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Abstract

Advancements in information technology and communication systems have enabled the

development of a wide variety of location based applications such as vehicle navigation and

tracking, fleet management, sensor networks applications, home automation, telematics, se-

curity and location based services. Furthermore, the location information has improved com-

munication systems performance. The global navigation satellite systems (GNSS) (e.g., the

global positioning system (GPS)) are among the fundamental localization solutions. In harsh

environments (e.g., urban canyons and indoor areas), the satellites signals are attenuated or

completely obstructed, and these solutions do not provide a good accuracy or even become

unavailable. In order to offer accurate and ubiquitous localization solutions, wireless com-

munication systems have been considered, where several location dependent parameters of

the transmitted signals can be measured and exploited (e.g., the time-of-arrival (ToA), the

received signal strength (RSS) and the angle-of-arrival (AoA)).

In this thesis, we explore the topic of wireless localization from a statistical signal proces-

sing perspective, and we focus on two axes.

The first axis is cooperative localization applied to ad-hoc networks, where the nodes

perform pair-wise ranging measurements (i.e., ToA or RSS) between each other in order to

simultaneously estimate their positions. The limited number of measurements can result in

ambiguities leading to high location estimation errors. Thus, it is important to know the

conditions that guarantee an absence of ambiguity. For this purpose, we start by studying

the unique solvability conditions based on the two approaches of graph rigidity and semi-

definite programming, and we derive the identifiability conditions. Then, we consider the

location estimation solutions, where we focus on probabilistic estimation and its application

in Markov random fields using the nonparametric belief propagation (NBP) algorithm. This

algorithm is based on message exchanges between the nodes and enables the computation of

the marginal probability distribution function of the nodes positions in a distributed fashion.

More specifically, we develop a new variant of the NBP that improves the positions estimation

accuracy and that can be used for mitigating the ambiguities by exploiting the connectivity

information.

The second axis is mobile terminals tracking based on RSS measurements. These mea-

surements are affected by a shadowing phenomenon caused by obstacles in the propagation

environment. We start by studying the improvement brought by the knowledge of the sha-
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dowing maps to the position estimation accuracy. The classical solution for obtaining these

maps is fingerprinting, which consists of making measurements at selected positions during an

offline phase and saving them in a database. This operation can be costly in time and effort,

and should be repeated periodically or whenever modifications occur in the deployment area.

To overcome these difficulties, we develop the following two solutions : In the first solution, we

jointly track the position and the shadowing, and we derive an auto-regressive model descri-

bing the shadowing stochastic process. We show that applying an auto-regressive order higher

than one can be relevant in some applications. In the second solution, unlabeled traces, which

are sequences of measurements made by moving terminals at unknown positions, are used

to estimate the shadowing maps. In addition to the RSS, the unlabeled traces can include

any other kind of positioning measurements. This solution allows a continuous refinement

and update of the maps over time. Both developed solutions apply Bayesian filtering and

estimation techniques, and are implemented by means of particle filters.

The proposed algorithms are investigated via Monte Carlo simulations in different de-

ployment and application scenarios, where several advantageous points are demonstrated. In

addition, several theoretical and practical results related to the topics of cooperative locali-

zation and tracking are derived.

Keywords : Cooperative localization, position tracking, graph rigidity, semidefinite pro-

gramming, identifiability, Fisher information, Markov random field, nonparametric belief pro-

pagation, Monte Carlo methods, Bayesian filtering, particle filters, Rao-Blackwellization.
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CHAPTER

1 Introduction

Advancements in information technology and communication systems have enabled the

development of a wide variety of location based applications such as vehicle navigation and

tracking, fleet management, sensor networks applications, home automation, telematics, se-

curity and location based services. Furthermore, the location information has improved com-

munication systems performance.

The global navigation satellite systems (GNSSs) (e.g., the global positioning system

(GPS)) are among the fundamental localization solutions. In harsh environments (e.g., urban

canyons and indoor areas), these solutions may become unavailable or highly inaccurate due

to signal blockage and multipath propagation.

In order to offer accurate and ubiquitous localization solutions, wireless communication

systems have been considered, where several location dependent parameters of the transmit-

ted signals can be exploited. These parameters are obtained from ‘pair-wise’ measurements

(e.g., the time-of-arrival (ToA), the received signal strength (RSS) and the angle-of-arrival

(AoA)). A measurement is called ‘pair-wise’ since it is made between two wireless com-

munication devices and contains information about their relative positions or their relative

displacement. The measurements depend on the propagation channel which introduces ran-

dom fluctuations. Additionally, the unknown locations can be treated either as deterministic

parameters or as realizations of random variables. For these reasons, wireless localization can

be considered as a ‘statistical signal processing’ or ‘estimation theory’ problem.

Several challenges have emerged in the different phases of a wireless localization solution,

such as the process of obtaining the measurements, the modeling of the noise and the de-

pendence of the measurements on locations, the selection of the most relevant measurements

when many of them are available, and the data processing algorithm or the estimator that

outputs the estimated locations. The above mentioned issues impact the accuracy, in addition

to the kind, the number and the quality of the measurements.

In this thesis, we address the wireless localization estimators from a statistical signal pro-

cessing perspective, and we focus on two axes. The first axis is cooperative static localization

applied to ad-hoc networks, where static (i.e., non-moving) nodes perform pair-wise ranging

measurements (i.e., ToA or RSS) between each other in order to simultaneously estimate

their positions. The second axis is non-cooperative dynamic localization based on RSS mea-

surements, which consists in tracking over time the position of a single moving terminal.
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Probabilistic models of the measurements are assumed to be available, but the process of

obtaining the measurements is not fully investigated.

1.1 Outline of the thesis

N.B. : The titles of the sections and subsections including the main contribu-

tions of the thesis are underlined.

The outline of the thesis is presented in the following. The main contributions are listed,

and any publications reporting them are also provided.

Chapter 2 is a general overview of wireless localization solutions and applications. It

presents the evolution of the wireless localization systems, and briefly describes several inter-

esting location based applications and services. The fundamental localization techniques and

the ranging measurements are also described. At the end of this chapter, we define a classi-

fication of the wireless localization algorithms according to two criteria : Whether they are

cooperative (i.e., exploit the pair-wise measurements between nodes of unknown positions),

and whether they perform a tracking of mobile nodes positions (i.e., based on a displacement

model or accounts for the temporal correlation of the observations).

Cooperative static localization is treated in Chapters 3 and 4, and non-cooperative dyna-

mic localization based on RSS measurements is treated in Chapter 5.

Chapter 3 addresses the unique solvability and identifiability conditions. They allow the

detection of ambiguities that are due to the lack of measurements. It is important to detect

these ambiguities since they can result in high location estimation errors. In studying the

unique solvability, the ranging measurements are assumed to be noiseless, and two approaches

are used : Graph rigidity theory and semidefinite programming. We provide a survey of the

graph rigidity theory results in the context of cooperative localization. For the semidefinite

programming, we develop an algorithm that improves the detection of the uniquely solvable

nodes, compared with the state of the art algorithm. The identifiability theory concerns

the possibility of drawing inference about unknown parameters from probability distribution

functions. It can be seen as the counterpart of the unique solvability when the measurements

are noisy. In this chapter we derive correspondences between the rigidity and the identifiabi-

lity. They enable the application of tools provided by the graph rigidity theory in checking

identifiability properties. The main contributions of this chapter are the following :

– Identifiability in static cooperative localization : The identifiability conditions

in static cooperative localization are based on correspondences established between the

rigidity and the identifiability.

– Rigidity and Fisher information matrix : A relationship is derived between the

network rigidity property and the FIM. It establishes the following result : For a ca-

tegory of networks called generic networks, the non-singularity of the FIM is a graph

property that can be checked from the network connectivity.

– Detection of uniquely solvable nodes using semidefinite programming : De-

velopment of an algorithm for improving the detection of the nodes that have a unique
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solution verifying a set of distance constraints ([2]).

Chapter 4 considers the cooperative localization algorithms with a main focus on proba-

bilistic estimators and their application in graphical models. It starts by reviewing state of

the art algorithms and classifying them according to several criteria, such as the kind of infor-

mation used, the way the computation is processed and the need for anchor nodes. Then the

weighted least-squares (WLS) estimator is described. The deterministic stability conditions

of this estimator are derived, where the deterministic stability is related to the uniqueness

of the global optimum. The derivation of these conditions is based on the unique solvability

and identifiability conditions derived in Chapter 3. The main algorithm treated in this chap-

ter is the nonparametric belief propagation (NBP). This algorithm is based on exchanging

messages between the nodes, in a distributed manner, allowing them to compute probability

distribution functions, called beliefs, of their locations. We develop a new variant of this al-

gorithm which improves the accuracy and reduces the amount of exchanged data when the

connectivity information is used to mitigate the ambiguities. The main contributions of this

chapter are the following :

– Deterministic stability : Derivation of the deterministic stability conditions of the

WLS estimator.

– Cooperative localization algorithm based on NBP : Development of a distributed

cooperative localization algorithm based on NBP. This algorithm consists of two phases :

A first phase that computes the beliefs, and a second phase that reduces the errors due

to beliefs approximations and eliminates some ambiguities by using the connectivity

information ([3]).

In Chapter 5, non-cooperative Bayesian tracking based on RSS measurements is studied.

The RSS observations are random due to the presence of the shadowing. We show that

the knowledge of the shadowing maps greatly improves the tracking accuracy. The classical

solution for obtaining these maps is the fingerprinting which requires huge calibration efforts.

To overcome these efforts, two solutions are developed : The first one jointly tracks the position

and the shadowing, and the second one tracks the position and estimates the shadowing maps,

jointly. The main contributions of this chapter are the following :

– Joint shadowing and position tracking : This solution takes the shadowing as a

part of the hidden state vector to be estimated. As the mobile terminal moves, the

spatial correlation of the shadowing is transformed into a temporal correlation. An

auto-regressive model is developed for representing the temporal shadowing process

evolution. The tracking is performed using a Rao-Blackwellized particle filter which

reduces the required number of particles ([4]).

– Joint position tracking and shadowing maps estimation : This solution performs

a Bayesian tracking of the position and shadowing maps estimation. Unlabeled traces

and positioning measurements including the RSS are used in this solution ([5]).

Finally, in Chapter 6, the contributions of the thesis are summarized with concluding

remarks, and future research directions are discussed.
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2 Wireless Localization

Systems and

Applications

2.1 Introduction

Location or position finding has always been of major importance in many fields of human

activities such as navigation, transportation and security. A breakthrough occurred with the

introduction of the Global Positioning System (GPS) which became available to public users

in the last decade of the 20th century. The GPS provides an accuracy of the order of several

meters when the GPS receiver is in the line-of-sight (LoS) of a sufficient number of GPS

satellites (i.e., four satellites). In dense urban areas, the accuracy can be highly degraded,

and this service becomes completely unavailable in most indoor environments.

The progress in wireless communication systems and their widespread availability allowed

the development of several wireless localization solutions that can complement or replace the

GPS in situations where the latter is not reliable or not operational, such as indoor and other

harsh environments, and paved the way for the emergence of a variety of location-aware

applications and services.

The objective of this chapter is to provide an overview of the basic wireless localization

solutions and services.

We start by presenting a short history of the evolution of the wireless localization sys-

tems in Section 2.2. Then, in Section 2.3, we discuss the needs for localization and the

basic location-based applications and services. In Section 2.4, we present the fundamental

geometrical localization techniques which are performed in two phases : In the first phase

location-dependent measurements are made where each measurement defines a geometrical

locus or set ; in the second phase the location is computed as the intersection of the different

sets. The most attractive measurement methods are the ranging measurements which allow

estimating the distance between two devices. These measurements include timing and power

measurements, and are discussed in Section 2.5 with the sources of noise and statistical mo-

delings. A localization technique that has gained much attraction due to its accuracy is the

fingerprinting technique in which measurements are compared to entries of a database where
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an entry is a fingerprint of measurements at a known selected location. The database entries

are obtained either manually or by using calibration tools. This technique is described in Sec-

tion 2.6. A classification of the localization algorithms based on the measurement methods

or information used is provided in Section 2.7. Finally, in Section 2.8, concluding remarks are

provided.

2.2 Evolution of wireless localization systems

The need for location information goes back to a long time ago. At first, when human

beings started to explore new territories, the issue was to locate either themselves or their

destination, and be able to come back home. These tasks were solved using terrestrial marks.

Then, with the development of maritime transportation, needs for other solutions arose be-

cause of the absence of marks at sea. The first sea navigations followed the shore where

terrestrial marks are available. Then, with the development of astronomical tools, navigators

were able to compute their latitude at night by observing the locations of navigational stars.

But unfortunately, the astronomical observation was not able to solve the longitude. The

compass discovery allowed the development of dead reckoning technique, which is the process

of estimating the present location from the past location, speed and direction of displace-

ment, but this method lacks precision due to errors accumulation and was far from the final

answer for sea navigation. The longitude problem was solved with the invention of the marine

chronometer in the late eighteenth century, where the longitude was computed by relating

the locations of the stars to the time.

2.2.1 Era of wireless communications

The development of radio transmission systems at the beginning of the 20th century paved

the way for a new era regarding location systems. With the improvement of the accuracy of

local time generators (oscillators and atomic clocks), it becomes possible to use the radio

signals as new localization marks. Since the middle of the 20th century several terrestrial

location systems have been developed and commercially deployed, including Decca, Loran

and Omega systems [6]. These systems rely on an infrastructure of synchronized stations, and

the localization method is based on measuring the time difference between pairs of signals

from several stations. A given constant time difference can be represented by a hyperbolic line

of positions, and the intersection of two lines is the location of the receiver. The hyperbolic

method is described in Section 2.4.

The Decca system uses low-frequencies (30-300kHz) and is able to deliver accuracies within

50 meters (m) with a range of around 400km. The Loran system also uses low frequencies

(90-110kHz) with a range of up to 1900km and absolute error between 185 and 463m. In fact,

there is a trade off between range and accuracy. Microwave systems can offer a higher accuracy

(in the order of few meters) but with a very limited range, while low frequency systems offer a

much reduced accuracy (50m) but with a higher range. The Omega system offers a worldwide

coverage and operates at very-low-frequency (10.2-13.6kHz) but the accuracy is of the order
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1-3km. This system was designed principally for maritime and aeronautical users.

2.2.2 Global navigation satellite systems

In a global navigation satellite system (GNSS), signals transmitted by satellites of known

locations are used as localization marks [7, 6]. The use of satellites for positioning resulted

in real improvements in terms of availability, coverage and accuracy.

The first satellite navigation system was launched in 1958 under the name of TRANSIT

project. This system became operational for the U.S. Navy in 1964. The obtained accuracy

was in the range of 200-500m. Then in 1973, the NAVSTAR-GPS project was launched by

the U.S. Direction of Defense (DoD) to overcome the limitations of the previous system. The

first four GPS satellites were launched in 1978 and the 24th was launched in 1994. Initially,

the highest quality of service was reserved for military use, and the signal available for civilian

use was intentionally degraded (selective availability). The selective availability was turned

off in year 2000 improving the precision of civilian GPS from 100m to 20m.

The GPS system consists of three segments :

– Space segment consisting of a constellation of orbiting satellites at an altitude of

approximately 20 000km.

– Control segment consisting of several ground stations and antennas for monitoring

the system and keeping it operational, synchronizing the atomic clocks on board satel-

lites and controlling the orbital configuration.

– User segment consisting of the user receiver equipment capable of receiving and

processing the GPS signals. The receiver determines the transit time of messages sent

by synchronized satellites and computes the distance to each satellite. The distances

along with the satellites locations are used to compute the receiver location. A possible

computation method is trilateration which is explained in Section 2.4. The receiver is

not synchronized with the satellites, and thus, it needs at least four satellites for solving

both location and time.

Over the last decades, several improvements to the GPS have been implemented, and the

different segments of the system are continuously improved to increase its performance and

its accuracy. Several satellites were launched to update the constellation and replace out of

order satellites, and more launches are scheduled in the upcoming years. The evolution in

the field of integrated circuits and electronics allowed the construction of GPS receiver chips

of small size and low power consumption, and which are nowadays implemented in different

kinds of digital equipments such as mobile phones, digital cameras and computers.

Other GNSSs have been equally developed or are under development :

– The GLONASS system was launched by the Soviet Union in 1978 and became fully

operational in 1995 with a 24 satellites constellation. Because of the short life time

of the satellites and the limited financial budgets, the constellation declined, and only

seven satellites were operational in 2002. Then a renewal program was launched and in

2011 the constellation was fully restored.

– The Compass system is a Chinese GNSS which became operational in China in 2011
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and the global system should be finished by 2020.

– The Galileo system is currently built by the European Union (EU) and European Space

Agency (ESA) and aims at providing a high precision positioning system upon which

European nations can rely. The initial service of this system is expected around 2014 and

completion by 2019. The new major upgrade service of Galileo compared to GPS and

GLONASS is the Search and Rescue (SAR) function [8]. To implement this function,

the satellites should be equipped with transponders for transferring the distress signals

from the user’s transmitter to the Rescue Coordination Center, which will then initiate

the rescue operation. At the same time, the system will provide a signal to the users,

informing them that their situation has been detected and that help is under way.

2.2.3 GNSS augmentation

This technique aims at improving the accuracy, integrity and availability of GNSS services.

It is called augmentation since it integrates external information in the positioning process.

There are three kinds of external information :

– Information for compensating the errors that are due to clock drift, ephemeris or io-

nospheric delay.

– Information consisting of additional ranging measurements for improving the coverage

in the case of reduced visibility of the GNSS satellites.

– Information for improving the startup performance and reducing the time-to-first-fix

(TTFF). The TTFF is the time required for a GPS receiver to acquire satellite signals

and navigation data.

External information can be delivered either by a satellite-based augmentation system (SBAS)

in which messages are broadcast by additional satellites [9], or by a ground-based augmenta-

tion system (GBAS) in which messages are broadcast by terrestrial wireless networks [10].

An example of a GBAS is the assisted GPS (AGPS). This system uses data acquired by

a wireless network such as the cellular network for reducing the TTFF and improving the

startup. The AGPS is currently used in many GPS-capable cellular phones or mobile stations

(MS) (see Figure 2.1) . There are two categories of AGPS [11] :

– MS-assisted in which unprocessed GPS data is sent to the network server.

– MS-based in which the almanac and GPS ephemeris are sent to the handset.

The GNSS localization service may become unavailable or highly inaccurate in harsh en-

vironments where there are signal blockage or multipath propagation, such as urban canyons

and indoor environments.

2.2.4 Localization in terrestrial broadcast networks

This technique allows one to take benefit from the already existing infrastructures of FM

and TV broadcast systems.

The team at Rosum Corporation developed a series of techniques to take advantage of

digital broadcast television signals to localize mobile users and devices in urban and indoor
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Figure 2.1 — Assisted GPS.

areas [12]. This solution has several advantages over the GPS :

– The TV signals have higher power levels than satellite signals (about 40 decibels (dB)

indoor power advantage).

– The TV signals are spread over a wide range of frequency bands allowing higher tem-

poral precision and additional strength against multipath.

– Moreover, the locations of TV towers are well known, and do not cause any Doppler

frequency shift as in the case of moving GPS satellites.

The main disadvantages of this solution are the lack of precision of the implemented clocks

which are not intended to be used for localization and the insufficiency in the number of

detected broadcast towers especially in rural areas. But since GPS provides a good accuracy

in rural areas where GNSS satellites are in LoS, this solution can be used as a complementary

to GPS. The system proposed by Rosum is based on the use of synchronization codes included

in the broadcast signals for estimating the time-of-arrival which are converted into pseudo-

ranges [12]. Rosum is manufacturing TV+GPS hybrid positioning modules for enabling a

reliable localization [13]. An indoor accuracy of 30-50m is claimed.

Location solutions using the FM signals have also been reported in [14].

2.2.5 Localization in cellular networks

Location finding in cellular networks has been an active research area in response to an

order issued by the American Federal Communications Commission (FCC) in 1996. The FCC

order requires all cellular carriers to deliver accurate location information of emergency 911

callers to public safety answering points (PSAP). Some additional details concerning the FCC

requirements are discussed in Section 2.3. This order has been issued to face the fact that

most 911 calls originate from mobile phones, and the wireless callers do not receive the same
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quality of assistance compared with fixed-network callers. This is due to the unknown location

of the wireless callers. One solution to localize the mobile stations is the implementation of a

specialized equipment such as a GPS receiver. But this solution requires a replacement of all

the MSs in the market, and additionally, at that time, the GPS receivers were costly in price,

size and power consumption, without forgetting the TTFF delay. The alternative solution

was to use the cellular network, where the signals traveling between the MS and a set of fixed

base stations (BSs) of known locations can be used. The required modifications are placed

on the network side without affecting the MSs.

Several challenges are facing this solution, including low signal-to-noise ratio (SNR), in-

terference, non-line-of-sight (NLoS) and multipath propagations [15].

Several methods have been developed for exploiting the location-dependent parameters

measured from the transmitted signals [16, 17]. Examples of these methods are the Cell-ID

method which assigns the MS to the serving BS and the time-difference-of-arrival (TDoA)

based methods. The Cell-ID method is illustrated by Figure 2.2 and its precision depends on

the cell size. The TDoA technique is discussed in Section 2.4.

Cell-ID + Timing Advance

Figure 2.2 — Cell-ID localization with sectorized cells.

2.2.6 Localization in wireless local area networks

Wireless local area networks (WLANs) are generally used to provide a wireless internet

connection to mobile terminals through access points. The Wi-Fi is the main standard for

WLANs. The Wi-Fi access points are mainly deployed in indoor areas (e.g., homes, malls,

stores, airports, stations) and some outdoor areas (e.g., parks). The connectivity range of an

access point depends on several factors such as the transmit power and the obstacles in the

surrounding area, and it typically varies from a few tens of meters in indoors to about 100m

in outdoors.

The massive deployment of WLANs offers a realistic solution for indoor localization [18].

Most of the developed WLAN localization solutions rely on received signal strength (RSS)

measurements, and perform either a trilateration or a fingerprinting in which observations

from several access points are compared against constructed models in order to find the best

matching. Fingerprinting is discussed in more details in Section 2.6.

Several solutions using Wi-Fi access points have been developed and are currently com-

mercialized. Examples of these solutions are Skyhook [19] and Navizon [20] systems. These
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two solutions are based on collecting information on Wi-Fi access points and cellular BSs lo-

cations all over the world and maintaining them in databases. A client location is computed

by collecting a raw data and sending it to a location server which returns a location estimate.

Google and Apple are both maintaining such databases for providing location-based services

on their platforms.

2.2.7 Localization in wireless personal area networks

Wireless personal area networks (WPANs) are networks of wireless devices communicating

over short ranges. The devices are characterized by their low complexity and low power

consumption. WPANs are based on the working group IEEE 802.15 which consists of several

task groups such as WPAN/Bluetooth, High Rate WPAN and Low Rate WPAN.

Low Rate WPANs are based on the standard 802.15.4 which specifies the physical and data

link layers for low power consumption and low complexity devices. The amendment 802.15.4a

specifies additional physical layers aiming at making the data rate scalable, increasing the

connectivity range and improving the ranging and localization accuracy while at the same

time reducing the power consumption and other costs. Among the technologies selected is

the ultra-wide-band (UWB) which allows to estimate the time for signal propagation with a

high precision thanks to its high time resolution.

The localization solutions in WPANs rely on received signal strength, connectivity and

proximity information, or time-of-arrival measured using UWB signals. The order of accuracy

of UWB localization in indoor can be less than one meter.

The standard 802.15.4 is attractive for wireless sensor networks since these networks are

generally deployed with a large number of nodes (hundreds or even thousands) and it is in-

teresting to have low cost nodes with long battery lifetime. In sensor networks localization, a

subset of the nodes are reference or anchor nodes and obtain their locations either manually

or by other means (e.g., GPS), and the remaining nodes are localized using inter-node mea-

surements. If a node is capable of making measurements with a sufficient number of anchor

nodes, then it can be localized solely from these measurements. But due to energy conserving

constraints, the nodes can lack the energy necessary for long-range communication, and in

this case, multi-hop or cooperative localization techniques are used where all the locations

are computed simultaneously and measurements between pairs of nodes of unknown locations

are used [21].

2.2.8 Localization of RFID tags

RFID is an identification technology enabling objects and people tracking. An RFID

system consists of readers, tags and a middleware. Tags are small and cheap devices that can

be carried by persons or fixed on objects. Readers are able to read the information stored in

the tags from a distance varying from few centimeters to several meters, depending on the

kind of tags (passive or active) and the used frequency. RFID technology has been used in

localization where the delivered accuracy depends on the communication range and density
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of readers [22].

2.2.9 Pervasive localization systems

Wireless localization is currently an active research field. Many solutions have been de-

veloped for the different kinds of environments and with different levels of precision and

complexity, and new solutions are still emerging [23].

With the proliferation of location-aware applications and services, ubiquitous and accurate

localization is becoming a key enabling technology. A high quality of localization accuracy

and availability can be achieved either by using hybrid localization solutions which combine

different kinds of measurements obtained using one or several radio access technologies [24],

or by switching the mobile devices seamlessly from one technology to another.

2.3 Applications

Advancements in information technology and communication systems enabled the deve-

lopment of a wide variety of applications and services that are either based on the availability

of location information or take benefit of it. These applications cover several fields of human

activities such as personal (e.g., navigation, finding places of interest, children location tra-

cking), professional (e.g., fleet management, tracking components in manufacturing places)

and security and safety (e.g., tracking workers in dangerous areas and firefighters, emer-

gency calls, driving assistance and active safety). Additionally, location information has been

shown to be beneficial for wireless communication systems performance optimization. Several

fundamental applications are presented below.

2.3.1 Navigation

Navigation is the original localization application. It is the process of ascertaining the

position and planning a route from one place to another. The GNSS is currently the main

navigation solution for pedestrians and vehicles in outdoor environment.

2.3.2 Tracking

Tracking applications are based on following the positions of moving bodies or vehicles

over time. Examples of these applications are fleet management such as emergency vehicles

and taxi companies, real-time traffic information by tracking the positions of mobile phones

inside vehicles, cargo tracking, and asset tracking at manufacturing sites and hospitals.

2.3.3 Emergency calls

In recent years, the number of 911 calls using mobile phones has significantly increased,

and it is estimated to constitute about 70% of the total number of 911 calls [25]. In order
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to allow a rapid response to the calls and improve the relibaility of wireless 911 services, the

U.S. FCC has adopted rules requiring wireless service providers to provide the PSAP with

the location of the caller. Phase I rules required to provide the location of the cell site or base

station transmitting the call. Phase II required to deliver the location accurate to within 50

to 300m.

For the 112 emergency calls in Europe, a recommendation of the European Commission

requires the operators to provide the best information available as to the location of the

caller, to the extent technically feasible.

2.3.4 Location-based services

Location-based services (LBSs) are applications that exploit the location of a mobile

device by adding value to this information [26]. Most of the LBSs are developed by third

parties and require the availability of data services. The data services can be maintained by

third parties and delivered using the communication networks. Thus, LBSs are a source of

revenue for application developers, data providers and operators.

Some examples of LBSs are :

– Social networking : friend-finder, social events in a city, etc.

– Yellow pages : requesting the nearest service such as ATM or restaurant.

– Location-based mobile advertising and location-aware information.

– Game : where the location is a part of the game play.

– Location sensitive billing.

Privacy is an important issue in LBSs [27]. A user may not accept that service providers

have an unauthorized access to personal location information. Thus, preventing any unau-

thorized access to personal location records and forcing saving or forwarding of the location

information to be anonymous are prerequisites to protect privacy.

2.3.5 Wireless sensor networks

A wireless sensor network (WSN) is a set of sensor nodes which are spatially distributed

to measure local quantities and communicate with each other to relay the gathered data to a

sink node. Based on this data, an inference or a decision can be made. In many applications,

sensors’ locations must be known for their data to be meaningful. Among the wide variety of

WSN applications [21], we have :

– Environmental monitoring : The sensors collect local environmental information such

as temperature, humidity, pressure, light or radiations, soil properties, etc. Having only

this raw data does not yield much information about the variations of these factors over

the deployment area. In contrast, the knowledge of the locations allows to construct a

map of the distribution of these factors and enables a deeper analysis.

– Civil structures monitoring : Monitoring deformations and cracks in structures such as

buildings and bridges.

– Agriculture : Soil monitoring and environmental conditions for irrigation and fertilizing
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control.

– Animal tracking : Studying behaviors and interactions between species.

– Logistics : Monitoring and controlling goods or components within manufacturing floors

and warehouses.

2.3.6 Communications enhancement

The location information can be used for enhancing communication systems at the dif-

ferent layers. Some examples are :

– Channel estimation : If the channel parameters maps are known and saved in a database,

then the knowledge of the mobile device position allows reading the corresponding

values directly in the database and improving the channel estimation process. Examples

of maps are shadowing, delay spread and power delay profile maps. There are several

methods for constructing the maps such as manual calibration and ray tracing tools.

– Interference coordination : In [28], the known power maps and the location information

are used to determine whether the user equipment is in a cell-edge and suffers from a

strong inter-cell interference, and to apply a resource scheduling accordingly.

– Synchronization : The location information can be used to compute the distance bet-

ween an MS and a BS. By measuring the time-of-arrival of the signal transmitted by

the BS, a common reference time can be obtained. In the case where there are several

synchronized (i.e., have a common reference time) BSs, the signals from these BSs are

no more considered as interfering with each other and can be jointly used for improving

the synchronization accuracy by employing a joint scheme [28].

– Cognitive radio : A main function of a cognitive radio (CR) is spectrum sensing, which

is performed for detecting the unused spectrum and sharing it without harmful inter-

ference with the primary users (PUs) and other CRs. In [29], CRs cooperate with each

other to construct their shadowing maps and to track the transmitted power of the PUs.

In the proposed solution, the path loss is assumed to be known, and a CR estimates its

shadowing map based on power measurements made by other CRs of known locations.

– Geographical routing : It is mainly proposed for wireless networks, and relies on the

knowledge of the locations of the network nodes. Several geographical routing protocols

have been developed and their performances depend on network density [30].

– Cooperative communication : Position information can be useful in relay selection tech-

niques [31].

– Beam-forming : Adaptive or self-adjusted antenna array beam-formers have great po-

tential for improving SINR and hence achieving higher cell capacities. The position

information can be useful for reducing the convergence time of weighting vector deter-

mination [32].
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2.4 Fundamental localization methods

In this section, we present some fundamental localization methods. By definition, a target

node is a wireless communication device of unknown location and an anchor node is such a

device of known location, or in other words, of known coordinates in a 2 or 3-dimensional

Euclidean space. The localization methods considered here compute the location of a single

target node in two phases :

– In the first phase, signals are exchanged between the target node and several anchor

nodes. By measuring or estimating one or several signal metrics, information regarding

the location of the target node relative to the anchor nodes can be extracted.

– In the second phase, the metrics are aggregated and processed by a localization or data

fusion algorithm that outputs the location.

By assuming error free metrics, each metric defines a constraint on the coordinates of the

target node, or in other words a feasibility region, and the location can be computed when

there is a sufficient number of metrics or feasibility regions intersecting in one single point.

But in real applications, the metrics are affected by several kinds of errors. Therefore, the

estimated feasibility regions do not necessarily include the true location and the intersection

of these regions can be the empty set. In this case, appropriate estimation techniques are

needed for defining the localization algorithm. The errors affecting the metrics are realizations

of random variables, and the knowledge of their statistical properties is very important for

several reasons : First, if the error affecting a metric has a very high variance, then this metric

will not provide a good improvement to the localization accuracy and discarding it allows

reducing the computational complexity, and second, the development of efficient probabilistic

estimators relies on this knowledge.

In the following, we present several localization methods using different kinds of metrics

that we assume error free.

2.4.1 Angle-of-arrival based method

This method is based on finding the angle-of-arrival (AoA) of incident signals to the

anchor nodes (i.e., uplink signals). In a 2-dimensional space, each AoA defines a straight line

along which the target node is located, and a minimum number of two AoA observations

is needed for computing the 2-dimensional location as shown in Figure 2.3. The AoA based

method is also called triangulation method.

The advantages of this method are that it requires less observations than other methods

and that it does not require a synchronization of the anchor nodes and target node clocks. The

disadvantages are the hardware complexity since an antenna array is required for measuring

the AoA and that small errors in the angle estimation result in a high localization error

especially when the target node is far from the anchor nodes.



16 CHAPTER 2. WIRELESS LOCALIZATION SYSTEMS AND APPLICATIONS
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Figure 2.3 — Angle-of-arrival based localization in a 2-dimensional space.

2.4.2 Time-of-arrival based method

For signals propagating in free space at the speed of light (c ≈ 3× 108m/s), the distance

between the target node and the anchor node i is given by di = c(ti− t0) where t0 is the time

instant at which the emitter node begins transmission and ti is the time-of-arrival (ToA) at

the receiver node. If the emitter and receiver are synchronized and t0 is known at the receiver

(e.g., can be included in the transmitted data packet), then the distance can be obtained by

measuring the ToA.

In a 2-dimensional localization, a ToA observation defines a circle feasibility region, and

the intersection of at least three circles gives the target node location, as shown in Figure

2.4. The ToA based method is also called trilateration method.

d1

d2

d3

Figure 2.4 — Time-of-arrival based localization in a 2-dimensional space.

The need for time synchronization can be overtaken by measuring the round trip de-

lay, which is the time elapsed between the transmission of a signal and the reception of an

acknowledgment. This technique is described in Section 2.5.
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2.4.3 Time-difference-of-arrival based method

The TDoA based method only requires the anchor nodes to be synchronized. In a 2-

dimensional space, the pseudo-range measurement between anchor node i and the target

node is given by

pi = di + b =
√

(xt − xi)2 + (yt − yi)2 + b (2.1)

where di denotes the anchor-target distance, b is an unknown clock bias common to all pseudo-

ranges, [xt, yt]
T and [xi, yi]

T denote the location vectors of the target node and anchor node

i, respectively, and T denotes the vector transpose operator.

One method to compute the location is to solve the system of pseudo-range equations.

Another method consists in eliminating the bias by subtracting the pseudo-ranges, yielding

the TDoA observation for anchor nodes 1 and i :

D1,i = pi − p1 =
√

(xt − xi)2 + (yt − yi)2 −
√

(xt − x1)2 + (yt − y1)2 (2.2)

The set of locations verifying (2.2) define a branch of a hyperbola. Two hyperbola branches

can intersect in one or two points, and in the case of two intersection points a third hyperbola

branch is needed to eliminate the ambiguity. Thus, three or four anchor nodes are needed.

The TDoA based method is illustrated in Figure 2.5.

Figure 2.5 — Time-difference-of-arrival based localization in a 2-dimensional space.

The advantage of the TDoA based method over the ToA based method is that it only

requires the anchor nodes to be synchronized with each other. But in the presence of noisy

observation, the ToA based method is more accurate since it involves less unknown parameters

(the bias is known), assuming a perfect synchronization.
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2.4.4 Hybrid methods

In hybrid methods, several kinds of metrics are used, allowing to improve the accuracy

and to eliminate the ambiguity when only a limited number metrics are available [24, 33].

For example, in cellular networks, when the MS is close to its serving BS, the SNR of the

received signals at other BSs can be very low resulting in a degradation of the localization

accuracy. If both the AoA and ToA are estimated, then only one BS is sufficient for computing

the location. TDoA/AoA hybrid methods can be used when the target node communicates

with two anchor nodes.

2.4.5 Limits on localization accuracy

The localization accuracy depends on several factors such as the kind, number and quality

of measurements, and the network topology. In addition to these factors, the accuracy also

depends on the estimator or data fusion algorithm.

The Cramér-Rao bound (CRB) gives a lower bound on the localization error variance that

can be achieved by unbiased estimators [34]. This bound is a function of the above mentioned

factors and is derived from the Fisher information matrix (FIM). The contribution of an

observation to the FIM is a kind of measurement of the amount of information about the

target node location contained in this observation. A solution for reducing the complexity of

a location estimator is developed in [24] and performs by only considering the most relevant

observations among the available ones, where the selection of the most relevant observations

is based on the CRB.

2.5 Ranging measurements and sources of errors

A ranging measurement is a metric allowing the estimation of the distance between a

transmitter and a receiver. The two main ranging measurements are ToA and received signals

strength (RSS).

2.5.1 ToA ranging

The distance is computed by multiplying the propagation time by the propagation speed.

There are two ToA ranging techniques :

– One-way ranging which is based on one transmission and requires the transmitter and

the receiver to be synchronized.

– Two-way ranging which overcomes the need for synchronization by two transmissions.

These two techniques are illustrated in Figure 2.6.

In ToA ranging, a timing error of 1 microsecond corresponds to a ranging error of 300m

and a timing error of 1 nanoseconds corresponds to a ranging error of 0.3m. Thus, for most

indoor applications, the error must not exceed a few nanoseconds. The main sources of errors

are :
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One-way ranging:

ToA=t1-t0

Two-way ranging:

ToA=(t1-t0-ΔT)/2

Figure 2.6 — One-way and two-way ranging techniques.

– Timing errors : synchronization errors, clock errors and drift, estimation of the reply

delay in two-way ranging.

– Additive noise : In LoS and multipath free propagation, the additive noise limits the

accuracy of ToA estimation. In [35], it is shown that the variance of unbiased ToA

estimators is bounded below by

var(ToA) ≥ 1

8π2BTF 2
c SNR

(2.3)

where B is the signal bandwidth, T is the transmitted symbol duration, Fc is the center

frequency and SNR is the signal-to-noise ratio.

– Multipath : In multipath propagation, several versions of the same signal arrive at the

receiver via different propagation paths. In the absence of multipaths, a simple receiver

computes the ToA by finding the peak of the cross-correlation between the received

signal and the known transmitted waveform. In multipath propagation, the LoS path

might not be the strongest path and the receiver detects the first arriving path and not

the one with the highest peak. A common detection technique consists in measuring

the time when the cross-correlation first crosses a given threshold [36].

– Non-line-of-sight : When the direct path is blocked, the receiver can only observe NLoS

components, and the estimated distance is positively biased. The mitigation of NLoS

impact is still an active research field and several approaches have been developed.

Some of these approaches perform by identifying and discarding the NLoS observations.

Others perform by solving a weighted least squares problem where higher weights are

assigned to the links with high LoS probability. And other methods perform by assuming

statistical models of the NLoS bias and applying a probabilistic estimation technique.

[37] provides a survey of the different existing approaches.
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Ranging with UWB

UWB employs short time duration pulses of the order of nanoseconds that are widely

spread in the frequency domain. Thus, according to (2.3), it enables an accurate ToA ran-

ging in the presence of additive noise. The short time duration can also solve the multipath

components. The theoretical limits and the techniques for estimating the ToA with UWB are

discussed in [36].

Statistical error model

Short ranging measurements have shown that ranging errors of LoS propagation can be

roughly modeled as Gaussian distributed [38]. In the cases of NLoS and obstructed LoS,

other models have been proposed to account for errors that can take large values. Examples

of these models are the mixture of Gaussian distributions [21] and the mixture of Gaussian

and exponential distributions [38].

2.5.2 RSS ranging

RSS is a measure of the received power that can be easily obtained without additional

hardware complexity. RSS ranging is based on the principle that the average received power

is decreasing with the distance separating the transmitting node from the receiving node due

to path loss. Thus, a path loss model is needed for estimating the distance from the RSS

value. A widely accepted model for characterizing the RSS is given by [39]

Pr(d) = P0 − 10nplog10d+ ε (2.4)

where Pr(d) (in dB) is the RSS value at a distance d, P0 is the average RSS value (in dB) at

a distance of 1m, np is the path loss exponent, and ε is a centered Gaussian random variable

of variance σ2
sh representing the large scale fading or shadowing.

By assuming that the RSS observation follows (2.4) with known P0 and np, a lower bound

of the variance of unbiased distance estimators from the RSS is given by

var(d̂) ≥ σ2
shd

2(
log10

10np
)2. (2.5)

This bound corresponds to the CRB and can be computed following the indications provided

in Appendix A. This bound is increasing with the square of the distance d. When np = 3 and

σsh = 4dB, its value is about 9.4m2 for d=10m and about 942m2 for d = 100m which is very

high. This inaccuracy is the main disadvantage of RSS ranging and positioning.

In fact, estimation techniques allow estimating the location directly from several RSS

measurements without the need for estimating the distances [40], but the order of accuracy

of distance estimation provides information about the relevance of a particular RSS measu-

rement to the location estimation.

The shadowing can be modeled as a combination of two parts : A first part which is

random in space and a second part which is random in space and time. The knowledge
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of the values of the first part at the different locations can highly improve the localization

accuracy. The fingerprinting method consists in constructing the RSS or shadowing maps via

measurements campaigns or calibration tools. This method is presented in the next section.

2.6 Fingerprinting method

This method performs in two phases :

– In the offline phase, data collection is performed where location dependent parameters

of the signals are measured at selected locations, and then processed and saved in a

database.

– In the online phase, the measurements vector is compared with the database values

where a cost function is used in the comparison, and the target location is computed

from the locations associated to the database entries that best match the measurements.

Fingerprinting has been mostly experimented with RSS in both WLAN [41] and cellular

[42] networks. Other location dependent parameters have been also studied such as the power

delay profile [43]. Calibration tools, such as ray tracing, can be equally used in the offline

phase, but their impact on the positioning accuracy has to be considered.

The online phase estimation techniques can be classified as deterministic or probabilistic.

An example of a deterministic technique is the k-nearest neighbors averaging where the

coordinates of the k best matching locations are averaged to give the estimated coordinates

[41]. In the probabilistic techniques, the calibration measurements made during the offline

phase are used to derive the statistical models of the location-dependent parameters, and

probabilistic inference methods are used to estimate the location during the online phase.

In [44], a spatial correlation model of the RSS is assumed and the calibration measurements

made at selected locations are used to compute the posterior distribution of the RSS at any

other space location.

The main difficulties of the fingerprinting method reside in constructing the database

and maintaining it up-to-date by repeating the calibration process to track changes in the

environment. Few solutions considered the issue of reducing the calibration effort. One of these

solutions consists of reducing the number of locations at which measurements are collected

[45], at the expense of an accuracy reduction.

2.7 Cooperative localization and tracking

The localization methods we have described in the two previous sections consider a target

node connected to (or communicating with) several anchor nodes and the location is com-

puted from the pair-wise measurements made with these anchor nodes. In many scenarios,

target nodes may not be able to connect to a sufficient number of anchor nodes. Additio-

nally, even when a sufficient number of anchors is available, the achievable accuracy may not

meet the intended application requirements. To overcome these problems, other localization

methods have been developed by exploiting other kinds of measurements such as intra-node
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measurements in the case of moving target nodes and inter-node measurements between pairs

of target nodes.

According to the kind of information used, localization algorithms can be classified into

one of the following four classes :

1. Non-cooperative static localization : The location is computed solely from the measu-

rements made with anchor nodes. If the target node is moving, the location at a given

time instant is computed without using a motion model or the measurements made at

the previous time instants.

2. Non-cooperative dynamic localization : The algorithms that fall in this category perform

a location tracking over time. Tracking allows improving the accuracy by exploiting the

measurements made at multiple time instants. The dependence between these measu-

rements is derived from a motion model specifying the dependence between the target

node locations at the different time instants, as for example, a mobile target cannot

travel a long distance over a short time period. Intra-node measurements can be used

in tracking for enhancing the motion model. These measurements can be delivered by

inertial navigation sensors (INS) such as accelerometers and gyroscopes. Additionally,

tracking allows reducing the impact of some errors that are spatially correlated such as

the NLoS bias in ToA [46] and the shadowing in RSS [4].

3. Cooperative static localization : Cooperative localization allows circumventing the need

for high density of anchor nodes and high transmit power for long range connectivity.

It is based on using the measurements made between pairs of target nodes in addi-

tion to those made with anchor nodes, and simultaneously estimating multiple target

locations. Figure 2.7 shows an example of a two-dimensional network where the target

nodes cannot compute their location by trilateration, but using all the inter-node ranging

measurements makes the computation feasible.
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Figure 2.7 — A 2-dimensional network of three anchor nodes and three target nodes. Two

nodes are connected by an edge if they are performing a pair-wise ranging measurement.

Cooperation allows the computation of the target nodes locations.

Furthermore, it is proven in [47] that adding a target node to a network can only improve

the location estimation accuracy for the remaining nodes.
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Several names have been attributed to cooperative localization in the literature such

as self-localization, multihop and ad-hoc localization, and self-calibration, and many

algorithms have been developed.

An application example of indoor localization is shown in Figure 2.8. It considers femto

BSs placed in several apartments. The locations of the femto BSs need to be known in

order to use them as anchor nodes for locating mobile terminals or for communications

enhancement. Since the femto BSs are intended to be plug and play devices, it is inap-

propriate to ask the users to manually localize them, and cooperative localization can

be the alternative.

 

Figure 2.8 — Femto BSs self-localization.

4. Cooperative dynamic localization : A tracking operation of the mobile targets is perfor-

med while at the same time the cooperation is maintained by exploiting the inter-node

measurements. Hence, the algorithms that fall in this category can achieve the best per-

formance. In [48], cooperative dynamic localization is seen as an extension of cooperative

static localization where there are cooperations in both space and time.

In the example of Figure 2.9, the measurements made at mobile stations can be used for

estimating the locations of these mobile stations and improving the estimated locations

of the femto BSs.

2.8 Conclusion

In this chapter, we reviewed several wireless localization systems. Apart from the GNSS

and its augmentation, the sensor networks and the RFID, these systems are based on com-

munication and broadcast infrastructures. Originally, these systems were not designed for

localization purposes. Many standardization efforts have been made in order to make them

suitable for localization and to improve the delivered localization accuracy, such as the intro-

duction of the UWB ranging in the 802.15.4a amendment and the timing reference units in
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Figure 2.9 — User terminal localization by femto BSs.

the cellular systems. Nonetheless, network planning strategies can be developed and applied

to offer some targeted quality of localization in specific deployment areas. We described seve-

ral location based applications covering several fields of activities. We also presented several

fundamental localization solutions. These solutions fall in the category of non-cooperative

static localization, according to the classification provided at the end of this chapter.

In the following chapters, cooperative static and non-cooperative dynamic localization

(i.e., the second and the third categories of the classification previously described) are consi-

dered from a statistical signal processing perspective.



CHAPTER

3 Rigidity, Identifiablity

and Localizability in

Cooperative Network

Localization

3.1 Introduction

Cooperative network localization aims at determining the locations of wireless communi-

cation devices (also called nodes), in an Euclidean space, which are consistent with a set of

pair-wise measurements made between the nodes. In general, measurements are not available

for all the pairs of nodes, i.e., the network graph is not complete, and as a consequence,

there may not be enough information to estimate the different locations without ambiguities.

Even with the knowledge of the true separating distances between pairs of nodes, ambigui-

ties exist when there are multiple feasible solutions of the target node coordinates verifying

the distance constraints. In Figure 3.1(a), for example, the 2-dimensional network consists of

three anchor nodes a, b and c of known positions and two target nodes d and e of unknown

positions. Two nodes are connected by an edge if their true separating distance is known. The

target nodes are not uniquely solvable : Node e can be reflected in the line passing through

nodes b and d, and nodes d and e can be reflected in the line passing through nodes b and

c. By connecting nodes a and e, the ambiguities are eliminated and the nodes positions be-

come uniquely solvable. Graph rigidity theory and semidefinite programming define sufficient

unique solvability conditions of the target nodes, assuming perfect ranging measurements.

In probabilistic estimation, where the pair-wise measurements are affected by random

fluctuations, the ambiguity can be defined using the identifiability theory which concerns the

possibility of drawing inference about unknown parameters from probability distributions.

The limitation of the number of pair-wise measurements can be due to several factors,

such as :

– Propagation issues : The decrease of the average power and the presence of noise limit

the connectivity between the nodes. The non-line-of-sight (NLoS) propagation intro-

duces a bias in the measured distances degrading the localization accuracy. It is shown
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Figure 3.1 — A 2-dimensional network of three anchor nodes and two target nodes. In (a)

the target nodes have ambiguities on their position solutions. And in (b) the ambiguities are

eliminated by adding an edge between nodes a and e.

in [49] that by identifying and eliminating NLoS measurements, the accuracy can be

improved .

– Link selection : In densely crowded networks, the computational complexity of the

localization algorithms can be reduced by discarding some measurements, without de-

grading the accuracy. This procedure is also beneficial to distribute the localization

algorithm as it allows a reduction of the traffic overhead [50, 51].

– Heterogeneous networks : Two nodes with non-compatible physical interfaces may not

be able to perform a pair-wise measurement or communicate with each other.

Before applying a localization algorithm, it is important to know the conditions that

guarantee an absence of ambiguities, since they can result in high estimation errors, especially

in large networks where the computed spatial configuration can be much different from the

true one due to error accumulation. Additionally, the detection of the ambiguities allows us

to deal with them either by eliminating some nodes from the set of nodes to be localized

and thus improving the robustness of the solution [52, 53], or by mitigating them by making

additional measurements [54] or by using additional a priori information [55].

The objective of this chapter is to study, in static networks, the unique solvability condi-

tions based on the knowledge of the true distance values, and the identifiability conditions

based on noisy ranging measurements. Two approaches are considered when studying the

unique solvability : Graph rigidity theory and semidefinite programming (SDP). Moreover,

in studying the identifiability properties, the unknown locations are treated as deterministic

parameters and probabilistic models of the measurements are assumed. We start in Section

3.2 by reviewing the graph rigidity theory in the context of cooperative localization. Then,

in Section 3.3, the presence of noise in the measurements is considered and we derive a rela-

tionship between the rigidity and the Fisher information matrix (FIM), and the conditions

of non-singularity of the FIM. The identifiability is also studied in this section, where we

derive correspondences between the rigidity and the identifiability. These correspondences

allow checking identifiability properties by using graph rigidity tools. SDP is the subject of

Section 3.4, where the state of the art method is described, and a new SDP based technique

is proposed to improve the detection of the uniquely solvable nodes. In Section 3.5, numerical

results about the statistical occurrence of rigid and uniquely solvable networks are provided.
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Finally, concluding remarks are drawn in Section 3.6.

3.2 Graph rigidity theory

Graph rigidity theory has been studied by mathematicians since the 19th century. It is

related to the graph realization problem, which consists in computing relative locations of ver-

tices in an Euclidean space verifying a set of inter-vertex distance values. It tries to determine

whether a graph has a unique realization in a given dimension. This theory has applications

in several disciplines such as chemistry (e.g., structures of molecules) and construction engi-

neering (e.g., bar-and-joint structures) [56, 57, 58, 59, 60, 61].

The results of this theory have been applied to network localization [62, 1], and provide

sufficient conditions to guarantee unique position solutions. In this section we present a survey

of these results, and we start by providing some notations and preliminary definitions.

3.2.1 Definitions

Consider a d-dimensional network L of size N consisting of m < N anchor nodes of known

locations labeled 1 through m and n = N − m target nodes of unknown locations labeled

m+ 1 through N lying in a d-dimensional Euclidean space, where d = 1, 2 or 3. The position

of node i is denoted by the column vector xi ∈ Rd, where R is the field of real numbers.

The distance between nodes i and j is denoted by di,j = ‖xi − xj‖, or in other words the

Euclidean norm of xi − xj . We assume that xi 6= xj for all 1 ≤ i < j ≤ N throughout this

chapter.

A graph G = (V,E) of vertex set V = {1, 2, · · · , N} and edge set E = {(i, j)| i, j ∈
V and i and j are neighbors} is associated to the network L as follows : Vertex i is asso-

ciated to network node i, and two vertices are connected by an edge if they correspond to

anchor nodes or if they are performing a pair-wise ranging measurement, i.e., either their

separating distance is known or it can be estimated. The terms node and vertex will be used

interchangeably.

A d-dimensional framework (G,p) is defined as being a pair consisting of a graph G =

(V,E) and a mapping p from V to Rd such that p(i) 6= p(j) for all (i, j) ∈ E.

For two frameworks (G,p) and (G,q) of the same dimension, the following terminology

is introduced in [60] :

– (G,p) and (G,q) are equivalent if ‖p(i)− p(j)‖ = ‖q(i)− q(j)‖ for all (i, j) ∈ E.

– (G,p) and (G,q) are congruent if ‖p(i)− p(j)‖ = ‖q(i)− q(j)‖ for all i, j ∈ V .

– (G,p) is globally rigid if every framework which is equivalent to (G,p) is congruent to

(G,p) (e.g., Figure 3.2(c)).

– (G,p) is rigid if there exists an ε > 0 such that every framework (G,q) equivalent to

(G,p) and satisfying ‖p(i)− q(i)‖ < ε for all i ∈ V is congruent to (G,p) (e.g., Figure

3.2(b)).

– A framework is flexible if it is not rigid, i.e., susceptible to continuous deformations
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(e.g., Figure 3.2(a)).

(a) Flexible (b) Rigid (c) Globally rigid

Figure 3.2 — Three 2-dimensional frameworks.

A framework (G,p) is said to be a realization of the network L if they both have the

same dimension and ‖p(i)− p(j)‖ = di,j for all (i, j) ∈ E, where G is the graph associated

to the network.

A framework (G,p) is said to be the fundamental realization of the network L if it is a

realization framework verifying p(i) = xi for all i ∈ V .

The network localization problem is defined as

find xj , j = m+ 1, . . . , N,

s.t. xi, i = 1, . . . ,m,

‖xu − xv‖ = du,v, ∀(u, v) ∈ E.
(3.1)

The network L is said to be uniquely solvable if problem (3.1) has a unique solution, i.e., all

the nodes are uniquely solvable.

Theorem 3.1 ([62]). The d-dimensional network L is uniquely solvable if and only if any

realization framework of L is globally rigid and the network has at least d + 1 anchor nodes

in general positions.

Nodes are said to be in general positions if they have affinely independent position vectors,

i.e., not collinear for d = 2 and not coplanar for d = 3.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ = {(i, j) ∈ E|i, j ∈
V ′}. The framework (G′,p) is then a subframework of (G,p).

A node is said to be uniquely solvable if its solution is the same for every solution of

problem (3.1). A direct result of Theorem 3.1 is the following corollary :

Corollary 3.1. A node is uniquely solvable if it belongs to a globally rigid subframework

having at least d+ 1 anchor nodes in general positions, for any realization framework of L.

In fact, the condition provided by Corollary 3.1 is only sufficient for unique solvability,

but no sufficient and necessary conditions are known yet.

Graph rigidity theory provides tools for checking rigidity and global rigidity of frameworks,

and thus, answering the question whether the network localization problem is uniquely sol-

vable, and if not, finding a portion of the uniquely solvable nodes. Now, we present the rigidity

matrix which is an important tool and which will be used later in deriving the relationship

between the rigidity and the FIM.
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3.2.2 Rigidity matrix

A smooth motion of a framework (G,p) is defined as being a function P from R+× V to

Rd verifying the three following points :

1. P(t, v) is a differentiable function of t, where t can be seen as time.

2. P(0, v) = p(v) for all v ∈ V .

3. ‖P(t, v)−P(t, u)‖ = ‖p(v)− p(u)‖ for all (u, v) ∈ E and all t ≥ 0.

Thus, for t = 0, (G,p) is rigid if and only if every smooth motion of (G,p) results in a

framework which is congruent to (G,p).

Condition 3, described above, can be rewritten as

‖P(t, v)−P(t, u)‖2 = constant w.r.t. t (3.2)

and by differentiating with respect to t, we obtain

[P(t, v)−P(t, u)]T
[
P′(t, v)−P′(t, u)

]
= 0 (3.3)

where P′(t, v) represents the instantaneous velocity of the function P, and T denotes the

transpose operator. At time t = 0, denote p′(v) = P′(0, v) :

[p(v)− p(u)]T
[
p′(v)− p′(u)

]
= 0 for all (u, v) ∈ E (3.4)

which can be written as

[
p(v)− p(u)

p(u)− p(v)

]T [
p′(v)

p′(u)

]
= 0 for all (u, v) ∈ E. (3.5)

An assignment of velocities p′(v), for all v ∈ V , satisfying the system of equations (3.5) is

called an infinitesimal motion of (G,p). This system of equations can be used to determine

a basis for all infinitesimal motions.

The rigidity matrix M(G,p) of (G,p) is the matrix of the coefficients of (3.5). Its size

is |E| × d|V |, where |.| denotes the cardinality of a set. Each edge in the graph indexes a

row in this matrix and each vertex indexes d consecutive columns. For a row indexed by

an edge (u, v) ∈ E, the entries corresponding to vertex u are given by (p(u) − p(v))T and

those corresponding to vertex v are given by (p(v) − p(u))T , and the remaining entries are

equal to zero. A framework (G,p) and its rigidity matrix are shown in Figure 3.3, where

p(i) = [xi , yi]
T ∈ R2.

The infinitesimal motions of a framework constitute the null space of the rigidity matrix.

This null space always has a non-zero rank as it contains the trivial motions, i.e., rotations

and translations of the whole framework, and thus, the rigidity matrix cannot have a full

column rank. For a d-dimensional framework with at least d nodes, that are not all collinear

for d = 3, there are d independent trivial translations and d(d − 1)/2 independent trivial

rotations. Thus, the total number of independent trivial motions is d(d+ 1)/2.
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Figure 3.3 — A 2-dimensional network and its rigidity matrix. The first row corresponds

to edge (a, b), the second to edge (a, c), the third to edge (b, c) and the fourth to edge (c, d)

For a number of nodes N ≥ 2, let

S(N, d) =

{
dN − d(d+ 1)/2 if N ≥ d+ 2

N(N − 1)/2 if N ≤ d+ 1
. (3.6)

Notice that for N ≥ d+2, S(N, d) is equal to the number of the columns of the rigidity matrix

minus the number of the trivial motions. The minimum rank of the null space of M(G,p) is

equal to the number of trivial motions.

Theorem 3.2 ([60]). Let (G,p) be a d-dimensional framework with N ≥ 2 nodes. Then

rankM(G,p) ≤ S(N, d). Furthermore, if equality holds, then (G,p) is rigid.

In other words, when equality holds, the only possible motions are the trivial ones and

the framework cannot have a continuous deformation.

(G,p) is said to be infinitesimally rigid if rankM(G,p) = S(N, d). According to Theorem

3.2, infinitesimal rigidity is a sufficient condition for rigidity. Figure 3.4 shows that infinite-

simal rigidity is not equivalent to rigidity, where the framework is rigid and the rank of the

rigidity matrix is less than S(N, d). In fact, this framework is particular (i.e., non-generic as

we will see) as nodes a, b and c are collinear, and non-trivial velocity of node b orthogonal

to the line passing through the aligned nodes belongs to the null space of the rigidity ma-

trix, though this deformation is not allowed by the rigid framework. Infinitesimal rigidity is

equivalent to rigidity for a category of frameworks called generic frameworks.

3.2.3 Generic frameworks

A framework (G,p) is said to be generic if its rigidity matrix has the maximum rank among

all possible frameworks (G,q) of the same dimension [63]. For a d-dimensional framework of

N nodes, the mappings of the nodes can be seen as a single point in RNd. The generic

frameworks form an open dense subset of RNd, and the non-generic frameworks form an
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Figure 3.4 — A 2-dimensional non-generic rigid framework which is not infinitesimally

rigid.

algebraic subset of RNd. Thus, if we draw randomly N uniformly distributed positions in an

open set of Rd, the obtained framework is generic with probability one. The framework of

Figure 3.4 is non-generic as there are nodes lying on the same line.

For generic frameworks, rigidity is equivalent to infinitesimal rigidity :

Theorem 3.3 ([64]). Let (G,p) be a d-dimensional generic framework. Then (G,p) is rigid

if and only if (G,p) is infinitesimally rigid.

For a graph G, the rank of M(G,p) will be maximized when (G,p) is generic, and

hence, rankM(G,p) is the same for all generic frameworks sharing the same graph in a given

dimension. This fact allows us to deduce the following theorem :

Theorem 3.4 ([65]). If a graph has a single infinitesimally rigid framework, then all its

generic frameworks are rigid.

In other words, given a graph G, if (G,p) is a generic and rigid framework in Rd and

(G,q) is another generic framework in Rd, then (G,q) is rigid. Thus, rigidity is a combinatorial

property of the graph in all dimensions.

Next, we will present solutions for testing generic rigidity.

3.2.4 Generic rigidity testing

We restrict our attention to generic frameworks. As previously stated, given a dimension

d, the rigidity is not a characteristic of a specific framework, but rather a characteristic of

the graph. Combinatorial polynomial time algorithms for testing rigidity are only known for

d = 1 and 2.

For the case d = 1, rigidity is equivalent to graph connectivity. A simple algorithm for

testing graph connectivity is depth first search with complexity O(N), N being the number

of vertices.

For the case d = 2, Laman’s theorem characterizes rigidity [66]. Before stating this theo-

rem, we define the terms of independent and redundant edges. By setting d = 2 in (3.6), we

get S(N, 2) = 2N − 3 which means that there are at most 2N − 3 linearly independent rows

in the rigidity matrix of any generic framework. The edges whose corresponding rows are

linearly independent are said to be independent. Each independent edge eliminates a degree

of freedom, or a continuous deformation, in the framework structure. The other edges are
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redundant edges : Their removal does not affect the rank of the rigidity matrix. The presence

of 2N − 3 independent edges is a sufficient and necessary condition for rigidity. As rigidity is

a graph theoretic property, the independence of edges is also a graph theoretic property.

Theorem 3.5 (Laman [66]). The edges of a graph G = (V,E) are independent in two

dimensions if and only if no subgraph G′ = (V ′, E′) of G has more than 2N ′− 3 edges, where

N ′ = |V ′|.

Corollary 3.2 ([56]). A graph with 2N − 3 edges is rigid in two dimensions if and only if

no subgraph G′ has more than 2N ′ − 3 edges.

Using Laman’s condition, in its original form, to characterize rigidity results in a poor

algorithm as it involves counting the edges in every subgraph, of which there are an exponen-

tial number. There are several combinatorial algorithms for testing rigidity when d = 2. The

best are of O(N2) complexity [56, 57, 58]. In [56], an O(N2) algorithm based on bipartite

matching is developed. This algorithm is recast in [57] in terms of a simple pebble game that

allows the identification of all the rigid subgraphs and the redundant edges.

For the case d = 3, there is no theoretical characterization of rigidity similar to Laman’s

theorem.

Moreover, the rigidity matrix rank test can be used in all dimensions : When nodes po-

sitions are not known, symbolic calculations can be used or a randomly generated generic

framework. The computation of the rank can be done using QR decomposition with com-

plexity O(|E|N2).

Identification of rigid subgraphs using the rigidity matrix

Now, we derive two solutions for identifying the rigid subgraphs using the rigidity matrix

for the cases d = 2 and d = 3.

For the case d = 2, it can be shown, using Laman’s theorem, that the union of two rigid

graphs sharing an edge forms a rigid graph [57]. Thus, if we select an edge in a 2-dimensional

framework and fix it by preventing its two endpoints from moving, then all the nodes that

become fixed belong to the same rigid subgraph containing this edge. These nodes can be

identified using the rigidity matrix by removing the columns of the two fixed nodes and

computing a basis of the null space of the obtained matrix. The nodes that cannot move have

their entries equal to zero in all the vectors of this basis. For example, consider the framework

of Figure 3.3 and let p(a) = [−1 0]T , p(b) = [0 1]T , p(c) = [0 − 1]T and p(d) = [1 0]T . By

fixing nodes a and b and removing their columns from M(G,p), we obtain the following

rank-3 matrix :

Ma,b(G,p) =




0 0 0 0

1 −1 0 0

0 −2 0 0

−1 −1 1 1


 . (3.7)

The null space of Ma,b(G,p) is generated by the vector [0 0 − 1 1]T . Node c has its entries
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equal to zero in this vector, where the first two entries correspond to xc and yc and the last

two entries correspond to xd and yd, and thus, nodes a, b and c form a rigid subgraph.

For the case d = 3, a reasoning similar to the case d = 2 can be applied according to the

following theorem :

Theorem 3.6 ([58]). (Gluing Theorem) If (G1,p1) and (G2,p2) are d-dimensional gene-

rically rigid frameworks sharing at least d vertices, then the union of the two frameworks

(G,p) = (G1 ∪G2,p1 ∪ p2) is generically rigid.

Thus for the case d = 3, if we fix three vertices connected to each other by three edges, all

the vertices that become fixed form a rigid subgraph with them. This method cannot be always

applied since the existence of three vertices connected to each other is not always guaranteed

(e.g., the complete bipartite graph K4,6 is rigid [58]). Notice that the union of multiple rigid

subgraphs sharing an edge is not necessarily rigid. By fixing two vertices connected by an

edge, we can determine the subgraph of all the vertices that can rotate around the fixed edge,

i.e., their velocities are orthogonal to this edge. Denote by G′ the union of this subgraph and

the two fixed vertices. Then a rigid subgraph containing the two fixed vertices must be a

subgraph of G′.

3.2.5 Generic global rigidity testing

In this section, we will focus again on generic frameworks. It is shown in [61] that gene-

ric global rigidity is a graph property in all dimensions. Indeed, the rigidity is a necessary

condition for global rigidity.

A graph is k-connected if it remains connected after the removal of any k − 1 vertices.

For the case d = 1, a graph is globally rigid if and only if it is completely connected on

two vertices or it is 2-connected [60]. Depth first search can be used to test 2-connectivity in

linear time.

For the case d = 2, a graph of 3 or less vertices is globally rigid if and only if it is

completely connected. And for larger graphs, two conditions are proven to be necessary [56]

and together sufficient [67] for global rigidity : 3-connectivity and redundant rigidity.

– 3-connectivity : This condition is necessary to avoid reflections. In Figure 3.1(a), the

graph is only 2-connected since the removal of nodes b and c makes it disconnected, and

a portion of the framework can be reflected in the line connecting these two nodes. An

efficient graph connectivity order test of complexity at most O(N1/2|E|) is described

in [68].

– Redundant rigidity : A graph is said to be redundantly rigid if it remains rigid after

the removal of any of its edges. Figure 3.5 shows a framework whose associated graph

is 3-connected but not redundantly rigid (it becomes flexible when the dashed edge is

removed). This framework has another equivalent but non-congruent framework.

Identification of the globally rigid subgraphs when d = 2 : The globally rigid

subgraphs are the 3-connected and redundantly rigid subgraphs. A recursive algorithm for

finding them is described in Table 3.1 [1].
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Figure 3.5 — A 3-connected and non-redundantly rigid graph. The space dimension is

d = 2.

0 : Function FindGRSubgraphs (graph G)

1 : GRSubgraphs = empty

2 : for each rigid subgraph G′ of G

3 : if G′ is not 3-connected

4 : recurse on each 3-connected subgraph of G′

5 : append the globally rigid subgraphs to GRSubgraphs

6 : else if G′ is not redundantly rigid

7 : recurse on each redundantly rigid subgraph of G′

8 : append the globally rigid subgraphs to GRSubgraphs

9 : else

11 : append G′ to GRSubgraphs

12 : return GRSubgraphs

Table 3.1 — Recursive algorithm for identifying the globally rigid subgraphs in two dimen-

sions [1].

For the case d = 3, a graph of 4 or less vertices is globally rigid if and only if it is

completely connected. For larger graphs, the conditions of 4-connectivity and redundant

rigidity are necessary but not sufficient.

A sufficient [59] and necessary [61] condition for generic global rigidity does exist and

applies for all dimensions d. To check this condition, the positions of all the nodes need to

be known. When the positions are not known, a randomly generated generic framework can

be used.

3.2.6 Non-generic frameworks

In the previous sections, we described algorithms for checking generic rigidity and generic

global rigidity. Generic frameworks are only a subset of the frameworks for a given dimension.

In [69], it is shown that it is NP-hard to decide whether a d-dimensional framework is globally

rigid even for d = 1.

The generic graph rigidity property does not imply the rigidity of non-generic frameworks.

Figure 3.6(a) shows a non-generic and flexible framework and Figure 3.6(b) shows a generic

rigid framework. Both frameworks have the same graph.
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When the positions are not known, one may not be able to assert whether the nodes

are in generic positions. If the positions are randomly generated according to the uniform

distribution in an open set of Rd, then the obtained network is generic with probability one.

(a) (b)

Figure 3.6 — Two 2-dimensional frameworks sharing the same graph. (a) Non-generic and

flexible. (b) Generic and rigid.

3.2.7 Networks with known vertical elevations

In some localization applications, the vertical elevations or the altitude of the nodes might

be known, e.g., access points or femtocells placed on a desk or fixed to the ceiling, equipments

carried by pedestrians. In this case, the rigidity and global rigidity conditions are not the same

as those when the elevations are not known.

Let (G,p) and (G,q) be two 3-dimensional frameworks such that p(i) and q(i) have the

same elevations for all i ∈ V , and let (G, p̄) and (G, q̄) be their orthogonal projections on the

horizontal plane. It can be easily shown that (G, p̄) and (G, q̄) are equivalent (respectively

congruent) if and only if (G,p) and (G,q) are equivalent (respectively congruent). Thus, the

rigidity and global rigidity conditions when the elevations are known are the same as those

of planar networks.

3.2.8 Unique solvability

The d-dimensional network L is said to be generic if its fundamental realization framework

is generic.

Assume here that the network L is generic. According to Theorem 3.1, the network L is

uniquely solvable if and only if the associated graph is globally rigid and there are at least

d+1 anchor nodes (these anchor nodes are in general positions since the network is generic 1).

When the graph is not globally rigid, a node is uniquely solvable if it belongs to a globally

rigid subgraph containing the vertices of at least d + 1 anchor nodes. This condition is only

sufficient and allows identifying only a subset of the uniquely solvable nodes. In Figure 3.7(a),

node a is uniquely solvable while it does not belong to a globally rigid subgraph. In such a

case, the unique solvability depends on the distance values as illustrated by Figure 3.7(b)

where the graph is the same as that of Figure 3.7(a) but node a is not uniquely solvable.

Sufficient and necessary conditions for generic unique solvability are not yet known.

1. If the d + 1 nodes are collinear when d = 2 or coplanar when d = 3, then the network ceases to be

generic.
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a

(a)

aa

(b)

Figure 3.7 — Two 2-dimensional networks. In (a), node a is uniquely solvable while it does

not belong to a globally rigid subgraph. In (b), the distance values are changed and the node

is no more uniquely solvable.

3.2.9 Distributed construction of rigid and globally rigid networks

In the case of distributed cooperative localization, the computational tasks are distributed

among the nodes and there might not be a central node at which the connectivity information

or the measurements are collected. In such situations, it is desirable to have a distributed

algorithm for finding the uniquely solvable nodes or rigid subgraphs.

For rigidity testing, the distributed application of the pebble game algorithm requires an

important overhead of message exchanges and some coordination mechanism for defining the

order of edges appearance. For global rigidity testing, distributed testing of 3-connectivity

and redundant rigidity seems to be very cumbersome.

Fortunately, there are categories of networks for which the determination of rigid and

globally rigid subgraphs and uniquely solvable nodes can be easily carried out in a distributed

sequential manner.

A network constructed by sequentially adding to a rigid network new nodes connected

to at least d nodes of it is rigid. For d = 2, the networks obtained by this way are called

bilateration networks. We mention that not all rigid networks are bilateration ones : The

framework of Figure 3.6(b) is rigid but the associated network is not a bilateration one.

Similarly, a network constructed by inserting a node connected to d+ 1 nodes in general

positions of a globally rigid network is globally rigid. For d = 2, these networks are called

trilateration networks [53], and as for the rigidity, trilateration networks are only a subset of

the globally rigid networks.

In [70], it is shown that another category of networks, called wheel networks, are globally

rigid and a distributed algorithm is developed for identifying them. Trilateration graphs are

a special case of wheel graphs.

Finally, we mention the following necessary condition for unique solvability [1] : If a node

is uniquely solvable, then their exist d+ 1 disjoint paths connecting this node to d+ 1 anchor

nodes, where two paths are called disjoint if they are not sharing any common node. For

example, when d = 2, if a node has only two disjoint paths to two anchor nodes in a network

containing three anchor nodes, then the associated graph is 2-connected and not 3-connected.

This condition can be used to identify non-uniquely solvable nodes.
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3.3 Rigidity , FIM and identifiability

In this section, the unknown target nodes locations in the network L, which has been

defined in the previous section, are considered as deterministic parameters, and the ranging

measurements are considered as random due to the presence of noise.

Before providing the novel contributions of this section, which are the correspondence

between the Fisher information matrix and the rigidity and the correspondences between the

rigidity and the identifiability, we start by presenting the FIM and its computation.

Let θ = [xTm+1, · · · ,xTN ]T be the vector parameter of size nd consisting of the coordinates

of the n = N −m target nodes. d is the space dimension.

The scalar ranging measurement yu,v between nodes u and v is assumed to be the reali-

zation of a random variable yu,v of known distribution parametrized by the distance du,v :

yu,v ∼ pyu,v |du,v (3.8)

where du,v is the only unknown parameter in this distribution, for all (u, v) ∈ E, u < v

and m < v. We also assume that the different measurements are independent. Let y denote

the vector of all the measurements. This vector is a realization of a random vector Y . The

likelihood of θ can be written as

p(y|θ) =
∏

(u,v)∈E
u<v, m<v

p(yu,v|du,v) (3.9)

where the subscripts of the distribution functions are dropped for notational brevity.

A cooperative localization algorithm is an estimator θ̂(y) of θ, and the probabilistic esti-

mators depend on the distribution functions (3.8).

Now, we will present the FIM and see how it defines a lower bound for unbiased estimators.

This issue is well known in estimation theory. Then, we will derive the computation of the

FIM for likelihood function (3.9). And next, we will establish correspondences between the

rigidity and the FIM rank by proofing some propositions, and which will be used to derive

other correspondences between the rigidity and the identifiability.

The FIM is a kind of measurement of the amount of information contained in the likelihood

function about the unknown parameter. Under the regularity condition, i.e., log p(y|θ) is

continuously differentiable w.r.t. θ, the FIM is given by [71] :

J(θ) = EY |θ

{
∇θlog p(y|θ) (∇θlog p(y|θ))T

}
(3.10)

where EY |θ {.} indicates the conditional expected value, and ∇θ is the gradient operator w.r.t.

to θ.

Provided that J(θ) is non-singular, any unbiased estimator θ̂ satisfies

Cov(θ̂) � J(θ)−1 (3.11)

where Cov(θ̂) = EY |θ{(θ̂−θ)(θ̂−θ)T } is the covariance matrix of θ̂ and A � B is equivalent to

A−B is positive semidefinite. Equation (3.11) defines the Cramér-Rao lower bound (CRB).
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According to the definition of θ, the location estimate of node i+m corresponds to the entries

of θ̂ going from (i− 1)d+ 1 to id :

x̂i+m = θ̂(i−1)d+1:id (3.12)

where m is the number of anchor nodes. The mean square error (MSE) of an unbiased estimate

x̂i+m is lower bounded by the squared position error bound (SPEB) as follows :

E
{
‖x̂i+m − xi+m‖2

}
≥ trace

{
[J(θ)−1](i−1)d+1:id

}
(3.13)

where [J(θ)−1](i−1)d+1:id is the square submatrix of J(θ)−1 with row and column entries going

from (i− 1)d+ 1 to id. The CRB in cooperative localization based on ranging measurements

has been well studied in the literature [47, 72, 73], and has been considered as a benchmark

for evaluating the performance of location estimators. But the conditions of obtaining a

non-singular FIM have not been well studied. The results developed in this section aim at

providing these conditions.

3.3.1 Computation of the FIM

Since the pair-wise measurements are independent, J(θ) is obtained by summing the FIMs

corresponding to the different observations and is derived in Appendix A :

J(θ) =
∑

(u,v)∈E
u<v, m<v

Ju,v(θ)

=
∑

(u,v)∈E
u<v, m<v

E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}
∇θdu,v (∇θdu,v)T .

(3.14)

In the following sections, we assume that E

{(
∂log p(yu,v |du,v)

∂du,v

)2
}
6= 0 for all du,v > 0.

This condition is verified by ToA measurements and RSS measurements in additive Gaussian

and additive mixture of Gaussian noises, as shown in Appendix A

3.3.2 Correspondence between the rigidity and the FIM

The novel results derived now describe the correspondence between the rigidity and the

FIM. Let (G,p) be the fundamental realization framework of the network L, and let M ‡(G,p)

be the matrix obtained form the rigidity matrix M(G,p) by removing all the columns corres-

ponding to the anchor nodes. The columns of M ‡(G,p), indexed by the target nodes, appear

in the same order as in the vector parameter θ.

Proposition 3.1. The ranks of FIM J(θ) and M ‡(G,p) are equal :

rankJ(θ) = rankM ‡(G,p). (3.15)
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Proof We have the following equality

∇θdu,v =
1

du,v
lTu,v (3.16)

where lu,v is the row vector of M ‡(G,p) corresponding to edge (u, v). This equality allows us

to write (3.14) as

J(θ) =
∑

E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}

1

d2
u,v

lTu,vlu,v. (3.17)

Let c be a vector of the null space of M ‡(G,p), then it verifies

lu,vc = 0 ∀(u, v) ∈ E, u < v and v > m, (3.18)

and using (3.17), we can deduce that J(θ)c = 0 and c belongs to the null space of J(θ). On

the other hand, if c is a vector in the null space of J(θ), then cTJ(θ)c = 0 which can be

expressed as
∑

E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}

1

σ2
u,vd

2
u,v

cT lTu,vlu,vc = 0, (3.19)

and since E

{(
∂log p(yu,v |du,v)

∂du,v

)2
}
> 0 and cT lTu,vlu,vc ≥ 0, therefore cT lTu,vlu,vc = 0 and c

belongs to the null space of M ‡(G,p).

Thus, M ‡(G,p) and J(θ) have the same null space and their ranks are equal. �

Removing the columns corresponding to nodes in M(G,p) is equivalent to fixing these

nodes. The null space of the obtained matrix represents the infinitesimal motions of the

framework that do not move the fixed nodes.

Lemma 3.1. If (G,p) is generic, then for any generic framework (G,q) the following equality

holds :

rankM ‡(G,p) = rankM ‡(G,q). (3.20)

Proof By fixing one anchor node, all the trivial translations are eliminated. For d = 2,

there is one trivial rotation, and by fixing a second anchor node, all the trivial motions are

removed. For d = 3, there are 3 independent trivial rotations, and by fixing a second anchor

node, there remains only one rotation around the axis formed by the two fixed points, and

fixing a third anchor node eliminates all the trivial motions. Thus, all the trivial motions are

eliminated by fixing d anchor nodes.

Since the subframework of (G,p) corresponding to the anchor nodes is fully connected

and infinitesimally rigid, none of the non-trivial infinitesimal motions is eliminated by fixing

the anchor nodes.

By fixing the anchor nodes in (G,p) and (G,q), the same trivial motions are eliminated

and M ‡(G,p) and M ‡(G,q) have the same null space rank. �

Lemma 3.2. If M ‡(G,p) is full column rank, then the framework (G,p) is rigid.
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Proof The subframework of (G,p) corresponding to the anchor nodes is rigid since it is

fully connected. Thus, fixing the anchor nodes do not eliminate any non-trivial infinitesimal

motion of the target nodes. � In other words, the non-singularity of the FIM is a sufficient

condition for the rigidity of the fundamental realization framework.

Lemma 3.3. If M ‡(G,p) is full column rank and the subframework of (G,p) corresponding

to the anchor nodes is generic, then the framework (G,p) is infinitesimally rigid.

Proof The subframework of (G,p) corresponding to the anchor nodes is infinitesimally

rigid since it is generic and fully connected. Thus, fixing the anchor nodes do not eliminate

any non-trivial infinitesimal motion. �

Now, assume that the d-dimensional network L has at least d anchor nodes and the

subframework of (G,p) corresponding to the anchor nodes is generic.

Theorem 3.7. The framework (G,p) is infinitesimally rigid if and only if FIM J(θ) is

non-singular.

Proof The sufficient condition follows from Proposition 3.1 and Lemma 3.3. The necessary

condition follows from the fact that there are d anchor nodes in general positions and all the

trivial motions are eliminated when these nodes are fixed, and thus the null space of the

M ‡(G,p) contains only the non-trivial infinitesimal motions. If the realization framework is

infinitesimally rigid, this null space is empty and the FIM has a full rank. � When the FIM

is singular, the subset of nodes belonging to an infinitesimally rigid subframework containing

d anchor nodes have a non-singular equivalent FIM.

Since rigidity is equivalent to infinitesimal rigidity for generic networks, we can deduce

the following corollary :

Corollary 3.3. A d-dimensional generic network with at least d anchor nodes has a rigid

graph if and only if the corresponding FIM is non-singular.

Thus, for generic networks, the singularity of the FIM is a graph property.

When the FIM is non-singular and the network graph is not globally rigid, estimators

without ambiguities or consistent estimators may not exist, as we will show in the next

section. In this case, the SPEBs (defined by (3.13)) of the nodes locations can be computed

even though they are unachievable for some nodes due to position estimation biases caused

by ambiguities, and the MSEs can be much higher than the SPEBs. The following example

illustrates this issue.

The network in Figure 3.8(a), consisting of two anchor nodes and one target node, is

rigid and has a non-singular FIM. The target node has a flipping ambiguity as it has two

solutions verifying the distance constraints, and thus, an unbiased estimator does not exist.

The distance measurements are affected by additive Gaussian errors of the same variance

σ2. In Figure 3.9(a), the SPEB is plotted for different variance values together with the

MSE of two estimators : One that takes the maximum of the likelihood function (3.9) with

positive abscissa and one that selects uniformly randomly one point of the two maxima of the
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likelihood function. For the latter, we can notice that the MSE is much far from the SPEB

even at low error variances. In Figure 3.8(b), a third anchor node is added and the network

is globally rigid, and we can notice in Figure 3.9(b) that the MSE of the maximum likelihood

(ML) estimator converges asymptotically to the CRB. The ML estimator proceeds by finding

the position that maximizes the likelihood function :

θ̂ML = arg max
θ

p(y|θ). (3.21)

X1=(0;10)

X2=(0;-10)

X3=(10;0)

(a) (b)

Figure 3.8 — (a) Rigid network. (b) Globally rigid network.
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Figure 3.9 — (a) SPEB and MSE corresponding to the network of Figure 3.8(a). (b) SPEB

and MSE of the ML estimate corresponding to the network of Figure 3.8(b).

3.3.3 Identifiability theory

A theory of identification is developed in [74] for a general stochastic model whose probabi-

lity distribution is determined by a finite number of parameters. It concerns the possibility of

drawing inferences from the observations. In this section, we derive correspondences between

the concepts of identifiability and rigidity.
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Let y be the observation vector of size k. We state the following definitions provided in

[74] :

– Two parameter points θ0 and θ1 are said to be observationally equivalent if p(y|θ0) =

p(y|θ1) for all y ∈ Rk.
– A parameter point θ0 is said to be globally identifiable if there is no other θ ∈ Rnd

which is observationally equivalent to it.

– A parameter point θ0 is said to be locally identifiable if there exists an open neighbo-

rhood of θ0 containing no other θ which is observationally equivalent to it.

Local identifiability

We derive the proofs of the following propositions that describe relationships between the

local identifiability of the vector parameter and the rigidity of the fundamental realization

framework.

Proposition 3.2. For a d-dimensional network with at least d anchor nodes in general

positions, the local identifiability of the target nodes positions implies the rigidity of the fun-

damental realization framework.

Proof Let θ0 denote the vector of the target nodes positions. Assume that the fundamental

realization framework is not rigid, then, due to continuous deformations, any neighborhood of

θ0 contains a point θ1 which is observationally equivalent to it and θ0 is not locally identifiable.

�

The entries of FIM J(θ) are continuous functions of θ. A point θ0 is said to be a regular

point of J(θ) if there exists an open neighborhood of θ0 in which J(θ) has a constant rank.

The set of points θ, such that the vectors xi ∈ Rd, i = 1, · · · , N are generic, form an open

dense set S ⊂ Rnd as stated in 3.2.3. Thus, any point θ ∈ S has an open neighborhood

included in S. According to Lemma 3.1, the rank of J(θ) is the same for all θ ∈ S, and thus,

all the points in S are regular.

An important theorem in the identifiability theory is the following :

Theorem 3.8 ([74]). Let θ0 be a regular point of J(θ). Then θ0 is locally identifiable if and

only if J(θ0) is non-singular.

Proposition 3.3. For a d-dimensional network with at least d anchor nodes forming a gene-

ric subframework, if the vector of the target nodes positions is a regular point of the FIM, then

the local identifiability of the target nodes positions is equivalent to the infinitesimal rigidity

of the fundamental realization framework.

Proof It follows from Theorem 3.8 and Theorem 3.7 �

Proposition 3.4. For a d-dimensional generic network with at least d anchor nodes, the

local identifiability is equivalent to the graph rigidity.

Proof It follows from Theorem 3.8 and Corollary 3.3 �
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Global identifiability

Indeed, the local identifiability is a necessary condition for global identifiability, but not

sufficient, and so is the rigidity. The global rigidity is also a necessary condition of the global

identifiability :

Proposition 3.5. For a d-dimensional network with at least d + 1 anchor nodes in general

positions, the global identifiability of the target nodes positions implies the global rigidity of

any realization framework.

Proof Let θ0 denote the vector of the target nodes positions and let (G,p) be the fun-

damental realization framework. Assume that (G,p) is not globally rigid, then there exists a

framework (G,q) equivalent to (G,p) and verifying p(i) = q(i) for i ≤ m and p(i) 6= q(i) for

some i > m, m being the number of anchor nodes. Let θ1 denote the vector of the mappings

by q of the vertices corresponding to the target nodes. Then θ0 and θ1 are observationally

equivalent and θ0 is not globally identifiable. �

Now, we will show that when the distance values are globally identifiable from the ranging

measurements, the global rigidity becomes a sufficient condition of the global identifiability.

For this purpose, assume that the distance values du,v are globally identifiable from the

ranging measurements yu,v for all (u, v) ∈ E, u < v and m < v, i.e., a distance value d0
u,v

is not observationally equivalent to any other distance value d1
u,v. The measurement models

described in Appendix A verify this assumption.

Theorem 3.9. For a d-dimensional network with at least d + 1 anchor nodes in general

positions, the global identifiability of the target nodes positions is equivalent to the global

rigidity of any realization framework.

Proof The proof of the necessary condition follows from Proposition 3.5. For the proof

of the sufficient condition, let θ0 denote the vector of the target nodes positions, and assume

that the network is globally rigid but θ0 is not globally identifiable. Let θ1 6= θ0 such that

p(y|θ0) = p(y|θ1) for all y ∈ Rk. θ1 exists since θ0 is not globally identifiable. Let D0 = {d0
u,v}

and D1 = {d1
u,v} be the assignments of distances corresponding to θ0 and θ1, respectively.

We have D0 6= D1 since the network is globally rigid and there are d + 1 anchor nodes in

general positions.

We can write ∏

(u,v)∈E
u<v, m<v

p(yu,v|d0
u,v) =

∏

(u,v)∈E
u<v, m<v

p(yu,v|d1
u,v) (3.22)

for all y ∈ Rk.

For a fixed couple (i, j) such that d0
i,j 6= d1

i,j and for a fixed set of values {yu,v|(u, v) 6=
(i, j)}, let

c0 =
∏

(u,v)6=(i,j)

p(yu,v|d0
u,v)

and

c1 =
∏

(u,v)6=(i,j)

p(yu,v|d1
u,v).
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Then we can write

c0p(yi,j |d0
i,j) = c1p(yi,j |d1

i,j) ∀yi,j ∈ R (3.23)

and since
∫
p(yi,j |d0

i,j)dyi,j =
∫
p(yi,j |d1

i,j)dyi,j = 1, we obtain

p(yi,j |d0
i,j) = p(yi,j |d1

i,j) ∀yi,j ∈ R (3.24)

resulting in a contradiction since d0
i,j is globally identifiable. � Thus, in order to check the

global identifiability, it suffices to check the global rigidity. For non-generic networks, it is

NP-hard to decide whether a realization framework is globally rigid. But for generic networks,

global identifiability is a graph property that depends on the network connectivity and can

be checked using the algorithm described in section 3.2.5.

Remark At high measurement errors, a portion of the network can be reflected or flipped,

even when the network is globally rigid. In this case, the location estimation error can be

very high. For example, consider the globally rigid network of Figure 3.10 consisting of three

anchor nodes and one target node. Since the three anchor nodes are close to the dashed line

(nearly collinear), the target node can be flipped at high error variance. In Figure 3.12(a),

the SPEB and the MSE of the ML estimator are plotted, and in Figure 3.12(b) the flip

probability (i.e., the estimated position is to the left of the dashed line) is plotted. We can

notice that at low error variance, the flip probability tends to zero and the MSE of the ML

estimator tends asymptotically to the SPEB, since the ML estimator is consistent [34]. The

kind of flips illustrated by this example is not taken into account by the identifiability theory.

X1=(0;10)

X2=(0;-10)

X4=(10;0)X3=(1;0)

Figure 3.10 — A globally rigid network. The anchors are nearly collinear.
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Figure 3.11 — Contour plot of the likelihood function for randomly generated measure-

ments.
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Figure 3.12 — (a) SPEB and MSE(in meters) of the ML estimate corresponding to the

network of Figure 3.10. (b) Flip probability.

3.4 Localizability via semidefinite programming

An alternative approach for studying unique solvability is semidefinite programming.

There has been a lot of theoretical work in using SDP for distance geometry [75]. In [76], it is

shown that the SDP model can be used to identify only the portion of uniquely solvable nodes

verifying properties that will be described later. In [2], we developed an iterative SDP-based

solution that improves the identification of the uniquely solvable nodes.

The SDP method presented here is based on the relaxation model introduced in [77] with

exact distance information. The tools provided by the SDP techniques are not restricted to

generic networks as in the case of rigidity theory, and apply as well to non-generic networks

which can occur in real application (e.g., a deployment where there are several nodes lying

on the same line).

3.4.1 Definitions

A d-dimensional network L of size N and its associated graph G = (V,E) are defined as

in Section 3.2.1. We use the following notations. Id is the identity matrix of rank d. 0 is the

column vector of zeros. ei is the column vector with 1 at the ith entry and zeros elsewhere.

ei,j = ei − ej . The dimensions of the vectors will be clarified by the context. 〈v,u〉 is the

inner product of vectors v and u. (u; v) = [uT , vT ]T . LA = {(k, j) ∈ E|k ≤ m and m < j}
and LT = {(i, j) ∈ E|m < i < j} where m is the number of anchor nodes.

For the anchor nodes, we let ak = xk, k = 1, · · · ,m.
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The network localization problem (3.1) can be stated as follows :

find xj , j = m+ 1, . . . , N,

s.t. ‖ak − xj‖2 = d2
k,j ∀(k, j) ∈ LA

‖xi − xj‖2 = d2
i,j ∀(i, j) ∈ LT .

(3.25)

Let X̄ = [x̄m+1, . . . , x̄N ] ∈ Rh×n, h ≥ d and n = N − m. We admit that X̄ is an h-

dimensional solution of the network localization problem if it verifies the following equations :

‖(ak; 0)− x̄j‖2 = d2
k,j ∀(k, j) ∈ LA

‖x̄i − x̄j‖2 = d2
i,j ∀(i, j) ∈ LT ,

(3.26)

where (ak; 0) = [aTk 0T ]T is an h-dimensional vector.

Now, we define the term of unique localizability and restate the term of unique solvability :

– A target node xj+m is uniquely solvable if for every pair of d-dimensional solutions X̄

and X̄′, the equation
(
X̄− X̄′

)
ej = 0 is verified, or in other words, the node has a

unique solution verifying the constraints in (3.25).

– A target node xj+m is uniquely localizable if for every h > d and for every pair of

h-dimensional solutions X̄ and X̄′, the equation
(
X̄− X̄′

)
ej = 0 is verified.

– The network is uniquely solvable if all its target nodes are uniquely solvable.

– The network is uniquely localizable if all its target nodes are uniquely localizable.

Unique localizability implies unique solvability since the network has at least one d-

dimensional solution X̄ and [(x̄m+1; 0), . . . , (x̄N ; 0)] is an h-dimensional solution.

3.4.2 SDP method and localizability test

Problem (3.25) can be written in matrix form as follows [76] :

find X ∈ Rd×n,Y ∈ Rn×n,
s.t. eTi,jYei,j = d2

i+m,j+m ∀(i+m, j +m) ∈ LT
(ak;−ej)

TZ(ak;−ej) = d2
k,j+m ∀(k, j +m) ∈ LA

Y = XTX,

(3.27)

where X = [xm+1, . . . ,xN ] and Z is defined as follows :

Z =

[
Id X

XT Y

]
. (3.28)

Problem (3.27) is a nonconvex optimization problem. It can be transformed into a se-

midefinite program (and thus convex) by relaxing the equality constraint Y = XTX into a

semidefinite condition Y − XTX � 0, which is equivalent to Z � 0 [77], i.e., Z is positive

semidefinite. Then, we arrive at the following SDP problem [76] :

minimizeZ∈R(n+d)×(n+d) 0,

s.t. Z1:d,1:d = Id

(0; ei,j)
TZ(0; ei,j) = d2

i+m,j+m ∀(i+m, j +m) ∈ LT
(ak;−ej)

TZ(ak;−ej) = d2
k,j+m ∀(k, j +m) ∈ LA

Z � 0.

(3.29)
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Problem (3.29) is equivalent to finding a matrix Z that satisfies the constraints (also

called constraint satisfaction problem).

Localizability Test

Let Z̄ be a solution of problem (3.29), then d ≤ rankZ̄ ≤ d+ n. A max-rank solution is a

solution that has the highest rank among all feasible ones. Such a solution can be computed

by means of an interior-point algorithm. The complexity of this algorithm is discussed in

[75] and is typically bounded by O(N3 +N2K +K3) where K is the number of constraints

bounded by O(N2).

Theorem 3.10 ([76]). Let Z̄ be a max-rank solution of problem (3.29), then the following

statements are equivalent :

– The network is uniquely localizable.

– The rank of Z̄ is equal to d.

– Z̄, represented as (3.28), satisfies Ȳ = X̄T X̄.

Thus, by finding a max-rank solution of problem (3.29), we can answer the question

whether the network is uniquely localizable. We can also test the unique localizability of the

different nodes according to the following important properties [76] :

– Node xj+m is uniquely localizable if and only if Ȳj,j − ‖x̄j+m‖2 = 0, where Ȳj,j is the

jth diagonal entry of Ȳ and x̄j+m is the jth column of X̄.

– Node xj+m is not uniquely localizable if and only if Ȳj,j − ‖x̄j+m‖2 > 0.

We shall call this test the simple SDP-based test (SSDP) in the sequel. The uniquely lo-

calizable nodes constitute only a subset of the uniquely solvable nodes, and the SSDP test

cannot detect all these latter nodes (e.g., Figure 3.14(a)).

3.4.3 Improving the unique solvability test

Now, we develop a solution for improving the identification of the uniquely solvable nodes.

We shall call it the iterative SDP-based algorithm (ISDP). Our focus will be on 2-dimensional

networks. The algorithm can be extended to the 3-dimensional case straightforwardly.

We begin by showing how to reduce the rank of the SDP solution for a network of 3 nodes

by a simple modification of the objective function of the SDP problem (3.29).

Rank Reduction via Scalar Product

We consider the network of Figure 3.13 consisting of two anchor nodes of position vectors

a1 and a2, and one target node of position vector x3.

By solving the SDP problem (3.29) corresponding to this network, we obtain the following

matrix Z̄ :

Z̄ =

[
I2 x̄3

x̄T3 Ȳ

]
. (3.30)
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The rank of Z̄ is equal to 3 since the target node is not uniquely localizable (it can have

a 3-dimensional solution by a rotation around the axis formed by the anchor nodes), and

Ȳ > ‖x̄3‖2. This result can be seen as if the SDP solver finds a 3-dimensional vector(
x̄3;±

√
Ȳ − ‖x̄3‖2

)
and the computed location x̄3 is the orthogonal projection of this vector

on the plane of the network.

Let a1,2 = a2 − a1. The constraint of problem (3.29)

(ak;−1)TZ(ak;−1) = d2
k,3 k = 1, 2 (3.31)

is verified by Z̄, which implies that the scalar product 〈a1,2, x̄3〉 = 〈a1,2,x3〉 = constant, or

in other words, the computed location lies on the line perpendicular to the segment joining

a1 and a2 and passing through the true position x3.

Let a⊥1,2 be a vector perpendicular to the vector a1,2. The equality Ȳ = ‖x̄3‖2 is verified

when the inner product
〈
a⊥1,2, x̄3 − a1

〉
is maximized or minimized. Thus, we can obtain

a solution in the plane of the network and reduce the rank of Z̄ to 2 by modifying the

objective function of (3.29) to one of the following two linear functions that keep the problem

a semidefinite program 2 :

minimize
〈
a⊥1,2,x3

〉
(3.32)

or

minimize −
〈
a⊥1,2,x3

〉
. (3.33)

Node 3 is not uniquely solvable. The two solutions obtained for each of the objective

functions (3.32) and (3.33) are plotted in Figure 3.13. These solutions, denoted by x̄3 and

x̄′3, verify Ȳ − ‖x̄3‖2 = 0 and Ȳ′ − ‖x̄′3‖2 = 0.

Iterative SDP-Based Algorithm

In the first step of the ISDP algorithm, the SDP problem (3.29) is solved and the uniquely

localizable target nodes identified by the SSDP test are promoted to anchor nodes. Then, for

a target node j connected to two anchor nodes k and l, the following steps are processed :

– The two SDP problems with the following two objective functions are solved :

minimize ±
〈
a⊥k,l,Xej

〉
. (3.34)

The obtained solutions are denoted by Z̄ and Z̄′.

– If Ȳj,j − ‖x̄j+m‖2 = 0 and Ȳ′j,j −
∥∥∥x̄′j+m

∥∥∥
2
> 0 (or vice versa), then node j + m and

all the nodes i+m verifying Ȳi,i−‖x̄i+m‖2 = 0 are uniquely solvable. These nodes are

promoted to anchor nodes.

2. A general semidefinite program can be defined as follows :

minimizeX∈Rq traceCTX

s.t. traceAT
i X = bi i = 1, · · · , L

X � 0.



3.4. LOCALIZABILITY VIA SEMIDEFINITE PROGRAMMING 49

 

 Anchor node

Target node

SDP solution 

SDP with objective eq.(32) and (33)

x
3

a
2

a
1

Figure 3.13 — A network of one target node connected to two anchor nodes.

– Otherwise the node is skipped but it can be revisited later.

The algorithm performs iteratively by testing all the targets connected to two anchors until

no more targets can be promoted. The different steps are summarized in Table 3.2.

0 : Function ISDP

1 : apply the SSDP algorithm

2 : promote uniquely localizable targets to anchors

3 : find the set T of targets connected to two anchors

4 : for each target ∈ T
5 : solve the 2 SDP problems with objective functions (3.34)

6 : if the selected target is uniquely solvable

7 : promote the identified targets to anchors

8 : go to 3

Table 3.2 — Iterative SDP-based algorithm (ISDP)

This test can be extended to the 3-dimensional case by selecting a node connected to

three anchor nodes in general position at each iteration.

3.4.4 Examples

Here, we provide two examples to show the efficiency of the ISDP in situations where the

global rigidity test and the SSDP fail in identifying uniquely solvable nodes. The considered

networks are 2-dimensional. We also provide two examples that show that the ISDP does

not identify all the uniquely solvable nodes. In fact, as mentioned previously, sufficient and

necessary conditions for unique nodes solvability are not yet known.

In Figure 3.14(a), the two target nodes 4 and 5 are non-uniquely localizable although the

network is globally rigid : Node 5 is not aligned with nodes 2 and 3 and the network can have
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a 3-dimensional solution. The red diamonds represent the positions obtained by solving the

SDP problem (3.29). By applying the ISDP, we can show that they are uniquely solvable.

The blue crosses represent the positions computed by the ISDP algorithm.

In Figure 3.14(b), node 4 is non-uniquely localizable and does not belong to a globally

rigid subgraph, while it is uniquely solvable and can be identified and correctly localized by

the ISDP algorithm. Nodes 5 and 6 are not uniquely solvable.

 

 

Anchor node

Target Node

SDP

ISDP

a
1
=(−1;0) a

2
=(1;0)

a
3
=(0;1.4)

x
5
=(0.6;0.7)

x
4
=(0;0.5)

(a)
 

 

a
3
=(0;3)

a
2
=(1;0)a

1
=(−1;0)

x
4
=(0;1)

x
5
=(−0.5;2) x

6
=(0.5;2)

(b)

Figure 3.14 — (a) A globally rigid network which is not uniquely localizable. (b) Node 4

is uniquely solvable but does not belong to a globally rigid subgraph and is not uniquely

localizable.

In Figure 3.15(a), node 6 is uniquely solvable while it is not uniquely localizable and

does not belong to a globally rigid subgraph. The ISDP also fails in identifying this node as

there is a 3-dimensional solution for which node 6 lies in the plane of the network. The two

blue crosses represent the two solutions for node 6 obtained by solving the SDP problems

with objective equations (3.32) and (3.33) These two solutions, denoted by x̄6 and x̄′6, verify

Ȳ3,3 − ‖x̄6‖2 = 0 and Ȳ′3,3 − ‖x̄′6‖2 = 0.

In Figure 3.15(b), the target nodes are uniquely solvable and the network is globally rigid.

None of the target node is uniquely localizable and the ISDP does not apply in this case since

there is no target node connected to two anchors.

3.4.5 Correspondence between rigidity and localizability

Universal rigidity of frameworks is a rigidity theoretic counterpart of unique localizability

of networks. A d-dimensional framework (G,p) is said to be universally rigid if for any h-

dimensional framework (G,q) we have :

‖p(i)− p(j)‖ = ‖q(i)− q(j)‖ ∀ (i, j) ∈ E
⇒ ‖p(i)− p(j)‖ = ‖q(i)− q(j)‖ ∀ i, j ∈ V. (3.35)

In other words, (G,p) is the unique realization, up to congruence, of a network, in any

Euclidean space. It is shown in [78] that for a d-dimensional network having at least d + 1
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Figure 3.15 — (a) Node 6 is uniquely solvable but does not belong to a globally rigid

subgraph and is not uniquely localizable. (b) A globally rigid network but not uniquely

localizable.

anchor nodes in general positions, unique localizability is equivalent to universal rigidity of

any realization framework. Thus, unique localizability implies global rigidity and universally

rigid frameworks are a subset of the globally rigid ones.

SDP provides an efficient method for checking unique localizability. Moreover, given the

connectivity graph and the distance information of a uniquely localizable network, then the

unique realization can also be found using SDP. For globally rigid frameworks that are not

universally rigid, there does not exist an efficient algorithm for finding a realization.

Finally, we mention that universal rigidity is not a generic property for all frameworks :

The network of Figure 3.14(a) is not uniquely localizable, but it becomes so by setting x5 =

(0.3; 0.7).

3.5 Numerical results

Simulations are performed on 2-dimensional networks in order to study the statistical

occurrences of uniquely localizable and solvable nodes and rigid and globally rigid networks

under different deployment scenarios.

The following simple connectivity model based on received signal power is considered.

Two nodes i and j are connected if the power Pi,j (in decibel (dB)) at node i transmitted

by node j (or vice versa) is above a threshold value Pth. A widely accepted model for the

received signal power is

Pi,j = P0 − 10nplog10(di,j) +Xi,j , (3.36)

where P0 is the average received power at a distance of 1 meter, np is the path loss exponent

and Xi,j is a centered Gaussian random variable of variance σ2
sh representing the shadowing

loss.

The probability that two nodes are connected is a function of their separating distance.
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By assuming that Pi,j = Pj,i for every pair of nodes (i, j) (i.e., by setting P0 to be the

same for all transmitting nodes and assuming a reciprocal channel with Xi,j = Xj,i), this

probability is equal to

pc(d) = probability(P0 − 10nplog10(d) +X > Pth)

= probability(X > 10nplog10(d/R))

= Q

(
10nplog10(d/R)

σsh

)
, (3.37)

where Q is the Q-function, R = 10
P0−Pth
10np d0 and pc(R) = Q(0) = 1/2.

We take np = 3 and σsh = 8dB, and assume that the shadowing losses are independent

for any pair of different links (i.e., the two random variables Xi,j and Xk,l are independent if

(i, j) 6= (k, l)).

In Figure 3.16, the average number of neighbors of a node is plotted against the total

number of nodes N . The nodes are uniformly drawn in a square region of size L × L (L in

meters). It is evident that the average number of neighbors should be increasing with the

nodes density and the range R. This figure can be useful to give an idea on the average

number of neighbors since selected values of N and R are used in the following simulations.
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Figure 3.16 — Variation of the average number of neighbors of a node with the total

number of nodes N for several values of R.

3.5.1 SSDP vs. ISDP vs. global rigidity

Here, we set m = 3 anchors and R = 0.35L, and the nodes are uniformly drawn. In

Figure 3.17, we plot the probability distribution of the number of uniquely localizable nodes

identified using the SSDP and the probability distribution of the number of uniquely solvable

nodes identified using the ISDP and global rigidity test described in Table 3.1.

We can remark that there are more uniquely solvable nodes than uniquely localizable

ones : The uniquely localizable nodes are a subset of the uniquely solvable ones.

The ISDP identifies more uniquely solvable nodes than the SSDP but less than the global

rigidity test. The combination of the two methods yields the best identification performance.
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Figure 3.17 — Probability distribution of the number of uniquely solvable and localizable

target nodes for different network sizes N . The number of anchor nodes is 3.

3.5.2 SDP accuracy

The accuracy of the locations computed by the SDP for non-uniquely localizable nodes

is investigated in terms of mean location error E {‖x̂− x‖}.
The simulation scenario is similar to that of the previous section except that the considered

networks are connected (i.e., there is no isolated nodes and a path does exist between every

two nodes). We set L = 10 meters and R = 3.5 meters. The nodes that are correctly localized

by the ISDP but not by the SDP are called ‘uncommon nodes’, these nodes are uniquely

solvable but not uniquely localizable. And the nodes that are not correctly localized by both

methods are called ‘common nodes’.

Figure 3.18 depicts the mean location error against the network size N . We can see that

the mean location error of uncommon nodes is smaller than that of common nodes. The

uncommon nodes are uniquely solvable and are, in general, connected to more nodes than

the common nodes. As their error is small, we can conclude that the SDP method provides
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a good starting point for descent optimization solutions.
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Figure 3.18 — Mean location error (in meters) vs. network sizes N .

3.5.3 Effect of number and placement of anchor nodes and range R

In Figure 3.19, we plot the probability of network rigidity and global rigidity for different

numbers of anchor nodes m and ranges R where there are N nodes with positions uniformly

drawn. We can notice that these probabilities increases with m and R, and they are above

0.9 for R = 0.6L and N ≥ 12.
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Figure 3.19 — Probability of network rigidity and global rigidity vs. network size N for

different values of m.

To asses the effect of the anchor nodes placement, we consider the network configuration

shown in Figure 3.20(a), where the target nodes are uniformly placed inside the square of

size L×L and the anchor nodes are the corners of a square of edge length 2d. We set N = 15
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and R = 0.4L. Figure 3.20(b) shows the network rigidity and global rigidity probabilities

for different values of d. Two other configuration are considered : one with randomly placed

anchor nodes and one in which the N nodes of the network are randomly generated then the

peripheral ones (i.e., the nearest to the corners of the L× L deployment area) are chosen as

anchors.

We see that the probabilities of rigidity and global rigidity increase with d then begin to

decrease at around d = 0.3L. In fact, at high values of d, the anchor nodes become far from

the target nodes and thus less connected to them. This justifies the decreasing behavior of

the plots. We can also notice that the probabilities are the highest when the anchors nodes

are the peripheral ones, but this configuration is not feasible since the nodes positions are

not known a priori in order to set the peripheral nodes as anchors.
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Figure 3.20 — (a) Typical network deployment with 4 anchors placed on the corners of a

square. (b) Probability of network rigidity and global rigidity vs. the value of d and for other

anchors configurations.

3.5.4 Effect of link shadowing correlation

The independent shadowing model is a simplification model that does not accurately

represent the radio channel for multi-hop networks : Two nearly overlapping links would have

independent shadowing. The shadowing is determined by the environmental obstruction and

the shadowing losses on different links are not independent. The correlations have impact on

the connectivity and the rigidity of networks.

We consider the statistical propagation model presented in [79] which accounts for the

shadowing correlation in multi-hop networks. According to this model, the link’s shadowing

Xi,j for the pair of nodes (i, j) is a weighted integral of a spatial loss field p(x) :

Xi,j =
1

‖xi − xj‖1/2
∫ xj

xi

p(x)dx. (3.38)

The considered spatial loss field p(x) is an isotropic Gaussian random field of zero mean and
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exponentially decaying correlation function :

E {p(xi)p(xj)} =
1

σ2
X

exp

(
−‖xi − xj‖

δ

)
. (3.39)

A simulation is performed in order to see the effect of correlations on rigidity. We set

m = 3 anchors, L = 10m and R = 4m, and for shadowing σX = σsh = 8dB and δ takes one

of the two values 0.2m and 0.6m. In Figure 3.21, we plot the probability of rigidity against

the total number of nodes N . The nodes positions are uniformly selected among a finite set

of positions for which the shadowing covariance matrix for the different pairs of links have

been computed. We can notice that the probability that the network is rigid diminishes when

the shadowing is correlated. This result indicates that independent link shadowing model

over-estimates the probability of rigidity.
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Figure 3.21 — Probability of network rigidity vs. network sizes N .

3.6 Conclusion

In this chapter, the unique solvability in cooperative localization was addressed by consi-

dering the two approaches of graph rigidity theory and semidefinite programming. They

define sufficient unique solvability conditions. We provided a survey of the results of the

graph rigidity theory. This theory allows checking unique solvability in generic networks from

the connectivity perspective and regardless of the distance values. For the SDP approach,

we described the state of the art algorithm and developed a new algorithm that improves

the detection of the uniquely solvable nodes. SDP based methods require the true distance

values to be known. These values might not be available due to the presence of noise in the

measurements. Nevertheless, the SDP based methods are useful in studying the statistical

occurrences of uniquely solvable nodes.

The following correspondence between the FIM and the rigidity matrix was derived : The

rank of the FIM is equal to the rank of the rigidity matrix of the fundamental realization
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framework after discarding the columns corresponding to the anchor nodes. Based on this

correspondence, we showed that for a d-dimensional generic network having at least d an-

chor nodes, the non-singularity of the FIM is equivalent to the graph rigidity. This result is

important for several points : Firstly, the non-singularity of the FIM can be checked form

the network connectivity. In the case of 2-dimensional networks, algorithms with complexity

lower than matrix rank computation can be applied (e.g., the pebble game algorithm which

also determines the rigid subgraphs, and consequently, the portions of the network that have

a non-singular FIM). Secondly, the non-singularity of the FIM is a necessary but not sufficient

condition for the global rigidity, and does not guarantee the absence of ambiguity. We also

proved that for generic networks, local identifiability is equivalent to graph rigidity.

It is known from estimation theory that consistent estimators can exist only when the

parameter is globally identifiable. In cooperative localization based on ranging measurements,

consistent estimators can exist only when there are d + 1 anchor nodes in general positions

and realization frameworks are globally rigid. The consistency of the maximum likelihood

estimator in presence of additive Gaussian noises is studied in the next chapter. For generic

networks, we showed that global identifiability is a graph property that only depends on the

number of anchor nodes and the network connectivity, and thus, it can be checked without

the need to know the positions of the target nodes.

Occurrence probabilities of rigid and globally rigid networks and uniquely solvable nodes

were computed via Monte Carlo simulations. A simple connectivity model based on received

power under log-normal shadowing was considered. Other site specific connectivity models

(e.g., partition losses or ray tracing, consideration of medium access) can be used in order

to establish the required number of anchor nodes and their placement and other related

parameters (e.g., transmission power) that guarantee a high probability of unique solvability

in a deployment area.

The next chapter is devoted to the task of computing the positions of the target nodes

from the set of pair-wise ranging measurements.





CHAPTER

4 Cooperative Localization

Algorithms

4.1 Introduction

After having studied the identifiability conditions under ranging measurements in the

previous chapter, we devote this chapter to the task of estimating the positions.

The number of anchor nodes in a wireless network is typically small and a target node

may be several hops away from the anchor nodes. Thus, nodes need to cooperate with each

other in order to converge to a consistent assignment of coordinates.

In this chapter, we are interested in probabilistic estimation, where the positions are

considered as random variables and the localization problem is formulated as an inference

in probabilistic graphical models. This formalism enables capturing the dependencies among

the random variables and applying the belief propagation (BP) algorithm, where each node

computes a probability density function of its coordinates, in a distributed manner, based on

its local a priori information, and on the measurements and probability densities provided

at each iteration by neighboring nodes. This algorithm produces both estimates of positions

and metrics of uncertainties. Additionally, some flip ambiguities can be eliminated using the

BP algorithm by assuming a probabilistic connectivity model and by exchanging information

between non-neighboring nodes.

The BP is implemented using its particle-based version which numerically approximates

the messages that cannot be computed in a closed-form. This implementation is known under

the name of nonparametric belief propagation (NBP). The main contribution of this chapter

is the development of a new variant of the NBP method that performs two phases :

– In the first phase, the classical NBP is implemented by exchanging messages between

direct neighbors in order to compute the belief of each node regarding its position.

– In the second phase, each node constructs a small set of space points by exploiting its

computed belief. Then, the analytical BP is applied to estimate the positions which are

assumed to be discrete random variables taking on values in the constructed sets.

This solution improves the localization accuracy and allows reducing the amount of exchanged

data.

In addition to the probabilistic estimation, we study the weighted least-squares (WLS)
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estimators, and derive their deterministic stability conditions based on the unique solvability

results provided in the previous chapter.

This chapter is organized as follows. We start with an overview of different existing co-

operative localization algorithms in Section 4.2. In Section 4.3, we present the WLS and

probabilistic estimators, and we derive the stability conditions of the WLS and consistency-

conditions of the maximum likelihood (ML) estimator. The implementation of probabilistic

estimators in undirected graphical models is reviewed in Section 4.4. This lays the foundation

for the NBP method which is the subject of Section 4.5. Other message passing algorithms

are reviewed in Section 4.6. Then, the two-phases NBP solution is developed in Section 4.7,

and its performances are validated in Section 4.8 via Monte-Carlo simulations. Concluding

remarks are drawn in Section 4.9.

4.2 Overview of cooperative algorithms

Cooperative localization has been an active research topic in the last ten years, and

many algorithms have been developed. These algorithms can be classified according to several

criteria such as the kind of information used, the way the computation is processed, the need

of a special infrastructure or anchor nodes, etc. Four main classes are described in this section.

4.2.1 Centralized vs. distributed

In centralized algorithms, measurements are sent to a central processor where the overall

processing is done. In distributed algorithms, all the nodes or a portion of them are involved

in the computation process.

The distributed algorithms do not require the existence of a central processor with a high

computational capacity to which all measurements are forwarded. This fact makes them more

attractive for large networks. They are also more suitable for tracking the mobile nodes over

time as they do not require forwarding the measurements to a central processor.

On the other hand, centralized algorithms can be more accurate and allow to exploit the

correlations in the measurements (e.g., correlation of the shadowing in RSS measurements

[80] or sensor data measurements [81]). They are also unavoidable when the nodes do not

have sufficient computational capacity.

Examples of centralized algorithms are the maximum likelihood estimator [82, 47], semi-

definite programming [77], WLS [83] and multidimensional scaling (MDS) [84].

The distributed algorithms fall into one of the following four categories :

Successive refinement

These algorithms implement a distributed optimization solution in order to find the op-

timum of a global cost function. They perform iteratively, where at each iteration, one or

several nodes update their estimates by minimizing local cost functions and send them to their
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neighbors, until a convergence criterion is met. We refer to the neighborhood of a node as the

group of nodes in its vicinity, with which measurements can be obtained. Examples of these

algorithms are the distributed gradient descent [38], distributed weighted MDS (dwMDS)

[85], distributed extended Kalman filter (distribute EKF) [86] and simulated annealing [87].

An initialization phase that provides starting search positions is required for these algorithms.

The selection of these positions is critical and impacts the final convergence solution as will

be shown in Section 4.3.

Message passing

These algorithms perform inference in probabilistic graphical models (Markov random

fields or factor graphs), where every node computes its posterior marginal distribution from

its local a priori information and messages received from neighboring nodes. Probabilistic

models for the measurements need to be assumed in order to define the potential functions

between every pair of connected nodes in the probabilistic graph. Examples of these algo-

rithms are nonparametric belief propagation [55, 88, 3], variational message passing [89] and

expectation propagation [90]. These algorithms will constitute the core of this chapter, where

their theoretical framework and implementation issues will be discussed in the following sec-

tions.

Multilateration

When a target node does not have a sufficient number of anchor neighbors to compute

directly its position, it estimates its distances to several nearby anchor nodes based on the

number of hops and range measurements along their shortest connecting path. These distance

estimates are then used by the node to compute its position via a multilateration solution.

Several methods for estimating the distances and the positions have been developed [91,

92, 93]. A quantitative comparison of their accuracy is made in [94, 95]. Multilateration

algorithms have several advantages over other distributed algorithms : a) low communication

cost as they are not iterative ; b) privacy/security as the nodes do not communicate their

positions ; and c) nodes can independently choose when to perform self-localization. However,

these algorithms are inaccurate when the number of anchor nodes is small or when the network

has a non-isotropic topology and the target nodes are not inside the convex hull of the anchor

nodes.

Incremental algorithms

Incremental algorithms perform iteratively, where additional nodes are localized at each

iteration. In [96, 52, 53], the computed positions are promoted to anchors in the subsequent

iterations. A flipped position estimate, which corresponds to an erroneous geometrical reali-

zation, can degrade the remaining position estimates and propagate in an avalanche fashion.

In order to avoid this situation, a test is applied in [52, 53] for identifying the nodes with

high flip probabilities and remove them from the localization procedure. While this approach
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can guarantee a high robustness of the solution, it can discard an important portion of the

nodes.

In [97, 98, 99], every node builds a local map of the immediate vicinity, and then maps are

merged together to form a global map. These algorithms can be seen as hybrid algorithms

which combine centralized and distributed features.

The incremental algorithms are simple to implement and their complexity is linear with

the number of nodes, but errors can propagate with iterations (due to hard decisions). Unlike

multilateration algorithms, incremental algorithms are suitable for networks with non-convex

and non-isotropic topologies.

4.2.2 Range based vs. range free

Range free algorithms allow to estimate the positions from mere connectivity. They are

attractive when the nodes are not able to perform accurate ranging measurements.

The multilateration distributed algorithms have been applied as range free by associa-

ting approximate distance values to the links, which are computed by dividing the distance

between two anchor nodes by the number of hops in their shortest connecting path [91].

MDS [84] and similarity based algorithms, such as the Laplacian eigenmap [100] which

reduces the sum of the distances between the connected nodes are also range free.

In [101], two connected nodes are considered to be within a certain range from each other,

and the cooperative localization problem is modeled as a constraint satisfaction problem with

convex semidefinite constraints. This method is not very accurate when the anchor nodes are

not placed on the outer boundary of the network since the feasibility areas of the target nodes

become very large.

4.2.3 Anchor based vs. anchor free

The outputs of anchor free algorithms are relative positions, or in other words, an embed-

ding of the nodes in a space of given dimension. On the other hand, when a sufficient number

of anchor nodes are available, the computed positions are absolute and can be related to a

geographical map.

The MDS-based algorithms [84, 98] provide relative positions. The incremental algorithms

can be also applied as anchor free. In [102], an anchor free algorithm is proposed, which per-

forms in two phases : first a range free algorithm is applied to compute a fold free coordinate

assignment, then a successive refinement solution is applied using the measured values.

Relative maps may be all that is obtainable in situations where anchor nodes are not

available (e.g., costly or impossible manual calibration, unavailability of GPS).

Once the absolute positions of some nodes become available, one can compute the absolute

positions of the remaining nodes by applying a translation, a rotation or a mirroring of the

network [82].
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4.2.4 Probabilistic vs. non-probabilistic

Probabilistic algorithms exploit the available probabilistic models on the measurements

(i.e., likelihood functions) and positions (i.e., a priori information) by computing distributions

conditioning on the observations

These algorithms can be more accurate than their non-probabilistic counterparts (e.g.,

WLS) as they can exploit the a priori information and can mitigate the NLoS effect whenever

a probabilistic model of NLoS propagation is available [38]. They are also more resilient to

the presence of outliers, where an outlier is an observation that lies outside the overall pattern

of a distribution.

Cooperative algorithms can be compared based on several criteria such as accuracy, com-

plexity (e.g., the number of computational operation), latency (e.g., the time needed to deliver

the position estimates or the number of iterations in iterative algorithms), etc. A trade off

does exist between the different criteria and the importance of each of them depends on the

considered application.

4.3 WLS and probabilistic estimation

In this section, the WLS estimators and probabilistic estimators are formulated, and

the deterministic stability conditions of the WLS and consistency conditions of the ML are

derived.

The WLS estimators have been widely considered in non-cooperative and cooperative

localization since their formulation is simple and does not require specific assumptions on the

noise model. A WLS estimator will be used as a benchmark against which the probabilistic

message passing algorithms will be compared.

The formulation of the probabilistic estimators will lay the foundations for the develop-

ment of message passing algorithms.

We begin by stating the system model and providing notations that will be used throu-

ghout this chapter.

4.3.1 Definitions

We consider a network L of size N consisting of m < N anchor nodes of known positions

labeled 1 through m and n = N − m target nodes labeled m + 1 through N and whose

positions are yet to be determined. A graph G = (V,E) is associated to the network where

V is the vertex set representing the different nodes and E is the edge set representing the

neighborhood relationship. The network lies in a d-dimensional space where node i is located

at xi ∈ Rd. The nodes are assumed to be static.

Let θ = [xTm+1, · · · ,xTN ]T be the vector of the unknown positions. The pair-wise measure-

ment between nodes i and j is denoted by yi,j and it can be either a scalar value (e.g., RSS,

ToA) or multiple values (e.g., channel impulse response). When the distance is estimated
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from yi,j , we denote it by d̃i,j = f(yi,j). The true distance value is di,j = ‖xi − xj‖. Let y

denote the vector of all measurements.

4.3.2 Weighted least-squares

A WLS estimator seeks to minimize a cost function of the form :

θ̂WLS = arg min
θ∈Rdn

∑

(i,j)∈E
i<j, m<j

wi,j(d̃i,j − ‖xi − xj‖)2 +
∑

i>m

ri‖xi − x̄i‖2, (4.1)

where wi,j is a positive weight reflecting the accuracy of d̃i,j , and the parameters x̄i and ri

encode the a priori knowledge that xi is believed to lie around x̄i with accuracy ri. In the

absence of information for target node i, ri is set equal to zero. We will denote the cost

function of (4.1) by s(θ).

For the selection of weights, several strategies have been adopted. In [77], the weights

are set equal to the inverse of estimated variances of the measurements (i.e., wi,j = 1/σ̂2
i,j

where σ̂2
i,j ∝ d̃2

i,j), while in [85], the weights are exponentially decreasing with the measured

distances. Weighing have been used in [83] to mitigate the effect of bias in the presence of

unknown LoS/NLoS conditions where ToA measurements are involved.

Problem (4.1) is a non-convex optimization problem. It can be seen as a mass spring

optimization problem, where we imagine each edge in the graph as a spring between two

masses. If the distance between two nodes is different from the observed value, the spring

incurs a force that pushes them apart or pulls them together. The target nodes will move

due to the forces until an equilibrium is reached where the sum of the forces on each node is

equal to zero. The final potential energy at equilibrium depends on the initial positions of the

different nodes and corresponds either to a global minimum or to a local one. Local minima

are frequent in problems of this kind and can result in wrong configurations of the network

and high errors in the estimated positions. For example, in Figure 4.1(a), where there are

three anchor nodes (of indices 1, 2 and 3) and the target nodes are uniquely solvable, the

distance measurements are taken equal to the true distance values. The network of Figure

4.1(b) shows the estimated positions corresponding to a local minimum reached by starting

at random initial positions. When the positions are not uniquely solvable, there might be

multiple configurations of the network that have the same global minimal energy.

A minimum of s(θ) can be computed using an iterative numerical solution starting at

initial positions, such as the gradient descent, Levenberg-Marquardt algorithm and the stress

majorization (SMACOF) [85]. It can be noticed that the gradient of the cost function (4.1)

with respect to xi (i.e., ∇xis) depends only on the coordinates of the neighboring nodes.

Thus, this partial gradient can be computed locally at a given iteration, provided that the

coordinates of the neighboring nodes at the previous iteration are known. This has allowed

the development of distributed iterative optimization solutions (that we called successive

refinement in the previous section). The dwMDS [85] is such a solution applying a distributed

version of the SMACOF algorithm that guarantees a non-increase of the cost function s(θ)

at each iteration.
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Initial positions need to be chosen carefully in order to reduce the probability of falling into

a local minimum. Examples of algorithms for finding initial positions are the SDP, the MDS

and the distributed incremental and mulitlateration algorithms described in the previous

section.
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Figure 4.1 — (a) Uniquely solvable 2-dimensional network. (b) Estimated positions cor-

responding to a local minimum of the WLS cost function.

WLS deterministic stability

Here, we examine the deterministic stability of the WLS problem (4.1) based on the

definitions and results provided in [103]. For a nonlinear estimation problem expressed as a

minimization problem of some cost function, the deterministic stability implies the uniqueness

of the global minimum provided the observation noise is small enough.

We start by providing some definitions and a theorem applicable to a general nonlinear

least-squares (NLS) estimation problem, as they are stated in [103], and then we show that

the WLS problem (4.1) is a special case of this problem.

Let y be an observation vector of the form

y = g(x) + e (4.2)

where y ∈ Y ⊂ Rk, x ∈ X ⊂ Rl and e is a noise random vector. The term ‘deterministic’ is

used in the expression ‘deterministic stability’ since no assumption is made on the probability

distribution of e.

The NLS problem is defined as follows :

x̂NLS = arg min
x∈X

‖y− g(x)‖2. (4.3)

Let dx0(x, e) be the following cost function :

dx0(x, e) = ‖y− g(x)‖2 = ‖g(x0)− g(x) + e‖2. (4.4)
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This function is another formulation of the NLS that explicitly depends on x, on the noise e,

and on the true value of the parameter x0. Based on this formulation, we state the definition

of the deterministic stability along with other definitions :

– Unique solvability : The unknown x0 ∈ X is the unique solution of dx0(x,0) = 0 if

{x ∈ X : dx0(x,0) = 0} = {x0}.

In other words, x0 is the only parameter that matches the data in the noiseless case.

– Strict global minimizer : A vector x’ ∈ X is a strict global minimizer of dx0(x, e) with

respect to x for fixed x0 and e if

dx0(x’, e) < dx0(x, e) ∀x ∈ X , x 6= x’, (4.5)

i.e., x’ = arg minx∈X dx0(x, e).

In the next definition, Bδ(t) denotes the standard open ball of radius δ and center t

in a metric space T (i.e., Bδ(t) = {t’ ∈ T : ‖t − t’‖ < δ}), and X o denotes the set of

interior points of X (i.e., X o = {x ∈ X : ∃δ > 0 : Bδ(x) ⊂ X}).
– Deterministic stability : A NLS problem is stable at x0 ∈ X o if ∃ε > 0 and a continuously

differentiable function φ : Bε(0) 7−→ X such that φ(e) is a strict global minimizer of

dx0(x, e) with respect to x for all e ∈ Bε(0).

According to this definition, deterministic stability at x0 implies that x0 is the unique solution

of dx0(x,0) = 0, since φ is a strict global minimizer and

φ(0) = arg min
x∈X

dx0(x,0) = x0.

A main result of [103] on the deterministic stability is the following theorem :

Theorem 4.1. Let g : X 7−→ Y be a continuous map, where X ⊂ Rl, Y ⊂ Rk and l ≤ k.

Suppose, furthermore, that g is twice continuously differentiable in an open neighborhood of

x0 ∈ X o, and x0 is the unique solution of dx0(x,0) = 0. Then the following are equivalent :

1. Gradient matrix of g, defined by [G(x0)]i,j = (∂gi(x))/(∂xj)|x=x0 with 1 ≤ i ≤ k and

1 ≤ j ≤ l, is full column rank.

2. NLS problem is stable in the deterministic sense at x0.

Now, we return to our WLS problem (4.1) and re-examine it with respect to this theorem.

For simplification, we assume that ri = 0 for all i > m.

Let (G,p) be the fundamental realization framework of L as defined in Section 3.2.1. We

assume that p(i) 6= p(j) for all (i, j) ∈ E.

We define x as

x = θ = [pT (m+ 1), · · · ,pT (N)]T , (4.6)

and we can write s(θ) as

s(θ) =
∑

(i,j)∈E
i<j, m<j

(yi,j −√wi,j‖p(i)− p(j)‖)2

= ‖y− g(x)‖2 (4.7)
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where yi,j =
√
wi,j d̃i,j , and y is the vector of all yi,j values and g(x) is defined accordingly.

Thus, the WLS problem (4.1) is a special case of the NLS problem (4.3), and we can apply

Theorem 4.1 to it.

A parameter x0 is the unique solution of dx0(x,0) if the network L is uniquely solvable.

According to Theorem 3.1, this property is verified if the framework (G,p) is globally rigid

and there are at least d+ 1 anchor nodes in general positions when the network is deployed

in a d-dimensional space.

Notice that the gradient matrix G(x0) has the same rank as the matrix M ‡(G,p) obtained

from the rigidity matrix by removing the columns corresponding to the anchor nodes as

defined in Section 3.3.2. This property follows from the equality

G(x0) = DM ‡(G,p)

where D is a full rank diagonal matrix.

If the network L is generic and uniquely solvable, then, according to Corollary 3.3, G(x0)

is full column rank and the WLS problem is stable in the deterministic sense at x0.

The theory we presented in this section allows to make claims on the behavior of the WLS

estimator with respect to small noise perturbations. A result that can be concluded from the

continuity of the map φ is that the error in the estimated positions is bounded.

4.3.3 Probabilistic estimators

The observation y is a realization of a random variable Y of joint probability distribution

function pY |θ(y|θ), which will be written as p(y|θ) for notational brevity. For a given y and

variable θ, p(y|θ) is called the likelihood function of θ.

In order to apply a probabilistic estimator, probabilistic models for the observations need

to be assumed. The probabilistic estimators can be classified as non-Bayesian or Bayesian,

depending on whether θ is considered as an unknown deterministic parameter or a realization

of a random variable Θ of known a priori distribution pΘ(θ), which will be denoted as p(θ).

Non-Bayesian context

θ is treated as an unknown deterministic parameter. A common non-Bayesian estimator

is the maximum likelihood (ML). It operates by maximizing the likelihood function :

θ̂ML = arg max
θ

p(y|θ). (4.8)

It is known from estimation theory [34] that the ML estimator is consistent, i.e., converges

asymptotically to the CRB at low error variances, provided that the problem is globally

identifiable as we showed in the previous chapter.

Assume that the distance observations {d̃i,j}, obtained according to d̃i,j = f(yi,j), form

a sufficient statistic for the estimation of θ (e.g., under ToA measurements). Then, the ML
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estimator becomes :

θ̂ML = arg max
θ

p({d̃i,j}|θ). (4.9)

When the distance values are affected by independent additive Gaussian noises, i.e., d̃i,j =

di,j+ei,j and ei,j is an independent Gaussian distributed variable with zero mean and variance

σ2
i,j , then the optimization problem (4.9) reduces to the WLS estimator (4.1) with wi,j =

1/σ2
i,j and ri = 0. This result is obtained by maximizing the log-likelihood function :

θ̂ML = arg max
θ

log p({d̃i,j}|θ). (4.10)

Consistency of the ML estimator

Here, we assume that the pair-wise measurements are scalar ranging measurements (i.e.,

RSS or timing measurements) affected by independent additive Gaussian noises. We also

assume that the means of the noises are equal to zero. Under these assumption, the ML

estimator is equivalent to the NLS problem defined by (4.3).

Furthermore, we assume that k independent realizations of the observation vector Y can

be obtained. We denote by yi the ith realization. We also denote by θ̂k the ML estimate that

accounts for all the realizations :

θ̂k = arg max
θ

k∏

l=1

p(yl|θ). (4.11)

The consistency of the ML estimator means that the true parameter value θ0 can be

found with arbitrary precision if we allow the number of realizations k to go to infinity. In

mathematical terms, this means that θ̂k converges in probability to θ0 as k goes to infinity :

For every ε > 0, Probability(‖θ̂k− θ0‖ < ε)→ 1 as k →∞. This statement will be written as

θ̂k
P→ θ0.

Now, we will show that θ̂k is consistent when the network is generic and uniquely solvable.

First of all, according to our previous results, θ̂k is deterministically stable.

It can be shown that the k pair-wise measurements between nodes i and j can be replaced

by the sufficient statistics

ȳki,j =
1

k

k∑

l=1

yki,j = gi,j(di,j) + ēki,j . (4.12)

ēki,j is the average of noises in the independent measurements. Let ēk be the vector of all noises

averages. Thus, according to the weak law of large numbers, it can be shown that ‖ēk‖ P→ 0.

Now we state the following theorem.

Theorem 4.2 ([104]). If cn is a sequence of random variables such that cn
P→ c, and if f is

a function which is continuous at c, then f(cn)
P→ f(c).

For large values of k, ēk will be, with high probability, inside the ball over which the

continuous strict global minimizer φ is defined (see the definition of deterministic stability

4.3.2). Thus, according to theorem 4.2, θ̂k = φ(ēk)
P→ φ(0) = θ0.
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Bayesian context

θ is assumed to be a random variable drawn from a known a priori distribution. Two

common Bayesian estimators are the minimum mean square error (MMSE) and the maximum

a posteriori (MAP) estimators.

The a posteriori distribution of θ is

p(θ|y) ∝ p(θ)p(y|θ). (4.13)

– The MMSE estimator finds the mean of (4.13) :

θ̂MMSE =

∫
θp(θ|y)dθ. (4.14)

– The joint MAP estimator finds the maximum of (4.13) :

θ̂MAP = arg max
θ

p(θ|y). (4.15)

Probabilistic inference applies to all kinds of measurements provided that a probabilis-

tic model is available. When the assumed models deviate from the true distributions, the

estimation accuracy may degrade.

Assume that the a priori distributions of the different nodes are independent and Gaus-

sian (i.e., p(θ) =
∏
i>m pi(xi) where pi is a Gaussian distribution function of mean x̄i and

covariance matrix Ci), and that the distance observations form a sufficient statistic and are

affected by independent additive Gaussian noises, as we assumed in the non-Bayesian context.

Then the joint MAP estimator (4.15) reduces to the WLS estimator (4.1) with a replacement

of ri‖xi − x̄i‖2 by (xi − x̄i)
TC−1

i (xi − x̄i). Thus, the WLS can be seen as a special case of

the probabilistic estimators, and it can take advantage of the tools available in probabilistic

inference such as the marginalization and its associated message passing techniques, which

will be presented in the following sections.

4.4 Inference in graphical models

Graphical models provide an efficient and powerful framework for modeling probabilistic

relationships. Many algorithms for computing basic statistical quantities have been expressed

in terms of recursions operating on these graphs (e.g., Kalman filters, Bayesian smoothing

and predication, and belief propagation). The main advantage of this formalism is that some

formerly exponential computations complexity become linear when using the graphs.

Graphical models have been applied in many fields including bioinformatics, speech pro-

cessing, image processing, control theory and error correcting codes [105, 106, 107].

There are two classes of graphical models :

– Bayesian networks which are directed graphical models and are useful for expressing

causal relationships between random variables.

– Markov random fields (MRFs) which are undirected graphical models and are better

suited for expressing soft constraints between random variables.
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MRFs enable specifying the factorization of the conditional independence properties of

joint distributions of the form of equation (4.13), and thus they are suitable for performing

inference in cooperative localization problems. In this section, we review the definition of the

MRFs and some of their basic associated marginalization and inference techniques. All the

graphs considered in the sequel are undirected ones.

4.4.1 Markov random fields

Given a graph G = (V,E), a set of random variables X = {Xi}i∈V indexed by the vertex

set V form an MRF w.r.t. G if their joint probability distribution function belongs to a family

of distributions L(G). This family will be defined after stating the following definitions :

– Neighbors : The set of neighbors of node i, denoted by η(i), can be defined as

η(i) = {u ∈ V | (u, i) ∈ E}. (4.16)

– Clique : A clique is defined as a subset of nodes such that there exists an edge between

all pairs of nodes in the subset :

C ⊂ V is a clique if ∀(u, v) ∈ C × C, (u, v) ∈ E. (4.17)

– Maximal clique : It is a clique such that it is not possible to include any other node

from the graph in the set without breaking the clique property.

– Loop : It is an n-tuple (u1, · · · , un) (n ≥ 3) such that ∀p ∈ {1, · · · , n−1}, (up, up+1) ∈
E and u1 = un.

– Tree : It is defined as a graph in which there is one, and only one, path between any

pair of nodes (i.e., connected and do not have loops).

Let C be the set of maximal cliques of the graph G, then the family of distributions L(G)

associated to G can be expressed as

L(G) =

{
p | p(X = x) =

1

Z

∏

C∈C
Ψc(xC), Ψc(xC) ≥ 0

}
, (4.18)

where Z is a normalization constant, Xc is the set of random variables associated to the set

nodes C and xC is the realization value. Ψc is called a potential function. This function need

not to have a direct relation to conditional distributions defined on the graph cliques.

In the cooperative localization problem, under the assumption that the observations {yi,j}
and the positions {xi} are realizations of independent variables, and by considering the anchor

nodes positions as random variables of prior distributions equal to the Dirac delta function,

the joint a posteriori distribution factorizes as

p(x|y) =
1

Z

∏

i∈V
Φi(xi)

∏

(i,j)∈E

Ψi,j(xi,xj), (4.19)

where x = [xT1 , · · · ,xTm, θT ]T , Φi(xi) = p(xi) is the a priori probability or evidence on the

position of node i, and Ψi,j(xi,xj) = p(yi,j |xi,xj) is a pair-wise potential function. The

distribution function (4.19) belongs to the family L(G) where the potential functions of the

maximal cliques are products of pair-wise potential functions and evidences.



4.4. INFERENCE IN GRAPHICAL MODELS 71

Conditional independence

For a graph G, define the family of distribution functions L′(G) verifying the following

property : For any two non-neighboring nodes i and j, the random variables Xi and Xj

are independent conditionally on the knowledge of all other random variables in the graph

(i.e., Xi⊥Xj |X\{i, j} where X\{i, j} denotes the set of all variables without Xi and Xj).

The Hammersley-Clifford theorem states that the two families L(G) and L′(G) are the same

[106].

For any three disjoint sets of nodes A, B and C in G, the conditional independence

property XA⊥XB|XC is satisfied if all possible paths that connect nodes in A to nodes in

B pass through one or several nodes in C. For example, in the graph G of Figure 4.2, the

following equation (4.20) is verified by any joint probability distribution function belonging

to L(G) :

p(xa,xb,xc|xd,xe,xf ) = p(xa,xb,xc|xd). (4.20)

a

b

c

d

e

f
A B

C

Figure 4.2 — Undirected graph of six nodes grouped into three sets.

4.4.2 Marginalization

The goal of inference in graphical models is exploiting the graphical structure in order to

find efficient algorithms for computing the marginal distribution p(xk|y) for a specific node

k, and finding the most likely sequence of states x̂MAP that maximizes the joint distribution

p(x|y).

By definition, the marginal distribution is obtained by summing the joint distribution

function over all variables except xk :

p(xk|y) =

∫
p(x|y)dx1 · · · dxk−1dxk+1 · · · dxN . (4.21)

The computation of marginal distributions has many advantages. One advantage is that

it enables estimating the different random variables separately, for example by computing

the MMSE estimate according to

x̂k,MMSE =

∫
xk

(∫
p(x|y)dxm+1 · · · dxk−1dxk+1 · · · dxN

)
dxk

=

∫
xkp(xk|y)dxk, (4.22)
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or by computing the local MAP according to

x̂k,local MAP = arg max
xk

p(xk|y). (4.23)

We mention that the local MAP estimate is in general different from the joint MAP estimate

that maximizes the joint posterior distribution p(x|y) [108]. If the marginals are available at

each node, the random variables can be estimated locally. Moreover, the marginals provide a

representation of uncertainties and can be used in the detection of potential ambiguities.

Marginalization in a chain

We consider the Markov chain of Figure 4.3 consisting of N nodes where each node has

two neighbors except nodes 1 and N which have only one.

1 k-1 k k+1 N

1( )k x ( )k x ( )k x 1( )k x

Figure 4.3 — A chain graph with the forward and backward messages propagated to node

k.

The joint distribution of this graph can be expressed as

p(x) =
1

Z
Ψ1,2(x1,x2) . . .ΨN−1,N (xN−1,xN ). (4.24)

By assuming that the random variables are discrete, the marginal distribution for node k is

p(xk) =
∑

x1

· · ·
∑

xk−1

∑

xk+1

· · ·
∑

xN

p(x). (4.25)

If we suppose that each node representing a discrete variable has K states, there will be KN

values for x. The naive computation is done by evaluating the joint distribution and then

performing the summation explicitly. This would involve storage and computational com-

plexity that scale exponentially with N . If we group the potential functions and summations

in another way, the desired marginal can be expressed in the form

p(xk) =
1

Z


∑

xk−1

Ψk−1,k(xk−1,xk) . . .

[∑

x2

Ψ2,3(x2,x3)

[∑

x1

Ψ1,2(x1,x2)

]]


︸ ︷︷ ︸
µα(xk)

×


∑

xk+1

Ψk,k+1(xk,xk+1) . . .

[∑

xN

ΨN−1,N (xN−1,xN )

]


︸ ︷︷ ︸
µβ(xk)

. (4.26)

In this way, p(xk) factorizes as

p(xk) =
1

Z
µα(xk)µβ(xk). (4.27)
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µα(xk) can be interpreted as a message passed forwards along the chain from node k − 1 to

node k, and µβ(xk) as a message passed backwards from node k + 1 to node k.

µα(xk) =
∑

xk−1

Ψk−1,k(xk−1,xk)µα(xk−1).

µβ(xk) =
∑

xk+1

Ψk,k+1(xk,xk+1)µβ(xk+1). (4.28)

The cost of evaluating p(xk) is now O(NK2) instead of O(KN ).

When the random variables are continuous, equation (4.27) applies and the sums in (4.28)

are replaced by integrals.

When the nodes are separate physical entities, the marginal computation can be carried

out in a distributed fashion where messages µα(xk−1) and µβ(xk+1) are received from neigh-

boring nodes k − 1 and k + 1, respectively. This message passing scheme enables computing

the exact marginals in tree graphs (i.e., graphs without loops) and is called the sum-product

algorithm. For the computation of the joint MAP sequence of states in tree graphs, another

distributed message passing algorithm exists and is called the max-product algorithm. These

two algorithms are described in the next section.

4.4.3 Sum-product and max-product algorithms

Sum-product algorithm

This algorithm is also called belief propagation. It can be implemented in an iterative

and distributed way, in which messages are exchanged in parallel. It can proceed as follows.

First, all the messages are initialized to an arbitrary constant value, for example

m
(0)
j,i (xi) = 1. (4.29)

Then, the message from node i to node j at iteration l is updated as follows :

m
(l)
j,i(xi) = α

∫
Φj(xj)Ψi,j(xi,xj)

∏

k∈η(j)\i

m
(l−1)
k,j (xj)dxj , (4.30)

where α is a multiplicative constant introduced to avoid numerical underflow and thus contri-

bute to the stability of the computations, and η(j)\i is the set of neighbors of node j without

node i. The belief of node i at iteration l is given by

b
(l)
i (xi) =

1

Z
Φi(xi)

∏

j∈η(i)

m
(l)
j,i(xi). (4.31)

In tree graphs, the needed number of iterations before convergence is equal to the graph

diameter (i.e., longest shortest path) and the beliefs computed at convergence are equal to

the true marginals.
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Max-product algorithm

Let us consider the chain network example of the previous section where we were interested

in finding the joint MAP estimate. A naive algorithm is to compute the value of the joint

distribution for each of the KN combinations of states, and then find the maximum. If,

instead, the summation in the forward and backward messages of equations (4.28) are replaced

by the maximization operator, then the set of states that maximize the different computed

beliefs correspond to the joint MAP estimate. This algorithm is called the max-product

algorithm. The message from node i to node j corresponds to

m
(l)
j,i(xi) = αmax

xj


Φj(xj)Ψi,j(xi,xj)

∏

k∈η(j)\i

m
(l−1)
k,j (xj)


 . (4.32)

For tree graphs, the following statements can be proven [108] :

– The max-product algorithm converges to a unique fixed point in a finite number of

iterations equal to the graph diameter.

– At convergence, the belief for any value xk of a node k is the maximum of the joint

posterior distribution, conditioned on that node having the value xk :

bk(xk) = max
x

p(x|xk). (4.33)

– Define the max-product assignment θ∗ = [x∗Tm+1, · · · ,x∗TN ]T where x∗k =

arg maxxk
bk(xk). Then θ∗ is the joint MAP assignment (i.e., θ∗ = θ̂MAP ).

Messages equations (4.30) and (4.32) can be computed either at node j or at node i. In

the former case, the messages that node j propagates to its neighbors are different, while in

the latter case, node j can propagate its belief at iteration l − 1 and this information is the

same for all the neighbors. The message (4.30) can be computed at node i from the belief

received from node j according to

m
(l)
j,i(xi) = α

∫
Ψi,j(xi,xj)

b
(l−1)
j (xj)

m
(l−1)
i,j (xj)

dxj . (4.34)

Thus, the belief can be broadcast to all the neighbors instead of sending a dedicated message

to each neighbor, allowing a reduction in the number of transmissions. But we can notice in

(4.34) that the message m
(l−1)
i,j (xj) needs to be known at node i and the reduction in the

number of transmissions comes at the expense of a double computation of the messages.

Graphs with loops - loopy belief propagation

The belief propagation (BP) rules given above are derived for singly connected networks

(i.e., tree graphs in which there is a single path between any two nodes), where the convergence

to true marginals is guaranteed.

When the same rules are applied to graphs with loops, they are called ‘loopy BP’. In this

case, the computed beliefs may differ from the true marginals. A relationship is derived in
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[108] between steady state beliefs (i.e., beliefs at BP convergence) and the true marginals for

graphs with a single loop when the state space is discrete. It is also shown that the computed

beliefs provide good approximations.

4.5 Nonparametric belief propagation

The integral (4.30) can be computed analytically when the random variables are discrete

and have a finite number of states or when the joint posterior distribution is multivariate

Gaussian. When these conditions are not fulfilled, as in the case of the localization problem,

this equation cannot be computed in a closed-form and must be replaced by an approximation.

In [109], the nonparametric BP (NBP) algorithm is developed, which is based on stochastic

methods for propagating kernel-based approximations of the messages. The heart of the NBP

is a Monte-Carlo integration of (4.30).

The NBP is applied in the first phase of the two-phases NBP solution developed in Section

4.7. In the interest of completeness, we provide a recast of the NBP algorithm [109] in this

section.

4.5.1 Monte-Carlo integration

Let pj,i be the following probability distribution

pj,i(xj) =
1

Z
Φj(xj)

∏

k∈η(j)\i

mk,j(xj) (4.35)

where the iteration index has been dropped for simplification. By drawing M independent

samples {sqj,i}Mq=1 from pj,i, we can approximate it as

pj,i(xj) ≈
1

M

M∑

q=1

δ(sqj,i,xj) (4.36)

where δ is the dirac delta function. The drawn samples will be also called particles. A Monte-

Carlo integration of (4.30) is obtained by replacing pj,i by (4.36) yielding the approximate

message m̃j,i :

m̃j,i(xi) ∝
∫

Ψi,j(xi,xj)

M∑

q=1

δ(sqj,i,xj)dxj

∝
M∑

q=1

Ψi,j(xi, s
q
j,i). (4.37)

A classical solution in Monte Carlo integration is to resort to importance sampling when

it is difficult to draw samples directly from pj,i. Importance sampling is carried out as follows :

Let gj,i(xj) be an importance probability distribution function verifying gj,i(xj) > 0 when
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pj,i(xj) > 0. Equation (4.30) can be written as

mj,i(xi) ∝
∫

Ψi,j(xi,xj)
pj,i(xj)

gj,i(xj)
gj,i(xj)dxj . (4.38)

The samples {sqj,i} can be drawn from the importance function gj,i, in which case m̃j,i becomes

the weighted mixture

m̃j,i(xi) ∝
M∑

q=1

πqj,iΨi,j(xi, s
q
j,i), (4.39)

where πqj,i ∝ pj,i(s
q
j,i)/gj,i(s

q
j,i) is an importance weight. The estimator (4.39) of mj,i is unbia-

sed, and its variance depends on the considered importance function and tends to zero with

M .

By choosing the importance function equal to the approximation of the belief

b̃j(xj) =
1

Z
Φj(xj)

∏

k∈η(j)

m̃k,j(xj), (4.40)

the drawn samples are the same for all the neighbors of node j and sampling can be done

only once, and the attributed weights are πqj,i ∝ 1/m̃i,j(s
q
j,i).

4.5.2 Kernel-based message approximation

It is not always straightforward to draw samples directly from the approximate belief

(4.40), which is a product of mixtures of the form of (4.39), or to select a suitable importance

function that reduces the variance of errors due to approximations. A second stage of the

NBP is to further stochastically approximate the message (4.39), where each particle sqj,i is

propagated to node i by drawing a sample µqj,i for αΨi,j(xi, s
q
j,i), α being a normalization

value, and then placing a Gaussian kernel at every µqj,i with appropriate covariance matrix.

The message becomes the following mixture of M Gaussian components :

m̃j,i(xi) ∝
M∑

q=1

πqj,iN (xi;µ
q
j,i,Σj,i) (4.41)

whereN (xi;µ
q
j,i,Σj,i) is distribution function of the Gaussian kernel of centroid µqj,i and band-

width (or covariance matrix) Σj,i. To perform this step we assume that
∫

Ψi,j(xi, s
q
j,i)dxi <∞.

When there are spatial constraints on the values of xi, they can be taken into account

in this phase by keeping the samples µqj,i that are inside the feasibility set. Thus, NBP can

efficiently handle the presence of constraints. This point is very important in localization

problems where the nodes might be known to lie inside admissible space regions.

4.5.3 Kernel-based belief approximation

This approximation consists of sampling b̃i(xi) and placing a Gaussian kernel at each

drawn sample µqi :

b̃i(xi) =

M∑

q=1

wqiN (xi;µ
q
i ,Σi), (4.42)
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where wqi are non-negative weights having the sum equal to one, and the bandwidth Σi is

set to be the same for all components. We mention that using different bandwidths is also

possible.

For the moment, if we assume that the local evidence Φi(xi) is represented by a weighted

Gaussian mixture, then b̃i(xi), given by (4.40), is a product of d = |η(i)| + 1 Gaussian mix-

tures, each containing M components, and will produce another Gaussian mixture with Md

components. To sample directly from this product, we need to find the weights of the Md

components. Then a component is selected and a sample is drawn from it. Thus, direct sam-

pling would require O(Md) operations. However, several methods for drawing samples from

products of Gaussian mixtures are investigated in [110], such as Gibbs sampling and mixture

importance sampling with a complexity of at least O(dM2). When there are constraints on

the values of xi, they are also taken into account in this phase and µqi should verify these

constraints.

In loopy networks, the NBP algorithm can be processed until a predefined number of

iterations is reached or until the Kullback-Leibler(KL) divergence 1 between the beliefs at

two consecutive iterations becomes less than a fixed threshold. The different steps of the

NBP algorithm are summarized in Table 4.1.

4.5.4 Application to localization

NBP has been first applied to cooperative localization in [55], and then, several variants

have emerged. In [88], samples are drawn by building a box that covers the region where

anchors radio ranges overlap. In [3], measurement errors are assumed to lie in known intervals

allowing the construction of limited space regions for each node, and then, rejection sampling

is used when drawing samples from the beliefs equations. Both variants allow the reduction

of the number of samples needed to achieve a good accuracy. Concerning the errors due to

the loops, several solutions have been proposed to alleviate them [111, 112, 113].

Kernel-based message approximation performs by sampling the pair-wise potential func-

tions. In the case of a 2-dimensional localization and when observation yi,j between nodes

i and j is a ranging observation and does not carry any information about the direction

or the absolute positions (i.e., p(yi,j |xi,xj) , p(yi,j |di,j)), then the sampling operation

µqj,i ∼ αΨi,j(xi, s
q
j,i) is equivalent to

µqj,i = sqj,i + dqj,i[ cos(θq) ; sin(θq) ] (4.43)

where θq is drawn from the uniform distribution U(0, 2π) and dqj,i is drawn from αp(yi,j |di,j), α
being a normalization value. A similar operation can be performed when the space dimension

is three.

1. The Kullback-Leibler(KL) divergence between two distributions pX and qX is measure of closeness

between them and is given by

KL(pX‖qX) =

∫
p(x)log

p(x)

q(x)
dx.

The KL divergence is always non-negative and is equal to zero if and only if the two distributions are equal.
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0 : NBP algorithm

1 : for each node i in V

2 : for each node j in η(i)

3 : initialize the received message m
(0)
j,i (xi) = 1

4 : approximate the belief b
(0)
i using a mixture of Gaussian components

5 : draw M independent samples {sqi }Mq=1 from the belief approximation

6 : for each node j in η(i)

7 : for q = 1, · · · ,M
8 : sample µqi,j ∼ αΨj,i(xj , s

q
i )

9 : set πqi,j = 1/M

10 : send the set {πqi,j , µ
q
i,j} to node j

11 : iterate until convergence or for a fixed number of iterations

12 : for each node i in V

13 : receive messages from neighboring nodes η(i)

14 : approximate the belief b̃i using a mixture of Gaussian components

15 : draw M independent samples {sqi }Mq=1 from the belief approximation

16 : for each node j in η(i)

17 : for q = 1, · · · ,M
18 : sample µqi,j ∼ αΨj,i(xj , s

q
i )

19 : set πqi,j ∝ 1/m̃j,i(s
q
i )

20 : send the set {πqi,j , µ
q
i,j} to node j

Table 4.1 — Implementation of the NBP with a parallel scheduling.

The kernel covariance matrix, which is also called kernel bandwidth, is a smoothing pa-

rameter. The following thumb rule is adopted in [55] for computing this matrix for a set of

weighted samples {wqi , µ
q
i }Mq=1 :

Σi =
1

M1/3

M∑

q=1

wqi (µ
q
i − µ̄i)(µ

q
i − µ̄i)T (4.44)

where µ̄i =
∑
wqi µ

q
i . This equation might result in high eigenvalues of the covariance matrix

when the nodes are distant from each other or when the belief has several modes as the

samples become far from each other and spread over a wide space region. We propose another

adaptive technique for choosing the kernel bandwidth. It proceeds by clustering the samples

(e.g, K-means clustering) and computing a covariance matrix for each cluster using (4.44).

To illustrate the effect of kernel bandwidth selection, we consider the message propagated

from an anchor node (node j) at position xj = [0, 0]T to a target node (node i) where the

measurement is yi,j = di,j + ei,j = 10m and ei,j ∼ N (0, σ2) with σ = 0.5m. Figure 4.4(a)

shows the true message. Figure 4.4(b) shows the kernel-based message approximation with

M = 500 samples and covariance matrix computed according to thumb rule (4.44). Finally,

Figure 4.4(c) shows the kernel-based message approximation with M = 500 samples and

covariance matrix computed according to the adaptive method by taking four clusters. The

covariance matrix computed using (4.44) has higher eigenvalues than the one computed using
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the adaptive method, and the obtained ring shaped message has higher values over a wider

area. But however, the approximation in Figure 4.4(c) has more modes than the one in Figure

4.4(b) since the kernel bandwidth is a smoothing parameter (when the covariance matrix has

higher eigenvalues, the kernel distribution function will take higher values over wider space

areas).

The average KL divergence between the approximated message and true message is plot-

ted in Figure 4.5 as a function of the error standard deviation σ, for the two covariance

computation techniques and for several values of M . The used equation for computing the

average KL divergence between two probability distributions p(x) and q(x) is the following :

KLav(p‖q) =

∫
(p(x)− q(x))log

p(x)

q(x)
dx. (4.45)

As can be noticed, the KL divergence is smaller for the adaptive technique which results in

a better approximation of the messages.
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Figure 4.4 — (a) True message. (b) Kernel based approximation with kernel bandwidth

computed according to (4.44). (c) Kernel based approximation with adaptive kernel band-

width computation.

An example illustrating the application of the NBP algorithm to cooperative localization

is provided in Figure 4.6 where there are two target nodes each connected to two anchor nodes

and one target node. At the first iteration, the product of messages propagated from anchor
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Figure 4.5 — Variation with σ of the average KL divergence between the true message and

the approximated one.

nodes 1 and 2 to target node 5 result in a bimodal belief, and at the second iteration, the

message received from target node 6 makes the final belief at convergence unimodal. It can be

noticed that the two modes of the approximated belief in Figure 4.6(b) are not equiprobable

due to the randomness of the NBP method and the limitation of the number of samples.

Another example illustrating the powerfulness of the NBP algorithm when locations are

not globally identifiable is provided in Figure 4.7 where target node 7 has four feasible so-

lutions and the corresponding belief after three NBP iterations has four modes. Thus, the

computed beliefs can be exploited to detect the potential ambiguities and to avoid wrong geo-

metric embeddings of the network, making the NBP more attractive over other distributed

successive refinement solutions.

4.5.5 State estimation

After computing a kernel-based approximation of the belief of node i

b̃i(xi) =
M∑

q=1

wqiN (xi;µ
q
i ,Σi), (4.46)

the MMSE estimator of the position of node i becomes

x̂i,MMSE =

M∑

q=1

wqi µ
q
i . (4.47)

The local MAP estimator is the mode of (4.46) with the highest probability. To find all the

modes, no direct method exists and iterative numerical algorithms are necessary. The number

of modes depends on the separation between the components centroids and their covariance

matrices, and is less than the number of components when they have the same covariance

matrix. A hill-climbing algorithm starting from every centroid will not miss any mode [114].

Two such algorithms adapted to the Gaussian components case are described in [114] : One

is the the gradient-quadratic search which is a combination of the Newton method and the
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Figure 4.6 — (a) Messages propagated from anchor nodes 1 and 2 to target node 5 at the

first iteration of the NBP. (b) Bimodal belief of node 5 at the first iteration of the NBP

obtained by the product of messages from nodes 1 and 2. (c) Messages propagated from

anchor nodes 1 and 2 and target node 6 to target node 5 at the second iteration of the NBP.

(d) Unimodal belief of node 5 at the second iteration of the NBP.

gradient ascent, and another is the fixed point method. The fixed point method requires

more iterations than the gradient-quadratic search but is simpler to implement and does not

require a step size selection.

In the localization problem, the beliefs only have few modes. When the number of compo-

nents M is large, performing iterative searches that start at every centroid results in a high

complexity and many searches will converge to the same mode. Several solutions can be used

for reducing this complexity. One solution is to randomly select a subset of starting points

from the M centroids. Another solution is to approximate the Gaussian mixture by another

mixture containing fewer components. Several methods have been developed for reducing the

number of components [115].

Finally we mention that approximating the belief by a Gaussian mixture with fewer

components can be beneficial for reducing the amount of data to be exchanged between
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Figure 4.7 — (a) Network of 7 nodes where target nodes 5 and 7 are not uniquely solvable.

(b) Multimodal belief of node 7 after four iterations of the NBP.

the nodes. In this case, the trade off between the amount of transmitted samples and the

complexity of the mixture reduction operation should be taken into account.

4.6 Other message passing algorithms

The goal of message passing algorithms is to compute, in a distributed way, approximate

distributions bi(xi) of the marginal distributions p(xi|y) so that the joint approximate b(x)

is close to the joint distribution p(x|y). The KL divergence has been considered as a measure

of closeness and is given by

KL(bX‖pX|Y) =

∫
b(x)log

b(x)

p(x|y)
dx. (4.48)

To make the computation tractable, bX is restricted to belong to a certain class C and we try

to find the the distribution that minimizes the KL divergence [116] :

b̂X = arg min
bX∈C

KL(bX‖pX|Y). (4.49)

For the belief propagation algorithm, it is shown in [116] that the beliefs obtained at conver-

gence correspond to a local stationary point of the KL divergence when C is the set of

probability distributions that factorize as

bX(x) =

∏
(i,j)∈E bi,j(xi,xj)
∏
i∈V b

|η(i)|−1
i (xi)

, (4.50)

where |η(i)| denotes the cardinality of the set of neighbors of node i and the joint probability

distribution bi,j verifies the condition
∫
bi,j(xi,xj)dxj = bi(xi). The joint posterior distribu-

tion of tree graphs factorizes as (4.50), and thus, the beliefs obtained at convergence are equal

to the true marginals.
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Variational message passing simplifies the dependency structure by choosing distributions

in which disjoint groups of variables are independent [106]. In other words, bX factorizes as

bX(x) =
∏

i∈V
bi(xi). (4.51)

Another message passing technique is the expectation propagation which minimizes the in-

clusive KL divergence KL(pX|Y||bX) by considering distributions that factorize according to

(4.51). Variational message passing and expectation propagation have been applied to coope-

rative localization in [89] and [90], respectively, where the marginal approximate distributions

are additionally restricted to be Gaussian densities, in which case the exchanged messages

reduce to the first two moments instead of the large number of samples in the case of NBP al-

gorithms. But this may result in an accuracy reduction since multimodal distributions cannot

be represented.

Figure 4.8 illustrates the information flow in message passing algorithms for one target

node. The computations of messages and approximate marginals differ from one message

passing algorithm to another.

Target node 

Target node 

Anchor node Target node 

A priori

NeighborhoodTotal a priori

Figure 4.8 — Representation of messages flow for one target node.

4.7 Two-phases NBP and flip ambiguity mitigation

The two-phases NBP (TP-NBP), which is a main contribution of this chapter, is developed

in this section. One application of this algorithm is the mitigation of the flip ambiguity.

Before developing the TP-NBP, we start by describing the flip ambiguity and several existing

approaches to deal with it.

4.7.1 Dealing with flip ambiguity

Flip ambiguity in cooperative network localization, which corresponds to erroneous geo-

metrical realizations, is a fundamental problem that can result in high location estimation

errors. It is due either to the lack of measurements necessary to achieve a global identifia-

bility or to the topology of the network and noises in measurements. Global identifiability

conditions have been addressed in the previous chapter.

Several approaches can be applied to mitigate the flip ambiguity.
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One approach is to only localize the nodes with low flip probability as in [52, 53]. In

the incremental solution of [53], the computed positions are promoted to anchors in the

subsequent iterations. A flip on an anchor node can degrade the remaining position estimates

and propagate in an avalanche fashion. In order to avoid this situation, a test is applied

for identifying the nodes with high flip probability and removing them from the localization

process. While this approach can guarantee a high robustness of the solution, it can leave an

important portion of the nodes unlocalized.

A second approach is to preform additional measurements either with a mobile terminal

(e.g., Figure 4.9), or by increasing the transmit power in order to acquire measurements from

the far nodes [54]. The feasibility of this solution depends on the deployment scenario and

the limitations of the maximum power.

 

 

b

a

Figure 4.9 — The ambiguity on target node a is eliminated after performing measurements

with the mobile target node b which is moving on the dashed line.

In some cases, the presence of a priori information may resolve the flip ambiguity, as

for example map constraints (e.g., the location of a femto base station or an access point

is constrained to be inside the owner’s apartment). The NBP method can handle the map

constraints by drawing the particles inside the admissible regions.

Another solution is to exploit the connectivity information between the different nodes.

The fact that two nodes are not neighbors gives the additional information that they are

more likely to be far from each other. Here, our focus will be on exploiting the connectivity

information using probabilistic inference in MRFs. This approach has been first considered

in [55] using the NBP technique. In this case, a probabilistic connectivity model needs to be

assumed. Now, we describe such a model based on average received power.

Connectivity model based on received power

Two nodes i and j are connected (i.e., can communicate with each other and perform a

pair-wise measurement) if the power Pi,j (in decibel (dB)) at node i transmitted by node

j (or vice versa) is above a threshold value Pth. Such a connectivity model is used in the

simulation and analysis of multi-hop networks [79].

We assume the following widely accepted model for the received power :

Pi,j = P0 − 10nplog10(di,j) +Xi,j , (4.52)

where P0 is the average received power at a distance of 1m, di,j is the true distance between

nodes i and j, np is the path loss exponent and Xi,j is a centered Gaussian random variable

of variance σ2
sh representing the shadowing loss.
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The probability that two nodes are connected is a function of their separating distance.

By assuming that Pi,j = Pj,i, this probability is equal to

po(xi,xj) = probability(P0 − 10nplog10(di,j) +Xi,j ≥ Pth)

= probability(Xi,j ≥ f(xi,xj))

= Q

(
10nplog10(di,j/R)

σsh

)
, (4.53)

where Q is the Q-function, R = 10
P0−Pth
10np d0 and po = 1/2 for di,j = R.

The power value is available for two neighboring (i.e., connected) nodes and we can write

p(Pi,j = pi,j ,nodes i and j are neighbors|xi,xj) = p(Pi,j = pi,j , Pi,j ≥ Pth|xi,xj)
= p(Pi,j = pi,j |xi,xj), (4.54)

where pi,j is a particular value taken by Pi,j . On the other hand,

p(nodes i and j are not neighbors|xi,xj) = p(Pi,j < Pth|xi,xj)
= 1− po(xi,xj). (4.55)

Let Ec = {(i, j) ∈ V × V |i 6= j and (i, j) /∈ E}. The joint distribution of the power

measurements and the connectivity information that can be deduced from (4.54) and (4.55)

is

p({Pi,j = pi,j}(i,j)∈E , {Pi,j < Pth}(i,j)∈Ec |{xi}i∈V ). (4.56)

In general, the shadowing affecting the different links are correlated. The joint distribution

of the shadowing values is multivariate Gaussian with a non-diagonal covariance matrix, and

(4.56) is not suitable for the application of the NBP. A multi-link shadowing correlation

model is proposed in [79] but is very complex to apply to localization. Instead, if we assume

that the shadowing losses on the different links are independent, then the joint a posteriori

distribution becomes

p (x|y) ∝
∏

i∈V
Φi(xi)

∏

(i,j)∈E∪Ec
Ψi,j(xi,xj) (4.57)

where Φi(xi) is the a priori distribution function of xi, Ψi,j(xi,xj) = p(yi,j , Pi,j = pi,j |xi,xj)
if (i, j) ∈ E and Ψi,j(xi,xj) = 1− po(xi,xj) otherwise.

In [55, 88, 3], the exponential function (4.58) is assumed as an approximation of (4.53)

and has been applied to ambiguity mitigation in variational inference techniques [117].

po(xi,xj) = exp(−log2 d2
i,j/R

2). (4.58)

We mention that site specific models that take into account the layout of the deployment

area (e.g., Keenan-Motley model) can be considered and easily handled by the NBP method.

The probabilistic undirected graph associated to (4.57) is fully connected, and the appli-

cation of message passing algorithms to it is very complex, since it requires an exchange of
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messages between all the pairs of nodes. To reduce this complexity, message exchange is limi-

ted to the k-step neighbors, where two nodes are k-step neighbors if their shortest connecting

path has a length of k edges.

To reach all the k-step neighbors, a message needs to be broadcast several times. For

example, to reach a 2-step neighbor, a messages needs to be broadcast twice : A first broadcast

by the emitting node and a second broadcast by a direct neighbor. Indeed, to reach all the

2-step neighbors, a message need not to be broadcast by all the direct neighbors as several 2-

step neighbors can be connected to the same direct neighbor. Multipoint relaying techniques

can be used to reduce the number of redundant retransmissions while diffusing the broadcast

messages [118].

4.7.2 Two-phases NBP solution

The TP-NBP solution performs in two phases : In the first phase, the NBP is applied by

exchanging messages only between direct neighbors and without considering the connectivity

information. Then in the second phase, a new algorithm based on estimation in discrete state

space is applied. This algorithm is composed of the following steps :

1. For each node, we identify the belief’s modes and construct a small set of points consisting

of these modes and few points around each mode. This step is performed locally. In the

case of a 2-dimensional localization, the set Si associated to node i can be constructed

as follows : For each mode ml
i, we select h points on the ellipse

([x, y]T −ml
i)
T (Σl

i)
−1([x, y]T −ml

i) = a (4.59)

where [x, y]T is a coordinates vector, a is a real positive value and Σl
i is the covariance

of the cluster of samples associated to ml
i (i.e., nearest kernel centroids to ml

i). In the

simulations, we set a = 1.5 and h = 8 points. The number of elements of Si is h×number

of modes. This number can be reduced by rejecting the modes with probability smaller

than a threshold value.

2. At this point, each node has a small set of points. We apply the discrete analytical

version of the BP to find again the beliefs, where the unknown positions take on values

in the constructed sets.

– We can use the sum-product rule, and in this case the message from node j to node i

at iteration n is

m
(n)
j,i (sqi ) =

|Sj |∑

l=1

Ψi,j(s
q
i , s

l
j)

∏

k∈η(j)∪ηk(j)\i

m
(n−1)
k,j (slj), (4.60)

where sqi ∈ Si, q = 1, · · · , |Si|, η(j) is the set of direct neighbors of j, and ηk(j) is the

set of indirect neighbors up to the order k. We compute Ψi,j(si, sj) = p(yi,j , Pi,j =

pi,j |si, sj) for direct neighbors, and Ψi,j(si, sj) = 1− po(si, sj) for indirect ones.

– If the max-product is used instead, the message is

m
(n)
j,i (sqi ) =

|Sj |
max
l=1

Ψi,j(s
q
i , s

l
j)

∏

k∈η(j)∪ηk(j)\i

m
(n−1)
k,j (slj). (4.61)
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3. The belief at node i is computed with

b̂(n)(sqi ) =
∏

k∈η(i)∪ηk(i)

m
(n)
k,i (sqi ) (4.62)

4. The estimated position is taken as the point with the maximum belief :

x̂i = arg max
sqi∈Si

b̂(n)(sqi ). (4.63)

With this algorithm, the k-step neighbors are implicated in the message exchange process,

but the amount of data contained in the message is smaller than that of the first phase

NBP. Furthermore, this algorithm improves the localization accuracy, even when message

exchanges of the second phase occur between the direct neighbors only. This claim will be

validated in the next section via Monte Carlo simulations. Additionally, during the second

phase, measurements that have not been used during the first phase NBP can be used, and

other previously described ambiguity mitigation techniques can be applied.

4.8 Numerical results

In this section, we validate advantages of the TP-NBP via two Monte Carlo simulation

examples. We also derive a new result : We show, via a Monte Carlo simulation, that the

shadowing correlation information can be useful for mitigating the flip ambiguity.

4.8.1 Example 1 : Distance measurements in additive Gaussian noise

We consider networks consisting of 4 anchor nodes and 16 target nodes deployed in a

20m × 15m area. The anchor nodes are located as shown in Figure 4.10. The target nodes

locations are uniformly drawn inside squares of size 2m×2m, one node per square. The centers

of the squares are also shown in Figure 4.10. We divide the target nodes into two categories :

The inner nodes that are inside the convex hull of the 4 anchor nodes and the peripheral

nodes that are outside this convex hull. The peripheral nodes have higher flip probabilities

than the inner ones since they have less neighbors, on average.

For the connectivity, we consider the probabilistic model of (4.53) with np = 3, σsh = 8dB

and range R varying from 4 to 10m, and consider only rigid networks that cannot have a

continuous deformation (i.e., a randomly generated network is retained if it is rigid).

The assumed observations are distance measurements affected by additive Gaussian errors

of the same variance σ2. We further assume that nodes are mutually neighbors (if i is a

neighbor of j, then j is a neighbor of i) and neighboring nodes share the same measurement

(if there are two different measurements, they can be combined in a single one).

The centralized benchmark solution considered is the WLS, where the starting point of

the steepest descent optimization is obtained by applying the SDP algorithm for noisy mea-

surements described in [77]. This solution will be also called ‘SDP+descent’. In order to have

a fair comparison between the NBP and the centralized solution, the potential function of two

neighboring nodes i and j is set equal to the likelihood function Ψi,j(xi,xj) = p(d̃i,j |xi,xj).
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Figure 4.10 — Anchor nodes locations and centers of squares in which the target nodes

locations are uniformly drawn.

Communication cost

We assume a perfect medium access (no connection drop, packet loss, interference, etc.).

The number of messages broadcast by a node depends on the number of iterations, and the

number of messages received by a node depends on the number of neighbors and the number

of iterations. Figure 4.11(a) shows the average number of neighbors of a node as a function

of R.

For the classical NBP, we assume that a node broadcasts a message if it has already

computed its belief either from local a priori information or after receiving messages from

neighbors. Resampling is performed and all the samples have the same weight, and thus, the

exchanged data consists of the samples, and each sample consists of two real values, as the

space dimension is two. Figure 4.11(b) shows the variation with R of the average total number

of messages broadcast and received per target node when the number of iterations is four,

and Figure 4.11(c) shows the corresponding amount of real data values sent and collected by

a target node for M = 200 particles.
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Figure 4.11 — (a) Average number of neighbors of a node. (b) Average number of trans-

mitted and received messages. (c) Average number of transmitted and received real data

values. The number of samples is M = 200 and the number of iterations is four.

When messages are exchanged between k-step neighbors, multipoint relays (MPRs) are

considered in order to minimize the number of retransmitted messages. We choose the MPRs
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using the heuristic algorithm described in [118]. Figure 4.12(a) shows the probability that a

node has 2-step and 3-step neighbors. The average numbers of retransmissions (or number of

MPRs) of a message to reach the 2-step and 3-step neighbors are plotted in Figure 4.12(b).

We can notice that for R > 6m, the number of MPRs is decreasing since the number of direct

neighbors is increasing.

4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

R (m)

 

 

2−step

3−step

(a)

4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

R (m)

 

 

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
re

tr
a

n
s
m

is
s
io

n
s

2−step

3−step

(b)

Figure 4.12 — (a) Probability that a node has a k-step neighbor. (b) Average number of

retransmissions per node to reach all k-step neighbors.

The message sent by a node to its k-step neighbors can be either transmitted by dedicated

transmissions in which case every node broadcasts its message then MPRs broadcast the

received messages and so on, or it can be concatenated to the message sent to direct neighbors

in which case the messages from k-step neighbors are deferred k − 1 iterations.

In Figure 4.13(a) we plot the average total number of messages broadcast and received

per node for the classical NBP and the two-phases solution with message exchanges up to

2-step neighbors. The amount of exchanged data per node is plotted in Figure 4.13(b). The

number of iterations is fixed to four. We can notice that the number of messages is increased

in the two-phases solution as each phase runs four iterations. Nevertheless, this number can be

reduced by considering less iterations in the second phase as the beliefs are already computed

and the messages from the 2-step neighbors are used to solve the ambiguity. On the other

hand, the overall amount of exchanged data is decreased in the two-phases solution as the

exchanges occur between the direct neighbors in the first phase with M = 200 samples and

fewer samples are exchanged in the second phase.

Localization accuracy

Figures 4.14 to 4.17 show the variation of the root mean square error (RMSE) ε̄ =√
E{‖x̂i − xi‖2} with the range R for different error variances. ε̄ is obtained by averaging

100 noise and network realizations. Several methods are compared. NBP-MMSE and NBP-

MAP solutions consider the mean of the belief samples and the most probable mode of the

Gaussian mixture, respectively, after applying the classical NBP with exchanges between

direct neighbors only. NBP k-step corresponds to the application of the TP-NBP solution,

where in the second phase the discrete version of the BP is applied using the sum-product
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Figure 4.13 — (a) Average number of transmitted and received messages. (b) Average

number of transmitted and received real data values. Messages are exchanged up to the

2-step neighbors

rule (4.60) and messages are exchanged up to the k-step neighbors. 1-step neighbors are the

direct neighbors.

Several points can be stressed out from these plots :

– NBP-MMSE is more accurate than NBP-MAP. Furthermore, NBP-MMSE is less com-

plex to implement since the position estimate is obtained by a simple averaging of the

samples instead of the modes exhaustive search required by NBP-MAP.

– NBP 1-step is more accurate than NBP-MMSE, even though the messages are only

exchanged between the direct neighbors at the second phase. A possible justification

of this result is the limitation of the number of samples used in approximating the

messages, which introduces a randomness in the first phase NBP, while the second

phase BP is exact. We can also notice that NBP 1-step is as accurate as the centralized

WLS for this deployment and measurements scenario.

– The RMSE is decreasing with R since the nodes are making more measurements. The

nodes inside the convex hull have smaller RMSE and less ambiguities than the periphe-

ral nodes.

– NBP 2-step and NBP 3-step bring more accuracy improvement to the peripheral nodes.

No improvement is observed at high values of R since the flip probability tends to zero,

except for the peripheral nodes when σ = 1.5 due to the lack in measurements accuracy

(Figure 4.17). Thus, by only allowing the nodes with a small number of direct neighbors

to request messages from 2 and 3-step neighbors, the complexity and data exchange

overhead can be reduced without significant accuracy losses.

The sum-product (4.60) and max-product (4.61) rules are compared in Figure 4.18, where

we can notice that the sum-product performs slightly better than the max-product for this

scenario.

The median and the 90% errors variations corresponding to the message exchange with

the 2-step neighbors are plotted in Figures 4.19 and 4.20, respectively.
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Figure 4.14 — Variation of root mean square error with R. σ = 0.25.
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Figure 4.15 — Variation of root mean square error with R. σ = 0.5.
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Figure 4.16 — Variation of root mean square error with R. σ = 1.0.
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Figure 4.17 — Variation of root mean square error with R. σ = 1.5.
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Figure 4.18 — Variation of root mean square error with R for the sum-product(SP) and

max-product(MP) rules. σ = 0.5.
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Figure 4.20 — Variation of worst case error at 90% error ε90 with R.

4.8.2 Example 2 : Distance measurements in additive noise with outliers

Outliers correspond to observations that are highly deviated from the overall pattern of

a distribution. In the case of ranging measurements, an outlier can be caused by an NLoS

propagation. This examples studies the performance of the TP-NBP in the presence of out-

lying observations. We consider networks of size 25 nodes consisting of 4 anchor nodes and

21 target nodes deployed in a 100m × 100m area. The deployment area is partitioned into

a grid of 5 × 5 squares, each of size 20m × 20m. The locations of the anchor nodes are the

centers of four squares, as shown in Figure 4.21, and target nodes locations are uniformly

drawn inside the remaining squares, one node per square.
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Figure 4.21 — Deployment area and the positions of the 4 anchor nodes (example 2).

The probability that two nodes i and j are connected and perform a ranging measurement

between each other is assumed to be function of their separating distance di,j and is given by

(4.53).

We take the communication range R varying from 30 to 100m, and we only consider
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connected networks (i.e., there is a path between each pair of the nodes) and not the rigid

ones as in the previous example.

The measured distance between two neighboring nodes i and j is affected by an additive

error :

d̃i,j = di,j + ei,j . (4.64)

We model the presence of the outlier by a Gaussian mixture. Thus the error ei,j is drawn

from the following Gaussian mixture :

ei,j ∼ w1N (0, σ2
1) + w2N (e0, σ

2
2), (4.65)

where we set w1 = 0.75, w2 = 0.25, σ1 = σ2 = 0.5m and e0 = 10m.

Finally, for NBP-based methods, we use 200 samples, and 5 iterations.

Localization accuracy

Simulation results are shown in Figure 4.22 where we can notice that the max-product

performs better than the sum-product for this scenario. We can also notice that for R > 45m,

the RMSE of the TP-NBP becomes less than that of the WLS. The fact the NBP is a

probabilistic estimator makes it more resilient to the outliers than non-probabilistic estimators

such as WLS. Furthermore, we can notice that the TP-NBP is much more accurate than the

NBP-MMSE for this scenario, and the plots show an accuracy improvement up to 2m.
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ǭ
(m

)

 

 

SDP+descent

NBP−MMSE

NBP−MAP

NBP MaxProd 1−step

NBP SumProd 1−step

(a)

30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

R (m)

ǭ
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Figure 4.22 — Variation of root mean square error with R. (a) All nodes. (b) Peripheral

nodes.

4.8.3 Impact of the number of iterations

The latency is monotonically increasing with the number of iterations. To asses the effect

of the number of iterations on the accuracy, we consider the network of Figure 4.23. The

noise in the distance measurements is Gaussian distributed with variance σ = 0.5m. Figure
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4.24 shows the variation of the RMSE with the number of iterations. For the two-phases

solution, the same number of iterations is performed during the first and second phase. Node

6 is three hops far from the anchor nodes and starts receiving messages after three iterations,

and node 7 is two hops far from the anchor nodes and starts receiving messages after two

iterations. At the first iteration of the NBP, node 8 receives messages from two anchor nodes

and has a flip ambiguity, but after two iterations of the two-phases NBP (four iteration in

total) and three iterations of the classical NBP, the ambiguity is eliminated. It can be noticed

that the estimation accuracy does not improve beyond four iterations. We can deduce that

the number of iterations needed by the NBP methods is small, and is in general smaller than

the network graph diameter (i.e., longest shortest path).
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Figure 4.23 — Network of 5 anchors nodes and 9 target nodes.

4.8.4 Impact of correlated shadowing on flip ambiguity mitigation

In the previous examples, the shadowings on the different links were assumed to be in-

dependent. Here, we provide an example showing that the information about the shadowing

correlation is beneficial for the position estimation. The example focuses on flip ambiguity

mitigation.

We consider the network of Figure 4.25 consisting of one target node located at (−8.5; 5)

and four anchor nodes. Anchor nodes 1, 2 and 3 are collinear. Anchor node 2 is located at

(−3.5+d; 0). The target node performs power and distance measurements with anchor nodes

1, 2 and 3 and only a power measurement with anchor node 4.

Using only the distance measurements to estimate the target node location results in a

flip ambiguity, since the anchor nodes are collinear. Two solutions are feasible. Denote them

by x5 = (−8.5; 5) and x′5 = (−8.5;−5). In this example, the power measurements are used

to select one of these two solutions by applying the ML estimator.

The power measurements are given by (4.52) where we assume that the shadowing losses

on the different links are correlated according to the model provided in [79]. This model

computes the shadowing as the integral of a spatial loss field p(x) :

Xi,j =
1

‖xi − xj‖1/2
∫ xj

xi

p(x)dx. (4.66)
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Figure 4.24 — Variation of the root mean square error with the iteration number of (a)

node 6, (b) node 7 and (c) node 8.

The spatial loss field p(x) is a Gaussian random field of zero mean and exponentially decaying

isotropic correlation function :

E {p(xi)p(xj)} =
σ2
X

δ
exp

(
−‖xi − xj‖

δ

)
. (4.67)

We set np = 3, σX = 8dB, and let δ take one of the two values 0.4 and 1m.

We assume that all the pairs of nodes are performing power measurements. Define the

shadowing random vector V = [X1,4 X2,4 X3,4 X1,5 X2,5 X3,5 X4,5]T when the target node is

located at x5, and let C be its covariance matrix. Similarly, let V ′ and C′ be the shadowing

vector and its rigidity matrix, respectively, for the same links when the target node is located

at x′5.

The shadowing values can be obtained by subtracting the path loss from the power obser-

vations. Let v and v′ be the values computed for V and V ′, respectively. The ML estimator

is processed as follows :

x̂ML =

{
x5 if vTC−1v ≤ v′TC′−1v′

x′5 otherwise
. (4.68)

Figure 4.26 shows the variation with d (i.e., distance between anchor nodes 1 and 2) of

the flip probability. We can notice that the flip probability is decreasing as d tends to 3.5m.

The justification of this result is that when the target node is in the flipped position, the link
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connecting nodes 2 and 4 and the link connecting the target node to node 2 overlap with the

link connecting the target node to node 4 at d = 3.5m, making the shadowing losses more

correlated.
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Figure 4.25 — Network of one target node and four anchor nodes.
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Figure 4.26 — Variation with d of the flip probability.

We can deduce from this example that the shadowing correlation information is useful for

solving the flips. More accurate site specific propagation models can be employed (e.g., ray

tracing). The application of the ML to ambiguity mitigation requires a centralized processing

in the case of multiple cooperating target nodes. A two-phases NBP based solution can be

applied, where independent shadowing is assumed in the first phase, and the finite sets of

potential solutions are sent to a central node for the second phase processing.

4.9 Conclusion

In this chapter, we started with an overview of cooperative localization algorithms for

static networks. Then we presented the WLS estimator and derived its deterministic stability

conditions. The deterministic stability implies the uniqueness of the global optimum, provided

the observation error is small enough. Based on this result, we derived the conditions of
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consistency if the ML estimator when the ranging measurements are affected by additive

Gaussian noises.

Afterwards, we focused on probabilistic estimation and its graphical formalism using

Markov random fields. This formalism allows the application of distributed marginalization

techniques such as the NBP algorithm. After restating the classical NBP and its application

to localization, we developed a new variant of this algorithm, called the TP-NBP, which

performs in two phases. The second phase can exploit additional observations with a reduced

communication and computational complexity. We showed, via Monte Carlo simulations, that

the TP-NBP improves localization accuracy.

The main complexity of the NBP is drawing particles from the beliefs which are products

of the incoming messages. It also requires a large amount of data exchange. However, the

needed number of iterations is less than that needed by other message passing or successive

refinement algorithms.

By finding the modes of the beliefs, potential flip ambiguities can be detected. We used

the connectivity information to mitigate the ambiguities in the second phase of the TP-NBP.

We also showed by a simulation example that the shadowing correlation information is useful

for improving the ambiguity mitigation.

In the next chapter, Bayesian filtering will be considered for tracking a single moving node

using RSS measurements. This solution will be implemented using particle filters, which

perform a sequential Monte Carlo integration for approximating the marginal probability

distribution of the position over time.



CHAPTER

5 Position Tracking Based

on RSS Measurements

5.1 Introduction

In the previous chapter, we considered Bayesian probabilistic solutions for cooperative

localization, where the nodes were assumed to be static. In this chapter, we consider that

mobile terminals (or target nodes) are moving and we aim at tracking their positions over

time. As in the previous chapter, Bayesian probabilistic solutions are developed but no direct

cooperation between the mobile stations is taken into account.

Our focus is on received signal strength (RSS) measured between a mobile station and

several base stations (or anchor nodes). The obstacles in the propagation path cause attenua-

tions in the form of slow fading or shadowing. The shadowing is usually assumed to follow a

spatially correlated log-normal distribution.

Two Bayesian tracking solutions are developed in this chapter for efficiently exploiting

the measurements and improving the tracking accuracy in presence of random shadowing :

– In the first solution, the shadowing is jointly tracked with the position. For this purpose

we define an auto-regressive modeling of the temporal evolution of the shadowing with

the displacement of the mobile station.

– In the second solution, shadowing maps are constructed and updated during the on-

line tracking phase. This solution allows a reduction of the calibration effort of the

fingerprinting method, and the measurements made by several mobile stations moving

in the deployment area can be used in the estimation of the maps.

These solutions are studied via Monte Carlo simulations in different deployment scenarios.

The shadowing correlation model used in this chapter differs from the multi-link model

presented in [79] and used in sections 3.5.4 and 4.8.4, and is rather a simpler single-link

model.

Bayesian tracking consists in sequentially computing the posterior probability distribu-

tion of a hidden state vector conditioning on the measurements made over time. As for the

computation of the marginal distributions in the previous chapter, the sought probability dis-

tributions are untraceable analytically and are approximated using sequential Monte Carlo

methods also called particle filters.
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This chapter is organized as follows. We start by providing the assumed RSS modeling in

Section 5.2. In this section we also describe the shadowing maps modeling and develop the

auto-regressive modeling of the shadowing process. In Section 5.3, we study the localization

accuracy under perfect knowledge of the shadowing via Monte Carlo simulations. Then, in

Section 5.4, Bayesian tracking is introduced and the joint position and shadowing tracking

solution is developed, and applied to vehicle tracking in a macro-cellular system. Afterwards,

the maps estimation solution is developed and applied to indoor and train tracking in Section

5.5. Finally, concluding remarks are drawn in Section 5.6

5.2 RSS measurements and shadowing modeling

In wireless systems, RSS measurements are performed for channel access, power control

and handover, etc. Thus, a localization solution does not require any extra effort for obtaining

these measurements.

In a propagation environment, there are obstacles causing several propagation effects

such as scattering, reflection and diffraction. In such multipath environments, the received

power is difficult to predict and can be modeled as a combination of path loss, large scale

fading or shadowing and small scale fading [39]. The small scale fading may be filtered out

by averaging the signal over a time window or over the used bandwidth or by using multiple

antennas [119]. The shadowing can be divided into two parts : A time varying part caused

by moving obstacles (e.g., vehicles and persons) and a time invariant one caused by static

obstacles (e.g., buildings, tress and hills in outdoor and walls and furniture in indoor). In the

following, we call shadowing the time invariant part.

In this chapter, we consider a network deployment consisting of NBS base stations (BS)

of known positions 1. The RSS measurement in decibel (dB) made between a mobile station

at position x and the ith base station can be written as

yi = Pi(x) + εi(x) + ei (5.1)

where Pi is a deterministic function that accounts for the path loss, the radiated power and

antenna gains, εi is the shadowing which is assumed invariant with time but depends on the

position, and ei is an error gathering time variant shadowing due to moving obstacles and

RSS estimation errors (e.g., remaining small scale fading, non-linearity effects at the receiver,

quantization noise and receiver orientation).

Path loss models are derived using a combination of analytical and empirical methods.

Many such models for different deployment environments are described in [39]. We do not

investigate here the path loss model that we assume to be known.

Measurements have shown that the shadowing is random and log-normally distributed

(i.e., Gaussian in dB). Thus, εi(x) is a realization of a zero-mean Gaussian random variable

1. The term ‘base station’ is used here instead of ‘anchor node’ and can represent other kinds of devices

such as access points or femto BSs.
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with variance σ2
sh. Measurements have also shown that the shadowing is spatially correlated

[120], i.e., E{εi(xp)εi(xq)} 6= E{εi(xp)}E{εi(xq)} where xp and xq are two arbitrary positions.

The error ei is assumed to be mainly due to the shadowing of moving obstacles and the

remaining small scale fading. Simulations performed in [119] showed that the distribution of

the remaining small scale fading is close to Gaussian. For a moving terminal, the variance

of this error depends on the used filter which must be sufficiently narrow in bandwidth to

remove the multipath fluctuations yet sufficiently wide to track the shadowing. We model ei

by a zero-mean Gaussian random variable of variance σ2
e .

Next, we develop two shadowing models : The first one describes the shadowing maps

and relates the shadowing value to the spatial position, and the second one describes the

temporal evolution of the shadowing for a moving mobile station. These two models will be

used in the positioning and tracking solutions developed throughout this chapter.

5.2.1 Shadowing maps modeling

The mobile station is assumed to reside in a geographical area A ⊂ R2. The shadowing of

a base station over the area A is a realization of a Gaussian random field (GRF) that we call a

shadowing map. A random field is a generalization of a random process to dimensions higher

than one and can be represented using basis expansion (Chapter 3 in [71]). The shadowing

map of the ith base station, denoted by εi, can be represented as follows :

εi(x) =
∞∑

k=1

αi,kψk(x) (5.2)

where {ψk}∞k=1 is a complete basis defined on A and {αi,k}∞k=1 are Gaussian distributed

coefficients. The basis functions are selected and ordered such that the variance of these

coefficients is decreasing with k (where higher values of k correspond to basis functions

of higher frequencies), and thus, the map can be approximated using a finite number of

coefficients :

εi(x) ≈
Lmap∑

k=1

αi,kψk(x). (5.3)

The vector αi = [αi,1, · · · , αi,Lmap ]T is multivariate Gaussian distributed with mean vector mi

and covariance matrix Ci. When there is no information about the shadowing, mi and Ci can

be computed from the used basis functions and an assumed spatial correlation model. Several

basis functions can be used such as the sine and cosine sets, some orthonormal polynomials

and orthonormal rectangular functions. Here, we consider the following approximation : The

vector αi consists of the shadowing values at a grid of positions of A. To obtain the shadowing

value at an arbitrary position of A, we apply a piecewise constant interpolation (also called

nearest-neighbor interpolation) by assigning the same value at the nearest grid point. This

interpolation is equivalent to using a basis of rectangular functions.

The correlation of the shadowing at two positions xp and xq is

E{εi(xp)εi(xq)} = σ2
shρ(‖xp − xq‖) (5.4)
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where ρ is an isotropic correlation function, i.e., depends only on the distance between the

two positions. By definition ρ(0) = 1. This correlation function is assumed to be known for

all the base stations. The exponential correlation function (5.5) is proposed in [120] and fitted

to measured data :

ρ(‖xp − xq‖) = e−γ‖xp−xq‖ (5.5)

where γ = log(2)/dcorr and dcorr is the correlation distance at which ρ(dcorr) = 1/2. dcorr

varies from one environment to another (few hundreds of meters in suburban environments,

less than one hundred meters in urban environments and few meters in indoor), and can be

estimated by a calibration process.

Figure 5.1 shows two correlation functions corresponding to two values of dcorr and a

randomly generated shadowing map for each of them. These maps are generated using a

two-dimensional finite impulse response filter.
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Figure 5.1 — (a) Exponential correlation function with dcorr = 1.5m. (b) Exponential

correlation function with dcorr = 10m. (c) Randomly generated shadowing map with dcorr =

1.5m and σsh = 1dB. (d) Randomly generated shadowing map with dcorr = 10m and

σsh = 1dB.

Measurements have also shown that shadowings for different base stations are cross-

correlated [121] (i.e., E{εi(x)εj(x)} 6= E{εi(x)}E{εj(x)}). For the NBS base stations covering
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the area A, we define the shadowing atlas as being the collection of the shadowing maps

obtained by a concatenation of the vectors :

Λ = [αT1 , · · · , αTNBS ]T . (5.6)

We denote by Latlas = NBS × Lmap the length of the atlas vector. We also denote by M

and Σ the mean and the covariance of Λ, respectively. Σ is a large Latlas × Latlas sparse

matrix thanks to the low shadowing spatial correlation between distant positions. The RSS

measurements made at known positions can be used to update M and Σ as we will see in

Section 5.5.1.

For a moving mobile station, the spatial correlation is transformed into a temporal one.

Thus, the shadowing evolves with time according to a Gaussian process. Now, we develop an

auto-regressive (AR) model for describing this process.

5.2.2 Auto-regressive shadowing model

We consider a moving mobile station and we denote by xk = [xk, yk]
T its position vector

at time kT , where k ∈ N and T is a time step. We start by describing the AR model in the

case of a single base station, and then make the generalization for multiple base stations.

Shadowing AR model for a single base station

Here, we focus on the case where a single base station lies in the system. For notational

brevity, the subscript of the shadowing ε is dropped.

The correlation of the shadowing at times lT and mT is

E{ε(xl)ε(xm)} = σ2
shρ(‖xl − xm‖) (5.7)

Knowing the positions x0:k = [xT0 , · · · ,xTk ]T and prior to any observation,

[ε(x0), · · · , ε(xk)]T is a zero mean Gaussian distributed vector of covariance matrix Rk, with

Rk(l + 1,m+ 1) = σ2
shρ(‖xl − xm‖) and 0 ≤ l,m ≤ k. We write Rk as follows :

Rk =

[
Rk−1 rk

rTk σ2
sh

]
(5.8)

where the vector rk = E{[ε(x0), · · · , ε(xk−1)]T ε(xk)}.
Furthermore, p(ε(xk)|x0:k, ε(x0), · · · , ε(xk−1)) being a Gaussian distribution, the process

ε(xk) can be represented by an order-k AR model AR(k)

ε(xk) = aTk [ε(x0), · · · , ε(xk−1)]T + θk (5.9)

where

ak = R−1
k−1rk (5.10)

and θk is a zero mean Gaussian variable of variance σ2
θk

:

σ2
θk

= σ2
sh − rTkR−1

k−1rk. (5.11)
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The equations of ak and σθk can be derived following the indications provided in Appendix

B.

In order to take all the previous states into account, the order of the AR model increases

with time. The matrix inversion R−1
k can be computed recursively without matrix inversion

from R−1
k−1 and rk :

R−1
k =

[
Ik −R−1

k−1rk

0 1

][
R−1
k−1 0

0 1/σ2
θk

]

×
[

Ik 0

−rTkR−1
k−1 1

]
(5.12)

where Ik is the identity matrix of rank k.

As a remark, the order of the AR process can be limited to the p < (k+1) previous states,

R−1
k being replaced by the inverse of the p× p lower right submatrix of Rk or by the Schur’s

complement of the (k − p+ 1)× (k − p+ 1) upper left submatrix of R−1
k . Thus, if a sliding

window approach of depth p is considered, the Schur’s complement is of low complexity as it

does not need any matrix inversion.

Shadowing AR model for multiple base stations

We denote by Ωk = [ε1(xk), · · · , εNBS (xk)]
T the shadowing vector of the NBS base stations

at time k. We consider a constant cross-correlation (i.e., E{εi(x)εj(x)} = β2 = constant for

all x ∈ A), and we model the shadowing of the i-th base station by a weighted sum of two

i.i.d. GRFs GFi and GFc :

εi(xk) = αGFi(xk) + βGFc(xk) (5.13)

where α2 +β2 = σ2
sh, GFc is common for all base stations, and the GRFs verify the following

equations :

E{GFi(xl)GFj(xm)} = 0.

E{GFi(xl)GFc(xm)} = 0.

E{GFi(xl)GFi(xm)} = ρ(‖xl − xm‖).
E{GFc(xl)GFc(xm)} = ρ(‖xl − xm‖).

Thus, the following equation is verified :

E{εi(xl)εj(xm)} = β2ρ(‖xl − xm‖).

Prior to any observation, Ω0:k = [ΩT
0 , · · · ,ΩT

k ]T is a zero mean Gaussian distributed vector

of covariance matrix Pk equal to

Pk =

[
Pk−1 Tk

TT
k σ2

shZ

]
(5.14)
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where Tk = E{Ω0:k−1ΩT
k } and Z is the NBS ×NBS matrix defined according to

E{ΩkΩ
T
k } = σ2

sh




1 β2/σ2
sh · · · β2/σ2

sh

β2/σ2
sh

. . .
. . .

...
...

. . .
. . . β2/σ2

sh

β2/σ2
sh · · · β2/σ2

sh 1




= σ2
shZ.

The Gaussian process Ωk can be represented by the AR(k) model

Ωk = AT
k Ω0:k−1 + Θk (5.15)

where

Ak = P−1
k−1Tk (5.16)

and Θk is a zero mean Gaussian distributed vector of covariance matrix Qk. Thus, the

Gaussian distribution p(Ωk|x0:k,Ω0:k−1) has a mean AT
k Ω0:k−1 and a covariance matrix Qk.

From (5.8) and (5.14), Pk = Rk⊗Z where ⊗ denotes the Kronecker product 2, which en-

ables computing P−1
k = R−1

k ⊗Z−1 3. Thus, the matrix Ak defined in (5.16) can be computed

with low complexity 4

Ak =
(
R−1
k−1 ⊗ Z−1

)
(rk ⊗ Z)

= ak ⊗ INBS . (5.17)

Similarly, the covariance matrix Qk of Θk is given by

Qk = σ2
shZ−TT

kP−1
k−1Pk = σ2

θk
Z. (5.18)

Thus, the transition probabilities of the shadowing process can be computed with low com-

plexity. When the cross-correlation is not constant (i.e., E{εi(x)εj(x)} = β2(x) ), equations

(5.17) and (5.18) are no more applicable, but the inverse of Pk can be computed recursively

as for equation (5.12).

5.3 Localization accuracy under known shadowing

In this section, we assess the effect of the knowledge of shadowing maps on static lo-

calization accuracy (no motion is considered in this section). For this purpose, we consider

the network of Figure 5.2 where four base stations are located at [−10,−10]T , [10,−10]T ,

2. If A is a m×n matrix and B is a p×q matrix, then the Kronecker product A⊗B is the mp×nq matrix

A⊗B =


a1,1B · · · a1,nB

...
. . .

...

am,1B · · · am,nB

 .
3. If A and B are invertible, then (A⊗B)−1 = A−1 ⊗B−1.

4. If A, B, C and D are matrices of such sizes that one can form the matrix products AC and BD, then

(A⊗B)(C⊗D) = AC⊗BD.
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[−10, 10]T and [10, 10]T and one mobile station is located at x = [0, 0]T , and we adopt the

simple log-distance path loss model :

yi = P0 − 10nplog10(di) + εi(x) + ei (5.19)

where di = ‖x−xBSi‖ is the distance in meters between the ith base station at position xBSi

and the mobile station at position x and np is the path loss exponent that we take equal to

3. We assume that εi(x) is known at all positions and for all BSs.

By assuming independent ei in the RSS measurements, the Fisher information matrix

corresponding to the estimation of the unknown coordinates vector x = [x, y]T is given by

J(x) =
1

σ2
e

NBS∑

i=1

viv
T
i (5.20)

where

vi =


 −

10n
log(10)d2i

(x− xBSi) + ∂εi(x)
∂x

− 10n
log(10)d2i

(y − yBSi) + ∂εi(x)
∂y


 . (5.21)

The regularity condition requires εi(x) to be continuously differentiable, and it can be verified

by selecting continuously differentiable basis functions {ψk}.
The mean square error (MSE) is lower bounded by the squared position error bound

(SPEB), for a given realization of shadowing maps :

E{‖x̂− x‖2} ≥ trace J−1(x) (5.22)

where x̂ is an unbiased estimator of x and the averaging is made over measurements error

realizations.

As a shadowing map is a realization of a Gaussian random field, we compute the average

SPEB :

average SPEB = E{trace J−1(x)} (5.23)

where the averaging is made over shadowing maps realizations. The partial derivatives in

vector vi can be computed numerically, i.e., ∂εi(x)
∂x ≈ εi(x+δ,y)−εi(x−δ,y)

2δ . In fact, this approxi-

mation depends on the value of δ as can be deduced by computing its variance :

E

{(
εi(x+ δ, y)− εi(x− δ, y)

2δ

)2
}

=
σ2
sh(1− ρ(2δ))

2δ2

≈ log(2)σ2
sh

δdcorr
. (5.24)

and

limδ→0E

{(
εi(x+ δ, y)− εi(x− δ, y)

2δ

)2
}

=∞. (5.25)

Thus, the average SPEB depends on the selected value for δ. We arbitrarily set δ = 0.5m.

We recall that the mobile station position is x = [0, 0]T . Figure 5.3(a) shows the average

SPEB as a function of dcorr for various sets of values of σe and σsh, where no cross-correlation
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is assumed (i.e., β = 0) and the error variance σ2
e = E{e2

i } is the same for all the measure-

ments. We can notice in this figure that the average SPEB for σ2
e = 4dB2 and σ2

sh = 16dB2

tends to the SPEB for σ2
e = 4dB2 and σ2

sh = 0dB2 with dcorr since the shadowing becomes

constant and the variance given by equation (5.24) tends to zero.

Let f(x) be the following vector function :

f(x) =




P0 − 10nplog10(d1) + ε1(x)
...

P0 − 10nplog10(dNBS ) + εNBS (x)


 . (5.26)

The RSS measurements vector can be written as y = f(x) + e where e = [e1, · · · , eNBS ]T is

the error vector. The maximum likelihood (ML) estimator corresponds to

x̂ML = arg min
x

‖y − f(x)‖2. (5.27)

Figure 5.3(b) shows the MSE of the ML estimator where we can notice that the error

is much higher than the average SPEB and is decreasing with dcorr. This high error can be

justified as follows. In the scenario considered here, the mobile station is located at [0, 0]T .

Define the scalar function g(x) :

g(x) = ‖f(x)− f(0)‖. (5.28)

Figure 5.4 shows the positions (black points) corresponding to the 200 smallest values of g

where the area is discretized with a separation step of 0.5m between two nearest grid points

and random shadowing maps are generated for each value of dcorr. We can notice that for

dcorr = 1m, the black points are spread in the area, and as a consequence, small measurement

errors can result in high localization errors, and for dcorr = 10m, the black points are near

each other making the MSE smaller.

The large difference between the SPEB and the MSE can be explained by the fact that the

derivatives in the Fisher matrix J(x) are computed using shadowing values at nearby points

and the SPEB can only capture local information. Other lower bounds can be considered

in this case, such as the Barankin bound [122], but these bounds are restricted to unbiased

estimators and can be higher than the MSE of biased estimators.

The cumulative distribution function (CDF) plot of the localization error for dcorr = 2m

and σe = 1dB is shown in Figure 5.5 where we can notice that the shadowing extends the

distribution of the shadowing to higher values which results in higher MSE.

Figure 5.6 shows the MSE when the mobile station is known to lie inside the square of

size 6m×6m. The computed MSE in the presence of shadowing (i.e., σ2
sh = 16dB2) is smaller

than the MSE in the absence of shadowing (i.e., σ2
sh = 0dB2) for this scenario, and this result

is consistent with the result of Figure 5.5 : This a priori information eliminates the points

that can result in high localization errors. At high dcorr values, the shadowing becomes nearly

constant, and the MSE increases and tends to the MSE of the case of shadowing absence.
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Figure 5.2 — Network of four base stations and one mobile station.
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Figure 5.3 — (a) Variation with dcorr of the average SPEB for δ = 0.5m. (b) Variation

with dcorr of the MSE of the ML position estimate.

5.4 Position tracking

In this section, we treat the problem of tracking over time the position of a moving

mobile station. The position tracking relies on the measurements obtained from the radio

signals or the outputs of an inertial navigation system (INS) and a motion model. The motion

model describes the characteristics of the motion (e.g., a pedestrian in indoor cannot pass

through walls, a vehicle on a road has a limited maximum speed), and can account for the

kinematic rules. This model also describes the dependence between the positions at different

time instants allowing to improve the estimation accuracy by using several measurements

made over time.

More specifically, we apply Bayesian tracking which efficiently exploits the incoming mea-

surements by recursively updating the posterior probability distribution. We consider two

scenarios : In the first one, the shadowing maps are known, and in the second one, the sha-

dowing maps are not known and the shadowing is considered as a part of the hidden state

vector where a joint position and shadowing tracking solution is developed.
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Figure 5.4 — Grid positions resulting in the 200 smallest values of g(x) (5.28) : (a) No

shadowing ; (b) dcorr = 1m ; (c) dcorr = 10m.
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Figure 5.6 — (a) Constraint on the position of the mobile station. (b) Variation of the

MSE of the ML estimate with dcorr.

5.4.1 Tracking under known shadowing

Here, we assume that the shadowing maps of the NBS base stations in the deployment area

A are known. We start by describing the transition model of the hidden state vector and the

observation model. They enable the computation of the a priori and likelihood probabilities

in the Bayesian tracking processing, respectively.

Transition model

We define the kinematic vector ck at time kT comprising the mobile station position xk

and possibly other kinematic parameters (e.g., velocity). This vector is issued from a known

Markov process of transition probability p(ck|ck−1) and initial distribution p(c0). The hidden

state vector sk is defined by

sk = ck. (5.29)

The transition model is described by the distributions p(sk|s0:k−1) = p(sk|sk−1) and p(s0).

A simple linear transition model in which the state consists only of the position xk can be

written as

ck = ck−1 + lk[cosθk, sinθk]
T (5.30)

where lk is a random non-negative real value of known distribution (e.g. uniform distribution

or truncated Gaussian distribution) and θk is a random direction of known distribution (e.g.,

uniform distribution or von Mises distribution).

Another linear model that accounts for the position and the velocity can be written as

ck =




1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


 ck−1 +




0 0

0 0

T 0

0 T


 (ak−1 + qk) (5.31)
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where ck = [xTk , ẋ
T
k ]T and ẋk is the derivative of xk with respect to the time, ak−1 =

[ax,k−1, ay,k−1]T is the acceleration vector provided by an accelerometer and qk accounts for

the acceleration estimation error. If the acceleration is not available, ak−1 is simply discarded

and the variance of qk is adjusted accordingly.

Observation model

At time kT , the mobile station makes RSS measurements yk with a subset of the NBS

base stations. The measurements vector is equal to

yk = fk(xk) + ek (5.32)

where fk is a known deterministic function and ek is a Gaussian distributed error that we

assume white with respect to the time domain. This assumption makes the observations at

different time instants independent given the states, i.e., p(yi,yj |si, sj) = p(yi|si)p(yj |sj).

Bayesian tracking

The aim of Bayesian tracking is to compute recursively over time the posterior distribution

p(sk|y1:k), in order to apply a Bayesian estimator [123] such as the MMSE estimator :

ŝk =

∫
skp(sk|y1:k)dsk. (5.33)

p(sk|y1:k) is computed according to Bayes’ rule :

p(sk|y1:k) =
p(yk|sk,y1:k−1)p(sk|y1:k−1)

p(yk|y1:k−1)

∝ p(yk|sk)p(sk|y1:k−1). (5.34)

The predictive distribution p(sk|y1:k−1) is obtained according to the following marginaliza-

tion :

p(sk|y1:k−1) =

∫
p(sk, sk−1|y1:k−1)dsk−1

=

∫
p(sk|sk−1)p(sk−1|y1:k−1)dsk−1. (5.35)

This recursive computation is called Bayesian filtering. Equations (5.34) and (5.35) are ana-

lytically untraceable since the observation equation (5.32) is non-linear with respect to sk. A

solution based on particle filters [123, 124], which uses sequential Monte Carlo methods for

approximating numerically the posterior densities, is presented in the following.

Implementation using particle filters

The distribution p(sk|y1:k) can be obtained by a marginalization of p(s0:k|y1:k). If we are

able to draw N i.i.d. samples {si0:k}Ni=1 from p(s0:k|y1:k), we can approximate it by

p(s0:k|y1:k) ≈
1

N

∑

i

δ(si0:k, s0:k) (5.36)



112 CHAPTER 5. POSITION TRACKING BASED ON RSS MEASUREMENTS

where δ is the Kronecker delta function, and one obtains the following approximation of the

MMSE estimate ŝk computed according to (5.33) :

s̄k =

∫
sk

1

N

∑

i

δ(si0:k, s0:k)ds0:k

=
1

N

∑

i

sik. (5.37)

This quantity converges to ŝk as N → ∞. Sometimes it is difficult to sample the posterior

ditribution. An alternative is to use importance sampling where samples are drawn from

another distribution π(s0:k|y1:k) verifying π(s0:k|y1:k) > 0 when p(s0:k|y1:k) > 0.

We can write

ŝk =

∫
sk
p(s0:k|y1:k)

π(s0:k|y1:k)
π(s0:k|y1:k)ds0:k. (5.38)

This latter can be approximated by

s̄k =
1

N

∑

i

w∗ik sik (5.39)

where {si0:k}Ni=1 are i.i.d. samples drawn from π(s0:k|y1:k), and the importance weight w∗ik is

equal to

w∗ik =
p(si0:k|y1:k)

π(si0:k|y1:k)
=

p(si0:k,y1:k)

p(y1:k)π(si0:k|y1:k)
=

wik
p(y1:k)

. (5.40)

The value p(si0:k,y1:k) can be computed according to

p(si0:k,y1:k) = p(si0)
k∏

l=1

p(yl|sil)p(sil|sil−1) (5.41)

and the value p(y1:k) can be approximated by

p(y1:k) =

∫
p(s0:k,y1:k)ds0:k

=

∫
p(s0:k,y1:k)

π(s0:k|y1:k)
π(s0:k|y1:k)ds0:k

≈ 1

N

∑

i

p(si0:k,y1:k)

π(si0:k|y1:k)

=
1

N

∑

i

wik, (5.42)

and thus, we can replace 1
Nw
∗i
k by the normalized weight w̃ik =

wik∑
wik

Sequential importance sampling In the position tracking applications, measurements

arrive sequentially in time and we are interested in making real time estimations. In this

case, it is impractical to draw samples of the whole history of states s0:k at each time step

kT and reject the past simulated trajectories {si0:k−1}. For this reason, we restrict ourselves

to importance functions of the form

π(s0:k|y1:k) = π(s0:k−1|y1:k−1)π(sk|s0:k−1,y1:k), (5.43)
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and at time kT , the trajectory {si0:k−1} is augmented by the sample sik drawn from

π(sk|si0:k−1,y1:k). Furthermore, using importance functions of this form enables a recursive

evaluation in time of the importance weights {wik} as we will show now.

At time kT , we can write

p(s0:k|y1:k) =
p(s0:k,yk|y1:k−1)

p(yk|y1:k−1)

=
p(yk|sk)p(sk|sk−1)p(s0:k−1|y1:k−1)

p(yk|y1:k−1)
. (5.44)

Assume that the approximation p(s0:k−1|y1:k−1) ≈ ∑i w̃
i
k−1δ(s

i
0:k−1, s0:k−1) is available at

time (k − 1)T . Thus, according to (5.44), we can write

p(s0:k|y1:k) ≈
∑

i w̃
i
k−1p(sk|sik−1)p(yk|sk)δ(si0:k−1, s0:k−1)

p(yk|y1:k−1)
. (5.45)

For the ith trajectory, we draw sik ∼ π(sk|si0:k−1,y1:k) and we update the weights according

to :

wik =
p(si0:k,y1:k)

π(si0:k|y1:k)

=
p(si0:k−1,y1:k−1)p(sik|sik−1)p(yk|sik)
π(si0:k−1|y1:k−1)π(sik|si0:k−1,y1:k)

∝ w̃ik−1

p(sik|sik−1)p(yk|sik)
π(sik|si0:k−1,y1:k)

. (5.46)

Finally, we compute w̃ik = wik/
∑
wik.

A simple choice of the importance function is the prior distribution of the Markov tran-

sition model π(sk|s0:k−1,y1:k−1) = p(sk|sk−1) which results in wik ∝ w̃ik−1p(yk|sik). By this

choice, we don’t need to save the history of states and {sik, w̃ik} are obtained from {sik−1, w̃
i
k−1}.

Sampling importance resampling (SIR) The variance of the importance weights in-

creases with time [123], and after several time steps, all the normalized weights tend to zero

except one weight which tends to one. This phenomenon is called degeneracy of the particle

filter. Degeneracy cannot be avoided by the choice of the importance function, but this choice

can reduce its speed by reducing the increase of the variance at each time step. To resolve

this problem, resampling has been introduced in [125]. Its basic idea is to eliminate the tra-

jectories with weak weights and repeat the trajectories with strong weights. The effective

number of samples can be approximated by N̂eff = 1/
∑

(w̃ik)
2. It is possible to perform

resampling at each time step or when N̂eff goes below a predefined threshold Nth = γN .

Several resampling algorithms are presented in [18]. Sampling importance resampling (SIR)

particle filter is summarized in Table 5.1 below and is illustrated by Figure 5.7.

Other variants of the particle filter have been reported in [123]. They differ in the choice

of the importance function (e.g., auxiliary particle filter and optimal importance sampling).

This choice can affect the required number of particles N for obtaining a given approximation

accuracy.
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0 : SIR particle filter

1 : for i = 1, · · · , N
2 : sample sik ∼ p(sk|sik−1)

3 : evaluate the importance weights wik ∝ w̃ik−1p(yk|sik)
4 : for i = 1, · · · , N
5 : normalize the importance weights w̃ik = wik/

∑
wik

6 : evaluate N̂eff = 1/
∑

(w̃ik)
2

7 : if N̂eff < Nth

8 : set s̃ik = sik
8 : for i = 1, · · · , N
9 : sample an index j(i) distributed according to the discrete

distribution with N elements satisfying Pr{j(i) = l} = w̃lk
11 : set sik = s̃

j(i)
k and w̃ik = 1/N

Table 5.1 — Samples generation and weights update using SIR particle filter.
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Figure 5.7 — Particle filter for estimating the state sk.

Numerical results

We perform Monte Carlo simulations to compute the RMSE in the position tracking

solution. We consider the network deployment of Figure 5.8(a) consisting of four base stations,

and the mobile station moves along the U-shaped trajectory. The speed is fixed to 1m/s and

the total trajectory duration is 36 seconds. The path loss model is the log-distance model given

by equation (5.19) with np = 3. The shadowing is exponentially correlated with dcorr = 2m

and the cross-correlation is equal to zero (i.e., β = 0). The considered motion model is the

one given by (5.30) with lk drawn from the uniform distribution U(0, 2) and θk drawn from

U(0, 2π). The time step T is set equal to 1 second. The mobile station makes measurements

with the four base stations at every time instant and the measurement error is Gaussian

distributed with E{ekeTk } = σ2
eI4.

Figure 5.8(b) shows the RMSE of the estimated position where no-tracking is performed

and positions at different instants are estimated independently using the ML estimator.

In Figure 5.9(a), the position RMSE is plotted vs time where the position is tracked using

the SIR particle filter with N particles. When the shadowing is not known, it is treated as

a random white variable in space by the particle filter. We can notice that in the absence of

shadowing (i.e., σ2
sh = 0dB2 and σ2

e = 4dB2) and when the shadowing is unknown, the RMSE

is reduced compared to the non-tracking ML estimation. We can also notice that increasing

of the number of particles from 200 to 1000 does not significantly improve the accuracy.
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Figure 5.8 — (a) Network of four base stations and mobile station trajectory. (b) RMSE

of the ML positions estimates.

On the other hand, for the case of known shadowing and σ2
sh = 16dB2 and σ2

e = 4dB2, the

RMSE for N = 200 particles increases compared to the non-tracking RMSE. The justification

of this result is that, as we pointed in Section 5.3, positions that are far from the true position

might have high likelihoods and positions that are near the true position might have low

likelihoods. Thus, particles that are near the true position might have small weights and

be eliminated after resampling, resulting in a divergence of the particle filter. Increasing

the number of particles to 1000 allows us to remedy this problem but at the expense of an

increased complexity.

Another solution we consider is the regularization of the particle filter. It consists in

replacing 50 particles by 50 grid positions in the deployment area, and perturbing the particles

by a Gaussian noise, , that is replace sik by sik + bi with bi ∼ N (0, 0.25I2), each time a

resampling is performed. The resulting RMSE is shown in Figure 5.9(b). By comparing the

plots of Figures 5.9(a) and 5.9(b), we can notice a high decrease of the position RMSE for

N = 200 and N = 400 particles when the regularization step is performed. In fact, this step

enables the particle filter to catch up the trajectory and thus avoid divergence. The RMSE for

N = 400 particles becomes close to the RMSE for N = 1000 particles allowing a complexity

reduction without significant accuracy losses.

By comparing the plots of Figures 5.8(b) 5.9(b), we can observe that the knowledge of the

shadowing brings more accuracy improvement in the case of position tracking applications.

In position tracking, measurements made at previous time instants are exploited, and this

operation is enabled by the motion model.

We also compute the RMSE in the presence of the map constraints of Figure 5.10(a),

where the mobile station is known to move inside the U-shaped corridor. These constraints

allow a reduction of the number of particles needed to achieve a good accuracy, as shown in

Figure 5.10(b) where we set N = 200 particles.
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Figure 5.9 — Variation with time of the RMSE of the SIR particle filters estimates for

several values of N : (a) No regularization ; (b) A regularization step is performed after

resampling.
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Figure 5.10 — (a) Constraints on the mobile station position. (b) Corresponding RMSE

with N = 200 particles.
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5.4.2 Joint position and shadowing tracking

Now, we assume that the shadowing is unknown but its probability distribution and

spatial correlation function are known. Several algorithms have been proposed in order to

improve the position tracking in presence of random shadowing. In [126], a prediction of the

shadowing, modeled by a first order auto-regressive Gaussian process, is used along with the

RSS measurements for estimating position. This solution is sub-optimal, and can be improved

by using a probabilistic approach.

Thus, our solution is based on Bayesian filtering, which efficiently exploits the incoming

measurements by recursively updating the posterior probability distribution. The update is

performed by taking the shadowing as a part of the state vector, whose stochastic process is

no more Markovian. The transition equation of this process is derived from the auto-regressive

model defined in Section 5.2.2.

As a remark, an alternative approach was used in a general context in [127], where the

shadowing was considered as a measurement noise and the temporal correlation was taken

into consideration for evaluating the likelihood function.

The probability density functions, which are analytically untraceable because of the non-

linearity of the AR model and the RSS measurements with respect to the position, are

estimated using particle filters. More specifically, a Rao-Blackwellized particle filter [123] will

be implemented where the part of the state vector consisting of the position and its derivatives

is represented by particles and the shadowing part is tracked by means of a Kalman filter.

This solution has the advantage of reducing the required number of particles.

Before developing the tracking solution, we start by describing the transition model of

the hidden state vector and the observation model.

Transition model

The shadowing vector Ωk = [ε1(xk), · · · , εNBS (xk)]
T is taken as a part of the state vector

sk which is defined by

sk = [cTk , ΩT
k ]T . (5.47)

The state process is no more Markovian because of the shadowing correlation, at it can

be decomposed as

p(sk|s0:k−1) = p(ck|ck−1)p(Ωk|x0:k,Ω0:k−1). (5.48)

The shadowing vector Ωk is represented by the AR model, and the mean and covariance

of the Gaussian distribution p(Ωk|x0:k,Ω0:k−1) are given by (5.15) and (5.18), respectively.

Observation model

At time kT , the mobile station makes RSS measurements yk with nk base stations. The

measurements vector is equal to

yk = Pk(xk) + JkΩk + ek (5.49)
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where Pk is a known deterministic vector function, Jk is an nk×NBS matrix where Jk(i, j) = 1

if the i-th measurement is made on the j-th base station and 0 elsewhere, and ek is a Gaussian

error considered to be white with respect to the time domain. This assumption and the fact

that the shadowing is a part of the state make the observations at different time instants

independent given the states, i.e., p(yi,yj |si, sj) = p(yi|si)p(yj |sj).

Bayesian tracking

A Bayesian filtering consists in determining recursively over time the posterior distribution

p(s0:k|y1:k) in order to apply a Bayesian estimator. This distribution is computed according

to

p(s0:k|y1:k) = p(s0:k−1|y1:k−1)
p(sk|s0:k−1)p(yk|sk)

p(yk|y1:k−1)
. (5.50)

When an order-p AR process is considered, p(sk|s0:k−1) is replaced by p(sk|sk−p:k−1).

Implementation using a Rao-Blackwellized particle filter

The shadowing evolution equation (5.15) and the observation equation (5.49) are non-

linear with respect to xk making the posterior density (5.50) untraceable analytically. Particle

filters enable computing numerically the solutions, with a complexity drawback : The number

of particles usually must increase exponentially with the dimension of the state vector. In our

case, the dimension of the state vector is high due to the shadowing components.

We can remark that, conditionally on the knowledge of x0:k, equations (5.15) and (5.49)

are linear with respect to Ωk, which can be tracked using a Kalman filter. Thus, we can

reduce the number of particles and limit the complexity of the filter by applying a Rao-

Blackwellization which consists in computing the posterior of a subset of the state vector

analytically, in our case with the Kalman filter.

At time (k − 1)T , assume that p(c0:k−1|y1:k−1) is approximated by the set

of weighted particles
{
ci0:k−1, w

i
k−1

}N
i=1

and that the Gaussian distribution function

p(Ω0:k−1|xi0:k−1,y1:k−1) = N (Ω0:k−1;µik−1,Γ
i
k−1) is known, where µik−1 and Γik−1 denote the

mean vector and the covariance matrix, respectively. Then the approximation of the posterior

distribution p(s0:k−1|y1:k−1) can be expressed as

p(s0:k−1|y1:k−1) = p(Ω0:k−1|x0:k−1,y1:k−1)p(c0:k−1|y1:k−1)

≈
∑

i

wik−1N (Ω0:k−1;µik−1,Γ
i
k−1)δ(ci0:k−1, c0:k−1). (5.51)

The posterior distribution p(s0:k|y1:k) at time kT can be obtained in three steps : predic-

tion, correction and resampling.
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Prediction step The predictive distribution p(s0:k|y1:k−1) can be written as

p(s0:k|y1:k−1) = p(sk|s0:k−1)p(s0:k−1|y1:k−1)

= p(Ωk|x0:k,Ω0:k−1)p(ck|ck−1)p(s0:k−1|y1:k−1)

≈
∑

i

wik−1p(Ωk|xk,xi0:k−1,Ω0:k−1)N (Ω0:k−1;µik−1,Γ
i
k−1)p(ck|cik−1)δ(c0:k−1, c

i
0:k−1).

A Monte Carlo approximation of this distribution is

p(s0:k|y1:k−1) ≈
∑

i

wik−1N (Ω0:k;µ
i
k|k−1,Γ

i
k|k−1)δ(ci0:k, c0:k) (5.52)

where cik is drawn from p(ck|cik−1),

µik|k−1 =

[
µik−1

(Ai
k)
Tµik−1

]
(5.53)

and

Γik|k−1 =

[
Γik−1 Γik−1A

i
k

(Ai
k)
TΓik−1 (Ai

k)
TΓik−1A

i
k + Qi

k

]
. (5.54)

Ai
k and Qi

k are obtained from (5.16) and (5.18) for the trajectory xi0:k, and µik|k−1 and Γik|k−1

are derived in Appendix B.

Correction step In this step, the observation yk is used to compute p(s0:k|y1:k) by upda-

ting p(s0:k|y1:k−1).

The observation equation (5.49) is re-written as follows :

yk = Pk(xk) + J̄kΩ0:k + ek (5.55)

where J̄k = [0,Jk] of size nk × (k + 1)NBS .

Before being normalized, the weights are updated by

wik ∝ wik−1p(yk|xi0:k,y1:k−1) (5.56)

where p(yk|xi0:k,y1:k−1) is a Gaussian distribution of mean Pk(x
i
k) + J̄kµ

i
k|k−1 and covariance

J̄kΓ
i
k|k−1J̄

T
k + E{ekeTk }.

The vector µik and matrix Γik are obtained by means of a Kalman filter described as

follows :

- Kalman gain :

Ki
k = Γik|k−1J̄

T
k (J̄kΓ

i
k|k−1J̄

T
k + E{ekeTk })−1. (5.57)

- Mean correction :

µik = µik|k−1 + Ki
k(yk −Pk(x

i
k)− J̄kµ

i
k|k−1). (5.58)

- Covariance correction :

Γik =
(
I(k+1)NBS −Ki

kJ̄k
)
Γik|k−1. (5.59)

The equations of this filter are derived in Appendix B.

When an order-p AR model is considered, it is sufficient to store cik−p+1:k, the last p

elements of µik and the p× p lower right submatrix of Γik.
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Resampling step In order to avoid the weights degeneracy [123] due to the increase of

the variance of the set
{
wik
}N
i=1

, a resampling step is performed. Thus, some trajectories

of weak weights are eliminated and others of strong weights are repeated. We execute this

step when the effective number of particles N̂eff = 1/
∑

i(w
i
k)

2 falls below a threshold.

Unfortunately, resampling causes a depletion of the history due to the common past shared

by some trajectories [128]. As a remark, when one small region is visited several times during

a window time fitting the AR model order, the shadowings observations associated to this

region are highly correlated. The performance might be decreased if the number of remaining

distinct particles is not sufficient.

Special case of collinear trajectories

In this section, we consider collinear trajectories for the sake of illustration. In practice,

this enables using a map-restricted trajectory consistent with the considered technology. For

example, train tracking, or car tracking are examples of such applications. Of course, when a

crossroad approaches, all possible trajectories can be taken into account independently in the

particle filter, and selected according to the maximal weights after crossing the intersection.

For Gaussian vectors, the precision matrix (i.e., the inverse of the covariance matrix),

explicitly contains the information about the conditional independence of their components

[129]. Let v = [v1, · · · , vn]T be a Gaussian vector of precision matrix Ξ, then

vi⊥vj |v i,j ⇔ Ξi,j = 0

where ⊥ denotes the independence, and v i,j is v without vi and vj .

Consider a set of L collinear points located on the x-axis and verifying xj+1 > xj as shown

in Figure 5.11. Consider also an exponentially decreasing correlation function. In this case,

x
1

x
2 ... x

L

Figure 5.11 — A trajectory of collinear points.

it can be shown that the precision matrix R−1
L of [ε(x0), · · · , ε(xL)]T is tridiagonal :

R−1
L =




a1 b1 0 · · · 0

b1 a2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . aL−1 bL−1

0 · · · 0 bL−1 aL




. (5.60)

The proof of this proposition is given in Appendix C. As a result, the Gaussian process ε(xL)

is an AR(1) process. This can be deduced by looking at the last row of R−1
L which has only

two nonzero entries.
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Numerical results : Vehicle tracking in a Macro-cellular system

In order to show the improvements brought by the algorithm, Monte Carlo simulations

are performed. For this purpose, we consider a collinear trajectory with a varying speed. In

order to illustrate the benefit obtained when using higher AR orders, we also consider the

case of a U-turn.

The motion of the vehicle is modeled by the linear Markov process (5.31). The kinematic

vector is ck = [xTk , ẋ
T
k ]T , and we assume that ak−1 = [ax,k−1, ay,k−1]T is the acceleration vector

provided by an accelerometer and qk is a Gaussian distributed vector that accounts for the

acceleration estimation errors. We take the covariance of qk arbitrarily equal to (0.5m/s2)2I2.

We perform tracking with a map constraint, where the trajectory belongs to a straight road

with two lanes.

The model (5.31) is used only for tracking, while the trajectories are generated according

to the model developed in [130] which takes into account a dynamic model of the vehicle,

the driver’s control decisions and the map of lanes. We consider the two trajectories depicted

in Figure 5.12. Trajectory 1 is a straight line with an average speed of 57km/h and a maxi-

mum speed of 72km/h. Notice that the vehicle is accelerating at the beginning. Trajectory 2

contains a turn and the average and maximum speeds are 34km/h and 65km/h, respectively.

The initial positions are assumed to be perfectly known.
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Figure 5.12 — The two traveled trajectories.

For the shadowing, the correlation function is the exponentially decreasing one with

dcorr = 50m. The standard deviation of the shadowing is σsh = 8dB. The cross-correlation

coefficient is equal to 0.5.

The Macro-cell system simulation baseline parameters defined in [131] are used to compute

the path loss as a function of the position. The mobile station makes measurements with four

sectorized base stations located at [0, 0]T , [1391, 1032]T , [−199, 1721]T and [1589,−688]T .

The measurement error vector is white in time and Gaussian and has a covariance matrix

E{ekeTk }, with E{e2
j,k} = 9dB2, E{ei,kej,k} = 0 if the two error components correspond to

different base stations and E{ei,kej,k} = 4.5dB2 if they correspond to different sectors of the

same base station.

In Figure 5.13, the RMSE of the position is plotted vs time for trajectory 1 and for a time
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step T = 0.4 seconds. These results are obtained by means of Monte Carlo simulations for 10

different sets of shadowing maps and for 50 trials per set, where a set represents the shadowing

maps attributed to the different base stations. The dead reckoning (DR) curve corresponds

to the estimation of the position based on the previous estimation and the acceleration

only. In this case the position error is accumulated over time. A great improvement can be

observed when the RSS measurements are exploited. Here, the order-1 AR is optimal since the

trajectory is collinear, and higher orders do not degrade the accuracy. The joint position and

shadowing tracking solution (i.e., AR(1)) reduces the position RMSE of up to 10m compared

to the solution in which the shadowing is treated as white (i.e., zero order), but the remaining

shadowing imprecisions do not allow removing its effect, and the position RMSE remains high

compared to the known shadowing case.
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Figure 5.13 — RMSE of the position tracking for trajectory 1. The time step is T = 0.4 s.

For trajectory 2, the time step is T = 1 second and the total duration is 30 seconds. Thus,

an order equal to 30 is capable of taking into account all previous states. Figure 5.14 shows the

RMSE for this trajectory. After t = 16 seconds, when the turning occurs, the position RMSE

of AR(10) and AR(30) is lower than for AR(1). Indeed, the adjacency of the two parts of

the trajectory improves the estimation that exploits the shadowing correlation. Few seconds

after, the RMSE of AR(10) increases. This behavior can be explained by the fact that the

AR order is not sufficient to exploit the shadowing correlation in the actual measurements

and in the measurements obtained at the beginning of the trajectory. By exploiting previous

measurements, the location tracking can be highly improved.

5.5 Bayesian Map estimation

The simulation results presented in the previous sections showed that the knowledge

of the shadowing can highly improve the localization accuracy. The classical method for

constructing the shadowing maps is the fingerprinting, in which, measurements are collected

at known positions and saved in a database. The problem with this solution is that it requires

substantial time and effort to construct the database. This database should be maintained

up-to-date as base stations may be added or displaced or the environment may change due
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Figure 5.14 — RMSE of the position tracking for trajectory 2 and for different AR orders.

The time step is T = 1 s.

to constructions or destructions of infrastructures.

In this section, we propose a solution for online estimation of the shadowing maps that

does not require the positions of the mobile stations to be perfectly known. The mobile

stations can have localization capabilities other than the RSS measurements. This solution

allows refining and updating the maps in a collaborative way by using measurements made

by several mobile stations.

Two solutions based on unsupervised learning have been developed in [45] and [132] for

reducing the effort for the map construction.

In [45], traces are made over time, which are unlabeled trajectories or sequences of power

measurements at unknown positions. The ML estimator is used to estimate the maps, and

all the traces need to be saved. If a new trace becomes available, the map is updated using

this new trace and the history of traces.

In [132], the ML estimator is also used but without considering traces and the observations

are considered to be independent. This results in an accuracy reduction when measurements

are made by a moving terminal, since the successive positions can be dependent of each other.

In the solution we develop here, the shadowing map is updated over time by updating the

probability distribution of the coefficients using Bayesian estimation (update of the posterior

distribution of the coefficients) and without the need to save all the measurement history.

Other kinds of positioning information can be integrated in the update of the maps and

positioning procedures, such as ToA, INS and GNSS, which can improve accuracies.

The shadowing maps modeling provided in Section 5.2.1 will be used. We start by descri-

bing how to update the shadowing atlas using RSS measurements at known positions, then

we describe how to perform this estimation when positions are not known.

5.5.1 Atlas Update

Here, we describe how to update the atlas based on RSS measurements made at a known

mobile position.
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At time kT , a mobile station of known position xk makes nk RSS measurements with the

NBS base stations. The RSS observation vector of size nk is

yk = Pk(xk) + HkΛ + ek (5.61)

where Pk is a known deterministic vector function, Λ is the shadowing atlas vector of size

Latlas, Hk is an nk × Latlas matrix that depends on the position xk, and ek is the Gaussian

error process.

Denote Mk−1 and Σk−1 the mean and covariance of Λ at time (k − 1)T , respectively,

and assume that the process ek is white with respect to time. The observation yk, which is

a linear function of Λ, is used to update Mk and Σk by means of a linear MMSE estimator

as follows :

Mk = Mk−1 + Qk(yk −Pk(xk)−HkMk−1) (5.62)

and

Σk = Σk−1 −QkHkΣk−1 (5.63)

where Qk is the gain factor given by :

Qk = Σk−1H
T
k (E{ekeTk }+ HkΣk−1H

T
k )−1. (5.64)

The equations of the linear MMSE are derived in Appendix B.

5.5.2 Joint tracking and atlas update

The mobile station can perform additional localization measurements that we denote by zk

and that we assume independent given the positions, i.e., p(zk, zl|xk,xl) = p(zk|xk)p(zl|xl).
We define the state vector sk consisting of the kinematic vector, i.e., sk = ck. The posterior

distribution p(s0:k|y1:k, z1:k) allows us to compute p(Λ|y1:k, z1:k) as follows :

p(Λ|y1:k, z1:k) =

∫
p(Λ|s0:k,y1:k)p(s0:k|y1:k, z1:k)ds0:k (5.65)

where p(Λ|s0:k,y1:k) is a Gaussian distribution whose parameters can be computed using the

linear MMSE estimator previously described.

The distribution p(s0:k|y1:k, z1:k) is computed recursively according to

p(s0:k|y1:k, z1:k) ∝ p(s0:k−1|y1:k−1, z1:k−1)p(sk|sk−1)p(yk|s0:k,y1:k−1)p(zk|sk). (5.66)

By assuming that the error process ek is white, the observations at different instants are

independent given the atlas :

p(yi,yj |si, sj ,Λ) = p(yi|si,Λ)p(yj |sj ,Λ). (5.67)

Thus, a possible computation of p(yk|s0:k,y1:k−1) is

p(yk|s0:k,y1:k−1) =

∫
p(yk|Λ, sk)p(Λ|s0:k−1,y1:k−1)dΛ (5.68)

Equations (5.65) and (5.66) are analytically untraceable since the observation equation

(5.61) is non-linear with respect to sk and Hk depends on sk. These densities will be approxi-

mated numerically using particle filtering techniques in the following.
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5.5.3 Implementation using particle filters

Assume that at time (k − 1)T , p(s0:k−1|y1:k−1, z1:k−1) is approximated by the set of N

weighted trajectories
{
si0:k−1, w

i
k−1

}N
i=1

:

p(s0:k−1|y1:k−1, z1:k−1) ≈
∑

i

wik−1δ(s
i
0:k−1, s0:k−1). (5.69)

The atlas posterior distribution is computed according to (5.65) :

p(Λ|y1:k−1, z1:k−1) ≈
∑

i

wik−1p(Λ|si0:k−1,y1:k−1). (5.70)

The Gaussian distributions p(Λ|si0:k−1,y1:k−1) = N (Mi
k−1,Σ

i
k−1) are obtained using

the linear MMSE estimator by one of two methods : The first method is to update

p(Λ|si0:k−2,y1:k−2) at each time step where a huge amount of memory is needed in order

to store the N atlases. The second method is to compute it from scratch at each time step

using all the previous observations but with a complexity that increases with time.

We propose a suboptimal solution that approximates the weighted mixture of Gaus-

sian distributions
{
N (Mi

k−1,Σ
i
k−1), wik−1

}N
i=1

by a single Gaussian one N (M̂k−1, Σ̂k−1).

This operation is repeated every q time steps by substituting p(Λ|si0:k+q−1,y1:k+q−1)

by p(Λ|sik:k+q−1,yk:k+q−1) in which the initial distribution p(Λ) is substituted by

N (M̂k−1, Σ̂k−1).

The posterior distribution p(s0:k|y1:k, z1:k) at time kT can be obtained in three steps that

are summarized in the following :

Prediction Step

A Monte Carlo approximation of the predictive distribution is obtained by drawing sik
from p(sk|sik−1) :

p(s0:k|y1:k−1, z1:k−1) ≈
∑

i

wik−1δ(s
i
0:k, s0:k). (5.71)

Correction Step

In this step, the observations yk and zk are used in order to compute p(s0:k|y1:k, z1:k) by

updating the weights according to

wik ∝ wik−1p(yk|si0:k,y1:k−1)p(zk|sik). (5.72)

The value p(yk|si0:k,y1:k−1) can be estimated with two methods :

- Using (5.68) with the complexity or memory drawbacks mentioned above.

- Using the following equation :

p(yk|si0:k,y1:k−1) =∫
p(yk|Ωk, s

i
k)p(Ωk|Ω0:k−1, s

i
0:k)p(Ω0:k−1|si0:k−1y1:k−1)dΩ0:k

(5.73)
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where Ωk is the shadowing vector at time kT . The distributions p(Ωk|Ω0:k−1, s
i
0:k) and

p(Ω0:k−1|si0:k−1,y1:k−1) can be computed using the Kalman filter described in Section

5.4.2, and the joint distribution p(Ω0:k|s0:k) is no more described by the assumed cor-

relation function, but rather by the available mean and covariance of the atlas.

Resampling Step

In order to avoid the weights degeneracy due to the increase of the variance of the set{
wik
}N
i=1

, a resampling step is performed.

5.5.4 Numerical results : Indoor tracking

We apply the Bayesian map estimation solution to indoor tracking with the deployment

and trajectories given in Figure 5.15. The same path loss and shadowing models as for the

example given in Section 5.4.1 are assumed.

First, the shadowing maps are estimated using RSS and ToA measurements made with a

mobile terminal traveling along the trajectory of Figure 5.15(a). The RMSE of the position

tracking is plotted in Figure 5.16(a) where the ToA measurements are made with the 4 BSs

with a variance of 1m2.

Then, a mobile terminal traveling along the trajectory of Figure 5.15(b) is tracked using

RSS measurements and the estimated shadowing maps. The resulting position RMSE is

plotted in Figure 5.16(b). We can notice that the location estimation accuracy is improved and

the difference between the obtained RMSE and the RMSE in the case of perfect shadowing

knowledge is less than one meter.

5.5.5 Application to train tracking

Reliable and accurate knowledge of train position and speed plays an important role in

avoiding collisions and optimizing the traffic by increasing lines capacities. In classical train

control systems, localization is based on track side equipments. The new trend in design of

train control systems consists in integrating on-board solutions so as to reduce the need of

track-side equipments with their inherent roll-out and maintenance costs and to simplify the

deployment of new technologies and configuration changes.

Several methods for on-board position measurements are discussed in [133]. These me-

thods are tachometers, Inertial Navigation Systems (INS) (e.g. accelerometers and gyro-

scopes), Doppler effect and GPS (and possibly other GNSSs such as Galileo).

The GPS solution provides a good precision when sufficient non-obstructed satellite signals

are available. When the GPS fails (e.g. tunnels, valleys, some urban areas), other solutions

are required. In [134], dead reckoning the train position from on-board sensors (odometers

and accelerometers) is performed during the GPS failures where a data fusion approach based

on Kalman filtering is developed. All the above-mentioned technologies but the GPS are DR

as the current position is estimated based on a previous position and an estimation of the
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Figure 5.15 — Anchor nodes locations and two mobile terminal trajectories.

traveled distance over elapsed time. The performance of DR deteriorates with time due to

error accumulation and a practical solution is needed to reduce this error especially if the

GPS failure lasts for a long time duration.

In this section, we consider the use of RSS measurements in radio communication systems

for on-board train positioning. A radio communication system can be either dedicated for

communication between the train and the railway regulation control centers (e.g. GSM-R)

or a public network offering services to passengers. This solution does not suffer from error

accumulation of DR and can be integrated with on-board sensors that can give more infor-

mation and thus improve the accuracy. The Bayesian map estimation algorithm will be used

for this purpose and will be validated via Monte Carlo simulations.

Motion model

The train is constrained to move on a known railway track and the position is defined as

the Cartesian coordinate of a reference point belonging to the train. We assume that there is

no track branching, and the railway can be seen as a parametric curve of one parameter that



128 CHAPTER 5. POSITION TRACKING BASED ON RSS MEASUREMENTS

0 20 40 60 80 100
0

0.5

1

1.5

time(seconds)

R
M
S
E
(m

)

 

 

UWB tracking, σ2
ToA = 1m2

(a)

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

time(seconds)

R
M
S
E
(m

)

 

 

σ2
sh = 0, σ2

e = 4,
σ2
sh = 16, σ2

e = 4, unknown shad
σ2
sh = 16, σ2

e = 4, known shad
σ2
sh = 16, σ2

e = 4, estimated shad

(b)

Figure 5.16 — (a) RMSE of the position tracking using ToA measurements. (b) RMSE of

the position tracking using RSS measurements.

we call rail coordinate. We assume that the length of the rail (in meters (m)) between two

rail coordinates r1 and r2 is equal to the absolute value of r1 − r2. The train position can be

described by the rail coordinate as there is a direct mapping to the Cartesian coordinates.

The train speed is the derivative of the rail coordinate.

We define the state vector sk comprising the scalar rail coordinate rk and the scalar speed

vk. It evolves according to the following model :

sk =

[
1 T

0 1

]
sk−1 +

[
0

T

]
(ak−1 + qk) (5.74)

where ak−1 is the acceleration vector provided by an accelerometer and qk is a Gaussian

variable that accounts for the acceleration estimation errors. We take the standard deviation

of qk equal to 1m/s2 and the mean equal to zero (the accelerometer bias is assumed to be

known, otherwise it can be added to the state vector and tracked by the particle filter). The

time step is T = 0.5s.

The train moves on a linear rail of length 4km and there are two base stations located

at [−1390,−1032]T and [1589,−688]T as shown in Figure 5.17. The train is moving from the
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Figure 5.18 — Train antennas with a displacement of λ/2.

left to the right. The speed is linearly increasing with time from 200km/h to 250km/h. The

train takes 64s to travel the 4km.

Observation model

We consider several mobile stations having their antennas placed on the top of different

carriages of the train for a better sensitivity and penetration losses avoidance. The antennas

are sufficiently spaced (several meters to several tens of meters depending on the train size)

so that the shadowing values are different at two antennas’ positions for the same time

instant. We denote NMS the number of these antennas. The RSS measurement model is

given by (5.61), and the error ek is a zero mean white Gaussian process with a diagonal

covariance matrix and diagonal entries equal to 4dB2. In fact, to have a white process, the

error remaining after averaging out the fast fading has to be white, and this can be obtained

by a displacement of the antennas of about λ/2 perpendicular to the motion direction, as

shown in Figure 5.18.

For the path loss, we consider the Macro-cell system simulation model defined in [131]

with omnidirectional base station antennas.

The shadowing has a standard deviation of σsh = 4dB and an exponentially decreasing

correlation with dcorr = 200m. The cross-correlation coefficient from two different base sta-

tions is constant and equal to 0.5, for simplicity. The initial atlas mean is equal to zero and

the atlas covariance matrix is constructed according these parameter values.
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Figure 5.19 — Antennas positions at two consecutive time instants with separations of (a)

10m and (b) 20m.

Particle filter implementation

For the particle filter implementation, we take N = 100 particles. This number is sufficient

since the dimension of the state vector is low (equal to two). We also replace the Gaussian

process p(Ωk|Ω0:k−1, s
i
0:k) in (5.73) by a first-order process p(Ωk|Ωk−1, s

i
k−1:k). At low train

speeds, it might be useful to consider higher orders of this process as the antennas at two

non-consecutive time steps can be overlapping as shown in Figure 5.19(b).

Numerical results

In Figure 5.20, we plot the RMSE of the position tracking. The position RMSE of the DR

solution based on the accelerometer observations is increasing with time. The initial position

and speed are perfectly known.

The antennas placed on the train are equidistant. We can see that with 4 antennas, the per-

formance is better when the distance between two consecutive antennas is 20m (d anntennas

in Figure 5.18). A possible justification of this result is that the antennas are overlapping at

two consecutive time steps when the separation is equal to 20m leading to a better estimation

of the shadowing, while this overlap does not occur for a separation of 10m as shown in Figure

5.19. Moreover, the shadowing values affecting the different antennas measurements are less

correlated for larger separations, and thus, leading to a higher diversity. We remark that the

position RMSE begins to decrease after about 40s as the train approaches BS#2 since the

path loss decreases logarithmitically with the distance which is better estimated near a base

station.

Tracking using TDoA measurements Now, we consider a first estimation of the shado-

wing atlas performed by a train measuring the time of flight of the signals emitted by the two

base stations. These measurements are made by one mobile station. By assuming that the

base stations are synchronized, the probability distribution of the position can be computed

over time based on the following measurements :

z1
k = ‖xk − xBS1‖+ bias+ ẽ1,k

z2
k = ‖xk − xBS2‖+ bias+ ẽ2,k (5.75)
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where bias is a bias value since the train equipment clock is not synchronized with base

stations clocks, and ẽi,k is a zero mean Gaussian error of standard deviation equal to 20m.

The RMSE of the position estimated over time based on zk = [z1
k, z

2
k]T is plotted in Figure

5.21(a) where the train speed is linearly increasing from 100km/h to 150km/h and the initial

position is perfectly known.

The RSS measurements are made by four receivers having antennas spacing of 20 meters,

and are used for estimating the atlas. In Figure 5.21(b), we plot the RMSE of one shadowing

map estimation. The atlas estimation can be processed either on-line or off-line where the

measurements made during the train journey are saved and processed by a server at the

railway station. The initial distribution of the atlas can be also downloaded at the railway

station.

After this estimation of the shadowing, a second train passes the railway and its position

is tracked based on the RSS measurements performed by four equipments having an antennas

spacing of 20 meters. The probability distribution of the atlas Λ computed after the first train

passing is used during this operation. In Figure 5.22, the RMSE of the position tracking is

plotted. The train speed is linearly increasing from 200km/h to 250km/h. We plot also the

position RMSE when the initial distribution of Λ is used. We can see that there is much

improvement when the shadowing maps are estimated. Thus, the RSS-based tracking can be

a good candidate for an on-board train positioning equipment.

For the error models assumed in this simulation, the time-of-flight measurements result

in a better tracking accuracy than the RSS measurements (a RMSE of 7m for TDoA versus

a RMSE of 10m for RSS) even though one receiver is used in the TDoA tracking. But in fact,

timing measurements are more difficult to obtain and require maintaining a synchronization

accuracy of the order of a few nanoseconds.

5.6 Conclusion

In this chapter, position tracking based on RSS measurements was addressed. The goal

was to study the impact of the random shadowing on the positioning accuracy, and to develop
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solutions to mitigate it.

The shadowing maps corresponding to the different BSs were assumed to be realizations

of Gaussian random fields with exponentially decreasing correlation functions of known para-

meters. These parameters can be obtained by a calibration procedure either in the considered

area or in another area sharing similar physical properties.

We started by studying the improvements brought by the shadowing knowledge to the

localization accuracy. The considered scenario was an indoor area with a small number of

BSs (4 BSs). The simulation results showed that in the non-tracking position estimation

(i.e., the position at a given time instant is computed using only the measurements made at

this time instant), the knowledge of the shadowing does not always result in high accuracy

improvements. This result was justified by the fact that, due to the presence of the shadowing,

two distant positions might have close likelihood values, and thus, a small perturbation in

the observations might result in a high localization error. On the other hand, in the Bayesian

tracking solution, the accuracy improvement is much higher. This solution efficiently exploits

the observations made at previous time instants using a motion model.
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Then, we developed a solution for jointly tracking the position and the shadowing when

this latter is unknown. An AR model was developed to describe the shadowing process. This

solution was implemented by means of a Rao-Blackwellized particle filter which allows a

reduction of the required number of particles. To exploit all the previous measurements, the

order of the AR model increases with time, which involves increasing complexity and memory

needs. This order can be reduced according to several factors, such as complexity and memory

limitations, the a priori knowledge of the itinerary, the map constraints, the update time step

or the accuracy of INS information. We applied this solution to the particular case of straight

line trajectories, which is relevant for map-based car navigation systems, or train position

estimations. We also showed that using high order AR-models can improve the positioning

accuracy for some trajectories, such as the the trajectories with a U-turn. The accuracy

delivered by this solution can still low compared with the case of perfectly known shadowing.

Finally, we developed a Bayesian shadowing map estimation solution which can be useful

for reducing the calibration of the fingerprinting method. This solution estimated the maps by

using unlabeled traces, which are sequences of RSS and other positioning observations made

by mobile stations at unknown positions. This solution was applied to indoor tracking and

outdoor train tracking. Significant positioning accuracy improvements were observed when

the maps were first estimated using RSS and timing observations.





CHAPTER

6 Conclusions and Future

Research

In this thesis, some topics of wireless localization and tracking have been explored from a

statistical signal processing perspective. These topics belong to the categories of cooperative

static localization and non-cooperative dynamic localization. Several theoretical results have

been derived and several localization and tracking algorithms have been developed. In this

chapter, we restate the main contributions of the thesis with concluding remarks and we

discuss future research ideas.

6.1 Conclusions

• The conditions of unique solvability in cooperative localization based on ranging mea-

surements have been studied. These conditions are derived using results from graph

rigidity theory and semidefinite programming (SDP) modeling of the localization pro-

blem. The results of graph rigidity theory are restricted to generic networks while those

of SDP are not. An iterative SDP-based algorithm has been developed. It enhances the

unique solvability sufficient conditions and improves the detection of uniquely solvable

nodes. The conditions derived from graph rigidity theory only require the knowledge

of the network connectivity while those derived from SDP require the knowledge of the

true distance values between the nodes.

• The global identifiability defines the conditions of existence of consistent estimators

(i.e., estimators that become unbiased and their variance tends to the Cramér-Rao

bound (CRB) at high SNR). The following correspondence has been derived between

the global identifiability in cooperative localization and the global rigidity : When the

inter-node distances are globally identifiable from the ranging pair-wise measurements

and the network has at least d+1 anchor nodes in general positions, global identifiability

is equivalent to global rigidity. Thus, the global identifiability in generic networks can

be checked using the connectivity property without the need to know the positions of

the target nodes.

• A relationship has been derived between the Fisher information matrix (FIM) and the

rigidity matrix. It allows us to deduce the following results :

– For a generic network lying in a d-dimensional space and having at least d anchor
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nodes, local identifiability of all target nodes positions is equivalent to network rigi-

dity.

– When a d-dimensional network is rigid but not globally rigid and has at least d anchor

nodes, the FIM is non-singular, which means that a lower bound on the variance of

any unbiased estimator can be computed, even though no such estimator does exist.

The errors due to the non-global identifiability of the positions can be very high and

the mean square error of the estimators can be much higher than the theoretical

lower bounds.

• The application of weighted least-squares estimators to cooperative localization has

been presented and its deterministic stability conditions (i.e., conditions of uniqueness

of the global optimum) have been derived.

• Probabilistic inference in graphical models has been discussed and its application to

cooperative localization using the nonparametric belief propagation algorithm has been

studied. A new variant of this algorithm has been developed. This variant improves the

accuracy and allows using the connectivity information for mitigating the flip ambiguity.

This algorithm can be applied to any kind of pair-wise measurements provided that a

probabilistic model is available. The accuracy of the developed algorithm has been

studied via Monte Carlo simulations where the pair-wise measurements are distance

measurements affected by additive errors.

• The multi-link shadowing correlation information has been shown, via a Monte Carlo

simulation, to be useful for flip ambiguity mitigation.

• Concerning the non-cooperative dynamic localization, the RSS measurements have been

exploited. These measurements are affected by a random shadowing that highly de-

grades the performance. The following work has been achieved in this topic :

– The accuracy brought by the knowledge of the shadowing maps has been investigated

using Monte Carlo simulations for an indoor deployment scenario with a small number

of BSs. Simulation results have shown that the position tracking accuracy is much

improved compared to the case of unknown shadowing. Simulation results have also

shown that tracking brings more improvement compared to non-tracking position

estimation. The position tracking under known shadowing has been processed using

a regularized particle filter. This solution allows reducing the number of particles

needed to avoid the divergence caused by the shadowing randomness.

– A solution for improving the accuracy when the shadowing is unknown has been

developed. It performs a joint tracking of the position and the shadowing and takes

advantage form the shadowing spatial correlation. This solution is implemented using

a Rao-Blackwellized particle filter. The shadowing process is modeled using an auto-

regressive (AR) model. The application to vehicle tracking in a macro-cellular system

showed that using AR orders higher than one can result in accuracy improvements,

but this improvement comes at the expense of an increased complexity. In the ab-

sence of map constraints and when the motion model is not assisted by INS data, a

divergence of the filter can be observed due to the high variance of the shadowing.

– A solution for on-line estimation of the shadowing maps has been developed. This

solution uses unlabeled traces, which are sequences of RSS and other positioning
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measurements made at unknown positions. The maps are modeled using basis ex-

pansion and are estimated using a linear MMSE estimator for each sampled trajectory

of particles. Simulation results have shown that the integration of accurate ranging

measurements such as ToA and TDoA results in a better maps estimation and im-

proves the RSS tracking accuracy. This solution has been applied to train tracking

and has been shown to be a good candidate for on-board tracking equipment.

6.2 Future research

The research in wireless localization is a relatively new and wide research area. The follo-

wing are some of the topics of interest : Design of waveforms that are suitable for estimating

location dependent parameters from pair-wise measurements, design of algorithms for esti-

mating these parameters, channel modeling and statistical modeling of the dependence of

the estimated parameters on the positions, design of algorithms for estimating the positions

and mitigating the induced propagation impairments, computation of the lower bounds of

the accuracy achievable by estimators, derivation of the unique solvability conditions and flip

ambiguity mitigation, etc.

In this section, we provide some future research ideas that are related to the topics

explored in this thesis :

• The unique solvability and identifiability conditions have been studied in the case of

ranging measurements. Other kinds of measurements can be addressed such as AoAs,

spatially correlated data observations and timing measurements when there are several

groups of nodes synchronized with each other.

• A quantitative comparison of the different cooperative localization algorithms in terms

of accuracy and complexity under different deployment scenarios and network topologies

and different error models.

• Comparison of the accuracy of the algorithms with the CRB, and study of other lower

bounds when the CRB is too optimistic. This comparison is of great importance as it

allows us to select the most suitable pair-wise measurements when several of them are

available, and to decide whether it is worthwhile to pay additional effort for improving

the accuracy achieved by an algorithm.

• Study of the improvement brought by the cooperation between the static or dynamic

target nodes to the estimation of the shadowing maps. More specifically, study of the

effect of density of cooperating nodes when they are performing RSS measurements

only or RSS and low accuracy timing measurements.

• Construction of the shadowing maps of static nodes when their positions are not per-

fectly known.

• Study of the effect of the deviation of the assumed statistical models from the true

ones, and on-line calibration or estimation of the models parameters in the Bayesian

tracking solutions.
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A Fisher Information

Matrix in Cooperative

Network Localization

The Fisher information matrix (FIM) J(θ) of the target nodes coordinates is derived

here. These unknown coordinates are considered as deterministic parameters. The notations

of section 3.3 are used here.

The pair-wise measurements yu,v are random variables issued from the likelihood distri-

butions p(yu,v|du,v) in which du,v is the only unknown parameter. Since the measurements

are independent, the joint likelihood function factorizes as

p(y|θ) =
∏

(u,v)∈E,
u<v and m<v

p(yu,v|du,v), (A.1)

and the joint log-likelihood function can be written as

log p(y|θ) =
∑

(u,v)∈E,
u<v and m<v

log p(yu,v|du,v). (A.2)

The independent likelihood functions are assumed to verify the following regularity condition :

∫
∇θp(yu,v|du,v)dyu,v =

∫
(∇θlog p(yu,v|du,v))p(yu,v|du,v)dyu,v = 0. (A.3)

Hence E{∇θlog p(yu,v|du,v)} = 0.

Under this assumption, the FIM is given by

J(θ) = E
{
∇θlog p(y|θ) (∇θlog p(y|θ))T

}
. (A.4)

Let (u, v) and (k, l) be two couples of nodes indices verifying u < v and k < l. For

(u, v) 6= (k, l) we have

E{∇θlog p(yu,v|du,v)(∇θlog p(yk,l|dk,l))T } = E{∇θlog p(yu,v|du,v)}E{∇θlog p(yk,l|dk,l)}T

= 0, (A.5)
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and for (u, v) = (k, l) we have

E{∇θlog p(yu,v|du,v)(∇θlog p(yu,v|du,v))T } = E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}
∇θdu,v (∇θdu,v)T .

(A.6)

Thus, the FIM can be written as

J(θ) =
∑

(u,v)∈E,
u<v and m<v

Ju,v(θ)

=
∑

(u,v)∈E,
u<v and m<v

E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}
∇θdu,v (∇θdu,v)T . (A.7)

Now, we provide the computation of E

{(
∂log p(yu,v |du,v)

∂du,v

)2
}

for three kinds of measure-

ments in additive noise.

A.1 Case of distance measurements with additive Gaussian

noise

The distance observations are modeled as

yu,v = du,v + eu,v (A.8)

where eu,v is Gaussian distributed with mean equal to zero and variance equal to σ2
u,v (i.e.,

eu,v ∼ N (0, σ2
u,v)). Thus

p(yu,v|du,v) =
1√

2πσu,v
exp

(
−(yu,v − du,v)2

2σ2
u,v

)
, (A.9)

and we can show that

E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}

=
1

σ2
u,v

. (A.10)

A.2 Case of RSS measurements with additive Gaussian noise

The RSS observations in decibel (dB) are modeled as

yu,v = f(du,v) + eu,v (A.11)

where f(du,v) is a deterministic path loss function and eu,v ∼ N (0, σ2
u,v). Thus

p(yu,v|du,v) =
1√

2πσu,v
exp

(
−(yu,v − f(du,v))

2

2σ2
u,v

)
, (A.12)

and we can show that

E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}

=
(f ′(du,v))

2

σ2
u,v

. (A.13)
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The path loss function must be differentiable in order to verify the regularity condition.

In general, this function is decreasing with du,v, and by assuming a strictly decreasing one,

we obtain f ′(du,v) 6= 0.

A.3 Case of distance measurements with additive noise distri-

buted according to a mixture of Gaussian distributions

The distance observations are modeled as

yu,v = du,v + eu,v (A.14)

where eu,v is issued from a mixture of Gaussian distributions :

eu,v ∼
L∑

i=1

wiN (bi, σ
2
i ) (A.15)

where wi are positive real weights having the sum equal to one (i.e.,
∑
wi = 1) and bi is a

positive bias corresponding to an excess delay due to NLOS propagation. Thus

p(yu,v|du,v) =

L∑

i=1

wi√
2πσi

exp

(
−(yu,v − du,v − bi)2

2σ2
i

)
, (A.16)

and we can show that

E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}

= E

{
1

p2(yu,v|du,v)

(
∂p(yu,v|du,v)

∂du,v

)2
}
, (A.17)

and since p(yu,v|du,v) > 0 for all yu,v ∈ R and
∂p(0|du,v)
∂du,v

6= 0, we obtain

E

{(
∂log p(yu,v|du,v)

∂du,v

)2
}
6= 0. (A.18)
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B Derivation of the

Linear MMSE

Estimator and Kalman

Filter

B.1 Conditional distribution of multivariate Gaussian vectors

Let v = [xT yT ]T be an l × 1 jointly multivariate Gaussian distributed vector of mean

[E{x}T E{y}T ]T and partitioned covariance matrix

Cv =

[
Cxx Cxy

Cyx Cyy

]
(B.1)

where Cxx = E{xxT }, Cxy = E{xyT } and Cyx and Cyy are defined accordingly. The joint

probability density function of v can be written as

p(x,y) =
1

(2π)l/2det1/2(Cv)
exp


−1

2

[
x− E{x}
y − E{y}

]T
C−1
v

[
x− E{x}
y − E{y}

]
 (B.2)

Theorem B.1 ([34]). The conditional distribution p(y|x) is also Gaussian and we have

E{y|x} = E{y}+ CyxC
−1
xx (x− E{x}) (B.3)

Cy|x = Cyy −CyxC
−1
xxCxy. (B.4)

In this theorem, Cxx is assumed to be non-singular, otherwise an element of x is a linear

combination of the other elements of x of and can be discarded.

B.2 Linear minimum mean square error estimator

Let θ be an unknown vector of size l× 1 drawn from a Gaussian distribution of mean µθ

and covariance Cθ. The prior Gaussian distribution of θ is denoted by N (µθ,Cθ). Let y be
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an observation vector of size m× 1 that linearly depends on θ according to

y = Hθ + w (B.5)

where w is a noise vector of distribution N (0,Cw) and independent of θ.

The minimum mean square error (MMSE) estimator minimizes the mean square error

mse(y) =

∫
‖θ̂(y)− θ‖2p(θ|y)dθ (B.6)

and is equal to the mean of the posterior distribution p(θ|y)

θ̂MMSE =

∫
θp(θ|y)dθ (B.7)

We can write [
θ

y

]
=

[
Il 0

H I(m)

][
θ

w

]
(B.8)

where Il is the identity matrix of dimension l. Since θ and w are independent of each other and

each one is Gaussian distributed, they are jointly Gaussian distributed. The vector [θT yT ]T

is also jointly Gaussian distributed since its a linear transformation of a joint Gaussian vector,

and its mean vector is [µTθ µ
T
θ HT ]T and its covariance matrix is

[
Cθ Cθy

Cyθ Cyy

]
(B.9)

where Cθy = CθH
T and Cyy = HCθH

T + Cw. The mean and covariance of p(θ|y) can be

computed according to equations (B.3) and (B.4) resulting in

E{θ|y} = µθ + CθyC
−1
yy (y −Hµθ) (B.10)

and

Cθ|y = Cθ −CθyC
−1
yy Cyθ. (B.11)

Thus, the MMSE estimator of θ is

θ̂MMSE = µθ + CθyC
−1
yy (y −Hµθ) (B.12)

We can notice that this estimator is linear with respect to y and is called linear MMSE

estimator.

The mean square error (MSE) matrix which is the covariance of the error vector θ̂MMSE−θ
is equal to Cθ|y.

B.3 Sequential linear MMSE

We consider that observations arrive sequentially at discrete time instants. The observa-

tion at time n is written as

yn = Hnθ + wn. (B.13)
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The noise process wn is assumed to be white with respect to the time domain (i.e, independent

at different time instants) and issued from a known Gaussian distribution N (0,Cw,n).

Assume that we have already computed the posterior Gaussian distribution p(θ|y0:n−1),

where y0:n−1 = [yT0 , · · · ,yTn−1]T , and we denote by mn−1 its mean vector and Cn−1 its

covariance matrix. When the observation yn becomes available, the posterior distribution

p(θ|y0:n) can be updated as follows. The joint distribution p(θ,yn|y0:n−1) is Gaussian with

mean vector [mT
n−1 mT

n−1H
T
n ]T and covariance matrix

[
Cn−1 Cn−1H

T
n

HnCn−1 HnCn−1H
T
n + Cw,n

]
. (B.14)

Thus, the mean and covariance of p(θ|y0:n−1,yn) are computed according to equations (B.3)

and (B.4) resulting in

mn = mn−1 + Qn(yn −Hnmn−1) (B.15)

and

Cn = Cn−1 −QnHnCn−1, (B.16)

where Qn is the gain matrix given by

Qn = Cn−1H
T
n (HnCn−1H

T
n + Cw,n)−1. (B.17)

B.4 Kalman filter

We define the hidden state vector sn at time n that evolves according to the linear Gauss-

Markov model

sn = Ansn−1 + bn (B.18)

where bn is a white Gaussian process of distribution N (0,Bn), and the initial state s0 is also

Gaussian distributed and independent of bn.

The following noisy observation of the state sn is made at time n :

yn = Hnsn + wn (B.19)

where wn is a white Gaussian noise of distribution N (0,Cw,n).

The goal of the Kalman filter is to recursively update the posterior distribution p(sn|y1:n).

Here we present a modified version that computes the posterior distribution of the history

of states p(s0:n|y1:n). In fact, this posterior distribution is Gaussian since the state space

evolution and the observation are linear and the noise processes are Gaussian.

Assume that at time n − 1 the distribution p(s0:n−1|y1:n−1) have been computed and

denote by mn−1|n−1 and Cn−1|n−1 its mean and covariance, respectively. The distribution

p(s0:n|y1:n) is computed in two steps : prediction and correction.
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B.4.1 Prediction

The predictive distribution factorizes as

p(s0:n|y1:n−1) = p(s0:n−1|y1:n−1)p(sn|sn−1) and its mean and covariance are

mn|n−1 = [mT
n−1|n−1 (Anmn−1|n−1)T ]T (B.20)

and

Cn|n−1 =

[
Cn−1|n−1 Cn−1|n−1A

T
n

AnCn−1|n−1 AnCn−1|n−1A
T
n + Bn

]
. (B.21)

B.4.2 Correction

We can write p(s0:n,yn|y1:n−1) = p(yn|sn)p(s0:n|y1:n−1). The observation equation (B.19)

can be written as

yn = H̃ns0:n + wn (B.22)

where H̃n = [0 · · · 0 Hn] and the number of zero columns is equal to the size of s0:n−1. The

mean of p(s0:n,yn|y1:n−1) is

m̃n|n = [mT
n|n−1 (H̃nmn|n−1)T ]T (B.23)

and its covariance

C̃n|n =

[
Cn|n−1 Cn|n−1H̃

T
n

H̃nCn|n−1 H̃nCn|n−1H̃
T
n + Cw,n

]
. (B.24)

The mean and covariance of p(s0:n|y1:n) can be computed according to equations (B.3)

and (B.4) resulting in

mn|n = mn|n−1 + Qn(yn − H̃nmn|n−1) (B.25)

and

Cn = Cn|n−1 −QnH̃nCn|n−1, (B.26)

where Qn is the Kalman gain matrix given by

Qn = Cn|n−1H̃
T
n (H̃nCn|n−1H̃

T
n + Cw,n)−1. (B.27)
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C Proof of the

Proposition of Section

5.4.2

The same notations of section 5.4.2 are used here.

The (i, j) entry of R−1
L is :

R−1
L (i, j) =

(−1)i+j

det(RL)
det(Mj,i) (C.1)

Mj,i is the matrix obtained by eliminating the jth row and the ith column of RL and has a

size of (L− 1)× (L− 1). For the (i, j) couple verifying |i− j| > 1, the i− 1 to i+ 1 rows of

Mj,i are :

e−γ(xi−1−x1) · · · 1

e−γ(xi−x1) · · · e−γ(xi−xi−1)

e−γ(xi+1−x1) · · · e−γ(xi+1−xi−1)

e−γ(xi+1−xi−1) · · · e−γ(xL−xi−1)

e−γ(xi+1−xi) · · · e−γ(xL−xi)

1 · · · e−γ(xL−xi+1)

↔
i− 1

↔
L− i

(C.2)

The rank of the first i − 1 columns is equal to one and the rank of the last L − i columns

is equal to one. Thus the rank of this submatrix is equal to two, and as a result the rank of

Mj,i is equal to at most L− 2 and its determinant is null.
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D Résumé en français

D.1 Géolocalisation dans les systèmes sans fil : Techniques et

applications

D.1.1 Introduction

Les progrès que les systèmes de communication sans fil ont connu ainsi que leur grande

disponibilité ont permis l’apparition de plusieurs solutions de géolocalisation sans fil. Ces solu-

tions peuvent compléter ou remplacer la solution fondée sur le système GPS dans les situations

où cette dernière n’est pas fiable ou opérationnelle, et ont ouvert la voie au développment

d’une variété d’applications et de services de géolocalisation.

Dans ce chapitre, nous commençons par présenter brièvement l’évolution des systèmes de

localisation sans fil. Ensuite, nous discutons les principaux applications et services basés sur

l’information de position. Puis, nous présentons les techniques fondamentales de localisation

géométrique qui sont accomplies en deux phases : dans la première phase, des mesures de

paramètres topo-dépendants sont effectuées sur les signaux reçus. Chaque mesure définit un

lieu géométrique. Dans la deuxième phase, la position est calculée comme étant l’intersection

des différents lieux. Les mesures les plus attractives sont celles qui permettent l’estimation

de la distance entre un émetteur et un récepteur. Ces mesures comprennent les mesures du

temps de propagation et les mesures de la puissance, et sont présentées avec les sources

de bruit et leurs modélisations statistiques. Une technique de localisation qui a soulevée

beaucoup d’intérêt à cause de sa précision est la technique de fingerprinting, dans laquelle les

mesures sont comparées aux entrées d’une base de données, où une entrée est une empreinte

de mesures à un emplacement connu. Les entrées de la base de donnée sont obtenues soit par

des campagnes de mesures soit à l’aide d’outils de calibrage. Cette technique est également

décrite. Une classification des algorithmes de localisation basées sur les méthodes de mesure

ou sur le type d’information utilisée est aussi fournie dans ce chapitre

Pour des raisons de concision, nous allons juste présenter les notions que nous allons

utiliser dans ce résumé.
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D.1.2 Méthodes fondamentales de localisation

Nous définissons un nœud cible comme étant un dispositif dont la position est inconnue,

et un nœud d’ancrage comme étant un dispositif dont la position est connu, ou en d’autres

termes, dont les coordonnées dans un espace Euclidien de dimension 2 ou 3 sont connues. Les

méthodes fondamentales de localisation calculent la position d’un seul nœud cible en deux

étapes :

– Dans la première étape, des métriques sont mesurées sur les signaux échangés entre le

nœud cible et plusieurs nœuds d’ancrage. Des informations concernant la position de

la cible par rapport au nœud d’ancrage peuvent être extraites de ces métriques.

– Dans la deuxième étape, les mesures sont agrégées et traitées par un algorithme de

localisation ou de fusion de données qui fournit en sortie la position.

En supposant que les mesures sont parfaites, chaque métrique définit une contrainte sur

les coordonnées du nœud cible, ou en d’autres termes une région de faisabilité, et la posi-

tion peut être calculée sans ambigüıté quand ces régions se croisent en un seul point. Dans

les applications réelles, les mesures sont bruitées. Par conséquent, les régions de faisabilité

estimées ne contiennent pas nécessairement la vraie position, et leur intersection peut être

l’ensemble vide. Dans ce cas, des techniques d’estimation appropriées sont nécessaires pour

définir l’algorithme de localisation.

D.1.3 Mesures de distances et sources d’erreurs

Les deux principales métriques qui permettent d’estimer la distance entre un émetteur et

un récepteur sont le temps de propagation (ToA) et la puissance reçue (RSS).

Mesure du temps de propagation

La distance est obtenue en multipliant le temps de propagation par la vitesse de propa-

gation. Il existe deux techniques de ToA :

– Technique unidirectionnelle qui est basée sur une seule transmission et nécessite une

synchronisation des horloges de l’émetteur et du récepteur.

– Technique bidirectionnelle qui utilise deux transmissions pour surmonter le besoin de

synchronisation.

Pour la plupart des applications ‘indoor’, l’erreur de mesure ToA ne doit pas dépasser

quelques nanosecondes. Les principales sources d’erreurs sont les erreurs de synchronisation,

les dérives des horloges, les bruits additifs, les trajets multiples et le blocage du trajet direct

(NLoS).

Utilisation de signaux ultra-large bande Les signaux ultra-large bande sont construits

à partir d’impulsions de courtes durées qui sont largement étalées dans le domaine fréquentiel.

Ainsi, ils permettent de mesurer le temps de propagation avec une bonne précision en présence

des bruits additifs. Les courtes durées des impulsions permettent aussi de séparer les trajets

multiples.
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Modélisation statistique des erreurs Des mesures effectuées à des petites portées ont

montré que, pour des propagations en vue directe (LoS), les erreurs peuvent être modélisées

par des variables aléatoires gaussiennes. Dans le cas des propagations NLoS, d’autres modèles

ont été proposés pour tenir compte des erreurs qui peuvent prendre des valeurs importantes.

Des exemples de ces modèles sont le mélange de gaussiennes et le mélange de distributions

gaussiennes et exponentielles.

Mesure de la puissance du signal reçue

La mesure de la puissance du signal reçue (RSS) peut facilement être obtenue sans aucune

complexité supplémentaire au niveau du matériel. L’estimation de la distance à partir de cette

mesure repose sur le principe que la puissance moyenne reçue est décroissante avec la distance

séparant le nœud de transmission du nœud de réception. Ainsi, un modèle d’atténuation de

la puissance est nécessaire pour l’estimation de la distance à partir de la valeur de RSS. Un

tel modèle qui est largement utilisé est donné par

Pr(d) = P0 − 10nplog10d+ ε (D.1)

où Pr(d) (en dB) est la valeur de RSS à une distance d, P0 est la valeur moyenne de RSS

à une distance de 1m, np est l’exposant d’atténuation, et ε est une variable aléatoire gaus-

sienne centrée de variance σ2
sh représentant l’évanouissement à grande échelle ou masquage.

Le principal inconvénient de cette technique est la grande variance de la variable aléatoire ε,

ce qui réduit la précision de l’estimation de la position. En outre, cette précision dépend de la

valeur de la distance puisque la fonction de log dans (D.1) varie lentement pour les grandes

valeurs de distance.

D.1.4 Localisation coopérative et poursuite

Les méthodes de localisation que nous avons décrites dans la section D.1.2 considèrent un

nœud cible connecté à (ou en communication avec) plusieurs nœuds d’ancrage, et la position

est calculée grâce aux mesures effectuées avec ces ancres. Dans de nombreux scénarios, les

nœuds cibles peuvent ne pas être connectés à un nombre suffisant de nœuds d’ancrage. De

plus, même si un nombre suffisant de points d’ancrage est disponible, la précision de posi-

tionnement peut ne pas répondre aux besoins des applications envisagées. Pour surmonter

ces problèmes, d’autres méthodes de localisation ont été développées en exploitant d’autres

types de mesures telles que les mesures intra-nœud dans le cas des nœuds en déplacement, et

les mesures inter-nœuds entre les paires de nœuds cibles. Selon le type de mesures utilisées,

les algorithmes de localisation peuvent être classés dans l’une des quatre classes suivantes :

1. Localisation non-coopérative et statique : la position est calculée uniquement à partir

des mesures effectuées avec des nœuds d’ancrage. Si le nœud cible est en mouvement, la

position à un instant donné est calculée sans l’aide d’un modèle de mouvement ou des

mesures effectuées aux instants précédents.

2. Localisation non-coopérative et dynamique : les algorithmes de cette catégorie effectuent

une poursuite de la position dans le temps. La poursuite permet d’améliorer la précision
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en exploitant les mesures effectuées à plusieurs instants. La dépendance entre ces mesures

est dérivée d’un modèle de mouvement définissant la dépendance entre les positions à

des instants différents. Des mesures intra-nœud peuvent être utilisées pour améliorer la

précision du modèle de mouvement. Ces mesures peuvent être délivrées par des capteurs

de navigation inertielle (INS) tels que des accéléromètres et des gyroscopes.

3. Localisation coopérative et statique : la localisation coopérative permet de contourner le

besoin d’une grande densité de nœuds d’ancrage et la puissance de transmission élevée

pour la connectivité à longue portée. Elle est basée sur l’utilisation de mesures effectuées

entre des paires de nœuds cibles, en plus de celles avec les nœuds d’ancrage. Les positions

de plusieurs nœuds cibles sont calculées simultanément.

4. Localisation coopérative et dynamique : une opération de poursuite des cibles mobiles

est effectuée et la coopération est maintenue en exploitant les mesures inter-nœuds.

D.2 Rigidité, identifiabilité et localisabilité en localisation

coopérative

D.2.1 Introduction

Dans la localisation coopérative, on cherche à attribuer des positions aux nœuds cibles,

dans un espace Euclidien, qui soient conformes à un ensemble de mesures prises par paire entre

les nœuds. En général, les mesures ne sont pas disponibles pour toutes les paires de nœuds, et

le graphe du réseau n’est pas complètement connecté. Par conséquent, on peut ne pas avoir

suffisamment d’informations pour estimer les différentes positions sans ambigüıtés. Même

avec la connaissance exacte des distances entre les nœuds, des ambigüıtés existent quand il

y a plusieurs solutions possibles vérifiant les contraintes. La théorie de la rigidité graphique

et la programmation semi-définie définissent des conditions suffisantes pour la solvabilité

unique des positions des nœuds cibles, en supposant des mesures de distance sans erreur.

Dans l’estimation probabiliste, où les mesures sont affectées par des fluctuations aléatoires,

l’ambigüıté peut être définie par la théorie de l’identifiabilité. L’objectif de ce chapitre est

d’étudier, pour les réseaux statiques, les conditions de solvabilité unique lorsque les valeurs

de distances sont exactes, et les conditions d’identifiabilité lorsque ces valeurs sont bruitées.

En étudiant les propriétés d’identifiabilité, les positions inconnues sont traitées comme des

paramètres déterministes, et les mesures sont supposées suivre des modèles probabilistes

connus.

Nous commençons par examiner la théorie de la rigidité graphique dans le contexte de

la localisation coopérative. Puis, le bruit de mesure est pris en compte, et nous établissons

une relation entre la rigidité et la matrice d’information de Fisher (FIM), et les conditions

de non-singularité de la FIM sont ainsi déduites. L’identifiabilité est également étudiée dans

cette section où nous établissons des correspondances entre la rigidité et l’identifiabilité. Ces

correspondances permettent de vérifier des propriétés d’identifiabilité en utilisant des outils

de rigidité graphique. La programmation semi-définie (SDP) est aussi étudiée, où la méthode
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de l’état de l’art est décrite, et une nouvelle technique est proposée pour améliorer la détection

des nœuds ayant des solutions uniques.

D.2.2 Théorie de la rigidité graphique

Dans cette théorie, on cherche à déterminer si un graphe a une réalisation unique dans un

espace de dimension donnée. Les résultats de cette théorie ont été appliqués à la localisation

coopérative, et fournissent des conditions suffisantes pour garantir des solutions de position

uniques. Dans cette section, nous présentons certains de ces résultats (une étude plus détaillée

est fournie dans le mémoire), et nous commençons par fournir quelques notations et définitions

préliminaires.

Définitions

Définissons un réseau L de dimension d et de taille N nœuds. Ce réseau est formé de

m < N nœuds d’ancrage numérotés de 1 à m et de n = N −m nœuds cibles numérotés de

m+1 à N . La position du nœud i est reprèsentée par le vecteur colonne xi ∈ Rd. La distance

entre les nœuds i et j est notée di,j = ‖xi − xj‖, ou en d’autres termes la norme Euclidienne

de xi − xj . Dans ce chapitre, nous supposons que xi 6= xj pour tout 1 ≤ i < j ≤ N .

Un graphe G = (V,E), ayant V = {1, 2, · · · , N} comme ensemble de sommets et E =

{(i, j)| i, j ∈ V et i et j sont des voisins} comme ensemble d’arêtes est associé au réseau L
comme suit. Le sommet i est associé au nœud i, et deux sommets sont reliés par une arête

s’ils correspondent à des noeuds d’ancrage ou à des nœuds effectuant une mesure de distance

entre eux. Les termes nœud et sommet seront utilisés indifféremment.

Un structure (G,p) de dimension d est définie comme étant un ensemble constitué d’un

graphe G = (V,E) et d’une fonction p de V dans Rd telle que p(i) 6= p(j) pour tout (i, j) ∈ E.

Pour deux structures (G,p) et (G,q) ayant la même dimension, on a les définitions sui-

vantes :

– (G,p) et (G,q) sont équivalentes si ‖p(i)− p(j)‖ = ‖q(i)− q(j)‖ pour tout (i, j) ∈ E.

– (G,p) et (G,q) sont congruentes si ‖p(i)− p(j)‖ = ‖q(i)− q(j)‖ pour tout i, j ∈ V .

– (G,p) est globalement rigide si chaque structure qui est équivalente à (G,p) est aussi

congruente à (G,p) (par exemple, la Figure D.1(c)).

– (G,p) est rigide s’il existe un ε > 0 de telle sorte que chaque structure (G,q) équivalante

à (G,p) et satisfaisant ‖p(i)− q(i)‖ < ε pour tout i ∈ V est congruente à (G,p) (par

exemple, la Figure D.1(b)).

– Un structure qui n’est pas rigide est flexible, c.-à-d., susceptible de déformations conti-

nues (par exemple, la Figure D.1(a)).

Une structure (G,p) est appelée une structure de réalisation du réseau L si ces deux

entités ont la même dimension et ‖p(i)− p(j)‖ = di,j pour tous les (i, j) ∈ E, où G est le

graphe associé au réseau. Un structure (G,p) est appelée une réalisation fondamentale du

réseau L s’il s’agit d’une structure de réalisation vérifiant p(i) = xi pour tout i ∈ V .
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(a) Flexible (b) Rigide (c) Globalement rigide

Figure D.1 — Trois structures bidimensionnelles.

Le problème de localisation est défini par

déterminer xj , j = m+ 1, . . . , N,

s.q. xi, i = 1, . . . ,m,

‖xu − xv‖ = du,v, ∀(u, v) ∈ E.
(D.2)

Le réseau L est dit uniquement solvable si le problème (D.2) admet une solution unique,

c.-à-d., tous les nœuds sont uniquement solvables.

Théorème D.1. Le réseau L de dimension d est solvable de manière unique si et seulement

si toute structure de réalisation de L est globalement rigide et le réseau a au moins d + 1

nœuds d’ancrage en positions générales.

Les nœuds sont dit en positions générales si leurs vecteurs de position sont linéairement

indépendants.

Un graphe G′ = (V ′;E′) est un sous-graphe de G = (V,E) si V ′ ⊆ V et E′ = {(i, j) ∈
E|i, j ∈ V ′}. La structure (G′,p) est alors une sous-structure de (G,p). Un nœud est uni-

quement solvable si sa solution est la même pour chaque solution du problème (D.2). Une

conséquence directe du théorème D.1 est le corollaire suivant :

Corollaire D.1. Un nœud est uniquement solvable s’il appartient à une sous-structure glo-

balement rigide ayant au moins d + 1 nœuds d ’ancrage en positions générales, pour toute

structure de réalisation de L.

La condition définie par ce corollaire est suffisante pour la solvabilité unique. Des condi-

tions nécessaires et suffisantes ne sont pas encore connues. La théorie de la rigidité graphique

fournit des outils pour tester les propriétés de rigidité et de rigidité globale. Maintenant, nous

présentons la matrice de rigidité qui est un outil important et qui sera utilisée plus tard pour

établir une relation entre la rigidité et la FIM.

Matrice de rigidité

Un mouvement souple d’une structure (G,p) est défini par la fonction P de R+×V dans

Rd vérifiant les conditions suivantes :

1. P(t, v) est dérivable par rapport à t, où t peut être considéré comme une variable de

temps.
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2. P(0, v) = p(v) pour tout v ∈ V .

3. ‖P(t, v)−P(t, u)‖ = ‖p(v)− p(u)‖ pour toute (u, v) ∈ E et tout t ≥ 0.

Ainsi, pour t = 0, (G,p) est rigide si et seulement si tout mouvement souple donne lieu à une

structure congruente à (G,p).

Le point 3 peut être réécrit comme

‖P(t, v)−P(t, u)‖2 = constante par rapport à t (D.3)

et en dérivant par rapport à t, on obtient

[P(t, v)−P(t, u)]T
[
P′(t, v)−P′(t, u)

]
= 0 (D.4)

où P′(t, v) représente la vitesse instantanée de la fonction P, et T est l’opérateur de transpo-

sition. A l’instant t = 0, définissons par p′(v) = P′(0, v) :

[p(v)− p(u)]T
[
p′(v)− p′(u)

]
= 0 pour tout (u, v) ∈ E (D.5)

qui peut s’écrire sous la forme
[

p(v)− p(u)

p(u)− p(v)

]T [
p′(v)

p′(u)

]
= 0 pour tout (u, v) ∈ E. (D.6)

Une affectation de vitesse p′(v), pour tout v ∈ V , vérifiant le système d’équations (D.6) est

appelée mouvement infinitésimal de (G,p). Ce système d’équations peut être utilisé pour

déterminer une base pour tous les mouvements infinitésimaux.

La matrice de rigidité de la structure (G,p), dénotée par M(G,p), est la matrice des

coefficients de (D.6). Sa taille est |E| × d|V |, où |.| désigne la cardinalité d’un ensemble.

Chaque arête indexe une ligne dans cette matrice, et chaque sommet indexe d colonnes

consécutives. Pour une ligne indexée par une arête (u, v) ∈ E, les entrées correspondant au

sommet u sont égales à (p(u) − p(v))T et celles correspondant au sommet v sont égales à

(p(v)−p(u))T , et les autres entrées sont égales à zéro. Une structure (G,p) et sa matrice de

rigidité sont présentées par la Figure D.2, où p(i) = [xi , yi]
T ∈ R2.

Les mouvements infinitésimaux d’une structure constituent l’espace nul de la matrice de

rigidité. Cet espace nul est toujours à rang non-nul, car il contient les mouvements triviaux,

c.-à-d., les rotations et les translations de la structure, et par conséquent, la matrice de rigidité

ne peut pas avoir un rang plein. Pour une structure de dimension d ayant au moins d nœuds,

qui ne sont pas tous alignés pour d = 3, il existe d translations triviales indépendantes et

d(d− 1)/2 rotations triviales indépendantes. Ainsi, le nombre total de mouvements triviaux

indépendants est d(d+ 1)/2.

Pour un certain nombre de nœuds N ≥ 2, définissons

S(N, d) =

{
dN − d(d+ 1)/2 si N ≥ d+ 2

N(N − 1)/2 si N ≤ d+ 1
. (D.7)

Remarquons que pour N ≥ d + 2, S(N, d) est égal au nombre de colonnes de la matrice

de rigidité moins le nombre des mouvements triviaux. Le rang minimum de l’espace nul de

M(G,p) est égal au nombre de mouvements triviaux.
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a

b

c

d

(a)

i




xa − xb ya − yb xb − xa yb − ya 0 0 0 0

xa − xc ya − yc 0 0 xc − xa yc − ya 0 0

0 0 xb − xc yb − yc xc − xb yc − yb 0 0

0 0 0 0 xc − xd yc − yd xd − xc yd − yc


 (1)

(b)

Figure D.2 — Une structure bidimensionnelle avec sa matrice de rigidité. La première

ligne correspond à l’arête (a, b), la deuxième à l’arête (a, c), la troisième à l’arête (b, c) et la

quatrième à l’arête (c, d)

Théorème D.2. Soit (G,p) une structure de dimension d avec N ≥ 2 nœuds. Alors

rangM(G,p) ≤ S(N, d). En outre, si l’égalité est vérifiée, alors (G,p) est rigide.

En d’autres termes, lorsque l’égalité est vérifiée, les seuls mouvements possibles sont les

mouvements triviaux, et la structure ne peut pas avoir une déformation continue. (G,p) est

dite être infiniment rigide si rangM(G,p) = S(N, d). D’après le théorème D.2, la rigidité

infinitésimale est une condition suffisante de rigidité. Mais la rigidité infinitésimale n’est

pas équivalente à la rigidité. La rigidité infinitésimale est équivalente à la rigidité pour une

catégorie de structures appelées structures génériques.

Structures génériques

Une structure (G,p) est dite générique si sa matrice de rigidité a le rang maximal parmi

toutes les structures possibles (G,q) ayant la même dimension. Pour une structure de dimen-

sion d constituée de N nœuds, les coordonnées des nœuds peuvent être considérés comme un

seul point de RNd. Les structures génériques forment un ensemble ouvert et dense de RNd, et

les structures non-génériques forment un ensemble algébrique de RNd. Ainsi, si nous tirons

au hasard N positions uniformément distribuées dans un ensemble ouvert de Rd, la structure

obtenue est générique avec une probabilité égale à un.

Théorème D.3. Soit (G,p) une structure générique de dimension d. (G,p) est rigide si et

seulement si (G,p) est infiniment rigide.

Pour un graphe G, le rang de M(G,p) sera maximisé lorsque (G,p) est générique, et

donc, rangM(G,p) est le même pour toutes les structures génériques qui partagent le même

graphe dans une dimension donnée. Ce fait nous permet de présenter le théorème suivant :

Théorème D.4. Si un graphe possède au moins une structure infiniment rigide, alors toutes

ses structures génériques sont rigides.
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Ainsi, la rigidité est une propriété combinatoire du graphe dans toutes les dimensions.

Test de rigidité générique Etant donnée une dimension d, la rigidité générique n’est pas

une caractéristique d’une structure spécifique, mais plutôt une caractéristique du graphe. Des

algorithmes combinatoires de complexité polynomiale pour tester la rigidité ne sont connus

que pour d = 1 et 2. En outre, le test de rang de la matrice de rigidité peut être utilisé dans

toutes les dimensions.

Test de rigidité globale générique La rigidité globale est une propriété générique dans

toutes les dimensions. Des algorithmes combinatoires de complexité polynomiale pour tester

la rigidité globale ne sont connus que pour d = 1 et 2.

Structures non-génériques Il est NP-difficile de décider si une structure de dimension d

est rigide même pour d = 1.

Construction distribuée des réseaux rigides et globalement rigides

Les algorithmes pour tester la rigidité et la rigidité globale ne sont pas applicables d’une

manière distribuée. Néanmoins, il existe des catégories de réseaux pour lesquels les propriétés

de rigidité et de rigidité globale peuvent être vérifiées de façon distribuée. Mais ces réseaux

ne constituent que des sous-ensembles des réseaux rigides et globalement rigides. Enfin, nous

mentionnons la condition suivante nécessaire pour la solvabilité unique : Si un nœud est

uniquement solvable, alors il existe d + 1 chemins disjoints connectant ce nœud aux nœuds

d’ancrage, où deux chemins sont appelés disjoints s’ils ne partagent pas un nœud en commun.

Cette condition peut être utilisée pour identifier des nœuds n’ayant pas de solution unique.

D.2.3 La rigidité, la FIM et l’identifiabilité

Dans cette section, les positions inconnues des nœuds cibles sont considérées comme des

paramètres déterministes, et les mesures sont considérées comme des réalisations de variables

aléatoires. Avant de fournir les contributions originales de cette section, qui sont la corres-

pondance entre la matrice d’information de Fisher (FIM) et la rigidité et les correspondances

entre la rigidité et l’identifiabilité, nous commençons par présenter le calcul de la FIM.

Soit θ = [xTm+1, · · · ,xTN ]T le vecteur de paramètres de taille nd composé des coordonnées

des n = N −m nœuds cibles.

La valeur scalaire yu,v, correspondant à la mesure entre les nœuds u et v, est supposée

être la réalisation d’une variable aléatoire yu,v de fonction de distribution connue paramétrée

par la distance du,v :

yu,v ∼ pyu,v |du,v (D.8)

où du,v est le seul paramètre inconnu dans cette distribution, pour tout (u, v) ∈ E, u < v

and m < v. Nous supposons également que les mesures sont indépendantes. Soit y le vecteur
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de toutes les mesures. Ce vecteur est une réalisation d’un vecteur aléatoire Y . La fonction de

vraisemblance de θ peut être écrite comme

p(y|θ) =
∏

(u,v)∈E
u<v, m<v

p(yu,v|du,v) (D.9)

où les indices des fonctions de distribution sont supprimées afin de simplifier la notation.

Sous la condition de régularité, c.-à-d., log p(y|θ) est continûment dérivable par rapport

à θ, la FIM est donnée par

J(θ) = EY |θ

{
∇θlog p(y|θ) (∇θlog p(y|θ))T

}
(D.10)

où EY |θ {.} est la valeur de la moyenne conditionnelle, et ∇θ est le gradient par rapport à θ.

Dans les sections suivantes, nous supposons que E

{(
∂log p(yu,v |du,v)

∂du,v

)2
}
6= 0 pour tout

du,v > 0. Cette condition est vérifiée par les mesures de ToA affectées par des bruits additifs

issus de lois gaussiennes ou de mélanges de gaussiennes, ou par les mesures de RSS affectées

par des bruits additifs gaussiens (en dB).

Correspondance entre la rigidité et la FIM

Soit (G,p) la structure de réalisation fondamentale du réseau L, et soit M ‡(G,p) la

matrice obtenue de la matrice de rigidité M(G,p) en supprimant toutes les colonnes corres-

pondant aux nœuds d’ancrage. Nous avons démontré la proposition suivante :

Proposition D.1. Les rangs de la FIM J(θ) et de la matrice M ‡(G,p) sont égaux :

rangJ(θ) = rangM ‡(G,p). (D.11)

En supposant que le réseau L de dimension d a au moins d nœuds d’ancrage et que la sous-

structure de (G,p) correspondant aux nœuds d’ancrage est générique, nous avons démontré

le théorème suivant :

Théorème D.5. La structure (G,p) est infiniment rigide si et seulement si la FIM J(θ) est

non singulière.

Puisque la rigidité est équivalente à la rigidité infinitésimale pour les réseaux génériques,

on peut en déduire le corollaire suivant :

Corollaire D.2. Un réseau générique de dimension d ayant au moins d nœuds d’ancres a

un graphe rigide si et seulement si la FIM correspondante est non singulière.

Ainsi, pour les réseaux génériques, la singularité de la FIM est une propriété graphique

qui peut être testée sans avoir besoin de connâıtre la position des nœuds.
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Théorie d’identifiabilité

Soit y le vecteur d’observation de taille k. Nous citons ci-dessous des définitions offertes

par la théorie d’identifiabilité :

– Deux points de paramètres θ0 et θ1 sont dits équivalents selon l’observation si p(y|θ0) =

p(y|θ1) pour tout y ∈ Rk.
– Un point de paramètre θ0 est dit globalement identifiable s’il n’y a pas un autre θ ∈ Rnd

qui lui est équivalent.

– Un point de paramètre θ0 est dit localement identifiable s’il existe un voisinage ouvert

de θ0 ne contenant aucun autre paramètre qui lui est équivalent.

Identifiabilité locale Nous avons démontré la proposition suivante :

Proposition D.2. Pour un réseau générique de dimension d ayant au moins d nœuds d’an-

crage, l’identifiabilité locale est équivalente à la rigidité graphique.

Identifiabilité globale Nous avons démontré la proposition suivante :

Proposition D.3. Pour un réseau de dimension d ayant au moins d + 1 nœuds d’ancrage

en position générale, l’identifiabilité globale des positions des nœuds cibles implique la rigidité

globale de toute structure de réalisation.

Maintenant, nous allons montrer que lorsque les distances sont globalement identifiables

à partir des mesures, la rigidité globale devient une condition suffisante pour l’identifiabilité

globale. Pour cela, supposons que les valeurs de distance du,v sont globalement identifiable

pour toute (u, v) ∈ E, u < v et m < v, c.-à-d., une valeur de distance d0
u,v n’est pas équivalente

à aucune autre valeur de distance d1
u,v

Théorème D.6. Pour un réseau de dimension d ayant au moins d+ 1 nœuds d’ancrage en

position générale, l’identifiabilité globale des positions des nœuds cibles est équivalente à la

rigidité globale de toute structure de réalisation.

Ainsi, afin de vérifier l’identifiabilité globale, il suffit de vérifier la rigidité globale. Pour

les réseaux génériques, l’identifiabilité globale est une propriété graphique qui ne dépend pas

des positions.

D.2.4 Localisabilité par programmation semi-définie

Une approche alternative pour l’étude de la solvabilité unique est la programmation semi-

définie (SDP). La méthode classique de SDP peut être utilisée pour identifier uniquement

les de nœuds qui sont localisables de manière unique, c.-à-d., qui ont des solutions uniques

dans toutes les dimensions. Nous avons développé un algorithme itératif basé sur la SDP

qui améliore l’identification des nœuds à solution unique. Les algorithmes basés sur la SDP

nécessitent la connaissance des valeurs des distances.
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D.3 Algorithmes de localisation coopérative

D.3.1 Introduction

Dans ce chapitre consacré aux algorithmes de localisation coopérative, nous nous

intéressons à l’estimation probabiliste, où les positions sont considérées comme des variables

aléatoires et le problème de localisation est formulé comme une estimation dans les modèles

graphiques probabilistes. Ce formalisme permet l’application de l’algorithme de propaga-

tion de croyance (BP), où chaque nœud calcule une fonction de densité de probabilité de

ses coordonnées, de façon distribuée, en se basant sur l’information locale à priori, et sur

les densités de probabilité fournie à chaque itération par les nœuds voisins. Cet algorithme

produit des estimations des positions et des mesures des incertitudes. En outre, certaines

ambigüıtés sur les positions peuvent être éliminées en utilisant l’algorithme BP et en sup-

posant un modèle de connectivité probabiliste. L’algorithme BP est implémenté en utilisant

une version particulaire où les messages, qui ne peuvent pas être calculés d’une façon analy-

tique, seront approximés numériquement. Cette implémentation est connue sous le nom de

propagation de croyance non paramétrique (NBP). La principale contribution de ce chapitre

est le développement d’une nouvelle variante de la méthode NBP à deux phases. Cette so-

lution améliore la précision de la localisation et permet de réduire la quantité de données

échangées. En plus de l’estimation probabiliste, nous étudions les estimateurs de moindres

carrés pondérés (WLS, Weighted Least Squares), et nous fournissons les conditions de leur

stabilité déterministe en se basant sur les résultats de solvabilité unique fournis dans le cha-

pitre précédent. Un aperçu de plusieurs algorithmes existants de localisation coopérative est

fourni dans la version complète de ce chapitre.

D.3.2 Définitions

Nous considérons un réseau L de taille N composé de m nœuds d’ancrage numérotés de

1 à m et n = N − m nœuds cibles numérotés de m + 1 à N et dont les positions sont à

estimer. Un graphe G = (V,E) est associé au réseau. Le réseau est déployé dans un espace

de dimension d où le nœud i est situé en xi ∈ Rd. Les nœuds sont supposés être statiques.

Soit θ = [xTm+1, · · · ,xTN ]T le vecteur des positions inconnues. La mesure par paire entre

les nœuds i et j est désignée par yi,j . Lorsque la distance est estimée à partir de yi,j , on la

note d̃i,j = f(yi,j). La vraie valeur de distance est di,j = ‖xi−xj‖. Soit y le vecteur de toutes

les mesures.

D.3.3 Moindres carrés pondérés

Les estimateurs WLS ont été largement utilisés dans la localisation non coopérative et

coopérative parce que leur formulation est simple et ne nécessitent pas d’hypothèses parti-

culières sur le modèle de bruit. Un estimateur WLS cherche à minimiser une fonction de coût
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de la forme :

θ̂WLS = arg min
θ∈Rdn

∑

(i,j)∈E
i<j, m<j

wi,j(d̃i,j − ‖xi − xj‖)2 +
∑

i>m

ri‖xi − x̄i‖2, (D.12)

où wi,j est un poids positif reflétant la précision de d̃i,j , et les paramètres x̄i et ri modélisent

la connaissance à priori sur xi. En l’absence de telle information, ri est égal à zéro. Nous

noterons la fonction de coût (D.12) par s(θ).

Le problème (D.12) est un problème d’optimisation non-convexe. Les minimums locaux

sont fréquents dans ce genre de problèmes et peuvent correspondre à de mauvaises configura-

tions du réseau et à des erreurs d’estimation élevées. Un minimum de s(θ) peut être calculé

en utilisant une solution numérique et itérative à partir de positions initiales. Les positions

initiales doivent être choisies avec soin afin de réduire la probabilité de tomber dans un mini-

mum local. Un exemple d’algorithme pour trouver des positions initiales est la SDP adaptée

aux mesures bruitées.

La stabilité déterministe du WLS

Pour un problème d’estimation non linéaire exprimé comme un problème de minimisation

d’une fonction de coût, la stabilité déterministe implique l’unicité du minimum global à

condition que le bruit d’observation soit assez petit. Nous avons démontré que pour les

réseaux génériques et uniquement solvable (c.-à-d., globalement rigide et ayant d+ 1 nœuds

d’ancrage), la propriété de stabilité déterministe est vérifiée.

D.3.4 Estimation probabiliste

L’estimation probabiliste exploite les modèles probabilistes disponibles sur les mesures

(par exemple, les fonctions de vraisemblance) et sur les positions (par exemple, les informa-

tions à priori). Les algorithmes probabilistes peuvent être plus précis que les algorithmes non

probabilistes (par exemple, WLS), car ils peuvent exploiter les informations à priori et peuvent

atténuer l’effet de NLoS lorsqu’un modèle probabiliste de propagation NLoS est disponible.

Ils sont aussi plus résistants à la présence de valeurs aberrantes, où une valeur aberrante

est une observation qui se situe en dehors de la tendance générale d’une distribution. Afin

d’appliquer ces algorithmes, on suppose que l’observation y est la réalisation d’une variable

aléatoire Y de fonction de probabilité conjointe connue pY |θ(y|θ), qui sera écrite p(y|θ). Pour

un vecteur y donnée et θ variable, p(y|θ) est appelée la fonction de vraisemblance de θ.

Les estimateurs probabilistes peuvent être classés comme non bayésien ou bayésien, selon

que θ est considéré comme un paramètre déterministe inconnu ou la réalisation d’une variable

aléatoire de fonction de distribution à priori connue pΘ(θ).
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D.3.5 Algorithmes basés sur l’échange de messages

Dans le problème de localisation coopérative, sous l’hypothèse que les observations

{yi,j} et les positions {xi} sont les réalisations de variables aléatoires indépendantes, et

en considérant que les positions des nœuds d’ancrage sont des variables aléatoires de distri-

butions à priori égales à la fonction delta de Dirac, la distribution à posteriori conjointe se

factorise comme suit :

p(x|y) =
1

Z

∏

i∈V
Φi(xi)

∏

(i,j)∈E

Ψi,j(xi,xj), (D.13)

où x = [xT1 , · · · ,xTm, θT ]T , Φi(xi) = p(xi) est la fonction de distribution à priori de la position

du nœud i, et Ψi,j(xi,xj) = p(yi,j |xi,xj) est une fonction de potentiel par paire.

Le but des algorithmes basés sur l’échange de messages est de calculer, d’une manière

distribuée, des fonctions distributions bi(xi) qui sont des approximations des distributions

marginales p(xi|y). Par définition, la distribution marginale est obtenue en intégrant (ou en

faisant la somme de) la fonction de distribution conjointe sur toutes les variables sauf xi :

p(xi|y) =

∫
p(x|y)dx1 · · · dxi−1dxi+1 · · · dxN . (D.14)

Le calcul des distributions marginales a plusieurs avantages. Un de ces avantages est qu’il

permet d’estimer les différentes variables aléatoires séparément, par exemple en calculant l’es-

timation MMSE (Minimum Mean Square Error) ou en calculant l’estimateur MAP (Maxi-

mum a Posteriori) local. Si les fonctions marginales sont disponibles à chaque nœud, les

positions peuvent être estimées localement. Un autre avantage est que les fonctions margi-

nales fournissent une représentation des incertitudes et peuvent être utilisés dans la détection

des ambigüıtés potentielles.

L’algorithme basé sur l’échange de messages que nous considérons est la propagation de

croyance, qui est aussi appelé algorithme somme-produit. Dans ce qui suit, nous présentons

cet algorithme.

D.3.6 Algorithme de propagation de croyance (BP)

Cet algorithme peut être mis en œuvre de manière itérative et distribuée, où les messages

sont échangés en parallèle. Il peut procéder comme suit. Tout d’abord, tous les messages sont

initialisés à une valeur arbitraire, par exemple

m
(0)
j,i (xi) = 1. (D.15)

Ensuite, le message du nœud j au nœud i à l’itération l est calculé comme suit :

m
(l)
j,i(xi) = α

∫
Φj(xj)Ψi,j(xi,xj)

∏

k∈η(j)\i

m
(l−1)
k,j (xj)dxj , (D.16)

où α est une constante multiplicative introduite pour contribuer à la stabilité des calculs,

et η(j)\i est l’ensemble des voisins du nœud j sans le nœud i. La croyance du nœud i à
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l’itération l est donnée par

b
(l)
i (xi) =

1

Z
Φi(xi)

∏

j∈η(i)

m
(l)
j,i(xi). (D.17)

Dans les graphes sans boucles (graphes de type arbre), le nombre d’itérations nécessaires pour

la convergence est égal au diamètre du graphe, et les croyances calculées à la convergence

sont égales aux fonctions de distribution marginale.

Graphes avec boucles

Lorsque l’algorithme de propagation de croyance est appliqué aux graphes contenant des

boucles, il est appelé ‘loopy BP’. Dans ce cas, les croyances calculées sont des approximations

des fonctions de distribution marginale.

D.3.7 Propagation de croyance non-paramétrique

L’intégrale (D.16) peut être calculée analytiquement lorsque les variables aléatoires sont

discrètes et ont un nombre fini d’états ou lorsque la distribution conjointe a posteriori est

gaussienne. Lorsque ces conditions ne sont pas vérifiées, comme dans le cas du problème de

la localisation, cette équation ne peut pas être calculée d’une façon analytique et doit être

remplacée par une approximation. Un algorithme connu qui calcule des approximations des

messages et des croyances en appliquant des techniques stochastiques et de Monte-Carlo est la

BP non paramétrique (NBP). La principale complexité de cet algorithme est l’échantillonnage

du produit des messages reçus à un nœud donné, et il existe un compromis entre la complexité

et le coût de l’échange de données d’une part, et la précision des approximations numériques

d’autre part.

D.3.8 Algorithme NBP à deux phases et compensation des ambigüıtés

Compensation des ambigüıtés

L’ambigüıté dans la localisation coopérative, qui correspond à des réalisations

géométriques erronées, est un problème fondamental qui peut entrâıner des grandes er-

reurs d’estimation. Elle est due soit à l’absence de mesures nécessaires pour atteindre une

identifiabilité globale, soit à la topologie du réseau et aux bruits dans les mesures. Une so-

lution existante pour résoudre l’ambigüıté est d’exploiter les informations de connectivité

entre les différents nœuds. Le fait que deux nœuds ne soient pas voisins donne l’information

complémentaire qu’il est probable qu’il soient loin l’un de l’autre. Ici, nous mettrons l’accent

sur l’exploitation de l’information de connectivité en appliquant l’estimation probabiliste.

Dans ce cas, un modèle de connectivité probabiliste doit être considéré. Nous définissons la

fonction

po(xi,xj) = Q

(
10nplog10(di,j/R)

σsh

)
, (D.18)
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pour modéliser la probabilité que deux nœuds soient connectés. Nous avons établi une telle

fonction en se basant sur la puissance moyenne reçue, et en supposant que les différents liens

sont affectés par des composantes de masquage indépendantes et distribuées selon une loi

log-normale. Les informations de connexion peuvent être exploitées par les algorithmes basés

sur l’échange de messages en définissant une fonction de compatibilité entre deux nœuds i et

j qui ne sont pas des voisins directs par

Ψi,j(xi,xj) = 1− po(xi,xj). (D.19)

En échangeant des messages entre tous les nœuds qui ne sont pas des voisins directs, le

graphe du réseau sera complètement connecté, ce qui entrâıne une très grande complexité et

des coûts de communication élevés. Pour résoudre ce problème, l’échange des messages aura

lieu jusqu’aux voisins d’ordre k, où deux nœuds sont des voisins d’ordre k si le chemin le plus

court qui les relie à une longueur de k arêtes.

Algorithme NBP à deux phases

Nous avons développé un algorithme basé sur la NBP qui améliore la précision et réduit la

complexité et la taille des messages échangés. Cet algorithme est appelé TP-NBP et il procède

comme suit. Dans la première phase, la NBP est appliquée en échangeant des messages

seulement entre les voisins directs et sans prendre en compte les informations de connectivité.

Puis dans une deuxième phase, un nouvel algorithme basé sur l’estimation dans l’espace d’état

discret est appliqué. Cet algorithme est composé des étapes suivantes :

1. Pour chaque nœud, nous identifions les modes de la croyance et nous construisons un

petit ensemble de points constitué de ces modes et de quelques points autour de chaque

mode.

2. A ce stade, chaque nœud dispose d’un petit ensemble de points. Nous appliquons la

version discrète de la BP pour déterminer à nouveau les croyances, où les positions in-

connues prennent des valeurs dans les ensembles construits. Dans cette étape, on exploite

l’information de connectivité et on échange des messages entre les nœuds qui ne sont pas

des voisins directs.

D.3.9 Quelques résultats numériques

Dans cette section, nous validons les avantages de la TP-NBP au moyen d’un exemple de

simulation de Monte-Carlo.

Exemple : Mesure de distances affectées de bruits additifs gaussiens

Nous considérons des réseaux constitués de 4 nœuds d’ancrage et 16 nœuds cibles

déployées dans une zone de dimensions 20m× 15m. Les nœuds d’ancrage sont situés comme

indiqué dans la Figure D.3. Les positions des nœuds cibles sont tirées d’une façon aléatoire

selon une loi uniforme à l’intérieur des carrés de taille 2m×2m, un nœud par carré. Les centres
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des carrés sont également indiqués par la Figure D.3. Nous divisons les nœuds cibles en deux

catégories : les nœuds internes qui sont à l’intérieur de l’enveloppe convexe des 4 nœuds d’an-

crage et les nœuds périphériques qui sont en dehors de cette enveloppe convexe. Les nœuds

périphériques ont des probabilités plus élevées d’avoir des ambigüıtés sur leurs positions es-

timées que les nœuds internes, car ils ont moins de voisins, en moyenne. Pour la connectivité,

nous considérons le modèle probabiliste de (D.18) avec np = 3, σsh = 8dB et le rayon de

connectivité R varie de 4 à 10m. De plus, nous ne considérons que les réseaux rigides qui

ne peuvent pas avoir de déformation continue (c.-à-d., un réseau généré aléatoirement n’est

conservé que s’il est rigide). Les observations sont des mesures de distance affectées par des

erreurs additives gaussiennes de variance σ2.
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Figure D.3 — Positions des nœuds d’ancrage et des centres des carrés où les positions des

nœuds cibles sont tirées selon une loi uniforme.

On considère une solution de référence centralisé qui est la solution WLS, où le point

initial pour l’optimisation est obtenu en appliquant l’algorithme SDP adapté aux mesures

bruitées. Cette solution sera appelée ‘SDP + descent’.

Les Figures D.4 et D.5 montrent la variation de l’erreur quadratique moyenne (RMSE)

avec la valeur de R pour deux valeurs de la variance σ2. La RMSE est obtenue en considérant

100 réalisations de réseaux et de bruits. Plusieurs méthodes sont comparées. NBP-MMSE et

NBP-MAP considèrent la moyenne et le mode le plus probable de la fonction de croyance,

respectivement, où les messages sont échangés entre les voisins directs seulement. NBP k-

step correspond à l’application de la solution TP-BNP, où dans la deuxième phase, la version

discrète de la BP est appliquée en utilisant la règle de somme-produit, et les messages sont

échangés jusqu’aux voisins d’ordre k.

Plusieurs points peuvent être conclus de ces figures :

– NBP-MMSE est plus précise que NBP-MAP.

– NBP 1-step est plus précise que NBP-MMSE,.

– NBP 2-step et NBP 3-step améliore la précision pour les nœuds périphériques.

– Aucune amélioration n’est observée pour les valeurs élevées de R puisque la probabilité

d’avoir des ambigüıtés tend vers zéro.

Nous avons étudié un autre exemple où les mesures de distance sont affectées par une

erreur additive avec une valeur aberrante pour modéliser les erreurs élevées. Les résultats des
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simulations ont montré que les erreurs de l’algorithme TP-NBP peuvent être beaucoup plus

faibles que ceux de l’algorithme NBP classique.

Nous avons aussi démontré, par des simulations de Monte-Carlo, que l’information sur la

corrélation spatiale du masquage peut être utile pour résoudre les ambigüıtés.

D.4 Poursuite de position basée sur les mesures de RSS

D.4.1 Introduction

Dans ce chapitre, nous considérons que les terminaux mobiles (ou nœuds cibles) sont en

mouvement et nous cherchons à suivre leurs positions au cours du temps. Comme dans le

chapitre précédent, des solutions probabilistes bayésiennes sont élaborées, mais la coopération

directe entre les stations mobiles n’est pas prise en compte. Notre objectif est d’exploiter la

puissance du signal reçu (RSS) mesurée entre une station mobile et plusieurs stations de

base (ou nœuds d’ancrage). Les obstacles dans l’environnement de propagation créent des

évanouissements à long terme, ou phénomène de masquage (shadowing). Le masquage est

généralement supposé suivre une distribution log-normale avec une corrélation spatiale.

Deux solutions de poursuite bayésienne sont développées dans ce chapitre pour exploiter

efficacement les mesures et améliorer la précision en présence du masquage aléatoire :

– Dans la première solution, le masquage est suivi conjointement avec la position. A cet

effet, on définit un modèle autorégressif de l’évolution temporelle du masquage avec le

déplacement de la station mobile.

– Dans la deuxième solution, des cartes de masquages sont construites et mises à jour

lors de la phase de poursuite. Cette solution permet de réduire l’effort nécessaire pour

la méthode de fingerprinting, et les mesures réalisées par plusieurs stations mobiles

se déplaçant dans la zone de déploiement peuvent être utilisées dans l’estimation des

cartes.

Ces solutions sont implémentées en utilisant des méthodes de Monte Carlo séquentielles,

connues sous le nom de filtres particulaires, et sont étudiées par des simulations dans plusieurs

scénarios de déploiement.

Nous commençons par fournir la modélisation des mesures de RSS. Ensuite nous étudions

la précision de la localisation lorsque les cartes de masquage sont parfaitement connues. Puis,

la poursuite bayésienne est présentée, et la solution de poursuite conjointe est développée et

appliquée à la poursuite des véhicules dans un système macro-cellulaire. Ensuite, la solution

d’estimation des cartes est développée et appliquée à la localisation dans un environnement

indoor et à la poursuite des trains.

D.4.2 Modélisation des observations RSS

Nous considérons un déploiement d’un réseau composé deNBS stations de base de position

connue. La mesure de RSS en décibel (dB) faite entre une station mobile à la position x et
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la ième station de base peut être écrite comme

yi = Pi(x) + εi(x) + ei (D.20)

où Pi est une fonction déterministe qui tient compte de l’atténuation, la puissance rayonnée

et les gains des antennes, εi est le masquage qui est invariant dans le temps, mais dépend

de la position, et ei est une erreur rassemblant le masquage variable dans le temps causé

par les obstacles mobiles et les erreurs d’estimation de RSS (par exemple, évanouissement à

petite échelle, les effets de non-linéarité, etc.). Le masquage εi(x) est modélisée comme étant

une réalisation d’une variable aléatoire gaussienne de moyenne nulle. Le masquage est aussi

corrélé spatialement, c.-à-d., E{εi(xp)εi(xq)} 6= E{εi(xp)}E{εi(xq)} où xp et xq sont deux

positions quelconques. La corrélation du masquage à deux positions xp et xq est

E{εi(xp)εi(xq)} = σ2
shρ(‖xp − xq‖) (D.21)

où ρ est une fonction de corrélation isotrope, c.-à-d., ne dépend que de la distance entre les

deux positions. Par définition ρ(0) = 1. Cette fonction de corrélation est supposée être connue

pour toutes les stations de base.

Maintenant, nous développons deux modèles pour représenter le masquage : le premier

décrit les cartes de masquage et relie la valeur de masquage à la position spatiale, et le

deuxième décrit l’évolution temporelle du masquage pour une station mobile. Ces deux

modèles seront utilisés dans les solutions développées par la suite.

Modélisation des cartes de masquage

La station mobile est supposée résider dans une zone géographique A ⊂ R2. Le masquage

d’une station de base dans la zone A est une réalisation d’un champ aléatoire gaussien (GRF)

que l’on appelle une carte de masquage. Une approximation de cette carte est donnée par

εi(x) ≈
Lmap∑

k=1

αi,kψk(x). (D.22)

où {ψk}∞k=1 est une base complète définie sur A, et {αi,k} sont des coefficients distribuées

selon une loi gaussienne.

αi = [αi,1, · · · , αi,Lmap ]T est un vecteur gaussien ayant le vecteur mi comme moyenne

et Ci comme matrice de covariance. On applelle ce vecteur carte de masquage. Quand on

dispose pas de l’information a priori sur la carte, mi et Ci peuvent être calculés à partir des

fonctions de base utilisées et du modèle de corrélation spatiale supposé.

Des mesures ont également montré que les masquages pour différentes stations de base

peuvent être corrélés (c.-à-d., E{εi(x)εj(x)} 6= E{εi(x)}E{εj(x)}). Pour les NBS stations de

base de la zone A, nous définissons l’atlas de masquage comme étant l’ensemble des cartes

de masquage obtenu par concaténation des vecteurs :

Λ = [αT1 , · · · , αTNBS ]T . (D.23)
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On note Latlas = NBS × Lmap la taille du vecteur atlas. Nous désignerons par M et Σ sa

moyenne et sa covariance, respectivement. Les mesures de RSS prises à des positions connues

peuvent être utilisées pour mettre à jour M et Σ.

Pour une station mobile en mouvement, la corrélation spatiale est transformée en une

corrélation temporelle. Ainsi, le masquage évolue avec le temps selon un processus gaussien.

Maintenant, nous développons un modèle autorégressif (AR) pour décrire ce processus.

Modèle autorégressif

Nous considérons une station mobile qui se déplace et on désigne par xk = [xk, yk]
T le

vecteur de position à l’instant kT , où k ∈ N et T est un pas d’échantillonnage. La corrélation

du masquage à des instants lT et mT est

E{ε(xl)ε(xm)} = σ2
shρ(‖xl − xm‖). (D.24)

Connaissant les positions x0:k = [xT0 , · · · ,xTk ]T et préalablement à toute ob-

servation, [ε(x0), · · · , ε(xk)]T est un vecteur gaussien de moyenne nulle. De plus,

p(ε(xk)|x0:k, ε(x0), · · · , ε(xk−1)) étant une distribution gaussienne, le processus ε(xk) peut

être représenté par un modèle AR d’ordre-k AR(k) :

ε(xk) = aTk [ε(x0), · · · , ε(xk−1)]T + θk (D.25)

où θk est une variable aléatoire gaussienne de variance σ2
θk

. Les valeurs de ak et σ2
θk

peuvent

être mis à jour d’une manière récursive.

Modèle AR pour plusieurs stations de base Nous désignons par Ωk =

[ε1(xk), · · · , εNBS (xk)]
T le vecteur de masquage des NBS stations de base à l’instant k. Avant

toute observation, Ω0:k = [ΩT
0 , · · · ,ΩT

k ]T est un vecteur gaussien de moyenne nulle. Le pro-

cessus gaussien Ωk peut être également représenté par un modèle AR(k) :

Ωk = AT
k Ω0:k−1 + Θk. (D.26)

D.4.3 Précision de la localisation lorsque le masquage est connu

Nous avons étudié l’effet de la connaissance des cartes de masquage sur la précision de

la localisation statique dans un scénario de déploiement indoor. Les résultats des simulations

ont montré que l’erreur d’estimation de position n’est pas très diminuée par rapport au cas

où le masquage est inconnu. La justification de ce résultat est que, en raison du caractère

aléatoire du masquage, des mesures à des points éloignés les uns des autres peuvent avoir des

fonctions de distribution proches.

D.4.4 La poursuite de la position

Dans cette section, nous traitons le problème de poursuite au cours du temps de la position

d’une station mobile. La poursuite de position s’appuie sur les mesures obtenues à partir des
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signaux radio ou les mesures d’un système de navigation inertielle (INS), en se basant sur un

modèle de mouvement. Le modèle de mouvement décrit les caractéristiques du mouvement

(par exemple, un piéton en indoor ne peut pas passer à travers les murs, un véhicule sur

une route a une vitesse maximale limitée), et peut prendre en compte les lois cinématiques.

Plus précisément, nous appliquons des algorithmes de poursuite bayésienne qui exploitent

efficacement les mesures en mettant à jour, d’une manière récursive, la densité de probabilité

a posteriori. Nous considérons deux scénarios : dans le premier, les cartes de masquage sont

connues, et dans le deuxième, les cartes ne sont pas connues et le masquage est considéré

comme une partie du vecteur d’état à estimer.

Poursuite avec connaissance des cartes de masquage

Nous avons considéré le même déploiement indoor que dans le cas du positionnement

statique. Un modèle Markovien simple du mouvement est utilisé et la solution est mise en

œuvre en utilisant des filtres particulaires. Les résultats de simulation ont montré que la

précision est beaucoup améliorée par rapport au positionnement statique lorsque le masquage

est connu. Nous avons aussi proposé un filtre particulaire régularisé qui permet de réduire le

nombre de particules nécessaire pour obtenir une bonne précision.

Poursuite conjointe de la position et du masquage

Maintenant, nous supposons que le masquage est inconnu, mais sa distribution de proba-

bilité et sa fonction de corrélation spatiale sont connues. Nous avons développé une solution

de poursuite basée sur le filtrage bayésien, qui exploite efficacement les mesures en mettant à

jour, de manière récursive, la distribution de probabilité a posteriori du vecteur d’état. La mise

à jour est effectuée en prenant le masquage comme une partie de ce vecteur. Nous définissons

le vecteur cinématique ck à l’instant kT comprenant la position xk et éventuellement d’autres

paramètres cinématiques (par exemple, vitesse). Ce vecteur est issu d’un processus de Mar-

kov connu de fonction de transition p(ck|ck−1) et de distribution initiale p(c0). Le vecteur de

masquage Ωk est pris comme une partie du vecteur d’état caché sk qui est définie par

sk = [cTk , ΩT
k ]T . (D.27)

Le processus de l’état n’est plus Markovien à cause de la corrélation du masquage, et il peut

être décomposé comme suit :

p(sk|s0:k−1) = p(ck|ck−1)p(Ωk|x0:k,Ω0:k−1). (D.28)

Le vecteur Ωk est représenté par le modèle AR précédemment décrit, ce qui permet le calcul

de la moyenne et de la covariance de la distribution gaussienne p(Ωk|x0:k,Ω0:k−1).

A l’instant kT , la station mobile effectue des mesures de RSS, dénotées par le vecteur yk,

avec nk stations de base. Le vecteur de mesures est égal à

yk = Pk(xk) + JkΩk + ek (D.29)
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où Pk est une fonction déterministe connue, Jk est une matrice de taille nk×NBS où Jk(i, j) =

1 si la ième mesure est effectuée avec la j ème station de base et 0 ailleurs, et ek est une erreur

gaussienne blanche par rapport au temps.

Le filtrage bayésien consiste à déterminer, de façon récursive dans le temps, la distribution

a posteriori p(s0:k|y1:k) afin d’appliquer un estimateur bayésien. Cette distribution est calculée

selon

p(s0:k|y1:k) = p(s0:k−1|y1:k−1)
p(sk|s0:k−1)p(yk|sk)

p(yk|y1:k−1)
. (D.30)

Quand un processus d’ordre p (AR(p)) est considéré, p(sk|s0:k−1) est remplacée par

p(sk|sk−p:k−1).

L’équation d’évolution du masquage (D.26) et l’équation d’observation (D.29) sont non-

linéaires par rapport à xk, et par conséquent, la fonction à posteriori (D.30) ne peut pas être

calculée analytiquement. Les filtres particulaires permettent le calcul numérique des solutions,

avec un inconvénient de complexité : le nombre de particules doit en général augmenter de

façon exponentielle avec la dimension du vecteur d’état. Dans notre cas, la dimension du

vecteur d’état est élevée puisqu’il contient le masquage.

On peut remarquer que, conditionnellement à la connaissance de x0:k, les équations (D.26)

et (D.29) sont linéaires par rapport à Ωk, ce qui permet d’appliquer un filtre de Kalman

pour estimer le masquage. Ainsi, nous pouvons réduire le nombre de particules et limiter la

complexité du filtre en appliquant une Rao-Blackwellisation, qui consiste à calculer la loi a

posteriori d’une partie du vecteur d’état de façon analytique, dans notre cas avec le filtre de

Kalman.

Les résultats numériques :la poursuite de véhicules dans un système macro-

cellulaire Afin de montrer les améliorations apportées par l’algorithme, des simulations de

Monte Carlo sont effectuées. A cet effet, nous considérons une trajectoire colinéaire avec une

vitesse variable. Afin d’illustrer les avantages obtenus en utilisant des ordres AR supérieurs

à 1, nous considérons également le cas d’un demi-tour.

Le déplacement du véhicule est modélisé par le processus de Markov linéaire (D.31). Le

vecteur cinématique est ck = [xTk , ẋ
T
k ]T , et nous supposons que ak−1 = [ax,k−1, ay,k−1]T est le

vecteur accélération fourni par un accéléromètre et qk est un vecteur gaussien qui tient compte

des erreurs d’estimation de l’accélération. Nous prenons la covariance de qk arbitrairement

égale à (0.5m/s2)2I2.

ck =




1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


 ck−1 +




0 0

T 0

0 0

0 T


 (ak−1 + qk) (D.31)

Nous effectuons la poursuite avec une contrainte de carte, où la trajectoire appartient à

une route droite avec deux voies. Nous considérons les deux trajectoires représentées par la

Figure D.6. Trajectoire 1 est une ligne droite avec une vitesse moyenne de 57 km/h et une

vitesse maximale de 72 km/h. Trajectoire 2 contient un virage et les vitesses moyenne et
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maximale sont 34 km/h et 65 km/h, respectivement. Les positions de départ sont supposées

être parfaitement connue. Pour le masquage, la fonction de corrélation est exponentielle avec

dcorr = 50m. L’écart-type du masquage est σsh = 8dB.

Dans la Figure D.7, l’erreur quadratique moyenne de la position est tracée en fonction

du temps pour Trajectoire 1 et pour un pas T = 0.4 secondes. Une grande amélioration

peut être observée lorsque les mesures RSS sont exploitées. Ici, l’ordre AR-1 est optimal car

la trajectoire est colinéaire. La nouvelle solution réduit la RMSE jusqu’à 10m par rapport

à la solution dans laquelle le masquage est traité comme non-corrélé, mais les imprécisions

restantes ne permettent pas d’éliminer son effet, et la RMSE reste élevée par rapport au cas

où le masquage est parfaitement connu.

Pour Trajectoire 2, le pas est T = 1 seconde et la durée totale est de 30 secondes. Ainsi,

un ordre égal à 30 est capable de prendre en compte tous les états précédents. Figure D.8

montre l’erreur quadratique moyenne pour ce trajet. A t = 16 secondes, lorsque le virage

a lieu, l’erreur quadratique moyenne d’AR(10) et AR(30) devient inférieur à celle d’AR(1).

En effet, l’adjacence des deux parties de la trajectoire permet d’améliorer l’estimation du

masquage en exploitant la corrélation. Quelques secondes après, la RMSE de l’AR(10) com-

mence à augmenter. Ceci s’explique par le fait que l’ordre n’est pas suffisant pour exploiter

la corrélation entre le masquage à l’instant actuel et celui au début de la trajectoire.

D.4.5 Estimation bayésienne des cartes

Les résultats des simulations présentées dans les sections précédentes ont montré que la

connaissance du masquage peut considérablement améliorer la précision de la poursuite. La

méthode classique pour construire les cartes est la méthode de fingerprinting, dans laquelle,

les mesures sont collectées à des positions connues et enregistrées dans une base de données.

Le problème avec cette solution est qu’elle nécessite beaucoup de temps et d’efforts pour

construire la base de données. Dans cette section, nous proposons une solution pour l’es-

timation en ligne des cartes qui ne requière pas la connaissance parfaite des positions des

stations mobiles. Les stations mobiles peuvent avoir des capacités de localisation autres que

les mesures de RSS. Cette solution permet d’affiner et de mettre à jour les cartes de façon

collaborative en exploitant les mesures effectuées par plusieurs stations mobiles. Cette so-

lution procède par la mise à jour de la distribution de probabilité a posteriori de l’atlas de

masquage :

p(Λ|y1:k, z1:k) =

∫
p(Λ|s0:k,y1:k)p(s0:k|y1:k, z1:k)ds0:k (D.32)

où yk sont les mesures de RSS et zk sont d’autres mesures de positionnement, tels que ToA,

INS et GNSS. L’équation (D.32) ne peut pas être calculée sous une forme analytique et

les méthodes de Monte Carlo sont utilisées pour l’approximer numériquement. Nous avons

appliqué cette solution à la poursuite en indoor et à la poursuite des trains via des simulations,

et de grandes améliorations de précision ont été observées.
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Figure D.4 — Variation de l’erreur quadratique moyenne avec R. σ = 1.0.

4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

R (m)

ǭ
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Figure D.5 — Variation de l’erreur quadratique moyenne avec R. σ = 1.5.
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[37] I. Güvenç and C.-C. Chong, “A Survey on TOA Based Wireless Localization and NLOS

Mitigation Techniques,” IEEE Commun. Surveys Tuts., vol. 11, no. 3, pp. 107–124,

quarter 2009.

[38] B. Denis and N. Daniele, “NLOS ranging error mitigation in a distributed positioning

algorithm for indoor UWB ad-hoc networks,” in Proc. IEEE International Workshop

on Wireless Ad-Hoc Networks, May/Jun. 2004, pp. 356–360.

[39] T. Rappaport, Wireless Communications : Principles and Practice. Upper Saddle

River, NJ, USA : Prentice Hall PTR, 2001.

[40] M. Laaraiedh, S. Avrillon, and B. Uguen, “Enhancing Positioning Accuracy through Di-

rect Position Estimators Based on Hybrid RSS Data Fusion,” in Proc. IEEE Vehicular

Technology Conference, ser. VTC Spring 2009, Apr. 2009, pp. 1–5.

[41] P. Bahl and V. Padmanabhan, “RADAR : an in-building RF-based user location and

tracking system ,” in Proc. IEEE International Conference on Computer Communica-

tions, ser. INFOCOM’00, vol. 2, 2000, pp. 775–784.

[42] H. Laitinen, J. Lahteenmaki, and T. Nordstrom, “Database correlation method for

GSM location,” in Proc. IEEE Vehicular Technology Conference, ser. VTC Spring 2001,

vol. 4, 2001, pp. 2504–2508.

[43] M. Triki and D. Slock, “Mobile Localization for NLOS Propagation,” in Proc. IEEE

Personal, International Symposium on Indoor and Mobile Radio Communications, ser.

PIMRC’07, Sep. 2007, pp. 1–4.



178 BIBLIOGRAPHY

[44] B. Ferris, D. Hähnel, and D. Fox, “Gaussian Processes for Signal Strength-Based Lo-

cation Estimation,” in Robotics : Science and Systems, G. S. Sukhatme, S. Schaal,

W. Burgard, and D. Fox, Eds. The MIT Press, 2006.

[45] X. Chai and Q. Yang, “Reducing the Calibration Effort for Probabilistic Indoor Loca-

tion Estimation,” IEEE Trans. Mobile Comput., vol. 6, no. 6, pp. 649–662, Jun. 2007.

[46] B. Denis, L. Ouvry, B. Uguen, and F. Tchoffo-Talom, “Advanced bayesian filtering tech-

niques for uwb tracking systems in indoor environments,” in Proc. IEEE International

Conference on Ultra-Wideband, ser. ICUWB’05, Sep. 2005, pp. 638–643.

[47] N. Patwari, I. Hero, A.O., M. Perkins, N. Correal, and R. O’Dea, “Relative Location

Estimation in Wireless Sensor Networks,” IEEE Trans. Signal Process., vol. 51, no. 8,

pp. 2137–2148, Aug. 2003.

[48] M. Win, A. Conti, S. Mazuelas, Y. Shen, W. Gifford, D. Dardari, and M. Chiani,

“Network localization and navigation via cooperation,” IEEE Commun. Mag., vol. 49,

no. 5, pp. 56–62, May 2011.
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Abstract 

Advancements in information technology and communication systems enabled the development of a wide variety 

of location based applications and services. The global navigation satellite systems are among the fundamental 

localization solutions. In harsh environments (e.g., urban canyons and indoor areas), these solutions do not 

provide a good accuracy or even become unavailable. In order to offer accurate and ubiquitous localization 

solutions, wireless communication systems have been considered, where several location dependent parameters 

of the transmitted signals can be measured and exploited (e.g., the time-of-arrival (ToA), the received signal 

strength (RSS)). In this work, the topic of wireless localization is explored from a statistical signal processing 

perspective with a focus on two axes. The first axis is cooperative localization applied to ad-hoc networks, where 

the nodes perform pair-wise ranging measurements (i.e., ToA or RSS) between each other in order to 

simultaneously estimate their positions.  The unique solvability conditions are studied based on the two 

approaches of graph rigidity and semidefinite programming, and the identifiability conditions are derived. Location 

estimation solutions are considered with a focus on probabilistic estimation and its application in Markov random 

fields using the nonparametric belief propagation (NBP) algorithm.  The second axis is mobile terminals tracking 

based on RSS measurements. These measurements are affected by a shadowing phenomenon. The 

improvement brought by the knowledge of the shadowing maps to the position estimation accuracy is studied. 

The classical solution for obtaining these maps is fingerprinting, which can be costly in time and effort. Solutions 

are developed to overcome these difficulties. Several solutions are proposed and investigated via Monte Carlo 

simulations in different deployment and application scenarios, and several theoretical and practical results are 

derived. 

 

Résumé 

Les avancements des technologies de l’information et des systèmes de communication ont permis le 

développement d’une grande variété d’applications et de services de  géolocalisation. Les systèmes de 

positionnement par satellites figurent parmi les solutions principales de localisation.  Dans des environnements 

difficiles (par exemples, les canyons urbains ou à l’intérieur des bâtiments), ces solutions ne fournissent pas une 

bonne précision, ou même deviennent indisponibles. Afin d'offrir des solutions de localisation précises et 

disponibles quelque soit l’environnement, les systèmes de communication sans fil ont été utilisés, où plusieurs 

paramètres topo-dépendants des signaux transmis peuvent être mesurés et exploités (par exemple, le temps 

d'arrivée (ToA), la puissance du signal reçu (RSS)). Dans ce travail, la localisation dans les systèmes sans fil est 

étudié d’un point de vue traitement statistique du signal, et en explorant deux axes.  Le premier axe concerne la 

localisation coopérative appliquée aux réseaux ad-hoc, où les différents nœuds effectuent des mesures de 

distance par paire (c.à.d.  ToA ou RSS) afin d'estimer simultanément leurs positions. Les conditions de solvabilité 

unique sont étudiées en s’appuyant sur les deux approches de la rigidité graphique et la programmation semi-

définie, et ainsi les conditions d'identifiabilité sont déduites. Les solutions d’estimation de la position sont 

considérées en se concentrant sur l'estimation probabiliste et son application dans des champs aléatoires de 

Markov et ce en utilisant l’algorithme de propagation de croyance non-paramétrique (NBP). Le deuxième axe 

concerne la poursuite des terminaux mobiles en se basant sur des mesures RSS. Ces mesures sont affectées 

par un phénomène de masquage (shadowing). L'amélioration apportée à la précision de positionnement par la 

connaissance des cartes de shadowing est étudiée. La solution classique pour l'obtention de ces cartes est le 

‘fingerprinting’, qui peut être coûteux en temps de collecte de mesures. Des solutions sont développées afin de 

surmonter ces difficultés. Plusieurs solutions sont proposées et étudiées par des simulations de Monte Carlo pour 

différents  scénarios d'application et de déploiement, et plusieurs résultats théoriques et pratiques sont obtenus. 

Keywords: Cooperative localization, position tracking, graph rigidity, semidefinite programming, identifiability, 

Fisher information, Markov random field, nonparametric belief propagation, Monte Carlo methods, Bayesian 

filtering, particle filters, Rao-Blackwellization. 
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