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Avant-propos

Ce recueil d’articles accompagne le document de synthese des travaux et activités scientifiques. La structure
de ce document-ci est identique a celle des parties Il 2 V du document de synthese.

Foreword

This collection of papers accompanies the document containing the synthesis of my research and related
activies (“synthese des travaux et activités scientifiques”). Its structure is identical to that of parts II to V of
the latter.
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Chapter 4

Camera Calibration

4.1 Plane-Based Calibration

Paper 1 [29]: P. Sturm and S. Maybank. On plane-based camera calibration: A general algorithm, singu-
larities, applications. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Fort
Collins, Colorado, USA, pages 432-437, June 1999.

Paper 2 [20]: P. Sturm. Algorithms for plane-based pose estimation. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, USA, pages 1010-1017,
June 2000.

4.2 Using Linear Calibration Objects

Paper 3 [13]: P. Hammarstedt, P. Sturm, and A. Heyden. Closed-form solutions and degenerate cases for
camera calibration with one-dimensional objects. In Proceedings of the 10th International Conference on
Computer Vision, Beijing, China, October 2005.

4.3 Calibration of Zoom Lenses

Paper 4 [38]: M. Urbanek, R. Horaud, and P. Sturm. Combining off- and on-line calibration of a digi-
tal camera. In Proceedings of the Third International Conference on 3D Digital Imaging and Modeling,
Québec City, Canada, pages 99—106, May 2001.
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On Plane-Based Camera Calibration:
A General Algorithm, Singularities, Applications

Peter F. Sturm and Stephen J. Maybank
Computational Vision Group, Department of Computer Science, The University of Reading
Whiteknights, PO Box 225, Reading, RG6 6AY, United Kingdom
{PESturm, S.J.Maybank } @reading.ac.uk

Abstract

We present a general algorithm for plane-based calibra-
tion that can deal with arbitrary numbers of views and cali-
bration planes. The algorithm can simultaneously calibrate
different views from a camera with variable intrinsic pa-
rameters and it is easy to incorporate known values of in-
trinsic parameters. For some minimal cases, we describe
all singularities, naming the parameters that can not be es-
timated. Experimental results of our method are shown that
exhibit the singularities while revealing good performance
in non-singular conditions. Several applications of plane-
based 3D geometry inference are discussed as well.

1 Introduction

The motivations for considering planes for calibrating
cameras are mainly twofold. First, concerning calibration in
its own right, planar calibration patterns are cheap and easy
to produce, a laser printer output for example is absolutely
sufficient for applications where highest accuracy is not de-
manded. Second, planar surface patches are probably the
most important twodimensional “features”: they abound, at
least in man-made environments, and if their metric struc-
ture is known, they carry already enough information to de-
termine a camera’s pose up to only two solutions in general
[4]. Planes are increasingly used for interactive modeling
or measuring purposes [1, 10, 11].

The possibility of calibrating cameras from views of pla-
nar objects is well known [7, 12, 14]. Existing work how-
ever, restricts in most cases to the consideration of a single
or only two planes (an exception is [8], but no details on
the algorithm are provided) and cameras with constant cal-
ibration. In addition, the study of singular cases is usually
neglected (besides in [12] for the simplest case, calibration
of the aspect ratio from one view of a plane), despite their
presence in common configurations.

It is even possible for cameras to self-calibrate from
views of planar scenes with unknown metric structure [13],
however several views are needed (Triggs recommends up
to 9 or 10 views of the same plane for reliable results) and

the “risk” of singularities should be greater compared to cal-
ibration from planes with known metric structure.

In this paper, we propose a general algorithm for cali-
brating a camera with possibly variable intrinsic parameters
and position, that copes well with an arbitrary number of
calibration planes and camera views. Calibration is essen-
tially done in two steps. First, the 2D-to-2D projections of
planar calibration objects onto the image plane(s) are com-
puted. Each of these projections contributes to a system of
homogeneous linear equations in the intrinsic parameters,
which are hence easily determined. Calibration can thus be
achieved by solving linear equations, but can of course be
enhanced by subsequent non linear optimization.

In §2, we describe our camera model and projections of
planar objects. In §3, we introduce the principle of plane-
based calibration. A general algorithm is proposed in §4.
Singularities are revealed in §5. Experimental results are
presented in §6, and some applications described in §7.

2 Background

Camera Model. We use perspective projection to model
cameras. A projection may be represented by a 3 x 4 pro-
jection matrix P that incorporates the so-called extrinsic and
intrinsic camera parameters:

P~KR( I3 |-—t). (1)

Here, ~ means equality up to a non zero scale factor, I3
is the 3 x 3 identity matrix, R a 3 x 3 orthogonal matrix rep-
resenting the camera’s orientation, t a 3-vector representing
its position, and K the 3 x 3 calibration matrix:

Tf S  Ug
K=[0 f w
0 0 1

In general, we distinguish 5 intrinsic parameters for per-
spective projection: the (effective) focal length f, the aspect
ratio 7, the principal point (ug,vo) and the skew factor s
accounting for non rectangular pixels. The skew factor is
usually very close to 0 and we ignore it in the following.

Calibration and Absolute Conic. Our aim is to calibrate
a camera, i.e. to determine its intrinsic parameters or its
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calibration matrix K (subsequent pose estimation is rela-
tively straightforward). Instead of directly determining K,
we will try to compute the symmetric matrix KKT or its in-
verse, from which the calibration matrix can be computed
uniquely using Cholesky decomposition [5]. This leads
to simple and, in particular, linear calibration equations.
Furthermore, the analysis of singularities of the calibration
problem is greatly simplified: the matrix w ~ (KKT)f1
represents the image of the Absolute Conic whose link to
calibration and metric scene reconstruction is exposed for
example in [2]. This geometrical view helps us with the
derivation of singular configurations (cf. §5).

Planes, Homographies and Calibration. We consider
the use of one or several planar objects for calibration.
When we talk about calibration planes, we mean the sup-
ports of planar calibration objects. The restriction of per-
spective projection to points (or lines) on a specific plane
takes on the simple form of a 3 x 3 homography that depends
on the relative position of camera and plane and the cam-
era’s intrinsic parameters. Without loss of generality, we
may suppose that the calibration plane is the plane Z = 0.
This way, the homography can be derived from the projec-
tion matrix P by dropping the third column in equation (1):
1 0

H~KR[O0O 1 —t] . (2)
0 0

The homography can be estimated from four or more
point or line correspondences. It can only be sensibly de-
composed as shown in equation (2), if the metric structure
of the plane is known (up to scale is sufficient), i.e. if the
coordinates of points and lines used for computing H are

given in a metric frame.

Equation (2) suggests that the 8 coefficients of H (9 mi-
nus 1 for the arbitrary scale) might be used to estimate the 6
pose parameters R and t, while still delivering 2 constraints
on the calibration K. These constraints allow us to calibrate
the camera, either partially or fully, depending on the num-
ber of calibration planes, the number of images, the number
of intrinsic parameters to be computed and on singularities.

3 Principle of Plane-Based Calibration

Calibration will be performed via the determination of
the image of the Absolute Conic (IAC), w ~ K~TK™!,
using plane homographies. As mentioned previously, we
consider pixels to be rectangular, and thus the IAC has the
following form (after appropriate scaling):

1 0 —UQ
w ~ 0 72 —72ug . 3
—ug —7%vo T2f* +uf+ 7703
The calibration constraints arising from homographies
can be expressed and implemented in several ways. For

example, it follows from equation (2) that:

1 0 -t
HTwWH~HTK"TK'H~ | 0 1 —t
—t1 —ty tTt

The camera position t being unknown and the equation
holding up to scale only, we can extract exactly two differ-
ent equations in w that prove to be homogeneous linear:

h] wh; —h) why =0 hl why =0, (4)

where h; is the ith column of H. These are our basic
calibration equations. If several calibration planes are avail-
able, we just include the new equations into a linear equa-
tion system. It does not matter if the planes are seen in the
same view or in several views or if the same plane is seen
in several views, provided the calibration is constant (this
restriction is relaxed in the next section). The equation sys-
tem is of the form Ax = 0, with the vector of unknowns
T . .
x = (w11, ws22,w13,wss,ws3) . After having determined
x, the intrinsic parameters are extracted via:
2 w22 w13 w23
T = — ’U,O et U() - —
w11 w11 w22
° T 5)
fg _ W11W22Ww33 — WaaWiz — W11Wsa3
- 2
Wi1Wig

4 A General Calibration Algorithm

We describe now how the basic principle can be extended
in two important ways. First, we show that prior knowledge
of intrinsic parameters can be easily included. Second, and
more importantly, we show how the scheme can be applied
for calibrating cameras with variable intrinsic parameters.

4.1 Prior Knowledge of Intrinsic Parameters

Let a; be the ith column of the design matrix A of the lin-
ear equation system described in the previous section. We
may rewrite the equation system as:

w1181 + woodg + wizas + wozay +wszas =0 .

Prior knowledge of, e.g. the aspect ratio 7, allows us
via equation (5) to eliminate one of the unknowns, say was,
leading to the reduced linear equation system:

2
wii(ar + 7°az) + wizas + wozay + wazas =0 .

Prior knowledge of ug or vy can be dealt with similarly.
The situation is different for the focal length f, due to the
complexity of equation (5): prior knowledge of f allows to
eliminate unknowns only if the other parameters are known,
too. However, this is not much of an issue — it is rarely the
case that the focal length is known beforehand while the
other intrinsic parameters are unknown.
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4.2 Variable Intrinsic Parameters

We make two assumptions that are not very restrictive
but eliminate useless special cases to deal with. First, we
consider the aspect ratio to be constant for a given camera.
Second, the principal point may vary, but only in conjunc-
tion with the focal length. Hence, we consider two modes
of variation: only f varies or f,ug and vy vary together.

If we take into account the calibration equations arising
from a view for which it is assumed that the intrinsic pa-
rameters have changed with respect to the preceding view
(e.g. due to zooming), we just have to introduce additional
unknowns in x and columns in A. If only the focal length is
assumed to have changed, a new unknown w33 is needed. If
in addition the principal point is supposed to have changed,
we add also unknowns for w;3 and wag (cf. equation (3)).
The corresponding coefficients of the calibration equations
have to be placed in additional columns of A.

Note that the consideration of variable intrinsic parame-
ters does not mean that we have to assume different values
for all views, i.e. there may be views sharing the same in-
trinsics, sharing only the aspect ratio and principal point, or
sharing the aspect ratio alone.

4.3 Complete Algorithm
The complete algorithm consists of the following steps:

1. Compute plane homographies from feature correspon-
dences.

2. Construct the equation matrix A according to the di-
rections outlined in §§3,4.1 and 4.2.

3. Ensure good numerical conditioning of A (see below).

4. Solve the equation system to least squares by any stan-
dard method and extract the intrinsic parameters from
the solution as shown in equation (5).

Conditioning. We may improve the conditioning of A by
the standard technique of rescaling rows and columns [5].
In practice, we omit row-wise rescaling for reasons ex-
plained below. Columns are rescaled such as to have equal
norms. The coefficients of the solution vector of the modi-
fied equation system have to be scaled accordingly to obtain
the solution of the original problem. In our experiments,
this rescaling proved to be crucial to obtain reliable results.

As for rescaling rows, this proves to be delicate in our
case, since occasionally there are rows with all coefficients
very close to zero. Rescaling these rows will hugely mag-
nify noise and lead to unreliable results.

Comments. The described calibration algorithm requires
mainly the least squares solution of a single linear equa-
tion system. Naturally, the solution may be optimized sub-
sequently using non linear least squares techniques. This

optimization should be done simultaneously for the calibra-
tion and the pose parameters, that may be initialized in a
straightforward manner from the linear calibration results.
For higher accuracy, estimation of optical distortion param-
eters should be included.

Minimal Cases. Each view of a calibration object pro-
vides two calibration equations. Hence, in the absence
of singularities, the following minimal calibration schemes
may be realized: with a single view of a single plane, we
might calibrate the aspect ratio and focal length, provided
the principal point is given. With two views of a single
plane, or one view of two planes we can fully calibrate the
camera. Three views of a single plane, taken by a zooming
camera, enable calibration of the 3 different focal lengths,
as well as the constant aspect ratio and principal point.

5 Singularities

The successful application of any algorithm requires
awareness of singularities. This helps avoiding situations
where the result is expected to be unreliable or restricting
the problem at hand to a solvable one. We describe here the
singularities of calibration from one or two planes.

Due to lack of space, we are only able to give a sketch
of the derivations. A first remark is that only the relative
orientation of planes and camera is of importance for singu-
larities, i.e. the position and the actual intrinsic parameters
do not influence the existence of singularities. A second
observation is that planes that are parallel to each other pro-
vide exactly the same information as a single plane with the
same orientation (except that more feature correspondences
may provide a higher robustness in practice). So, as for the
case of two calibration planes, we omit dealing with parallel
planes and instead refer to the one-plane scenario.

Since the calibration equations are linear, singularities
imply the existence of a linear family of solutions for the
IAC w. Hence, there is also a degenerate conic w’, i.e. a
conic consisting of the points on two lines only. Let us note
that any conic that satisfies the calibration equations (4),
contains the projections of the circular points of the cali-
bration planes. Naturally, this is also valid for w’. If we
exclude the planes of being parallel to each other (cf. the
above discussion), the two lines making up w’ are nothing
else than the vanishing lines of the calibration planes. There
is one point left to consider: since we are considering rect-
angular pixels, the IAC is required to be of the form (3), i.e.
its coefficient w19 is zero. Geometrically, this is equivalent
to the conic being symmetric with respect to a vertical and a
horizontal line (this is referred to as “reflection constraint”
in table 2). Based on these considerations, it is a rather me-
chanical task to derive all possible singularities.

All singularities for one- and two-plane calibration and
for different levels of prior knowledge are described in ta-
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bles 1 and 2. We reveal which of the intrinsic parame-
ters can/can’t be estimated uniquely. The tables contain
columns for 7f and f which stand for the calibrated fo-
cal length, measured in horizontal and vertical pixel dimen-
sions respectively. In some cases it is possible to compute,
e.g. 7f, but not to compute 7 or f individually.

A general observation is that a plane parallel to the im-
age plane, allows to estimate the aspect ratio, but no other
parameters. Generally speaking, the more regular the geo-
metric configuration is, the more singularities may occur.

Prior Pos. of cal. plane T\ 7f | f | u | v
U0, Vo Parallel to image pl. + | - -+ +
Perpend. to image pl.
parallel to u axis - + - + +
parallel to v axis - - + | + +
else - - -+ |+
Else
parallel to u axis - - - + +
parallel to v axis - - -+ +
else + |+ |+ + |+
T Parallel to u axis + - -+ -
Parallel to v axis + | - - - +
Else + | - - - -
T, uo,vo | Parallel to image pl. + | - -+ +

Table 1. Singularities of calibration from one plane.
Here, parallelism to the image plane’s u or v axis
means parallelism in 3-space.

6 Experimental Results

We performed a number of experiments with simulated
and real data, in order to quantify the performance of our
method, to motivate its use in applications described in the
following section and to exhibit singularities.

6.1 Simulated Experiments

For our simulated experiments, we used a diagonal cal-
ibration matrix with f = 1000 and 7 = 1. Calibration
is performed using the projections of the 4 corner points
of squares of size 40cm. The distance of the calibration
squares to the camera is chosen such that the projections
roughly fill the 512 x 512 image plane. The projections of
the corner points are perturbed by centered Gaussian noise
of 0 to 2 pixels variance.

We only display graphs showing the behavior of our al-
gorithm with respect to other parameters than noise; note
however that in all cases, the behavior with respect to noise
is nearly perfectly linear. The data in the graphs shown stem
from experiments with a noise level of 1 pixel. The errors
shown are absolute ones (scaled by 1000 for the aspect ra-
tio). Each point in a graph represents the median error of
1000 random experiments. The graphs of the mean errors
are similar but less smooth.

One plane seen in one view. The scenario and results
are shown in the upper part of figure 1. Calibration is per-
formed for different orientations of the square, ranging from
0° (parallel to the image plane) to 90° (perpendicular to the
image plane). Given the principal point, we calibrated the
aspect ratio and the focal length. An obvious observation
is the presence of singularities: the error of the aspect ratio
increases considerably as the calibration square tends to be
perpendicular to the image plane (90°). The determination
of the focal length is impossible for the extreme cases of
parallelism and perpendicularity. Note that these observa-
tions are all predicted by table 1. In the range of [30°, 70°],
the relative error for the focal length is below 1%, while the
aspect ratio is estimated correctly within 0.01%.

50

45 Aspect ratio, x1000 —— 1
§ Focal length —+— 1

40 | 9 .

535

© 30 -
f=y
g5}
S

0 10 20 30 40 50 60 70 80 90
Angle

i Aspect ratio, x1000 ——
i Focal length

i Aspect ratio (standard), x1000 -=
i Focal length (standard) =

B B B B B B B B B B BB e T B B

0 10 20 30 40 50 60 70 80 90
Angle

Figure 1. Simulation scenarios and results.

Two planes seen in one view. Calibration is performed
with a camera rotating about its optical axis by 0° to 90°.
Two planes with an opening angle of 90° are observed (cf.
lower part of figure 1). Plane-based calibration is now done
without any prior knowledge of intrinsic parameters. For
comparison, we also calibrate with a standard method [3],
using full 3D coordinates of the corner points as input.

The standard calibration approach is insensitive to rota-
tion about the optical axis. As for the plane-based method,
the singularities for the estimation of the aspect ratio and the
focal length for angles of 0° and 90° are predicted by table
2. As for the intermediate range of orientations, the estima-
tion of the aspect ratio by the plane-based method is 3 to 4
times worse than with the standard approach, although it is
still quite accurate. As for the focal length, the plane-based
estimate is even slightly better between 30° and 70°. The
error graphs for uy and vy are not shown; for both methods
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Prior Position of calibration planes T | Tf | f | ) Vo
None One plane is parallel to the image plane cf. case of known 7 in table 1
General case of planes satisfying reflection constraint (see caption) - - - - -
Both planes are parallel to the w axis - - - + -
Same absolute incidence angle with respect to image plane - - - + +
Both planes are parallel to the v axis - - - - +
Same absolute incidence angle with respect to image plane - - - + +
Vanishing lines intersect “above” the principal pt. i.e. at a point (uo, v, 1) - - - + -
Vanishing lines intersect at a point (u, vo, 1) - - - - +
Both planes are perpendicular to image (and satisfy reflection constraint) - - - + +
U0, Vo At least one plane is parallel to the image plane cf. case of known 7, uo, vo in table 1
Both planes are perpendicular to the image (and satisfy reflection constr.) - | - | - | + | +
T One plane is parallel to the image plane cf. case of known 7 in table 1
T,uo,vo | One plane is parallel to the image plane cf. case of known 7, uo, vo in table 1

Table 2. Singularities of calibration from two planes. The cases of parallel planes are not displayed, but may
be consulted in the appropriate parts of table 1 on one-plane calibration. In all configurations not represented
here, all intrinsic parameters can be estimated. By “reflection constraint” we mean that the vanishing lines of
the two planes are reflections of each other by both a vertical and a horizontal line in the image.

they are nearly horizontal (i.e. there is no singularity), the
errors of the plane-based estimation being about 30% lower
than with the standard approach.

6.2 Calibration Grid

We calibrated a camera from images of a 3D calibra-
tion grid with targets arranged in three planes (cf. figure
2). For comparison, calibration was also carried out using
a standard method [3]. We report the results of two experi-
ments. First, 4 images were taken from different positions,
but with fixed calibration. The camera was calibrated from
single views in different modes: standard calibration using
all points or points from two planes only, plane-based cal-
ibration from one, two or three planes with different levels
of prior knowledge (cf. table 3). Prior values were taken
from the results of standard calibration.

-

Point 3

Calibration
l:tangle

Figure 2. Calibration grid and lab scene.

Table 3 shows the mean and standard deviation of the
results for the focal length, computed over the 4 views and
over all combinations of planes. We note that even the one-
plane method gives results very close to those of the stan-
dard method that uses all points and their full 3D coordi-

Method f

Standard calibration from three planes | 1041.4 + 0.6
Standard calibration from two planes 1042.1 £3.3
One plane, ug, vo known 1044.5 £ 9.0
One plane, 7, 1o, vo known 1041.2 £ 3.7
Two planes, nothing known 1043.6 £ 4.7
Two planes, 7 known 1040.7 £ 2.7
Two planes, uo, vo known 1040.2 £2.5
Two planes, T, uo, vo known 1040.3 £2.1
Three planes, nothing known 1039.9 £0.7

Table 3. Results for calibration grid.

Method Focal lengths
Standard | 714.7 | 1041.4 | 1386.8 | 1767.4 | 2717.2
Planes 709.9 | 1042.7 | 1380.2 | 1782.8 | 2702.0

Table 4. Results for variable focal length.

nates. The precision of the plane-based results is lower than
for full standard calibration, though comparable to standard
calibration using two planes. The results are very accurate
despite the proximity to singular configurations. This may
be attributed to the high accuracy of target extraction.

For the second experiment, we took images at 5 different
zoom positions. The camera was calibrated using the 5 x 3
planes simultaneously, where for each zoom position an in-
dividual focal length and principal point were estimated.
Table 4 shows the results for the focal lengths (a value of
1000 corresponds to about 7.5mm), compared to those of
standard calibration, averaged over single views. The devi-
ation increases with the focal length but stays below 1%.

6.3 Lab Scene

A pair of images of an ordinary lab scene were taken.
A rectangular part of a computer tower (cf. figure 2) was
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used for calibration. Subsequently, the pose of the views
with respect to the calibration plane was determined. The
three points shown in figure 2 were triangulated and their
3D distances measured and compared to hand-measured
ones. The differences for the pairs (1,2), (1,3) and (2,3)
were 4mm, 3mm and Omm respectively, for absolute dis-
tances of 275mm, 347mm and 214mm. These results are
about as good as we might expect: the edges of the rectan-
gular patch are rounded, thus not reliably extracted in the
images. The measured point distances are “‘extrapolated”
from this rectangle, thus amplifying the errors of edge ex-
traction. From the views’ calibration and pose, we com-
puted the epipolar geometry and found that the distance of
points to corresponding epipolar lines was about 1 pixel,
even at the borders of the images.

This simple experiment highlights two issues. First, be-
sides calibrating the views, we readily obtain their pose in
a metric 3D frame. Second, we obtain reasonable estimates
of matching constraints, potentially for distant views.

7 Applications

Cheap Calibration Tool. Planar patterns are easy to pro-
duce, while enabling a reasonably reliable calibration.

Ground Plane Calibration. We have successfully per-
formed experiments with images of traffic scenes. Ground
plane calibration from road markers is used to restrict the
pose of vehicles to be detected and tracked.

Reconstruction of Piecewise Planar Objects from Sin-
gle Views. Using geometrical constraints such as copla-
narity, parallelism, right angles etc., 3D objects may be re-
constructed from a single view (see e.g. [10]). Our calibra-
tion method requires knowledge of the metric structure of
planes. This requirement may be relaxed by simultaneously
determining calibration and plane structure, e.g. one view
of a rectangle allows to determine the focal length and the
ratio of the rectangle’s edge lengths. We are using this in
combination with the mentioned geometrical constraints to
reconstruct objects from a single image.

Reconstruction of Indoor Scenes. Our calibration
method is the central part of ongoing work on a system for
interactive multi-view 3D reconstruction of indoor scenes,
similar in spirit to the approaches presented in [10, 11].
The main motivation for using plane-based calibration is
to make a compromise between requirements on flexibil-
ity, user interaction and implementation cost. We achieve
flexibility by not requiring off-line calibration: our cali-
bration patterns, planar objects, are omnipresent in indoor
scenes. The amount of user interaction is rather little: we
usually use rectangles as calibration objects; they have to be
delineated in images and their edge lengths measured. By
identifying planar patterns across distant views, we not only

can simultaneously calibrate many views but also compute
a global initial pose of many views to bootstrap, e.g. wide
baseline matching. This scheme relies on methods that are
relatively simple to implement and might provide a useful
alternative to completely automatic techniques such as [9]
that are more flexible but more difficult to realise.

Augmented Reality. A nice and useful application of
plane-based calibration and pose estimation is presented in
[6]. Rectangular plates are used to mark the position of non
planar objects to be added to a video sequence, which is in
some way a generalisation of “overpainting” planar surfaces
in videos by homography projection of a desired pattern.
Plane-based methods may also be used for blue screening;
attaching calibration patterns on the blue screen allows to
track camera pose and calibration and thus to provide input
for positioning objects in augmented reality.

8 Conclusion

We presented a general and easy to implement plane-
based calibration method that is suitable for calibrating vari-
able intrinsic parameters and that copes with any number of
calibration planes and views. Experimental results are very
satisfactory. For the basic cases of one or two planes, we
gave an exhaustive list of singularities. Several applications
of plane-based calibration were described. An analytical er-
ror analysis might be fruitful, i.e. examining the influence
of feature extraction errors on calibration accuracy.

An extended version of this paper can be retrieved at
http://www.cvg.cs.reading.ac.uk/ pfs/plane.ps.gz.
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Abstract

We present several methods for the estimation of relative
pose between planes and cameras, based on projections of
sets of coplanar features in images. While such methods ex-
ist for simple cases, especially one plane seen in one or sev-
eral views, the aim of this paper is to propose solutions for
multi-plane multi-view situations, possibly with little over-
lap. We propose a factorization-based method for the gen-
eral case of n planes seen in m views. A mechanism for
computing missing data, i.e. when one or several of the
planes are not visible in one or several of the images, is de-
scribed. Experimental results for real images are shown.

1. Introduction

The work presented in this paper is part of a project on
multi-view 3D modeling based on scene regularities. Scene
regularities like coplanarity of points or lines, perpendicu-
larity and parallelism of lines or planes etc. are increas-
ingly used for interactive 3D modeling of man-made scenes
[1, 2, 3, 12, 13, 15]. Typically, the entire scene (often a
building) is depicted by hand in one or several images; ge-
ometric constraints representing scene regularities enable a
3D reconstruction of the scene. This approach is feasible
and gives good results if the scene consists of a limited num-
ber of “primitives” and if its geometry can be described well
enough by geometric constraints like the ones mentioned.

If the environment to be modeled is large and cluttered,
it is usually not feasible to depict all the primitives needed
for a 3D model. Also, useful geometric constraints might
often only be provided for a fraction of the environment. In
such circumstances, one natural solution for 3D modeling is
triangulation, based on feature correspondences obtained by
image matching. Beside the matching, camera calibration
and relative camera pose have to be obtained. A complete
automatization of this process is of course desirable, but it is
questionable if current systems are performing well enough
for cluttered large scenes. Also, there will always persist a
certain failure rate; so, a user might prefer to trade a limited
amount of interaction for a higher reliability of the results.

*This work is partially supported by the EPSRC funded project
GR/K89221 (Vector).

We follow a different approach, as described in the fol-
lowing. Given a set (or a sequence) of images of an environ-
ment, we first want to use scene regularities (and associated
features depicted in images by a user) to calibrate the views
and estimate their relative pose. Once this is achieved, the
calibration and pose information give us multi-view con-
straints for automatically matching and triangulating other
features than those used to capture the scene regularities.

Attractive “primitives” for calibration and pose estima-
tion are planar objects with known metric structure: each
image of such an object provides two constraints on cali-
bration and, if calibration can be fully determined, relative
pose up to two solutions in general [6]. Especially rectan-
gles are very useful since determining their metric structure
is done by simply measuring their edge lengths and since
they abound in man-made environments.

Pose estimation from planar objects turns out to be
rather harder than camera calibration: calibration con-
straints based on the projection of planar objects with
known metric structure [8, 9, 14, 17, 18, 19] can be accu-
mulated over many images. As for pose estimation how-
ever, the goal is to obtain relative camera (and plane) pose
in a global reference frame: estimation of relative pose of
two cameras seeing the same plane is rather easy (see e.g.
[6] and references therein for algorithms), but estimating si-
multaneously the pose of m cameras, each one seeing one
or only a few of n planes, is not trivial. We are not aware
of general methods for this task in the literature, although it
is quite probable that developments have been made in the
photogrammetric community. However, photogrammetric
techniques are often designed for strong camera network
geometries or for situations where at least approximate pose
information is already available.

The paper is organized as follows. The problem of multi-
view multi-plane pose estimation is formulated in §2. A
method for the basic one-view one-plane case is given in
§3. A factorization-based method for the multi-view multi-
plane situation is presented in §4. Experimental results are
shown in §5, followed by conclusions.

Notation. As already mentioned above, for a 3 x 3 ma-
trix A, A is the 3 x 2 submatrix consisting of its first two
columns. The sign ~ means equality up to scale (for vec-
tors or matrices). The symbol I denotes the identity matrix.
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2. Problem Formulation

The problem at hand is to estimate the relative pose of
m cameras and n planes, based on projections of the planes
(i.e. features on the planes) in (some of) the cameras. In the
following, we only deal with point features, but our ideas
may be extended to other features. We suppose that the met-
ric structure of the planes is known, i.e. that the coordinates
of points on a plane are known in some Euclidean refer-
ence frame attached to the plane. Using this information,
the cameras may be calibrated, e.g. using our algorithm de-
scribed in [14]. In the following we thus suppose that the
cameras are calibrated.

We now describe the coordinate transformations that
lead from 2D point coordinates of points on a plane to the
coordinates of their projections in an image. Let Q , be the
kth point on the jth plane, given by coordinates (X, Yjx).
Let the position and orientation of the jth plane (in the se-
quel simply called the plane’s pose) be given by a rotation
matrix S; and a translation vector v; with respect to some
global 3D world reference frame, such that the coordinates
of Q. in that global frame are:

Xji

v Sj vi || Yir
J 0
o7 1 1

Let the pose of camera i be given by R; and t;, such that the
coordinates of Q, in the local camera frame are:

c Rz tz w
ijk — jk

o' 1

The camera model used throughout the paper is perspective
projection, i.e. the coordinates of the projected point are:

Qijk  ~ Ki 0] Qfjx
X
~ K; RiSj Riv; +t; Y;J) (D)
1

where K; is the calibration matrix of view 1.

The aim of the algorithms presented in this paper is to
determine camera and plane pose, i.e. the R;,t;,S; and
v;, from the calibration matrices K;, the metric structure
of the planes, represented by the (X, Yjx), and the image
points q;;%. The computations are based on homographies

for camera—plane pairs that represent the perspective pro-
jections of the planes onto the image planes. The homogra-
phy H;; for camera ¢ and plane j is (this is simply the matrix
of equation (1), without the third column):

Hij ~K; ( (RiSj)3x2 (Riv; +ti)3x1)

where Sj is the 3 x 2 submatrix of S; consisting of its first
two columns. Since calibration is known, we may compute

M;; ~ K THij; ~ ( (RiSj) 5y (Riv; +ti)3x1>

The algorithms described in the following determine pose
using these homographies M;;. The basic constraint used
is that the first two columns of any M;; are the first two
columns of a rotation matrix, up to scale.

The homographies are computed from point matches be-
tween planes and the images, by a linear method analogous
to the 8-point method for the fundamental matrix [4].

3. Basic Case: One Plane Seen in One View

Suppose the view is calibrated and the homography H
(we omit the subscripts in this section) has been computed.
As shown above, we can compute the matrix

M~ ((RS)y., (Rv+t),,)

Of course, we can only compute relative pose, i.e. a rotation
matrix T and a vector w such that:

T = RS )
STv+STR"t (3)

W =

in which case we have:
1 0
M~T[0 1 w
0 0

In the absence of noise, the solution for T and w, given M,
is simple: first, scale M such that its first two columns have
unit norm (there are two such scale factors, linked by sign
reversal). The first two columns of M are then adopted as
the first two columns of T. The third column of T is com-
puted as the cross product of the first two (plus possibly a
scaling by —1 to ensure that det T = +1). Then, w is ob-
tained as the third column of (TT) M (M scaled as above).
There are two solutions in general (due to the existence of
two scale factors for M), which are related as follows:

-1 0 0 1 0 O
T=T|0 -1 0 w=[01 0 |w
0 0 1 0 0 -1
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In practice, it is easy to disambiguate between these two:
the two solutions for w correspond to optical centers on ei-
ther side of the plane. Thus, it is sufficient to know which
side of a plane is visible (assuming that a planar object has
only one visible side). We achieve this e.g. by giving the co-
ordinates of points on the plane in a reference frame whose
positive Z axis (the axis perpendicular to the plane) shows
toward the “visibility half-space”, and then choosing the
pose whose w has a negative third coefficient, or vice versa.

If noise is present, M will not be exactly of the form
shown above, and we have to determine some “best” T and
w. As usual in this case, the criterion used is the Frobenius

matrix norm | - ||z (root of sum of squared matrix coeffi-
cients). Concretely, the problem may be formulated as:
10
min [AM—T [0 1 w |[|% subjectto TT T=1 (4)
T,w,\ 00

It is easy to show, along the lines of [5], that the optimal
solution for the rotation T can be obtained independently
from A and w, and that these may then be obtained from T.

The optimal solution for T is obtained by solving the
following subproblem:

min M — T3 subjectto (TH)T=1I. (5
y

In words, we determine the rotation matrix T whose first
two columns are closest to those of M, in the sense of the
Frobenius norm. Note that this is different from the formu-
lation chosen by Zhang [19], who finds the rotation matrix
closest to the 3 x 3 matrix consisting of M and a third col-
umn computed (more or less) as the cross product of these
first two columns. It can be shown that this approach does
not solve the original problem (4) optimally.

Problem (5) is easily solved using Singular Value De-
composition (SVD). Let M3y = Uszx2Yax2Vd. , be the
SVD of M. The optimal “amputated” rotation T is then:

T=UVv"T.

The third column of T may then be computed in the same
manner as described above for the noise free case.

Having solved for T, the optimal scale factor A and vec-
tor w are obtained as:

Vo trace(T' M) Zf:l Z?;l T;; M;;
~ trace(MT M) ijlej
0
w = (THM|o0
A

Again, there are two solutions in general which can be dis-
ambiguated as discussed for the noise free case.

We do not claim that the method presented in this section
is original, but describe it here since it is an important part
of the method described in the next section.

4. Multi-View Multi-Plane Pose

The method of the previous section may be used to de-
termine the relative pose for m cameras observing a sin-
gle plane or n planes being observed by a single camera,
by applying it for individual camera—plane pairs and stitch-
ing together the results. However, if more than one camera
observe more than one plane, the situation is more compli-
cated. In the following, we present a method that uses the
relative pose information obtained for individual camera—
plane pairs simultaneously to determine global relative pose
of cameras and planes. We first assume that all planes are
visible in all cameras. The case of missing data is dealt with
in §4.2.

In the following, we first compute the rotational part of
the pose, followed in §4.3 by the translations.

4.1. Rotational Part of Pose

Let T;; represent the rotational part of the relative pose
between camera ¢ and plane j, as computed using the
method of §3. We may group all equations of type (2) for
camera—plane pairs in one single equation system:

Tiyp Tig -0 Tip Ry
Tor Tog -+ Top R2
. ) =1 . | (5152 Sa) (6
. . . . : N————
Tml Tm2 Tmn Rm S
——
W R

This equation motivates the idea of solving for the R; and
S, by factorization: the matrix W is (in absence of noise) of
rank 3 and its three non zero singular values are all equal. If
noise is present, we may estimate the matrix W’ with these
properties that is closest to W in the sense of the Frobenius
norm, as follows. Let W = UXVT be the SVD of W. Let
U’ (V') be the matrix consisting of the first three columns of
U (V). The optimal W’ is then given by W' = U'V/" .

Since U’ and V' have the same dimensions as R and S
in equation (6), we may try to extract the rotation matrices
R; and S; from them. The factorization does not guarantee
that the 3 x 3 submatrices of U’ and V' are valid rotations.
Thus, we determine the R; and Sj as the rotation matrices
that are closest to the according submatrices in U’ and V.
This is described in [5].

One issue to discuss is the possibility of ambiguities in
the factorization, i.e. the existence of matrices A such that

(U'A) (A*1V’ T) is a valid solution for our problem. Since

the two matrices resulting from the factorization have to be
collections of rotation matrices, it can be shown that the
only possible ambiguities correspond to A being a rotation
matrix. This is no problem here, since naturally the R; and
S; can only be determined up to a global rotation.
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Another important issue is numerical condition. The ma-
trix to be factorized is a collection of rotation matrices, thus
automatically well balanced, i.e. its coefficients are in aver-
age of the same magnitude. Also, the three non zero singu-
lar values are equal (in the noise free case), suggesting that
even in the noisy case the condition should be good.

4.2. Computing Missing Data

Our method suffers, as all factorization approaches, from
the problem of missing data: in practice we will often meet
the case where several planes are not visible in several cam-
eras, thus the matrix to be factorized is not entirely defined.
Solutions to this problem have been proposed [7, 11, 16];
these are either of an ad hoc or heuristic nature or rely on
an initialization by some (unclear) means. We propose an-
other ad hoc approach for our problem. Our situation is not
too bad, since the missing entries in the matrix to be factor-
ized are 3 x 3 rotation matrices, thus providing some useful
constraints for their determination.

The computation of the missing rotation T;; between a
camera ¢ and a plane j is based on the following observa-
tion. If we know, for some ¢’ and j’, the rotations T/, T/
and T/, then we can compute T;; as (cf. equation (2)):

Tij =Ty (Tiy) Tus

If several such combinations are available, we may com-
pute T;; as their “average”. To do so, we simply add up the
individual estimations of T ;; to a matrix A and compute T;;
as the rotation matrix that best approximates A, in the sense
of the Frobenius norm (see [5]).

Computation of missing data has usually to be done in a
cumulative manner, i.e. some of the T;; can only be com-
puted using other matrices that were missing at the outset
but have been computed as shown above.

4.3. Translational Part of Pose

Having computed the rotational part of camera and plane
pose, the translational part may be determined as follows.
Let w;; represent the translational part of the relative pose
between camera 7 and plane j, as computed using the
method in §3. From equation (3), we have:

Wij = S;!—Vj + S;I—R;rtl
Since we know S;, we may compute
r_ _ T
Wi = SjWij =Vj + Rz t;
A cost function for estimating the v; and t, = R]t; is then:

c=Y_|wi; —v; — |’ (7
i,

where summation is over all available camera—plane pairs.

The partial derivatives of criterion (7) with respect to the
kth entry of v; and the pth entry of t] respectively are:

Jdc

Do 2 Z (wijn — vik — tix) (®)
J i
dc
o = 2 > (wh, = vjp —th,) 9)
p _7

Criterion (7) may be minimized by solving for the common
roots of the partial derivatives. This can be done by solving
the following simple linear equation system (shown for the
case where all planes are seen in all views):

mI I.--1I Vi 2 Wi

mI| I---1 Vi | | i Win
I--- 1 |nI t) > WY
I---1 nl t, 2 Winj

We use a special method to solve this sparse system. The so-
lution is of course only determined up to translation: adding
a 3-vector to all the v; and subtracting it from all the t/ does
not affect criterion (7).

4.4. Complete Algorithm

1. Compute homographies between planes and images.

2. If the cameras are not calibrated yet, calibrate them
using one of the methods in [8, 14, 17, 18, 19].

3. Estimate relative pose between pairs of planes and
cameras as described in §3.

4. Compute missing data as described in §4.2.

5. Estimate the rotational part of global relative pose by
factorization as described in §4.1.

6. Estimate the translational part of pose (cf. §4.3).

7. Optional, but recommended: simultaneous (non-
linear) optimization of pose and calibration parame-
ters (including distortion). Not explained in detail here
(lack of space), but rather straightforward to imple-
ment.

5. Experimental Results

We have tested our methods with image sequences of
different types. First, images of a calibration grid were used
to evaluate their performance with respect to the number
of images used. Second, planar patterns printed on paper
were attached to all the walls of a room. This scene is a
test for our methods in the case of a high amount of miss-
ing data. The third image sequence is of the same type as
the second one, however the planar objects used for calibra-
tion and pose estimation were part of the scene (rectangular
objects like windows, doors, computer screens etc.).
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5.1. Calibration Grid

Images of a calibration grid (see figure 2) were taken
with a Canon MV-1 Camcorder. For different zoom posi-
tions, 4 images each were taken from different positions.
The input to our methods were the coordinates of circular
targets in each of the three planes of the grid, and the corre-
sponding image coordinates. For each zoom setting, a total
of 12 homographies could be computed. From these, the
camera was calibrated and pose estimated using the meth-
ods in §3 and §4, followed by non-linear optimization.

In figure 1, some results are presented for the zoom posi-
tion corresponding to shortest focal length (and largest op-
tical distortion). The upper two curves show the absolute
errors (in degrees) of the angles between the three planes
of the grid, computed from the estimated pose. With the
minimum case of a single view, the error is about 1.4° for
both the “linear” method (§4) and after optimization (“Lin-
ear+LM” in the graph). Adding views leads to an error of
about 1° for the linear method (which seems to be a limit
here, maybe due to the neglection of optical distortion) and
a linear decrease of the error after optimization, reaching a
tenth of a degree when four views are used.

The lower two curves show the average distance errors
for the full 3D reconstruction of the calibration grid. Since
we know the coordinates of the targets in each of the three
planes of the object, and we estimate the pose of the planes,
we can obtain a full 3D reconstruction, i.e. full 3D coor-
dinates of the targets. The error (residuals after alignment
with the ground truth by rigid transformation) is practically
constant and equal to a tenth of a percent, regardless of the
number of images and optimization.

Linear (angles) ——

Linear+LM (angles) -
Linear (distances)
15 Linear+LM (distances)

Error

Number of views

Figure 1. Errors of pose estimation. Absolute
errors (degrees) for angles (upper curves).
Relative errors (in %) for distances, see text.

5.2. Indoor Scenes

We took a set of about 400 images of an indoor scene
(see examples in figure 2). The edges of 14 rectangular ob-
jects in the scene (windows, drawers, a door, blackboard,
computer screens, etc., cf. figure 3) were measured, giving
their metric structure. In 151 of the images, one or more
of these planar objects were visible and in 84, two or more

Figure 2. Images of grid and indoor scene.

objects. In these images, the 4 corners of the objects were
marked by hand. This is the input to our algorithms.

In a first step, the calibration method of [14] was ap-
plied to calibrate the 84 views simultaneously. Then, rel-
ative pose between each view and the objects seen in it
was computed using the method of §3. From the totality
of 84 x 14 = 1176 image—plane pairs, the relative pose of
218 pairs could be determined from the available images,
i.e. the amount of missing data was about 81 %. Global
pose was estimated using the algorithm of §4.4. The result
was used to obtain a textured VRML model of the planar
objects used for calibration and pose estimation (figure 3
shows a rendering).

Window

Boarc’
' Posters

Secreen Q

Windows
Door

Figure 3. Rendering of a textured 3D model
of the planar objects used for calibration and
pose estimation.
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Qualitatively, the reconstruction captures very well the
shape of the room in which the images where taken. The
accuracy of the reconstruction is not very high: angles be-
tween neighboring planar objects (the angles between the
infinite planes supporting the objects) are in average esti-
mated with an error of about 6°. This is rather weak as
for photogrammetric standards. However, the global pose is
good enough to think of using it for wide-baseline matching
using adaptive windows: approximately knowing the rela-
tive pose between views, matching windows can be trans-
ferred via projective mappings computed from pose and cal-
ibration, based on the assumption of locally planar object
surfaces. Initial matching experiments are encouraging.

Overall, we consider this experiment as a really hard test:
the input data is rather minimal (4 points per plane) and
poor (some of the objects were not really planar, extraction
of features in the images was quite inaccurate, the objects
appear usually very small in the images); the imaging ge-
ometry is weak (~ 80 % of missing data); no special illumi-
nation was used, etc. So, the accuracy of our results might
be as good as one might expect under these conditions.

In a second experiment, a few planar patterns, printed on
paper using a laser printer, were attached to the walls of a
room. Owing to higher accuracy in feature extraction, the
average error of angles between neighboring patterns was
about 3°. The amount of missing data was again over 80 %
and the patterns occupied only about 3 % of the images.

6. Conclusion and Perspectives

We have presented methods for plane-based pose esti-
mation. Beside a method for the basic one-view one-plane
case, a factorization-based method for the multi-view multi-
plane case was presented.

Our experimental results suggest that our method may
be applied successfully even when the amount of missing
data is very high. In “calibration scenarios” the estimated
pose can certainly be used as starting point for optimizing
calibration and pose. However, the global goal of our work
is not calibration but the 3D reconstruction of complicated
man-made environments. Our thread of thought is that the
process should be initialized by a limited amount of user in-
teraction, followed by automatic processes. The type of user
interaction described in this paper (depicting some salient
objects in the images) enables a good camera calibration
and an approximate global pose estimation. The recovered
pose might be good enough to be used for wide baseline
matching using adaptive windows (according to initial ex-
periments). This is what we are currently working on. Our
hope (and conviction) is that a few additional matches per
image (beside the hand picked ones) should be enough to
increase the quality of the pose by a sufficient amount in
order to make e.g. voxel coloring approaches [10] for 3D
reconstruction feasible.
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with the feature extraction for one of the experiments.
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Abstract

Camera Calibration with one-dimensional objects is
based on an algebraic constraint on the image of the ab-
solute conic. We will give an alternative derivation to this
constraint, allowing a geometrical interpretation. From
this we derive the degenerate cases, or critical motions,
where the calibration algorithm will fail. We also show that
constraints on the intrinsic parameters lead to simplified
closed-form solutions and a reduced set of critical motions.
A simulation and a real data experiment is performed to
evaluate the accuracy of the calibration result for motions
close to being critical.

1. Introduction

In computer vision, metric 3D reconstruction from im-
ages requires the camera to be calibrated. The main cam-
era calibration techniques can be classified into five groups.
In 3D reference object calibration an object with known
geometry is used [12, 3]. In 2D plane based calibration
planar patterns are used [10, 13]. 1D object calibration is
discussed in this paper. The remaining two groups are self-
calibration, where point correspondences between images
of an unknown scene are used [7, 6, 5, 3], and motion con-
strained calibration, where the camera is confined to some
special kind of motion [1, 4, 8]. In some cases of cam-
era motion, known as critical motions, the calibration al-
gorithms will fail. This has been studied in detail for 3D
reference object calibration in [2] and for self-calibration
in [9].

In this paper we aim to complete the theory of 1D object

calibration by identifying the critical motions. We show
how to reduce them when partial knowledge of the cam-
eras calibration parameters is given. Camera calibration us-
ing one-dimensional (1D) objects was recently proposed in
[14]. Here, the calibration object consists of a set of at
least three collinear points. The motion of the object is
constrained by one point being fixed. One advantage of
using 1D objects for calibration are that 1D objects with
known geometry are easy to construct. Another advantage
is that in a multi-camera environment, all cameras can ob-
serve the entire calibration object simultaneously, which is
a prerequisite for calibration and hard to obtain with 3- and
2-dimensional calibration objects. In practice, the 1D object
can be constructed by marking three points on a stick.

The paper is organized as follows: In Section 2 a brief
review of camera calibration with 1D objects is given. In
Section 3 a geometrical interpretation of the calibration con-
straint is presented, from which the critical motions are
identified in Section 4. Section 5 describes how simplified
closed-form solutions reduce the critical motions. Section 6
validates the theoretical results by two sets of experiments.

2 Preliminaries
2.1 Notation

We will use the standard pin-hole camera model:

X
x vfoosf o uo
Mlyl=10 f w|[R] —Rt] 71 - M
1 0 0 1 1
M
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Here, f denotes the focal length, ~y the aspect ratio, s the
skew and (ug,vg) the principal point. These are called
the intrinsic parameters and are contained in the upper-
triangular calibration matrix K. Furthermore, R and ¢ de-
note the relation between the camera coordinate system and
the object coordinate system, where R is a rotation matrix
and ¢ a translation vector, i.e. a Euclidean transformation.
P is the camera matrix and A, is the projective depth of
m. A 2D point is denoted by either m = [z,y]T or m =
[z,y,1]T. A 3D point is denoted by either M = [X,Y, Z]T
or M = [X,Y, Z,1]".

2.2 Camera Calibration with 1D Objects

We will now give a brief review of the theory for camera
calibration with one-dimensional objects, following [14]. In
the following, we often call the one-dimensional calibration
object a “stick”, for simplicity.

Refer to Figure 1 where point O is the camera center.
Point A is fixed relative to the camera, and the length of the
stick AB is

L=|B- Al @)

The position of point C'is given by
C =X sA+ B, 3)

where A4 and \p are known. Without loss of generality we
choose R = I and ¢ = 0, which implies that the optical
center O is at the origin. Let the unknown depths of A, B
and C' be z4, zp and z¢, respectively. According to (1) we
have A = z4 K ~'a and similarly for B and C, so equation
(3) gives

20C = ZaAad + zpAph. 4

By performing cross products on both sides of (4) with c
and scalar products with (b x €) we obtain

AM@EXE) - (bxT)

P TMNEB ) (bxd) )
From (2) we have
|K~ (2D — 248)|| = L (6)
and by substituting zp by (5) in this equation we get
2l KM =L )
where
h = (b1 ho,hg]” = M = ®
_ 5y MEXD-(bxFp )

Equation (7) is equivalent to

Z2hTwh = L2 (10)
where
w=KTK = (11)
_1_ s sYyo—o
fZ,YZ f2.y2 f2,),2
s S S _ s(syo—%0) _ wo
f2’Y2 f2’72 f? f2,};2 , f2
81}02;;60 78(8?3;210) _ Z;_g (Syjcg;yfgo) + %21 +1
(12)

is the image of the absolute conic [3]. Let w;; be the element
of w at row ¢ and column j. Then w, which is symmetric,
can be defined by

d = [wi1, w12, wa2, w13, w3, waz) T .
With x = 2%d and
u = [h2,2h1ho, b3, 2h1h3, 2hohs, h3)7T,
equation (10) becomes
ul'x =172

giving one constraint on z4 and the intrinsic parameters in
K per image. In the most general case with six unknowns,
we need at least six observations of the stick for calibration.

Given N images, the solution to (10) is found by solving
a linear system of one equation per image, such that sym-
metry of w is enforced:

Ux = L1 (13)

where U = [uy,...,uy]T and 1 = [1,...,1]7. The least
squares solution is then given by
x = L*(UTu)"'uT1.

K and z4 can then be found by Cholesky decomposition of
2% w (which is given by x).

3 Geometrical Interpretation

In order to identify the critical motions of the stick for
which calibration will fail, we will now interpret equation
(10) in geometrical terms. Refer to Figure 2. Let the line
through A and B be l4p5. The intersection of /4 and the
plane at infinity 7., is given by X, = B — A. Projecting
this point onto the image we obtain the vanishing point

V= [0171)2»”3}71
of the line [ 4 g:
PX., = K[I|0](B— A) = K(B — A)

ZB[ZB7yB» 1}T - ZA[an YA, 1]T

ZBb — ZAa.

A%
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Figure 1. lllustration of 1D calibration objects

Using (8) we have
v = z4h. (14)

Alternatively, let X = B — A. With v = K X we get

CXTX  XTKTKTK'KX  viwv

1 = =
XTX 1 X2 L2

=

viwy = L27 (15)

so that (14) holds, since (15) < (10). We can now interpret
(15) as follows: the algebraic distance between the vanish-
ing point of the stick and the image of the absolute conic
equals L2.

Notice that for calibration only, the actual length of the
stick does not have to be known; using the constraint (10)
will give us z4 in units of L (i.e. z4 will be the unit-less
ratio of stick length and the actual metric depth of A), and
always the correct calibration K. This is the typical scale-
depth ambiguity in reconstruction; a change in scale can
be compensated by a change in depth without changing the
calibration matrix.

4 Degenerate cases

A motion of the stick is critical if and only if (15) has
more than one solution. Given a number of observations
of the stick, let v; be the vanishing point in image ¢. The
motion is now critical when the vanishing points of the stick
v; lie on a conic w’ so that

viw'v; =0 Vi,

since then, if w is a solution to (15), w + kw’, k € R, is also
a solution by

T l T T 2
v; (w4 kw')v; = viwv; + kv; w'v; = L.

Figure 2. Geometrical interpretation of cali-
bration from 1D objects

When solving for w in (13), the actual solution w + kw’ is
constrained to a symmetric matrix, therefore w’ must also
be symmetric. If additional constraints are placed on w,
such that w is of a more constrained form, then w’ must also
be of the same, more constrained, form. This is done by
incorporating knowledge on the intrinsic parameters as will
be described in section 5.

Note that equation (10) would have no solutions (with
L # 0) if v; would lie on w such that vl'wv; = 0. Since
w is a virtual conic and the vanishing points are real (from
v = P(B — A)), this however only happens if v; = 0 Vi.
This corresponds to the uninteresting case where A and B
both lie on an optical ray of the camera in all images so that
a and b coincide.

4.1 Critical motions

We now want to identify the critical motions of the stick
that give rise to the degenerate cases where the vanishing
points lie on a conic w’ in the image plane.

Assume v;w'v; = 0. Let D; be any point on the stick
in image 7 and F; = D; — A the same point expressed
in a coordinate system with origin translated to A. With
P = K[I|0] and v; = K[I|0](D; — A) = KE; we get

viw'vi=0 & E'KTWKE =0 <

— 7 __
ETW'E;=0 < ET [“’ 0]

0 0 E;=0 (16)

where w” is symmetric. Equation (16) tells us that all points
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on the stick in all positions lie on a quadric of rank less than
or equal to 3, in this case a cone, centered at A.

In other words: the motion is critical if and only if the
vanishing points of the stick lie on a conic w’. Since we
deal with perspective projection, this is exactly the case if
the stick’s point at infinity traces out a conic on the plane at
infinity during the motion (which can be a degenerate conic,
e.g. consisting of 2 straight lines). This in turn means that
the stick, when seen as an infinite line, traces out a cone,
with the fixed point A as vertex and the above conic as “gen-
erator”’. Note that the cone does not need to be circular, i.e.
the locus of an individual point on the stick does not need to
be a planar circle for the degeneracy to occur. Furthermore,
as mentioned above, the generating conic may be degener-
ate, e.g. consisting of 2 straight lines. As for the stick’s
motion, this means that it is waved in 2 different planes.

Note that critical motions do not depend on the actual
position of the stick’s fixed point A; they only depend on
the stick’s orientation (and in special cases, see below, on
its orientation with respect to the camera).

In [14] some partial results on critical motions are given;
the case of a circular cone. This is of course degenerate, but
there are many more critical motions, as we have seen.

4.2 Safe motions

In practice, all critical motions should of course be
avoided. From the above said, we observe that this can be
achieved by for example moving the stick in three or more
non-parallel planes, which may be realized by some zig-zag
motion. Many other examples can be found, e.g. moving
the stick in a spiral.

5 Closed-Form Solutions

We will now look at the closed-form solutions for the
cases where some of the intrinsic parameters of the cam-
era are known and show what degeneracies there are in
these cases. We also show that the number of images re-
quired for calibration using these closed-form solutions will
be smaller than in the general case.

5.1 Unknown focal length
Assume that only the focal length of the camera is un-

known. The image coordinate system can then be trans-
formed such that s = 0, v = 1 and (%o, yo) = (0,0). Then

#00
w:O#O
0 0 1

so that the calibration problem reduces to solving equation
(13) where (in the minimal case of only two images)

U= |:h%1 +h3 h§1:| X = ;—2‘2‘
hiy +h3y N, 22

and hj; is h; in image 7. We observe that here, only two
images are needed for calibration since then U is invertible.
Modifying the calibration algorithm in this way fixes known
camera parameters to their correct value and reduces the set
of critical motions to the case where the vanishing points all
lie on a circle centered in the image.

This can also be verified by noting that (13) has a unique
solution if and only if det(U) # 0. Now, denoting v; in
image ¢ by vj;,

det(U) = h3y(hi; + h3y) — h3,(hiy + h3y) =0 &

39 (VF) + v31) — V3, (VFy + v3y) =0, (17)

since v.= z4h (by (14)) and z4 # 0 since all depths are
positive. The condition for a critical motion (17) is fulfilled
if v3; = 0 Vi, which corresponds to the case where the
vanishing point of the stick is a point at infinity so that the
stick is moving in a plane parallel to the image plane, or if

V11 \o V21 \2 V12,9 V22,9
H(=P = (=P +H () e
V31 V31 V32 V32

U?El + 1’51 = 119252 + 11;2
where v,; and v,; are the x- and y- coordinates of the van-
ishing point in image ¢ (since v is expressed in homoge-
neous coordinates), meaning that the vanishing points lie

on a centered circle. Now equation (16) gives that the stick
lies on a quadric of the form

o O O
o o8 O
oSO O
o o oo

centered at A, where a,b € R, which is a circular cone
whose axis of symmetry is parallel to the z axis (see Figure
3). Waving the stick in a plane parallel to the image plane
is then also a degenerate motion, since it is a special case of
a circular cone (it’s like a cone that is squashed to a plane).
In this case, the vanishing points of the stick are points at
infinity of the image plane. The line at infinity of the image
plane is a (degenerate) conic, of the required form (centered
circle).

5.2 Unknown focal length and aspect ratio

In this case

22 0 0
w=1| 0 # 0
0 0 1
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Figure 3. Examples of critical quadric surfaces.

If only the focal length is unknown, the critical

surface is a circular cone with axis of symmetry is parallel to the z axis (far left). With also the aspect
ratio unknown the surface is an elliptical cone with main axis parallel to any two coordinate axes, and
axis of symmetry parallel to the third one (center left). Examples of general quadrics representing
critical surfaces in the general case (right). The camera has the optical axis coinciding with the z-axis
and the image plane coordinate axes coinciding with the x- and y-axis

The calibration problem reduces to solving equation (13)
where (in the minimal case of three images)

Wiy b3 hg 7

5
— 2 2 2 _ 22

U == h%Q h%Q th 5 X = f_zg
his h3s h3g 3124

and hj; is h; in image ¢, which has a unique solution if and
only if det(U) # 0. Now det(U) = 0 if and only if

2 2 9 2 2 9 2 92 9
V11032033 + V31 U35073 + V31 V30073~

Uglvgzvfza - U%lvfzvgzs - U%l”%B’L)gQ =0 (18)
which is the condition for a critical motion. It is fulfilled
either if v;,; = 0 Vi and for some fixed jp, corresponding
to a motion of the stick in any of the two image coordinate
axis planes (v; = 0 or v = 0) or in a plane parallel to the
image plane (v3=0), or (by rewriting (18) by dividing with
v3,03,033, Tenaming % to v,; and o2 10 vy;, which then
are the image coordlnates of the vanishing point) if

Uilva + Uyl“a:s + Ux2”§3 - %32%3 — Uy Vo — Uil”;S =0.
This means that the vanishing points are on a ellipse cen-
tered in the image, with axes coinciding with the image x
and y axes. Equation (16) gives that the stick then moves
on the surface of an elliptical cone with main axis parallel
to any two coordinate axis, and axis of symmetry parallel to

the third one, see Figure 3.
5.3 Unknown focal length and principal point

Another frequently occurring condition in camera cali-
bration is that of s = 0 and v = 1. In this case we find the

simplified closed-form solution by observing that

L

7 0 I

0 1 _ Yo

w = f2 f2
ﬂ 2

This reduces the problem to solving equation (13) where (in
the minimal case of four images)

h%l + h%l 2h11h31  2ho1hsy h?%l

his + h3s 2hishss 2hoghss his|’

hi,+ h3, 2hiahss 2hoshss  h3,
x=A [ -w -k Fedel]

and hj; is h; in image 4. The critical motions are according
to equation (16) reduced to quadrics of the form

a 0 ¢ O
0 a d O
c d b 0
0 0 0 O

centered at A, where a,b,c,d € R. Other cases where a
subset of the intrinsic parameters is known can be treated
similarly.

6 Experiments

6.1 Simulation

In order to evaluate the calibration accuracy for motions
close to being critical, an experiment on simulated data was
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Image noise level = 0.2 pixels
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Figure 4. Calibration errors with respect to angle of deviation of the 1D objects from a critical quadric

performed. The simulated camera had f = 1000, v = 1,
s = 0and (z9,y0) = (320, 240). A stick of length L = 70
with A4 = Ap = 0.5 and fixed point A = [0, 35, 150] was
placed in 100 equally spaced positions on a critical cone.
Gaussian noise with mean 0 and varying standard devia-
tion was added to the angle between the stick and the axis
of symmetry of the critical cone as illustrated in Figure 5.
Gaussian noise with mean 0 and varying standard deviation
was added to the obtained image points.

The calibration algorithm for the general case where
all the intrinsic parameters are assumed to be unknown
was used. We measure the relative accuracy of the focal
length |A f/ f| and the dimensionless quantities |Ay|, |As|,
|Aug/ f| and |Awg/ f| since errors in these contribute about
equally to the overall geometric accuracy in scene recon-
struction [11]. Results are given in Figure 4 for two differ-
ent levels of image noise.

We note that the calibration results are very inaccurate
for small angles of deviation from the critical surface as
expected. The improvement in accuracy is very dramatic
when increasing from close to 0° deviation from the cone,
to a few degrees. After around 5° there is no big improve-
ment and the results are quite good from this point on.

The fact that we get more accurate calibration results
than in [14] is probably due to the stick being far from par-
allel to the optical axis of the camera. Since the endpoints
of the image of the stick then are far apart, the results are
less affected by noise.

Errors (%) | Sequence 1 | Sequence 2
f 1.3566 20.3945
5y 1.5918 23.7308
S 0.7971 1.1993
Ug 4.6013 5.2164
o 0.6743 3.7431

Table 1. Experimental results for calibration
from real data. In sequence 1, the stick is
moving randomly. In sequence 2, the motion
of the stick is such that it is close to a critical
quadric surface

6.2 Real Data Experiment

To evaluate the sensitivity of the calibration algorithm in
a real world scenario, a digital camera was calibrated us-
ing two separate image sequences containing images of a
stick moving in two different patterns. The image resolu-
tion was 640 x 480 pixels. In the first sequence the stick
was moved randomly. In the second sequence the stick was
moved close to a critical surface, as illustrated in Figure 6.
The camera was in both cases calibrated using the closed
form solution for calibration from one dimensional objects
given no knowledge of the intrinsic parameters, as described
above. To be able to compare the results, the camera was
also calibrated using the standard algorithm for calibration
from planar patterns [13], including nonlinear minimization
of the cameras intrinsic parameters from reprojection errors,
resulting in a very precise calibration. The results are given
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Figure 5. Simulation of sticks on a degener-
ate surface with added angular noise with a
standard deviation of 2° (left) and 5° (right)

in Table 1, where the errors in the intrinsic parameters from
each of the two calibration results are given with respect
to the calibration result from the planar patterns. The er-
rors from the sequence with the degenerate stick movement
is generally much larger than for the random movement se-
quence, suggesting that close-to-critical motions of the stick
has to be avoided in practice.

7. Summary and Conclusions

Based on a geometrical interpretation of the constraint
used in camera calibration with one-dimensional objects,
we have identified the critical motions where the calibra-
tion algorithm will fail. We have shown that constraints
on the intrinsic parameters of the camera lead to simplified
closed-form-solutions and a reduced set of critical motions,
and also proposed some safe non-critical motions that will
guarantee the success of the calibration algorithm in prac-
tice. A simulation and a real data experiment was performed
to evaluate the calibration accuracy for motions close to be-
ing critical, showing the sensitivity of the algorithm to these
motions.

Figure 6. Two images from two image se-
quences, each consisting of 12 images. On
each of the two images, tracked points from
the entire sequence are superimposed. In se-
quence 1, the stick is moving in a random
fashion (top). In sequence 2, the motion of
the stick is such that it is close to a critical
quadric surface in each image (bottom)
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Combining Off- and On-line Calibration of a Digital Camera
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Abstract Another idea is to self-calibrate an entire sequence. Ex-
isting approaches follow several directions. One is to as-
We introduce a novel outlook on the self-calibration task, sume invariance of unknown intrinsic parameters through-
by considering images taken by a camera in motion, allow- out distinct views [12, 15, 1, 8], thus not to allow for zoom-
ing for zooming and focusing. Apart from the complex rela- ing/focusing, which is quite a strong constraint. Given a
tionship between the lens control settings and the inttinsi stereo pair of an arbitrary scene, one cannot vary but the
camera parameters, a prior off-line calibration allows to magnification parametgiwe use that term, to avoid confu-
neglect the setting of focus, and to fix the principal poird an sion of associating different meanings to the focal lengthin
aspect ratio throughout distinct views. Thus, the calibra- vision and optics), while having the other ones known [7].
tion matrix is dependent only on the zoom position. Given Other methods [3, 13] allow the retrieval of varying magni-
a fully calibrated reference view, one has only one param- fication parameter and fixed principal point. Furthermore,
eter to estimate for any other view of the same scene, inif provided with at least 9 views, it is possible to fix only
order to calibrate it and to be able to perform metric recon- one camera internal parameter and let the other ones vary
structions. We provide a close-form solution, and validate [13, 11].
the reliability of the algorithm with experiments on real im- In reality, such a general calibration problem cannot be
ages. An important advantage of our method is a reducedsolved reliably. On the other hand, one can quite easily pro-
- to one - number of critical camera configurations, associ- vide some prior information, which simplifies the task. Our
ated with it. Moreover, we propose a method for computing approach belongs to such a group of techniques.
the epipolar geometry of two views, taken from different po-
sitions and with different (spatial) resolutions; the idedo
take an appropriate third view, that is "easy" to match with
the other two.

1.2. Motivation

All considered cases of self-calibration, which al-
low magnification parameter variation throughout distinct
views, suffer from a significant number of critical cam-
era configurations [14]. It is therefore much "safer" not to
change the camera settings.

Let us combine one fully calibrated image (the refer-
ence imagewith an uncalibrated one, taken from a different
viewpoint. Then, one has only one magnification parameter
to estimate. What about the other intrinsic parameters? The
complex relationship between calibration and camera lens
control settings [16] does not allow straight-forward sim-
plifications.

To summarize, we are interested in the following issues:

1. Introduction

The problem of recovering the Euclidean structure of a
scene is strongly associated with the estimation of the cam-
era internal parameters, i.e. calibration. When no calibra-
tion knowledge provided, one can reconstruct only a pro-
jective model of the scene [6, 10].

1.1. Previous work

e Are there any conditions that enable the use of a priori
knowledge of the intrinsic parameters?

The most basic solution to compute the internal param-
eters employs a calibration grid or planes, and performs

an off-line calibration. However the restriction of keeping
an identical camera state (including zooming and focusing)
while shooting subsequent images can hardly be fulfilled in
practice.

e Can one allow for zooming/focusing, while still main-
tain a small family of critical situations?

e What can be done with stereo pairs, if one camera/view
is fully calibrated?
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1.3. Contribution

We combine off-line and on-line methods in order to cal-
ibrate a digital camera with a zoom lens and auto-focus.

We introduce a novel outlook on the self-calibration
problem, by reducing to one the number of intrinsic param-
eters to be estimated. We provide a close-form solution for
the method. Also, one has to account for only a single fam-
ily of critical camera configurations [14].

By studying the behaviour of the camera intrinsic param-
eters as a function of variable zoom and focus, we derive
approximate values for the aspect ratio and the principal
point. We identify a small influence of focus upon cali-
bration, which becomes negligible for settings larger than
2.5m. We conclude, that once a camera is calibrated for a
known zoom setting, one can re-use those values any time
that zoom is set. Therefore, we recommend employing
minimally or maximally zoomed-in images as the reference
ones, since those zoom settings can be reliably reproduced.

Furthermore, we simplify the computation of the epipo-
lar geometry for stereo images of different resolutions,
omitting a direct matching between them. The problem
of matching two images of different zoom and viewpoint
is therefore decomposed into two simpler matching prob-
lems: a wide baseline matching with the same zoom [2],
and matching images with different zoom, shot from the
same viewpoint [5].

The proposed method of "combined calibration" esti-
mates the intrinsic parameters with even 2%-accuracy, from
real images, leading to a reliable Euclidean reconstruction.

2. Camera modeling
2.1. The model

We assume the perspective camera model with the pro-
jection matrix of the form:

P=K(R t) (1)

where R and t represent the orientation and the position of
the camera with respect to the world coordinate system, and
K is the calibration matrix:

ka 0 wug
K=10 a wv
0 0 1

with the principal point (ug, v ), the magnification parame-
ter o and the aspect ratio k. We assume a zero-skew.

A scene point M is projected onto the image onto a point
m viam = PM.

2.2. Off-the-shelf digital camera

Most often one is provided with digital cameras, which
allow mechanical setting of both zoom and focus. One can
specify the area of interest (and thus, its depth on the image)
and focus on chosen features within the area.

We have worked with the Olympus Camedia C-2500L
digital camera. It provides both auto-focus and manual-
focus with discretized values from 0.3m until 15m and oo
to be set. The zoom, on the contrary, has a continuous range
and a manual drive, which makes the reproducibility of dif-
ferent settings difficult (with notable exceptions for the min-
imal and the maximal zooms).

Each (zoom, focus) setting corresponds to a physical
configuration of lenses, inside the camera. Since their func-
tional dependencies are complex, we cannot specify the ex-
act camera state, which makes the estimation of camera
internal parameters difficult. When using auto-focus, the
only camera settings that we are able to reproduce (and
to expect the same calibration results, for an arbitrary im-
age, taken with the same settings) are: (zoom, focus) =
(200Mppin, 00) and (zoom, focus) = (200Myaz, 00).

The question is how do the entries of the calibration ma-
trix K change with variations of zoom and focus. Experi-
ments described in the following section suggest conditions,
under which the internal camera calibration can be assumed
invariant, for different (zoom, focus) settings.

3. Off-line stability study of calibration

We study the stability of the camera internal parameters,
under change in the camera mechanical settings, zoom and
focus. We point out the parameters that do not vary much,
and can be assumed invariant. We find a small influence
of focus on calibration, if the camera is far enough from
the scene. Finally, we provide calibration knowledge for
particular zoom settings, which is to be used a priori, in
self-calibration.

3.1. Away to calibrate

We extract the calibration matrix K from the projection
matrix P, estimated from correspondences between non-
coplanar 3D points and their 2D images.

The formof P = (P p) and(1)imply: P =KR.
Since PPT = KRRTKT = KK, we can simply obtain
K from the Cholesky decomposition of PPT.

In order to estimate P, we run a non-linear algorithm,
which minimizes the reprojection error

C= Z(Uz’ = Umi)® + (v — Vi)’ (2)
i=1

of m image points (u;,v;) and reprojections (wm;, Umi) of
the corresponding 3D points M;.
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3.2. Optical distortion

Since imperfect camera lenses give rise to non-
perspective image distortion, it is often necessary to op-
timize (2) using additional distortion parameters. In
some cases, this extended projection model causes over-
parameterization, resulting in instabilities in the estimation
of all intrinsic parameters.

Based on the observation, that the bigger the zoom used,
the less distortion is present in the image, we can point out
experimentally a "critical" zoom, for which the estimated
distortion coefficient does not decrease with the increase of
zoom. Therefore, we omit the distortion parameters in the
optimization, if a zoom is bigger than the "critical" one.

We only estimate the first term D, of the radial dis-
tortion, which proved sufficient to provide reliable results.
Overall, the employed calibration method is described in

[4].
3.3. Experiments

We stepped the lens through the full range of focus,
while the zoom was examined in two positions: the mini-
mal and the maximal ones. At each step, we performed a
full camera calibration (images of a calibration grid were
considered). To ensure the stability of calibration, we con-
sidered only images with a sufficiently large number of con-
trol points clearly visible.

We used manual focusing. For each (zoom, focus) set-
ting, we took several images with slightly different orienta-
tions of the calibration grid. The distance camera-grid was
kept identical to the value of the set focus.

We considered focus values between Im and Sm. The
images were of size 640 x 512 pixels. The obtained es-
timates of the internal camera parameters are listed sepa-
rately: for the minimal zoom (Table 1), for the maximal
zoom (Table 2).

3.4. Dependencies

What information can be extracted from Tables 1 and 2?

Aspect ratio (k). It is close to unity. The equality &k = 1
is valid for any (zoom, focus) setting, with a relative error
smaller than 0.2%.

Magnification parameter («). For the minimal zoom,
a stays constant relative to focusing. For the maximal
zoom, the same is observed as soon as the distance camera-
object is bigger than 2.5m (see Figure 1). Hence, for a
chosen zoom, it is possible to represent the relevant «
with a single value (e.g. the median of the estimates):
Qmin = 706 (with 2%-relative error) for (zoom, focus) =

| Focus[m] [ &[1] | alpix] | wolpix] | wolpix] | D,[1] |
0.9993 700 321 268 | -0.2393
1 0.9991 698 321 267 | -0.2423
0.9999 700 317 267 | -0.2363
0.9992 695 314 277 | -0.2598
1.2 0.9996 702 320 269 | -0.2405
0.9997 728 204 238 | -0.1468
0.9998 731 316 232 | -0.1574
15 1.0007 710 325 269 | -0.2469
0.9998 723 318 234 | -0.1601
1.0007 736 205 269 | -0.1523
2 1.0002 699 319 274 | -0.2970
2.5 1.0001 722 318 268 | -0.2207
Table 1. Calibration results: the minimal
zoom and varying focus.
| Focus[m] [|  k[1] | elpix] | uolpix] [ wolpix] | D,[1] ]
0.9996 921 316 263 | -0.0976
1 0.9994 920 318 268 | -0.0945
0.9992 918 319 269 | -0.1037
1.0010 | 1133 320 266 | 0.0445
1.2 1.0009 | 1122 317 274 | 0.0075
1.0008 | 1128 318 271 | 0.0218
1.0015 | 1384 310 297 0
L5 1.0005 | 1386 291 296 | 0.0294
1.0013 | 1391 320 292 0
1.0020 | 1749 312 313 0
2 1.0020 | 1740 311 310 0
1.0013 | 1745 289 303 0
1.0030 | 1969 301 324 | 0.1470
2.5 1.0008 | 1944 255 316 | 0.0306
1.0024 | 1959 314 356 | 0.0295
3.5 1.0012 | 1965 290 336 0
5 1.0016 | 1999 301 344 | 0.0182
Table 2. Calibration results: the  maxzimal

zoom and varying focus.

(200Mmin, focus > 0.3m), and apme, = 1965 (with 1%-
relative error) for (zoom, focus) = (z00Mmqz, focus >
2.5m).

Principal point (ug,ve). Overall, it concentrates near the
image centre (see Figure 2). Since in general, the exact
position of the principal point does not have a big impact
upon the quality of reconstruction, it is possible to employ
approximate statistical values, obtained from the Student’s
reliability test: ug = 311 &+ 21, vy = 280 + 42, with a fac-
tor of risk 0.1 . Further on, we will use the approximation:
(UQ,UQ) = (311,280)
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Figure 2. Principal point concentrates near
the image centre.

Auto-focusing. For a fixed zoom, the setting of focus does
not influence calibration significantly. We can use auto-
focusing, and still be capable to employ calibration results
for the examined zooms. We only have to keep in mind

the requirement concerning the maximal zoom: the distance
camera-scene has to be larger than 2.5m.

3.5. Final results to be used in self-calibration

A view taken with the minimal/maximal zooming. We
are provided with calibration matrices of reference: K, n
for the minimal zoom case (for any focus value), and K4,
for the maximal zoom case (for focus > 2.5m).

A view taken with an arbitrary (unknown) zooming.
One is provided with the values of k and (ug,vp ). Hence, «
remains the only calibration parameter to determine.

A summary is given in Table 3.

| Zoom [ Focus[m] || k[1] | elpix] | uolpix] | wolpix] ]

min >0.3 1 706 311 280
mazr | > 2.5 1 1965 311 280
? ? 1 ? 311 280

Table 3. Results of off-line calibration (the
Olympus Camedia C-2500L digital camera).

4. Self-calibration

We consider a stereo pair: a calibrated reference image
and an image taken with an unknown zoom. (In practice,
we obtain the calibration for the reference image simply
by taking it using the minimal or the maximal zoom, and
adopting the according intrinsic parameters, obtained by the
off-line calibration.) We are thus provided with calibration
matrices: K.z, fully known, for the reference image, and
K, defined up to unknown «, for the other image. Due to
Kruppa’s equations [9], we derive a close form solution for
a. Also, we reveal stereo configurations, for which our self-
calibration algorithm fails.

4.1. Kruppa’s equations

Finding the matrix K associated with a camera is equiv-
alent to finding the image w of the absolute conic, taken by
that camera. Since w1 ~ KKT, let us denote C = KKT for
the camera to be calibrated, and Ccy = KyefKye fT for the
camera, that took the reference image.

The link between images of the absolute conic and the
epipolar geometry can be expressed as follows ([17]; F is
the fundamental matrix of the stereo; e is the epipole on the
image, taken by the uncalibrated camera):

FCrerFT ~ [e]xCle]x )
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Having separated the known entries of matrix K
(k, ug,vp) from the unknown one («):

E 0 w a 0 0
K={(0 1 Vo 0 a 0] = K(] Ka
0 0 1 0 01

and multiplying (3) from the left by Ko, and from the right
by Kg, we obtain:

Ko FKpefKrer TFTKg ~ Ko T[e]x KoKaKa Ko [e]x ' Ko
W—/

Ca
“)
with C,, of the following form:

a? 0 0
Ca=10 o® 0 )

0 0 1

Let us denote:

E =Ko FKpes ©6)

which moves F to a "semi-calibrated" space. From a prop-
erty (valid for any matrix A and vector v)

A~ T[v]x ~ [AV]xA (7)
we have:
Ko [e]xKo ~ [Ko €] x KoKy ®)
N—_——

I
Thus, (6) and (8) enable us to write (4) as:

EET ~ [Ko €] Ca[Ko e« ' )

Let us use the Singular Value Decomposition of E:
E = U diag(r,s,0) VT (10)

Introducing (10) into (9), and moving U and U to the op-
posite side of the formula, result in:

diag(r, s,0)V'Vdiag(r, s,0) ~ UT[Kofle] % Ca[Kgfle] < U
I

(1)

(remind a property: [v]y' = —[v]y, for any vector v).
Using (7), we can write (11) in the form:

diag(r?,52,0) ~ [UTKo 1e]xUTCLU[UTKo e] . (12)

Let us notice, that

0 0 -1 0
UKo te]x = [ |0 =1 0 0
1 0 0 0

If we denote with (u; us ug) columns of matrix U,
(12) writes as follows:

r2 0 us ' Chus
0 82 —lllTCallg
Equalities between ratios of coefficients of the matrices

in (13) form Kruppa’s equations. However, only the follow-
ing equality can contribute positively to the solution:

_ulTCau2) (13)

111Tca111

ot Coup (14)
s u; TCouy
The other possible equation (u; TCquy = 0) leads always
to a solution C, = I, and thus o = 1.

Remembering the form of C,, (5), one can retrieve from
(14) the unknown «, by solving a quadratic equation (since
the numerator and denominator of (14) are linear expres-
sions in entries of matrix C,):

202 _ p2,,2
$%U39 T U3z

o=
\/7'2 (ufy +u3y) — 8% (ufy +ud,)

where w;; are entries of matrix U, and r, s - the singular
values, given in (10).

5)

4.2. Outline of the algorithm

Step 0: Perform off-line calibration of the camera, obtain-
ing Qmin, @maz, K, (g, Vo) - thus full calibration matrices:
Knin and K, 4, for reference images, and a calibration ma-
trix K (associated with any other image) defined up to a.

Then, for a stereo pair (a reference image and an image
of an unknown zooming), given the matching:

Step 1: Compute the fundamental matrix F.

Step 2: Move F to a "semi-calibrated" space, obtaining a
new matrix E - see (6).

Step 3:  Apply the SVD on E - see (10).

Step 4: Use entries of the matrices obtained in Step 3 to
compute the unknown internal parameter « of matrix K -
see (15).

4.3. Critical motions

As it has been fully studied in [14], a solution for the
unknown magnification parameter is not always uniquely
defined. In our case, since we consider to know all intrinsic
parameters of one camera, there exist only one family of
camera configurations that is critical, which is significantly
less than with more general cases of self-calibration.

Let us consider a stereo pair of cameras: C,.; (fully
calibrated) and C (with an unknown «). The algorithm is
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ref!

C

Figure 3. Critical configuration of cameras

singular if the centre of camera C,..¢ lies on the optical axis
of camera C (Figure 3). This kind of configuration is con-
nected with a camera movement (starting from the refer-
ence position), that consists of any rotation, followed by a
translation along the optical axis of the camera. There is no
constraint on the orientation of camera Cy.y.

The case has been analyzed along the lines of [14]. Here,
we omit its explanation, due to the lack of space.

In practice, any camera configuration that is close to the
critical one, can cause problems in self-calibration, giving
rise to inaccurate results.

5. Matching

We are interested in running our self-calibration algo-
rithm on pairs of images of different spatial resolutions (dif-
ferent magnifications). Being aware of problems concern-
ing matching such views, we propose a way to avoid it, by
introducing an additional view, that allows to match the two
original ones.

5.1. Difficulties

Existing direct techniques for automatic matching of two
images taken from different viewpoints and with different
resolutions do not give satisfactory results. Since a big area
on the zoomed-in image is to be correlated with a small area
on the zoomed-out image, accuracy of computed epipolar
lines is weak.

Even when dealing with images very similarly zoomed-
in, very few algorithms cope with matching them, if the
camera movement between the two views is not small. On
the other hand, once one decreases the baseline between
cameras (so that it would be appropriate for correlation
techniques), the scene reconstruction becomes less reliable.

ref

Figure 4. Connections between images: fun-
damental matrix F, between I, and I,, affine
transformation A between I, and I,,..,, fun-
damental matrix F between I..; and Loom

5.2. Our method

To avoid a manual specification of corresponding points,
we combine two techniques:

¢ matching two images of the same resolutigntaken
from different viewpoints

e matching two images of different resolutionstaken
from the same viewpoint

Hence, we assume being provided with an additional
view I, of the same resolution as the reference image Iy,
but taken from the same camera position as the zoomed-in
one I,om (see Figure 4).

Having performed an automatic matching [2] between
I,.f and I,, we compute the fundamental matrix F, of that
stereo pair. Thus for any image points m,. s, m, (related to
Ir.f and I, respectively):

m, Fom,.; =0 (16)

On employing method [5], we match I, with I, and
estimate an affine transformation A between them (due to
the lack of space, we omit a derivation of this property) -

for any image points mg,, m, .., (related to I, and L,,0p,
respectively):

mg = Amzoom (17)

Now, (16) and (17) let us find out the fundamental matrix
F of the stereo pair of interest - Iy and Loom:

(Amzoom)T Famref =0

TAT
moom A Famref =0
——

F
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Y Self-calibration for cv
”l‘"'rue Calibration grid Arbitrary object
@ min ref. max ref. min ref. max ref.
708 701+1% 763+8% 731+3% 691+2%
847 814+4% 887+5% 881+4% 829+2%
1018 960+6% | 1044+3% | 1040+2% | 1012+1%
1250 | 1171+£6% | 1273+2% | 1298+4% | 1242+1%
1486 | 1387+7% | 1508+1% | 1592+7% | 1442+3%
1729 | 1621+6% | 1751+1% | 1886+9% | 1779+3%
1905 | 1772+7% | 1933+£1% | 2072+9% | 1862+2%

Table 4. Self-calibration results. The same
a (in a row, related to a zoom setting) is
estimated from stereo pairs of two different
objects, with both kind of reference images
each. "True «" comes from calibration.

Thus
F=ATF, (18)

Equation (18) enables us to compute the epipolar geome-
try between images of different resolutions (Ir¢y and Ioor,),
without being given matches between them. It is sufficient
to specify correspondences between each of those images
and a special additional one (I,), and result in connections
written as functions of F, and A.

6. Experiments

Input data. We took images of an arbitrary object (a toy
house), with the minimal and the maximal zoom settings,
from a reference viewpoint. Then, from another camera
position, we shot a number of images, of variable zoom-
ing. We also took images of a calibration grid, every time
a view of the house was registered. Hence, we had two
sets with corresponding images (of different features), taken
with identical camera settings (Figure 5).

Separately for each photographed object, we combined
our images in stereo pairs of a reference image and an image
taken with an unknown zoom. Each image of an unknown
zoom was put into 2 stereo pairs: with a minimal and with
a maximal zoom reference image. Having employed results
from off-line calibration (the constraint: distance camera-
scene > 2.5m had been fulfilled), we ran the self-calibration
algorithm for each stereo pair, obtaining estimations for ¢,
related to every considered zooming (see Table 4).

Discussion. The algorithm recovers the unknown magni-
fication parameter with a high accuracy. However, there are
some cases, where the relative error grows up to 9%. They
show up for stereo pairs, which combine images of signifi-
cantly different resolutions (e.g. a minimal zoom reference
view with a strongly zoomed-in one; and vice-versa).

Figure 5. Images of different features, taken
with identical camera settings.

The reason could be related to the fact, that the consid-
ered self-calibration step does not take into account any dis-
tortion model, and thus, its results are not always consistent
with the off-line calibration (see Section 3.2). In particu-
lar: a distortion model, considered for the minimal zoom
reference image, is "forwarded" by self-calibration to «, es-
timated for the other image of the stereo pair. If that im-
age has been taken with a relatively big zoom setting, the
no-distortion model has to be considered then, in order to
avoid over-parameterization. For the opposite case: not tak-
ing distortion into account for the maximal zoom reference
case, implies the no-distortion model for the other image, as
well, which is not always correct (zoomed-out images).

A way to cope with the described inconsistence would
be to employ a non-linear optimization. The self-calibration
step, along with a linear structure from motion method, pro-
vides an initial guess for camera parameters (internal and
external ones). Then, it would be sufficient to use an ex-
tended projection model (including distortion) in a bundle-
adjustment setting.

Overall, the experiments validate that our self-calibration
method is reliable, for any stereo pair. The unknown magni-
fication parameter can be recovered with even 2%-accuracy,
provided that the stereo pair is composed of images of sim-
ilar resolutions. Therefore, it is more convenient to use
a minimal zoom reference view to self-calibrate zoomed-
out images, and a maximal zoom reference one, for more
zoomed-in images.

7. 3D reconstruction

We applied the described technique on a stereo pair of
images of a chimney (Figure 6). The only knowledge we
had, was that both images were taken with our camera, and
that one of them was taken with the minimal possible zoom.
Self-calibration provided us with an estimation for the un-
known magnification parameter for the second setting of the
camera: o = 980.

Reliability of the obtained reconstruction of the chim-
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Figure 6. Stereo pair of a chimney (the refer-
ence image on the left).

Figure 7. Reconstructed chimney.

ney (Figure 7), with correctly retrieved depth and angles
between specified planes (Table 5), certifies a high quality
of the performed calibration, and thus, capability to recover
the Euclidean structure.

8. Conclusion

We have presented a method to simplify the self-
calibration process of a zooming camera, based only on in-
formation of a boundary (minimal or maximal) zoom, used
for taking one of the images. Due to the off-line calibration
preprocessing, the on-line self-calibration step has only one
parameter to estimate, and thus, only one family of critical
motion sequences for cameras to deal with (a situation that
is not valid for more complex cases of self-calibration). We
provide a close-form solution for the problem and present
experiments on real images that validate the stability and
reliability of our method.

The proposed combined calibration technique can be
easily used in various applications, as quite often one is
provided with at least one reference image. The complex
problem of dealing with wide, differently zoomed views of
a scene, is decomposed into several simpler tasks, which is
an important advantage of the presented approach.

Acknowledgements. We would like to thank Frederik
Schaffalitzky from the Visual Geometry Group in Oxford,
for making accessible a matching software.

[Plane] 3] 5] 6] 7] 5 |
1 88 (90) | 88 (90) 2(0) | 89 (90) 89 (90)
3 - 2(0) [ 91.(90) | 71 (70) | 114 (115)
5 - -190(90) | 70(70) | 113 (115)
6 - - - | 88(90) 90 (90)
7 - - - - 43 (45)

Table 5. Angles (in [deg]) between chosen
planes of the chimney: retrieved values, and
the real ones (in parentheses).
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A Case Against Kruppa’s Equations
for Camera Self-Calibration

Peter Sturm

Abstract—We consider the self-calibration problem for perspective cameras and
especially the classical Kruppa equation approach. It is known that for several
common types of camera motion, self-calibration is degenerate, which manifests
itself through the existence of ambiguous solutions. In a previous paper, we have
studied these critical motion sequences and have revealed their importance for
practical applications. Here, we reveal a type of camera motion that is not critical
for the generic self-calibration problem, but for which the Kruppa equation
approach fails. This is the case if the optical centers of all cameras lie on a sphere
and if the optical axes pass through the sphere’s center, a very natural situation for
3D object modeling from images. Results of simulated experiments demonstrate
the instability of numerical self-calibration algorithms in near-degenerate
configurations.

Index Terms—Self-calibration, calibration, euclidean reconstruction, Kruppa
equations, critical motions, degeneracy, absolute conic.

*

1 INTRODUCTION

WE consider the self-calibration problem for perspective cameras.
By self-calibration, we mean the recovery of a camera’s intrinsic
parameters by only using information contained in images taken
by this camera. Explicitly, no information on camera motion or on
the 3D structure of the environment is used.

It has been shown by Maybank and Faugeras that, if the
camera’s calibration remains fixed over an image sequence, self-
calibration is in general possible [7]. This result is based on the so-
called Kruppa equations, that link the camera’s intrinsic parameters
with the epipolar geometry of pairs of views taken by the camera.
The epipolar geometry can be estimated from sole image point
correspondences, so Kruppa’s equations put constraints on the
intrinsic parameters and can thus be used for self-calibration.
Several practical self-calibration approaches based on Kruppa’s
equations have subsequently been proposed by Faugeras and
students of his [1], [5], [6], [16]. For other self-calibration
approaches, see, for example, [2], [4], [9], [10], [15].

It is known that several types of camera motion exist, for which
self-calibration is a degenerate problem, i.e., there exist ambiguous
solutions. In [12], [13], we report on a complete study of the critical
motion sequences. The problem of degeneracy must be taken into
account in practical self-calibration since several very common
imaging situations are indeed critical.

In Section 4, we describe a configuration, that is not critical for
generic self-calibration, but for which approaches based on
Kruppa'’s equations fail. Concretely, we show that this is the case
if all optical centers lie on a sphere and if the optical axes pass
through the sphere’s center—a situation that appears frequently in
3D object modeling from photographs or image sequences.

In Section 2, we briefly introduce a theory of self-calibration on
which the rest of the paper is based. Kruppa’s equations are
reviewed in Section 3. In Section 5, we examine the instability of
Kruppa equation-based approaches for self-calibration in
near-degenerate situations, through numerical experiments. In
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Section 6, results are shown that underline the fact that other
approaches may perform well even in situations that are exactly
degenerate for Kruppa’s equations. Section 7 discusses some
special cases of the degeneracy considered in this paper, whereas
Section 8 provides a general discussion on why certain types of
methods suffer from certain types of degeneracies.

2 SELF-CALIBRATION AND EUCLIDEAN
RECONSTRUCTION

We consider camera (self-) calibration as an intermediate step to
the recovery of metric 3D structure, also called Euclidean
reconstruction. In geometrical terms, obtaining a Euclidean
reconstruction is equivalent to determining the position of the
absolute conic ., [11]. The calibration of a camera’s intrinsic
parameters is equivalent to the determination of the absolute
conic’s projection. The absolute conic is characterized as being the
only conic in three-space that is invariant to Euclidean transforma-
tions. A consequence of this is that even under arbitrary camera
displacements, the projection of {2, remains fixed, if the camera’s
calibration does not change during the displacement. This
property gives us a constraint for the determination of the absolute
conic and its projection and, thus, for Euclidean reconstruction and
self-calibration.

Euclidean reconstruction or self-calibration can, thus, be
formulated as the determination of the unique conic in three-
space, whose projections are identical in all views of a given image
sequence [13]. In this paper, we consider perspective projection as
camera model, whose intrinsic parameters are described in the
next section. Most practical self-calibration approaches start with a
global projective reconstruction and try to identify the absolute
conic in 3D; approaches based on Kruppa’s equations rely on the
epipolar geometry of pairs of views, trying to identify the image of
the absolute conic in 2D using local information.

3 KRUPPA’s EQUATIONS

Kruppa’s equations can be considered as an epipolar matching
constraint for the projections of quadrics or conics. Consider Fig. 1,
where the case of a quadric’s projection in two views is illustrated.
Two epipolar planes are tangent to the quadric and the induced
epipolar lines in the images are, thus, tangent to the conics
obtained by projection of the quadric. Hence, an epipolar line that
is tangent to an image conic corresponds to an epipolar line that is
tangent to the conic in the other image. The same kind of epipolar
constraint is valid if the conics in the images are obtained by
projection of a conic in three-space, instead of a quadric.

If we consider the projections of the absolute conic, we obtain a
special case of this conic matching constraint, since the image
conics are identical when the images are taken by a camera with
fixed intrinsic parameters (cf. Section 2). Let w be the projection of
the absolute conic. The matching constraint can be expressed in the
following form [16]:

Fwl'FT ~ [e], wt ], , (1)

X

where F is the fundamental matrix of the two views, € is the
second epipole (the first epipole e is not used in this formula), ~
means equality up to scale (we work in homogeneous coordinates)
and [€'], is the skew-symmetric matrix associated with the cross-
product of €. Equation (1) is one formulation of Kruppa's
equations. It links the intrinsic parameters of the camera
(represented by the image w of the absolute conic) with the
epipolar geometry (represented by F and €’). Since the epipolar
geometry can be estimated from sole image correspondences,
Kruppa’s equations can be used for self-calibration.
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Fig. 1. (a) The image of a quadric is the projection of its silhouette, as seen from
the optical center of the camera. (b) Two epipolar planes are tangent to the
quadric; the associated epipolar lines are tangent to the images of the quadric.

Once the image w of the absolute conic has been determined
using Kruppa’s equations or any other approach, the intrinsic
parameters are determined straightforwardly, as described in the
following. Let the calibration matrix of the camera be given by:

T —Tacot® ug
K=| 0 «a/sin® v |,
0 0 1

where 7 is the aspect ratio, a the focal length (in pixels), (ug,vo) the
principal point, and © the skew angle between pixel axes. The
image of the absolute conic in a view with calibration K is,
independently of the view’s extrinsic parameters, given by:
w~K KL,

Hence, once w is known, the intrinsic parameters are easily
determined by Cholesky decomposing w, using the property of the
calibration matrix being upper triangular. Equivalently, but
slightly more conveniently, we may decompose the dual of the
absolute conic’s image:

wt ~ kKT (2)

4 A DEGENERATE CASE FOR KRUPPA’s EQUATIONS

In this section, we consider the case where the camera to be self-
calibrated moves on a sphere while its optical axis points towards
the sphere’s center. This type of camera motion is not critical for
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the generic self-calibration problem, but Kruppa’s equations are
degenerate, which is demonstrated in the following.1

Let C be the center of the viewing sphere (i.e., the sphere of
camera positions). Consider an arbitrary sphere @ that is also
centered in C. Obviously, since the camera is always pointed
towards C, the sphere ® is perceived in the same way in all views,
i.e., its projections are identical. Let ¢ be the conic representing the
sphere’s projections. The fact that ¢ is the identical projection of a
quadric into all views means nothing else than that ¢ satisfies
Kruppa’s equations for each pair of views. Hence, ¢ gives us a
mathematically valid, but wrong, solution for the self-calibration
problem. We did not constrain the radius of sphere ®, which
means that there is a whole family of ambiguous solutions for self-
calibration. Note that this degeneracy is independent of scene
structure: The sphere ® does not have to exist in the real world—it
is a purely algebraic object, like the absolute conic.

In the following, we examine the nature of the ambiguous
solutions, i.e., which intrinsic parameters are affected in which
way. Let the camera’s distance from C be d and denote spheres
centered in C and with (possibly imaginary) radius r by ®,. It is
easy to verify that the dual of the image of ®, is identical in all
views and is given by the matrix ¢ !:

e 00

-1 2 T

o, ~K( 0 25 0K 3)
0 0 1

Since ¢, is satisfying Kruppa’s equations (1), we may try to extract
intrinsic parameters from it, as described in Section 3, for the true
image of the absolute conic. By Cholesky decomposing ¢!, we
obtain an upper triangular calibration matrix K, satisfying
#¢7! ~K,K'. From (2) and (3), it follows that K, is given by:

2= 0 0

K=Kl 0 —2= 0
r2—d?

0 0 1

With regard to the following decomposition of K, separating the
focal length o from the other intrinsic parameters:

T —Tcot® ug a 0 0
K=|[0 1/sin® vy 0 a 0],
0 0 1 0o 0 1

the ambiguous solution for the calibration matrix, due to ¢,, is
given by:

T —Tcot® Wemriel 0 0
K.=[0 1/sin® 1 0 =
0 0 1 0 01

We observe that the intrinsic parameters given by K, are identical
with the true parameters in K, with the exception of the focal
length, which is given by:
— r 4
a, = e a. 4)
This result has two implications: First, the focal length is usually
the intrinsic parameter one is most interested in when self-
calibrating (the aspect ratio being constant and often precisely
known, the principal point being close to the image center) and it is
embarassing that exactly this parameter is obstructed. Second,
even prior knowledge of the other intrinsic parameters (aspect
ratio, principal point, skew angle) does not help in resolving the
ambiguity in focal length estimation!

1. Triggs already pointed out that this configuration is degenerate for the
quasi-linear approach proposed in [15]. Relationships between degeneracies
for different types of self-calibration approaches are discussed in Section 8.
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We now have a closer look at the factor s = N in (4).
Depending on the radius r of the sphere ®,, this factor takes
imaginary or real values. The focal length being a real number, we
are interested in the cases when s is real. It is easy to check that this
is valid exactly in the following two cases:

e risreal and larger or equal than d, i.e., @, is a real sphere of
equal or larger radius than the viewing sphere. In this case,
we have s € [1,00].

e risamultipleof I=+/-1,ie., ®, is a sphere of imaginary
points only. In this case, we have s € (0, 1].

In conclusion, all nonzero real values are mathematically valid
solutions for the ambiguous focal length «.

The reason for Kruppa’s equations having ambiguous solutions
in a configuration that is not critical for the generic self-calibration
problem, may be resumed by the following phrase. Namely,
Kruppa’s equations are constraints on the image of the absolute
conic, but they do not enforce the planarity of the absolute conic in
3D, which is exactly why, in our case, the projections of spheres are
admitted as solutions. This issue is discussed in more detail in
Section 8.

The degeneracy of Kruppa’s equations we revealed in this
section has been observed in experiments by Zeller and Faugeras
[16]: In their self-calibration approach, a global optimization stage
is initialized by a robust fit of estimates of the aspect ratio and focal
length, obtained from pairs of views and with the principal point
being supposed known. The two-view results of the focal length
were reported to be extremely unstable, whereas the aspect ratio is
estimated reliably. Zeller and Faugeras were not aware that the
reason for this seems to be the numerical instability caused by the
camera configuration used for their experiments, which is close to
the configuration dealt with in this paper. However, during the
global optimization stage, when all views are taken into account
simultaneously, the instability seems to be reduced enough to
obtain good results, which is possible since the camera configura-
tion is only near to, but not exactly, degenerate.

5 INSTABILITY FOR NEAR-DEGENERATE CAMERA
CONFIGURATIONS

In the following, we report on numerical simulations that have
been designed to reveal the instability caused by near-degenerate
camera configurations. It is not intended to give a complete
quantitative analysis of the problem, but to demonstrate the effect
of near-degeneracy on numerical algorithms.

The basic simulated camera setup is as follows: The scene
consists of 50 3D points that are randomly chosen in a sphere of
radius 100, centered in the origin. We place the camera at arbitrary
positions on the sphere of radius 200, that is also centered in the
origin. The camera’s calibration is fixed to:

1,000 0 256
K= 0 1,000 256
0 0 1

and the camera is rotated such that it focuses the origin (the
viewing sphere’s center).

The following variations and perturbations are applied in
various combinations:

e  The camera’s orientation is changed such that the camera
focuses a randomly chosen point within a given distance
from the origin (a different point for each view). This
distance will be referred to as “optical axis offset” and
varies between zero and 10.

e  The camera is translated off the viewing sphere, toward
the origin. Its distance from the origin is reduced from
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Fig. 2. The camera is placed exactly on the viewing sphere, but the optical axis is
rotated away from the sphere’s center by various amounts. The labels
“pp horizontal” and “pp vertical” refer to the principal point coordinates u, and
vg. Note the different scales in the graphs.

200 to 180. The number of translated cameras will be
referred to as “number of views off viewing sphere” in the
following.

e  Gaussian noise of standard deviation one pixel is added to

the coordinates of the image points.
The first two actions move the configuration away from being
critical for Kruppa’s equations.

The estimation of the intrinsic parameters is carried out as
follows. First, fundamental matrices between pairs of views are
estimated by a quasi-linear method [3]. The intrinsic parameters
are estimated by a Levenberg-Marquardt type optimization
scheme, minimizing a criterion based on Kruppa’s equations.
The intrinsic parameters are initialized with their true values. Thus,
large errors in the estimated parameters indicate large instabilities
caused by near-degenerate configurations.

For each setup, we carried out 20 different experiments. In the
following graphs, median relative errors for the focal length, the
aspect ratio and the coordinates of the principal point are shown.
For all of the results shown, eight views have been used for
self-calibration.

Fig. 2 shows the situation when all cameras are placed exactly
on the viewing sphere, but their optical axes are rotated away from
the center by various amounts. As the theory in the previous
section suggests, the aspect ratio and the principal point are
estimated quite reliably even in the exactly degenerate situation
when there is no optical axis offset. The error on the focal length
however, is, as expected, very large for the degenerate case (note
the different scales in the upper and lower parts of Fig. 2) and only
reaches the same level as for the other parameters, when the
optical axis offset becomes significant.
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Fig. 3. Between zero and four of the eight views are translated away from the
viewing sphere. There is no optical axis offset.

Fig. 3 shows the situation when between zero and four of the
eight views are translated away from the viewing sphere, but there
is no optical axis offset. Again, the aspect ratio and the principal
point are estimated with less than five percent of error (graph not
shown). As for the focal length estimation, it is interesting to note
that even with only one view taken from a position not on the
viewing sphere, the error decreases dramatically, but half of the
views have to be translated in order to come close to the five
percent error level.

Finally, Fig. 4 shows the case of both optical axis offset and
views translated away from the viewing sphere. The optical axis
offset is such that the cameras focus points within five units
distance of the viewing sphere’s center. It is worth noting that the
focal length error drops to less than the half when half of the views
are translated off the viewing sphere.

6 SOLVING THE PRESENT CASE

As we mentioned, the camera configuration discussed in this
paper is not inherently degenerate for self-calibration, but for
approaches based on Kruppa'’s equations (and others, cf. Section 8).
Nonlinear methods which include the planarity constraint for the
absolute conic, e.g., [2], [4], [9], [15], will in general succeed in self-
calibration (cf. also Section 8). To demonstrate this, we designed a
simple method to resolve the ambiguity introduced by Kruppa’s
equations. Since the other intrinsic parameters beside the focal
length are estimated well by a Kruppa equation approach, we

100 T . -
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S 60 f 1
5
(9}
=
T 40T 1
[
o

20 ]
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0 1 2 3 4
Number of views off viewing sphere

Fig. 4. Between zero and four of the eight views are translated away from the
viewing sphere. The optical axes are offset.
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Fig. 5. Relative errors for intrinsic parameters with respect to noise in the image
points.

adopt these and, in a second step, apply a method for estimating
the focal length only. We want to use the same input as for
Kruppa'’s equations, i.e., fundamental matrices for pairs of views.
An alternative is the method proposed in [10], which is based on a
global projective reconstruction.

In general, the focal length can be computed from a single pair
of views, given the epipolar geometry. Our camera configuration,
however, is degenerate for this problem [8]. For triplets of views,
focal length estimation is no longer degenerate in general [14]. For
each triplet, it is possible to obtain 12 equations of degree four in
the focal length, with coefficients depending on the three
fundamental matrices. These equations can be solved individually
and their solutions combined in a robust manner to provide an
estimate for the focal length. Details of this method are omitted
due to lack of space, please contact the author for further
information.

Fig. 5 shows the relative errors, with respect to the amount of
Gaussian noise added to the image points, for the aspect ratio and
the principal point (estimated using Kruppa’s equations) and the
focal length (estimated subsequently). The low error for the focal
length confirms that our camera configuration is not inherently
critical for self-calibration.

7 SPURIOUS SOLUTIONS

It can be shown that in general, the ambiguous solutions for the
focal length described in Section 4 represent the only degeneracies
for Kruppa’s equations with the considered camera configuration.
There are, however, special cases where further solutions exist,
prohibiting the estimation of other intrinsic parameters as well.
Additional ambiguities arise, for example, if there exist quadrics
other than spheres whose projections are identical in all views. As
we discuss in Section 8, it would be very difficult to give an
exhaustive list of all additional degeneracies and, thus, to derive
conditions under which certain intrinsic parameters can be
estimated for sure. However, it is possible to derive some sufficient
conditions under which certain parameters can not be estimated
without ambiguity. In the following, we describe such conditions
for three special cases of the camera configuration discussed in this
paper.”

The first case concerns cameras located on a circle and fixating
this circle’s center. We suppose that the cyclotorsion (rotation
about the optical axis) is the same for all the views. This
configuration is inherently degenerate for self-calibration, giving
rise to a two-degree-of-freedom family of solutions [13]. For

2. Results are just summarized here; for details contact the author.
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TABLE 1

Different Levels of Degeneracy, Affecting Different Types of Self-Calibration Methods

Methods Reason for degeneracy 2D sketch of the reason for degeneracy

Any Existence of a single conic (represented by
two points here), different from the abso-
lute conic, with identical projections in all
views

Linear Existence of a single quadric (represented

methods by an ellipse here) with identical projec-
tions in all views

Kruppa Existence of one quadric per pair of views,

equations the projections of which in the associated
pair of views being identical with those of
the other quadrics in the respective views

1203

For easier understanding, degeneracies are illustrated in 2D, i.e., conics are shown as two points, while quadrics are shown as conics. Each method inherits the

degeneracies from the levels above it.

Kruppa’s equations, the ambiguity has at least three degrees of
freedom. The following conditions hold for cameras with
rectangular pixels (i.e., © = 90°; similar, but more complicated,
conditions can be derived for nonrectangular pixels). The
coordinates of the principal point can never be estimated both at
the same time. If the cameras are not upright (i.e., none of the two
pixel axes lies in the plane of motion), then none of the coordinates
of the principal point can be estimated. If the cyclotorsion is such
that none of the pixel axes forms a 45 degree angle with the plane
of motion, then the aspect ratio can not be estimated. The focal
length can never be estimated since we are in a special case of
Section 4.

The second special case consists again of a camera moving on a
circle, but fixating an arbitrary point on the circle’s axis, i.e., the
optical axes do not lie in the plane of motion. The third case is an
extension of this, considering two such sets of cameras, arranged
symetrically (i.e., the locus of camera positions is the union of two
“parallel” circles of the same size). The ambiguity conditions here
are essentially the same as in the first case, except for the aspect
ratio, where the 45 degree cyclotorsion constraint has to be adapted
appropriately to account for the inclination of the optical axes with
respect to the plane(s) of motion.

8 LEVELS OF DEGENERACY

We briefly explain that self-calibration methods may be divided
into at least three groups, suffering from increasing levels of
degeneracy, i.e., for which increasingly many critical motions exist.
Inherent degeneracies, i.e., degeneracies concerning any method,
occur exactly if there is a proper virtual conic (i.e., a conic with no
real points) in three-space, different from the absolute conic, whose
projections are identical in all views of an image sequence [13].

Methods that do not enforce the planurity3 of the absolute conic,
suffer from additional degeneracies: camera configurations for
which there is a quadric, whose projections are identical in all
views, are degenerate. Kruppa’s equations are one example: The
epipolar matching constraint they represent can not distinguish
between quadrics and conics in three-space. Another example is
the linear method proposed by Triggs [15]: The planarity of the
absolute conic is a nonlinear constraint, thus omitted in the linear
approach, causing the degeneracy.

In the following, we explain that there exist even more
degeneracies for Kruppa’s equations, which do not concern the
other self-calibration methods cited in this paper. Suppose that w is
an ambiguous solution for Kruppa’s equations. This means that for
each pair of views 7 and j, there exists a quadric ®;;, which projects
to w in both views. However, Kruppa’s equations do not constrain
these quadrics to be the same for any pair of views!

The three levels of degeneracies are summarized in Table 1.
Clearly, from top to bottom, there is more and more room for the
existence of degenerate configurations. It seems to be quite difficult
to describe all the degeneracies for Kruppa’s equations explicitly,
which is why in Section 7 we only give some sufficiency conditions
for the existence of spurious solutions.

9 CONCLUSION

In this paper, we have considered the camera self-calibration
problem and the classical practical approach, based on Kruppa’s
equations. We have revealed that for one of the most natural
imaging situations (camera moving on a sphere while focusing the

3. Planarity of the absolute conic is equivalent to rank-three-ness of the
“absolute quadric” used in [15].
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sphere’s center) this approach fails, in spite of self-calibration being
possible in general. Precisely the focal length can not be estimated,
even when the other intrinsic parameters are known.

The occurrence of serious numerical instabilities due to near-
degenerate camera configurations has been demonstrated by
experiment. However, our results suggest that it should be
relatively easy to avoid this problem in practice, either by
introducing sufficient variation in the camera placement or by
using a method that does not suffer from the degeneracy.

We have shown informally that Kruppa’s equations suffer from
more degeneracies than other known self-calibration methods,
which is a prize paid for using local information (fundamental
matrices), as opposed to starting with a global projective
reconstruction. In general, this paper contributes to the under-
standing of how to successfully apply self-calibration, which needs
good algorithms, but also, awareness of degenerate situations.
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Abstract

We consider the self-calibration problem for a moving camera whose intrinsic parameters are known except for the focal length which may
vary freely across different views. The conditions, under which the determination of the focal length’s values for an image sequence is not
possible, are derived. These depend only on the camera’s motion. We give a complete catalogue of the so-called critical motion sequences.
This is then used to derive the critical motion sequences for stereo systems with variable focal lengths. © 2002 Published by Elsevier Science

B.V.

1. Introduction

One of the major goals of computer vision is the recovery
of spatial information about the environment. Classical
approaches assume that the cameras are calibrated before-
hand but a great interest in uncalibrated vision and on-line
calibration has arisen during the last decade. A key result is
that even with completely uncalibrated cameras, spatial
information—projective structure—can be obtained: the
scene can be reconstructed up to an unknown projective
transformation [6,9]. Furthermore, a moving camera can
self-calibrate, i.e. the calibration parameters can be esti-
mated solely from feature correspondences between several
images [11,13]. This allows the projective ambiguity in the
reconstruction to be reduced to a Euclidean one (up to a
similarity transformation) and we speak of uncalibrated
Euclidean reconstruction.

It is known that several types of camera motion prevent
self-calibration, i.e. the calibration parameters cannot be
determined uniquely. Accordingly, Euclidean structure
cannot be obtained, although reconstruction at some level
between projective and Euclidean is generally possible.
These degeneracies are inherent, i.e. they cannot be resolved
by any algorithm without additional knowledge. Sequences
of camera motions that imply such degeneracies will be
referred to as critical motion sequences. By ‘sequences’
we mean that not only the motion between two successive
views but that over a complete image sequence is critical.

* Tel.: +33-4-76-61-52-32; fax: +33-4-76-61-54-54.
E-mail address: peter.sturm@inrialpes.fr (P. Sturm).
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For the basic self-calibration scenario, a moving camera
with fixed calibration, we derived the critical motion
sequences in [17,18]. In this paper, we study the case of a
moving camera with variable and unknown focal length, but
whose other intrinsic parameters are known. A practical
self-calibration algorithm was proposed by Azarbayejani
and Pentland [1]. Algorithms and closed-form solutions
for the two-view case are given, e.g. in Refs. [3-5,8,12].
Newsam et al. derived the critical motions for the two-view
case [12]. In this paper, we derive a complete characteriza-
tion of critical motion sequences for any number of views
and the critical motions for stereo systems. This paper is an
extended version of [19].

The paper is organized as follows. In Section 2 we
provide some theoretical background for our approach.
The problem of deriving critical motion sequences is formu-
lated in Section 3. The critical motion sequences are derived
in Section 4. A summary of the derivations is given in
Section 5 and comments are made in Section 6. The critical
motions for stereo systems are derived in Section 7 and
conclusions are drawn in Section 8.

2. Background

The definitions in this section are mainly taken from Refs.
[2,16]. Some of the results for general quadrics are
presented only for central conics.

2.1. Notation

We refer to the plane at infinity as the ideal plane and
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denote it by Il,,. 2" is the n-dimensional projective space
and ~ means equality up to a scalar factor accounting for
the use of homogeneous coordinates. We use the abbrevia-
tion PVC for proper virtual conics (see description later).

2.2. Pinhole camera model

We use perspective projection to model cameras. A
projection may be represented by a 3 X 4 projection matrix
P that maps points of 3-space to points in 2-space: g ~ PQ.
We consider only the case of perfect perspective projection,
i.e. the projection center does not lie on I1,.

With regard to physical cameras, the projection matrix
may be decomposed into a calibration matrix K and a pose
matrix. The pose matrix represents the position and orienta-
tion of the camera with respect to some world coordinate
frame. In general, we distinguish five intrinsic parameters
for the perspective projection model: the (effective) focal
length f, the aspect ratio 7, the principal point (1, vy) and a
skew factor accounting for non rectangular pixels. The skew
factor is usually very close to 0 and we ignore it in the
following. The calibration matrix may be written as:

7 0 u
K= 0 f Vo
0 0 1

We decompose the projection matrix as follows:

1 0 0 0 _
p=xKlo 1 0 o ((f} IR’)
0 0 1 0

[ J
“\/~

P

c

The matrix P, is the canonical projection and we call its
destination the metric image plane. The canonical projec-
tion depends only on the camera’s extrinsic parameters—a
rotation matrix R representing its orientation and a 3-vector ¢
representing its position. The calibration matrix K describes
an invertible affine transformation from the metric image
plane to pixel coordinates.

2.3. Quadrics and conics

A quadric in 2" is a set of points satisfying a quadratic
equation in their homogeneous coordinates. Each quadric
can be represented by a symmetric (n + 1) X (n + 1) matrix.
A proper quadric is a quadric whose matrix has a non zero
determinant. Conics are planar quadrics; we will not distin-
guish between a conic and its matrix. A conic in 2° or 3D
conic is defined by its supporting plane and the conic’s
equation in that plane.

2.4. Virtual quadrics

A virtual quadric is a quadric with no real point. All
proper virtual conics (PVC) are central [2] and hence can
be transformed to Euclidean normal form by a Euclidean
transformation (principal axis transformation). The Eucli-

dean normal form of a virtual conic is a diagonal matrix
of the conic’s eigenvalues, which all have the same sign.

2.5. Cones

By cones we mean rank-3 quadrics in 2° with vertex not
on Il,,. A cone is uniquely defined by its vertex and any
(conic) section by a plane not containing the vertex. Cones
are used in this paper through the notion of the projection
cone of a 3D conic, i.e. the cone formed by the projection
rays of the perspective projection of the conic. The
Euclidean normal form of a cone is a diagonal matrix
diag(A;, Ay, A3, 0) with non zero A;. If the A; are all distinct
then the cone is an elliptic cone. If exactly two of the A; are
equal the cone is circular (or right). For an isotropic cone,
all three A; are equal. Each isotropic cone contains the
absolute conic (see description later).

A circular cone is invariant to arbitrary rotation about a
single line passing through its vertex. This line is called the
cone’s axis. An isotropic cone is invariant to any rotation
about its vertex.

2.6. Absolute quadric and absolute conic

The absolute quadric of 2" is defined by the equations
X+ ...+ x2=x,4, =0. The absolute conic € is the
absolute quadric of P°. (2 is a proper virtual conic in
the ideal plane whose position uniquely defines the Eucli-
dean structure of 3-space. The calibration of a camera is
equivalent to determining the image w of (2, respectively,
its dual " [7,11]. From the relation " ~ KKT, the cali-
bration matrix K can uniquely be recovered by Cholesky
decomposition [15].

3. Problem formulation

We consider a sequence of n views, generally taken from
different positions and with different orientations. The focal
lengths for the views may all be different and the other
intrinsic parameters (aspect ratio and principal point) are
known (they need not be equal for all the views). The
problem at hand is to perform focal length self-calibration,
i.e. to determine the n different values for the focal length,
which allows in general to obtain a Euclidean reconstruction
of the scene. In the following, we describe this problem in
geometrical terms, in analogy to Ref. [18].

First, calibration of a camera is equivalent to the deter-
mination of the image of the absolute conic, as ‘produced’
by that camera. Self-calibration means the same but with the
conotation that information used to calibrate does not stem
from, e.g. known metric 3D structure. Euclidean recon-
struction is equivalent to the determination of the position
of the absolute conic in 3D. The problem of Euclidean
reconstruction is slightly more general than that of self-cali-
bration: degeneracy of self-calibration implies degeneracy
of Euclidean reconstruction while the reciproque is not
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always true (e.g. self-calibration of a camera rotating about
its optical center is in general possible while any level of 3D
reconstruction is impossible, including Euclidean recon-
struction). The derivations that follow refer to degeneracies
of Euclidean reconstruction.

To determine the position of the absolute conic, some
constraints are needed. We will describe these constraints
in the following paragraph but first we give a straight-
forward informal definition for degeneracy of Euclidean
reconstruction: the Euclidean reconstruction problem is
degenerate exactly if there is a conic in 3D not identical
with the absolute conic that satisfies the mentioned
constraints [17,18]. All such conics will be called potential
absolute conics.

We now describe the constraints that may be used to
determine the absolute conic. First, the absolute conic
must be a proper virtual conic. Second, the image of the
absolute conic by any perfect perspective projection is
also a proper virtual conic. Third, the knowledge of some
intrinsic parameters constrains the projections of the abso-
lute conic in a given set of views, which in turn gives us
constraints on the absolute conic itself. For the scenario
considered here we make these constraints explicit in the
following.

The image of the absolute conic, as ‘produced’ by a
camera with calibration matrix K is given by:

1 0 —Uy
o~K K~ 0 7 _TZVO ()
— Uy —72v0 u%+72v(2)+72f2

Since f may vary and we know the other intrinsic para-
meters, there is, for each view, exactly one family of possi-
ble images of the absolute conic. Consider now a conic @ in
3D and its projection @ in one view. For ¢ being a potential
absolute conic its projection ¢ must be of the form Eq. (1)
for some non zero real value a possibly different from the
true f (remember that we suppose that the other intrinsic
parameters are known):

1 0 —Uy
2 2
¢~ 0 T -7V
—Uy —72v0 u(z) + 7'2\% + 2d*

It is easy to show that a conic has this form exactly if,
in the metric image plane, the conic is a virtual circle,
centered in the origin. To see this, we map ¢ from
pixel coordinates to the metric image plane using the
true calibration matrix:

0 0
b ~K'¢k~10 2 0
0 0 &

For any non zero real value of a, this represents a
proper virtual circle whose center is the coordinate

origin. It is important to note that this statement is
independent of the actual true value f of the focal
length. Since all other intrinsic parameters are known
the only important parameters for the consideration of
degeneracy of Euclidean reconstruction are the extrinsic
parameters of the views in a given sequence.

We now summarize the discussion.

Proposition 1. Consider a sequence of n views with
known aspect ratio and principal point but unknown and
possibly different values for the focal length. Let P,; be the
canonical projection for view i,i = 1,...,n.

Euclidean reconstruction is degenerate exactly if there is
at least one 3D conic @ not identical with the absolute conic
such that:

o @ is a proper virtual conic;

o the ¢;, i = 1,...,n, where ¢; is the projection of P by P;
are proper virtual circles centered in the origin. This is
equivalent to the ¢; being represented by diagonal
matrices whose diagonal elements are all non zero real
values of the same sign the first two elements being equal.

Definition 1. Any @ as defined in Proposition 1 is called a
potential absolute conic.

Consider a sequence of n views. Let (R;, ;) be the extrin-
sic parameters of view i,i = 1,...,n. If Euclidean recon-
struction is degenerate for the sequence of views, we say
that {(R;,1)|i = 1,...,n} is a critical motion sequence for
Euclidean reconstruction.

The aim of the following section is to derive all generic
critical motion sequences, i.e. all configurations where there
is no unique solution to Euclidean reconstruction.

4. Derivation of the critical motion sequences

In this section the critical motion sequences are derived
based on Proposition 1 and Definition 1. We proceed in a
constructive manner: given a generic proper virtual 3D
conic &, we determine all possible extrinsic parameters
that form a critical motion sequence with respect to @,
i.e. for which @ is a potential absolute conic. The deriva-
tions are divided into two parts considering potential abso-
lute conics @ which lie/do not lie on I1,. The results are
summarized in Section 5.

4.1. Potential absolute conics on 11,

Let @ be a PVC on the ideal plane. Its canonical
projection ¢ by a camera with extrinsic parameters (R, ?)
is given by:

¢ ~ ROR" 2)
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Like it is the case for all geometric entities on the ideal plane
the projection depends only on the orientation of the camera
not on its position.

We now determine all orientations R for which @ is a
proper virtual circle centered in the origin. This implies that
¢ is a diagonal matrix of the form: ¢ ~ diag(b, b, 1). If we
choose the free scale factor for @ such that det & = b2 =
det ¢, the ~ in Eq. (2) can be replaced by an equality sign:

b 0 0
0 b 0|=R®RT (3)
0 0 1

Eq. (3) implies that @ has a double eigenvalue b and the
single eigenvalue 1. The case b =1 is of no interest here
because this would mean that @ is the frue absolute conic
(the absolute conic is the only conic on the ideal plane with a
triple eigenvalue).

From Eq. (3), we derive:

b 0 0\ /0 0
R™o » ollo|=a®r"]| O
0 0 1/\1 1

and further:

0 0
R'lo|=ar"| O
1 1

Hence the vector
0

ve=R"| 0 “
1

is an eigenvector of @ to the eigenvalue 1. Since 1 is a
single eigenvalue, all its associated eigenvectors are equal
up to scale. This means that for all rotation matrices R in a
critical motion sequence the vectors vz must be equal up to
scale.

It is easy to show that (vg,0)" is nothing else than the
ideal point of the optical axis for a camera with orientation
R. All vy being equal up to scale is thus equivalent to the
optical axes of all views being parallel. This is thus a neces-
sary condition for critical motion sequences with respect to
a conic on the ideal plane.

We now show that this is also a sufficient condition.
Remember that eigenvectors of symmetric matrices that
are associated to different eigenvalues are mutually ortho-
gonal [2]. Thus, the eigenspace of @ for the double eigen-
value b consists of all vectors orthogonal to v. Let r,-T be the
row vector representing the ith row of the rotation matrix R.

From Eq (4) we have r; = vg. Since R is an orthogonal
matrix, we have r; L v and r, L vg, which means that r,
and r, are eigenvectors of @ associated to the eigenvalue b.
We thus obtain:

; ;
ROR = |/ |D(ry r, r3)=| s [(bry bry r3)
g i
b 0 0
=10 b O
0 0 1

In conclusion, the projection of @ is a virtual centered circle
exactly if the ideal point of the camera’s optical axis is
(vT,O)T where v is the eigenvector of @ associated to its
single eigenvalue. Hence, a motion sequence is critical with
respect to a PVC on the ideal plane if and only if the optical
axes of all the views are parallel.

4.2. Potential absolute conics not on 11,

Contrary to conics on the ideal plane the projection of
conics not on II, depends on both camera position
and orientation. First, we deal with position then with
orientation.

4.2.1. Position

Let @ be a PVC not on the ideal plane. Consider a view
with optical center at position 7. Let ¢ be the canonical
projection of @. Let A be the projection cone of @ (cf.
Section 2.5).

One condition for @ being a potential absolute conic is
that ¢ is a circle, centered in the origin of the metric image
plane. Note that the origin of the metric image plane is the
camera’s principal point, i.e. the intersection of the optical
axis with the image plane. Since the optical axis is perpen-
dicular to the image plane the projection cone A must be
circular and its axis is the camera’s optical axis. The vertex
of the projection cone being the optical center ¢, we obtain
constraints on the possible camera positions in a critical
motion sequence: for a potential absolute conic @ all possi-
ble camera positions are the vertices of circular cones that
contain @. These are summarized in the following (proofs
are given in Appendix A).

If & is a virtual circle then the locus of possible camera
positions in a critical motion sequence is the line L. perpen-
dicular to the circle’s supporting plane and passing through
the circle’s center (Fig. 1(a)). If @ is a virtual ellipse then
the locus of camera positions is the union of a real ellipse V¥,
and a real hyperbola ¥y, (Fig. 1(b)). The supporting planes
of the three conics @, ¥, and ¥, are mutually perpendi-
cular (there are further relations between these conics, cf.
Appendix A).
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(a)
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(b)

B

Fig. 1. Locus of camera positions in a motion sequence critical with respect to a conic @ not on the ideal plane. The conic @ is shown in dotted style to
illustrate that it is virtual and can in fact not be drawn. The figures are further explained in the text. (a) The case of the PVC @ being a circle. (b) The case of the
PVC @ being an ellipse.

4.2.2. Orientation

The results of the previous paragraph are necessary
conditions that hold for camera positions in a critical motion
sequence. To obtain sufficient conditions, we now consider
the orientation of cameras. First note that rotations about the
optical axis are not important here: if the projection of @ is a
circle centered in the origin (the principal point) then any
rotation about the optical axis will preserve this property.
Hence, the only part of camera orientation that matters is the
direction of the optical axis.

For the camera positions derived in the previous para-
graph, we have to determine the directions of the optical
axis for which @ is projected onto a circle centered in the
origin. The proofs of the following statements are given in
Appendix A.

If @ is a virtual circle (cf. Fig. 1(a)) then the optical axes
of all views have to coincide with L for the camera config-
uration to be critical. The only exception is that at two
camera positions on L the optical axis might be oriented
arbitrarily. These positions are symmetric with respect to
the supporting plane of @; their distance d from that plane

is related to the radius r of @ by d = Im(r) (the imaginary
part of the radius, which is complex due to @ being a virtual
circle). For more details, see Section B.1.

To summarize, critical motion sequences with respect to a
circle @ consist of collinear optical centers and optical axes
passing through all optical centers except that at two posi-
tions the optical axis may be oriented arbitrarily (several
views might be taken from these two positions by a camera
rotating about its optical center).

If @ is a virtual ellipse (cf. Fig. 1(b)) and the optical
center lies on the ellipse ¥, (respectively the hyperbola

¥, then the optical axis has to be the tangent of W, (respec-

tively ¥;) at the optical center in order for the camera
configuration to be critical.

5. Summary of critical motion sequences for a moving
camera

The following camera positions/orientations constitute
critical motion sequences for Euclidean reconstruction:

Case I: Arbitrary position of optical centers but parallel
optical axes. This means that camera motions are pure
translations possibly combined with an arbitrary rotation
about the optical axis and a reversal of the gaze direction.

Case 2: Collinear optical centers. The optical axes at two
positions may be oriented arbitrarily, all others coincide
with the line joining the optical centers. This means that
camera motions are pure forward translations with two
exceptions where the translation may be followed by an
arbitrary rotation about the optical center.

Case 3: The optical centers lie on an ellipse/hyperbola
pair as shown in Fig. 1(b). At each position, the optical
axis is tangent to the ellipse/hyperbola. A necessary
condition derived from this is: the views may be parti-
tioned into at most two sets for which the centers and
optical axes are all coplanar. In addition, these two sets
define planes which are perpendicular to each other.

If we consider only one of the two conics ¥, or ¥}, we
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can describe the critical motion sequences as follows: a
camera moving on a trajectory that may be described as
(arc of) a conic and always gazing in the direction of
motion, i.e. the current tangent direction. An example
might be a camera mounted on a vehicle gazing in driving
direction.

Newsam et al. derived degenerate configurations for two-
view self-calibration [12]. Their results are of course
contained in the earlier list.

Our results were reported in Ref. [19]. Kahl considered
the problem in Ref. [10] but his results are not complete. As
for case 2, he only obtains two subcases:

e two optical centers and arbitrary orientation;
e collinear optical centers and all optical axes aligned with
the optical centers.

Whereas the ‘union’ of these cases (case 2 described
earlier) also describes critical motion sequences.

5.1. Degree of ambiguity

We now discuss the resulting degree of ambiguity in the
Euclidean reconstruction or the ego-motion estimation of
the camera for the earlier cases of critical motion sequences.

5.1.1. Case 1

We only consider the case of unaligned optical centers.
Aligned optical centers are discussed in Section 5.1.2.

All potential absolute conics lie on the ideal plane. Let
(QT, O)T be the ideal point of the optical axes in the critical
motion sequence. It can be shown that the potential absolute
conics form exactly the following 1-degree-of-freedom
family:

d\) ~ 1+ 200"

i.e. the family of conics spanned by the absolute conic
(represented by the identity matrix /) and the degenerate
conic QQT.

Since all potential absolute conics lie on the ideal plane
the ideal plane can be recovered uniquely, which means that
affine reconstruction is possible [18,10]. This implies, e.g.
that relative camera displacements in the gazing direction
can be estimated. However, the 1-dof-ambiguity for Eucli-
dean reconstruction does not allow measuring angles
correctly. For example, the direction of translation between
different viewing positions (with respect to, e.g. the gazing
direction) cannot be determined or analogously the direction
of a detected obstacle’s location.

5.1.2. Case 2

Different subcases have to be discussed. First, if all the
optical axes are aligned (i.e. are identical with the line L
shown in Fig. 1(a)) then the motion sequence is also critical
according to case 1. There is a 2-dof-family of potential
absolute conics: the conics described in Section 5.1.1 and

all circles whose centers lie on L and whose supporting
planes are orthogonal to L. Compared to case 1, affine
reconstruction is not possible here. This would usually
cause a wrong estimation of relative displacements, e.g.
the time of impact with respect to an obstacle might be
wrongly estimated.

If all the optical axes are aligned with one exception (i.e.
at one viewing position ¢ along the line L the camera gazes
at other directions than along L) then there remain a 1-dof-
family of potential absolute conics. These are the (true)
absolute conic and one virtual circle per plane that is ortho-
gonal to L (the circles’ centers lie on L). These conics are
the intersections of the planes orthogonal to L and the
isotropic cone with vertex z. Affine reconstruction is not
possible and as before relative displacements and angles
cannot be estimated correctly.

The third subcase occurs when the camera gazes in other
directions than along L at exactly two viewing positions.
Only two potential absolute conics remain, which means
that there are only two different solutions for Euclidean
reconstruction. The potential absolute conics are the two
intersections of the isotropic cones with vertices at the two
exceptional viewing positions (one intersection is the true
absolute conic of course, the second one lies on
the equidistance plane of the two viewing positions). The
wrong solution can often be ruled out in practice by imposing
that the reconstructed scene lies in front of all the views.

5.1.3. Case 3

This case is difficult to explain when the motion sequence
comprises three or fewer viewing positions (please contact
the author for results). For more than three viewing posi-
tions, however, it is easy to see that only two potential
absolute conics are possible: the true absolute conic and
the virtual ellipse shown in Fig. 1(b). Thus, although case
3 (motion on conic arcs) seems to be relevant in practice the
existence of only two solutions for Euclidean reconstruction
is reassuring. As noted by Pollefeys the wrong solution can
often be ruled out because it would lead to unrealistic
estimates of the focal length [14].

6. Comments

In this section, we discuss a few special cases.
6.1. Two cameras in general position

From case 2 in the Section 5.1.2, it follows that Euclidean
reconstruction is always degenerate from only two views
independently of their position and orientation. In fact, it
is known that in this case there is a two fold ambiguity for
the absolute conic: let w; and w, be the projections of the
absolute conic in the two views. The projection cones of w,
and w, intersect of course in the absolute conic but in
general also in a second conic @ hence the ambiguity.
However, self-calibration can in general be achieved since
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@ has the same projections as the absolute conic (it lies on
the same projection cones). This illustrates that Euclidean
reconstruction and self-calibration are not exactly equiva-
lent problems. As mentioned before the ambiguous solution
for Euclidean reconstruction can often be ruled out in prac-
tice by imposing that the reconstructed scene lies in front of
both cameras.

6.2. Camera rotating about its optical center

A camera rotating about its optical center while possibly
changing its focal length can always be calibrated from two
views whose optical axes do not coincide. This is briefly
explained in the following. The two views are critical for
Euclidean reconstruction according to case 2 (cases 1 and 3
allow only one optical axis per camera position in a critical
motion sequence). The position ¢ of the two views is one of
the two exceptional points. The cone defined by @ and ¢
contains the absolute conic (it is an isotropic cone, cf.
Section B.1). Hence, the projections of @ are identical
with the image of the absolute conic, which means that
(self-) calibration has a unique solution.

6.3. Fixation

Consider cameras fixating a finite point (i.e. the point lies on
the optical axes of the cameras). For two cameras, the config-
uration is always critical whereas for more than two cameras
(with different optical centers) it is always non critical.

The first statement is easy to understand. There is a one-
dimensional family of possibilities to realize case 3, i.e. a
one-dimensional family of ‘motion conics’ ¥: the conic has
to contain the optical centers and has the two optical axes as
tangents. This gives four constraints on the five degrees of
freedom for a conic which means that there remains one
degree of freedom for ¥ and thus for the potential absolute
conic P.

Consider now an additional camera that fixates the same
finite point as the two others. Suppose the configuration
were still critical. From Section A.2.1 we know that optical
axes for optical centers on ¥, and ¥}, are mutually skew
hence it follows that the three optical centers have to lie on
either ¥, or ¥, and the optical axes are tangents to the same
conic. This would imply that the fixated point lies on three
different tangents to the same conic, which is not possible
[16]. Hence, the assumption that the configuration is critical,
is contradicted.

7. Derivation of the critical motion sequences for stereo
systems

The results presented in the previous sections allow us to
study degeneracies of Euclidean reconstruction for stereo
systems. Here, a stereo system consists of two cameras
with coplanar optical axes and symmetric but possibly vari-
able vergence angles o (cf. Fig. 2). The distance between

Axis of the
stereo system

N

|

|
A___J____l\o&\

Fig. 2. The type of stereo system discussed in this paper.

the two cameras is fixed. The focal lengths of the two
cameras are not constrained to be equal and they may
vary freely between different images. We define the axis
of a stereo system as the line perpendicular to the baseline
and passing through its midpoint.

A single pair of images taken by such a stereo system is of
course critical (cf. Section 6.3). In the following, we reveal
the conditions for two stereo pairs to be critical. They are
critical if the set of individual views constitute a critical
motion sequence as described in the previous sections. We
consider several cases:

e coplanar stereo pairs with identical vergence angles;
e coplanar stereo pairs with variable vergence angles;
e non coplanar stereo pairs.

By coplanar stereo pairs we mean that all the optical
centers and optical axes are located in the same plane.

Before examining the different cases, we give an intro-
ductory remark concerning case 3 of Section 5.

7.1. Concerning case 3

For a given stereo system, we want to establish
constraints on the possible locations of ‘motion conics’
VY. Since the optical axes of the two cameras in the stereo
system are coplanar the two optical centers have to lie on
either the ellipse W, or the hyperbola ¥} but cannot be
distributed on both (cf. Section A.2.1). It is now easy to
show that due to symmetry of the vergence angles, ¥
must be symmetric with respect to the axis of the stereo
system. Since ¥ cannot be a circle (cf. Section A.2.1) it
has exactly two symmetry lines (which are perpendicular to
each other). This means that the axis of the stereo system
coincides with one of these two symmetry lines of V.

7.2. Coplanar stereo pairs with identical vergence angles

For the trivial case of a stationary stereo system any
number of stereo pairs are critical. Non-trivial cases are
discussed in the following.

7.2.1. Parallel optical axes

If the vergence angles are of 90°, i.e. if the two optical
axes are parallel then each stereo pair is critical according to
cases 1 and 3. According to case 1 the combination of two
stereo pairs is only critical if the stereo system undergoes a
pure translation or a rotation by 180° in the plane of motion,
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Fig. 3. Two stereo systems with opposite gazing direction but identical axes
constitute a critical motion sequence according to case 3. The hyperbola
shown is the ‘motion conic’ .

i.e. areversal of gaze direction. Case 3 is dealt with as in the
following paragraph.

7.2.2. Convergent (non parallel) optical axes

The stereo pairs can only be critical according to case 3
and this only if there is an ellipse or a hyperbola ¥ contain-
ing all four optical centers and having all optical axes as
tangents. From Section 7.1, we conclude that the axes of the
two stereo pairs do either coincide or are perpendicular to
each other. It can be shown that in case they are perpendi-
cular, there is no possibility to place the two stereo pairs in a

(a)

way that a conic ¥ as described earlier exists (since the
distance between the two cameras and the vergence angles
are fixed). In case the axes coincide a conic ¥ exists exactly
if the two stereo pairs have opposite gaze direction as shown
in Fig. 3.

7.2.3. Summary

Two coplanar stereo pairs with identical vergence angles
are critical in exactly the following situations. If the optical
axes of the stereo system are parallel then the stereo pairs
are critical if they are related by a pure translation possibly
followed by a reversal of gaze direction. If the optical axes
are convergent then the stereo pairs are only critical if they
gaze in opposite directions and if their axes are identical.
The only case of practical importance is pure translation of a
stereo system with parallel optical axes.

7.3. Coplanar stereo pairs with variable vergence angles

Due to varying vergence angles at least one stereo pair
has convergent optical axes. Hence, the combination of the
stereo pairs can only be critical according to case 3. As
stated in Section 7.1, the conic ¥ must be symmetric with
respect to the axes of the stereo pairs, which implies that
these are either identical or perpendicular to each other. It
can be shown that if they are identical no conic ¥ as
described earlier can exist. For perpendicular axes, there
is a one-dimensional family of possibilities for placing the
stereo pairs and setting their vergence angles relative to each
other such that the combination of the stereo pairs is critical.

In summary, if the vergence angles for the two stereo

(b)

Fig. 4. Possible arrangements of stereo systems and ‘motion conics’ (described in the text). (a) Possible arrangement of stereo systems and motion ellipse V.,
as described by case 3 in Section 5. For vergence angles a < 90° the stereo system gazes away from the ellipse’s center. (b) Only for vergence angles a > 90°
the stereo system gazes towards the ellipse’s center. (c) Possible arrangement of stereo systems and motion hyperbola W,
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Fig. 5. One possible non coplanar critical motion sequence for stereo
systems.

pairs are different the configuration can only be critical if the
axes of the stereo pairs are perpendicular to each other. The
exact conditions for being critical are complicated and
omitted here since they do not really contribute to the
understanding of this discussion.

7.4. Non coplanar stereo pairs

Non coplanar stereo pairs can only be critical according
to cases 1 or 3. Case 1 is only possible if the optical axes are
all parallel (vergence angle @ = 90°). Critical motions are
exactly pure translations possibly followed by rotations
about axes parallel to the optical axes or by reversals of
the gazing direction.

As for case 3, the non coplanarity implies that one stereo
pair is located on the ellipse ¥, and the other on the hyper-
bola ¥,. We assume that practical vergence angles are
inferior (or equal to) 90°. This means that the axis of the
stereo system located on the ellipse ¥, is directed away
from the ellipse’s center as shown in Fig. 4(a), i.e. a case
as in Fig. 4(b) is not possible. As for the hyperbola the
contrary is valid, i.e. the stereo system’s axis will be direc-
ted towards the hyperbola’s center (cf. Figs. 3 and 4(c)).

By comparing this discussion with Fig. 1(b), it is clear
that for the only cases relevant in practice the axes of the
two stereo pairs must be identical as shown in Fig. 5 (for the
other potential arrangements, one stereo pair would fixate a
point that is behind the other stereo pair, i.e. the common
field of view would be either empty or very small making
image matching and thus self-calibration inherently impos-
sible). The relative position of the stereo pairs is thus as
follows. Their axes coincide and their ‘supporting planes’
are orthogonal to each other.

In conclusion, the only critical situations that might be
encountered with non coplanar stereo systems are:

e a stereo system with parallel optical axes undergoing
pure translations (possibly in several different direc-
tions), possibly followed by rotations about axes parallel
to the optical axes and reversals of the gazing direction.

e a stereo system with parallel or convergent optical axes

that is rotated by 90° about its axis followed by a
translation along its axis and possibly a reversal of gazing
direction.

8. Conclusions

We have derived all motion sequences that are critical for
Euclidean reconstruction from image sequences with vari-
able and unknown focal length whose other intrinsic para-
meters are known. The critical motion sequences are
described geometrically. Our results are rather encouraging
since only few cases exist that are likely to be met in prac-
tice. The most important cases are pure translation and espe-
cially pure forward motion. One also has to be aware of the
fact that motion on a conic arc while gazing in the direction
of motion is critical although in general there are only two
ambiguous solutions for Euclidean reconstruction and self-
calibration. Another important result is that an image
sequence taken by a camera that fixates a finite point is
always critical when two views only are used but never
critical with three or more views.

Both pure translation and motion on a conic are also
critical for self-calibration when all intrinsics are constant
but unknown [18]. In that case, however, the degree of
ambiguity in the solution is higher. Moreover, general
planar motions are always critical, which is not the case
for the situation dealt with in this paper.

Our results allowed us to study the critical motions of
stereo systems. We did this for various situations, stereo
systems undergoing planar or non planar motion and having
fixed or variable vergence angles. Our results show that it
should be rather easy to avoid critical motions in practice: it
suffices to guarantee that the axes of the different stereo
pairs in a sequence are neither parallel nor perpendicular
to each other.
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Appendix A. Locus of vertices of circular cones
containing a conic section

Consider a proper virtual conic @. We want to determine
the locus of all real points C such that the cones formed by
@ and with C as vertex are circular. Without loss of general-
ity, we can choose simple coordinates for the problem as
follows: let the supporting plane of @ be the plane Z=0
and let the conic be centered in the origin and with axes
aligned with the X and Y axes. Hence, the conic’s matrix is
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(a)

c

(b)

Fig. Al. For any circular cone and any plane, the orthogonal projection of the cone’s vertex on that plane lies on one of the two symmetry lines of the conic

section induced by the cone and the plane (see text for more details).

of the form:
a 0 O
d~10 b O
0 0 -1

Since @ is a proper virtual conic we have a,b < 0.
Letnow C = (X,Y,Z, l)T be the vertex of a cone A that
contains @ (with Z # 0). The cone’s matrix is given by:

X
a 0 —a— 0
V4
Y
0 b —-b— 0
Z
A~ 2 2
XY aXPeeyon
a7 Z 72 z
1
0 0 — -1
V4

We want to establish C for which the cone A is circular.
Cones with finite vertex are circular exactly if the conic
obtained by intersection with the ideal plane has a double
eigenvalue [2]. This condition is explored for the two differ-
ent cases of @ being a virtual circle or an ellipse (there are
no other cases for PVC [2]).

A.l. @ is a virtual circle

This case occurs when a = b. For A to be a circular cone,
its vertex C must lie on the line passing through the center of
@ and being orthogonal to its supporting plane. Here, this is
the Z-axis.

A.2. @ is a virtual ellipse

This case occurs when a # b.
First, we show that C must lie in one of the symmetry

planes of @, which are defined as follows. A symmetry
plane of an ellipse is a plane orthogonal to the ellipse’s
supporting plane, which contains one of the ellipse’s two
symmetry lines. Besides the supporting plane itself the two
symmetry planes are the only planes which conserve @ by
reflection.

Consider a circular virtual cone with vertex C'. Let IT be
aplane with C' & ITand let @' be the conic cut out from the
cone by @ (Fig. Al(a)). Let C” be the orthogonal projection
of the cone’s vertex C’ on @. It is easy to show that C” lies
on one of the two symmetry lines of o' (Fig. A1(b)). Since
C" is the orthogonal projection of C’ on II the plane
spanned by C’ and that symmetry line is a symmetry
plane of @’. We conclude that for all conic sections of a
circular cone the cones vertex lies on an associated symme-
try plane.

In our case, the symmetry planes of @ are the planes
X=0 and Y= 0. From the earlier discussion it follows
that the vertex C of the circular cone A must lie in one of
these planes. In the following, we examine the case X = 0
(the other case can be treated in an analogous way). The
cones matrix is thus simplified to:

a 0 0 0
0 b —bZ 0
Z
A~ 2 _
O_bz Y’ —1 1
Z 7?2 Z
0 0 1 -1
V4

As stated earlier, the cone is circular exactly if the conic
obtained by intersection with the ideal plane has a double
eigenvalue. This conic @, is given by the upper left 3 X 3
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submatrix of A:

a 0 0

Y

0 b —b—

d,, ~ Z
2 _

0 _bz bY* — 1
Z Z?2

The three eigenvalues of @, are:

B(Y2+2Z% — 1 = JP2(Y2 + 222 + 26(Z2 — Y>) + 1
a and 27

Equating the second and third eigenvalues leads to subcases
of equating the first eigenvalue a with the second or third
eigenvalue. Equating the first eigenvalue a with the second
or third eigenvalue leads to the following constraint on Y
and Z (after some manipulations using MAPLE):

abY* + (b —a)@Z’> + 1) =0 (AD)

Eq. (Al) can be represented by the following matrix
equation:

ab 0 0
Y,Z, )] 0 a—a) 0 Z
0 0 b—a 1
The matrix
ab 0 0
Y~10 ab-—a 0
0 0 b—a

represents a conic in the plane X = 0 whose type is:

e a real ellipse, if b < a. Note that ¥ cannot be a circle
(this would be the case if ¥, = ¥, which is equivalent
to a = b in contradiction to the assumption that a # b).
e a hyperbola, if a < b.

If we consider the case Y = 0, we obtain just the recipro-
que result.

Hence the locus of vertices of circular cones containing a
virtual ellipse @ is the union of a real ellipse ¥, and a real
hyperbola ¥, (cf. Fig. 1(b)). The following relations hold
between @, W, and V,. Their supporting planes are
mutually orthogonal and each of them is a symmetry
plane for the two other conics. The hyperbola V¥ passes
through the focii of V..

A.2.1. Further observations

We note that ¥ cannot be a circle (property used in
Section 7). It would be a circle if (cf. Eq. (A2)) ¥, =
W,,, i.e. if ab = a(b — a), hence if a = 0. This is in contra-
diction with the fact that a is an eigenvalue of the proper
virtual conic @ and thus non zero.

Another property that is used in Section 6 is easy to show.

Namely, all real tangents of ¥, and of ¥y are mutually
skew, i.e. there is no tangent of ¥, that has a real inter-
section point with any tangent of V.

Appendix B. Axis of circular cones containing a conic
section

In the following we prove the statements made in Section
4.2.2. Remember that the optical axis is the axis of the circular
cone A (cf. Section 4.2.1). As in Appendix A we consider the
two cases of @ being a virtual circle or a virtual ellipse. We use
the same simple coordinates as in Appendix A.

B.1. & is a virtual circle

We already know that the vertex of a circular cone A
containing @ is a point with coordinates (0,0, Z, l)T, i.e.
A is given by:

a 0 0 0
00a 0 O
A~ _1
00 "7 2
00 L o

z

The intersection of A with the ideal plane is a conic
given by:

a 0 0

b, ~ 0 a 0
1
0 0 7

For 72 # — 1/a, ®,, has a double and a single eigenvalue,
i.e. A is a circular cone with the Z-axis as axis. However, for
Z = *1/\/—a (these are real numbers since a < 0), P, is
the absolute conic (given by the identity matrix) which
means that A is an isotropic cone. Isotropic cones are invar-
iant to rotation about their vertex. Hence, the projection of
an isotropic cone by a camera located at its vertex is
always a centered virtual circle, regardless of the camera’s
orientation.

B.2. @ is a virtual ellipse

It is easy to show that in this case, A cannot be an isotro-
pic cone, i.e. at each possible camera position, there is only
one possible direction for the optical axis (given by the
cone’s axis), such that the camera configuration is critical.
In the following we prove that the axis of A is the tangent
line to ¥ at C that lies in the supporting plane of ¥ (nota-
tion as in Appendix A).

Another definition of the axis of a circular cone as
that given in Section 4.2.1, is as follows: exactly planes
orthogonal to the axis cut the cone in circles, i.e. conics
containing circular points.
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The tangent line to ¥ at C is given by (coordinates in the
plane X = 0):

Y abY
T~V Z|~|ab-aZ
1 b—a

The planes orthogonal to the line T are given by:
0
ala — b)Z
abY
d

for real d. The two ideal intersection points of IT and A are:

+ala(a? + b> — 2ab — a’bY?)
abY
alb — a)Z
0
They are circular points since:
0% + 03+ 03 = alb — a)abY* + (b — a)aZ® + 1))
which is, cf. Eq. (A1), equal to 0.
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1. Introduction

Camera self-calibration has been studied for various scenarios. In the original sce-
nario [3], the case of a camera with constant but completely unknown intrinsic
parameters is considered. Since then, this has been extended to cases where all but
one of the intrinsic parameters may be varying [16,12]. Reports on recent advances
and general overviews of the topic can be found in [11,4].

In parallel to the proposition of new algorithms, research has been conducted on
“critical motions,” where camera configurations or trajectories will render self-cali-
bration impossible in theory and unstable in practice, see e.g. [1,13,14,18,19,21,23].

In this paper, we consider what may be the simplest self-calibration scenario:
two views of an unknown static scene are taken by a camera with constant param-
eters, with the assumption that all intrinsic parameters except the focal length are
known. Although very simple, we believe that this is a very useful scenario in prac-
tice. It has been shown that it is even possible to calibrate a varying focal length
from two views [6]. Simple algorithms for this purpose were proposed in
[1,2,15,16]. One of the drawbacks of this scenario is that the problem is unsolvable
whenever the optical axes of the two views are coplanar [14,15,21], which is always
approximately the case for stereo systems. Other less likely critical configurations
are also described in [14,15,21].

In this paper, we show that the assumption of a constant focal length reduces the
number of critical configurations. The generic critical configurations (which we will
also refer to as singularities or degeneracies) of the problem are given: the problem is
unsolvable whenever the optical axes of the two views are parallel or if they intersect
at a finite point equidistant from both optical centers.

We show that two linear and one quadratic equations can be derived from the sin-
gular value decomposition (SVD) of the fundamental matrix. All critical configura-
tions for the individual equations are then revealed in detail. Especially, it is shown
that the quadratic equation degenerates only in the generic cases, or in some cases
when the focal length is equal to 41, whereas the linear equations’ critical configu-
rations are the same as for the above problem of estimating a varying focal length.

We believe that such a study of critical configurations is important, since it indi-
cates which configurations to avoid in general, and explains why certain algorithms
may still fail (see e.g., a study on Kruppa equations [19]).

The performance of the calibration equations is evaluated using synthetic and real
data. In both cases, we are interested in investigating the camera setups close to crit-
ical configurations. As for the real images, we show that, when the critical configu-
rations are avoided, the results are of acceptable accuracy and stability.

This paper is an extended version of [20], and contains more experimental results
and a more in-depth theoretical study.

Organization. The problem is formulated in Section 2 and the calibration equa-
tions are derived in Section 3. Generic and equation-specific singularities are summa-
rized in Sections 4 and 5. Experimental results are provided in Section 6 and the
paper is concluded in Section 7. The appendices contain all proofs for the equa-
tion-specific singularities, organized in several sections in a logical sequence.
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Notations. In this paper, matrices are represented in sans serif font (e.g., K), vec-
tors in bold face (e.g., q), and scalars in italics. Coeflicients of a matrix U (respec-
tively, a vector v) are denoted by Uj (respectively, v;). Equality of matrices or
vectors, up to scale, is denoted by ~. For any vector v, [v]. represents the skew-sym-
metric matrix associated with the cross product, i.e., vx w = [v],w. Transposition of
a vector v is denoted as v', and the inverse of the transpose of a matrix A as A~". In
complex equations, we often use the shorthand notations ¢, = coso, s, = sina, and
t, =tana.

2. Problem formulation

Throughoutthispaper, weuse perspective projectionasthecameramodel, with thefol-
lowing intrinsic parameters: the focal length f, the aspect ratio 7, and the principal point
(1o, Vo). A 3D point Qis projected to an image point q via

q~ PQ ~ KR(I - t)Q,

where the rotation matrix R and the vector t represent the camera’s orientation and
position, respectively. The calibration matrix K is defined as

tf 0 wu
K= 0 f [20)
0 0 1

In the following, assume that two images of a static scene are available and that a
projective reconstruction is possible or, equivalently, that the fundamental matrix
can be computed. Without loss of generality, assume that the first camera is located
at the origin and that its rotation matrix is the identity matrix. With R and t being the
extrinsic and K’ the intrinsic parameters of the second camera, the fundamental ma-
trix of two images is given by [11]

F~K R[] K.

We assume that the aspect ratio and the principal point are known for both images
and that their focal lengths are identical. We can thus move from a completely
uncalibrated space to a “‘semi-calibrated” one, by computing an intermediate be-
tween the fundamental matrix and the essential matrix (R[t]x in the above
equation)

7 0 0 T 0 u 1 0 0
G~10 1 O|F[O I v |~]10 1 0|R]
uy, vy 1 0 0 1 0 0 f

X

100
o1 0] (1
00 f

We call G the semi-calibrated fundamental matrix.
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3. Calibration equations

Let the singular value decomposition [5] of G be given by
G=UxV",

with X = diag(a,b,0) being the diagonal matrix of singular values (a,b > 0) and U
and V orthogonal matrices. We denote by u; and v; the ith and jth column of U
and V, respectively. Note that the second epipole € of G is its left null space, i.e.,
¢ ~uz. It can be shown [9,23] that Kruppa’s equations can be reinterpreted by the
following relationship in terms of fundamental matrix and the epipole:

20 0 20 0
Gl o /2 o|G ~[e.| 0 /2 0]ll,.
0 0 1 0 0 1
In terms of the SVD of G, this can be written as
20 0 20 0
usvil o 2 o |VvZU ~w] | 0 /2 0 |[us),.
0 0 1 0 0 1

Multiplying the equation by U" from the left and U from the right gives, due to the
orthogonality of U

20 0 u! 20 0
VLo 2 o|va~|ul w0 /2 0w, (u w u)
0 0 1 u! 0 0 1

u! 20 0
~ | —uf 0 2 0|(w —u 0).
or 0 0 1

The last row and the last column of this matrix equation are zero vectors, so we con-
centrate on the upper left 2 x 2 part of the equation

2 2
Ly (100 (S 00
1 2 2 2
T 0 f* 0 |(avy bvy)~ T 0 2 0 |(uwm —w).
bv, —u
0 0 1 0 0 1

Making use of the fact that the vectors vy, etc., have unit norm, we can further sim-
plify the above equation to obtain

aA(fP+ V(1 —=f2)  abVaVa(l —f?)
abVy V(1 —f2) b (2 + V51— f2)

N P+ U0 =, —UnUxn(l—f?)
~UyUn(1—f*) f2+U0501-7%)
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The equality (up to scale) of these two symmetric matrices gives rise to three individ-
ual quadratic equations in /2 (by forming the cross-product of the vectors containing
the three different coefficients of each matrix). Two of these have the trivial solution?
f? = 1. Factoring this out, we thus obtain two linear equations and a quadratic one:

f2{aU31U32(1 — V%l) + bV31V32<1 — U%Z)} + U32V3](aU31V31 +bU32V32) = O,

(2)
fz{aV31V32(1 —U3,) +bU3 U (1 — V_%z)} + Uz V(aUsy Vi + bUnV3) =0,
(3)
@0 -U3) (1 =13) = (1= UL (1 - V3,)}
‘i‘fz{aZ(U%l + V%l - 2U§1V§1) - bZ(ng + V%z - 2U§2V§2)}
+ {anglygl - sz.%ngz} =0. 4)

These are our self-calibration equations. They are of course algebraically dependent,
but we will see in the following sections that they may be singular in different
conditions.

3.1. Calibration algorithm
A simple calibration algorithm can be formulated as follows:

(1) Estimate the fundamental matrix between the two views (algorithms with good
performance are given in [22]).

(2) “Undo” the known intrinsic parameters, as shown in Eq. (1).

(3) Compute the SVD of G and extract the coefficients Uz, Us,, V31, and V3,, as well
as the non-zero singular values a and b.

(4) Construct and solve any of the Egs. (2)—(4). In practice, we only solve the qua-
dratic equation. The spurious solution can either be ruled out using the linear
equations, or usually by simply taking the solution closest to a reasonable guess
(in simulations, the spurious solution was always observed to be far off the true
one).

(5) Optionally, the result can be improved by bundle adjustment, after having esti-
mated the relative pose of the cameras.

3.2. On standardization
It is often advisable to work in “‘standardized” image coordinates [8], which is

usually achieved by translating and scaling image coordinates appropriately. The
transformation applied in step (2) of the above algorithm, mainly amounts to such

2 The case where the true squared focal length equals 1, is discussed in Appendix D; this might occur if
working in standardized coordinates.
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a translation, and one might also apply an additional scaling. Usually, the range of
feasible focal lengths is well known, and one might apply a scaling with the inverse of
a feasible focal length value f; (standardization based on image point coordinates as
in [8] amounts usually to such a scaling). The semi-calibrated fundamental matrix
would be transformed according to

fo 00 fo 00
0 £ olclo £ o] (5)
0 0 1 0 0 1

The rest of the algorithm will be the same, except that the estimated focal length, has
to be multiplied by f;, at the end.

In Section 5 and in the appendix, we show that if f, happens to be equal
to the true focal length, then the calibration equations may become degener-
ate. Thus, with fy close to the true focal length, one may expect an instable
focal length estimation. In Section 6.1.4, this is shown to occur in some sit-
uations. On the other hand, when applying no such scaling, instabilities were
observed in other situations. A rule of thumb that we apply in practice is
thus to apply a scaling by a value f; significantly larger than the maximum
expected focal length. This (admittedly ad hoc) procedure gave always good
performance.

4. Generic singularities

Before discussing singularities associated with the above calibration equations, we
describe the generic singularities of the underlying problem, i.e., those that cannot be
overcome by any algorithm. They can be obtained rather directly by specializing the
results obtained for varying focal lengths [14,15,17,21].

The only critical configurations for the (self-) calibration of a constant focal
length from two views are:

e the optical axes are parallel to each other, or

e the optical axes intersect at a finite point and the optical centers are equidis-
tant from this point. We refer to this configuration as the equidistance config-
uration. We may consider that it subsumes the case of parallel optical axes:
although the optical axes intersect at a point at infinity, we may consider that
the intersection point is equidistant from the optical centers (at infinite
distance).

In both these cases, there is an infinite number of solutions for f° 2,

Kahl and Triggs [13] have derived critical configurations. However, their re-
sults are not as clearly stated as above, and seem slightly incomplete. For exam-
ple, their “turntable” rotation about the intersection point of the optical axes
cannot produce all possible cyclotorsions of the two cameras, i.e., rotations about
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their optical axes (which do not affect the self-calibration problem discussed in
this paper).

Coplanarity of the optical axes is a necessary condition for a singular configura-
tion with equal focal lengths, whereas it is already sufficient if two different focal
lengths have to be estimated [14,15,17,21]. We will see in the following section that
the quadratic Eq. (4) is nearly only degenerate in the generic singular cases (with the
exception of f= =41). On the other hand, the linear equations are degenerate when
the two optical axes are coplanar, and in a particular case of little practical
importance.

The stability of calibration in near-degenerate situations should be better for the
equal focal length case.

5. Singularities of the calibration equations

It is useful to examine the singularities of the above calibration equations. Here
we will determine under what conditions the individual equations become singular.
This will allow us to see if they suffer from non-generic singularities and possibly to
determine which equation to use under what condition, or to determine a single
equation that should always be used.

The equations are said to be singular if they lead to invalid solutions. Such solu-
tions may arise when there is an infinite number of choices for the coefficients of
the equations’ unknowns, or when the coefficients are equal to zero. If the SVD of
G is unique (up to sign or swapping the columns of U and V and corresponding
singular values), the forms of (4), (2), and (3) are unique. Otherwise, there may
be invalid solutions. In the absence of noise, the true squared focal length is nec-
essarily a solution of the equations. For the quadratic equation, there is in general
a second, spurious solution. In most cases, this is a negative value and can thus be
discarded (since we are looking for the squared focal length). In some cases, how-
ever, the equations may have an infinite number of solutions: for certain singular
relative camera poses, all coefficients of our polynomial equations vanish, implying
an infinite number of solutions for f. In the following, all singular relative camera
poses are summarized. Proofs for the following statements are given in the
appendices.

All three equations vanish of course in the generic singular conditions given in
Section 4, i.e., their coefficients all become zero here. For the quadratic equation,
there are, in general, no further singularities (unlike the general Kruppa equations
that are subject to non-generic singularities). The only exception occurs when the
true focal length equals +1, which means that the semi-calibrated fundamental ma-
trix is a fully calibrated fundamental matrix, i.e., an essential matrix. This can hap-
pen if the fundamental matrix is expressed in perfectly standardized coordinates,
meaning that the coordinate scaling recommended in [8] happens to be done by
the inverse of the focal length. The essential matrix has two equal non-zero singular
values, which means that its SVD is not unique: there is a one-degree-of-freedom
family of possible SVDs. It is shown in Appendix D.2 that, depending on which
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optical center optical center
of second camera of second camera

Fig. 1. Example of a singular case for the linear equations when the optical axes are not coplanar. (Left)
The notion of principal epipolar plane is illustrated (plane spanned by the optical centers and one optical
axis). (Right) If the optical axis of the second camera lies anywhere in the plane I, which is orthogonal to
the first camera’s principal epipolar plane, then the linear equations become degenerate. In that case the
two principal epipolar planes are orthogonal to one another (unless the optical axis points towards the first
camera’s optical center, in which case the principal epipolar plane of the second camera is not defined).

of the ambiguous SVDs one happens to compute in practice,” the quadratic equa-
tion’s coefficients may vanish, even for a camera configuration that is generically
non-singular. We show in Appendix D.2 that only a finite number, among the infi-
nite number of possible SVDs, cause such a singularity. It is thus unlikely to encoun-
ter exactly such a case. However, when working in standardized coordinates (or,
when scaling with approximately the true inverse focal length), one may get close en-
ough, in which case noise in the data may create instabilities. This effect is studied
using simulations, cf. Section 6.1.4, and conclusions are stated above in Section 3.2.

For the linear equations, there is degeneracy in two cases. The first case is when
the optical axes are coplanar. The other case is best explained as follows. The family
of epipolar planes consists of the pencil of planes that contain the cameras’ baseline,
i.e., the line joining the two optical centers. We define a principal epipolar plane asso-
ciated with a camera as the epipolar plane that contains its optical axis, cf. the left
part of Fig. 1. This is uniquely defined unless the optical axis coincides with the base-
line, in which case, at least one camera looks straight at the other one. The non-ge-
neric singularities of the two linear calibration equations can be described, using the
principal epipolar planes of the two cameras, in the following scenarios:

e Neither of the two principal epipolar planes is uniquely defined. This means that
the two optical axes are identical, which implies of course that they are parallel
(and coplanar). This is a generic singular case, and naturally all three equations
become degenerate.

e One of the principal epipolar planes is not uniquely defined. This is a special case
of coplanar optical axes. The linear equations degenerate, whereas the quadratic
one does not in general.

3 This depends on the implementation used for SVD computation and the outcome is possibly non-
deterministic.
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e The principal epipolar planes are identical. This means that the optical axes are
coplanar. The linear equations degenerate. The quadratic equation degenerates
only if, in addition, the equidistance configuration is present. Otherwise, its spu-
rious solution is always zero (cf. Section E.3), i.e., the true solution can be
obtained without ambiguity.

e The principal epipolar planes are orthogonal to each other. In this case, the linear
equations degenerate. The quadratic equation does not degenerate, and its spurious
solution is always negative or zero (cf. Section F.2), i.e., the true solution can be
obtained without ambiguity. This situation is illustrated in the right part of Fig. 1.

Summary. The quadratic equation is degenerate practically only in generic singu-
lar configurations. In addition, whenever the linear equations degenerate in generic
non-singular configurations, the quadratic one gives a unique admissible solution for
the squared focal length.

It is interesting to note that the non-generic singularities for the linear equations
(coplanar optical axes and orthogonal principal epipolar planes) correspond to gen-
eric singular camera configurations for the case of different focal lengths
[14,15,17,21].

6. Experimental results

We conducted various experiments with our algorithm, to evaluate its perfor-
mance with respect to several factors. Specifically, we studied its behavior in the
proximity of singular configurations. This was done systematically using both simu-
lated data and real data to give some intuition on how much effort has to be spent in
avoiding singularities in practice. We also evaluated the performance with respect to
the level of noise in the data and with respect to errors in the assumption of the loca-
tion of the principal point. Experiments with real images were carried out for images
of a calibration grid and also for images of a few generic scenes.

6.1. Simulated data

We conducted simulated experiments to assess the sensitivity of the calibration
equations in close-to-singular situations. Fig. 2 shows the simulated scenarios. The
starting position of the cameras is depicted on the left. It is the typical stereo situa-
tion, with symmetric vergence angles o. This situation is singular: the optical axes are
coplanar and the optical centers are equidistant from the intersection point of the
optical axes.

In the first scenario, the second camera rotates away from the plane spanned by
the initial position of the optical axes, by an angle between 0° and 5° (“‘elevation an-
gle). In Fig. 2, this rotation would be towards the reader.

In the second scenario (shown on the right of Fig. 2), the second camera moves
along its optical axis. The optical axes stay coplanar, but the distances of the optical
centers to the intersection point of the optical axes are no longer equal. Hence, the



64 Chapter 5. Camera Self-Calibration

P. Sturm et al. | Computer Vision and Image Understanding 99 (2005) 58-95 67
1 | 1
I | |
| ! |
ol ol o

; AN\

Fig. 2. Simulation scenarios. Shown are the optical centers and optical axes. (Left) Initial camera pose; b is
the distance between the optical centers and o the vergence angle of the optical axes. (Right) Second
simulation scenario; the second camera is moved along its optical axis by the distance d.

scenario is not singular any more (generically, and for the quadratic equation), be-
sides for the case of a zero vergence angle (parallel optical axes). The baseline of
the system is b= 1000 U, and the displacement of the second camera is by
d = -250,-200, ...,250 U.

For both scenarios, experiments are done with different vergence angles, with o
between 0° (parallel optical axes in the initial position) and 30°. Three dimensional
scene points are created randomly as follows: their coordinates are drawn from a
uniform distribution inside a rectangular volume in front of the cameras, whose
depth is 10 times the baseline. Only points inside the field of view of both cameras
are used. Cameras are simulated with a focal length of 1000 pixels and a field of view
of 28.7°, corresponding to images of size 512 x 512. By default, 100 points are used in
each experiment, unless otherwise stated. The 3D points are projected to the images,
and centered Gaussian noise (with a standard deviation between 0 and 1 pixels), is
added to the image point coordinates. These image points are the input to the
algorithm.

The following figures show mainly results for the quadratic equation. Results for
the linear equations are not shown here, however, they are discussed in the text. Dis-
played are the median values of the relative errors on the focal length (ratio of the
difference between true and estimated focal length, and the true focal length); each
data point in the graphs is the result of 1000 random experiments. In all simulated
experiments, the 8-point method of [8] is used to compute the fundamental matrix,
i.e., no non-linear optimization was done.

6.1.1. First scenario: off-plane rotation

Fig. 3 shows results for this scenario. The upper left part is relative to a zero ver-
gence angle (i.e., with an elevation angle of 0°, the optical axes are parallel and the con-
figuration is singular), and the upper right part is relative to a vergence angle of 5°. For
zero vergence, it can be seen that even for a 3° rotation off the base plane, the errors are
below 10% for realistic noise levels. Slight vergence of the cameras significantly im-
proves the results (compare the upper right with the upper left part of Fig. 3).
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Fig. 3. First scenario. (Top) Results are shown for different elevation angles (one curve per elevation
angle, from 0° to 5°, cf. the graphs’ legends). The curves for 0° elevation are outside the graphs (this
situation is singular, and the results reflect this). (Upper left) Vergence fixed to 0°. (Upper right) Vergence
fixed to 5°. (Bottom) Elevation angle fixed to 2°, results shown for different vergence angles (one curve per
vergence angle, 0°, 5°, ..., 30°, cf. legend).

In the lower part of Fig. 3, the elevation angle is kept fixed to 2°, to illustrate the
influence of the vergence angle o. It is intuitive that with a vergence angle of 0°, the
configuration is “closer” to the degenerate situation of parallel optical axes, thus
the focal length estimation less stable, compared to larger vergence angles. This is
reflected in the graph: the error in the estimated focal length decreases with increas-
ing vergence angle, although above 25° vergence, there is no further significant
improvement.

It is worthy to note that the linear equations gave nearly identical results to the
quadratic one in this scenario. Since two linear equations are available, the average
of their results is taken as estimated focal length, unless one of the two gave a neg-
ative solution for /2, in which case only the solution of the other equation was used
of course.

6.1.2. Second scenario. displacement of the second camera

Fig. 4 shows results for the second scenario. The upper part of the figure shows
the influence of the vergence angle for a fixed, relatively small displacement (5% of
the baseline) of the second camera. For a vergence angle of 0°, the optical axes
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Fig. 4. Second scenario. (Top) Fixed displacement d = —50. (Upper left) Relative errors on estimated
focal length for different vergence angles. (Upper right) Failure rates (see text) for a noise level of 0.6 pixels
and different vergence angles. (Bottom) Fixed vergence angle of 10°. (Lower left) Relative errors on
estimated focal length for different displacements (for d =0, 50, ..., 250 U, cf. graph’s legend). (Lower
right) Failure rates for a noise level of 1 pixel.

are parallel and the situation remains singular for any displacement, which is re-
flected by the fact that the corresponding curve is outside the graph. The figure
shows that close to 0° vergence, the results are heavily affected by the near-singular-
ity and noise, but they stabilize with increasing vergence angle. This is shown by the
error on the focal length, which decreases significantly with increasing vergence angle
(upper left part of Fig. 4), as well as by the decreasing failure rate (upper right). Fail-
ure was declared whenever the quadratic equation did not admit a positive solution.

The lower part of Fig. 4 shows the results with respect to varying displacement,
for a fixed vergence angle of 10°. The curve for zero displacement is outside the
graph (this corresponds to the singular equidistance configuration). With increasing
displacement, the performance increases as expected, both in terms of relative error
on the estimated focal length and failure rate. The graphs for displacements towards
the scene (negative d) are not plotted in the lower left part of Fig. 4, for the sake of
clarity; note that the graph for a value of —d is very similar to that for d.

As for the linear equations, this scenario is singular (coplanar optical axes). This is
reflected by experimental results (not shown here), where relative errors are some-
times above 100%, and nearly always above 70% (besides a high failure rate).



Paper 7: Focal Length Calibration from Two Views: ..., CVIU 2005 [28] 67

70 P. Sturm et al. | Computer Vision and Image Understanding 99 (2005) 58-95

6.1.3. Influence of the number of point correspondences

In Fig. 5, we show results on the influence of the number of point correspondences
used for computing the fundamental matrix. As expected, performance increases
with the number of points, with an asymptotic behavior.

6.1.4. Influence of standardization

As discussed in Sections 3.2 and 5, the use of standardized coordinates (in our
case, a scaling) has to be considered more closely. Here, we show results obtained
with different scalings. The x-axis of the graphs in Figs. 6 and 7 shows the inverse
scale factor applied to the fundamental matrix according to Eq. (5) (remember that
the true focal length is 1000). The graphs show the percentage of random experi-
ments where the focal length was estimated (positive solution for f?) and was within
10% of the ground truth value. Results are shown for both, quadratic and linear
equations.

Fig. 6 shows results for the first scenario. All graphs show a clear “performance
hole” when scaling is done with a factor close to the actual inverse focal length. With
decreasing elevation angle (bottom to top) and increasing noise (left to right), the
instability caused by scaling with the inverse focal length, gets combined with
the increasing instability due to getting closer to the singular equidistance case. In
the least favorable case (upper right), the success rate drops to an average of around
30%. Overall, the linear equations are much more sensitive to the scale factor, com-
pared to the quadratic equation, which has close to 100% success in the favorable
case on the lower left, even when scaling is done with approximately the true inverse
focal length.

Fig. 7 shows results for the second scenario. The linear equation is degenerate
here, and the results are always bad, as stated in Section 6.1.2. As for the quadratic
equation, the same performance hole as above around the true focal length can be
observed. Interestingly, performance also drops significantly for scale factors below
50 (extreme left side of the graphs); the only explanation we can think of is that in
this special case, round-off error becomes too large.
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Fig. 5. (Left) First scenario (cf. Section 6.1.1), vergence fixed to 0°, noise level of 1 pixel, results for
different elevation angles. (Right) Second scenario (cf. Section 6.1.2), displacement of —50, noise level of 1
pixel, results for different vergence angles.
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Fig. 6. First scenario, with vergence fixed to 30°. (Top) Elevation angle fixed to 1°. (Bottom) Elevation
angle fixed to 5°. (Left column) Noise level of 0.4 pixels. (Right column) Noise level of 1 pixel.

Based on these observations, we decided to scale by a factor much lower than the
inverse of the maximum expected focal length, as stated already in Section 3.2. In all
other simulated experiments, a scale factor of 1/5000 was thus used, which always
gave good results.

6.2. Real images of a calibration grid

Using real images of a calibration grid, we attempted to evaluate the algorithm’s
performance with respect to proximity to singular configurations and its sensitivity
to the assumption of the principal point’s position.

6.2.1. Experimental setup

It is relatively easy to avoid singular configurations in practice. Especially, one
should avoid the case of coplanar optical axes. There are multiple ways to achieve
this goal. One approach is as follows. Before taking the second image, point the cam-
era to the same point in the scene as in the first image (this is simple to do with a
viewfinder). Then, tilt the camera slightly upwards or downwards, and take the sec-
ond image. Determining by how much one should tilt the camera is one of the goals
of this experiment.

We took a total of 10 images of a calibration grid with a handheld camera. Fig. 8
shows some sample images. They were taken from 10 different positions, covering a
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Fig. 7. Second scenario, with vergence fixed to 30°. (Top) Displacement of —50. (Bottom) Displacement of
—100. (Left) Noise level of 0.4 pixels. (Right) Noise level of 1 pixel.

Fig. 8. Some images of the calibration grid.

roughly circular path around the grid (i.e., most pairs of views are close to the sin-
gular equidistance configuration, cf. Section 4). From each position, we applied a
small tilt angle and then took one image as described above. Thus, among the 45
possible image pairs, some have approximately coplanar optical axes while some
do not.

For this experiment and the ones in the next section, we used a Sony DSC-P31
digital camera with 5 mm focal length and chose a moderate image resolution of
640 % 480.

The camera was calibrated, including radial lens distortion, using all 10 images of
the grid, by a photogrammetric calibration algorithm. The resulting focal length of
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625 pixels is used as “ground truth” in the following experiments. The images were
corrected for distortion before applying our algorithm. The extracted image posi-
tions of the grid’s targets were used by our algorithm to compute the fundamental
matrix.

6.2.2. Effect of principal point estimation on focal length calibration

As described above, our focal length calibration algorithm is based on the
assumption that we know the other intrinsic parameters. Here, we show that an error
on the assumed location of the principal point has little effect on the computed focal
length. For one pair of images, we estimated the focal length repeatedly, changing (in
steps of 5 pixels) the assumed coordinates of the principal point by up to =+ 25 pixels
from the image center in both directions.

Among the 121 different computed focal lengths, the maximum relative error with
respect to the true focal length was 4.16%. The mean relative error was 0.2%. The
standard deviation of the computed focal lengths was 11.7 pixels, i.e., only about
1.8% of the focal length. We conclude that realistic errors in the assumption of
the principal point’s position have little effect on our algorithm, at least concerning
the range of accuracy that one can expect in our minimal scenario. Hence it is usually
safe to assume that the principal point is at the image center when we use this algo-
rithm for focal length calibration.

6.2.3. Stability of the algorithm

Here, we evaluate the algorithm’s performance, with respect to how close the
optical axes are to being coplanar. The calibration of our images, using a photo-
grammetric approach that makes use of the known geometry of the calibration
grid, tells us the position of the optical centers and the optical axes for our 10
images. To measure how close the optical axes associated with two images are to
being coplanar, we proceed as illustrated in the left part of Fig. 9: we compute
the two principal epipolar planes pl and p2 (cf. Section 5). The “middle plane”
is the plane that “bisects” pl and p2. The angle ¢ between the middle plane and
pl (or, equivalently, p2) is our measure for the deviation from the case of coplanar
optical axes. In addition, we also considered a measure for how close the two opti-
cal axes are from being parallel, but which was found to be less significant for the
following evaluation.

We applied our algorithm to all 45 possible image pairs formed by our 10 input
images. The estimated values of the focal length are plotted in the right part of Fig. 9,
over the value of the angle ¢ for the corresponding image pair.

We observe three groups of results:

e For ¢ > 1.5° the calibrated focal lengths are quite precise and accurate. Their
average is 627.6, which is nearly identical to the ground truth. Their standard
deviation is about 6.5 pixels, i.e., about 1.1% of the focal length.

e For ¢ <1°, the results are not at all stable. Errors range from 25 to 280 pixels.

e For 1°<¢<1.5° the results are not very precise but become reasonably
accurate.
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Fig. 9. (Left) The angle ¢ used for measuring by how much an image pair deviates from having coplanar
optical axes. (Right) Sensitivity of focal length with respect to the angle c.

We conclude that for the type of images tested, it is safe to run our algorithm
whenever the angle ¢ exceeds 1.5°. This corresponds to tilting the camera between
two image acquisitions by about 10% of its opening angle, which seems to be reason-
ably achievable in practice. However, with a lower accuracy in image point extrac-
tion, this value will increase. In Section 6.3, we thus test our algorithm with real
images of generic scenes.

6.2.4. 3D reconstruction results using the calibrated focal length

Having calibrated the focal length, we can estimate the relative position of the two
considered images [11] and carry out a 3D reconstruction of the matched image
points [10]. We did this for several image pairs. To evaluate the quality of the 3D
reconstruction, we compare it to the known geometry of the calibration grid. We
take two steps to achieve this objective. First, we fit planes to the three subsets of
coplanar points (cf. Fig. 8). Here, we design a relative distance to evaluate the
coplanarity of points. Specifically, we first measure the distances of points to the fit-
ted plane. Next, we compute the largest distance between pairs of the considered
points. The distances of the points to the plane are then normalized by this largest
distance. The obtained distances (in percent) are the so-called relative distances. Sec-
ond, we measure the angles between each pair of planes and compare it to the
“ground truth’’: one of the grid’s planes forms 90° angles with the two others, which
themselves form a 120° angle.

The results of our evaluation are displayed in Table 1. They are shown for five
pairs, which share one common image. Note that from left to right, the baseline
(the distance between optical centers) decreases. Row f contains the calibrated focal
lengths. The rows A4;; (with i,j € [1,2,3]) show the angles between pairs of planes. The
rows Std; (with i €[1,2,3]) show, for the 3 planes, the standard deviation of the
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Table 1
Reconstruction results using calibrated focal length

Ground truth Pair 1 Pair 2 Pair 3 Pair 4 Pair 5
f 625.0 622.3 633.0 632.0 628.4 623.6
Al2 90.0 90.17 89.75 91.12 90.49 89.89
Al3 90.0 89.65 89.34 92.18 91.36 88.87
A23 120.0 119.79 119.88 120.32 120.57 118.56
Std1 0.0 1.3e—4 1.7e—4 2.4e—4 3.1le—4 3.2e—4
Std2 0.0 3.4e—4 3.5¢—4 2.6e—4 3.8¢—4 2.8e—4
Std3 0.0 2.8¢e—4 3.1e—4 4.9¢e—4 5.3e—4 3.8¢—4

relative distances as described above, which is useful to evaluate the coplanarity of
points.

We observe that for the two image pairs with the largest baselines, the angles are
all within 0.3° from their true values. With decreasing baseline, the errors generally
increase, both for the angles and the coplanarity measure, although they still stay rel-
atively small.

6.3. Real images of generic scenes

For the images of the calibration grid, image point matching was provided due to
the easy identification of the targets. Here, we consider images of two generic scenes.
Interest point extraction and matching is done automatically using the available soft-
ware” (see also [22]). The same camera zoom setting as in Section 6.2 was used, which
provides the “ground truth” value for the focal length in Tables 2 and 3.

6.3.1. An outdoor scene

We took five images of a building of the National University of Singapore (see
Fig. 10, for examples). The distance between the camera and the building is about
25 m. The results for several image pairs are presented in Table 2 (camera configu-
rations close to the coplanar case give poor results which are not shown here). After
calibration, we also reconstructed the building. We chose the median of the seven
calibrated results as shown in Table 2, and used the result to reconstruct the build-
ing’s two faces with the right angle. We found that the reconstructed results (about
85°) are roughly close to the ground truth (the relative error is about 5%).

When analyzing the results of Table 2, we need to consider the following issue.
Although the same zoom setting was used as for the images of the calibration grid,
the camera focused on a scene at a different distance. Hence, comparatively large rel-
ative errors of several percent may be expected. Here, the maximum relative error is
about 10%, which seems reasonable for this experiment.

4 http://www-sop.inria.fr/robotvis/personnel/~zzhang/softwares.html.
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Table 2

Results for image pairs of the building, cf. Fig. 10

Image pair Ground truth 12 14 15 23 25 34 35

f 625.0 643.2 654.3 604.7 688.6 689.8 592.4 657.7

The label “12” in the first row stands for the pair of images 1 and 2, and analogously for the other labels.

Table 3

Results for image pairs of the 3 cups, cf. Fig. 11

Image pair Ground truth 12 13 14 23 24 34

f 625.0 602.4 604.8 596.9 621.3 612.7 623.7

The label “12” in the first row stands for the pair of images 1 and 2, and analogously for the other labels.

Fig. 10. Some images of the building.

6.3.2. An indoor scene

We took four images of a simple indoor scene as Fig. 11 shows. Interest points
were mainly extracted on the three cups and just a few on the plug in the back-
ground, i.e., the scene is relatively “flat.”

The estimated focal lengths, for all 6 possible image pairs, are shown in Table 3.
Again, the same camera setting as in Section 6.2 was used. The maximum relative
error is about 6.5%, and the average relative error is less than 5%.

Fig. 11. Images of 3 cups.
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Fig. 12. Rendering of the reconstructed cup scene. (First row) General appearance of the scene, once with
overlaid triangular mesh. (Second row) Rough top view of cups and two close-ups of the plug in the
background (rightmost image shows the near coplanarity of the reconstruction). (Third row) Top views of
two of the cups, showing that their cylindrical shape has been recovered.

As we did for the images of the calibration grid, we performed a 3D reconstruc-
tion of the scene using the calibration result. A triangular mesh is semi-automatically
adjusted to the reconstructed 3D points, and used to create textured VRML models.
A few renderings of one of the models are shown in Fig. 12. Due to the sparseness of
the extracted interest points, the reconstruction of the scene is not complete. How-
ever, Fig. 12 shows that it is qualitatively correct, as explained in the caption of
the figure.

7. Conclusions
We have analyzed the problem of focal length calibration from two views of

an unknown scene, given their epipolar geometry and the assumption that the
views have identical focal length. Closed form solutions have been derived, which
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consist of one quadratic and two linear equations (which are algebraically inter-
dependent). We have studied critical camera configurations in detail. Our exper-
imental results suggest that in practice such configurations are relatively easy to
avoid. Acceptably accurate results can be obtained when these singular configura-
tions are avoided.

Acknowledgment

Z.L. Cheng is very grateful for the scholarship granted by the National University
of Singapore.

Appendix A. Background

We describe a few known results about matrix decompositions that will be used in
the following sections. Let the SVD of a 3 x 3 matrix M of rank 2 be given as

o1 0 0\ /v]

SVD T T
M=UXV = (ll] 1) 113) 0 07 0 \D)
0 0 0/ \!

The right null-vectors of M are equal (up to scale) to the third column v; of V.
As for the left null-vectors of M, they are equal (up to scale) to the third column
u; of U.

In the following, we suppose that o; # 6,. Consider the symmetric matrix MTM. It

has 0, o7, and o as eigenvalues. The eigenvectors of MT™M to the eigenvalue

o? (i = 1,2) are equal (up to scale) to the ith column v; of V.

1

Similarly, the eigenvectors of MM to the eigenvalue o? (i = 1,2) are equal (up to
scale) to the ith column u; of U.

Appendix B. Parameterization of relative pose

In the following sections, we derive singular camera configurations. A geometric
description is most useful. (Non-) Singularity only depends on the relative pose of
the two views (and, in some very special cases, on the actual value of the focal
length). Since only relative pose matters, we assume, without loss of generality, that
the optical center of the first camera is the origin. Furthermore, we assume that its
optical axis coincides with the Z-axis. Hence, the rotational part of its pose consists
of a rotation R | about the Z-axis (cyclotorsion). This may, again without loss of
generality, be chosen such that the optical center of the second camera lies in the
plane X =0, i.e., its coordinates are (0, Y, Z). Without loss of generality, we may fur-
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thermore impose that the distance between the two cameras is equal to 1. Hence, the
second camera’s position may be parameterized by an angle y

0
cos?y
siny
1
Let the second camera’s orientation be given by three elementary rotation matrices:

R> = Rz 2R yRy. The semi-calibrated fundamental matrix for this parameterization is
then given by

1 0 0 0 1 0 0
G~ 10 1 0 |Rz2RyRy || cosy Rzi{ 0 1 0. (B.1)
0 0 f sin y y 0 0 f
Note that the rotations Rz ; and Rz , have the following special form:
0
Rzi = - -0
0 0 1

Hence, Eq. (B.1) can be rewritten as

100 0 100
G~ RZ,Z 0 1 0 |RyRy CoS Yy 0 1 0 RZ,I- (B 2)
00 f siny ) |, \0 0 f '
H

Due to the special form of R, ; and R ; and the orthogonality of the left and right
singular matrices of an SVD, G and H have the same singular values and the third
rows of their respective matrices U and V are equal to one another (up to sign at
least). Specifically, this means that the SVDs of G and H lead to the same calibration
equations.’

Hence, we may analyze the singularities of the calibration equations by studying
the SVD of H, which allows us to express algebraic singularity conditions relatively
easily in geometric terms, i.e., in terms of relative pose.

The matrix H, defined in (B.2) is given explicitly as

(sinysino — cosycosa)sinff —sinycosfi  fcosycosfi
H~ sinycos o + cos ysina 0 0 . (B.3)
f(sinysino —cosycosa)cos B fsinysinf —f*cosysinf

Here, « and f are the angles of Ry and Ry, respectively.

5 In fact, this illustrates that cyclotorsion (rotation about the optical axis) does not influence focal
length calibration.
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In the following, we express conditions for coplanar or parallel optical axes, etc.,
in terms of the relative pose parameters o, 5, and 7.
The optical axis of the second camera has the direction

—sin f§

sin o.cos f§

D~ (B.4)

cosacos fi
0

Since the direction of the first optical axis is given by (0,0,1,0)", the optical axes are
parallel exactly if

sino = sin f = 0. (B.5)

The two optical axes are coplanar exactly if H3z3 =0, hence if cosy =0 or sinf =0
(cf. Eq. (B.3)). The case cos y = 0 means that the second camera’s optical center lies
on the first camera’s optical axis.

Let us express these conditions in terms of the principal epipolar planes, defined in
section 5. The two principal epipolar planes are computed as

cos?y cos fi(cosacosy — sin o sin y)
0 —sin ffsin
I, ~ I, ~ . psiny
0 sin ffcosy
0 0

The optical axes are coplanar if one or both principal epipolar planes are not de-
fined (algebraically, if all their coefficients are zero) or if they are identical. Natu-
rally, we find the same conditions as above: when cosy =0, I1; is not defined (the
second camera’s optical center lies on the first optical axis). A necessary condition
for I1, not being defined is sin f = 0. In that case, we observe that I1; and II, are
identical (their coordinate vectors are equal up to scale), thus the optical axes are
coplanar.

Besides the different conditions for coplanar optical axes, another configuration is
relevant: mutually orthogonal principal epipolar planes (cf. Section 5). This means that
the scalar product of their normals (the upper 3-subvectors of I1; and I1,) vanishes,
which happens exactly if IT, ; = 0 (we exclude cosy = 0 since II; is assumed to be
defined):

cos f(cosacosy — sinasiny) = 0.

Let us now consider the equidistance configuration: the optical axes are coplanar (but
not parallel) and the optical centers are at the same distance from the intersection
point of the optical axes. Let us develop this case for the two conditions of coplanar
optical axes:

e cosy = 0. In that case, the second optical center is the intersection point of the two
optical axes, hence equidistance is excluded.
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e sinf = 0. We exclude parallel optical axes, hence: sina # 0. The intersection point
of the optical axes is
0

0
siny — cos?y
1

The squared distances to the optical centers are thus equal if

cosa
sin o

. . 2
(sinysino — cosycosa)”  cos*y

sin®o sin’a
which (since sino # 0) is equivalent to (after some trigonometric manipulations)
sin a(cos’y — sin®y) + 2cosacos ysiny = 0. (B.6)

The last case of interest is that of the angles between optical axes and baseline (line
joining the optical centers) being equal. Note that this subsumes the equidistance
configuration, but is more general. The condition for this case is given in the last
row of the table.

All special cases of relative pose that are relevant in the following sections, are
summarized in the table below.

Summary of relevant special cases for relative camera pose

Coplanar optical axes

2nd optical center on 1st optical axis
Ist optical center on 2nd optical axis
Parallel optical axes

Orthogonal principal epipolar planes

cosy=0orsinff=0

cosy =0

sin f = cosacosy — sinasiny =0
sina=sinff =0

cosff(cosacosy — sinasiny) =0

sin § = sina(cos?y — sin”y)
+ 2 cosacosysiny =0
sin?y = cos f(sinacosy + cososiny)?

Equidistance

Equal angles between optical axes
and baseline

Appendix C. Proofs for singularities of the calibration equations

Let us first define the meaning of singularity of the equations, based on observa-
tions made in Section 5: they are singular if all their coefficients vanish. In the follow-
ing, we first derive conditions for singularity in terms of the elements of the SVD of
G, respectively, H, concretely, in terms of the singular values ¢ and b and the
coefficients Uz, Uiy, V31, and V3, that show up in Egs. (2)—(4). We then establish
the corresponding geometrical configurations based on the proposed parameteriza-
tion of relative pose.

The analysis of singularities is tricky due to the possibility that the SVD of the
(semi-calibrated) fundamental matrix may not be unique. Note that the SVD is never
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unique for any matrix: e.g., simultaneously scaling corresponding columns of U and
V by —1 gives another valid SVD. Such manipulations lead to the same calibration
equations, as may be verified by checking Egs. (2)—(4). Thus, in the following, we
speak of ambiguous SVD if there are infinitely many possible SVDs for a matrix.
In our case, this is exactly the case if H has two equal non-zero singular values
a=b:if

a 0 O
H=U[O0 « 0 |VT
0 0 O

is an SVD of H, then also
cosp sinp 0 a 0 0 cosp —sinp 0
H=U| —sinp cosp 0 0 a O sinp cosp 0 |VT
0 0 1 0 0 0 0 0 1

v V/T

for any angle p.
In the following two sections, we first analyze the case of ambiguous SVDs, fol-
lowed by that of a unique one.

Appendix D. Singularities in the case of ambiguous SVDs
D.1. Cases of ambiguous SV Ds
In the following, we derive all cases in which the singular values of H are

equal. The singular values of H are the square roots of the eigenvalues of
H'H

1 00 0 1 00 0 1 00
H'H~ [0 1 0 cos?y RyRy| 0 1 0 |RyRy || cosy 010
00 f siny / | 0 0 f? siny /| _\0 0 f

We want to find the conditions for which H'H has two equal non-zero eigenvalues
(and one that is zero). In that case, its characteristic polynomial must be of the
form

A —a) =01 =2a)* + d*.
Hence, if we denote by x; the coefficient of /! we must have
dx; —x3 = 0. (D.1)

Let us formulate this condition for the characteristic polynomial of H'H. In the fol-
lowing, we at times use the following compact notation: ¢, = cosa and s, = sina, and
analogously for other angles.
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The expression in (D.1) can be factorized in three factors:

—(f2-1), (D.2)
(f* - l)szcg + c2 + sé + cfg(cacy — 548,)" + 2¢5¢5(coCy — 545,), (D.3)
(f* = V)spc} +¢; + 55+ cjlcac; — 548,)" — 264C,(CaCy — 545,). (D.4)

If any one of the expressions (D.2)-(D.4) is equal to zero, then H'H has two
equal non-zero eigenvalues, and the SVD of H is not unique. The trivial case
is obviously /=1 (from Eq. (D.2)). This will be dealt with in detail in Section
D.2.
As for f2# 1, we will show in the following that expressions (D.3) or (D.4) are
equal to zero exactly in generic singular configurations. We consider three cases:
=0, s5=0, and c,,s3#0.

e ¢, =0. The expressions in (D.3) and (D.4) are identical in this case: 53 + ¢;s;. This
is zero exactly if 5, = sz = 0. This means exactly, cf. the table in Appendix B, that
the second camera lies on the optical axis of the first one (cosy = 0) and that their
optical axes are identical (since they are parallel, due to s, = sz = 0). Hence, we
are in a special case of parallel optical axes, which is of course a generic degenerate
situation.

e s3=0. The expressions in (D.3) and (D.4) become (“+” for (D.3) and “—" for
(D.4))

c}2 + (CaCy — 548,)" & 2¢,(cuey — 548,) = (¢ £ (€405 — 5,5,))°.
This is zero (for either “+” or “—"") exactly if
2
ci = (cucy — 545,) "

Using trigonometric manipulations, this can be transformed into:

2
2 2 2 _
s, (sa (c}, — s},> + 203(6«/5«/) =0.

This holds if s, = 0 or sa(c - ) + 2¢,c,s, = 0. The first condition corresponds to
parallel optical axes and the second one to the equidistance configuration, cf. the
table in Appendix B. Hence, as above, the expressions (DD.3) and (D.4) can only be
zero (for f2# 1) in generic degenerate situations.

e ¢,s3#0. We show in the following that under these assumptlons the expressions
(D.3) and (D.4) cannot be zero for posztwe values of f2. Expressions (D.3) or
(D.4) being zero leads to (division by s3 c}, is allowed since this is assumed to be
non-zero here)

o —s3s2 — 2 — A (cuey — 848,)" & 2ep0,(Caey — S48,)
= . .

2
sﬁcy

Here, “+” corresponds to (D.3) and “—" to (D.4). We develop this equation:
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—s5252 — (¢, F cp(eqc —ss))2
fz _ OBy v p\CaCy 22y
N s2c? '
B~y

The right-hand side of this equation can obviously never be positive. Hence, the
equation can never be true for real values of f, meaning that expressions (D.3)
and (D.4) can not be zero (for f%# 1 and under the assumption ¢y, 552 0).

Summary. The semi-calibrated fundamental matrix has equal non-zero singular
values exactly in the case f= 41 (expression (D.2)) or if the cameras are in equidis-
tance configuration (includes the case of parallel optical axes). In the first case, the
fundamental matrix is actually the essential matrix of the camera pair. In practice,
f= =1 can happen if one works in standardized image coordinates [8] (which often
comes down to scaling the images by approximately the inverse focal length), which
is usually recommended for numerical reasons. As for the second case, equidistance,
this represents a generic singularity, hence the calibration equations become singular
anyway. In the following section, we thus only analyze the case f= +1.

D.2. The case f= %1

In the following, we only consider the case f = +1; as for f = —1, the equations are
analogous, with only sign changes in appropriate places. The matrix H is now given by

0
H ~ RyRy cosy

siny y

As proven above, H has two equal singular values, i.e. its SVD is not unique. In prac-
tice, the SVD one obtains depends on the actual numerical implementation used to
compute it. We want to investigate if our calibration equations may be singular for
some SVDs and non-singular for others, or if they are (non-) singular irrespective of
the actual SVD.

We write H in detail

cosff 0 sinf 1 0 0 0 —siny cosy
H~ 0 1 0 0 cosa —sina sin y 0 0
—sinfi 0 cosf 0 sina cosa —Cos Yy 0 0
sin ff(sinasiny — cosocosy) —cosfsiny cosfcosy
= cos o sin y + sin o cos 0 0
cos f(sinasiny —cosacosy) sinfisiny  —sinfcosy

We now establish the possible SVDs of H. Since H is the product of two orthonor-
mal matrices and another one, we can derive its SVDs from those of that other
matrix. This is a skew-symmetric matrix, and all its SVDs can be shown to be
of the following form, for some value of p (and up to changing signs for entire
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columns or rows of the orthogonal matrices involved; this does not matter for our
analysis):

0 s, Cy 0O 1 0 c, s, 0 1 0 0
;5 0 0 |Z| =, 0 ¢ |-, ¢ 0][0 1 0
-, 0 0 c, 0 s, 0 0 1 0 0 0
¢, —s, 0 -1 0 0
x|s, ¢ O 0 -s c.,)
0 0 1 0 ¢, 8
-8, [P 0 1 0 0 Cp Sy, S5Cy
= | —cps, —5,8, ¢ 010 =S, —CpS,  Cycy |,
CpCy  SpCy Sy 0 0 0 0 cy s,

where we use, as above, the shorthand notation ¢, = cos, and s, = sin«, and analo-
gously for other angles.

Hence, the SVDs of H are parameterized by the same angle p, and are of the fol-
lowing form:

—S, cy 0 1 00 —Cp 8,8, —S,Cy
RyRx | —cps,  —sp8, ¢ 0 1 0 =S, —CpS,  CpCy
CpCy  SpCy S, 0 00 0 ¢, s,
u v
with U explicitly of the form:
cg 0 sp 1 0 O —S, c, O
u=1| 0 1 0 0 ¢, —s —CpSy  —SpS, Gy
—sp 0 ¢ 0 sy ¢ CpCy  SpCy S,

Let us call X = cg(c,c, — 5,5,). From the above SVD, we identify the values used in
the calibration equations:

a=n>h,

U31 = 8pS) + CI,X,
Uz = —spc, +5,X,
V31 = —SpCA',,

V32 = CpCy.

Note that X = 0 is the condition for orthogonal principal epipolar planes (cf. the ta-
ble in Appendix B). Let us further define:
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_ 2 12 2 172
Y = U31 V31 - U32V327

Z= U%z - U%l + V%z - V%l'
The quadratic equation can now be written as (we factor out a = b):
fY+2) -2y +2)+v=0.

Its coefficients vanish all exactly if Y = Z = 0. Let us go into details (we use the rela-
tionship 53 — ¢} =57 — )

Y = U%l V%l - U%z V%z = Sﬁci(chSpX +Sﬁ(5i - Ci)) =0, (D.5)

Z=Us— U+ V3= V3 = —dc,5,5X + (s5+ ¢ —X)(c, —5) = 0. (D.6)

In the following, we consider two questions:

e for which relative camera poses do (D.5) and (D.6) hold whatever value p has?
e do values for p exist for any relative camera pose, such that (D.5) and (D.6) hold?

D.2.1. Relative camera poses for which (D.5) and (D.6) hold for every p
Let us consider any value of p different from 0. Dividing (D.5) and (D.6)by clz) gives:

ti (slzgcf) +2t, (sﬁcf,X) - sﬁcf, =0,

z‘lz)(X2 - sfg - cz) —4t,(spX) + (Slz; + c.ﬁ - X% =0,

where 7, = tan p. The equations hold for every value of p exactly if the coefficients of
powers of 7, all vanish, hence if all the following equations hold (we leave out the
ones occurring twice):

sﬁc? =0,
2y
spe, X =0,
2 2 2
X —s5—¢; =0,

SﬁX =0.

If 55 = 0, then the third equation holds if X 2 c = 0 (we will examine this case just
below). If sz # 0, then the first and fourth equatlon imply that ¢, = X=0. In that
case, however, the third equation would not be satisfied. Hence, the only possible
case is sp = X 2 — ¢ = 0. Let us examine it in detail.
The term X? — c can be expanded as follows:
R (S ) =c 2(c2 = 1) + 8255 — 2¢48,¢,8,

= (s% — cz) s, — 2casucvsv

=5y ((S? — C;Z,)sz - ZC“cys,).
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It is equal to zero if s, = 0 or if (s? — cf,)sx — 2¢,¢,s, = 0. The first case, together with
the assumption 53 = 0, corresponds to the case of parallel optical axes (cf. the table in
Appendix B). The second case, corresponds to the equidistance condition. Hence,
both cases correspond to generic singular configurations.

We conclude that for f= =+1, the quadratic calibration vanishes whichever SVD
one happens to compute (whatever value p has) only in the generic singular
configurations.

D.2.2. For which relative camera poses can (D.5) and (D.6) hold?
Note that in the following, only generic non-singular configurations are of inter-
est. Let us now consider the question for different cases:

e sinff =0. Eq. (D.5) holds and (D.6) becomes
(c% —Xz)(clz) - SIZ)) =0.

As shown in Section D.2.1, the first possibility, cf, — X? =0, corresponds to gen-
eric singular configurations, hence is not of interest here. As for the second pos-
sibility, ¢; —s7 = 0, it tells us that for all relative camera poses with sinf =0,
there exist four different values for p (separated by 90°), for which the quadratic
calibration equation vanishes.

e sinff#0, cosy =0, sin’f — cos®fsin’o = 0. Eq. (D.5) holds and (D.6) becomes

cpSpcpspsy, = 0.

Hence, for all relative camera poses corresponding to the assumptions made here,
there again exist four different values for p (separated by 90°), for which the qua-
dratic calibration equation vanishes.

e sinff#0, cosy =0, sin’f — cos>fsina#0. Eq. (D.5) holds and (D.6) becomes
(the + corresponds to siny = +1)

+dc,s,c4555, + (ng - c/zgsi)(cf) - si) =0.

Let us first note that for ¢, = 0, this equation cannot hold, due to the assumption
that s; — cjs; # 0. We may thus divide the equation by ¢>. After some modifica-
tions, this leads to:

2002 2 22 2y
t,(cys, —s5) £ 4t,cpspsy, — (cps, —s5) = 0.

It is easy to verify that, whatever values o and f have (if compatible with the
assumptions made here), there exist exactly two solutions for 7, = tan p. Hence,
for all relative camera poses corresponding to the assumptions made here, there
again exist four different values for p (separated by 90°), for which the quadratic
calibration equation vanishes.

Hence, for all relative camera poses corresponding to the assumptions made here,
there again exist four different values for p, for which the quadratic calibration
equation vanishes.

e sinff#0, cosy=0. For (D.5) to hold, we must have
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2¢,5,X + sp(s7 — ) = 0.

Multiplying this equation with 2s; and adding this to (D.6) gives a necessary con-
dition for the vanishing of the quadratic calibration equation

(—sé —l—c% —Xz)(c2 —sz) =0.

It is easy to verify that (— s + c — X?) = 0 is equivalent to the condition of equal
angles between optical axes and baseline (cf. the table in Appendix B) and that
under the assumption sinf§ #0, cosy # 0, there exist four different values for p
for which (D.S) and (D.6) hold.

As for (— sﬁ +¢2 — X?) # 0, the necessary condition is cp — 5 2 = 0. Substituting
this into (D.5) and (D.6), leads to the condition S/gC‘ZX = (. Since here we assume
that sin § # 0 and cosy # 0, we thus conclude that for X=0 (orthogonal pr1nc1pal
epipolar planes, see above), four different values for p exist (due to ¢? = s? 5=0),
for which the quadratic calibration equation vanishes.

D.2.3. Summary

The quadratic equation vanishes of course in generic degenerate conditions.
The only other case where it may vanish is when f= +1. This may happen
because the SVD of the fundamental matrix is ambiguous. For f=+1, the
coefficients of the quadratic equation may all be zero, depending on which
SVD one happens to compute in practice (which angle p). This can happen
in exactly the following non-generic singular configurations: (i) the optical axes
are coplanar, (ii) the principal epipolar planes are mutually orthogonal, or (iii)
the angles between the optical axes and the baseline, are equal. In each of these
cases, only four different values of p (four among the infinitely many ambiguous
SVDs) exist for which the quadratic calibration equation vanishes. Hence, the
chances for the quadratic equation to vanish in generical non-singular configu-
rations, are small. Nevertheless, instabilities may indeed occur in cases close
to f==+1, i.e., when working in nearly perfectly standardized coordinates, as
illustrated in Section 6.1.4.

Appendix E. Singularities in the case of a unique SVD

We now consider the cases where the semi-calibrated fundamental matrix has a
unique SVD (up to switching entire columns or rows or changing signs for entire col-
umns or rows), i.e., different non-zero singular values a and b.

E.1. Quadratic equation

Zeroing the three coefficients of Eq. (4) leads to the following equations:

a2(1 - U%l - V%l + U§1 V%l) = b2(1 - ng - V%z + U§2V§2), (E.1)
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(U3 + V3, —2U373) = bz(U§2 + V3 = 20503, (E.2)

ULV, = 0P UL VS, (E3)
Substituting (E.3) into (E.1) and (E.2), we get:

(1 -U3 = V3) = v (1 - Uz = V), (E.4)

aZ(Ugl + V%l) = bz(Uéz + ng)- (E.5)

Adding these two equations together, leads to * = »*. This is in contradiction with
our assumptions (unique SVD). We conclude that the quadratic equation is never
degenerate when the SVD is unique, i.e., when the cameras are not in an equidistance
configuration (including parallel optical axes) and if f# =+1.

Further below, we examine special cases where one of its coefficients vanishes, and
especially a case where the quadratic equation becomes linear.

E.2. Linear equations

It is easy to show that both linear equations degenerate if any one of the following
conditions holds:

U32 = V31 = O, (E6)

U32 = V32 = 0, (E7)

U31 = V31 = 0, (ES)

Usi = V3 =0. (E.9)
The only other singularities occur, for Eq. (2), if

V31 = :|ZU32 and aU31 = ¥bV32 (ElO)
and, for Eq. (3), if

Vi =4U;z and aVs = :FbU32. (Ell)

Any one of the conditions (E.6), (E.9), (E.10), and (E.11) implies that the opti-
cal axes are coplanar (they imply that H;; =0, cf. Appendix B). Only the con-
ditions (E.7) and (E.8) may correspond to non-coplanar optical axes. In the
following section, we consider the case of coplanar optical axes, and show that
this always implies the degeneracy of the linear equations. We then consider the
case of non-coplanar axes and examine cases where the linear equations
degenerate.

E.3. Coplanar optical axes

As shown in Appendix B, the optical axes are coplanar if cosy =0 or sinff = 0.
We examine the two cases in the following.
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E3.1 cosy=0

This means that the optical center of the second camera is the point (0,0,siny, 1),
i.e., it lies on the optical axis of the first camera (the Z-axis). In this case, the first
epipole has coordinates (0,0,1)". Since the first epipole is the null-vector of the fun-
damental matrix H, it is equal (up to sign) to the third column v; of the matrix V in its
SVD. Due to the orthogonality of V, this implies that its third row is also given as
(0,0,41), hence we have: V3; = V3, = 0. Hence, the quadratic equation (4) becomes

(@1 = U3) =0 (1 = U3)) + (a’U3, — b°U3,) } = 0.

The spurious solution of that equation is f=0, and can thus be always rejected,
meaning the quadratic equation gives a unique admissible solution.

Consider now the symmetric matrix HH™ = Udiag(a? 5%,0)U™. The columns of U
are the eigenvectors of HH™. It can be shown that

sin o
cos o sin f3
0

is an eigenvector of HHT to a non-zero eigenvalue (thus, a” or b%). Hence, this vector
must be equal (up to scale) to one of the first two columns of U, which means that
U1 =0 or Uz, =0. Together with the condition V3, = V'3, =0 shown above, this
implies that at least one of (E.6)—(E.9) is true, hence both linear equations, (2) and
(3), are degenerate.

E32 sinff=0

In this case, both H'H and HH™ have (1,0,0)" as an eigenvector with non-zero
eigenvalue. Hence, one of the first two columns of U and one of first two columns
of V have this form. It can be shown that if the first column of U has that form, then
the second column of V is of the same form, and vice versa. This means that either
Uz = V3 =0 or U, = V31 =0, which implies that both linear equations vanish and
that the quadratic one becomes

fz{fz(az(l - U%l) - bz(l - V%z)) + (angl - szgz)} =0 (E.12)
if U32: V31 =0 or

LA @(1=13) = 0(1 = U3y) + (V3 = bU3) } =0 (E.13)
if Us; = V3, =0. Hence, as in Section E.3.1, the quadratic equation gives a single
admissible solution.

E.3.3. Summary

Whenever the optical axes are coplanar, the two linear equations (2) and (3)
vanish and the quadratic equation (4) gives in general a single admissible solution.
The latter one vanishes completely exactly in the equidistance configuration
(including parallel optical axes). Hence all singular cases of the quadratic equation
in the coplanar case are generic singular cases, with the exception of the special
cases for f=+1.
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Appendix F. Non-coplanar optical axes
F.1. Linear equations

As Section E.2 shows, the singular cases for non-coplanar optical axes are, for the
linear equations, given by Egs. (E.7) and (E.8):

Up=V3»=0,

U31 == V31 :O

F.1.1. First case: U3 =V3,=0

In the following, the SVD of H is considered. The right null-vector (first epi-
pole) of H is easily seen to be (0,fcosy,siny)’ (cf. Eq. (B.3)). As described in
Appendix A, this vector is equal, up to scale, to the third column v; of V. Hence
we have®:

(sinysina —cosycosa)sinfi —sinycosff  fcosycosf

H~ siny cos o + cos y sin o 0 0

f(sinysina —cosycosa)cosf fsinysinff —f?cosysinf

Un Up Up a 0 0 Vi Vn Vi (F.1)
~ | Un Unp Uy 0 » 0 Vie  Van 0

Ui, 0 Uss 0 0 0 0 fcosy siny

u A

From the orthogonality of rows 2 and 3 of V', it follows that V>, = 0 and from this,
that V1, = 0. From H,, = H,3 =0, it also follows that U,; = 0. Hence (F.1) is rewrit-
ten as
(sinysina —cosycosa)sinffi —sinycosff  fcosycospf
sin y cos o + cosy sin o 0 0

f(sinysina —cosycosa)cosf fsinysinff —f?cosysinf
Un Up U a 0 0 0 Vo V3
~| 0 Uy Uy 0 b 0 V12 0 0
Uy 0 Uss 0 0 0 0 fcosy siny
bURV aUnVy aUnVs
= | bUnV, 0 0

0 aUnVa aUs3 V3

From the coefficient (3,1) of that equation, we derive

% Here unitary determinant of the orthogonal matrix V is not imposed.
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(sinysina — cosycosa)cos ff =0

which is thus a necessary condition for non-coplanar singular cases for the linear
equations in the first case. Note that this condition is nothing else than that for
mutually orthogonal principal epipolar planes, cf. the table in Appendix B.

In the following it is shown that this condition is also a sufficient one. We do this
by giving analytical SVDs’ for H in the two cases cosf=0 and siny
sina — cosycosa = 0. Based on these SVDs, the coefficients of the linear calibration
Egs. (2) and (3) can be computed and it will be seen that they all vanish.

e cosf =0. This implies that sin§ = 41 and H becomes

+sinysina F cosycosa 0 0
H~ | sinycoso+ cosysina 0 0 . (F.2)
0 +fsiny Ff2cosy

Its SVD is given by (using the same shorthand notation as further above)

0 Es,8 Feuey, Feus, 5,0 ft, 0 0 0 +s, Ffe,

s+ 8,0y 2Cy — Sy, th 0 0o |,
0 cusy+5.0, €y — 8,8, 0 1 0 2 (F.3)
1 0 0 0 00 0 fe, s
U VI

where #, = 1/ f2cos?y + sin’y. It is easy to verify that (F.3) indeed is an SVD of H:
the matrices U and V are orthonogonal and the product of the above expression
equals H, as given in (F.2).

We thus have Uz, = V3, = 0, which was already shown in Section E.2 to be a suf-
ficient condition for degeneracy of the linear equations.

e sinysina — cosycosa = (. Note that in this case, we have cosy # 0 and sino # 0:
the condition cosy = 0 can be excluded since it would imply coplanar optical axes
(cf. Appendix B). Concerning sina #0: if sina =0, then cosa ==+1 and siny
sina — cosycosa = F cosy #0, which is contradictory to our assumption here.
We may thus put:

. COoS o
SiIny = m COS Y.

H becomes
0 —s,cp fecp 0 —cucp  fs,cp
H~ | syc.+c)8y 0 0 ~ |1 0 0
0 fSyS/; —fZC«/S/; 0 fCO(S/; —fzsas/;

An SVD for H is given by:

7 The analytical SVDs in this section are given up to possible switching of columns of the involved
matrices and, for easier expressions, up to scale for the orthogonal matrices U and V.
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cosffi 0 fsinf tity 0 0 0 —cosa fsina
0 t 0 0 1 0 t 0 0 (F.4)
—fsinff 0 cosf 0 0 O 0 fsina cosa

with ¢ = 4/ f2sin’o + cos?o and 1, = \/f2sin’f + cos®f. Again, we have
Us> = V3, =0, meaning that the linear calibration equations degenerate.

F.1.2. Second case: U3; = V3;=0

The analysis can be done analogously as above, leading to the same conclu-
sions (the SVDs are the same, up to swapping of the singular values and corre-
sponding columns of U and V). Which one of the cases Uz, = V3 =0 or
Us1 = V31 =0 occurs in practice, depends on which one of the singular values
is larger.

F.2. Quadratic equation

If we exclude f= +1, then non-coplanar optical axes imply that a# b (follows
from Section D.1) and hence the quadratic equation is non-degenerate. We now con-
sider what happens in the cases where the linear equations degenerate: cosf§ = 0 or
sinysino — cosycosa = 0, cf. Section F.1.1.

e cosfi=0. The SVD of H in this case is given in Eq. (F.3). We substitute its coef-
ficients in the quadratic equation, and get
—g* + 2 f2sin’y 4 f*cos?y = 0,
where f is the true focal length and g the estimated one. Its two solutions are
g*=/?and g = —f?cos’y. Being always negative (or zero), the second solution
can be ruled out, which means that the quadratic equation gives a unique feasible
solution here.
e sinysina — cosycosa = 0. Substituting the coefficients of the SVD of H, given in
Eq. (F.4), in the quadratic equation, we get
g*(cos’a cos’f — 1) 4 g*f2(cos?a sin®f + sin’a cos’f) + f*sin’a sin®f = 0.
Besides /2, g* has the following solution:

sin’o sin®f8

T2 )
sin“f + sin“a cos?f
. . o, 8 . . . .
which is always non-positive.” Hence, the quadratic equation has again a unique
admissible solution.

8 Note that the denominator is assured not to be zero, since we exclude sin § =0 (we consider non-
coplanar optical axes) and sino = 0 (cf. Section F.1.1).
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F.3. Summary

If the optical axes are non-coplanar, then the quadratic equation is never degen-
erate (with the exception of the special case f'= +1 discussed in Section D.2). In addi-
tion, in all cases where the linear equations vanish, the spurious solution of the
quadratic equation can be ruled out due to being non-positive.
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Self-Calibration of a 1D Projective
Camera and Its Application to the
Self-Calibration of a 2D Projective Camera

Olivier Faugeras, Long Quan, and Peter Strum

Abstract—We introduce the concept of self-calibration of a 1D projective camera
from point correspondences, and describe a method for uniquely determining the
two internal parameters of a 1D camera, based on the trifocal tensor of three 1D
images. The method requires the estimation of the trifocal tensor which can be
achieved linearly with no approximation unlike the trifocal tensor of 2D images and
solving for the roots of a cubic polynomial in one variable. Interestingly enough, we
prove that a 2D camera undergoing planar motion reduces to a 1D camera. From
this observation, we deduce a new method for self-calibrating a 2D camera using
planar motions. Both the self-calibration method for a 1D camera and its
applications for 2D camera calibration are demonstrated on real image
sequences.

Index Terms—YVision geometry, camera model, self-calibration, planar motion, 1D
camera.

+
1 INTRODUCTION

A CCD camera is commonly modeled as a 2D projective device
that projects a point in P? (the projective space of dimension 3) to a
point in P2 By analogy, we can consider what we call a
1D projective camera which projects a point in P? to a point in
PL. This 1D projective camera may seem very abstract, but many
imaging systems using laser beams, infrared, or ultrasound acting
only on a source plane can be modeled this way. What is less
obvious, but more interesting for our purpose, is that in some
situations, the usual 2D camera model is also closely related to this
1D camera model. First, one example might be the case of the 2D
affine camera model operating on line segments: The direction
vectors of lines in 3D space and in the image correspond to each
other via this 1D projective camera model [20]. Other cases will be
discussed later.

In this paper, we first introduce the concept of self-calibration of
a 1D projective camera by analogy to that of a 2D projective camera
which is a very active topic [17], [12], [7], [13], [1], [27], [19] since
the pioneering work of [18]. It turns out that the theory of self-
calibration of 1D camera is considerably simpler than the
corresponding one in 2D. It is essentially determined in a unique
way by a linear algorithm using the trifocal tensor of 1D cameras.
After establishing this result, we further investigate the relation-
ship between the usual 2D camera and the 1D camera. It turns out
that a 2D camera undergoing planar motion can be reduced to a
1D camera on the trifocal plane of the 2D cameras. This remarkable
relationship allows us to calibrate a real 2D projective camera
using the theory of self-calibration of a 1D camera. The advantage
of doing so is evident. Instead of solving complicated Kruppa
equations for 2D camera self-calibration, an exact linear algorithm
can be used for 1D camera self-calibration. The only constraint is
that the motion of the 2D camera should be restricted to planar
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motions. The other applications, including 2D affine camera
calibration, are also briefly discussed. Part of this work was also
presented in [10].

The paper is organized as follows: In Section 2, we review the
1D projective camera model and its trifocal tensor. Then, an
efficient estimation of the trifocal tensor is discussed in Section 3.
The theory of self-calibration of a 1D camera is introduced and
developed in Section 4. After pointing out some direct applications
of the theory in Section 5, we develop in Section 6 a new method of
2D camera self-calibration by converting a 2D camera undergoing
planar motions into a 1D camera. Experimental results on both
simulated and real image sequences are presented in Section 7.
Finally, some concluding remarks and future directions are given
in Section 8.

Throughout the paper, vectors are denoted in lower case
boldface, matrices and tensors in upper case boldface. Some basic
tensor notation is used: covariant indices as subscripts, contra-
variant indices as superscripts and the implicit summation
convention.

2 1D PROJECTIVE CAMERA AND ITS TRIFOCAL
TENSOR

We will first review the one-dimensional camera which was
abstracted from the study of the geometry of lines under affine
cameras [20]. Also, we can introduce it directly by analogy to a
2D projective camera.

A 1D projective camera projects a point x = (z', 2%, 2%)" in P?
(projective plane) to a point u = (u!,u?)” in P' (projective line).
This projection may be described by a 2 x 3 matrix M as
Au = My, 3x. Now, we examine the geometric constraints available
for points seen in multiple views similar to the 2D camera case [22],
[23], [13], [26], [9]. There is a constraint only in the case of three
views, as there is no constraint for two views (two projective lines
always intersect in a point in a projective plane).

Let three views of the point x be given as follows:

Au = Mx,
Mu = MKk, (1)
N M’x.

These can be rewritten in matrix form as

M u 0 0
M 0 u 0 |(x,—X-N,-X)=o.
MII O O u.//

The vector (x, =, =\, =\’ )T cannot be zero, so

M u 0 0
M 0 u 0]|=0. (2)
M/l 0 O u//

The expansion of this determinant produces a trifocal constraint
for the three views

Typpuuu™ = 0, (3)

where T}, is a 2 x 2 x 2 homogeneous tensor whose components
Tij, are 3 x 3 minors (involving all three views) of the following
6 x 3 joint projection matrix:

M
M | =(1,2,1,2,1",2")7.
M’

The components of the tensor can be made explicit as
T, = [if k”], fori,7,k" = 1,2, where the bracket [ij'k”] denotes
the 3 x 3 minor of ith, jth, and kth row vector of the above joint
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projection matrix and bar ”~" in 4, j, and k denotes the mapping
(1,2)—(2,—-1). It can be easily seen that any constraint obtained
by adding further views reduces to a trilinearity. This proves
the uniqueness of the trilinear constraint. Moreover, the
2 x 2 x 2 homogeneous tensor has 7 =2 x 2 x 2 —1d.of,soitisa
minimal parametrization of three views in the uncalibrated setting
since three views have exactly 3x (2x3—-1)—(3x3-1)=7
d.o.f.,, up to a projective transformation in P>.

This result for the one-dimensional projective camera is very
interesting. The trifocal tensor encapsulates exactly the information
needed for projective reconstruction in %. Namely, it is the unique
matching constraint, it minimally parametrizes the three views and
it can be estimated linearly. Contrast this to the 2D image case in
which the multilinear constraints are algebraically redundant and
the linear estimation is only an approximation based on over-
parametrization.

3 ESTIMATION OF THE TRIFOCAL TENSOR OF A 1D
CAMERA

Each point correspondence in three views u <> u’ < u” yields one
homogeneous linear equation for the eight tensor components T
for i,j,k=1,2:

1,11, 12

M 1,2, 11

12, 112
Juluu 1,12, 112

1, n
(utu ™ Ju ")

wuu
u2u/1u/rl7 u2u/1u”2, u2u72uu1’ u2u/2u//2)t _ 0,

where t = (Tlll,TuQ,Tlgl,Tng,TQM,Tng,TQQI,TQQQ)T. With at least

seven point correspondences, we can solve for the tensor

components linearly.

A careful normalization of the measurement matrix is
nevertheless necessary just like that stressed in [11] for the
linear estimation of the fundamental matrix. The points in each
image are first translated so that their centroid is the origin of
the image coordinates, then scaled so that the average distance
of the points from the origin is 1. This is achieved by an affine
transformation of the image coordinates in each image:
u=Au, 0 =Bu/, and 0’ = Cu”. With these normalized image
coordinates, the normalized tensor components T jk are linearly
estimated by SVD from Tjju'u’a"* =0. The original tensor
components Tjj; are recovered by undoing the normalization
transformations: Ty = 7ijk,A;’lB{;Cf.

4 SELF-CALIBRATION OF A 1D CAMERA FROM THREE
VIEWS

The concept of camera self-calibration using only point correspon-
dences became popular in the computer vision community
following Maybank and Faugeras [18], by solving the so-called
Kruppa equations. The basic assumption is that the internal
parameters of the camera remain invariant. In the case of the 2D
projective camera, the internal calibration (the determination of the
five internal parameters) is equivalent to the determination of the
image w of the absolute conic in P*.

4.1 The Internal Parameters of a 1D Camera and the
Circular Points

For a 1D camera represented by a 2 x 3 projection matrix Ma,s,
this projection matrix can always be decomposed into

Moz = Kaxa(Raxa tox1),

Koo = <g u10>

where
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represents the two internal parameters: o, the focal length in pixels
and u, the position of the principal point; the external parameters
are represented by a 2 x 2 rotation matrix Ry,

cosf  sinf
Roxs = < cos 9)
and the translation vector to. .

—siné

The object space for a 1D camera is a projective plane, and any
rigid motion on the plane leaves the two circular points I and .J
invariant (a pair of complex conjugate points on the line at infinity
of the plane). Similarly to the 2D camera case where the knowledge
of the internal parameters is equivalent to that of the image of the
absolute conic, the knowledge of the internal parameters of a
1D camera is equivalent to that of the image points i and j of the
circular points in P?.

The relationship between the image of the circular points and
the internal parameters of the 1D camera follows directly by
projecting one of the circular points I = (i, 1,0)7, where i = v—1,
by the camera Mo, 3:

_ i
Ai:e*”(“ﬁW):(g “f)(Rm t)| 1
0

It clearly appears that the real part of the ratio of the projective
coordinates of the image of the circular point i is the position of the
principal point u, and the imaginary part is the focal length a.

4.2 Determination of the Images of the Circular Points
Our next task is to locate the circular points in the images. Let us
consider one of the circular points, say I. This circular point is
projected onto i, i, and i’ in the three views. As they should be
invariant because of our assumption that the internal parameters
of the camera are constant, we have:

N=Ni=\Ni"=u,

where u = (u',u?)” = p(a+ib,1)” for A, N, N, p € C.

The triplet of corresponding points i« i’ < i’ satisfies the
trilinear constraint (3) as all corresponding points do, therefore,
T,44'17" = 0, ie., Typu'w/u* = 0. This yields the following cubic
equation in the unknown z = u! /u?:

Tia® + (Tony + Tino + Tio1)2? + (Taiz + Toor + Thoz)x + Togp = 0.
(4)

A cubic polynomial in one unknown with real coefficients has in
general either three real roots or one real root and a pair of
complex conjugate roots. The latter case of one real and a pair of
complex conjugates is obviously the case of interest here. In fact,
(4) characterizes all the points of the projective plane which have
the same coordinates in three views. This is reminiscent of the 3D
case where one is interested in the locus of all points in space that
project onto the same point in two views (see Section 6). The result
that we have just obtained is that, in the case where the internal
parameters of the camera are constant, there are in general three
such points: the two circular points which are complex conjugate,
and a real point with the following geometric interpretation.
First, consider the case of two views and let us ask the question,
what is the set of points such that their images in the two views are
the same? This set of points can be called the 2D horopter (h) of the
two 1D views. Since the two cameras have the same internal
parameters, we can ignore them and assume that we work with the
calibrated pixel coordinates. In that case, a camera can be identified
to an orthonormal system of coordinates centered at the optical
center, one axis is parallel to the retina, the other one is the optical
axis. The two views correspond to each other via a rotation
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center of rotation

First camera
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Cs
Third camera

Fig. 1. (a) The two-dimensional horopter which is set of points having the same coordinates in the two views (see text). (b) The geometric interpretation of the real point C

which has the same images in all three views (see text).

followed by a translation. This can always be described in general
as a pure rotation around a point A whose coordinates can easily
be computed from the cameras’ projection matrices. A simple
computation then shows that the horopter (h) is the circle going
through the two optical centers and A, as illustrated in Fig. 1a. In
fact, it is the circle minus the two optical centers. Note that since all
circles go through the circular points (hence their name), they also
belong to the horopter curve, as expected.

In the case of three views, the real point, when it exists, must be
at the intersection of the horopter (hi2) of the first two views and
the horopter (hy3) of the last two views. The first one is a circle
going through the optical centers C; and C,, the second one is a
circle going through the optical centers C, and Cj. Those two
circles intersect in general at a second point C' which is the real
point we were discussing, and the third circle (h;3) corresponding
to the first and third views must also go through the real point C,
see Fig. 1b.

We have therefore established the interesting result that the
internal parameters of a 1D camera can be uniquely determined
through at least seven point correspondences in three views: The
seven points yield the trifocal tensor and (4) yields the internal
parameters.

5 APPLICATIONS

The theory of self-calibration of 1D cameras is considerably
simpler than the corresponding one in 2D [18] and can be directly
used whenever a 1D projective camera model occurs; for instance,
self-calibration of some active systems using laser beams, infrared
[3], or ultrasound whose imaging system is basically reduced to a
1D camera on the source plane; and partial /full self-calibration of
2D projective cameras using planar motions.

The first type of applications is straightforward. The interesting
observation is that the 1D calibration procedure can also be used
for self-calibrating a real 2D projective camera if the camera motion
is restricted to planar motions. This is discussed in detail in the
remainder of this paper.

6 CALIBRATING A 2D PROJECTIVE CAMERA USING
PLANAR MOTIONS
A planar motion consists of a translation in a plane and a rotation

about an axis perpendicular to that plane. Planar motion is often
performed by a vehicle moving on the ground, and has been used

for camera self-calibration by Beardsley and Zisserman [4] and by
Armstrong et al. [1].

Recall that the self-calibration of a 2D projective camera [8], [18]
consists of determining the five unchanging internal parameters of
a 2D camera, represented by a 3 x 3 upper triangular matrix

@, S U
K= 0 a, v
0 0 1

This is mathematically equivalent to the determination of the
image of the absolute conic w, which is a plane conic described by
xT(K 1T (K ")x = 0 for image points x. Given the image of the
absolute conic x”Cx = 0, the calibration matrix K can be found
from C using the Choleski decomposition.

6.1 Converting 2D images into 1D images

For a given planar motion, the trifocal plane—the plane through
the camera centers—of the camera is coincident with the motion
plane as the camera is moving on it. Therefore, the image location
of the motion plane is the same as the trifocal line which could be
determined from fundamental matrices. The determination of the
image location of the motion plane has been reported in [1], [4].
Obviously, if restricting the working space to the trifocal plane, we
have a perfect 1D projective camera model which projects the
points of the trifocal plane onto the trifocal line in the 2D image
plane, as the trifocal line is the image of the trifocal plane. In
practice, very few or no point at all really lies on the trifocal plane.

M

_~ Direction of the axis
" of rotation

Fig. 2. Creating a 1D image from a 2D image from the vanishing point of the
rotation axis and the trifocal line (see text).
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@ vanishing point of the rotation axis

@2 image point

O.

S

trifocal line

1D image point

Fig. 3. Converting 2D image points into 1D image points in the image plane is
equivalent to a projective projection from the image plane to the trifocal line with
the vanishing point of the rotation axis as the projection center.

However, we may virtually project any 3D point onto the trifocal
plane, therefore, here comes the central idea of our method: the
2D images of a camera undergoing planar motion reduce to 1D images by
projecting the 2D image points onto the trifocal line. This can be
achieved in at least two ways.

First, if the vanishing point v of the rotation axis is well-
defined. This vanishing point of the rotation axis being the
direction perpendicular to the common plane of motion can be
determined from fundamental matrices by noticing that the image
of the horopter for planar motion degenerates to two lines [1], one
of which goes through the vanishing point of the rotation axis; we
may refer to [1] for more details.

Given a 3D point M with image m, we mentally project it to M
in the plane of motion, the projection being parallel to the direction
of rotation. The image m of this virtual point can be obtained in the
image as the intersection of the line through v and m with the
trifocal line ¢. Since the vanishing point v of the rotation axis and
the trifocal line ¢ are well defined, this construction, illustrated in
Fig. 2, is a well-defined geometric operation.

Note that this is also a perspective projection from P* (image
plane) to P! (trifocal line): m—n as illustrated in Fig. 3.

Alternatively, if the vanishing point is not available, we can
nonetheless create the virtual points in the trifocal plane. Given
two points M and M’ with images m and m/, the line (M, M’)
intersects the plane of motion in M. The image m of this virtual
point can be obtained in the image as the intersection of the line
(m, m’) with the trifocal line ¢, see Fig. 4.

Another important consequence of this construction is that 2D
image line segments can also be converted into 1D image points! The
construction is even simpler, as the resulting 1D image point is just
the intersection of the line segment with the trifocal line.

6.1.1 1D Self-Calibration

At this point, we have obtained the interesting result that a
1D projective camera model is obtained by considering only the
reprojected points on the trifocal line for a planar motion. The
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Fig. 4. Creating a 1D image from any pair of points or any line segment (see text).

1D self-calibration method described in Section 4 will allow us to
locate the image of the circular points common to all planes
parallel to the motion plane.

6.1.2 Estimation of the Image of the Absolute Conic for the
2D Camera

Each planar motion generally gives us two points on the absolute
conic, together with the vanishing point of the rotation axes as the
pole of the trifocal line w.r.t. the absolute conic. The pole/polar
relation between the vanishing point of the rotation axes and the
trifocal line was introduced in [1]. As a whole, this provides four
constraints on the absolute conic. Since a conic has five d.o.f., at
least two different planar motions, yielding eight linear constraints
on the absolute conic, will be sufficient to determine the full set of
five internal parameters of a general 2D camera by fitting a general
conic of the form x’Cx = au?® + bv* + cuv + du + ev + f = 0. If we
assume a four-parameter model for camera calibration with no
image skew (i.e.,, s=0), one planar motion yielding four
constraints is generally sufficient to determine the four internal
parameters of the 2D camera. However, this is not true for some
very common planar motions such as purely horizontal or vertical
motions with the image plane perpendicular to the motion plane. It
can be easily proven that there are only three instead of four
independent constraints on the absolute conic in these configura-
tions. We need at least two different planar motions for
determining the four internal parameters.

Also, this suggests that even if the planar motion is not purely
horizontal or vertical, but close, the vanishing point of the rotation
axes only constrains loosely the absolute conic. Using only the
circular points located on the absolute conic is preferable and
numerically stable, but we may need at least three planar motions
to determine the five internal parameters of the 2D camera. Note
that the numerical instability of the vanishing point for a nearly
horizontal trifocal line was already reported by Armstrong in [2].

Fig. 5. Three images of the first planar motion.
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Estimated Positions of the Images of the Circular Points by Self-Calibration with Different Triplets of Images of the First Sequence

TABLE 1

Image triplet | Fixed point | Circular points by self-calibration | Circular points by calibration
(16,19, 22) 493.7 290.7 £ 42779.1 310.3 £ 22650.3
(16, 20,22) 421.8 250.1 £42146.3 273.9 £42153.5
(17,19,21) 533.1 291.3 £42932.4 241.3 £42823.1
(16, 18,20) 617.8 238.5 £42597.6 238.1 £42791.5
(18,20,22) 368.3 230.6 £ 72208.2 272.1 +142126.2
The quantities are expressed in the first image pixel coordinate system. The location of circular points by calibration vary as the trifocal line location varies.
TABLE 2
Estimated Positions of the Image of Circular Points with Different Triplets of Images
Image triplet Circular points | Fixed point
(16,18, 20) 245.5 +142490.5 590.0
(18,20,22) 221.4 £1:2717.8 384.4
(16,20, 22) 236.2 £12617.3 452.9
(16,19,22) 240.0 £122693.4 488.0
(17,19,21) 304.7 £42722.7 516.6
known position by calibration | 262.1 £ 72590.6
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These quantities vary because the 1D trifocal tensor varies. The trifocal line and the vanishing point of the rotation axes are estimated using seven images of the
sequence instead of the minimum of three images.

TABLE 3

Estimated Position of the Image of Circular Points with One Triplet of the Second Image Sequence

Image triplet

Fixed point

Circular points by self-calibration

Circular points by calibration

927.2

269.7 4 11875.5

276.5 +11540.1

(8,11,15)

Obviously, if we work with a three-parameter model with known
aspect ratio and without skew, one planar motion is sufficient [1].

As we have mentioned at the beginning of this section, the
method described in this section is related to the work of
Armstrong et al. [1], but there are some important differences
which we now explain.

1.

First, our approach gives an elegant insight of the intricate
relationship between 2D and 1D cameras for a special kind
of motion, called planar motion.

Second, it allows us to only use the fundamental matrices
of the 2D images and the trifocal tensor of 1D images to
self-calibrate the camera instead of the trifocal tensor of
2D images. It is now well-known that fundamental
matrices can be very efficiently and robustly estimated
[29], [25]. The same is true of the estimation of the
1D trifocal tensor [20] which is a linear process. Armstrong
et al., on the other hand, use the trifocal tensor of 2D images
which, so far, has been hard to estimate due to complicated
algebraic constraints to our knowledge. Also, the trifocal
tensor of 2D images takes a special form in the planar
motion case [1] and the new constraints have to be
included in the estimation process.

It may be worth mentioning that in the case of interest
here, planar motion of the cameras, the Kruppa equations
become degenerate [28] and the recovery of the internal
parameters is impossible from the Kruppa equations. Since
it is known that the trifocal tensor of 2D images is
algebraically equivalent to the three fundamental matrices
plus the restriction of the trifocal tensor to the trifocal
plane [14], [15], [9], our method can be seen as an

inexpensive way of estimating the full trifocal tensor of
2D images: First, estimate the three fundamental matrices
(nonlinear but simple and well-understood), then estimate
the trifocal tensor in the trifocal plane (linear).

Although it looks superficially that both the 1D and
2D trifocal tensors can be estimated linearly with at least
seven image correspondences, this is misleading since the
estimation of the 1D trifocal tensor is exactly linear for
seven d.o.f., whereas the linear estimation of the 2D trifocal
tensor is only a rough approximation based on a set of
26 auxiliary parameters for its 18 d.o.f. and obtained by

neglecting eight complicated algebraic constraints.

2000

1500 -

500

°L |

L L L s L
-1000 -500 o 500 1000 1500

Fig. 6. The image of the motion planes of the two planar motions.
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Fig. 7. Two views of the resulting 3D reconstruction by self-calibration.

3. Third, but this is a minor point, our method may not
require the estimation of the vanishing point of the rotation
axes.

7 EXPERIMENTAL RESULTS

The theoretical results for 1D camera self-calibration and its
applications to 2D camera calibration have been implemented and
experimented on synthetic and real images. Due to space
limitation, we do not present the results on synthetic data, the
algorithms generally perform very well. We only show some real
examples. Here, we consider a scenario of a real camera mounted
on a robot arm. Two sequences of images are acquired by the
camera moving in two different planes. The first sequence contains
seven (indexed from 16 to 22) images (cf. Fig. 5) and the second
contains eight (indexed from 8 to 15).

The calibration grid was used to have the ground truth for the
internal camera parameters which have been measured as
a, =1534.7, o, =1539.7, uy=281.3, and vy =279.0 using a
standard calibration method [6].

We take triplets of images from the first sequence and, for each
triplet, we estimate the trifocal line and the vanishing point of the
rotation axes using the three fundamental matrices of the triplet.
The 1D self-calibration is applied for estimating the images of the
circular points along the trifocal lines. To evaluate the accuracy of
the estimation, the images of the circular points of the trifocal plane
are recomputed in the image plane from the known internal
parameters by intersecting the image of the absolute conic with the
trifocal line. Table 1 shows the results for different triplets of
images of the first sequence.

Since we have more than three images for the same planar
motion of the camera, we could also estimate the trifocal line and
the vanishing point of the rotation axes by using all the available
fundamental matrices of the seven images of the sequence. The
results using redundant images are presented for different triplets
in Table 2. We note the slight improvement of the results compared
with those presented in Table 1.

The same experiment was carried out for the other sequence of
images where the camera underwent a different planar motion.
Similar results to the first image sequence are obtained. We only
give the result for one triplet of images in Table 3 for this sequence.

Now, two sequences of images, each corresponding to a
different planar motion, yield four distinct imaginary points on
the image plane which must be on the image w of the absolute
conic. Assuming that there is no camera skew, we could fit to those
four points an imaginary ellipse using standard techniques and
compute the resulting internal parameters. Note that we did not
use the pole/polar constraint of the vanishing point of the rotation
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axes on the absolute conic as it was discussed in Section 6. This
constraint is not numerically reliable.

To have an intuitive idea of the planar motions, the two trifocal
lines together with one image are shown in Fig. 6.

The ultimate goal of self-calibration is to get 3D metric
reconstruction. 3D reconstruction from two images of the sequence
is performed by using the estimated internal parameters as
illustrated in Fig. 7. To evaluate the reconstruction quality, we
did the same reconstruction using the known internal parameters.
Two such reconstructions differ merely by a 3D similarity
transformation which could be easily estimated. The resulting
relative error for normalized 3D coordinates by similarity between
the reconstruction from self-calibration and offline calibration is
3.4 percent.

8 CONCLUSIONS AND OTHER APPLICATIONS

First, we have established that the two internal parameters of a
1D camera can be uniquely determined through the trifocal tensor
of three 1D images. Since the trifocal tensor can be estimated
linearly from at least seven points in three 1D images, the method
of the 1D self-calibration is a real linear method (modulo the fact
that we have to find the roots of a third degree polynomial in one
variable), no over-parameterization was introduced.

Second, we have proven that if a 2D camera undergoes a planar
motion, the 2D camera reduces to a 1D camera in the plane of
motion. The reduction of a 2D image to a 1D image can be
efficiently performed by using only the fundamental matrices of
2D images. Based on this relation between 2D and 1D images, the
self-calibration method for 1D cameras can be applied for self-
calibrating a 2D camera. Our experimental results based on real
image sequences show the good stability of the solutions yielded
by the 1D self-calibration method and the accurate 3D metric
reconstruction that can be obtained from the internal parameters of
the 2D camera estimated by the 1D self-calibration method. The
camera motions that defeat the self-calibration method developed
in Section 4 are described in [24].
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Abstract. We consider the problem of camera self-
calibration, from images of a planar scene with unknown
metric structure. The general case of possibly varying fo-
cal length is addressed. This problem is non-linear in gen-
eral. One of our contributions is a non-linear approach, that
makes abstraction of the (possibly varying) focal length, re-
sulting in a computationally efficient algorithm. In addi-
tion, it does not require a good initial estimate of the focal
length, unlike previous approaches. As for the initialization
of other parameters, we propose a practical approach, that
simply requires to take one image in roughly fronto-parallel
position. Closed-form solutions for various configurations
of unknown intrinsic parameters are provided. Our methods
are evaluated and compared to previous approaches, using
simulated and real images. Besides our practical contribu-
tions, we also provide a detailed geometrical interpretation
of the principles underlying our approach.

1. Introduction

Calibration of a camera consists in recovering its metric
properties, which are partially encoded as a set of so-called
internal parameters. Methods for calibration from 1D [16],
2D [11, 15, 2] and 3D known structures can be found in the
literature. When the structure of the observed world is un-
known (“OD” structure), this problem is referred to as “self-
calibration”. On the other hand, assumptions about the de-
gree of the observed (unknown) world space can sometimes
be made. When the observed scene is 2D, i.e. consists of
a plane, one refers to it as the plane-based self-calibration
problem. In addition to the internal parameters, plane-based
self-calibration consists in recovering the plane’s metric
structure. Besides the fact that, in many man-made environ-
ments, planes are widely present and easily identifiable, an
important advantage of plane-based self-calibration is that
it only requires to estimate inter-image homographies (in-
duced by world planes), using stabler and more accurate al-
gorithms than those for inter-image transformations arising
from projections of 3D points, e.g. the fundamental matrix.

In the rest of this paper, we suppose that we have taken n
images of a rigid planar object — the (world) plane — whose
metric structure is unknown. Further, we suppose that we

*We acknowledge support from GdR ISIS (Projets Jeunes Chercheurs).

P. Sturm

INRIA Rhone-Alpes, 655 Avenue de I’Europe

38330 Montbonnot, France

www.inrialpes.fr/movi/people/Sturm

have at our disposal inter-image homographies H;; (there
exist “real-time” algorithms for estimating them, e.g. [4]).
The two main goals of our work are to calibrate the camera
and to compute the plane’s metric structure, allowing to rec-
tify its images. These goals are linked of course: given the
plane’s metric structure, we know how to calibrate [11, 15],
and given the calibration, how to rectify the plane [5]. Self-
calibration is based on constraints on the intrinsic parame-
ters. Concretely, we consider the rather general case of zero
skew, constant but unknown principal point and a possibly
varying unknown focal length.

2. A Stratified Problem Formulation

We first consider the case where we have prior knowledge of
the plane’s metric structure. The problem reduces to that of
camera calibration and linear solutions exist [11, 15], even
for varying intrinsics [11, 2]. We briefly outline the geomet-
rical basis of these methods. A plane’s metric structure is
encoded by the locus of its circular points (cf. §3). Here,
this means that we know the images of these points (ICP)
in all n views. Our goal here is camera calibration, which
can be solved by computing the image of the absolute conic
(IAC). The circular points of the plane lie on the absolute
conic, and thus the ICP lie on the IAC. Hence, calibration
can be seen as fitting a conic (the IAC) to all available ICP.
This can be done by solving a linear equation system.
Consider now the general case, where the plane’s metric
structure is unknown. We introduce unknowns to parame-
terize the ICP in one of our views, and compute the ICP in
the other views using inter-image homographies. The es-
timation problem becomes non-linear, and iterative meth-
ods for its solution have been proposed [13, 6]. One of
their drawbacks, common to non-linear problems, is the
need for good initial estimates. Another problem is that
the number m of unknowns may become relatively large
in the case of varying intrinsics, increasing the sensitivity to
the initial estimates and computation time (generally with
O(m?) complexity per iteration). One of our contributions
is a parameterization that allows to solve the problem us-
ing a fixed number of unknowns (reducing the complexity
to O(m)), and that has a nice geometric interpretation (not
shown completely in this paper due to lack of space).
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Up to now, we have considered two extreme cases: com-
pletely known or completely unknown metric plane struc-
ture. In the latter case we know at least its projective struc-
ture (every image is a projective “model” of the plane).
Consider now the obvious intermediate case: known affine
structure. The problem remains non-linear, but can be ex-
pressed using fewer unknowns and simpler equations. Most
importantly, closed-form solutions for interesting minimal
cases are now possible (see §5.3). One way of recovering
the plane’s affine structure is e.g. to identify the projections
of two sets of parallel lines on the plane. Another solution,
that we use in this paper, is to simply take a fronto-parallel
image of the plane. Taking an exactly fronto-parallel image
is of course difficult. However, we show that in practice, a
roughly fronto-parallel image is sufficient to get good initial
estimates using the closed-form solutions. We use them to
start a non-linear optimization process, where the assump-
tion of fronto-parallelism can be dropped.

We thus have established a stratification for plane-based
calibration: calibration relies on the knowledge of the
plane’s metric structure, whereas self-calibration only re-
quires its projective structure. The intermediate case of
known affine structure is analogous to using scene con-
straints in traditional (“3D”) self-calibration [5, 14], or, in
the case of a fronto-parallel image, to self-calibration based
on special motions (typically, pure translations [1, 8]).

3. Background
3.1. Calibration and the Absolute Conic (AC)

It is well known that camera (self-) calibration is equivalent
to computing the image of the absolute conic (IAC) [3]. If
A is the camera’s calibration matrix, then the IAC is given
by w = A-TA-1 with:

72 0 —72u

W ~ O 1 —Vo ) (1)
—7m2uy  —vp T2u(2) + v% + 7212

with 4 degrees of freedom (d.o.f.): the focal length f, the
aspect ratio 7 and the principal point (ug, v).

3.2. Representing the Euclidean Structure of a
World Plane in Images

Given some world plane 1I projected onto an image plane
7, the world-to-image homography that maps points p on
II onto pixels m on Z is defined by a 3 x 3 matrix P such
that m ~ Pp. We assume that IT is a Euclidean plane but,
a priori, the image of II under P only yields its projective
structure. As for the world-to-image homography, we use
the following decomposition (e.g. see [5, pp. 41-44]):

1 00 B a 0
P=P,P,P.=| 0 1 0 01 0 |P,
poA 1 0 0 1

where P, (resp. P,) is the projective (resp. affine) compo-
nent of P, with 4 d.o.f. in all, while the 3 x 3 matrix Py is the
metric component of P with 4 d.o.f. (i.e. P, is a 2D similar-
ity transformation in IT). The role of the scalars u, A, 3, «
is discussed below, but note that they let (P,P,)~" define
metric image rectification, by mapping points on Z onto II
w.r.t. some “arbitrary” Euclidean coordinate system. This
means that u, A, 3 and « are a representation of the world
plane’s Euclidean structure. In the sequel, we neglect the
“arbitrary” metric component of P, so we consider that

Ié] « 0
P=P,P, = 0 1 0. 3)
ub pa+ A1

In the following paragraphs, we establish links between
the parameters p, A\, 3 and « and the circular points and
their images, as well as the world plane’s vanishing line,
which encode its Euclidean respectively affine structure.

Vanishing Line. Under the world-to-image homography

P (see (3)), the world plane’s line at infinity is mapped to its
vanishing line v according to

v=P1(0,0,)" =(-p-A1" @)
Hence, X and  represent the plane’s affine structure.
Circular Points (CP). The circular points (CP) of a plane
have the following properties: (1) They lie on the absolute
conic. (2) Their coordinates i1 ~ (1, 44, O)—r are the same
in every Euclidean coordinate system.

Image of Circular Points (ICP). Under P, the CP trans-
form into the ICP (images of circular points) according to:

Pii = (8,0, 18) " +i(a,1,pa+ A" . 5)

The ICP are another representation, besides P, of the
world plane’s metric structure. They are defined by the
same parameters, (i, A\, 3, & and lie on the vanishing line v.

Conic Dual to the Circular Points. The conic dual to the
circular points (CDCP) is defined by D%, = i il +i-i] ~
diag(1,1,0). D% is of rank 2 and transforms under any
rank 3 homography M € R®**3 into the symmetric rank 2
matrix MD}_ M. Under P, the CDCP transforms into

PR’ PP (N
= I — + 1, (©
(A PP (i, A) PP (1, A)
where P is the upper left 2 x 2 part of P. The conic X is
yet another representation of the world plane’s metric struc-
ture, which will be used in our self-calibration approach.
Note that null() = v = (—p, —A, 1) .
Under A, the CDCP transforms into

A = AD*_ AT ~ diag(1,72,0). (7)

We also have the following property, used later: image
lines m; and my are orthogonal iff mlTAmg =0.
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4. Plane-based Calibration

In this section, we review constraints on the IAC w that are
used to solve the plane-based calibration problem. We first
review the basic equations introduced in [11, 15]. In §4.2,
we then describe an approach leading to equations that do
not take into account the focal length. This allows the num-
ber of unknowns to remain constant, even in the case of a
varying focal length. This advantage may be very interest-
ing for the non-linear self-calibration problem, and in §5.2,
we accordingly extend the approach of §4.2.

4.1. Basic Equations

The CP lie on the AC, and hence the ICP lie on the IAC,
which is expressed by (Pi+)"w(Pi+) = 0. Requiring that
both real and imaginary parts be zero, yields:

h{ wh; = hy why, h]why =0, 8)

where hiand hy are the first two columns of P. These
constraints are linear in the elements of w.

4.2. The Centre Line Constraint

Equations (8) include the unknown focal length (contained
in w) which might be disadvantageous, as explained above.
Thus, we now describe an alternative approach, based on a
geometric constraint on the principal point and aspect ra-
tio, the centre line constraint [2], that is regardless of the
possibly varying focal length. This constraint results from
the central projection of a planar object, as an original way
of formulating the plane-based calibration problem. This
might seem unrelated to the geometrical background stated
above but one of our contributions is to give a more conve-
nient matrix representation of the centre line constraint in
terms of the imaged CDCP’s A and X in order to extend it
to self-calibration in §5.2. To remind the reader of the geo-
metrical background required to thoroughly understand this
approach, we give the following theorem' and corollary.
Theorem 1 If one rotates the image plane around its in-
tersection with the world plane, while moving the camera
center “adequately” along a circle (called centre circle),
in a plane perpendicular to this intersection (called centre
plane), then the world points and the image points remain
in homographic correspondence under P.

Corollary 2 By orthogonally projecting the centre circle
onto the image plane, the locus of the principal point is a
line segment in the image plane called centre segment and
the line that contains it is called the centre line (cf. Fig. 1).

What the theorem says is best explained by referring to
the animation downloadable at xxx2. For a proof, see [9,

!'To our knowledge, until recently this theorem has never been reported
in the vision literature, even if G. Sparr in [10] showed algebraically that
the camera centre is constrained to an elliptical space curve.

21t is worthy of note that, as a result, if one only looks at the image,
there exist displacements of the planar object that are totally invisible, i.e.
for which the image of the object is the same.

pp- 511-517]. In our case, the most important issue is given
by the corollary: if the world-to-image homography matrix
P is known, then the principal point necessarily lies on a
certain line, called centre line (¢f. Fig. 1). In [2], the fol-
lowing properties have been stated.

Properties 3 (1) The centre line coordinates ¢» only depend
on the aspect ratio 7 and the world-to-image homography,
i.e. are irrespective of the focal length f:

.
¢ = (-1, —2, T3+ 1) =@(P,7), (9
where ¢; denotes the i-th element of the 4-vector
(P12 P31 — P11 Ps2)(P3 + P3)
o= P31 (P + P3y)
(P12P31 — P11 P32)(Ps1Pi1 + Pi2Ps2) |’
P31 P35

(10)

and P;; is the element (3, j) of P.
(2) The centre line ¢ contains the principal point, ¢.e.
(uo,v0,1) " ¢ = 0. (11)
This equation is called centre line constraint.
(3) The centre line is orthogonal to the vanishing line v,
hence (cf. §3), ¢ and v are conjugated w.r.t. A = AC’_AT:
viAgp =0. (12)

Jimage boundaries

Figure 1: In the image, the centre line is the line passing through
the principal point and orthogonal to the vanishing line.

An important aspect is that it the centre line constraint
(with suitable normalization) can express a geometric error
(i.e. the distance from the principal point to the centre line
[2]) that can be minimized (in the least-squares sense) with
regard to the problem of plane-based calibration.

The pencil of centre lines. Consider the definition (9) of
the centre line. It depends linearly on the squared aspect
ratio, 72. We may thus define the locus of the centre line as
a linear family, i.e. a line pencil, that is independent of .
To clarify this, let us rewrite (9):
d) = (07 —¥2, 804)T + 7—2 (_9017 07 @3)T =d; + T2d2'

Let us denote this line pencil by &2. Given the definition
of ¢ in (10) and of P in (3), the two chosen “base lines” of
& can be written in terms of the image of the CDCP:

d1 = (263) X peq, dg = (263) X )\eg7
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where e/ = (1,0,0),e; = (0,1,0),e; = (0,0,1).
The vertex of &7 may be computed as follows:

d1 X d2 ~ 283. (13)

By definition, this point belongs to the centre line ¢. To-
gether with (11) and (12), we have thus established three
points on the centre line: the vertex of &2, the principal
point po = (uo, vo, 1)T and the point given by Av. These
points being collinear may be expressed as:

det (Ze3 | Av | po) =0. (14)

This is an alternative representation of the centre line
constraint. It links the aspect ratio (contained in A, cf.
(7)), the principal point, and the parameters pu, A, 3, « of
the plane’s metric structure (in 3 and v). This constraint is
the basis for our self-calibration approach, cf. §5.2.

Av[
‘
,
:
!

) i
A Jvertex o
; m penc d;
Pii
%’m
Y
e
S d,

Figure 2: The pole of the vanishing line v w.r.t. A, the vertex of
the line pencil & (containing di, d2) and the principal point are
aligned; Pi+ denote the image of the CP i+ under P.

Further notes. Within the above geometrical framework
based on the line pencil &, we give the following proposi-
tions (proofs are straightforward). (1) From (13), it follows
that the vertex of & is the pole of the image plane’s line at
infinity w.r.t. 3. (2) The intersection point of the centre line
and the line at infinity is the pole of the vanishing line w.r.t.
A ie. ¢ xe3=Av.

The centre line constraint has never been used in image
rectification. In [5, pp. 57-63], a “rectangle ambiguity prob-
lem” in the estimation of the image of the CDCP from the
four angles of a rectangle is mentioned, that might be solved
by adding (14), with ug, vg, 7 supposedly known.

5. Plane-Based Self-Calibration

5.1. Existing Non-Linear Solutions

“Basic’ constraints on the IAC and ICP. 1In[13], asolu-
tion is given for plane-based calibration in the case of con-
stant internal parameters, which has been extended in [3,
§ 18.7, pp. 470-471] to the “varying focal length” case. Ge-
ometrically, this approach is based on two main ideas. First,
the ICP (which encode the metric structure of the plane) are

mapped from image to image via the inter-image homogra-
phies H;; ; if we denote by p1+ = Pi+ the ICP in some
key image (say image 1), then we have pj+ = Hy;pi+.
Second, the CPs lie on the AC (which encode the internal
parameters of the camera), hence calibration can be seen as
fitting (imaginary) conics w; (the IACs) to all available ICP
p;+. Two equations are provided by each image j:

(Hijp1+) "w;(Hijpiz) = 0. (15)
Given n inter-image homographies Hy; (1 < j < n), the
self-calibration problem is that of solving the system of n
equations (15) for the 3 + m d.o.f. in w and the 4 d.o.f. in
P1+, where m is the number of unknown focal lengths. If
m = 1, at least 4 inter-image homographies are required; if
m = n, at least 7 are required.

This problem is non-linear and can be solved using iter-
ative methodes. It requires initial values, in particular for
the (possibly different) focal lengths. This critical issue,
already mentioned in [13], motivated us to (1) seek a mini-
mization criterion that would be irrespective of f (see §5.2);
(2) find closed-form solutions for minimal cases (see §5.3).

5.2. A New Non-Linear Solution

The centre line constraint (14) in §4.2 was developed in
terms of the world-to-image homography P, and is thus suit-
able when the world plane’s structure is known. Here, the
structure is only known indirectly (each image represents
the plane’s projective structure), so we have to adapt the
constraint to the use of inter-image homographies instead
of the world-to-image one. Consider some image as the key
image; let H; be the inter-image homography matrix from
the key image to image ¢. Under H;, the vanishing line v of
the key image transforms into v; = H; Tv; the imaged X
of the key image transforms into ; = H; 3H,.
It follows that the CL constraint (14) in image ¢ is

det (H;=H; e3 | AH; v | po) = 0. (16)

Problem 4 Given n inter-image homography matrices H;
(1 <i < n), the self-calibration problem of a camera with
a possibly varying focal length is that of solving the system
of n equations (16) for the 2 d.o.f. in pg, the single d.o.f. in
A and the 4 d.o.f. in X, under the condition null(¥) = v.

There is a fixed number of 7 unknowns («, 3, A, u and
ug, Vg, T) — even in the “varying focal length” case — so that
at least 7 inter-image homographies are required. Once the
constant internal parameters and Euclidean structure are re-
covered, the different focal lengths can be computed using
linear algorithms described in §4.

Implementation. Referring to (16), let us denote by M
the matrix (HEHTeg | AH=Tv | po) (we omit the index
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for H). A solution to Problem 4 can be obtained by mini-
mizing a cost function depending on det M. This is a non-
linear problem but let us notice that since the condition
null(X¥) = v is directly ensured from the definition of ¥
in (6), no constrained optimization algorithm is required.
An interesting aspect of our formulation is that we
can easily attach a geometric meaning to the alge-
braic quantity det M. Indeed, detM is equal to the
mixed triple product of its three column vectors: this
means® that § = |m{ (my X m3)|, where k =

V/(mz x m3)TA (m2 x m3), represents the distance
from point m; to (Centre) line (ms X mg).

In our experiments, we used the non-linear least squares
implementation (Levenberg-Marquardt algorithm) avail-
able in the MATLAB Optimization Toolbox [7].

The Jacobian information for the objective function can
be easily supplied, using the following properties: (1)
detM = (H31 + /JH33) det Ny + (H32 + )\H33) det No,
where N; = ( Ho; | mo | mg ) ; o; is the i-th column
of 3. (2) % = trace {% adj M}, where adjM =
(det M) M~1 is the adjoint matrix of M.

5.3. Direct Solutions

We develop closed-form solutions, based on the assumption
that one image was taken in fronto-parallel position relative
to the world plane (i.e. image and world planes are parallel).
As mentioned in §2, we immediately have the world plane’s
affine structure; equivalently, we now have A = p = 0 for
the representations described in §3.2 As mentioned in §2,
we will use the assumption of fronto-parallelism only for
the algorithm initialization. For the subsequent non-linear
optimization, we drop this assumption.

Let us consider what we can say about the ICP in the
fronto-parallel image: they lie on both, the IAC and plane’s
vanishing line (here, the image plane’s line at infinity).
Hence, according to (1), they are given as:

(r,0,0)" +i(0,1,0)" ~ (1,£75,0)". (17

Consequently, using (5), we know that = 0 and thus,
we can recover the world plane’s Euclidean structure up to
the single unknown 3 = 771,

We now sketch closed-form solutions for various scenar-
i0s, depending if the aspect ratio and/or principal point are
known or not, and if the focal length is constant or varying.
In the case of a known aspect ratio, the fronto-parallel im-
age directly gives us the plane’s metric structure, and self-
calibration reduces to calibration [11, 15, 2]. So, in the fol-
lowing, we only consider an unknown aspect ratio.

As shown in (17), the ICP in the fronto-parallel image
can be parameterized by the unknown 7. Using inter-image
homographies, we also parameterize the ICP in the other

3Indices are interchangeable.

images using 7. Let H be the homography, mapping the
fronto-parallel to some other image. The basic calibration
equations (8) then become:

h{ wh; — 7°hy why =0, h]why =0. (18)

The second equation is linear and the same as in (8),
hence with 5 or more inter-image homographies, the un-
knowns can be recovered linearly. As for the first equation,
using the fact that 2 =wy /waz, we may reformulate it as

wggthwhl - wuh;whg =0.

This is quadratic in the set of coefficients of w, with only
w11 and wey appearing squared. In the following, we de-
scribe several minimal cases, but due to lack of space, with-
out much detail. Note that the focal length of the fronto-
parallel image can not be recovered [11], so we ignore it.

In the case of a known principal point, two images,
the fronto-parallel and another one, are sufficient for self-
calibration. The only unknowns are the aspect ratio and
the focal length of the second view (may be different from
that of the fronto-parallel view). We suppose that the im-
ages are centered in the principal point, i.e. we have
w = diag(72,1,72f?). Equations (18) thus become, after
replacing the unknowns by @ = 72 and b = 72 f2:

H3\ +a(HY, — H3,) + bH3) — abH3, — a®H7y =0
Hy1Hop +aH11Hig + bH3 Hzp = 0.

The two equations can be reduced a single quadratic one
in b. Writing down explicit closed-form solutions for 7 and
f in terms of H is trivial.

In case of an unknown principal point and constant (resp.
varying) focal length, three (resp. four) images are suffi-
cient and the problem can be written as a cubic (resp. quar-
tic) polynomial in one variable. Hence, self-calibration has
a closed-form solution.

6. Experiments

Synthetic data. Self-calibration using the CL constraint
of §5.2 (“cL-NONL-SELF” has first been tested using syn-
thetic data. We compare it with the results of an algo-
rithm using the basic constraints, see §5.1 (“BAS-NONL-
SELF”). For each experiment, the camera has constant inter-
nal parameters with nominal values ug = 255 £ 50 pixels,
vo = 255 £ 50 pixels, 7 = 1 £ 0.1 (with normal distribu-
tion). For each camera c in each experiment, the inclina-
tion angle between the world and the image plane is set to
30° &£ 10° (except for the first for which it is set to 10°);
the angles for azimuth and rotation around the optical axis
are set to 0° £ 90° (normal distribution); the (varying) focal
length is set to f. = 700 £ 700 pixels (normal distribu-
tion). 100 points are randomly generated in the first image,
then transferred to the others with a of perturbation £1 pixel
(Gaussian noise). The inter-image homographies have been
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estimated using the normalized DLT algorithm of [3], from
the perturbed points. We conducted 200 independent trials
for a number of cameras varying from 8 to 24, with a step
of 2. In Fig. 3, we show the computed absolute errors for
ug, Vo, for world coordinates z, y (in mms), and relative er-
rors for 7 and the focal lengths (in percent). We also sought
a threshold on the number of cameras for which the “cL-
NONL-SELF” and “BAS-NONL-SELF” algorithms have similar
accuracies. Regarding our tests, this threshold is about 15
views. Typically, the algorithm converges in 5 iterations. A
“good” initialization of the parameters proved to be crucial.
We used the direct solution given in §5.3, except in one case
for “BAS-NONL-SELF”: this case is plotted with the dashed
line with marker “*’ and corresponds to focal lengths ini-
tialized to 2000 pixels (which is quite realistic); one notes
that the convergence is significantly affected.
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Figure 3: Self-calibration results. (1) our CL-NONL-SELF
method (“square” marker). (2) BASIC-NONL-SELF (“star”);
dashed line shows influence of a “bad” initialization of f.

Real Images. To evaluate the performance of our non-
linear self-calibration algorithm (“CL-NONL-SELF’), we
compared the results with those obtained by both basic lin-
ear calibration (“BAS-LIN-CAL”) and basic non-linear self-
calibration (“BAS-NONL-SELF) algorithms. We used 15 im-
ages of a calibration grid (with 80 points), taken from differ-
ent positions (see top of Fig. 4) using a NIKON COOLPIX
800 at 640 x 480 resolution. The corners of the squares
have been extracted in order to compute inter-image homo-
graphies. To avoid critical motions, we took care to ap-
ply significative rotations around the optical axis between
successive shots. The metric structure of the calibration
grid was only used by the calibration algorithm BAS-LIN-
cAL. The principal point and aspect ratio were assumed to
be constant; their estimated values are: (308,250,1.0083)
for BAS-LIN-CAL, (325, 253, 0.999) for BAS-NONL-SELF and
(325,260,0.999) for our cL-NONL-SELF algorithm. Note

that the relative error between the different aspect ratios is
less than 1%.

There could be variations of the focal length owing to
the camera’s auto-focus, so we assumed f to be varying.
The different focal lengths recovered by the algorithm BAs-
NONL-SELF are: 1368, 1390, 1383, 1352, 1357, 1357, 1371,
1322, 1346, 1352, 1358, 1345, 1390, 1394, 1387, with
mean 1364 and standard deviation around 20 (1%). Table
1 gives the the relative difference (percent) with BAS-LIN-
CAL obtained by CL-NONL-SELF. In brackets, the relative er-
rors with BAS-NONL-SELF are shown (a negative value means
“closer to BAS-LIN-CAL’s estimates”). The relative errors
between the calibration and self-calibration algorithms are
very small (in most cases less than 1%) for all focal lengths.

0.5 (=0.1) | 0.4 (—0.1) | 1.2 (=0.1) | 0.9 (=0.1) | 0.7 (0.1)
0.0 (—0.1) | 0.3(0.1) 1.6 (1.0) 0.2 (0.1) 0.3 (0.2)
0.6 (0.3) 0.4 (0.2) 0.9 (0.1) 1.3 (0.0) | 0.1(—0.1)

Table 1: Focal length self-calibration obtained by the CL-NONL-
SELF algorithm from the 15 images of Fig. 4. Relative errors (per-
cent) w.r.t. the BAS-LIN-CAL algorithm are shown. In brackets,
the difference with the BAS-NONL-SELF algorithm.

Calibration images

Figure 4: Calibration from 15 images of a planar pattern suppos-
edly unknown.

Videos of a comic book. We acquired several videos of
a comic book using a handheld digital camcorder (Pana-
sonic NV-MX 300). Acquisitions were started in roughly
fronto-parallel position. The videos were processed auto-
matically to extract and track interest points and to com-
pute inter-image homographies (using a RANSAC-based
method). This and the remaining processing was done on
1 out of every 10 frames. Figure 5 shows 8 of the 20 frames
used for one of the sequences. We used the closed-form so-
Iution of §5.3 corresponding to an unknown aspect ratio but
known principal point (image center). This gave the focal
length for every frame but the first, and one estimate of the
aspect ratio per frame. A single value for the aspect ratio
was computed using robust statistics, and used to obtain an
initial solution of the world plane’s metric structure from
the fronto-parallel frame. Then, initial pose estimates for
all frames were obtained [12].

These initial estimates were refined by a bundle adjust-
ment (including position of points on the world plane and
radial distortion). Bundle adjustment was implemented in
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the usual sparse way, and converged in 2 to 3 iterations,
each iteration taking a few seconds.

The results were compared with calibration values ob-
tained by filming a 3D calibration grid. The aspect ratio was
estimated with 0.2% error (1.0893, compared to a “ground
truth” of 1.0919). The principal point was estimated about
10 pixels off. As for the focal length, the results for the
first half of the frames were bad as expected (frames are
too close to fronto-parallel) whereas for the second half,
the mean value was 1366, which means an error of 3.5%
(ground truth was 1319). Similar results were obtained for
other sequences of the same object.

Figure 5 shows a rectified image of the world plane, ob-
tained from the first frame of the last row in the figure. The
structure is well recovered, considering that the page of the
comic book was not perfectly flat towards its left.

Figure 5: Left: some of the input images. Right: rectified
image of the world plane.

7. Conclusion

We addressed the problem of camera self-calibration, from
inter-image homographies induced by a plane with un-
known metric structure. A non-linear solution, based on
properties of circular points and the absolute conic, was pre-
viously proposed in [13]. This “basic” algorithm proved to
be efficient, but requires a good initial estimate of the focal
length. We solved this issue by first proposing a practical
approach, that simply requires to take one image in roughly
fronto-parallel position. Closed-form solutions for various
configurations were obtained. The assumption of fronto-
parallelism is only used for initialization and dropped for
non-linear optimization.

Another contribution is a new non-linear algorithm, so-
called Centre Line-based, that is irrespective of the (pos-
sibly varying) focal length. The underlying constraint has
already been used for plane-based calibration [2] but is ex-
tended here to self-calibration. This extension involves the
conic dual to the circular points (and all intrinsic parameters

except the focal length). The constraint has a nice geometric
interpretation which gives information about the conditions
under which the Centre Line-based algorithm is efficient
(i.e. by applying rotations around the optical axis). From
n > 15 images, the accuracy of the Centre Line-based algo-
rithm is similar to the basic algorithm, while having a lower
algorithmic complexity: O(n) instead of O(n?). The need
of n > 15 images can be explained by the intuition that the
Centre Line-based algorithm has a higher number of criti-
cal configurations than the basic one. Anyway, thanks to the
low algorithmic complexity and given that there exist “real-
time” algorithms for estimating inter-image homographies
[4], one can intend to carry out self-calibration using a large
set of images in order to reach a high accuracy.
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Nonlinear Estimation of the Fundamental
Matrix with Minimal Parameters

Adrien Bartoli and
Peter Sturm, Member, IEEE Computer Society

Abstract—The purpose of this paper is to give a very simple method for
nonlinearly estimating the fundamental matrix using the minimum number of seven
parameters. Instead of minimally parameterizing it, we rather update what we call
its orthonormal representation, which is based on its singular value decomposition.
We show how this method can be used for efficient bundle adjustment of point
features seen in two views. Experiments on simulated and real data show that this
implementation performs better than others in terms of computational cost, i.e.,
convergence is faster, although methods based on minimal parameters are more
likely to fall into local minima than methods based on redundant parameters.

Index Terms—Structure-from-motion, bundle adjustment, minimal
parameterization, fundamental matrix.

+
1 INTRODUCTION

THE fundamental matrix has received a great interest in the
computer vision community, see, e.g., [5], [6], [11], [12], [20], [23],
[24]. Tt encapsulates the epipolar geometry or the projective motion
between two uncalibrated perspective cameras and can be used for
3D reconstruction, motion segmentation, self-calibration, etc.
Accurately estimating the fundamental matrix is therefore a major
research issue. Most of the time, point correspondences between
the two images are used. A linear solution is obtained using the
8-point algorithm [5], [11] optionally embedded in a robust
estimation scheme [20], [23]. This estimate is then nonlinearly
refined by minimizing a physically meaningful criterion that may
involve reconstructed 3D point coordinates as well (in particular
for bundle adjustment). However, nonlinearly estimating the
fundamental matrix suffers from the lack of a simple technique
to represent it efficiently. This paper, which is an extension of [2],
provides such a technique in Section 3, based on the orthonormal
representation of the fundamental matrix that we introduce. We
show in Section 4 how this method can be used to refine the
fundamental matrix by bundle adjustment of point features. We
demonstrate experimentally in Sections 5.1 and 5.2 that the
resulting algorithm performs better than existing ones in terms
of computational cost.

2 NOTATIONS AND RELATION TO PREVIOUS WORK

The fundamental matrix denoted as F is a homogeneous (i.e.,
defined up to scale) (3 x 3) rank-2 matrix. It therefore has nine
entries, but only 7 degrees of freedom.

There have been many attempts to minimally parameterize it,
i.e., to represent it with seven parameters. Most of the previous
works deal with directly parameterizing the epipolar geometry.
The fundamental matrix F is decomposed into the epipoles e and
€ and the epipolar transformation, which is a 1D projective
transformation relating the epipolar pencils, represented by a
homogeneous (2 x 2) matrix g [4], [12], [23].
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Representing these entities with minimal parameters requires
eliminating their arbitrary scale factors. This can be done by fixing,
e.g., the 2-norm of homogeneous entities, but then the parameter-
ization would not be minimal. Another solution is to freeze one
entry of each homogeneous entity (in practice, the largest entry),
which yields three possibilities for each epipole and four for the
epipolar transformation, so 3 - 3 - 4 = 36 possible parameterizations.

In [12], the authors propose to restrict the two-view configura-
tions considered to the cases where both epipoles are finite and can
therefore be expressed in affine coordinates. Consequently, this
parameterization can be used only when both epipoles do not lie at
infinity. Due to the homogeneity of the epipolar transformation,
four distinct parameterizations are still necessary for g. A total of
four parameterizations are then needed to represent this restricted
set of fundamental matrices.

The method has been extended in [23] to the general case, i.e.,
when the epipoles can be either finite or infinite. In this case, it is
shown that all 36 distinct parameterizations are necessary. This
leads to a cumbersome and error-prone implementation of the
optimization process.

Note that there are nine different possibilities to form the
fundamental matrix—or any other 2D entity such as the extended
epipolar transformation [4] or the canonic plane homography H*
[13]—from e, €, and g [23].

In [4], [24], the method has been revised so as to reduce the
number of parameterizations using image transformations. In [4],
the image transformations used are metric and the number of
distinct parameterizations is restricted to three plus one bilinear
constraint on the entries of g, while, in [24], the transformations
used are projective, which allows one to reduce the number of
parameterizations to one. The main drawback is that in the
transformed image space, the original noise model on the image
features is not preserved. A means to preserve it, up to first order
approximation, has been proposed in [24] for the gradient-
weighted criterion, which is not the one used for bundle
adjustment.

Another solution is the point-based parameterization of [19].
The idea is to represent the fundamental matrix by a set of 7-point
correspondences. Minimal optimization can then be conducted by
varying one coordinate for each point correspondence. The
fundamental matrix is obtained at each minimization step by
computing the standard 7-point solution, which means that the
null-space of a (7 x 9) matrix has to be computed and a cubic
equation has to be solved. There may be up to three solutions. The
one giving the lowest residual error is kept. The disadvantage of
this parameterization is that it is costly to obtain the fundamental
matrix given its parameters (ie., the 7-point correspondences).
Also, analytic differentiation is not possible.

3 NONLINEAR OPTIMIZATION WITH SEVEN
PARAMETERS

In contrast to the existing work, we do not try to represent the
entire set of fundamental matrices using seven parameters. We
rather locally update it with seven parameters. Before going
further, we illustrate this idea by considering the case of the
nonlinear estimation of 3D rotations, which is simpler and, as will
be seen later, has similarities with the case of the fundamental
matrix.

3.1 The Case of 3D Rotations

There exist many representations of 3D rotations, see, e.g., [18],
including Euler angles, the Gibbs vector, Cayley-Klein parameters,
Pauli spin matrices, axis-and-angle systems, SO(3) matrices,' and

1. SO(3) is the Lie group of (3 x 3) matrices R satisfying R'R =1 and
det R=1.
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unit quaternions. None of these representations is able to uniquely
represent all 3D rotations with the minimum three parameters. For
that reason, the following scheme is often used for their nonlinear
estimation, see, e.g., [1], [7], [21]. The rotation is represented by an
SO(3) matrix R and is locally updated using three parameters by
any well-behaved (locally nonsingular) representation, such as
three Euler angles 0 = (01 62 05) as:

R — RR(0), 1)

where R(6) = R, (01) Ry(62) R.(6s) is the SO(3) matrix representa-
tion of the 3D rotation corresponding to 6 with

1 0 0
R,(61) =] 0 costy —sinb, |,
0 sinf; cosb
costlh 0 sinfy
Ry (6:) = 0 1 0 ,
—sinfy, 0 cosby
cosfl3 —sinf; 0
R.(63) = | sinf; cosf; O
0 0 1

At the end of each iteration, R is updated and @ is reset to zero.
Hence, at each iteration, the estimated Euler angles are small
(initialized as zero), which makes this representation nonsingular.

3.2 Minimal Update

Following the example of 3D rotations, we propose the orthonormal
representation of the fundamental matrix where more parameters
than degrees of freedom are needed, but that can be easily updated
using the minimum seven parameters.

Given an estimate of the fundamental matrix F obtained using,
e.g., the 8-point algorithm, consider its singular value decomposi-
tion F ~UXV', where U and V are O(3) matrices’> and ¥ a
diagonal one containing the singular values of F. Since F has
rank 2, ¥ ~ diag(o1, 09,0), where o1 > 09 > 0 [22]. We can scale &
such that F ~ U diag(l,0,0) V', where o = 0y/0; (07 # 0 since
F#0)and 1> 0> 0.

This decomposition shows that any fundamental matrix can be
represented by (U, V,0), i.e., two O(3) matrices and a scalar, which
form what we call its orthonormal representation. Note that, in the
case o = 1, i.e.,, when the fundamental matrix is an essential matrix
[8], the orthonormal representation is not unique (see below).

The orthonormal representation is consistent in that it yields
3+ 3+ 1 =7 degrees of freedom. The fundamental matrix can be
recovered as:

F~wv] +ouv,, (2)

where u; and v; are the columns of U and V, respectively.

This representation suggests the following update scheme. Each
O(3) matrix can be updated using an SO(3) matrix, using (1) as in
the case of 3D rotations, while ¢ can be included as such into the
optimization:

U—~UR(x) V—VR(y) o« oc+6. (3)

Here, x and y are 3-vectors of Euler angles. Intuitively, the
orthonormal representation should be intrinsically well-condi-
tioned since U and V are O(3) matrices.

Completeness. A first question that immediately follows about
the above-proposed method is whether all two-view configura-
tions are covered. Clearly, any fundamental matrix can be
decomposed into two O(3) matrices and a scalar. The question

2. 0(3) is the Lie group of (3 x 3) matrices R satisfying R'R =1L
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arises from the fact that U and V are O(3) matrices, which may
have positive or negative determinants, and are updated using
SO(3) matrices, R(x) and R(y), respectively, which have positive
determinants. Actually, this is not a problem since the signs of U
and V can be freely switched, which accordingly switches the signs
of their determinants, while leaving the corresponding F invariant:
F ~ (£U) 2(£V)".

Ensuring bounds on ¢. A second remark is about the bounds
ono: 0 < o < 1. There are several possibilities to ensure them while
leaving the corresponding F invariant. However, we have found
during our experiments that, in practice, this does not affect the
behavior of the underlying optimization process.

Essential matrices. As pointed out previously, in the case of
o =1, where the fundamental matrix considered is an essential
matrix, the proposed orthonormal representation is not unique: If
U and V represent F, then also U R.(a) and V R.(a) for any a.
This induces that the Jacobian matrix (6) has rank 6, as shown in
Section 4.3. We propose two ways to deal with this singularity.

First, one can use a nonlinear optimization technique that
handles singular parameterizations, e.g.,, damped Newton-type
techniques. Using Levenberg-Marquardt, we found in our experi-
ments that the singularity does not induce numerical instabilities.

Second, one can avoid singular configurations by properly
normalizing the image points. Indeed, an essential matrix arises
usually from a semicalibrated configuration where the origin of the
coordinate frame in the image lies close to the principal point and
where the image coordinates have been scaled by approximately
the inverse focal length. In practice, the principal point position is
unknown, but it is likely to be close to the image center. Hence,
singular configurations can be avoided by translating the origin of
the coordinate frame off the image center.

4 BUNDLE ADJUSTMENT

In this section, we show how the orthonormal representation can
be used for bundle adjustment of point features q; < q, i € 1...m
seen in two views, through the minimization of the reprojection
error. Similar results can be derived for other criteria, such as the
minimization of the distances between points and epipolar lines or
the gradient-weighted criterion [12], [23]. However, in order to
obtain the maximum likelihood estimate of the fundamental
matrix, one has also to estimate corrected point positions
q; < g}, i.e.,, which satisfy exactly the epipolar geometry and,
therefore, correspond to 3D points Q.

Bundle adjustment consists in minimizing a cost function
described in Section 4.1 over structure and motion parameters. In
projective space, there are 15 inherent degrees of gauge freedom,
due to the coordinate-frame ambiguity. In [9], a general framework
consisting in incorporating gauge constraints up to first order in
numerical estimation is introduced. The method of [15] falls in that
category. Another technique is to let the gauge be free to drift,
sometimes partially, while it is ensured that it does not move too
far at each iteration. These methods are compared to ours in
Section 5.

When the motion is represented by the fundamental matrix, the
gauge is completely eliminated. We call any pair of camera
matrices P and P’ a realization. In Section 4.2, we give analytical
formulae to compute a realization from the orthonormal repre-
sentation of F (as opposed to [12], [19], [23], [24]).

The algorithm is summarized in Table 1.

41 Cost Function

Bundle adjustment consists in solving the following optimization
problem, see e.g., [15], [21], [23]: min,; j r_?, where a and b are
respectively motion and structure parameters (or parameters used
to update them), r is the 4m-vector of residual errors defined by:
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TABLE 1
Implementing Our Minimal Estimator within the
Bundle Adjustment Levenberg-Marquardt-Based Framework
Given in [7, p. 574] (Algorithm A4.1)

Two-view projective bundle adjustment expressed within the
framework of [7, p.574] (algorithm A4.1). The initial guess of the

fundamental matrix is Fy.

Add the following steps:

(i’) Initialize the orthonormal representation (U, V, o) by a scaled

singular value decomposition of Fy: ’ Fo ~ U diag(1,0,0) VT |

Turn the full (r x 12) camera Jacobian matrix A = A into the

minimal (r x 7) Jacobian matrix of the orthonormal represen-

tation: , where A' is given by equations (6,7).

Change the parameter update step as:

(viii) Update the orthonormal representation as:

|U<—UR | |V<—VR( )| |o'<—o'+6”,

where 87 = (x" y' §,) are the 7 motion update parameters,
update the structure parameters by adding the incremental vec-

tor 8, and compute the new residual vector.

Note that r is the number of residuals and that the second projection matrix has to
be extracted from the orthonormal representation using (5) (e.g., for computing the
residual vector).

I.E[;anxl) = ( © dy — Qi G — i q§1 - a;l Q;Q - HZQ )7
where g; ~ PQ, and q; ~ P'Q; are predicted image points.

4.2 Computing a Realization

Due to the projective frame ambiguity, there exists a 15-parameter
family of realizations for a given fundamental matrix. A common
choice is the canonic projection matrices given by [13]:

P ~ (Ii3x3) O(3x1)) and P' ~ (H* v€'), 4)

where €’ is the second epipole, given by the left null-vector of F,
F'e ~ 0gx1), and H* ~ [¢'],F is the canonic plane homography
[13]. The arbitrary scalar +y fixes the relative scale between H* and
€. Without loss of generality, we assume that v = ||€/|| = 1. Any
other realization can then be obtained by postmultiplying P and P’
by a nonsingular 3D homography.

Computing the canonic projection matrices (4) can be achieved
directly from the orthonormal representation of F. The second
epipole is the last column of U: € ~ u3 (|lus]| = 1), so the canonic
plane homography can be formulated as:

H* ~ [€],F ~ [ug]x(ulvlT + ngv;)‘

Since U is an O(3) matrix, [us], u; = tuy and [uz, uy = Fu; which
yields H* ~ upv] —ou;v] and, thus, the particularly simple and
direct form of the second projection matrix:

P~ (uzvlT —owv, | u3). (5)

4.3 Analytical Differentiation

Many nonlinear optimization methods necessitate computing the
Jacobian matrix J = (A | B) of the residual vector r with respect to

motion and structure parameters a and b. While this can be
achieved numerically using, e.g., finite differences [16], it may be
better to use an analytical form for both computational efficiency
and numerical accuracy. We focus on the computation of A =&t
since B = g—g only depends upon structure parameterization. Let
p’' = vect(P'), where Vect( ) is the row-wise vectorization. We
decompose A (yx7) = (,?p = A(4m><12) AL (12x7)- Only the 12 entries
of P’ are considered since P is fixed in the canonic reconstruction
basis (4). The matrix A = (,,"—;, depends on the chosen realization of
the fundamental matrix, i.e., on the coordinate frame employed.
We have chosen the canonic projection matrices (4). This Jacobian
matrix is employed directly for the overparameterization pro-
posed in [6]. Deriving its analytical form is straightforward. We
therefore concentrate on deriving a closed-form expression for A*.
One of the advantages of the update rule (3) is that there exists a
simple closed-form expression for A'. Nonlinear least squares
with analytical differentiation can be applied based on A*.

Let us consider the orthonormal representation (U,V, o). The
motion update parameters are minimal and defined by a’ =
(1 T2 w3 y1 Y2 Y3 o), where x' = (z; 72 23) and y' = (y1 y2 y3) are
used to update U and V, respectively. Since U and V are updated
with respect to the current estimate, At is evaluated at (U,V,0),1ie.,
ata’ =aj = (0, 0). Equation (5) is used to derive a closed-form
expression of the second canonic projection matrix after updating.
By expanding, differentiating and evaluating this expression at ay,

we obtain:
op’ op op’\ [/op’
At =2 = L) (2
Oa ( <8Ll 0y oo ) )’ ()
where:
op'/0x; = vect(uzv] | —uy)
op'/0zs = vect(augvz | uy)
op'/0xs = vect(— u1v1 —Uuzv2 | 03x1)
op'/dy; = vect(— 0'111V3 | 0351) (7)
op'/0y, = vect(—uav; | Ole)
op'/dy; = vect(ugvy +owvy | 0341)
op'/doc = vect(—u1v] | O3x1).

In the general case, rank(A*) = 7, but when o = 1, rank(A*) =6
since dp’/dx3 + Op’/dy; = 0.

If the minimal method of, e.g., [23] were used, 36 different
Jacobian matrices, one for each parameterization, would have to be
derived.

4.4 Particular Configurations

The epipolar geometry can be decomposed as a pair of epipoles
and the 3-degrees of freedom epipolar transformation [12], [23]. If
one or two of these components are a priori known, it may be
convenient to leave them invariant during optimization of the
fundamental matrix. Such features are easily added to our
estimation method, as follows.

Leaving an epipole invariant. Consider, e.g., the second
epipole encapsulated in the orthonormal representation as the
third column of U. The update U < U R(x) does not affect uy if
x1 = 23 = 0. Therefore, freezing the left or the right epipole can be
done by removing x1, z3 or y1, 2, respectively, from the estimation
and updating as U — U R.(z3) or V « V R.(y3), respectively.

Leaving the epipolar transformation invariant. The epipoles
are encapsulated by the z1,z, and the y;,y, update parameters.
Hence, the 3 degrees of freedom of the epipolar transformation are
contained in the remaining update parameters: z3, y3, and o.
Removing them from the optimization freezes the underlying
epipolar transformation.
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5 EXPERIMENTAL RESULTS

We compare an algorithm based on the orthonormal representa-
tion to other algorithms. We use simulated and real data in
Sections 5.1 and 5.2, respectively. Below, we give details about the
compared methods, the measured quantities, the computation of
an initial suboptimal solution for structure and motion, and the
nonlinear optimization scheme we use.

Compared methods. We compare the following motion
parameterizations:

e FREE directly optimizes the 24 entries of the camera
matrices. The gauge is left free to drift. The 24 — 7 =17
extra parameters are the homogeneous factors of each
camera matrix and the 15-dimensional projective basis.

e NORMALIZED [15] is similar to FREE, but the gauge is
fixed since a normalized coordinate frame is used. This is
done by renormalizing the reconstruction before each step
of the nonlinear minimization and by including first-order
gauge constraints into the minimization. The reconstruc-
tion basis, as well as the homogeneous scale of the camera
matrices are constrained.

e PARFREE [6] partially fixes the gauge by optimizing only
the entries of the second camera matrix, while keeping
P ~ (I0). The 12 — 7 =5 extra parameters are the homo-
geneous scale of the second camera matrix, the global
scene scale, and the position of the plane at infinity.

e MAPS [3], [23] is a minimal parameterization based on
multiple maps.

e  ORTHO uses the orthonormal representation proposed in
this paper.

Measured quantities. We measure two quantities characterisic
of a bundle adjustment process, computational cost, i.e., CPU time
to convergence and the error at convergence.

Structure parameterization. We use the structure parameter-
ization proposed in [7] which consists in scaling the reconstructed
points such that their third element is unity. The three remaining
free elements are then optimized. Note that this parameterization
can be used only when a canonical basis enforcing P ~ (10) is
used. Therefore, methods FREE and NORMALIZED have their
own structure parameterization: They optimize the four elements
of each point.

Initialization. We compute an initial solution for the motion
using the normalized 8-point algorithm [5]. Image point coordi-
nates are standardized such that they lie in [-1...1]. Each point is
reconstructed by minimizing its reprojection error.

Nonlinear optimization. We use the Levenberg-Marquardt
technique with analytic differentiation. This is a damped Gauss-
Newton method. Let J be the Jacobian matrix and H=J'J the
Gauss-Newton approximation of the Hessian matrix. The damp-
ing consists in augmenting the normal equations H§ = —J'r to
be solved at each iteration: H «— H + W()). The parameter A € R
is tuned heuristically, as described in [7], [21]. We try two
approaches for the step control strategy, i.e., the choice of matrix
W(A). First, in [21], the authors recommend W(A) = AL This is
the original idea of the Levenberg-Marquardt algorithm [10], [14].
This will be referred to as LM. Second, in [7], the authors
recommend W(A) = (1 + \) diag(H), i.e., multiply the diagonal
entries of H by 1+ \. This strategy is recommended in [16] and is
due to [17]. This will be referred to as SEBER.

Note that gauge freedoms cause H = J'J to be rank-deficient,
but that the damped matrix is guaranteed to have full-rank. Hence,
Levenberg-Marquardt iterations change both the actual estimated
geometry as well as the gauge.

We take advantage of the sparse structure of H and J to
efficiently solve the augmented normal equations, as described in
[7], [21]. More precisely, the sparseness of the structure parameters
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is exploited, and the complexity of the computation is O(mp?),
where m is the number of points and p is the number of motion
parameters. Hence, we can expect the computaﬁonal cost for an
iteration to be similar for all parameterizations when the number
of points is very large, and to be very different when the number of
points is low.

We stop the estimation when the difference between two
consecutive residual errors is lower than a threshold ¢, chosen
typically in the range 1078 < ¢ < 1074

5.1 Simulated Data
5.1.1 Experimental Setup

We simulate points lying in a cube with one meter side length,
observed by two cameras looking at the center of the cube. The
standard configuration is the following: The focal length of the
cameras is 1,000 (expressed in number of pixels). They are situated
10 meters away from the center of the cube and the baseline
between them is one meter. The number of simulated points is 50.
We add a centered Gaussian noise on true point positions with a
2-pixel variance. The normal equations are augmented using
method LM. Each parameter of the above-described setup is
independently varied to compare the parameterizations in
different situations. The results are averaged over 100 trials.
Computing the median gives similar results.

5.1.2 Results

Fig. 1 shows the results. We observe that all methods have roughly
the same accuracy, i.e., they give the same reprojection errors, up
to small discrepancies. Further comments on these discrepancies
are given in the next paragraph.

On the other hand, there are quite large discrepancies between
the computational costs of each method. The methods that have
the highest computational costs are NORM and FREE, followed by
PARFREE. The minimal methods MAPS and ORTHO have the
lowest computational cost, roughly the same. These discrepancies
are explained by the fact that redundant methods have more
unknowns to estimate than minimal ones. Solving the normal
equations is therefore more expensive (see below). These observa-
tions are valid for other experiments (not shown here) where the
focal length of the cameras is varied from 500 to 2,000 pixels and
where the baseline is varied from one to three meters. We also
conduct the same experiments while augmenting the normal
equation using SEBER. The same observations as above are valid.
The results for all methods, compared to the LM augmentation, are
worse in terms of both computational cost and reprojection error,
while the discrepancies between the different methods for the
reprojection error are reduced.

We observe that, in our C implementation, the computational
cost of each iteration is dominated by the resolution of the normal
equations, whose size is directly linked to the number of
parameters. We measure the computational cost of an iteration
for the different parameterizations. As said above, the complexity
is linear in the number of points and cubic in the number of motion
parameters. For different numbers of points, we obtain the results
shown in Table 2.

These results show that the differences in computational costs
are largely dominated by the number of motion parameters. The
discrepancies become smaller when the number of points increases
beyond 10,000, which is very large in the case of structure from
motion for two views.

5.1.3 Convergence

As said above, there are small discrepancies in the reprojection
errors achieved by the different methods, see in particular Fig. 1a.
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TABLE 2

Computation Time (Seconds) of an lteration for

Different Parameterizations

number of points
parameterization 10 ‘ 100 ’ 1,000 II0,000
ORTHO 0.0045 | 0.0251 | 0.2152 | 2.0658
MAPS 0.0046 | 0.0251 | 0.2151 | 2.0658
PARFREE 0.0056 | 0.0307 | 0.2591 | 2.0753
FREE 0.0120 | 0.0589 | 0.5729 | 2.3231
NORM 0.0130 | 0.0664 | 0.6791 | 2.4148
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These small discrepancies are due to the fact that each parameter-
ization may lead to a different local minimum of the cost function.
To better characterize this phenomenon, we measure the rate of
successful estimations for the different methods against the
distance from the scene to the cameras. An estimation is successful
if it is not improved by any of the other compared method. More
precisely, let M and M’ designate two methods and €y (M’) be the
error achieved by method M initialized by the result of method M'.
We define the success of an estimation made with method M as:

Success(M) = [VM' # M, [Ex(INIT) — Ey (M)] < €],

where ¢ is the threshold used to stop the iterations. We obtain the
results as shown in Table 3.
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Fig. 1. Reprojection error (left column) and CPU time to convergence (right column) measured against different simulation parameters: distance scene to cameras (first
row), image noise (second row), and number of points (third row). Concerning the reprojection error, the curves are almost always undistinguishable, apart from the
initialization. For the CPU time, methods are divided into three groups: (from top to bottom) FREE and NORM, PARFREE, then MAPS and ORTHO.
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TABLE 3
Convergence Results Shown as Success Rates in Percent

distance scene to cameras (meter)
parameterization | 6 8 |10 | 12 | 14 | 16 | 18 | 20
. ORTHO 83 97 97 | 100 | 100 | 98 | 100 | 99
minimal
MAPS 88 | 95 [ 96 | 100 | 100 [ 99 | 98 | 99
PARFREE 100 | 100 | 94 | 100 | 100 | 100 | 100 | 100
redundent
FREE & NORM 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

In the light of these results, we can say that methods using
minimal parameters fall into local minima more often than methods
based on redundant parameters. An explanation is that the minimal
parameterizations are nonlinear, while the overparameterizations
are linear, in the entries of the projection matrices. Hence, the local
quadratic approximation of the cost fonction used in Levenberg-
Marquardt is more accurate for overparameterizations.

5.1.4 Essential Matrix

As pointed out in Section 3.2, the orthonormal representation has a
one-dimensional ambiguity when an essential matrix is considered.
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We want to check if, in the essential or near-essential cases, the
orthonormal representation could induce numerical instabilities in
the optimization process. For that purpose, we repeat the previous
experiments, with the following two changes.

First, we map the fundamental matrix given by the 8-point
algorithm to the closest essential matrix [8] and use this as an
initial solution for the nonlinear optimization. Hence, the target
epipolar geometry is a fundamental matrix, but the initial solution
is an essential one.

Second, instead of using the coordinates of the points in the
images, we use the coordinates of the points on the retina. Hence,
the underlying true epipolar geometry is represented by an
essential matrix. We run the experiments based on varying the
geometry of the problem for both SEBER and LM.

We obtained results very similar to the previous experiments.
This means that the orthonormal representation can be used for
both fundamental and essential matrices, without inducing
numerical instabilities, when an appropriate nonlinear optimizer
is employed.

5.2 Real Data

We use different pairs of the images shown in Table 4, in order to
cover all possibilities for the epipoles to be close to the images or at

TABLE 4
Reprojection Error at Convergence, &, and CPU Time to Convergence, 7, Obtained When Combining Pairs
of Images to Obtain Epipoles Close to the Images or Toward Infinity

(c) (d)
CpipOlCS . INIT FREE PARFREE ORTHO MAPS NORM
Views
e | & e [ 7] ¢ T £ T e | 1 e | 71 £ T
AB | 049 047 | 099 | 047 | 054 | 047 | 064 | 047 | 0.65 | 047 | L10
= oo
AC | 068 | - | 065 | 067 | 065 | 039 | 065 | 029 | 065 | 034 | 0.65 | 070
oo | oo | AD | 084 067 | 070 | 067 | 038 | 067 | 033 | 0.67 | 033 | 067 | 074
oo | oo | Bc [ 057 | - | 053|027 [ 053] 014|053 | o015 | o053 | o1a| 053] 02
B.D | 019 055 | 025 | 055 | 023 | 055 | 018 | 055 | 0.19 | 055 | 025
oo -
c.B | 057 053 | 030 | 053 | 000 | 053 | 012 | 053 | 021 | 053 | 020
average £and 7 | 066 | - [ 057 [ 053 [ 057 | 030 [ 057 [ 028 [ 057 [ 031 [ 057 [ o4 |
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infinity, with 60 point correspondences. The results are shown in
Table 4. For each combination of images and each algorithm, we
estimate the computational cost and the reprojection error. The last
row of the table shows mean values for each algorithm over the set
of image pairs. Note that, for any image pair, the reprojection error
is the same for all algorithms. Methods ORTHO, PARFREE, and
MAPS give the lowest computational costs, roughly twice as low as
those of methods FREE and NORM. We obtain similar results
using SEBER.

6 CONCLUSIONS

We studied the problem of estimating the fundamental matrix
over a minimal set of seven parameters. We proposed the
orthonormal representation which enables to easily update an
estimate of the fundamental matrix using seven parameters. The
canonic projection matrices can be directly extracted from the
orthonormal representation. The method can be plugged into most
of the (possibly sparse) nonlinear optimizers such as Levenberg-
Marquardt. We gave a closed-form expression for the Jacobian
matrix of the residuals with respect to the motion parameters for
bundle adjustment purposes, necessary for Newton-type optimi-
zation techniques.

We conducted experiments on simulated and real data. Our
conclusions are that the methods based on minimal parameter sets
have lower computational cost, but may be more frequently
trapped in local minima.
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A Generic Concept for Camera Calibration

Peter Sturm! and Srikumar Ramalingam?
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2 Dept. of Computer Science, University of California, Santa Cruz, CA 95064, USA

Abstract. We present a theory and algorithms for a generic calibration
concept that is based on the following recently introduced general imag-
ing model. An image is considered as a collection of pixels, and each pixel
measures the light travelling along a (half-) ray in 3-space associated with
that pixel. Calibration is the determination, in some common coordinate
system, of the coordinates of all pixels’ rays. This model encompasses
most projection models used in computer vision or photogrammetry, in-
cluding perspective and affine models, optical distortion models, stereo
systems, or catadioptric systems — central (single viewpoint) as well as
non-central ones. We propose a concept for calibrating this general imag-
ing model, based on several views of objects with known structure, but
which are acquired from unknown viewpoints. It allows in principle to
calibrate cameras of any of the types contained in the general imaging
model using one and the same algorithm. We first develop the theory
and an algorithm for the most general case: a non-central camera that
observes 3D calibration objects. This is then specialized to the case of
central cameras and to the use of planar calibration objects. The validity
of the concept is shown by experiments with synthetic and real data.

1 Introduction

We consider the camera calibration problem, i.e. the estimation of a camera’s
intrinsic parameters. A camera’s intrinsic parameters (plus the associated pro-
jection model) give usually exactly the following information: for any point in
the image, they allow to compute a ray in 3D along which light travels that falls
onto that point (here, we neglect point spread).

Most existing camera models are parametric (i.e. defined by a few intrinsic
parameters) and address imaging systems with a single effective viewpoint (all
rays pass through one point). In addition, existing calibration procedures are
taylor-made for specific camera models.

The aim of this work is to relax these constraints: we want to propose and
develop a calibration method that should work for any type of camera model,
and especially also for cameras without a single effective viewpoint. To do so,
we first renounce on parametric models, and adopt the following very general
model: a camera acquires images consisting of pixels; each pixel captures light
that travels along a ray in 3D. The camera is fully described by:

— the coordinates of these rays (given in some local coordinate frame).
— the mapping between rays and pixels; this is basically a simple indexing.
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This general imaging model allows to describe virtually any camera that
captures light rays travelling along straight lines®. Examples (cf. figure 1):

— a camera with any type of optical distortion, such as radial or tangential.

— a camera looking at a reflective surface, e.g. as often used in surveillance, a
camera looking at a spherical or otherwise curved mirror [10]. Such systems,
as opposed to central catadioptric systems [3] composed of cameras and
parabolic mirrors, do not in general have a single effective viewpoint.

— multi-camera stereo systems: put together the pixels of all image planes;
they “catch” light rays that definitely do not travel along lines that all pass
through a single point. Nevertheless, in the above general camera model, a
stereo system (with rigidly linked cameras) is considered as a single camera.

— other acquisition systems, see e.g. [4,14,19], insect eyes, etc.

Relation to previous work. See [9,17] for reviews and references on existing cal-
ibration methods and e.g. [6] for an example related to central catadioptric de-
vices. A calibration method for certain types of non-central catadioptric cameras
(e.g. due to misalignment of mirror), is given in [2].

The above imaging model has already been used, in more or less explicit
form, in various works [8,12-16,19,23-25], and is best described in [8], were
also other issues than sensor geometry, e.g. radiometry, are discussed. There are
conceptual links to other works: acquiring an image with a camera of our general
model may be seen as sampling the plenoptic function [1], and a light field [11]
or lumigraph [7] may be interpreted as a single image, acquired by a camera of
an appropriate design.

To our knowledge, the only previously proposed calibration approaches for
the general imaging model, are due to Swaminathan, Grossberg and Nayar [8,
22]. The approach in [8] requires the acquisition of two or more images of a
calibration object with known structure, and knowledge of the camera or object
motion between the acquisitions. In this work, we develop a completely general
approach, that requires taking three or more images of calibration objects, from
arbitrary and unknown viewing positions. The approach in [22] does not
require calibration objects, but needs to know the camera motion. Calibration
is formulated as a non-linear optimization problem. In this work, “closed-form”
solutions are proposed (requiring to solve linear equation systems).

Other related works deal mostly with epipolar geometry estimation and mod-
eling [13, 16, 24] and motion estimation for already calibrated cameras [12,15].

Organization. In §2, we explain the camera model used and give some notations.
For ease of explanation and understanding, the calibration concept is first intro-
duced for 2D cameras, in §3. The general concept for 3D cameras is described
in §4 and variants (central vs. non-central camera and planar vs. 3D calibration
objects) are developed in §5. Some experimental results are shown in §6, followed
by discussions and conclusions.

3 However, it would not work for example with a camera looking from the air, into
water: still, to each pixel is associated a refracted ray in the water. However, when
the camera moves, the refraction effect causes the set of rays to move non-rigidly,
hence the calibration would be different for each camera position.
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2 Camera Model and Notations

We give the definition of the (purely geometrical) camera model used in this
work. It is essentially the same as the model of [8] where in addition other issues
such as point spread and radiometry are treated. We assume that a camera
delivers images that consist of a set of pixels, where each pixel captures/measures
the light travelling along some half-ray. In our calibration method, we do not
model half-rays explicitly, but rather use their infinite extensions — camera rays.
Camera rays corresponding to different pixels need not intersect — in this general
case, we speak of non-central cameras, whereas if all camera rays intersect in
a single point, we have a central camera with an optical center.
Furthermore, the physical location of the actual photosensitive elements that
correspond to pixels, does in general not matter at all. On the one hand, this
means that the camera ray corresponding to some pixel, needs not pass through
that pixel, cf. figure 1. On the other hand, neighborship relations between pixels
are in general not necessary to be taken into account: the set of a camera’s
photosensitive elements may lie on a single surface patch (image plane), but may
also lie on a 3D curve, on several surface patches or even be placed at completely
isolated positions. In practice however, we do use some continuity assumption,
useful in the stage of 3D-2D matching, as explained in §6: we suppose that
pixels are indexed by two integer coordinates like in traditional cameras and that
camera rays of pixels with neighboring coordinates, are “close” to one another.

The 3D ray of points
that are seen in the
pixel /
/
Image plane of camera

looking at reflective surface T
(seen from the side)

El ld] le]
Fig. 1. Examples of imaging systems. (a) Catadioptric system. Note that camera rays
do not pass through their associated pixels. (b) Central camera (e.g. perspective, with or
without radial distortion). (c) Camera looking at reflective sphere. This is a non-central
device (camera rays are not intersecting in a single point). (d) Omnivergent imaging
system [14, 19]. (e) Stereo system (non-central) consisting of two central cameras.

Curved reflective surface

o]
o]

3 The Calibration Concept for 2D Cameras

We consider here a camera and scene living in a 2D plane, i.e. camera rays are
lines in that plane. Two images are acquired, while the imaged object undergoes
some motion. Consider a single pixel and its camera ray, cf. figure 2. Figures 2
(b) and (c) show the two points on the object that are seen by that pixel in the
two images. We suppose to be able to determine the coordinates of these two
points, in some local coordinate frame attached to the object (“matching”).
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The case of known motion. If the object’s motion between image acquisitions is
known, then the two object points can be mapped to a single coordinate frame,
e.g. the object’s coordinate frame at its second position, as shown in figure 2
(d). Computing our pixel’s camera ray is then simply done by joining the two
points. This summarizes the calibration approach proposed by Grossberg and
Nayar [8], applied here for the 2D case. Camera rays are thus initially expressed
in a coordinate frame attached to the calibration object. This does not matter
(all that counts are the relative positions of the rays), but for convenience, one
would typically choose a better frame. For a central camera for example, one
would choose the optical center as origin or for a non-central camera, the point
that minimizes the sum of distances to the set of camera rays (if it exists).

Note that it is not required that the two images be taken of the same object;
all that is needed is knowledge of point positions relative to coordinate frames
of the objects, and the “motion” between the two coordinate frames.

YT

Fig. 2. The camera as black box, with one pixel and the assoc1ated camera ray.
(b) The plxel sees a point on a calibration object, whose coordinates are identified in
a frame associated with the object. (¢) Same as (b), for another position of the object.
(d) Due to known motion, the two points on the calibration object can be placed in
the same coordinate frame. The camera ray is then determined by joining them.

The case of unknown motion. This approach is no longer applicable and we
need to estimate, implicitly or explicitly, the unknown motion. We show how to
do this, given three images. Let Q, Q’ and Q" be the points on the calibration
objects, that are seen in the same pixel. These are 3-vectors of homogeneous
coordinates, expressed in the respective local coordinate frame. Without loss
of generality, we choose the coordinate frame associated with the object’s first
position, as common frame. The unknown relative motions between the second
and third frames and the first one, are given by 2 x 2 rotation matrices R’ and R”
and translation vectors t’ and t”. Note that Rj; = R, and R}, = —R); (same
for R”). Mapping the calibration points to the common frame gives points

R’ ¢/ , R" t" .
e (i) (5Y)e

They must lie on the pixel’s camera ray, i.e. must be collinear. Hence, the
determinant of the matrix composed of their coordinate vectors, must vanish:

Q1 B, Q1 + R1,Q5 +11Q5 R QY + R,Q5 +11Q3
Q2 Ry Q1 + RypQh + 1505 RS QF + R5,Q5 + 1505 =0 (1)
Q3 QS 3
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Table 1. Non-zero coefficients of the trifocal calibration tensor for a general 2D camera.

This equation is trilinear in the calibration point coordinates. The equation’s
coefficients may be interpreted as coefficients of a trilinear matching tensor; they
depend on the unknown motions’ coeflicients, and are given in table 1. In the
following, we sometimes call this the calibration tensor. It is somewhat related
to the homography tensor derived in [18]. Among the 3 -3 -3 = 27 coefficients
of the calibration tensor, 8 are always zero and among the remaining 19, there
are 6 pairs of identical ones. The columns of table 1 are interpreted as follows:
the C; are trilinear products of point coordinates and the V; are the associated
coefficients of the tensor. The following equation is thus equivalent to (1):

13
Y avi=0 . (2)
1=1

Given triplets of points Q, Q" and Q" for at least 12 pixels, we may compute
the trilinear tensor up to an unknown scale A by solving a system of linear
equations of type (2). Note that we have verified using simulated data, that
we indeed can obtain a unique solution (up to scale) for the tensor. The main
problem is then that of extractin the motion parameters from the calibration
tensor. In [21] we give a simple algorithm for doing so*. Once the motions are
determined, the approach described above can be readily applied to compute
the camera rays and thus to finalize the calibration.

The special case of central cameras. It is worthwhile to specialize the calibration
concept to the case of central cameras (but which are otherwise general, i.e. not
perspective). A central camera can already be calibrated from two views. Let Z
be the homogeneous coordinates of the optical center (in the frame associated
with the object’s first position). We have the following collinearity constraint:

Z1 Q1 R11Q1 + Ri2Q5 +11Q% . RynZs  —RyZs RiyZ> — RnZh
Za Q2 Ry Q1 + RpQh + 15Q5| = Q R 73 Ry1Z3 —RyZs— RyZi |Q=0
Z3 Qg ng Z3t/2 — 7o Z1 — thll ZQtll — thlg

The bifocal calibration tensor in this equation is a 3 x 3 matrix and somewhat
similar to a fundamental or essential matrix. It can be estimated linearly from
calibration points associated with 8 pixels or more. It is of rank 2 and its right
null vector is the optical center Z, which is thus easy to compute. Once this is
done, the camera ray for a pixel can be determined e.g. by joining Z and Q.

4 This is similar, though more complicated than extracting (ego-)motion of perspective
cameras from the classical essential matrix [9].
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The special case of a linear calibration object. This is equally worthwhile to in-
vestigate. We propose an algorithm in [21], which works but is more complicated
than the algorithm for general calibration objects.

4 Generic Calibration Concept for 3D Cameras

This and the next section describe our main contributions. We extend the con-
cept described in §3 to the case of cameras living in 3-space. We first deal with
the most general case: non-central cameras and 3D calibration objects.

In case of known motion, two views are sufficient to calibrate, and the
procedure is equivalent to that outlined in §3, cf. [8]. In the following, we consider
the practical case of unknown motion. Input are now, for each pixel, three 3D
points Q, Q' and Q”, given by 4-vectors of homogeneous coordinates, relative to
the calibration object’s local coordinate system. Again, we adopt the coordinate
system associated with the first image as global coordinate frame. The object’s
motion for the other two images is given by 3 x 3 rotation matrices R” and R”
and translation vectors t' and t”/. With the correct motion estimates, the aligned
points must be collinear. We stack their coordinates in the following 4 x 3 matrix:

Qu Ryu@) + RinQh + Ris@f + Q4 RNQY + RipQY + Ry + QY
Qa RyuQ} + RnQh + Rys@f + Q) RAQY + RQY + R QY + 64QY

! ! ! ! / / 1/ 1/ " 1/ 1 2 1" . 3
Q3 R3:1Q1 + R32Q5 + R33Q3 + t3Q% R51Q7 + R52Q5 + R53Q5 + t5Q7 ®)
Q4 Q4 4

The collinearity constraint means that this matrix must be of rank less than
3, which implies that all sub-determinants of size 3 x 3 vanish. There are 4 of
them, obtained by leaving out one row at a time. Each of these corresponds to a
trilinear equation in point coordinates and thus to a trifocal calibration tensor
whose coefficients depend on the motion parameters.

Table 2 gives the coefficients of the first two calibration tensors (all 4 are given
in the appendix of [21]). For both, 34 out of 64 coefficients are always zero. One
may observe that the two tensors share some coefficients, e.g. Vs = W1 = Rj;.

The tensors can be estimated by solving linear equation system, and we
verified using simulated random experiments that in general unique solutions
(up to scale) are obtained, if 3D points for sufficiently many pixels (29 at least)
are available. In the following, we give an algorithm for computing the motion
parameters. Let V;/ = AV, and W/ = pW;,i = 1...37 be the estimated tensors
(up to scale). The algorithm proceeds as follows.

1. Estimate scale factors: A = \/V{? + Vg2 + V{2 and pu = /W + W32 + Wi2.
2. Compute V; = VT and W; = WT,Z =1...37
3. Compute R’ and R”:
—Wis —Wie —Wiz Wis Wig Wag
R'=|-Vis —Vig —Var R'=| Vis Vio Vi
Vs Vo o Vio —Vi1 —Viz —Vis
They will not be orthonormal in general. We “correct” this as shown in [21].
4. Compute t’ and t” by solving a straightforward linear least squares problem,
which is guaranteed to have a unique solution, see [21] for details.
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Using simulations, we verified that the algorithm gives a unique and correct
solution in general.
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Table 2. Coefficients of two trifocal calibration tensors for a general 3D camera.

5 Variants of the Calibration Concept

Analogously to the case of 2D cameras, cf. §3, we developed important special-
izations of our calibration concept, for central cameras and planar calibration
objects. We describe them very briefly; details are given in [21].

Central cameras. In this case, two images are sufficient. Let Z be the optical
center (unknown). By proceeding as in §3, we obtain 4 bifocal calibration tensors
of size 4 x 4 and rank 2, that are somewhat similar to fundamental matrices.
One of them is shown here:

0 0 0 0
11 Za RYyZ4 RiyZy  —Zs+ Zut)
—R}\ 74 —R}y7Z4 —~RhZy Dy — Zuth

Ry, 73 — Ry 7y Ry Zs — Ry 7o RlysZs — RhyaZo Zsthy — Zoth

It is relatively straightforward to extract the motion parameters and the optical
center from these tensors.

Non-central cameras and planar calibration objects. The algorithm for this case
is rather more complicated and not shown here. Using simulations, we proved
that we obtain a unique solution in general.
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Central cameras and planar calibration objects. As with non-central cameras,
we already obtain constraints on the motion parameters (and the optical center)
from two views of the planar object. In this case however, the associated calibra-
tion tensors do not contain sufficient information in order to uniquely estimate
the motion and optical center. This is not surprising: even in the very restricted
case of perspective cameras with 5 intrinsic parameters, two views of a planar
calibration object do not suffice for calibration [20,26]. We thus developed an
algorithm working with three views [21]. Tt is rather complicated, but was shown
to provide unique solutions in general.

6 Experimental Evaluation

As mentioned previously, we verified each algorithm using simulated random
experiments. This was first done using noiseless data. We also tested our methods
using noisy data and obtained satisfying results. A detailled quantitative analysis
remains yet to be carried out.

We did various experiments with real images, using a 3M-Pixel digital camera
with moderate optical distortions, a camera with a fish-eye lens and “home-
made” catadioptric systems consisting of a digital camera and various curved
off-the-shelf mirrors. We used planar calibration objects consisting of black dots
or squares on white paper. Figure 3 shows three views taken by the digital
camera.

Fig. 3. Top: images of 3 boards of different sizes, captured by a digital camera. Bottom:
two views of the calibrated camera rays and estimated pose of the calibration boards.
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Dots/corners were extracted using the Harris detector. Matching of these
image points to points on calibration objects was done semi-automatically. This
gives calibration points for a sparse set of pixels per image, and in general there
will be few, if any, pixels for which we get a calibration point in every view!
We thus take into account the continuity assumption mentioned in §2. For every
image, we compute the convex hull of the pixels for which calibration points were
extracted. We then compute the intersection of the convex hulls over all three
views, and henceforth only consider pixels inside that region. For every such
pixel in the first image we estimate the calibration points for the second and
third images using the following interpolation scheme: in each of these images,
we determine the 4 closest extracted calibration points. We then compute the
homography between these pixels and the associated calibration points on the
planar object. The calibration point for the pixel of interest is then computed
using that homography.

On applying the algorithm for central cameras (cf. §5), we obtained the
results shown in figure 3. The bottom row shows the calibrated camera rays and
the pose of the calibration objects, given by the estimated motion parameters. It
is difficult to evaluate the calibration quantitatively, but we observe that for every
pixel considered, the estimated motion parameters give rise to nearly perfectly
collinear calibration points. Note also, cf. the bottom right figure, that radial
distortion is correctly modeled: the camera rays are setwise coplanar, although
the corresponding sets of pixels in the image are not perfectly collinear.

The same experiment was performed for a fish-eye lens, cf. figure 4. The result
is slightly worse — aligned calibration points are not always perfectly collinear.
This experiment is preliminary in that only the central image region has been
calibrated (cf. figure 4), due to the difficulty of placing planar calibration objects
that cover the whole field of view.

Fig. 4. Left: one of 3 images taken by the fish-eye lens (in white the area that was
calibrated). Middle: calibrated camera rays and estimated pose of calibration objects.
Right: image from the left after distortion correction, see text.

Using the calibration information, we carried out two sample applications, as
described in the following. The first one consists in correcting non-perspective
distortions: calibration of the central camera model gives us a bunch of rays pass-
ing through a single point. We may cut these rays by a plane; at each intersection
with a camera ray, we “paint” the plane with the “color” observed by the pixel
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associated with the ray in some input image. Using the same homography-based
interpolation scheme as above, we can thus create a “densely” colored plane,
which is nothing else than the image plane of a distortion-corrected perspective
image. See figure 4 for an example. This model-free distortion correction scheme
is somewhat similar to the method proposed in [5].

Another application concerns (ego-) motion and epipolar geometry estima-
tion. Given calibration information, we can estimate relative camera pose (or
motion), and thus epipolar geometry, from two or more views of an unknown
object. We developed a motion estimation method similar to [15] and applied
it to two views taken by the fish-eye lens. The epipolar geometry of the two
views can be computed and visualized as follows: for a pixel in the first view, we
consider its camera ray and determine all pixels of the second view whose rays
(approximately) intersect the first ray. These pixels form the “epipolar curve”
associated with the original pixel. An example is shown in figure 5. The esti-
mated calibration and motion also allow of course to reconstruct objects in 3D
(see [21] for examples).

Fig. 5. Epipolar curves for three points. These are not straight lines, but intersect in
a single point, since we here use the central camera model.

7 Discussion

The algorithm for central cameras seems to work fine, even with the minimum
input of 3 views and a planar calibration object. Experiments with non-central
catadioptric cameras however did so far not give satisfying results. One reason
for poor stability of the non-central method is the way we currently obtain our
input (homography-based interpolation of calibration points). We also think that
the general algorithm, which is essentially based on solving linear equations, can
only give stable results with minimum input (3 views) if the considered camera is
clearly non-central. By this, we mean that there is not any point that is “close”
to all camera rays; the general algorithm does not work for perspective cameras,

but for multi-stereo systems consisting of sufficiently many cameras®.

® Refer to the appendix of [21] on the feasibility of the general calibration method for
stereo systems consisting of three or more central cameras.
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We propose several ideas for overcoming these problems. Most importantly,
we probably need to use several to many images for a stable calibration. We have
developed bundle adjustment formulations for our calibration problem, which is
not straightforward: the camera model is of discrete nature and does not directly
allow to handle sub-pixel image coordinates, which are for example needed in
derivatives of a reprojection error based cost function. For initialization of the
non-central bundle adjustment, we may use the (stabler) calibration results for
the central model. Model selection may be applied to determine if the central
or non-central model is more appropriate for a given camera. Another way of
stabilizing the calibration might be the possible inclusion of constraints on the
set of camera rays, such as rotational or planar symmetry, if appropriate.

Although we have a single algorithm that works for nearly all existing cam-
era types, different cameras will likely require different designs of calibration
objects, e.g. panoramic cameras vs. ones with narrow field of view. We stress
that a single calibration can use images of different calibration objects; in our
experiments, we actually use planar calibration objects of different sizes for the
different views, imaged from different distances, cf. figure 3. This way, we can
place them such that they do not “intersect” in space, which would give less
stable results, especially for camera rays passing close to the intersection region.
We also plan to use different calibration objects for initialization and bundle
adjustment: initialization, at least for the central model, can be performed using
the type of calibration object used in this work. As for bundle adjustment, we
might then switch to objects with a much denser “pattern” e.g. with a coating
consisting of randomly distributed colored speckles. Another possibility is to use
a flat screen to produce a dense set of calibration points [8].

One comment on the difference between calibration and motion estimation:
here, with 3 views of a known scene, we solve simultaneously for motion and cal-
ibration (motion is determined explicitly, calibration implicitly). Whereas once
a (general) camera is calibrated, (ego-)motion can already be estimated from 2
views of an unknown scene [15]. Hence, although our method estimates motion
directly, we consider it a calibration method.

8 Conclusions

We have proposed a theory and algorithms for a highly general calibration con-
cept. As for now, we consider this mainly as a conceptual contribution: we have
shown how to calibrate nearly any camera, using one and the same algorithm.

We already propose specializations that may be important in practice: an
algorithm for central, though otherwise unconstrained cameras, is presented, as
well as an algorithm for the use of planar calibration objects. Results of pre-
liminary experiments demonstrate that the approach allows to calibrate central
cameras without using any parametric distortion model.

We believe in our concept’s potential for calibrating cameras with “exotic”
distortions — such as fish-eye lenses with hemispheric field of view or catadiop-
tric cameras, especially non-central ones. We are working towards that goal,
by developing bundle adjustment procedures to calibrate from multiple images,
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and by designing better calibration objects. These issues could bring about the
necessary stability to really calibrate cameras without any parametric model in

pr

actice. Other ongoing work concerns the extension of classical structure-from-

motion tasks such as motion and pose estimation and triangulation, from the
perspective to the general imaging model.
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Abstract

We consider the problem of calibrating a highly generic
imaging model, that consists of a non-parametric associa-
tion of a projection ray in 3D to every pixel in an image.
Previous calibration approaches for this model do not seem
to be directly applicable for cameras with large fields of
view and non-central cameras. In this paper, we describe a
complete calibration approach that should in principle be
able to handle any camera that can be described by the
generic imaging model. Initial calibration is performed
using multiple images of overlapping calibration grids si-
multaneously. This is then improved using pose estimation
and bundle adjustment-type algorithms. The approach has
been applied on a wide variety of central and non-central
cameras including fisheye lens, catadioptric cameras with
spherical and hyperbolic mirrors, and multi-camera setups.
We also consider the question if non-central models are
more appropriate for certain cameras than central models.

1. Introduction

This paper is about camera calibration. We adopt a gen-
eral non-parametric imaging model that consists in asso-
ciating one projection ray to each individual pixel. By
projection ray we refer to the 3D (half-) line along which
light travels that falls onto the pixel (here, we neglect point
spread and the finite spatial extent of a pixel). Rays may be
unconstrained, i.e. they may not intersect in a single point,
in which case the camera is called non-central. This general
model has been used in various works [7, 12, 14, 15, 16, 19,
20, 22, 23, 25, 26], and is best described in [7], where prop-
erties other than geometric ones are also considered.

By adopting this model, one may formulate “black-
box calibration” and provide algorithms that allow to cal-
ibrate any camera (see figure 1 for examples), be it of pin-
hole type (with or without optical distortions), catadioptric
[2, 10], pushbroom [8], or some other acquisition system
[15, 20]. Such calibration algorithms have been proposed
in [3, 6, 7, 22]. In this paper, we adopt the approach of [22]
which allows to perform calibration from three images of
a calibration grid, without having to know the motion be-
tween the images. To calibrate the complete image with
only three images, one would need a calibration grid of ap-
propriate dimensions and shape; especially for omnidirec-
tional cameras (fisheye, catadioptric, etc), this will be cum-
bersome to produce and handle. In this paper, we propose a

(@) (b) (© @
Figure 1. Examples of generic imaging model. (a) pinhole camera,
(b) catadioptric with hyperbolic mirror (central), (c) multi-camera,
(d) catadioptric with spherical mirror (non-central).

Figure 2. Examples of complete calibration. Left: 23 calibration
grids, used in calibrating a fisheye. Right: 24 calibration grids
used in calibrating a spherical catadioptric camera.

similar method, that uses multiple images to accurately and
completely calibrate large fields of view.

Our approach works as follows. An initial calibration
is done with images of calibration grids that present suf-
ficient overlap. We then recursively incorporate additional
images: at each step, we select the image that has the largest
overlap with the already calibrated image region. We show
how to compute the pose of the associated calibration grid.
Then, given the pose, one may compute projection rays for
previously uncalibrated pixels, thus enlarging the calibrated
image region. This is iterated until all images have been
used. We also propose a bundle adjustment method that can
be used at any stage of the procedure. This approach and
the underlying methods are developed for both, non-central
and central models, although the central case is described
in more detail here. Besides developing algorithms, we are
also interested in the question if for certain cameras it is
worth going to a full non-central model, cf. also [1, 11].

This paper is organized as follows. The calibration ap-
proach is described in §2 and some variants are proposed
in §3. Practical issues are discussed in §4. Experimental
results are presented in §5, followed by conclusions in §6.
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2. Complete Calibration

We first provide an overview of complete generic camera
calibration. We take several images of a calibration grid
such as to cover the entire image region. Then, matching
between image pixels and points on the calibration grids is
performed. From such matches, we then compute the pose
of each of these grids in a common coordinate system. After
this pose computation, a 3D projection ray is computed for
each pixel, as follows. For all grid points matching a given
pixel, we compute their 3D coordinates (via the pose of the
grids). The pixel’s projection ray is then simply computed
by fitting a straight line to the associated grid points.

For a non-central camera, atleast two grid points per
pixel are of course required. If the camera is (assumed to
be) central however, a single grid point is enough: as will
be seen later, the above stage of pose computation also com-
prises the estimation of the camera’s optical center (in the
same coordinate frame as the grids’ pose). Thus, we com-
pute projection rays by fitting lines to 3D points, but which
are constrained to contain the optical center.

In the following, we describe different parts of our ap-
proach in more detail. In this section, we describe the case
of central cameras. For conciseness, the non-central case
is described more briefly in §3.1. First, we show how to
use the images of multiple grids simultaneously, to com-
pute grid pose and the optical center. It is then shown how
to compute the pose of additional grids. Refinement of cal-
ibration after each step, through bundle adjustment, is then
discussed in §2.3.

2.1 Calibration using Multiple Grids

Our goal is to obtain the poses of multiple calibration
grids w.r.t. a common coordinate system. Let B; denote
the image region covered by the i, calibration grid, for
1 =1---n. Let U and N refer to union and intersection op-
erations respectively. The calibration algorithm is applied
to a partial region given by U?_,(B; N B;). Once the poses
are computed the calibration is extended to a larger region
given by UL B;.

We now outline the theory behind calibration using mul-
tiple grids. Consider one pixel and its associated grid points,
with homogeneous coordinates Q° = (Q%,Q%, Q%, Q%)T,
for grids ¢ = 1---n. In the following, we consider planar
calibration grids, and thus suppose that Q% = 0. Let the
unknown grid poses be represented by rotation matrices R°
and translation vectors t?, such that the point Q?, given in
local grid coordinates, is mapped to global coordinates via

(%@
e

o

Furthermore, let O = (01, O3, O3, 1) be the coordinates
of the camera’s optical center. As global coordinate system,
we adopt, without loss of generality, the reference frame of
the first grid, i.e. R* = I and t* = 0.

We now show how to estimate the unknown grid poses
and the optical center. This is based on the following
collinearity constraint: with the correct poses, the grid
points associated with one pixel, after mapping into the
global coordinate system via (1), must be collinear, and in
addition, collinear with the optical center. This is because
all these points must lie on the pixel’s projection ray, i.e. a
straight line. Algebraically, this collinearity constraint can
be formulated as follows. Consider the matrix containing
the coordinates of the collinear points:

O1 Qi R}Q%+ RLQ3+17Q%
O3 0 R3Q%+ R3,Q3 +13Q7

1 Qi Qi

The collinearity of these points implies that this 4 x (n +
1) matrix must be of rank smaller than 3. Consequently, the
determinants of all its 3 x 3 submatrices must vanish. This
gives equations linking calibration point coordinates and the
unknowns (camera poses and optical center). On using the
first column (optical center) and two other columns with ()7
and QF to form a submatrix, we get bilinear equations in
terms of calibration point coordinates Q7 and Q. Hence,
we may write the equations in the form:

(Q7)" T5xsQ" =0 3)

This matrix 7" (a bifocal matching tensor), depends on
camera pose and optical center, in a way specific to which
3 x 3 submatrix of (2) is considered. Using (3), we esti-
mate such tensors 7' from available correspondences. Since
3 X 3 submatrices can be obtained by removing one row and
n — 2 columns at a time, we have 4x (";“1) possible match-
ing tensors 7. However, using simulations we observed
that not all of them can be estimated uniquely from point
matches. Let T;;x.; ;% represent the tensor corresponding
to the submatrix with rows (4, j, k) and columns (i’, j/, k).
In the following, we use 2 x (n — 1) constraints of the form
Tusa12y, (x = 1,2; y = 3---n) for calibration, i.e. con-
straints combining the optical center and the first grid, with
the other grids. For these tensors, the equation (3) takes the
following form: >0 CYVY = 0 and Y0, CYW! = 0
for Th34;12y and Thaa;12 respectively. Here, CY = Q}Qy,
for appropriate indices j, as shown in Table 1.

V.Y and W} are computed up to scale using least squares.
Note that they share some coefficients (e.g. Rgl), hence
they can be estimated up to the same scale factor, A,.
We perform this step for (n — 1) constraints by choosing
y = 3---n. We now combine all the coupled variables
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Table 1. Tensors T134;12y and T534;12, for a central camera.

i| g k Viy Wiy
1 1 1 0 RY
2 1 2 0 RY,
3 1 4 0 —Os + 17
412 1 RY | 0
512 2 RY, 0
6 2] 4 —O3 + t3 0
7 4 1 —OQRgl +O3R‘g_1 _Ole.l -‘rOgR?l/_l
8 4 2 —OQRgQ +O3Rg2 —O1Rg_2 +O3R71/2
944 —0st] + O3ty —01t] + OstY

contained in the different tensors, to obtain the following
system which links the pose variables of all the grids.

_Ol
Hgy o Joxe - Osxe _202 Y
N S xX2a = |, @»
Hgyo  Osxe - Joxe - Y5k
Xex1
o vy 00 0 0 1 0
o v 00 0 0 0 1
P T o 1 0 0 0 0
H=1vyi o [*"=]0o 0 1 0 0 0]
Vi 00 0 1 0 0
Vioo 1 0 0 0 0 O
;O3 (t — O1) 1
XiO3(t; — O2) Vg
i \iO3 R} ; vy
Xt — 3 I1,1 vi— 9
)\iOgng ’ W7l
A'LOSRIZJ ng
XiO3R; Wy

We rewrite equation (4) as follows:

Ab(n—1)x (24+6(n—1)) Z246(n—1) = Y6(n—1)

Since A is of rank 6(n — 1), we obtain the (2+6(n—1))
variables (Z's) up to a linear combination of three vectors.
The coefficients of the linear combination are computed us-
ing orthogonality constraints on rotation matrices R‘. More
details are given in [18].

Using the definition of Z, it is possible to compute the
pose variables uniquely except for a sign ambiguity in n
variables: there are two mirror solutions for each grid’s pose
(they can lie on either side of the optical center). In the case
of a pinhole camera we can resolve this ambiguity by ap-
plying the constraint that the grids must lie on the same side
of the optical center. However this constraint becomes dif-
ficult to apply for omnidirectional cameras where the grids
essentially get distributed around the center. We apply the
following technique. First we arbitrarily select one solution
for the first grid’s pose. Then we identify the correct loca-
tion of each of the other grids by minimizing their distance
with an already fixed grid, with which it has some overlap.
This is easily achieved because we usually collect images
in succession and not in a completely random order.

Having determined the pose of grids and the optical cen-
ter, we now compute projection rays for all pixels that have
at least one matching point in one of the grids used here.

2.2 Pose Estimation of Additional Grids

We suppose here that a partial calibration of the camera
has been performed with the method of the previous section.
The calibration is partial because only grids whose projec-
tion in the image had some overlap with one of the grids
(“the first grid”) were used. In order to make the calibration
complete, we use the pose estimation technique, described
in our earlier work [17], to include additional grids, which
do not have any overlap with the first grid, but with some of
the others. A 4th degree polynomial equation is solved to
compute the pose and the correct solution is identified from
the ambiguous ones as given in [9].

2.3 Bundle Adjustment

We use bundle adjustment [24] to refine the pose of all
grids (except for the first one) and the projection rays. Dur-
ing bundle adjustment, we minimize the generic ray-point
distance metric [17], i.e. the sum of distances between a
grid point and the projection ray of a pixel that has seen that
point. This can be applied at any stage of our approach;
we apply it after the initial calibration using multiple grids
(cf. §2.1), for refining the pose of each additional grid (cf.
§2.2), as well as at the end of the whole calibration [18].

3. Variants
3.1. Non-Central Cameras

In the non-central case, collinearity constraints require 3
or more grid points per pixel, instead of 2 for central cam-
eras (where the optical center, though unknown, is taken
into account). We use the same notations as in §2.1. For a
non-central camera, we apply the collinearity constraint on
the region given by U}_,(B1NB2NB;). Once the poses are
computed the calibration is eventually extended to a larger
region given by U; j—1...n.i; (Bs N Bj).

We now summarize the calibration procedure, analo-
gously to §2.1. We have no optical center here, so do con-
sider the following 4 x n matrix of collinear points:

Q1 R}Q1 + R,Q5 +11Q7
Q3 R3,Q1 + R3,Q3 +13Q%
0 R3Q7+ R5,Q3 +13Q7
Qi Q3
Similarly to the central case we can apply the collinear-
ity constraint by equating the determinant of every 3 x 3
submatrix to zero. Using simulations we found, as in the
central case, that not all of these provide unique solutions.
In contrast to the central case, where we used the center and
the first grid to build a system linking all the pose variables,
we here use the first and second grid to build the system.
Thus we have 3 x (n — 2) possible tensors, represented by
T3jk12y9, (J, k € {1,2,4}, y = 3---n). Asin the central
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case, we are able to use these tensors to estimate the poses
of all the grids. More details are given in [18].

The next step of the calibration chain, pose estima-
tion and computation of further projection rays, is also
slightly different compared to central cameras (cf. §2.2).
Here, the calibration region is extended to Cii1 =
Ui j=1.-nsizj (Bi N Bj), i.e. it contains all pixels that are
matched to at least 2 grid points. As for the actual pose esti-
mation, it can be formulated in the same way as for central
cameras, but may lead to a set of 8 solutions that does not
contain reflected pairs [4, 13, 17]. Disambiguation can be
carried out using additional points besides the 3 used for the
minimal pose routine.

3.2. Slightly Non-Central Cameras

For slightly non-central cameras like fisheye, spherical
or hyperbolic catadioptric cameras, we start by running the
central version of the generic calibration to obtain an ini-
tial partial calibration. Typically we use four or five images
simultaneously to calibrate an image region and then use
pose estimation to add other images and cover the rest of
the image region. Next, we relax the central assumption;
projection rays are first computed from grid points, without
enforcing them to pass through an optical center. After this,
a non-central bundle adjustment is performed [18].

3.3. Selecting the Best Camera Model

The non-central calibration algorithm of §3.1, can not be
used as such to calibrate a central camera: data (pixel-to-
grid correspondences) coming from a central camera, will
lead to a higher rank-deficiency in the linear solution of the
tensors, causing an incorrect calibration (although residuals
will be lower). However, we may, by analyzing the rank
of the underlying equation system, detect this problem and
maybe even classify the camera as being central and then
apply the appropriate calibration algorithm. More gener-
ally speaking, this is a model selection problem, and the
rank-analysis or any other solution will allow to build a truly
complete black box calibration system.

To this end, we have to take into account a few interme-
diate camera models that may be encountered in practice.
One such case is the class of cameras for which there exists
a single line that cuts all projection rays (we call them ax-
ial cameras). Examples are the classical two-camera stereo
systems (the mentioned line is the baseline joining the two
optical centers) and certain non-central catadioptric cam-
eras, e.g. all catadioptric cameras with a spherical mirror. A
yet more special class of cameras are so-called crossed-slits
cameras [5], which encompass pushbroom cameras [8]. We
are currently specializing our calibration approach to these
additional general classes of camera types. Overall, it seems
that these 4 classes (central, axial, crossed-slits, fully non-
central) and their associated calibration algorithms, maybe

with a few additional classes, should be sufficient to cali-
brate most cameras.

Besides considering these general camera types, we
may also discuss the choice between parametric and non-
parametric models for a given camera. Generic calibration
not only allows to calibrate any camera system by treating
it as a black box, it also provides the ability to easily ob-
tain a parametric calibration once the model for the cam-
era is known. Every parametric calibration will just be a
model-fitting problem, which can be solved as a non-linear
optimization problem starting with the good initial solution
obtained using generic calibration.

4. Practical Issues

First, we found that grids with circular targets, using
point spread function to compute the centers, provide sta-
ble calibration compared to checkerboard patterns.

Secondly, the usage of grids with very different orienta-
tions and positions is important for stable calibration. One
way to easily achieve this is to use calibration grids of dif-
ferent sizes and to put them at different distances from the
camera (together with sufficient orientation differences).

Thirdly, by using a combination of /ocal 4-point homog-
raphy based prediction, local collinearity and orthogonality
constraints, we start from four features (circular targets or
corners), located at the corners of a square, and incremen-
tally extend the matching of image features to grid coordi-
nates along all directions. This approach worked automat-
ically for all pinhole images as well as for several fisheye
and catadioptric images. However we also had to use man-
ual input for some images.

The last issue is concerned with a required interpolation
process: for every grid point in the first image we compute
the interpolated points in the other grids’ coordinate sys-
tems (since for other grids, the extracted targets or corners
do not lie on the same pixels in general). To take care of
the noise we impose collinearity constraints (globally for
central cameras and locally for non-central cameras) dur-
ing interpolation process for the originally collinear corners
in the calibration grids [18]. This improved the numerical
stability of the results significantly.

S. Experiments and Results

We have calibrated a wide variety of cameras (both cen-
tral and non-central) as shown in Table 2. Results are first
discussed for several “slightly non-central” cameras, and
then for a multi-camera system.

Slightly non-central cameras: central vs. non-central
models. For three cameras (a fisheye, a hyperbolic and
a spherical catadioptric system, see sample images in Fig-
ure 3), we applied both, central calibration and the proce-
dure explained in § 3.2, going from central to non-central.
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Table 2. Bundle adjustment statistics for different cameras. (C)
and (NC) refer to central and non-central calibration respectively,
and RMS is the root-mean-square residual error of the bundle ad-
justment (ray-point distances). It is given in percent, relative to the
overall size of the scene (largest pairwise distance between points
on calibration grids).

Camera | Images | Rays | Points | RMS

Pinhole (C) 3| 217 651 | 0.04
Fisheye (C) 23| 508 | 2314 | 0.12
(NC) 23 | 342 | 1712 | 0.10

Sphere (C) 24| 380 | 1441 | 294

(NO) 24 | 447 | 1726 | 0.37
Hyperbolic (C) 24| 293 1020 | 0.40
(NC) 24 | 190 821 | 0.34

Multi-Cam (NC) 3| 1156 | 3468 | 0.69
Eye+Pinhole (C) 3 29 57| 0.98

Table 3. RMS error for circle fits to grid points, for turntable se-
quences (see text).

Camera | Grids | Central | Non-Central
Fisheye 14 0.64 0.49
Spherical 19 2.40 1.60
Hyperbolic 12 0.81 1.17

Table 2 shows that the bundle adjustment’s residual errors
for central and non-central calibration, are very close to one
another for the fisheye and hyperbolic catadioptric cameras.
This suggests that for the cameras used in the experiments,
the central model is appropriate. As for the spherical cata-
dioptric camera, the non-central model has a significantly
lower residual, which may suggest that a non-central model
is better here.

To further investigate this issue we performed another
evaluation. A calibration grid was put on a turntable, and
images were acquired for different turntable positions. We
are thus able to quantitatively evaluate the calibration, by
measuring how close the recovered grid pose corresponds
to a turntable sequence. Individual grid points move on a
circle in 3D; we thus compute a least squares circle fit to the
3D positions given by the estimated grid pose. At the bot-
tom of Figure 3, recovered grid poses are shown, as well as a
circle fit to the positions of one grid point. Table 3 shows the
RMS errors of circle fits (again, relative to scene size, and
given in percent). We note that the non-central model pro-
vides a significantly better reconstruction than the central
one for the spherical catadioptric camera, which thus con-
firms the above observation. For the fisheye, the non-central
calibration also performs better, but not as significantly. As
for the hyperbolic catadioptric camera, the central model
gives a better reconstruction though. This can probably be
explained as follows. Inspite potential imprecisions in the
camera setup, the camera seems to be sufficiently close to
a central one, so that the non-central model leads to overfit-

Figure 3. Top: sample images for hyperbolic (left), spherical (mid-
dle) and eye based catadioptric cameras (right). Bottom: fisyeye
image (left), pose of calibration grids used to calibrate the fisheye
(middle) and a least squares circle fit to the estimated positions of
one grid point (right).

Al
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Figure 4. Multi-camera setup consisting of 3 cameras (left). Re-
covered projection rays and grid poses (right).

ting. Consequently, although the bundle adjustment’s resid-
ual is lower than for the central model (which always has
to be the case), it gives “predictions” (here, pose or motion
estimation) which are unreliable.

Calibration of a multi-camera system. A multi-camera
network can be considered as a single generic imaging sys-
tem. As shown in Figure 4 (left), we used a system of three
(approximately pinhole) cameras to capture three images
each of a calibration grid. We virtually concatenated the
images from the individual cameras and computed all pro-
jection rays and the three grid poses in a single reference
frame (see Figure 4 (right)), using the non-central algorithm
described in § 3.1.

In order to evaluate the calibration, we compared results
with those obtained by plane-based calibration [21, 27], that
used the knowledge that the three cameras are pinholes. In
both, our multi-camera calibration, and plane-based calibra-
tion, the first grid was used to fix the global coordinate sys-
tem. We can thus compare the estimated poses of the other
two grids for the two methods. This is done for both, the ro-
tational and translational parts of the pose. As for rotation,
we measure the angle (in radians) of the relative rotation be-
tween the rotation matrices given by the two methods, see
columns R; in Table 4). As for translation, we measure the
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Table 4. Evaluation of non-central multi-camera calibration rela-
tive to plane-based calibration. See text for more details.

Camera Rs R3 to tz | Center
1] 0.0117 | 0.0359 | 0.56 | 3.04 2.78
2 | 0.0149 | 0.0085 | 0.44 | 2.80 2.17
3| 0.0088 | 0.0249 | 0.53 | 2.59 1.16

distance between the estimated 3D positions of the grids’
centers of gravity (columns ¢; in Table 4) expressed in per-
cent, relative to the scene size. Here, plane-based calibra-
tion is done separately for each camera, leading to the three
rows of Table 4.

From the non-central multi-camera calibration, we also
estimate the positions of the three optical centers, by clus-
tering the projection rays and computing least squares point
fits to them. The column “Center” of Table 4 shows the
distances between optical centers (expressed in percent and
relative to the scene size) computed using this approach and
plane-based calibration. The discrepancies are low, suggest-
ing that the non-central calibration of a multi-camera setup
is indeed feasible.

Another experiment we carried out was to calibrate a
small region of the exotic catadioptric system formed with
an eye as mirror, cf. an image in Figure 3 and bundle ad-
justment statistics in Table 2.

6. Summary and Conclusions

We have proposed a non-parametric, generic calibration
approach and shown its feasibility by calibrating a wide va-
riety of cameras. One of the important issues is in the iden-
tification of appropriate models, central or non-central, for
slightly non-central cameras. For understanding complex
cameras or mirror surfaces, where mathematical modeling
might be more demanding, generic calibration can be used
as a black box tool to first obtain the projection rays. The
nature of these projection rays can be experimented further
to identify the right parametric model.
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Abstract. Although most works in computer vision use perspective or other central cameras, the inter-
est in non-central camera models has increased lately, especially with respect to omnidirectional vision.
Calibration and structure-from-motion algorithms exist for both, central and non-central cameras. An in-
termediate class of cameras, although encountered rather frequently, has received less attention. So-called
axial cameras are non-central but their projection rays are constrained by the existence of a line that cuts
all of them. This is the case for stereo systems, many non-central catadioptric cameras and pushbroom
cameras for example. In this paper, we study the geometry of axial cameras and propose a calibration
approach for them. We also describe the various axial catadioptric configurations which are more common
and less restrictive than central catadioptric ones. Finally we used simulations and real experiments to
prove the validity of our theory.

1 Introduction

Many camera models have been considered in computer vision and related fields and even more taylor-made
calibration methods have been developed. Most of those are designed for central cameras, but approaches
and studies for non-central or general ones also exist [5-9, 16,12, 13, 3]. An intermediate class of cameras, lying
between central and fully non-central ones, is that of so-called azial cameras: their projection rays are constrained
by the existence of a line that cuts all of them, the camera axis, but they may not go through a single optical
center.

The axial model is a rather useful one (cf. figure 1(a) and (b)). Many misaligned catadioptric configurations
fall under this model. Such configurations, which are slightly non-central, are usually classified as a non-central
camera and calibrated using an iterative nonlinear algorithm [10,2,14]. For example, whenever the mirror is
a surface of revolution and the central camera looking at the mirror lies anywhere on the revolution axis, the
system is of axial type. Furthermore, two-camera stereo systems or systems consisting of three or more aligned
cameras, are axial. Pushbroom cameras [15] are another example, although they are of a more restricted class
(there exist two camera axes [4]).

In this paper, we propose a generic calibration approach for axial cameras, the first to our knowledge. It
uses images of planar calibration grids, put in unknown positions. We show the existence of multi-view tensors
that can be estimated linearly and from which the pose of the calibration grids as well as the position of the
camera axis, can be recovered. The actual calibration is then performed by computing projection rays for all
individual pixels of a camera, constrained to cut the camera axis.

The paper is organized as follows. The problem is formalized in section 2. In section 3, we show what can
be done with two images of calibration grids. Complete calibration using three images, is described in section 4,
followed by a bundle adjustment algorithm in section 5. Various types of axial catadioptric cameras are listed
in section 6. Experimental results and conclusions are given in sections 7 and 8.

2 Problem Formulation

In the following, we will call camera axis the line cutting all projection rays. It will be represented by a 6-vector
L and the associated 4 x 4 skew-symmetric Pliicker matrix [L]:

0 —Ly Lg —Lo
Ly 0 —Ls—Ls
“L¢ Ls 0 —IL
Ly Ly L1 O

[L]x =

The product [L]«Q gives the plane spanned by the line L and the point Q. Consider further the two 3-vectors:
L; Lo
A=|Ls|, B=|Ls
Ly Ly
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AXIS| Rotation of a curve

Planar Calibration Grids

o—\’g’/’
—
b
—

AXIS

ao

L AxIs
(a) (b) (c)

Fig. 1. Examples of axial imaging models (a) stereo camera (b) a mirror formed by rotating a planar curve about an
axis containing the optical center of the perspective camera.(c) Calibration of axial cameras using calibration grids:
The projection rays, camera axis and two grids are shown. The axis intersects at a and b on the first and the second
calibration grids respectively.

for which the Pliicker constraint holds: BTA = 0. A represents the point at infinity of the line. The Pliicker

matrix can be written as:

0 —Ly Lg —Lo

Ly 0 —Ls—Ls| ([A]x —B
—Lg Ly 0 —IL; _(BT 0)
Ly L3 Li 0

[L}x =

The calibration problem considered in this paper is to compute projection rays for all pixels of a camera,
from images of planar calibration grids in unknown positions. We assume that dense point correspondences
are given, i.e. for (many) pixels, we are able to determine the points on the calibration grids that are seen in
that pixel. Computed projection rays will be constrained to cut the camera axis. The coordinate system in
which calibration will be expressed, is that of the first calibration grid. Calibration thus consists in computing
the position of the camera axis and of the projection rays, in that coordinate system. The proposed approach
proceeds by first estimating the camera axis and the pose of all grids but the first one.

3 What can be Done with Two Views of Calibration Grids?

Consider some pixel and let Q and Q' be the corresponding points on the two calibration grids, given as 3D
points in the grids’ local coordinate systems. Since we consider planar grids, we impose Q3 = Q5 = 0.

We have the following constraint on the pose of the second grid (R’,t’) as well as the unknown camera axis
L: the line spanned by Q and Q' cuts L, hence is coplanar with it. Hence, for the correct pose and camera axis,
we must have:

R ¢/
QT[L]X (OT 1) Q/ =0
Hence: .
Q1 0 —Ly Lg —Lo Rt Q1
Q2 Ly 0 —Ls—Lj (OT 1) QI2 =0
Q4 Ly Ly Ly O Q)

where R’ refers to the 3 x 2 submatrix of R’ containing only the first and the second rows. We thus have the
following 3 x 3 tensor that can be estimated linearly from point correspondences:

0 —Ly L¢ —Lo Rt/
Fo Ly 0 —Ls—Ly <0T 1)

Ly Ly Ly O

(1)

It has only 7 degrees of freedom (9 - 1 for scale, -1 for rank-deficiency) so the 10 unknowns (4 for the camera
axis, 3 for R and 3 for t’) can not be recovered from it.

We now look at what can actually be recovered from F. Let us first notice that its left null-vector is
(L3, — Lo, L4)T (it truly is the null-vector, as can be easily verified when taking into account the Pliicker con-
straint). We thus can recover 2 of the 4 parameters of the camera axis. That null-vector contains actually the
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coordinates of the camera axis’ intersection with the first grid (in plane coordinates). Its 3D coordinates are
given by (L3, —Ls, 0, L4)T. Similarly, the right null-vector of F gives the plane coordinates of the axis’ intersec-
tion with the second grid. Besides this F also gives constraints on R’ and t’. For example R’ can be extracted up
to 2 to 4 solutions. We will later observe that once we locally shift the intersection points, between the camera
axis and calibration grids, to the origins of the respective grids the vector t’ will lie on the camera axis. Inspite
of all these additional constraints, arising from axial geometry, two views of calibration grids are not sufficient
to uniquely extract R’ and t’. Thus we use three calibration grids as described below.

4 Full Calibration using Three Views of Calibration Grids

Let Q, Q', Q" refer to the grid points corresponding to a single pixel in the three grids. The poses of the
grids are (1,0), (R’,t') and (R”,t”) respectively. Since the three points Q, Q' and Q" are collinear we use this
constraint to extract the poses of the calibration grids [12]. Every 3 x 3 submatrix of the following 4 x 3 matrix

has zero subdeterminant.
R/ t/ , R// tl/ ”
(@ (ri)e (Y)e

The submatrices constructed by removing the first and the second rows lead to the constraints > C;T1;, =0
and Y C;T2; = 0 respectively (as described in Table 1). These are nothing but homogeneous linear systems
of the form AX = 0. The unknown vector X is formed from the 14 variables (C;). Each of these variables
are coupled coefficients of the poses of the grids. The matrix A is constructed by stacking the trilinear tensors
T1 and T2, which can be computed from the coordinates of Q, Q' and Q”. In future when we refer to the
rank of a linear system AX = 0, we refer to the rank of the matrix A. The rank has to be one less than the
number of variables to estimate them uniquely upto a scale. For example, each of the above linear systems must
have a rank of 13 to estimate the coefficients (C;) uniquely. These systems were used to calibrate completely
non-central cameras [10]. However in the case of axial cameras, these systems were found to have a rank of 12.
This implies that the solution can not be obtained uniquely. In order to resolve this ambiguity we will need
more constraints.

| ] Motion (C)] 71, T2 i Motion (C)] 71, T2
1 Ry QQ1Q%| Q1Q1Q%||13[Ro: Ry — Ry Rys| QaQ3Q3 0
2 Ry Q2Q5Q%| Q1Q5Q1|[14]  Rigts — Ryitf 0] Q.QLQY
3 R31|—Q2Q5Q7|-Q:1Q4Q7 |15 12t — Riot] 0] QuQ5Q%
4 Ri|—Q20Q41Q5 | —Q1Q4Q%||16]  Riits — Ryty| QaQ1Q4 0
5 ty —t5] Q2QUQY| Q1Q4QY|17]  Riyots — Rioty| QaQ2Q4 0
6|R1:1 R31 — Ry RY) 0] QuQ1Q7]18 11t5 — Raity 0]—Q4Q4Q7
7|R11 R — Ry RYs 0] Qs1Q1Q%||19 Tots — Rty 0|-Q4Q1Q3
8| R12R31 — R Ry 0] QuQ5Q7||20] R3:1t5 — Ryits|—Q4QLQY 0
9|R12R3s — R52RYs 0] QsQ5Q5(|21 RYyts — Riatn|—QaQLQ5 0
10| Ry, R31 — R31 Ry, | QaQ1QY 0|22 thty — t5ty 0| Q.QiQY
11|R51 R5> — R31 R3s| QaQ1Q% 0]|23 oty —taty| QaQuQY 0
12| Ry Ry — Ry Ry, | QaQ3QY 0

Table 1. Trifocal tensor in the generic calibration of completely non-central cameras.

4.1 Intersection of axis and calibration grids

Using the technique described earlier we compute the intersection of the camera axis with the three grids at
a,b and c respectively. We translate the local grid coordinates such that these intersection points become their
respective origins. Without loss of generality we continue to use the same notations after the transformations.

Q%Q7a7 Ql%Qlfba Q”<‘Q”7Ca
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We can obtain a collinearity constraint by putting these origins in the same coordinate system. Every 3 x 3
subdeterminant of the following 4 x 3 matrix vanishes.

0t

0 R t"\ [0 R7¢"\ (0\\ _[0t)t]
1 o"1)\1 0T 0 /\1))  |0tht]
111

The camera axis passes through O, t’ and t”. This enables us to express t” as a multiple of t’ using some scalar
A: t"" = At’. As a result, the variables Cos and Cbs from Table 1 disappear.

Con = 148} — 14t} = 1, Ath — 1A, = 0
Cag = thtly — thty = th Ath — th Ath =0

On disappearing, Caz and Cag reduce the size of the linear systems Y C;T1; = 0 and > C;T2; = 0 each by
one. Inspite of this reduction there still exists a rank deficiency of 2 in both these systems. The rank of each of
these systems is 11 with 13 nonzero coeflicients to be estimated. In the next section we provide the details of
the usage of a coplanarity constraint, which exists in axial cameras, to remove the degeneracy problems.

4.2 Coplanarity constraints in axial cameras

The camera axis cuts all the projection rays. As observed earlier both O and t’ lie on the camera axis. Along
with these two points, we consider two grid points Q' and Q" lying on a single projection ray. Since these four
points are coplanar, the determinant of the following 4 x 4 matrix disappears.

0 #

0 A Rt ., (R'A\ .,
of 2] G)e GY)e
1 1

The corresponding constraint is a linear system a;;Q;Q’ = 0 (see table 2). Note that Q) and QY are not
present because of the three zeros in the first column. We can solve this linear system to computer the solutions
for c;;. We expand the above linear system and do some algebraic manipulation.

a11Q1QY + a12Q1Q5 + a1 Q5Q7T + a22Q5Q5 =0
Qa(011Q1Q7 + 12Q1 Q3 + 21 Q5Q + 22Q5Q5) = 0
i1
QuQ5Q5 = ——QuQ1Q] — —QuQ1Q5 — —QuQ5Q7

Q21
Q22

a2

Q22 Q22

This will enable us to represent both 729 and T'1;3, from the earlier systems, in terms of other variables in the

tensors T'1 and T2 respectively.
a1l 12 Q21

T2 = — 9, - Z279.  2lpo.
Q22 Q22 Q22

Tlis = — 210715 — 22715, — 22271y,
Q992 Q22 Q22

Using the above relation we obtain two new constraints given by > A4;A1; =0 and >_ A; A2, = 0. Note that
each of these constraints are linear systems with 12 nonzero coefficients each. Both of them have a rank of 11
and thereby producing unique solutions for their coefficients (A;). The individual elements in the poses of the
grids are extracted from these coupled coefficients using orthonormality constraints of the rotation matrix [12].
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[1]i] oy |
1)1t (Rs 1 R5 4 21R51) — to(R1 T1R31) +t5(Ry 11R31)
1[2]t1 (R, 1332*R2 2 RS 1) — t5(R) 1R32*Rl 2R5.) +H15(Ry 1R22 RioRS 1)
2|1|t1(Rs0R51 — R5 1 R30) —tlz( 12R31 /,1R3,2)+t3(R1 2Ry 1 — R 1R )
22[t1 (Ry s R3 2 — Ry o RS 5) — t5(R12R5 s — R R32) +t3(R1 2Ry 2 — RIoRY 5)

Table 2. Bifocal tensor from the coplanarity constraint on O, t', Q' and Q”.

| i[ Motion (4,)] Al A2 ] Motion (Ai)| Ali] A2
1 Ry | Q@1QY| QuQi||11]  Cia — 22Ci3| Qu@xQY 0
2 Ryp| Q2Q5QY| Q1Q2Q4 || 12[A(R1ts — Rs,th) 0] QuQiQ%
3 B3 |~ Q2Q4Q7 |- Q1 QU QY || 13| A(R1at5 — Raoth) 0] QsQ2Q%
4 Ry | —Q2Q4Q5 | —Q1Q4Q5 14| A(Ry t5 — Ryits)| QuQ1Q% 0
5 ts — 15| Q2Q4QF| Q1Q41QT|[15]A(Roots — Raots)| QuQ5QY 0
6] Cs — 1 Co 0] Qs1Q7||16 ity — R31t 0[-QuQ4QY
7| G- 520 0] Qu@1Q3|17 123 — Raoty 0]-Q4Q1Q%
8] Cs — 22 Co 0] Qu@Q2Q7||18]  Raits — Ryits|—QuQaQY 0
9|Cro — S C13| Qu@iQY 0[[19]  Roots — Rabts|—QuQ4Q% 0
10[C1 — 22C13] QuQ1Q% 0

Table 3. Trifocal tensor for the generic calibration of axial cameras.

5 Bundle Adjustment Formulation

We give the details of a bundle adjustment which refines the estimated camera axis and poses of the calibration
grids. This is similar to our earlier method [10], except that we have an additional constraint coming from
the camera axis. The bundle adjustment is done by minimizing the distance between the grid points and the
corresponding projection rays. The cost function is given below.

Cost = Z Z(A + XD + py Dy — [R;T;]Qj0)

i=1 j=1

— (A, D) - represents the axis (point, direction)

— D; - unit direction vector of the i;; projection ray

— )\; - parameter selecting the intersection of the i;, ray and the axis
— Qj; - grid point on the j; grid lying the i, ray

— [j; - parameter selecting the point on the i, ray closest to Q;

— (R4, T;) - pose of the calibration grid

6 Axial Catadioptric Configurations

Our formulation can classify a given camera into either axial or not. For example on applying our method on
axial data we obtain unique solutions. On the other hand, a completely non-central camera will lead to an
inconsistent (no solution), whereas a central camera will produce a rank deficient system (ambiguous solutions).
Thus our technique produces unique solutions only for axial configurations. This can be used as a simple test
in simulations to study the nature of complex catadioptric arrangements (as shown in Figure 2(a)). Since axial
cameras are less restrictive than central cameras, they can be easily constructed using various combinations of
mirrors and lenses. For example there are very few central configurations [1] (also see Table 4). Furthermore
these configurations are difficult to build and maintain. For example, in a central catadioptric camera with
hyperbolic mirror and perspective camera, the optical center has to be placed precisely on one of the mirror’s
focal points. On the other hand, the optical center can be anywhere on the mirror axis to have an axial geometry.
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| mirror |[ctr] (pers)|axial (pers)[nctr] (pers)[[ctral (ortho)[axial (ortho)|nctrl (ortho)]

hyperbolic|  o=f oeMA | o¢ MA - OA || MA | OA }f MA
spherical - always - - always -
parabolic - oeMA | o¢ MA || OA || MA - OA }f MA
elliptic o="f{ oeMA | o¢ MA - OA || MA | OA } MA
cone - oeMA | o¢ MA - OA || MA | OA } MA
planar always - planar - - -
mir-rot - always - - always -

Table 4. Catadioptric configurations. Notations: ctrl (pers) - central configuration with perspective camera, nctrl (ortho)
- non-central configuration with orthographic camera, mir-rot - mirror obtained by rotating a planar curve about the
optical axis, o - optical center of the perspective camera, f - focus of the mirror, MA - major axis of mirror, OA - optical
axis of the camera, = refers to same location, €-lies on, ||-parallel, f-not parallel.

7 Experiments

7.1 Simulation

We started with perfect axial configurations for three scenarios (as shown in Figures 2(a), (b) and (c)) and
gradually change the configurations to make them non-central. We quantify this change from the perfect axial
configuration as disparity. For example, in Figure 2(a), the disparity represents the distance between the optical
center of the perspective camera and the orthographic camera axis passing through the center of the sphere.
This optical center is initially at a distance of 3 units from the center of the sphere (which is of radius 1 unit).
In Figure 2(b), the disparity represents the distance between the optical center of the perspective camera and
the major axis of the hyperboloid. Initially the optical center is at a distance of 5 units from the tip of the
hyperboloid, whose two radii are 5 and 10 units. In Figure 2(c), the disparity represents the distance between
the optical center of the third camera and the line joining the first two cameras. The distance between two
consecutive centers of the cameras is 40 units. We calibrate these systems in the presence of disparities. We
compute the mean angular error between the original and the reconstructed projection rays in Figure 2(d). Note
that the the mean angular error (given in radians) reaches zero only at the precise axial configuration.

Axis 1
. Spherical

Axis 2

Hyperbolic
Reflected N\

%
Reflected
Rays

Mean disparity angle
o
w
a

T \LWM MWW

005 0 005 0 005
Disparity from Axial Configuration (D)

Rays Rays

(a) (b) (c) (d)

Fig. 2. Test for axial configuration. (a) Catadioptric (spherical mirror+pers.camera+ortho.camera): becomes non-central
when the two optical centers and the sphere center are not collinear (as shown).(b) Catadioptric (Hyperbolic mir-
ror+pers.camera): becomes non-central if the optical center is not on the axis of the hyperbolic mirror (as shown). (c)
Tristereo when one of the cameras is axially misplaced (as shown). (d) shows the mean angular error between the original
and reconstructed projection rays w.r.t disparity. The graphs shown in left, middle and right correspond to scenarios in
(a), (b) and (c) respectively (see text for more details).

7.2 Stereo camera

We captured three images of a calibration grid using two different cameras. The goal is to reconstruct the
projection rays of both the cameras in the same generic framework using our axial calibration algorithm. Here



Paper 13: Theory and Calibration Algorithms for Axial Cameras, ACCV 2006 [16] 145

the camera axis is the line joining the two optical centers (see Figure 3(a)). The image of the combined system
is formed by concatenating the images from the two cameras. Figure 2(d) shows that our algorithm is very
sensitive to noise. However using RANSAC, it is possible to obtain a good calibration. Once we compute the
pose of the grids we can compute the rays corresponding to individual cameras in the stereo system. These rays
can also be made to intersect separately and parameterized using a pinhole model. The RMS bundle adjustment
error, based on the distance between the projection rays and grid points on the calibration grids, is of the order
of 0.29% w.r.t overall size of the scene. The estimated camera parameters are close to the correct results. The
reconstructed projection rays and grids are shown in Figure 3(a).

7.3 Spherical catadioptric cameras

We calibrated a real spherical catadioptric camera and extracted the camera axis. We start with an initial
calibration using three grids using the above axial algorithm. This enables us to obtain an initial estimate for
the axis and the projection rays. Using this partial calibration, we use pose estimation to incrementally compute
the pose of newer grids. We followed our earlier method to obtain complete calibration [10]. The calibration grid
captured by a spherical catadioptric camera is shown in Figure 3(b). We estimated the pose of several grids on
a turntable sequence using the calibration. The grid positions and the axis are shown in Figure 3(c). For more
details about results and other experimental issues please refer to [11].

Fig. 3. Axial calibration: (a) Calibration of a stereo system (b) Image captured by a catadioptric system with a spherical
mirror and a perspective camera. (b) Estimated poses of several grids along with the camera axis.

8 Conclusions

We studied the theory and proposed a linear calibration algorithm for an intermediate class of cameras called
axial cameras. Further line of investigation needs to be carried out to test the accuracy of this approach with
respect to parametric and completely non-central approaches.

Acknowledgments: We thank Toméas Pajdla, Branislav Micusik and Diana Mateus for the data.
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Calibration of Cameras with Radially Symmetric Distortion

Jean-Philippe Tardif Peter Sturm
DIRO, Universié de Montéal INRIA Rhone-Alpes
Canada 38330 Montbonnot St Martin, France
Abstract .
View cone

We present a theory and algorithms for plane-based cal-

ibration and pose recovery of general radially distorted Calibration plane
cameras. By this we understand cameras that have a distor- T
tion center and an optical axis such that the projection rays Distortion circle

of pixels lying on a circle centered on the distortion center,

form a right cone centered on the optical axis. The camera

is said to have a singular viewpoint (SVP) if all such view

cones have the same vertex (the optical center), otherwise

we speak of non-SVP, and each view cone may have its own

optical center on the optical axis. This model encompasses

the classical radial distortion model, fisheyes, most central \
or non-central catadioptric cameras, but also cameras with

radially symmetric caustics.

Calibration consists in the estimation of the distortion cen-

ter, the opening angles of all view cones and their optical

center. We present two approaches of computing a full cal- Camera image Plane image

ibration from dense correspondences of a single or multi-

ple planes with known euclidean structure. The first one is Figure 1: Our camera model (see text for explanations). The
based on a geometric constraint linking view cones and as-inlayed illustrations show the distortion center (in blue) and

sociated ellipses in the calibration plane; calibration of the a distortion circle for a true image taken with a fisheye, and

view cones can be solved by determining the closest pointhe corresponding calibration ellipse overlaid on a pattern
to a set of hyperbolas. The second approach uses existshown on the calibration plane.

ing plane-based calibration methods to directly calibrate

individual view cones. A simple distortion correction al-

gorithm for calibrated SVP images is given. Preliminary an opposite point of view, by adopting a very generic imag-

Ellipse

experiments show convincing results. ing model that incorporates most commonly used cameras
[9, 5,17, 10, 15]. In the most general case, cameras are
1. Introduction modeled by attributing an individual projection ray to each

individual pixel. Such a model is highly expressive, butitis
In the last few years, we have seen an increasing interesgitficult to obtain a stable calibration of cameras with it.
in non-conventional cameras and projection models, going |, this paper, we propose a simple camera model (and as-
beyond affine or perspective projection. There exists alargegsiated calibration methods) that hopefully offers a good
diversity of camera models; many of them specific to cer- compromise: it is sufficiently general to model many com-

tain types of projectionsl} 1] or families of cameras such 1,5 camera types, but has much fewer parameters than the

as central catadioptric systems [, 3, €] All these mod-  ghqye generic model, thus making calibration much easier

els are described by a few intrinsic parameters, much like gnq more stable. We model cameras using the notions of a
the classical pinhole model, possibly enhanced with radial yisiortion center in the image and anptical axis in 3D.

or_decentering distortion coefficients. Calibration _methods For cameras withadially symmetric distortion , the pro-
exist for all these models, and they are usually tallor—madejectiOn rays associated with pixels lying on a same circle

for them, i.e. can not be used for any .other projection centered on the distortion center, lie on a rigletving cone
model. Several works address the calibration problem from o htered on the optical axis (cf. fig). This encompasses

*tardifj@iro.umontreal.ca many common camera models, such as pinhole (modulo as-
tpeter.sturm@inrialpes.fr pect ratio and skew), the classical polynomial radial dis-
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tortion model, fisheyes, or any catadioptric system whoseplane is the plané&Z = 0, and that the calibration ellipse
mirror is a surface of revolution, and for which the optical is given by the matrix dia@, b, —1), withb > a > 0, i.e.

axis of the perspective (or affine) camera looking at it is the X-axis is the ellipse’s major axis. Our aim is to provide
aligned with the mirror’s revolution axis. Our model com- constraints on the position of the optical center, as well as
prisescentral cameras (SVP), where all viewing cones have on the orientation of the optical axis, from this ellipse.

the same vertex (theptical center), but alsonon-central Let us first state a well-known result. Consider a right cone
ones (NSVP), for which the viewing cones’ vertices lie any- (whose vertex is a point with real coordinates) and its inter-
where on the optical axis. In the latter case, we may speaksection with a plane. For now, we only consider the case
of one optical center per viewing cone. where the intersection is an ellipse (the case of the hyper-
Problem statement.We want to calibrate cameras based on bola will be discussed later). It is easy to prove that the
the above model, from one or several images of a calibrationorthogonal projection of the cone’s vertex onto the plane,
plane in unknown positions. The input to the calibration lies on the ellipse’s major axis (cf. fig2a and &). This
algorithms is a dense matching between the plane(s) and thémplies that the cone’s vertex lies in the plane that is or-
camera image, and the euclidean structure of the plane(s)thogonal to the ellipse’s supporting plane and that contains
From this, we compute, for all viewing cones, their focal its major axis.

length (equivalent to the opening angle). Our algorithms For our problem, this means that the optical center must lie
assume a known position of the distortion center, but we in the planeY” = 0 (since the ellipse lies in plare = 0 and
also show how to estimate it, using repeated calibrationshas theX-axis as major axis). We may further constrain its
for different candidates. Calibration also comprises a posepositionC = (X, 0, Z, 1)T, as follows fi]. The cone with
estimation problem: estimating the orientation of the optical C as vertex and that contains the calibration ellipse, is given
axis (relative to a calibration plane) and the location of each by (x represents equality up to scale):

viewing cone’s vertex on it.

2
Organization. A geometric study of our model is presented aZ 0 —eXz 0

2
in 82, together with our first calibration approach. The sec- A x 0 bz 8 0
ond approach, based on the standard plane-based calibra- *“g( Z 8 aXZ* 1 222

tion method, is described ir88In &4, we give an algorithm

for performing perspective image rectification based on cal-
ibration results. Several practical issues and experimental
results are presented i 8nd &, respectively.

For this cone to be a right one, its upper &f 3 matrix A
must have a double eigenvalue. The three eigenvalues are:

, aX2+aZ2—1:I:\/4aZ2—|—(—aX2—aZ2—|—1)2
2. Geometry bZ%, 5

2.1. One Distortion Circle The second and third eigenvalues can not be equal for real
Let us consider one distortion circle in the image plane. We values ofX andZ (besides in the trivial cas&¥ = Z = 0).
suppose that we have determined the ellipse on the calibraThe first eigenvalue is equal to the third on¢Zit= 0 and to
tion plane that is mapped to that circle via the camera’s the second one if:

rojection function (see5. If we knew the position of
lcohelcamera’s optical(cen?;r relative to the cali%ration plane, abX? +b(a—b) 2 + (a—b) = 0. @)
then we could compute the_ cone that has the o_ptlcal CeNrhis equation tells us that the optical center lies on a conic
ter as vertex and that contains Fhe above c_:allbratlon_el_llpse.in the planey” = 0, given by the following matrix:
That cone has several interesting properties: its axis is the
camera’s optical axis and it is a right cone, i.e. rotationally ab
symmetric with respect to its axis. From the cone, the focal U = b(a — b)
length of the considered distortion circle can be easily com- a—b
puted (the cone’s opening angle equals the field of view). o _ _
In practice, we do not know the optical center’s position rel- This is & hyperbola, sincg: — ) < 0. Furthermore, its
ative to the calibration plane. In the following, we show ge- 8Symptotes correspond to the direction of the two cylinders
ometrical relations between the calibration ellipse, the opti- that contain the calibration ellipse. . .
cal center and the optical axis of the camera. When talking L€t Us now consider the orientation of the optical axis. Due
about optical center, we mean the optical center per distor-t0 (1), let us consider an optical center with:
tion circle; they all lie on the optical axis and in the SVP 5
case, they are identical. gy jobX ta—b
Without loss of generality, we assume that the calibration b(b—a)
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Optical axis

3
Te

(b)
Figure 2: lllustrations of the geometry of viewing cones, calibration ellipses and loaaftioptical center. cf. text.a)
Complete illustration for one viewing conk) View of the calibration plane, showing many cones’ calibration ellipses. Note
that their major axes are collinea&). Side view of the hyperbolas associated with many calibration ellipses.

Here, we exclude the case= b, which would correspond the associated calibration ellipse, up to 1 degree of free-
to the camera looking straight at the calibration plane. dom (location on the hyperbolr). We now show how to
The direction of the cone’s axis is given by the eigenvector get a unique solution, when considering several distortion
associated with the single eigenvalug\gfaugmented with  circles simultaneously. Let us first note that calibration el-

a homogeneous coordindie lipses corresponding to different distortion circles, are not
+/b(b—a)(@abX> +a—b) independent: their major axes are collinear (cf. fip) .
0 Their centers are not identical however (unless they are all
ab X . (2) circles, i.e. if the camera looks straight at the plane).
0 Let U, be the hyperbolas for different distortion circles,

given in the same coordinate frame. In the case of a single
viewpoint camera, the optical center must lie on all these
hyperbolas. Furthermore, the optical axis is tangent to all
of them. This implies that all hyperbolas touch each other

We now show that the cone’s axis is identical with the tan-
gent of the hyperbol& in the optical centeC, which is
given by (in the plan@” = 0):

X abX (have a double intersection point) in the optical center. This
U(Z)=|FV/bb—-a)(abX2+a-0)|. is illustrated in figure2c. A naive algorithm would compute
1 a—b the hyperbolas for all ellipses and seek their single intersec-
Its point at infinity is (still in the plané&” = 0): tion/contact point. The drawback of this situation is that
+/bb—a)(@bX2+a—0) very Iittlg noisg can cause two hyperbolas to have no real
abX intersection point at all, instead of a double one.
0 Consider now the NSVP case: to each distortion circle and

viewing cone, corresponds a separate optical center. Hence,
the hyperbolas won't have a single contact point anymore.
However, the optical axis is shared by all viewing cones.
Eence, it is the single (in general) line that is tangent to all
yperbolas. Furthermore, the individual optical centers are
its contact points with the associated hyperbolas.

i.e. itis identical with the point given in2j. Hence, for an
optical center onV, the optical axis is directly given by the
associated tangent.

The case where the intersection between a cone and the ca
ibration plane yields a hyperbola, given by diag-b, —1),

can be dealt with in a similar fashion. This typically occurs
with very wide angle cameras. Once again, the calibration
hyperbolas have their major axes aligned together. We can2.3. Calibration and Pose Estimation

show that the possible viewpoints lie on an ellipse given by A simple calibration method consists in computing the 3D
diag(a b, b(a + b), —a — b) and that the optical axis is tan-  point which is closest in average to all hyperbolas (see next
gent to it. For Slmp|ICIty’S Sake, the rest of the article con- paragraph)_ This gives the camera’s optica' center (re'a_
centrates on the elliptic case; nevertheless, everything holdsjve to the calibration plane). Then, viewing cones can be
when some intersections are hyperbolas. spanned with individual calibration ellipses, and the focal

2.2. Multiple Distortion Circles 1This constraint is non-linear, but can be enforced when fi tting the el-
L . . . lipses in cases where the correspondences with the calibration plane have
So far, we have shown that for an individual distortion Cir- |arge errors, or not uniformly distributed around the curve. It is not shown

cle, the associated viewing cone can be determined fromhere due to lack of space.
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lengths for all distortion circles are computed based on their
opening angles. In the NSVP case, we would first compute
the optical axis. A plausible criterion would be to find the Hiront
line L that minimizes the sum of squared distances between
itself and the closest tangent line to each hyperbola parallel
to L. In the following, this calibration approach is referred
as the Right Cone Constraint method (RCC).

Closest point to the hyperbolas.Computing the orthogo-
nal distance of a point to a general conic requires solving
fourth degree polynomiallP]. Using this to compute the
closest point to our set of hyperbolas is not very practical.
Instead, we minimize a simpler cost function: the closest
pointq is found by solving:

Optical axis

1_[back

Original circle

min Z dist(q,qq)?, subjecttoq) ¥yqs =0, Rectified circle \
e d Cone in opposite direction

i.e. we also estimate one point per hyperbélathat will,

after convergence, be the orthogonal projectiog oh ¥ ;. Figure 3: Viewing cones can also be seen as individual per-
The problem is solved using tivdinimizefunction ofMath- spective cameras with different focal length. A rectified
ematica Since the function and constraints are polynomial, image can be obtained by projecting the distortion circles
it uses a cylindrical algebraic decomposition that guarantees(which lie in different planes) on one plafBon; (Or Ipack

a global minimum 1.8]. for a field of view larger than80°).

3. Calibration with the IAC tq allows to model translational displacement of individual
The RCC approach relied on pose recovery from the imageviewing cones along the optical axis (given by, the third

of one plane to calibrate. In practice, if many calibration row of R), which is needed for NSVP cameras. For SVP
planes are available, one would want to use them to increaseameras, we set; = 0 for all d. As for Ky, it is a cali-
robustness. We present another approach that first combration matri¥ diag(fs, f4, 1), wheref, is the focal length
putes the calibration (from one or many images of planes) associated with the considered distortion circle. We may in-
and then recovers the pose. The approach uses well-knowterpret the relation betweehand f,; as a distortion function
results on plane-based calibration for perspective cameraspplied to a perspective camera whose undistorted image
[20, 16]. Indeed, it is possible to see the viewing cones plane ismon; (Cf. fig. 3).

in terms of manyperspective camerasvith different focal Note that this parameterization only accounts for viewing
lengths but identical principal point. In the SVP case, their cones with field of view smaller tham80°. Larger fields
extrinsic parameters are also identical, whereas an NSVPof view can be modeled by adding a reflection to the rota-
camera can be modeled by adding a translation along thetional component of the posB! = diag(1,1, —1)R, and a
optical axis per viewing cone. corresponding image plangack

Calibration. Let us consider the distortion circle of radius FromH,, we first computeky, using the approach o?]),

d and one image of a calibration plane. From point corre- 1¢]. Of course, this can be done using the homographies
spondences between pixels on this circle and points on thegiven for multiple images of the calibration plane.
calibration plane (on the calibration ellipse), we can com- Once the calibration is known for each viewing cone, the
pute a plane-to-image homograpHy. For simplicity, et poseR andt can be computed from the homography of any
us assume that image coordinates have been translated tgistortion circle, using{4]. In the SVP case, the pose is the
put the distortion center at the origin. The homography can same for all/, and we may “average” the different estimates
then be decomposed such that: or better, non-linearly optimize the pose and calibrations si-
multaneously for alt. In the NSVP case, we first compute

U T 1 0 x L " .
R, which is the same for alf. As for the position of opti-
H =K;R 1 —t+t¢ ’ .
11) o Md ? d 8 0 +tars ?i cal centerst(and thet,;), we must fix one, e.g.ty, = 0.

: ; : : . : f 2As mentioned in the introduction, this model does not include a skew
where(x, y) is a calibration pOII‘]t(u, U) a pixel on the dis between pixel axes or an aspect ratio different fromAlso, it assumes

tortion circle, am_R andt a rotation matrix and translation that the distortion center is at the principal point. Generalizing this would
vector representing camera pose (same faf)alThe scalar  be straightforward though.
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Then, fromHg, we can computé and finally from theH,, @
the scalarg,. This time, non-linear optimization is recom-
mended and straightforward to perform. «

3.1. Computing the Distortion Center
Until now, we have assumed, for both algorithms, that the . (@asmm () parecana (c) s.omm

st

distortion center was known; this information was used to “ .
select the distortion circles. Tests with noiseless simulated \/ ii\/ o
data showed that the calibration may be quite sensitivetoa : o

bad choice of distortion center; as for real cameras, using T e
the image center as an approximation was not satisfying in
general. Hence, the distortion center should be estimated a&igure 4: Plots of the goodness measure for the distortion
part of the calibration process. The sensitivity of calibration center, obtained for three tested lens (cf).8a,b,g 60 x

we observed in simulation suggests that it should be possi-60 grid around the image center (yellow meaning smaller).
ble to estimate the distortion center rather reliably, which d,e,f) One slice of the grid, through the best position.

was confirmed in practice.

We used the following heuristics to define an optimization
criterion for the distortion center. Let us apply the IAC ap-
proach of 8 with several images as input. The plane-based
calibration for each distortion circle is then capable of es-
timating a principal point, besides the focal length It
seems plausible that the better the assumed distortion cen
ter was, the closer the estimated principal points will be to
it. Since plane-based calibration is applied on images cen
tered on the assumed distortion center, we can consider th
average norm of the estimated principal points (on per dis- .

tortion circle) as a measure for the goodness of the center. 5. Practical Issues

Figure 4 shows the values of this measure, computed for 5 1. Dense Camera—Plane Correspondences

distortion center positions ona® x 60 grid around the im- The easiest approach we found to get dense correspon-
age center, for real cameras. The shape of the cost Surfacgences between the calibration plane and the camera is to

indicates that we can find the optimum distortion center us- ,
: : . se aflat screen as plane. We used a simple coded structured
ing a simple steepest descent type method. We implemente . . N . )

ight algorithm [LZ], which consists in successively dis-

such an approach that accurately finds the distortion center 7. . : .
"y . X playing patterns of horizontal and vertical black and white
within a couple of minutes of computation. Note that the " . "
) . stripes on the screen to encode the position of each screen
second row of figurelb shows that, although the principal . : . )
oints used to plot it were computed individually per distor pixel (cf. fig. 5). Then, for each camera pixel, we iden-
b P b yp tify the corresponding position on the calibration plane by

tion circle, they are very densely clustered (a_verage d'.Stancedecoding the observed intensities in each pattern. When
to assumed distortion center of less than 3 pixels). This sug-

gests a high stability of the calibration performed in a controlled environment (low-constant am-

' bient lighting, screen of high contrast and resolution), the
ip . accuracy of such a method is reasonably good (aratthd
4. Image Rectification pixel of error on average). Since the points located on the
distortion circles are given in floating point coordinates, we
compute their correspondences by a weighted sum of the
correspondences recovered for the four closest image pix-
els.

o X
0 10 20 30 40 50 60

(d) 3.5mm (e) paracata (f) 8.0mm

and the view anglé(d). As seen in figurell, this func-
tion is generally simple (close to linear), so easily invertable
(see 8). Let D(0) denote this inverse function. One pixel
q" in the rectified image is backprojected in space with
¢“ = (KYR")"1¢". Then, we compute the angtebe-
tween this pixel and the Z-axis (the optical axis of the origi-
_nal camera). Finally, the corresponding position in the orig-
énal image is given b¥X p ) q*.

Once the calibration of an SVP camera is known, an image
can be perspectively rectified. Then, straight lines in the
scene appear straight in the image.

Rectification is done by placing a virtual perspective cam-
era at the actual camera’s optical center. KétandR%, 4 o .
represent the virtual camera’s calibration and orientation. A 9-2. Omnidirectional Cameras

nave approach for image creation is to render each pixel There are several issues worth mentioning for omnidirec-
of the original (distorted) image into the virtual (distortion- tional cameras. If the field of view is larger tha80°, then

free) image, and then fill out the holes by interpolation (cf. some distortion circles will have viewing cones that actually
fig. 3). It is well known that an inverse approach is bet- approach planes. Their pose can not be estimated the same
ter. We achieve this by inverting the relation between way as for true cones. These can be detected as the ones
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(b)
Figure 5: Projected patterns for correspondences are horiFigure 7: Catadioptric camera built from a Basler A201bc
zontal and vertical black and white stripes. Images taken€@mera with a Fujinon 12.5 mm lens pointed at a roughly
with a) the Goyo 3.5 mmb) catadioptric, and) paracata-  SPherical mirror.

dioptric camera.

whose correspondences on the calibration plane are close to
collinear. They can then be discarded from the actual cal-
ibration procedure and we may attribute them an unknown
focal length. In the case of the IAC, rank deficient homo-
graphies are discarded resulting once again in an unknown
focal length. Their actual value can be determine afterward
by interpolation (see®

In the NSVP case, we still need to compute the offgein

(b)

the optical axis of such (almost) "viewing planes’, since it Figyre 8: Image rectification of the paracatadioptric cam-
may differ from that of other viewing cones. This is simple ¢ 5 a) Original image. b) Rectified image for a rotated
once the optical axis has been computed using other dis53mera.

tortion circles and their exact opening angle has been de-
termined: the cones’ offset can be computed such that they
go through the extracted correspondences in the calibrationindeed the radius for which the focal length is 0 corresponds

plane. better to the measurement of the correspondences’ colin-
earity. The radial configuration of the catadioptric camera
6 Experiments was not perfect. Nevertheless, the distortion center could

be found and a satisfying calibration could be obtained with
We used a wide-angle Goyo 3.5 mm lens combined with both methods. The IAC approach gave the best results be-
a CCTV A201bc Basler camera, a Cosmicar 8.0 mm with cause it could take advantage of up to eight images, which
little distortion, a paracatadioptric camera built with a Cos- is more robust to the imperfect configuration of the camera.
micar 12.5 mm (referred to as “paracata” in the text), and We also observed that the calibration is more stable for the
also a homemade catadioptric device built from a Fujinon lens with the wider field of view. Indeed, when there is
12.5 mm lens, pointed at a roughly spherical mirror (cf. fig. very little distortion in the image, the hyperbolas’ curva-
7). The calibration plane of known euclidean structure was tures are similar, which induces more instability for the re-
a 21 inch CRT screen in all cases, except for the paracatacovered camera pose. We also calibrated the 8.0 mm with
dioptric camera where a multimedia projector was carefully the OpenCV library 11], and found the recovered focal
placed in a fronto-parallel position w.r.t. to a wall. Even lengths to be inside the result’s uncertainty interval. Image
though the alignment was not perfect and the camera self-rectification also yielded almost identical results.
occluded, it did not affecte the solution significantly. The In practice, only a subset of distortion circles are used for
only non-linear optimizations that were performed to ob- calibration; others can then be extrapolated or interpolated
tain the following results are in the hyperbola intersection from a polynomial fitting of the data. Let us define this
algorithm and the pose estimation for the IAC approach.  polynomialp; from the camera model, it is best to ensure
Figure 10 gives the computed focal length of the 3.5 mm, that its derivative at O (corresponding to the distortion cen-
8.0 mm and paracatadioptric lenses, w.r.t. the distartoe  ter) is 0. This constraint is due to the symmetry of the dis-
the distortion center, using both methods. The wide-angletortion model, and can be enforced by using a polynomial of
camera could already be calibrated from a single image ofthe formp(d) = a¢+aid?+...+a,_1d". In practice, poly-
the screen with both approaches (cf. fig,b for the RCC), = nomials of degree 3 appeared to be sufficient. To handle the
although better results were obtained using five images andcase of omnidirectional cameras more appropriately, the in-
the IAC approach. The paracatadioptric camera was cali-terpolation is carried out with the view angle instead of the
brated with the two approaches with very similar results (cf. focal length. In this case, a polynomial passing through 0
fig. 9c); however, the RCC algorithm gave the best results. can also be fitted (see figl).
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©

Figure 6: Image rectificationa) Original images.b) Rectified image for the Goyo 3.5 mnt) Rectified image for the
home-made catadioptric camera. Small inset images show rectification of the tegides.
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Figure 9: Calibration with the RCC approacha) Fitted g 20
ellipses for the Goyo lens artn) corresponding hyperbo- 150 ) g S
las and computed intersection) For the paracatadioptric 100 R e
camera, the intersection between the calibration plane and 50 I

the cones yielded ellipses and hyperbolas, constraining the

0 N
. . . ; . 0 50 100 150 200 250 300 350 400 450 500
viewpoint to lie respectively on hyperbolas and ellipses.

Radius

Figure 10: Recovered focal length (in pixel) from the two

. L Igorithms and extrapolated val from polynomial fittin
Evaluating the results based on the reprojection error cana 99 s and extrapolated values from polynomia 9
of the data for the tested cameras.

lead to biased conclusions in the case of a generic model.
Indeed, the model offers more freedom which allows to fit
the data better. This analysis goes together with the compar-

ison between SVP and NSVP constraints and the displace- paracata RCC -+

mentt, of the viewpoints on the optical axis. This topic is 200 | PRacalR RS+ , s

to be explored more thoroughly, but the preliminary results & 150 | goamraaS = g
obtained with the IAC approach indicate that our model is 5 oo | BO™MIAC ° e BN
useful (see tablg). They show that the paracatadioptricand > " R ]

to a lesser extent the 3.5 mm are probably NSVP. The dis- %0 - i)ﬁ:ﬂ,www B
placement along the optical axis confirms this observation; 0 O""”S’;“ 10:' 150 200 250 300 350 400 450 500
the shape of the curves also leads us to believe that it is not Radius

aresult of overfitted data (see fifg2). Figure 11: View angle in degrees for the tested cameras.

More meaningful quantitative results were obtained for the
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Position Angle 1
Algorithms || po1 | pi2 | po2 ao1 aiz ao2 35mm e .
Ground truth || 5 5 10 0° 0° 0° = %81 paracata e
RCC 4.99 | 5.09 | 10.08 || 2.25° | 0.89° | 2.91° g 06
IAC 4.89 | 5.13 | 9.99 0.6° | 0.4° | 1.1° 8 o4
o ’ i
(%] 2
. . T 02 F
Table 1: Result for pose estimation. The camera was . o T
moved to three positions with known relative motion. Coef-
0 50 100 150 200 250 300 350 400 450 500

ficientsp;; anda,; denote the distance (in centimeters) and
relative angle (in degrees) between camera positiard

VE

radius

Figure 12: Displacement (in mm) along the optical axis for
the 8.0 mm, the 3.5 mm and the paracatadioptric. The gen-

Camera Constraint eral curves’ form of the two last leads us to think that the
Algorithms || SVP | NSVP NSVP optimization is not a result of overfitting.

paracata 9.10 1.01

35mm || 518 | 2.23

80mm | 220 ] 1.35 ages, showed greater stability. It is also the basis for the

distortion center estimation which is an important issue of
the calibration.
Our approach may be especially suitable for unknown con-

Table 2: Comparison of the average reprojection error for
different constraint of the viewpoint.

figurations (SVP/NSVP, mirror equation) or slightly mis-

Goyo lens, using a pose estimation procedure. Using a

aligned catadioptric systems.

translation stage, the camera was moved to three positioni:{ i
with known relative motion (no rotation, known transla- ererences
tion). Using the calibration information (obtained using [1] R. Bajcsy, S-S. Lin. True single view point cone mirror omni-

other images), the pose of the camera relative to the calibra-
tion plane was computed for all three positions (the NSVP
configuration being very similar in all three cases). From
this, the relative motions were computed and compared to
the ground truth. The results presented in tabkhow a
good stability for both methods.

Finally, images from the three panoramic cameras were rec-
tified based on the calibration results (cf. fijand8). Es-
pecially for the wide-angle Goyo lens (with litle NSVP),
the rectification seems to be very good, even towards the
image borders (cf. the inset image in figb). As for our
paracatadioptric camera, the rectification is very good, al-
though not perfect, a likely result of its NSVP. Finally, the
rectification of our home-made catadioptric device is also
surprisingly good for a large part of the image, especially
around the borders. The remaining distortions in the center

(2]
(3]
(4
(5]

(6]
(7]
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El

10]

were found to be caused by a small bump on the “mirror’s” [11]

surface.

7. Summary and Conclusion
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We have proposed new calibration approaches for a cameraj14]

model that may be a good compromise between flexibility
and stability for many camera types, especially wide-angle
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but its practical usability remains limited. This is due to the
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Towards Generic Self-Calibration of Central Cameras

Srikumar Ramalingam'®2, Peter Sturm', and Suresh K. Lodha?
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2 Dept. of Computer Science, University of California, Santa Cruz, CA 95064, USA
{Srikumar.Ramalingam, Peter.Sturm } @inrialpes.fr, lodha@soe.ucsc.edu

Abstract

We consider the self-calibration problem for the generic
imaging model that assigns projection rays to pixels without
a parametric mapping. In this paper, we consider the cen-
tral variant of this model, which encompasses all camera
models with a single effective viewpoint. Self-calibration
refers to calibrating a camera’s projection rays, purely from
matches between images, i.e. without knowledge about the
scene such as using a calibration grid. This paper presents
our first steps towards generic self-calibration; we con-
sider specific camera motions, concretely, pure translations
and rotations, although without knowing rotation angles
etc. Knowledge of the type of motion, together with image
matches, gives geometric constraints on the projection rays.
These constraints are formulated and we show for exam-
ple that with translational motions alone, self-calibration
can already be performed, but only up to an affine trans-
formation of the set of projection rays. We then propose a
practical algorithm for full metric self-calibration, that uses
rotational and translational motions.

1. Introduction

Many different types of cameras have been used in com-
puter vision. Existing calibration and self-calibration pro-
cedures are often taylor-made for specific camera models,
mostly for pinhole cameras (possibly including radial or de-
centering distortion), fisheyes, specific types of catadioptric
cameras etc. see examples e.g. in [1,2,7,4,9, 11].

A few works have proposed calibration methods for a
highly generic camera model that encompasses the above
mentioned models and others [5, 3, 6, 15, 14]: a camera ac-
quires images consisting of pixels; each pixel captures light
that travels along a projection ray in 3D. Projection rays
may in principle be positioned arbitrarily, i.e. no functional
relationship between projection rays and pixels, governed
by a few intrinsic parameters, is assumed. Calibration is
thus described by:

e the coordinates of these rays (given in some local co-

ordinate frame).

o the mapping between rays and pixels; this is basically

a simple indexing.

One motivation of the cited works is to provide flexi-
ble calibration methods that should work for many differ-
ent camera types. More importantly these calibration works
also provide the flexibility to build newer cameras for spe-
cial applications and still calibrate them with existing tech-
niques. The proposed methods rely on the use of a cali-
bration grid and some of them on equipment to carry out
precisely known motions.

The work presented in this paper aims at further flexi-
bility, by addressing the problem of self-calibration for the
above generic camera model. The fundamental questions
are: can one calibrate the generic imaging model, with-
out any information other than image correspondences, and
how? This work presents a first step in this direction, by
presenting principles and methods for self-calibration us-
ing specific camera motions. Concretely, we consider how
pure rotations and pure translations may enable generic self-
calibration.

Further we consider the central variant of the imaging
model, i.e. the existence of an optical center through which
all projection rays pass, is assumed. Besides this assump-
tion, projection rays are unconstrained, although we do need
some continuity (neighboring pixels should have “neighbor-
ing” projection rays), in order to match images.

2. Problem Formulation

We want to calibrate a central camera with n pixels. To
do so, we have to recover the directions of the associated
projection rays, in some common coordinate frame. Rays
need only be recovered up to a euclidean transformation,
i.e. ray directions need only be computed up to rotation.
Let us denote by D), the 3-vector describing the direction
of the ray associated with the pixel p.

Input for computing ray directions are pixel correspon-
dences between images and the knowledge that the motion
between images is a pure rotation or a pure translation (with
unknown angle or length). For simplicity of presentation,
we assume that we have dense matches over space and time,
i.e. we assume that for any pixel p, we have determined
all pixels that match p at some stage during the rotational
or translational motion. Let us call a complete such set of
matching pixels, a flow curve. Flow curves can be obtained
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from multiple images undergoing the same motion (rota-
tions about same axis but not necessarily by the same an-
gle; translation in same direction but not necessarily with
constant speed) or from just a pair of images I and I'.

In Figure 1 we show flow curves obtained from a single
image pair each for a pure translation and a pure rotation
about an axis passing through the optical center. Let p and
p’ refer to two matching pixels, i.e. pixels observing the
same 3D point in I and I’. Let p” refer to the pixel that in
I’ matches to pixel p’ in I. Similarly let p””’ be the pixel that
in I’ matches to pixel p” in I, and so forth. The sequence
of pixels p,p’,p”,p"", ... gives a subset of a flow curve.
A dense flow curve can be obtained in several ways: by
interpolation or fusion of such subsets of matching pixels or
by fusing the matches obtained from multiple images for the
same motion (constant rotation axis or translation direction,
but varying speed).

Figure 1: Illustration of flow curves: translational motion
(top) and rotational motion (bottom).

3. Constraints From Specific Camera
Motions

We explain constraints on self-calibration of projection ray
directions that are obtained from flow curves due to specific
camera motions: one translational or one rotational motion.

3.1. One Translational Motion

Consider two matching pixels p and g, i.e. the scene point
seen in pixel p in image 1, is seen in image 2 in pixel g. Due
to the motion being purely translational, this implies that
the projection rays of these two pixels, and the motion line,
the ray along which the center of the camera moves while
undergoing pure translation, are coplanar (they indeed form

an epipolar plane, although we won’t use this notation in the
following).

It is obvious that this statement extends to all pixels in a
flow curve: their projection rays are all coplanar (and that
they are coplanar with the motion line). We conclude that
the ray directions of the pixels in a flow curve, lie on one
line at infinity. That line at infinity also contains the direc-
tion of motion.

When considering all flow curves for one translational
motion, we thus conclude that the ray directions of pixels
are grouped into a pencil of lines at infinity, whose vertex
is the direction of motion. Clearly, these collinearity con-
straints tell us something about the camera’s calibration.

When counting degrees of freedom, we observe the fol-
lowing: at the outset, the directions for our n pixels, have
2n degrees of freedom (minus the 3 for rotation R). Due to
the translational motion, this is reduced to:

e 2 dof for the motion direction

e | dof per flow curve (for the line at infinity, that is con-
strained to contain the motion direction)

e | dof per pixel (the position of its ray along the line at
infinity of its flow curve).

e minus 3 dof for R.

3.2. One Rotational Motion

Let L be the rotation axis (going through the optical center).
Consider two matching pixels p and ¢g. Clearly, the associ-
ated rays lie on a right cone with L as axis and the optical
center as vertex, i.e. the angles the two rays form with the
rotation axis L, are equal. Naturally, the rays of all pixels in
a flow curve, lie on that cone. Each flow curve is associated
with one such cone.

When counting degrees of freedom, we so far observe
the following. Due to the rotational motion, the following
dof remain:

e 2 dof for the direction of the rotation axis

e 1 dof per flow curve (for the opening angle of the as-
sociated cone).

e | dof per pixel (the “position” of its ray along the as-
sociated cone).

e minus 3 dof for R.

We have not yet exploited all information that is pro-
vided by the rotational motion. Besides the knowledge of
rays lying on the same cone, we have more information, as
follows. Let O be the (unknown) angle of rotation. Then,
the angular separation between any two rays whose pixels
match in the two images, is equal to ©. Hence, the rays for
each set of pixels that are transitive 2-view matches, can be
parameterized by a single parameter (an “offset” angle). We
remain with:
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2 dof for the direction of the rotation axis

1 dof for the rotation angle ©

1 dof per flow curve (for the opening angle of the as-
sociated cone).

1 dof per set of matching pixels (the “offset” of its ray
along the associated cone).

minus 3 dof for R.

Scene —

Optical
center

Axis of rotation

Figure 2: The rays of the pixels in the rotation flow curve
form a cone.

3.2.1. Closed Flow Curves

Let us consider what we can do in addition, if the rotation
axis “pierces” the image, i.e. if there is a pixel whose ray is
collinear with the rotation axis. Then, in the vicinity of that
pixel, closed flow curves can be obtained. For example, for
a pinhole camera with square pixels and no skew, a rotation
about its optical axis produces flow curves in the form of
circles centered in the principal point, covering a large part
of the image.

What does a closed flow curve give us? Let us “start”
with some pixel p on a closed flow curve, and let us “hop”
from one matching pixel to another, as explained in Fig-
ure 1. We count the number of pixels until we get back to
p. Then, the rotation angle © can be computed by divid-
ing 360° by that number. Of course, pixel hopping may
not always lead us exactly to the pixel we started with, but
by interpolation, we can get a good approximation for ©.
Furthermore, this can be done by starting from every single
pixel on every closed flow curve, and we may hope to get a
good average estimation of ©.

4. Multiple Translational Motions

In this section, we explain that multiple translational mo-
tions allow to recover camera calibration up to an affine
transformation. First, it is easy to explain that no more
than an affine “reconstruction” of projection rays is pos-
sible here. Let us consider one valid solution for all ray
directions D, i.e. ray directions that satisfy all collinearity
constraints associated with flow curves (cf. section 3.1). Let
us transform all ray directions by an affine transformation of

3-space
A b
0" 1

i.e. we apply the 3 x 3 homography A to the D;. This may
be seen as a projective transformation inside the plane at
infinity, although we prefer to avoid any possible confusion
by such an interpretation, and simply think of the mapping
as an affine one. Clearly, the D, = AD,; also satisfy all
collinearity constraints (collinearity is preserved by affine
and projective transformations).

This situation is very similar to what has been observed
for perspective cameras: a completely uncalibrated perspec-
tive camera can be seen as one whose rays are known up to
an affine transformation of 3-space: the role of A is played
by the product KR of calibration and rotation matrix; since
calibration is only required up to rotation, only K matters.
So, the rays of a perspective camera are always (at least)
“affinely” calibrated (not to confuse with the concept of
affine calibration of a stereo system). Even with uncali-
brated perspective cameras, 3D reconstruction is possible,
but only up to projective transformations. Now, when mov-
ing a camera by pure translations, no further information on
calibration can be gained, although a projective reconstruc-
tion may be upgraded to affine [12].

Coming back to our generic camera model, it is thus ob-
vious that from pure translations, we can not reach farther
than recovering the rays up to an affine transformation (the
situation would be different for example if multiple trans-
lations were considered with the knowledge that speed is
constant).

We now provide a simple constructive approach to re-
cover actual affine self-calibration. Let us consider 4 trans-
lational motions, in different directions such that no 3 di-
rections are collinear. Let us carry out the translations such
that the FOE (focus of expansion) is inside the image, i.e.
such that there exists a pixel for each motion whose ray is
parallel to the motion line. Let these 4 pixels be pixels 1
to 4. Since we can recover ray directions up to a 3 x 3 ho-
mography only, we may, without loss of generality, attribute
arbitrary coordinates to the directions D - - - D4 (such that
no 3 of them are collinear). We now alternate between the
following two steps:

1. Compute the line at infinity of ray directions for all
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flow curves for which two ray directions have already
been determined.

2. Compute ray directions of pixels who lie on two flow
curves whose line at infinity has already been deter-
mined.

Repeat this until convergence, i.e. until no more directions
or lines at infinity can be computed.

In the first iteration, 6 lines at infinity can be computed,
for the flow curves that link pairs of our 4 basis pixels. After
this, 3 new ray directions can be recovered.

In the second iteration, 3 new lines at infinity are com-
puted. From then on, the number of computable ray direc-
tions and lines at infinity increases exponentially in general
(although pixels and flow curves will be more and more of-
ten “re-visited” towards convergence).

This algorithm is deterministic, hence the computed ray
directions will necessarily be an “affine reconstruction” of
the true ones.

There are a few issues with this “proof™:

o the construction does not state sufficient condition in
order to calibrate all ray directions of a camera; it just
says that the ray directions we do calibrate (i.e. that are
attained by the construction scheme), are indeed up to
the same global affine transformation equal to the true
ones.

e a practical implementation of the above algorithm will
have to deal with noise: for example, computed flows
curves are not exact and the lines at infinity computed
for flow curves that contain the same pixel, will not
usually intersect in a single point.

e strictly speaking, the above scheme for self-calibration
is not valid for cameras with finitely many rays. To
explain what we mean, let us consider a camera with
finitely many rays, in two positions. In general, i.e.
for an arbitrary translation between the two positions,
a ray in the second camera position, will have zero
probability of cutting any ray in the first camera po-
sitions! Hence, the concept of matching pixels has to
be handled with care. However, if we consider a cam-
era with infinitely many rays (that completely fill some
closed volume of space), a ray in one position will al-
ways have matching rays in the other position (unless
it is outside the other position’s field of view). Hence,
our constructive proof given in this section, is valid for
cameras with infinitely many rays. In future work we
will clarify this issue more properly.

5. Self-Calibration Algorithm

We put together constraints derived in section 3 in order to
propose a self-calibration algorithm that requires rotational

and translational motions.

5.1. Two Rotational Motions

From a single rotation we obtain the projection rays in sev-
eral cones corresponding to flow curves. The local offsets
and the opening angles are unknown in each of the cones.
In the presence of another rotation we obtain a new set of
cones around a different axis. It is possible to compute the
projection rays without any ambiguity using these two mo-
tions. However we propose a simple and practical algorithm
for computing the projection rays with two rotations and an
additional translation in the next subsection.

5.2. Two Rotations and One Translation

By combining our observations so far, we are able to for-
mulate a self-calibration algorithm that does not require any
initialization. It requires 2 rotational and 1 translational mo-
tions with at least one closed flow curve.

The translational motion only serves here to fix the offset
angles of all cones arising from the two rotational motions.
Let p; be the center pixel of the first rotation and p» that of
the second one. Consider the translational flow curve that
contains p;. All pixels on one side of the flow curve starting
from p; will have the same ¢;. Similarly let ¢o refer to
the offset angle for pixels lying on the flow curve passing
through p,. The same holds for the second rotation.

Without loss of generality, we set the first rotation axis
as the Z-axis, and set ¢; = 0 for po, and ¢ = 0 for p;.
Hence, the ray associated with ps is determined up to the
angle o between the two rotation axes. Below, we explain
how to compute this angle. If we already knew it, we could
immediately compute all ray directions: for every pixel p,
we know a line going through D, (associated with its ¢1)
and similarly for Dy. The pixel’s ray is simply computed
by intersecting the two lines.

What about pixels whose rays are coplanar with the two
rotation axes? This is not a problem because every com-
puted ray direction gives the angle of the associated cone.
Hence, all pixels on that cone can directly by reconstructed,
by intersecting the line issuing from D; or Ds with its cone.

This reasoning is also the basis for the computation of «.
However in general the flow curves are not always closed.
Thus we present a more detailed approach which can work
with several open flow curves. In order to understand the al-
gorithm let us first visualize a setup as shown in Figure 3(a).
Consider a plane 7; orthogonal to the first rotation axis.
The intersection of the cones associated with the first ro-
tation axis and the plane m; will form concentric circles
Cy,Csy,..C, with radii r1,7s9,..7,,. Let h be the distance
of the camera center from 7;. Thus the opening angle of
the 445, cone can be computed if we know the r; and h. Now
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Figure 3: a) We show two rotation axes and a plane orthogonal 7; to the first axis. We compute the rotation axis, radii of the
concentric circles around the first rotation axis, the distance between C'y and Cs and eventually the angle o between the two
axis. See text for more details. b) Two rotation flow curves and one translation flow curve on the image. c) Concentric circles

from rotation and a line translation on 7.

let us consider the intersection of the cones from the second
rotation with the plane 7. These intersections are ellipses.

As we observed earlier translational flow curves consists
of pixels whose corresponding projection rays are coplanar.
The intersection of these coplanar rays and the plane 71 is
a line. We use this information to compute the relation be-
tween r; and later the offset angles.

Here we briefly describe the technique used in comput-
ing r;. Let 6, and 05 be the two angles subtended by a single
translational curve with C; and C5. We can compute the an-
gle subtended by two consecutive pixels in a rotation flow
curve. Thus it is possible to obtain the angle subtended by
any two pixels on the flow curve.We assume 7 to be unity.
Thus 7 can be computed as below.

Similarly we can compute the radii of the circles of all other
cones.

The distance between C; and Cs, the distance d between
the two axes on 71, can be computed by constructing a flow
curve passing through the center pixel (pixel corresponding
to the axis) of the second rotation and estimating its radius.
Finally we need to compute the value of A to compute «.
In order to compute A let us consider the flow curve of the
second rotation passing through the center pixel of the first
rotation. The corresponding cone intersects 7; as an ellipse.
We intersect this flow curves with the flow curves about the
first axis to obtain some 3D points on 7;. These points can
be used to parameterize the ellipse. Once we know the ma-
jor radius 7, of the ellipse we can compute h and « as shown
below.

2t 27,
tan(20) = — 2ol 2ra 7o

—t —a= Iffzrfl(é
1 —tan?(a)’ h 1-

h

A >l

The algorithm does not require all flow curves to be
closed. For example in Figure 5 we show the scenario where
we calibrate a fisheye camera with only few closed flow
curves.

5.3. Many Rotations and many Translations

For example, once we know the projection rays for a part
of the image and the inter-axis angle «, we can compute
the projection rays for pixels in the corners of the image
using flow curves from two different translational motions
or alternatively, from a single rotational motion.

6. Experiments

We tested the algorithm of section 5.2 using simulated and
real cameras. For the real cameras, ground truth is diffi-
cult to obtain, so we visualize the self-calibration result by
performing perspective distortion correction.

6.1. Dense Matching

It is relatively easy to acquire images in favorable condi-
tions. For pure translations, we use a translation stage. As
for pure rotations, one could use a tripod for example, but
another possibility is to point the camera at a far away scene
and perform hand-held rotations. To make the image match-
ing problem simpler we used planar surfaces. We consid-
ered two scenarios. The first approach uses simple coded
structured light algorithm [16], which involves in succes-
sively displaying patterns of horizontal and vertical black
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and white stripes on the screen to encode the position of
each screen pixel. In the second scenario we consider a
planar scene with black dots. In both these cases we do
not know the physical coordinates of the scene. We used
OpenCV library to perform dense matching [13]. Neighbor-
hood matches were used to check the consistency in match-
ing and to remove false matches. Planar scene was used to
simplify the matching process. However our calibration al-
gorithm is independent of the nature of the scene. We tested
our algorithm with simulations and real data. In simulations
we tested a pinhole camera with and without radial distor-
tions. The virtual pinhole camera, constructed using an ar-
bitrary camera matrix, is made to capture a random surface.
We obtained matches in the case of pure translation and pure
rotations. The flow curves and calibrated 3D rays are shown
in Figure 4. We used ellipse parametrization for fitting the
flow curves. It is easy to realize that the flow curve in the
case of rotation is an ellipse for perspective cameras. The
ellipse fitting was reasonably accurate for fisheye cameras
as well. In the case of central catadioptric cameras the flow
curves will not be ellipses. In such scenarios we may need
to use nonparametric approaches. As expected we obtained
accurate results in simulations and it confirmed the validity
of our algorithm.

Secondly we tested our algorithm on Nikon coolpix fish-
eye lens, FC-E8, with a field of view of 183 degrees. In
Figure 5 we show the translation and rotation flow curves.
We fitted ellipses for both the rotational and translational
flow curves.

6.2. Distortion Correction

Once a camera is calibrated, one can perform distortion cor-
rection in a straightforward manner. We do this by plac-
ing a virtual perspective camera at the optical center of the
calibrated real camera, and apply the following simple ren-
dering scheme. One has to specify a field of view and the
image resolution of the virtual camera, i.e. a focal length
and the size of the distortion-corrected image. Further, one
needs to specify the virtual camera’s orientation. By de-
fault, we choose a rotation such that the center pixel of the
virtual camera and of the real camera, have collinear pro-
jection rays.

The distortion-corrected image is rendered as follows.
For every pixel of the image to be rendered, we compute
its projection ray, using the specified focal length and cam-
era orientation. We then determine the k closest (in terms
of angle) projection ray(s) of the real camera. We look up
the RGB values of the associated pixels in the original, dis-
torted image, and interpolate them to determine the RGB
value of the pixel to be rendered. Different interpolation
schemes are possible, i.e. nearest neighbor interpolation for
k = 1 or a weighted average (weights depending on angle
between real and virtual projection ray) for & > 1.
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Figure 4: Top left: flow curves associated with a single ro-
tation on a perspective image. We also fitted ellipses on the
flow curves to analytically compute the intersections with
other flow curves. Top right and bottom: projection rays
after calibration in two different views.

For example we show the perspectively synthesized im-
ages in Figure 6. The minor artifacts could be due to the
imprecision in the experimental data during rotation. Nev-
ertheless, the strong distortions of the camera have been cor-
rected to a large extent.

7. Conclusions

We have studied the generic self-calibration problem and
calibrated general central cameras using different combina-
tions of pure translations and pure rotations. Our initial sim-
ulations and experimental results are promising and show
that self-calibration may indeed be feasible in practice. As
for future work, we are interested in relaxing the constraints
on the camera model and the motion scenarios.
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Figure 6: Top: original images with the boundaries showing the calibration region. Middle and bottom: generated perspective
images.
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Abstract. We present a new approach for self-calibrating the distor-
tion function and the distortion center of cameras with general radially
symmetric distortion. In contrast to most current models, we propose a
model encompassing fisheye lenses as well as catadioptric cameras with
a view angle larger than 180°.

Rather than representing distortion as an image displacement, we model
it as a varying focal length, which is a function of the distance to the
distortion center. This function can be discretized, acting as a general
model, or represented with e.g. a polynomial expression.

We present two flexible approaches for calibrating the distortion func-
tion. The first one is a plumbline-type method; images of line patterns
are used to formulate linear constraints on the distortion function param-
eters. This linear system can be solved up to an unknown scale factor
(a global focal length), which is sufficient for image rectification. The
second approach is based on the first one and performs self-calibration
from images of a textured planar object of unknown structure. We also
show that by restricting the camera motion, self-calibration is possible
from images of a completely unknown, non-planar scene.

The analysis of rectified images, obtained using the computed distortion
functions, shows very good results compared to other approaches and
models, even those relying on non-linear optimization.

1. Introduction

Most theoretical advances in geometric computer vision make use of the pin-hole
camera model. One benefit of such a model is the linearity of the projection which
simplifies multi-view constraints and other structure-from-motion computations.
Unfortunately in many cases, this model is a poor representation of how the
camera samples the world, especially when dealing with wide angle cameras
where radial distortion usually occurs. In addition to these cameras, catadioptric
devices (i.e. cameras pointed at a mirror) also admit a very large field of view.
Their image distortion can also be seen as a type of radial distortion, although,
in general, it cannot be modeled with traditional models. This is because the
view angle of these cameras can be larger than 180°, which is not compatible
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with the usual image-displacement approach. The effect of radial distortion is
that straight lines in the scene are not in general projected onto straight lines in
the image, contrary to pin-hole cameras. Many calibration algorithms can deal
with distortion, but they are usually tailor-made for specific distortion models
and involve non-linear optimization.

In this paper, we introduce a general distortion model, whose main feature is
to consider radially symmetric distortion. More precisely, we make the following
assumptions on the camera projection function:

e the aspect ratio is 1,

e the distortion center is aligned with the principal point?3,

e the projection function is radially symmetric (around the distortion center),
e the projection is central, i.e. projection rays pass through a single (effective)
optical center.

Given the quality of camera hardware manufacturing, it is common practice
to assume an aspect ratio of 1. As for the second and third assumptions, they
are made to ensure our model is consistent with both catadioptric devices and
regular fisheye cameras. Finally, a central projection is assumed for simplicity
even for very large field of view cameras [1,22] in which a non-single viewpoint
might be induced by the lens [3], or by a misaligned mirror [18].

Our full camera model consists therefore of the position of the distortion
center and the actual distortion function that maps distance from the distor-
tion center to focal length. This model, together with the above assumptions,
fully represents a camera projection function. It is a good compromise between
traditional low-parametric camera models and fully general ones, modeling one
projection ray per pixel [10,17], in terms of modeling power and ease and sta-
bility of calibration. The model is indeed general enough to represent cameras
of different types and with very different view angles.

Problem statement. In this paper, we intend to solve the proposed model re-
lying on images of collinear points in space. Our algorithm makes no assumption
on the distortion function and on the distortion center position. Only a rough
initial value of the latter is needed.

Organization. A short review of the most popular distortion models is pre-
sented in the first section. The model we adopt is presented in §3. In §4 we
propose a plumbline method for calibrating our model using images of collinear
points. Based on this, we propose a plane-based self-calibration approach, in §5.
Finally, the performance of our methods is analyzed and compared to another
similar approach [6].

2. Related Work

As the field of view of a camera lens increases, the distortion occurring in the
captured images becomes more and more important. Traditionally, researchers

3 We will see that this constraint may be dropped in some cases.
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have sought new models with more degrees of freedom and complexity. These
models include the traditional polynomial model [11] (which can be combined
with a field of view model (FOV) [6]), division [7] and rational [5]. Most of
the time the models are calibrated using non-linear optimization of either a full
projection model from points located on a calibration object [23] or a homogra-
phy mapping from a planar grid [5]. Recent papers have also shown that radial
distortion models can be calibrated linearly from a calibration grid [12] of by
feature point matching between images [7, 5, 19, 20].

Other approaches focus only on calibrating the distortion function by impos-
ing either that a straight line in space should appear straight in the image [4, 6]
or that spherical objects should appear circular [16].

The aforementioned models all apply to cameras with a field of view smaller
than 180° since the distortion is image-based. They fail to handle data captured
by a camera with a view angle larger than 180°, typical for catadioptric devices.
Different models and algorithm have been specifically designed to address these
cases [9, 14] and their parameters have an explicit geometric interpretation rather
than expressing distortion directly.

Finally, only few attempts were made to find models able to deal with dioptric
systems (including radial distortion) and catadioptric ones [22, 2]. The model we
propose fits in this category with the benefit that its distortion function can be
general.

3. Camera Model

We describe the camera model that corresponds to the assumptions explained in
the introduction. Consider a camera with canonical orientation, i.e. the optical
axis is aligned with the Z-axis and image x and y-axes are parallel to world
X and Y-axes respectively. Our camera model is then fully described by the
position of a distortion center (¢, cy)T and a distortion “function” f: R — R,
such that an image point (z,y)" is back-projected to a 3D line spanned by the
optical center and the point at infinity with coordinates:

[x_cxvy_cyvf(r)70}—r7 r= \/(x_cac)2+(y_cy)2

The distortion function (it should actually be called “undistortion function”, but
we did not find this very elegant) can for example be chosen as a polynomial
with even powers of r, in which case we have the division model, as used in [7,
19]. The model also subsumes fisheye models [8,15] and cameras of the 'unified
central catadioptric model’ [9].

In this paper, we use two representations for the distortion function. The
first one is a polynomial of a degree d to be fixed, like in the division model,
however including odd powers:

1) =3 A 1)
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The second one is a discrete representation, consisting of a lookup table of the
distortion function values at a set of discrete values for r (in practice, we use
one sample per step of one pixel). We denote these values as:

fr) = fr. (2)

Note that a constant function f allows the representation of a pinhole camera
with f’s value as focal length. From the above back-projection equation, it is
easy to deduce equations for distortion correction, also called rectification in the
sequel. This can for example be done by re-projecting the points at infinity of
projection rays into a pinhole camera with the same optical center and orien-
tation as the original camera. As for the intrinsic parameters of the (virtual)
pinhole camera, we usually also adopt an aspect ratio of 1 and zero skew; if
the distortion center is to have the same coordinates in the rectified image as
in the original one, and if g denotes the rectified image’s focal length, then the
homogeneous coordinates of the rectified point are:

g0cy| |2 —cy
0gey| |y—cy
001 fir)

In the following, we introduce a few geometric notions that will be used in
this paper. A distortion circle is a circle in the image, centered in the distortion
center. Projection rays of points lying on a distortion circle span an associated
viewing cone in space. In our model, all cones have the same axis (the optical
axis) and vertex (the optical center).

Each cone can actually be understood as an individual pinhole camera, with
f(r) as focal length (r being the distortion circle’s radius). Geometrically, this is
equivalent to virtually moving the image plane along the optical axis, according
to the distortion function. This situation is depicted in fig. 1. In the case of a
camera with a view angle larger than 180°, the focal length becomes equal or
smaller than zero. In the zero case, the cone is actually the principal plane,
i.e. the plane containing the optical center and that is perpendicular to the
optical axis. Let us call the associated distortion circle principal distortion
circle. A negative f(r) is equivalent to a camera with positive focal length,
looking backward and whose image is mirrored in « and y. Typical situations
for rectification are depicted in fig. 2.

Rectification for cameras with a view angle larger than 180° cannot be done
as usual: the above rectification operation is no longer a bijection (two points in
the original image may be mapped to the same location in the rectified one) and
points on the principal distortion circle are mapped to points at infinity (fig. 2b).
It is still possible to rectify individual parts of the image correctly, by giving the
virtual pinhole camera a limited field of view and allowing it to rotate relative
to the true camera.

4. Plumbline Calibration

In this section, we show that the distortion function f and the distortion center
can be recovered linearly from the images of lines (straight edges) or points that
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Fig. 1. Distortion circles are associated with cones in space. Theoretically, any point
of the image can be projected into a single plane. a) Pixel from a cone looking forward,
b) one from a cone looking backward.

are collinear in space. This is thus akin to the classical plumbline calibration
technique [4, 6].

4.1. Calibration of Distortion Function

We obtain linear constraints on the distortion function as follows. Consider the
images of three collinear points, p; = (z;,v;) . For now, let us assume that the
distortion center is known and that the image coordinate system is centered in
this point. Hence, r; = ||(z;, y;)|| is the distance of a point from the distortion
center. Provided that these points should be collinear once rectified, we know
that:

Zo T T2
Yo 1 y2 | =0 (3)
f(ro) f(r1) f(r2)
which can be written explicitly as a linear constraint on the f(r;)’s:
T1 T2 T2 T To T1
r + r + T = O 4
f(o)ylyz f(1)y2y0 f(Q)yoyl )

If f is of the form (1) or (2), then this equation gives a linear constraint on its
parameters \; respectively f,.

Constraints can be accumulated from all possible triplets of points that are
projections of collinear points in space. We thus obtain a linear equation system
of the form Ax = 0, where x contains the parameters of f (the \;’s or the f,.’s).
Note that constraints from triplets where two or all three image points lie close
to one another are not very useful and hence can be neglected in order to reduce
the number of equations. Solving this system to least squares yields parameters
that maximize the collinearity of the rectified points?. Note that the equation

4 e . . . .
However, it is not optimal in terms of geometric distance.
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Fig. 2. Situations where three points are rectified into collinear positions. a) Three
points corresponding to forward cones. b) One point located on principal distortion
circle, i.e. scene point on principal plane. ¢) Two points on forward cones and one on
a backward cone.

system is homogeneous, i.e. the distortion parameters are only estimated up to
scale. This is natural, as explained below; a unique solution can be guaranteed
by setting A\g = 1 as is usually done for the division model, or by setting one f,
to a fixed value.

4.2. Calibration of Distortion Center

So far, we have assumed a known distortion center. In this section, we show
how it can be estimated as well, in addition to the actual distortion function.
A first idea is to sample likely positions of the distortion center, e.g. consider
a regular grid of points in a circular region in the image center, and compute
the distortion function for each of them using the above method. We then keep
the point yielding the smallest residual of the linear equation system as the
estimated distortion center. This approach is simple and not very elegant, but is
fully justified and works well in practice. Its downside is that the computation
time is proportional to the number of sampled points.

Therefore, we investigate a local optimization procedure, as opposed to the
above brute force one. Let (¢, cy) be the unknown distortion center. Equation
(3) now becomes:

O_Cw l_cw 2_C:v

—Cy 1 — Cy 9 — Cp (5)
G2

First, this constraint cannot be used directly for the discretized version of the
distortion function. Second, if we use the polynomial model, the constraint is
highly non-linear in the coordinates of the distortion center.

We thus consider an approximation of (5): we assume that a current estimate
of the distortion center is not too far away from the true position (||(cg,cy)|| is
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7
small), so that f can be approximated with (¢, ¢,) = 0 and
T T —cy
(b= B=s b
Equation (5) thus simplifies to:
Tro — Cy r1 — Cp o — Cyp
Yo — Cy Y1 — Cy — Cy (6)

Y2 -0
i) T1 X9
{90} LJJ ’)f(H L/J H)
which is linear in ¢, and ¢,. Once again, combining many constraints leads to an
over-determined linear equation system. The recovered distortion center may not
be optimal because the points are expressed relative to the approximate center
and because of the simplification of (5). Hoping that the previous assumptions

are applicable, this new center should nevertheless improve our rectification.
This estimation is used in a local optimization scheme of alternation type:

q

‘)f(‘

0. Initialize the distortion center with e.g. the center of the image.

1. Fix the distortion center and compute the distortion function (§4.1).
2. Fix the distortion function and update the distortion center (§4.2).
3. Go to step 1, unless convergence is observed.

Instead of using the least-squares cost function based on the algebraic distance
(3), we also consider a more geometric cost function to judge convergence in step
3. Consider a set of image points belonging to a line image. From the current
values of distortion center and function, we compute their projection rays and
fit a plane as follows: determine the plane that contains the optical center and
that minimizes the sum of (squared) angles with projection rays. The residual
squared angles, summed over all line images, give the alternative cost function.

4.3. Discussion

The estimation of distortion center and function is based on an algebraic distance
expressing collinearity of rectified image points. Better would be of course to use
a geometric distance in the original images; this is possible but rather involved
and is left for future work.

We briefly describe what the calibration of the distortion function amounts
to, in terms of full metric calibration. First, recall that the distortion function
can be computed up to scale only from our input (see §4.1). This is natural:
if we have a distortion function that satisfies all collinearity constraints, then
multiplying it by a scale factor results in a distortion function that satisfies them
as well. This ambiguity means that once the distortion function is computed (up
to scale) and the image rectified, the camera can be considered as equivalent to
a pinhole camera with unknown focal length, with the difference that the field
of view is potentially larger than 180°. Any existing focal length calibration or
self-calibration algorithm designed for pinhole cameras can be applied to obtain
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a full metric calibration. A direct application of such algorithms can probably
use only features that lie inside the principal distortion circle, but it should be
possible to adapt them so as to use even fields of view larger than 180°. At this
step, the second assumption of §1 can also be relaxed if desired: a full pinhole
model, i.e. not only focal length, can in principle be estimated from rectified
images.

5. Self-Calibration

We now develop a plane-based self-calibration approach that is based on the
plumbline technique of the previous section. Consider that the camera acquires
two images of a textured plane with otherwise unknown structure. We suppose
that we can match the two images densely; the matching does not actually need
to be perfectly dense, but assuming it simplifies the following explanations. This
is discussed below in more details.

We now describe how dense matches between two images of a planar scene
allow the generation of line images and hence to apply the plumbline technique.
Consider any radial line (line going through the distortion center) in the first
image; the projection rays associated with the points on that line are necessarily
coplanar according to our camera model. Therefore, the scene points that are
observed along that radial line must be collinear: they lie on the intersection of
the plane of projection rays, with the scene plane. Due to the dense matching,
we know the projections of these collinear scene points in the second image. By
considering dense matches of points along n radial lines in one image, we thus
obtain n line images in the other image, and vice versa. In addition, these line
images usually extend across a large part of the image, bringing about strong
constraints.

We now simply stack all plumbline constraints (4) for all pairs of images,
and solve for the distortion parameters as in §4. Here, we have assumed the
knowledge of the distortion center (in order to define radial lines); the distortion
center can of course also be estimated, using e.g. the exhaustive approach of
84.2. Moreover, the input, once rectified, can be given to a classical plane-based
self-calibration algorithm to obtain a full metric calibration, using e.g. [21].

Dense Matching. Dense matching can be achieved rather straightforwardly.
If the camera acquires a continuous image sequence, most existing optical flow
algorithms can be applied for successive frames and their results propagated in
order to obtain a dense matching between two images with a substantial motion
between them. In addition, the fact that a planar scene is observed eliminates
the occlusion problem. If the scene is not sufficiently textured, but only allows to
extract and track sparse interest points, then we proceed as follows. We extract
dominant lines in each image using a Hough transform of the extracted interest
points, and only keep the lines passing near the current distortion center esti-
mate. These are almost radial lines. An example is shown in fig. 3a,b. The rest
of the self-calibration is as above.

Constrained Camera Motions. Another way to obtain line images without
the need for linear features in the scene is to acquire images under constrained
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camera motions. A first possibility is to carry out pure rotations about the
optical center, as suggested also by [19]. The scene can then be assimilated to a
plane, and the above self-calibration method can be directly applied. A second
possibility is to perform pure translations (with e.g. a tripod) and to track image
points across several images. In this case, any point track constitutes a line image
(an example is shown in fig. 3c¢,d).

Fig. 3. (a)+(b) Two images of a planar scene. a) shows interest points lying on a
radial line in the first image and b) corresponding points in the second image. (c)4(d)
Two images of a general scene, taken with pure translation. c) shows two interest points
in the first image and d) their paths, accumulated in the last image.

6. Results and Analysis

We tested our algorithm with data acquired from real and simulated cameras.
An 8.0 mm lens, a 3.5mm fisheye lens and a para-catadioptric camera were used.
We also simulated ten cameras featuring distortions from small to very large.

6.1. Convergence Analysis of the Distortion Center Detection

Two aspects of convergence of the plumbline method were evaluated. First, eval-
uating if the minimization of the constraints given by (6) instead of (5) leads to
similar results. This is not critical though, as the path of the optimizer needs not
be the same to ensure convergence. On the other hand, if the paths are similar, it
suggests that the convergence pace is not penalized too much with the simplified
cost function. We proceeded as follows. For samples of distortion center positions
in a box around the initial position, we computed the two cost functions and
found their minima (fig. 4a,b). We see that the functions’ general shapes are
almost identical, as well the positions of their respective minima. Another eval-
uation consists in initializing the distortion center randomly around the optimal
one and finding the minima of the two cost functions. Figure 4c shows the av-
erage distance between these minima, as a function of the distance of the given
distortion center from the optimal one. It is generally small, suggesting that both
cost functions may lead to similar optimization paths.

Secondly, the overall convergence was tested with simulated and real data.
In the first case, three criteria were considered: the number of line images given
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Fig. 4. Plots of cost functions and optimization paths associated with (a) eq. (5) and
(b) eq. (6). (c) Distance between minima of these two cost functions, with respect
to distance of current estimate of distortion center from optimal one. Data from the
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Fig. 5. Precision of the recovered distortion center on simulated data w.r.t. a) noise
and number of lines, b) number of lines and initialization distance.

as input, the amount of noise added to the data and the distance of the given
initial distortion center from the true one. For each simulated camera, up to 11
line segments were generated randomly, Gaussian noise of standard deviation 0
to 6 pixels was added to image point coordinates and these were then quantized
to pixel precision. For every camera, 50 initial values for the distortion center
were randomly chosen in a circle of 60 pixels radius around the true position (for
images of size 1000 x 1000) and given as input to the algorithm. This a realistic
test considering that for our real cameras, we found that the estimated distortion
center converged to around 30 pixels from the initial value (image center) in the
worst case. The results in fig. 5 show that the number of lines has a much larger
impact on the quality of the recovered distortion center than the noise and the

initialization distance. This is especially true when the number of line is larger
than 7.

6.2. Plumbline Calibration

We acquired images of lines with our real cameras, calibrated the distortion and
then performed rectification. Once again, we tested the convergence and also the
quality of the rectification by checking the collinearity of rectified line images.
Convergence was never found to be an issue, especially for the two dioptric lenses
(fig. 6). Even with a really bad initialization of the distortion center, resulting
in a poor initial estimate of the distortion function, the algorithm converged
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Fig. 6. Convergence examples of the algorithm for a) the 8.0 mm, b) the 3.5 mm
fisheye, ¢) the para-catadioptric. The density plots show the value of the cost function
explained at the end of §4.2, with f computed using distortion center positions (cz, ¢y)
in a box of 60 x 60 pixels around the final distortion centers. In dark-green, different
initializations of the algorithm; in black, the centers at each step of the algorithm; in
purple, the final centers.
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Fig. 7. Calibrated distortion functions for our real cameras. poly refers to (1) and gen
to (2). For the 8.0 and 3.5mm, both representations lead to virtually identical results
(details at table 1).

surprisingly fast (fig. 8). The distortion functions for our real cameras are shown
in fig. 7 as well as rectified images in fig. 9 (images not used for the calibration).
We compared our approach with the one presented in [6], run on the same data.
Since that approach performs non-linear optimization, it can easily incorporate
different distortion models. Results for different models are shown in table 1;
we initialized the distortion centers with the one that was estimated with our
approach and the distortion function as a constant.

Details are given in fig. 10 for the catadioptric cameras. We observe that a
polynomial function did not give satisfying results. Using higher degrees (up to
10) and changing the distortion function did not give much better results. On
the other hand, we see that a division function is very well suited to model the
distortion in the image.

6.3. Self-Calibration from Real Sequences

Two sequences were tested. In the first one, points were tracked from a flat
surface (our laboratory floor) with a hand-held camera. In the second case, a
tripod was used and the camera was translated in constant direction. Overall,
the results were satisfying although not as precise as with the direct plumbline
technique using images of actual linear features. Results are summarized in ta-
ble 2; values shown were computed like explained in table 1 and using images of
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Fig. 8. The distortion function of the fisheye lens, at different iterations of the cali-
bration algorithm for an initial center very far from the true position (200,400). The
final estimate of (512,523) was found in only 5 iterations (image of size 1000 x 1000
pixels). Subsequent steps were only minor improvements.

(a) (b) (c) (d)

Fig. 9. Rectification examples. a,b) A 3.5mm fisheye original and rectified images.
c,d) a catadioptric image. The radius of the principal distortion circle was estimated
as 329 pixels, so circles of radius 0 to 320 pixels were rectified.

actual lines. The distortion center detection was also not as precise. The algo-
rithm converged as usual, but not exactly to the best distortion center. In fact, it
was much closer to the image center. This is explained by the fact that towards
the image border, features are much more difficult to track: they are smaller and
blurry. In this case, they are usually dropped by the tracking algorithm resulting
in less data for large radiuses, where the distortion is the worst. Consequently,
the distortion is a little bit under-evaluated and the distortion center less well
constrained.

7. Conclusion

We presented flexible calibration methods for a general model for radial distor-
tion, one plumbline type method and one for plane-based self-calibration. The
methods were applied for simulated and real images of different cameras (fish-
eye and catadioptric). Results are satisfying, in terms of convergence basin and
speed, precision as well as accuracy.

The most closely related works are [19, 20]. There, elegant though rather more
involved procedures are proposed. These start with an even more general camera
model than here, that does not enforce radial symmetry; only after computing
and exploiting multi-view relations for that model, radial symmetry is enforced
in order to compute distortion parameters. Our methods are much simpler to
implement, use radial symmetry directly and can work with fewer images (two
for plane-based self-calibration). Future work will mainly concern improving the
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Table 1. Results using our models and algorithm (first two rows) and other models
and the non-linear algorithm of [6]. Shown values refer to residual distances for fitting
lines to rectified points (average and worst case). The rectified images were scaled to
have the same size as the original. For the catadioptric camera, our approach used all
the points, whereas the others used only the points corresponding to forward viewing
cones (they failed otherwise). “—” means the algorithm did not converge without
careful initialization or gave very bad results.

Models and rectifying equations H 8mm H 3.5mm H catadioptric
Discrete model of (2) 0.16 | 1.03 || 0.35 | 3.7 || 0.51 | 7.6
Model of (1) with d =6 0.16 | 1.12 |/ 0.35 | 5.5 || 0.47 | 6.3
6™ order polynomial 016 | 1.08 || 042 | 7.0 || 1.5 |14.4
P(L+ Mi|lp|| + ... + AelIpII)
6'0 order division (non-linear) 0.16 | 1.08 || 0.36 | 5.6 — —
FOV-model [6]: p;=2t<llPID 023486 [ 054 |79 — [ —
an(2)[Ipl]
FOV-model + ond rder polynomialf| 0.16 | 1.06 || 0.37 | 6.1 — —

Table 2. Results for the 3.5mm fisheye with data from real sequences (fig. 3).

Models H plane H translation
Discrete model of (2) 0.68 8.05 0.55 7.0
Model of (1) with d =6 0.58 9.7 0.85 14.6

tracking for the self-calibration method and investigating the optimization of
reprojection based cost functions.
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ABSTRACT

We consider calibration and structure-from-motion tasks for a previously introduced, highly general imaging model, where cameras
are modeled as possibly unconstrained sets of projection rays. This allows to describe most existing camera types (at least for those
operating in the visible domain), including pinhole cameras, sensors with radial or more general distortions, and especially panoramic
cameras (central or non-central). Generic algorithms for calibration and structure-from-motion tasks (absolute and relative orientation,
3D point triangulation) are outlined. The foundation for a multi-view geometry of non-central cameras is given, leading to the formula-
tion of multi-view matching tensors, analogous to the essential matrix, trifocal and quadrifocal tensors of perspective cameras. Besides
this, we also introduce a natural hierarchy of camera models: the most general model has unconstrained projection rays whereas the
most constrained model dealt with here is the central one, where all rays pass through a single point.

1 INTRODUCTION

Many different types of cameras including pinhole, stereo, cata-
dioptric, omnidirectional and non-central cameras have been used
in computer vision and photogrammetry. Most existing camera
models are parametric (i.e. defined by a few intrinsic parameters)
and address imaging systems with a single effective viewpoint
(all rays pass through one point). In addition, existing calibration
or structure-from-motion procedures are often taylor-made for
specific camera models, see examples e.g. in (Barreto & Araujo,
2003; Gruen & Huang, 2001; Hartley & Zisserman, 2000; Geyer
& Daniilidis, 2002).

The aim of this work is to relax these constraints: we want to pro-
pose and develop calibration and structure-from-motion methods
that should work for any type of camera model, and especially
also for cameras without a single effective viewpoint. To do so,
we first renounce on parametric models, and adopt the following
very general model: a camera acquires images consisting of pix-
els; each pixel captures light that travels along a ray in 3D. The
camera is fully described by (Grossberg & Nayar, 2001):

e the coordinates of these rays (in a local coordinate frame).
e the mapping between rays and pixels; this is basically a sim-
ple indexing.

This is of course an idealistic model; other aspects, e.g. pho-
tometry and point-spread function are described in (Grossberg &
Nayar, 2001). This general imaging model allows to describe vir-
tually any camera that captures light rays travelling along straight
lines. Examples are (cf. figure 1):

e a camera with any type of optical distortion, e.g. radial or
tangential.

e a camera looking at a reflective surface, e.g. as often used
in surveillance, a camera looking at a spherical or otherwise
curved mirror (Hicks & Bajcsy, 2000). Such systems, as op-
posed to central catadioptric devices using parabolic or hy-
perbolic mirrors (Baker & Nayar, 1999; Geyer & Daniilidis,
2000), do not usually have a single effective viewpoint.

e multi-camera stereo systems: put together the pixels of all
image planes; they “catch” light rays that do not travel along
lines that all pass through a single point. Nevertheless, in the
above general camera model, a stereo system (with rigidly
linked cameras) is considered as a single camera.

Curved reflective surface

The 3D ray of points
that are seen in the

pixel /

A pixel
AN

/
Image plane of camera
looking at reflective surface
(seen from the side)

[al

Figure 1: Examples of imaging systems. (a) Catadioptric system.
Note that camera rays do not pass through their associated pix-
els. (b) Central camera (e.g. perspective, with or without radial
distortion). (c) Camera looking at reflective sphere. This is a non-
central device (camera rays are not intersecting in a single point).
(d) Omnivergent imaging system (Peleg 2001; Shum 1999). (e)
Stereo system (non-central) consisting of two central cameras.

e other acquisition systems, many of them being non-central,
see e.g. (Bakstein, 2001; Bakstein & Pajdla, 2001; Neuman
et al., 2003; Pajdla, 2002b; Peleg et al., 2001; Shum et al.,
1999; Swaminathan et al., 2003; Yu & McMillan, 2004),
insect eyes, etc.

In this article, we first review some recent work on calibration
and structure-from-motion for this general camera model. Con-
cretely, we outline basics for calibration, pose and motion esti-
mation, as well as 3D point triangulation. We then describe the
foundations for a mult-view geometry of the general, non-central
camera model, leading to the formulation of multi-view match-
ing tensors, analogous to the fundamental matrices, trifocal and
quadrifocal tensors of perspective cameras. Besides this, we also
introduce a natural hierarchy of camera models: the most gen-
eral model has unconstrained projection rays whereas the most
constrained model dealt with here is the central model, where all
rays pass through a single point. An intermediate model is what
we term axial cameras: cameras for which there exists a 3D line
that cuts all projection rays. This encompasses for example x-
slit projections, linear pushbroom cameras and some non-central
catadioptric systems. Hints will be given how to adopt the multi-
view geometry proposed for the general imaging model, to such
axial cameras.
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The paper is organized as follows. A hierarchy of camera models
is proposed in section 2. Sections 3 to 5 deal with calibration,
pose estimation, motion estimation, as well as 3D point triangu-
lation. The multi-view geometry for the general camera model
is given in section 6. A few experimental results are shown in
section 7.

2 CAMERA MODELS

A non-central camera may have completely unconstrained pro-
jection rays, whereas for a central camera, there exists a point
— the optical center — that lies on all projection rays. An inter-
mediate case is what we call axial cameras, where there exists
a line that cuts all projection rays — the camera axis (not to be
confounded with optical axis). Examples of cameras falling into
this class are:

e x-slit cameras (Pajdla, 2002a; Zomet et al., 2003) (also called
two-slit or crossed-slits cameras), and their special case of
linear pushbroom cameras (Hartley & Gupta, 1994). Note
that these form a sub-class of axial cameras, see below.

e stereo systems consisting of 2 central cameras or 3 or more
central cameras with collinear optical centers.

e non-central catadioptric cameras of the following construc-
tion: the mirror is any surface of revolution and the optical
center of the central camera (can be any central camera, i.e.
not necessarily a pinhole) looking at the mirror lies on its
axis of revolution. It is easy to verify that in this case, all
projection rays cut the mirror’s axis of revolution, i.e. the
camera is an axial camera, with the mirror’s axis of revolu-
tion as camera axis. Note that catadioptric cameras with a
spherical mirror and a central camera looking at it, are al-
ways non-central, and are actually always axial cameras.

These three classes of camera models may also be defined as:
existence of a linear space of d dimensions that has an intersec-
tion with all projection rays. In this sense, d = 0 defines central
cameras, d = 1 axial cameras and d = 2 general non-central
cameras.

Intermediate classes do exist. X-slit cameras are a special case of
axial cameras: there actually exist 2 lines in space that both cut
all projection rays. Similarly, central 1D cameras (cameras with
a single row of pixels) can be defined by a point and a line in
3D. Camera models, some of which do not have much practical
importance, are summarized in table 1. A similar way of defining
camera types was suggested in (Pajdla, 2002a).

It is worthwhile to consider different classes due to the following
observation: the usual calibration and motion estimation algo-
rithms proceed by first estimating a matrix or tensor by solving
linear equation systems (e.g. the calibration tensors in (Sturm &
Ramalingam, 2004) or the essential matrix (Pless, 2003)). Then,
the parameters that are searched for (usually, motion parameters),
are extracted from these. However, when estimating for example
the 6 x 6 essential matrix of non-central cameras based on image
correspondences obtained from central or axial cameras, then the
associated linear equation system does not give a unique solution.
Consequently, the algorithms for extracting the actual motion pa-
rameters, can not be applied without modification.

3 CALIBRATION
3.1 Basic Approach

We briefly review a generic calibration approach developed in
(Sturm & Ramalingam, 2004), an extension of (Champleboux
et al., 1992; Gremban et al, 1988; Grossberg & Nayar, 2001),
to calibrate different camera systems. As mentioned, calibration
consists in determining, for every pixel, the 3D projection ray as-
sociated with it. In (Grossberg & Nayar, 2001), this is done as
follows: two images of a calibration object with known structure

| Points/lines cutting rays | Description

None Non-central camera

1 point Central camera

2 points Camera with a single
projection ray

1 line Axial camera

Central 1D camera

X-slit camera

Union of a non-central 1D
camera and a central camera
Non-central 1D camera

1 point, 1 line
2 skew lines
2 coplanar lines

3 coplanar lines without
a common point

Table 1: Camera models, defined by 3D points and lines that have
an intersection with all projection rays of a camera.

are taken. We suppose that for every pixel, we can determine the
point on the calibration object, that is seen by that pixel'. For each
pixel in the image, we thus obtain two 3D points. Their coordi-
nates are usually only known in a coordinate frame attached to the
calibration object; however, if one knows the motion between the
two object positions, one can align the coordinate frames. Then,
every pixel’s projection ray can be computed by simply joining
the two observed 3D points.

In (Sturm & Ramalingam, 2004), we propose a more general ap-
proach, that does not require knowledge of the calibration ob-
ject’s displacement. In that case, three images need to be taken
at least. The fact that all 3D points observed by a pixel in differ-
ent views, are on a line in 3D, gives a constraint that allows to
recover both the motion and the camera’s calibration. The con-
straint is formulated via a set of trifocal tensors, that can be esti-
mated linearly, and from which motion, and then calibration, can
be extracted. In (Sturm & Ramalingam, 2004), this approach is
first formulated for the use of 3D calibration objects, and for the
general imaging model, i.e. for non-central cameras. We also
propose variants of the approach, that may be important in prac-
tice: first, due to the usefulness of planar calibration patterns, we
specialized the approach appropriately. Second, we propose a
variant that works specifically for central cameras (pinhole, cen-
tral catadioptric, or any other central camera). More details are
given in (Sturm & Ramalingam, 2003).

This basic approach only handles the minimum number of im-
ages (two respectively three, for central respectively non-central
cameras). Also, it only allows to calibrate the pixels that are
matched to the calibration object in all images. Especially for
panoramic cameras, complete calibration with this approach is
thus very hard (unless an “omnidirectional” calibration object is
available). Recently, we have thus developed an approach that
deals with these drawbacks; it handles any number of images and
also allows to calibrate image regions that are not covered by the
calibration object in all images. This approach is described in the
next paragraph.

3.2 General Approach

We propose two ideas to overcome the above mentioned limita-
tions of our basic calibration approach. First, we have recently
developed a method along the lines of (Sturm & Ramalingam,
2004) that can use more than the minimum number of images.
This method can not be described in full detail here; it will be
given in a future publication. This method nevertheless has the
drawback of only allowing to calibrate image regions that are
covered by the calibration object in all images used.

Our second idea is relatively straightforward. We first perform

L This can be achieved for example by using a flat screen as calibration
“grid” and taking images of several black & white patterns that together
uniquely encode the position of pixels on the screen.
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Figure 2: Examples of image regions corresponding to different
images of calibration objects. Left: 23 images of calibration ob-
jects with a fisheye camera. Right: 24 images with a spherical
catadioptric camera.

an initial calibration using our basic approach. This only allows
to calibrate an image region that is covered by the calibration ob-
ject in all images used. We then extend the calibration to the rest
of the image, as follows. For each image in which the calibra-
tion object covers a sufficiently large already calibrated region,
we can compute the object’s pose relative to the camera (see sec-
tion 4.1). Then, for each as yet uncalibrated pixel, we check if it
is matched to the calibration object in sufficiently many images
(one for central cameras, two for non-central ones); if so, we can
compute the coordinates of its projection ray. For a non-central
camera, we simply fit a straight line to the matching 3D points on
the calibration object for different positions/images. As for the
central model, we compute a straight line that is constrained to
pass through the optical center.

These two procedures — computation of pose and projection rays
— are repeated in alternation, until all available images have been
used. Figure 2 gives examples of image regions covered by cal-
ibration objects in different images, for panoramic cameras that
have been calibrated using our approach.

We also have developed a bundle adjustment that can be used
between iterations, or only at the end of the above process, to
refine calibration and pose. Our bundle adjustment minimizes
ray—point distance, i.e. the distance in 3D, between projection
rays and matching points on calibration objects. This is not the
optimal measure, but reprojection-based bundle adjustment is not
trivial to formulate for the generic imaging model (some ideas on
this are given in (Ramalingam et al., 2004)). The minimization
is done for the optical center position (only for central cameras),
the pose of calibration objects, and of course the coordinates of
projection rays. The ray—point distance is computed as

T n
E=3 3" lCi+ XD — R;Pi; — t;]?
i=1j=1
with:

e 1 is the number of calibration objects and r the number of
rays.

e C,; is a point on the ith ray (in the non-central case) or the
optical center (in a central model).

e D, is the direction of the ith ray.

e )\;; parameterizes the point on the ith ray that should corre-
spond to its intersection with the jth calibration object.

e P;; is the point on the jth calibration object that is matched
to the pixel associated with the ith ray.

e R; and t; represent the pose of the jth calibration object.

4 ORIENTATION
4.1 Pose Estimation

Pose estimation is the problem of computing the relative posi-
tion and orientation between an object of known structure, and a
calibrated camera. A literature review on algorithms for pinhole
cameras is given in (Haralick et al., 1994). Here, we briefly show

how the minimal case can be solved for general cameras. For
pinhole cameras, pose can be estimated, up to a finite number of
solutions, from 3 point correspondences (3D-2D) already. The
same holds for general cameras. Consider 3 image points and the
associated projection rays, computed using the calibration infor-
mation. We parameterize generic points on the rays as follows:
A, + \;B;.

We know the structure of the observed object, meaning that we
know the mutual distances d;; between the 3D points. We can
thus write equations on the unknowns \;, that parameterize the
object’s pose:

|A: + \Bi — A, — \;B;||° = di;
for (4,7) = (1,2),(1,3),(2,3)

This gives a total of 3 equations that are quadratic in 3 unknowns.
Many methods exist for solving this problem, e.g. symbolic com-
putation packages such as MAPLE allow to compute a resultant
polynomial of degree 8 in a single unknown, that can be numeri-
cally solved using any root finding method.

Like for pinhole cameras, there are up to 8 theoretical solutions.
For pinhole cameras, at least 4 of them can be eliminated because
they would correspond to points lying behind the camera (Haral-
ick et al., 1994). As for general cameras, determining the maxi-
mum number of feasible solutions requires further investigation.
In any case, a unique solution can be obtained using one or two
additional points (Haralick et al., 1994). More details on pose
estimation for non-central cameras are given in (Chen & Chang,
2004; Nistér, 2004).

4.2 Motion Estimation

‘We outline how ego-motion, or, more generally, relative position
and orientation of two calibrated general cameras, can be esti-
mated. This is done via a generalization of the classical motion
estimation problem for pinhole cameras and its associated center-
piece, the essential matrix (Longuet-Higgins, 1981). We briefly
summarize how the classical problem is usually solved (Hartley
& Zisserman, 2000). Let R be the rotation matrix and t the trans-
lation vector describing the motion. The essential matrix is de-
fined as E = —[t]x R. It can be estimated using point correspon-
dences (x1,X2) across two views, using the epipolar constraint
x4 Ex; = 0. This can be done linearly using 8 correspondences
or more. In the minimal case of 5 correspondences, an efficient
non-linear minimal algorithm, which gives exactly the theoretical
maximum of 10 feasible solutions, was only recently introduced
(Nistér, 2003). Once the essential matrix is estimated, the motion
parameters R and t can be extracted relatively straightforwardly
(Nistér, 2003).

In the case of our general imaging model, motion estimation is
performed similarly, using pixel correspondences (x1,x2). Us-
ing the calibration information, the associated projection rays can
be computed. Let them be represented by their Pliicker coordi-
nates (see section 6), i.e. 6-vectors L1 and Lo. The epipolar con-
straint extends naturally to rays, and manifests itself by a 6 x 6
essential matrix (Pless, 2003):

(4" )

The epipolar constraint then writes: LIEL; = 0 (Pless, 2003).
Once E is estimated, motion can again be extracted straightfor-
wardly (e.g., R can simply be read off E). Linear estimation of E
requires 17 correspondences.

There is an important difference between motion estimation for
central and non-central cameras: with central cameras, the trans-
lation component can only be recovered up to scale. Non-central
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cameras however, allow to determine even the translation’s scale.
This is because a single calibrated non-central camera already
carries scale information (via the distance between mutually skew
projection rays). One consequence is that the theoretical mini-
mum number of required correspondences is 6 instead of 5. It
might be possible, though very involved, to derive a minimal 6-
point method along the lines of (Nistér, 2003).

More details on motion estimation for non-central cameras and
intermediate camera models, will be given in a forthcoming pub-
lication.

5 3D RECONSTRUCTION

‘We now describe an algorithm for 3D reconstruction from two or
more calibrated images with known relative position. Let C =
(X,Y, Z)" be a 3D point that is to be reconstructed, based on its
projections in n images. Using calibration information, we can
compute the n associated projection rays. Here, we represent the
ith ray using a starting point A; and the direction, represented
by a unit vector B;. We apply the mid-point method (Hartley
& Sturm, 1997; Pless, 2003), i.e. determine C that is closest in
average to the n rays. Let us represent generic points on rays
using position parameters \;, as in the previous section. Then,
C is determined by minimizing the following expression over
C" = (X,Y,Z) and the \;: 37, |A; + \B; — C|°.

This is a linear least squares problem, which can be solved e.g.
via the Pseudo-Inverse, leading to the following explicit equation
(derivations omitted):

C 13 P I3

AL —-B] A

=M :

An -B] An

with
TLI3 —B1 _Bn
-B] 1
M=

-B! 1

where I3 is the identity matrix of size 3 x 3. Due to its sparse
structure, the inversion of M can actually be performed in closed-
form. Overall, the triangulation of a 3D point using 7 rays, can
by carried out very efficiently, using only matrix multiplications
and the inversion of a symmetric 3 X 3 matrix.

6 MULTI-VIEW GEOMETRY

We establish the foundations of a multi-view geometry for gen-
eral (non-central) cameras. Its cornerstones are, as with perspec-
tive cameras, matching tensors. We show how to establish them,
analogously to the perspective case.

Here, we only talk about the calibrated case; the uncalibrated case
is nicely treated for perspective cameras, since calibrated and un-
calibrated cameras are linked by projective transformations. For
non-central cameras however, there is no such link: in the most
general case, every pair (pixel, camera ray) may be completely
independent of other pairs.

6.1 Reminder on Multi-View Geometry for Perspective Cam-
eras

We briefly review how to derive multi-view matching relations
for perspective cameras (Faugeras & Mourrain, 1995). Let P; be
projection matrices and q; image points. A set of image points
are matching, if there exists a 3D point QQ and scale factors \;
such that:

Aigi = PiQ

This may be formulated as the following matrix equation:

P1 q1 0 e 0 _Ci 0

P, 0 g -+ O 7A; 0

P. 0 0 - qn A 0
M

The matrix M, of size 3n X (4 + n) has thus a null-vector, mean-
ing that its rank is less than 4 + n. Hence, the determinants of all
its submatrices of size (44mn) x (4+mn) must vanish. These deter-
minants are multi-linear expressions in terms of the coordinates
of image points q;.

They have to be considered for every possible submatrix. Only
submatrices with 2 or more rows per view, give rise to constraints
linking all projection matrices. Hence, constraints can be ob-
tained for up to n views with 2n < 4 4 n, meaning that only
for up to 4 views, matching constraints linking all views can be
obtained.

The constraints for n views take the form:

3 3 3
Z Z Z q1,i192,i5 " Qnyin Liyin,in =0 (1)

i1=lig=1  ip=1

where the multi-view matching tensor T of dimension 3 x - - - X 3
depends on and partially encodes the cameras’ projection matri-
ces P;. Note that as soon as cameras are calibrated, this theory
applies to any central camera: for a camera with radial distortion
for example, the above formulation holds for distortion-corrected
image points.

6.2 Multi-View Geometry for Non-Central Cameras

Here, instead of projection matrices (depending on calibration
and pose), we deal with pose matrices:

R; t;
Pi= (OT 1)

These express the similarity transformations that map a point
from some global reference frame, into the cameras’ local co-
ordinate frames (since no optical center and no camera axis exist,
no assumptions about the local coordinate frames are made). As
for image points, they are now replaced by camera rays. Let the
ith ray be represented by two 3D points A; and B;. Eventually,
we will to obtain expressions in terms of the rays’ Pliicker coor-
dinates. Pliicker coordinates can be defined in various ways; the
definition we use is as follows. The line can be represented by
the skew-symmetric 4 X 4 so-called Pliicker matrix

L=AB' - BA'
Note that the Pliicker matrix is independent (up to scale) of which
pair of points on the line are chosen to represent it. An alterna-
tive representation for the line is its Pliicker coordinate vector of
length 6:

AyB1 — A1By

A4B> — AxBy

o A4Bs — A3By
L=\ AsB) — AsBs @

A1Bs — A3B;

AsB1 — A1 B>

Our goal is to obtain matching tensors T and matching constraints
of the form (1), with the difference that tensors will have size
6 X --- X 6 and act on Pliicker line coordinates:

“Lnyin Tiy i, i =0 (3)

6 6
Z Z Z Ly Loy -

6
i1=lig=1  ip=1
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In the following, we explain how to derive such matching con-
straints. Consider a set of n camera rays and let them be defined
by two points A; and B; each; the choice of points to represent
a ray is not important, since later we will fall back onto the ray’s
Pliicker coordinates.

Now, a set of n camera rays are matching, if there exist a 3D point
Q and scale factors \; and p; associated with each ray such that:
AiA; 4+ 1B = PiQ
i.e. if the point P; Q lies on the line spanned by A ; and B;. As for

perspective cameras, we group these equations in matrix form:

Q
-1
— 1 0
-2 0
M 7/12 =

—An
—fhn

with:

P, Ay B; 0 o .- 0 0
Py 0 0 A By - 0 0

Pn 0 0 0 0 et An B'n

As above, this equation shows that M must be rank-deficient.
However, the situation is different here since the P; are of size
4 x 4 now, and M of size 4n x (4+2n). We thus have to consider
submatrices of M of size (4 + 2n) x (4 + 2n). Furthermore, in
the following we show that only submatrices with 3 rows or more
per view, give rise to constraints on all pose matrices. Hence,
3n < 4+ 2n, and again, n < 4, i.e. multi-view constraints are
only obtained for up to 4 views.

Let us first see what happens for a submatrix of M where some
view contributes only a single row. The two columns correspond-
ing to its base points A and B, are multiples of one another since
they consist of zeroes only, besides a single non-zero coefficient,
in the single row associated with the considered view. Hence, the
determinant of the considered submatrix of M is always zero, and
no constraint is available.

In the following, we exclude this case, i.e. we only consider sub-
matrices of M where each view contributes at least 2 rows. Let
N be such a matrix. Without loss of generality, we start to de-
velop its determinant with the columns containing A; and B;.
The determinant is then given as a sum of terms of the form:

(Al,jBl,k — Al,kBl,j) det Njk

where j,k € {1.4}, j # k, and N;j is obtained from N by
dropping the columns containing A; and B; as well as the rows
containing A ; etc.

We observe several things:

e The term (A1,;B1,5 — A1,k B1,;) is nothing else than one
of the Pliicker coordinates of the ray of camera 1 (cf. (2)).
By continuing with the development of the determinant of
N jk» it becomes clear that the total determinant of N can be
written in the form:

6 6 6
Z Z Z L1 Loy - Ln,iy, Tiy ig,-e i =0

ir=lig=1  ip=1

i.e. the coefficients of the A; and B; are “folded together”
into the Pliicker coordinates of camera rays and T is a match-
ing tensor between the n cameras. Its coefficients depend
exactly on the cameras’ pose matrices.

central non-central
# views M useful M useful
2 6 %6 3-3 8 x 8 4-4
3 9x7 3-2-2 12 x 10 4-3-3
4 12x8 2222 | 16 x12 3-3-3-3

Table 2: Cases of multi-view matching constraints for central and
non-central cameras. The columns entitled “useful” contain en-
tries of the form x — y — z etc. that correspond to sub-matrices
of M that give rise to matching constraints linking all views:
r — y — z etc. refers to submatrices of M containing x rows
from one camera, y from another etc.

e If camera 1 contributes only two rows to N, then the deter-
minant of N becomes of the form:

6 6
L (Z Lo, "'Ln,inTig,“-,in) =0

io=1  ip=1

i.e. it only contains a single coordinate of the ray of camera
1, and the tensor T does not depend at all on the pose of
that camera. Hence, to obtain constraints between all cam-
eras, every camera has to contribute at least three rows to the
considered submatrix.

We are now ready to establish the different cases that lead to use-
ful multi-view constraints. As mentioned above, for more than 4
cameras, no constraints linking all of them are available: subma-
trices of size at least 3n x 3n would be needed, but M only has
4 4 2n columns. So, only for n < 4, such submatrices exist.

Table 2 gives all useful cases, both for central and non-central

cameras. These lead to two-view, three-view and four-view match-
ing constraints, encoded by essential matrices, trifocal and quadri-

focal tensors. Deriving their forms is now mainly a mechanical

task.

6.3 Multi-View Geometry for Intermediate Camera Models

This multi-view geometry can be specialized to some of the inter-
mediate camera models described in section 2. We have derived
this for the axial and x-slit camera models. This will be reported
elsewhere in detail.

7 EXPERIMENTAL RESULTS

We have calibrated a wide variety of cameras (both central and
non-central) as shown in Table 3. Results are first discussed for
several “slightly non-central” cameras and for a multi-camera
system. We then report results for structure-from-motion algo-
rithms, applied to setups combining cameras of different types
(pinhole and panoramic).

Slightly non-central cameras: central vs. non-central models.
For three cameras (a fisheye, a hyperbolic and a spherical cata-
dioptric system, see sample images in Figure 3), we applied our
calibration approach with both, a central and a non-central model
assumption. Table 3 shows that the bundle adjustment’s resid-
ual errors for central and non-central calibration, are very close
to one another for the fisheye and hyperbolic catadioptric cam-
eras. This suggests that for the cameras used in the experiments,
the central model is appropriate. As for the spherical catadioptric
camera, the non-central model has a significantly lower residual,
which may suggest that a non-central model is better here.

To further investigate this issue we performed another evaluation.
A calibration grid was put on a turntable, and images were ac-
quired for different turntable positions. We are thus able to quan-
titatively evaluate the calibration, by measuring how close the
recovered grid pose corresponds to a turntable sequence. Individ-
ual grid points move on a circle in 3D; we thus compute a least
squares circle fit to the 3D positions given by the estimated grid
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Camera | Images | Rays | Points | RMS

Pinhole (C) 3 217 651 0.04
Fisheye (C) 23 508 2314 | 0.12
(NO) 23 342 1712 | 0.10

Sphere (C) 24 | 380 1441 | 2.94

(NO) 24 | 447 1726 | 0.37
Hyperbolic (C) 24 | 293 1020 | 0.40
(NO) 24 190 821 | 0.34

Multi-Cam (NC) 3| 1156 | 3468 | 0.69
Eye+Pinhole (C) 3 29 57 | 0.98

Table 3: Bundle adjustment statistics for different cameras. (C)
and (NC) refer to central and non-central calibration respectively,
and RMS is the root-mean-square residual error of the bundle
adjustment (ray-point distances). It is given in percent, relative
to the overall size of the scene (largest pairwise distance between
points on calibration grids).

Camera | Grids | Central | Non-Central
Fisheye 14 0.64 0.49
Spherical 19 2.40 1.60
Hyperbolic 12 0.81 1.17

Table 4: RMS error for circle fits to grid points, for turntable
sequences (see text).

pose. At the bottom of Figure 3, recovered grid poses are shown,
as well as a circle fit to the positions of one grid point. Table 4
shows the RMS errors of circle fits (again, relative to scene size,
and given in percent). We note that the non-central model pro-
vides a significantly better reconstruction than the central one for
the spherical catadioptric camera, which thus confirms the above
observation. For the fisheye, the non-central calibration also per-
forms better, but not as significantly. As for the hyperbolic cata-
dioptric camera, the central model gives a better reconstruction
though. This can probably be explained as follows. Inspite po-
tential imprecisions in the camera setup, the camera seems to be
sufficiently close to a central one, so that the non-central model
leads to overfitting. Consequently, although the bundle adjust-
ment’s residual is lower than for the central model (which always
has to be the case), it gives “predictions” (here, pose or motion
estimation) which are unreliable.

Calibration of a multi-camera system. A multi-camera net-
work can be considered as a single generic imaging system. As
shown in Figure 4 (left), we used a system of three (approxi-
mately pinhole) cameras to capture three images each of a cali-
bration grid. We virtually concatenated the images from the in-
dividual cameras and computed all projection rays and the three
grid poses in a single reference frame (see Figure 4 (right)), using
the algorithm outlined in section 3.

In order to evaluate the calibration, we compared results with
those obtained by plane-based calibration (Sturm & Maybank,
1999; Zhang, 2000), that used the knowledge that the three cam-
eras are pinholes. In both, our multi-camera calibration, and
plane-based calibration, the first grid was used to fix the global
coordinate system. We can thus compare the estimated poses of
the other two grids for the two methods. This is done for both, the
rotational and translational parts of the pose. As for rotation, we
measure the angle (in radians) of the relative rotation between the
rotation matrices given by the two methods, see columns R; in
Table 5). As for translation, we measure the distance between the
estimated 3D positions of the grids’ centers of gravity (columns ¢;
in Table 5) expressed in percent, relative to the scene size. Here,
plane-based calibration is done separately for each camera, lead-
ing to the three rows of Table 5.

From the non-central multi-camera calibration, we also estimate
the positions of the three optical centers, by clustering the pro-

Figure 3: Top: sample images for hyperbolic and spherical cata-
dioptric cameras. Middle: two images taken with a fisheye. Bot-
tom: pose of calibration grids used to calibrate the fisheye (left)
and a least squares circle fit to the estimated positions of one grid
point (right).

jection rays and computing least squares point fits to them. The
column “Center” of Table 5 shows the distances between opti-
cal centers (expressed in percent and relative to the scene size)
computed using this approach and plane-based calibration. The
discrepancies are low, suggesting that the non-central calibration
of a multi-camera setup is indeed feasible.

%
0

7
1%

4l

7,
Calibration Grids 7, //;

Figure 4: Multi-camera setup consisting of 3 cameras (left). Re-
covered projection rays and grid poses (right).

Camera R> R3 [2) ts | Center
1] 0.0117 | 0.0359 | 0.56 | 3.04 2.78
2 | 0.0149 | 0.0085 | 0.44 | 2.80 2.17
3 | 0.0088 | 0.0249 | 0.53 | 2.59 1.16

Table 5: Evaluation of non-central multi-camera calibration rela-
tive to plane-based calibration. See text for more details.

Structure-from-motion with hybrid camera setups. We cre-
ated hybrid camera setups by taking images with both, pinhole
and fisheye cameras. Each camera was first calibrated individ-
ually using our approach of section 3. We then estimated the
relative pose of two cameras (or, motion), using the approach
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Figure 5: Combination of a pinhole and a fisheye camera. Top:
input images and matching points. Bottom: estimated relative
pose and 3D model.
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Figure 6: Combination of a stereo system and a fisheye camera.
Top: input images and matching points. Bottom: estimated rela-
tive pose and 3D model.

outlined in section 4.2 and manually defined matches. Then, 3D
structure was computed by reconstructing 3D points associated
with the given matches.

Figure 5 shows this for a combination of a pinhole and a fish-
eye camera, and figure 6 for a combination of a stereo system
and a fisheye. Here, the stereo system is handled as a single,
non-central camera. Note that the same scene point usually ap-
pears more than once in the stereo camera. Therefore in the ray-
intersection approach of section 5, we intersect three rays to find
one 3D point here.

These results are preliminary: at the time we obtained them, we
had not developed our full calibration approach of section 3.2,
hence only the central region of the fisheye camera was calibrated
and used. Nevertheless, the qualitatively correct results demon-
strate that our generic structure-from-motion algorithms work,
and actually are applicable to different cameras, or combinations
thereof.

8 CONCLUSIONS

We have reviewed calibration and structure-from-motion tasks
for the general non-central camera model. We also proposed a
multi-view geometry for non-central cameras. A natural hier-
archy of camera models has been introduced, grouping cameras
into classes depending on, loosely speaking, the spatial distribu-
tion of their projection rays. We hope that the theoretical work
presented here allows to define some common ground for recent
efforts in characterizing the geometry of non-classical cameras.

The feasibility of our generic calibration and structure-from-motion
approaches has been demonstrated on several examples. Of course,
more investigations are required to evaluate the potential of these
methods and the underlying models.

Among ongoing and future works, there is the adaptation of our
calibration approach to axial and other camera models as well
as first ideas on self-calibration for the general imaging model.
We also continue our work on bundle adjustment for the general
imaging model, cf. (Ramalingam et al. 2004), and the exploration
of hybrid systems, combining cameras of different types (Sturm,
2002; Ramalingam et al. 2004).
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ON CALIBRATION, STRUCTURE FROM MOTION AND MULTI-VIEW
GEOMETRY FOR GENERIC CAMERA MODELS

Peter Sturm!, Srikumar Ramalingamg, and Suresh Lodha?
L INRIA Rhone-Alpes, 2Um'versity of California, Santa Cruz

Abstract We consider calibration and structure from motion tasks for a previously introduced, highly general imaging model,
where cameras are modeled as possibly unconstrained sets of projection rays. This allows to describe most existing
camera types (at least for those operating in the visible domain), including pinhole cameras, sensors with radial or more
general distortions, catadioptric cameras (central or non-central), etc. Generic algorithms for calibration and structure
from motion tasks (pose and motion estimation and 3D point triangulation) are outlined. The foundation for a multi-view
geometry of non-central cameras is given, leading to the formulation of multi-view matching tensors, analogous to the
fundamental matrices, trifocal and quadrifocal tensors of perspective cameras. Besides this, we also introduce a natural
hierarchy of camera models: the most general model has unconstrained projection rays whereas the most constrained
model dealt with here is the central model, where all rays pass through a single point.

Keywords:  Calibration, motion estimation, 3D reconstruction, camera models, non-central cameras.

1. Introduction

Many different types of cameras including pinhole, stereo, catadioptric, omnidirectional and non-central cam-
eras have been used in computer vision. Most existing camera models are parametric (i.e. defined by a few
intrinsic parameters) and address imaging systems with a single effective viewpoint (all rays pass through one
point). In addition, existing calibration or structure from motion procedures are often taylor-made for specific
camera models, see examples e.g. in [4, 15, 9].

The aim of this work is to relax these constraints: we want to propose and develop calibration and structure
from motion methods that should work for any type of camera model, and especially also for cameras without
a single effective viewpoint. To do so, we first renounce on parametric models, and adopt the following very
general model: a camera acquires images consisting of pixels; each pixel captures light that travels along a ray
in 3D. The camera is fully described by [11]:

m the coordinates of these rays (given in some local coordinate frame).
m the mapping between rays and pixels; this is basically a simple indexing.

This general imaging model allows to describe virtually any camera that captures light rays travelling along
straight lines. Examples are (cf. figure 1):

m 2 camera with any type of optical distortion, such as radial or tangential.

m acamera looking at a reflective surface, e.g. as often used in surveillance, a camera looking at a spherical
or otherwise curved mirror [16]. Such systems, as opposed to central catadioptric systems [1, 8] composed
of cameras and parabolic mirrors, do not in general have a single effective viewpoint.

= multi-camera stereo systems: put together the pixels of all image planes; they ‘“catch” light rays that
definitely do not travel along lines that all pass through a single point. Nevertheless, in the above general
camera model, a stereo system (with rigidly linked cameras) is considered as a single camera.

m other acquisition systems, many of them being non-central, see e.g. [2, 3, 19, 23, 24, 27, 31, 32], insect
eyes, etc.
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Figure 1.  Examples of imaging systems. (a) Catadioptric system. Note that camera rays do not pass through their associated pixels.
(b) Central camera (e.g. perspective, with or without radial distortion). (c) Camera looking at reflective sphere. This is a non-central
device (camera rays are not intersecting in a single point). (d) Omnivergent imaging system [24, 27]. (e) Stereo system (non-central)
consisting of two central cameras.

In this article, we first review some recent work on calibration and structure from motion for this general
camera model. Concretely, we outline basics for calibration, pose and motion estimation, as well as 3D point
triangulation. We then describe the foundations for a mult-view geometry of the general, non-central camera
model, leading to the formulation of multi-view matching tensors, analogous to the fundamental matrices, trifo-
cal and quadrifocal tensors of perspective cameras. Besides this, we also introduce a natural hierarchy of camera
models: the most general model has unconstrained projection rays whereas the most constrained model dealt
with here is the central model, where all rays pass through a single point. An intermediate model is what we
term axial cameras: cameras for which there exists a 3D line that cuts all projection rays. This encompasses for
example x-slit projections, linear pushbroom cameras and some non-central catadioptric systems. Hints will be
given how to adopt the multi-view geometry proposed for the general imaging model, to such axial cameras.

The paper is organized as follows. Section 2 explains some background on Pliicker coordinates for 3D lines,
which are used to parameterize camera rays in this work. A hierarchy of camera models is proposed in section
3. Sections 4 to 7 deal with calibration, pose estimation, motion estimation, as well as 3D point triangulation.
The multi-view geometry for the general camera model is given in section 8. A few experimental results on
calibration, motion estimation and 3D reconstruction are shown in section 9.

2. Pliicker Coordinates

We represent projection rays as 3D lines, via Pliicker coordinates. There exist different definitions for them,
the one we use is explained in the following.

Let A and B be two 3D points given by homogeneous coordinates, defining a line in 3D. The line can be
represented by the skew-symmetric 4 x 4 Pliicker matrix

L = ABT —BAT

0 A]_B2 — A2B1 AlB3 — A3Bl AlB4 — A4Bl

. A2B1 — AlBQ 0 Ang — AgBQ A2B4 — A4BQ

o AgBl — AlBg AgBQ — Ang 0 AgB4 — A4Bg
A4B1 — A1By A4Bs — A3By AyBs— A3By 0

Note that the Pliicker matrix is independent (up to scale) of which pair of points on the line are chosen to
represent it.
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An alternative representation for the line is by its Pliicker coordinate vector of length 6:

AyBy — A1 By

AyBy — Ay By

- AyBs — A3 By
L=1 4.8, — ABs 1

A1Bs — A3 By

A9 By — A1 By

The Pliicker coordinate vector can be split in two 3-vectors a and b as follows:

Ly Ly
a = L2 b= L5
Ls Lg

They satisfy the so-called Pliicker constraint: a'b = 0. Furthermore, the Pliicker matrix can now be conve-
niently written as
_(blx -—a
L= < a 0

where [b]« is the 3 x 3 skew-symmetric matrix associated with the cross-product and defined by: b xy = [b] xy.
Consider a metric transformation defined by a rotation matrix R and a translation vector t, acting on points

via: R
t

Pliicker coordinates are then transformed according to

()= (i ) ()

3. A Natural Hierarchy of Camera Models

A non-central camera may have completely unconstrained projection rays, whereas for a central camera,
there exists a point — the optical center — that lies on all projection rays. An intermediate case is what we call
axial cameras, where there exists a line that cuts all projection rays — the camera axis (not to be confounded
with optical axis). Examples of cameras falling into this class are pushbroom cameras (if motion is translational)
[13], x-slit cameras [22, 33], and non-central catadioptric cameras of the following construction: the mirror
is any surface of revolution and the optical center of the central camera (can be any central camera, i.e. not
necessarily a pinhole) looking at the mirror lies on its axis of revolution. It is easy to verify that in this case, all
projection rays cut the mirror’s axis of revolution, i.e. the camera is an axial camera, with the mirror’s axis of
revolution as camera axis.

These three classes of camera models may also be defined as: existence of a linear space of d dimensions that
has an intersection with all projection rays. In this sense, d = 0 defines central cameras, d = 1 axial cameras
and d = 2 general non-central cameras.

Intermediate classes do exist. X-slit cameras are a special case of axial cameras: there actually exist 2 lines in
space that both cut all projection rays. Similarly, central 1D cameras (cameras with a single row of pixels) can
be defined by a point and a line in 3D. Camera models, some of which do not have much practical importance,
are summarized in table 1.

It is worthwhile to consider different classes due to the following observation: the usual calibration and
motion estimation algorithms proceed by first estimating a matrix or tensor by solving linear equation systems
(e.g. the calibration tensors in [30] or the essential matrix [25]). Then, the parameters that are searched for
(usually, motion parameters), are extracted from these. However, when estimating for example the 6 x 6 essential
matrix of non-central cameras based on image correspondences obtained from central or axial cameras, then the
associated linear equation system does not give a unique solution. Consequently, the algorithms for extracting
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Points/lines cutting the rays | Description
None Non-central camera
1 point Central camera
2 points Camera with a single projection ray
1 line Axial camera
1 point, 1 line Central 1D camera
2 skew lines X-slit camera
2 coplanar lines Union of a non-central 1D camera and a central camera
3 coplanar lines without a Non-central 1D camera
common point

Table 1. Camera models, defined by 3D points and lines that have an intersection with all projection rays of a camera.

the actual motion parameters, can not be applied without modification. This is the reason why in [29, 30] we
already introduced generic calibration algorithms for both, central and non-central cameras.

In the following, we only deal with central, axial and non-central cameras. Structure from motion computa-
tions and multi-view geometry, will be formulated in terms of the Pliicker coordinates of camera rays. As for
central cameras, all rays go through a single point, the optical center. Choosing a local coordinate system with
the optical center at the origin, leads to projection rays whose Pliicker sub-vector b is zero, i.e. the projection

rays are of the form:
a
== (5)

This is one reason why the multi-linear matching tensors, e.g. the fundamental matrix, have a “base size” of 3.

As for axial cameras, all rays touch a line, the camera axis. Again, by choosing local coordinate systems
appropriately, the formulation of the multi-view relations may be simplified, as shown in the following. Assume
that the camera axis is the Z-axis. Then, all projection rays have Pliicker coordinates with Lg = b3 = 0:

b1
bo
0

L=

Multi-view relations can thus be formulated via tensors of “base size” 5, i.e. the essential matrix for axial cameras
will be of size 5 x 5 (see in later sections).

As for general non-central cameras, no such simplification occurs, and multi-view tensors will have “base
size” 6.

4. Calibration

We briefly review a generic calibration approach developed in [30], an extension of [5, 10, 11], to calibrate
different camera systems. As mentioned, calibration consists in determining, for every pixel, the 3D projection
ray associated with it. In [11], this is done as follows: two images of a calibration object with known structure
are taken. We suppose that for every pixel, we can determine the point on the calibration object, that is seen
by that pixel. For each pixel in the image, we thus obtain two 3D points. Their coordinates are usually only
known in a coordinate frame attached to the calibration object; however, if one knows the motion between the
two object positions, one can align the coordinate frames. Then, every pixel’s projection ray can be computed
by simply joining the two observed 3D points.

In [30], we propose a more general approach, that does not require knowledge of the calibration object’s
displacement. In that case, three images need to be taken at least. The fact that all 3D points observed by a pixel
in different views, are on a line in 3D, gives a constraint that allows to recover both the motion and the camera’s
calibration. The constraint is formulated via a set of trifocal tensors, that can be estimated linearly, and from
which motion, and then calibration, can be extracted. In [30], this approach is first formulated for the use of 3D
calibration objects, and for the general imaging model, i.e. for non-central cameras. We also propose variants
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of the approach, that may be important in practice: first, due to the usefulness of planar calibration patterns, we
specialized the approach appropriately. Second, we propose a variant that works specifically for central cameras
(pinhole, central catadioptric, or any other central camera). More details are given in [29].

5. Pose Estimation

Pose estimation is the problem of computing the relative position and orientation between an object of known
structure, and a calibrated camera. A literature review on algorithms for pinhole cameras is given in [12]. Here,
we briefly show how the minimal case can be solved for general cameras. For pinhole cameras, pose can be
estimated, up to a finite number of solutions, from 3 point correspondences (3D-2D) already. The same holds
for general cameras. Consider 3 image points and the associated projection rays, computed using the calibration
information. We parameterize generic points on the rays as follows: A; + \;B;.

We know the structure of the observed object, meaning that we know the mutual distances d;; between the 3D
points. We can thus write equations on the unknowns A;, that parameterize the object’s pose:

This gives a total of 3 equations that are quadratic in 3 unknowns. Many methods exist for solving this problem,
e.g. symbolic computation packages such as MAPLE allow to compute a resultant polynomial of degree 8 in a
single unknown, that can be numerically solved using any root finding method.

Like for pinhole cameras, there are up to 8 theoretical solutions. For pinhole cameras, at least 4 of them can
be eliminated because they would correspond to points lying behind the camera [12]. As for general cameras,
determining the maximum number of feasible solutions requires further investigation. In any case, a unique
solution can be obtained using one or two additional points [12]. More details on pose estimation for non-central
cameras are given in [6, 21].

6. Motion Estimation

We describe how to estimate ego-motion, or, more generally, relative position and orientation of two calibrated
general cameras. This is done via a generalization of the classical motion estimation problem for pinhole cameras
and its associated centerpiece, the essential matrix [17]. We briefly summarize how the classical problem is
usually solved [15]. Let R be the rotation matrix and t the translation vector describing the motion. The essential
matrix is defined as E = —[t]<R. It can be estimated using point correspondences (x1,X2) across two views,
using the epipolar constraint xJ Ex; = 0. This can be done linearly using 8 correspondences or more. In the
minimal case of 5 correspondences, an efficient non-linear minimal algorithm, which gives exactly the theoretical
maximum of 10 feasible solutions, was only recently introduced [20]. Once the essential matrix is estimated, the
motion parameters R and t can be extracted relatively straightforwardly [20].

In the case of our general imaging model, motion estimation is performed similarly, using pixel correspon-
dences (x1,x2). Using the calibration information, the associated projection rays can be computed. Let them be
represented by their Pliicker coordinates, i.e. 6-vectors L and Ly. The epipolar constraint extends naturally to
rays, and manifests itself by a 6 x 6 essential matrix, cf. [25] and section 8.3:

(%7

The epipolar constraint then writes: L-Q'—ELl = 0 [25]. Once E is estimated, motion can again be extracted
straightforwardly (e.g., R can simply be read off E). Linear estimation of E requires 17 correspondences.

There is an important difference between motion estimation for central and non-central cameras: with central
cameras, the translation component can only be recovered up to scale. Non-central cameras however, allow to
determine even the translation’s scale. This is because a single calibrated non-central camera already carries scale
information (via the distance between mutually skew projection rays). One consequence is that the theoretical
minimum number of required correspondences is 6 instead of 5. It might be possible, though very involved, to
derive a minimal 6-point method along the lines of [20].
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7. 3D Point Triangulation

We now describe an algorithm for 3D reconstruction from two or more calibrated images with known relative
position. Let C = (X,Y, Z )T be a 3D point that is to be reconstructed, based on its projections in n images.
Using calibration information, we can compute the n associated projection rays. Here, we represent the ¢th ray
using a starting point A; and the direction, represented by a unit vector B;. We apply the mid-point method
[14, 25], i.e. determine C that is closest in average to the n rays. Let us represent generic points on rays using
position parameters A;. Then, C is determined by minimizing the following expression over X, Y, Z and the \;:
it A+ AB; — CJ%.

This is a linear least squares problem, which can be solved e.g. via the Pseudo-Inverse, leading to the following
explicit equation (derivations omitted):

C nly -B; --- —-B, Iy - I
A BT 1 —B]

An -B) 1 -B!

M
where I3 is the identity matrix of size 3 x 3. Due to its sparse structure, the inversion of the matrix M in this
equation, can actually be performed in closed-form. Overall, the triangulation of a 3D point using n rays, can
by carried out very efficiently, using only matrix multiplications and the inversion of a symmetric 3 X 3 matrix
(details omitted).

8. Multi-View Geometry

We establish the basics of a multi-view geometry for general (non-central) cameras. Its cornerstones are, as
with perspective cameras, matching tensors. We show how to establish them, analogously to the perspective
case.

Here, we only talk about the calibrated case; the uncalibrated case is nicely treated for perspective cameras,
since calibrated and uncalibrated cameras are linked by projective transformations. For non-central cameras
however, there is no such link: in the most general case, every pair (pixel, camera ray) may be completely
independent of other pairs.

8.1 Reminder on Multi-View Geometry for Perspective Cameras

We briefly review how to derive multi-view matching relations for perspective cameras [7]. Let P; be projec-
tion matrices and q; image points. A set of image points are matching, if there exists a 3D point QQ and scale
factors \; such that:

Aig; = PiQ
This may be formulated as the following matrix equation:
b 0 0\ (2) [0
P2 0 qz - 0 _)\; _ 0
P, 0 0 - qp _:A 0
n
M

The matrix M, of size 3n X (4 + n) has thus a null-vector, meaning that its rank is less than 4 + n. Hence, the
determinants of all its submatrices of size (4 + n) X (4 4+ n) must vanish. These determinants are multi-linear
expressions in terms of the coordinates of image points q;.

They have to be expressed for any possible submatrix. Only submatrices with 2 or more rows per view,
give rise to constraints linking all projection matrices. Hence, constraints can be obtained up to n views with
2n < 4 4+ n, meaning that only for up to 4 views, matching constraints linking all views can be obtained.
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The constraints for n views take the form:

3
i1=1

where the multi-view matching tensor T of dimension 3 X - - - X 3 depends on and partially encodes the cameras’
projection matrices P;.

Note that as soon as cameras are calibrated, this theory applies to any central camera: for a camera with radial
distortion for example, the above formulation holds for distortion-corrected image points.

3 3
E q1,i192,i0 " * " Qnyin Liyin, - in = 0 )
jo=1  ip—1

8.2 Multi-View Geometry for Non-Central Cameras

Here, instead of projection matrices (depending on calibration and pose), we deal with pose matrices:

Ri ti
Pi_<0T 1)

These express the similarity transformations that map a point from some global reference frame, into the camera’s
local coordinate frames (note that since no optical center and no camera axis exist, no assumptions about the
local coordinate frames are made). As for image points, they are now replaced by camera rays. Let the ith ray
be represented by two 3D points A; and B;.

Eventually, we will to obtain expressions in terms of the rays’ Pliicker coordinates, i.e. we will end up with
matching tensors T and matching constraints of the form (2), with the difference that tensors will have size
6 x .- x 6 and act on Pliicker line coordinates:

6 6 6
SN N LiiLogy - L, Tivsiaer i = 0 3)
i1=1ig=1

in=1

In the following, we explain how to derive such matching constraints.
Consider a set of n camera rays and let them be defined by two points A ; and B; each; the choice of points to
represent a ray is not important, since later we will fall back onto the ray’s Pliicker coordinates.
Now, a set of n camera rays are matching, if there exist a 3D point Q and scale factors \; and y; associated
with each ray such that:
A + 1B = P;Q

i.e. if the point P;Q lies on the line spanned by A; and B;.
Like for perspective cameras, we group these equations in matrix form:

P1 A1 B1 0 0 0 0 — U1 0
P, 0 0 A; By --- 0 O —A2 0

P, 0 0 O O --- A, B, : 0

M
—Hn

As above, this equation shows that M must be rank-deficient. However, the situation is different here since

the P; are of size 4 x 4 now, and M of size 4n x (4 4+ 2n). We thus have to consider submatrices of M of size

(44 2n) x (44 2n). Furthermore, in the following we show that only submatrices with 3 rows or more per view,

give rise to constraints on all pose matrices. Hence, 3n < 4 4 2n, and again, n < 4, i.e. multi-view constraints
are only obtained for up to 4 views.

Let us first see what happens for a submatrix of M where some view contributes only a single row. The two

columns corresponding to its base points A and B, are multiples of one another since they consist of zeroes
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central non-central |
# cameras M useful submatrices M useful submatrices |
2 6 x 6 3-3 8 x 8 4-4
3 9x7 3-2-2 12 x 10 4-3-3
4 12 x 8 2-2-2-2 16 x 12 3-3-3-3

Table 2. Cases of multi-view matching constraints for central and non-central cameras. The second columns of “central” and “non-
central” contain entries of the form x — y — z etc. This refers to submatrices of M containing x rows from one camera, y from another
etc., whose determinant being equal zero, constitutes a matching constraint between all cameras.

only, besides a single non-zero coefficient, in the single row associated with the considered view. Hence, the
determinant of the considered submatrix of M is always zero, and no constraint is available.

In the following, we exclude this case, i.e. we only consider submatrices of M where each view contributes at
least two rows. Let N be such a matrix. Without loss of generality, we start to develop its determinant with the
columns containing A; and B;. The determinant is then given as a sum of terms of the following form:

(Al,jBl,k - Al,kBLj) det N]k}

where j, k € {1..4}, j # k,and N ;% 1s obtained from N by dropping the columns containing A ; and By as well
as the rows containing A ; etc.
We observe several things:

m The term (A; jB;; — A1, B1,j) is nothing else than one of the Pliicker coordinates of the ray of camera
1 (cf. section 2). By continuing with the development of the determinant of Ny, it becomes clear that the
total determinant of N can be written in the form:

6 6 6
o> Y LiiLos e LniyTivigo iy =0

i1=142=1 in=1

i.e. the coefficients of the A; and B; are “folded together” into the Pliicker coordinates of camera rays
and T is a matching tensor between the n cameras. Its coefficients depend exactly on the cameras’ pose
matrices.

m [f camera 1 contributes only two rows to N, then the determinant of N becomes of the form:

6 6
Ly, Z e Z Loiy - Ly, Tiy...i, | =0

i9=1 in=1

i.e. it only contains a single coordinate of the ray of camera 1, and the tensor T does not depend at all on
the pose of that camera. Hence, to obtain constraints between all cameras, every camera has to contribute
at least three rows to the considered submatrix.

We are now ready to establish the different cases that lead to useful multi-view constraints. As mentioned
above, for more than 4 cameras, no constraints linking all of them are available: submatrices of size at least
3n x 3n would be needed, but M only has 4 + 2n columns. So, only for n < 4, such submatrices exist.

Table 2 gives all useful cases, both for central and non-central cameras. These lead to two-view, three-view
and four-view matching constraints, encoded by essential matrices, trifocal and quadrifocal tensors.

8.3 The Case of Two Views

We have so far explained how to formulate bifocal, trifocal and quadrifocal matching constraints between
non-central cameras, expressed via matching tensors of dimension 6 x 6to 6 X 6 x 6 x 6. To make things more
concrete, we explore the two-view case in some more detail in the following. We show how the bifocal matching
tensor, or essential matrix, can be expressed in terms of the motion/pose parameters. This is then specialized
from non-central to axial cameras.
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8.3.1 Non-Central Cameras. For simplicity, we assume here that the global coordinate system coincides
with the first camera’s local coordinate system, i.e. the first camera’s pose matrix is the identity. As for the pose
of the second camera, we drop indices, i.e. we express it via a rotation matrix R and a translation vector t. The
matrix M is thus given as:

1 0 0 0 Ay By 0 0
0 1 0 0 Ay Big 0 0
0 0 1 0 Ag Bz 0 0
0 0 0 1 Ay Bia 0 0

Riy Ry Rz t1 O 0 A1 DBag
Ro1 Roo Roz ta 0 0
R31 Rz Rzz t3 0 0 Ax3 DBag3
0 0 0 1 0 0

For a matching pair of lines, M must be rank-deficient. In this two-view case, this implies that its determinant
is equal to zero. As for the determinant, it can be developed to the following expression, where the Pliicker
coordinates L; and Ly are defined as in equation (1):

L] (‘%R 5) L =0 @)

We find the essential matrix E and the epipolar constraint that were already mentioned in section 6.

8.3.2 Axial Cameras. As mentioned in section 3, we adopt local coordinate systems where camera rays
have Lg = 0. Hence, the epipolar constraint (4) can be expressed by a reduced essential matrix of size 5 x 5:
Ri1 Ry
—[t]XR Ro1 Ry Ll,l
(Lag -+ Lags) R31 Rs3o : =0
Ry1 Riz Rig L
0 1,5
<R21 Ras  Ros 22

Note that this essential matrix is in general of full rank (rank 5), but may be rank-deficient. It can be shown
that it is rank-deficient exactly if the two camera axes cut each other. In that case, the left and right null-vectors
of E represent the camera axes of one view in the local coordinate system of the other one (one gets the Pliicker
vectors when adding a zero between second and third coordinates).

8.3.3 Central Cameras. As mentioned in section 3, we here deal with camera rays of the form
(L1, Lo, Ls, 0, O,O)T. Hence, the epipolar constraint (4) can be expressed by a reduced essential matrix of
size 3 X 3:

(Log Loo Lp3) (—[t]xR) [ Li2 | =0

We actually find here the “classical” 3 x 3 essential matrix —[t] <R [15, 17].

9. Experimental Results

We describe a few experiments on calibration, motion estimation and 3D reconstruction, on the following
three indoor scenarios:

= A house scene, captured by an omnidirectional camera and a stereo system.
= A house scene, captured by an omnidirectional and a pinhole camera.

m A scene consisting of a set of objects placed in random positions as shown in Figure 3(b), captured by an
omnidirectional and a pinhole camera.
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9.1 Calibration

We calibrate three types of cameras here: pinhole, stereo, and omni-directional systems.

Pinhole Camera: Figure 2(a) shows the calibration of a pinhole camera using the single center assumption
[30].

Stereo camera: Here we calibrate the left and right cameras separately as two individual pinhole cameras.
In the second step we capture an image of a same scene from left and right cameras and compute the motion
between them using the technique described in section 6. Finally using the computed motion we obtain both the
rays of left camera and the right camera in the same coordinate system, which essentially provides the required
calibration information.

Omni-directional camera: Our omni-directional camera is a Nikon Coolpix-5400 camera with an E-8 Fish-
Eye lens. Its field of view is 360 x 183. In theory, this is just another pinhole camera with large distortions.
The calibration results are shown in Figure 2. Note that we have calibrated only a part of the image because
three images are insufficient to capture the whole image in an omnidirectional camera. By using more than three
boards it is possible to cover the whole image.

Right center

Left center

Center

() (b)

(©)

Figure 2. (a) Pinhole. (b) Stereo. (c) Omni-directional (fish-eye). The shading shows the calibrated region and the 3D rays on the
right correspond to marked image pixels.

9.2 Motion and Structure Recovery

Pinhole and Omni-directional: Pinhole and omni-directional cameras are both central. Since the omni-
directional camera has a very large field of view and consequently lower resolution compared to pinhole camera,
the images taken from close viewpoints from these two cameras have different resolutions as shown in Figure 3.
This poses a problem in finding correspondences between keypoints. Operators like SIFT [18], which are scale
invariant, are not camera invariant. Direct application of SIFT failed to provide good results in our scenario.
Thus we had to manually give the correspondences. One interesting research direction would be to work on the
automatic matching of feature points in these images.

Stereo system and Omni-directional: A stereo system can be considered as a non-central camera with two
centers. The image of a stereo system is a concatenated version of left and right camera images. Therefore the
same scene point appears more than once in the image. While finding image correspondences one keypoint in the
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Figure 3. (a) Stereo and omni-directional. (b) Pinhole and omni-directional. We intersect the rays corresponding to the matching
pixels in the images to compute the 3D points.

omni-directional image may correspond to 2 keypoints in the stereo system as shown in Figure 3(a). Therefore
in the ray-intersection we intersect three rays to find one 3D point.

10. Conclusion

We have reviewed calibration and structure from motion tasks for the general non-central camera model.
We also proposed a multi-view geometry for non-central cameras. A natural hierarchy of camera models has
been introduced, grouping cameras into classes depending on, loosely speaking, the spatial distribution of their
projection rays.

Among ongoing and future works, there is the adaptation of our calibration approach to axial and other
camera models. We also continue our work on bundle adjustment for the general imaging model, cf. [26], and
the exploration of hybrid systems, combining cameras of different types [28, 26].
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Multi-View Geometry for General Camera Models

Peter Sturm
INRIA Rhone-Alpes, GRAVIR-CNRS, 38330 Montbonnot, France

Abstract

We consider the structure-from-motion problem for a
highly general imaging model, where cameras are mod-
eled as possibly unconstrained sets of projection rays. This
allows to describe most existing camera types, includ-
ing pinhole cameras, sensors with radial or more general
distortions, catadioptric cameras (central or non-central),
etc. We introduce a hierarchy of general camera models:
the most general model has unconstrained projection rays
whereas the most constrained model dealt with here is the
central model, where all rays pass through a single point.
Intermediate models are what we call axial cameras (all
rays touch a single line), and x-slit cameras (rays touch
two lines). The foundations for a multi-view geometry of
completely non-central cameras are given, leading to the
formulation of multi-view matching tensors, analogous to
the fundamental/essential matrices, trifocal and quadrifo-
cal tensors of perspective cameras. This framework is then
specialized explicitly for the two-view case, for the interme-
diate camera types mentioned above.

1. Introduction

Many types of cameras including pinhole, stereo, cata-
dioptric, omnidirectional and non-central cameras have
been used in computer vision. Most existing camera models
are parametric (i.e. defined by a few intrinsic parameters)
and address imaging systems with a single effective view-
point (all rays pass through one point). In addition, existing
calibration or structure-from-motion procedures are often
taylor-made for specific camera models, see e.g. [3, 11, 7].

The aim of this work is to relax these constraints: we
want to propose and develop calibration and structure-from-
motion methods that work for any type of camera model,
including cameras without a single effective viewpoint. To
do so, we first renounce on parametric models, and adopt a
very general imaging model: a camera acquires images con-
sisting of pixels; each pixel captures light traveling along a
ray in 3D. The camera is fully described by [9]:

o the coordinates of these rays (given in some local co-
ordinate frame).

o the mapping between rays and pixels; this is basically
a simple indexing.

Curved reflective surface

The 3D ray of points
that are seen in the

pixel /

A pixel
N

/
Image plane of camera
looking at reflective surface
(seen from the side)

(d] (el

Figure 1. Examples of imaging systems; (c)—(e) are non-central
devices. (a) Catadioptric camera. (b) Central camera (e.g. per-
spective, with or without radial distortion). (c) Camera looking at
reflective sphere. (d) Omnivergent system [18, 21]. (e) Stereo.

This general imaging model allows to describe virtually
any camera that captures light rays travelling along straight
lines. Examples are (cf. figure 1):

e a camera with any type of optical distortion, such as

radial or decentering.

e a camera looking at a reflective surface, e.g. as often
used in surveillance, a camera looking at a spherical
or otherwise curved mirror [12]. Such systems, as op-
posed to central catadioptric systems [1, 6] using e.g.
parabolic mirrors, do not in general have a single ef-
fective viewpoint.

e multi-camera stereo systems: put together the pixels of
all image planes; they “catch” light rays that definitely
do not travel along lines that all pass through a sin-
gle point. Nevertheless, in the above general camera
model, a stereo system (with rigidly linked cameras)
can be considered as a single camera.

e other acquisition systems, many of them non-central,
see e.g. [2, 14, 17, 18, 21, 25, 26], insect eyes, etc.

In this paper, we propose the foundations for a mult-
view geometry of the general, non-central camera model,
leading to the formulation of multi-view matching tensors,
analogous to the fundamental or essential matrices, trifocal
and quadrifocal tensors of perspective cameras. The multi-
view geometry will be formulated for calibrated cameras,
i.e. we do not directly work with image point correspon-
dences, but rather with correspondences between associated
camera rays in 3D.

We also introduce a natural hierarchy of camera models:
the most general model has unconstrained projection rays
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whereas the most constrained model dealt with here is the
central model, where all rays pass through a single point.
Intermediate models considered in this paper are axial and
x-slit cameras. The two-view geometry, first established for
non-central cameras, is specialized for these intermediate
camera types in this paper. Several works exist on epipo-
lar geometry for omnidirectional cameras, central and non-
central ones [5, 8, 15, 19, 22, 24]. Most of them aimed
at obtaining matching constraints between uncalibrated im-
ages, whereas in this paper, we deal with calibrated cameras
and give a rather complete treatment of the problem.

The paper is organized as follows. §2 gives some back-
ground on Pliicker coordinates for 3D lines, used to param-
eterize projection rays. A hierarchy of camera models is
proposed in §3. §4 gives parameterizations of projection
rays, for the different camera models. The multi-view ge-
ometry for the general camera model, as well as two-view
geometry for intermediate models, is given in §5.

2. Pliicker Coordinates

We represent projection rays as 3D lines, via Pliicker co-
ordinates. Several definitions exist for them; we use the fol-
lowing. Let A and B be the homogeneous coordinates of
3D points defining a line. The line can be represented by the
skew-symmetric 4 x 4 Pliicker matrix L = ABT — BAT.
It is independent (up to scale) of the points used to repre-
sent the line. An alternative representation for the line is its
Pliicker coordinate vector of length 6:

AsB1 — A1 By

AsBy — Ay By

| A4Bs — A48,
L=1 4B, — AB; M

A1Bs — A3 B,

AsB1 — A1Bs

We sometimes split it in two 3-vectors a and b,

al =(Ly Ly Ls) b'=(Ls L5 Lg)

which satisfy the so-called Pliicker constraint: a™b = 0.
Consider a metric transformation defined by a rotation
matrix R and a translation vector t, acting on points via:

R t
Pliicker coordinates are then transformed according to

(5)- (i ) (3)

Two lines intersect if the following relation holds:

0 I
L;— (I 0) L, = a;—bl + bgal =0 2)

Table 1. Camera models, defined by 3D points and lines that have
a non-empty intersection with all projection rays of a camera.
| Points/lines cutting rays | Description

None Non-central camera

1 point Central camera

2 points Camera with a single ray

1 line Axial camera

1 point, 1 line Central 1D camera

2 skew lines X-slit camera

2 coplanar lines Union of a non-central 1D
camera and a central camera
Non-central 1D camera

3 coplanar lines without
a common point

3. A Hierarchy of Camera Models

A non-central camera may have completely uncon-
strained projection rays, whereas for a central camera,
there exists a point — the optical center — that lies on all
projection rays. An intermediate case is what we call axial
cameras, where there exists a line that cuts all projection
rays — the camera axis (not to be confounded with optical
axis). Examples of cameras falling into this class are:

e x-slit cameras [16, 27] (also called two-slit or crossed-
slits cameras), and their special case of linear push-
broom cameras [10]. Note that these form a sub-class

of axial cameras, as explained below.
e stereo systems consisting of 2 central cameras or 3 or

more central cameras with collinear optical centers.
e non-central catadioptric cameras of the following type:

the mirror is any surface of revolution and the opti-
cal center of the central camera looking at it (can be
any central camera, not only pinhole), lies on its axis
of revolution. It is easy to verify that in this case, all
projection rays cut the mirror’s axis of revolution, i.e.
the camera is an axial camera, with the mirror’s axis
of revolution as camera axis. Note that catadioptric
cameras with a spherical mirror and a central camera
looking at it, are always axial cameras.

These three classes of camera models may also be de-
fined as: existence of a linear space of d dimensions that
has an intersection with all projection rays: d = 0 defines
central, d = 1 axial and d = 2 general non-central cameras.

Intermediate classes exist. X-slit cameras are a special
case of axial cameras: two 3D lines exist that both cut all
projection rays. Similarly, central 1D cameras (cameras
with a single row of pixels) can be defined by a point and
a line in 3D. Camera models, some of which without much
practical importance, are summarized in table 1. A similar
way of defining camera types was suggested in [16].

It is worthwhile to consider different classes due to the
following observation: the usual calibration and motion es-
timation algorithms proceed by first estimating a matrix or
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Table 2. Parameterization of projection rays for different camera models (see text).

Camera model Central Axial X-slit
finite | infinite | finite | infinite finite+finite finite+infinite
0 1 0 0 O© 1 0 0 0
0 a 0 0 1 0 O a1 0 1 0 O ay
Parameterization (a) a3 by a2 0 0 1 0]]a 0O W 0 0f]as
of projection rays 0 by b as w o0 =Y 0 as 0 0 1 0 by
b2 0 b 00 0 1] \b 00 0 1] \b
0 0 0 0 0 0 0 0 0

tensor by solving linear equation systems (e.g. the calibra-
tion tensors in [23] or the essential matrix [19]). Then, the
parameters that are searched for (usually, motion parame-
ters), are extracted from these. However, when estimating
for example the 6 x 6 essential matrix of non-central cam-
eras based on image correspondences obtained from central
or axial cameras, then the associated linear equation system
does not give a unique solution (much like when estimating
a fundamental matrix from correspondences coming from
coplanar 3D points). Consequently, the algorithms for ex-
tracting the actual motion parameters, can not be applied
without modification.

In the following, we deal with central, axial, x-slit and
fully non-central cameras.

4. Parameterizations

Multi-view geometry will be formulated in terms of the
Pliicker coordinates of projection rays. For other mod-
els than the fully non-central one, projection rays belong
to constrained sets, as explained in the previous section.
We may thus choose the cameras’ local coordinate systems
such as to obtain “simpler” coordinate vectors for projection
rays, and in turn simpler matching constraints. Since we
deal with calibrated cameras, rays are given in metric coor-
dinate systems, and we may apply rotations and translations
to fix local coordinate systems. Appropriate parameteriza-
tions for different models are explained in the following.

4.1. Central Cameras

All rays go through a single point, the optical center. We
distinguish the cases of a finite and infinite optical center.

Finite optical center. We choose a local coordinate sys-
tem with the optical center as origin. This leads to projec-
tion rays whose Pliicker sub-vector b is zero, cf. table 2.
This is one reason why the multi-focal tensors, e.g. the fun-
damental matrix, can be written with a “base size” of 3.

Infinite optical center (e.g. affine camera). We can not
adopt the optical center as origin, thus choose a coordinate
system where it has coordinates (0,0, 1, O)T. Projection
rays are then of the form given in the 3rd column of table 2.

4.2. Axial Cameras

All rays touch a line, the camera axis. Again, by choos-
ing local coordinate systems appropriately, the formulation
of the multi-view relations may be simplified. We distin-
guish the cases of a finite and an infinite camera axis.

Finite axis. Assume that the camera axis is the Z-axis.
Then, all projection rays have Pliicker coordinates with
Lg = bs = 0, cf. the 4th column of table 2.

Infinite axis. We choose a local coordinate system where
the axis is the line at infinity with coordinates (1, 0, O)T (line
coordinates on plane at infinity). The camera axis’ Pliicker
coordinates are then given by (0,0,0,1,0, O)T. Projection
rays thus have coefficients with L; = a; = 0 (this is ob-
tained using equation (2)), cf. the 5th column of table 2.
Multi-view relations for axial cameras, with finite or in-
finite axis, can thus be formulated via tensors of “base size”
5, e.g. the essential matrix will be of size 5 x 5 (see §5.3.2).

4.3. X-Slit Cameras

As mentioned above, x-slit cameras are defined as fol-
lows: there exist two lines — camera axes — that cut all pro-
jection rays. The case of the two axes cutting one another,
i.e. being coplanar, is not of much interest, so we consider
two mutually skew axes. Two cases are thus possible: (i)
both axes are finite lines or (ii) one of the two axes is a line
at infinity. In any case, one axis at least is a finite line; we
adopt a local coordinate system as said above for axial cam-
eras (finite axis is Z-axis). As for the second axis, we have
to distinguish the two cases.

Two finite axes. Having fixed the first axis, we still have
the freedom to rotate about it and translate along it. Since
the two axes are skew, we may thus obtain a local coordinate
system, where the second axis goes through a point on the
Y -axis, and is parallel to the X Z-plane. Hence, it will be
defined by two points as follows:

AT=0 Y 01 B'=(X 0 Z 0

The second axis’ Pliicker coordinates are thus given by:
Ci=(X 0 Z -YZ 0 YZ)
Projection rays cut the two axes, so must be of the form:

LT = (a1 as as (%al — Yag) bg 0)
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The division by X is no problem since X # 0 (otherwise
the second axis would be parallel to the first one, and thus
coplanar, which is excluded here). Let us replace % by W.
Then, each projection ray can be parameterized by 4 coef-
ficients (defined up to scale), as given in the 6th column of
table 2. W and Y may be seen as intrinsic parameters, since
they define the relative position of the two camera axes.

One finite and one infinite axis. Having fixed the first
axis, we still have the freedom to rotate about it and trans-
late along it. Translation has no effect on the infinite sec-
ond axis, but we may rotate about the first axis, such that
the second one has coordinates (0, cos ©, sin @)T (homo-
geneous coordinates of a line at infinity) for some ©. The
second axis’ Pliicker coordinates are thus:

C;]=(0 0 0 0 cos® sinO)
Projection rays cut the two axes, so must be of the form:
LT = (a1 —as tan © as bl bg 0)
For ease of notation, let us define W = — tan ©. Then,

each projection ray can be parameterized by 4 coefficients
(defined up to scale), as given in the last column of table 2.

4.4. General Non-Central Cameras

No such simplification occurs, and multi-view tensors
will have “base size” 6.

5. Multi-View Geometry

We establish the foundations of a multi-view geometry
for general (non-central) cameras. Its cornerstones are, as
with perspective cameras, matching tensors. We show how
to establish them, analogously to the perspective case.

Here, we only deal with the calibrated case; the uncali-
brated case is nicely treated for perspective cameras, since
calibrated and uncalibrated images are linked by projective
transformations. For non-central cameras, there is no such
link: in the most general case, every pair pixel+projection
ray may be completely independent of other pairs.

5.1. Reminder on Perspective Multi-View Geometry

We briefly review how to derive multi-view matching re-
lations for perspective cameras [4]. Let P; be projection
matrices of n images. Image points q; are matching, if there
exist a 3D point Q and scale factors \; with:

Aiqi =PiQ, Vi=1---n

This may be formulated as the following matrix equation:

P1 q1 0 e 0 _(i 0
P, 0 q - O B A; 0
P, 0 0 --- qn _')\n 0

M

The matrix M, of size 3n x (4+n) has thus a null-vector,
meaning that its rank is less than 4 + n. Hence, the deter-
minants of all submatrices of size (4 + n) x (4 + n) must
vanish. These determinants are multi-linear expressions in
terms of the coordinates of image points q;. Every possi-
ble submatrix should be considered, but only those with 2
or more rows per view, give rise to constraints linking all
projection matrices. Hence, constraints can be obtained for
up to n views with 2n < 4 + n, meaning that only for up
to 4 views, matching constraints linking all views can be
obtained.

The constraints for n views take the form:

Z Z qunqzm~-~

11=11i2=1 in=1

Gn,inTiy in, i, =0 (3)

where the multi-view matching tensor T of dimension
3 X -+ x 3 depends on and partially encodes the cameras’
projection matrices P;.

Note that as soon as cameras are calibrated, this the-
ory applies to any central camera: for a camera with ra-
dial distortion for example, the above formulation holds for
distortion-corrected image points.

5.2. Multi-View Geometry of Non-Central Cameras

Here, instead of projection matrices (depending on cali-
bration and pose), we deal with pose matrices:

P (gt %) @

These are the similarity transformations that map a point
from some global reference frame, into the camera’s lo-
cal coordinate frames (note that since no optical center and
no camera axis exist, no assumptions about the local co-
ordinate frames are made). As for image points, they are
now replaced by projection rays. We will obtain expres-
sions in terms of the rays’ Pliicker coordinates, i.e. we will
end up with matching tensors T and matching constraints of
the form (3), with the difference that tensors will have size
6 x --- x 6 and act on Pliicker line coordinates:

Z Z Z Ly Z1L2 i2 "'Ln,inTzl G,

11=112=1 in=1

. =0 (5

In the following, we explain how to derive such matching
constraints. Consider a set of n projection rays and let them
be defined by two points A; and B; each; the choice of
points to represent a ray is not important, since later we will
fall back onto the ray’s Pliicker coordinates.

Now, a set of n projection rays are matching, if there
exist a 3D point Q and scale factors A\; and p; with:

)\iAi-‘r/,Lj,Bj,: PzQ7 Vi=1--n

i.e. if the point P;Q lies on the line spanned by A; and B;.
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Like for perspective cameras, we group these equations
in matrix form:

Pr Ay B; --- O 0 -M\1 0
P2 0 0 cee 0 0 — M1 0
P, 0 0 --- A, B, —An 0

M ~Hn

As above, this equation shows that M must be rank-
deficient. However, the situation is different here since the
P, are of size 4 x 4, and M of size 4n x (4 4 2n). We thus
consider submatrices of size (4 +2n) x (4+2n). In the fol-
lowing we show that only submatrices with 3 rows or more
per view, give rise to constraints linking all pose matrices.
Thus, 3n < 4 + 2n, and n < 4, i.e. multi-view constraints
are again only obtained for up to 4 views.

Let us first see what happens for a submatrix of M where
some view contributes a single row. The two columns cor-
responding to its base points A and B, are then multiples
of one another: they contain only zeroes, besides a single
non-zero coefficient, in the single row associated with the
considered view. Hence, the determinant of the submatrix
of M is always zero, and no constraint is available.

In the following, we exclude this case, i.e. we only con-
sider submatrices of M where each view contributes at least
two rows. Let N be such a matrix. Without loss of gener-
ality, we start to develop its determinant with the columns
containing A; and B;. The determinant is then given as a
sum of terms of the following form:

(Al,jBl,k — Al,kBl,j) det Njk

where j, k € {1..4}, j # k, and Njk is obtained from N by
dropping the columns containing A; and B; as well as the
rows containing A; ; and A; ;. We observe several things:

e Theterm (Aq ;B — A1 1B ;) is nothing else than a
Pliicker coordinate of the ray of camera 1 (cf. §2). By
continuing with the development of the determinant of
N jk» it becomes clear that the total determinant of N
can be written in the form:

6 6 6
E E E L1 Loy L, Tiyig,ee i, =0

i1=112=1 in=1

i.e. the coefficients of the A; and B; are “folded to-
gether” into Pliicker coordinates of projection rays and
T is a matching tensor relating the n cameras. Its coef-
ficients depend exactly on the cameras’ pose matrices.

e If camera 1 contributes only two rows to N, then the
determinant of N will have the form:

6 6
Ll,:x (Z L27i2 ”'L"ﬂ;nTin“'vin) =0

ia=1  in=1

Table 3. Cases of multi-view matching constraints for central and
non-central cameras. Columns named “useful” contain entries of
the form x-y-z etc. that correspond to sub-matrices of M that give
rise to matching constraints linking all views: x-y-z refers to sub-
matrices containing x rows from one camera, y from another etc.

central non-central
# views M useful M useful
2 6 x 6 3-3 8 x 8 4-4
3 9x7 3-2-2 | 12x10 4-3-3
4 12x8 2-2-2-2 | 16x12 3-3-3-3

i.e. it only contains a single coordinate L , of the ray
of camera 1, and the tensor T does not depend at all on
the pose of that camera. Hence, to obtain constraints
relating all cameras, each camera has to contribute at
least three rows to the considered submatrix of M.

We are now ready to establish the different cases that
lead to useful multi-view constraints. As mentioned above,
for more than 4 cameras, no constraints linking all of them
are available: submatrices of size at least 3n x 3n would be
needed, but M only has 4 4+ 2n columns. So, only forn < 4,
such constraints exist.

Table 3 gives all useful cases, both for central and non-
central cameras. These lead to two-view, three-view and
four-view matching constraints, encoded by essential ma-
trices, trifocal and quadrifocal tensors. Deriving their forms
is now mainly a mechanical task.

5.3. The Case of Two Views

We have so far explained how to formulate bifocal, tri-
focal and quadrifocal matching constraints between non-
central cameras, expressed via matching tensors of dimen-
sion 6 x 6 to 6 x 6 x 6 x 6. To make things more concrete, we
explore the two-view case in some more detail in the follow-
ing. We show how the bifocal matching tensor, or essential
matrix, can be expressed in terms of the pose (or, motion)
parameters. This is then specialized from non-central to ax-
ial, x-slit and central cameras. The essential matrices for
these cases are summarized in table 4. That table also gives
the minimum numbers of correspondences required for esti-
mating them using linear equations. These are not explained
in detail due to lack of space, but can be derived easily by
considering coefficients in essential matrices, that are zero
or appear twice.

5.3.1. Non-Central Cameras

For simplicity, we assume here that the global coordinate
system coincides with the first camera’s local coordinate
system, i.e. the first camera’s pose matrix is the identity.
As for the pose of the second camera, we drop indices, i.e.
we express it via a pose matrix P, composed of a rotation
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Table 4. Essential matrices for different camera models. The last column gives the minimum number of correspondences between projection

rays required for computing essential matrices using linear equations.

| Camera model | Essential matrix

| Size | # corr.

Non-central E.= <_[tF]{X R 03Rx3> 6 %6 17
Ri1 Rio
—[t]xR Ra1 Roo
Axial with finite axis Eor = Rs1  Rso 5x5 16
Ri1 Ri2 Ris 0
Ro1 Roo Ros 2x2
t1R32 —t3R12 t1R33 —t3R13 Ror Raa Ros
taRi2 —t1Roy tolRi3 —t1Ra3 R31 R3x R
Axial with infinite axis E.i = Rio Ri3 0 0 0 5x5H 11
Roo Ro3 0 0 0
R3o R33 0 0 0
10 0 Wy, 0 L0 00
L . 010 0 O 0 10 0
X-slit with two finite axes Erzpp = 001 -V, 0 E.y] O 0 1 0 4 x4 13
000 0 1 Wi 0 -¥ 0
0 O 0 1
10 0 0O 1000
. . . 01 Wy 00 0 100
X-slit with one finite and one infi- | E;p; = 00 0 1 0 Eer [O Wi O O 4 x4 10
nite axis 00 0 0 1 0 0 1 0
0O 0 0 1
Central with finite optical center E.r = —[t]xR 3x3 8
toR13 —t1Ros Rs31 R
Central with infinite optical center E. = Ri3 0 0 3x3 4
Ro3 0 0

matrix R and a translation vector t, according to (4). The
matrix M is thus given as:
A, B; 0 0
5)

[ Iaxa
MSXS_(P 0 0 A,

For a matching pair of rays, M must be rank-deficient.
Here, this implies that its determinant is equal to zero. It can
be developed to the following expression, where the Pliicker
coordinates L; and Ly are defined as in equation (1):

L] (_MxR R) L =0

R 0 ©

E,
We find the essential matrix E,,, as was done in [19].

5.3.2. Axial Cameras

Finite axis. As mentioned in §3, we adopt local coordi-
nate systems where projection rays have Lg = 0. Hence,
the epipolar constraint (6) can be expressed by a reduced
essential matrix of size 5 x 5, which acts on reduced Pliicker
vectors, consisting of the first five Pliicker coordinates. This
essential matrix is obtained from the non-central one E,, (6),
by dropping its sixth row and column, leading to E,y, as
given in table 4.

Note that E, s is in general of full rank (rank 5), but may
be rank-deficient. It can be shown that it is rank-deficient
exactly if the axes of the two cameras cut each other. In
that case, the left and right null-vectors of E, y represent the
camera axes of one view in the local coordinate system of
the other one (one gets their Pliicker vectors when adding a
zero as 6th coordinate to the length-5 null-vectors).

Infinite axis. The epipolar constraint (6) can be expressed
by a reduced essential matrix E,; (cf. table 4) of size 5 x 5,
acting on reduced Pliicker vectors, consisting of the last five
Pliicker coordinates (cf. table 2). It is always rank-deficient
(the two camera axes are lines at infinity, thus always cut
each other, cf. the discussion in the previous paragraph).

5.3.3. X-Slit Cameras

Two finite axes. We get a reduced essential matrix E, s
(cf. table 4) of size 4 x 4, acting on reduced Pliicker vectors
of the form (a1, as, as, bs)" (cf. §4.3).

Contrary to previous cases, the essential matrix now not
only encodes motion, but also “intrinsic parameters” (the
coefficients W, and Y; of the two cameras’ second axes).
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One finite and one infinite axis. We get a reduced es-
sential matrix E,¢; (cf. table 4) of size 4 x 4, acting on
reduced Pliicker vectors of the form (a1, as, by, bg)T (cf.
§4.3). Again, it not only encodes motion, but also “intrinsic
parameters” (the coefficients W; of the two cameras’ infi-
nite axes).

5.3.4. Central Cameras

As mentioned in §3, we here deal
T

Finite optical center.
with projection rays of the form (Li, Lo, L3,0,0,0)
Hence, the epipolar constraint (6) can be expressed by a
3 x 3 essential matrix. We actually find here the “classical”
3 x 3 essential matrix E.; = —[t] <R [11, 13].

Infinite optical center. The essential matrix in this case
is E.;, cf. table 4. This resembles the affine fundamen-
tal matrix [20], but is not exactly the same: here, the es-
sential matrix acts on 3D lines, not on image points. For
example, the right null-vector of E.; is (0, Rsa, —R31)T,
which represents the 3D line with Pliicker coordinates
(0,0,0, R3a, —Ra1, O)T. This is the line spanned by the two
optical centers, i.e. the baseline (expressed in the first cam-
era’s coordinate system).

6. Conclusion

We have proposed a multi-view geometry for non-central
cameras, the first to our knowledge. A natural hierarchy
of camera models has been introduced, grouping cameras
into classes depending on, loosely speaking, the spatial dis-
tribution of their projection rays. Two-view geometry was
specialized in detail to different camera models. We hope
that this theoretical work allows to define some common
ground for recent efforts in characterizing the geometry of
non-classical cameras.

Concerning possibilites for further work, geometrical
relations between cameras of different types would be
straightforward to derive along the lines used here, and all
expressions can of course be transcribed in tensor notation.
In this paper, we concentrated on the theory and did not
address the issue of actually estimating the matching ten-
sors and extracting motion parameters from them. It is rel-
atively straightforward though to extract the motion param-
eters from the various essential matrices, due to their forms
given in table 4. Experiments with the essential matrix for
non-central cameras were successful, as also reported in
[19], and experiments with intermediate camera types are
ongoing.

Finally, we would like to note that, although motivated
by the generic imaging model associating rays to pixels,
the multi-view relations derived here hold naturally for any
camera model that allows to attribute projection rays to im-
age points with sub-pixel precision.
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Résumé. Nous considérons le probleme de I'estimation de la structure et du mouvement pour
un modele de caméras hautement général, qui représente une caméra par un ensemble de rayons
de projection. Ceci permet de décrire la plupart des types de caméras existants (du moins celles
qui operent dans le domaine visible), y inclus les caméras sténopé, les caméras avec des distorsions
radiales ou plus générales, les caméras catadioptriques (a point de vue unique ou non), etc. Nous
introduisons une hiérarchie de modeles de caméras généraux : le modele le plus général peut posséder
des rayons de projection quelconques tandis que le modele le plus contraint que nous considérons
ici est le modele a point de vue unique (tous les rayons passent par un méme point). Parmi les
modeles intermédiaires, nous identifions ce que nous appelons les caméras axiales (tous les rayons
touchent une méme ligne) et les caméras connues sous le nom de « cross-slit » (les rayons touchent
deux lignes). Les fondements d'une géométrie d’images multiples pour le modele de caméras le plus
général sont donnés. Ils se manifestent par la formulation de tenseurs d’appariement multi-vues,
qui sont 'analogue des matrices fondamentales/essentielles, tenseurs trifocaux ou quadrifocaux des
caméras perspectives. Ce cadre théorique général est ensuite spécialisé pour les modeles de caméras
intermédiaires mentionnés, pour le cas de deux images.

Mots clés. Modele de caméras, caméra non centrale, caméra omnidirectionnelle, tenseur d’ap-
pariement, géométrie épipolaire, géométrie d’images multiples.

Abstract. We consider the structure from motion problem for a previously introduced, highly
general imaging model, where cameras are modeled as possibly unconstrained sets of projection
rays. This allows to describe most existing camera types (at least for those operating in the visible
domain), including pinhole cameras, sensors with radial or more general distortions, catadioptric
cameras (central or non-central), etc. We introduce a hierarchy of general camera models : the
most general model has unconstrained projection rays whereas the most constrained model dealt
with here is the central model, where all rays pass through a single point. Intermediate models are
what we call axial cameras (all rays touch a single line), and x-slit cameras (rays touch two lines).
The foundations for a multi-view geometry of completely non-central cameras are given, leading to
the formulation of multi-view matching tensors, analogous to the fundamental/essential matrices,
trifocal and quadrifocal tensors of perspective cameras. This framework is then specialized explicitly
for the two-view case, for the intermediate camera types mentioned above.

Keywords. Camera model, non-central camera, omnidirectional camera, matching tensor, epi-
polar geometry, multi-view geometry.
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1 Introduction

Beaucoup de différents capteurs sont utilisés en vision par ordinateur, dont les caméras pers-
pectives, les systemes stéréo, les caméras omnidirectionnelles (par exemple, celles catadioptriques),
etc. La plupart des modeles utilisés pour ces caméras sont paramétriques et définis par quelques
parametres intrinseques (distance focale, coefficients de distorsion, etc.) et considerent surtout des
caméras a point de vue unique. De plus, les algorithmes existants de calibrage, de reconstruction
3-D ou d’estimation du mouvement, sont le plus souvent conc¢us pour un seul modele de caméras a
la fois (voir par exemple [5, 15, 11]).

Le but de notre travail est de relacher ces contraintes : nous voulons proposer et développer des
approches de calibrage, de reconstruction 3-D etc. qui puissent étre appliquées quels que soient les
types des caméras utilisées, notamment les caméras omnidirectionnelles et/ou n’ayant pas de point
de vue unique. Pour ce faire, nous renoncons aux modeles paramétriques classiques et adoptons un
modele tres général [13] : une caméra acquiert des images qui consistent en un ensemble de pixels;
chaque pixel capte la lumiere qui se propage le long d’un rayon (rayon de projection). Une caméra
est alors completement modélisée par :

— les coordonnées de ces rayons (en 3-D, données par rapport a un repere local de la caméra) ;
— la correspondance entre pixels et rayons.

Ce modele général permet de décrire la plupart des types de caméra, par exemple (cf. la figure
1):

— des caméras avec des distorsions optiques quelconques, telles les distorsions radiales ou tan-
gentielles;

— les caméras catadioptriques, c’est-a-dire des caméras qui percoivent la sceéne au travers d’une
réflexion dans un miroir, typiquement de forme convexe. De tels systemes peuvent avoir un
point de vue unique [2, 10], mais uniquement si le miroir ainsi que la position relative miroir—
caméra sont bien choisis. Si un miroir sphérique est utilisé, ou un miroir dont la surface ne
correspond pas a une quadrique [16], le systéme catadioptrique n’aura pas de point de vue
unique;

— des systemes stéréo (deux caméras ou plus) : conceptuellement, on peut considérer un systeme
stéréo comme un seul capteur qui consiste de I'ensemble des pixels des caméras et des rayons
associés. Il s’agit bien évidemment d’un capteur qui n’a pas de point de vue unique;

— d’autres systemes d’acquisition, dont beaucoup n’ont pas de point de vue unique et/ou sont
de type omnidirectionnel [3, 4, 14, 6, 7, 18, 23, 24, 28, 33, 34];

— un exemple ou le modele énoncé ci-dessus ne s’appliquerait pas est celui d’une caméra qui
regarde une scene a travers une interface entre deux matieres. Considérons par exemple une
caméra qui regarde dans I’eau mais n’y est pas plongée : les rayons de projection sont réfractés
et si la caméra se déplace, ’ensemble des rayons ne se déplacera pas de maniere rigide.

Bien évidemment, le modele de caméras que nous utilisons n’est qu’une approximation : en
réalité, un pixel capte non pas un seul rayon de lumiere, mais plutot de la lumiere qui se propage
dans un certain volume. Cette remarque s’applique pourtant a la majorité des modeles existants.
D’autres aspects importants, par exemple ceux liés a la photométrie, sont tres bien décrits dans
[13].

Dans cet article, nous introduisons les fondements pour une géométrie d’'images multiples pour le
modele de caméras générique décrit ci-dessus. Ils s’expriment au travers de tenseurs d’appariement,
similairement aux matrices fondamentales ou essentielles et aux tenseurs trifocaux ou quadrifocaux
des caméra perspectives. Nous rappelons ici simplement que les tenseurs d’appariement servent
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Surface réfléchissante

Rayon des points 3-D
qui sont vus par le pixel

Un pixel

Plan image de la caméra
qui regarde la surface

réfléchissante (vu de c6té)

Fi1G. 1 — Exemples de types de caméras. Premiere ligne : (i) Systéme catadioptrique (notons que
les rayons ne passent pas par les pixels associés). (ii) Systeéme catadioptrique basé sur un miroir
sphérique (ce systéme n’a pas de point de vue unique — les rayons ne se coupent pas en un seul
point). (iii) Caméra & point de vue unique (par exemple, caméra perspective, avec ou sans distorsion
radiale ou autre). Deuxieme ligne : (i) Caméra de type « push-broom ». (ii) Systeme d’acquisition
dit « omni-vergent » [24, 28]. (iii) Systeme stéréo.

a donner des contraintes pour I'appariement de primitives géométriques entre images. Ceci sera
mieux expliqué dans la suite.

Nous formulons la géométrie d’images multiples pour des caméras calibrées, c’est-a-dire pour
lesquelles la relation pixels-rayons est connue. Ainsi, les correspondances entre pixels d’images
différentes se traduiront directement en correspondances de rayons de projection en 3-D. Les ten-
seurs d’appariement que nous allons dériver, agissent alors sur les coordonnées des rayons.

Nous introduisons également une hiérarchie naturelle de modeles de caméras : le modele le plus
général consiste d'un ensemble non contraint de rayons de projection tandis que le modele le plus
contraint considéré ici est celui des caméras a point de vue unique. Dans la suite, nous utilisons
I’expression concise de caméra centrale pour désigner les caméras a point de vue unique. Des caméras
sans point de vue unique sont appelées caméras non centrales. Un modele intermédiaire est ce que
nous appelons une caméra azriale : une caméra telle qu’il existe une droite en 3-D qui touche tous
les rayons de projection. Ce modele comprend les caméras de type « push-broom » [14] et certaines
caméras catadioptriques. Une sous-classe est celle des caméras dites de type « cross-slit » : il existe
deux droites en 3-D qui touchent tous les rayons (les caméras de type « push-broom linéaire » sont
en effet de ce type).

La géométrie d’images multiples, formulée d’abord pour des caméras non centrales générales,
est ensuite spécialisée a ces modeles intermédiaires, pour le cas de base de deux vues (géométrie
épipolaire). Il existe plusieurs travaux sur la géométrie épipolaire de caméras omnidirectionnelles,
centrales ou non [9, 12, 20, 21, 25, 30, 32]. Le but de la plupart de ces travaux est d’obtenir des
contraintes d’appariement pour des caméras non calibrées (ce qui est difficile méme pour certaines
caméras catadioptriques centrales). Dans cet article, nous abordons le cas de caméras calibrées et
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donnons un traitement assez complet du probléme.

Cet article est structuré comme suit. Dans la section 2, nous rappelons la définition et des
propriétés des coordonnées de Pliicker pour les droites en 3-D, qui sont utilisées pour paramétrer
les rayons de projection. Une hiérarchie de modeles de caméras est proposée dans la section 3. Des
paramétrisations de rayons de projection pour différents modeles de caméras, sont proposées en
section 4. La géométrie d’images multiples pour le modele de caméras général est développée dans
la section 5. Cette géométrie est ensuite explorée en détail pour le cas de deux vues et différents
modeles de caméras, en section 6.

Notations utilisées : les matrices sont notées en sans empattement (L,R, ...), les vecteurs
en caracteres gras (a,b, ...) et les scalaires en caracteéres italiques (u,v,...). Les coefficients de
tenseurs, matrices ou vecteurs sont des scalaires, donc notés en italique (7 j s, L; j, . . .). Le produit
vectoriel de deux vecteurs de longueur 3 est écrit u x v. La notation [u]y désigne la matrice anti-
symétrique de dimension 3 x 3 définie par le produit vectoriel : [u]xv = u x v. La transposée d'une
matrice est notée par LT. Les vecteurs sont parfois interprétés comme des matrices a une colonne ;
la transposée a' d'un vecteur désigne donc une matrice a une ligne.

2 Coordonnées de Plucker

Nous représentons les rayons de projection par des droites en 3-D, en utilisant leurs coordonnées
de Pliicker. Nous en utilisons la définition suivante.

Soient A et B deux points 3-D, donnés en coordonnées homogenes. La droite définie par ces
points peut étre représentée par la matrice 4 x 4 anti-symétrique L, dite matrice de Pliicker :

L = ABT-BA"

0 A1B2 — AgBl AlBg — A3B1 A1B4 — A4Bl

. AQBl — AlBg 0 Ang — Ang A2B4 — A4BQ

A3Bl — AlBg Ang — Ang 0 AgB4 — A4Bg
A4Bl — AlB4 A4BQ — A2B4 A4Bg — A3B4 0

Notons que la matrice de Pliicker d'une droite est indépendante (& 1’échelle preés) de la paire
des points sur cette droite ayant servie a son calcul.

Une représentation alternative de la droite est le vecteur des coordonnées de Pliicker, de longueur

A4B1 - AIB4

A4B2 — AQB4

| AuB3s — A3B,
L=1 4B, - A,B, (1)

A1B3 — AgBl

AQB]. - AlBQ

Nous identifions deux sous-vecteurs de longueur 3, a et b :
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Ces deux vecteurs satisfont la contrainte dite de Pliicker : a’b = 0. Un vecteur de longueur 6
correspond & des coordonnées de Pliicker d’une droite si et seulement si il vérifie cette contrainte.
Avec cette définition de a et b, la matrice de Pliicker peut s’écrire :

= 7)

Considérons maintenant comment les droites sont transformées par des changements de repere.
Soit une transformation euclidienne, définie par une matrice de rotation R et un vecteur de trans-
lation t, qui agit sur les points 3-D comme suit :

R t
C_)(OT 1)(3

Les coordonnées de Pliicker sont alors transformées ainsi :

() (e 2) ()

Notons finalement que deux droites L; et L, se coupent exactement si la relation suivante est
satisfaite :

0 I
L) <1 0> L, =a,b; +bya; =0 (2)
Interprétation euclidienne des coordonnées de Pliicker. Si les points A et B sont donnés
en coordonnées affines (4, = By = 1), les vecteurs a et b peuvent s’interpréter comme suit. Notons
d’abord AT = (Ay, Ay, A3) et BT = (By, By, B3) . Nous avons alorsa=B — A et b=B x A. Le
vecteur a est donc le vecteur directeur de la droite. Quant a b, il est orthogonal au plan engendré
par l'origine et la droite. Finalement, la distance carrée de la droite de l'origine, c’est-a-dire la
distance carrée du point sur la droite le plus proche de l'origine, est donnée par :
2 b'b

aTa

3 Une hiérarchie de modeles de caméras

Une caméra non centrale peut avoir des rayons de projections quelconques, tandis que pour
une caméra centrale, il existe un point — le centre optique — qui se trouve sur tous les rayons de
projection. Un cas intermédiaire est ce que nous appelons ici celui des caméras axiales : il existe
une droite qui touche tous les rayons de projection. Nous I'appelons 1’axe de la caméra (a ne pas
confondre avec 'axe optique du modele perspectif). Des exemples de caméras qui se trouvent dans
cette classe sont :

— les caméras dites de type cross-slit [22, 35] (ou bien, z-slit ou two-slit), et le cas particulier
des caméra dites push-broom linéaire [14]. Ces caméras forment en effet une sous-classe des
caméras axiales, comme il I'est expliqué plus bas;

— des systemes stéréo consistant de deux caméras centrales ou de plusieurs caméras centrales
avec des centres optiques collinéaires ;
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TAB. 1 — Classes de caméras, définies par des configurations de points ou droites en 3-D qui touchent
tous les rayons de projection.
‘ Points/droites touchant les rayons ‘ Description de la classe ‘

Aucun Caméra non centrale

1 point Caméra centrale

2 points Caméra ayant un seul rayon de projection

1 droite Caméra axiale

1 point, 1 droite Caméra 1-D centrale

2 droites qui ne se coupent pas Caméra de type cross-slit

2 droites coplanaires Union d’une caméra centrale et d’'une caméra 1-D
non centrale

3 droites coplanaires sans point Caméra 1-D non centrale

d’intersection commun

— certaines caméras catadioptriques non centrales : si le miroir est une surface de révolution
est si le centre optique de la caméra centrale qui le regarde (pas nécessairement une caméra
perspective) se trouve sur I'axe de révolution, il s’agit d’'une caméra axiale. Il est facile de
vérifier que dans ce cas, tous les rayons de projection réfléchis par le miroir, coupent I'axe
de révolution, qui joue donc le role de 'axe de la caméra axiale. Remarquons qu'une caméra
catadioptrique avec un miroir sphérique est obligatoirement non centrale, et de type axial. Un
autre exemple est celui des systémes basés sur un miroir conique (avec centre optique sur l’axe
du cone) [7]. Le modele axial peut aussi servir a modéliser des systemes catadioptriques qui,
a cause d'un mauvais alignement entre miroir et caméra, ne produisent pas une projection
centrale.

Ces trois classes de modeles de caméras peuvent aussi étre définies ainsi : existence d’un espace
linéaire de dimension d qui a une intersection non vide avec chacun des rayons de projection. Avec
cette définition, d = 0 correspond aux caméras centrales, d = 1 aux caméras axiales et d = 2 aux
caméras completement non centrales.

Des classes intermédiaires existent. Les caméras de type cross-slit, déja mentionnées, sont un
cas spécial des caméras axiales : il existe deux droites qui toutes deux touchent tous les rayons
de la caméra. Similairement, on peut définir des caméras 1-D centrales (caméras ayant une seule
ligne de pixels) par un point et une droite en 3-D qui touchent chacun des rayons. Le tableau 1
résume des modeles de caméras définis de cette maniere, dont certains n’ont bien sur aucun intérét
pratique. Une approche similaire pour la définition de classes de caméras a été explorée dans [22];
le but de cette approche était de trouver une seule primitive géométrique qui touche tous les rayons
de projection et qui puisse donc servir a la définition d’une classe de caméras. Cette approche est
moins générale et moins intuitive que celle adoptée ici.

Il est intéressant de considérer certaines de ces classes de caméras plus en détail, grace a 1’ob-
servation suivante. Beaucoup d’algorithmes existants de calibrage ou d’estimation du mouvement
procedent typiquement en deux étapes : (1) estimation d’une matrice ou d’un tenseur en résolvant
des systemes d’équations linéaires (par exemple, la matrice de projection [1], la matrice essen-
tielle [25], les tenseur trifocaux [15], les tenseur de calibrage [31], etc.); (2) ensuite, les parametres
recherchés (parametres intrinseques, matrice de rotation, etc.) sont extraits de ces matrices ou
tenseurs. Il y a deux problemes intrinseques :

— si un algorithme qui a été développé pour une classe de caméras est appliqué a une classe de
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caméras différente, I’étape (1) ne donnera pas de solution. Par exemple, I'estimation d’une
matrice fondamentale perspective (matrice 3 x 3) a partir de correspondances de points issues
de deux caméras catadioptriques, ne donnera évidemment aucun résultat exploitable ;
— ce premier probleme est évident ; un probleme plus subtil est le suivant. Si un algorithme qui
a été développé pour une classe de caméras est appliqué a une caméra appartenant a une
sous-classe, la résolution du systeéme linéaire dans I’étape (1) n’aura pas de solution unique;
il y aura en effet une infinité de solutions. L’étape (2), si effectuée avec une de ces solutions
choisie au hasard, donnera un résultat incorrect. Un exemple simple pour illustrer ce probleme
est 'estimation de la matrice fondamentale perspective, a partir de correspondances de points
d’une scéne qui ne contient qu’un plan : 'estimation est sous-contrainte. Un exemple plus
proche de nos préoccupations est le suivant : si 'on tente d’estimer la matrice essentielle du
modele de caméras non central (une matrice 6 x 6 [25]) a partir de correspondances obtenues
de caméras centrales ou axiales, alors le systeme d’équations linéaires associé n’aura pas de
solution unique.
Ce deuxieme probleme nous amene a définir la géométrie d’images multiples pour le modele
le plus général d’abord, puis a la spécialiser a des sous-classes. Dans cet article, nous traitons les
caméras centrales, axiales, de type cross-slit et le modele completement non central.

4 Paramétrisations

La géométrie d’images multiples sera formulée en utilisant les coordonnées de Pliicker des rayons
de projection. Les rayons de projection de toutes les classes de caméras sauf de la plus générale,
appartiennent a des sous-ensembles particuliers des droites en 3-D, cf. la section précédente. Nous
pouvons alors tenter de choisir un systeme de coordonnées local a une caméra tel que les vecteurs
de coordonnées de ses rayons aient une forme particuliere, menant a des tenseurs d’appariement
de forme simplifiée. Comme nous considérons des caméras calibrées, les rayons sont donnés dans
un repere métrique et nous pouvons alors appliquer des rotations et translations pour en choisir un
de « sympathique ». Les transformations et paramétrisations de rayons de projection appropriées
pour différents modeles de caméras sont expliquées dans la suite.

4.1 Caméras centrales

Tous les rayons passent par un méme point, le centre optique. Nous distinguons les cas ou le
centre optique est un point fini ou a l'infini.

Centre optique fini. Nous choisissons un repére local avec comme origine le centre optique.
Ainsi, pour tous les rayons de projection le vecteur b (cf. la section 2) est nul, c’est-a-dire que les
rayons ont des coordonnées de la forme :
a
L=

Notons que ceci est en accord avec le fait que les tenseurs d’appariement des caméras perspectives
ont une « taille de base » de 3 : la matrice fondamentale par exemple, est une matrice 3 x 3.
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Centre optique infini. Dans ce cas (par exemple, une caméra orthographique), nous ne pouvons
pas choisir le centre optique comme origine. A la place, nous orientons le repére tel que le centre
optique ait les coordonnées (0,0, 1, O)T. Les rayons de projection sont alors de la forme :

L=(0 0 az b b 0)

4.2 Caméras axiales

Tous les rayons touchent une droite particuliere, I'axe de la caméra. Nous distinguons les cas
d’un axe étant une droite a I'infini ou non.

Axe fini. Nous choisissons un repere ou l'axe de la caméra coincide avec 'axe des Z. Pour les
rayons de projection nous avons alors Lg = b3 =0 :

Axe infini. Choisissons un repere ou 'axe est la droite a l'infini avec les coordonnées (1,0, O)T
(coordonnées d’'une droite sur le plan a linfini). Ceci correspond aux coordonnées de Pliicker
(0,0,0, 1,0,0)T. Les rayons de projection ont donc des coordonnées avec L1 = a; = 0 (ceci est
basé sur I'équation (2)).

0
a2
as

b

L=

Pour les deux cas, nous voyons que les rayons de projection d’'une caméra axiale peuvent étre
représentés par 5 coordonnées de Pliicker. Les tenseurs d’appariement auront alors une taille de
base de 5; par exemple, la matrice essentielle pour des caméras axiales sera de dimension 5 X 5
(voir plus loin).

4.3 Caméras de type cross-slit

Comme il a été mentionné, les caméras de type cross-slit sont définies par l'existence de deux
droites qui coupent tous les rayons de projection. Le cas ol ces deux axes se coupent, c¢’est-a-dire
sont coplanaires, n’a pas d’'intérét ici (voir le tableau 1). Deux cas sont alors possibles : (i) tous les
deux axes sont des droites finies ou (ii) exactement un des deux axes est une droite a Uinfini. Il y a
forcément au moins un axe fini; nous adoptons un repere comme il a été décrit ci-dessus pour les
caméras axiales avec axe fini. Ceci nous laisse encore des degrés de liberté dans le choix du repere,
ce qui sera exploité pour obtenir des coordonnées simples pour le deuxieme axe.

Deux axes finis. Ayant fixé le premier axe, nous avons toujours la possibilité d’effectuer des
rotations autour, ou des translations le long de cet axe. Nous pouvons alors choisir un repere ou
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le deuxieme axe de la caméra coupe 'axe des Y et est parallele au plan X — Z. Ainsi, il contient
deux points avec des coordonnées de la forme :

B:

— o~ o

X
0
Z
0

Ses coordonnées de Pliicker sont alors données par :

LI=(X 0 Z -YZ 0 YZ)

Les rayons de projection coupent les deux axes et doivent alors étre de la forme :

LT:(a1 a9 Qs (%al—Yag) bg O)

Nous divisons par X, ce qui est permis ici puisque X # 0 (sinon, le deuxiéme axe serait parallele
au premier, donc coplanaire, ce qui est exclu ici). Remplagons ensuite % par W. Les rayons de
projection peuvent alors étre paramétrés par les 4 coefficients ay, as, az, bs (qui sont définis a une
échelle pres) :

1 0 0 O

01 0 O ai
L— 0 0 1 0 (05}

W 0 =Y 0 as

0 0 0 1 by

0 0 0 O

Les coefficients W et Y sont connus et identiques pour tous les rayons de projection (ils
représentent la position relative des deux axes de caméra, qui est connue puisque la caméra est
supposée étre calibrée).

Un axe fini et un axe infini. Comme il a été dit ci-dessus, nous fixons d’abord ’axe fini comme
pour les caméras axiales, puis pouvons encore effectuer des rotations autour ou des translations le
long de cet axe pour obtenir des coordonnées particulieres pour I’axe infini. Les translations n’ont
pas d’effet sur les coordonnées de I’axe infini; quant a la rotation, nous pouvons la choisir telle que
I’axe infini ait les coordonnées (0, cos©,sin©)" (coordonnées homogenes d'une droite & Dinfini),
pour un certain ©. Ceci correspond aux coordonnées de Pliicker :

LT:(O 0 0 0 cos® sin@)

Les rayons de projection doivent couper les deux axes, donc sont de la forme :

LT:(a1 —a3tan@ as bl bg O)

Définissons W = — tan ©. Les rayons de projection peuvent alors étre représentés par 4 coeffi-
cients ay, ag, by, by (définis a 1'échelle pres) :
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1 0 00
01 00| (a

L_ |0 W ooffa
00 10f][n
00 0 1] \b
00 00

Les tenseurs d’appariement pour des caméras de type cross-slit auront alors une taille de base
de 4.

4.4 Caméras non centrales générales

Aucune simplification des coordonnées des rayons de projection n’est possible; ce seront alors
des coordonnées de Pliicker générales. Les tenseurs d’appariement auront une taille de base de 6.

5 Géométrie d’images multiples

Nous établissons les fondements d’une géométrie d’images multiples pour des caméras générales
(non centrales). Elle sera incarnée, comme avec les caméras perspectives, par des tenseurs d’appa-
riement. Nous montrons comment les obtenir, de maniére analogue au cas perspectif.

Ici, nous ne traitons que du cas calibré; le cas non calibré n’est bien géré que pour les caméras
perspectives, puisque ces caméras, calibrées ou non, sont liées par des transformations projectives.
Pourtant, quant aux caméras non centrales, un tel lien n’existe pas en général : dans le cas le plus
général, chaque paire pixel4+rayon de projection peut étre completement indépendante de toutes
les autres paires.

Dans la suite, nous rappelons d’abord la notion de tenseur d’appariement, puis les principes
d'une approche de géométrie d’image multiples pour les caméras perspectives. Cette approche
travaille avec des coordonnées de points dans les images. Nous appliquons ensuite les mémes idées,
tout en travaillant avec des coordonnées de droites en 3-D, pour dériver notre géométrie des caméras
non centrales.

5.1 Tenseurs d’appariement

Il n’existe pas de véritable définition de la notion de tenseur d’appariement dans la littérature.
Néanmoins, il est entendu qu’il s’agit, pour les caméras perspectives, de tenseurs dont les coefficients
dépendent des matrices de projection d'un ensemble de vues considérées et qui permettent de
formuler des contraintes d’appariement pour des primitives géométriques dans ces vues. Il est
généralement sous-entendu que ces contraintes sont de forme multi-linéaire, c’est-a-dire que les
contraintes sont linéaires en les coordonnées de chaque primitive. L’exemple le plus connu est
le tenseur d’appariement bi-focal, ou bien la matrice fondamentale F, qui donne la contrainte
d’appariement bi-linéaire classique :

asFq; =0

Plus généralement, pour n vues et des points q ---q, dans ces vues, on espeére trouver des
tenseurs d’appariement T de dimension 3 X --- X 3 qui permettent de formuler des contraintes
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d’appariement multi-linéaires :

3 3 3
Z Z T Z Q1,092,350 ** * Dnyin Liy in,e jin = 0 (3)

i1=1149=1 in=1

Ceci est décrit plus en détail dans la section suivante.

Ici, nous ne traitons que des tenseurs d’appariement pour n points, mais il en existe également
pour I'appariement de droites ou d'un mélange de droites et de points [15].

Notons aussi que les tenseurs d’appariement ont deux applications principales :
1. ils permettent d’établir des contraintes d’appariement, voir ci-dessus;

2. réciproquement, des appariements entre images permettent de calculer les tenseurs. Puisqu’ils
dépendent des matrices de projection, on peut espérer de remonter a ces dernieres, donc faire
de l'estimation du mouvement de caméra, de I'auto-calibrage, de la reconstruction 3-D etc.
Il existe un éventail assez large de telles applications et nous renvoyons & [15] pour un tour
d’horizon assez complet.

Le but principal de cet article est de montrer l'existence et la forme de tenseurs d’apparie-
ment pour nos modeles de caméras généraux. Plus concretement, nous recherchons des contraintes
d’appariement qui seraient de la forme :

6 6 6
Z Z . Z LiivLosy - L, Tiyigo i = 0 (1)

i1=142=1 in=1

ol les L sont les coordonnées de Pliicker de rayons de projection, ou bien des vecteurs de
coordonnées tels que définis section 4. Dans le cas le plus général, les tenseurs d’appariement
seraient alors de dimension 6 X - -+ x 6. La contrainte (4) exprimerais que les rayons de projection
considérés peuvent se correspondre, c’est-a-dire que les pixels associés a ces rayons peuvent étre un
appariement potentiel. Ces concepts seront introduits dans la section 5.3.

5.2 Rappels sur la géométrie d’images multiples des caméras perspec-
tives

Nous rappelons des principes de 'une des approches pour dériver les relations entre images
multiples, développée pour les caméras perspectives [8]. Soient P; des matrices de projection et q;
des points image. Un ensemble de points image peut constituer une correspondance uniquement
g’il existe un point 3-D Q et des facteurs d’échelle scalaires A; tels que, pour tout ¢ :

A = PiQ

Ceci peut étre écrit sous la forme d’une équation matricielle :

P o o\ (2 [0
P, 0 g --- O _A; L
P, 0 ) \ 0

0
M
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Cette équation exprime que la matrice M, de dimension 3n X (4 4+ n), possede un vecteur nul,
c’est-a-dire qu’elle est de rang inférieur a 4 + n. Par conséquent, les déterminants de toutes ses
sous-matrices de dimension (4 + n) x (4 + n) valent zéro. Ces déterminants sont des expressions
multi-linéaires en termes des coordonnées des points image q;.

11 faut les développer pour toute sous-matrice possible de la bonne dimension. Notons que seule
une sous-matrice contenant deux lignes ou plus associées a chacune des vues, peut donner une
contrainte qui lie toutes les matrices de projection. Ainsi, des contraintes peuvent étre obtenues
pour n vues avec 2n < 4 + n, ce qui implique que des contraintes multi-vues (et multi-linéaires)
n’existent que jusqu’a 4 vues.

Les contraintes pour n vues sont de la forme (3), ou T désigne donc un tenseur de dimension
3 X -+ x 3, appelé tenseur d’appariement. Les tenseurs dépendent uniquement des matrices de
projection P; et constituent en effet une représentation compacte de celles-ci (représentation qui
permet d’extraire les P; & une transformation projective pres).

Notons que des que 'on considere des caméras calibrées, cette théorie peut s’appliquer a n’im-
porte quelle caméra centrale (en plus des caméras perspectives) : des contraintes comme ci-dessus
peuvent par exemple étre écrites pour des caméras avec distorsion radiale, en termes des coor-
données de points image corrigés.

5.3 Géométrie d’images multiples pour les caméras non centrales

Ici, nous traitons avec des matrices de pose au lieu de matrices de projection (qui, elles,
dépendent et de la pose et du calibrage) :

Pi:(oT 1)

Ces transformations euclidiennes représentent des déplacements d’une caméra, ou bien le chan-
gement de repere d’un repere global vers le repere local de la caméra. Les points image du paragraphe
précédent sont maintenant remplacés par des rayons de projection. Soit le i¢ rayon représenté par
deux points 3-D A; et B;. Ultérieurement, nous voulons aboutir & des expressions en termes des
coordonnées de Pliicker des rayons, c¢’est-a-dire des tenseurs T et des contraintes d’appariement de
la méme forme que (3), mais avec des tenseurs de dimension 6 x --- x 6, qui agissent sur des coor-
données de Pliicker, voir 1’équation (4) ci-dessus. Dans la suite, nous expliquons comment obtenir
ces contraintes.

Considérons un ensemble de n rayons de projection, un pour chaque vue, qui chacun est
représenté par deux points A; et B;. Le choix des points sur une droite n’a aucune importance,
comme plus tard nous arriverons a des expressions en termes des coordonnées de Plucker.

Les n rayons peuvent étre une correspondance s’il existe un point 3-D Q et des facteurs d’échelle
A; et p; tels que, pour chaque vue ¢t =1...n:

NiAi + B = PQ
Cette équation exprime en effet que le point Q se trouve sur le i® rayon de projection (le tout

exprimé dans le repere local de la i® caméra).

Comme pour les caméras perspectives, nous regroupons les équations de toutes les vues en une
équation matricielle :



Paper 20: Géométrie d’images multiples pour des modeles de caméra. . ., Traitement du Signal 2005 [33]225

Cette équation implique que M, de dimension 4n x (4 4+ 2n), n’est pas de rang plein. Par
conséquent, toutes ses sous-matrices de dimension (4 + 2n) x (4 + 2n) doivent étre singulieres,
¢’est-a~dire avoir un déterminant nul. Dans la suite, nous montrons que seules les sous-matrices qui
contiennent au moins trois lignes associées a chacune des vues, menent a des contraintes entre toutes
les matrices de pose P;. Ceci veut dire que nous aurons des contraintes pour n vues si 3n < 4+ 2n,
donc n < 4 comme pour les caméras perspectives.

Regardons pour commencer le cas d’'une sous-matrice de M qui contient, pour une des vues,
une seule ligne associée. Sans perte de généralité, supposons que ce soit le cas pour la premiere vue
et que seule la premiere ligne associée a cette vue soit présente dans la sous-matrice de M. Cette
sous-matrice sera donc de la forme :

P, A4y By, 0 0 - 0 0
P, 0 0 A, B, --- 0 0
N=1 . . . L .
P, 0 0 0 0 --- A, B,

Ici, P, désigne la premiere ligne de la matrice P;. Les deux colonnes contenant les scalaires Ay
et Bi; ne contiennent sinon que des zéros. L’une est donc le multiple de 'autre, ce qui implique
que le déterminant de N vaut toujours zéro. Il n’y a donc pas de contrainte exploitable.

Dans la suite, nous excluons ce cas, c’est-a-dire que nous ne considérons que des sous-matrices
de M avec au moins deux lignes associées a chacune des vues. Soit N une telle matrice. Sans perte
de généralité, nous commencons le développement de son déterminant avec la colonne contenant
A, et B;. Le déterminant sera alors donné comme une somme de termes de la forme :

(Al,jBLk; - AL]@BL]') det N]k

ou j,k € {1.4}, j # k et Njk est obtenue de N en omettant les colonnes contenant A; et B,
ainsi que les lignes contenant A, ; et A; .

Nous observons différentes choses :

— Le terme (A ;B — A1 xB1;) représente en effet une des coordonnées de Pliicker du rayon de
la premicre vue, engendré par A; et By (cf. la section 2). En continuant avec le développement
du déterminant de Nj;, et ainsi de suite, le déterminant de N pourra s’écrire sous la forme :

6 6 6
> > Y Liilag - Logu T i = 0

i1=1142=1 in=1

ot les L; ; sont des coordonnées de Pliicker des rayons considérés, obtenues a partir des A,
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TAB. 2 — Les cas utiles de contraintes d’appariement pour des caméras centrales et non centrales.
Les colonnes sur-titrées par « cas utiles » contiennent des entrées de la forme x — y — z etc. Ceci
désigne la constitution des sous-matrices de M qui donnent lieu & des contraintes entre toutes les
vues : £ — y — z par exemple veut dire que les sous-matrices contiennent x lignes associées a une
vue, ¥y & une autre, etc.

central non-central
nombre de vues M cas utiles M cas utiles
2 6 x6 3-3 8 x 8 4-4
3 9xT7 3-2-2 12 x 10 4-3-3
4 12x8 2222 |16 x12 3-3-3-3

et B;. Les coefficients des matrices de pose P; sont, eux, regroupés dans un tenseur T, de
dimension 6 x --- X 6.

— Si N ne contient que deux lignes associées a la premiere vue, alors son déterminant sera de la
forme :

6 6
Ly, Z e Z Loy L, Tiy iy | =0

io=1  in=1
c’est-a-dire qu’une seule coordonnée du premier rayon sera présente dans l’expression. Cette
contrainte ne lie pas toutes les vues entre elles : elle est vérifiée si Ly, = 0, ce qui est une
condition indépendante des autres vues ou bien si I’expression entre parentheses vaut zéro,
ce qui ne dépend que des vues 2 a n.

Ceci explique ce que nous avons constaté plus haut : pour obtenir des contraintes entre toutes
les vues, seules des sous-matrices contenant au moins trois lignes pour chacune des vues sont
utiles.

Nous sommes maintenant préts a établir les différents cas qui meénent a des contraintes entre
images. Comme il a été dit, aucune contrainte (multi-linéaire) n’existe qui lierait plus de quatre
vues a la fois. Nous résumons alors les cas utiles, de deux a quatre vues, dans le tableau 2, pour les
caméras centrales (basé sur la théorie développée pour les caméras perspectives) et non centrales.
Le tableau donne les dimensions des sous-matrices de M, dont le déterminant donne des contraintes
d’appariement, représentées par des matrices essentielles (pour deux vues), des tenseurs trifocaux
ou quadrifocaux. L’écriture détaillée des tenseurs devient alors une tache plutot « mécanique ».

6 Le cas de deux vues

Nous avons jusqu’alors expliqué comment formuler des contraintes d’appariement entre deux,
trois ou quatre caméras non centrales, représentées par des tenseurs de dimension 6 x6 a 6 x6 X6 x6.
Afin de rendre ces résultats plus concrets, nous explorons maintenant en détails le cas de deux vues.
Nous montrons comment le tenseur bifocal, ou matrice essentielle, dépend des parametres de pose
(ou bien, du mouvement). Ceci est d’abord fait pour les caméras non centrales générales, puis
spécialisé aux caméras axiales, de type cross-slit et finalement aux caméras centrales. A la fin
de cette section, nous donnons quelques commentaires sur I'estimation des matrices essentielles,
introduites dans la suite.
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6.1 Caméras non centrales

Pour plus de simplicité, et sans perte de généralité, nous supposons ici que le repere global
coincide avec le repere de la premiere caméra. La matrice de pose P est donc l'identité. Quant a
la pose de la deuxieme caméra, nous omettons alors les indices ; elle sera donc représentée par une
matrice de rotation R et un vecteur de translation t. La matrice M devient alors :

1 0 0 0 Ay By, 0 0
0 1 0 0 Ay Bl 0 0
0 0 1 0 Az Bis 0 0
0 0 0 1 Ay By 0 0

Ry R Ris t1 0 0 A1 Bap
Roy1 Ry Ry ta 0 0
R31 Rz Rz t3 0 0 Axz D3
0 0 0 1 0 0

Pour toute paire de rayons correspondants, M doit étre singuliere. Comme dans le cas présent
de deux vues M est carrée, ceci implique que son déterminant vaut zéro. En le développant d’apres
les indications de la section précédente, nous obtenons la contrainte :

L) (—[ng ';) L =0 (5)

ou les coordonnées de Pliicker L; et Ly sont définies selon (1).

Nous pouvons identifier la matrice essentielle, donnée dans [25] :

E (—{gXR l;) (©)

L’équation (5) représente en effet une contrainte épipolaire, tout a fait similaire a celle des
caméras perspectives.

6.2 Caméras axiales

Axe fini. Comme il a été expliqué dans la section 3, nous adoptons des reperes locaux pour nos
caméras ou les rayons ont une coordonnée Lg = 0. Ainsi, la contrainte épipolaire (5) peut étre
exprimée par une matrice essentielle amputée, de dimension 5 x 5, qui agit sur des vecteurs de
coordonnées de Pliicker amputés de leur sixieme coordonnée :

Ri1 Ry
—[t]xR Ro1 Ry
E.r = Rs1 Rsp (7)
Ryy Ry Ris 0
Ry Ry Ros 2

Cette matrice essentielle est obtenue a partir de E,, (cf. (6)) en omettant les sixiemes ligne et
colonne.

Remarquons que E,; est en général de rang plein, c’est-a-dire de rang 5. Elle est singuliere
exactement si les axes des deux caméras se coupent. Dans ce cas-ci, les vecteurs nuls gauche et
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droit de E,; donnent les coordonnées des deux axes, exprimées dans le repere de I'autre caméra
respectivement (pour obtenir les coordonnées de Pliicker, il faut juste rajouter un zéro comme
sixieme coefficient).

Axe infini. Comme ci-dessus, la contrainte épipolaire (5) se simplifie, et est représentée par une
matrice essentielle de dimension 5 X 5 :

R R
<—t3 0 tl) RZ R;z <R21 Ry R%)

ta  —t; 0 Ry Rus R31 Rz Rss
Ris Ry
Ryy Ry 0
R3>  Ra3

En détail, la matrice essentielle s’écrit :

11 R30 —t3R1o 11 R33 —t3Ri3 [Ro1 Ry Ras
loRis —t1Ryy toRi3 —t1Ras Rz Rsp Rss

E. = Ry Ry 0 0 0
Ry Ros 0 0 0
R32 R33 0 0 0

Elle est toujours singuliere (les axes des deux caméras sont des droites a 'infini, donc se coupent
forcément). Son vecteur nul de droite est (0,0, Ry, Ri2, R13)T. Il représente I'axe de la deuxieéme
caméra, exprimé par rapport au repere de la premiere caméra. Réciproquement, le vecteur nul de
gauche est (0,0, Ry1, Rox, R31)T, ce qui représente 1'axe de la premiere caméra, dans le repere de la
deuxieme.

6.3 Caméras de type cross-slit
Nous considérons les deux cas expliqués dans la section 4.3.
Deux axes finis. La contrainte épipolaire (5) se simplifie et peut s’écrire basée sur une matrice

essentielle de dimension 4 x 4, qui agit sur des vecteurs de coordonnées de Pliicker amputés de la
forme (a1, as, as, by)" (cf. la section 4.3) :

100 W, 0 L0 00
0 1 0 0
010 0 0
Euff = E, |l 0 0 1 0
001 -Y, 0
000 0 1 Wi 0 -%1 0
0 0 0 1

ou E,s est donnée dans (7). Contrairement aux cas précédents, la matrice essentielle contient
maintenant non seulement des parametres de pose, mais aussi des « parametres intrinseques » (les
coefficients W; et Y; des deuxiémes axes des caméras). En détail, elle peut s’écrire :
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RH(Wl + WZ) R12W2 R13W2 - Rll}/l R12

E N [t} <R 0 + Ry Wi 0 —Ro Yy Ry
@i 0" 0 RyWy — RYy —RiYs —RisYs — RyY: Ry
R21 R22 R23 0

Un axe fini et un axe infini. Similairement, la contrainte épipolaire se simplifie et nous obtenons
une matrice essentielle de dimension 4 X 4 :

10 0 00 Lo oo

01 Wy 00 0100

Eopi = 2 E.,[0 Wi 00
00 0 10

00 0 01 00 10

0 0 01

6.4 Caméras centrales

Centre optique fini. Les rayons de projection sont ici de la forme (Ly, Lo, L3, 0,0, O)T (voir la
section 3). La contrainte épipolaire (5) se réduit donc a Iexpression :

Ly
(Lay Lop Log) (—[t]xR) | L1z | =0
Ly
ou nous retrouvons la matrice essentielle « classique » de dimension 3x3 : E.; = —[t]xR [15, 17].

Centre optique infini. Dans ce cas, la matrice essentielle est donnée par :

toli3 —t1Raz R31 Rso
Eci = R13 0 0
Ras 0 0

Ceci ressemble a la matrice fondamentale affine [27], mais ne lui correspond pas exactement :
ici, la matrice essentielle agit sur des droites en 3-D, tandis que la matrice fondamentale agit sur
des points image. Par exemple, le vecteur nul de droite de E.; est (0, Rssz, —R31)T, ce qui représente
la droite en 3-D avec les coordonnées de Pliicker (0,0, 0, R32, —R31, O)T. C’est la droite engendrée
par les centres optiques des deux caméras (une droite a I'infini), exprimée par rapport au repere de
la premiere caméra.

6.5 Estimation des matrices essentielles

Cet article a une vocation théorique, mais nous voulons néanmoins donner quelques éléments
utiles pour I'estimation numérique des matrices essentielles introduites ainsi que pour 'extraction
des parametres de mouvement a partir de celles-ci. Pour les caméras perspectives, deux types ma-
jeurs d’algorithmes pour I'estimation de la matrice essentielle et du mouvement ont été développés.
La premiere approche consiste a utiliser le moins de correspondances possible. Pour la matrice
essentielle perspective, il s’agit de 5 correspondances de points, et seulement tres récemment, un
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algorithme vraiment minimal a été trouvé [19]. Ce type d’algorithme correspond & la résolution
d’équations non linéaires, donnant un nombre fini de solutions.

L’autre type d’approche consiste en un premier lieu a ignorer la structure de la matrice essentielle
(c’est-a-dire comment elle est construite a partir de R et t) et de la traiter comme une matrice de
dimension 3 x 3 quelconque. La contrainte épipolaire permet alors de 'estimer en résolvant un
systeme d’équations linéaires cette fois-ci [17]. Les prix a payer sont un nombre plus important
de correspondances requises (8 au minimum) et que la matrice ainsi estimée ne correspond pas en
général (en présence de bruit) a une matrice essentielle exacte.

Il existe aussi des algorithmes intermédiaires, mais ceci n’est pas important pour notre propos.
Les deux types d’approche extrayent finalement les parametres de mouvement R et t de la matrice
essentielle estimée. Pour la deuxieme approche, ceci requiert une solution approximative, puisque
la matrice estimée ne respecte pas la structure d’une vraie matrice essentielle.

Dans la suite, nous esquissons la deuxieme approche pour deux exemples de matrices essen-
tielles introduites dans cette section; le développement d’approches minimales (par exemple pour
la matrice essentielle 6 x 6 des caméras non centrales) est un probleme ouvert et probablement
assez difficile.

Caméras non centrales. La matrice essentielle a 36 coefficients, mais 9 d’entre eux sont toujours
zéro et 9 autres apparaissent en double (les coefficients de R). L’estimation linéaire doit alors
porter sur 18 coefficients, et comme elle se fait a partir d’équation linéaires et homogenes, 17
correspondances de rayons de projection sont suffisantes.

Comme il a été mentionné ci-dessus, I’estimation linéaire ne donnera pas une matrice essentielle
parfaite. Pour extraire les parametres de mouvement R et t, nous devons alors en tenir compte.
Nous donnons 'esquisse d'un algorithme :

1. Soit A la sous-matrice 3 x 3 en bas a gauche de E,,. Sans bruit, elle serait égale (a4 un facteur
d’échelle pres) a la matrice de rotation R. En présence de bruit, nous pouvons obtenir une
matrice de rotation R via la SVD (décomposition en valeurs singulieres [26]) de A : si A = UXV
est la SVD de A, alors R = UV est la matrice de rotation qui est la plus proche de A (au sens
de la norme de Frobenius) [29]. Si le déterminant de R ainsi calculée vaut —1, il faut encore
multiplier la matrice avec —1.

2. Déterminer le scalaire A qui minimise
IAA = Rl|r
ou || - || p désigne la norme de Frobenius d’une matrice. C’est un probléme de moindres carrés
assez simple. Multiplier ensuite E,, avec \.

3. Soit B la sous-matrice 3 x 3 en haut a gauche de E,.. Calculer t en minimisant
1B + [t Rl
ce qui revient a la résolution d’un probléme de moindres carrés.

D’autres algorithmes sont bien sur possibles.

Caméras axiales avec axe fini. La matrice essentielle E,; contient 17 coefficients différents et
peut alors étre estimée en résolvant un systeme linéaire, a partir de 16 correspondances. L’algorithme
d’extraction de R et t est assez similaire au cas précédent. Soit A la sous-matrice 3 X 2 en haut &
droite de E,;. Nous pouvons estimer R a partir de A basé sur sa SVD (voir les détails dans [29]).
Le reste de 'algorithme est analogue a celui des caméras non centrales.
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TAB. 3 — Résumé des matrices essentielles pour différents modeles de caméras. La derniere colonne
donne le nombre minimum de correspondances de rayons de projections qui sont requises pour une
estimation linéaire des matrices essentielles.

‘ Modele de caméras ‘ Matrice essentielle ‘ Nombre ‘
Caméra non centrale E, = —[thR R ) 17
R 03><3
Ri1 Ry
—[t]xR Ry Ry
Caméra axiale avec axe | Eqp = Rs1  Rso 16
ﬁIli (Rll ng R13>
02x2
Ry Ry Rog
t1R3p — t3R1p t1R3g —t3li3 Ry Rap Ros
toRio —t1 Ry toRi3 —t1Ros Rg1 R3x Rss
Caméra axiale avec axe | E,; = Ris Ris 0 0 0 11
inﬁni RQQ Rgg 0 0 0
Rgg Rgg 0 0 0
NET R
, 010 0 O
Caméra de type cross- | E;¢p = 001 -V, 0 E.;,] 0O 0 1 0 13
slit avec deux axes finis 000 0 2 1 W, 0 =7 0
0 0 0 1
10 0 00 1000
01 Wy 00 0100
Caméra de type cross- | E;p = 00 0 1 0 E.r |O W1 0 O 10
slit avec un axe fini et 00 0 01 0 0 10
un axe infini 0 0 01
Caméra centrale avec | E.f = —[t]xR 8
centre optique fini
toR3 — t1Rog R31 Rap
Caméra centrale avec | E,; = Ry 0 0 4
centre optique infini Ros 0 0

Autres cas. La plupart des autres cas (a 'exception de la caméra centrale avec centre optique
infini) peuvent étre résolus de maniere assez similaire et nous en omettons les détails. La forme des
matrices essentielles des différents modeles de caméras ainsi que le nombre minimum de correspon-
dances requises pour une estimation linéaire, sont donnés dans le tableau 3.

7 Conclusions

Nous avons proposé une géométrie d'images multiples pour des caméras non centrales générales,
la premiere d’apres notre connaissance. Une hiérarchie naturelle de modeles de caméras a été intro-
duite, regroupant les caméras en classes selon la répartition spatiale de leurs rayons de projection.
La géométrie de deux vues a été spécialisée et décrite en détail pour différents modeles de caméras.
Nous espérons que ce travail théorique permet de définir un terrain commun pour de récents efforts
dans la caractérisation de la géométrie de caméras non classiques.
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Nous donnons quelques perspectives de travail assez immédiates. Les relations géométriques
entre des caméras de différents types devraient étre simples a dériver selon le schéma utilisé dans ce
travail. Par exemple, la matrice essentielle entre une caméra centrale et une caméra axiale sera de
taille 3 x 4. Aussi, une traduction de nos résultats en notation tensorielle est aisément envisageable.
Comme c’est le cas pour les caméras perspectives, des contraintes d’appariement pour des images
de droites au lieu de points peuvent probablement étre développées.

Dans cet article, nous avons principalement considéré la théorie de la géométrie d’images mul-
tiples; quant a 'estimation numérique des tenseurs et ’extraction des parametres de mouvement,
nous avons esquissé des méthodes pour le cas de deux vues, mais un traitement complet nécessite
plus de travail. Des expériences pratiques avec I’estimation de la matrice essentielle pour des caméras
non centrales ont pourtant été achevées avec succes, comme ca I’a été le cas pour d’autres auteurs
[25]. Sinon, nous travaillons actuellement sur le développement de méthodes de calibrage spécifiques
aux caméras axiales et de type cross-slit, dans l’esprit de [31].

Références

[1] Y.I. ABDEL-AZIZ et HM. KARARA, “Direct Linear Transformation from Comparator Coor-
dinates into Object Space Coordinates in Close-Range Photogrammetry”, ASP/UI Symposium
on Close-Range Photogrammetry, Urbana, Illinois, 1-18, 1971.

2] S. BAKER et S.K. NAYAR, “A theory of single-viewpoint catadioptric image formation”,
International Journal of Computer Vision, 35(2) :1-22, 1999.

[3] H. BAKSTEIN, “Non-central cameras for 3D reconstruction”, Rapport Technique CTU-CMP-
2001-21, Center for Machine Perception, Czech Technical University, Prague, 2001.

[4] H. BAKSTEIN et T. PAJDLA, “An overview of non-central cameras”, Computer Vision Win-
ter Workshop, Ljubljana, Slovenie, 223233, 2001.

[5] J.P. BARRETO et H. ARAUJO, “Paracatadioptric camera calibration using lines”, ICCYV,
1359-1365, 2003.

[6] R. BENOSMAN et S.B. KANG (éditeurs), Panoramic Vision Sensors, Theory, and Applica-
tions. Springer Verlag, 2001.

[7] E. BRASSART, L. DELAHOCHE, C. CAUCHOIS, C. DROCOURT, C. PEGARD et E.
MOUADDIB, “Experimental Results Got With the Omnirectional Vision Sensor : SYCLOP”,
IEEE Workshop on Omnidirectional Vision, Hilton Head, Caroline du Sud, 145-152, 2000.

[8] O. FAUGERAS et B. MOURRAIN, “On the geometry and algebra of the point and line
correspondences between n images”, ICCV, 951-956, 1995.

9] D. FELDMAN, T. PAJDLA et D. WEINSHALL, “On the epipolar geometry of the crossed-

slits projection”, ICCV, 988-995, 2003.

[10] C. GEYER et K. DANIILIDIS, “A unifying theory of central panoramic systems and practical
applications”, FCCYV, 445-461, 2000.

[11] C. GEYER et K. DANIILIDIS, “Paracatadioptric camera calibration”, PAMI, 24(5) :687-695,
2002.

[12] C. GEYER et K. DANIILIDIS, “Mirrors in Motion : Epipolar geometry and motion estima-
tion”, ICCYV, 2 :766-773, 2003.

[13] M.D. GROSSBERG et S.K. NAYAR, “A general imaging model and a method for finding its
parameters”, ICCV, 2 :108-115, 2001.



Paper 20: Géométrie d’images multiples pour des modeles de caméra. . ., Traitement du Signal 2005 [33]233

[14] R.I. HARTLEY et R. GUPTA, “Linear pushbroom cameras”, ECCV, 555-566, 1994.

[15] R.I. HARTLEY et A. ZISSERMAN, Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[16] R.A. HICKS et R. BAJCSY, “Catadioptric sensors that approximate wide-angle perspective
projections”, C'VPR, 545-551, 2000.

[17] H.C. LONGUET-HIGGINS, “A computer program for reconstructing a scene from two pro-
jections”, Nature, 293 :133-135, 1981.

[18] J. NEUMANN, C. FERMULLER et Y. ALOIMONOS, “Polydioptric camera design and 3D
motion estimation”, CVPR, 1I :294-301, 2003.

[19] D. NISTER, “An efficient solution to the five-point relative pose problem”, CVPR, 11 :195-202,
2003.

[20] T. PAJDLA, “Epipolar Geometry of Some Non-classical Cameras”, Computer Vision Winter
Workshop, Bled, Slovenie, 159-180, 2001.

[21] T. PAJDLA, T. SVOBODA et V. HLAVAC, “Epipolar Geometry of Central Panoramic Came-
ras”, Dans Panoramic Vision : Sensors, Theory, and Applications, R. Benosman et S.B. Kang
(éditeurs), 85-114, Springer Verlag, 2001.

[22] T. PAJDLA. “Geometry of two-slit camera”, Rapport Technique CTU-CMP-2002-02, Center
for Machine Perception, Czech Technical University, Prague, 2002.

[23] T. PAJDLA. “Stereo with oblique cameras”, IJCV, 47(1-3) :161-170, 2002.

[24] S. PELEG, M. BEN-EZRA et Y. PRITCH, “Omnistereo : Panoramic stereo imaging”, PAMI,
23(3) :279-290, 2001.

[25] R. PLESS, “Using many cameras as one”, CVPR, II :587-593, 2003.

[26) W.H. PRESS, S.A. TEUKOLSKY, W.T. VETTERLING et B.P. FLANNERY, Numerical
Recipes in C - The Art of Scientific Computing. Cambridge University Press, 1992.

[27] L.S. SHAPIRO, A. ZISSERMAN et M. BRADY, “3D Motion Recovery via Affine Epipolar
Geometry”, IJCV, 16(2) :147-182, 1995.

[28] H.-Y. SHUM, A. KALAI et S.M. SEITZ, “Omnivergent stereo”, ICCV, 22-29, 1999.
[29] P. STURM, “Algorithms for Plane-Based Pose Estimation”, CVPR, 1010-1017, 2000.

[30] P. STURM, “Mixing catadioptric and perspective cameras”, Workshop on Omnidirectional
Vision, Copenhagen, 37-44, 2002.

[31] P. STURM et S. RAMALINGAM, “A generic concept for camera calibration”, ECCV, 1-13.
2004.

[32] T. SVOBODA, Central Panoramic Cameras : Design, Geometry, Egomotion. These de doc-
torat, Faculty of Electrical Engineering, Czech Technical University, Prague, 1999.

[33] R. SWAMINATHAN, M.D. GROSSBERG et S.K. NAYAR, “A perspective on distortions”,
CVPR, 11 :594-601, 2003.

[34] J. YU et L. McMILLAN, “General linear cameras”, ECCV, 14-27, 2004.

[35] A. ZOMET, D. FELDMAN, S. PELEG et D. WEINSHALL, “Mosaicing new views : The
crossed-slit projection”, PAMI, 25(6) :741-754, 2003.






Paper 21: Mixing Catadioptric and Perspective Cameras, OMNIVIS 2002 [24] 235

Mixing Catadioptric and Perspective Cameras

Peter Sturm
INRIA Rhone-Alpes
655 Avenue de I’Europe, 38330 Montbonnot, France

Peter.Sturm@inrialpes.fr ® http://www.inrialpes.fr/movi/people/Sturm

Abstract

We analyze relations that exist between multiple views of
a static scene, where the views can be taken by any mixture
of para-catadioptric, perspective or affine cameras. Con-
cretely, we introduce the notion of fundamental matrix, tri-
focal and quadrifocal tensors for the different possible com-
binations of these camera types. We also introduce the no-
tion of plane homography for mixed image pairs. Gener-
ally speaking, these novel multi-view relations may form
the basis for the typical geometric computations like mo-
tion estimation, 3D reconstruction or (self-) calibration. A
few novel algorithms illustrating some of these aspects, are
described, especially concerning what we call calibration
transfer, using fundamental matrices, and self-calibration
from plane homographies.

1. Introduction

This work has been motivated by the increasing inter-
est of vision researchers and practitioners in the theory and
use of omnidirectional cameras [12, 13, 3]. Our main goal
is to contribute to a unified theory encompassing omni-
directional and traditional (perspective) cameras. We are
especially interested in the study of geometrical and alge-
braic multi-view relations and their use in various geomet-
rical computations like 3D reconstruction, self-calibration
or motion estimation.

During the last decade and until today, multi-view rela-
tions between perspective views have been extensively stud-
ied [9, 5]. Among the most important concepts, one might
cite the multi-linear matching constraints (fundamental ma-
trix and trifocal tensors) that enable robust matching of im-
ages and are useful in motion estimation; self-calibration
and the notion of uncalibrated 3D vision; multi-view re-
construction using factorization etc. We would like to de-
rive analogous concepts for omnidirectional cameras. Some
of these concepts are already known, e.g. the fundamental
and essential matrices for para-catadioptric cameras [7, 17],
epipolar geometry for general central catadioptric cameras
[17], calibration [2, 6] and self-calibation [7, 10] of para-
catadioptric cameras.

In this paper, we generalize some previous results and in-
troduce several new concepts. Very important, in our opin-
ion, is to study multi-view relations that hold between omni-
directional and perspective cameras, and their applications.
An important potential application of omnidirectional cam-
eras, especially in video-surveillance, is to locate a visual
event, and to “guide” a perspective camera that might fixate
and zoom in on the event, to take close-ups. A perspective
camera with a large zoom is usually better modeled as an
affine camera (typically, an orthographic one). So, we study
the multi-view relations that hold between any combination
of omnidirectional, perspective and affine cameras. Con-
cretely, we will introduce the different types of fundamental
matrices, and show the existence of trifocal and quadrifo-
cal tensors, as well as plane homographies between pairs of
views. We then briefly discuss their use for (self-) calibra-
tion, by giving novel algorithms for calibration transfer and
self-calibration from planes.

Concerning the types of omnidirectional camera, our
eventual goal is to treat the various types of central cata-
dioptric cameras [1]. In this paper, we nearly exclusively
consider para-catadioptric cameras, e.g. systems consist-
ing of a parabolic mirror and an affine camera. Currently,
we are not able to generalize several of our results to the
other types of central catadioptric cameras (especially, those
based on hyperbolic mirrors), the problem being that the
multi-view relations are not multi-linear in general.

Organization. In §2, linear backprojection equations are
explained, that allow to derive multi-linear matching con-
straints in §3. Self-calibration and calibration transfer using
fundamental matrices and plane homographies for mixed
types of cameras, is shown in §4. Experimental results il-
lustrating these concepts are given in these sections. §5 con-
cludes and describes perspectives.

Notations. We denote matrices in sans serif (e.g. R),
vectors in bold (e.g. t), zero vectors as 0. The symbol ~
means equality of vectors or matrices up to scale, account-
ing for homogeneous coordinates. The 3 x 3 identity matrix
is denoted as I. The skew-symmetric matrix associated with
the cross-product is represented by [v]«: [V]xw = v X w.
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Figure 1. Camera models used in this paper. (a) Perspective projection: the optical center F is at
position t, (see text). (b) Affine projection: the (back-) projection rays are all parallel, and their
direction is r, 3. (c) Para-catadioptric projection: the effective single viewpoint F is at position t..
The effective intrinsic parameters r, z(, and y, are measured in pixels.

2. Camera Models

In this section, we explain the models we use for the
camera types considered (see also figure 1). Since we are
interested in deriving multi-linear constraints among views,
we are keen to find linear projection equations. For perspec-
tive and affine cameras, 3 x 4 projection matrices linearly
map homogeneous 3D point coordinates to homogeneous
image point coordinates. As for catadioptric cameras, such
linear projection equations do not seem to exist. What we
will use instead are backprojection matrices, that map im-
age point coordinates to the direction of the (back-) pro-
jection ray between the original 3D point and the (effec-
tive) optical center. It is possible to derive such mappings,
that are linear, although not in standard image point coordi-
nates, but in “lifted” ones, which shall be explained below.
The backprojection equations derived in this section, will be
used in section 3 to derive multi-view matching constraints.

2.1. Perspective Cameras

Let the projection matrix of a perspective camera be
P, ~ K,R, (I —t,), where K, is a calibration matrix
(upper triangular 3 x 3), R, a 3 x 3 rotation matrix and t,,
the 3-vector of the optical center’s coordinates.

All (finite) 3D points projecting onto a given image point
d, can be parameterized by a scale factor )\, via:

Q=t,+ D, , (1)

where the direction D,, of the projection ray is given by:
D, = (K;Ry) 'ap = RyK ' 2)
2.2. Affine Cameras

Let the projection matrix of an affine camera be:

_ KaRa to

with a 2 x 2 calibration matri)E Kq,a2-vectort, anda2 x 3
“amputated” rotation matrix R,:

Ra = (r%’l)
ra,2

The missing third row gives the direction of the projection
rays (they are all parallel). It is obtained (up to sign) as the
cross-product of the other two rows: rq 3 = r,,1 ATq 2.

All (finite) 3D points projecting onto an image point q,
(3-vector of homogeneous coordinates) can be parameter-
ized by a scale factor \ as follows:

1 Tiw—1 da 0 7ta_’1 !

ERU. Ka ( 0 da _ta,2) de + )‘ara,3 .

We will later use the following equation, obtained by
multiplying the previous one by g, 3:

4 f(ds 0 —t
qangleK;(O‘l d _t“’;)qaﬂara,g, (3)

Q=

B,

with A\, = ¢q,3A, as free scale factor.
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2.3. Para-Catadioptric Cameras

In this paper, we consider catadioptric systems consist-
ing of a parabolic mirror and an affine camera. Concretely,
the mirror is radially symmetric, and its surface may be rep-
resented by the quadric with the following matrix, for some

9o €6

scalar m defining the mirror’s “curvature”:

4m? 0 0 0
0 4m? 0 0
0 0 0 —2m
0 0 —2m -1

Its two real focal points are the origin and the point at in-
finity of the Z-axis. Let the origin be the effective single
viewpoint of the para-catadioptric system — we will some-
times also call it the first focus, whereas the point at infinity
will be the second focus. Let P be the projection matrix of
an affine camera, whose optical center is the second focus:

P - ( K 0 tc)
¢ 00 0 d.)”’
with a 2 x 2 calibration matrix K. and a 2-vector t.. The cal-
ibration matrix allows to represent all types of affine cam-
era: para-perspective, weak perspective or orthographic.
For easier reading, we present in the following only formu-
las for orthographic projection, but note that all derivations

have also been done for the general affine camera. For the
orthographic camera, we have:

QN

k0 0 te
Po=|0 &k 0 t.o
00 0 de

Let q. be the 3-vector of homogeneous coordinates of a
point in the orthographic image. The direction D’, of the ef-
fective (back-) projection ray (the line linking the effective
viewpoint and the original 3D point Q), can be computed
as follows (we omit the subscripts ¢ for clarity):

4mkqs (q1d — qst1)
D = 4mkqs (gad — qst2)
4m? ((qld — qst1)” + (qod — Q3t2)2) — k%q3

This is not linear in the image coordinates, however, by
“lifting” them from the 3-vector q.. to the 4-vector'

qg,l + qig
A qc,14c,3
e ’ ’ R 4
Ae 4c,24c,3 “)

2
qc,3
we obtain the following linear backprojection equation:

D,C - Bcdc 5

!This is similar to the lifted coordinates in [7], although here they are
obtained in a purely algebraic manner.

where (we again omit the subscripts c):

0 dmkd 0
B = 0 0 4mkd

—4mktq
—4mkto
4m2d?  —8m2dt; —8m?2dts

4m? (12 +3) — k?
The parameters m, k, d, t; and t5 are not independent, and
we replace them by three effective intrinsic parameters:
= 5o, To = % and yo = %2 (cf. figure 1 (c)). With
these, the backprojection matrix takes the form:

0 2r 0 —2rxg
B~ 10 0 2r —2ryo .05
1 -2z —2yo w% + yg —r?

All (finite) 3D points projecting onto a given image point
q. can now be parameterized by a scale factor A\, via:

Q =t.+ )\c RIBFQP ) (6)
D.
where R, and t. represent the extrinsic parameters of the
para-catadioptric system.

3. Multi-Linear Multifocal Matching Con-
straints

We use the backprojection equations laid out in the pre-
vious section for perspective, affine and para-catadioptric
cameras, to obtain multifocal matching constraints. We pro-
ceed similarly to what has been done in the pure perspective
case to derive multi-linear matching constraints [4, 19]. In
the first paragraph, we describe the general scheme, and in
the following ones, we concentrate on special cases.

3.1. General Scheme

Consider projections of a 3D point Q (non-homogene-
ous coordinates) in a set of views. Consider the general case
of u perspective, v affine and w para-catadioptric views,
with image points qllj7 ..., q, in the perspective views, and
analogously for the other camera types. In the following,
superscripts are associated to different images. The back-
projection equations (1), (3) and (6) may be grouped in a
single equation system as shown in equation (7) on top of
the following page. The vectors D;, BJ and D¥ respec-
tively depend linearly on the (lifted) image points, and are
defined in equations (2), (3) and (6) respectively.

The matrix M of this equation system, in the follow-
ing also called joint matrix, has 3(u + v + w) rows and
(u 4+ v + w + 4) columns. Relations among the different
projections of Q arise due to the fact that this matrix has a
non-trivial null-vector (the vector containing the \’s and the
coordinates of the 3D point Q). Hence, M can not be of full
column rank, i.e. its rank must be lower than (u+v+w+4).
This is equivalent to the statement that the determinants of
all minors of size (u+v+w-+4) vanish. It is these determi-
nants that give the multi-linear relations between matching
image points in different views.
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In the following, we make these relations explicit. We do
this especially for the various two-view cases, which gives
rise to different types of fundamental matrix. We then show
that, like in the purely perspective case, trifocal and quadri-
focal tensors exist, but no higher-order matching tensors.

3.2. Bifocal Constraints — Fundamental Matrices

With two views, of any mixture of camera types, the joint
matrix M is of size 6 x 6. Consider for example the joint
matrix for a perspective and a para-catadioptric view, shown
here in detail:

0 |1 0 o0 1
t, RIK;lq, 0 [0 1 0 A
0 |0 0 1 A | _o
0 1 0 0| |- '
te 0 RB.g.|0 1 0 ||-Qs
0 00 1] [-Qs
M

This equation means that the 6 x 6 matrix M has a non-
trivial null-vector, and hence must be of rank lower than
6. This in turn implies that all minors (submatrices) of size
6 are singular. The only minor of size 6 of M is the ma-
trix itself. Hence, we obtain the bifocal matching constraint
(the epipolar constraint) by developing its determinant. By
doing so, one obtains an equation that is bilinear in the el-
ements of g, and §.. This equation may thus be written in
the following form:

q; ch cAlc:Oa

where the matrix F,. is of size 3 x 4 and its coefficients
depend entirely on the entities defining the projections, i.e.
the extrinsic parameters R, t,, Rc, t. and the intrinsic pa-
rameters K, and B..

One may recognize without difficulty in F . a fundamen-
tal matrix, which however relates here two views acquired

with different camera types, and which does not have the
usual dimensions, i.e. it is not even square as the funda-
mental matrix between two perspective views or between
two para-catadioptric views [7].

This example concerned a perspective view, combined
with a para-catadioptric one. The same findings hold for
any mixture of the camera types considered in this paper:

o for two perspective views, the “traditional” fundamen-
tal matrix [11] is obtained. Any 3 x 3 matrix of rank 2
is a valid fundamental matrix.

e two affine views give a 3 x 3 affine fundamental matrix
[14]. Affine fundamental matrices have a special form
(upper left 2 x 2 submatrix is a null matrix).

e for two para-catadioptric views, a 4 x 4 fundamental
matrix of rank 2 is obtained [7].

e mixtures of camera types lead to fundamental matrices
of size 3 x 3 (perspective-affine) or 3 x 4 (perspective-
catadioptric or affine-catadioptric). They can all be
shown to be of rank 2.

A short comment is at order concerning affine cameras.

In equation (7), image coordinates of affine views appear
both in the first column (via the vectors B?;) and in the last
three columns (the identity matrices are multiplied by co-
ordinates ¢, 5). Thus, it is not obvious that a development
of M’s minors will lead to equations that are linear in the
coordinates of each affine image point. Happily, it turns out
that the equations can be factored such as to lead indeed to
(multi-) linear equations.

In the following, we examine some properties of funda-
mental matrices of mixtures of a para-catadioptric with a
perspective or an affine view.

3.3. Fundamental Matrices and Plane Homogra-
phies for Mixed View Pairs

These fundamental matrices are of size 3 x 4 (or 4 x 3,
if we consider the transpose, which gives the “other direc-
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Figure 2. Estimated epipolar geometry for the stereo pair shown in figure 3. Points used to estimate
F are shown by white crosses. For all 20 points, the epipolar circles in the catadioptric view and the
epipolar lines in the perspective view, are shown. The two intersection points of the epipolar circles
are the two epipoles of the catadioptric view mentioned in the text, whereas the single intersection
point of the epipolar /ines is the single epipole of the perspective view.

tion” of the epipolar constraint) and are of rank 2. The
one-dimensional left null-space represents the epipole of
the perspective (or affine) view, i.e. the image of the cata-
dioptric view’s effective viewpoint. The right null-space is
two-dimensional. However, the fundamental matrix is only
“valid” for 4-vectors of lifted coordinates, as defined in (4).
There are exactly two right null-vectors of F (up to scale)
that correspond to lifted coordinates. These are the two
epipoles of the catadioptric view, i.e. the two projections
of the perspective or affine camera’s optical center (cf. [7]).
Products Fq. are 3-vectors, representing the usual epipo-
lar lines in the perspective (or affine) view. As for products
Fqu, these are 4-vectors, representing the epipolar conics
of catadioptric views. Let x = FTq,,. The usual symmetric
matrix of the associated epipolar conic is then given by:

2901 0 i)
0 21‘1 T3 s
Ty X3 2x4

which is a circle (the upper left 2 x 2 submatrix is a multi-
ple of the identity matrix), which is in accordance with the
known fact that epipolar conics of para-catadioptric systems
are circles [17] (although this is only true for systems whose
camera is perfectly orthographic).

Figure 2 shows the epipolar geometry (fundamental ma-
trix), estimated by the analogon of the linear 8-point algo-
rithm for the purely perspective case. Twenty manually se-
lected points were used for the estimation. The estimated
fundamental was also used for calibration transfer, see §4.3.

Figure 3. Stereo pair used in experiments.

Analogously to the purely perspective case, we may de-
compose the fundamental matrix to obtain the sometimes
convenient epipole-homography form:

F~lep]xH , 8)

where e, is the epipole in the perspective (or affine)
view, and H a 3 x 4 plane homography matrix represent-
ing the mapping between the projections of points on some
3D scene plane. For example, the analogon to the infin-
ity homography between two perspective views [9], for the
case of a perspective and a para-catadioptric view, is given
by the following 3 x 4 matrix:

Hoo = K,R,RIB,. | )

with B, defined as in equation (5). Using H,, we may
derive the following expression for the fundamental matrix:

F~ K TRy (b — t5)] < KRR Be
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Concerning the above plane homographies H, they can
be derived for all 3D scene planes II: let q. be the pro-
jection of any point on II, then q, ~ Hq. is the projec-
tion of the same point in the perspective view, where H is a
3 x 4 matrix. Note however that there is an important differ-
ence to the purely perspective case. A plane homography,
as given above, is only defined in one direction: the map-
ping of an image point in the para-catadioptric view, via the
scene plane, and then onto the perspective view, is unique,
whereas the reverse direction isn’t. Indeed, the mapping of
an image point in the perspective view, onto a scene plane,
is unique, however the projection into the catadioptric cam-
era, leads to two (theoretically possible) image points. It
is possible to exclude the image point that is physically not
possible, but the projection equation is still not linear in gen-
eral, which prevents forming an homography matrix as for
the other direction.

In section 4, we examine further properties of fundamen-
tal matrices and plane homographies and show their appli-
cation for calibration.

3.4. Multifocal Constraints

Three views. Let us first consider the case of three views,
with any mixture of camera types. The joint matrix M is
of size 9 x 7 in this case. Its rank-deficiency implies that
the determinants of all minors of size 7 vanish. In other
words, the determinant of a submatrix of M, obtained by
choosing any 7 rows, must be equal to zero. Since to each
of the three views, three rows of M are associated, only the
following two possibilities of choosing 7 rows exist:

(@) 3—3-1

() 3—2-2

where the figures refer to the number of rows chosen per
one view. In case (a), it can be shown that the coordinates of
the point in the view with a single contributed row, can be
factored out from the resulting equation, and that we sim-
ply obtain the above bifocal relation for the two views with
three contributed rows.

As for case (b), this gives rise to trilinear equations,
which can be encoded via trifocal tensors. We identify ten-
sors of size 4 x 4 x 4 for the case of three para-catadioptric
views, of size 4 x 3 x 3 for a combination of one para-
catadioptric and two perspective views, and so forth. Study-
ing the properties of these tensors in more detail is beyond
the scope of this paper though. As for trifocal tensors be-
tween triplets of cameras of the same type, the perspective
case has been treated e.g. in [15] and the affine case in [18].
To our knowledge, no existing publication deals with the
trifocal tensor for three para-catadioptric views or for the
mixed configurations considered here.

Four views. In this case, the joint matrix is of size 12 x
8. Its rank-deficiency implies that the determinants of all

minors of size 8 vanish. Analogously to the three-view case,
we consider the different possibilities of choosing 8 rows of
the joint matrix and their distribution among the four views:

(@) 3-3-2-0
() 3-3-1-1
(¢) 3—2-2-1

(d 2-2-2-2

Case (a) leads to trivial equations (always zero). Cases
(b) and (c) lead to bifocal and trifocal relations respectively,
whereas case (d) gives quadrifocal relations. Quadrifocal
tensors for perspective views are dealt with e.g. in [8, 16].

More than four views. With five views, the joint matrix
is of size 15 x 9. Obviously, there is no minor of size 9
that contains at least two rows per image. Hence, there are
no multi-linear matching constraints between five views (or
more), that can not be represented using bifocal, trifocal or
quadrifocal ones. The same holds for the purely perspective
case of course.

4. Calibration using Fundamental Matrices
and Plane Homographies

4.1. Self-Calibration from Plane Homographies

Let H be the 3 x 4 homography between a catadioptric
and a perspective view, associated with a 3D plane. It can
be shown (proof omitted due to lack of space) that the null-
vector of any such plane homography is:

2, .2, .2
e+ x5 + Yo
Zo

Yo
1

(10)

Hence, self-calibration of the para-catadioptric camera is
possible from a single plane homography, defined with re-
spect to a perspective camera, by computing its null-vector
and extracting the three intrinsic parameters r, xo and yg
from it in a straightforward manner.

This might also be explained intuitively as follows. A
para-catadioptric camera can be calibrated by identifying
line images (circles in the image plane, that constitute im-
ages of 3D lines). If we know a plane homography with
respect to a perspective view, we may virtually create all
possible lines images, by mapping all lines of the perspec-
tive view via the homography, to the catadioptric view. Cal-
ibration could then be done as e.g. shown in [6], or, better,
via the above solution using H’s null-vector.

This self-calibration approach was tested using the im-
age pair of section 3. Seven manually selected points lying
on the wall in the background of the right hand part of figure
3, were used to estimate the associated plane homography
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H, using a straightforward linear algorithm. The catadiop-
tric view’s intrinsic parameters, extracted from H, were 2%
(z0), 0.6% (yo) respectively 5% (r) off the ground truth val-
ues, obtained as the center of the circle circumscribing the
image (xg, yo) or via constructor-provided values (7).

4.2. Self-Calibration from Fundamental Matrices

It has been shown in [7], that the vector given in (10)
is a null-vector of any fundamental matrix that a para-
catadioptric camera shares with another camera of the same
type. Hence, fundamental matrices between catadioptric
cameras are useful for self-calibration [7, 10].

This observation can be generalized to self-calibration
from fundamental matrices between a para-catadioptric
view and e.g. a perspective one: the above vector can ac-
tually be identified as the single null-vector (up to scale) of
the 3 x 4 backprojection matrix B, defined in equation (5).
Since F ~ [e,]xK,R,RIB. (cf. equations (8) and (9)), it
follows that the null-vector of B, is also in the null-space of
any fundamental matrix F. Hence, given several fundamen-
tal matrices, the null-vector of B. can be found by “inter-
secting” all their right null-spaces, and intrinsic parameters
can then be extracted from it.

4.3. Calibration Transfer by Fundamental Matrices

Consider the surveillance scenario sketched in the intro-
duction. A typical configuration might consist of one static
catadioptric camera, which in addition can usually be as-
sumed to be pre-calibrated, and one or several traditional
cameras, perspective or affine. It might be useful to esti-
mate the position of a perspective camera, relative to the
catadioptric one. Another task might be to calibrate the per-
spective camera (e.g. after zooming or focusing), using the
fundamental matrix and the available calibration of the cata-
dioptric camera, which is what we call calibration transfer.

The analogous task for two perspective cameras has
been developed in [21]. The development for the mixed
perspective-catadioptric case, is similar. Concretely, given
a fully calibrated catadioptric view, a perspective view that
is calibrated besides the unknown focal length, and the fun-
damental matrix between the two, a closed-form solution
for the focal length, in terms of the SVD (singular value
decomposition) of the fundamental matrix, is possible. We
very briefly outline the algorithm (derivations are based on
an analogon to the classical Kruppa equations for perspec-
tive cameras [22]).

Let F be the 3 x 4 fundamental matrix between a cata-
dioptric camera and a perspective one. We assume that the
catadioptric camera is calibrated, so we know e.g. its back-
projection matrix B.. As for the perspective camera, we
know all its intrinsic parameters, besides the focal length.
Let its calibration matrix K, be decomposed in its known
part Ki and a diagonal matrix with the unknown focal

length:
Kp — Kk dlag(fa fa 1) .

1. Compute a “semi-calibrated” fundamental matrix:
TER+
G~K,FB; .,

where B is the Moore-Penrose pseudo-inverse. It can
be shown that G is of the form:

G ~ dlag(17 17f) [t]XR 9

for a rotation matrix R. From this form, the following
steps can be derived (cf. [21]).

2. Compute the SVD of G (remember that it is of rank 2):
G = U diag(r,s,0) VT .

3. The focal length can be computed by the following
closed-form solution:

f= 52“%2 - T2U§1
7“2(“%1 + U%l) - 52(“%2 + U%Q)

The algorithm was applied using the fundamental matrix
estimated for the stereo pair shown in §3. The estimated
focal length for the perspective camera was about 8% off the
ground truth, which is reasonable, considered that no non-
linear optimization was performed and that the points were
specified with an accuracy of probably less than a pixel.

5. Conclusion and Perspectives

We have shown that it is possible to obtain multi-linear
matching constraints, especially fundamental matrices and
trifocal tensors, for any mixed configuration of perspective,
affine or para-catadioptric cameras. Our approach unifies
the development of the previously known multifocal tensors
for pairs or triplets of cameras of the same type, and sub-
stantially generalizes the concept in that it allows a trans-
parent combination of cameras of different types.

We are only partly satisfied, since our basic goal is to get
a complete generalization that encompasses all central cata-
dioptric systems. We have already established (not shown
here) the existence of a 3 x 6 fundamental matrix between a
perspective or affine view, and a general central catadioptric
view, which however only “works in one direction” (there is
a linear mapping from points in the perspective view to the
corresponding epipolar conic in the catadioptric view; the
reverse however is not available yet). Thus, we currently do
not know if a complete generalization of our approach (in
the multi-linear framework), is possible.

In this paper, we have also outlined the possibility of
self-calibration and calibration transfer using “mixed fun-
damental matrices” and “mixed plane homographies”.
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Throughout the paper we have, for the sake of clar-
ity, only presented formulas for para-catadioptric systems
whose camera is an orthographic one. Note however, that
all formulas have an analogon for the general case of affine
cameras, the difference being that lifted image coordinates
are 6-vectors, resulting e.g. in 6 x 6 fundamental matrices
between two such catadioptric systems and similarly the di-
mension 4 is replaced by 6 for the other concepts.

As for our future work, we have several perspectives,
some of which should be relatively straightforward to real-
ize, others maybe not. Motion estimation for mixed camera
configurations should be straightforward, but has to be de-
veloped and tested. In this paper, we have introduced plane
homographies only for one direction: from catadioptric to
perspective views. We want to clarify if and how the map-
ping in the inverse direction can be represented linearly. It
should be relatively straightforward to develop trifocal ten-
sors for line images, again for mixed camera configurations.
A complete study of matching relations for mixed configu-
rations should also list in detail the different types of es-
sential matrices. A detailed study of algebraic properties of
such essential matrices and trifocal tensors is possible, but
is not central to our interests.

Besides the above mentioned generalization of our ap-
proach to general central catadioptric cameras, we are inter-
ested in the possibility of factorization-based methods for
3D reconstruction from multiple catadioptric views. For
practical applications, it might for example be fruitful to
develop methods similar to “reconstruction from N views
having one view in common” [20], for the case of several
perspective views, overlapping with a single catadioptric
camera.

Acknowledgements. 1 wish to thank Jodo Barreto for
helpful discussions.
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Abstract. This paper is about multi-view modeling of a rigid scene. We merge the traditional approaches of
reconstructing image-extractable features and of modeling via user-provided geometry. We use features to obtain
a first guess for structure and motion, fit geometric primitives, correct the structure so that reconstructed features
lie exactly on geometric primitives and optimize both structure and motion in a bundle adjustment manner while
enforcing the underlying constraints. We specialize this general scheme to the point features and the plane geometric
primitives. The underlying geometric relationships are described by multi-coplanarity constraints. We propose a
minimal parameterization of the structure enforcing these constraints and use it to devise the corresponding maximum
likelihood estimator. The recovered primitives are then textured from the input images. The result is an accurate
and photorealistic model.

Experimental results using simulated data confirm that the accuracy of the model using the constrained methods
is of clearly superior quality compared to that of traditional methods and that our approach performs better than
existing ones, for various scene configurations. In addition, we observe that the method still performs better in a
number of configurations when the observed surfaces are not exactly planar. We also validate our method using real

images.

Keywords: 3D reconstruction, piecewise planar scene, constrained structure and motion, maximum likelihood

estimator
1. Introduction

The general problem of scene modeling is, given a
sequence of images without a priori information, to
recover a model of the scene as well as (relative) pose
and calibration. Performing this task accurately is one
of the key goals in computer vision.

In this paper, we focus on the geometric scene mod-
eling, i.e. we do not address aspects of lighting and
surface appearance recovery besides perspective cor-
rection of texture maps. We aim at devising a frame-
work for the recovery of photorealistic and accurate
models from a sparse set of images.

Existing works fall into two categories: the feature-
and the primitive-based approaches. By features, we

designate two- or lower-dimensional geometric enti-
ties that can be extracted from individual images (e.g.
points, lines, conics). By primitives, we mean other
entities, e.g. planes or higher-dimensional ones (cubes,
spheres). Let us examine these two approaches in more
detail. First, the primitive-based approach, see e.g.
Debevec et al. (1996), Lang and Forstner (1996), and
Streilein and Hirschberg (1995), in which the user typ-
ically provides parametric primitives through a model-
ing program. Parameters are determined using 3D-2D
or 2D-2D matches and possibly refined using photo-
metric criteria, such as maximization of the gradient
for wireframe models, to optimize their reprojection.
If necessary, camera calibration is performed and tex-
ture maps are extracted for each primitive to produce
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a renderable model. This approach has proven to give
convincing results, notably in terms of producing pho-
torealistic rendering.

The feature-based approach, see e.g. Beardsley et al.
(1996), relies on the existence of extractable image fea-
tures. These features are matched accross the different
views, typically using photometric and geometric crite-
ria or by hand. From these, structure and motion are re-
covered. If necessary, camera calibration is performed
and parameters refined in a bundle adjustment manner.
This approach has proven to provide accurate recon-
struction results, due to the high (in general) number
of features considered. The problem is that modeling
a scene with features alone does not allow to produce
photorealistic rendering. Several works consider this is-
sue, by using as features all the pixels, via dense match-
ing (Pollefeys et al., 2000), space-carving (Kutulakos
and Seitz, 1999; Seitz and Dyer, 1997), or plenoptic
modeling (Gortler et al., 1996; Levoy and Hanrahan,
1996). The main limitation of at least the latter ap-
proach is that a high number of images is necessary
to achieve accurate reconstruction. Other approaches
relying on an a priori known environment (e.g. using
turn-table sequences (Niem, 1994; Szeliski, 1993) or
apparent contours (Cross and Zisserman, 2000)) can
produce high quality rendering but do not work in the
general case.

Actually, there exists a continuum between the
two extreme feature- and primitive-based categories,
made of hybrid approaches using both features and
primitives.! These approaches are made to draw on the
strength of both feature- and primitive-based cate-
gories: the high (in general) number of features might
allow to obtain an accurate model recovery (even more
accurate than for feature-based approaches) while the
primitives contribute to form a photorealistic model. In
hybrid approaches, the features and the primitives are
linked by geometric constraints.

We study such an hybrid approach based on the
point feature and the plane primitive. The geometric
constraints used are incidence of points with none,
one or several modeled planes and are called multi-
coplanarity constraints. The corresponding con-
strained structure and motion recovery process is then
called piecewise planar structure and motion.

These choices are motivated as follow. The point
is a standard, widespread feature that may be easily
extracted from the images. Most existing sparse struc-
ture and motion recovery systems deal with point fea-
tures. The plane is a primitive sufficiently general to

model a large number of real scenes, especially in
man-made environments. Moreover, there are several
works dealing with planes, that might be useful for an
integrated modeling system: plane detection (Baillard
and Zisserman, 1999; Berthilsson and Heyden, 1998;
Dick et al., 2001; Faugeras and Lustman, 1988;
Fornland and Schnoérr, 1997, Sinclair and Blake, 1996;
Tarel and Vézien, 1995), plane-guided point match-
ing (Alon and Sclaroff, 2000; Faugeras and Lustman,
1988; Fornland and Schnorr, 1997, Sinclair and Blake,
1996; Viéville et al., 1995), and self-calibration us-
ing the knowledge of planes (Alon and Sclaroft, 2000;
Malis and Cipolla, 2000; Triggs, 1998a; Viéville et al.,
1995; Xu et al., 2000).

Concretely, we propose methods to parameterize
points and planes under multi-coplanarity constraints.
This parameterization is consistent in the sense that its
number of parameters is the same as the number of
degrees of freedom of the scene. It is employed to de-
rive maximum likelihood estimators. Scene structure
and camera motion are consistently estimated at once.
A projective as well as a Euclidean version of the es-
timator are derived. The recovered structure perfectly
satisfies the geometric constraints and is optimal in this
respect, where optimal means maximum likelihood un-
der a geometric error model.

In the following two sections, we present the piece-
wise planar structure and motion process and review
existing work.

1.1. Piecewise Planar Structure and Motion

Given point correspondences between images, tradi-
tional unconstrained structure and motion reconstruct
the points without using geometric constraints. First,
suboptimal methods, see e.g. Beardsley et al. (1996)
and Sturm and Triggs (1996), are used to compute an
initial solution. The result is then refined using bundle
adjustment (Slama, 1980; Triggs et al., 2000). If cam-
era calibration is not available, the result is a projective
reconstruction. In this case, the calibration informa-
tion can be recovered online using several techniques
(Heyden and Astrom, 1998; Maybank and Faugeras,
1992; Pollefeys et al., 1998; Triggs, 1997). The uncal-
ibrated reconstruction is then upgraded to metric and
bundle adjustment is used to compute an optimal metric
structure and motion.

In the projective case, when only points are used as
features, then the scene has 11n — 15 4+ 3m essential
degrees of freedom, where n is the number of views
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and m the number of points. Each view has 11 degrees
of freedom; 15 degrees of freedom for the choice of the
projective basis are deduced.

Assume now, that not only point correspondences
are available, but also their plane memberships. The
goal is to compute an optimal structure and motion in-
cluding the geometric constraints underlying to the spe-
cial multi-coplanar structure of the points. Ideally, this
process is a maximum likelihood estimator optimizing
features, primitive positions, and viewing parameters
while enforcing the underlying geometric constraints.
Consequently, there is a need for a new formulation
of structure and motion, that models both features and
primitives, and that preserves the relationships between
them, in our case, that models points and enforces
multi-coplanarity constraints. The use of such a con-
strained estimator has a strong impact on the structure
and motion process. Compared to the unconstrained
case, the use of primitives constituting an important
geometric constraint on both structure and motion,
we can expect better reconstruction results. It might
also be faster, as the number of parameters is usually
lower.

Intra-primitive constraints, such as a priori known
angles or parallelism of the modeled planes could be
used. One problem with these constraints is that, gen-
erally speaking, they can not be used in a projective
framework. Many other kinds of constraints could be
modeled, such as the collinearity of points.

Choosing the constraints to model is difficult. In-
deed, this is a trade-off between accuracy (the more
constraints are used, the more accurate the reconstruc-
tion will be) and the complexity of the algebraic mod-
eling. If too many kinds of constraints are used, then
we end up with a network of constraints, that may be
viewed as a graph linking features and primitives, and
that might be redundent in the sense of cycles in this
graph. Another issue is the automatization of an inte-
grated modeling system. High-order constraints, such
as the arrangement of planes in e.g. cuboids, are more
difficult to detect than the coplanarity of a set of points.
A comprehensive treatment of the possible geometric
constraints is out of the scope of this paper.

As said before, the incorporation of multi-
coplanarity constraints has an impact on the number of
essential degrees of freedom of the scene, e.g. a point
on one plane has 2 degrees of freedom instead of 3 in
the unconstrained case. Consequently, the number of
degrees of freedom of such a scene becomes equal to
1ln—15+3p+3m =}, jm; where the notation m ;
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designates the number of points lying on j of a total of
p modeled planes.

Let us review existing piecewise planar structure and
motion estimators.

1.2.  Previous Work

Most of the existing works yield only a sub-optimal
estimation of the geometry. Actually, they fall into two
categories:

e The recovered structure is only approximately piece-
wise planar so clearly the results can not be opti-
mal (Faugeras and Lustman, 1988; McGlone, 1996;
Szeliski and Torr, 1998; Tarel and Vézien, 1995; Xu
et al., 2000);

e The recovered structure is piecewise planar but
the method is not optimal because it can not be
turned into a maximum likelihood estimator or only
the single-coplanarity constraint is modeled (Alon
and Sclaroff, 2000; Baillard and Zisserman, 1999;
Bartoli et al., 2001).

If we want our estimator to be optimal with respect
to piecewise planarity, it has to fall into the second
category, i.e. the recovered model has to be exactly
piecewise planar. The constrained structure and mo-
tion is a maximum likelihood estimator that incorpo-
rates points, planes and multi-coplanarity constraints in
a bundle adjustment manner. The cost function is non-
linear (Slama, 1980; Triggs et al., 2000) and subject
to constraints. There are several ways to conduct such
an optimization process, in particular, we could use
constrained optimization techniques such as sequential
quadratic programming or a specific structure and mo-
tion parameterization enforcing the multi-coplanarity
constraints (Bartoli and Sturm, 2001; Bartoli et al.,
2001).

Ideally, these two possibilities give the same results
because they are both consistent (i.e. the number of al-
gebraic degrees of freedom is the same as that of essen-
tial degrees of freedom of the scene) and the cost func-
tion being optimized is the same. However, in practice,
the convergence of the optimization process is deter-
mined by the number of parameters used which directly
influences numerical stability. This determines which
method to use in which case.

In our case, the number of parameters is high and
so we have to reduce it to or close to the minimum,
i.e. the number of essential degrees of freedom, if we
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want to ensure a stable optimization process. The first
possibility consists in systematically adding parame-
ters to the system to model constraints and is conse-
quently unadapted. The second possibility is less sys-
tematic, so needs more algebraic manipulations to be
derived. However, the number of parameters is so re-
duced that the convergence might be faster and more
reliable. Another issue that is important to be dealt with
for both estimation cost and stability is that of ana-
lytic differentiation for the non-linear minimizer, which
implies that the parameterization has a closed-form
expression.

We addressed the case of two views and points ly-
ing on one plane (i.e. the single-coplanarity constraint)
in Bartoli et al. (2001) and extended it to multi-view
and multi-coplanarity constraints in Bartoli and Sturm
(2001) where we derived the maximum likelihood es-
timator but without the possibility of analytic differ-
entiation. In this paper, we present an estimator and
the corresponding parameterization which is minimal
for the structure and quasi-minimal for the motion, for
n views and a quasi-general set of multi-coplanarity
constraints and which allows analytic differentiation.

As real world surfaces are only approximately pla-
nar, we experimentally evaluate the performance of the
constrained method compared to an unconstrained one
with respect to different degrees of deviation from pla-
narity and different scene configurations.

Since our approach needs to upgrade an uncalibrated
reconstruction to metric, we perform self-calibration.
To initialize a bundle adjustment procedure, we use the
linear method of Pollefeys (1999), inspired by Triggs
(1997), for the estimation of variable focal length. In
practice, we encountered a singular situation, that is
likely to occur in modeling applications: the optical
axes of all images meet in a single 3D point (which
will usually be the center of the modeled object). We
adapt the basic method to this case and validate the
approach on real images.

In Section 2 we give our notations. We then present
our parameterization and the corresponding maximum
likelihood estimator for a projective framework in
Section 3, followed by an equivalent scheme in the
Euclidean case in Section 4 where we also present
self-calibration. We report on experiments on simulated
data for constrained structure and motion in Section 5.
Finally, Section 6 shows experimental results obtained
using real images taken with an uncalibrated camera
which validate both the reconstruction and the self-
calibration processes, followed by our conclusions.

2. Notations

Physical entities (points, planes, etc.) are typeset us-
ing italic fonts (X, w, etc.) and their corresponding
homogeneous coordinate vectors using the same let-
ters in bold fonts (X, 7, etc.). Matrices are designated
by sans-serif fonts such as H. Vector and matrix ele-
ments are typeset using italic fonts and indices, e.g.
X ~ (X, X5, X3, X4)" where T is the transposition
and ~ the equality up to a non-zero scale factor.

The notation X/; is used to designate the vector
formed with the elements of X with index different from
Jj. Similarly, X; ., represents the vector X with the
value « inserted at the j-th position. The cross product
is written x and the associated 3 x 3 skew-symmetric
matrix [-]y.

We model cameras using perspective projection,
described by a 3 x 4 homogeneous matrix P. Non-
linear optimization processes are conducted using the
Levenberg-Marquardt algorithm (Gill et al., 1981).

3. Constrained Projective Structure and Motion

In this section, we describe how to minimally param-
eterize the structure and quasi-minimally the motion
in the projective case. We then derive the maximum
likelihood estimator corresponding to the constrained
structure and motion.

As shown in the expression for the number of essen-
tial degrees of freedom of the scene, we have to take
into account 15 degrees of gauge freedom left by the ar-
bitrary choice for the projective basis of the reconstruc-
tion. Gauge freedom is defined as the internal freedom
of choice for a coordinate system (Triggs, 1998b). It can
be fixed using a particular formulation for the structure
(Heyden and Astrém, 1995) or for the camera matri-
ces (Beardsley et al., 1996). Due to the complexity of
structure parameterization, we have chosen to absorb
the gauge freedom into the parameterization of motion.

In the next two sections, we describe respectively
our structure and motion parameterizations.

3.1.  Structure Parameterization

As said in the introduction, we have to parameterize
both planes and points and in addition enforce the
underlying multi-coplanarity constraints. The param-
eterization consists in passing from the usual homo-
geneous 4-vectors that represent points and planes in



Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. .., 1JCV 2003 [1] 251

3D projective space, to a minimal set of parameters
representing the structure while enforcing the multi-
coplanarity constraints. We first give an homogeneous
and consistent parameterization for planes and points
and then remove the homogeneity to reach a mini-
mal parameterization. This last step is achieved us-
ing what we call mapped coordinates that allow to
locally remove homogeneity. This is also used in the
parameterization of the motion and in the Euclidean
case.

3.1.1. Multi-coplanarity Constraints. A multi-
coplanarity constraint is a geometric constraint be-
tween a point and a set of planes. Before parameterizing
the structure, we have to decide where, in the parame-
terization of planes, of points or both, these constraints
have to be incorporated. Actually, it seems inevitable
to incorporate them in the point parameterization. Let
us investigate the case of plane parameterization. In-
deed, consider the case of a point lying on more than
three planes. Such a point does not have, in general, any
degree of freedom, and can be determined using three
of the planes it lies on.? Once this point has been de-
termined, it constrains the position of the other planes.
Consequently, plane parameterization is dependent on
multi-coplanarity constraints provided they contain a
point lying on more than three planes.

If we do not model points lying on more than three
planes (or take into account only three of the planes
they lie on), it is possible to parameterize each plane
independently while the multi-coplanarity constraints
up to three planes are to be taken into account only for
point parameterization. Considering that points lying
on four or more planes are rare, we make such an as-
sumption (an algebraic solution will just be sketched).
Let us see the corresponding parameterization.

3.1.2. Planes. As said above, planes do not incor-
porate multi-coplanarity constraints and each one has
therefore 3 degrees of freedom. An homogeneous
4-vector is then a consistent parameterization.

3.1.3. Points Under Multi-coplanarity Constraints.
We describe point parameterization performed under
a local incorporation of multi-coplanarity constraints.
Let us examine different possible means. We then
present our solution for the different multi-coplanarity
cases.

To simplify the reading, we consider the case of a
2D point x constrained to lie on a 2D line /, which

Constrained Structure and Motion 49

is similar to the 3D single-coplanarity case. Such a
constraint is expressed as 1"x =0 and is satisfied for
any point expressed in the nullspace of 1T ~ (11, I, I3).

The approach that naturally comes to mind is to
compute a basis for the nullspace of 1" and to ex-
press the coordinates of point x in this basis. We
examine two ways to compute this nullspace basis
and show that each of them is not appropriate to our
problem.

A basis for the nullspace of 1" is given by the skew-
symmetric 3 x 3 cross-product matrix associated to 1
(there are other possible bases):

0 -z b
L~M«~| 6 0 =
—L 0

One can easily check that, as required, 1"L=0; and
rankL =2 . Any pointon/ canbe represented by alinear
combination of the 3 columns of L, thereby involving 3
homogeneous coefficients. This is not consistent since
a point on a line has only 1 degree of freedom. On the
other hand, one could think of using only 2 columns
of L as a basis for the nullspace, say drop the leading
column 1;. In this case, the representation is consistent,
but it is no more complete: the point with coordinate 1
lying on/ can not be represented as a linear combination
of the two last columns of L.

Another possibility is to compute an orthonormal
basis for the nullspace of 1T through e.g. its singular
value decomposition:

1" ~1"diag(1, 0, 0)I351 | V3x2).

In this case, the basis given by the two columns of
V is minimal and the corresponding parameterization
would be consistent. However, since the entries of V
do not depend directly on the coefficients of 1, analytic
differenciation would not be possible in the underlying
optimization process.

Consistency and analytic differenciation are the
main reasons for our specific parameterization to be
used. We successively deal with points lying on none,
one, two and three planes.

3.1.3.1. Unconstrained Points. Such a point does not
lie on any modeled plane and being therefore not sub-
ject to any modeled geometric constraint, it has 3 de-
grees of freedom. An homogeneous 4-vector is then a
consistent parameterization.
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3.1.3.2. Single-Coplanar Points. Let X be a point
constrained to lie on a plane 7. Such a point has 2
degrees of freedom and our goal is then to express it
via an homogeneous 3-vector—instead of the general
homogeneous 4-vector—by incorporating the single-
coplanarity constraint.

Algebraically, this constraint is written as 7 ' X = 0.
Letus find a change of projective basis where each point
lying on 7 has an element fixed to a constant value, so
that this element can be ignored in the parameterization
of X. For that purpose, we define the class of homo-
graphies H/ by the identity matrix of size 4 x 4 where
the jthrow (j € {1, ..., 4}) has been replaced by the
4-vector ' (e.g. H. ~ (03”12“)). Let E ~ H/ X be the
representation of X in this new basis. By definition of
HZ ,we have E; = 0 and the point X can therefore
be parameterized by E/; , the homogeneous 3-vector
formed from the 3 elements of E with index different
from j, X being further recovered using X ~ (H.)~1 E.

There are 4 possibilities for the choice of j. Since
(H{;)" is necessary to recover X from E, we choose
j as the index that maximizes (in magnitude) the de-
terminant of H.: j = argmax; | detH | which in fact
leads to j = argmax; |mr;|. Such a choice ensures Hé
to be a bijective transformation since det H/ = x;
that, by construction, is always non-zero. Indeed, 7 is
an homogeneous vector and has therefore at least one
non-zero element.

Table 1 shows the practical algorithm for parameter-
izing/unparameterizing X € m derived from the above
reasoning. In the unparameterization, we divide by 7
that, as said above, is always non-zero.

The dropped coordinate depends on the current es-
timate of . Therefore, it might change between two
steps of the optimization process. However, this does

Table 1. Parameterization/unparameterization of a single-coplanar
point.

Let X be a point subject to a single-coplanarity constraint with
plane . The homogeneous 4-vector X represents X in the current
projective basis while the homogeneous 3-vector X is a
parameterization of X incorporating the single-coplanarity
constraint.

Parameterization (X — X):

e Choose j such that j = arg max; |m;|subjectto j € {1,...,4}in
the projective case and j € {1, ..., 3} in the Euclidean case;
X~ X)j.

Unparameterization (X — X):
T X
e Compute o = 7#;
J

oX’\*Xjea.

not create discontinuities since after each optimization
step, the structure is unparameterized and standard ho-
mogeneous coordinates are recovered. The structure is
then reparameterized for the next iteration, and the in-
dex of the dropped coordinate may change. The pa-
rameterization is therefore used in a local manner,
which is important in order to keep smooth the cost
function.

3.1.3.3. Multi-coplanar Points, Two Planes. Let
X be a point constrained to lie on planes 7 and 7’.
Such a point has 1 degree of freedom provided that
7 # 7’ and our goal is then to express it via an homo-
geneous 2-vector—instead of the general homogen-
eous 4-vector—Dby incorporating the multi-coplanarity
constraint.

We follow the same reasoning as for the Erevious
case. We define the class of homographies H/, by the
matrix H/ where the j'-th row has been replaced by the

1.2 ™ .

4-vector w'7 (e.g. H. T . Let us consider
L

2x2 2x2

L (0
~ HfT’ﬂX By definition of Hff’,’ﬂ/,, we have E; =
E; = 0 and point X can therefore be parameterized
by &/;,j», the homogeneous 2-vector formed from the
2 elements of E with index different from j and j’, X
being further recovered using X ~ (H.7,)~'E.

Since j and j’ must be different, this leaves 4 x 3 =
12 different choices for them. As (H}7,)~" is needed,
we choose j and j” such that the determinant of H/7,
is maximized (in magnitude). Subsequently deriving a
practical algorithm as in the single-coplanarity case is
then straightforward.

1 O]

I

3.1.3.4. Multi-coplanar Points, Three Planes. Let X
be a point constrained to lie on planes 7, 7" and 7”.
As already mentioned previously, it is straightforward
to see that a point lying on three planes does not have,
in general, any degree of freedom.” Such points are
therefore not represented in the parameterization and
have to be recovered from the three plane equations.
There are two ways to do that. One can either choose
a scheme similar to the one given previously or use
the generalized cross-product, which gives a closed-
form expression for the point (each point coordinate
is given by the determinant of a 3 x 3 matrix of plane
coefficients).

3.1.3.5. Multi-coplanar Points, More Than Three
Planes. As said previously, this case is rare. Deal-
ing with it properly would add a great complexity to
the system, in the sense that constraints would then be
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expressed not only on points but also on planes, thereby
creating a graph of constraints with possible redundan-
cies and cycles. Let us sketch, however, how the case of
a point X lying on 4 planes 7, 7/, 7" and =" could be
handled algebraically. Other higher order cases, though
more complicated, could then be handled in a similar
manner. The constraints are express as:

B'X =0, whereByyy~ (m & «" =").

This equation means that the matrix B has a (at least)
1-dimensional nullspace, i.e. det B = 0, which yields
a 4-linear constraint on the coefficients of the plane
equations. If one chooses to constrain e.g. plane 7,
then one of its coordinates may be dropped by con-
sidering the above-derived equation, and by applying
a scheme similar to that described in Table 1, for the
single-coplanarity case.

3.1.3.6. Modeling Intra-primitive Metric Constraints.
In this paragraph, we give some hints on the algebraic
modeling of intra-primitive constraints, and in partic-
ular on the perpendicularity and the orthogonality of
planes. As explained in the introduction, a comprehen-
sive treatment of all these constraints is out of the scope
of this paper.

Firstly, consider the perpendicularity of two planes
and 7r’. This constraint can be algebraically expressed
by considering that the dot product between the normal
vectors of two such planes must vanish:

! ’ ’
Ty + mamy + mamy = 0.

This bilinear constraint can be enforced by the elim-
ination of one parameter to contrain one of the two
planes to be perpendicular to the other one. We end up
with the same problem as that of modeling the single-
coplanarity constraint described above.

Secondly, consider the modeling of the parallelism
of two planes 7 and 7". The normal vectors of two such
planes must be equal, up to scale, which is equivalent
to nullifying there cross-product:

oy — 3wy =0
mym] —mmy =0
my — w3y = 0.
Among these 3 equations, only 2 are independent, but

one can not choose 2 of them a priori. Therefore, de-
pending of which plane is to be contrained and on
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which axes, 2 equations are used to eliminate 2 of
its parameters. Since these equations are bilinear, we
end up with the same problem as that of modeling the
multi-coplanarity constraint with 2 planes, described
previously.

3.1.4. Mapped Coordinates. Homogeneous alge-
braic entities have an internal gauge freedom as they
are only defined up to a non-zero scale factor. Con-
sequently, they are not minimal in the sense that they
are overparameterized. We define a tool called mapped
coordinates that locally removes the homogeneity, in
other words produces a minimal version of an homoge-
neous entity. Let us consider the case of homogeneous
vectors of PV, which is not a restriction, the method be-
ing valid for any homogeneous entity (matrix, tensor).
In more detail, a (v + 1)-vector v, can be decomposed
into a v-vector Vand amap u € {1, ..., v+ 1}, the in-
dex of a coefficient to be fixed. An important property
is that slightly changing v does not, in general, affect
but only ¥, and if w is affected, it will usually not create
numerical instability (in the sense that the maximum
coefficient of v will not tend towards zero during e.g.
optimization).

The map w is chosen as the index of the entry of
v that has the largest absolute value. This choice can
be justified as follows. If we assume that all entries of
v have the same probability to become zero during an
optimization step, our choice minimizes the probability
that the selected entry (i.e. the one corresponding to the
map () vanishes.

Consequently, this system is adapted to non-linear
optimizers such as Levenberg-Marquardt (Gill et al.,
1981), where the map can be re-estimated at each step
of the optimization process. A practical algorithm for
using mapped coordinates is given in Table 2.

Table 2. Mapped coordinates for homogeneous entities. Only ¥ has
to be included in optimization processes.

Let v be an homogeneous (v + 1)-vector. Any other homogeneous
entity (matrix, tensor) can be brought back to this case by stacking
its elements into a single vector. The inhomogeneous v-vector
v represents the mapped coordinates of v whereas the integer ©
represents its map.

Mapping (v — (¥, w)):

e Choose p such that 4 = arg max; |v;|;

v/p
m N

oV =
Unmapping ((V, u) — v):

ov~V,. .
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3.1.5. Summary of Structure Parameterization. We
have given algorithms to exploit multi-coplanarity con-
straints for up to three planes per point. These con-
straints are enforced in an homogeneous manner while
reducing the number of parameters for each point, see
Section 3.1.3, and the homogeneity is removed using
mapped coordinates, as indicated in Table 2, to obtain
a minimal parameterization.

3.2.  Motion Parameterization

In this section, we first parameterize camera projection
matrices in an homogeneous manner and then remove
the homogeneity using mapped coordinates to obtain a
quasi-minimal parameterization.

We have chosen previously to fix the projective re-
construction basis via the camera parameterization. It
has then to express 11n — 15 degrees of freedom but
actually has 10 4+ 11(n — 2) parameters (see below),
i.e. is overparameterized by 3. This is not a problem
for the optimization process since this number does
not depend neither on the number of views nor on the
number of points.

The number of parameters is obtained as follows.
Each of the n views is represented by 11 parameters
from its camera matrix, except for 2 of them, related
by the epipolar geometry (or equivalently, one special-
form projection matrix), that we represent using
10 parameters. More details are given below, where we
describe the geometry of one, two, three or more views.
Note that the motion parameterization is independent
from the structure, and in particular, does not depend
on the fact that the structure is constrained or not.

One View. The projective reconstruction basis can not
be uniquely fixed. However the camera matrix P can
be arbitrarily set, e.g. we use here P ~ (1] 0).

Two Views. If we suppose that the first camera matrix
has been fixed, the second one has 7 degrees of freedom.
Indeed, the geometry of such a system is described by

the epipolar geometry contained in the rank deficient
fundamental matrix F. Provided P has the form given
above, the second camera matrix can be extracted from
Fas P’ ~ ([e']«F|e’) where € is the second epipole
defined by F'e’ = 0.

Minimally parameterizing the rank-2-ness of the
fundamental matrix requires the use of several maps
(Bartoli et al., 2001; Zhang, 1998) which is com-
plicated from an implementation point of view. Al-
ternatively, it is possible to overparameterize rank-2-
ness by using a plane homography H and the second
epipole €. The second camera matrix is then formed as
P’ ~ ([e']2H| €’) where [€']2 H is the canonical plane
homography which is the only plane homography sat-
isfying H' e’ = 0 (Bartoli and Sturm, 2001) (it is thus
singular).

In this paper, we use this second possibility. The
problem is parameterized by the 8 mapped coordinates
of H and the 2 mapped coordinates of €, which yield
10 parameters. Consequently, it is overparameterized
by 10 — 7 = 3 parameters, since the two-view motion
has only 7 degrees of freedom.

Three or More Views. 'Two or more views completely
fix the projective basis. Consequently, each additional
view adds 11 degrees of freedom to the system and in
the general case their camera matrices do not have any
special form and have to be entirely parameterized. We
use mapped coordinates for that purpose.

The motion parameterization is summarized in
Table 3.

3.3.  Maximum Likelihood Estimator

We describe the maximum likelihood estimator for
constrained structure and motion using the previously
described parameterization. We first analyze which
kinds of points are reconstructable and under which
conditions, notably if they have to be included in the
constrained optimization process. We then show how to
initialize the parameterization from a general structure

Table 3. Motion parameterization. Notations H, & and Py respectively designate the mapped
coordinates (see Table 2) of the canonic plane homography (see text), of the second epipole
(i.e. the projection of the first camera’s center of projection onto the image plane of the second
camera) and of other camera matrices. dof stands for degrees of freedom.

No. of views No. of dof No. of parameterization ~ Parameters ~ Gauge constraints
n=>2 7 A, & HTe =0
n>3 74 11(n —2) 10+ 11(n —2) H, &, Pis3 H'e =0




Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. .., 1JCV 2003 [1] 255

and motion (when multi-coplanarity constraints are not
enforced), in the case of motion and then structure.
Finally, we give the cost function and details on the
maximum likelihood estimator.

3.3.1. Initialization. At this step, we suppose to have
afirst guess of structure and motion as well as a cluster-
ing of points into multi-coplanar groups, see Section 6.

Feature Reconstructability. Planes are reconstructa-
ble provided that at least three points that they con-
tain can be themselves reconstructed without geometric
constraints. Once planes are reconstructed, new point
reconstructions can be obtained. Table 4 gives which
points, in terms of the number of views they are seen in
and number of planes they lie on, can be reconstructed
and if they have to be incorporated in the optimization
process (i.e. if they add redundancy useful for opti-
mization).

Motion. We have to change the projective basis such
that the first camera matrix becomes (I | 0). This is done
by post-multiplying all camera matrices by an appro-
priately chosen 3D homography and pre-multiplying
the structure by the inverse of this homography.

Constrained Structure. The initialization of points
depending on that of planes, we first estimate plane
equations and then points.

A plane is fitted to the points of each coplanar group.
If X is a point lying on the plane 7, the constraint

Table4. Summary of which points are reconstructable under which
condition. “unconstrained” indicates a reconstruction when planes
are not yet modeled, “optimization” indicates a reconstruction pos-
sible using planes and for points that add redundancy useful for
optimization and “constrained” indicates a reconstruction possible
only after the maximum likelihood estimation.

No.of No. of

views  planes Unconstrained Optimization  Constrained

0 0 No No No

No No No

2 No No No

>3 No No Yes

1 0 No No No

1 No No Yes

>2 No Yes No

>2 Any Yes Yes No
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X" = 0 holds. By stacking the equations for all
points lying on the plane, we obtain a linear system
for 7t which can be solved using e.g. singular value de-
composition. Another possibility is to estimate a plane
homography between two images of the plane and to
further extract the plane equation.

The unconstrained points and the multi-coplanar
points lying on three or more planes are easy to initial-
ize. Indeed, the former are not subject to any modeled
geometric constraint and are taken directly from the
initial structure, and the latter do not have any degree
of freedom and so do not need initial values.

On the other hand, single-coplanar and multi-
coplanar points lying on two planes need a special ini-
tialization. As we work in projective space, we can not
consider any metric in space (such as orthogonal pro-
jection) and have to do measurements in the images.

For a single-coplanar point X lying on a plane r,
we consider one of its projections and reconstruct the
3D point by intersecting the associated viewing ray
with the plane 7. We measure the reprojection error in
all images where X is visible. We iterate over the set
of images where X is visible and select the one that
minimizes the total reprojection error.

For a multi-coplanar point X lying on planes 7 and
7', we adopt the same method. However, to ensure
that the reconstructed point lies on the two planes, we
orthogonally project one of its image points onto the
projection of the intersection line of 7w and 7" and then
reconstruct as above. Which plane 7 or 7z’ is used to re-
construct does not matter. Details for this initialization
are given in Bartoli and Sturm (2001).

3.3.2. Optimization. Our goal is to derive an optimal
estimator, in the sense of the maximum likelihood, for
points and planes under multi-coplanarity constraints.
This result is obtained by enforcing exactly the con-
straints, as is does by our parameterization. The cost
function to minimize is the root mean square or, equiv-
alently, the sum of square of the reprojection residuals
(Slama, 1980; Triggs et al., 2000). In fact, this gives
the maximum likelihood estimator under the assump-
tion that errors in image point positions are identically
and independently distributed according to a centered
Gaussian, or normal, law.

We also include camera motion parameters into the
non-linear optimization since an independent computa-
tion of the maximum likelihood estimate for the struc-
ture only is not possible: both structure and motion have
to be estimated at once.
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The cost function, denoted by C, depends on mea-
sured image points x;; and on reprojected points £;;
predicted by structure and motion parameters S. It is
defined by:

C(S) = Z Z wij d*(xij, i)
J

i

Indices i and j respectively represent the different im-
ages and the different structure points and d(., .) is the
Euclidean distance. We set w;; =1 if and only if the
Jj-th point appears in the i-th image and 0 otherwise.
The optimal structure and motion parameters S are then
given by the minimization of C over S:

A

S =arg méinC(S).

This is done in practice using the Levenberg-Marquardt
algorithm with analytic differentiation.

Let us investigate how to upgrade the obtained struc-
ture and motion to a metric frame.

4. Constrained Euclidean Structure and Motion

In this section, we describe how to upgrade the pre-
viously recovered projective structure and motion to
metric and how to parameterize them in order to obtain
a constrained maximum likelihood estimator.

4.1.  Upgrade to Metric

There exist several possibilities to upgrade a projective
reconstruction to metric, without a full prior calibra-
tion, e.g. by providing constraints on scene structure,
camera motion, or calibration. In this work, we perform
self-calibration. A Euclidean bundle adjustment is ini-
tialized using the linear method of Pollefeys (1999),
inspired by Triggs (1997), that assumes known intrin-
sic parameters, besides the variable focal length. The
method is rather straightforward, but we describe it
here since the basic method is subject to a degenerate
situation we encountered in practice, and that is likely
to occur quite often in modeling applications for e.g.
built environments. We give a variant of the method
that does not degenerate in this case.

Suppose that P; are the projection matrices associ-
ated with the projective reconstruction obtained so far.
We suppose that all the intrinsic parameters are given,
besides the focal lengths, f;, for the individual images.
In practice, we assume the principal points (u;, v;) to
lie in the center of the respective image, and we know

the cameras’ aspect ratios 7; (in fact, they could eas-
ily be included in the linear self-calibration routine).
The skew factor is neglected, i.e. we assume pixels to
be rectangular (in the linear method; skew is estimated
during bundle adjustment).

Self-calibration is based on estimating a projective
transformation T such that the transformed projection
matrices can be decomposed into extrinsic and intrinsic
parameters, such that the latter have the known values,
ie.:

Ti 0 u; fz 0 0
Elfi,R,‘,t,'ZPiT’\’ 0 1 V; O f, 0 (R, |tl'),
0 0 1 0 0 1
where the R; are orthonormal matrices and the t;
3-vectors. Considering only the leading 3 x 3 subma-

trix of the equation, and multiplying it by its transpose,
we get:

PTT P/
T, 0 wu; fi2 0 0 T 0 u;
~1o 1 wf|lo £ ol]lo 1 v .
0 0 1 0 0 1 0 0 1

T

where T is the 4 x 3 matrix consisting of the first three
columns of T. Let

X=TT'
5, 0 u; !
M,=1]0 1 v P;.
0 0 1

Then, the above equation becomes:

0 0
M, XM~ |0 f2 0f. (D
0 0 1

The matrix X represents the “absolute quadric” (Triggs,
1997), in the space of the projective reconstruction. It
is 4 x 4, symmetric and of rank 3.

Let miTj be the vector representing the j-th row of
M;. From Eq. (1), the following linear equations on X
can be obtained:

mIXmiz =0

mIXm,g =0
T

mi2Xml~3 =0

T T
m;; Xm;; —m;;Xm; = 0.
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The rank-3 constraint on X can not be imposed via
linear equations, which implies that there exist singu-
larities for the linear method, that are not singular for
the generic case (Sturm, 2000). The generic singular-
ities (critical motions) for self-calibration of varying
focal length (with other intrinsic parameters known),
are described in Kahl et al. (2000) and Sturm (1999).
An imaging configuration that is singular for the linear
approach, but not in general, is the case where the opti-
cal axes of all views pass through one 3D point. Image
sequences taken for modeling objects will very often
be singular in this respect (e.g. the sequence shown in
Fig. 3).

Due to this singularity, the system of the above lin-
ear equations will have a one-dimensional family of
solutions:

X~ Xi 4+ uXs.

The rank-3-constraint allows to solve for u via the
equation det X=0. This is a degree-4-polynomial in
. We solve it numerically, thus obtaining a maximum
of 4 solutions for X. To find a unique solution, we com-
pute the focal lengths that each solution gives rise to,
and choose the solution, where these respect practi-
cal bounds (they have to lie in an interval of the order
[300, 5000], depending on the camera used). In prac-
tice, we always found a single solution satisfying these
constraints, the others being far off.

Focal lengths are extracted by computing w; ~
M; XM,” and then

1
(@i + i)
A A
w; 33

From the estimated X, we extract a projective trans-
formation that upgrades projection matrices and point
coordinates to metric. There is no unique solution for
this, so in practice we choose one that has roughly equal
singular values. Let X = U UT be the singular value
decomposition of X. Since X is of rank 3, the 4-th sin-
gular value is zero. Let X’ be obtained by replacing
that zero with e.g. the largest singular value in X, we
obtain the projective upgrade transformation needed:

T=UvX.

Extracting extrinsic parameters from the upgraded
projection matrices is then straightforward—it basi-
cally requires fitting of orthonormal matrices to gen-
eral 3 x 3 matrices (Horn et al., 1988). More details are
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given in Section 4.4. The result is optimized via bundle
adjustment. An alternative to the described approach
would be to use the coplanarity information already
available, like Alon and Sclaroff (2000), Malis and
Cipolla (2000), Triggs (1998a), Viéville et al. (1995),
and Xu et al. (2000).

In the following paragraph, we just give a few nu-
merical details. In order to improve the condition of the
linear equation system, we transform the matrices M;
as follows. First, we assume that images are normal-
ized using e.g. Hartley (1995). Second, we make use
of the free choice for the basis of the projective recon-
struction, by computing a projective transformation,
that hopefully leads to better conditioning. A simple
method to do that is as follows. We stack the M; in a
matrix M of size 3n x 4, and compute its singular value
decomposition:

M= AlB'.

From A, we extract sub-matrices replacing the M; in
the linear equations: A is orthonormal, so the linear
equations are more likely to be well conditioned. The
product I'BT represents the projective transformation
corresponding to the mapping between the original and
the transformed M; (naturally, the 3D points have to
be transformed accordingly). Using this normalization,
we obtained much more accurate initial values and ac-
tually prevented the bundle adjustment to fall in a local
minimum it got trapped in otherwise, in one case.

4.2.  Structure Parameterization

In this section, we adapt the projective structure pa-
rameterization of Section 3.1 to the Euclidean case.
In this case, planes are modeled as homogeneous
4-vectors, whereas points can be written as inhomo-
geneous 3-vectors.

The plane parameterization has been described
in Section 3.1.2 and mapped coordinates (cf.
Section 3.1.4) were used to reach the minimality. The
point parameterization under multi-coplanarity con-
straints of Section 3.1.3 for the projective case can be
used either directly or adapted to take full advantage
of the Euclidean structure. We successively specialize
the different cases.

Unconstrained Points.  As said above, points can be
parameterized using inhomogeneous 3-vectors, which
is minimal in this case.
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Single-Coplanar Points. Let X be a point lying on a
plane 7. As for the projective case, we want to change
the reconstruction basis such as to fix an element of
X to a constant value. In the Euclidean case, we have
X" ~ (X7 1) in the homogeneous form, so that the
4-th element is already fixed. Consequently, we must
choose a transformation that preserves this element
while fixing another one. This class of transformation
is Hy where j € {1...3}. The practical algorithm for
parameterizing/unparameterizing such a point in the
Euclidean case is similar to that of Table 1 but using
the constraint j € {1...3} for the choice of ;.

Multi-coplanar Points. We follow the same reason-
ing as in the previous case. A point lying on two planes
is then parameterized by a scalar and does not have
parameters in the three planes case. The practical algo-
rithms are then identical to the projective case, provided
a choice for the indices j and j’ in {1 ... 3} for the two
planes case.

4.3. Motion Parameterization

For motion parameterization in the Euclidean case, we
suppose that each camera has z unknown intrinsic pa-
rameters, where z € {1...5}.

One View. We choose the reconstruction basis such
that P ~ K (I|0) where K is the calibration matrix,
containing the intrinsic parameters. We have therefore
z degrees of freedom for this first camera.

Two or More Views. The Euclidean basis has been
fixed by the first view up to a global scale factor. We
then have to completely parameterize the other cam-
era matrices. Such an additional camera is written as
P’ ~ K (R | t). Making the same assumption on the
intrinsic parameters than for the first view, this leaves
z + 6 degrees of freedom for each view, its internal
parameters and the 6 parameters for the rotation R and
the translation t. These entities are minimally parame-
terized, as described in e.g. Atkinson (1996).

4.4. Maximum Likelihood Estimator

The maximum likelihood estimator in the metric case
is very similar to that of the projective case as the
cost function is the same. The intrinsic parameters
for each camera have been recovered previously, see
Section 4.1. In order to initialize our parameterization,

we still need to extract the relative pose of each camera,
i.e. factorize each projection matrix P ~ (P | p) under
the form P = %K(R | t) where A is an unknown scale
factor. Let us define S = K~'P. We first estimate the
scale factor as A = ~/det S. The translation can then
be obtained by t = AK™!p. In the noise-free case, AS
is an orthonormal matrix, but in practice it is not and
we choose the closest rotation matrix in the sense of
the Frobenius norm. This can be done using a singular
value decomposition of AS and a recomposition where
the matrix of singular values ¥ is omitted: R = UV
where AS = UXV'. Once this initialization has been
done, non-linear optimization of the cost function C
(cf. Section 3.3) can be launched using the Levenberg-
Marquardt algorithm (Gill et al., 1981) with analytic
differentiation.

5. Experimental Results Using Simulated Data

In this section, we compare our method to existing ones,
notably to that consisting in individually reconstruct-
ing each point and to that using approximate multi-
coplanarity constraints. We perform this comparison
for the structure results, then for the motion results.

The test bench consists of a cube of one meter side
length observed by a set of cameras. Points are gen-
erated on the cube, possibly offset from their planes
in order to simulate non-perfect coplanarity and pro-
jected onto the images, where centered Gaussian noise
is added. The default parameters of this simulation are
the following. Up to 50, 10 and 1 points are generated
on respectively each face, edge and vertex of the cube.
Two cameras with a focal length of 1000 (expressed in
number of pixels) and a 1 meter baseline are situated at
adistance of 10 meters from the cube. The standard de-
viation of image noise is up to 3.0 pixels. The intrinsic
parameters are not supposed to be known which yields
projective reconstructions.

In the sequel, we vary independently each of these
parameters to compare the different approaches under
various conditions, especially we want to determine
how the constrained methods behave when the ob-
served surfaces are only approximately planar.

We measure the quality of reconstructions using the
3D residual of its Euclidean distance to the ground

truth scene structure X: F = \/% Z’j”:l d*(HX;, X)),
where H is a 3D homography (mapping the projective
to the Euclidean structure) estimated using non-linear
minimization of E. We measure the median value over

100 trials.
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The estimators compared are:

e Po-ML: Optimal structure and motion obtained in a
bundle adjustment manner (Triggs et al., 2000) with-
out geometric constraints;

e Pl-wt: (wt stands for weights) similar to Po-ML but
uses heavily weighted (2%° ~ 10?°) additional equa-
tions to approximate multi-coplanarity (McGlone,
1996; Szeliski and Torr, 1998);

e PI-ML: Uses the parameterization described in this
paper to explicitly model multi-coplanarity;

e PI-h: (h stands for homography) uses method Po-ML
described above with as input point correspondences
corrected by maximum likelihood estimation of
homographies. This method is described in more de-
tail below. Note that it works only with two images
and with the single-coplanarity constraint.

The last method evaluated relies on a simple
homography-based point correction. A plane observed
by two cameras induces an homography. This homo-
graphy relates the projections of the points lying
on the plane. The family of such homographies is
3-dimensional, provided that the epipolar geometry
is known (this is linked to the fact that a plane has
3 degrees of freedom). In the calibrated case, they de-
pend upon the relative pose between the two cameras
and on their intrinsic parameters. If all these consis-
tency constraints are ignored, and if the piecewise pla-
nar structure and motion problem is considered only
for two views and with single-coplanarity constraints,
one can devise a simple process to incorporate the
knownledge of coplanarity in a standard unconstrained
reconstruction method. Indeed, one can estimate in-
dependently each homography corresponding to each
coplanar group of points and correct them so that
they perfectly correspond through the homography. A
standard structure and motion algorithm can then be
launched with as input the corrected points. This is
what PI-h does. Obviously, this process is suboptimal
since most consistency constraints have been ignored,
and since the final reconstruction is only approximately
planar. Extending the idea to multi-view and multi-
coplanarity constraints, by enforcing all the underlying
consistency constraints would yield the same result as
our estimator, up to the convergence of the underlying
non-linear optimizers. However, the algebraic structure
would be more complicated since more consistency
constraints have to be imposed in the images than in
the 3D space.
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Let us describe the different experimental situations
when varying a scene parameter and the simulation
results we have obtained.

Added Image Noise (Fig. 1(a)): The standard deviation
of added image noise is varied from 0 to 3 pixels;
Baseline (Fig. 1(b)): The baseline is varied between 0.1

and 1 meter;

Number of Points (Fig. 1(c)): The number of points is
respectively equal to 50«, 10« and 1 for each face,
edge and vertex of the cube, where « varies from 0.1
to 1;

Number of Views (Fig. 1(d)): The number of views
varies from 2 to 10. The different cameras are situ-
ated such that the baseline between two consecutive
ones is 1 meter;

Distance Scene/Cameras (Fig. 1(e)): The distance be-
tween the cube and the cameras is varied between
10 and 20 meters.

In all these cases, the method Po-ML based only
on individual point reconstruction gives results of a
quality lower than methods Pl-modeling also planes
(the residual is at least twice as low). The method PI-
ML performs slightly better than Pl-wt in all cases.
Finally, method PI-h gives results slightly worse than
Pl-wt, but much better than Po-ML.

One aspect not shown on the graphs of Fig. 1, due
to the use of a median value over a large number of
trials, is that methods Po-ML and Pl-wt have a percent-
age of convergence lower than PI-ML and PI-h, espe-
cially for unstable configurations (large image noise,
small baseline, high distance scene/cameras etc.). For
example, the percentage of convergent estimations over
1000 trials is 95.2%, 89.1%, 97.5% and 97.3% for
Po-ML, Pl-wt, PI-ML and PI-h respectively, for a dis-
tance scene/cameras of 20 meters and a 0.1 meter
baseline.

Plane Unflatness (Fig. 1(f)): 3D points are offset from
the planes they lie on by distances drawn from a
normal distribution with standard deviation between
0 and 0.1 meters.

We observe that there is a threshold on the plane
unflatness where methods PI- using the knowledge of
planes begin to perform worse than method Po-ML.
It is interesting to define the breakdown ratio, de-
noted by ¢, as the ratio between the extent of 3D
noise and plane surface area, assuming that the scene
is seen completely in all views. In the case of Fig. 1(f),
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Table 5. Breakdown ratio ¢ for different scene configurations
(image noise, number of views, distance scene/cameras).

3m (%) 10 m (%) 20 m (%)
n=2
1 pixel 0.5 2 4
3 pixels 2
n=10
1 pixel 0.3 1.2 3
3 pixels 1.3 4 8

& = 6%, recalling that each plane of the cube is
1 square meter. The value of ¢ depends on all scene
parameters.

Table 5 shows values of ¢ established experimentally
for various scene parameters. We observe that the less
stable the configuration is the higher is ¢, i.e. the more
important is the incorporation of multi-coplanarity con-
straints, even if the scene is not perfectly piecewise
planar.

The values of one or several percent in Table 5 rep-
resent relatively large variations which are superior to
those of a great majority of approximately planar real
surfaces. Consequently, we can say that there are many
cases when a method using piecewise planarity will
perform better than any method based on individual
point reconstruction.

Similar results with other point- and plane-based
methods have been obtained in Bartoli and Sturm
(2001). We have also performed similar experiments in
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the calibrated case, i.e. the reconstructions obtained are
Euclidean, and we observed that this does not change
the results significantly. This can be explained by the
fact that the optimization criterion is image-based, and
so invariant to projective transformation (such as the
upgrade from projective to metric space).

Comparing the Motion Estimates. We compare the
results on the motion parameters provided by the dif-
ferent methods. We use the same experimental setup as
previously. The quality of the estimated motion is mea-
sured as follow. We extract the n projection centers C;
of the estimated camera matrices and compute the 3D
residual of their Euclidean distances to the ground-truth
projection centers C;: Engtion = \/ﬁ Z?:l d?(HG;, C)).
The 3D homography H is estimated as in the previ-
ous case, using non-linear minimization of E, i.e. us-
ing estimated to ground-truth point correspondences
(estimating it with corresponding centers of projection
would be highly sensitive to noise, due to the low num-
ber of data). We measure the median value of E i0n
over 100 trials.

Let us describe the different experimental situations
and results obtained.

Added Image Noise (Fig. 2(a)): The standard de-
viation of added image noise is varied from O to
3 pixels;

Number of Views (Fig. 2(b)): The number of views
is varied from 2 to 10, a 3 pixels standard deviation
noise is added.

i R . > oML |
& & Plwi
~ 8 == PLML

5 s B
Number of views
(b)

Figure 2.  Comparison of the 3D residuals for the motion for different approaches versus different scene parameters. Note that method PI-h is

not visible on (b) since it works with two views only.



262

Chapter 10. Piecewise Planar Scenes

60 Bartoli and Sturm

As already observed for the results on the struc-
ture, the method Po-ML that do not use coplanarity
information performs worse than the others. The
method PI-ML performs better than Pl-wt and the
method PI-h performs worse than Pl-wt. We observe
that the gap between plane-based methods PI- and
the point-based method Po-ML is reduced compared
to the error estimated on the structure. In all cases,
we also observe that the error measure obtained is
worse than for the structure. This is due to the fact that
the homography mapping the reconstruction result to
the ground-truth data is estimated by minimizing the
criterion E, based on the structure only.

6. Results Using Real Images

In this section, we present the reconstruction results
obtained using the images shown in Fig. 3. Similar re-
sults have been obtained with other images (see Bartoli
etal.,2001). We describe the different steps followed to
perform a complete reconstruction, from the images to
the 3D textured model. Table 6 shows the reprojection
errors obtained at various stages of the process.

Structure and Motion Initialization. 'This has been
obtained using image point matches given manually.
We perform a partial reconstruction from two images
using the method (Hartley, 1995; Hartley and Sturm,
1997) and incrementally add the other images to ob-
tain the complete structure and motion. We then run a
bundle adjustment to minimize the reprojection error
and to obtain the maximum likelihood estimate for an
unconstrained structure.

Multi-coplanarity Constraints. These relationships
are established semi-automatically using plane homo-
graphies. The user provides three image points matched
in at least one other view to obtain a first guess for the
plane. The other points lying on this plane are then
automatically detected. The user may interact to cor-
rect badly clustered points and add points visible in
only one view.

Table 6. Reprojection errors (pixel) and number of iterations
of non-linear optimizers at various stages of the reconstruction
process. MLE stands for Maximum Likelihood Estimator.

Rep. error No. of

Space Approach Step (pixels) iterations
Projective  Unconstrained  Init. 3.86 -
MLE 1.07 7
Constrained Init. 1.90 -
MLE 1.20 3
Metric Unconstrained MLE 2.69 6
Constrained Init. 3.86 -
MLE 1.43 9

Constrained Refinement of Structure and Motion.
From the previous data, the structure is parameterized
as described in Section 3 and the maximum likeli-
hood estimate for constrained structure and motion of
Section 3.3 is computed. According to Table 4, points
visible in only one view and constrained to lie on two
or more planes are reconstructed and involved in the
optimization process.

Structure Completion. Points appearing in only one
view and lying on one plane are then reconstructed.
The structure is complete in the sense that no more
points will be further added. Figure 5 shows structure
reprojection on an original image.

Calibration. The metric structure is obtained via
the self-calibration process described in Section 4.1
and the reprojection error is minimized while enforc-
ing the multi-coplanarity constraints as indicated in
Section 4.4. Figure 4 shows different views of the re-
covered structure and the positioning of the cameras
and Fig. 5 the reprojection of the model in two original
images. For the intrinsic parameters of each camera,
only the focal lengths are involved. It appears that also
including principal points does not change significantly
the results.

Texture Maps. The texture mapping requires the user
to provide a polygonal delineation for each planar facet

Figure 3. Images used to validate the method.
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Figure 4. Recovered metric structure and motion. The structure is shown as a set of planar polygons while the different cameras (the motion)
are represented by pyramids. The height of a pyramid is proportional to the recovered focal length of the camera. The bottom-right image shows

a rendering from above the point of view of the right image of Fig. 5.

Figure 5. Reprojection of the recovered model onto the original images

features.

in one of the images. The texture maps are then ex-
tracted and perspectively corrected using calibrated
projection matrices and bicubic interpolation. Figure 6
shows different views of the recovered textured
model.

Quality Assessment. We have performed several
measures on the metric reconstruction “before” and
“after” the constrained optimization process (i.e. re-
flecting the changes when using the method described
in this paper). Two kinds of quantity are significant:
length ratios and angles. Table 7 shows measures of
such quantities. In this table, o and o, are the vari-
ances of the length of respectively the height and width

. The yellow crosses indicate the position of the reprojected point

of the largest windows on the two walls, whereas p is
the mean of 1 — 2¢; /m where «; are the measures of
right angles. The values given in Table 7 show that
the metric reconstruction obtained with our method
is clearly of superior quality than the unconstrained
one.

Table 7. Metric measures on the Euclidean reconstruction
“before” and “after” the constrained optimization. The lower
A1, A2 and p (see text) are, the better the reconstruction is.

ol 02 1
Before 0.0489 0.0254 0.1032
After 0.0102 0.0168 0.0720
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Figure 6. Different views of the textured model. Note that artefacts may be induced by possibly unmodeled non-planar parts of the surfaces,
e.g. the pole bulging out of the roof in the top-right image is wrongly mapped to the roof plane, and is therefore distorted in other views, e.g. the

top-left one.

7. Conclusions

We have presented an hybrid approach that draws on the
strengths of both the traditional feature- and primitive-
based approaches, i.e. the reconstruction is accurate
and the recovered model allows to produce photoreal-
istic rendering. More precisely, we focus on the case
of points and planes related by multi-coplanarity con-
straints and on the design of a constrained structure and
motion maximum likelihood estimator in both the pro-
jective and the metric cases. This maximum likelihood
estimator uses a minimal parameterization of scene

structure, enforcing underlying geometric constraints
and a quasi-minimal parameterization of motion.

Experimental results on simulated data show that the
quality of the reconstruction obtained with our method
is clearly superior to those of traditional feature-based
methods, in a large variety of experimental configura-
tions, and for both structure and motion. We also con-
sider the case when surfaces are only approximately
planar and experimentally determined breakpoints of
plane unflatness above which the incorporation of
multi-coplanarity constraints makes the estimation less
reliable.
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The method is validated using real images. The re-
sults are convincing, in terms of both rendering quality
and accuracy of metric values compared to a feature-
based method.

The implementation of our methods comprises
modules for unconstrained projective reconstruction
(“linear” ones and bundle adjustment), constrained pro-
jective reconstruction (initialization and optimization),
self-calibration (“linear” method and optimization), as
well as constrained Euclidean reconstruction (initial-
ization and bundle adjustment).

Notes

1. Note that this is very different from the hybrid approach of
Debevec et al. (1996) which is actually primitive-based.
2. This is not true if the planes form a pencil.
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Abstract

We address the problem of finding optimal point correspondences between images related
by a homography: given a homography and a pair of matching points, determine a pair of
points that are exactly consistent with the homography and that minimize the geometric dis-
tance to the given points. This problem is tightly linked to the triangulation problem, i.e., the
optimal 3D reconstruction of points from image pairs. Our problem is non-linear and iterative
optimization methods may fall into local minima. In this paper, we show how the problem can
be reduced to the solution of a polynomial of degree eight in a single variable, which can be
computed numerically. Local minima are thus explicitly modeled and can be avoided. An ap-
plication where this method significantly improves reconstruction accuracy is discussed. Be-
sides the general case of homographies, we also examine the case of affine transformations,
and closely study the relationships between the geometric error and the commonly used Samp-
son’s error, its first order approximation. Experimental results comparing the geometric error
with its approximation by Sampson’s error are presented.
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1. Introduction

Homographies are used in many applications, e.g., in mosaicing [1] or wide base-
line stereo matching [2,3]. In many applications we also need to compute the error
(or the distance) of a point correspondence with respect to a given homography H.
This is necessary for instance in RANSAC [4], a commonly used robust estimation al-
gorithm. Some applications may require not only to compute the distance of a given
point correspondence to the model of homography but actually need to determine
points, which are consistent with the given homography and are in a small neighbor-
hood of the measured, thus noisy, given points.

This work addresses the problem of finding optimal point correspondences be-
tween images related by an homography: given a known homography and a pair
of matching noisy points, determine a pair of points that are exactly consistent with
the homography and that minimize the geometric distance to the given noisy points.
There are two approaches to achieve such a goal [5]: (1) non-linear optimization us-
ing iterative methods and (2) parametric approach, where the solution is parame-
trized so that it automatically satisfies the given constraint. The paper
concentrates on the latter strategy.

A similar problem, based on the geometric error for the epipolar geometry, has
been addressed by Hartley and Sturm [6]. The geometric error for homographies
was introduced by Sturm [7, Appendix B], and independently derived by Chum
and Pajdla in [8,9]. In this paper, previous results are reviewed from a common per-
spective, the derivation of the geometric error for homographies is described and a
mathematical proof of its correctness given. Furthermore, we discuss the commonly
used approximation of the geometric error, Sampson’s error. Links between the two
are studied in detail, for the general case of homographies, as well as the case of af-
fine transformations between images.

The rest of the paper is structured as follows. Basic concepts are introduced in
Section 2. Section 3 contains the derivation of the formulae for the geometric error.
In Section 4, Sampson’s approximation is derived and studied. Geometric properties
of both error measures are studied in Section 5. Experiments are presented in Section
6. An application of the proposed method is described in Section 7 and conclusions
are given in Section 8.

2. Basic concepts

We assume that a planar homography H [10] and a noisy correspondence x < X’
measured in the images are given. Let the homogeneous coordinates of the corre-
sponding points be x = (x,y,1)" and X' = (x,)/,1)" and the homography be repre-
sented by the (regular) matrix

hy hy hs
H=| hys hs bhg
h, hg  he
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There are several possible ways to measure the “error’’ of that point correspondence
with respect to the homography. We will mention the geometric error and Sampson’s
approximation of it.

Supposing the Gaussian noise model for perturbations of image coordinates, the
maximum likelihood estimation of the position of the noise-free correspondence
X < Hx is obtained by minimizing the geometric error d? = d(x, )2)2 +d(X, H)A()2 over
all x (Fig. 1). This error measure could be thought of as the Euclidean distance of
point X = (x,y,x,)) € R*, representing the given point correspondence, to the
two-dimensional variety Vy (Fig. 2) defined as

Ve = (Y € B ((Y) = 0}, 1)
where t = (t,,,)" and

te = Y1hy + Yrhy + hy — Y1 Y3hy — Y2 Y3hg — Ysho, (2)

ty = Yihy + Yohs 4+ he — Y1 Yahy — YaYshg — Yaho, (3)

i.e., such Y represent point correspondences that are consistent wit