop, exit the loop.
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This heuristic is to discriminate the parts of the front that are propagating slowly,
by recording the maximum distance which has been traveled, and compare it to the
distance which has been traveled by this parts. If the ratio between those two distances
is two important (> given threshold), we ”freeze” those parts by setting there speed
artificially to zero. It enables to stay inside the object when it is long and thin like
tubular structure, as shown in figure 8.5. The domain visited by our algorithm is
slightly smaller than the previous one (figure 8.4-right) and this domain shortens
with the distance criterion, when we compare left and middle images in figure 8.5.
The figure 8.5-right clearly demonstrates than the Freezing principle discriminates
the points located far from the propagating fronts.

Illustration on the Vascular tree extraction problem

The method explained previously is very useful when it is used for vascular segmen-
tation. Initialization step is therefore performed in a very fast manner by just setting
a seed point at the top of the tree hierarchy. Figure 8.6 displays results of this algo-
rithm. The distance threshold is a parameter which is not very sensitive: we generally

Figure 8.6. Using Distance for Freezing in the Aorta: From left-to-right,
images show iterations of the segmentation process; the propagating front is in red,
and the frozen voxels are in white.

take a value related to the a priori dimensions of the object. This threshold must be
more important than the assumed maximum section of the object. It will approxi-
mately represent the volume of points bounded by connected envelope of the front
voxels that are not frozen.

8.3.2 Suitable stopping criterion

Having designed an adequate criterion for Freezing the unwanted parts of the front
that could lead to “flooding” of the evolving wave in other parts of the image, we now
explain our strategy to stop automatically the propagation.

Previous strategy was to use a maximum Euclidean path length to stop propaga-
tion, like for the virtual endoscopy application. In Virtual Endoscopy , the user can
set both extremities of the trajectory, if he has an a priori knowledge of the anatom-
ical objects. Extraction of tree-like structures cannot use such an assumption: the
number of branches in our structure is undefined, only assumption being that the user
can fix a point inside the structure, at the beginning of the segmentation process.
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The Freezing process will provide a criterion which is independent of the number of
different branches to recover. If we plot the maximum distance dmax of section 8.3.1,
as a function of iterations while propagating, we will observe the following profile
shown in figure 8.7. We clearly see that this distance increases linearly until a big
decrease of the slope appears. It is important to notice that this shock indicates when

Figure 8.7. Using Distance for Stopping propagation in the Aorta: The
images of the propagating fronts of figure 8.6 are super-imposed on the evolution of
the maximum distance crossed by the front propagation across iterations; it empha-
sizes that the decrease in the slope is related to the “flooding” out the aorta.

the front flows out of the object at “heads” of the front. We decide to stop front
propagation at this particular time. During the first part of the plot, the function is
quasi-linear. The slope is directly related to the section area of the tubular object.
By definition of Fast Marching, the number of iterations is equal to the number of
voxels that are alive. It means that passing through a certain length in the aorta
implies to visit a number of voxels proportional to the length.

Let us assume that the global section of our aorta is constant in our dataset. This
is approximately true in large parts, but becomes a wrong assumption in the very thin
parts of the vessels and arteries. But we can assume that the front propagates at the
same speed inside the object. Therefore, the number of voxels visited is proportional
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to the section area. Then the slope collapse can be easily detected using a simple
threshold on the slope, depending on the object we want to extract. Even if there are
aneurysms in the data set, and even if the mean section of the object increases with
the depth, we can assume that we do not want to extract an object which is twice the
maximum section. We could then derive a criterion on the maximum section of the
object Smax which is obviously related to the section area of the object of interest.
Recording the first iteration where the front flows out, it gives us the maximum
distance where we must stop propagation.

8.4 Extracting the skeletal information

In the following, we assume that we use the Fast-Marching and the Level-Sets in a
collaborative manner, in five steps:

1. the user input is a seed point for region-growing;

2. the Fast-Marching using the Freezing principle is evolved from this starting
point;

3. this evolution is stopped using either the distance, the user intervention, or an
automatic criterion;

4. the binary mask defined by the propagation gives the initialization of the region
based descriptors kin and kout, as used in section 6.2;

5. the Level-Sets model is evolved with equation 4.6 for a small number of itera-
tions.

The process is really similar to the framework detailed in section 5.4. The Fast-
Marching using the Freezing principle will act as a rough initialization step, which will
provide the binary image of the voxels visited. This mask will also serve to initialize
the different probabilities of the region descriptors defined in section 5.2. First row in
figure 8.8 shows the surfaces of several tubular structures extracted with the Freezing
algorithm. The domain of voxels visited during this first step is used to set correctly
the descriptors of the Level-Sets model, that converges in a few iterations to the
surfaces which are shown in the second row in figure 8.8. Notice that the scheme
used here is in equation (7.1), where forces have been included to restore the distance
function.

In this chapter, we do not implement dedicated algorithms based on the Level-Sets
methods. They are used in a very classical manner, to converge to sub-pixel accuracy
results, on the basis of as-hoc fast algorithms. However, the level of accuracy that
is achieved by the Level-Sets cannot be of course outperformed by the initialization
method. The convergence step they achieved cannot be replaced in any way by the
Fast-Marching.
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Figure 8.8. Final segmentation of vascular objects: First row shows different
vascular objects that have been extracted with the Freezing algorithm - except
the example shown in last column of the right, where the method used was the
competitive fronts algorithm; Second rows is the final result of the segmentation
after 40 iterations.

8.4.1 Combining path and shape extraction

The complete framework for path and surface extraction we have developed will be
illustrated in this section by results on a 3D-RA acquisition of a stenosed vessel,
which is shown in figure 8.9.

Figure 8.9. 3D-RA dataset of an aortic stenosis: left image shows three
orthogonal views of the dataset; right image is a MIP view of the same dataset.

We have shown in the part I of the thesis how to extract a trajectory inside
a tubular structure. In part II of the thesis, we have combined fast and accurate
methods for shape extraction of tube like objects. We now want to combine the
results of both parts, and extend this facility to the detection of tree-like structures,
and their corresponding set of multiple trajectories, in order to enhance measures and
visualization of pathologies of any tube-shaped object.

We worked upon the extension of the trajectory extraction method, applied for
example to virtual endoscopy in chapter 3 to the case of multiple trajectories. For
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example, the dataset in figure 8.9-left is a structure with branches, which pathology -
a stenosis - is clearly visible on the MIP view in figure 8.9-right. The complete study
of this pathology, with minimum interactivity, would be to extract its surface, and all
needed trajectories inside it, in order to give accurate measurements.

Techniques found in the literature

The combination of path and shape representation is a framework already studied as
well in Computer Graphics as in Computer Vision. In Computer Graphics, cylindrical
shapes description is done by implicit surfaces (in the sense of [13, page 223]) defined
by the convolution of a filter kernel with a skeleton. In other words, this distance
surface is a surface that is defined by distance to some set of skeletal elements, like
any curve. But in graphics, the target is to improve visualization and interactivity
over the representation of the object. However, it connects to vision because it is
often convenient to model a shape as a generalized cylinder as done in [132], for
reconstruction of anatomical shapes, as done in [175] by combining the fitting of a
generalized cylinder, and its symmetry axis.

In those methods, the central axis constrain the extraction, and models the tube-
ness of the final object extracted.

Our multiple path extraction method

In our case, the shape is initialized by Fast-Marching, thus a path construction
method, but we are going to use the solution at convergence of the Level-Sets in
order compute the final set of trajectories - i.e. the skeletal information of our object.
Therefore, shapes controls path extraction. This is exactly the kind of methods that
lead to accurate measurements and visualization of the objects:

1. It relies on a sub-pixel shape extraction model; thus the intersection of a cross
section plan and the surface is an improved measure of the objects, while cylin-
ders approximate the model.

2. The Level-Sets enables any change in topology, and there is no constrain on
the initialization of the model, how huge can be the number of branches in the
anatomical object.

3. The paths used for quantification are based on this robust surface extraction
model, increasing the robustness of the measures.

4. The user input is limited to the setting of the root of the tree hierarchy.

Our method is based on the construction of a connectivity map, by looking at several
chosen iterations to the connectivity of the propagating front (i.e. the Alive voxels)
and the connectivity of the sets of voxels visited, as shown in figure 8.10. Defining
a distance step, each time this step has been accumulated by the front, we label the
different sets of visited voxels, and we thus detect when a front separate, at a branch,
into several not connected sets.

When the whole domain has been visited, we take for each separate set a rep-
resentative voxels, which is the most far from the starting point, and we set it as
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Figure 8.10. Multiple path extraction algorithm: From left to right, these
are connectivity tests made on the propagation of a wave inside a segmented object,
starting from the voxel designated by label 0, until the whole domain is visited.

an applicant extremity for back-tracking a trajectory. Notice that the distance step
defines the accuracy of the method, since a too important step will lead to misunder-
standings: on the right image, only the extremity designated by the label 3 will be
eligible for back-tracking, while there are two branches, because the distance step is
bigger than both branches.

Multiple Path Extraction Algorithm

The algorithm we devised for multiple path extraction is mostly inspired from works
on skeletal extraction from binary, or scattered data. It can be easily compared to
morphological processes, but has two advantages: we can choose the scale or accu-
racy of the multiple path extraction, and we can derive this scale from anatomical
knowledge of the data studied. It is a complete framework in the sense that, the path
extraction relies here on a segmentation process which can be as well handled by the
Fast-Marching or the Level-Sets methods. This segmentation step defines a binary
mask M which is one of the main input of our algorithm:

Definition

• a binary mask M which defines the region of interest in the image;

• a penalty image P which will drive the front propagation;

• a distance map D, computed with the method described in section 2.2.3, and a distance
step d, user-defined parameter that controls the accuracy of the end-point extraction;

• a counter cd that recalls the iteration number of the loop in our algorithm;

• a label map L to label each branch detected, nL a label counter, and an array E which
will recall the hierarchy of the branches detected;

• a starting point p0, located at the root of the tree hierarchy.

Initialization

• M(i, j, k) = 1 for all voxel in the region of interest, elsewhere M(i, j, k) = 0;

• L(i, j, k) = −1 for all voxel in the image domain, nL = 0, and all elements of E [i] are
set to −1;

• We initialize the usual set of data-structures for front propagation, including an action
map A, the distance map D, and a min-heap structure;

• we initialize a classical front propagation method, setting A(p0) = 0 and storing p0 in
the min-heap structure; item the counter cd = d.
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Loop

• we propagate the front with Eikonal equation, computed with penalty P on the domain
defined by the mask M;

• for each Trial point p visited in the Fast-Marching algorithm, L(p) is set to the label
of its current Alive neighbor with minimal action;

• if we visit a voxel p with D(p) ≥ cd:

1. we consider the set of Trial points T , that are all stored in the min-heap data
structure, we consider t1, . . . , tk its k subsets of connected components (with
26-connexity in 3D), obtained through a simple connectivity algorithm;

2. In all subset ti, i ∈ [1, . . . , k]

– considering the old label liold , and the new label linew , we set nL = nL + 1,
linew = nL, and E [linew ] = liold ;

– for all the points p ∈ ti, we set L(p) = linew ;

3. cd = 2× cd;

4. we stop if the whole domain defined by M is visited.

Termination

• we consider all sets Lj , j ∈ [1, . . . , nL] defined by the label map L with different labels
lj ;

• we select the subset of Lk, k ∈ [1, . . . , nL], which have E [lj ] 6= −1 and ∀n ∈ [lj ;nL]
E [n] 6= lj ;

• ∀Lk selected, we find the voxel (i, j, k) with maximum distance D(i, j, k) and set it as
end point for back propagation;

• we back-propagate from all final voxel selected and extract a set of multiple trajecto-
ries.

Figure 8.11 shows several label maps L with cd = 10, 30 and 50. cd is the minimum

Figure 8.11. Labeling algorithm for multiple path extraction: From left to
right, the images show the label map obtained with the multiple path extraction
routine applied with path steps 10, 30 and 50 respectively.

size of the branches detected, it is the scale of the algorithm accuracy. If this scale
is chosen small, lots of branches will be detected, but if the scale is increased, the
computation time will decrease as well, because it controls the number of connectivity
tests which are performed on the Trial voxels, during propagation.
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illustration on the vascular tree extraction

In figure 8.12, one can observe the complete framework of Fast-Marching initialization
followed by several iterations, using Level-Sets methods, and finally, the extraction of
multiple trajectories inside two different datasets. The computations for the paths are

Figure 8.12. Complete method applied to several objects: First row is the
framework applied to the stenosed object of figure 8.9 and second row concerns the
aneurysm shown in figure 6.4 - Left column is the initialization given by the Fast-

Marching method; middle column is the surface obtained after a small number of
iterations of the Level-Sets method; right column shows the multiple trajectories
extracted with the labeling algorithm, by transparency.

restricted to a small number of points, located inside the objects of interest (usually
less than 20% of the whole volume, leading to interactive computing times. Those
paths are already very useful for virtual inspection of pathologies, for example in the
aorta (as done in the section 3.1), or measurements along the trajectories extracted,
using the techniques detailed in section 7.2. Figure 8.13 shows the result of applying
the multiple path extraction algorithm explained previously. This set of paths is the
basis of the quantification techniques that can be applied on such a dataset (this aorta
presents an Abdominal Aortic Aneurysm).

Originality of this algorithm, towards front propagation techniques applied for
multiple path extraction, as in [101], where the set of endpoints is manually drawn in
the original image. In our case, all trajectories are extracted automatically.



170 8 Tree Extraction framework

Figure 8.13. Multiple trajectory extraction from only one seed point:
This figure represents the projection on three orthogonal views of the complete set
of trajectories tracked in the aorta MR dataset which was segmented in figure 8.8
in the second row; the Freezing method for initialization with the Fast-Marching

algorithm has been used to extract centered trajectories.

8.4.2 From Trajectories to Tree Extraction

The trajectories obtained with our algorithm can guide virtual endoscopes. They
can also be used for quantification of pathologies, by measuring the variation of the
section of the object, across the curvilinear abscissae of the path extracted. But the
information of trajectory is not related to the whole branching structure and is just
the minimal centered path between two extremities. Therefore, the user is assumed
to know the position in the object of this trajectory. And those trajectories are not
related to each other, leading to possible misunderstanding in this position. Moreover,
this absence of spatial relationship between the paths and the surface disable the
use of further developments like automatic labeling of the branches, and accurate
localization of pathologies. In order to extract the information which is relevant in
order to analyze the surface of the tree-shaped object extracted, we need to extract the
underlying skeleton on the basis of our trajectories, as done in figure 8.14. The process
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4

Figure 8.14. From trajectories to tree representation: Left image is a set
of trajectories extracted in a segmented object. right image represents the valuable
tree structure needed for quantification.
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of extracting the tree structure from the trajectories is simple: during backtracking of
the trajectories, we adjoin those which are close to each other, creating a branching
point. The only parameter is the definition of proximity between trajectories.

Algorithmic implementation

As a second process, we can extract a skeleton of our object, from this set of multiple
trajectories. The initialization use the same input than the multiple path extraction
process, including the final end points extracted.

Definition

• a binary mask M which defines the region of interest in the image;

• a penalty image P which will drive the front propagation, usually this penalty map is
computed using the centering method described in section 2.3;

• the action map U computed with this penalty during the initial multiple path extrac-
tion;

• the starting point p0, located at the root of the tree hierarchy;

• the set of end points ei i ∈ [1;Ne] where Ne is the number of end points extracted.

• a distance step d which defines the minimum distance between two trajectories (this
distance step is chosen bigger than the gradient descent step).

• another different label map L to label the voxels that are neighbors of a path, which
means that the distance between this voxel (i, j, k) and a path extracted is less than
d;

• an array E to recall the branches detected.

Initialization

• L(i, j, k) = −1 for all voxel in the image domain;

• ne = Ne and ∀i ∈ [1;ne], E [i] = 0.

Loop: for i ∈ [1;Ne]

• we back-propagate from ei, on the action map U using a simple gradient descent
method, as described in equation 2.6;

• at every path step, the position of the new path point is defined by (x, y, z) ∈ IR3

• we consider the vertices of the Cartesian grid that surround −→x = (x, y, z), the voxels
−→n = (i, j, k) ∈ IN3 which verify D2(

−→x ,−→n ) < d, where D is the Euclidean distance;

• if, for all those vertices (i, j, k) ∈ IN3, L(i, j, k) = −1, we set L(i, j, k) = i, and continue
back-tracking for ei;

• else, if one of the vertices (i, j, k) verifies L(i, j, k) 6= −1, a branching point is detected,
then:

– recall the label l = L(i, j, k);
– ne = ne + 1, ene = (i, j, k);

– E [i] = ene and E [ne] = 0;

– stop back-tracking for ei;
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– continue back-tracking, this time for ene , substituting all L(i, j, k) = l by L(i, j, k) =
ne, until another branching point or p0 are found;

• if we reach p0, then stop back-tracking for ei.

Termination

• for all end point ej j ∈ [1;ne], we can consider the couples of endpoints (ej , eE[j]) as
extremities of linear parts of the skeleton (with e0 = p0).

• the multiple paths between couples of points (ej , eE[j]) j ∈ [1;ne] build the skeleton of
our object, at scale cd and distance d.

Figure 8.15 displays the result obtained on the dataset shown in figure 8.9. From

Figure 8.15. Obtaining a tree hierarchy from a set of trajectory: Left
image is the segmented object extracted from the dataset shown in figure 8.9; middle
image is a zoom on two bifurcations of the object, where the trajectories extracted
are displayed; right image is the same point of view on the translucent surface
extracted with the tree extracted from the set of paths.

the set of multiple trajectories, branching points are extracted, as shown in figure 8.15-
right.

Measurements on the tree

The computational cost of the tree extraction finds its justification in the improve-
ment of the measurements along the new set of trajectories available. Figure 8.16
compares the section measurements with multiple path extraction technique, and tree
extraction technique (dataset shown in figure 3.12). The tree extraction, as shown
by transparency on figure 8.16-(e) enables to measure the section along the necessary
subset of the object, delimited by the the two branching point (this subset has been
colored in green on the figure). If this information is plotted across a trajectory in
the entire object, it is not useful for two reasons

• section information is not valuable at the branching points;

• the position of the part of interest cannot be obtained straightforwardly.

This problem is illustrated in the last row of figure 8.16. The plot of the object section
across the curvilinear abscissae of a trajectory is shown in figure 8.16-(g), versus the
same plot across a branch of the tree extracted in figure 8.16-(h).
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Figure 8.16. Comparing results with the multiple path extraction, and
the tree extraction: First row shows images of the segmentation process (a) plus
the multiple paths extraction, visible by transparency (b) and the region of interest
in green that isolate the aneurysm (c) along one of the trajectories; second row
shows the same images (d,e,f) using the tree structure extracted from the same seed
point; last rows shows the variation of the section along the paths that are inside
the aneurysms, for the complete trajectory (g) and for the branch (h).





Chapter 9

Application to segmentation and

visualization of tree-shaped

anatomical objects

Résumé — A partir des outils de visualisation et de mesure du chapitre 7, et
des outils d’extraction de surfaces et de sequelettes du chapitre 8, nous étudions
plusieurs cas pratiques, dédiés à des objets particuliers. Dans la section 9.2, nous ap-
pliquons notre méthode d’extraction de trajectoires et d’arbre du chapitre précédent
à l’extraction et la quantification des bronches dans les images médicales 3D de
scanners CT. Dans la section 9.3, on considère un tout autre problème: celui du
groupement perceptuel, ou la donnée est un ensemble non-structuré de régions de
l’image. Nous proposons une méthode de reconstruction de structures arborescentes
dans des images médicales tridimensionnelles.

Abstract— Using the several techniques developed in chapters 7 and 8, we develop
applications for medical problems. In section 9.2, we apply the complete multiple
paths and shape extraction framework of chapter 8 to the segmentation and quan-
tification of airways in 3D multi-slice CT scanner images. Finally, in section 9.3
we consider the problem of Perceptual Grouping and contour completion, where
the data is an unstructured set of regions in the image. We propose a new method
which is illustrated on reconstruction of tree structures in 3D angiography images.



176 9 Application to segmentation and visualization of tree structures

9.1 Application to 3D Vascular Images with Multi-

scale Vessel Enhancement

In this section, we focus on vascular tree extraction, for accurate determination of ves-
sel width (important in grading vascular pathologies, such as stenosis, or aneurysm).
We are particularly interested in using Multiscale Vessel Enhancement techniques of
Frangi et al. [60].

9.1.1 Medical relevance

All methods developed in this chapter are illustrated on the particular problem of
vascular tree extraction in 3D contrast enhanced medical images. The medical interest
of this extraction is mostly accurate determination of vessel width. It is an important
step in grading vascular pathologies, such as stenosis, or aneurysm.

Stenosis quantification

In the carotid arteries, this quantification determines the choice of stroke treatment.
Studies have revealed that patients with severe symptomatic stenosis in the carotids
should undergo surgical treatment, and support the relevance of accurate measure-
ment techniques of vascular segments.

Aneurysm quantification

For explanations on this pathology we refer to section 6.1 where they are studied in the
case of cerebral vessels. Those pathologies, which are roughly speaking “inflations”
of an artery that weak its walls, and can lead to an hemorrhage, occur for example
in the brain and, and in the abdominal aorta (see figure 3.12).

Potential: Multiscale Vessel enhancement

For the definition of the speed function for the Fast-Marching algorithm, we can use
the output of a multi-scale vessel filters based on the Hessian matrix [60, 105]. This
paragraph will be illustrated by an application on the dataset shown in figure 9.11. We
have used the measure defined by Frangi et al. [58] in the following. The symmetric
Hessian matrix H describes local second order intensity variations in the image and
is given as:

Hij =
∂2I

∂xi∂xj
, i, j = 1, . . . , n (9.1)

where I(x) is the n-dimensional image. The Hessian matrix defines an ellipsoid where
the direction of its smallest axis is the direction of minimal second derivative, that
defines the local direction of a tub-like structure. Having extracted the three eigenval-
ues of the Hessian matrix computed at scale σ, ordered |λ1| ≤ |λ2| ≤ |λ3|, we define

1We would like to acknowledge Dr Wiro Niessen, from Image Sciences Institute, University Hos-
pital Utrecht, Netherlands, who provided this image.
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Figure 9.1. Contrast (Gd-DTPA) MRA image of the aorta: Left image
shows three orthogonal views of the dataset; right image is a MIP view.

a vesselness function

ν(s) =

{

0, if λ2 ≥ 0 or λ3 ≥ 0

(1− exp −RA
2

2α2 ) exp −RB
2

2β2 (1− exp −S
2

2c2 ) else

where the ratios RA = |λ2|
|λ3| and RB = |λ1|√

|λ2λ3|
are used to distinguish between lines

and sheet-like structures and to measure deviation from blob-like structures. These
measures arise from geometric interpretation as

RA =
|λ2|
|λ3|

=
π|λ2λ3|
πλ23

=
largest cross-sectional area/π

(largest axis length/2)2

RB =
|λ1|

√

|λ2λ3|
=

(4π/3)|λ1λ2λ3|
(4π/3)((1/π).π|λ2λ3|)3/2

=
Volume/(4π/3)

largest cross-sectional area/π
3/2

and S =
√

λ1
2 + λ2

2 + λ3
2 is used to reduce influence of the noise due to intensity

variations in the background. See [60] for a detailed explanation of the settings of
each parameter in this measure.

In figure 9.2 you can observe the response of the filter, based on the Hessian
information, at three different scales: σ = 1, 2, 5. Using this information computed

Figure 9.2. Ridge detection in the aorta image From left to right, the measure
obtained at three different scales (σ = 1, 2, 5) and the maximum of the filter response
across all scales (MIP visualization of the 3D images).

at several scales, the multiscale response of the filter is the maximum of the response
of the filter across all scales, which is shown in figure 9.2-right.
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Having computed this measure, we simply use it as speed function, thus propa-
gating faster in the areas with higher filter response, taking

‖∇T (x)‖ =
1

maxσmin≤σ≤σmax
ν(σ,x) + νmin

+ w (9.2)

where σmin and σmax are the minimum and maximum scales at which relevant struc-
tures are expected to be found, νmin is just a constant which ensures that speed
remains strictly positive, and w is the usual offset term introduced in [34]. This
potential will be adapted to bright vascular structures on black background. This
potential gives more information than the simple grey level value, since the filter
response is higher in the center of the vessel.

9.1.2 Proposed solution

Initialization: Freezing method The use of the Freezing improves the resulting
segmentation: Figure 9.3 shows the difference of segmentation obtained with (right
image) and without pruning (middle image). Figure 9.3 demonstrates that the com-
bination of multi-scale vessel enhancement and freezing enhances the segmentation
ability of the Fast-Marching.

Figure 9.3. Comparing classical and freezing propagation in the Aorta:
left image shows the resulting volume obtained using the Fast-Marching with a
penalty model P(x) = max(Imean − I(x), 0) where Imean is the mean value inside
the aorta; middle image shows the result of a wave propagating in the Aorta MR
dataset with a speed based on the Hessian eigenvalues; right image shows the same
result using the Freezing approach of section 8.3.

Stopping: Freezing method This section is illustrated with figure 9.42. Once the
multiscale information is available, we can recall the same data than in the details on
the stopping criterion in the previous chapter. If we plot the maximum distance dmax
of section 8.3.1, across iterations while propagating, we will observe the following
profile shown in figure 9.5. A great advantage of this multiscale information is that

2We would like to acknowledge Dr Wiro Niessen, from Image Sciences Institute, University Hos-
pital Utrecht, Netherlands, who provided this image.
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Figure 9.4. Phantom of a stenosed carotid artery in computed tomog-
raphy angiography (CTA): This example has been chosen for illustration of
the stopping criterion, by propagating from the top of the object with a speed
F = 1 (1 + ‖∇I‖).
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Figure 9.5. Detecting when the front floods outside the object: Left image
is the plot of the maximum distance dmax across iterations; it is clearly visible that
there is is an import change in the slope of the function around a distance maximum
of 300; middle image represents the domain of voxels visited when dmax = 290, and
right image is the same for dmax = 310.

it can be used as a potential for obtaining centered trajectories, with no need to
compute the distance to the object walls.

9.1.3 Comparisons and conclusion of the tree extraction method

Other methods for skeletal representation

In [179], authors build a skeletal representation of an unorganized collection of scat-
tered data points lying on a surface. They capture branching shapes, using a distance
step similar to ours, by computing the k level-sets from the user-defined root of the
tree; and for each of those level-sets, they extract the centroids of connected compo-
nents. In our case it is not necessary to extract the centroids, because it introduces
uncertainty in the location of the branching points. With a centering penalty P, we
aggregate the paths that are under a user-chosen distance d. This method based
on the centroid extraction can be compared to the very interesting work of Angella
found in [5,6], which present a deformable and expansible tree as a skeleton extractor,
where each node of the tree is a free particle that propagate into the data, pushed by
repulsive forces coming from other particles and contours. The set of free particles
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describes the tree hierarchy. In our case, the sub-voxel precision is very important for
visualization and measurements (see sections 7.1 and 7.2), and the needed number
of particles for achieving this task would lead to huge computing times.

Very similar work can be found in [157], where the author use wavefronts to ex-
tract morphological descriptions of binary images, in particular binary tree structures.
However, bifurcations are detected on a projected image in 2D, then this information
is upgraded to 3D, but still the method is applied iteratively, looking for bifurcations
at each iteration. Our method use a scale parameter cd, as a distance step in our
wavefront, only looking for bifurcations every time the front has crossed a multiple
number of this distance. It reduces greatly computations, and can be parameterized
by the user, who can only look for branches lower than a typical value dmin which is
the upper-bound of our scale parameter.

Morphological techniques, like those in [157], are the main tool used for tree ex-
traction, and lots of techniques, like thinning algorithms are already used in medical
imaging. They start from volume images so that the traditional medial axis transform
of Blum [15] can be applied, as in [130, 143]. However, the purpose of our applica-
tion is to have a smooth set of multiple trajectories. This smoothness is needed for
accurate measurements and visualization along the trajectories. Morphological tech-
niques require post-processing in to remove undesirable small parts of the skeleton.
Smoothing and removing undesirable small parts of the skeleton is done using our
distance step and is very similar to techniques shown in [173], where the scale is also
an input in the algorithm. To conclude with the use of morphological techniques,
the skeletal description we are looking for corresponds to the needed of an accurate
basis for observation and measurements of pathologies. We thus need a smooth and
accurate information: a tree which describes the cylindrical topology of the object
observed. The variation of the section of a tubular shapes leads to error in medial
axis transforms, and to the need of post-processing techniques, to clean the skeleton
obtained, that our method does not need.

Most impressive work on vascular quantification among others can be found in
the PhD thesis of Frangi. He develop a very interesting method based on path and
shape extraction in [58]:

• The author first set the two extremities of a path on the surface obtained through
a iso-surface extraction process;

• the minimal path is extracted on the representation of the surface, using a
technique similar to [90];

• a centering force, based on multi-scale enhancement filtering (see [60]) drives
the minimal path in the center of the tube-shaped object;

• a circular cross section approximating the vessel is swept along the central vessel
axis extracted previously (swept surface), and creates a deformable cylinder;

• this cylinder initiates a tensor product B-spline surface [142], that fits the bound-
aries of the vessel.

Using both path and shapes representation in the same framework, Frangi proposes
an elegant method for quantification of vessel morphology [59].
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In order to highlight important benefits of our method, we are going to compare
our results, that are not completely dedicated to quantification of vascular diseases
in MRA images. However, our method proposes an alternative that may overcome
several drawbacks of his method.

Topology of the objects: In [57] the bifurcations in carotid arteries introduce
errors in the measurements of the stenoses; with our method, bifurcations are localized
and wrong measures near branching points can be omitted.

Branching points: We provide the measures in the whole set of branches of our
objects, setting a unique tree root seed for segmentation and path extraction. In
[57] Frangi gives the measure between the defined user end points (he gives also an
interesting study of the variability of the results across the user initialization in [57]).
In our case, only one point is needed. It enables to reconstruct the whole set of
trajectories inside the object, but it converts this information into a tree hierarchy,
where important information can be separated from the whole.

A result of this property of our method is shown in figure 9.6. In particular,
figure 9.6-(g) is the information contained in the interval [40; 60] in figure 9.6-(e). It
is the same process for figure 9.6-(h) which corresponds to the sub-plot contained in
the interval [190; 250] in figure 9.6-(e). Therefore the tree extraction enables to localize
accurately the information needed, as the stenosis extent for the case presented in the
left column of figure 9.6.

Accuracy of the model the B-spline that extracts the vessel boundaries in [58]
is an approximation of the surface, whereas the zero-level set embedded in φ̃ has
sub-pixel precision.

Conclusion on the vascular extraction method

We have finally a method which provides a sub-pixel information of the position
of the shape. Based on the paths extracted with our fast and robust algorithm, the
quantification rely on an accurate centered position of the path points. Thus measures
and visualization are enhanced (see figure 9.7).

At a matter a fact, this visualization, once paths and shapes are extracted, is
real-time, due to the fast rendering of the triangulation of our implicit model. Thus,
camera trajectory is managed via the paths extracted. A further extension of this
work could be to derive an interface to choose between each branch where to go inside
the model.
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Figure 9.6. Comparison of measurements on the tree and on a trajectory:
Two different datasets are presented, each one in a column (left column dataset
present a stenosed vessel). First row (a,b) displays segmented surfaces and extracted
trees. Second row (c,d) displays the sub-volume of interest in both cases where
sections are performed. Third row (e,f) shows plots of the section measured across
the curvilinear abscissae of a trajectory. Fourth row (g,h) displays the same result
using branches extracted between two bifurcations.
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Figure 9.7. Endoscopic view along one trajectory: The whole set of trajec-
tories is displayed (in yellow) simultaneously with the surface rendering: the user
do not miss any bifurcation since he can see any branch.

9.2 Application to the Bronchial Tree

9.2.1 Medical interest

Extraction of the bronchi and the bronchial tree

First interest of this segmentation is to provide trajectories for a virtual bronchoscopy
system, on the same basis than the virtual colonoscopy tool detailed in section 3.1.

A second important implementation possible is airway tree measurements that can
be used to detect lesions or stenoses, structural abnormalities, and to evaluate airway
reactivity to external stimuli (for example, evaluating asthma impact on the airways
diameters). One must take into account the perspective distortion inherited from the
volume rendering, for optimizing stent fitting for example, and the segmentation of
the complex bronchi can provide an accurate information.

The framework we developed for the vascular tree extraction can be transposed to
this different problem, in order to obtain both surfaces and centerlines of the airways,
in typical datasets of the lungs, like multi-slice CT scanner, where voxels are nearly
isotropic.

Role of the Virtual Bronchoscopy

The bronchoscopy technique has existed since 1897 and represents probably one of
the most frequently used invasive procedures. Even in the hands of a clinically ex-
perienced pulmonologist, there is a risk for the patient. However, the goal of virtual
bronchoscopy (see an example in [75]) is not to replace real bronchoscopy, which has
high advantage of providing a direct inspection of the natural pigmentation which
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can clearly indicate a pathology. And inability to perform biopsies gives virtual bron-
choscopy the role of a detection and much less a characterization technique.

Possible pathologies visible on the multi-slice CT scanner are for example tumors.
Malignant tumors of the lung represent the most frequent cause of cancer death in
males (35%) and female (18%). Since those tumors (benign or malignant) are only
visible on the renderings system when they imply a morphological alteration of the
bronchial wall, virtual bronchoscopy cannot contribute substantially to characteriza-
tion of tumors. Thus, evaluation of virtual bronchoscopy should be restricted to the
morphology of the bronchi and direct visualization of intraluminal masses.

However, one handicap of real endoscopy is its inability to see through the bronchial
wall, whereas all information surrounding the object is available in virtual bron-
choscopy. This handicap is very important since a clinician would like to plan a
biopsy in a location that can be accessed only from the bronchial tree. In this case,
the virtual bronchoscopy enables to determine in advance the optimal access point
for the biopsy procedure.

A further indication for this process is the rare case when the real inspection
is contraindicated, as in the presence of a strong stenosis of a branch, or as in the
presence of an infiltration due to an extensive tumor manifestation, or in the case of
an application in pediatrics, where the necessary sedation can be contraindicated.

Last important improvement brought by the virtual procedure is its clinician
teaching device aspect [18, 125]: it can contribute th education and qualification of
operating personnel (which benefits the patient by the way).

9.2.2 State of the art in Bronchoscopy imaging

Acquisition techniques

Computed Tomography represents the standard examination technique of the thoracic
area, because a natural contrast exists between air and soft tissues, explaining why
the trachea and the bronchial tree are perfectly suited for the generation of a virtual
bronchoscopy. Three different types of CT data can be used:

1. Incremental CT: a slice is imaged in the axial orientation, after which the patient
is shifted to the next position in order to image the next slice. 3D reconstruction
(and hereafter renderings) can be calculated from incremental data only when
the patient lies so still than no motion occurs during the whole examination.
These data are of little use for virtual bronchoscopy;

2. Spiral CT: superior to incremental CT, the patient is shifted during the rotation
of the tube-detector system. It enables to acquire large anatomical regions, like
Thorax, in a single breath-hold. But still, the z-axis resolution is considerably
worse than the in-plane resolution, and is a limiting factor for small bronchi.

3. Multi-slice CT: common systems image four slices at a time. This results in
very low total acquisition time, but can also result in isotropic volume elements
(voxels) in the final 3D dataset. Figure 9.8 displays a volume of interest of a
classical multi-slice CT scanner of the lungs.
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Figure 9.8. 3D Multi-Slice CT scanner of the Lungs: this is an isotropic
volume of interest about 287× 150× 249 voxels.

Multi-slice CT is the ideal imaging modality for obtaining virtual bronchoscopic
renderings of the smaller bronchi, since structures with diameter of 2mm should be-
come clearly visible. However, the huge number of voxels can create a problem, as it
overload the storage capacity of common workstations. Processing time in algorithms
can also become so long than clinical application may not be realistic.

Segmentation techniques

They can be divided in three categories:

1. 2D methods: they can be completely manual, where the contours of the airway
lumen is delineated manually in each axial images, but they strongly depend on
the interobserver variability, and the loss of precision of the 2D segmentation
towards the 3D information. They can also be semi-automatic, starting from
an initial set of contours manually drawn, which is corrected and smoothed
with detection algorithms, or by flooding gradient maps with region-growing in
2D [144]. However, those 2D methods work on the information contained in the
cross-sections of the bronchi contains on not on the whole 3D data.

2. 3D methods: there is of course the usual set of 3D rendering techniques (MPR
, MIP , volume or surface renderings). Other more elaborated methods are
based on 3D region-growing algorithms. Mori et al. [124] detect an optimal
threshold value in order to extract the airways, and once this segmentation is
done, thin the airways to obtain the tree which is input in a recognition process
for automatic labeling [123]. Those methods suffer from limitations due to the
use of a threshold, and problems of accuracy for the small bronchi, since they
provide a binary image as segmentation.

3. 2D to 3D methods: the principle is to segment the airways in each axial slice,
and to reconstruct the 3D segmentation by combining the 2D segmentations,
doing 3D/3D post-processing. Several techniques are based on the detection of
the airways location in 2D [169]. But how important is the enhancement of the
post-processing, the result depends on the 2D initialization, there is no pure 3D
information involved in the detection. However, important improvements have
been done in the field by Fetita [52], as well in 2D/3D as in pure 3D.
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We have worked upon the use of our method involving both Fast-Marching and
Level-Sets methods to extract the airways, and the airway tree. We encountered
several problems due to the specificity of the bronchi in CT, during the initialization
step. All tests are detailed in the following.

9.2.3 Applying our framework

Initialization: Region growing

Several problems exist with the use of the Fast-Marching algorithm as a region grow-
ing method for airway segmentation. Since it relies on the edge strength of the airway
walls that weak at several places, the propagating front leaks out into the surround-
ing parenchyma. We have already seen that the Fast-Marching can flood into the
surrounding pixels of the tubular structures, and we have built a method based on
Freezing pixels (see section 8.3.1) in order to avoid leakage. This method was suc-
cessfully applied for vascular tree extraction in chapter 8, using as speed function a
multiscale filtering technique derived from work in [60]. But in the case of the lungs
airway, the grey level information is very different, as shown in figure 9.9. In fig-
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Figure 9.9. Profile of the airway grey level: Left image is a zoom on a 2D axial
slice of the multi-slice reformat image of the lungs, we can distinguish the lumen
in the black circle areas surrounded by the airway walls in bright intensities; right
image is an illustration of the profile of the grey level intensity, along a line crossing
through an airway center.

ure 9.9-right, we observe that the minima occur near the center of the airways and
the maxima occur near the middle of the walls. But this information is relatively
poor, and partial volume effects can occur: as the diameter of the airways decreases,
partial volume averaging begins to increase the value within the lumen, and the Fast-
Marching will flood the parenchyma at a weak wall, as shown in figure 9.10. The
Fast-Marching algorithm is applied in this case with a potential based on the grey
level information. Using P(x) = max (I(x)− Iairways, 0) +w, with Iairways being an
approximate value corresponding to air, cannot provide a result where the propaga-
tion critically depends on the weakness of the edges. Using the grey level information
for the lungs is similar to using the gradient in the vascular contrast enhanced medical
images: it is not valuable. The profile of the airway in figure 9.9-right is somehow
similar to a “Mexican hat”, but the Hessian information given by a measure based on
its eigenvalues will detect the inner and outer walls of the airways, and will not give
a high response in the lumen. Since then, this problem defines the limits of the use of
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Figure 9.10. Flooding of the Fast-Marching in the parenchyma: the images
are samples of the front propagation process in the lungs airways, with the Freezing

methodology; the frozen pixels are represented in blue whereas the propagating
parts are in white.

the Fast-Marching in pre-segmentation, as well as with the use of a more complicated
heuristic such as the Freezing algorithm.

However, there are other ways to create a pre-segmentation which can be input
in a Level-Sets model. Among others, we decided to use methods developed by Mori
et al. in [124]. The principle of this initialization is based on the reason of the failure
of the Fast-Marching method: it focuses on the detection of the flooding inside the
parenchyma. It extracts the inside of the area of the bronchus by tracing voxels with
relatively small CT values corresponding to air without processing across voxels with
relatively large CT values, assuming that the airway area is simply connected.

The method is a simple region-growing in the 3D image, starting from a point
inside the trachea. This point, which will be the root of the final tree hierarchy can
be easily detected in the 3D dataset, as shown in figure 9.8

The algorithm is the following:
Definition

• a start point x0: the region growing needs a seed point for starting. In order to set
a protocol of segmentation, the start point needs to be always initialized in the same
region, inside the trachea, before the first bifurcation in the tracheobronchial tree.
Luckily enough, the trachea can be recognized stably in the multi-slice CT dataset.
Moreover this seed point will be the root of the tree hierarchy extracted at the end of
the whole process, which enables to reduce user interaction to the setting of the seed
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point only.

• an initial threshold value I0, a threshold value Ithreshold with a threshold step dI, for
the original volume image I

• a segmentation defined by a binary maskM whereM(x) = 0 if x is inside the object,
and M(x) = −1 elsewhere.

Initialization

• Ithreshold = I0;

• M(x0) = 0 and M(x) = −1 elsewhere;

Loop:

• at each iteration i, we binarize image I, defining the mask IB where IB(x) = 0 if
I(x) < Ithreshold, IB(x) = −1 elsewhere;

• we apply a connectivity algorithm, to connect to the pixels x that verify M(x) = 0
all voxels y with IB(y) = 0.

• For all voxels y connected, M(y) = 0;

• We countNi the total number of voxels x withM(x) = 0 at iteration i (see figure 9.11);

• If Ni > Nmax, the optimal threshold is Ithreshold and we stop;

• Ithreshold = Ithreshold + dI.
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Figure 9.11. Detection of the optimal threshold value: When the threshold
value is increased, the number of connected voxels below this threshold increases,
until it reaches the optimal value; a superior threshold will lead to the flooding in
the parenchyma.

When the number of segmented voxels exceeds the area threshold value Nmax,
the algorithm is stopped, just before explosion in the number of voxels visited occurs
in figure 9.11.
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Final Segmentation and Automatic Branch extraction

Since the initialization is obtained, the inside and outside regions are used in order
to initialize the region-based forces of the Level-Sets model. In the case of the lungs,
we used the sigmoidal region-based forces formulation for several reasons:

• the computing time is very important, considering the size of the dataset, and
the use of constant forces across time reduces this cost;

• the parenchyma has a distribution very similar to that of the airways. The use
of region-based forces should then induce the use of three different regions: one
for the lumen, one for the parenchyma, and one for the soft tissues (and others).
Managing three regions will greatly increase the computing time.

• if we use two regions instead of three, the parenchyma is contained in the outside
region and reduces greatly the mean and increases the variance of the model.
There is a huge risk that the outside has a variance too important, and shrinks
the lumen segmented. This problem has been already presented in the applica-
tion concerning the visualization of the colon polyps.

Several iterations are necessary in order to extract the lower bronchi, as shown in
figure 9.12. Once this segmentation step is achieved, we extract the trajectories from

Figure 9.12. Three steps of the airways tree segmentation: Left image is
the initialization given by the method [124] described in section 9.2.3; middle image
is the surface of the airways after 40 iterations of the Level-Sets model; right image
shows the whole tree extracted in the airways with the labeling algorithm illustrated
in figure 9.13.

the starting point x0, and we convert it into a tree, using the labeling methods of
section 8.4. We optimize this extraction, in function of the length of the minimal
branch to be extracted, as shown in figure 9.13, where we display the label map for
several minimal length. Since this step represents a computing cost, this minimal
length must be accurately set according to the needs of the clinician (since this length
shrinks with the depth in the bronchial tree).
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Figure 9.13. Labeling of the airways: Using the method described in sec-
tion 8.4, we label the airways segmented, according to a chosen distance step; from
left to right are shown the label maps for respective steps 100, 50 and 20.

9.2.4 Conclusion

Artifacts

Even with multi-slice technology, one problem remains unsolved: cardiac motion can-
not be suppressed, despite fast acquisition. Only a trigger, as employed for cardiac
imaging could provide assistance. This motion extends to the neighboring pulmonary
parenchyma, and results in irregularities in the bronchial wall (see figure 9.14-left).
The impact of this motion onto the segmentation is not clear, but it seems that the

Figure 9.14. Two kind of artifacts in the multi-slice datasets: Left image
shows the motion of the heart in a sagittal slice of the 3D dataset of figure 9.8 during
acquisition; middle image shows the resulting poor segmentation of the lower-left
part of the airways; right image displays the pulsation artifacts carried over from
the aorta onto the trachea: these rings should not be confused with the natural
tracheal cartilage.

surface extracted near the hear in the lower left part of the bronchi is not correctly
segmented (see figure 9.14-middle). These artifacts can be reduced by doing multi-
slice CT acquisition with a trigger, as done for cardiac imaging, taking into account
cardiac pulsation for the time of acquisition.



9.2 Application to the Bronchial Tree 191

Much more striking are artifacts produced by the aortic pulsations, transmitted
to the trachea and the main bronchi: they appear as ring-like structures on the
3D surface, similarly to cartilage rings. However, they can easily be distinguished
from the tracheal cartilages, since they appear horizontal in the lice direction (see
figure 9.14-right). Those rings imply errors in the measures of the airways diameters,
but there is no particular possibility to avoid them, since a correlation with the heart
pulsations exists but is difficult to model.

Perspectives

Results are impressive, and we can easily obtain a virtual bronchoscopic view, using
the tree structure to guide the virtual endoscope and the triangulated surface, ob-
tained through th Marching-Cubes algorithm with the zero-level set of our level-set
function (see figure 9.15)

However, there are several technical improvements that are currently missing

• Improving fast-marching for the airway initialization: the method developed has
failed in giving an accurate initialization. The complex structure of the object,
and the thin-walled bronchi plus the partial volume effect lead to wrong results.
One possible extension could be to modify the speed function, adapting it to
the depth of the current voxels involved in the computation, since the partial
volume effect increases with the depth in the airway tree.

• Reducing the number of iterations of the Level-Sets model: 40 iterations is still
a huge number if each iterations is computed on the whole volume.

• Improving the Level-Sets model: the smaller parts of the bronchi are not recov-
ered, the region-based formulation is not dedicated to the extraction of the thin
curves. Using co-dimension 2 geodesic contours, as done by Lorigo et al. [108] for
vessels in MRA images, and using other expression of the flows like Vasilevskiy
and Siddiqi [177].

• Developments: Mori was using its tree extraction method for automatic labeling
of the bronchial tree [123]. If it is possible to assign the anatomical names to
the bronchial branches extracted from CT images and to display the name of
the currently observed branch on a virtual bronchoscopy image, it will help
clinicians to understand the current observing position. This tree structure can
also be input in a system to assist biopsies in the tracheobronchial tree, as done
in [17].

• Validation: still, clinical evaluation of the method is not done, and in particular
the evaluation of the tree structure extracted should be evaluated with the
choice of the minimal length of the branches extracted.

• Benchmark: a possibility of a benchmark with the tremendous work of Fetita [52,
144] has been scheduled but is not achieved yet.
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Figure 9.15. Virtual Bronchoscopy: the images are samples of a movie auto-
matically generated with the surface and the tree extracted in the 3D dataset with
our Path and Shape extraction framework.
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9.3 Reconstruction of vessels in 2D and 3D images

using Perceptual Grouping

Since their introduction, active contours [82] have been extensively used to find the
contour of an object in an image through the minimization of an energy. In order to
get a set of contours with T-junctions, we need many active contours to be initialized
on the image. The level sets paradigm [23,113] allows changes in topology. It enables
to get multiple contours by starting with a single one. However, it does not give
satisfying results when there are gaps in the data since the contour may propagate
into a hole and then split into several curves where only one contour is desired. This
is the problem encountered with Perceptual Grouping when we try to group a set of
incomplete contours. For example, in a binary image like in figure 9.16 with a drawing
of a shape with holes, human vision can easily fill in the missing boundaries and form
complete curves. Perceptual Grouping is an old problem in computer vision. It has
been approached more recently with energy methods [72, 164, 187]. These methods
find a criteria for saliency of a curve component or for each point of the image. This
saliency measure is based indirectly on a second order regularization snake-like energy
( [82]) of a path containing the point. However, the final curves are generally obtained
in a second step as ridge lines of the saliency criteria after thresholding. Motivated
by this relationship between energy minimizing curves like snakes and completion
contours, we worked upon finding a set of completion contours on an image as a set
of energy minimizing curves.

Figure 9.16. Examples of connected regions to be completed: The four
regions are the four black components, on a bright background.

In order to solve global minimization for snakes, Cohen and Kimmel [34] used
the minimal paths, as introduced in [86, 87]. The goal was to avoid local minima
without demanding too much on user initialization, which is a main drawback of
classic snakes [29]. Only two end points were needed. The numerical method has
the advantage of being consistent (see [34]) and efficient using the Fast Marching
algorithm introduced in [161]. In [31], the author proposed a way to use this minimal
path approach to find a set of curves drawn from a set of points in the image. We
also introduced a technique that automatically finds a set of key end points. In this
chapter, we extend the previous approach to connected components instead of end
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points. In order to obtain a set of most salient contour curves, we find a set of minimal
paths between pairs of connected components.

This approach is then extended for application in the completion of tube-like
structures in 2D and 3D images. The problem is here to complete a partially detected
object, based on some detected connected components that belong to this object.

For Perceptual Grouping , the potential P to be minimized along the curves is
usually an image of edge points that represent simple incomplete shapes, as in figure
9.16. These edge points are represented as a binary image with small potential values
along the edges and high values at the background. The potential could also be defined
as edges weighted by the value of the gradient or as a function of an estimate of the
gradient of the image itself, P = g(‖∇I‖), like in classic snakes. The potential could
also be a grey level image as in [34]. It could also be a more complicated function of
the grey level. In our real examples of vascular structures in 2D and 3D, we use a
potential based on a vesselness filter [60].

We present in Section 9.3.1 how to find a set of curves from a given set of un-
structured points. Grouping the points in connected components, we propose a way
to find the pairs of linked connected components and the paths between them. We
then extend this approach to 3D and show an application in 3D medical images.

9.3.1 Finding Contours from a Set of Connected Components

Minimal Path between two Regions

The method of [34], detailed in the previous section allows to find a minimal path
between two endpoints. This is a straightforward extension to define a minimal path
between two regions of the image. Given two connected regions of the image R0 and
R1, we consider R0 as the starting region and R1 as a set of end points. The problem
is then finding a path minimizing energy among all paths with start point in R0 and
end point in R1. The minimal action is now defined by

U(p) = inf
AR0,p

E(C) = inf
p0∈R0

inf
Ap0,p

E(C) (9.3)

where AR0,p is the set of all paths starting at a point of R0 and ending at p. This
minimal action can be computed the same way as before in table 2.1, with the alive
set initialized as the whole set of points of R0, with U = 0 and trial points being the
set of 4-connexity neighbors of points of R0 that are not in R0. Back-propagation by
gradient descent on U from any point p in the image will give the minimal path that
join this point with region R0.

In order to find a minimal path between region R1 and region R0, we determine
a point p1 ∈ R1 such that U(p1) = minp∈R1

U(p). We then back-propagate from p1
to R0 to find the minimal path between p1 and R0, which is also a minimal path
between R1 and R0.

Minimal Paths from a Set of Connected Components

We are now interested in finding many or all contours in an image. We assume that
from some preprocessing, or as data, we have an initial set of contours. We denote
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Rk the connected components of these contours. We propose to find the contours as
a set of minimal paths that link pairs of regions among the Rk’s. If we also know
which pairs of regions have to be linked together, finding the whole set of contours is
a trivial application of the previous section. The problem we are interested in here is
also to find out which pairs of regions have to be connected by a contour. Since the
set of contours Rk’s is assumed to be given unstructured, we do not know in advance
how the regions connect. This is the key problem that is solved here using a minimal
action map.

Method

Our approach is similar to computing the distance map to a set of regions and their
Voronoi diagram. However, we use here a weighted distance defined through the
potential P . This distance is obtained as the minimal action with respect to P with
zero value at all points of regions Rk. Instead of computing a minimal action map
for each pair of regions, as in Section 9.3.1, we only need to compute one minimal
action map in order to find all paths. At the same time the action map is computed we
determine the pairs of regions that have to be linked together. This is based on finding
meeting points of the propagation fronts. These are saddle points of the minimal
action U . These saddle points were already used for closed boundary extraction
in [34] In Section 1.1.2, we said that calculation of the minimal action can be seen
as the propagation of a front through equation (1.5). Although the minimal action
is computed using fast marching, the level sets of U give the evolution of the front.
During the fast marching algorithm, the boundary of the set of alive points also gives
the position of the front. In the previous section, we had only one front evolving from
the starting region R0. Since all points p of regions Rk are set with U(p) = 0, we
now have one front evolving from each of the starting regions Rk. In what follows
when we talk about front meeting, we mean either the geometric point where the two
fronts coming from different Rk’s meet, or in the discrete algorithm the first alive
point which connects two components from different Rk’s (see Figures 9.17 and 9.18).

Figure 9.17. Minimal Action map from the four regions of the example
of figure 9.16: On the right with a random LUT to show the level sets.
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Figure 9.18. Zoom on saddle points between regions: Left image shows the
iso-action levels near the saddle point between R1 and R2

We use the fact that given two regions R1 and R2, the saddle point s where
the two fronts starting from each region meet can be used to find the minimal path
between R1 and R2. Indeed, the minimal path between the two regions has to pass
by the meeting point s. This point is the point half way (in energy) on a minimal
path between R1 and R2. Back-propagating from s to R1 and then from s to R2

gives the two halves of the path.

Notations and definitions

Here are some definitions that will be used in what follows. X being a set of points
in the image, UX is the minimal action obtained by Fast Marching with potential P̃
and starting points {p, p ∈ X}. This means that all points of X are initialized as
alive points with value 0. All their 4-connexity neighbors that are not in X are trial
points. This is easy to see that UX = minp∈X Up. X may be a connected component
R or a set of connected components.

The label l at a point p is equal to the index k of the region Rk for p closer in
energy to Rk than to other regions Rj . This means that minimal action URk

(p) ≤
URj

(p),∀j 6= k. We define the region Lk = {p/l(p) = k}. If X = ∪jRj , we have UX =
URk

on Lk and the computation of UX is the same as the simultaneous computation
of each URk

on each region Lk. These are the simultaneous fronts starting from each
Rk.

A saddle point s(Ri,Rj) between Ri and Rj is the first point where the front
starting from Ri to compute URi

meets the front starting from Rj to compute URj
;

At this point, URi
and URj

are equal and this is the smallest value for which they
are equal.

Two different regions among the Rk’s will be called linked regions if they are
selected to be linked together. The way we choose to link two regions is to select
some saddle points. Thus regions Ri and Rj are linked regions if their saddle point
is among the selected ones.

A cycle is a sequence of different regions Rk, 1 ≤ k ≤ K, such that for 1 ≤ k ≤
K − 1, Rk and Rk+1 are linked regions and RK and R1 are also linked regions.
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Finding and Selecting Saddle Points

The main goal of our method is to obtain all significant paths joining the given regions.
However, each region should not be connected to all other regions, but only to those
that are closer to them in the energy sense. There are many possibilities for deciding
which regions connect together depending on the kind of data and application. In
some cases, the goal would be to detect closed curves and avoid forming branches, as
in [31]. Then the criterion would be to constrain a region to be linked to at most two
other regions in order to make cycles. In our context, we are interested in detecting
branches and avoiding closed curves. Therefore the criterion for two regions Ri and
Rj to be connected is that their fronts meet without creating a “cycle”.

We see in Figure 9.18 a zoom on the saddle points detected between regions R1

and R2 and R3 and R4. Once a saddle point s(Ri,Rj) is found and selected, back-
propagation relatively to final energy U should be done both ways to Ri and to Rj

to find the two halves of the path between them. We see in Figure 9.19 this back-
propagation at each of the three automatically selected saddle points. They link R1

Figure 9.19. Example with four regions: On the left we show the minimal
paths obtained by back-propagation from the three saddle points to each of the
regions from where the front comes; on the right, and the Voronoi diagram obtained.

to R2, R2 to R3 and R3 to R4. At a saddle point, the gradient is zero, but the
direction of descent towards each point are opposite. For each back-propagation, the
direction of descent is the one relative to each region. This means that in order to
estimate the gradient direction toward Ri, all points in a region different from Li
have their energy put artificially to ∞. This allows finding the good direction for the
gradient descent towards Ri. However, as mentioned earlier, these back-propagations
have to be done only for selected saddle points. In the fast marching algorithm we
have a simple way to find saddle points and update the linked regions.

As defined above, the region Lk associated with a region Rk is the set of points p
of the image such that minimal energy URk

(p) to Rk is smaller than all the URj
(p) to

other regions Rj . The set of such regions Lk covers the whole image, and forms the
Voronoi diagram of the image (see figure 9.19). All saddle points are at a boundary
between two regions Lk. For a point p on the boundary between Lj and Lk, we
have URk

(p) = URj
(p). The saddle point s(Rk,Rj) is a point on this boundary with

minimal value of URk
(p) = URj

(p). This gives us a rule to find the saddle points



198 9 Application to segmentation and visualization of tree structures

Minimal paths between Regions Rk

• Initialization:

– Rk’s are given

– ∀k, ∀p ∈ Rk, V (p) = 0; l(p) = k; p alive.

– ∀p /∈ ∪kRk, V (p) =∞; l(p) = −1; p is far except 4-connexity neighbors
of Rk’s that are trial with estimate U using equation (1.7).

• Loop for computing V = U∪kRk
:

– Let p = (imin, jmin) be the Trial point with the smallest action U ;

– Move it from the Trial to the Alive set with V(p) = U(p);

– Update l(p) with the same index as point A1 in formula (1.7). If
R(A1) 6= R(B1) and we are in case 1 in table 2.2 where both points
are used and if this is the first time regions of labels l(A1) and l(B1)
meet, s(Rl(A1),Rl(B1)) = p is set as a saddle point between Rl(A1) and
Rl(B1). If adding a link between these regions does not create a cycle,
they are set as linked regions and s(Rl(A1),Rl(B1)) = p is selected,
For each neighbor (i, j) of (imin, jmin):

∗ If (i, j) is Far, add it to the Trial set;

∗ If (i, j) is Trial, update action Ui,j .

• Obtain all paths between selected linked regions by back-propagation each
way from their saddle point (see Section 9.3.1).

Table 9.1. Algorithm of Section 9.3.1

during the fast marching algorithm.

Each time two fronts coming from Rk and Rj meet for the first time, we define
the meeting point as s(Rk,Rj). This means that we need to know for each point of
the image from where it comes. This is easy to keep track of its origin by generating
an index map updated at each time a point is set as alive in the algorithm. Each
point of region Rk starts with label k. Each time a point is set as alive, it gets the
same label as the points it was computed from in formula (1.7). In that formula, the
computation of Ui,j depends only on at most two of the four pixels involved. These
two pixels, said A1 and B1, have to be with the same label, except if (i, j) is on the
boundary between two labels. If A1 and B1 are both alive and with different labels
k and l, this means that regions Rk and Rl meet there. If this happens for the first
time, the current point is set as the saddle point s(Rk,Rl) between these regions. A
point on the boundary between Rk and Rl is given the label of the neighbor point
with smaller action A1. At the boundary between two labels there can be a slight
error on labeling. This error of at most one pixel is not important in our context and
could be refined if necessary.
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Algorithm

The algorithm for this section is described in Table 9.1 and illustrated in figures
9.17 to 9.19. When there is a large number of Rk’s, this does not change much the
computation time of the minimal action map, but this makes more complex dealing
with the list of linked regions and saddle points and testing for cycles.

The way we chose to test for cycles is as follows. Assume a saddle point between
regions Ri and Rj is found. We then test if there is already a link between these
regions through other regions. This means we are looking for a sequence of different
regions Rk, 1 ≤ k ≤ K, with R1 = Ri and RK = Rj , such that for 1 ≤ k ≤ K − 1,
Rk and Rk+1 are linked regions.

This kind of condition can be easily implemented using a recursive algorithm.
When two regions Ri and Rj are willing to be connected - i.e. that their fronts
meet - a table storing the connectivity between each region enables to detect if a link
already exists between those regions. Having N different regions, we fill a matrix
M(N,N) with zeros, and each time two regions Ri and Rj meet without creating
a cycle, we set M(i, j) = M(j, i) = 1. Thus, when two regions meet, we apply the
algorithm detailed in table 9.2.

Algorithm for Cycle detection when a region Ri meets a region Rj :
Test(i, j,M, i);with
Test(i, j,M, l);

• if M(l, j) = 1, return 1;

• else

– count=0;

– for k ∈ [1, N ] with k 6= i, k 6= j, k 6= l : count + = Test(k, j,M, l);

– return count;

Table 9.2. Cycle detection

If two regions are already linked, the pixel where their fronts meet is not considered
as a valuable candidate for back-propagation. The algorithm stops automatically
when all regions are connected.

Application

The method can be applied to connected components from a whole set of edge points
or points obtained through a preprocessing. Finding all paths from a given set of
points is interesting in the case of a binary potential defined, like in Figure 9.17, for
Perceptual Grouping . It can be used as well when a special preprocessing is possible,
either on the image itself to extract characteristic points or on the geometry of the
initial set of points to choose more relevant points. We show in figures 9.20 and
9.21 an example of application to a medical image of the hip where the objects of
interest are the vessels. Potential P is defined using ideas from [60] on vesselness filter
(detailed later in section 9.3.2). About vessel detection, see also [107,177].
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Figure 9.20. Multiscale vessel enhancement: First image is the original
dataset; All other images are from left to right the filter response with respective
kernels 1, 3, and 5.

Figure 9.21. Perceptual Grouping on a 2D Medical Image: left image is
the vesselness potential; middle and right images show that from the set of regions
obtained from thresholding of potential image, our method finds links between these
regions as minimal paths with respect to the potential.

9.3.2 Finding a Set of Paths in a 3D Image

Extension to 3D

We now extend our approach to finding a set of 3D minimal paths between regions in
3D images. All definitions and algorithms of section 9.3.1 are not affected by changing
the dimension of the image from 2D to 3D. The main changes are that 4-connexity
in 2D is now 6-connexity in 3D and that we deal with minimal paths and minimal
action in 3D images (see section 2.1 for the 3D extension of the the fast marching).

Application to Real Datasets: a MR Image of the Aorta

The problem here is to complete a partially detected object. In figure 3.12 is shown a
3D MR dataset of the aorta, which presents a typical pathology: an abdominal aortic
aneurysm. The anatomical object is made visible on the image by injecting a contrast
product before the image acquisition.

We propose here to give a method for extracting from the grey level image a set
of paths that will represent an approximate skeleton of the tree structure. This is
based on extracting first a set of unstructured voxels or regions that belong to the
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object. Notice that [107,177] give different methods to detect vessels but ours is much
simpler and faster.

For this, we propose to extract valuable information from this dataset, computing
a multi-scale vessel enhancement measure, based on the work of [60] on ridge filters.
Having extracted the three eigenvalues of the Hessian matrix computed at scale σ,
ordered |λ1| ≤ |λ2| ≤ |λ3|, we define the vesselness function as done in the preceding
chapter 8.

In figure 9.22 you can observe the response of the filter, based on the Hessian
information, at three different scales: σ = 1, 5, 10. Visualization is made with Maxi-
mum Intensity Projection (MIP). Using this information computed at several scales,

Figure 9.22. Ridge detection at three different scales: σ = 1, 5, 10 (MIP
visualization of the 3D images)

we can take as potential the maximum of the response of the filter across all scales
(Fig. 9.23-left). And we can easily give a very constrained threshold of this image,
that will lead to sets of unstructured voxels that surely belong to the anatomical
object of interest, as shown in figure 9.23-middle.

Based on this set of regions, we apply our algorithm of section 9.3.1, using the
3D version of the Fast-Marching algorithm presented in section 2.1. We find the set
of paths that connect altogether all the seed regions in our image, leading to the
representation shown in figure 9.23-right.

9.3.3 Conclusion

We presented a new method that finds a set of contour curves in an image. It was
applied to Perceptual Grouping to get complete curves from a set of edge regions with
gaps. The technique is based on finding minimal paths between two end points [34].
However, in our approach, start and end points are not required as initialization.
Given a unstructured set of regions, the pairs of regions that had to be linked by
minimal paths are automatically found. Once saddle points between pairs of regions
are found, paths are drawn on the image from the selected saddle points to both
points of each pair. This gives the minimal paths between selected pairs of regions.
The whole set of paths completes the initial set of contours and allows to close these
contours. We applied this method in order to reconstruct vascular structures, and we
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Figure 9.23. Perceptual Grouping in the aorta of figure 3.12: from left to
right, visualization of the 3D potential (MIP view) obtained from the different scale
of previous figure; a rough detection of the aorta; the Reconstructed aorta.

showed examples for 2D vascular image and 3D medical dataset of the aorta. In case
a refinement is needed, this method could be an efficient way to initialize geodesic
contours. Other developments could lead to applications in roads detection in aerial
images [63].



Conclusion

Summary and contributions

In this manuscript, we focused on curves and shapes extraction in 3D medical imaging.

Path Extraction

We developed a set of original methods, based on the work of Cohen and Kimmel [34],
in order to extend the minimal path extraction to three dimensional datasets. We
worked upon providing several algorithms in order to reduce the computational cost
of those methods and to the ease the use of minimal path techniques by any kind of
possible users, clinicians among others.

Those results lead to several applications, and among them the implementation of
a system of automatic path extraction of trajectories for virtual endoscopy, which has
been clinically validated, and is now integrated in a commercial product, EasyVision,
a software package for image processing sold with acquisition systems, and developed
by Philips Medical Systems.

Second application is the construction of a tool for interactive and real-time ex-
traction of objects contours in 2D images, built upon the basis of models such as the
Live-Wire of Falcao, Udupa, Mortensen and Barrett [49, 127]. Our goal was to pro-
vide a tool for semi-automatic contour extraction, using the minimal path extraction
principles. The resulting method integrated an interesting facility: the user can teach
the algorithm which kind of contours he is looking for. This method gives interesting
and promising results, and will probably be integrated in a software package for image
processing, for delineation of the heart ventricles in ultrasound images.

Surface Extraction

The second part of the thesis focuses on the extraction of surfaces, with the help
of minimal path extraction algorithms. We explained the link which exists with
similar techniques in mathematical morphology, particularly with the Watersheds of
Vincent [180], and we demonstrated the interest of such a method, which is fast
and can produce a valuable initialization for more complex algorithms, with bigger
computing times like Level-Sets. We presented a collaborative method which combines
those different techniques in a single framework.
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This framework was applied to several complex segmentation and visualization
problems, in the sense that the topology of the object is difficult to recover. We
first applied our method to extraction of cerebral aneurysms, which are inflations of
the brain vessels that can grow and break, leading to a brain hemorrhage. Those
aneurysms have a wide variety of shapes and the suitable model for segmentation
should not have any a priori on the structure of the final object to be recovered.
Second application, using the same principle, is segmentation and visualization of
colon polyps. We detailed a method to discriminate areas of the colon to be observed
for detecting polyps, based on the curvature of the surface segmented. This last
method will be the basis of further developments for automatic detection of polyps
at Philips Medical Systems.

Tree Structure Extraction

Finally, in the last part of the thesis we focused on the adaptation of our algorithms
to the particular case of tree anatomical structures, where path and shape extraction
find an original domain of development. We first develop a technique of fast tree
segmentation, with a simple initialization (setting a seed point), adapted to tubular
structures, with no constraint on the topology of the final object. We further devel-
oped a way to obtain an accurate sub-voxel segmentation method, using the previous
algorithm as initialization.

In order to provide a complete analysis of the tree-shaped objects, it is important
to use adequate tools to navigate inside the tree hierarchy, and a way to label the
different parts of the structure. We first extent the minimal path extraction technique
to the automatic detection of a whole set of trajectories, then we found a method to
reconstruct the skeleton of our tubular anatomical objects, on the basis of those
trajectories, by detecting the branching points and the paths between them.

Those techniques were applied to the segmentation and the reconstruction of
vascular and arterial trees, in 3D contrast-enhanced angiographic medical images,
and extended to bronchial trees in multislice CT scanners. Comparing our results
obtained with a panel of methods already proposed in this domain, we concluded on
the interest and validity of our framework, which provides a sub-voxelic accuracy of
our tubular objects, in interactive times. Using the information of tree hierarchy,
we can localize the branching points and extract the interesting information of the
section of our objects in the whole volume. Pathologies like aneurysms, or stenoses
can be clearly measured.

Problems encountered and perspectives

Our tree extraction technique has not been clinically validated for the moment. Re-
sults are promising, but the initialization technique can be improved: it cannot recover
the smaller parts of our structures, even if it is a very fast method. A possible per-
spective would be to use the perceptual grouping methods of section 9.3 as a second
process in order to recover those smaller parts.

The perspectives of this study are essentially to make a clinical validation, as it was
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done for the virtual endoscopy tool. However, many of the applications presented in
each part of the thesis gives a direction for promising developments, like visualization
of the colon polyps and extraction of tree structures.

Moreover, the mathematical methods used for path and surface extraction that
we developed all along the thesis can be used in a more general perspective than
medical imaging, and can be applied to other industrial applications, such as aerial
images.
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in 1992. During two years, he endured the preparatory classes for French Engineering
schools (Lycée Claude Bernard, Paris), and decided, instead of continuing a third
year, to enter university.

In June 1997, he received a Bachelor of Science degree in Mathematics and Computer
Science from Paris Dauphine University. And in September 1998, he received a Master
of Science with honors in Mathematics, Image Processing and Artificial Intelligence,
at CMLA laboratory, Ecole Normale Superieure, Cachan. His graduation project
concerned the development of a path tracker for virtual endoscopy in 3D medical
image data by means of shortest path techniques and was carried out at the Medical
Imaging Systems (MediSys) group of Philips Research France(PRF), in cooperation
with EasyVision Advanced Development group of Philips Medical Systems (Best, the
Netherlands).

In the subsequent month, he started as a Ph.D. student at the CEREMADE Labo-
ratory, University Paris Dauphine, on a research project concerning the extraction of
paths and surfaces in medical imaging using level-sets framework. The project was
carried out in the MediSYs Department of PRF (Suresnes, France). The results are
described in this thesis.

He was awarded a post-doctoral fellowship, for research on electron microscopy and
confocal microscope imaging, to be carried out at the Computing Sciences Division in
cooperation with the Life Science Division, Lawrence Berkeley National Laboratory
(Berkeley, CA, United States). This project will start in January 2002.



Extraction de Courbes et Surfaces par Méthodes de Chemins
Minimaux et Ensembles de Niveaux. Applications en Imagerie

Medicale 3D.

Thomas Deschamps
Medisys - Philips Recherche France, B.P. 301, 92156 Suresnes Cédex, France.

Dans cette thèse nous nous interessons à l’utilisation des méthodes de chemins minimaux
et des méthodes de contours actifs par Ensembles de Niveaux, pour l’extraction de courbes
et de surfaces dans des images médicales 3D.

Dans un premier temps, nous nous sommes attachés à proposer un eventail varié de
techniques d’extraction de chemins minimaux dans des images 2D et 3D, basées sur la
résolution de l’équation Eikonal par l’algorithme du Fast Marching. Nous avons montré
des résultats de ces techniques appliquées à des problèmes d’imagerie médicale concrets,
notamment en construction de trajectoires 3D pour l’endoscopie virtuelle, et en segmentation
interactive, avec possibilité d’apprentissage.

Dans un deuxième temps, nous nous sommes interessés à l’extraction de surfaces. Nous
avons developpé un algorithme rapide de pré-segmentation, sur la base du formalisme des
chemins minimaux. Nous avons étudié en détail la mise en place d’une collaboration entre
cette méthode et celle des Ensembles de Niveaux, dont un des avantages communs est de ne
pas avoir d’à priori sur la topologie de l’objet à segmenter. Cette méthode collaborative a
ensuite été testée sur des problèmes de segmentation et de visualisation de pathologies telles
que les anévrismes cérébraux et les polypes du colon.

Dans un troisième temps nous avons fusionné les résultats des deux premieres parties

pour obtenir l’extraction de surfaces, et des squelettes d’objets anatomiques tubulaires. Les

squelettes des surfaces fournissent des trajectoires que nous utilisons pour déplacer des cam-

eras virtuelles, et nous servent à définir les sections des objets lorsque nous voulons mesurer

l’étendue d’une pathologie. La dernière partie regroupe des applications de ces méthodes

à l’extraction de structures arborescentes. Nous étudions le cas des arbres vasculaires dans

des images médicales 3D de produit de contraste, ainsi que le problème plus difficile de

l’extraction de l’arbre bronchique sur des images scanners des poumons.

Mots clés : Chemins minimaux, modèles déformables implicites, segmentation, im-

agerie médicale 3D, méthodes variationnelles, Level-Sets, Fast-Marching.

Curve and Shape Extraction with Minimal Path and
Level-Sets techniques. Applications to 3D Medical Imaging.

In this thesis, we focus on the use of minimal path techniques and Level-Sets active
contours, for curve and shape extraction in 3D medical images.

In the first part of thesis, we worked upon the reduction of the computing cost for path
extraction. We proposed several path extraction algorithms for 2D as well as for 3D images.
And we applied those techniques to real medical imaging problems, in particular automatic
path extraction for virtual endoscopy and interactive and real-time path extraction with
on-the-fly training.

In the second part, we focused on surface extraction. We developed a fast algorithm for
pre-segmentation, on the basis of the minimal path formalism of the first part. We designed
a collaborative method between this algorithm and a Level-Sets formulation of the problem,
which advantage is to be able to handle any topological change of the surfaces segmented.
This method was tested on different segmentation problems, such as brain aneurysms and
colon polyps, where target is accuracy of the segmentation, and enhanced visualization of
the pathologies.

In the last part of the thesis, we mixed results from previous part to design a specific
method for tubular shape description and segmentation, where description is the extraction
of the underlying skeleton of our objects.

The skeletons are trajectories inside our objects, which are used as well for virtual

inspection of pathologies, as for accurate definition of cross-sections of our tubular objects.

In the last chapter we show applications of our algorithms to the extraction of branching

structures. We study the vascular tree extraction in contrast enhanced medical images, and

we apply the same principle to the more complex problem of the bronchial tree extraction

in multi-slice CT scanners of the lungs.

Keywords: Minimal Paths, implicit deformable models, segmentation, 3D medical

imaging, variational methods, Level-Sets, Fast-Marching.




