
HAL Id: tel-00080457
https://theses.hal.science/tel-00080457

Submitted on 16 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recherches en vision par ordinateur
Peter Sturm

To cite this version:
Peter Sturm. Recherches en vision par ordinateur. Interface homme-machine [cs.HC]. Institut National
Polytechnique de Grenoble - INPG, 2006. �tel-00080457�

https://theses.hal.science/tel-00080457
https://hal.archives-ouvertes.fr

Recueil d’articles

présenté par

Peter Franz STURM

pour obtenir le grade de

Habilitation à diriger des Recherches

de l’INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

Spécialité : Informatique

——

Recherches en vision par ordinateur

——

Présenté publiquement le 16 mai 2006

devant le jury composé de

Président : M. Roger Mohr INPG

Rapporteurs : M. Kostas Daniilidis University of Pennsylvania

M. Michel Dhome LASMEA

M. Jean Ponce Beckman Institute et University of Illinois

Examinateurs : M. Luc Van Gool Katholieke Universiteit Leuven et ETH Zürich

M. Richard Hartley The Australian National University

M. Radu Horaud INRIA

M. Long Quan Hong Kong University of Science and Technology

Avant-propos

Ce recueil d’articles accompagne le document de synthèse des travaux et activités scientifiques. La structure

de ce document-ci est identique à celle des parties II à V du document de synthèse.

Foreword

This collection of papers accompanies the document containing the synthesis of my research and related

activies (“synthèse des travaux et activités scientifiques”). Its structure is identical to that of parts II to V of

the latter.

Contents

II Calibration and Self-Calibration of Perspective Cameras 1

4 Camera Calibration 3

4.1 Plane-Based Calibration . 3

4.2 Using Linear Calibration Objects . 3

4.3 Calibration of Zoom Lenses . 3

Paper 1: On Plane-Based Camera Calibration: A General Algorithm, Singularities, Applications,

CVPR 1999 . 5

Paper 2: Algorithms for Plane-Based Pose Estimation, CVPR 2000 13

Paper 3: Closed-form Solutions and Degenerate Cases for Camera Calibration with One-Dimensional

Objects, ICCV 2005 . 19

Paper 4: Combining Off- and On-line Calibration of a Digital Camera, 3DIM 2001 27

5 Camera Self-Calibration 35

5.1 Crititcal Motions for Kruppa Equations . 35

5.2 Focal Length Self-Calibration . 35

5.3 Self-Calibration for Planar Motions . 35

5.4 Plane-Based Self-Calibration . 35

5.5 Optimal Fundamental Matrix Estimation . 35

Paper 5: A Case Against Kruppa’s Equations for Camera Self-Calibration, PAMI 2000 37

Paper 6: Critical Motion Sequences for the Self-Calibration of Cameras and Stereo Systems with

Variable Focal Length, IVC 2002 . 43

Paper 7: Focal Length Calibration from Two Views: Method and Analysis of Singular Cases,

CVIU 2005 . 55

Paper 8: Self-calibration of a 1D Projective Camera and its Application to the Self-calibration of

a 2D Projective Camera, PAMI 2000 . 93

Paper 9: Methods and Geometry for Plane-Based Self-Calibration, CVPR 2003 101

Paper 10: Non-Linear Estimation of the Fundamental Matrix With Minimal Parameters, PAMI

2004 . 109

III Generic Camera Models and Unified Treatment of Structure from Motion 117

6 Calibration 119

i

ii Contents

Paper 11: A Generic Concept for Camera Calibration, ECCV 2004 121

Paper 12: Towards Complete Generic Camera Calibration, CVPR 2005 133

Paper 13: Theory and Calibration Algorithms for Axial Cameras, ACCV 2006 139

Paper 14: Calibration of Cameras with Radially Symmetric Distortion, OMNIVIS 2005 147

7 Self-Calibration 157

Paper 15: Towards Generic Self-Calibration of Central Cameras, OMNIVIS 2005 159

Paper 16: Self-Calibration of a General Radially Symmetric Distortion Model, ECCV 2006 . . . 167

8 Structure from Motion 181

Paper 17: On Calibration, Structure-from-Motion and Multi-View Geometry for General Camera

Models, ISPRS-Workshop 2005 . 183

Paper 18: On Calibration, Structure from Motion and Multi-View Geometry for Generic Camera

Models, Book Chapter 2006 . 191

9 Multi-View Geometry 203

Paper 19: Multi-View Geometry for General Camera Models, CVPR 2005 205

Paper 20: Géométrie d’images multiples pour des modèles de caméra généraux, Traitement du

Signal 2005 . 213

Paper 21: Mixing Catadioptric and Perspective Cameras, OMNIVIS 2002 235

IV 3D Reconstruction 243

10 Using Geometric Constraints for 3D Vision 245

10.1 Piecewise Planar Scenes . 245

10.2 Structure from Motion for Lines . 245

10.3 Geometric Constraints . 245

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views of a Piecewise

Planar Scene, IJCV 2003 . 247

Paper 23: The Geometric Error for Homographies, CVIU 2005 267

Paper 24: 3D SSD tracking with estimated 3D planes, CRV 2005 285

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 . . . 291

Paper 26: Structure From Motion Using Lines: Representation, Triangulation and Bundle Ad-

justment, CVIU 2005 . 311

Paper 27: A Method for Interactive 3D Reconstruction of Piecewise Planar Objects from Single

Images, BMVC 1999 . 337

Paper 28: A Method for 3D Reconstruction of Piecewise Planar Objects from Single Panoramic

Images, OMNIVIS 2000 . 345

Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration and 3D Mod-

elling, PAMI 2005 . 353

11 3D Reconstruction of Dynamic Scenes 367

Contents iii

Paper 30: Structure and Motion for Dynamic Scenes – The Case of Points Moving in Planes,

ECCV 2002 . 369

Paper 31: Camera Calibration and Relative Pose Estimation from Gravity, ICPR 2000 385

12 Multi-View Dense 3D Reconstruction 389

Paper 32: Bayesian 3D Modeling from Images using Multiple Depth Maps, CVPR 2005 391

Paper 33: Photorealistic 3D Reconstruction from Handheld Cameras, MVA 2005 399

13 3D Reconstruction of Specular Surfaces 411

Paper 34: Voxel Carving for Specular Surfaces, ICCV 2003 . 413

Paper 35: General Specular Surface Triangulation, ACCV 2006 421

Paper 36: How to Compute the Pose of an Object without a Direct View?, ACCV 2006 429

14 Modelling of 3D Geometry and Reflectance Properties 437

Paper 37: Variational Shape and Reflectance Estimation under Changing Light and Viewpoints,

ECCV 2006 . 439

V Other Works 453

15 Object Tracking 455

Paper 38: Adaptive Tracking of Non-Rigid Objects Based on Color Histograms and Automatic

Parameter Selection, MOTION 2005 . 457

16 Model Selection for Two-View Geometry 465

Paper 39: MDL, Collineations and the Fundamental Matrix, BMVC’99 467

Bibliography 477

Part II

Calibration and Self-Calibration of

Perspective Cameras

1

Chapter 4

Camera Calibration

4.1 Plane-Based Calibration

Paper 1 [29]: P. Sturm and S. Maybank. On plane-based camera calibration: A general algorithm, singu-

larities, applications. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Fort

Collins, Colorado, USA, pages 432–437, June 1999.

Paper 2 [20]: P. Sturm. Algorithms for plane-based pose estimation. In Proceedings of the Conference on

Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, USA, pages 1010–1017,

June 2000.

4.2 Using Linear Calibration Objects

Paper 3 [13]: P. Hammarstedt, P. Sturm, and A. Heyden. Closed-form solutions and degenerate cases for

camera calibration with one-dimensional objects. In Proceedings of the 10th International Conference on

Computer Vision, Beijing, China, October 2005.

4.3 Calibration of Zoom Lenses

Paper 4 [38]: M. Urbanek, R. Horaud, and P. Sturm. Combining off- and on-line calibration of a digi-

tal camera. In Proceedings of the Third International Conference on 3D Digital Imaging and Modeling,

Québec City, Canada, pages 99–106, May 2001.

3

On Plane-Based Camera Calibration:

A General Algorithm, Singularities, Applications

Peter F. Sturm and Stephen J. Maybank

Computational Vision Group, Department of Computer Science, The University of Reading

Whiteknights, PO Box 225, Reading, RG6 6AY, United Kingdom

{P.F.Sturm, S.J.Maybank}@reading.ac.uk

Abstract

We present a general algorithm for plane-based calibra-

tion that can deal with arbitrary numbers of views and cali-

bration planes. The algorithm can simultaneously calibrate

different views from a camera with variable intrinsic pa-

rameters and it is easy to incorporate known values of in-

trinsic parameters. For some minimal cases, we describe

all singularities, naming the parameters that can not be es-

timated. Experimental results of our method are shown that

exhibit the singularities while revealing good performance

in non-singular conditions. Several applications of plane-

based 3D geometry inference are discussed as well.

1 Introduction

The motivations for considering planes for calibrating

cameras are mainly twofold. First, concerning calibration in

its own right, planar calibration patterns are cheap and easy

to produce, a laser printer output for example is absolutely

sufficient for applications where highest accuracy is not de-

manded. Second, planar surface patches are probably the

most important twodimensional “features”: they abound, at

least in man-made environments, and if their metric struc-

ture is known, they carry already enough information to de-

termine a camera’s pose up to only two solutions in general

[4]. Planes are increasingly used for interactive modeling

or measuring purposes [1, 10, 11].

The possibility of calibrating cameras from views of pla-

nar objects is well known [7, 12, 14]. Existing work how-

ever, restricts in most cases to the consideration of a single

or only two planes (an exception is [8], but no details on

the algorithm are provided) and cameras with constant cal-

ibration. In addition, the study of singular cases is usually

neglected (besides in [12] for the simplest case, calibration

of the aspect ratio from one view of a plane), despite their

presence in common configurations.

It is even possible for cameras to self-calibrate from

views of planar scenes with unknown metric structure [13],

however several views are needed (Triggs recommends up

to 9 or 10 views of the same plane for reliable results) and

the “risk” of singularities should be greater compared to cal-

ibration from planes with known metric structure.

In this paper, we propose a general algorithm for cali-

brating a camera with possibly variable intrinsic parameters

and position, that copes well with an arbitrary number of

calibration planes and camera views. Calibration is essen-

tially done in two steps. First, the 2D-to-2D projections of

planar calibration objects onto the image plane(s) are com-

puted. Each of these projections contributes to a system of

homogeneous linear equations in the intrinsic parameters,

which are hence easily determined. Calibration can thus be

achieved by solving linear equations, but can of course be

enhanced by subsequent non linear optimization.

In §2, we describe our camera model and projections of

planar objects. In §3, we introduce the principle of plane-

based calibration. A general algorithm is proposed in §4.

Singularities are revealed in §5. Experimental results are

presented in §6, and some applications described in §7.

2 Background

Camera Model. We use perspective projection to model

cameras. A projection may be represented by a 3 × 4 pro-

jection matrix P that incorporates the so-called extrinsic and

intrinsic camera parameters:

P ∼ KR(I3 | − t) . (1)

Here, ∼ means equality up to a non zero scale factor, I3

is the 3×3 identity matrix, R a 3×3 orthogonal matrix rep-

resenting the camera’s orientation, t a 3-vector representing

its position, and K the 3 × 3 calibration matrix:

K =





τf s u0

0 f v0

0 0 1



 .

In general, we distinguish 5 intrinsic parameters for per-

spective projection: the (effective) focal length f , the aspect

ratio τ , the principal point (u0, v0) and the skew factor s

accounting for non rectangular pixels. The skew factor is

usually very close to 0 and we ignore it in the following.

Calibration and Absolute Conic. Our aim is to calibrate

a camera, i.e. to determine its intrinsic parameters or its

Paper 1: On Plane-Based Camera Calibration. . . , CVPR 1999 [29] 5

calibration matrix K (subsequent pose estimation is rela-

tively straightforward). Instead of directly determining K,

we will try to compute the symmetric matrix KK
T or its in-

verse, from which the calibration matrix can be computed

uniquely using Cholesky decomposition [5]. This leads

to simple and, in particular, linear calibration equations.

Furthermore, the analysis of singularities of the calibration

problem is greatly simplified: the matrix ω ∼ (KK
T)

−1

represents the image of the Absolute Conic whose link to

calibration and metric scene reconstruction is exposed for

example in [2]. This geometrical view helps us with the

derivation of singular configurations (cf. §5).

Planes, Homographies and Calibration. We consider

the use of one or several planar objects for calibration.

When we talk about calibration planes, we mean the sup-

ports of planar calibration objects. The restriction of per-

spective projection to points (or lines) on a specific plane

takes on the simple form of a 3×3 homography that depends

on the relative position of camera and plane and the cam-

era’s intrinsic parameters. Without loss of generality, we

may suppose that the calibration plane is the plane Z = 0.

This way, the homography can be derived from the projec-

tion matrix P by dropping the third column in equation (1):

H ∼ KR





1 0
0 1 −t

0 0



 . (2)

The homography can be estimated from four or more

point or line correspondences. It can only be sensibly de-

composed as shown in equation (2), if the metric structure

of the plane is known (up to scale is sufficient), i.e. if the

coordinates of points and lines used for computing H are

given in a metric frame.

Equation (2) suggests that the 8 coefficients of H (9 mi-

nus 1 for the arbitrary scale) might be used to estimate the 6

pose parameters R and t, while still delivering 2 constraints

on the calibration K. These constraints allow us to calibrate

the camera, either partially or fully, depending on the num-

ber of calibration planes, the number of images, the number

of intrinsic parameters to be computed and on singularities.

3 Principle of Plane-Based Calibration

Calibration will be performed via the determination of

the image of the Absolute Conic (IAC), ω ∼ K
−T

K
−1,

using plane homographies. As mentioned previously, we

consider pixels to be rectangular, and thus the IAC has the

following form (after appropriate scaling):

ω ∼





1 0 −u0

0 τ2 −τ2v0

−u0 −τ2v0 τ2f2 + u2

0 + τ2v2

0



 . (3)

The calibration constraints arising from homographies

can be expressed and implemented in several ways. For

example, it follows from equation (2) that:

H
Tω H ∼ H

T
K
−T

K
−1

H ∼





1 0 −t1
0 1 −t2

−t1 −t2 t
T
t



 .

The camera position t being unknown and the equation

holding up to scale only, we can extract exactly two differ-

ent equations in ω that prove to be homogeneous linear:

h
T

1 ω h1 − h
T

2 ω h2 = 0 h
T

1 ω h2 = 0 , (4)

where hi is the ith column of H. These are our basic

calibration equations. If several calibration planes are avail-

able, we just include the new equations into a linear equa-

tion system. It does not matter if the planes are seen in the

same view or in several views or if the same plane is seen

in several views, provided the calibration is constant (this

restriction is relaxed in the next section). The equation sys-

tem is of the form Ax = 0, with the vector of unknowns

x = (ω11, ω22, ω13, ω23, ω33)
T

. After having determined

x, the intrinsic parameters are extracted via:

τ2 =
ω22

ω11

u0 = −
ω13

ω11

v0 = −
ω23

ω22

f2 =
ω11ω22ω33 − ω22ω

2

13
− ω11ω

2

23

ω11ω
2
22

(5)

4 A General Calibration Algorithm

We describe now how the basic principle can be extended

in two important ways. First, we show that prior knowledge

of intrinsic parameters can be easily included. Second, and

more importantly, we show how the scheme can be applied

for calibrating cameras with variable intrinsic parameters.

4.1 Prior Knowledge of Intrinsic Parameters

Let ai be the ith column of the design matrix A of the lin-

ear equation system described in the previous section. We

may rewrite the equation system as:

ω11a1 + ω22a2 + ω13a3 + ω23a4 + ω33a5 = 0 .

Prior knowledge of, e.g. the aspect ratio τ , allows us

via equation (5) to eliminate one of the unknowns, say ω22,

leading to the reduced linear equation system:

ω11(a1 + τ2
a2) + ω13a3 + ω23a4 + ω33a5 = 0 .

Prior knowledge of u0 or v0 can be dealt with similarly.

The situation is different for the focal length f , due to the

complexity of equation (5): prior knowledge of f allows to

eliminate unknowns only if the other parameters are known,

too. However, this is not much of an issue – it is rarely the

case that the focal length is known beforehand while the

other intrinsic parameters are unknown.

6 Chapter 4. Camera Calibration

4.2 Variable Intrinsic Parameters

We make two assumptions that are not very restrictive

but eliminate useless special cases to deal with. First, we

consider the aspect ratio to be constant for a given camera.

Second, the principal point may vary, but only in conjunc-

tion with the focal length. Hence, we consider two modes

of variation: only f varies or f, u0 and v0 vary together.

If we take into account the calibration equations arising

from a view for which it is assumed that the intrinsic pa-

rameters have changed with respect to the preceding view

(e.g. due to zooming), we just have to introduce additional

unknowns in x and columns in A. If only the focal length is

assumed to have changed, a new unknown ω33 is needed. If

in addition the principal point is supposed to have changed,

we add also unknowns for ω13 and ω23 (cf. equation (3)).

The corresponding coefficients of the calibration equations

have to be placed in additional columns of A.

Note that the consideration of variable intrinsic parame-

ters does not mean that we have to assume different values

for all views, i.e. there may be views sharing the same in-

trinsics, sharing only the aspect ratio and principal point, or

sharing the aspect ratio alone.

4.3 Complete Algorithm

The complete algorithm consists of the following steps:

1. Compute plane homographies from feature correspon-

dences.

2. Construct the equation matrix A according to the di-

rections outlined in §§3,4.1 and 4.2.

3. Ensure good numerical conditioning of A (see below).

4. Solve the equation system to least squares by any stan-

dard method and extract the intrinsic parameters from

the solution as shown in equation (5).

Conditioning. We may improve the conditioning of A by

the standard technique of rescaling rows and columns [5].

In practice, we omit row-wise rescaling for reasons ex-

plained below. Columns are rescaled such as to have equal

norms. The coefficients of the solution vector of the modi-

fied equation system have to be scaled accordingly to obtain

the solution of the original problem. In our experiments,

this rescaling proved to be crucial to obtain reliable results.

As for rescaling rows, this proves to be delicate in our

case, since occasionally there are rows with all coefficients

very close to zero. Rescaling these rows will hugely mag-

nify noise and lead to unreliable results.

Comments. The described calibration algorithm requires

mainly the least squares solution of a single linear equa-

tion system. Naturally, the solution may be optimized sub-

sequently using non linear least squares techniques. This

optimization should be done simultaneously for the calibra-

tion and the pose parameters, that may be initialized in a

straightforward manner from the linear calibration results.

For higher accuracy, estimation of optical distortion param-

eters should be included.

Minimal Cases. Each view of a calibration object pro-

vides two calibration equations. Hence, in the absence

of singularities, the following minimal calibration schemes

may be realized: with a single view of a single plane, we

might calibrate the aspect ratio and focal length, provided

the principal point is given. With two views of a single

plane, or one view of two planes we can fully calibrate the

camera. Three views of a single plane, taken by a zooming

camera, enable calibration of the 3 different focal lengths,

as well as the constant aspect ratio and principal point.

5 Singularities

The successful application of any algorithm requires

awareness of singularities. This helps avoiding situations

where the result is expected to be unreliable or restricting

the problem at hand to a solvable one. We describe here the

singularities of calibration from one or two planes.

Due to lack of space, we are only able to give a sketch

of the derivations. A first remark is that only the relative

orientation of planes and camera is of importance for singu-

larities, i.e. the position and the actual intrinsic parameters

do not influence the existence of singularities. A second

observation is that planes that are parallel to each other pro-

vide exactly the same information as a single plane with the

same orientation (except that more feature correspondences

may provide a higher robustness in practice). So, as for the

case of two calibration planes, we omit dealing with parallel

planes and instead refer to the one-plane scenario.

Since the calibration equations are linear, singularities

imply the existence of a linear family of solutions for the

IAC ω. Hence, there is also a degenerate conic ω′, i.e. a

conic consisting of the points on two lines only. Let us note

that any conic that satisfies the calibration equations (4),

contains the projections of the circular points of the cali-

bration planes. Naturally, this is also valid for ω′. If we

exclude the planes of being parallel to each other (cf. the

above discussion), the two lines making up ω′ are nothing

else than the vanishing lines of the calibration planes. There

is one point left to consider: since we are considering rect-

angular pixels, the IAC is required to be of the form (3), i.e.

its coefficient ω12 is zero. Geometrically, this is equivalent

to the conic being symmetric with respect to a vertical and a

horizontal line (this is referred to as “reflection constraint”

in table 2). Based on these considerations, it is a rather me-

chanical task to derive all possible singularities.

All singularities for one- and two-plane calibration and

for different levels of prior knowledge are described in ta-

Paper 1: On Plane-Based Camera Calibration. . . , CVPR 1999 [29] 7

bles 1 and 2. We reveal which of the intrinsic parame-

ters can/can’t be estimated uniquely. The tables contain

columns for τf and f which stand for the calibrated fo-

cal length, measured in horizontal and vertical pixel dimen-

sions respectively. In some cases it is possible to compute,

e.g. τf , but not to compute τ or f individually.

A general observation is that a plane parallel to the im-

age plane, allows to estimate the aspect ratio, but no other

parameters. Generally speaking, the more regular the geo-

metric configuration is, the more singularities may occur.

Prior Pos. of cal. plane τ τf f u0 v0

u0, v0 Parallel to image pl. + - - + +

Perpend. to image pl.

parallel to u axis - + - + +

parallel to v axis - - + + +

else - - - + +

Else

parallel to u axis - - - + +

parallel to v axis - - - + +

else + + + + +

τ Parallel to u axis + - - + -

Parallel to v axis + - - - +

Else + - - - -

τ, u0, v0 Parallel to image pl. + - - + +

Table 1. Singularities of calibration from one plane.

Here, parallelism to the image plane’s u or v axis

means parallelism in 3­space.

6 Experimental Results

We performed a number of experiments with simulated

and real data, in order to quantify the performance of our

method, to motivate its use in applications described in the

following section and to exhibit singularities.

6.1 Simulated Experiments

For our simulated experiments, we used a diagonal cal-

ibration matrix with f = 1000 and τ = 1. Calibration

is performed using the projections of the 4 corner points

of squares of size 40cm. The distance of the calibration

squares to the camera is chosen such that the projections

roughly fill the 512 × 512 image plane. The projections of

the corner points are perturbed by centered Gaussian noise

of 0 to 2 pixels variance.

We only display graphs showing the behavior of our al-

gorithm with respect to other parameters than noise; note

however that in all cases, the behavior with respect to noise

is nearly perfectly linear. The data in the graphs shown stem

from experiments with a noise level of 1 pixel. The errors

shown are absolute ones (scaled by 1000 for the aspect ra-

tio). Each point in a graph represents the median error of

1000 random experiments. The graphs of the mean errors

are similar but less smooth.

One plane seen in one view. The scenario and results

are shown in the upper part of figure 1. Calibration is per-

formed for different orientations of the square, ranging from

0◦ (parallel to the image plane) to 90◦ (perpendicular to the

image plane). Given the principal point, we calibrated the

aspect ratio and the focal length. An obvious observation

is the presence of singularities: the error of the aspect ratio

increases considerably as the calibration square tends to be

perpendicular to the image plane (90◦). The determination

of the focal length is impossible for the extreme cases of

parallelism and perpendicularity. Note that these observa-

tions are all predicted by table 1. In the range of [30◦, 70◦],
the relative error for the focal length is below 1%, while the

aspect ratio is estimated correctly within 0.01%.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

C
a
lib

ra
ti
o
n
 e

rr
o
r

Angle

Aspect ratio, x1000
Focal length

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

C
a
lib

ra
ti
o
n
 e

rr
o
r

Angle

Aspect ratio, x1000
Focal length

Aspect ratio (standard), x1000
Focal length (standard)

Figure 1. Simulation scenarios and results.

Two planes seen in one view. Calibration is performed

with a camera rotating about its optical axis by 0◦ to 90◦.

Two planes with an opening angle of 90◦ are observed (cf.

lower part of figure 1). Plane-based calibration is now done

without any prior knowledge of intrinsic parameters. For

comparison, we also calibrate with a standard method [3],

using full 3D coordinates of the corner points as input.

The standard calibration approach is insensitive to rota-

tion about the optical axis. As for the plane-based method,

the singularities for the estimation of the aspect ratio and the

focal length for angles of 0◦ and 90◦ are predicted by table

2. As for the intermediate range of orientations, the estima-

tion of the aspect ratio by the plane-based method is 3 to 4

times worse than with the standard approach, although it is

still quite accurate. As for the focal length, the plane-based

estimate is even slightly better between 30◦ and 70◦. The

error graphs for u0 and v0 are not shown; for both methods

8 Chapter 4. Camera Calibration

Prior Position of calibration planes τ τf f u0 v0

None One plane is parallel to the image plane cf. case of known τ in table 1

General case of planes satisfying reflection constraint (see caption) - - - - -

Both planes are parallel to the u axis - - - + -

Same absolute incidence angle with respect to image plane - - - + +

Both planes are parallel to the v axis - - - - +

Same absolute incidence angle with respect to image plane - - - + +

Vanishing lines intersect “above” the principal pt. i.e. at a point (u0, v, 1) - - - + -

Vanishing lines intersect at a point (u, v0, 1) - - - - +

Both planes are perpendicular to image (and satisfy reflection constraint) - - - + +

u0, v0 At least one plane is parallel to the image plane cf. case of known τ, u0, v0 in table 1

Both planes are perpendicular to the image (and satisfy reflection constr.) - - - + +

τ One plane is parallel to the image plane cf. case of known τ in table 1

τ, u0, v0 One plane is parallel to the image plane cf. case of known τ, u0, v0 in table 1

Table 2. Singularities of calibration from two planes. The cases of parallel planes are not displayed, but may

be consulted in the appropriate parts of table 1 on one­plane calibration. In all configurations not represented

here, all intrinsic parameters can be estimated. By “reflection constraint” we mean that the vanishing lines of

the two planes are reflections of each other by both a vertical and a horizontal line in the image.

they are nearly horizontal (i.e. there is no singularity), the

errors of the plane-based estimation being about 30% lower

than with the standard approach.

6.2 Calibration Grid

We calibrated a camera from images of a 3D calibra-

tion grid with targets arranged in three planes (cf. figure

2). For comparison, calibration was also carried out using

a standard method [3]. We report the results of two experi-

ments. First, 4 images were taken from different positions,

but with fixed calibration. The camera was calibrated from

single views in different modes: standard calibration using

all points or points from two planes only, plane-based cal-

ibration from one, two or three planes with different levels

of prior knowledge (cf. table 3). Prior values were taken

from the results of standard calibration.

Figure 2. Calibration grid and lab scene.

Table 3 shows the mean and standard deviation of the

results for the focal length, computed over the 4 views and

over all combinations of planes. We note that even the one-

plane method gives results very close to those of the stan-

dard method that uses all points and their full 3D coordi-

Method f

Standard calibration from three planes 1041.4 ± 0.6
Standard calibration from two planes 1042.1 ± 3.3

One plane, u0, v0 known 1044.5 ± 9.0
One plane, τ, u0, v0 known 1041.2 ± 3.7
Two planes, nothing known 1043.6 ± 4.7
Two planes, τ known 1040.7 ± 2.7
Two planes, u0, v0 known 1040.2 ± 2.5
Two planes, τ, u0, v0 known 1040.3 ± 2.1
Three planes, nothing known 1039.9 ± 0.7

Table 3. Results for calibration grid.

Method Focal lengths

Standard 714.7 1041.4 1386.8 1767.4 2717.2

Planes 709.9 1042.7 1380.2 1782.8 2702.0

Table 4. Results for variable focal length.

nates. The precision of the plane-based results is lower than

for full standard calibration, though comparable to standard

calibration using two planes. The results are very accurate

despite the proximity to singular configurations. This may

be attributed to the high accuracy of target extraction.

For the second experiment, we took images at 5 different

zoom positions. The camera was calibrated using the 5 × 3
planes simultaneously, where for each zoom position an in-

dividual focal length and principal point were estimated.

Table 4 shows the results for the focal lengths (a value of

1000 corresponds to about 7.5mm), compared to those of

standard calibration, averaged over single views. The devi-

ation increases with the focal length but stays below 1%.

6.3 Lab Scene

A pair of images of an ordinary lab scene were taken.

A rectangular part of a computer tower (cf. figure 2) was

Paper 1: On Plane-Based Camera Calibration. . . , CVPR 1999 [29] 9

used for calibration. Subsequently, the pose of the views

with respect to the calibration plane was determined. The

three points shown in figure 2 were triangulated and their

3D distances measured and compared to hand-measured

ones. The differences for the pairs (1,2), (1,3) and (2,3)

were 4mm, 3mm and 0mm respectively, for absolute dis-

tances of 275mm, 347mm and 214mm. These results are

about as good as we might expect: the edges of the rectan-

gular patch are rounded, thus not reliably extracted in the

images. The measured point distances are “extrapolated”

from this rectangle, thus amplifying the errors of edge ex-

traction. From the views’ calibration and pose, we com-

puted the epipolar geometry and found that the distance of

points to corresponding epipolar lines was about 1 pixel,

even at the borders of the images.

This simple experiment highlights two issues. First, be-

sides calibrating the views, we readily obtain their pose in

a metric 3D frame. Second, we obtain reasonable estimates

of matching constraints, potentially for distant views.

7 Applications

Cheap Calibration Tool. Planar patterns are easy to pro-

duce, while enabling a reasonably reliable calibration.

Ground Plane Calibration. We have successfully per-

formed experiments with images of traffic scenes. Ground

plane calibration from road markers is used to restrict the

pose of vehicles to be detected and tracked.

Reconstruction of Piecewise Planar Objects from Sin-

gle Views. Using geometrical constraints such as copla-

narity, parallelism, right angles etc., 3D objects may be re-

constructed from a single view (see e.g. [10]). Our calibra-

tion method requires knowledge of the metric structure of

planes. This requirement may be relaxed by simultaneously

determining calibration and plane structure, e.g. one view

of a rectangle allows to determine the focal length and the

ratio of the rectangle’s edge lengths. We are using this in

combination with the mentioned geometrical constraints to

reconstruct objects from a single image.

Reconstruction of Indoor Scenes. Our calibration

method is the central part of ongoing work on a system for

interactive multi-view 3D reconstruction of indoor scenes,

similar in spirit to the approaches presented in [10, 11].

The main motivation for using plane-based calibration is

to make a compromise between requirements on flexibil-

ity, user interaction and implementation cost. We achieve

flexibility by not requiring off-line calibration: our cali-

bration patterns, planar objects, are omnipresent in indoor

scenes. The amount of user interaction is rather little: we

usually use rectangles as calibration objects; they have to be

delineated in images and their edge lengths measured. By

identifying planar patterns across distant views, we not only

can simultaneously calibrate many views but also compute

a global initial pose of many views to bootstrap, e.g. wide

baseline matching. This scheme relies on methods that are

relatively simple to implement and might provide a useful

alternative to completely automatic techniques such as [9]

that are more flexible but more difficult to realise.

Augmented Reality. A nice and useful application of

plane-based calibration and pose estimation is presented in

[6]. Rectangular plates are used to mark the position of non

planar objects to be added to a video sequence, which is in

some way a generalisation of “overpainting” planar surfaces

in videos by homography projection of a desired pattern.

Plane-based methods may also be used for blue screening;

attaching calibration patterns on the blue screen allows to

track camera pose and calibration and thus to provide input

for positioning objects in augmented reality.

8 Conclusion

We presented a general and easy to implement plane-

based calibration method that is suitable for calibrating vari-

able intrinsic parameters and that copes with any number of

calibration planes and views. Experimental results are very

satisfactory. For the basic cases of one or two planes, we

gave an exhaustive list of singularities. Several applications

of plane-based calibration were described. An analytical er-

ror analysis might be fruitful, i.e. examining the influence

of feature extraction errors on calibration accuracy.

An extended version of this paper can be retrieved at

http://www.cvg.cs.reading.ac.uk/˜pfs/plane.ps.gz.

References

[1] A. Criminisi, I. Reid, A. Zisserman, “Duality, Rigidity and

Planar Parallax,” ECCV, pp. 846-861, 1998.

[2] O. Faugeras, “Stratification of Three-Dimensional Vision:

Projective, Affine and Metric Representations,” Journal of

the Optical Society of America A, 12, pp. 465-484, 1995.

[3] O. Faugeras, G. Toscani, “Camera Calibration for 3D Com-

puter Vision,” Int. Workshop on Machine Vision and Ma-

chine Intelligence, pp. 240-247, 1987.

[4] R.J. Holt, A.N. Netravali, “Camera Calibration Problem:

Some New Results,” CVIU, 54 (3), pp. 368-383, 1991.

[5] A. Jennings, J.J. McKeown, Matrix Computation, 2nd edi-

tion, Wiley, 1992.

[6] M. Jethwa, A. Zisserman, A. Fitzgibbon, “Real-time

Panoramic Mosaics and Augmented Reality,” BMVC, pp.

852-862, 1998.

[7] R.K. Lenz, R.Y. Tsai, “Techniques for Calibration of the

Scale Factor and Image Center for High Accuracy 3-D Ma-

chine Vision Metrology,” PAMI, 10 (5), pp. 713-720, 1988.

[8] F. Pedersini, A. Sarti, S. Tubaro, “Multi-Camera Acquisi-

tions for High-Accuracy 3D Reconstruction,” SMILE Work-

shop, pp. 124-138, 1998.

[9] M. Pollefeys, R. Koch, M. Vergauwen, L. Van Gool, “Met-

ric 3D Surface Reconstruction from Uncalibrated Image Se-

quences,” SMILE Workshop, pp. 139-154, 1998.

10 Chapter 4. Camera Calibration

[10] H.-Y. Shum, R. Szeliski, S. Baker, M. Han, P. Anandan, “In-

teractive 3D Modeling from Multiple Images Using Scene

Regularities,” SMILE Workshop, pp. 236-252, 1998.

[11] R. Szeliski, P.H.S. Torr, “Geometrically Constrained Struc-

ture from Motion: Points on Planes,” SMILE Workshop, pp.

171-186, 1998.

[12] R.Y. Tsai, “A Versatile Camera Calibration Technique

for High-Accuracy 3D Machine Vision Metrology Using

Off-the-Shelf TV Cameras and Lenses,” IEEE Journal of

Robotics and Automation, 3 (4), pp. 323-344, 1987.

[13] B. Triggs, “Autocalibration from planar scenes,” ECCV, pp.

89-105, 1998.

[14] G.-Q. Wei, S.D. Ma, “A Complete Two-Plane Camera Cali-

bration Method and Experimental Comparisons,” ICCV, pp.

439-446, 1993.

Paper 1: On Plane-Based Camera Calibration. . . , CVPR 1999 [29] 11

Algorithms for Plane-Based Pose Estimation

Peter Sturm∗

INRIA Rhône-Alpes

655 Avenue de l’Europe

38330 Montbonnot St Martin, France

Peter.Sturm@inrialpes.fr

Abstract

We present several methods for the estimation of relative

pose between planes and cameras, based on projections of

sets of coplanar features in images. While such methods ex-

ist for simple cases, especially one plane seen in one or sev-

eral views, the aim of this paper is to propose solutions for

multi-plane multi-view situations, possibly with little over-

lap. We propose a factorization-based method for the gen-

eral case of n planes seen in m views. A mechanism for

computing missing data, i.e. when one or several of the

planes are not visible in one or several of the images, is de-

scribed. Experimental results for real images are shown.

1. Introduction

The work presented in this paper is part of a project on

multi-view 3D modeling based on scene regularities. Scene

regularities like coplanarity of points or lines, perpendicu-

larity and parallelism of lines or planes etc. are increas-

ingly used for interactive 3D modeling of man-made scenes

[1, 2, 3, 12, 13, 15]. Typically, the entire scene (often a

building) is depicted by hand in one or several images; ge-

ometric constraints representing scene regularities enable a

3D reconstruction of the scene. This approach is feasible

and gives good results if the scene consists of a limited num-

ber of “primitives” and if its geometry can be described well

enough by geometric constraints like the ones mentioned.

If the environment to be modeled is large and cluttered,

it is usually not feasible to depict all the primitives needed

for a 3D model. Also, useful geometric constraints might

often only be provided for a fraction of the environment. In

such circumstances, one natural solution for 3D modeling is

triangulation, based on feature correspondences obtained by

image matching. Beside the matching, camera calibration

and relative camera pose have to be obtained. A complete

automatization of this process is of course desirable, but it is

questionable if current systems are performing well enough

for cluttered large scenes. Also, there will always persist a

certain failure rate; so, a user might prefer to trade a limited

amount of interaction for a higher reliability of the results.

∗This work is partially supported by the EPSRC funded project

GR/K89221 (Vector).

We follow a different approach, as described in the fol-

lowing. Given a set (or a sequence) of images of an environ-

ment, we first want to use scene regularities (and associated

features depicted in images by a user) to calibrate the views

and estimate their relative pose. Once this is achieved, the

calibration and pose information give us multi-view con-

straints for automatically matching and triangulating other

features than those used to capture the scene regularities.

Attractive “primitives” for calibration and pose estima-

tion are planar objects with known metric structure: each

image of such an object provides two constraints on cali-

bration and, if calibration can be fully determined, relative

pose up to two solutions in general [6]. Especially rectan-

gles are very useful since determining their metric structure

is done by simply measuring their edge lengths and since

they abound in man-made environments.

Pose estimation from planar objects turns out to be

rather harder than camera calibration: calibration con-

straints based on the projection of planar objects with

known metric structure [8, 9, 14, 17, 18, 19] can be accu-

mulated over many images. As for pose estimation how-

ever, the goal is to obtain relative camera (and plane) pose

in a global reference frame: estimation of relative pose of

two cameras seeing the same plane is rather easy (see e.g.

[6] and references therein for algorithms), but estimating si-

multaneously the pose of m cameras, each one seeing one

or only a few of n planes, is not trivial. We are not aware

of general methods for this task in the literature, although it

is quite probable that developments have been made in the

photogrammetric community. However, photogrammetric

techniques are often designed for strong camera network

geometries or for situations where at least approximate pose

information is already available.

The paper is organized as follows. The problem of multi-

view multi-plane pose estimation is formulated in §2. A

method for the basic one-view one-plane case is given in

§3. A factorization-based method for the multi-view multi-

plane situation is presented in §4. Experimental results are

shown in §5, followed by conclusions.

Notation. As already mentioned above, for a 3 × 3 ma-

trix A, Ā is the 3 × 2 submatrix consisting of its first two

columns. The sign ∼ means equality up to scale (for vec-

tors or matrices). The symbol I denotes the identity matrix.

Paper 2: Algorithms for Plane-Based Pose Estimation, CVPR 2000 [20] 13

2. Problem Formulation

The problem at hand is to estimate the relative pose of

m cameras and n planes, based on projections of the planes

(i.e. features on the planes) in (some of) the cameras. In the

following, we only deal with point features, but our ideas

may be extended to other features. We suppose that the met-

ric structure of the planes is known, i.e. that the coordinates

of points on a plane are known in some Euclidean refer-

ence frame attached to the plane. Using this information,

the cameras may be calibrated, e.g. using our algorithm de-

scribed in [14]. In the following we thus suppose that the

cameras are calibrated.

We now describe the coordinate transformations that

lead from 2D point coordinates of points on a plane to the

coordinates of their projections in an image. Let Qjk be the

kth point on the jth plane, given by coordinates (Xjk, Yjk).
Let the position and orientation of the jth plane (in the se-

quel simply called the plane’s pose) be given by a rotation

matrix Sj and a translation vector vj with respect to some

global 3D world reference frame, such that the coordinates

of Qjk in that global frame are:

Qw
jk =







Sj vj

0T 1













Xjk

Yjk

0
1







.

Let the pose of camera i be given by Ri and ti, such that the

coordinates of Qjk in the local camera frame are:

Qc
ijk =







Ri ti

0T 1







Qw
jk .

The camera model used throughout the paper is perspective

projection, i.e. the coordinates of the projected point are:

qijk ∼



 Ki 0



Qc
ijk

∼ Ki



 RiSj Rivj + ti











Xjk

Yjk

0
1







(1)

where Ki is the calibration matrix of view i.

The aim of the algorithms presented in this paper is to

determine camera and plane pose, i.e. the Ri, ti, Sj and

vj , from the calibration matrices Ki, the metric structure

of the planes, represented by the (Xjk, Yjk), and the image

points qijk . The computations are based on homographies

for camera–plane pairs that represent the perspective pro-

jections of the planes onto the image planes. The homogra-

phy Hij for camera i and plane j is (this is simply the matrix

of equation (1), without the third column):

Hij ∼ Ki

((
RiS̄j

)

3×2
(Rivj + ti)3×1

)

where S̄j is the 3 × 2 submatrix of Sj consisting of its first

two columns. Since calibration is known, we may compute

Mij ∼ Ki
−1

Hij ∼
((

RiS̄j

)

3×2
(Rivj + ti)3×1

)

.

The algorithms described in the following determine pose

using these homographies Mij . The basic constraint used

is that the first two columns of any Mij are the first two

columns of a rotation matrix, up to scale.

The homographies are computed from point matches be-

tween planes and the images, by a linear method analogous

to the 8-point method for the fundamental matrix [4].

3. Basic Case: One Plane Seen in One View

Suppose the view is calibrated and the homography H

(we omit the subscripts in this section) has been computed.

As shown above, we can compute the matrix

M ∼
((

RS̄
)

3×2
(Rv + t)

3×1

)

Of course, we can only compute relative pose, i.e. a rotation

matrix T and a vector w such that:

T = RS (2)

w = S
Tv + S

T
R

Tt (3)

in which case we have:

M ∼ T





1 0
0 1 w

0 0



 .

In the absence of noise, the solution for T and w, given M,

is simple: first, scale M such that its first two columns have

unit norm (there are two such scale factors, linked by sign

reversal). The first two columns of M are then adopted as

the first two columns of T. The third column of T is com-

puted as the cross product of the first two (plus possibly a

scaling by −1 to ensure that detT = +1). Then, w is ob-

tained as the third column of
(
TT

)
M (M scaled as above).

There are two solutions in general (due to the existence of

two scale factors for M), which are related as follows:

T
′ = T





−1 0 0
0 −1 0
0 0 1



 w′ =





1 0 0
0 1 0
0 0 −1



w

14 Chapter 4. Camera Calibration

In practice, it is easy to disambiguate between these two:

the two solutions for w correspond to optical centers on ei-

ther side of the plane. Thus, it is sufficient to know which

side of a plane is visible (assuming that a planar object has

only one visible side). We achieve this e.g. by giving the co-

ordinates of points on the plane in a reference frame whose

positive Z axis (the axis perpendicular to the plane) shows

toward the “visibility half-space”, and then choosing the

pose whose w has a negative third coefficient, or vice versa.

If noise is present, M will not be exactly of the form

shown above, and we have to determine some “best” T and

w. As usual in this case, the criterion used is the Frobenius

matrix norm ‖ · ‖F (root of sum of squared matrix coeffi-

cients). Concretely, the problem may be formulated as:

min
T,w,λ

‖λM − T





1 0
0 1 w

0 0



‖2

F subject to T
T

T = I (4)

It is easy to show, along the lines of [5], that the optimal

solution for the rotation T can be obtained independently

from λ and w, and that these may then be obtained from T.

The optimal solution for T is obtained by solving the

following subproblem:

min
T̄

‖M̄ − T̄‖2

F subject to
(
T̄

T
)
T̄ = I2 . (5)

In words, we determine the rotation matrix T whose first

two columns are closest to those of M, in the sense of the

Frobenius norm. Note that this is different from the formu-

lation chosen by Zhang [19], who finds the rotation matrix

closest to the 3 × 3 matrix consisting of M̄ and a third col-

umn computed (more or less) as the cross product of these

first two columns. It can be shown that this approach does

not solve the original problem (4) optimally.

Problem (5) is easily solved using Singular Value De-

composition (SVD). Let M̄3×2 = U3×2Σ2×2V
T
2×2

be the

SVD of M̄. The optimal “amputated” rotation T̄ is then:

T̄ = UV
T .

The third column of T may then be computed in the same

manner as described above for the noise free case.

Having solved for T, the optimal scale factor λ and vec-

tor w are obtained as:

λ =
trace(T̄T M̄)

trace(M̄T M̄)
=

∑
3

i=1

∑
2

j=1
TijMij

∑
2

j=1
M2

ij

w =
(
T

T
)
M





0
0
λ



 .

Again, there are two solutions in general which can be dis-

ambiguated as discussed for the noise free case.

We do not claim that the method presented in this section

is original, but describe it here since it is an important part

of the method described in the next section.

4. Multi-View Multi-Plane Pose

The method of the previous section may be used to de-

termine the relative pose for m cameras observing a sin-

gle plane or n planes being observed by a single camera,

by applying it for individual camera–plane pairs and stitch-

ing together the results. However, if more than one camera

observe more than one plane, the situation is more compli-

cated. In the following, we present a method that uses the

relative pose information obtained for individual camera–

plane pairs simultaneously to determine global relative pose

of cameras and planes. We first assume that all planes are

visible in all cameras. The case of missing data is dealt with

in §4.2.

In the following, we first compute the rotational part of

the pose, followed in §4.3 by the translations.

4.1. Rotational Part of Pose

Let Tij represent the rotational part of the relative pose

between camera i and plane j, as computed using the

method of §3. We may group all equations of type (2) for

camera–plane pairs in one single equation system:








T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

. . .
...

Tm1 Tm2 · · · Tmn








︸ ︷︷ ︸

W

=








R1

R2

...

Rm








︸ ︷︷ ︸

R

(
S1 S2 · · · Sn

)

︸ ︷︷ ︸

S

(6)

This equation motivates the idea of solving for the Ri and

Sj by factorization: the matrix W is (in absence of noise) of

rank 3 and its three non zero singular values are all equal. If

noise is present, we may estimate the matrix W′ with these

properties that is closest to W in the sense of the Frobenius

norm, as follows. Let W = UΣVT be the SVD of W. Let

U′ (V′) be the matrix consisting of the first three columns of

U (V). The optimal W′ is then given by W′ = U′V′T.

Since U′ and V′ have the same dimensions as R and S

in equation (6), we may try to extract the rotation matrices

Ri and Sj from them. The factorization does not guarantee

that the 3 × 3 submatrices of U′ and V′ are valid rotations.

Thus, we determine the Ri and Sj as the rotation matrices

that are closest to the according submatrices in U′ and V′.

This is described in [5].

One issue to discuss is the possibility of ambiguities in

the factorization, i.e. the existence of matrices A such that

(U′
A)

(

A
−1

V
′T

)

is a valid solution for our problem. Since

the two matrices resulting from the factorization have to be

collections of rotation matrices, it can be shown that the

only possible ambiguities correspond to A being a rotation

matrix. This is no problem here, since naturally the Ri and

Sj can only be determined up to a global rotation.

Paper 2: Algorithms for Plane-Based Pose Estimation, CVPR 2000 [20] 15

Another important issue is numerical condition. The ma-

trix to be factorized is a collection of rotation matrices, thus

automatically well balanced, i.e. its coefficients are in aver-

age of the same magnitude. Also, the three non zero singu-

lar values are equal (in the noise free case), suggesting that

even in the noisy case the condition should be good.

4.2. Computing Missing Data

Our method suffers, as all factorization approaches, from

the problem of missing data: in practice we will often meet

the case where several planes are not visible in several cam-

eras, thus the matrix to be factorized is not entirely defined.

Solutions to this problem have been proposed [7, 11, 16];

these are either of an ad hoc or heuristic nature or rely on

an initialization by some (unclear) means. We propose an-

other ad hoc approach for our problem. Our situation is not

too bad, since the missing entries in the matrix to be factor-

ized are 3× 3 rotation matrices, thus providing some useful

constraints for their determination.

The computation of the missing rotation Tij between a

camera i and a plane j is based on the following observa-

tion. If we know, for some i′ and j′, the rotations Ti′j′ , Ti′j

and Tij′ , then we can compute Tij as (cf. equation (2)):

Tij = Tij′
(
T

T

i′j′

)
Ti′j

If several such combinations are available, we may com-

pute Tij as their “average”. To do so, we simply add up the

individual estimations of Tij to a matrix A and compute Tij

as the rotation matrix that best approximates A, in the sense

of the Frobenius norm (see [5]).

Computation of missing data has usually to be done in a

cumulative manner, i.e. some of the Tij can only be com-

puted using other matrices that were missing at the outset

but have been computed as shown above.

4.3. Translational Part of Pose

Having computed the rotational part of camera and plane

pose, the translational part may be determined as follows.

Let wij represent the translational part of the relative pose

between camera i and plane j, as computed using the

method in §3. From equation (3), we have:

wij = S
T

j vj + S
T

j R
T

i ti .

Since we know Sj , we may compute

w′

ij = Sjwij = vj + R
T

i ti .

A cost function for estimating the vj and t′i = RT
i ti is then:

c =
∑

i,j

‖w′

ij − vj − t′i‖
2 (7)

where summation is over all available camera–plane pairs.

The partial derivatives of criterion (7) with respect to the

kth entry of vj and the pth entry of t′i respectively are:

∂c

∂vjk

= 2
∑

i

(
w′

ijk − vjk − t′ik
)

(8)

∂c

∂t′ip
= 2

∑

j

(
w′

ijp − vjp − t′ip
)

. (9)

Criterion (7) may be minimized by solving for the common

roots of the partial derivatives. This can be done by solving

the following simple linear equation system (shown for the

case where all planes are seen in all views):












mI I · · · I
. . .

...
. . .

...

mI I · · · I
I · · · I nI
...

. . .
...

. . .

I · · · I nI

























v1

...

vn

t′
1

...

t′m













=













∑

i w
′

i1

...
∑

i w
′

in∑

j w′

1j

...
∑

j w′

mj













We use a special method to solve this sparse system. The so-

lution is of course only determined up to translation: adding

a 3-vector to all the vj and subtracting it from all the t′i does

not affect criterion (7).

4.4. Complete Algorithm

1. Compute homographies between planes and images.

2. If the cameras are not calibrated yet, calibrate them

using one of the methods in [8, 14, 17, 18, 19].

3. Estimate relative pose between pairs of planes and

cameras as described in §3.

4. Compute missing data as described in §4.2.

5. Estimate the rotational part of global relative pose by

factorization as described in §4.1.

6. Estimate the translational part of pose (cf. §4.3).

7. Optional, but recommended: simultaneous (non-

linear) optimization of pose and calibration parame-

ters (including distortion). Not explained in detail here

(lack of space), but rather straightforward to imple-

ment.

5. Experimental Results

We have tested our methods with image sequences of

different types. First, images of a calibration grid were used

to evaluate their performance with respect to the number

of images used. Second, planar patterns printed on paper

were attached to all the walls of a room. This scene is a

test for our methods in the case of a high amount of miss-

ing data. The third image sequence is of the same type as

the second one, however the planar objects used for calibra-

tion and pose estimation were part of the scene (rectangular

objects like windows, doors, computer screens etc.).

16 Chapter 4. Camera Calibration

5.1. Calibration Grid

Images of a calibration grid (see figure 2) were taken

with a Canon MV-1 Camcorder. For different zoom posi-

tions, 4 images each were taken from different positions.

The input to our methods were the coordinates of circular

targets in each of the three planes of the grid, and the corre-

sponding image coordinates. For each zoom setting, a total

of 12 homographies could be computed. From these, the

camera was calibrated and pose estimated using the meth-

ods in §3 and §4, followed by non-linear optimization.

In figure 1, some results are presented for the zoom posi-

tion corresponding to shortest focal length (and largest op-

tical distortion). The upper two curves show the absolute

errors (in degrees) of the angles between the three planes

of the grid, computed from the estimated pose. With the

minimum case of a single view, the error is about 1.4◦ for

both the “linear” method (§4) and after optimization (“Lin-

ear+LM” in the graph). Adding views leads to an error of

about 1◦ for the linear method (which seems to be a limit

here, maybe due to the neglection of optical distortion) and

a linear decrease of the error after optimization, reaching a

tenth of a degree when four views are used.

The lower two curves show the average distance errors

for the full 3D reconstruction of the calibration grid. Since

we know the coordinates of the targets in each of the three

planes of the object, and we estimate the pose of the planes,

we can obtain a full 3D reconstruction, i.e. full 3D coor-

dinates of the targets. The error (residuals after alignment

with the ground truth by rigid transformation) is practically

constant and equal to a tenth of a percent, regardless of the

number of images and optimization.

0

0.5

1

1.5

2

1 2 3 4

E
rr

o
r

Number of views

Linear (angles)
Linear+LM (angles)

Linear (distances)
Linear+LM (distances)

Figure 1. Errors of pose estimation. Absolute

errors (degrees) for angles (upper curves).

Relative errors (in %) for distances, see text.

5.2. Indoor Scenes

We took a set of about 400 images of an indoor scene

(see examples in figure 2). The edges of 14 rectangular ob-

jects in the scene (windows, drawers, a door, blackboard,

computer screens, etc., cf. figure 3) were measured, giving

their metric structure. In 151 of the images, one or more

of these planar objects were visible and in 84, two or more

Figure 2. Images of grid and indoor scene.

objects. In these images, the 4 corners of the objects were

marked by hand. This is the input to our algorithms.

In a first step, the calibration method of [14] was ap-

plied to calibrate the 84 views simultaneously. Then, rel-

ative pose between each view and the objects seen in it

was computed using the method of §3. From the totality

of 84 × 14 = 1176 image–plane pairs, the relative pose of

218 pairs could be determined from the available images,

i.e. the amount of missing data was about 81 %. Global

pose was estimated using the algorithm of §4.4. The result

was used to obtain a textured VRML model of the planar

objects used for calibration and pose estimation (figure 3

shows a rendering).

Figure 3. Rendering of a textured 3D model

of the planar objects used for calibration and

pose estimation.

Paper 2: Algorithms for Plane-Based Pose Estimation, CVPR 2000 [20] 17

Qualitatively, the reconstruction captures very well the

shape of the room in which the images where taken. The

accuracy of the reconstruction is not very high: angles be-

tween neighboring planar objects (the angles between the

infinite planes supporting the objects) are in average esti-

mated with an error of about 6◦. This is rather weak as

for photogrammetric standards. However, the global pose is

good enough to think of using it for wide-baseline matching

using adaptive windows: approximately knowing the rela-

tive pose between views, matching windows can be trans-

ferred via projective mappings computed from pose and cal-

ibration, based on the assumption of locally planar object

surfaces. Initial matching experiments are encouraging.

Overall, we consider this experiment as a really hard test:

the input data is rather minimal (4 points per plane) and

poor (some of the objects were not really planar, extraction

of features in the images was quite inaccurate, the objects

appear usually very small in the images); the imaging ge-

ometry is weak (∼ 80 % of missing data); no special illumi-

nation was used, etc. So, the accuracy of our results might

be as good as one might expect under these conditions.

In a second experiment, a few planar patterns, printed on

paper using a laser printer, were attached to the walls of a

room. Owing to higher accuracy in feature extraction, the

average error of angles between neighboring patterns was

about 3◦. The amount of missing data was again over 80 %

and the patterns occupied only about 3 % of the images.

6. Conclusion and Perspectives

We have presented methods for plane-based pose esti-

mation. Beside a method for the basic one-view one-plane

case, a factorization-based method for the multi-view multi-

plane case was presented.

Our experimental results suggest that our method may

be applied successfully even when the amount of missing

data is very high. In “calibration scenarios” the estimated

pose can certainly be used as starting point for optimizing

calibration and pose. However, the global goal of our work

is not calibration but the 3D reconstruction of complicated

man-made environments. Our thread of thought is that the

process should be initialized by a limited amount of user in-

teraction, followed by automatic processes. The type of user

interaction described in this paper (depicting some salient

objects in the images) enables a good camera calibration

and an approximate global pose estimation. The recovered

pose might be good enough to be used for wide baseline

matching using adaptive windows (according to initial ex-

periments). This is what we are currently working on. Our

hope (and conviction) is that a few additional matches per

image (beside the hand picked ones) should be enough to

increase the quality of the pose by a sufficient amount in

order to make e.g. voxel coloring approaches [10] for 3D

reconstruction feasible.

Acknowledgement. We thank Bill Triggs for his help

with the feature extraction for one of the experiments.

References

[1] R. Cipolla, D.P. Robertson, E.G. Boyer, “Photobuilder – 3D

models of architectural scenes from uncalibrated images,”

Conf. Multimedia Computing and Systems, 25-31, 1999.
[2] A. Criminisi, I. Reid, A. Zisserman, “Duality, Rigidity and

Planar Parallax,” ECCV, pp. 846-861, June 1998.
[3] P.E. Debevec, C.J. Taylor, J. Malik, “Modeling and Render-

ing Architecture from Photographs: a Hybrid Geometry-and

Image-Based Approach,” SIGGRAPH, August 1996.
[4] R. Hartley, “In Defence of the 8-Point Algorithm,” ICCV,

pp. 1064-1070, June 1995.
[5] B.K.P. Horn, H.M. Hilden, S. Negahdaripour, “Closed-Form

Solution of Absolute Orientation Using Orthonormal Matri-

ces,” Journal Opt. Soc. America A, Vol. 5, 1127-1135, 1988.
[6] R.J. Holt, A.N. Netravali, “Camera Calibration Problem:

Some New Results,” CVIU, Vol. 54, No. 3, 368-383, 1991.
[7] D. Jacobs, “Linear Fitting with Missing Data: Applications

to Structure-from-Motion and to Characterizing Intensity

Images,” CVPR, pp. 206-212, June 1997.
[8] R.K. Lenz, R.Y. Tsai, “Techniques for Calibration of the

Scale Factor and Image Center for High Accuracy 3-D Ma-

chine Vision Metrology,” PAMI, Vol. 10, 713-720, 1988.
[9] D. Liebowitz, A. Zisserman, “Combining Scene and Auto-

calibration Constraints,” ICCV, 1999.
[10] S.M. Seitz, C.R. Dyer, “Photorealistic Scene Reconstruction

by Voxel Coloring,” CVPR, pp. 1067-1073, June 1997.
[11] H.Y. Shum, K. Ikeuchi, R. Reddy, “Principal Component

Analysis with Missing Data and its Application to Polyhe-

dral Object Modeling,” PAMI, Vol. 17, 854-867, 1995.
[12] H.-Y. Shum, R. Szeliski, S. Baker, M. Han, P. Anandan, “In-

teractive 3D Modeling from Multiple Images Using Scene

Regularities,” SMILE Workshop, Freiburg, Germany, pp.

236-252, June 1998.
[13] P. Sturm, S.J. Maybank, “A Method for Interactive 3D Re-

construction of Piecewise Planar Objects from Single Im-

ages,” BMVC, pp. 265-274, September 1999.
[14] P. Sturm, S.J. Maybank, “On Plane-Based Camera Cali-

bration: A General Algorithm, Singularities, Applications,”

CVPR, Fort Collins, CO, pp. 432-437, June 1999.
[15] R. Szeliski, P.H.S. Torr, “Geometrically Constrained Struc-

ture from Motion: Points on Planes,” SMILE Workshop,

Freiburg, Germany, pp. 171-186, June 1998.
[16] C. Tomasi, T. Kanade, “Shape and Motion from Image

Streams under Orthography: A Factorization Method,” In-

ternational Journal on Computer Vision, Vol. 9, No. 2, pp.

137-154, 1992.
[17] R.Y. Tsai, “A Versatile Camera Calibration Technique

for High-Accuracy 3D Machine Vision Metrology Using

Off-the-Shelf TV Cameras and Lenses,” IEEE Journal of

Robotics and Automation, Vol. 3, No. 4, pp. 323-344, 1987.
[18] G.-Q. Wei, S.D. Ma, “A Complete Two-Plane Camera Cali-

bration Method and Experimental Comparisons,” ICCV, pp.

439-446, 1993.
[19] Z. Zhang, “Flexible Camera Calibration By Viewing a Plane

From Unknown Orientations,” ICCV, pp. 666-673, 1999.

18 Chapter 4. Camera Calibration

Degenerate Cases and Closed-form Solutions for Camera Calibration with

One-Dimensional Objects

Pär Hammarstedt†, Peter Sturm‡, Anders Heyden†

† Applied Mathematics Group, School of Technology and Society

Malmo University, 20506 Malmo, Sweden

par.hammarstedt@ts.mah.se, heyden@ts.mah.se

‡ MOVI group, INRIA Rhône-Alpes

38330 Montbonnot St Martin, France

peter.sturm@inrialpes.fr

Abstract

Camera Calibration with one-dimensional objects is

based on an algebraic constraint on the image of the ab-

solute conic. We will give an alternative derivation to this

constraint, allowing a geometrical interpretation. From

this we derive the degenerate cases, or critical motions,

where the calibration algorithm will fail. We also show that

constraints on the intrinsic parameters lead to simplified

closed-form solutions and a reduced set of critical motions.

A simulation and a real data experiment is performed to

evaluate the accuracy of the calibration result for motions

close to being critical.

1. Introduction

In computer vision, metric 3D reconstruction from im-
ages requires the camera to be calibrated. The main cam-
era calibration techniques can be classified into five groups.
In 3D reference object calibration an object with known
geometry is used [12, 3]. In 2D plane based calibration

planar patterns are used [10, 13]. 1D object calibration is
discussed in this paper. The remaining two groups are self-
calibration, where point correspondences between images
of an unknown scene are used [7, 6, 5, 3], and motion con-

strained calibration, where the camera is confined to some
special kind of motion [1, 4, 8]. In some cases of cam-
era motion, known as critical motions, the calibration al-
gorithms will fail. This has been studied in detail for 3D

reference object calibration in [2] and for self-calibration
in [9].

In this paper we aim to complete the theory of 1D object

calibration by identifying the critical motions. We show
how to reduce them when partial knowledge of the cam-
eras calibration parameters is given. Camera calibration us-
ing one-dimensional (1D) objects was recently proposed in
[14]. Here, the calibration object consists of a set of at
least three collinear points. The motion of the object is
constrained by one point being fixed. One advantage of
using 1D objects for calibration are that 1D objects with
known geometry are easy to construct. Another advantage
is that in a multi-camera environment, all cameras can ob-
serve the entire calibration object simultaneously, which is
a prerequisite for calibration and hard to obtain with 3- and
2-dimensional calibration objects. In practice, the 1D object
can be constructed by marking three points on a stick.

The paper is organized as follows: In Section 2 a brief
review of camera calibration with 1D objects is given. In
Section 3 a geometrical interpretation of the calibration con-
straint is presented, from which the critical motions are
identified in Section 4. Section 5 describes how simplified
closed-form solutions reduce the critical motions. Section 6
validates the theoretical results by two sets of experiments.

2 Preliminaries

2.1 Notation

We will use the standard pin-hole camera model:

λp



x
y
1




︸︷︷︸
em

=



γf sf u0

0 f v0

0 0 1




︸ ︷︷ ︸
K

[R | − Rt]

︸ ︷︷ ︸
P




X
Y
Z
1




︸ ︷︷ ︸
fM

. (1)

Paper 3: Closed-form Solutions and Degenerate Cases for Calibration with 1D Objects, ICCV 2005 [13] 19

Here, f denotes the focal length, γ the aspect ratio, s the
skew and (u0, v0) the principal point. These are called
the intrinsic parameters and are contained in the upper-
triangular calibration matrix K . Furthermore, R and t de-
note the relation between the camera coordinate system and
the object coordinate system, where R is a rotation matrix
and t a translation vector, i.e. a Euclidean transformation.
P is the camera matrix and λp is the projective depth of
m̃. A 2D point is denoted by either m = [x, y]T or m̃ =
[x, y, 1]T . A 3D point is denoted by either M = [X, Y, Z]T

or M̃ = [X, Y, Z, 1]T .

2.2 Camera Calibration with 1D Objects

We will now give a brief review of the theory for camera
calibration with one-dimensional objects, following [14]. In
the following, we often call the one-dimensional calibration
object a “stick”, for simplicity.

Refer to Figure 1 where point O is the camera center.
Point A is fixed relative to the camera, and the length of the
stick AB is

L = ‖B − A‖. (2)

The position of point C is given by

C = λAA + λBB, (3)

where λA and λB are known. Without loss of generality we
choose R = I and t = 0, which implies that the optical
center O is at the origin. Let the unknown depths of A, B
and C be zA, zB and zC , respectively. According to (1) we
have A = zAK−1

ã and similarly for B and C, so equation
(3) gives

zC c̃ = zAλAã + zBλBb̃. (4)

By performing cross products on both sides of (4) with c̃

and scalar products with (b̃ × c̃) we obtain

zB = −zA

λA(ã × c̃) · (b̃× c̃)

λB(b̃ × c̃) · (b̃ × c̃)
. (5)

From (2) we have

‖K−1(zBb̃− zAã)‖ = L (6)

and by substituting zB by (5) in this equation we get

zA‖K
−1

h‖ = L (7)

where

h = [h1, h2, h3]
T =

(zBb̃− zAã)

zA

= (8)

= ã +
λA(ã × c̃) · (b̃ × c̃)

λB(b̃ × c̃) · (b̃× c̃)
b̃. (9)

Equation (7) is equivalent to

z2
Ah

T ωh = L2 (10)

where
ω = K−T K−1 = (11)

=




1
f2γ2 − s

f2γ2

sy0−x0

f2γ2

− s
f2γ2

s2

f2γ2 + 1
f2 − s(sy0−x0)

f2γ2 − y0

f2

sy0−x0

f2γ2 − s(sy0−x0)
f2γ2 − y0

f2

(sy0−x0)
2

f2γ2 +
y2

0

f2 + 1




(12)
is the image of the absolute conic [3]. Let ωij be the element
of ω at row i and column j. Then ω, which is symmetric,
can be defined by

d = [ω11, ω12, ω22, ω13, ω23, ω33]
T .

With x = z2
Ad and

u = [h2
1, 2h1h2, h

2
2, 2h1h3, 2h2h3, h

2
3]

T ,

equation (10) becomes

u
T
x = L2,

giving one constraint on zA and the intrinsic parameters in
K per image. In the most general case with six unknowns,
we need at least six observations of the stick for calibration.

Given N images, the solution to (10) is found by solving
a linear system of one equation per image, such that sym-
metry of ω is enforced:

Ux = L21 (13)

where U = [u1, . . . ,uN]T and 1 = [1, . . . , 1]T . The least
squares solution is then given by

x = L2(UT
U)−1

U
T 1.

K and zA can then be found by Cholesky decomposition of
z2

Aω (which is given by x).

3 Geometrical Interpretation

In order to identify the critical motions of the stick for
which calibration will fail, we will now interpret equation
(10) in geometrical terms. Refer to Figure 2. Let the line
through A and B be lAB . The intersection of lAB and the
plane at infinity π∞ is given by X∞ = B̃ − Ã. Projecting
this point onto the image we obtain the vanishing point

v = [v1, v2, v3]
T

of the line lAB:

v = PX∞ = K[I|0](B̃ − Ã) = K(B − A)

= zB[xB , yB, 1]T − zA[xA, yA, 1]T

= zBb̃ − zAã.

20 Chapter 4. Camera Calibration

Figure 1. Illustration of 1D calibration objects

Using (8) we have
v = zAh. (14)

Alternatively, let X = B − A. With v = KX we get

1 =
XT X

XT X
=

XT KT K−T K−1KX

‖X‖2
=

v
T ωv

L2
⇒

v
T ωv = L2, (15)

so that (14) holds, since (15) ⇔ (10). We can now interpret
(15) as follows: the algebraic distance between the vanish-
ing point of the stick and the image of the absolute conic
equals L2.

Notice that for calibration only, the actual length of the
stick does not have to be known; using the constraint (10)
will give us zA in units of L (i.e. zA will be the unit-less
ratio of stick length and the actual metric depth of A), and
always the correct calibration K . This is the typical scale-
depth ambiguity in reconstruction; a change in scale can
be compensated by a change in depth without changing the
calibration matrix.

4 Degenerate cases

A motion of the stick is critical if and only if (15) has
more than one solution. Given a number of observations
of the stick, let vi be the vanishing point in image i. The
motion is now critical when the vanishing points of the stick
vi lie on a conic ω′ so that

v
T
i ω′

vi = 0 ∀i,

since then, if ω is a solution to (15), ω +kω′, k ∈ R, is also
a solution by

v
T
i (ω + kω′)vi = v

T
i ωvi + kvT

i ω′
vi = L2.

Figure 2. Geometrical interpretation of cali­

bration from 1D objects

When solving for ω in (13), the actual solution ω + kω′ is
constrained to a symmetric matrix, therefore ω′ must also
be symmetric. If additional constraints are placed on ω,
such that ω is of a more constrained form, then ω′ must also
be of the same, more constrained, form. This is done by
incorporating knowledge on the intrinsic parameters as will
be described in section 5.

Note that equation (10) would have no solutions (with
L 6= 0) if vi would lie on ω such that v

T
i ωvi = 0. Since

ω is a virtual conic and the vanishing points are real (from
v = P (B̃ − Ã)), this however only happens if vi = 0 ∀i.
This corresponds to the uninteresting case where A and B
both lie on an optical ray of the camera in all images so that
a and b coincide.

4.1 Critical motions

We now want to identify the critical motions of the stick
that give rise to the degenerate cases where the vanishing
points lie on a conic ω′ in the image plane.

Assume viω
′
vi = 0. Let Di be any point on the stick

in image i and Ei = Di − A the same point expressed
in a coordinate system with origin translated to A. With
P = K[I|0] and vi = K[I|0](D̃i − Ã) = KEi we get

v
T
i ω′

vi = 0 ⇔ ET
i KT ω′KEi = 0 ⇔

ET
i ω′′Ei = 0 ⇔ ẼT

i

[
ω′′ 0
0 0

]
Ẽi = 0 (16)

where ω′′ is symmetric. Equation (16) tells us that all points

Paper 3: Closed-form Solutions and Degenerate Cases for Calibration with 1D Objects, ICCV 2005 [13] 21

on the stick in all positions lie on a quadric of rank less than
or equal to 3, in this case a cone, centered at A.

In other words: the motion is critical if and only if the
vanishing points of the stick lie on a conic ω′. Since we
deal with perspective projection, this is exactly the case if
the stick’s point at infinity traces out a conic on the plane at
infinity during the motion (which can be a degenerate conic,
e.g. consisting of 2 straight lines). This in turn means that
the stick, when seen as an infinite line, traces out a cone,
with the fixed point A as vertex and the above conic as “gen-
erator”. Note that the cone does not need to be circular, i.e.
the locus of an individual point on the stick does not need to
be a planar circle for the degeneracy to occur. Furthermore,
as mentioned above, the generating conic may be degener-
ate, e.g. consisting of 2 straight lines. As for the stick’s
motion, this means that it is waved in 2 different planes.

Note that critical motions do not depend on the actual
position of the stick’s fixed point A; they only depend on
the stick’s orientation (and in special cases, see below, on
its orientation with respect to the camera).

In [14] some partial results on critical motions are given;
the case of a circular cone. This is of course degenerate, but
there are many more critical motions, as we have seen.

4.2 Safe motions

In practice, all critical motions should of course be
avoided. From the above said, we observe that this can be
achieved by for example moving the stick in three or more
non-parallel planes, which may be realized by some zig-zag
motion. Many other examples can be found, e.g. moving
the stick in a spiral.

5 Closed-Form Solutions

We will now look at the closed-form solutions for the
cases where some of the intrinsic parameters of the cam-
era are known and show what degeneracies there are in
these cases. We also show that the number of images re-
quired for calibration using these closed-form solutions will
be smaller than in the general case.

5.1 Unknown focal length

Assume that only the focal length of the camera is un-
known. The image coordinate system can then be trans-
formed such that s = 0, γ = 1 and (x0, y0) = (0, 0). Then

ω =




1
f2 0 0

0 1
f2 0

0 0 1




so that the calibration problem reduces to solving equation
(13) where (in the minimal case of only two images)

U =

[
h2

11 + h2
21 h2

31

h2
12 + h2

22 h2
32

]
, x =

[
z2

A

f2

z2
A

]

and hji is hj in image i. We observe that here, only two
images are needed for calibration since then U is invertible.
Modifying the calibration algorithm in this way fixes known
camera parameters to their correct value and reduces the set
of critical motions to the case where the vanishing points all
lie on a circle centered in the image.

This can also be verified by noting that (13) has a unique
solution if and only if det(U) 6= 0. Now, denoting vj in
image i by vji,

det(U) = h2
32(h

2
11 + h2

21) − h2
31(h

2
12 + h2

22) = 0 ⇔

v2
32(v

2
11 + v2

21) − v2
31(v

2
12 + v2

22) = 0, (17)

since v = zAh (by (14)) and zA 6= 0 since all depths are
positive. The condition for a critical motion (17) is fulfilled
if v3i = 0 ∀i, which corresponds to the case where the
vanishing point of the stick is a point at infinity so that the
stick is moving in a plane parallel to the image plane, or if

(
v11

v31
)2 + (

v21

v31
)2 = (

v12

v32
)2 + (

v22

v32
)2 ⇔

v2
x1 + v2

y1 = v2
x2 + v2

y2

where vxi and vyi are the x- and y- coordinates of the van-
ishing point in image i (since v is expressed in homoge-
neous coordinates), meaning that the vanishing points lie
on a centered circle. Now equation (16) gives that the stick
lies on a quadric of the form




a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 0




centered at A, where a, b ∈ R, which is a circular cone
whose axis of symmetry is parallel to the z axis (see Figure
3). Waving the stick in a plane parallel to the image plane
is then also a degenerate motion, since it is a special case of
a circular cone (it’s like a cone that is squashed to a plane).
In this case, the vanishing points of the stick are points at
infinity of the image plane. The line at infinity of the image
plane is a (degenerate) conic, of the required form (centered
circle).

5.2 Unknown focal length and aspect ratio

In this case

ω =




1
f2γ2 0 0

0 1
f2 0

0 0 1


 ..

22 Chapter 4. Camera Calibration

Figure 3. Examples of critical quadric surfaces. If only the focal length is unknown, the critical

surface is a circular cone with axis of symmetry is parallel to the z axis (far left). With also the aspect

ratio unknown the surface is an elliptical cone with main axis parallel to any two coordinate axes, and
axis of symmetry parallel to the third one (center left). Examples of general quadrics representing

critical surfaces in the general case (right). The camera has the optical axis coinciding with the z­axis
and the image plane coordinate axes coinciding with the x­ and y­axis

The calibration problem reduces to solving equation (13)
where (in the minimal case of three images)

U =



h2

11 h2
21 h2

31

h2
12 h2

22 h2
32

h2
13 h2

23 h2
33


 , x =




z2

A

f2γ2

z2

A

f2

z2
A




and hji is hj in image i, which has a unique solution if and
only if det(U) 6= 0. Now det(U) = 0 if and only if

v2
11v

2
22v

2
33 + v2

21v
2
32v

2
13 + v2

31v
2
22v

2
13−

v2
31v

2
22v

2
13 − v2

21v
2
12v

2
33 − v2

11v
2
23v

2
32 = 0 (18)

which is the condition for a critical motion. It is fulfilled
either if vj0i = 0 ∀i and for some fixed j0, corresponding
to a motion of the stick in any of the two image coordinate
axis planes (v1 = 0 or v2 = 0) or in a plane parallel to the
image plane (v3=0), or (by rewriting (18) by dividing with
v2
31v

2
32v

2
33, renaming v1i

v3i
to vxi and v2i

v3i
to vyi, which then

are the image coordinates of the vanishing point) if

v2
x1v

2
y2 +v2

y1v
2
x3 +v2

x2v
2
y3−v2

y2v
2
x3−v2

y1v
2
x2−v2

x1v
2
y3 = 0.

This means that the vanishing points are on a ellipse cen-
tered in the image, with axes coinciding with the image x
and y axes. Equation (16) gives that the stick then moves
on the surface of an elliptical cone with main axis parallel
to any two coordinate axis, and axis of symmetry parallel to
the third one, see Figure 3.

5.3 Unknown focal length and principal point

Another frequently occurring condition in camera cali-
bration is that of s = 0 and γ = 1. In this case we find the

simplified closed-form solution by observing that

ω =




1
f2 0 − x0

f2

0 1
f2 − y0

f2

− x0

f2 − y0

f2

x2

0

f2 +
y2

0

f2 + 1


 ..

This reduces the problem to solving equation (13) where (in
the minimal case of four images)

U =




h2
11 + h2

21 2h11h31 2h21h31 h2
31

h2
12 + h2

22 2h12h32 2h22h32 h2
32

h2
13 + h2

23 2h13h33 2h23h33 h2
33

h2
14 + h2

24 2h14h34 2h24h34 h2
34


 ,

x = z2
A

[
1
f2 , − x0

f2 , − y0

f2 ,
x2

0

f2 +
y2

0

f2 + 1
]T

and hji is hj in image i. The critical motions are according
to equation (16) reduced to quadrics of the form




a 0 c 0
0 a d 0
c d b 0
0 0 0 0




centered at A, where a, b, c, d ∈ R. Other cases where a
subset of the intrinsic parameters is known can be treated
similarly.

6 Experiments

6.1 Simulation

In order to evaluate the calibration accuracy for motions
close to being critical, an experiment on simulated data was

Paper 3: Closed-form Solutions and Degenerate Cases for Calibration with 1D Objects, ICCV 2005 [13] 23

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18
Image noise level = 0.2 pixels

Angle of deviation from critical quadric (degrees)

R
e

la
ti
v
e

 e
rr

o
rs

 (
%

)

f

γ

s
v

0
u

0

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60
Image noise level = 0.5 pixels

Angle of deviation from critical quadric (degrees)

R
e

la
ti
v
e

 e
rr

o
rs

 (
%

)

f

γ

s
v

0
u

0

Figure 4. Calibration errors with respect to angle of deviation of the 1D objects from a critical quadric

performed. The simulated camera had f = 1000, γ = 1,
s = 0 and (x0, y0) = (320, 240). A stick of length L = 70
with λA = λB = 0.5 and fixed point A = [0, 35, 150]T was
placed in 100 equally spaced positions on a critical cone.
Gaussian noise with mean 0 and varying standard devia-
tion was added to the angle between the stick and the axis
of symmetry of the critical cone as illustrated in Figure 5.
Gaussian noise with mean 0 and varying standard deviation
was added to the obtained image points.

The calibration algorithm for the general case where
all the intrinsic parameters are assumed to be unknown
was used. We measure the relative accuracy of the focal
length |∆f/f | and the dimensionless quantities |∆γ|, |∆s|,
|∆u0/f | and |∆v0/f | since errors in these contribute about
equally to the overall geometric accuracy in scene recon-
struction [11]. Results are given in Figure 4 for two differ-
ent levels of image noise.

We note that the calibration results are very inaccurate
for small angles of deviation from the critical surface as
expected. The improvement in accuracy is very dramatic
when increasing from close to 0◦ deviation from the cone,
to a few degrees. After around 5◦ there is no big improve-
ment and the results are quite good from this point on.

The fact that we get more accurate calibration results
than in [14] is probably due to the stick being far from par-
allel to the optical axis of the camera. Since the endpoints
of the image of the stick then are far apart, the results are
less affected by noise.

Errors (%) Sequence 1 Sequence 2

f 1.3566 20.3945
γ 1.5918 23.7308
s 0.7971 1.1993
u0 4.6013 5.2164
v0 0.6743 3.7431

Table 1. Experimental results for calibration

from real data. In sequence 1, the stick is

moving randomly. In sequence 2, the motion
of the stick is such that it is close to a critical

quadric surface

6.2 Real Data Experiment

To evaluate the sensitivity of the calibration algorithm in
a real world scenario, a digital camera was calibrated us-
ing two separate image sequences containing images of a
stick moving in two different patterns. The image resolu-
tion was 640 × 480 pixels. In the first sequence the stick
was moved randomly. In the second sequence the stick was
moved close to a critical surface, as illustrated in Figure 6.
The camera was in both cases calibrated using the closed
form solution for calibration from one dimensional objects
given no knowledge of the intrinsic parameters, as described
above. To be able to compare the results, the camera was
also calibrated using the standard algorithm for calibration
from planar patterns [13], including nonlinear minimization
of the cameras intrinsic parameters from reprojection errors,
resulting in a very precise calibration. The results are given

24 Chapter 4. Camera Calibration

Figure 5. Simulation of sticks on a degener­
ate surface with added angular noise with a

standard deviation of 2◦ (left) and 5◦ (right)

in Table 1, where the errors in the intrinsic parameters from
each of the two calibration results are given with respect
to the calibration result from the planar patterns. The er-
rors from the sequence with the degenerate stick movement
is generally much larger than for the random movement se-
quence, suggesting that close-to-critical motions of the stick
has to be avoided in practice.

7. Summary and Conclusions

Based on a geometrical interpretation of the constraint
used in camera calibration with one-dimensional objects,
we have identified the critical motions where the calibra-
tion algorithm will fail. We have shown that constraints
on the intrinsic parameters of the camera lead to simplified
closed-form-solutions and a reduced set of critical motions,
and also proposed some safe non-critical motions that will
guarantee the success of the calibration algorithm in prac-
tice. A simulation and a real data experiment was performed
to evaluate the calibration accuracy for motions close to be-
ing critical, showing the sensitivity of the algorithm to these
motions.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 6. Two images from two image se­
quences, each consisting of 12 images. On

each of the two images, tracked points from

the entire sequence are superimposed. In se­
quence 1, the stick is moving in a random

fashion (top). In sequence 2, the motion of
the stick is such that it is close to a critical

quadric surface in each image (bottom)

References

[1] M. Armstrong, A. Zisserman, and P. Beardsley. Eu-
clidean structure from uncalibrated images. In E. Han-
cock, editor, Proceedings of the 5th British Machine

Vision Conference, York, England, volume 2, pages
509–518, September 1994.

[2] T. Buchanan. The twisted cubic and camera calibra-
tion. Computer Vision, Graphics and Image Process-

ing, 42:130–132, 1988.

[3] R. Hartley and A. Zisserman. Multiple View Geome-

try in Computer Vision. Cambridge University Press,
2000.

[4] R. I. Hartley. Self-calibration from multiple views
with a rotating camera. In Proc. European Conf. on

Computer Vision, pages 471–478, Stockholm, Swe-
den, 1994.

Paper 3: Closed-form Solutions and Degenerate Cases for Calibration with 1D Objects, ICCV 2005 [13] 25

[5] A. Heyden and K. Åström. Flexible calibration: Min-
imal cases for auto-calibration. In Proc. Int. Conf. on

Computer Vision, pages 350–355, Kerkyra, Greece,
1999.

[6] A. Heyden and K. Åström. Euclidean Reconstruction
from Image Sequences with Varying and Unknown
Focal Length and Principal Point. In Proc. Conf. Com-

puter Vision and Pattern Recognition, pages 438–443,
San Juan, Puerto Rico, 1997.

[7] S. J. Maybank and O. D. Faugeras. A theory of self
calibration of a moving camera. Int. Journal of Com-

puter Vision, 8(2):123–151, 1992.

[8] M. Pollefeys, L. Van Gool, and M. Proesmans. Eu-
clidean 3d reconstruction from image sequences with
variable focal lengths. In Proc. European Conf.

on Computer Vision, pages 31–42, Cambridge, UK,
1996.

[9] P. Sturm. Critical motion sequences for monocu-
lar self-calibration and uncalibrated Euclidean recon-
struction. In Proc. Conf. Computer Vision and Pat-

tern Recognition, pages 1100–1105, San Juan, Puerto
Rico, 1997.

[10] P. Sturm and S. Maybank. On plane-based camera
calibration: A general algorithm, singularities, appli-
cations. In Proceedings of the Conference on Com-

puter Vision and Pattern Recognition, Fort Collins,

Colorado, USA, pages 432–437, June 1999.

[11] B. Triggs. Autocalibration from planar scenes. In
Proc. European Conf. on Computer Vision, volume I,
pages 89–105, Freiburg, Germany, 1998.

[12] R.Y. Tsai. A versatile camera calibration technique
for high-accuracy 3D machine vision metrology us-
ing off-the-shelf TV cameras and lenses. IEEE Jour-

nal of Robotics and Automation, 3(4):323–344, Au-
gust 1987.

[13] Z. Zhang. A flexible new technique for camera cal-
ibration. IEEE Trans. Pattern Analysis and Machine

Intelligence, 22(11):1330–1334, 2000.

[14] Z. Zhang. Camera calibration with one-dimensional
objects. IEEE Trans. Pattern Analysis and Machine

Intelligence, 26(7):892–899, 2004.

26 Chapter 4. Camera Calibration

Combining Off- and On-line Calibration of a Digital Camera

Magdalena Urbanek, Radu Horaud and Peter Sturm

INRIA Rhône-Alpes

655, avenue de l’Europe, 38334 Saint Ismier Cedex, France

{Magdalena.Urbanek, Radu.Horaud, Peter.Sturm}@inrialpes.fr

Abstract

We introduce a novel outlook on the self-calibration task,
by considering images taken by a camera in motion, allow-
ing for zooming and focusing. Apart from the complex rela-
tionship between the lens control settings and the intrinsic
camera parameters, a prior off-line calibration allows to
neglect the setting of focus, and to fix the principal point and
aspect ratio throughout distinct views. Thus, the calibra-
tion matrix is dependent only on the zoom position. Given
a fully calibrated reference view, one has only one param-
eter to estimate for any other view of the same scene, in
order to calibrate it and to be able to perform metric recon-
structions. We provide a close-form solution, and validate
the reliability of the algorithm with experiments on real im-
ages. An important advantage of our method is a reduced
- to one - number of critical camera configurations, associ-
ated with it. Moreover, we propose a method for computing
the epipolar geometry of two views, taken from different po-
sitions and with different (spatial) resolutions; the ideais to
take an appropriate third view, that is "easy" to match with
the other two.

1. Introduction

The problem of recovering the Euclidean structure of a

scene is strongly associated with the estimation of the cam-

era internal parameters, i.e. calibration. When no calibra-

tion knowledge provided, one can reconstruct only a pro-

jective model of the scene [6, 10].

1.1. Previous work

The most basic solution to compute the internal param-

eters employs a calibration grid or planes, and performs

an off-line calibration. However the restriction of keeping

an identical camera state (including zooming and focusing)

while shooting subsequent images can hardly be fulfilled in

practice.

Another idea is to self-calibrate an entire sequence. Ex-

isting approaches follow several directions. One is to as-

sume invariance of unknown intrinsic parameters through-

out distinct views [12, 15, 1, 8], thus not to allow for zoom-

ing/focusing, which is quite a strong constraint. Given a

stereo pair of an arbitrary scene, one cannot vary but the
magnification parameter(we use that term, to avoid confu-
sion of associating different meanings to the focal length, in
vision and optics), while having the other ones known [7].

Other methods [3, 13] allow the retrieval of varying magni-

fication parameter and fixed principal point. Furthermore,

if provided with at least 9 views, it is possible to fix only

one camera internal parameter and let the other ones vary

[13, 11].

In reality, such a general calibration problem cannot be

solved reliably. On the other hand, one can quite easily pro-

vide some prior information, which simplifies the task. Our

approach belongs to such a group of techniques.

1.2. Motivation

All considered cases of self-calibration, which al-

low magnification parameter variation throughout distinct

views, suffer from a significant number of critical cam-

era configurations [14]. It is therefore much "safer" not to

change the camera settings.

Let us combine one fully calibrated image (the refer-
ence image) with an uncalibrated one, taken from a different
viewpoint. Then, one has only one magnification parameter

to estimate. What about the other intrinsic parameters? The

complex relationship between calibration and camera lens

control settings [16] does not allow straight-forward sim-

plifications.

To summarize, we are interested in the following issues:
� Are there any conditions that enable the use of a priori

knowledge of the intrinsic parameters?
�
Can one allow for zooming/focusing, while still main-

tain a small family of critical situations?
�
What can be done with stereo pairs, if one camera/view

is fully calibrated?

Paper 4: Combining Off- and On-line Calibration of a Digital Camera, 3DIM 2001 [38] 27

1.3. Contribution

We combine off-line and on-line methods in order to cal-

ibrate a digital camera with a zoom lens and auto-focus.

We introduce a novel outlook on the self-calibration

problem, by reducing to one the number of intrinsic param-

eters to be estimated. We provide a close-form solution for

the method. Also, one has to account for only a single fam-

ily of critical camera configurations [14].

By studying the behaviour of the camera intrinsic param-

eters as a function of variable zoom and focus, we derive

approximate values for the aspect ratio and the principal

point. We identify a small influence of focus upon cali-

bration, which becomes negligible for settings larger than

2.5m. We conclude, that once a camera is calibrated for a

known zoom setting, one can re-use those values any time

that zoom is set. Therefore, we recommend employing

minimally or maximally zoomed-in images as the reference

ones, since those zoom settings can be reliably reproduced.

Furthermore, we simplify the computation of the epipo-

lar geometry for stereo images of different resolutions,

omitting a direct matching between them. The problem

of matching two images of different zoom and viewpoint

is therefore decomposed into two simpler matching prob-

lems: a wide baseline matching with the same zoom [2],

and matching images with different zoom, shot from the

same viewpoint [5].

The proposed method of "combined calibration" esti-

mates the intrinsic parameters with even
�✂✁
-accuracy, from

real images, leading to a reliable Euclidean reconstruction.

2. Camera modeling

2.1. The model

We assume the perspective camera model with the pro-

jection matrix of the form:✄✆☎✞✝✠✟☛✡ ☞✍✌
(1)

where
✡
and

☞
represent the orientation and the position of

the camera with respect to the world coordinate system, and✝
is the calibration matrix:

✝✠☎✏✎✑✓✒✕✔ ✖ ✗✙✘✖ ✔ ✚ ✘✖ ✖ ✛
✜✢

with the principal point ✣ ✗ ✘✥✤ ✚ ✘✧✦ , the magnification parame-
ter ✔ and the aspect ratio ✒ . We assume a zero-skew.
A scene point ★ is projected onto the image onto a point✩ via ✩ ☎✪✄ ★ .

2.2. Off-the-shelf digital camera

Most often one is provided with digital cameras, which

allow mechanical setting of both zoom and focus. One can

specify the area of interest (and thus, its depth on the image)

and focus on chosen features within the area.

We have worked with the Olympus Camedia C-2500L

digital camera. It provides both auto-focus and manual-

focus with discretized values from 0.3m until 15m and ✫
to be set. The zoom, on the contrary, has a continuous range

and a manual drive, which makes the reproducibility of dif-

ferent settings difficult (with notable exceptions for the min-

imal and the maximal zooms).

Each ✣✭✬✥✮✍✮✧✯ ✤✱✰ ✮✍✲ ✗✴✳ ✦ setting corresponds to a physical
configuration of lenses, inside the camera. Since their func-

tional dependencies are complex, we cannot specify the ex-

act camera state, which makes the estimation of camera

internal parameters difficult. When using auto-focus, the

only camera settings that we are able to reproduce (and

to expect the same calibration results, for an arbitrary im-

age, taken with the same settings) are: ✣✭✬✥✮✍✮✧✯ ✤✱✰ ✮✍✲ ✗✵✳ ✦ ☎✣✶✬✂✮✍✮✧✯✸✷✺✹✼✻ ✤ ✫ ✦ and ✣✭✬✥✮✍✮✧✯ ✤✱✰ ✮✍✲ ✗✵✳ ✦ ☎ ✣✭✬✥✮✍✮✧✯✽✷✿✾❁❀ ✤ ✫ ✦ .
The question is how do the entries of the calibration ma-

trix
✝
change with variations of zoom and focus. Experi-

ments described in the following section suggest conditions,

under which the internal camera calibration can be assumed

invariant, for different ✣✭✬✥✮✍✮✧✯ ✤✱✰ ✮✍✲ ✗✵✳ ✦ settings.
3. Off-line stability study of calibration

We study the stability of the camera internal parameters,

under change in the camera mechanical settings, zoom and

focus. We point out the parameters that do not vary much,

and can be assumed invariant. We find a small influence

of focus on calibration, if the camera is far enough from

the scene. Finally, we provide calibration knowledge for

particular zoom settings, which is to be used a priori, in

self-calibration.

3.1. A way to calibrate

We extract the calibration matrix
✝
from the projection

matrix
✄
, estimated from correspondences between non-

coplanar 3D points and their 2D images.

The form of
✄✆☎ ✣❃❂✄ ❄ ✦ and (1) imply: ❂✄✸☎✪✝ ✡

.

Since ❂✄ ❂✄❆❅✽☎❇✝ ✡❈✡ ❅❉✝✓❅❊☎❋✝●✝✓❅
, we can simply obtain✝

from the Cholesky decomposition of ❂✄ ❂✄ ❅ .
In order to estimate

✄
, we run a non-linear algorithm,

which minimizes the reprojection error❍ ☎ ✻■ ✹❑❏▼▲ ✣ ✗ ✹✴◆ ✗ ✷✺✹ ✦P❖●◗ ✣ ✚ ✹▼◆ ✚ ✷✺✹ ✦P❖ (2)

of ❘ image points ✣ ✗ ✹ ✤ ✚ ✹ ✦ and reprojections ✣ ✗ ✷✺✹ ✤ ✚ ✷❙✹ ✦ of
the corresponding 3D points ★❚✹ .

28 Chapter 4. Camera Calibration

3.2. Optical distortion

Since imperfect camera lenses give rise to non-

perspective image distortion, it is often necessary to op-

timize (2) using additional distortion parameters. In

some cases, this extended projection model causes over-

parameterization, resulting in instabilities in the estimation

of all intrinsic parameters.

Based on the observation, that the bigger the zoom used,

the less distortion is present in the image, we can point out

experimentally a "critical" zoom, for which the estimated
distortion coefficient does not decrease with the increase of

zoom. Therefore, we omit the distortion parameters in the

optimization, if a zoom is bigger than the "critical" one.

We only estimate the first term �✂✁ of the radial dis-
tortion, which proved sufficient to provide reliable results.

Overall, the employed calibration method is described in

[4].

3.3. Experiments

We stepped the lens through the full range of focus,

while the zoom was examined in two positions: the mini-

mal and the maximal ones. At each step, we performed a

full camera calibration (images of a calibration grid were

considered). To ensure the stability of calibration, we con-

sidered only images with a sufficiently large number of con-

trol points clearly visible.

We used manual focusing. For each ✣✭✬✥✮✍✮✧✯ ✤✱✰ ✮✍✲ ✗✴✳ ✦ set-
ting, we took several images with slightly different orienta-

tions of the calibration grid. The distance camera-grid was

kept identical to the value of the set focus.

We considered focus values between 1m and 5m. The

images were of size ✄✆☎ ✖ ✝✟✞ ✛ � pixels. The obtained es-
timates of the internal camera parameters are listed sepa-

rately: for the minimal zoom (Table 1), for the maximal

zoom (Table 2).

3.4. Dependencies

What information can be extracted from Tables 1 and 2?

Aspect ratio (✒). It is close to unity. The equality ✒ ☎ ✛
is valid for any ✣✶✬✂✮✍✮✧✯ ✤ ✰ ✮✍✲ ✗✴✳ ✦ setting, with a relative error
smaller than ✖✡✠ �✂✁ .
Magnification parameter (✔). For the minimal zoom,✔ stays constant relative to focusing. For the maximal
zoom, the same is observed as soon as the distance camera-

object is bigger than 2.5m (see Figure 1). Hence, for a

chosen zoom, it is possible to represent the relevant ✔
with a single value (e.g. the median of the estimates):✔ ✷✺✹✼✻ ☎☞☛ ✖ ✄ (with �✂✁ -relative error) for ✣✶✬✂✮✍✮✧✯ ✤ ✰ ✮✍✲ ✗✵✳ ✦ ☎

Focus[m] ✌ [1] ✍ [pix] ✎✡✏ [pix] ✑✒✏ [pix] ✓✕✔ [1]

1
0.9993 700 321 268 -0.2393
0.9991 698 321 267 -0.2423
0.9999 700 317 267 -0.2363

1.2
0.9992 695 314 277 -0.2598
0.9996 702 320 269 -0.2405
0.9997 728 294 238 -0.1468

1.5
0.9998 731 316 232 -0.1574
1.0007 710 325 269 -0.2469
0.9998 723 318 234 -0.1601

2
1.0007 736 295 269 -0.1523
1.0002 699 319 274 -0.2970

2.5 1.0001 722 318 268 -0.2207

Table 1. Calibration results: the ✯✗✖✭❘✘✖✭✯✗✙✛✚
zoom and varying focus.

Focus[m] ✌ [1] ✍ [pix] ✎✡✏ [pix] ✑✒✏ [pix] ✓✕✔ [1]

1
0.9996 921 316 268 -0.0976
0.9994 920 318 268 -0.0945
0.9992 918 319 269 -0.1037

1.2
1.0010 1133 320 266 0.0445
1.0009 1122 317 274 0.0075
1.0008 1128 318 271 0.0218

1.5
1.0015 1384 310 297 0
1.0005 1386 291 296 0.0294
1.0013 1391 320 292 0

2
1.0020 1749 312 313 0
1.0020 1740 311 310 0
1.0013 1745 289 303 0

2.5
1.0030 1969 301 324 0.1470
1.0008 1944 255 316 0.0306

3.5
1.0024 1959 314 356 0.0295
1.0012 1965 290 336 0

5 1.0016 1999 301 344 0.0182

Table 2. Calibration results: the ✯✗✙✢✜✣✖✶✯✤✙✛✚
zoom and varying focus.

✣✶✬✂✮✍✮✧✯✸✷✺✹✼✻ ✤✱✰ ✮✍✲ ✗✴✳ ✥ ✖✡✠ ✦ m), and ✔ ✷✿✾❁❀ ☎ ✛ ✧ ✄ ✞ (with ✛ ✁ -
relative error) for ✣✭✬✥✮✍✮✧✯ ✤✱✰ ✮✍✲ ✗✵✳ ✦ ☎ ✣✭✬✥✮✍✮✧✯ ✷✺✾ ❀ ✤✱✰ ✮✍✲ ✗✴✳ ✥�
✠
✞
m).

Principal point ✣ ✗ ✘ ✤ ✚ ✘✧✦ . Overall, it concentrates near the
image centre (see Figure 2). Since in general, the exact

position of the principal point does not have a big impact

upon the quality of reconstruction, it is possible to employ

approximate statistical values, obtained from the Student’s

reliability test: ✗✵✘ ☎ ✦ ✛✂✛ ★ � ✛ , ✚ ✘ ☎ �✪✩ ✖ ★ ☎ � , with a fac-
tor of risk 0.1 . Further on, we will use the approximation:✣ ✗ ✘ ✤ ✚ ✘ ✦ ☎ ✣ ✦ ✛✂✛ ✤ �✆✩ ✖ ✦ .

Paper 4: Combining Off- and On-line Calibration of a Digital Camera, 3DIM 2001 [38] 29

1 1.5 2 2.5

600

800

1000

1200

1400

1600

Focus [m]

α
[p

ix
]

(a) Minimal zoom: median �✂✁☎✄✝✆✟✞ ✠☛✡✌☞ .

1 2 3 4 5

1000

1200

1400

1600

1800

2000

Focus [m]

α
[p

ix
]

(b) Maximal zoom: median � ✁✎✍✌✏ ✞✒✑✔✓ ☞✖✕ .

Figure 1. Possibilities to approximate the
magnification parameter ✔ with its median.

0 100 200 300 400 500 600
0

100

200

300

400

500

u0 [pix]

v0
 [p

ix
]

Figure 2. Principal point concentrates near
the image centre.

Auto-focusing. For a fixed zoom, the setting of focus does
not influence calibration significantly. We can use auto-

focusing, and still be capable to employ calibration results

for the examined zooms. We only have to keep in mind

the requirement concerning the maximal zoom: the distance

camera-scene has to be larger than 2.5m.

3.5. Final results to be used in self-calibration

A view taken with the minimal/maximal zooming. We
are provided with calibration matrices of reference:

✝ ✷✺✹ ✻
for the minimal zoom case (for any focus value), and

✝ ✷✿✾❁❀
for the maximal zoom case (for focus

✥ �
✠
✞
m).

A view taken with an arbitrary (unknown) zooming.
One is provided with the values of ✒ and ✣ ✗ ✘✥✤ ✚ ✘✍✦ . Hence, ✔
remains the only calibration parameter to determine.

A summary is given in Table 3.

Zoom Focus[m] ✌ [1] ✍ [pix] ✎✡✏ [pix] ✑✒✏ [pix]✗✙✘✛✚ ✜✒✢✤✣ ✥ 1 706 311 280✗✙✦★✧ ✜✪✩★✣ ✫ 1 1965 311 280
? ? 1 ? 311 280

Table 3. Results of off-line calibration (the
Olympus Camedia C-2500L digital camera).

4. Self-calibration

We consider a stereo pair: a calibrated reference image

and an image taken with an unknown zoom. (In practice,

we obtain the calibration for the reference image simply

by taking it using the minimal or the maximal zoom, and

adopting the according intrinsic parameters, obtained by the

off-line calibration.) We are thus provided with calibration

matrices:
✝ ✁✭✬✯✮ , fully known, for the reference image, and✝

, defined up to unknown ✔ , for the other image. Due to
Kruppa’s equations [9], we derive a close form solution for✔ . Also, we reveal stereo configurations, for which our self-
calibration algorithm fails.

4.1. Kruppa’s equations

Finding the matrix
✝
associated with a camera is equiv-

alent to finding the image ✰ of the absolute conic, taken by
that camera. Since ✰✲✱✴✳✶✵ ✝❙✝▼❅

, let us denote ✷ ☎✞✝❙✝✓❅
for

the camera to be calibrated, and ✷ ✁☛✬✯✮ ☎ ✝ ✁✭✬✔✮ ✝ ✁✭✬✔✮ ❅ for the
camera, that took the reference image.

The link between images of the absolute conic and the

epipolar geometry can be expressed as follows ([17]; ✸ is
the fundamental matrix of the stereo; ✹ is the epipole on the
image, taken by the uncalibrated camera):

✸✤✷ ✁☛✬✯✮ ✸ ❅ ✵✻✺ ✹✽✼✯✾✿✷❀✺ ✹✽✼✯✾ ❅ (3)

30 Chapter 4. Camera Calibration

Having separated the known entries of matrix
✝

(✒ ✤ ✗ ✘ ✤ ✚ ✘) from the unknown one (✔):✝✠☎ ✎✑ ✒ ✖ ✗✙✘✖ ✛ ✚ ✘✖ ✖ ✛
✜✢ ✎✑❉✔ ✖ ✖✖ ✔ ✖✖ ✖ ✛

✜✢ ☎❚✝ ✘ ✝✁�
and multiplying (3) from the left by

✝ ✘ ❅ , and from the right
by
✝ ✘ , we obtain:✝ ✘ ❅ ✸ ✝ ✁☛✬✯✮ ✝ ✁☛✬✯✮ ❅ ✸ ❅▼✝ ✘ ✵ ✝ ✘ ❅ ✺ ✹✽✼✔✾ ✝ ✘ ✝ � ✝ � ❅✂ ✄✆☎ ✝✞✠✟ ✝ ✘ ❅ ✺ ✹✽✼✯✾ ❅ ✝ ✘

(4)

with ✷ � of the following form:
✷ � ☎✏✎✑▼✔ ❖ ✖ ✖✖ ✔ ❖ ✖✖ ✖ ✛

✜✢
(5)

Let us denote: ✡ ☎✞✝ ✘ ❅ ✸ ✝ ✁☛✬✯✮ (6)

which moves ✸ to a "semi-calibrated" space. From a prop-
erty (valid for any matrix ☛ and vector ☞)☛ ✱ ❅ ✺ ☞ ✼✯✾ ✵ ✺ ☛✌☞ ✼✯✾✍☛ (7)

we have: ✝ ✘ ❅ ✺ ✹✤✼✔✾ ✝ ✘ ✵ ✺ ✝ ✘ ✱✴✳ ✹✽✼✔✾ ✝ ✘ ✱✴✳ ✝ ✘✂ ✄✎☎ ✝✏ (8)

Thus, (6) and (8) enable us to write (4) as:✡ ✡ ❅ ✵ ✺ ✝ ✘ ✱ ✳ ✹✽✼ ✾ ✷ � ✺ ✝ ✘ ✱✴✳ ✹✽✼ ✾ ❅ (9)

Let us use the Singular Value Decomposition of
✡
:✡ ☎✒✑

diag ✣✔✓ ✤ ✳ ✤ ✖ ✦ ✕ ❅ (10)

Introducing (10) into (9), and moving
✑
and

✑✓❅
to the op-

posite side of the formula, result in:

diag ✣✔✓ ✤ ✳ ✤ ✖ ✦ ✕ ❅ ✕✂ ✄✆☎ ✝✏ diag ✣✖✓ ✤ ✳ ✤ ✖ ✦ ✵ ✑ ❅ ✺ ✝ ✘ ✱✴✳ ✹✽✼✯✾✿✷ � ✺ ✝ ✘ ✱ ✳ ✹✤✼✔✾ ✑
(11)

(remind a property: ✺ ☞✴✼ ✾ ❅ ☎ ◆ ✺ ☞✴✼ ✾ , for any vector ☞).
Using (7), we can write (11) in the form:

diag ✣✔✓ ❖ ✤ ✳ ❖ ✤ ✖ ✦ ✵ ✺ ✑ ❅ ✝ ✘ ✱ ✳ ✹✤✼✔✾ ✑ ❅ ✷ � ✑ ✺ ✑ ❅ ✝ ✘ ✱✴✳ ✹✽✼✯✾ (12)
Let us notice, that

✺ ✑ ❅ ✝ ✘ ✱✴✳ ✹✽✼ ✾ ☎ ✗✘ ✎✑✓✖✖ ✛
✜✢✚✙✛

✾
☎ ✎✑❉✖ ◆ ✛ ✖✛ ✖ ✖✖ ✖ ✖

✜✢

If we denote with ✣✢✜ ▲✣✜ ❖ ✜✥✤ ✦ columns of matrix ✑ ,
(12) writes as follows:✦ ✓ ❖ ✖✖ ✳ ❖★✧ ✵

✦ ✜ ❖ ❅ ✷ � ✜ ❖ ◆ ✜❈▲ ❅ ✷ � ✜ ❖◆ ✜ ▲ ❅ ✷ � ✜ ❖ ✜ ▲ ❅ ✷ � ✜ ▲ ✧ (13)

Equalities between ratios of coefficients of the matrices

in (13) form Kruppa’s equations. However, only the follow-

ing equality can contribute positively to the solution:✓ ❖✳ ❖ ☎ ✜ ❖ ❅ ✷ � ✜ ❖✜ ▲ ❅ ✷ � ✜ ▲ (14)

The other possible equation (✜ ▲ ❅ ✷ � ✜ ❖ ☎ ✖) leads always
to a solution ✷ � ☎✪✩

, and thus ✔ ☎ ✛ .
Remembering the form of ✷ � (5), one can retrieve from

(14) the unknown ✔ , by solving a quadratic equation (since
the numerator and denominator of (14) are linear expres-

sions in entries of matrix ✷ �):
✔ ☎✒✫ ✳ ❖ ✗ ❖✤ ❖ ◆ ✓ ❖ ✗ ❖✤❁▲✓ ❖ ✣ ✗ ❖ ▲✱▲ ◗ ✗ ❖❖ ▲ ✦ ◆ ✳ ❖ ✣ ✗ ❖ ▲ ❖ ◗ ✗ ❖❖☛❖ ✦ (15)

where ✗ ✹✭✬ are entries of matrix ✑ , and ✓ ✤ ✳ - the singular
values, given in (10).

4.2. Outline of the algorithm

Step 0: Perform off-line calibration of the camera, obtain-
ing ✔ ✷✺✹ ✻ ✤ ✔ ✷✿✾❁❀ ✤ ✒ ✤ ✣ ✗ ✘ ✤ ✚ ✘ ✦ - thus full calibration matrices:✝ ✷✺✹✼✻ and ✝ ✷✿✾❁❀ for reference images, and a calibration ma-
trix

✝
(associated with any other image) defined up to ✔ .

Then, for a stereo pair (a reference image and an image

of an unknown zooming), given the matching:

Step 1: Compute the fundamental matrix ✸ .
Step 2: Move ✸ to a "semi-calibrated" space, obtaining a
new matrix

✡
- see (6).

Step 3: Apply the SVD on
✡
- see (10).

Step 4: Use entries of the matrices obtained in Step 3 to
compute the unknown internal parameter ✔ of matrix ✝ -
see (15).

4.3. Critical motions

As it has been fully studied in [14], a solution for the

unknown magnification parameter is not always uniquely

defined. In our case, since we consider to know all intrinsic

parameters of one camera, there exist only one family of

camera configurations that is critical, which is significantly

less than with more general cases of self-calibration.

Let us consider a stereo pair of cameras: ✮ ✁✭✬✯✮ (fully
calibrated) and ✮ (with an unknown ✔). The algorithm is

Paper 4: Combining Off- and On-line Calibration of a Digital Camera, 3DIM 2001 [38] 31

C

C
ref

Figure 3. Critical configuration of cameras

singular if the centre of camera ✮ ✁✭✬✯✮ lies on the optical axis
of camera ✮ (Figure 3). This kind of configuration is con-
nected with a camera movement (starting from the refer-

ence position), that consists of any rotation, followed by a

translation along the optical axis of the camera. There is no

constraint on the orientation of camera ✮ ✁☛✬✯✮ .
The case has been analyzed along the lines of [14]. Here,

we omit its explanation, due to the lack of space.

In practice, any camera configuration that is close to the

critical one, can cause problems in self-calibration, giving

rise to inaccurate results.

5. Matching

We are interested in running our self-calibration algo-

rithm on pairs of images of different spatial resolutions (dif-

ferent magnifications). Being aware of problems concern-

ing matching such views, we propose a way to avoid it, by

introducing an additional view, that allows to match the two

original ones.

5.1. Difficulties

Existing direct techniques for automatic matching of two

images taken from different viewpoints and with different

resolutions do not give satisfactory results. Since a big area

on the zoomed-in image is to be correlated with a small area

on the zoomed-out image, accuracy of computed epipolar

lines is weak.

Even when dealing with images very similarly zoomed-

in, very few algorithms cope with matching them, if the

camera movement between the two views is not small. On

the other hand, once one decreases the baseline between

cameras (so that it would be appropriate for correlation

techniques), the scene reconstruction becomes less reliable.

I
ref

Ia

I
zoom

F

F
a

A

Figure 4. Connections between images: fun-
damental matrix ✸ ✾ between �✂✁☎✄✝✆ and �✟✞ , affine
transformation ☛ between �✟✞ and �✡✠☞☛✡☛☞✌ , fun-
damental matrix ✸ between �✂✁☎✄✍✆ and �☞✠✡☛☞☛☞✌

5.2. Our method

To avoid a manual specification of corresponding points,

we combine two techniques:

� matching two images of the same resolution, taken
from different viewpoints

�
matching two images of different resolutions, taken
from the same viewpoint

Hence, we assume being provided with an additional

view � ✞ , of the same resolution as the reference image � ✁☎✄✍✆ ,
but taken from the same camera position as the zoomed-in

one �☞✠✡☛☞☛☞✌ (see Figure 4).
Having performed an automatic matching [2] between

� ✁☎✄✍✆ and � ✞ , we compute the fundamental matrix ✸ ✾ of that
stereo pair. Thus for any image points

✩ ✁✭✬✔✮ ✤ ✩ ✾ (related to
�✡✁☎✄✍✆ and �✟✞ respectively):✩ ✾ ❅ ✸ ✾ ✩ ✁☛✬✯✮ ☎ ✖ (16)

On employing method [5], we match �✎✞ with �☞✠✡☛☞☛☞✌ , and
estimate an affine transformation ☛ between them (due to
the lack of space, we omit a derivation of this property) -

for any image points
✩ ✾ ✤ ✩✑✏✓✒✂✒ ✷ (related to � ✞ and � ✠☞☛✡☛☞✌

respectively): ✩ ✾ ☎ ☛ ✩ ✏✓✒✂✒ ✷ (17)

Now, (16) and (17) let us find out the fundamentalmatrix

✸ of the stereo pair of interest - �✓✁☎✄✝✆ and �☞✠✡☛☞☛☞✌ :✣✖☛ ✩ ✏✓✒✡✒ ✷ ✦ ❅ ✸✂✾ ✩ ✁✭✬✯✮ ☎ ✖✩✑✏✓✒✂✒ ✷ ❅ ☛ ❅ ✸ ✾✂ ✄✆☎ ✝✔
✩ ✁✭✬✔✮ ☎ ✖

32 Chapter 4. Camera Calibration

"True
✍ "

Self-calibration for ✍
Calibration grid Arbitrary object
min ref. max ref. min ref. max ref.

708 701 �✂✁☎✄ 763 �✝✆✞✄ 731 � ✥ ✄ 691 � ✩ ✄
847 814 �✠✟✡✄ 887 � ✫ ✄ 881 �✠✟✡✄ 829 � ✩ ✄
1018 960 �✝☛☞✄ 1044 � ✥ ✄ 1040 � ✩ ✄ 1012 �✂✁☎✄
1250 1171 �✝☛☞✄ 1273 � ✩ ✄ 1298 �✠✟✡✄ 1242 �✂✁☎✄
1486 1387 �✍✌✎✄ 1508 �✂✁☎✄ 1592 �✍✌☞✄ 1442 � ✥ ✄
1729 1621 �✝☛☞✄ 1751 �✂✁☎✄ 1886 �✝✏✞✄ 1779 � ✥ ✄
1905 1772 �✍✌✎✄ 1933 �✂✁☎✄ 2072 �✝✏✞✄ 1862 � ✩ ✄

Table 4. Self-calibration results. The same✔ (in a row, related to a zoom setting) is
estimated from stereo pairs of two different
objects, with both kind of reference images
each. "True ✔ " comes from calibration.

Thus

✸ ☎ ☛ ❅ ✸✂✾ (18)

Equation (18) enables us to compute the epipolar geome-

try between images of different resolutions (� ✁☎✄✝✆ and �✡✠☞☛✡☛☞✌),
without being given matches between them. It is sufficient

to specify correspondences between each of those images

and a special additional one (�✎✞), and result in connections
written as functions of ✸ ✾ and ☛ .
6. Experiments

Input data. We took images of an arbitrary object (a toy

house), with the minimal and the maximal zoom settings,

from a reference viewpoint. Then, from another camera

position, we shot a number of images, of variable zoom-

ing. We also took images of a calibration grid, every time

a view of the house was registered. Hence, we had two

sets with corresponding images (of different features), taken

with identical camera settings (Figure 5).

Separately for each photographed object, we combined

our images in stereo pairs of a reference image and an image

taken with an unknown zoom. Each image of an unknown

zoom was put into 2 stereo pairs: with a minimal and with

a maximal zoom reference image. Having employed results

from off-line calibration (the constraint: distance camera-

scene
✥ �

✠
✞
mhad been fulfilled), we ran the self-calibration

algorithm for each stereo pair, obtaining estimations for ✔ ,
related to every considered zooming (see Table 4).

Discussion. The algorithm recovers the unknown magni-
fication parameter with a high accuracy. However, there are

some cases, where the relative error grows up to
✧ ✁
. They

show up for stereo pairs, which combine images of signifi-

cantly different resolutions (e.g. a minimal zoom reference

view with a strongly zoomed-in one; and vice-versa).

Figure 5. Images of different features, taken
with identical camera settings.

The reason could be related to the fact, that the consid-

ered self-calibration step does not take into account any dis-

tortion model, and thus, its results are not always consistent

with the off-line calibration (see Section 3.2). In particu-

lar: a distortion model, considered for the minimal zoom

reference image, is "forwarded" by self-calibration to ✔ , es-
timated for the other image of the stereo pair. If that im-

age has been taken with a relatively big zoom setting, the

no-distortion model has to be considered then, in order to

avoid over-parameterization. For the opposite case: not tak-

ing distortion into account for the maximal zoom reference

case, implies the no-distortion model for the other image, as

well, which is not always correct (zoomed-out images).

A way to cope with the described inconsistence would

be to employ a non-linear optimization. The self-calibration

step, along with a linear structure frommotion method, pro-

vides an initial guess for camera parameters (internal and

external ones). Then, it would be sufficient to use an ex-

tended projection model (including distortion) in a bundle-

adjustment setting.

Overall, the experiments validate that our self-calibration

method is reliable, for any stereo pair. The unknownmagni-

fication parameter can be recoveredwith even
�✂✁
-accuracy,

provided that the stereo pair is composed of images of sim-

ilar resolutions. Therefore, it is more convenient to use

a minimal zoom reference view to self-calibrate zoomed-

out images, and a maximal zoom reference one, for more

zoomed-in images.

7. 3D reconstruction

We applied the described technique on a stereo pair of

images of a chimney (Figure 6). The only knowledge we

had, was that both images were taken with our camera, and

that one of them was taken with the minimal possible zoom.

Self-calibration provided us with an estimation for the un-

knownmagnification parameter for the second setting of the

camera: ✔ ☎ ✧✪✩ ✖ .
Reliability of the obtained reconstruction of the chim-

Paper 4: Combining Off- and On-line Calibration of a Digital Camera, 3DIM 2001 [38] 33

Figure 6. Stereo pair of a chimney (the refer-
ence image on the left).

Figure 7. Reconstructed chimney.

ney (Figure 7), with correctly retrieved depth and angles

between specified planes (Table 5), certifies a high quality

of the performed calibration, and thus, capability to recover

the Euclidean structure.

8. Conclusion

We have presented a method to simplify the self-

calibration process of a zooming camera, based only on in-

formation of a boundary (minimal or maximal) zoom, used

for taking one of the images. Due to the off-line calibration

preprocessing, the on-line self-calibration step has only one

parameter to estimate, and thus, only one family of critical

motion sequences for cameras to deal with (a situation that

is not valid for more complex cases of self-calibration). We

provide a close-form solution for the problem and present

experiments on real images that validate the stability and

reliability of our method.

The proposed combined calibration technique can be

easily used in various applications, as quite often one is

provided with at least one reference image. The complex

problem of dealing with wide, differently zoomed views of

a scene, is decomposed into several simpler tasks, which is

an important advantage of the presented approach.

Acknowledgements. We would like to thank Frederik
Schaffalitzky from the Visual Geometry Group in Oxford,

for making accessible a matching software.

Plane 3 5 6 7 8

1 88 (90) 88 (90) 2 (0) 89 (90) 89 (90)
3 - 2 (0) 91 (90) 71 (70) 114 (115)
5 - - 90 (90) 70 (70) 113 (115)
6 - - - 88 (90) 90 (90)
7 - - - - 43 (45)

Table 5. Angles (in [deg]) between chosen
planes of the chimney: retrieved values, and
the real ones (in parentheses).

References

[1] M. Armstrong, A. Zisserman, and R. Hartley, "Self-
calibration from image triplets", ECCV, pp.3-16, 1996.

[2] A. Baumberg, "Reliable feature matching across widely sep-
arated views", CVPR, pp. 774-781, 2000.

[3] S. Bougnoux, "From projective to euclidean space under any
practical situation, a criticism of self-calibration", ICCV, pp.
790-796, 1998.

[4] E. Boyer, Reconstruction de surfaces d’objets courbes en
vision par ordinateur, PhD thesis, INP de Lorraine, 1996.

[5] Y. Dufournaud, C. Schmid, and R. Horaud, "Matching im-
ages with different resolutions", CVPR, 2000.

[6] O. Faugeras, "What can be seen in three dimensions with an
uncalibrated stereo rig?", ECCV, pp. 563-578, 1992.

[7] R.I. Hartley, "Estimation of relative camera positions for
uncalibrated cameras", ECCV, pp. 579-587, 1992.

[8] R.I. Hartley, "Self-calibration from multiple views with a
rotating camera", ECCV, pp. 471-478, 1994.

[9] R.I. Hartley, "Kruppa’s equations derived from the funda-
mental matrix", PAMI, 19(2), pp. 133-135, 1997.

[10] R.I. Hartley, R. Gupta, and T. Chang, "Stereo from uncali-
brated cameras", CVPR, pp. 761-764, 1992.

[11] A. Heyden and K. Åström, "Minimal conditions on intrinsic
parameters for euclidean reconstruction", ACCV, vol. II, pp.
169-176, 1998.

[12] E. Malis and R. Cipolla, "Multi-view constraints between
collineations: Application to self-calibration from unknown
planar structures", ECCV, pp. 610-624, 2000.

[13] M. Pollefeys, R. Koch, and L. Van Gool, "Self-calibration
and metric reconstruction in spite of varying and unknown
internal camera parameters", ICCV, pp. 90-95, 1998.

[14] P. Sturm, "Critical motion sequences for the self-calibration
of cameras and stereo systems with variable focal length",
BMVC, pp. 63-72, 1999.

[15] B. Triggs, "Autocalibration from planar scenes", ECCV,
1998.

[16] R.G. Willson and S.A. Shafer, "Modeling and calibration
of zoom lenses", In Camera Calibration and Orientation
Determination, Springer-Verlag, 1993.

[17] C. Zeller and O. Faugeras, "Camera self-calibration from
video sequences: the Kruppa equations revisited", Technical
report 2793, INRIA, 1996.

34 Chapter 4. Camera Calibration

Chapter 5

Camera Self-Calibration

5.1 Crititcal Motions for Kruppa Equations

Paper 5 [21]: P. Sturm. A case against Kruppa’s equations for camera self-calibration. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(10):1199–1204, October 2000.

5.2 Focal Length Self-Calibration

Paper 6 [23]: P. Sturm. Critical motion sequences for the self-calibration of cameras and stereo systems

with variable focal length. Image and Vision Computing, 20(5-6):415–426, 2002.

Paper 7 [28]: P. Sturm, Z.L. Cheng, P.C.Y. Chen, and A.N. Poo. Focal length calibration from two views:

Method and analysis of singular cases. Computer Vision and Image Understanding, 99(1):58–95, July

2005.

5.3 Self-Calibration for Planar Motions

Paper 8 [10]: O. Faugeras, L. Quan, and P. Sturm. Self-calibration of a 1d projective camera and its

application to the self-calibration of a 2d projective camera. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(10):1179–1185, October 2000.

5.4 Plane-Based Self-Calibration

Paper 9 [12]: P. Gurdjos and P. Sturm. Methods and geometry for plane-based self-calibration. In Proceed-

ings of the Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, volume 1,

pages 491–496, June 2003.

5.5 Optimal Fundamental Matrix Estimation

Paper 10 [3]: A. Bartoli and P. Sturm. Non-linear estimation of the fundamental matrix with minimal

parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(4):426–432, 2004.

35

� ���� ������	
��

��� ����	����
��� ������ ������������	���

����� �����

���	���	�	�
��
���� ���
����
���������� ������� ��� ���
��
����
�����
 ���

�
��
����� ���
��

�
�� ������ �������� ������
�� �� �
 ����� ���� ���
������

����� ����
 ��
����� �������
����
���������� �
 �� �������� ���
� ������
�

��
��� ����� � ��� �!�
���
� �� ���� ���

�������
� �� � �������
 ������ �� ����

������ ���
� �������� �����	
��
�	��
 ��� ���� �������� ����� ��������
� ���

���
��
�� �����
�����
� "���� �� ������ � ���� ��
����� ������ ���� �
 ���
����
��

��� ��� �����

����
���������� �������� ��� ��� ���
� ��� ������ ��������

������
� ����
� #��
 �
 ���
�
� �� ��� ����
��
�����
 �� ���
�����
 ��� �� �
�����

��� �� ��� ����
�� �!�
 ��

 ����� � ���
�����$

������ � ���� �������
�������� ���

%& ��'�
� ������� ���� ��� �
� (�
���
 ��
�������� �!��������
 �����
�����

��� ��
�������� �� ������
��
����
���������� �� ������
 �� ������� �������

���� �������
�

����� �����������
�����������
����������� ��
������ ��
��
���
����� ������

��������
�
����
�� ������
� �� �����
�� ��
�����
���
�

�

� ���� !"��� �

�� ������	
 ��	 �	
����
��
����� �
��
	� ��
 �	
��	����	 ���	
���
�� �	
����
��
������ �	 �	�� ��	
	���	
� �� � ���	
��� ���
�����
��
��	�	
� �� ��
� ����� ����
������ �������	� �� ����	� ���	�
�� ���� ���	
�� ���
����
�� �� ����
������ �� ���	
� ������ �
 ��
��	 � ��
����
	 �� ��	 	���
���	�� �� ��	��
!� ��� �		� ����� �� "������ ��� #���	
�� ����� �� ��	

���	
��� ��
��
�����
	����� ���	� ��	
 �� ����	 �	$�	��	� �	
��
��
��
����� �� �� �	�	
�
 ������
	 %&'� (���
	��
� �� ���	� �� ��	 ���

��

	� ������ �����	
��� ����
��� ��	 ���	
��� ���
����� ��
��	�	
�
���� ��	 	����
�
 �	��	�
� �� ���
� �� ��	�� ���	� �� ��	 ���	
��
(�	 	����
�
 �	��	�
� ��� �	 	������	� �
�� ��
	 ����	 �����
��

	�����	��	�� ��)
������ 	$������� ��� �����
����� �� ��	
���
����� ��
��	�	
� ��� ��� ���� �	 ��	� ��
 �	
����
��
������
*	�	
�
 �
������
 �	
����
��
����� ���
����	� ���	� ��)
������
	$������� ���	 ����	$�	��
� �		� �
����	� �� #���	
�� ���
����	��� �� ��� %+'� %,'� %-'� %+-'� #�
 ���	
 �	
����
��
�����
���
����	�� �		� ��
 	����
	� %.'� %/'� %0'� %+1'� %+,'�
!� �� ����� ���� �	�	
�
 ���	� �� ���	
� ������ 	����� ��
 �����

�	
����
��
����� �� � �	�	�	
��	 �
��
	�� ��	�� ��	
	 	���� ���������
��
������� !� %+.'� %+�'� �	
	��
� �� � ����
	�	 ����� �� ��	
�	�	
��
�
�	
� ������
��� (�	 �
��
	� �� �	�	�	
��� ���� �	 ���	� ����
������� �� �
������
 �	
����
��
����� ����	 �	�	
�
 �	
� ������
������� ���������� �
	 ���		� �
�����
�
!� *	����� /� �	 �	��
��	 � �������
������ ���� �� ��� �
�����
 ��

�	�	
�� �	
����
��
������ ��� ��
 ����� ���
����	� ���	� ��
)
������ 	$������� ���
� 2���
	�	
�� �	 ���� ���� ���� �� ��	 ���	
�� �

 ������
 �	��	
�
�	 �� � ���	
	 ��� �� ��	 ������
 ��	� ����
��
���� ��	 ���	
	�� �	��	
3� ��������� ���� ���	�
� �
	$�	��
� ��

� ��4	�� ���	
��� �
�� ������
���� �
 ����	 �	$�	��	��
!� *	����� .� �	 �
�	�
� ���
����	 � ��	�
� �� �	
����
��
����� ��

����� ��	
	�� �� ��	 ���	
 �� ���	��)
������ 	$������� �
	

	��	�	� �� *	����� �� !� *	����� ,� �	 	�����	 ��	 �������
��� ��
)
���� 	$����������	� ���
����	� ��
 �	
����
��
����� ��
�	�
��	�	�	
��	 ����������� ��
���� ���	
���
 	��	
��	���� !�

*	����� -�
	��
�� �
	 ����� ���� ���	

��	 ��	 ���� ���� ���	

���
����	� ��� �	
��
� �	

 	�	� �� ���������� ���� �
	 	����
�
�	�	�	
��	 ��
)
������ 	$�������� *	����� & �������	� ���	
��	���
 ���	� �� ��	 �	�	�	
��� ������	
	� �� ���� ���	
� ��	
	��

*	����� 5 �
����	� � �	�	
�
 ���������� �� ��� �	
���� ���	� ��
�	����� ����	
 �
�� �	
���� ���	� �� �	�	�	
���	��

��$%���$�&���� � ��! �"�$�!���
��� ����"��� �

�	 ������	
 ���	
� 6�	
��7 ��
��
����� �� �� ���	
�	����	 ��	� ��
��	
	���	
� �� �	�
�� � ��
����
	� �
�� ��

	� ���
��	��

	�����
������� !� �	��	�
���
 �	
��� ��������� � ���
��	��

	�����
������ �� 	$����
	�� �� �	�	
������ ��	 �������� �� ��	
����
��	 ����� �� %++'� (�	 ��
��
����� �� � ���	
��� ���
�����

��
��	�	
� �� 	$����
	�� �� ��	 �	�	
�������� �� ��	 ����
��	
������� ��
��
�	
�� (�	 ����
��	 ����� �� ���
���	
�8	� �� �	��� ��	
��
� ����� �� ��
		�����	 ���� �� ����
���� �� ���
��	�� �
�����
���

������ 9 ����	$�	��	 �� ���� �� ���� 	�	� ���	
 �
���
�
� ���	
�
����
��	�	���� ��	 �
�4	����� �� ��
	����� ���	�� �� ��	 ���	
���
��
��
����� ��	� ��� �����	 ��
��� ��	 ����
��	�	��� (���

�
��	
�� ���	� �� � �����
���� ��
 ��	 �	�	
�������� �� ��	 ����
��	
����� ��� ��� �
�4	����� ���� ����� ��
 ���
��	��
	�����
������ ���
�	
����
��
������
���
��	��
	�����
������ �
 �	
����
��
����� ���� ����� �	

��
��
��	� �� ��	 �	�	
�������� �� ��	 ���$�	 ����� �� ��
		�

����	� ����	 �
�4	������ �
	 ��	�����
 �� �

 ��	�� �� � ���	� ����	
�	$�	��	 %+�'� !� ���� ���	
� �	 ������	
 �	
��	����	 �
�4	����� ��
���	
� ���	
� ����	 ���
����� ��
��	�	
� �
	 �	��
��	� �� ��	

�	�� �	������ "��� �
������
 �	
����
��
����� ���
����	� ���
� ���� �
�
���
 �
�4	����	
	�����
������ ��� �
� �� ��	����� ��	 ����
��	
����� �� � : ���
����	� ���	� ��)
������ 	$�������
	
� �� ��	

	����
�
 �	��	�
� �� ���
� �� ��	��� �
���� �� ��	����� ��	 ����	 ��
��	 ����
��	 ����� �� . �����
���
 ����
�������

'
�"((��� �)"��� ��

)
������ 	$������� ��� �	 ������	
	� �� �� 	����
�
 ��������
�����
���� ��
 ��	 �
�4	������ �� $���
��� �
 ������� 2�����	
 #��� +�

��	
	 ��	 ���	 �� � $���
���� �
�4	����� �� ��� ��	�� �� �

���
��	��
(�� 	����
�
 �
��	� �
	 ����	�� �� ��	 $���
�� ��� ��	 �����	�
	����
�

��	� �� ��	 ����	� �
	� ����� ����	�� �� ��	 ������

������	� �� �
�4	����� �� ��	 $���
��� ;	��	� �� 	����
�

��	 ����
�� ����	�� �� �� ����	 ����� ��

	������ �� �� 	����
�

��	 ���� ��
����	�� �� ��	 ����� �� ��	 ���	
 ����	� (�	 ���	 ���� �� 	����
�

�����
���� �� ��
�� �� ��	 ������ �� ��	 ����	� �
	 ������	� ��
�
�4	����� �� �

�	
 �� ��
		�����	� ����	�� �� � $���
���
!� �	 ������	
 ��	 �
�4	������ �� ��	 ����
��	 ������ �	 ������ �

��	���
 ���	 �� ���� ����� �������� �����
����� ����	 ��	 ����	
������ �
	 ��	�����
 ��	� ��	 ����	� �
	 ���	� �� � ���	
� ����

���	� ���
����� ��
��	�	
� 6��� *	����� .7� <	� � �	 ��	 �
�4	����� ��
��	 ����
��	 ������ (�	 �������� �����
���� ��� �	 	��
	��	� �� ��	
��

����� ��
� %+-'=

� ���
�
� � ����� ��� ����� � ��	

��	
	 � �� ��	 ������	���
 ���
�� �� ��	 ��� ��	��� �� �� ��	
�	���� 	����
	 6��	 ��
�� 	����
	 � �� ��� ��	� �� ���� ��
��
�7� �
�	��� 	$��
��� �� �� ���
	 6�	 ��
� �� �����	�	��� ���
�����	�7
��� ����� �� ��	 ��	������	�
�� ���
�� ��������	� ���� ��	 �
����
�
����� �� �

�� �$������ 6+7 �� ��	 ��
��
����� ��)
������

	$�������� !�
���� ��	 ���
����� ��
��	�	
� �� ��	 ���	
�
6
	�
	�	��	� �� ��	 ����	 � �� ��	 ����
��	 �����7 ���� ��	
	����
�
 �	��	�
� 6
	�
	�	��	� �� � ��� �

�7� *���	 ��	 	����
�

�	��	�
� ��� �	 	������	� �
�� ��
	 ����	 ��

	�����	��	��
)
������ 	$������� ��� �	 ��	� ��
 �	
����
��
������

�))) #(*+�*,#�-+� -+ �*##)(+ *+*./��� *+& 0*,"�+) �+#)..�1)+,)� 2-.� 33� +-� 45� -,#-6)(3555 4477

� ��� ����
� 	� �	�� ����� ��
���������� ��� ������ �� �� ��
��� !"!!#
$
��%
��
�� &� $���	�� '���
�(���	�) *����(&����+	��	�����(,�

$����
�	�� ��
�	��� -. ��/(-00"1 ���	��� � $�2 3###1 �

����� -# $�2
3###(
��

������� ,
� �

�����
� %2 $(4��
5(
'
� 	�,
����	
�
�
%��	�	�/ ����	���
, ��	� ���	
��� ������ ���� ����	� �
)
����	+

������(
�/� ��� ��,����
� � 6& 7
/ ���%�� -#80"0(

5483�9939:55:;45�55 � 3555 �)))

Paper 5: A Case Against Kruppa’s Equations for Camera Self-Calibration, PAMI 2000 [21] 37

>��	 ��	 ����	 � �� ��	 ����
��	 ����� ��� �		� �	�	
���	�

�����)
������ 	$������� �
 ��� ���	
 ���
����� ��	 ���
�����

��
��	�	
� �
	 �	�	
���	� ��
�������
��
�
�� �� �	��
��	� �� ��	

��

������ <	� ��	 ��
��
����� ���
�� �� ��	 ���	
� �	 ���	� ��=

�

�� ��� ���� ��

� �� �	
� ��

� � �

�

�

�

� �

��	
	 � �� ��	 ���	��
����� � ��	 ����

	���� 6�� ���	
�7� ���� ��	 ��	
�
������
 ������ ��� � ��	 ��	� ���
	 �	��		� ���	
 ��	�� (�	

����	 �� ��	 ����
��	 ����� �� � ��	� ���� ��
��
����� � ���

���	�	��	��
� �� ��	 ��	��� 	��
����� ��
��	�	
�� ���	� ��=

� � �
��

�
�� �

;	��	� ���	 � �� ������ ��	 ���
����� ��
��	�	
� �
	 	���
�

�	�	
���	� �� 2��
	��� �	��������� �� ����� ��	 �
��	
�� �� ��	

��
��
����� ���
�� �	��� ���	
 �
�����
�
� �$����
	��
�� ���

�
����
� ��
	 ����	��	��
�� �	 ��� �	������	 ��	 ���
 �� ��	

����
��	 ������� ����	=

��� � ��
� � ��	

* � !�+������� ���� % �
�"((��� �)"��� ��

!� ���� �	������ �	 ������	
 ��	 ���	 ��	
	 ��	 ���	
� �� �	 �	
��

��
��
��	� ���	� �� � ���	
	 ���
	 ��� ������
 ���� ������ ����
��

��	 ���	
	�� �	��	
� (��� ���	 �� ���	
� ������ �� ��� �
�����
 ��

��	 �	�	
�� �	
����
��
����� �
��
	�� ���)
������ 	$������� �
	
�	�	�	
��	� ����� �� �	�����
��	� �� ��	 ��

������+

<	� � �	 ��	 �	��	
 �� ��	 ��	���� ���	
	 6��	�� ��	 ���	
	 ��
���	
� ���������7� 2�����	
 �� �
���
�
� ���	
	
 ���� �� �
��
�	��	
	� �� �� >������
�� ����	 ��	 ���	
� �� �
���� �����	�
����
�� �� ��	 ���	
	
 �� �	
�	��	� �� ��	 ���	 ��� �� �

 ��	���
��	�� ��� �
�4	������ �
	 ��	�����
� <	� 	 �	 ��	 �����
	�
	�	����� ��	
���	
	�� �
�4	������� (�	 ���� ���� 	 �� ��	 ��	�����
 �
�4	����� �� �
$���
�� ���� �

 ��	�� �	��� ������� 	
�	 ���� ���� 	 �������	�
)
������ 	$������� ��
 	��� ���
 �� ��	��� ;	��	� 	 ���	� �� �
����	������

� ��
��� ��� �
���� ��
����� ��
 ��	 �	
����
��
�����
�
��
	�� �	 ��� ��� �����
��� ��	
����� �� ���	
	
� �����
�	��� ���� ��	
	 �� � ���
	 ����
� �� ��������� ��
������ ��
 �	
��
��
��
������ ?��	 ���� ���� �	�	�	
��� �� ���	�	��	�� �� ��	�	
��
����
	= (�	 ���	
	
 ��	� ��� ���	 �� 	���� �� ��	
	�
 ��

�3��
�� � ��
	
� �
�	�
��� ��4	���
��	 ��	 ����
��	 ������
!� ��	 ��

������ �	 	�����	 ��	 ����
	 �� ��	 ���������

��
������� ��	�� ����� ���
����� ��
��	�	
� �
	 ���	��	� �� �����
���� <	� ��	 ���	
��� �������	 �
�� � �	
 ��� �	���	 ���	
	�
�	��	
	� �� � ��� ���� 6������
� �������
�7
����� � ��
�� !� ��
	��� �� �	
��� ���� ��	 ���
 �� ��	 ����	 ��
� �� ��	�����
 �� �

��	�� ��� �� ���	� �� ��	 ���
�� 	��

� =

	��

� � �

��

���
� � �

� ��

���
� �

� � �

�

�

�

��
� � ��	

*���	 	� �� ����������)
������ 	$������� 6+7� �	 ��� �
� �� 	��
���
���
����� ��
��	�	
� �
�� ��� �� �	��
��	� �� *	����� �� ��
 ��	 �
�	
����	 �� ��	 ����
��	 ������ �� 2��
	��� �	��������� 	��

� � �	
������ �� ���	
 �
�����
�
 ��
��
����� ���
�� �� ����������
	��
� � ���

�
� � #
�� 6.7 ��� 6�7� �� ��

��� ���� �� �� ���	� ��=

��
 �

�
���������

���
�
� � �

� �
���������

���
�
� �

� � �

�

�

�

� �

����
	��
� �� ��	 ��

����� �	����������� �� �� �	��
����� ��	
����

	���� � �
�� ��	 ���	
 ���
����� ��
��	�	
�=

�

� �� ���� ��

� �� �	
� ��

� � �

�

�

�

�

� � �

� � �

� � �

�

�

�

� �

��	 ��������� ��
����� ��
 ��	 ��
��
����� ���
��� ��	 �� 	�� ��
���	� ��=

��

� �� ���� ��
� �� �	
� ��
� � �

�

�

�

�

�
���������

���
�
� � � �

� �
���������

���
�
� � �

� � �

�

�

�

� �

�	 ���	
�	 ���� ��	 ���
����� ��
��	�	
� ���	� �� �� �
	 ��	�����

���� ��	 �
�	 ��
��	�	
� �� �� ���� ��	 	��	����� �� ��	 ����

	����� ����� �� ���	� ��=

��

�

���������������

�� �
�
� � � ��	

(���
	��
� ��� ��� ���
��������= #�
��� ��	 ����

	���� �� ����

�
��	 ���
����� ��
��	�	
 ��	 �� ���� ���	
	��	� �� ��	� �	
��
��
��
����� 6��	 ���	��
���� �	��� �������� ��� ���	� �
	���	
�
������ ��	 �
������
 ����� �	��� �
��	 �� ��	 ����	 �	��	
7 ��� �� ��
	���
������ ���� 	����
� ���� ��
��	�	
 �� ����
���	�� *	�����
	�	� �
��
 ����
	��	 �� ��	 ���	
 ���
����� ��
��	�	
� 6���	��

����� �
������
 ������ ��	� ���
	7 ��	� ��� �	
� ��
	��
���� ��	
��������� �� ����

	���� 	���������@

4355 �))) #(*+�*,#�-+� -+ �*##)(+ *+*./��� *+& 0*,"�+) �+#)..�1)+,)� 2-.� 33� +-� 45� -,#-6)(3555

<� � 4� =�> #�� ��� � �� � ������
 �
 ��� ���'�
���� �� ��

���������� �

��� ����

��� ����
��
����� �� ���
������ =�> #�� �������� �����
 ��� ��� ��� �� ���

������
? ��� �

�
����� �������� ����
 ��� ��� ��� �� ��� ��� �
 �� ��� ������
�

+� (
���� �

	��� �����	� ��� ���� ���� �������
����� �� �	�	�	
��	 ��
 ��	
$�����
��	�
 ���
���� �
����	� �� %+,'� A	
���������� �	��		� �	�	�	
���	�
��
 ����	
	�� ���	� �� �	
����
��
����� ���
����	� �
	 �������	� �� *	����� 5�

38 Chapter 5. Camera Self-Calibration

�	 ��� ���	 � �
��	

��� �� ��	 �����
 �
 �
���������

���
�
� �� 6/7�

 	�	����� �� ��	
����� � �� ��	 ���	
	
�� ���� �����
 ���	�
�������
� �

	�
 ��
�	�� (�	 ����

	���� �	��� �
	�
 ����	
� �	
�
	 ���	
	��	� �� ��	 ���	� ��	� � ��
	�
� !� �� 	��� �� ��	�� ���� ����
�� ��
�� 	����
� �� ��	 ��

����� ��� ���	�=

� � ��
	�
 ���
�
�	
 �
 	$��
 ����
� ��	��
� �� �
	�
 ���	
	 ��
	$��
 �

�
�	

����� ���� ��	 ��	���� ���	
	� !� ���� ���	�
�	 ���	 � � ������

� � �� � ��
���
	 ��

�������

��
�

� ��	��
� �� � ���	
	 �� �������
�
������ ��
�� !� ���� ���	� �	 ���	 � � ��� ���

!� ����
������ �

 ���8	
�
	�
 ��
�	� �
	 ����	������

� ��
��
��
������ ��
 ��	 ��������� ����

	���� ���
(�	
	���� ��
)
������ 	$������� ������ ��������� ��
������

�� � �������
����� ���� �� ��� �
�����
 ��
 ��	 �	�	
�� �	
����
��
�����
�
��
	�� ��� �	
	���	� �� ��	 ��

����� ��
��	� ?��	
��
)
������ 	$������� �
	 �����
����� �� ��	 	��/� �� ��	 ����
��	
������ ��� ��	� �� ��� 	���
�	 ��	 ������	�2 �� ��	 ����
��	 ����� ��
� � ����� �� 	����
� ���� �� ��
 ���	� ��	 �
�4	������ �� ������� �
	
������	� �� ��
������� (��� ����	 �� �������	� �� ��
	 �	���
 ��
*	����� 5�
(�	 �	�	�	
��� ��)
������ 	$������� �	
	�	�
	� �� ����

�	����� ��� �		� ���	
�	� �� 	��	
��	��� �� B	

	
 ��� #���	
��
%+-'= !� ��	�
 �	
����
��
����� ���
����� � �
���
 ������8����� ����	
�� ������
�8	� �� �
����� ��� �� 	������	� �� ��	 ���	��
���� ��� ����

	����� ������	� �
�� ���
� �� ��	�� ��� ���� ��	 �
������
 �����
�	��� ������	� ������ (�	 ������	�
	��
�� �� ��	 ����

	����
�	
	
	��
�	� �� �	 	��
	�	
� ������
	� ��	
	�� ��	 ���	��
���� ��
	������	�
	
���
�� B	

	
 ��� #���	
�� �	
	 ��� ���
	 ���� ��	

	���� ��
 ���� �		�� �� �	 ��	 ���	
���
 �������
��� ����	� �� ��	
���	
� �������
����� ��	� ��
 ��	�
 	��	
��	���� ����� �� �
��	 ��
��	 �������
����� �	�
� ���� �� ���� ���	
� ;��	�	
� ��
��� ��	
�
���
 ������8����� ����	� ��	� �

 ��	�� �
	 ���	� ���� �������
����
���	���
�� ��	 �������
��� �		�� �� �	
	���	� 	����� ��
������ ����
	��
��� ����� �� ������
	 ����	 ��	 ���	
� �������
��
���� �� ��
� �	�
 ��� ��� ��� 	����
�� �	�	�	
��	�

, �����&�$��- % � �����!�+������� ��.���
� �%�+"���� ��

!� ��	 ��

������ �	
	��
� �� ���	
���
 ����
������ ���� ���	
�		� �	����	� ��
	�	�
 ��	 �������
��� ����	� �� �	�
��	�	�	
��	
���	
� �������
������� !� �� ��� ���	��	� �� ���	 � ����
	�	
$����������	 ���
���� �� ��	 �
��
	�� ��� �� �	�����
��	 ��	 	��	��
�� �	�
��	�	�	
��� �� ���	
���
 �
��
������
(�	 ����� ����
��	� ���	
� �	��� �� �� ��

���= (�	 ��	�	

�������� �� ,1 � ������ ���� �
	
�����
� ����	� �� � ���	
	 ��

����� +11� �	��	
	� �� ��	 �
����� �	 �
��	 ��	 ���	
� �� �
���
�
�
��������� �� ��	 ���	
	 ��
����� .11� ���� �� �
�� �	��	
	� �� ��	
�
����� (�	 ���	
��� ��
��
����� �� ���	� ��=

�

�� ��� � ���

� �� ��� ���

� � �

�

�

�

�

��� ��	 ���	
� ��
����	� ���� ���� �� �����	� ��	 �
���� 6��	
��	���� ���	
	�� �	��	
7�
(�	 ��

����� ��
������� ��� �	
��
������� �
	 ���
�	� ��

��
���� ������������=

� (�	 ���	
��� �
�	������� �� �����	� ���� ���� ��	 ���	
�
�����	� �
�����
� ����	� ����� ������ � ���	� �������	
�
�� ��	 �
���� 6� ����	
	�� ����� ��
 	��� ��	�7� (���
�������	 ��

 �	
	�	

	� �� �� C������
 ���� ����	�D ���
��
�	� �	��		� 8	
� ��� +1�

� (�	 ���	
� �� �
���
��	� ��� ��	 ��	���� ���	
	� ����
�
��	 �
����� !�� �������	 �
�� ��	 �
���� ��
	���	� �
��

.11 �� +51� (�	 ����	
 �� �
���
��	� ���	
�� ��

 �	

	�	

	� �� �� C����	
 �� ��	�� ��� ��	���� ���	
	D �� ��	
��

������

� E������� ����	 �� ������
� �	������� ��	 ���	
 �� ���	� ��
��	 ���
�����	� �� ��	 ����	 �������

(�	 ��
�� ��� ������� ���	 ��	 �������
����� ���� �
�� �	���

�
�����
 ��
)
������ 	$��������
(�	 	��������� �� ��	 ���
����� ��
��	�	
� �� ��

�	� ��� ��

��

���� #�
��� ������	���
 ���
��	� �	��		� ���
� �� ��	�� �
	

	������	� �� � $�����
��	�
 �	���� %�'� (�	 ���
����� ��
��	�	
�

�
	 	������	� �� � <	�	��	
��"�
$��
�� ���	 ������8�����

���	�	� ������8��� � �
��	
��� ���	� ��)
������ 	$��������

(�	 ���
����� ��
��	�	
� �
	 ������
�8	� ���� ��	�
 ���� ��
�	�� (����

�
�	 	

�
� �� ��	 	������	� ��
��	�	
� �������	
�
�	 �������
���	�

����	� �� �	�
��	�	�	
��	 �������
�������
#�
 	��� �	���� �	 ��

�	� ��� .1 ����	
	�� 	��	
��	���� !� ��	

��

����� �
����� �	����
	
����	 	

�
� ��
 ��	 ����

	����� ��	

���	��
���� ��� ��	 ���
�����	� �� ��	 �
������
 ����� �
	 ������

#�
 �

 �� ��	
	��
�� ������ 	���� ��	�� ���	 �		� ��	� ��

�	
����
��
������
#��� . ����� ��	 ��������� ��	� �

 ���	
�� �
	 �
��	� 	����
�

�� ��	 ��	���� ���	
	� ��� ��	�
 ������
 ��	� �
	
����	� ���� �
��

��	 �	��	
 �� ��
���� �������� 9� ��	 ��	�
� �� ��	 �
	�����

�	����� ����	���� ��	 ���	��
���� ��� ��	 �
������
 ����� �
	

	������	� $���	
	
���
� 	�	� �� ��	 	����
� �	�	�	
��	 ���������

��	� ��	
	 �� �� ������
 ���� ����	�� (�	 	

�
 �� ��	 ����

	����

���	�	
� ��� �� 	��	��	�� �	
�
�
�	 ��
 ��	 �	�	�	
��	 ���	 6���	

��	 ����	
	�� ���
	� �� ��	 ���	
 ���
��	
 ��
�� �� #��� .7 ��� ��
�

	���	� ��	 ���	
	�	
 �� ��
 ��	 ���	
 ��
��	�	
�� ��	� ��	

������
 ���� ����	� �	���	� ������������

�))) #(*+�*,#�-+� -+ �*##)(+ *+*./��� *+& 0*,"�+) �+#)..�1)+,)� 2-.� 33� +-� 45� -,#-6)(3555 4354

<� � 3� #��
����� �
 ���
�� �!�
��� �� ��� ������
������ ��� ��� ����
�� �!�
 �

������� ���� ���� ���
�����$

����� �� ������
 ������
� #�� �����

@�� ����A�����B ��� @�� �����
��B ����� �� ��� ����
���� �����
���������
 �� ���

��� +��� ��� ���������

���
 �� ��� ����
�

Paper 5: A Case Against Kruppa’s Equations for Camera Self-Calibration, PAMI 2000 [21] 39

#��� � ����� ��	 ��������� ��	� �	��		� 8	
� ��� ���
 �� ��	

	���� ��	�� �
	 �
���
��	� ���� �
�� ��	 ��	���� ���	
	� ��� ��	
	

�� �� ������
 ���� ����	�� 9����� ��	 ���	��
���� ��� ��	 �
������

����� �
	 	������	� ����
	�� ���� ���	 �	
�	�� �� 	

�
 6�
��� ���

�����7� 9� ��
 ��	 ����

	���� 	���������� �� �� ���	
	����� �� ���	

���� 	�	� ���� ��
� ��	 ��	� ���	� �
�� � �������� ��� �� ��	

��	���� ���	
	� ��	 	

�
 �	�
	��	� �
�������

�� ��� ��
� �� ��	

��	�� ���	 �� �	 �
���
��	� �� �
�	
 �� ���	 �
��	 �� ��	 ���	

�	
�	�� 	

�

	�	
�
#���

�� #��� / ����� ��	 ���	 �� ���� ������
 ���� ����	� ���

��	�� �
���
��	� ���� �
�� ��	 ��	���� ���	
	� (�	 ������
 ����

����	� �� ���� ���� ��	 ���	
�� ����� ������ ������ ���	 �����

�������	 �� ��	 ��	���� ���	
	�� �	��	
� !� �� ��
�� ������ ���� ��	

����

	���� 	

�
 �
��� ��
	�� ���� ��	 ��
� ��	� ��
� �� ��	 ��	��

�
	 �
���
��	� ��� ��	 ��	���� ���	
	�

/ � $0��+ �1� (������ ����

9� �	 �	�����	�� ��	 ���	
� �������
����� �������	� �� ����

���	
 �� ��� ���	
	��
� �	�	�	
��	 ��
 �	
����
��
������ ��� ��

���
����	� ���	� ��)
������ 	$������� 6��� ���	
�� ��� *	����� 57�

?��
��	�
 �	����� ����� ���
��	 ��	 �
���
��� �����
���� ��
 ��	

����
��	 ������ 	���� %.'� %/'� %0'� %+,'� ��

 �� �	�	
�
 ����		� �� �	
��

��
��
����� 6��� �
�� *	����� 57� (� �	�����
��	 ����� �	 �	����	� �

����
	 �	���� ��
	��
�	 ��	 ��������� ���
����	� ��)
������

	$�������� *���	 ��	 ���	
 ���
����� ��
��	�	
� �	���	 ��	 ����

	���� �
	 	������	� �	

 �� �)
���� 	$������ ���
����� �	

����� ��	�	 ���� �� � �	���� ��	�� ���
� � �	���� ��
 	���������
��	 ����

	���� ��
�� �	 ���� �� ��	 ��	 ���	 ����� �� ��

)
������ 	$�������� ��	�� ������	���
 ���
��	� ��
 ���
� �� ��	���
9� �
�	
�����	 �� ��	 �	���� �
����	� �� %+1'� ����� �� ���	� �� �
�
���
 �
�4	����	
	�����
�������
!� �	�	
�
� ��	 ����

	���� ��� �	 ������	� �
�� � ����
	 ���

�� ��	��� ���	� ��	 	����
�
 �	��	�
�� >�
 ���	
� �������
������
���	�	
� �� �	�	�	
��	 ��
 ���� �
��
	� %5'� #�
 �
��
	�� �� ��	���
����

	���� 	��������� �� ��
���	
 �	�	�	
��	 �� �	�	
�
 %+/'� #�

	��� �
��
	�� �� �� ������
	 �� ������ +. 	$������� �� �	�
		 ���
 ��
��	 ����

	����� ���� ��	�����	��� �	�	����� �� ��	 ��
		
������	���
 ���
��	�� (�	�	 	$������� ��� �	 ��
�	� ���������

�
��� ��	�
 ��
������ ������	� �� �
����� ����	
 �� �
����	 ��
	������	 ��
 ��	 ����

	����� 	���
� �� ���� �	���� �
	 �����	�
��	 ��
��� �� ����	� �
	��	 ������� ��	 �����
 ��
 ��
��	

����
�������
#��� , ����� ��	
	
����	 	

�
�� ����
	��	�� �� ��	 ������ ��

E������� ����	 ���	� �� ��	 ����	 ������� ��
 ��	 ���	��
���� ���
��	 �
������
 ����� 6	������	� �����)
������ 	$�������7 ��� ��	
����

	���� 6	������	� ����	$�	��
�7� (�	
�� 	

�
 ��
 ��	 ����

	���� �����
�� ���� ��
 ���	
� �������
����� �� ��� ���	
	��
�
�
�����
 ��
 �	
����
��
������

2 �("�� "� � $"�� ��

!� ��� �	 ����� ���� �� �	�	
�
� ��	 ��������� ��
������ ��
 ��	
����

	���� �	��
��	� �� *	����� /
	�
	�	�� ��	 ��
� �	�	�	
���	�
��
)
������ 	$������� ���� ��	 ������	
	� ���	
� �������
������
(�	
	 �
	� ���	�	
� ��	���
 ���	� ��	
	 ��
��	
 ��
������ 	�����
�
��������� ��	 	��������� �� ���	
 ���
����� ��
��	�	
� �� �	

�
9��������
 ���������	� �
��	� ��
 	����
	� �� ��	
	 	���� $���
���
���	
 ���� ���	
	� ����	 �
�4	������ �
	 ��	�����
 �� �

 ��	��� 9�
�	 ������� �� *	����� 5� �� ���
� �	 �	
� �������
� �� ���	 ��
	��������	
��� �� �

 ���������
 �	�	�	
���	� ���� ����� �� �	
��	
���������� ���	
 ����� �	
���� ���
����� ��
��	�	
� ��� �	
	������	� ��
 ��
	� ;��	�	
� �� �� ������
	 �� �	
��	 ���	 �������	��
���������� ���	
 ����� �	
���� ��
��	�	
� ��� �
� �	 	������	�
������� ���������� !� ��	 ��

������ �	 �	��
��	 ���� ����������
��
 ��
		 ��	���
 ���	� �� ��	 ���	
� �������
����� �������	� �� ����
���	
�.

(�	 ��
�� ���	 ����	
�� ���	
��
����	� �� � ��
�
	 ��� ��������
���� ��
�
	�� �	��	
� �	 ������	 ���� ��	 ���
���
���� 6
�������
����� ��	 ������
 ����7 �� ��	 ���	 ��
 �

 ��	 ��	��� (���
�������
����� �� ���	
	��
� �	�	�	
��	 ��
 �	
����
��
������ ������

��	 �� � �����	�
		�����
		��� ����
� �� ��
������ %+�'� #�

4353 �))) #(*+�*,#�-+� -+ �*##)(+ *+*./��� *+& 0*,"�+) �+#)..�1)+,)� 2-.� 33� +-� 45� -,#-6)(3555

<� � C� (������� �����
 ��� ������
�
 ���������
 ���� ��
��
� �� ���
� �� ��� ��� �

�����
�

<� � %� 6������ A��� ��� ���� �� ��� �� �� ����
 ��� ����
����� ���� ���� ���

������
������ #���� �
 �� ����
�� �!�
 ���
���

<� � D� 6������ A��� ��� ���� �� ��� �� �� ����
 ��� ����
����� ���� ���� ���

������
������ #�� ����
�� �!�
 ��� ���
��� .� A	��
�� �
	 4��� �����
�8	� �	
	: ��
 �	���
� ������� ��	 �����
�

40 Chapter 5. Camera Self-Calibration

)
������ 	$�������� ��	 ��������� ��� ��
	��� ��
		 �	�
		� ��
�
		���� (�	 ��

����� ���������� ��
� ��
 ���	
�� ����

	������
�
 ���	
� 6��	�� �
 ��
: ����
�
� ��� ��
	 ����
����	��
���������� ��� �	 �	
��	� ��
 ���
	������
�
 ���	
�7� (�	
���
�����	� �� ��	 �
������
 ����� ��� �	�	
 �	 	������	� ���� ��
��	 ���	 ���	� !� ��	 ���	
�� �
	 ��� ��
���� 6��	�� ���	 �� ��	 ���
���	
 ��	�
�	� �� ��	 �
��	 �� ������7� ��	� ���	 �� ��	 ���
�����	�
�� ��	 �
������
 ����� ��� �	 	������	�� !� ��	 ���
���
���� �� ����
���� ���	 �� ��	 ���	
 ��	� ��
�� � /, �	�
		 ���
	 ���� ��	 �
��	
�� ������� ��	� ��	 ���	��
���� ��� ��� �	 	������	�� (�	 ����

	���� ��� �	�	
 �	 	������	� ����	 �	 �
	 �� � ��	���
 ���	 ��
*	����� /�
(�	 �	���� ��	���
 ���	 �������� ����� �� � ���	
� ������ �� �

��
�
	� ��� �������� �� �
���
�
� ����� �� ��	 ��
�
	�� ����� ��	�� ��	
������
 ��	� �� ���
�	 �� ��	 �
��	 �� ������� (�	 ���
� ���	 �� ��
	��	����� �� ����� ������	
��� ��� ���� �	�� �� ���	
��� �

���	�
���	�
���

� 6��	�� ��	
���� �� ���	
� ��������� �� ��	 ����� �� ���
C��
�

	
D ��
�
	� �� ��	 ���	 ��8	7� (�	 ��������� ���������� �	
	
�
	 	��	����

� ��	 ���	 �� �� ��	 ��
�� ���	� 	��	�� ��
 ��	 ���	��

����� ��	
	 ��	 /, �	�
		 ���
���
���� �����
���� ��� �� �	 �����	�
���
��
���	
� �� ������� ��
 ��	 ���
������� �� ��	 ������
 ��	� ����

	��	�� �� ��	 �
��	6�7 �� �������

3 $�0�$� % !�+������-

�	 �
�	�
� 	��
��� ���� �	
����
��
����� �	����� ��� �	 �����	�
���� ��
	��� ��
		 �
����� ����	
��� �
�� ���
	�����
	�	
� ��
�	�	�	
���� ��	�� ��
 ����� ���
	�����
� ���� �
�����
 ������� 	�����
!��	
	�� �	�	�	
���	�� ��	�� �	�	�	
���	� ����	
���� ��2 �	�����
����
 	����
� �� ��	
	 �� � �
��	
 ��
���
 ����� 6��	�� � ����� ���� ��

	�
 ������7 �� ��
		�����	� ����	
	�� �
�� ��	 ����
��	 ������ ����	
�
�4	������ �
	 ��	�����
 �� �

 ��	�� �� �� ����	 �	$�	��	 %+�'�

"	����� ���� �� ��� 	���
�	 ��	 ������	�2� �� ��	 ����
��	 ������

����	
 �
�� ���������
 �	�	�	
���	�= ���	
� �������
������ ��

����� ��	
	 �� � �����	
� ����	 �
�4	������ �
	 ��	�����
 �� �

��	��� �
	 �	�	�	
��	�)
������ 	$������� �
	 ��	 	����
	= (�	

	����
�
 �������� �����
���� ��	�
	�
	�	�� ��� ��� �����������

�	��		� $���
��� ��� ������ �� ��
		�����	� 9����	
 	����
	 ��

��	
��	�
 �	���� �
����	� �� (
���� %+,'= (�	 �
���
��� �� ��	

����
��	 ����� �� � ���
��	�
 �����
����� ���� �����	� �� ��	
��	�

���
����� ������� ��	 �	�	�	
����
!� ��	 ��

������ �	 	��
��� ���� ��	
	 	���� 	�	� ��
	

�	�	�	
���	� ��
)
������ 	$�������� ����� �� ��� ����	
� ��	

���	
 �	
����
��
����� �	����� ���	� �� ���� ���	
� *�����	 ���� � ��

�� ��������� ��
����� ��
)
������ 	$�������� (��� �	��� ���� ��

	��� ���
 �� ��	�� � ��� �� ��	
	 	����� � $���
��
��� ����� �
�4	���
�� � �� ���� ��	��� ;��	�	
�)
������ 	$������� �� ��� �����
���

��	�	 $���
��� �� �	 ��	 ���	 ��
 ��� ���
 �� ��	��@
(�	 ��
		
	�	
� �� �	�	�	
���	� �
	 �����
�8	� �� (��
	 +�

2
	�

�� �
�� ��� �� ������� ��	
	 �� ��
	 ��� ��
	
��� ��
 ��	

	����	��	 �� �	�	�	
��	 �������
������� !� �		�� �� �	 $���	 �������
�

�� �	��
��	 �

 ��	 �	�	�	
���	� ��
)
������ 	$������� 	��
����
��
����� �� ��� �� *	����� & �	 ��
� ���	 ���	 �������	��� ����������

��
 ��	 	����	��	 �� ���
���� ��
�������

4 � ��$"�� �

!� ���� ���	
� �	 ���	 ������	
	� ��	 ���	
� �	
����
��
�����

�
��
	� ��� ��	 �
������
 �
������
 ���
����� ���	� ��)
������
	$�������� �	 ���	
	�	�
	� ���� ��
 ��	 �� ��	 ���� ����
�

������� ���������� 6���	
� ������ �� � ���	
	 ���
	 �������� ��	

�))) #(*+�*,#�-+� -+ �*##)(+ *+*./��� *+& 0*,"�+) �+#)..�1)+,)� 2-.� 33� +-� 45� -,#-6)(3555 435%

#*6.) 4
&�������� .����
 �� &� �����
�� *���
��� &�������� #���
 �� �����,���������� 0�����

��� ��
���
	���
��	��	�� ����	������
 ��� ���

������ �	 ��� ����� ��	��
 ���
���	 �
 ��� ���	�
� ����� �
�����
 ���
���	 �
 ��	��
� ���� ������ �	�����
 ���
����	������
 ���� ��� �����
 ����� ���

�� F
���
��� �� ��	 ����
��	 ����� �� 	$����
	�� ��
������
		��	�� �� ��	
C����
��	 $���
��D ��	� �� %+,'�

Paper 5: A Case Against Kruppa’s Equations for Camera Self-Calibration, PAMI 2000 [21] 41

���	
	�� �	��	
7 ���� ���
���� ���
�� �� ����	 �� �	
����
��
����� �	���
������
	 �� �	�	
�
� F
	���	
� ��	 ����

	���� ��� ��� �	 	������	��
	�	� ��	� ��	 ���	
 ���
����� ��
��	�	
� �
	 ������
(�	 ����

	��	 �� �	
���� ���	
���
 �������
���	� ��	 �� �	�
�

�	�	�	
��	 ���	
� �������
������ ��� �		� �	�����
��	� ��
	��	
��	��� ;��	�	
� ��

	��
�� ����	�� ���� �� ����
� �	

	
����	
� 	��� �� ����� ���� �
��
	� �� �
�����	� 	���	
 ��
���
������� �������	�� ��
������ �� ��	 ���	
� �
��	�	�� �
 ��
����� � �	���� ���� ��	� ��� ����	
 �
�� ��	 �	�	�	
����
�	 ���	 ����� ����
��

� ����)
������ 	$������� ����	
 �
��

��
	 �	�	�	
���	� ���� ���	
 ����� �	
����
��
����� �	������
����� �� � �
�8	 ���� ��
 �����
���
 ����
������ 6������	���

���
��	�7� �� �����	� �� ���
���� ���� � �
���
 �
�4	����	

	�����
������� !� �	�	
�
� ���� ���	
 ����
����	� �� ��	 ���	
�
�������� �� ��� �� ����	����

� ���
� �	
����
��
������ ����� �		��
���� �
��
������ ��� �
��� ���
	�	�� �� �	�	�	
��	 �����������

��
� 5$�!+.����

(�	 �����
 ���
�
��	 �� ����� ��

 (
���� ��
 �
�����
 ������������
(��� ��
� �� ��
�
� �����
�	� �� ��	 �F*A2 ����	� �
�4	�� EAG
)50..+ 6H	���
7�

��%�������
%+' >� � #���	
��� I�(� <����� ��� *�J� "������� C2��	
� *	
��2�
��
�����=

(�	�
� ��� ���	
��	����D *�

(��
���� 6
�,(6
������ 9	�	
��
��� �.+���/� "�� +00.�

��� A�!� ;�
�
	�� C���
��	�� A	�����
������ �
�� K���
��
��	� H�	���D *�

(
:
�5��
� ����	
��	
��
, �����	���� 	� 6
������ 9	�	
�� ��� +5&�.1.� >��� +00��

��� A�!� ;�
�
	�� C!� 	�	��	 �� ��	 5�F���� 9
��
�����D *�

(����� 6
�,(
6
������ 9	�	
�� ��� +�1-/�+�1&1� J��	 +00,�

��� 9� ;	��	� ���)� ����
�L�� C���
��	�� A	�����
������ �
�� 2�������
!��
����� F�
��	�	
��D *�

(����� 6
�,(*������ ��

/�	�	
�� ��
� +�
��� ��0��/�� 9��� +00-�

��� I�(� <����� C"��
��	 #�����	���
	 	� 9�����
��
����� 	� H����� ��

>
�����	�
�D �����
�
 ��	���� K���	
���	M �	 F�
���*��� >
���� #
���	� +00.�

��� I�(� <���� ��� >� � #���	
��� C9� >�����8����� #
��	��
� ��
 ������	��
*	
��2�
��
����� ��� "����� 	�	
���������D *�

(����� 6
�,(*������
��

/�	�	
�� ��� ./5�.,.� >��� +00/�

��� *�J� "������ ��� >� � #���	
��� C9 (�	�
� �� *	
� 2�
��
����� �� � "�����
2��	
��D ����� ;(6
������ 9	�	
�� ��
� 5� ��� .� ��� +.��+,+� +00.�

�	� E�?� ?	����� �I� ;����� "�J� �
����� ��� ;�F� F��� CA	���	
���
K������ #���
 <	����� �� *	
��2�
��
�����= 9� ���	����

� <��	�
 9
���

���� ��� 	�	�	
��	 2������
�������D *�

(�&*�&�6
�/����� ��
� �+� ��
�
��� ��� ,&,�,51� +00-�

�
� "� F�

	�	�� ��� <� H�� E��
� C9 *�
�����	� 9��
���� �� "	�
�� *	
��
2�
��
������D *�

(6
�,(6
������ 9	�	
� ��� *������ ��

/�	�	
��
��� /1&�/+.� J��	 +00&�

���� "� F�

	�	��� A�)���� ��� <� H�� E��
� C*	
��2�
��
����� ��� "	�
��
A	�����
������ �� *���	 �� H�
���� ��� K������ !��	
��
 2��	
�
F�
��	�	
��D *�

(����� 6
�,(6
������ 9	�	
�� ��� 01�0,� J��� +005�

���� J�E� *	��
	 ��� E�(�)�		���	� ��/�%��	
 *�
��
�	�� <�
����2(>���
�
*��	��	 F��
�������� +0,.�

���� F� *��
�� C2
�����
 "����� *	$�	��	� ��
 "�����
�
 *	
��2�
��
����� ���
K���
��
��	� ���
��	�� A	�����
�������D *�

(6
�,(6
������ 9	�	
� ���
*������ ��

/�	�	
�� ��� +�+11�+�+1,� J��	 +00&�

���� F� *��
�� CH����� � ?�� ��
��
	M	= 2���
�������� �
� A	�����
������
F
�4	����	 	� �����	 �	� "���	�	��� 2
���$�	� ���
 <�9����2�
��
��	�D
�����
�
 ��	���� !?FE� E
	���
	� #
���	� +00&�

���� F� *��
�� C2
�����
 "����� *	$�	��	� ��
 ��	 *	
��2�
��
����� �� 2��	
��
��� *�	
	� *���	�� ���� H�
���
	 #���
 <	�����D *�

(4�	�	�� $�
�	��
9	�	
� 6
�,(� ��� -�N&. *	��� +000�

���� �� (
����� C9�����
��
����� ��� ��	 9���
��	 I���
���D *�

(6
�,(6
������
9	�	
� ��� *������ ��

/�	�	
�� ��� -10�-+/� J��	 +00&�

���� 2� B	

	
 ��� >� #���	
��� C2��	
� *	
��2�
��
����� �
�� H��	� *	$�	��	�=
��)
���� �$������� A	�����	��D A	�	�
�� A	��
� .&0�� !?A!9� #	�� +00-�

435D �))) #(*+�*,#�-+� -+ �*##)(+ *+*./��� *+& 0*,"�+) �+#)..�1)+,)� 2-.� 33� +-� 45� -,#-6)(3555

42 Chapter 5. Camera Self-Calibration

�������� �	��	
 ��
��
��� �	� ��� ��������������	
 	� ������� �
� �����	
������� ���� �������� �	��� ��
���

����� ������

����� �����	
���	
� ��� ��	��	 �	 �������	� ����� ���������� �� ������� ���!	

�������� �� ���	��� � ! ����"��� �# $������� � �

��������

%� �	
����� ��� ��������������	
 "�	���� �	� � �	��
� ������ ��	�� �
���
��� "��������� ��� &
	�
 �'��"� �	� ��� �	��� ��
��� ����� ���

���� ������ ���	�� �������
� �����()�� �	
����	
�* �
��� ����� ��� �������
���	
 	� ��� �	��� ��
���+� ������ �	� �
 ����� ��
��
�� ��
	�

"	������* ��� �������()���� ��"�
� 	
�� 	
 ��� ������+� �	��	
(%� ���� � �	�"���� �����	��� 	� ��� �	������� !����!�� "�����
	#�	�!	
(

)��� �� ���
 ���� �	 ������ ��� �������� �	��	
 ��
��
��� �	� �����	 ������� ���� �������� �	��� ��
����(� � � ��������� �� ,������� ����
��

-(.(

�	
����
������

�
� 	� ��� ��/	� �	��� 	� �	�"���� ����	
 �� ��� ���	����

	� �"����� �
�	�����	
 ��	�� ��� �
���	
��
�(���������

�""�	����� ������ ���� ��� ������� ��� !�������	� ���	���

��
� ��� � ����� �
������ �
 ��!�������	� ����	
 �
� 	
���
�

���������	
 ��� �����
 ����
� ��� ���� ������(0 &�� ������ ��

���� ���
 ���� �	�"������ �
���������� �������* �"�����

�
�	�����	
1���$!���	
���!���	1��
 �� 	����
��2 ���

���
� ��
 �� ���	
�������� �" �	 �
 �
&
	�
 "�	/������

���
��	�����	
 3�*45(6�������	��* � �	��
� ������ ��

	�%
!�������	* �(�(��� ���������	
 "��������� ��
 �� �����

����� �	���� ��	� ������� �	����"	
��
��� ������
 �������

������ 3��*�75()��� ���	�� ��� "�	/������ ��������� �
 ���

���	
�������	
 �	 �� ������� �	 � ,�������
 	
� 8�" �	 �

���������� ���
��	�����	
9 �
� �� �"��& 	� ��!�������	�

��!���	�� �	!��
���!����(

:� �� &
	�
 ���� ������� ��"�� 	� ������ �	��	
 "����
�

��������������	
* �(�(��� ���������	
 "��������� ��

	� ��

�������
�� �
�
����(0��	���
���* ,�������
 ���������

��

	� �� 	����
��* ����	��� ���	
�������	
 �� �	�� �����

������
 "�	/������ �
� ,�������
 �� ��
������ "	������(

)���� ����
������� ��� �
����
�* �(�(���� ��

	� �� ���	����

�� �
� ���	����� ����	�� ������	
�� &
	������(��
��
���

	� ������ �	��	
� ���� ��"�� ���� ����
������� ���� ��

�������� �	 �� !����!�� "�����
	#�	�!	
(-� ;��
��
���+

�� ���
 ����
	� 	
�� ��� �	��	
 ������
 ��	 ����������

����� ��� ���� 	��� � �	�"���� ����� ��
��
�� �� ��������(

6	� ��� ����� ��������������	
 ���
���	* � �	��
� ������

���� &'	� ���������	
* �� ������� ��� �������� �	��	

��
��
��� �
 3�<*�#5(:
 ���� "�"��* �� ����� ��� ���� 	� �

�	��
� ������ ���� �������	 �
� �
&
	�
 �	��� ��
���* ���

��	�� 	���� �
���
��� "��������� ��� &
	�
(0 "��������

��������������	
 ���	����� ��� "�	"	��� �� 0=������/�
�

�
� ��
���
� 3�5(0��	������ �
� ��	�����	�� �	����	
�

�	� ��� ��	����� ���� ��� ����
* �(�(�
 ����(37>?*#*��5(

@����� �� ��(������� ��� �������� �	��	
� �	� ��� ��	�����

���� 3��5(:
 ���� "�"��* �� ������ � �	�"���� ����������=��

��	
 	� �������� �	��	

	#�	�!	
 �	� �
�
����� 	� �����

�
� ��� �������� �	��	
� �	� �����	 �������()��� "�"�� �� �

�'��
��� �����	
 	� 3�45(

)�� "�"�� �� 	���
�=�� �� �	��	��(:
 �����	
 � ��

"�	���� �	�� ���	������� ���&��	�
� �	� 	�� �""�	���(

)�� "�	���� 	� ������
� �������� �	��	
 ��
��
��� �� �	����

����� �
 �����	
 7()�� �������� �	��	
 ��
��
��� ��� �������

�
 �����	
 A(0 ������� 	� ��� ��������	
� �� ����
 �

�����	
 ? �
� �	���
�� ��� ���� �
 �����	
 �()�� ��������

�	��	
� �	� �����	 ������� ��� ������� �
 �����	
 < �
�

�	
�����	
� ��� ����
 �
 �����	
 #(

�	 ���������

)�� ��B
���	
� �
 ���� �����	
 ��� ���
�� ��&�
 ��	� ����(

3�*��5(�	�� 	� ��� ������� �	� ��
����
������� ���

"����
��� 	
�� �	� ��
���� �	
���(

()*) ��������

%� ����� �	 ��� ����	 �� ��&���+ �� ��� ��	�� ����	 �
�

:���� �
� .���	
 �	�"���
� � 8� �9 A�?>A��

 ����##?�C �CD � ��� ��	
� ������ � � � ��������� �� ,������� ����
�� -(.(

�::2 � ����##?�8 �9 ���A

���(��������(�	�C�	����C������

�)��(2 �77�A�<�����?��7�! ��'2 �77�A�<�����?A�?A(

�
"��� ����	

, "����(�����E�
����"��(�� 8�(�����9(

Paper 6: CMS Self-Calibration of Cameras and Stereo Systems with Variable Focal Length, IVC 2002 [23]43

��
	�� �� �� ��� �
� �� ��� ������
��	
�� "�	/������ �"���

�
� � ���
� �
������ �" �	 � ������ ����	� ���	�
��
� �	�

��� ��� 	� �	�	��
�	�� �		���
����(%� ��� ��� ���������

��	
 �.� �	� "�	"�� ������� �	
��� 8��� ������"��	
 �����9(

()() -�����	 !�"	�� "��	�

%� ��� "���"������ "�	/����	
 �	 �	��� �������(0

"�	/����	
 ��� �� ��"����
��� �� � 7 � A "�	/����	
 �����'

- ���� ��"� "	�
�� 	� 7��"��� �	 "	�
�� �
 ���"���2 # � -.�

%� �	
����� 	
�� ��� ���� 	� "������ "���"������ "�	/����	
*

�(�(��� "�	/����	
 ��
��� �	��
	� ��� 	
 ���

%��� ������ �	 "������� �������* ��� "�	/����	
 �����'

��� �� ���	�"	��� �
�	 � !���������� "����' / �
� � ��
	

"����'()�� "	�� �����' ��"����
�� ��� "	����	
 �
� 	���
���

��	
 	� ��� ������ ���� ���"��� �	 �	�� �	��� �		���
���

�����(:
 ��
����* �� �����
����� B�� �
���
��� "���������

�	� ��� "���"������ "�	/����	
 �	���2 ��� 8���������9 �	���

��
��� %* ��� ��"��� ����	 � * ��� "��
��"�� "	�
� �� � � � �
� �

�&�� ����	� ���	�
��
� �	�
	
 �����
����� "�'���()�� �&��

����	� �� ������� ���� ��	�� �	 �
� �� ��
	�� �� �
 ���

�	��	��
�()�� ���������	
 �����' ��� �� ������
 ��2

/ �

�% �

 % �

 �

�

�
�
�

�

�
�
�

%� ���	�"	�� ��� "�	/����	
 �����' �� �	��	��2

- � /
�
 �
 �

� �

� ���
) �

	

����������
�����������

-�

)�� �����' -� �� ��� !�����!�� ���$!���� �
� �� ���� ���

�����
���	
 ��� "	���! �"�0	 ����	()�� ��
	
���� "�	/���

��	
 ��"�
�� 	
�� 	
 ��� ������+� �'���
��� "���������1�

�	����	
 �����' � ��"����
��
� ��� 	���
����	
 �
� � 7�����	� �

��"����
��
� ��� "	����	
()�� ���������	
 �����' / ���������

�
 �
�������� ��B
� ���
��	�����	
 ��	� ��� ������ �����

"��
� �	 "�'�� �		���
����(

()�) .�����!
 ��� !���!

0 #�����! �
 �
� �� � ��� 	� "	�
�� ��������
� �
��������

�
����	
 �
 ����� �	�	��
�	�� �		���
����(,���
������

��
 �� ��"����
��� �� � ��������� ��� �� � ��� �������'(

0 ����	� #�����! �� �
������ ��	�� �����' ��� �
	
 =��	

�������
�
�(1���!
 ��� "��
��
�������! �� ����
	� �����
�

����� ������
 � �	
�� �
� ��� �����'(0 �	
�� �
 �
7 	� �2

!���! �� ��B
�� �� ���
��������0 ����	 �
� ��� �	
��+�

�
����	
 �
 ���� "��
�(

()3) 4������ #�����!

0 ������� #�����! �� �
������ ����
	 ���� "	�
�(0��

"�	"�� ������� �	
��� 8�.�9 ��� ��
���� 3�5 �
� ��
�� ��

�� ���
��	���� �	 ��!���	�� ���"�� %��" �� � ,�������

���
��	�����	
 8"��
��"�� �'�� ���
��	�����	
9()�� ,�����

���

	���� �	�� 	� � ������� �	
�� �� � ����	
�� �����'

	� ��� �	
��+� ����
������* ����� ��� ���� ��� ���� ���
(

()�) 1��	

-� !��	
 �� ���
 ��
&�7
������� �
 �
7 ���� �����'
	�

	
 ��� 0 �	
� �� �
�
���� ��B
�� �� ��� �����' �
� �
�

8�	
��9 �����	
 �� � "��
�
	� �	
���
�
� ��� �����'(�	
��

��� ���� �
 ���� "�"�� ���	��� ���
	��	
 	� ��� ���$!����

!��	 	� � 7$ �	
��* �(�(��� �	
� �	���� �� ��� "�	/����	

���� 	� ��� "���"������ "�	/����	
 	� ��� �	
��()��

,�������

	���� �	�� 	� � �	
� �� � ����	
�� �����'

�������� ��� �7� � ����
	
 =��	 ��� :� ��� �� ��� ��� �����
��

���
 ��� �	
� �� �
 	������! !��	(:� �'����� ��	 	� ��� �� ���

�
��� ��� �	
� �� !��!���� 8	� ��0��9(6	� �
 �
������! !��	*

��� ����� �� ��� �
���(,��� ��	��	"�� �	
� �	
���
� ���

���	���� �	
�� 8��� ������"��	
 �����9(

0 �������� �	
� �� �
�����
� �	 ��������� �	����	
 ��	�� �

��
��� ��
� "����
� ���	��� ��� �����'()��� ��
� �� ������ ���

�	
�+� �'�
(0
 ��	��	"�� �	
� �� �
�����
� �	 �
� �	����	

��	�� ��� �����'(

()�) ��
����	 #�����! ��� ��
����	 !���!

)�� ��
����	 #�����! 	� �� �� ��B
�� �� ��� �
����	
�

'
�
� �5� '

�
� � '��� � �)�� ��
����	 !���! � �� ���

���	����
������ 	� - 7
� � �� � "�	"�� ������� �	
�� �

��� ����� "��
� ��	�� "	����	
 �
�
���� ��B
�� ��� ,�����

���
 ��������� 	� 7��"���()�� ���������	
 	� � ������ ��

�
������
� �	 �������
�
� ��� ����� � 	� � * ���"��������*

��� ���� � � 3<*��5(6�	� ��� ������	
 �� � //
)
� ��� �����

�����	
 �����' / ��
 �
�
���� �� ���	����� �� ��	���&�

���	�"	����	
 3�?5(

�	 ������� �����������

%� �	
����� � ��
��
�� 	� � �����* ��
������ ��&�
 ��	�

�������
� "	����	
� �
� ���� �������
� 	���
����	
�()�� �	���

��
���� �	� ��� ����� ��� ��� �� �������
� �
� ��� 	����

�
���
��� "��������� 8��"��� ����	 �
� "��
��"�� "	�
�9 ���

&
	�
 8����
���
	� �� �
��� �	� ��� ��� �����9()��

"�	���� �� ��
� �� �	 "���	�� �	��� ��
��� ��������������	
*

�(�(�	 �������
� ��� � �������
� ������ �	� ��� �	��� ��
���*

����� ���	�� �
 ��
���� �	 	����
 � ,�������
 ���	
�������	

	� ��� ���
�(:
 ��� �	��	��
�* �� �������� ���� "�	���� �

��	�������� �����* �
 �
��	�� �	 ���(3�#5(

6����* !���������� 	� � ������ �� �
������
� �	 ��� ������

��
���	
 	� ��� ����� 	� ��� ���	���� �	
��* �� ;"�	�����+

�� ���� ������(�	�%
!�������������
� ��� ���� ��� ���� ���

�	
	����	
 ���� �
�	�����	
 ���� �	 ��������� �	��
	� ����

��	�* �(�(&
	�
 ������ 7$ ���������(��!���	�� �	!��

���!���� �� �
������
� �	 ��� �������
���	
 	� ��� "	����	

	� ��� ���	���� �	
�� �
 7$()�� "�	���� 	� ,�������

���	
�������	
 �� �������� �	�� ��
���� ���
 ���� 	� ����������

�����	
2 ����
����� 	� ��������������	
 ��"���� ����
�����

	� ,�������
 ���	
�������	
 ����� ��� ����"�	
�� ��
	�

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(�A��

44 Chapter 5. Camera Self-Calibration

������ ���� 8�(�(��������������	
 	� � ������ �	����
� ��	��

��� 	"����� ��
��� �� �
 ��
���� "	������ ����� �
� ����� 	� 7$

���	
�������	
 �� ��"	������* �
�����
� ,�������
 ���	
�

�������	
9()�� ��������	
� ���� �	��	� ����� �	 ����
�������

	� ,�������
 ���	
�������	
(

)	 �������
� ��� "	����	
 	� ��� ���	���� �	
��* �	��

�	
�����
�� ���
�����(%� ���� �������� ����� �	
�����
��

�
 ��� �	��	��
� "������"� ��� B��� �� ���� � ���������

�	����� �
�	���� ��B
���	
 �	� ����
����� 	� ,�������

���	
�������	
2 ��� ,�������
 ���	
�������	
 "�	���� ��

����
����� �'����� �� ����� �� � �	
�� �
 7$
	� ���
�����

���� ��� ���	���� �	
�� ���� �����B�� ��� ��
��	
��

�	
�����
�� 3�<*�#5(0�� ���� �	
��� ���� �� ������ ���	�����

��
����	 !���!
(

%�
	� �������� ��� �	
�����
�� ���� ��� �� ���� �	

�������
� ��� ���	���� �	
��(6����* ��� ���	���� �	
��

���� �� � "�	"�� ������� �	
��(���	
�* ��� ����� 	� ���

���	���� �	
�� �� �
� "������ "���"������ "�	/����	
 ��

���	 � "�	"�� ������� �	
��()����* ��� &
	������ 	� �	��

�
���
��� "��������� �	
�����
� ��� ���$!����
 	� ��� ���	�

���� �	
�� �
 � ����
 ��� 	� �����* ����� �
 ���
 ����� ��

�	
�����
�� 	
 ��� ���	���� �	
�� ������(6	� ��� ���
���	

�	
������� ���� �� ��&� ����� �	
�����
�� �'"����� �
 ���

�	��	��
�(

)�� ����� 	� ��� ���	���� �	
��* �� ;"�	�����+ �� �

������ ���� ���������	
 �����' / �� ����
 ��2

� � /
�)
/

�� �

� ��

 �� ����

�� ���� �
�
 � ���� � ��% �

�

�
�
�

�

�
�
� ���

��
�� % ��� ���� �
� �� &
	� ��� 	���� �
���
��� "����

������* ����� ��* �	� ���� ����* �'����� 	
� ������ 	� "	����

��� ������ 	� ��� ���	���� �	
��(�	
�����
	� � �	
��� �

7$ �
� ��� "�	/����	
� �
 	
� ����(6	� � ���
� � "	��
����

���	���� �	
�� ��� "�	/����	
 � ���� �� 	� ��� �	�� ,
(8�9

�	� �	��
	
 =��	 ���� ����� � "	������ �������
� ��	� ���

���� % 8�������� ���� �� ��""	�� ���� ��� 	���� �
���
���

"��������� ��� &
	�
92

� �

� ��

 �� ����

�� ���� �
�
 � ���� � ����

�

�
�
�

�

�
�
�

:� �� ���� �	 ��	� ���� � �	
�� ��� ���� �	�� �'����� ��*

�
 ��� ������ ����� "��
�* ��� �	
�� �� � ������� ������*

��
����� �
 ��� 	����
()	 ��� ����* �� ��" � ��	�

"�'�� �		���
���� �	 ��� ������ ����� "��
� ���
� ���

���� ���������	
 �����'2

�" � /
)�/ �

%
�

 %
�

 �
�

�

�
�
�
�

�

�
�
�
�

6	� �
�
	
 =��	 ���� ����� 	� �* ���� ��"����
�� �

"�	"�� ������� ������ ��	�� ��
��� �� ��� �		���
���

	����
(:� �� ��"	���
� �	
	�� ���� ���� �������
� ��

�
��"�
��
� 	� ��� ������ ���� ����� % 	� ��� �	���

��
���(��
�� ��� 	���� �
���
��� "��������� ��� &
	�

��� 	
�� ��"	���
� "��������� �	� ��� �	
��������	
 	�

����
����� 	� ,�������
 ���	
�������	
 ��� ��� �'���
���

"��������� 	� ��� ����� �
 � ����
 ��
��
��(

%�
	� �������=� ��� ��������	
(

����������� �	 1��
��	� �
	#�	�!	 �% � ��	:
 :���

;��:� �
�	!� ����� ��� ����!���� ����� ��� ��;��:� ���

��

���+ ��%%	�	�� ����	
 %�� ��	 %�!�� �	�0��) <	� -�� �	 ��	

!�����!�� ���$!���� %�� ��	: �� � � ��5� ��

��!���	�� �	!��
���!���� �
 �	0	�	���	 	'�!��+ �% ��	�	 �

�� �	�
� ��	 72 !���!� ��� ��	���!�� :��� ��	 ��
����	 !���!

�!� ����2

� � �
 � ����	� ������� !���!!

� ��	 � �� � � ��5� �� :�	�	 �� �
 ��	 ���$!���� �%� �+ -��

��	 ����	� ������� !��!�	
 !	��	�	� �� ��	 ���0��) =��
 �

	#�����	�� �� ��	 �� �	��0 �	��	
	��	� �+ ���0����

"����!	
 :��
	 ���0���� 	�	"	��
 ��	 ��� ��� >	�� �	��

����	
 �% ��	
�"	
�0� ��	 &�
� �:� 	�	"	��
 �	��0 	#���)

��������� �	 0
�� �� ��B
�� �
 ��	"	����	
 � �� ������ �

���	����� ��
����	 !���!(

�	
����� � ��
��
�� 	� � �����(F�� ���� ��� �� ��� �'���
�
��� "��������� 	� ���� �� � � ��5� �� :� ,�������
 ���	
�

�������	
 �� ����
����� �	� ��� ��
��
�� 	� �����* �� ���

���� G���� ����� � ��5� �H �� � !����!�� "�����
	#�	�!	 �	�

,�������
 ���	
�������	
(

)�� ��� 	� ��� �	��	��
� �����	
 �� �	 ������ ��� ��
����

�������� �	��	
 ��
��
���* �(�(��� �	
B������	
� ����� �����

��
	 �
�
�� �	����	
 �	 ,�������
 ���	
�������	
(

�	 ���������� �� ��� �������� ������ �� ������

:
 ���� �����	
 ��� �������� �	��	
 ��
��
��� ��� �������

����� 	
 ��	"	����	
 � �
� $�B
���	
 �(%� "�	���� �
 �

�	
��������� ��

��2 ����
 � ��
���� "�	"�� ������� 7$

�	
�� � * �� �������
� ��� "	������ �'���
��� "���������

���� �	�� � �������� �	��	
 ��
��
�� ���� ���"��� �	 � *

�(�(�	� ����� � �� � "	��
���� ���	���� �	
��()�� �������

��	
� ��� ������� �
�	 ��	 "���� �	
������
� "	��
���� ���	�

���� �	
��� � ����� ���C�	
	� ��� 	
 ���)�� ������� ���

�������=�� �
 �����	
 ?(

3)*) -��	����� ��
����	 !���!
 �� ��

F�� � �� � �.� 	
 ��� ����� "��
�(:�� ��
	
����

"�	/����	
 � �� � ������ ���� �'���
��� "��������� ��� ��
�� ����
 ��2

� � ���) ���

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(� A�<

Paper 6: CMS Self-Calibration of Cameras and Stereo Systems with Variable Focal Length, IVC 2002 [23]45

F�&� �� �� ��� ���� �	� ��� ��	������ �
������ 	
 ��� ����� "��
�

��� "�	/����	
 ��"�
�� 	
�� 	
 ��� 	���
����	
 	� ��� ������

	� 	
 ��� "	����	
(

%�
	� �������
� ��� 	���
����	
� � �	� ����� � �� �

"�	"�� ������� ������ ��
����� �
 ��� 	����
()��� ��"���� ����

� �� � ����	
�� �����' 	� ��� �	��2 � � ������� �� ��� :� ��
��		�� ��� ���� ����� ����	� �	� � ���� ���� ��� � � �

� �
��� �� ��� � �
 ,
(8�9 ��
 �� ��"����� �� �
 �
������ ���
2

�

 �

 �

�

�
�
�

�

�
�
� � ���) �7�

,
(879 ��"���� ���� � ��� � �	���� ����
����� � �
� ���

��
��� ����
����� �()�� ���� �� � �� 	�
	 �
������ ����

������� ���� �	��� ���
 ���� � �� ��� ���	 ���	���� �	
��

8��� ���	���� �	
�� �� ��� 	
�� �	
�� 	
 ��� ����� "��
� ���� �

���"�� ����
�����9(

6�	� ,
(879* �� ������2

�
)

�

 �

 �

�

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
� � ��)

�

�

�
�
�

�

�
�
�

�
� �������2

�
)

�

�

�
�
�

�

�
�
� � ��)

�

�

�
�
�

�

�
�
�

I�
�� ��� ����	�

�� � �
)

�

�

�
�
�

�

�
�
� �A�

�� �
 ����
����	� 	� � �	 ��� ����
����� �(��
�� � �� �

��
��� ����
�����* ��� ��� ���	������ ����
����	�� ��� �
���

�" �	 �����()��� ���
� ���� �	� ��� �	����	
 �������� � �
 �

�������� �	��	
 ��
��
�� ��� ����	�� �� ���� �� �
��� �" �	

�����(

:� �� ���� �	 ��	� ���� ��)�� �) ��
	���
� ���� ���
 ���

����� "	�
� 	� ��� 	"����� �'�� �	� � ������ ���� 	���
����	

�(0�� �� ���
� �
��� �" �	 ����� �� ���� �
������
� �	 ���

	"����� �'�� 	� ��� ����� ���
� "�������()��� �� ���� �
�����

���� �	
����	
 �	� �������� �	��	
 ��
��
��� ���� ���"��� �	

� �	
�� 	
 ��� ����� "��
�(

%�
	� ��	� ���� ���� �� ���	 � ���B���
� �	
����	
(

�������� ���� ����
����	�� 	� ��������� �������� ����

��� ���	������ �	 �������
� ����
������ ��� �������� 	���	�

�	
�� 3�5()���* ��� ����
�"��� 	� � �	� ��� �	���� ����
�

����� � �	
����� 	� ��� ����	�� 	���	�	
�� �	 ��� F�� �
)
� �� ���

�	� ����	� ��"����
��
� ��� ��� �	� 	� ��� �	����	
 �����' �(

6�	� ,
 8A9 �� ���� �7 � ��� ��
�� � �� �
 	���	�	
��

�����'* �� ���� �� � �� �
� �� � ��� ����� ���
� ���� ��
�
� �� ��� ����
����	�� 	� � ���	������ �	 ��� ����
����� �(

%� ���� 	����
2

���) �

�
)
�

�
)
�

�
)
7

�

�
�
�
�

�

�
�
�
�
� �� �� �7
� �

�

�
)
�

�
)
�

�
)
7

�

�
�
�
�

�

�
�
�
�
��� ��� �7

� �

�

�

 �

 �

�

�
�
�

�

�
�
�

:
 �	
�����	
* ��� "�	/����	
 	�� �� � ������� ��
����� ������

�'����� �� ��� ����� "	�
� 	� ��� ������+� 	"����� �'�� ��

��)� �) ����� � �� ��� ����
����	� 	� � ���	������ �	 ���

��
��� ����
�����(I�
��* � �	��	
 ��
��
�� �� �������� ����

���"��� �	 � �.� 	
 ��� ����� "��
� �� �
� 	
�� �� ��� 	"�����

�'�� 	� ��� ��� ����� ��� "�������(

3)() -��	����� ��
����	 !���!
 ��� �� ��

�	
����� �	 �	
��� 	
 ��� ����� "��
� ��� "�	/����	
 	�

�	
���
	� 	
 �� ��"�
�� 	
 �	�� ������ "	����	

�
� 	���
����	
(6����* �� ���� ���� "	����	
 ���
 ����

	���
����	
(

3)()*) -�
�����

F�� � �� � �.� ��� 	
 ��� ����� "��
�(�	
����� � ����

���� 	"����� ��
��� �� "	����	
 �(F�� � �� ��� ��
	
����

"�	/����	
 	� � (F�� � �� ��� "�	/����	
 �	
� 	� � 8��(

�����	
 �(?9(

�
� �	
����	
 �	� � ���
� � "	��
���� ���	���� �	
�� ��

���� � �� � ������* ��
����� �
 ��� 	����
 	� ��� ������ �����

"��
�(@	�� ���� ��� 	����
 	� ��� ������ ����� "��
� �� ���

������+� "��
��"�� "	�
�* �(�(��� �
��������	
 	� ��� 	"�����

�'�� ���� ��� ����� "��
�(��
�� ��� 	"����� �'�� �� "��"�
�

������� �	 ��� ����� "��
� ��� "�	/����	
 �	
� � ���� ��

�������� �
� ��� �'�� �� ��� ������+� 	"����� �'��()�� �����'

	� ��� "�	/����	
 �	
� ���
� ��� 	"����� ��
��� �* �� 	����

�	
�����
�� 	
 ��� "	������ ������ "	����	
� �
 � ��������

�	��	
 ��
��
��2 �	� � "	��
���� ���	���� �	
�� � ��� "	����

��� ������ "	����	
� ��� ��� �������� 	� �������� �	
�� ����

�	
���
 � ()���� ��� �������=�� �
 ��� �	��	��
� 8"�		��

��� ����
 �
 0""�
��' 09(

:� � �� � ������� ������ ���
 ��� �	��� 	� "	������ ������

"	����	
� �
 � �������� �	��	
 ��
��
�� �� ��� ��
� F "��"�
�

������� �	 ��� ������+� ��""	���
� "��
� �
� "����
� ���	���

��� ������+� ��
��� 86��(�8�99(:� � �� � ������� ����"�� ���

��� �	��� 	� ������ "	����	
� �� ��� �
�	
 	� � ���� ����"��	�

�
� � ���� ��"���	�� 	� 86��(�8�99()�� ��""	���
� "��
��

	� ��� ����� �	
��� � * 	� �
� 	� ��� �������� "��"�
���

����� 8����� ��� ������� ������	
� ������
 ����� �	
���* ��(

0""�
��' 09(

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(�A�#

46 Chapter 5. Camera Self-Calibration

3)()() ?��	�������

)�� ������� 	� ��� "����	�� "������"� ���
��������

�	
����	
� ���� �	�� �	� ������ ��
�����
 �
 � �������� �	��	

��
��
��()	 	����
 ���B���
� �	
����	
�* ��
	� �	
�����

��� ���	������� 	� �������(6����
	�� ���� �	����	
� ��	�� ���

	"����� �'�� ���
	� ��"	���
� ����2 �� ��� "�	/����	
 	�� �� �

������ ��
����� �
 ��� 	����
 8��� "��
��"�� "	�
�9 ���
 �
�

�	����	
 ��	�� ��� 	"����� �'�� ���� "������� ���� "�	"����(

I�
��* ��� 	
�� "��� 	� ������ 	���
����	
 ���� ������� �� ���

���	!���� �% ��	 ����!�� �'�
(

6	� ��� ������ "	����	
� ������� �
 ��� "����	�� "����

���"�* �� ���� �	 �������
� ��� �������	
� 	� ��� 	"�����

�'�� �	� ����� � �� "�	/����� 	
�	 � ������ ��
����� �
 ���

	����
()�� "�		�� 	� ��� �	��	��
� �������
�� ��� ����
 �

0""�
��' 0(

:� � �� � ������� ������ 8��(6��(�8�99 ���
 ��� 	"����� �'��

	� ��� ����� ���� �	 �	�
���� ���� F �	� ��� ������ �	
B��

�����	
 �	 �� ��������()�� 	
�� �'��"��	
 �� ���� �� ��	

������ "	����	
� 	
 F ��� 	"����� �'�� ����� �� 	���
���

�����������()���� "	����	
� ��� ��������� ���� ���"��� �	

��� ��""	���
� "��
� 	� � ! ����� �����
�� � ��	� ���� "��
�

�� ������� �	 ��� ������ � 	� � �� � � :���� 8��� �����
���

"��� 	� ��� ������* ����� �� �	�"��' ��� �	� ���
� � �������

������9(6	� �	�� �������* ��� �����	
 -(�(

)	 �������=�* �������� �	��	
 ��
��
��� ���� ���"��� �	 �

!��!�	 � �	
���� 	� �	���
��� 	"����� ��
���� �
� 	"����� �'��

"����
� ���	��� ��� 	"����� ��
���� �'��"� ���� �� ��	 "	���

��	
� ��� 	"����� �'�� ��� �� 	���
��� ����������� 8�������

����� ����� �� ��&�
 ��	� ����� ��	 "	����	
� �� � ������

�	����
� ��	�� ��� 	"����� ��
���9(

:� � �� � ������� ����"�� 8��(6��(�8�99 �
� ��� 	"�����

��
��� ���� 	
 ��� ����"�� 	� 8���"�������� ��� ��"���	��

	�9 ���
 ��� 	"����� �'�� ��� �	 �� ��� ��
��
� 	�	� 8���"���

������ 	�9 �� ��� 	"����� ��
��� �
 	���� �	� ��� ������

�	
B������	
 �	 �� ��������(

!	 "�����# �� �������� ������ �� ������ ��� � ������

������

)�� �	��	��
� ������ "	����	
�C	���
����	
� �	
�������

�������� �	��	
 ��
��
��� �	� ,�������
 ���	
�������	
2

1�
	 *2 0�������� "	����	
 	� 	"����� ��
���� ��� "�������

	"����� �'��()��� ���
� ���� ������ �	��	
� ��� "���

���
�����	
� "	������ �	���
�� ���� �
 ��������� �	����	

��	�� ��� 	"����� �'�� �
� � �������� 	� ��� ��=� �������	
(

1�
	 (2 �	���
��� 	"����� ��
����()�� 	"����� �'�� �� ��	

"	����	
� ��� �� 	���
��� �����������* ��� 	����� �	�
����

���� ��� ��
� /	�
�
� ��� 	"����� ��
����()��� ���
� ����

������ �	��	
� ��� "��� �	����� ���
�����	
� ���� ��	

�'��"��	
� ����� ��� ���
�����	
 ��� �� �	��	��� �� �

��������� �	����	
 ��	�� ��� 	"����� ��
���(

1�
	 �2)�� 	"����� ��
���� ��� 	
 �
 ����"��C��"���	��

"��� �� ��	�
 �
 6��(�8�9(0� ���� "	����	
* ��� 	"�����

�'�� �� ��
��
� �	 ��� ����"��C��"���	��(0
��������

�	
����	
 ������� ��	� ���� ��2 ��� ����� ��� �� "�����

��	
�� �
�	 �� �	�� ��	 ���� �	� ����� ��� ��
���� �
�

	"����� �'�� ��� ��� �	"��
��(:
 ������	
* ����� ��	 ����

��B
� "��
�� ����� ��� "��"�
������� �	 ���� 	����(

:� �� �	
����� 	
�� 	
� 	� ��� ��	 �	
��� 	� 	� 	� ��

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(� A�4

6��(�(F	��� 	� ������ "	����	
� �
 � �	��	
 ��
��
�� �������� ���� ���"��� �	 � �	
�� �
	� 	
 ��� ����� "��
�()�� �	
�� � �� ��	�
 �
 �	���� ����� �	

���������� ���� �� �� ������� �
� ��
 �
 ����
	� �� ����
()�� B����� ��� ������� �'"���
�� �
 ��� ��'�(8�9)�� ���� 	� ��� �.�� ���
� � ������(8�9)�� ���� 	� ���

�.� � ���
� �
 ����"��(

Paper 6: CMS Self-Calibration of Cameras and Stereo Systems with Variable Focal Length, IVC 2002 [23]47

��
 �������� ��� �������� �	��	
 ��
��
��� �� �	��	��2 �

������ �	��
� 	
 � ���/���	�� ���� ��� �� ��������� ��

8��� 	�9 � �	
�� �
� ������ ��=�
� �
 ��� �������	
 	�

�	��	
* �(�(��� �����
� ��
��
� �������	
(0
 �'��"��

����� �� � ������ �	�
��� 	
 � ������� ��=�
� �
 �����
�

�������	
(

@����� �� ��(������� ����
����� �	
B������	
� �	� ��	�

���� ��������������	
 3��5()���� ������� ��� 	� �	����

�	
���
�� �
 ��� ������� ����(

��� ������� ���� ��"	���� �
 ���(3�45(J��� �	
�������

��� "�	���� �
 ���(3� 5 ��� ��� ������� ���
	� �	�"����(0�

�	� ���� �* �� 	
�� 	����
� ��	 ��������2

� ��	 	"����� ��
���� �
� ��������� 	���
����	
!

� �	���
��� 	"����� ��
���� �
� ��� 	"����� �'�� ����
�� ����

��� 	"����� ��
����(

%������ ��� ;�
�	
+ 	� ����� ����� 8���� � ���������

�������9 ���	 ��������� �������� �	��	
 ��
��
���(

�)*) 2	0�		 �% �"��0���+

%�
	� ������� ��� �������
� ������ 	� ��������� �
 ���

,�������
 ���	
�������	
 	� ��� ��	��	��	
 ��������	
 	�

��� ������ �	� ��� ������� ����� 	� �������� �	��	
 ��
��
���(

�)*)*) 1�
	 *

%� 	
�� �	
����� ��� ���� 	� �
����
�� 	"����� ��
����(

0���
�� 	"����� ��
���� ��� ��������� �
 �����	
 ?(�(�(

0�� "	��
���� ���	���� �	
��� ��� 	
 ��� ����� "��
�(F��

�.)
� �) �� ��� ����� "	�
� 	� ��� 	"����� �'�� �
 ��� ��������

�	��	
 ��
��
��(:� ��
 �� ��	�
 ���� ��� "	��
���� ���	����

�	
��� �	�� �'����� ��� �	��	��
� ���������	�������	�

������2

���� � � � �..)

�(�(��� ������ 	� �	
��� �"�

�� �� ��� ���	���� �	
��

8��"����
��� �� ��� ���
���� �����' �9 �
� ��� ����
�����

�	
�� ..)
�

��
�� ��� "	��
���� ���	���� �	
��� ��� 	
 ��� ����� "��
�

��� ����� "��
� ��
 �� ���	����� �
�
����* ����� ���
� ����

��B
� ���	
�������	
 �� "	������ 3�#*� 5()��� ��"����* �(�(

���� �������� ������ ���"������
�� �
 ��� ��=�
� �������	

��
 �� ���������(I	�����* ��� ���	����������� �	� ,�����

���
 ���	
�������	
 �	��
	� ���	� �������
� �
����

�	�������(6	� �'��"��* ��� �������	
 	� ���
�����	
 ������

�������
� �����
� "	����	
� 8���� ���"��� �	* �(�(��� ��=�
�

�������	
9 ��

	� �� �������
�� 	� �
��	�	���� ��� �������	

	� � �������� 	�������+� �	����	
(

�)*)() 1�
	 (

$������
� �������� ���� �	 �� ���������(6����* �� ��� ���

	"����� �'�� ��� ����
�� 8�(�(��� ���
����� ���� ��� ��
� F

��	�
 �
 6��(�8�99 ���
 ��� �	��	
 ��
��
�� �� ���	 ��������

���	���
� �	 ���� �()���� �� � ���	�������� 	� "	��
����

���	���� �	
���2 ��� �	
��� ��������� �
 �����	
 ?(�(� �
�

��� ������� ��	�� ��
���� ��� 	
 F �
� ��	�� ��""	���
�

"��
�� ��� 	���	�	
�� �	 F(�	�"���� �	 ���� �* ��B
�

���	
�������	
 ��
	� "	������ ����()��� �	��� �������

����� � ��	
� ��������	
 	� �������� ���"������
��* �(�(

��� ���� 	� ��"��� ���� ���"��� �	 �
 	������� ����� ��

��	
��� ���������(

:� ��� ��� 	"����� �'�� ��� ����
�� ���� 	
� �'��"��	
 8�(�(

�� 	
� �����
� "	����	
 � ��	
� ��� ��
� F ��� ������ ��=��

�� 	���� �������	
� ���
 ��	
� F9 ���
 ����� �����
 � ���	��

������ 	� "	��
���� ���	���� �	
���()���� ��� ��� 8����9

���	���� �	
�� �
� 	
� ������� ������ "�� "��
� ���� �� 	���	�

�	
�� �	 F 8��� �������+ ��
���� ��� 	
 F9()���� �	
��� ���

��� �
��������	
� 	� ��� "��
�� 	���	�	
�� �	 F �
� ���

��	��	"�� �	
� ���� �����' �(0�B
� ���	
�������	
 ��
	�

"	������ �
� �� ���	�� �������� ���"������
�� �
� �
����

��

	� �� ��������� �	�������(

)�� ����� ������� 	����� ���
 ��� ������ ��=�� �
 	����

�������	
� ���
 ��	
� F �� �'����� ��	 �����
� "	����	
�(

�
�� ��	 "	��
���� ���	���� �	
��� �����
* ����� ���
�

���� ����� ��� 	
�� ��	 �������
� �	����	
� �	� ,�������

���	
�������	
()�� "	��
���� ���	���� �	
��� ��� ��� ��	

�
��������	
� 	� ��� ��	��	"�� �	
�� ���� �������� �� ��� ��	

�'��"��	
�� �����
� "	����	
� 8	
� �
��������	
 �� ��� ����

���	���� �	
�� 	� �	����* ��� ���	
� 	
� ���� 	

��� �
�������
�� "��
� 	� ��� ��	 �����
� "	����	
�9()��

��	
� �	����	
 ��
 	���
 �� ����� 	�� �
 "������� �� ��"	��
�

���� ��� ���	
�������� ���
� ���� �
 ��	
� 	� ��� ��� �����(

�)*)�) 1�
	 �

)��� ���� �� ���B���� �	 �'"���
 ���
 ��� �	��	
 ��
��
��

�	�"����� ����� 	� ����� �����
� "	����	
� 8"����� �	
����

��� ����	� �	� �������9(6	� �	�� ���
 ����� �����
� "	���

��	
�* �	�����* �� �� ���� �	 ��� ���� 	
�� ��	 "	��
����

���	���� �	
��� ��� "	������2 ��� ���� ���	���� �	
�� �
�

��� ������� ����"�� ��	�
 �
 6��(�8�9()���* ����	��� ����

7 8�	��	
 	
 �	
�� ����9 ����� �	 �� ������
� �
 "������� ���

�'����
�� 	� 	
�� ��	 �	����	
� �	� ,�������
 ���	
�������	

�� ��������
�(0�
	��� �� �	������� ��� ��	
� �	����	
 ��

	���
 �� ����� 	�� ������� �� �	��� ���� �	 �
���������

��������� 	� ��� �	��� ��
��� 3�A5(

$	 %�������

:
 ���� �����	
* �� ������� � ��� �"����� �����(

�)*) =:� !�"	��
 �� 0	�	��� ��
�����

6�	� ���� � �
 ��� �����	
 ?(�(�* �� �	��	�� ���� ,�������

���	
�������	
 �� ������ ����
����� ��	� 	
�� ��	 �����

�
��"�
��
��� 	� ����� "	����	
 �
� 	���
����	
(:
 ����* ��

�� &
	�
 ���� �
 ���� ���� ����� �� � ��	 �	�� ��������� �	�

��� ���	���� �	
��2 ��� �� �
� �� �� ��� "�	/����	
� 	� ���

���	���� �	
�� �
 ��� ��	 �����()�� "�	/����	
 �	
�� 	� ��

�
� �� �
������� 	� �	���� �
 ��� ���	���� �	
�� ��� �

��
���� ���	 �
 � ���	
� �	
�� � ��
�� ��� ���������(

I	�����* ��������������	
 ��
 �
 ��
���� �� �������� ��
��

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(�A�

48 Chapter 5. Camera Self-Calibration

� ��� ��� ���� "�	/����	
� �� ��� ���	���� �	
�� 8�� ���� 	

��� ���� "�	/����	
 �	
��9()��� ����������� ���� ,�������

���	
�������	
 �
� ��������������	
 ���
	� �'����� �
�����

��
� "�	�����(0� ��
��	
�� ���	�� ��� ������	�� �	����	

�	� ,�������
 ���	
�������	
 ��
 	���
 �� ����� 	�� �
 "����

���� �� ��"	��
� ���� ��� ���	
�������� ���
� ���� �
 ��	
� 	�

�	�� �������(

�)() 1�"	�� �������0 ����� ��
 ����!�� !	��	�

0 ������ �	����
� ��	�� ��� 	"����� ��
��� ����� "	������

���
��
� ��� �	��� ��
��� ��
 ������ �� ���������� ��	� ��	

����� ��	�� 	"����� �'�� �	
	� �	�
����()��� �� ����K�

�'"���
�� �
 ��� �	��	��
�()�� ��	 ����� ��� �������� �	�

,�������
 ���	
�������	
 ���	���
� �	 ���� � 8����� � �
� 7

���	� 	
�� 	
� 	"����� �'�� "�� ������ "	����	
 �
 � ��������

�	��	
 ��
��
��9()�� "	����	
 � 	� ��� ��	 ����� �� 	
� 	�

��� ��	 �'��"��	
�� "	�
��()�� �	
� ��B
�� �� � �
� �

�	
���
� ��� ���	���� �	
�� 8�� �� �
 ��	��	"�� �	
�* ��(

�����	
 -(�9(I�
��* ��� "�	/����	
� 	� � ��� ���
�����

���� ��� ����� 	� ��� ���	���� �	
��* ����� ���
� ����

8�����9 ���������	
 ��� � �
�
�� �	����	
(

�)�) �'�����

�	
����� ������� B'���
� � B
��� "	�
� 8�(�(��� "	�
� ���� 	

��� 	"����� �'�� 	� ��� �������9(6	� ��	 �������* ��� �	
B��

�����	
 �� ������ �������� ������� �	� �	�� ���
 ��	 �������

8���� �������
� 	"����� ��
����9 �� �� ������
	
 ��������(

)�� B��� �������
� �� ���� �	 �
������
�()���� �� � 	
��

����
��	
�� ������ 	� "	����������� �	 �����=� ���� 7* �(�(�

	
������
��	
�� ������ 	� ;�	��	
 �	
���+	 2 ��� �	
�� ���

�	 �	
���
 ��� 	"����� ��
���� �
� ��� ��� ��	 	"����� �'�� ��

��
��
��()��� ����� �	�� �	
�����
�� 	
 ��� B�� ������� 	�

�����	� �	� � �	
�� ����� ���
� ���� ����� �����
� 	
�

������ 	� �����	� �	� 	 �
� ���� �	� ��� "	��
���� ���	����

�	
�� � (

�	
�����
	� �
 ������	
�� ������ ���� B'���� ��� ����

B
��� "	�
� �� ��� ��	 	�����(��""	�� ��� �	
B������	

���� ����� ��������(6�	� �����	
 0(�(� �� &
	� ���� 	"�����

�'�� �	� 	"����� ��
���� 	
 	� �
� 	� ��� �������� �&��

��
�� �� �	��	�� ���� ��� ����� 	"����� ��
���� ���� �	 ��� 	

������	� 	�	� �
� ��� 	"����� �'�� ��� ��
��
�� �	 ��� ����

�	
��()��� �	��� ��"�� ���� ��� B'���� "	�
� ���� 	
 �����

�������
� ��
��
�� �	 ��� ���� �	
��* ����� ��
	� "	������

3��5(I�
��* ��� �����"��	
 ���� ��� �	
B������	
 �� ��������*

�� �	
���������(

&	 ���������� �� ��� �������� ������ �� ������ ��� ������

�#�����

)�� ������� "����
��� �
 ��� "����	�� �����	
� ���	� �� �	

����� ����
������� 	� ,�������
 ���	
�������	
 �	� �����	

�������(I���* � �����	 ������ �	
����� 	� ��	 �������

���� �	"��
�� 	"����� �'�� �
� ��������� ��� "	������ �����

���� �����
�� �
����
 8��(6��(�9()�� �����
�� ������

��� ��	 ������� �� B'��()�� �	��� ��
���� 	� ��� ��	

������� ���
	� �	
�����
�� �	 �� �
��� �
� ���� ���

���� ������ ������
 �������
� ������(%� ��B
� ��� �'�

�% �
�	�	�
+
�	" �� ��� ��
� "��"�
������� �	 ��� ������
�

�
� "����
� ���	��� ��� ���"	�
�(

0 ��
��� "��� 	� ������ ��&�
 �� ���� � �����	 ������ �� 	�

�	���� �������� 8��(�����	
 �(79(:
 ��� �	��	��
�* �� ������

��� �	
����	
� �	� ��	 �����	 "���� �	 �� ��������()��� ���

�������� �� ��� ��� 	� �
�������� ����� �	
������� � ��������

�	��	
 ��
��
�� �� ��������� �
 ��� "����	�� �����	
�(%�

�	
����� ������� �����2

� �	"��
�� �����	 "���� ���� ���
����� �����
�� �
����!

� �	"��
�� �����	 "���� ���� �������� �����
�� �
����!

�
	
 �	"��
�� �����	 "����(

-� �	"��
�� �����	 "���� �� ���
 ���� ��� ��� 	"�����

��
���� �
� 	"����� �'�� ��� �	����� �
 ��� ���� "��
�(

-��	�� �'���
�
� ��� �������
� �����* �� ���� �
 �
��	�

����	�� �����& �	
���
�
� ���� 7 	� �����	
 ?(

@)*) 1��!	����0 !�
	 �

6	� � ����
 �����	 ������* �� ��
� �	 ���������

�	
�����
�� 	
 ��� "	������ �	����	
� 	� ;�	��	
 �	
���+

	 (��
�� ��� 	"����� �'�� 	� ��� ��	 ������� �
 ��� �����	

������ ��� �	"��
�� ��� ��	 	"����� ��
���� ���� �	 ��� 	

������ ��� ����"�� 	� 	� ��� ��"���	�� 	� ��� ��

	� ��

����������� 	
 �	�� 8��(�����	
 0(�(�9(:� ��
	� ���� �	

��	� ���� ��� �	 �������� 	� ��� �����
�� �
����* 	

���� �� ��������� ���� ���"��� �	 ��� �'�� 	� ��� �����	

������(��
�� 	 ��

	� �� � ������ 8��(�����	
 0(�(�9 ��

��� �'����� ��	 �������� ��
�� 8����� ��� "��"�
������� �	

���� 	����9()��� ���
� ���� ��� �'�� 	� ��� �����	 ������

�	�
����� ���� 	
� 	� ����� ��	 �������� ��
�� 	� 	 (

@)() 1�������
�	�	� ����
 :��� ��	���!�� �	�0	�!	 ��0�	

6	� ��� ������� ���� 	� � �����	
��� �����	 ������ �
�

����� 	� �����	 "���� ��� ��������(@	
�������� ����� ���

��������� �
 ��� �	��	��
�(

@)()*) -�����	� ����!�� �'	

:� ��� �����
�� �
���� ��� 	� 4 �* �(�(�� ��� ��	 	"�����

�'�� ��� "������� ���
 ���� �����	 "��� �� �������� ���	���
� �	

����� � �
� 7(0��	���
� �	 ���� � ��� �	���
���	
 	� ��	

�����	 "���� �� 	
�� �������� �� ��� �����	 ������ �
����	�� �

"��� ���
�����	
 	� � �	����	
 �� �# � �
 ��� "��
� 	� �	��	
*

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(� A��

6��(�()�� ��"� 	� �����	 ������ ��������� �
 ���� "�"��(

Paper 6: CMS Self-Calibration of Cameras and Stereo Systems with Variable Focal Length, IVC 2002 [23]49

�(�(� �������� 	� ��=� �������	
(���� 7 �� ����� ���� �� �
 ���

�	��	��
� "������"�(

@)()() 1���	�0	�� 7��� ������	�8 ����!�� �'	

)�� �����	 "���� ��
 	
�� �� �������� ���	���
� �	 ���� 7

�
� ���� 	
�� �� ����� �� �
 ����"�� 	� � ��"���	��	 �	
���
�

�
� ��� �	�� 	"����� ��
���� �
� ����
� ��� 	"����� �'�� ��

��
��
��(6�	� �����	
 <(�* �� �	
����� ���� ��� �'�� 	� ���

��	 �����	 "���� �	 ������ �	�
���� 	� ��� "��"�
������� �	

���� 	����(:� ��
 �� ��	�
 ���� �
 ���� ���� ��� "��"�
���

�����* ����� ��
	 "	��������� �	 "���� ��� ��	 �����	 "���� �
 �

��� ���� � �	
�� 	 �� ��������� ������� �'���� 8��
�� ���

�����
�� ������
 ��� ��	 ������� �
� ��� �����
�� �
����

��� B'��9(:
 ���� ��� �'�� �	�
���� � �	
��	 �'���� �'�����

�� ��� ��	 �����	 "���� ���� 	""	���� ��=� �������	
 �� ��	�

�
 6��(7(

@)()�) ��""��+

)�	 �	"��
�� �����	 "���� ���� ���
����� �����
�� �
����

��� �������� �
 �'����� ��� �	��	��
� �������	
�(:� ��� 	"�����

�'�� 	� ��� �����	 ������ ��� "������� ���
 ��� �����	 "����

��� �������� �� ���� ��� ������� �� � "��� ���
�����	
 "	������

�	��	��� �� � �������� 	� ��=� �������	
(:� ��� 	"����� �'��

��� �	
�����
� ���
 ��� �����	 "���� ��� 	
�� �������� �� ����

��=� �
 	""	���� �������	
� �
� �� ����� �'�� ��� ���
�����(

)�� 	
�� ���� 	� "�������� ��"	���
�� �� "��� ���
�����	
 	� �

�����	 ������ ���� "������� 	"����� �'��(

@)�) 1�������
�	�	� ����
 :��� �������	 �	�0	�!	 ��0�	

$�� �	 �����
� �����
�� �
���� �� ����� 	
� �����	 "���

��� �	
�����
� 	"����� �'��(I�
��* ��� �	���
���	
 	� ���

�����	 "���� ��
 	
�� �� �������� ���	���
� �	 ���� 7(0�

������ �
 �����	
 <(�* ��� �	
�� 	 ���� �� ��������� ����

���"��� �	 ��� �'�� 	� ��� �����	 "����* ����� ��"���� ����

����� ��� ������ ���
����� 	� "��"�
������� �	 ���� 	����(:�

��
 �� ��	�
 ���� �� ���� ��� ���
�����
	 �	
�� 	 ��

��������� ������� ��
 �'���(6	� "��"�
������� �'��* �����

�� � 	
������
��	
�� ������ 	� "	����������� �	� "����
� ���

�����	 "���� �
� �����
� ����� �����
�� �
���� �������� �	 ����

	���� ���� ���� ��� �	���
���	
 	� ��� �����	 "���� �� ��������(

:
 �������* �� ��� �����
�� �
���� �	� ��� ��	 �����	

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(�A��

6��(7()�	 �����	 ������� ���� 	""	���� ��=�
� �������	
 ��� ���
����� �'��

�	
������� � �������� �	��	
 ��
��
�� ���	���
� �	 ���� 7()�� ��"���	��

��	�
 �� ��� ;�	��	
 �	
��+ 	 (

6��(A(�	������ ����
����
�� 	� �����	 ������� �
� ;�	��	
 �	
���+ 8��������� �
 ��� ��'�9(8�9 �	������ ����
����
� 	� �����	 ������� �
� �	��	
 ����"��	��

�� ��������� �� ���� 7 �
 �����	
 ?(6	� �����
�� �
����
 � 4 � ��� �����	 ������ ��=�� ���� ��	� ��� ����"��+� ��
���(8�9 �
�� �	� �����
�� �
����
 � 4 �

��� �����	 ������ ��=�� �	����� ��� ����"��+� ��
���(8�9 �	������ ����
����
� 	� �����	 ������� �
� �	��	
 ��"���	�� 	��

50 Chapter 5. Camera Self-Calibration

"���� ��� �������
� ��� �	
B������	
 ��
 	
�� �� �������� �� ���

�'�� 	� ��� �����	 "���� ��� "��"�
������� �	 ���� 	����()��

�'��� �	
����	
� �	� ���
� �������� ��� �	�"������� �
�

	������ ���� ��
�� ���� �	
	� ������ �	
������� �	 ���

�
������
��
� 	� ���� ��������	
(

@)3) ��� !�������
�	�	� ����

@	
 �	"��
�� �����	 "���� ��
 	
�� �� �������� ���	���
�

�	 ����� � 	� 7(���� � �� 	
�� "	������ �� ��� 	"����� �'�� ���

��� "������� 8�����
�� �
���
 � 4 �9(�������� �	��	
� ���

�'����� "��� ���
�����	
� "	������ �	��	��� �� �	����	
�

��	�� �'�� "������� �	 ��� 	"����� �'�� 	� �� ��������� 	�

��� ��=�
� �������	
(

0� �	� ���� 7* ���
	
 �	"��
����� ��"���� ���� 	
� �����	

"��� �� �	����� 	
 ��� ����"�� 	� �
� ��� 	���� 	
 ��� ��"���

�	�� 	�� %� ������ ���� "�������� �����
�� �
���� ���

�
����	� 8	� �
��� �	9 4 �()��� ���
� ���� ��� �'�� 	� ���

�����	 ������ �	����� 	
 ��� ����"�� 	� �� �������� ����

��	� ��� ����"��+� ��
��� �� ��	�
 �
 6��(A8�9* �(�(� ����

�� �
 6��(A8�9 ��
	� "	������(0� �	� ��� ��"���	�� ���

�	
����� �� �����* �(�(��� �����	 ������+� �'�� ���� �� ������

��� �	����� ��� ��"���	��+� ��
��� 8��(6���(7 �
� A8�99(

-� �	�"���
� ���� ��������	
 ���� 6��(�8�9* �� �� �����

���� �	� ��� 	
�� ����� ������
� �
 "������� ��� �'�� 	� ���

��	 �����	 "���� ���� �� ���
����� �� ��	�
 �
 6��(? 8�	� ���

	���� "	��
���� ����
����
��* 	
� �����	 "��� �	��� B'��� �

"	�
� ���� �� ����
� ��� 	���� �����	 "���* �(�(��� �	��	

B��� 	� ���� �	��� �� ������ ��"�� 	� ���� ����� ��&�
�

����� ������
� �
� ���� ��������������	
 �
����
��� ��"	��

�����9()�� �������� "	����	
 	� ��� �����	 "���� �� ���� ��

�	��	��()���� �'�� �	�
���� �
� ����� ;��""	���
� "��
��+

��� 	���	�	
�� �	 ���� 	����(

:
 �	
�����	
* ��� 	
�� �������� �������	
� ���� ����� ��

�
�	�
����� ����
	
 �	"��
�� �����	 ������� ���2

� � �����	 ������ ���� "������� 	"����� �'�� �
����	�
�

"��� ���
�����	
� 8"	������ �
 ������� �������
� ������

��	
�9* "	������ �	��	��� �� �	����	
� ��	�� �'�� "�������

�	 ��� 	"����� �'�� �
� ��������� 	� ��� ��=�
� �������	
(

� � �����	 ������ ���� "������� 	� �	
�����
� 	"����� �'��

���� �� �	����� �� 4 � ��	�� ��� �'�� �	��	��� �� �

���
�����	
 ��	
� ��� �'�� �
� "	������ � �������� 	� ��=�
�

�������	
(

'	 %����������

%� ���� ������� ��� �	��	
 ��
��
��� ���� ��� �������� �	�

,�������
 ���	
�������	
 ��	� ����� ��
��
��� ���� �����

���� �
� �
&
	�
 �	��� ��
��� ��	�� 	���� �
���
��� "����

������ ��� &
	�
()�� �������� �	��	
 ��
��
��� ���

��������� ��	����������(��� ������� ��� ������ �
�	�����
�

��
�� 	
�� ��� ����� �'��� ���� ��� ��&��� �	 �� ��� �
 "����

����()�� �	�� ��"	���
� ����� ��� "��� ���
�����	
 �
� ��"��

������ "��� �	����� �	��	
(�
� ���	 ��� �	 �� ����� 	� ���

���� ���� �	��	
 	
 � �	
�� ��� ����� ��=�
� �
 ��� �������	

	� �	��	
 �� �������� ����	��� �
 ��
���� ����� ��� 	
�� ��	

������	�� �	����	
� �	� ,�������
 ���	
�������	
 �
� �����

���������	
(0
	���� ��"	���
� ������ �� ���� �
 �����

��
��
�� ��&�
 �� � ������ ���� B'���� � B
��� "	�
� ��

������ �������� ���
 ��	 ����� 	
�� ��� ���� ���
����

�������� ���� ����� 	� �	�� �����(

-	�� "��� ���
�����	
 �
� �	��	
 	
 � �	
�� ��� ���	

�������� �	� ��������������	
 ���
 ��� �
���
���� ��� �	
���
�

��� �
&
	�
 3�#5(:
 ���� ����* �	�����* ��� ������ 	�

��������� �
 ��� �	����	
 �� ������(L	��	���* ��
����

"��
�� �	��	
� ��� ������ ��������* ����� ��
	� ��� ����

�	� ��� �������	
 ����� ���� �
 ���� "�"��(

��� ������� ���	��� �� �	 ����� ��� �������� �	��	
� 	�

�����	 �������(%� ��� ���� �	� ����	�� �������	
�* �����	

������� �
����	�
� "��
�� 	�
	
 "��
�� �	��	
 �
� ����
�

B'�� 	� �������� �����
�� �
����(��� ������� ��	� ���� ��

��	��� �� ������ ���� �	 ��	�� �������� �	��	
� �
 "�������2 ��

���B��� �	 �����
��� ���� ��� �'�� 	� ��� �������
� �����	

"���� �
 � ��
��
�� ���
������ "�������
	� "��"�
�������

�	 ���� 	����(

�����(��
�������

)��� �	�& ��� �	
� ����� ��� ����	� ������ ���� ���

�	�"�����	
�� .���	
 M�	�" 	� ��� N
�������� 	� �����
�

�
� ��� ��""	���� �� ��� ,���� ��
��� "�	/��� M�C

J#4��� 8.���	�9(

�����
�) �	 *���� �� �������� �� �������� �����

���������� � ����� �������

�	
����� � "�	"�� ������� �	
�� � (%� ��
� �	 �������
�

��� �	��� 	� ��� ���� "	�
�� 1 ���� ���� ��� �	
�� �	���� ��

� �
� ���� 1 �� �����' ��� ��������(%���	�� �	�� 	� ��
�����

���* �� ��
 ��		�� ���"�� �		���
���� �	� ��� "�	���� ��

�	��	��2 ��� ��� ��""	���
� "��
� 	� � �� ��� "��
� A� �

�
� ��� ��� �	
�� �� ��
����� �
 ��� 	����
 �
� ���� �'��

����
�� ���� ��� B �
� C �'��(I�
��* ��� �	
��+� �����' ��

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(� A�7

6��(?(�
� "	������
	
 �	"��
�� �������� �	��	
 ��
��
�� �	� �����	

�������(

Paper 6: CMS Self-Calibration of Cameras and Stereo Systems with Variable Focal Length, IVC 2002 [23]51

	� ��� �	��2

� �

�

 �

 ��

�

�
�
�

�

�
�
�

��
�� � �� � "�	"�� ������� �	
�� �� ���� �� � � �

F��
	� 1 � �B�C �A� ��) �� ��� �����' 	� � �	
� � ����

�	
���
� � 8���� A� �9()�� �	
�+� �����' �� ����
 ��2

� �

� ��
B

A

 � ��
C

A

��
B

A
��

C

A

�B
�
� �C

�
� �

A�

�

A

�

A
��

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

%� ��
� �	 ��������� 1 �	� ����� ��� �	
� � �� ��������(

�	
�� ���� B
��� �����' ��� �������� �'����� �� ��� �	
��

	����
�� �� �
��������	
 ���� ��� ����� "��
� ��� � �	����

����
����� 3�5()��� �	
����	
 �� �'"�	��� �	� ��� ��	 �������

�
� ����� 	� � ���
� � ������� ������ 	� �
 ����"�� 8����� ���

	 	���� ����� �	� �.� 3�59(

�)*) � �
 � ������� !��!�	

)��� ���� 	����� ���
 � � �� 6	� � �	 �� � �������� �	
�*

��� �����' 1���� ��� 	
 ��� ��
� "����
� ���	��� ��� ��
��� 	�

� �
� ���
� 	���	�	
�� �	 ��� ��""	���
� "��
�(I���* ���� ��

��� A��'��(

�)() � �
 � ������� 	����
	

)��� ���� 	����� ���
 � � ��

6����* �� ��	� ���� 1 ���� ��� �
 	
� 	� ��� ��������

"��
�� 	� � * ����� ��� ��B
�� �� �	��	��(0 ��������

"��
� 	� �
 ����"�� �� � "��
� 	���	�	
�� �	 ��� ����"��+�

��""	���
� "��
�* ����� �	
���
� 	
� 	� ��� ����"��+� ��	

�������� ��
��(-������ ��� ��""	���
� "��
� ������ ��� ��	

�������� "��
�� ��� ��� 	
�� "��
�� ����� �	
����� � ��

��K����	
(

�	
����� � �������� ������� �	
� ���� �����' 1 �
� F�� � ��

� "��
� ���� 1 �
� � �
� ���� � �� ��� �	
�� ��� 	�� ��	� ���

�	
� ��� 86��(0�8�99(F�� 1 �� �� ��� 	���	�	
�� "�	/����	

	� ��� �	
�+� �����' 1 � 	
 � (:� �� ���� �	 ��	� ���� 1 �� ����

	
 	
� 	� ��� ��	 �������� ��
�� 	� � � 86��(0�8�99(��
��

1
�� �� ��� 	���	�	
�� "�	/����	
 	� 1 � 	
 � ��� "��
�

�"�

�� �� 1
� �
� ���� �������� ��
� �� � ��������

"��
� 	� � �(%� �	
����� ���� �	� ��� �	
�� �����	
� 	� �

�������� �	
� ��� �	
�� �����' ���� 	
 �
 ���	������ ������

��� "��
�(

:
 	�� ����* ��� �������� "��
�� 	� � ��� ��� "��
��

B� � �
� C� �(6�	� ��� ������� ��������	
 �� �	��	��

���� ��� �����' 1 	� ��� �������� �	
� � ���� ��� �
 	
� 	�

����� "��
��(:
 ��� �	��	��
�* �� �'���
� ��� ���� B� �

8��� 	���� ���� ��
 �� ������� �
 �
 �
��	�	�� ���9()��

�	
�� �����' �� ���� ���"��B�� �	2

� �

�

 � ��
C

A

 ��
C

A

�C
�
� �

A�

�

A

�

A
��

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�

0� ������ �������* ��� �	
� �� �������� �'����� �� ��� �	
��

	����
�� �� �
��������	
 ���� ��� ����� "��
� ��� � �	����

����
�����()��� �	
�� �� �� ����
 �� ��� �""�� ���� 7 � 7

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(�A�A

6��(0�(6	� �
� �������� �	
� �
� �
� "��
�* ��� 	���	�	
�� "�	/����	
 	� ��� �	
�+� �����' 	
 ���� "��
� ���� 	
 	
� 	� ��� ��	 �������� ��
�� 	� ��� �	
��

�����	
 �
����� �� ��� �	
� �
� ��� "��
� 8��� ��'� �	� �	�� �������9(

52 Chapter 5. Camera Self-Calibration

��������' 	� � 2

�� �

�

 � ��
C

A

 ��
C

A

�C
�
� �

A�

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

)�� ����� ����
������ 	� �� ���2

� �
�
��C�

� A
��� ��

���

���C� � A��� � ���A� � C��� �
�

�A�

,
����
� ��� ���	
� �
� ����� ����
������ ����� �	 ��������

	� �
����
� ��� B��� ����
����� � ���� ��� ���	
� 	� �����

����
�����(,
����
� ��� B��� ����
����� � ���� ��� ���	
�

	� ����� ����
����� ����� �	 ��� �	��	��
� �	
�����
� 	
 C

�
� A 8����� �	�� ��
�"�����	
� ���
� �����92

��C
�
� ��� ����A�

� �� � �0��

,
(80�9 ��
 �� ��"����
��� �� ��� �	��	��
� �����'

�
����	
2

�C � A� ��

��

 ���� ��

 �� �

�

�
�
�

�

�
�
�

C

A

�

�

�
�
�

�

�
�
�

)�� �����'

	 �

��

 ���� ��

 �� �

�

�
�
�

�

�
�
�

��"����
�� � �	
�� �
 ��� "��
� B � ��	�� ��"� ��2

� � ���� ����"��* �� � � �� @	�� ���� 	 ��

	� �� � ������

8���� �	��� �� ��� ���� ��	�� � 	�� ����� �� �
������
�

�	 � � � �
 �	
��������	
 �	 ��� �����"��	
 ���� � � �9(

� � ��"���	��* �� � � ��

:� �� �	
����� ��� ���� C � � �� 	����
 /��� ��� ����"�	�

�� ������(

I�
�� ��� �	��� 	� �������� 	� �������� �	
�� �	
���
�
� �

������� ����"�� � �� ��� �
�	
 	� � ���� ����"�� 	� �
� � ����

��"���	�� 	� 8��(6��(�8�99()�� �	��	��
� ������	
� �	��

������
 � * 	� �
� 	��)���� ��""	���
� "��
�� ���

�������� 	���	�	
�� �
� ���� 	� ���� �� � ��������

"��
� �	� ��� ��	 	���� �	
���()�� ��"���	�� 	� "�����

���	��� ��� �	��� 	� 	��

�)()*) ����	� ��
	�������

%�
	�� ���� 	 ��

	� �� � ������ 8"�	"���� ���� �

�����	
 <9(:� �	��� �� � ������ �� 8��(,
(80�99 	�� �
	��� �(�(�� �� � ���� ��� ��
�� �� � � �)��� �� �
 �	
����

�����	
 ���� ��� ���� ���� � �� �
 ����
����� 	� ��� ����	�

������� �	
�� � �
� ����
	
 =��	(

0
	���� "�	"���� ���� �� ���� �
 �����	
 � �� ���� �	 ��	�(

@�����* ��� ���� ��
��
�� 	� 	� �
� 	� 	� ��� ��������

�&��* �(�(����� ��
	 ��
��
� 	� 		 ���� ��� � ���� �
����

�����	
 "	�
� ���� �
� ��
��
� 	� 	��

�����
�) �	 �)�� �� �������� ����� ���������� � �����

�������

:
 ��� �	��	��
� �� "�	�� ��� �������
�� ���� �
 �����	

A(�(�(�������� ���� ��� 	"����� �'�� �� ��� �'�� 	� ��� ��������

�	
�� 8��(�����	
 A(�(�9(0� �
 0""�
��' 0 �� �	
����� ���

��	 ����� 	�� ���
� � ������� ������ 	� � ������� ����"��(%����

��� ���� ���"�� �		���
���� �� �
 0""�
��' 0(

D)*) � �
 � ������� !��!�	

%� ������� &
	� ���� ��� �����' 	� � �������� �	
� �

�	
���
�
� � �� � "	�
� ���� �		���
���� � � �A� ��)� �(�(
� �� ����
 ��2

� �

�

 �

 �
�

A�

�

A

�

A
��

�

�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�

)�� �
��������	
 	� � ���� ��� ����� "��
� �� � �	
��

����
 ��2

�� �

�

 �

 �
�

A�

�

�
�
�
�
�

�

�
�
�
�
�

6	� A�
� ����� �� ��� � �	���� �
� � ��
��� ����
�����*

�(�(� �� � �������� �	
� ���� ��� A��'�� �� �'��(I	�����* �	�

A � ���
����
��

�
8����� ��� ����
������ ��
�� � � 9* �� ��

��� ���	���� �	
�� 8����
 �� ��� ���
���� �����'9 �����

���
� ���� � �� �
 ��	��	"�� �	
�(:�	��	"�� �	
�� ��� �
����

��
� �	 �	����	
 ��	�� ����� �����'(I�
��* ��� "�	/����	
 	�

�
 ��	��	"�� �	
� �� � ������ �	����� �� ��� �����' ��

������ � ��
����� ������� ������* ���������� 	� ��� ������+�

	���
����	
(

D)() � �
 � ������� 	����
	

:� �� ���� �	 ��	� ���� �
 ���� ����* � ��

	� �� �
 ��	��	�

"�� �	
�* �(�(�� ���� "	������ ������ "	����	
* ����� �� 	
��

	
� "	������ �������	
 �	� ��� 	"����� �'�� 8����
 �� ���

�	
�+� �'��9* ���� ���� ��� ������ �	
B������	
 �� ��������(

:
 ��� �	��	��
� �� "�	�� ���� ��� �'�� 	� � �� ��� ��
��
�

��
� �	 	 �� 1 ���� ���� �
 ��� ��""	���
� "��
� 	� 	 8
	���

��	
 �� �
 0""�
��' 09(

0
	���� ��B
���	
 	� ��� �'�� 	� � �������� �	
� ��

���� ����
 �
 �����	
 A(�(�* �� �� �	��	��2 �'����� "��
��

	���	�	
�� �	 ��� �'�� ��� ��� �	
� �
 �������* �(�(�	
���

�	
���
�
� �������� "	�
��(

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(� A�?

Paper 6: CMS Self-Calibration of Cameras and Stereo Systems with Variable Focal Length, IVC 2002 [23]53

)�� ��
��
� ��
� �		 �� 1 �� ����
 �� 8�		���
���� �
 ���

"��
� B � 92

= � 	

C

A

�

�

�
�
�

�

�
�
� �

��C

���� ��A

�� �

�

�
�
�

�

�
�
�

)�� "��
�� 	���	�	
�� �	 ��� ��
� = ��� ����
 ��2

� �

���� ��A

��C

�

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

�	� ���� �()�� ��	 ����� �
��������	
 "	�
�� 	� � �
� � ���2

. �

�

���������������������������������

��� � � �� � ���� ���C��
�

��C

���� ��A

�

�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

)��� ��� �������� "	�
�� ��
��2

.
�
� � .

�
� � .

�
7 � ���� �����C�

� ��� ����A�
� ���

����� ��* ��(,
(80�9* �
��� �	 (

+���������

3�5 0(0=������/�
�* 0(�(��
���
�* ��������� ��������	
 	� �	��	
*

��������� �
� �	��� ��
���* :,,,)��
�����	
� 	
 ������
 0
������

�
� L����
� :
�������
�� �< 8�44?9 ?��>?<?(

3�5 %(-	���* I(�����=���* M�	������ �	
��"�� �	� ��	������ �����

80(J(������* �44A9(

375 �(-	��
	�'* 6�	� "�	/������ �	 ,�������
 �"��� �
��� �
� "��������

�������	
* � ��������� 	� ��������������	
* ��	�����
�� 	� ��� :
���
��

��	
�� �	
����
�� 	
 �	�"���� .���	
* -	����* :
���* �44#* ""(

<4 ><4�(

3A5 L(O(-�		&�* F(�� 0��"��	* $(P(I��
�* F(-������* $����� ����	��

�	� ��������������	
 	� � �	��
� �����	 ����(��	�����
�� 	� ���

,��	"��
 �	
����
�� 	
 �	�"���� .���	
* ���������* �44�* ""(

A�?>A��(

3?5 F(�� 0��"��	* $(P(I��
�* L(O(-�		&�* ��������������
� � �����	

����2 �
 ���	� �
������ �
 ���
�����	���		� 	� ����
����� �	
B�����

��	
�* ��	�����
�� 	� ��� :
���
���	
�� �	
����
�� 	
 �	�"����

.���	
* -	����* :
���* �44#* ""(<A<><?7(

3�5 �(6�������* %��� ��
 �� ���
 �
 ����� ����
��	
� ���� �
 �
�����

������ �����	 ���Q ��	�����
�� 	� ��� ,��	"��
 �	
����
�� 	

�	�"���� .���	
* ��
�� L��������� F�����* :����* �44�* ""(?�7>?<#(

3<5 �(6�������* ������B����	
 	� ����������
��	
�� ����	
2 "�	/������*

��B
� �
� ������ ��"����
����	
�* O	��
�� 	� ��� �"����� �	����� 	�

0������ 0 �� 8�44?9 A�?>A#A(

3#5 �(:(I������* ,�������	
 	� �������� ������ "	����	
� �	� �
����������

�������* ��	�����
�� 	� ��� ,��	"��
 �	
����
�� 	
 �	�"����

.���	
* ��
�� L��������� F�����* :����* �44�* ""(?<4>?#<(

345 �(I������* �(M�"��*)(���
�* �����	 ��	� �
���������� �������*

��	�����
�� 	� ��� ,��	"��
 �	
����
�� 	
 �	�"���� .���	
* ��
��

L��������� F�����* :����* �44�* ""(<��><�A(

3� 5 6(J���* �������� �	��	
� �
� ������	�� ,�������
 ���	
�������	
� �

���	����������	
* ��	�����
�� 	� ��� :
���
���	
�� �	
����
�� 	

�	�"���� .���	
* J��&���* M�����* �444* ""(A�4>A<?(

3��5 �(O(L����
&* �($(6�������* 0 ���	�� 	� ���� ���������	
 	� � �	��
�

������* :
���
���	
�� O	��
�� 	
 �	�"���� .���	
 # 8�44�9 ��7>�?�(

3��5 M(@(@�����* $(P(I��
�* L(O(-�		&�* I(�(��
* ���	����
�

�
&
	�
 �	��� ��
���� �
 ��������������	
2 �
 ����
������ ��
��� ���	�

����� �
� ����
����� �	
B������	
�(���� -7 	� ��� "�	�����
�� 	� ���

R.::: :������	
�����* .��

�* 0������* �44�* ""(?<?>?# (

3�75 L(�	�������* �(J	��* F(.�
 M		�* ��������������	
 �
� ������

���	
�������	
 �
 �"��� 	� �����
� �
� �
&
	�
 �
���
�� ������ "����

������* ��	�����
�� 	� ��� :
���
���	
�� �	
����
�� 	
 �	�"����

.���	
* -	����* :
���* �44#* ""(4 >4?(

3�A5 L(�	�������* ��������������	
 �
� ������ 7$ ���	
�������	
 ��	�

�
���������� ����� ��
��
���* ��$)�����* $�"�����
� ,�0)*

J���	���&� N
���������� F����
* -������* �444(

3�?5 %(I(�����* �(0()��&	��&�* %()(.�������
�* -(�(6��

���* @�����

���� ����"�� �
 �* ��������� N
�������� �����* ���������* @�� S	�&*

�44�(

3��5 O(M(���"��* M()(J
���	
�* 0�������� ��	/������ M�	�����* �'�	��

����
�� ���������	
* �4?�(

3�<5 �(�����* �������� �	��	
 ��
��
��� �	� �	
	����� ��������������	

�
� �
���������� ,�������
 ���	
�������	
* ��	�����
�� 	� ��� :,,,

:
���
���	
�� �	
����
�� 	
 �	�"���� .���	
 �
� ������
 ���	�
��

��	
* �����	 ���	* �44<* ""(�� >�� ?(

3�#5 �(�����* .���	
 7$
	
 �������T�2 �	
�������	
� �U �� ���	
�������	

"�	/������ �� �T���� ��� �	�����
�� �����
��� "	�� �+���	����������*

��$)�����* :@�M* 6��
��* �44<(

3�45 �(�����* �������� �	��	
 ��
��
��� �	� ��� ��������������	
 	�

������� �
� �����	 ������� ���� �������� �	��� ��
���(��	�����
��

	� ��� -������ L����
� .���	
 �	
����
��* @	���
����* �444* ""(

�7><�(

-) ����" 6 �"�0	 ��� 4�
��� 1�"�����0 (� 7(��(8 3*�93(�A��

54 Chapter 5. Camera Self-Calibration

Focal length calibration from two views:
method and analysis of singular cases

P. Sturma, Z.L. Chengb,*,1, P.C.Y. Chenc,*, A.N. Poob

a INRIA Rhône-Alpes, 38330 Montbonnot, St. Martin, France
b Mechanical Engineering Department, National University of Singapore, 119260 Singapore, Singapore

c Bachelor of Technology Programme, Faculty of Engineering, National University of

Singapore, 119260 Singapore, Singapore

Received 20 October 2003; accepted 1 November 2004

Available online 18 December 2004

Abstract

We consider the problem of estimating the focal length of a camera from two views while
the focal length is not varied during the motion of the camera. An approach based on Kru-
ppa�s equations is proposed. Specifically, we derive two linear and one quadratic equations
to solve the problem. Although the three equations are interdependent in general, each one
may be singular for different configurations. We study in detail the generic singularities of
the problem and the actual singularities of the individual calibration equations. Results of
our experiments using synthetic and real data underline the effect that singular configurations
may have on self-calibration. However, these results are stable once the singularities are
avoided.
� 2004 Elsevier Inc. All rights reserved.

Keywords: Camera calibration; Kruppa�s equations; 3D reconstruction

www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 99 (2005) 58–95

1077-3142/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2004.11.002

* Corresponding authors. Fax: +65 6777 3525 (P.C.Y. Chen).
E-mail addresses: chengz@rpi.edu (Z.L. Cheng), engchenp@nus.edu.sg (P.C.Y. Chen).
1 Present address: 23, 13th Street, 3rd floor, Troy, NY 12180, USA.

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 55

1. Introduction

Camera self-calibration has been studied for various scenarios. In the original sce-
nario [3], the case of a camera with constant but completely unknown intrinsic
parameters is considered. Since then, this has been extended to cases where all but
one of the intrinsic parameters may be varying [16,12]. Reports on recent advances
and general overviews of the topic can be found in [11,4].
In parallel to the proposition of new algorithms, research has been conducted on

‘‘critical motions,’’ where camera configurations or trajectories will render self-cali-
bration impossible in theory and unstable in practice, see e.g. [1,13,14,18,19,21,23].
In this paper, we consider what may be the simplest self-calibration scenario:

two views of an unknown static scene are taken by a camera with constant param-
eters, with the assumption that all intrinsic parameters except the focal length are
known. Although very simple, we believe that this is a very useful scenario in prac-
tice. It has been shown that it is even possible to calibrate a varying focal length
from two views [6]. Simple algorithms for this purpose were proposed in
[1,2,15,16]. One of the drawbacks of this scenario is that the problem is unsolvable
whenever the optical axes of the two views are coplanar [14,15,21], which is always
approximately the case for stereo systems. Other less likely critical configurations
are also described in [14,15,21].
In this paper, we show that the assumption of a constant focal length reduces the

number of critical configurations. The generic critical configurations (which we will
also refer to as singularities or degeneracies) of the problem are given: the problem is
unsolvable whenever the optical axes of the two views are parallel or if they intersect
at a finite point equidistant from both optical centers.
We show that two linear and one quadratic equations can be derived from the sin-

gular value decomposition (SVD) of the fundamental matrix. All critical configura-
tions for the individual equations are then revealed in detail. Especially, it is shown
that the quadratic equation degenerates only in the generic cases, or in some cases
when the focal length is equal to ±1, whereas the linear equations� critical configu-
rations are the same as for the above problem of estimating a varying focal length.
We believe that such a study of critical configurations is important, since it indi-

cates which configurations to avoid in general, and explains why certain algorithms
may still fail (see e.g., a study on Kruppa equations [19]).
The performance of the calibration equations is evaluated using synthetic and real

data. In both cases, we are interested in investigating the camera setups close to crit-
ical configurations. As for the real images, we show that, when the critical configu-
rations are avoided, the results are of acceptable accuracy and stability.
This paper is an extended version of [20], and contains more experimental results

and a more in-depth theoretical study.
Organization. The problem is formulated in Section 2 and the calibration equa-

tions are derived in Section 3. Generic and equation-specific singularities are summa-
rized in Sections 4 and 5. Experimental results are provided in Section 6 and the
paper is concluded in Section 7. The appendices contain all proofs for the equa-
tion-specific singularities, organized in several sections in a logical sequence.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 59

56 Chapter 5. Camera Self-Calibration

Notations. In this paper, matrices are represented in sans serif font (e.g., K), vec-
tors in bold face (e.g., q), and scalars in italics. Coefficients of a matrix U (respec-
tively, a vector v) are denoted by Uij (respectively, vi). Equality of matrices or
vectors, up to scale, is denoted by �. For any vector v, [v]· represents the skew-sym-
metric matrix associated with the cross product, i.e., v · w = [v]·w. Transposition of
a vector v is denoted as vT, and the inverse of the transpose of a matrix A as A�T. In
complex equations, we often use the shorthand notations ca = cosa, sa = sina, and
ta = tana.

2. Problem formulation

Throughoutthispaper,weuseperspectiveprojectionasthecameramodel,withthefol-
lowing intrinsic parameters: the focal length f, the aspect ratio s, and the principal point
(u0,v0).A3DpointQ is projected toan imagepointqvia

q � PQ � KRðI� tÞQ;

where the rotation matrix R and the vector t represent the camera�s orientation and
position, respectively. The calibration matrix K is defined as

K ¼

sf 0 u0

0 f v0

0 0 1

0

B
@

1

C
A:

In the following, assume that two images of a static scene are available and that a
projective reconstruction is possible or, equivalently, that the fundamental matrix
can be computed. Without loss of generality, assume that the first camera is located
at the origin and that its rotation matrix is the identity matrix. With R and t being the
extrinsic and K0 the intrinsic parameters of the second camera, the fundamental ma-
trix of two images is given by [11]

F � K
0�T

R½t�	K
�1

:

We assume that the aspect ratio and the principal point are known for both images
and that their focal lengths are identical. We can thus move from a completely
uncalibrated space to a ‘‘semi-calibrated’’ one, by computing an intermediate be-
tween the fundamental matrix and the essential matrix (R[t]· in the above
equation)

G �

s0 0 0

0 1 0

u00 v00 1

0

B
@

1

C
AF

s 0 u0

0 1 v0

0 0 1

0

B
@

1

C
A �

1 0 0

0 1 0

0 0 f

0

B
@

1

C
AR½t�	

1 0 0

0 1 0

0 0 f

0

B
@

1

C
A: ð1Þ

We call G the semi-calibrated fundamental matrix.

60 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 57

3. Calibration equations

Let the singular value decomposition [5] of G be given by

G ¼ URVT;

with R = diag (a,b, 0) being the diagonal matrix of singular values (a,b > 0) and U

and V orthogonal matrices. We denote by ui and vj the ith and jth column of U
and V, respectively. Note that the second epipole e0 of G is its left null space, i.e.,
e0 � u3. It can be shown [9,23] that Kruppa�s equations can be reinterpreted by the
following relationship in terms of fundamental matrix and the epipole:

G

f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
AG

T � ½e0�	

f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
A½e0�	:

In terms of the SVD of G, this can be written as

URVT
f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
AVRUT � ½u3�	

f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
A½u3�	:

Multiplying the equation by UT from the left and U from the right gives, due to the
orthogonality of U

RVT
f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
AVR �

uT1

uT2

uT3

0

B
@

1

C
A½u3�	

f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
A½u3�	 u1 u2 u3ð Þ

�

uT2

�uT1

0T

0

B
@

1

C
A

f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
A u2 �u1 0ð Þ:

The last row and the last column of this matrix equation are zero vectors, so we con-
centrate on the upper left 2 · 2 part of the equation

avT1

bvT2

� � f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
A av1 bv2ð Þ �

uT2

�uT1

� � f 2 0 0

0 f 2 0

0 0 1

0

B
@

1

C
A u2 �u1ð Þ:

Making use of the fact that the vectors v1, etc., have unit norm, we can further sim-
plify the above equation to obtain

a2ðf 2 þ V 231ð1� f 2ÞÞ abV 31V 32ð1� f 2Þ

abV 31V 32ð1� f 2Þ b2ðf 2 þ V 232ð1� f 2ÞÞ

 !

�
f 2 þ U 2

32ð1� f 2Þ �U 31U 32ð1� f 2Þ

�U 31U 32ð1� f 2Þ f 2 þ U 2
31ð1� f 2Þ

 !

:

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 61

58 Chapter 5. Camera Self-Calibration

The equality (up to scale) of these two symmetric matrices gives rise to three individ-
ual quadratic equations in f 2 (by forming the cross-product of the vectors containing
the three different coefficients of each matrix). Two of these have the trivial solution2

f 2 = 1. Factoring this out, we thus obtain two linear equations and a quadratic one:

f 2 aU 31U 32ð1� V 231Þ þ bV 31V 32ð1� U 2
32Þ

� �
þ U 32V 31 aU 31V 31 þ bU 32V 32ð Þ ¼ 0;

ð2Þ

f 2 aV 31V 32ð1� U 2
31Þ þ bU 31U 32ð1� V 232Þ

� �
þ U 31V 32 aU 31V 31 þ bU 32V 32ð Þ ¼ 0;

ð3Þ

f 4 a2ð1� U 2
31Þð1� V 231Þ � b2ð1� U 2

32Þð1� V 232Þ
� �

þ f 2 a2ðU 2
31 þ V 231 � 2U

2
31V

2
31Þ � b2ðU 2

32 þ V 232 � 2U
2
32V

2
32Þ

� �

þ a2U 2
31V

2
31 � b2U 2

32V
2
32

� �
¼ 0: ð4Þ

These are our self-calibration equations. They are of course algebraically dependent,
but we will see in the following sections that they may be singular in different
conditions.

3.1. Calibration algorithm

A simple calibration algorithm can be formulated as follows:

(1) Estimate the fundamental matrix between the two views (algorithms with good
performance are given in [22]).

(2) ‘‘Undo’’ the known intrinsic parameters, as shown in Eq. (1).
(3) Compute the SVD of G and extract the coefficients U31, U32, V31, and V32, as well
as the non-zero singular values a and b.

(4) Construct and solve any of the Eqs. (2)–(4). In practice, we only solve the qua-
dratic equation. The spurious solution can either be ruled out using the linear
equations, or usually by simply taking the solution closest to a reasonable guess
(in simulations, the spurious solution was always observed to be far off the true
one).

(5) Optionally, the result can be improved by bundle adjustment, after having esti-
mated the relative pose of the cameras.

3.2. On standardization

It is often advisable to work in ‘‘standardized’’ image coordinates [8], which is
usually achieved by translating and scaling image coordinates appropriately. The
transformation applied in step (2) of the above algorithm, mainly amounts to such

2 The case where the true squared focal length equals 1, is discussed in Appendix D; this might occur if

working in standardized coordinates.

62 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 59

a translation, and one might also apply an additional scaling. Usually, the range of
feasible focal lengths is well known, and one might apply a scaling with the inverse of
a feasible focal length value f0 (standardization based on image point coordinates as
in [8] amounts usually to such a scaling). The semi-calibrated fundamental matrix
would be transformed according to

f0 0 0

0 f0 0

0 0 1

0

B
@

1

C
AG

f0 0 0

0 f0 0

0 0 1

0

B
@

1

C
A: ð5Þ

The rest of the algorithm will be the same, except that the estimated focal length, has
to be multiplied by f0 at the end.
In Section 5 and in the appendix, we show that if f0 happens to be equal

to the true focal length, then the calibration equations may become degener-
ate. Thus, with f0 close to the true focal length, one may expect an instable
focal length estimation. In Section 6.1.4, this is shown to occur in some sit-
uations. On the other hand, when applying no such scaling, instabilities were
observed in other situations. A rule of thumb that we apply in practice is
thus to apply a scaling by a value f0 significantly larger than the maximum
expected focal length. This (admittedly ad hoc) procedure gave always good
performance.

4. Generic singularities

Before discussing singularities associated with the above calibration equations, we
describe the generic singularities of the underlying problem, i.e., those that cannot be
overcome by any algorithm. They can be obtained rather directly by specializing the
results obtained for varying focal lengths [14,15,17,21].
The only critical configurations for the (self-) calibration of a constant focal

length from two views are:

� the optical axes are parallel to each other, or
� the optical axes intersect at a finite point and the optical centers are equidis-
tant from this point. We refer to this configuration as the equidistance config-
uration. We may consider that it subsumes the case of parallel optical axes:
although the optical axes intersect at a point at infinity, we may consider that
the intersection point is equidistant from the optical centers (at infinite
distance).

In both these cases, there is an infinite number of solutions for f 2.
Kahl and Triggs [13] have derived critical configurations. However, their re-

sults are not as clearly stated as above, and seem slightly incomplete. For exam-
ple, their ‘‘turntable’’ rotation about the intersection point of the optical axes
cannot produce all possible cyclotorsions of the two cameras, i.e., rotations about

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 63

60 Chapter 5. Camera Self-Calibration

their optical axes (which do not affect the self-calibration problem discussed in
this paper).
Coplanarity of the optical axes is a necessary condition for a singular configura-

tion with equal focal lengths, whereas it is already sufficient if two different focal
lengths have to be estimated [14,15,17,21]. We will see in the following section that
the quadratic Eq. (4) is nearly only degenerate in the generic singular cases (with the
exception of f = ±1). On the other hand, the linear equations are degenerate when
the two optical axes are coplanar, and in a particular case of little practical
importance.
The stability of calibration in near-degenerate situations should be better for the

equal focal length case.

5. Singularities of the calibration equations

It is useful to examine the singularities of the above calibration equations. Here
we will determine under what conditions the individual equations become singular.
This will allow us to see if they suffer from non-generic singularities and possibly to
determine which equation to use under what condition, or to determine a single
equation that should always be used.
The equations are said to be singular if they lead to invalid solutions. Such solu-

tions may arise when there is an infinite number of choices for the coefficients of
the equations� unknowns, or when the coefficients are equal to zero. If the SVD of
G is unique (up to sign or swapping the columns of U and V and corresponding
singular values), the forms of (4), (2), and (3) are unique. Otherwise, there may
be invalid solutions. In the absence of noise, the true squared focal length is nec-
essarily a solution of the equations. For the quadratic equation, there is in general
a second, spurious solution. In most cases, this is a negative value and can thus be
discarded (since we are looking for the squared focal length). In some cases, how-
ever, the equations may have an infinite number of solutions: for certain singular
relative camera poses, all coefficients of our polynomial equations vanish, implying
an infinite number of solutions for f. In the following, all singular relative camera
poses are summarized. Proofs for the following statements are given in the
appendices.
All three equations vanish of course in the generic singular conditions given in

Section 4, i.e., their coefficients all become zero here. For the quadratic equation,
there are, in general, no further singularities (unlike the general Kruppa equations
that are subject to non-generic singularities). The only exception occurs when the
true focal length equals ±1, which means that the semi-calibrated fundamental ma-
trix is a fully calibrated fundamental matrix, i.e., an essential matrix. This can hap-
pen if the fundamental matrix is expressed in perfectly standardized coordinates,
meaning that the coordinate scaling recommended in [8] happens to be done by
the inverse of the focal length. The essential matrix has two equal non-zero singular
values, which means that its SVD is not unique: there is a one-degree-of-freedom
family of possible SVDs. It is shown in Appendix D.2 that, depending on which

64 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 61

of the ambiguous SVDs one happens to compute in practice,3 the quadratic equa-
tion�s coefficients may vanish, even for a camera configuration that is generically
non-singular. We show in Appendix D.2 that only a finite number, among the infi-
nite number of possible SVDs, cause such a singularity. It is thus unlikely to encoun-
ter exactly such a case. However, when working in standardized coordinates (or,
when scaling with approximately the true inverse focal length), one may get close en-
ough, in which case noise in the data may create instabilities. This effect is studied
using simulations, cf. Section 6.1.4, and conclusions are stated above in Section 3.2.
For the linear equations, there is degeneracy in two cases. The first case is when

the optical axes are coplanar. The other case is best explained as follows. The family
of epipolar planes consists of the pencil of planes that contain the cameras� baseline,
i.e., the line joining the two optical centers. We define a principal epipolar plane asso-
ciated with a camera as the epipolar plane that contains its optical axis, cf. the left
part of Fig. 1. This is uniquely defined unless the optical axis coincides with the base-
line, in which case, at least one camera looks straight at the other one. The non-ge-
neric singularities of the two linear calibration equations can be described, using the
principal epipolar planes of the two cameras, in the following scenarios:

� Neither of the two principal epipolar planes is uniquely defined. This means that
the two optical axes are identical, which implies of course that they are parallel
(and coplanar). This is a generic singular case, and naturally all three equations
become degenerate.

� One of the principal epipolar planes is not uniquely defined. This is a special case
of coplanar optical axes. The linear equations degenerate, whereas the quadratic
one does not in general.

Fig. 1. Example of a singular case for the linear equations when the optical axes are not coplanar. (Left)

The notion of principal epipolar plane is illustrated (plane spanned by the optical centers and one optical

axis). (Right) If the optical axis of the second camera lies anywhere in the plane P, which is orthogonal to

the first camera�s principal epipolar plane, then the linear equations become degenerate. In that case the

two principal epipolar planes are orthogonal to one another (unless the optical axis points towards the first

camera�s optical center, in which case the principal epipolar plane of the second camera is not defined).

3 This depends on the implementation used for SVD computation and the outcome is possibly non-

deterministic.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 65

62 Chapter 5. Camera Self-Calibration

� The principal epipolar planes are identical. This means that the optical axes are
coplanar. The linear equations degenerate. The quadratic equation degenerates
only if, in addition, the equidistance configuration is present. Otherwise, its spu-
rious solution is always zero (cf. Section E.3), i.e., the true solution can be
obtained without ambiguity.

� The principal epipolar planes are orthogonal to each other. In this case, the linear
equations degenerate. The quadratic equation does not degenerate, and its spurious
solution is always negative or zero (cf. Section F.2), i.e., the true solution can be
obtained without ambiguity. This situation is illustrated in the right part of Fig. 1.

Summary. The quadratic equation is degenerate practically only in generic singu-
lar configurations. In addition, whenever the linear equations degenerate in generic
non-singular configurations, the quadratic one gives a unique admissible solution for
the squared focal length.
It is interesting to note that the non-generic singularities for the linear equations

(coplanar optical axes and orthogonal principal epipolar planes) correspond to gen-
eric singular camera configurations for the case of different focal lengths
[14,15,17,21].

6. Experimental results

We conducted various experiments with our algorithm, to evaluate its perfor-
mance with respect to several factors. Specifically, we studied its behavior in the
proximity of singular configurations. This was done systematically using both simu-
lated data and real data to give some intuition on how much effort has to be spent in
avoiding singularities in practice. We also evaluated the performance with respect to
the level of noise in the data and with respect to errors in the assumption of the loca-
tion of the principal point. Experiments with real images were carried out for images
of a calibration grid and also for images of a few generic scenes.

6.1. Simulated data

We conducted simulated experiments to assess the sensitivity of the calibration
equations in close-to-singular situations. Fig. 2 shows the simulated scenarios. The
starting position of the cameras is depicted on the left. It is the typical stereo situa-
tion, with symmetric vergence angles a. This situation is singular: the optical axes are
coplanar and the optical centers are equidistant from the intersection point of the
optical axes.
In the first scenario, the second camera rotates away from the plane spanned by

the initial position of the optical axes, by an angle between 0� and 5� (‘‘elevation an-
gle’’). In Fig. 2, this rotation would be towards the reader.
In the second scenario (shown on the right of Fig. 2), the second camera moves

along its optical axis. The optical axes stay coplanar, but the distances of the optical
centers to the intersection point of the optical axes are no longer equal. Hence, the

66 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 63

scenario is not singular any more (generically, and for the quadratic equation), be-
sides for the case of a zero vergence angle (parallel optical axes). The baseline of
the system is b = 1000 U, and the displacement of the second camera is by
d = �250,�200, . . . , 250 U.
For both scenarios, experiments are done with different vergence angles, with a

between 0� (parallel optical axes in the initial position) and 30�. Three dimensional
scene points are created randomly as follows: their coordinates are drawn from a
uniform distribution inside a rectangular volume in front of the cameras, whose
depth is 10 times the baseline. Only points inside the field of view of both cameras
are used. Cameras are simulated with a focal length of 1000 pixels and a field of view
of 28.7�, corresponding to images of size 512 · 512. By default, 100 points are used in
each experiment, unless otherwise stated. The 3D points are projected to the images,
and centered Gaussian noise (with a standard deviation between 0 and 1 pixels), is
added to the image point coordinates. These image points are the input to the
algorithm.
The following figures show mainly results for the quadratic equation. Results for

the linear equations are not shown here, however, they are discussed in the text. Dis-
played are the median values of the relative errors on the focal length (ratio of the
difference between true and estimated focal length, and the true focal length); each
data point in the graphs is the result of 1000 random experiments. In all simulated
experiments, the 8-point method of [8] is used to compute the fundamental matrix,
i.e., no non-linear optimization was done.

6.1.1. First scenario: off-plane rotation

Fig. 3 shows results for this scenario. The upper left part is relative to a zero ver-
gence angle (i.e., with an elevation angle of 0�, the optical axes are parallel and the con-
figuration is singular), and the upper right part is relative to a vergence angle of 5�. For
zero vergence, it can be seen that even for a 3� rotation off the base plane, the errors are
below 10% for realistic noise levels. Slight vergence of the cameras significantly im-
proves the results (compare the upper right with the upper left part of Fig. 3).

Fig. 2. Simulation scenarios. Shown are the optical centers and optical axes. (Left) Initial camera pose; b is

the distance between the optical centers and a the vergence angle of the optical axes. (Right) Second

simulation scenario; the second camera is moved along its optical axis by the distance d.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 67

64 Chapter 5. Camera Self-Calibration

In the lower part of Fig. 3, the elevation angle is kept fixed to 2�, to illustrate the
influence of the vergence angle a. It is intuitive that with a vergence angle of 0�, the
configuration is ‘‘closer’’ to the degenerate situation of parallel optical axes, thus
the focal length estimation less stable, compared to larger vergence angles. This is
reflected in the graph: the error in the estimated focal length decreases with increas-
ing vergence angle, although above 25� vergence, there is no further significant
improvement.
It is worthy to note that the linear equations gave nearly identical results to the

quadratic one in this scenario. Since two linear equations are available, the average
of their results is taken as estimated focal length, unless one of the two gave a neg-
ative solution for f 2, in which case only the solution of the other equation was used
of course.

6.1.2. Second scenario: displacement of the second camera

Fig. 4 shows results for the second scenario. The upper part of the figure shows
the influence of the vergence angle for a fixed, relatively small displacement (5% of
the baseline) of the second camera. For a vergence angle of 0�, the optical axes

Fig. 3. First scenario. (Top) Results are shown for different elevation angles (one curve per elevation

angle, from 0� to 5�, cf. the graphs� legends). The curves for 0� elevation are outside the graphs (this

situation is singular, and the results reflect this). (Upper left) Vergence fixed to 0�. (Upper right) Vergence

fixed to 5�. (Bottom) Elevation angle fixed to 2�, results shown for different vergence angles (one curve per

vergence angle, 0�, 5�, . . . , 30�, cf. legend).

68 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 65

are parallel and the situation remains singular for any displacement, which is re-
flected by the fact that the corresponding curve is outside the graph. The figure
shows that close to 0� vergence, the results are heavily affected by the near-singular-
ity and noise, but they stabilize with increasing vergence angle. This is shown by the
error on the focal length, which decreases significantly with increasing vergence angle
(upper left part of Fig. 4), as well as by the decreasing failure rate (upper right). Fail-
ure was declared whenever the quadratic equation did not admit a positive solution.
The lower part of Fig. 4 shows the results with respect to varying displacement,

for a fixed vergence angle of 10�. The curve for zero displacement is outside the
graph (this corresponds to the singular equidistance configuration). With increasing
displacement, the performance increases as expected, both in terms of relative error
on the estimated focal length and failure rate. The graphs for displacements towards
the scene (negative d) are not plotted in the lower left part of Fig. 4, for the sake of
clarity; note that the graph for a value of �d is very similar to that for d.
As for the linear equations, this scenario is singular (coplanar optical axes). This is

reflected by experimental results (not shown here), where relative errors are some-
times above 100%, and nearly always above 70% (besides a high failure rate).

Fig. 4. Second scenario. (Top) Fixed displacement d = �50. (Upper left) Relative errors on estimated

focal length for different vergence angles. (Upper right) Failure rates (see text) for a noise level of 0.6 pixels

and different vergence angles. (Bottom) Fixed vergence angle of 10�. (Lower left) Relative errors on

estimated focal length for different displacements (for d = 0, 50, . . . , 250 U, cf. graph�s legend). (Lower

right) Failure rates for a noise level of 1 pixel.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 69

66 Chapter 5. Camera Self-Calibration

6.1.3. Influence of the number of point correspondences

In Fig. 5, we show results on the influence of the number of point correspondences
used for computing the fundamental matrix. As expected, performance increases
with the number of points, with an asymptotic behavior.

6.1.4. Influence of standardization

As discussed in Sections 3.2 and 5, the use of standardized coordinates (in our
case, a scaling) has to be considered more closely. Here, we show results obtained
with different scalings. The x-axis of the graphs in Figs. 6 and 7 shows the inverse
scale factor applied to the fundamental matrix according to Eq. (5) (remember that
the true focal length is 1000). The graphs show the percentage of random experi-
ments where the focal length was estimated (positive solution for f 2) and was within
10% of the ground truth value. Results are shown for both, quadratic and linear
equations.
Fig. 6 shows results for the first scenario. All graphs show a clear ‘‘performance

hole’’ when scaling is done with a factor close to the actual inverse focal length. With
decreasing elevation angle (bottom to top) and increasing noise (left to right), the
instability caused by scaling with the inverse focal length, gets combined with
the increasing instability due to getting closer to the singular equidistance case. In
the least favorable case (upper right), the success rate drops to an average of around
30%. Overall, the linear equations are much more sensitive to the scale factor, com-
pared to the quadratic equation, which has close to 100% success in the favorable
case on the lower left, even when scaling is done with approximately the true inverse
focal length.
Fig. 7 shows results for the second scenario. The linear equation is degenerate

here, and the results are always bad, as stated in Section 6.1.2. As for the quadratic
equation, the same performance hole as above around the true focal length can be
observed. Interestingly, performance also drops significantly for scale factors below
50 (extreme left side of the graphs); the only explanation we can think of is that in
this special case, round-off error becomes too large.

Fig. 5. (Left) First scenario (cf. Section 6.1.1), vergence fixed to 0�, noise level of 1 pixel, results for

different elevation angles. (Right) Second scenario (cf. Section 6.1.2), displacement of �50, noise level of 1

pixel, results for different vergence angles.

70 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 67

Based on these observations, we decided to scale by a factor much lower than the
inverse of the maximum expected focal length, as stated already in Section 3.2. In all
other simulated experiments, a scale factor of 1/5000 was thus used, which always
gave good results.

6.2. Real images of a calibration grid

Using real images of a calibration grid, we attempted to evaluate the algorithm�s
performance with respect to proximity to singular configurations and its sensitivity
to the assumption of the principal point�s position.

6.2.1. Experimental setup

It is relatively easy to avoid singular configurations in practice. Especially, one
should avoid the case of coplanar optical axes. There are multiple ways to achieve
this goal. One approach is as follows. Before taking the second image, point the cam-
era to the same point in the scene as in the first image (this is simple to do with a
viewfinder). Then, tilt the camera slightly upwards or downwards, and take the sec-
ond image. Determining by how much one should tilt the camera is one of the goals
of this experiment.
We took a total of 10 images of a calibration grid with a handheld camera. Fig. 8

shows some sample images. They were taken from 10 different positions, covering a

Fig. 6. First scenario, with vergence fixed to 30�. (Top) Elevation angle fixed to 1�. (Bottom) Elevation

angle fixed to 5�. (Left column) Noise level of 0.4 pixels. (Right column) Noise level of 1 pixel.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 71

68 Chapter 5. Camera Self-Calibration

roughly circular path around the grid (i.e., most pairs of views are close to the sin-
gular equidistance configuration, cf. Section 4). From each position, we applied a
small tilt angle and then took one image as described above. Thus, among the 45
possible image pairs, some have approximately coplanar optical axes while some
do not.
For this experiment and the ones in the next section, we used a Sony DSC-P31

digital camera with 5 mm focal length and chose a moderate image resolution of
640 · 480.
The camera was calibrated, including radial lens distortion, using all 10 images of

the grid, by a photogrammetric calibration algorithm. The resulting focal length of

Fig. 7. Second scenario, with vergence fixed to 30�. (Top) Displacement of �50. (Bottom) Displacement of

�100. (Left) Noise level of 0.4 pixels. (Right) Noise level of 1 pixel.

Fig. 8. Some images of the calibration grid.

72 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 69

625 pixels is used as ‘‘ground truth’’ in the following experiments. The images were
corrected for distortion before applying our algorithm. The extracted image posi-
tions of the grid�s targets were used by our algorithm to compute the fundamental
matrix.

6.2.2. Effect of principal point estimation on focal length calibration

As described above, our focal length calibration algorithm is based on the
assumption that we know the other intrinsic parameters. Here, we show that an error
on the assumed location of the principal point has little effect on the computed focal
length. For one pair of images, we estimated the focal length repeatedly, changing (in
steps of 5 pixels) the assumed coordinates of the principal point by up to ± 25 pixels
from the image center in both directions.
Among the 121 different computed focal lengths, the maximum relative error with

respect to the true focal length was 4.16%. The mean relative error was 0.2%. The
standard deviation of the computed focal lengths was 11.7 pixels, i.e., only about
1.8% of the focal length. We conclude that realistic errors in the assumption of
the principal point�s position have little effect on our algorithm, at least concerning
the range of accuracy that one can expect in our minimal scenario. Hence it is usually
safe to assume that the principal point is at the image center when we use this algo-
rithm for focal length calibration.

6.2.3. Stability of the algorithm

Here, we evaluate the algorithm�s performance, with respect to how close the
optical axes are to being coplanar. The calibration of our images, using a photo-
grammetric approach that makes use of the known geometry of the calibration
grid, tells us the position of the optical centers and the optical axes for our 10
images. To measure how close the optical axes associated with two images are to
being coplanar, we proceed as illustrated in the left part of Fig. 9: we compute
the two principal epipolar planes p1 and p2 (cf. Section 5). The ‘‘middle plane’’
is the plane that ‘‘bisects’’ p1 and p2. The angle c between the middle plane and
p1 (or, equivalently, p2) is our measure for the deviation from the case of coplanar
optical axes. In addition, we also considered a measure for how close the two opti-
cal axes are from being parallel, but which was found to be less significant for the
following evaluation.
We applied our algorithm to all 45 possible image pairs formed by our 10 input

images. The estimated values of the focal length are plotted in the right part of Fig. 9,
over the value of the angle c for the corresponding image pair.
We observe three groups of results:

� For c > 1.5�, the calibrated focal lengths are quite precise and accurate. Their
average is 627.6, which is nearly identical to the ground truth. Their standard
deviation is about 6.5 pixels, i.e., about 1.1% of the focal length.

� For c < 1�, the results are not at all stable. Errors range from 25 to 280 pixels.
� For 1� < c < 1.5�, the results are not very precise but become reasonably
accurate.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 73

70 Chapter 5. Camera Self-Calibration

We conclude that for the type of images tested, it is safe to run our algorithm
whenever the angle c exceeds 1.5�. This corresponds to tilting the camera between
two image acquisitions by about 10% of its opening angle, which seems to be reason-
ably achievable in practice. However, with a lower accuracy in image point extrac-
tion, this value will increase. In Section 6.3, we thus test our algorithm with real
images of generic scenes.

6.2.4. 3D reconstruction results using the calibrated focal length

Having calibrated the focal length, we can estimate the relative position of the two
considered images [11] and carry out a 3D reconstruction of the matched image
points [10]. We did this for several image pairs. To evaluate the quality of the 3D
reconstruction, we compare it to the known geometry of the calibration grid. We
take two steps to achieve this objective. First, we fit planes to the three subsets of
coplanar points (cf. Fig. 8). Here, we design a relative distance to evaluate the
coplanarity of points. Specifically, we first measure the distances of points to the fit-
ted plane. Next, we compute the largest distance between pairs of the considered
points. The distances of the points to the plane are then normalized by this largest
distance. The obtained distances (in percent) are the so-called relative distances. Sec-
ond, we measure the angles between each pair of planes and compare it to the
‘‘ground truth’’: one of the grid�s planes forms 90� angles with the two others, which
themselves form a 120� angle.
The results of our evaluation are displayed in Table 1. They are shown for five

pairs, which share one common image. Note that from left to right, the baseline
(the distance between optical centers) decreases. Row f contains the calibrated focal
lengths. The rows Aij (with i, j 2 [1,2,3]) show the angles between pairs of planes. The
rows Stdi (with i 2 [1,2,3]) show, for the 3 planes, the standard deviation of the

Fig. 9. (Left) The angle c used for measuring by how much an image pair deviates from having coplanar

optical axes. (Right) Sensitivity of focal length with respect to the angle c.

74 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 71

relative distances as described above, which is useful to evaluate the coplanarity of
points.
We observe that for the two image pairs with the largest baselines, the angles are

all within 0.3� from their true values. With decreasing baseline, the errors generally
increase, both for the angles and the coplanarity measure, although they still stay rel-
atively small.

6.3. Real images of generic scenes

For the images of the calibration grid, image point matching was provided due to
the easy identification of the targets. Here, we consider images of two generic scenes.
Interest point extraction and matching is done automatically using the available soft-
ware4 (see also [22]). The same camera zoom setting as in Section 6.2 was used, which
provides the ‘‘ground truth’’ value for the focal length in Tables 2 and 3.

6.3.1. An outdoor scene

We took five images of a building of the National University of Singapore (see
Fig. 10, for examples). The distance between the camera and the building is about
25 m. The results for several image pairs are presented in Table 2 (camera configu-
rations close to the coplanar case give poor results which are not shown here). After
calibration, we also reconstructed the building. We chose the median of the seven
calibrated results as shown in Table 2, and used the result to reconstruct the build-
ing�s two faces with the right angle. We found that the reconstructed results (about
85�) are roughly close to the ground truth (the relative error is about 5%).
When analyzing the results of Table 2, we need to consider the following issue.

Although the same zoom setting was used as for the images of the calibration grid,
the camera focused on a scene at a different distance. Hence, comparatively large rel-
ative errors of several percent may be expected. Here, the maximum relative error is
about 10%, which seems reasonable for this experiment.

4 http://www-sop.inria.fr/robotvis/personnel/~zzhang/softwares.html.

Table 1

Reconstruction results using calibrated focal length

Ground truth Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

f 625.0 622.3 633.0 632.0 628.4 623.6

A12 90.0 90.17 89.75 91.12 90.49 89.89

A13 90.0 89.65 89.34 92.18 91.36 88.87

A23 120.0 119.79 119.88 120.32 120.57 118.56

Std1 0.0 1.3e�4 1.7e�4 2.4e�4 3.1e�4 3.2e�4

Std2 0.0 3.4e�4 3.5e�4 2.6e�4 3.8e�4 2.8e�4
Std3 0.0 2.8e�4 3.1e�4 4.9e�4 5.3e�4 3.8e�4

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 75

72 Chapter 5. Camera Self-Calibration

6.3.2. An indoor scene

We took four images of a simple indoor scene as Fig. 11 shows. Interest points
were mainly extracted on the three cups and just a few on the plug in the back-
ground, i.e., the scene is relatively ‘‘flat.’’
The estimated focal lengths, for all 6 possible image pairs, are shown in Table 3.

Again, the same camera setting as in Section 6.2 was used. The maximum relative
error is about 6.5%, and the average relative error is less than 5%.

Fig. 10. Some images of the building.

Table 2

Results for image pairs of the building, cf. Fig. 10

Image pair Ground truth 12 14 15 23 25 34 35

f 625.0 643.2 654.3 604.7 688.6 689.8 592.4 657.7

The label ‘‘12’’ in the first row stands for the pair of images 1 and 2, and analogously for the other labels.

Table 3

Results for image pairs of the 3 cups, cf. Fig. 11

Image pair Ground truth 12 13 14 23 24 34

f 625.0 602.4 604.8 596.9 621.3 612.7 623.7

The label ‘‘12’’ in the first row stands for the pair of images 1 and 2, and analogously for the other labels.

Fig. 11. Images of 3 cups.

76 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 73

As we did for the images of the calibration grid, we performed a 3D reconstruc-
tion of the scene using the calibration result. A triangular mesh is semi-automatically
adjusted to the reconstructed 3D points, and used to create textured VRML models.
A few renderings of one of the models are shown in Fig. 12. Due to the sparseness of
the extracted interest points, the reconstruction of the scene is not complete. How-
ever, Fig. 12 shows that it is qualitatively correct, as explained in the caption of
the figure.

7. Conclusions

We have analyzed the problem of focal length calibration from two views of
an unknown scene, given their epipolar geometry and the assumption that the
views have identical focal length. Closed form solutions have been derived, which

Fig. 12. Rendering of the reconstructed cup scene. (First row) General appearance of the scene, once with

overlaid triangular mesh. (Second row) Rough top view of cups and two close-ups of the plug in the

background (rightmost image shows the near coplanarity of the reconstruction). (Third row) Top views of

two of the cups, showing that their cylindrical shape has been recovered.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 77

74 Chapter 5. Camera Self-Calibration

consist of one quadratic and two linear equations (which are algebraically inter-
dependent). We have studied critical camera configurations in detail. Our exper-
imental results suggest that in practice such configurations are relatively easy to
avoid. Acceptably accurate results can be obtained when these singular configura-
tions are avoided.

Acknowledgment

Z.L. Cheng is very grateful for the scholarship granted by the National University
of Singapore.

Appendix A. Background

We describe a few known results about matrix decompositions that will be used in
the following sections. Let the SVD of a 3 · 3 matrix M of rank 2 be given as

M ¼
SVD

URVT ¼ u1 u2 u3ð Þ

r1 0 0

0 r2 0

0 0 0

0

B
@

1

C
A

vT1

vT2

vT3

0

B
@

1

C
A:

The right null-vectors of M are equal (up to scale) to the third column v3 of V.
As for the left null-vectors of M, they are equal (up to scale) to the third column
u3 of U.
In the following, we suppose that r1 „ r2. Consider the symmetric matrix M

T
M. It

has 0, r21, and r22 as eigenvalues. The eigenvectors of M
T
M to the eigenvalue

r2i ði ¼ 1; 2Þ are equal (up to scale) to the ith column vi of V.
Similarly, the eigenvectors of MM

T to the eigenvalue r2i ði ¼ 1; 2Þ are equal (up to
scale) to the ith column ui of U.

Appendix B. Parameterization of relative pose

In the following sections, we derive singular camera configurations. A geometric
description is most useful. (Non-) Singularity only depends on the relative pose of
the two views (and, in some very special cases, on the actual value of the focal
length). Since only relative pose matters, we assume, without loss of generality, that
the optical center of the first camera is the origin. Furthermore, we assume that its
optical axis coincides with the Z-axis. Hence, the rotational part of its pose consists
of a rotation RZ, 1 about the Z-axis (cyclotorsion). This may, again without loss of
generality, be chosen such that the optical center of the second camera lies in the
plane X = 0, i.e., its coordinates are (0,Y,Z). Without loss of generality, we may fur-

78 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 75

thermore impose that the distance between the two cameras is equal to 1. Hence, the
second camera�s position may be parameterized by an angle c

0

cos c

sin c

1

0

B
B
B
@

1

C
C
C
A

:

Let the second camera�s orientation be given by three elementary rotation matrices:
R2 = RZ, 2RYRX. The semi-calibrated fundamental matrix for this parameterization is
then given by

G �

1 0 0

0 1 0

0 0 f

0

B
@

1

C
ARZ;2RYRX

0

cos c

sin c

0

B
@

1

C
A

2

6
4

3

7
5

	

RZ;1

1 0 0

0 1 0

0 0 f

0

B
@

1

C
A: ðB:1Þ

Note that the rotations RZ, 1 and RZ, 2 have the following special form:

RZ;i ¼

 0

 0

0 0 1

0

B
@

1

C
A

Hence, Eq. (B.1) can be rewritten as

G � RZ;2

1 0 0

0 1 0

0 0 f

0

B
@

1

C
ARYRX

0

cos c

sin c

0

B
@

1

C
A

2

6
4

3

7
5

	

1 0 0

0 1 0

0 0 f

0

B
@

1

C
A

|ffl{zffl}
H

RZ;1: ðB:2Þ

Due to the special form of RZ, 1 and RZ, 2 and the orthogonality of the left and right
singular matrices of an SVD, G and H have the same singular values and the third
rows of their respective matrices U and V are equal to one another (up to sign at
least). Specifically, this means that the SVDs of G and H lead to the same calibration
equations.5

Hence, we may analyze the singularities of the calibration equations by studying
the SVD of H, which allows us to express algebraic singularity conditions relatively
easily in geometric terms, i.e., in terms of relative pose.
The matrix H, defined in (B.2) is given explicitly as

H �

ðsin c sin a� cos c cos aÞ sin b � sin c cos b f cos c cos b

sin c cos aþ cos c sin a 0 0

f ðsin c sin a� cos c cos aÞ cos b f sin c sin b �f 2 cos c sin b

0

B
@

1

C
A: ðB:3Þ

Here, a and b are the angles of RX and RY, respectively.

5 In fact, this illustrates that cyclotorsion (rotation about the optical axis) does not influence focal

length calibration.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 79

76 Chapter 5. Camera Self-Calibration

In the following, we express conditions for coplanar or parallel optical axes, etc.,
in terms of the relative pose parameters a, b, and c.
The optical axis of the second camera has the direction

D �

� sin b

sin a cos b

cos a cos b

0

0

B
B
B
@

1

C
C
C
A

: ðB:4Þ

Since the direction of the first optical axis is given by (0,0,1,0)T, the optical axes are
parallel exactly if

sin a ¼ sin b ¼ 0: ðB:5Þ

The two optical axes are coplanar exactly if H33 = 0, hence if cosc = 0 or sinb = 0
(cf. Eq. (B.3)). The case cos c = 0 means that the second camera�s optical center lies
on the first camera�s optical axis.
Let us express these conditions in terms of the principal epipolar planes, defined in

section 5. The two principal epipolar planes are computed as

P1 �

cos c

0

0

0

0

B
B
B
@

1

C
C
C
A

P2 �

cos bðcos a cos c� sin a sin cÞ

� sin b sin c

sin b cos c

0

0

B
B
B
@

1

C
C
C
A

:

The optical axes are coplanar if one or both principal epipolar planes are not de-
fined (algebraically, if all their coefficients are zero) or if they are identical. Natu-
rally, we find the same conditions as above: when cosc = 0, P1 is not defined (the
second camera�s optical center lies on the first optical axis). A necessary condition
for P2 not being defined is sinb = 0. In that case, we observe that P1 and P2 are
identical (their coordinate vectors are equal up to scale), thus the optical axes are
coplanar.
Besides the different conditions for coplanar optical axes, another configuration is

relevant: mutually orthogonal principal epipolar planes (cf. Section 5). This means that
the scalar product of their normals (the upper 3-subvectors of P1 and P2) vanishes,
which happens exactly if P2, 1 = 0 (we exclude cosc = 0 since P1 is assumed to be
defined):

cos bðcos a cos c� sin a sin cÞ ¼ 0:

Let us now consider the equidistance configuration: the optical axes are coplanar (but
not parallel) and the optical centers are at the same distance from the intersection
point of the optical axes. Let us develop this case for the two conditions of coplanar
optical axes:

� cosc = 0. In that case, the second optical center is the intersection point of the two
optical axes, hence equidistance is excluded.

80 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 77

� sinb = 0. We exclude parallel optical axes, hence: sina „ 0. The intersection point
of the optical axes is

0

0

sin c� cos c cos a
sin a

1

0

B
B
B
@

1

C
C
C
A

:

The squared distances to the optical centers are thus equal if

ðsin c sin a� cos c cos aÞ2

sin2a
¼
cos2c

sin2a

which (since sina „ 0) is equivalent to (after some trigonometric manipulations)

sin aðcos2c� sin2cÞ þ 2 cos a cos c sin c ¼ 0: ðB:6Þ

The last case of interest is that of the angles between optical axes and baseline (line
joining the optical centers) being equal. Note that this subsumes the equidistance
configuration, but is more general. The condition for this case is given in the last
row of the table.
All special cases of relative pose that are relevant in the following sections, are

summarized in the table below.

Summary of relevant special cases for relative camera pose

Coplanar optical axes cosc = 0 or sinb = 0
2nd optical center on 1st optical axis cosc = 0
1st optical center on 2nd optical axis sinb = cosacosc � sina sinc = 0
Parallel optical axes sina = sinb = 0
Orthogonal principal epipolar planes cosb (cosacosc � sina sinc) = 0
Equidistance sinb = sina (cos2c � sin2c)

+ 2 cosacosc sinc = 0
Equal angles between optical axes
and baseline

sin2c = cos2b (sinacosc + cosa sinc)2

Appendix C. Proofs for singularities of the calibration equations

Let us first define the meaning of singularity of the equations, based on observa-
tions made in Section 5: they are singular if all their coefficients vanish. In the follow-
ing, we first derive conditions for singularity in terms of the elements of the SVD of
G, respectively, H, concretely, in terms of the singular values a and b and the
coefficients U31, U32, V31, and V32 that show up in Eqs. (2)–(4). We then establish
the corresponding geometrical configurations based on the proposed parameteriza-
tion of relative pose.
The analysis of singularities is tricky due to the possibility that the SVD of the

(semi-calibrated) fundamental matrix may not be unique. Note that the SVD is never

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 81

78 Chapter 5. Camera Self-Calibration

unique for any matrix: e.g., simultaneously scaling corresponding columns of U and
V by �1 gives another valid SVD. Such manipulations lead to the same calibration
equations, as may be verified by checking Eqs. (2)–(4). Thus, in the following, we
speak of ambiguous SVD if there are infinitely many possible SVDs for a matrix.
In our case, this is exactly the case if H has two equal non-zero singular values
a = b: if

H ¼ U

a 0 0

0 a 0

0 0 0

0

B
@

1

C
AV

T

is an SVD of H, then also

H ¼ U

cos q sin q 0

� sin q cos q 0

0 0 1

0

B
@

1

C
A

|ffl{zffl}

U
0

a 0 0

0 a 0

0 0 0

0

B
@

1

C
A

cos q � sin q 0

sin q cos q 0

0 0 1

0

B
@

1

C
AV

T

|ffl{zffl}

V
0T

for any angle q.
In the following two sections, we first analyze the case of ambiguous SVDs, fol-

lowed by that of a unique one.

Appendix D. Singularities in the case of ambiguous SVDs

D.1. Cases of ambiguous SVDs

In the following, we derive all cases in which the singular values of H are
equal. The singular values of H are the square roots of the eigenvalues of
H
T
H

H
T
H �

1 0 0

0 1 0

0 0 f

0

B
@

1

C
A

0

cos c

sin c

0

B
@

1

C
A

2

6
4

3

7
5

	

R
T
XR

T
Y

1 0 0

0 1 0

0 0 f 2

0

B
@

1

C
ARYRX

0

cos c

sin c

0

B
@

1

C
A

2

6
4

3

7
5

	

1 0 0

0 1 0

0 0 f

0

B
@

1

C
A:

We want to find the conditions for which H
T
H has two equal non-zero eigenvalues

(and one that is zero). In that case, its characteristic polynomial must be of the
form

kðk� aÞ
2
¼ k

3 � 2ak2 þ a2k:

Hence, if we denote by xi the coefficient of k
i, we must have

4x1 � x22 ¼ 0: ðD:1Þ

Let us formulate this condition for the characteristic polynomial of HTH. In the fol-
lowing, we at times use the following compact notation: ca = cosa and sa = sina, and
analogously for other angles.

82 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 79

The expression in (D.1) can be factorized in three factors:

�ðf 2 � 1Þ
2
; ðD:2Þ

ðf 2 � 1Þs2bc
2
c þ c2c þ s2b þ c2bðcacc � sascÞ

2
þ 2cbccðcacc � sascÞ; ðD:3Þ

ðf 2 � 1Þs2bc
2
c þ c2c þ s2b þ c2bðcacc � sascÞ

2
� 2cbccðcacc � sascÞ: ðD:4Þ

If any one of the expressions (D.2)–(D.4) is equal to zero, then H
T
H has two

equal non-zero eigenvalues, and the SVD of H is not unique. The trivial case
is obviously f 2 = 1 (from Eq. (D.2)). This will be dealt with in detail in Section
D.2.
As for f 2 „ 1, we will show in the following that expressions (D.3) or (D.4) are

equal to zero exactly in generic singular configurations. We consider three cases:
cc = 0, sb = 0, and cc, sb „ 0.

� cc = 0. The expressions in (D.3) and (D.4) are identical in this case: s
2
b þ c2bs

2
a. This

is zero exactly if sa = sb = 0. This means exactly, cf. the table in Appendix B, that
the second camera lies on the optical axis of the first one (cosc = 0) and that their
optical axes are identical (since they are parallel, due to sa = sb = 0). Hence, we
are in a special case of parallel optical axes, which is of course a generic degenerate
situation.

� sb = 0. The expressions in (D.3) and (D.4) become (‘‘+’’ for (D.3) and ‘‘�’’ for
(D.4))

c2c þ ðcacc � sascÞ
2 � 2ccðcacc � sascÞ ¼ ðcc � ðcacc � sascÞÞ

2
:

This is zero (for either ‘‘+’’ or ‘‘�’’) exactly if

c2c ¼ cacc � sasc
� �2

:

Using trigonometric manipulations, this can be transformed into:

s2a sa c2c � s2c

� �

þ 2caccsc

� �2

¼ 0:

This holds if sa = 0 or saðc
2
c � s2cÞ þ 2caccsc ¼ 0. The first condition corresponds to

parallel optical axes and the second one to the equidistance configuration, cf. the
table in Appendix B. Hence, as above, the expressions (D.3) and (D.4) can only be
zero (for f 2 „ 1) in generic degenerate situations.

� cc,sb „ 0. We show in the following that under these assumptions, the expressions
(D.3) and (D.4) cannot be zero for positive values of f 2. Expressions (D.3) or
(D.4) being zero leads to (division by s2bc

2
c is allowed since this is assumed to be

non-zero here)

f 2 ¼
�s2bs

2
c � c2c � c2bðcacc � sascÞ

2 � 2cbccðcacc � sascÞ

s2bc
2
c

:

Here, ‘‘+’’ corresponds to (D.3) and ‘‘�’’ to (D.4). We develop this equation:

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 83

80 Chapter 5. Camera Self-Calibration

f 2 ¼
�s2bs

2
c � cc � cbðcacc � sascÞ

� �2

s2bc
2
c

:

The right-hand side of this equation can obviously never be positive. Hence, the
equation can never be true for real values of f, meaning that expressions (D.3)
and (D.4) can not be zero (for f 2 „ 1 and under the assumption cc, sb „ 0).

Summary. The semi-calibrated fundamental matrix has equal non-zero singular
values exactly in the case f = ±1 (expression (D.2)) or if the cameras are in equidis-
tance configuration (includes the case of parallel optical axes). In the first case, the
fundamental matrix is actually the essential matrix of the camera pair. In practice,
f = ±1 can happen if one works in standardized image coordinates [8] (which often
comes down to scaling the images by approximately the inverse focal length), which
is usually recommended for numerical reasons. As for the second case, equidistance,
this represents a generic singularity, hence the calibration equations become singular
anyway. In the following section, we thus only analyze the case f = ±1.

D.2. The case f = ±1

In the following, we only consider the case f = +1; as for f = �1, the equations are
analogous, with only sign changes in appropriate places. The matrixH is now given by

H � RYRX

0

cos c

sin c

0

B
@

1

C
A

2

6
4

3

7
5

	

:

As proven above, H has two equal singular values, i.e. its SVD is not unique. In prac-
tice, the SVD one obtains depends on the actual numerical implementation used to
compute it. We want to investigate if our calibration equations may be singular for
some SVDs and non-singular for others, or if they are (non-) singular irrespective of
the actual SVD.
We write H in detail

H �

cos b 0 sin b

0 1 0

� sin b 0 cos b

0

B
@

1

C
A

1 0 0

0 cos a � sin a

0 sin a cos a

0

B
@

1

C
A

0 � sin c cos c

sin c 0 0

� cos c 0 0

0

B
@

1

C
A

¼

sin bðsin a sin c� cos a cos cÞ � cos b sin c cos b cos c

cos a sin cþ sin a cos c 0 0

cos bðsin a sin c� cos a cos cÞ sin b sin c � sin b cos c

0

B
@

1

C
A:

We now establish the possible SVDs of H. Since H is the product of two orthonor-
mal matrices and another one, we can derive its SVDs from those of that other
matrix. This is a skew-symmetric matrix, and all its SVDs can be shown to be
of the following form, for some value of q (and up to changing signs for entire

84 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 81

columns or rows of the orthogonal matrices involved; this does not matter for our
analysis):

0 �sc cc

sc 0 0

�cc 0 0

0

B
@

1

C
A ¼

SVD

0 1 0

�sc 0 cc

cc 0 sc

0

B
@

1

C
A

cq sq 0

�sq cq 0

0 0 1

0

B
@

1

C
A

1 0 0

0 1 0

0 0 0

0

B
@

1

C
A

	

cq �sq 0

sq cq 0

0 0 1

0

B
@

1

C
A

�1 0 0

0 �sc cc

0 cc sc

0

B
@

1

C
A

¼

�sq cq 0

�cqsc �sqsc cc

cqcc sqcc sc

0

B
@

1

C
A

1 0 0

0 1 0

0 0 0

0

B
@

1

C
A

�cq sqsc �sqcc

�sq �cqsc cqcc

0 cc sc

0

B
@

1

C
A;

where we use, as above, the shorthand notation ca = cos a and sa = sina, and analo-
gously for other angles.
Hence, the SVDs of H are parameterized by the same angle q, and are of the fol-

lowing form:

RYRX

�sq cq 0

�cqsc �sqsc cc

cqcc sqcc sc

0

B
@

1

C
A

|ffl{zffl}

U

1 0 0

0 1 0

0 0 0

0

B
@

1

C
A

�cq sqsc �sqcc

�sq �cqsc cqcc

0 cc sc

0

B
@

1

C
A

|ffl{zffl}

V
T

with U explicitly of the form:

U ¼

cb 0 sb

0 1 0

�sb 0 cb

0

B
@

1

C
A

1 0 0

0 ca �sa

0 sa ca

0

B
@

1

C
A

�sq cq 0

�cqsc �sqsc cc

cqcc sqcc sc

0

B
@

1

C
A:

Let us call X = cb (cacc � sasc). From the above SVD, we identify the values used in
the calibration equations:

a ¼ b;

U 31 ¼ sbsq þ cqX ;

U 32 ¼ �sbcq þ sqX ;

V 31 ¼ �sqcc;

V 32 ¼ cqcc:

Note that X = 0 is the condition for orthogonal principal epipolar planes (cf. the ta-
ble in Appendix B). Let us further define:

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 85

82 Chapter 5. Camera Self-Calibration

Y ¼ U 2
31V

2
31 � U 2

32V
2
32;

Z ¼ U 2
32 � U 2

31 þ V 232 � V 231:

The quadratic equation can now be written as (we factor out a = b):

f 4ðY þ ZÞ � f 2ð2Y þ ZÞ þ Y ¼ 0:

Its coefficients vanish all exactly if Y = Z = 0. Let us go into details (we use the rela-
tionship s4q � c4q ¼ s2q � c2q):

Y ¼ U 2
31V

2
31 � U 2

32V
2
32 ¼ sbc

2
cð2cqsqX þ sbðs

2
q � c2qÞÞ ¼ 0; ðD:5Þ

Z ¼ U 2
32 � U 2

31 þ V 232 � V 231 ¼ �4cqsqsbX þ ðs2b þ c2c � X 2Þðc2q � s2qÞ ¼ 0: ðD:6Þ

In the following, we consider two questions:

� for which relative camera poses do (D.5) and (D.6) hold whatever value q has?
� do values for q exist for any relative camera pose, such that (D.5) and (D.6) hold?

D.2.1. Relative camera poses for which (D.5) and (D.6) hold for every q

Let us consider any value of q different from 0. Dividing (D.5) and (D.6)by c2q gives:

t2qðs
2
bc
2
cÞ þ 2tqðsbc

2
cX Þ � s2bc

2
c ¼ 0;

t2qðX
2 � s2b � c2cÞ � 4tqðsbX Þ þ ðs2b þ c2c � X 2Þ ¼ 0;

where tq = tanq. The equations hold for every value of q exactly if the coefficients of
powers of tq all vanish, hence if all the following equations hold (we leave out the
ones occurring twice):

s2bc
2
c ¼ 0;

sbc
2
cX ¼ 0;

X 2 � s2b � c2c ¼ 0;

sbX ¼ 0:

If sb = 0, then the third equation holds if X
2 � c2c ¼ 0 (we will examine this case just

below). If sb „ 0, then the first and fourth equation imply that cc = X = 0. In that
case, however, the third equation would not be satisfied. Hence, the only possible
case is sb ¼ X 2 � c2c ¼ 0. Let us examine it in detail.
The term X 2 � c2c can be expanded as follows:

�c2c þ ðcacc � sascÞ
2 ¼ c2cðc

2
a � 1Þ þ s2cs

2
a � 2casaccsc

¼ ðs2c � c2cÞs
2
a � 2casaccsc

¼ sa ðs2c � c2cÞsa � 2caccsc

� �

:

86 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 83

It is equal to zero if sa = 0 or if ðs
2
c � c2cÞsa � 2caccsc ¼ 0. The first case, together with

the assumption sb = 0, corresponds to the case of parallel optical axes (cf. the table in
Appendix B). The second case, corresponds to the equidistance condition. Hence,
both cases correspond to generic singular configurations.
We conclude that for f = ±1, the quadratic calibration vanishes whichever SVD

one happens to compute (whatever value q has) only in the generic singular
configurations.

D.2.2. For which relative camera poses can (D.5) and (D.6) hold?

Note that in the following, only generic non-singular configurations are of inter-
est. Let us now consider the question for different cases:

� sinb = 0. Eq. (D.5) holds and (D.6) becomes

ðc2c � X 2Þðc2q � s2qÞ ¼ 0:

As shown in Section D.2.1, the first possibility, c2c � X 2 ¼ 0, corresponds to gen-
eric singular configurations, hence is not of interest here. As for the second pos-
sibility, c2q � s2q ¼ 0, it tells us that for all relative camera poses with sinb = 0,
there exist four different values for q (separated by 90�), for which the quadratic
calibration equation vanishes.

� sinb „ 0, cosc = 0, sin2b � cos2b sin2a = 0. Eq. (D.5) holds and (D.6) becomes

cqsqcbsbsa ¼ 0:

Hence, for all relative camera poses corresponding to the assumptions made here,
there again exist four different values for q (separated by 90�), for which the qua-
dratic calibration equation vanishes.

� sinb „ 0, cosc = 0, sin2b � cos2b sin2a „ 0. Eq. (D.5) holds and (D.6) becomes
(the ± corresponds to sinc = ±1)

�4cqsqcbsbsa þ ðs2b � c2bs
2
aÞðc

2
q � s2qÞ ¼ 0:

Let us first note that for cq = 0, this equation cannot hold, due to the assumption
that s2b � c2bs

2
a 6¼ 0. We may thus divide the equation by c2q. After some modifica-

tions, this leads to:

t2qðc
2
bs
2
a � s2bÞ � 4tqcbsbsa � ðc2bs

2
a � s2bÞ ¼ 0:

It is easy to verify that, whatever values a and b have (if compatible with the
assumptions made here), there exist exactly two solutions for tq = tanq. Hence,
for all relative camera poses corresponding to the assumptions made here, there
again exist four different values for q (separated by 90�), for which the quadratic
calibration equation vanishes.
Hence, for all relative camera poses corresponding to the assumptions made here,
there again exist four different values for q, for which the quadratic calibration
equation vanishes.

� sinb „ 0, cosc „ 0. For (D.5) to hold, we must have

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 87

84 Chapter 5. Camera Self-Calibration

2cqsqX þ sbðs
2
q � c2qÞ ¼ 0:

Multiplying this equation with 2sb and adding this to (D.6) gives a necessary con-
dition for the vanishing of the quadratic calibration equation

ð�s2b þ c2c � X 2Þðc2q � s2qÞ ¼ 0:

It is easy to verify that ð�s2b þ c2c � X 2Þ ¼ 0 is equivalent to the condition of equal
angles between optical axes and baseline (cf. the table in Appendix B) and that
under the assumption sinb „ 0, cosc „ 0, there exist four different values for q

for which (D.5) and (D.6) hold.
As for ð�s2b þ c2c � X 2Þ 6¼ 0, the necessary condition is c2q � s2q ¼ 0. Substituting
this into (D.5) and (D.6), leads to the condition sbc

2
cX ¼ 0. Since here we assume

that sinb „ 0 and cosc „ 0, we thus conclude that for X = 0 (orthogonal principal
epipolar planes, see above), four different values for q exist (due to c2q � s2q ¼ 0),
for which the quadratic calibration equation vanishes.

D.2.3. Summary

The quadratic equation vanishes of course in generic degenerate conditions.
The only other case where it may vanish is when f = ±1. This may happen
because the SVD of the fundamental matrix is ambiguous. For f = ±1, the
coefficients of the quadratic equation may all be zero, depending on which
SVD one happens to compute in practice (which angle q). This can happen
in exactly the following non-generic singular configurations: (i) the optical axes
are coplanar, (ii) the principal epipolar planes are mutually orthogonal, or (iii)
the angles between the optical axes and the baseline, are equal. In each of these
cases, only four different values of q (four among the infinitely many ambiguous
SVDs) exist for which the quadratic calibration equation vanishes. Hence, the
chances for the quadratic equation to vanish in generical non-singular configu-
rations, are small. Nevertheless, instabilities may indeed occur in cases close
to f = ±1, i.e., when working in nearly perfectly standardized coordinates, as
illustrated in Section 6.1.4.

Appendix E. Singularities in the case of a unique SVD

We now consider the cases where the semi-calibrated fundamental matrix has a
unique SVD (up to switching entire columns or rows or changing signs for entire col-
umns or rows), i.e., different non-zero singular values a and b.

E.1. Quadratic equation

Zeroing the three coefficients of Eq. (4) leads to the following equations:

a2ð1� U 2
31 � V 231 þ U 2

31V
2
31Þ ¼ b2ð1� U 2

32 � V 232 þ U 2
32V

2
32Þ; ðE:1Þ

88 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 85

a2ðU 2
31 þ V 231 � 2U

2
31V

2
31Þ ¼ b2ðU 2

32 þ V 232 � 2U
2
32V

2
32Þ; ðE:2Þ

a2U 2
31V

2
31 ¼ b2U 2

32V
2
32: ðE:3Þ

Substituting (E.3) into (E.1) and (E.2), we get:

a2ð1� U 2
31 � V 231Þ ¼ b2ð1� U 2

32 � V 232Þ; ðE:4Þ

a2ðU 2
31 þ V 231Þ ¼ b2ðU 2

32 þ V 232Þ: ðE:5Þ

Adding these two equations together, leads to a2 = b2. This is in contradiction with
our assumptions (unique SVD). We conclude that the quadratic equation is never
degenerate when the SVD is unique, i.e., when the cameras are not in an equidistance
configuration (including parallel optical axes) and if f „ ±1.
Further below, we examine special cases where one of its coefficients vanishes, and

especially a case where the quadratic equation becomes linear.

E.2. Linear equations

It is easy to show that both linear equations degenerate if any one of the following
conditions holds:

U 32 ¼ V 31 ¼ 0; ðE:6Þ

U 32 ¼ V 32 ¼ 0; ðE:7Þ

U 31 ¼ V 31 ¼ 0; ðE:8Þ

U 31 ¼ V 32 ¼ 0: ðE:9Þ

The only other singularities occur, for Eq. (2), if

V 31 ¼ �U 32 and aU 31 ¼ �bV 32 ðE:10Þ

and, for Eq. (3), if

V 32 ¼ �U 31 and aV 31 ¼ �bU 32: ðE:11Þ

Any one of the conditions (E.6), (E.9), (E.10), and (E.11) implies that the opti-
cal axes are coplanar (they imply that H33 = 0, cf. Appendix B). Only the con-
ditions (E.7) and (E.8) may correspond to non-coplanar optical axes. In the
following section, we consider the case of coplanar optical axes, and show that
this always implies the degeneracy of the linear equations. We then consider the
case of non-coplanar axes and examine cases where the linear equations
degenerate.

E.3. Coplanar optical axes

As shown in Appendix B, the optical axes are coplanar if cosc = 0 or sinb = 0.
We examine the two cases in the following.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 89

86 Chapter 5. Camera Self-Calibration

E.3.1. cosc = 0

This means that the optical center of the second camera is the point (0,0, sinc, 1),
i.e., it lies on the optical axis of the first camera (the Z-axis). In this case, the first
epipole has coordinates (0,0,1)T. Since the first epipole is the null-vector of the fun-
damental matrix H, it is equal (up to sign) to the third column v3 of the matrix V in its
SVD. Due to the orthogonality of V, this implies that its third row is also given as
(0,0,±1), hence we have: V31 = V32 = 0. Hence, the quadratic equation (4) becomes

f 2 f 2 a2ð1� U 2
31Þ � b2ð1� U 2

32Þ
� �

þ a2U 2
31 � b2U 2

32

� �� �
¼ 0:

The spurious solution of that equation is f = 0, and can thus be always rejected,
meaning the quadratic equation gives a unique admissible solution.
Consider now the symmetric matrix HHT = Udiag (a2,b2, 0)UT. The columns of U

are the eigenvectors of HHT. It can be shown that

sin a

cos a sin b

0

0

B
@

1

C
A

is an eigenvector of HHT to a non-zero eigenvalue (thus, a2 or b2). Hence, this vector
must be equal (up to scale) to one of the first two columns of U, which means that
U31 = 0 or U32 = 0. Together with the condition V31 = V32 = 0 shown above, this
implies that at least one of (E.6)–(E.9) is true, hence both linear equations, (2) and
(3), are degenerate.

E.3.2. sinb = 0

In this case, both H
T
H and HH

T have (1,0,0)T as an eigenvector with non-zero
eigenvalue. Hence, one of the first two columns of U and one of first two columns
of V have this form. It can be shown that if the first column of U has that form, then
the second column of V is of the same form, and vice versa. This means that either
U31 = V32 = 0 or U32 = V31 = 0, which implies that both linear equations vanish and
that the quadratic one becomes

f 2 f 2 a2ð1� U 2
31Þ � b2ð1� V 232Þ

� �
þ a2U 2

31 � b2V 232
� �� �

¼ 0 ðE:12Þ

if U32 = V31 = 0 or

f 2 f 2 a2ð1� V 231Þ � b2ð1� U 2
32Þ

� �
þ a2V 231 � b2U 2

32

� �� �
¼ 0 ðE:13Þ

if U31 = V32 = 0. Hence, as in Section E.3.1, the quadratic equation gives a single
admissible solution.

E.3.3. Summary

Whenever the optical axes are coplanar, the two linear equations (2) and (3)
vanish and the quadratic equation (4) gives in general a single admissible solution.
The latter one vanishes completely exactly in the equidistance configuration
(including parallel optical axes). Hence all singular cases of the quadratic equation
in the coplanar case are generic singular cases, with the exception of the special
cases for f = ±1.

90 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 87

Appendix F. Non-coplanar optical axes

F.1. Linear equations

As Section E.2 shows, the singular cases for non-coplanar optical axes are, for the
linear equations, given by Eqs. (E.7) and (E.8):

U 32 ¼ V 32 ¼ 0;

U 31 ¼ V 31 ¼ 0:

F.1.1. First case: U32 = V32 = 0

In the following, the SVD of H is considered. The right null-vector (first epi-
pole) of H is easily seen to be (0, fcosc, sinc)T (cf. Eq. (B.3)). As described in
Appendix A, this vector is equal, up to scale, to the third column v3 of V. Hence
we have6:

H �

ðsin c sin a� cos c cos aÞ sin b � sin c cos b f cos c cos b

sin c cos aþ cos c sin a 0 0

f ðsin c sin a� cos c cos aÞ cos b f sin c sin b �f 2 cos c sin b

0

B
@

1

C
A

�

U 11 U 12 U 13

U 21 U 22 U 23

U 31 0 U 33

0

B
@

1

C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U

a 0 0

0 b 0

0 0 0

0

B
@

1

C
A

V 11 V 21 V 31

V 12 V 22 0

0 f cos c sin c

0

B
@

1

C
A

|ffl{zffl}

V
T

:

ðF:1Þ

From the orthogonality of rows 2 and 3 of VT, it follows that V22 = 0 and from this,
that V11 = 0. FromH22 = H23 = 0, it also follows that U21 = 0. Hence (F.1) is rewrit-
ten as

ðsin c sin a� cos c cos aÞ sin b � sin c cos b f cos c cos b

sin c cos aþ cos c sin a 0 0

f ðsin c sin a� cos c cos aÞ cos b f sin c sin b �f 2 cos c sin b

0

B
@

1

C
A

�

U 11 U 12 U 13

0 U 22 U 23

U 31 0 U 33

0

B
@

1

C
A

a 0 0

0 b 0

0 0 0

0

B
@

1

C
A

0 V 21 V 31

V 12 0 0

0 f cos c sin c

0

B
@

1

C
A

¼

bU 12V 12 aU 11V 21 aU 11V 31

bU 22V 12 0 0

0 aU 31V 21 aU 31V 31

0

B
@

1

C
A:

From the coefficient (3,1) of that equation, we derive

6 Here unitary determinant of the orthogonal matrix V is not imposed.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 91

88 Chapter 5. Camera Self-Calibration

ðsin c sin a� cos c cos aÞ cos b ¼ 0

which is thus a necessary condition for non-coplanar singular cases for the linear
equations in the first case. Note that this condition is nothing else than that for
mutually orthogonal principal epipolar planes, cf. the table in Appendix B.
In the following it is shown that this condition is also a sufficient one. We do this

by giving analytical SVDs7 for H in the two cases cosb = 0 and sinc
sina � cosccosa = 0. Based on these SVDs, the coefficients of the linear calibration
Eqs. (2) and (3) can be computed and it will be seen that they all vanish.

� cosb = 0. This implies that sinb = ±1 and H becomes

H �

� sin c sin a� cos c cos a 0 0

sin c cos aþ cos c sin a 0 0

0 �f sin c �f 2 cos c

0

B
@

1

C
A: ðF:2Þ

Its SVD is given by (using the same shorthand notation as further above)

0 �sasc � cacc �casc � sacc

0 casc þ sacc cacc � sasc

1 0 0

0

B
@

1

C
A

|ffl{zffl}

U

ft2 0 0

0 1 0

0 0 0

0

B
@

1

C
A

0 �sc �fcc

t2 0 0

0 fcc sc

0

B
@

1

C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V
T

;

ðF:3Þ

where t2 ¼

ffi

f 2cos2cþ sin2c

q

. It is easy to verify that (F.3) indeed is an SVD of H:
the matrices U and V are orthonogonal and the product of the above expression
equals H, as given in (F.2).
We thus have U32 = V32 = 0, which was already shown in Section E.2 to be a suf-
ficient condition for degeneracy of the linear equations.

� sinc sina � cosccosa = 0. Note that in this case, we have cosc „ 0 and sina „ 0:
the condition cosc = 0 can be excluded since it would imply coplanar optical axes
(cf. Appendix B). Concerning sina „ 0: if sina = 0, then cosa = ±1 and sinc
sina � cosccosa =« cosc „ 0, which is contradictory to our assumption here.
We may thus put:

sin c ¼
cos a

sin a
cos c:

H becomes

H �

0 �sccb fcccb

scca þ ccsa 0 0

0 fscsb �f 2ccsb

0

B
@

1

C
A �

0 �cacb fsacb

1 0 0

0 fcasb �f 2sasb

0

B
@

1

C
A:

An SVD for H is given by:

7 The analytical SVDs in this section are given up to possible switching of columns of the involved

matrices and, for easier expressions, up to scale for the orthogonal matrices U and V.

92 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 89

cos b 0 f sin b

0 t2 0

�f sin b 0 cos b

0

B
@

1

C
A

t1t2 0 0

0 1 0

0 0 0

0

B
@

1

C
A

0 � cos a f sin a

t1 0 0

0 f sin a cos a

0

B
@

1

C
A ðF:4Þ

with t1 ¼

ffi

f 2sin2aþ cos2a

q

and t2 ¼

ffi

f 2sin2bþ cos2b

q

. Again, we have
U32 = V32 = 0, meaning that the linear calibration equations degenerate.

F.1.2. Second case: U31 = V31 = 0

The analysis can be done analogously as above, leading to the same conclu-
sions (the SVDs are the same, up to swapping of the singular values and corre-
sponding columns of U and V). Which one of the cases U32 = V32 = 0 or
U31 = V31 = 0 occurs in practice, depends on which one of the singular values
is larger.

F.2. Quadratic equation

If we exclude f = ±1, then non-coplanar optical axes imply that a „ b (follows
from Section D.1) and hence the quadratic equation is non-degenerate. We now con-
sider what happens in the cases where the linear equations degenerate: cosb = 0 or
sinc sina � cosccosa = 0, cf. Section F.1.1.

� cosb = 0. The SVD of H in this case is given in Eq. (F.3). We substitute its coef-
ficients in the quadratic equation, and get

�g4 þ g2f 2sin2cþ f 4cos2c ¼ 0;

where f is the true focal length and g the estimated one. Its two solutions are
g2 = f 2 and g2 = �f 2cos2c. Being always negative (or zero), the second solution
can be ruled out, which means that the quadratic equation gives a unique feasible
solution here.

� sinc sina � cosccosa = 0. Substituting the coefficients of the SVD of H, given in
Eq. (F.4), in the quadratic equation, we get

g4ðcos2a cos2b� 1Þ þ g2f 2ðcos2a sin2bþ sin2a cos2bÞ þ f 4sin2a sin2b ¼ 0:

Besides f 2, g2 has the following solution:

�
sin2a sin2b

sin2bþ sin2a cos2b

which is always non-positive.8 Hence, the quadratic equation has again a unique
admissible solution.

8 Note that the denominator is assured not to be zero, since we exclude sinb = 0 (we consider non-

coplanar optical axes) and sina = 0 (cf. Section F.1.1).

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 93

90 Chapter 5. Camera Self-Calibration

F.3. Summary

If the optical axes are non-coplanar, then the quadratic equation is never degen-
erate (with the exception of the special case f = ±1 discussed in Section D.2). In addi-
tion, in all cases where the linear equations vanish, the spurious solution of the
quadratic equation can be ruled out due to being non-positive.

References

[1] S. Bougnoux, From projective to Euclidean space under any practical situation, a criticism of self-

calibration, in: Proc. 6th Internat. Conf. on Computer Vision, Bombay, India, January, 1998, pp.

790–796.

[2] M. Brooks, L. De Agapito, D. Huynh, L. Baumela, Towards robust metric reconstruction via a

dynamic uncalibrated stereo head, Image Vision Comput. 16 (14) (1998) 989–1002.

[3] O. Faugeras, O. Luong, S. Maybank, Camera self-calibration: theory and experiments, in: Proc.

European Conf. on Computer VisionLNCS, vol. 588, Springer-Verlag, Berlin, 1992, pp. 321–334.

[4] O. Faugeras, Q.-T. Luong, The Geometry of Multiple Images, MIT Press, Cambridge, 2001.

[5] G.H. Golub, C.F. van Loan, Matrix computation, The Johns Hopkins University Press, 1989.

[6] R. Hartley, Estimation of relative camera positions for uncalibrated cameras, in: Proc. Eur. Conf. on

Computer Vision, 1992, pp. 579–587.

[7] R. Hartley, In defence of the 8-point algorithm, in: Proc. 5th Internat. Conf. on Computer Vision,

Boston, USA, 1995, pp. 1064–1070.

[8] R. Hartley, Kruppa�s equations derived from the fundamental matrix, IEEE Trans. Pattern Anal.

Mach. Intell. 19 (2) (1997) 133–135.

[9] R. Hartley, P. Sturm, Triangulation, Comput. Vision Image Understand. 68 (2) (1997) 146–157.

[10] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press,

Cambridge, 2000.

[11] A. Heyden, K. Åström, Euclidean reconstruction from image sequences with varying and unknown

focal length and principal point, in: Proc. IEEE Conf. on Computer Vision and Pattern Recognition,

1997, pp. 438–443.

[12] F. Kahl, B. Triggs, Critical motions in Euclidean structure from motion, in: Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, vol. 2, 1999, pp. 366–372.

[13] F. Kahl, B. Triggs, K. Astrom, Critical motions for auto-calibration when some intrinsic parameters

can vary, J. Math. Imaging Vision 13 (2) (2000) 131–146.

[14] G.N. Newsam, D.Q. Huynh, M.J. Brooks, H.P. Pan, Recovering unknown focal lengths in self-

calibration: an essentially linear algorithm and degenerate configurations, ISPRS-Congress XXXI

(B3) (1996) 575–580.

[15] M. Pollefeys, R. Koch, L. Van Gool, Self-calibration and metric reconstruction in spite of varying

and unknown internal camera parameters, in: Proc. 6th Internat. Conf. on Computer Vision,

Bombay, India, 1998, pp. 90–96.

[16] M. Pollefeys, Self-calibration and metric 3D reconstruction from uncalibrated image sequences. PhD

Thesis, Katholieke Universiteit Leuven, Belgium, 1999.

[17] P. Sturm, Critical motion sequences for monocular self-calibration and uncalibrated Euclidean

reconstruction, in: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Puerto Rico,

June, 1997, pp. 1100-1105.

[18] P. Sturm, A case against Kruppa�s equations for camera self-calibration, IEEE Trans. Pattern Anal.

Mach. Intell. 22 (10) (2000) 1199–1204.

[19] P. Sturm, On focal length calibration from two views, in: Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, Kauai, 2001, pp. 145–150.

[20] P. Sturm, Critical motion sequences for the self-calibration of cameras and stereo systems with

variable focal length, Image Vision Comput. 20 (5–6) (2002) 415–426.

94 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95

Paper 7: Focal Length Calibration from Two Views: . . . , CVIU 2005 [28] 91

[21] Z. Zhang, R. Deriche, O. Faugeras, Q. Luong, A robust technique for matching two uncalibrated

images through the recovery of the unknown epipolar geometry, Artif. Intell. 78 (1995) 87–119.

[22] C. Zeller, O. Faugeras, Camera self-calibration from video sequences: the Kruppa equations revisited.

Rapport de Recherche 2793, INRIA, France, 1996.

P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95 95

92 Chapter 5. Camera Self-Calibration

���������	
����
 �� � �� �
��������
����
� �
� ��� ����������
 �� ���

���������	
����
 �� � �� �
�������� ����
�

������� ��	
�����
��
 �	��� ��� ����� ���	�

�	��
������ ������	�� ��� ������� �� ���������������� �� � �� ��� ������ ������

���� ����� ���������������� ��� �������� � ������ ��� 	��!	��" ����������
 ���

�#� �������� ���������� �� � �� ������� ����� �� ��� �������� ������ �� ����� ��

���
��$ %�� ������ ��!	���� ��� ���������� �� ��� �������� ������ #���� ��� ��

�������� �������" #��� �� �����&������� 	���'� ��� �������� ������ �� (� ���
�� ���

������
 ��� ��� ����� �� � �	��� ���"������ �� ��� ��������$)���������
�" ���	
�� #�

����� ���� � (� ������ 	����
���
 ������ ������ ���	��� �� � �� ������$ ����

���� ������������ #� ���	�� � ��# ������ ��� ���������������
 � (� ������ 	���

������ �������$ *��� ��� ���������������� ������ ��� � �� ������ ��� ���

������������ ��� (� ������ ����������� ��� ������������ �� ���� ���
�

��!	�����$

�
��� ��
���+�����
������"� ������ ������ ����������������� ������ ������� ��

������$

�

� ���� �!��� �

� ��� ������ 	
 ������
� ����
�� �
 � �� �������	�� ���	��
���� �������
 � ��	�� 	� �� ���� �������	��
���� �� �	���
	�� �� �� �
��	�� 	� ��� �� ���
���� �� ��� ���
	��� ���� �� ��

 �
�� �������	�� ������ ��	�� �������
 � ��	�� 	� �� �� � ��	�� 	�
��� �	
 �� �������	�� ������ ���
��� ���� �!
������ !"� ����
	���	��
�
���
 "
	��
�
�� !���
� 	�������� �� "
���
�"�� ���	��
��
� �� �
�"��� �
��� ��� !� ����
�� ��	
 ���� #��� 	

�

�!�	�"
� !"� ���� 	�����
�	�� ��� �"� �"���
�� 	
 ���� 	�
���

	�"��	��
� ��� "
"�
 �� ������ ����
 	
 �

� �
�
�
� ��
���� �� ��	

�� ������ ����
� $	�
�� ��� �%���
� �	��� !� ��� ��
� �� ��� ��
���	�� ������ ����
 ������	�� ��
	��
������
& �� �	����	��
������
 ��
	��
 	� ��
���� ��� 	� ��� 	���� �����
���� �� ����
����� �	� ��	
 �� �������	�� ������ ����
 '�()� *���� ��
�
 �	

 !�
�	
�"

��
�����

+� ��	
 ������ �� �	�
� 	�����"�� ��� ������� ��
�
�,��
	!���	�� ��

� �� �������	�� ������ !� ���
��� �� ���� �� � �� �������	�� ������

��	�� 	
 � ���� ���	�� ���	� '�-)� '��)� '-)� '��)� '�)� '�-)� '�.)
	���

��� �	�����	�� ���/ �� '�0)� +� �"��
 �"� ���� ��� ������ ��
�
�,

��
	!���	�� �� �� ������ 	
 ���
	����!
�
	��
�� ���� ���

�����
����	�� ��� 	� ��� +� 	
 �

���	�

� ������	��� 	� � "�	1"�

��� !� �
	���� �
���	��� "
	�� ��� ��	����
 ���
�� �� �� ������
�

����� �
��!
	
�	�� ��	
 ��
"
�� �� �"����� 	���
�	���� ��� ��
��	��,

�	� !������ ��� "
"�
 �� ������ ��� ��� �� ������� +� �"��
 �"�

���� � �� ������ "������	�� �
���� ���	�� ��� !� ���"��� �� �

�� ������ �� ��� ��	����
 �
��� �� ��� �� ������
� �	
 �����/�!
�

��
��	��
�	� �

��
 "
 �� ��
	!���� � ���
 �� �������	�� ������

"
	�� ��� ������ ��
�
�,��
	!���	�� �� � �� ������� �� ���������

�� ��	��
� 	
 ��	����� +�
���� ��
�
�	�� ����
	����� 2�"���

�1"��	��
 ��� �� ������
�
�,��
	!���	��� �� �%���
	���� �
���	���

��� !� "
�� ��� �� ������
�
�,��
	!���	��� �� ��
� ���
���	�� 	

���� ��� ���	�� �� ��� �� ������
��"
� !� ��
��	���� �� �
����

���	��
� �� ����� ���
	���	��
� 	��
"�	�� �� ���	�� ������
��
	!���	��� ��� �

� !�	��
� �	
�"

��� 3��� �� ��	
 ���/ ��
 �

�
���
����� 	� '�()�

 �� ����� 	
 �����	4�� �
 ��

��
& +� 5���	�� �� �� ���	�� ���
�� �������	�� ������ ����
 ��� 	�
 ��	����
 ���
��� ���� ��
���	�	��� �
�	���	�� �� ��� ��	����
 ���
�� 	
 �	
�"

�� 	� 5���	�� ��
 �� ������ ��
�
�,��
	!���	�� �� � �� ������ 	
 	�����"��� ���
����
���� 	� 5���	�� 6� ����� ��	��	�� �"�
��� �	���� ���
	���	��

�� ��� ������ 	� 5���	�� 7� �� ����
�� 	� 5���	�� 8 � ��� ������ ��
�� ������
�
�,��
	!���	�� !� �������	�� � �� ������ "������	��
�
���� ���	��
 	��� � �� ������� 9%���	�����
 ��
"
�
 �� !���

	�"
���� ��� ���
 	����
�1"����
 ��� ���
����� 	� 5���	�� -�
$	��

��
��� ����
"�	�� �����/
 ��� �"�"�� �	����	��
 ��� �	���
	� 5���	�� 0�

 ���"���"� ��� ������ ������
 ��� ������� 	�
���� ��
�
!�
������ ����	��
 ��� ���
��
 	� "���� ��
� !�
������ 5��� !�
	�
���
�� �����	�� 	
 "
��& �����	��� 	��	��
 �

"!
��	��
� ������,
���	��� 	��	��
 �

"���
��	��
 ��� ��� 	��
	�	�
"����	��
�������	���

� �� �� "#���$# ��%#�� ��� ��� ���& ��'
�#�� �

#� �	

 �	�
� ���	�� ��� ���,�	���
	���
 ������ ��	�� ��

�!
������� ���� ���
�"�� �� ��� �������� ��
	��
 "���� ���	��
������
 '�()� �

�� �� ��� 	�����"�� 	� �	����
� !� ���
��� �� �
�� �������	�� �������

� �� �������	�� ������ �������
 � ��	�� � � ���� ��� ���� 	� ��

��������	�� �
���� �� � ��	�� � � ���� ���� 	� �� ��������	��
	����
 �	
 �������	�� ��� !� ��
��	!�� !� � �� � ����	% � �

�� � ������ :��� �� �%��	�� ��� �������	� ���
���	��
 ���	
�!
�
��� ��	��

��� 	� �"
�	�
� �	��

	�	
�� �� ��� �� ������ ��
� '��)�
'��)� '��)� '�8)� '.)� ���� 	
 � ���
���	�� ��
� 	� ��� ��
� �� �����
�	��
� �
 ����� 	
 �� ���
���	�� ��� ��� �	��
 ���� �������	��
	��

�
���
 	����
��� 	� � ��	�� 	� � �������	�� �
�����

;�� ����� �	��
 �� ��� ��	�� � !� �	��� �
 ��

��
&

�� � ���
���� � ����
������ � �����

�

�

�

���

 ��
� ��� !� ����	���� 	� ����	% ���� �

� � � �

�� � �� �

��� � � ���

�

�

�

����������������� � ��

 �� ������ ���������������� ������ !� 4����
�

� � � �

�� � �� �

��� � � ���

�

�

�

�

�

�

�

�

�

�

�

�

� �� ���

 �� �%���
	�� �� ��	
 ������	���� ����"��
 � ��	����
 ���
���	��
��� ��� ����� �	��

���	�
�������	 � �� ���

����� ���	 	
 � �� �� � ���������"
 ���
�� ���
� ���������

���	 ��� �� � �	���
 �	���
�	�� �

 ����� �	��
� �� ��� ��

��	��
�� � ��	�� �������	�� ����	%&

�

��

���

�

�

�

� � ��� �� ��� ��� ���� ����� �

 �� ���������
 �� ��� ���
�� ��� !� ���� �%�
	�	� �

���	 � ������ �	��	� ��	 �� ��� 	�� � �� �� ����� ��� !���/�� ����	��	 ������

��� �� � �	��� �� ���� ���� ��� ��� ��� ������ �� ��� �!��� ��	��

),,, %-./�.0%)�/� �/ �.%%,-/ ./.
1�)� ./� 2.03)/,)/%,

)4,/0,� +�
$ ((� /�$ �5� �0%�*,- (555 ��67

� �� ���	
��� ��
��� ������ ����� ����
 �
� ������
������ !� �" �� #�$���
�%��$���� &
�
'� ���%�
� (�)���* ���+
�����	
���,��$�����%����-��

� �� .��% �%� �� #���) ��

��� &��#������� /��#0�"11 �+
%�
 �

�2(���$
� !3!!� 4�%�5�%%��� ���%�
�
(�)���* 6��%	�.��%� �
�
��#���)7,�%����$
��-��

4�%�����$� �
�
�+
� 8� 4��� 8 39 �
+��
� �8 4��� ����9 ���
$�
� �3 :�%

�����
�
��))
%�
� -�� ���
$��%�
 5; #� #������
��� �%-��)����% �% �5���%�%	 �
$��%�� �- ���� ������
� $�
��
 �
%�
�)��� ��*
�$�)�,��)$��
����	� �%� �
-
�
%�
 �(((&# ��	 ��)5
� 8�<3���

5�8(�99(9:55:;�5$55 � (555),,,

Paper 8: Self-calibration of a 1D Projective Camera and . . . , PAMI 2000 [10] 93

�������	�� ����	% ��� !�� ����� 	� ��� ��� ��� �	 ������
 ��� ����	��

��� ��
�������� +� ��� !� ��
	
�
��� ���� ��� ���
���	�� �!��	���

!� ���	�� �"����� �	��
 ���"��
 �� � ��	
	����	��� �	
 �����

��� "�	1"���

 �� ��� ��	
	���� ���
���	��� <�������� ���

�� �� � ���������"
 ���
�� ��

 � �� �� �� � �������
� 	� 	
 �

�	�	��
 ��������	4��	�� �� ����� �	��
 	� ��� "���
	!�����
���	��

	��� ����� �	��
 ���� �%���
� �� ��� �� �� � ��� �� �� �

������� "� �� � �������	�� ����
������	�� 	� ���
 �	
 ��
"
� ��� ��� ���,�	���
	���
 �������	�� ������ 	
 ����

	�����
�	��� �� ��	����
 ���
�� �����
"
���
 �%���
� ��� 	�������	��

������ ��� �������	�� �����
��"��	�� 	� ��� :���
�� 	� 	
 ��� "�	1"�

�����	�� ���
���	��� 	� �	�	��

� ��������	4�
 ��� ����� �	��
 ���

	� ��� !� �
�	�����
	����
�� ������
� ��	
 �� ��� �� 	���� ��
� 	�

��	�� ��� �"
�	
	���� ���
���	��
 ��� �
��!��	��

� ���"����� ���

���
	���� �
�	���	�� 	
 ��
� �� �����%	���	�� !�
�� �� ����,

��������	4��	���

(#���%��� � & �)# ���& ��' �#�� � & � ��
��%#��

9��� ��	�� �����
�������� 	� ����� �	��
 � � �� � ��� �	�
�
 ���
���������"

	���� �1"��	�� ��� ��� �	��� ���
�� ���������
 ���	
��� �� �� 	 � �� �&

����������� ���������� ���������� ����������
���������� ���������� ���������� ����������� � ��

����� � � ������ ����� ����� ����� ����� ����� ����� ������ � #	�� ��
��
�

���� ��	�� �����
��������
� �� ���
�
�� ��� ��� ���
��

���������

	����
��
� �����"
 �����
	4��	�� �� ��� ���
"������ ����	% 	

��������
�

 ����

��� �"
�
	/� ����
���

�� 	� '��) ��� ���

	���� �
�	���	�� �� ��� �"��������
 ����	%� �� ��	��
 	� ����

	���� ��� �	�
� ����

����
� ���� ���	� ������	� 	
 ��� ��	�	� ��

��� 	���� �����	����
� ����
��
��
� ���� ��� ������� �	
�����

�� ��� ��	��
 ���� ��� ��	�	� 	
 �� �	
 	
 ���	���� !� �� ���	��

����
������	�� �� ��� 	���� �����	����
 	� ���� 	����&
�� � ��� ��� � ���� ��
 ���� � ����� #	�� ���
� �����
	4�� 	����

�����	����
� ��� �����
	4�� ���
�� ���������
 ����	 ���
	����
�

�
�	����� !� 5=� ���� ����	��
���������	 � �� �� ��	�	��
 ���
��

���������
 ���	 ��� ��������� !� "���	�� ��� �����
	4��	��

����
������	��
& �
�� � ����	

�

�

�
��

	
� �

* �#'&���'�+���� � & � �� ��%#�� &� % �)�##
$�#,�

 �� ������� �� ������
�
�,��
	!���	�� "
	�� ��
� ��	�� �����
���,

�����
 !����� ���"
�� 	� ��� ����"��� �	
	�� ����"�	��
��

��	�� <��!��/ ��� $�"����
 '�0)� !�
�
�	�� ���
�,��

��

2�"��� �1"��	��
� �� !�
	� �

"���	�� 	
 ���� ��� 	������

���������
 �� ��� ������ ����	� 	����	���� +� ��� ��
� �� ��� ��

�������	�� ������� ��� 	������
 ��
	!���	�� ���� ������	���	�� �� ���

�	�� 	������
 ���������
� 	
 �1"	��
��� �� ��� ������	���	�� �� ���

	���� � �� ��� �!
�
"�� ���	� 	� ���

*-� ��� �
��

�� ��
�����
� �� � �� ����
� �
� ���
��
�.��
 ���
��

$�� � �� ������ �����
����� !� � �� � �������	�� ����	% �����

��	
 �������	�� ����	% ��� �
���
 !� �������
�� 	���

���� � 	���
��� ����� ��

�����

	��� � � ��
� �

	

�����
���
 ��� ��� 	������
 ���������
& �� ��� ����

����� 	� �	%�

��� ��� ��� ��
	�	�� �� ��� ��	��	��
 ��	��> ��� �%�����
 ���������

��� �����
����� !� � �� � �����	�� ����	%
����

��� � ��� � ��� �
� ��� � ��� �

	

��� ��� ����

��	�� ������ �����
 �� �!����
���� ��� � �� ������ 	
 � �������	�� �
���� ��� ���

�	�	� ���	�� �� ��� �
���
����
 ��� ��� �	��"
�� ��	��
 � ��� �

	����	��� �� ��	� �� ����
�% ����"���� ��	��
 �� ���
	�� �� 	��	�	��
�� ��� �
����� 5	�	
��
� �� ��� �� ������ ��
� ����� ��� /���
����
�� ��� 	������
 ���������
 	
 �1"	��
��� �� ���� �� ��� 	���� �� ���
�!
�
"�� ���	�� ��� /���
���� �� ��� 	������
 ���������
 �� �
�� ������ 	
 �1"	��
��� �� ���� �� ��� 	���� ��	��
 � ��� � �� ���
�	��"
�� ��	��
 	� ���

 �� ��
��	��
�	� !������ ��� 	���� �� ��� �	��"
�� ��	��
 ���

��� 	������
 ���������
 �� ��� �� ������ ��

��
 �	����
� !�

�������	�� ��� �� ��� �	��"
�� ��	��
 � � ��� �� ��� � ����� � �
�������

��

�

!� ��� ������ ����&

�� � ����
�� � ��

�

	

� � ��
� �

	

��� �� �
�
�

�

�

�

�

��

+� �
���
� ������
 ���� ��� ���
 ���� �� ��� ���	� �� ��� �������	��
�����	����
 �� ��� 	���� �� ��� �	��"
�� ��	�� � 	
 ��� ��
	�	�� �� ���
��	��	��
 ��	�� �� ��� ��� 	���	���� ���� 	
 ��� ����

����� ��

*-� ����
��
����
 �� ��� ���/�� �� ��� ��
�.��
 ���
��

*"� ��%� ��
/ 	
 ��
����� ��� �	��"
�� ��	��
 	� ��� 	����
� ;�� "

���
	��� ��� �� ��� �	��"
�� ��	��
�
�� �� �	
 �	��"
�� ��	�� 	

��������� ���� �� ��� ��� ��� 	� ��� ����� �	��
� �
 ����
��"
� !�
	����	��� !���"
� �� �"� �

"���	�� ���� ��� 	������
 ���������

�� ��� ������ ��� ���
����� �� ����&

�� � ���� � ������ � ��

����� � � ���� ���� � ��
� ��� ��� ��� �� ��� ���� � � ��
 �� ��	�
�� �� �����
����	�� ��	��
 � � �� � ���
��	
�	�
 ���

��	
	���� ���
���	�� ��� �
 �

 �����
����	�� ��	��
 ��� ����������
���	�

�������	 � �� 	���� ���	�
����	 � �� �	
 �	�
�
 ��� ��

��	�� �"!	�

�1"��	�� 	� ��� "�/���� � � �����&

�����
� � ����� � ���� � ������� � ����� � ���� � ������� ���� � ��

���

� �"!	� ��
����	�
 	� ��� "�/���� �	�� ���
 �����	�	���
 ��
 	�
������
 �	���� ����� ���
 ����
 �� ��� ���
 ���� ��� � ��	� ��
����
�% ����"���� ����
� ��
����� ��
� �� ��� ���
 ��� � ��	� ��
����
�% ����"����
 	
 �!�	�"

� ��� ��
� �� 	�����
� ����� +� �����
�6� ���������	4�
 �

 ��� ��	��
 �� ��� �������	�� �
��� ��	�� ����
���
��� �����	����
 	� ����� �	��
� �	
 	
 ���	�	
���� �� ��� ��
��
� ����� ��� 	
 	�����
��� 	� ���
��"
 �� �

 ��	��
 	�
���� ����
������� ���� ���
��� ��	�� 	� ��� �	��
 �
�� 5���	�� 8�� �� ��
"
�
���� �� ���� �"
� �!��	��� 	
 ����� 	� ��� ��
� ����� ��� 	������

���������
 �� ��� ������ ��� ���
����� ����� ��� 	� ������
 �����

"�� ��	��
& ��� ��� �	��"
�� ��	��
 ��	�� ��� ����
�% ����"�����
��� � ���
 ��	�� �	�� ��� ��

��	�� �������	� 	����������	���

$	�
�� ���
	��� ��� ��
� �� ��� �	��
 ���
�� "
 �
/ ��� 1"�
�	���
���� 	
 ���
�� �� ��	��

"�� ���� ���	� 	����
 	� ��� ��� �	��
 ���
���
���? �	

�� �� ��	��
 ��� !� ��

�� ��� �� �������� ��� �� ���
��� �� �	��
� 5	��� ��� ��� ������
 ���� ���
��� 	������

���������
� �� ��� 	����� ���� ��� �

"�� ���� �� ���/ �	�� ���
��
	!����� �	%�
 �����	����
� +� ���� ��
�� � ������ ��� !� 	����	�	��
�� �� ����������

�
��� �� �����	����
 �������� �� ��� ���	��

������� ��� �%	
 	
 ����

�
 �� ��� ���	��� ��� ����� ��� 	
 ��� ���	��

�%	
� �� ��� �	��
 �����
���� �� ���� ����� �	� � �����	��

��95),,, %-./�.0%)�/� �/ �.%%,-/ ./.
1�)� ./� 2.03)/,)/%,

)4,/0,� +�
$ ((� /�$ �5� �0%�*,- (555

94 Chapter 5. Camera Self-Calibration

��

���� !� � ����

��	��� �	
 ��� �
���
 !� ��
��	!�� 	� ������

�
 � �"�� �����	�� ���"�� � ��	��
 ���
� �����	����
 ��� ��
	
�
!� ����"��� ���� ��� ������
@ �������	�� ����	��
� �
	��
�
����"���	�� ����
���
 ���� ��� �������� ��� 	
 ��� �	��
� ��	��
����"�� ��� ��� ���	��
 ������
 ���
� �
 	

"
������ 	� $	�� ��� +�
����� 	� 	
 ��� �	��
� �	�"
 ��� ��� ���	��
 ������
� :��� ����
	��� �

�	��
�
 �� ����"�� ��� �	��"
�� ��	��
 ������ ���	� ������ ���� �

�
!�
��� �� ��� �������� �"���� �
 �%�������

+� ��� ��
� �� ����� �	��
� ��� ���
 ��	��� ���� 	� �%	
�
� �"
� !�
�� ��� 	����
���	�� �� ��� �������� ����� �� ��� �	�
� ��� �	��
 ���
��� �������� ����� �� ���
�
� ��� �	��
� �� �	�
� ��� 	
 � �	��
�
��	�� ����"�� ��� ���	��
 ������
 �� ��� ��� ���
����� ��� 	
 �
�	��
� ��	�� ����"�� ��� ���	��
 ������
 �� ��� ��� ��
� ���
�	��
�
 	����
��� 	� ������
 �� �
����� ��	�� � ��	�� 	
 ��� ���

��	�� �� ���� �	
�"

	��� ��� ��� ��	�� �	��
� ����� �����
����	��
�� ��� �	�
� ��� ��	�� �	��
 �"
� �

� �� ����"�� ��� ���
 ��	�� ��

�� $	�� �!�

#� ���� ��������� �
��!
	
��� ��� 	�����
�	�� ��
"
� ���� ���
	������
 ���������
 �� � �� ������ ��� !� "�	1"�
� ������	���
����"�� ��
��
�
���� ��	�� �����
��������
 	� ����� �	��
& ��

���� ��	��
 �	�
� ��� ��	����
 ���
�� ��� �6� �	�
�
 ��� 	������

���������
�

0 ���'����� ��

 �� ������ ��
�
�,��
	!���	�� �� �� ������
 	
 ���
	����!
�

	��
�� ���� ��� �����
����	�� ��� 	� �� '�0) ��� ��� !� �	����
�
"
�� �������� � �� �������	�� ������ ����
 ���"�
> ��� 	�
������

�
�,��
	!���	�� ��
��� ���	��
�
���
 "
	��
�
�� !���
� 	�������
'�)� �� "
���
�"�� ���
� 	���	��
�
��� 	
 !�
	��

� ���"��� �� �
�� ������ �� ���
�"��� �
���> ��� ����	�
A�"

�
�,��
	!���	�� ��
�� �������	�� ������
 "
	�� �
���� ���	��
�

 �� �	�
� ���� �� ���
	���	��
 	

���	����������� �� 	�����
�	��
�!
�����	�� 	
 ���� ��� �� ��
	!���	�� ������"�� ��� �

� !� "
��
���
�
�,��
	!���	�� � ���
 �� �������	�� ������ 	� ��� ������ ���	��
	
 ��
��	���� �� �
���� ���	��
� �	
 	
 �	
�"

�� 	� ����	
 	� ���
����	���� �� ��	
 ������

1 ��'�+�����2 � �� �� "#���$# ��%#�� !���2
�'���� % �� ��

� �
���� ���	�� ���
	
�
 �� � ����

��	�� 	� � �
��� ��� � �����	��
�!�"� �� �%	
 �������	�"
�� �� ���� �
���� 3
���� ���	�� 	
 �����
��������� !� � ���	�
� ���	�� �� ��� ���"��� ��� ��
 !��� "
��

��� ������
�
�,��
	!���	�� !� �����

�� ��� B	

����� '6) ��� !�

���
����� �� �
� '�)�
C���

 ���� ���
�
�,��
	!���	�� �� � �� �������	�� ������ '0)� '�0)

���
	
�
 �� ������	�	�� ��� �	�� "������	�� 	������
 ���������
 ��

� �� ������� �����
����� !� � �� � "���� ��	���"
�� ����	%

	 �
�� � ��
� �� ��
� � �

�

�

�

��

 �	
 	
 ��������	��

� �1"	��
��� �� ��� ������	���	�� �� ���

	���� �� ��� �!
�
"�� ���	� �� ��	�� 	
 � �
��� ���	� ��
��	!�� !�

�� �	���� �	���� � � ��� 	���� ��	��
 �� D	��� ��� 	���� �� ���

�!
�
"�� ���	� ���� � �� ��� ��
	!���	�� ����	% 	 ��� !� ��"��

���� � "
	�� ��� ���
�
/	 �������
	�	���

1-� ��
��
��
/ �� ���/�� �
�� �� ���/��

$�� � �	��� �
���� ���	��� ��� ��	����
 �
���E��� �
��� ����"��

��� ������ ������
E�� ��� ������ 	
 ��	��	���� �	�� ��� ���	��

�
��� �
 ��� ������ 	
 ���	�� �� 	�� ��������� ��� 	����
����	��

�� ��� ���	�� �
��� 	
 ���
��� �
 ��� ��	����

	�� ��	�� ��"
� !�

������	��� ���� �"��������
 ����	��
� �� ������	���	�� �� ���

	����
����	�� �� ��� ���	�� �
��� ��
 !��� �������� 	� '�)� '6)�

*!�	�"

�� 	� ��
��	��	�� ��� ���/	��
���� �� ��� ��	����
 �
���� ��

���� � ������� �� �������	�� ������ ����
 ��	�� �������
 ���

��	��
 �� ��� ��	����
 �
��� ���� ��� ��	����

	�� 	� ��� �� 	����

�
���� �
 ��� ��	����

	�� 	
 ��� 	���� �� ��� ��	����
 �
���� +�

�����	��� ���� ��� �� �� ��	�� �� �

 ���

�
	�
 �� ��� ��	����
 �
����

),,, %-./�.0%)�/� �/ �.%%,-/ ./.
1�)� ./� 2.03)/,)/%,

)4,/0,� +�
$ ((� /�$ �5� �0%�*,- (555 ��9�

��
$ �$ <�= %�� �#������������� �������� #���� �� ��� �� ������ �����
 ��� ���� ����������� �� ��� �#� ���#� <��� ��&�=$ <�= %��
�������� �������������� �� ��� ���� ����� �

#���� ��� ��� ���� ���
�� �� ��� ����� ���#� <��� ��&�=$

��
$ ($ 0������
 � �� ���
� ���� � (� ���
� ���� ��� ��������
 ����� �� ���

�������� �&�� ��� ��� �������� ���� <��� ��&�=$

Paper 8: Self-calibration of a 1D Projective Camera and . . . , PAMI 2000 [10] 95

F������� �� ��� �	��"�

� ������� ��� �� ��	�� ���� ��� ��	����

�
���� ���������� ���� ����
 ��� ������
 	��� �� �"� ������& ��

�= �)�	
� �- � ��)
�� �%�
�	��%	 $��%��)����% �
���
 �� 8= �)�	
� 5;

$���
���%	 ��
 �= �)�	
 $��%�� �%�� ��
 ���-���� ��%
� �	
 ��� !�

���	���� 	� ��
��
� ��� ���
�
$	�
�� 	� ��� ���	
�	�� ��	��
 �� ��� �����	�� �%	
 	
 ��

,

���	���� �	
 ���	
�	�� ��	�� �� ��� �����	�� �%	
 !�	�� ���

�	����	�� �������	�"
�� �� ��� ������ �
��� �� ���	�� ��� !�

������	��� ���� �"��������
 ����	��
 !� ���	�	�� ���� ��� 	����

�� ��� �������� ��� �
���� ���	�� ����������
 �� ���
	��
 '�)� ���

�� ��	�� ���
 ����"�� ��� ���	
�	�� ��	�� �� ��� �����	�� �%	
> ��

��� ����� �� '�) ��� ���� ����	

�
D	��� � �� ��	��� �	�� 	���� �� �� �����

� ������� 	� �� ��

	� ��� �
��� �� ���	��� ��� �������	�� !�	�� ����

�
 �� ��� �	����	��

�� �����	��� �� 	���� �� �� ��	
 �	��"�
 ��	�� ��� !� �!��	��� 	� ���

	���� �
 ��� 	����
���	�� �� ���
	�� ����"�� � ��� � �	�� ���

��	����

	�� �� 5	��� ��� ���	
�	�� ��	�� � �� ��� �����	�� �%	
 ���

��� ��	����

	�� � ��� ��

 ���	���� ��	
 ���
��"��	��� 	

"
������ 	�

$	�� �� 	
 � ��

,���	��� �������	� ������	���
:��� ���� ��	
 	
 �

� � ���
����	�� �������	�� ���� �� �	����

�
���� �� �� ���	����

	���& �
� �� �
 	

"
������ 	� $	�� ��
�
������	��
�� 	� ��� ���	
�	�� ��	�� 	
 ��� ���	
�!
�� �� ���

�������
�

 ������ ��� �	��"�
 ��	��
 	� ��� ��	����
 �
���� D	���

��� ��	��
 � ��� � � �	�� 	����
 � ��� ��� ���
	�� ��� � ��
	����
���
 ��� �
��� �� ���	�� 	� �� � �� 	���� �� �� ��	
 �	��"�

��	�� ��� !� �!��	��� 	� ��� 	���� �
 ��� 	����
���	�� �� ���
	��

��� ��� �	�� ��� ��	����

	�� ��
�� $	�� 6�
������� 	�������� ���
�1"���� �� ��	
 ���
��"��	�� 	
 ���� �=

�)�	
 ��%
 �
)
%�� ��% ���� 5
 ��%+
��
� �%�� 8= �)�	
 $��%��> ��

���
��"��	�� 	
 ����
	��
��� �
 ��� ��
"
�	�� �� 	���� ��	�� 	
 �"
�

��� 	����
���	�� �� ���
	��
������ �	�� ��� ��	����

	���

����� �� ����	
���
������

�� ��	
 ��	��� �� ���� �!��	��� ��� 	�����
�	�� ��
"
� ���� �

�� �������	�� ������ ����
 	
 �!��	��� !� ���
	���	�� ��
� ���

����������� ��	��
 �� ��� ��	����

	�� ��� � �
���� ���	��� ��

��
�
�,��
	!���	�� ������ ��
��	!�� 	� 5���	�� 6 �	

 �

�� "
 ��

����� ��� 	���� �� ��� �	��"
�� ��	��
 ������ �� �

 �
���

����

�
 �� ��� ���	�� �
����

����� ���������� �� ��� ����� �� ��� �
������
���� ��� ���

��
�����

9��� �
���� ���	�� ������

� �	��
 "
 ��� ��	��
 �� ��� �!
�
"��

���	�� �������� �	�� ��� ���	
�	�� ��	�� �� ��� �����	�� �%�
 �
 ���

��
� �� ��� ��	����

	�� ������ ��� �!
�
"�� ���	�� �� ��
�A��
��

��
��	�� !������ ��� ���	
�	�� ��	�� �� ��� �����	�� �%�
 ��� ���

��	����

	�� ��
 	�����"��� 	� '�)� �
 � ���
�� ��	
 ����	��
 ��"�

���
���	��
 �� ��� �!
�
"�� ���	�� 5	��� � ���	� ��
 �	�� ������� ��

��
� ��� �	������� �
���� ���	��
� �	�
�	�� �	���
	���� ���
���	��

�� ��� �!
�
"�� ���	�� �	

 !�
"��	�	��� �� ������	�� ��� �"

�� ��

�	�� 	������
 ���������
 �� � ������
 �� ������ !� �	��	�� � ������

���	� �� ��� ���� ���� �
�� � ��� � ���� ��� ��� � � �� +� ��

�

"�� � ��"�,��������� ����
 ��� ������ ��
	!���	�� �	�� ��

	����
/�� �	���� � � ��� ��� �
���� ���	�� �	�
�	�� ��"�

���
���	��
 	
 ������

�
"��	�	��� �� ������	�� ��� ��"� 	������

���������
 �� ��� �� ������� F������� ��	
 	
 ��� ��"� ���
���

���� ������ �
���� ���	��

"�� �
 �"��
� ���	4����
 �� ����	��

���	��
 �	�� ��� 	���� �
��� �������	�"
�� �� ��� ���	�� �
���� +�

��� !� ��
	
� ������ ���� ����� ��� ��
� ����� 	�
���� �� ��"�

	���������� ���
���	��
 �� ��� �!
�
"�� ���	� 	� ���
� ����	�"��,

�	��
� #� ���� ��
��
� ��� �	������� �
���� ���	��
 ���

������	�	�� ��� ��"� 	������
 ���������
�
�

�� ��	

"���
�
 ���� ���� 	� ��� �
���� ���	�� 	
 ��� �"��
�

���	4����
 �� ����	��
� !"� �
�
�� ��� ���	
�	�� ��	�� �� ��� �����	��

�%�
 ��
� ���
���	�

��
�
� ��� �!
�
"�� ���	�� G
	�� ��
� ���

�	��"
�� ��	��

������ �� ��� �!
�
"�� ���	� 	
 �������!
� ���

�"���	��

�
��!
�� !"� �� ��� ���� ��
��
� ����� �
���� ���	��

�� ������	�� ��� �	�� 	������
 ���������
 �� ��� �� ������� :���

���� ��� �"���	��
 	�
��!	
	�� �� ��� ���	
�	�� ��	�� ��� � ����
�

���	4����
 ��	����

	�� ��
 �
����� �������� !� ���
����� 	� '�)�

��9(),,, %-./�.0%)�/� �/ �.%%,-/ ./.
1�)� ./� 2.03)/,)/%,

)4,/0,� +�
$ ((� /�$ �5� �0%�*,- (555

��
$ >$ 0��������
 (� ���
� ������ ���� �� ���
� ������ �� ��� ���
� ����� ��

�!	������� �� � ��� ������ ��� ������ ���� ��� ���
� ����� �� ��� �������� ���� #���

��� ��������
 ����� �� ��� �������� �&�� �� ��� ��� ������ ������$

��
$?$ 0������
 � �� ���
� ���� ��" ���� �� ������ �� ��" ���� ��
���� <��� ��&�=$

��
$ @$ %���� ���
�� �� ��� ����� ������ ������$

96 Chapter 5. Camera Self-Calibration

*!�	�"

�� 	� �� ���/ �	�� � �����,��������� ����
 �	�� /����

�
���� ���	� ��� �	���"�
/��� ��� �
���� ���	�� 	

"��	�	��� '�)�
�
 �� ���� ����	���� �� ��� !��	��	�� �� ��	

���	��� ���

������ ��
��	!�� 	� ��	

���	�� 	
 ��
���� �� ��� ���/ ��

���
����� �� �
� '�)� !"� ����� ���
��� 	�������� �	��������

��	�� �� ��� �%�
�	��

�� $	�
�� �"� �������� �	��
 �� �
����� 	�
	��� �� ��� 	���	����
��
��	��
�	� !������ �� ��� �� ������
 ��� �
���	�
 /	��
�� ���	��� ��

�� �
���� ���	���

�� 5������ 	� �

��
 "
 �� ��
� "
� ��� �"��������
 ����	��

�� ��� �� 	����
 ��� ��� ��	����
 ���
�� �� �� 	����
 ��

�
�,��
	!���� ��� ������ 	�
���� �� ��� ��	����
 ���
�� ��
�� 	����
� +� 	
 ��� ��

,/���� ���� �"��������

����	��
 ��� !� ���� ���	�	���
� ��� ��!"
�
� �
�	�����
'�.)� '�7)� ��
��� 	
 ��"� �� ��� �
�	���	�� �� ���
�� ��	����
 ���
�� '�() ��	�� 	
 � ��%
�� �����

� ���
�����
�� �
�� �� ��� ����� ����� "
� ��� ��	����
 ���
�� �� �� 	����

��	���
� ���� ��
 !��� ���� �� �
�	���� �"� �� ����
	�����
�
��!��	� ���
���	��
 �� �"� /���
����� �

�� ��� ��	����

���
�� �� �� 	����
 ��/�
 �
���	�
 ���� 	� ��� �
����
���	�� ��
� '�) ��� ��� ��� ���
���	��
 ���� �� !�
	��
"��� 	� ��� �
�	���	�� �����

�

+� ��� !� ����� ����	��	�� ���� 	� ��� ��
� �� 	�����
�

����� �
���� ���	�� �� ��� ������
� ��� 2�"��� �1"��	��

!����� ���������� '�0) ��� ��� �������� �� ��� 	������

���������
 	
 	���

	!
� ���� ��� 2�"��� �1"��	��
� 5	���

	� 	
 /���� ���� ��� ��	����
 ���
�� �� �� 	����
 	

�
��!��	��

� �1"	��
��� �� ��� ����� �"��������
 ����	��

�
"
 ��� ��
��	��	�� �� ��� ��	����
 ���
�� �� ��� ��	����

�
��� '�6)� '�7)� '.)� �"� ������ ��� !�
��� �
 ��

	��%���
	�� ��� �� �
�	���	�� ��� �"

 ��	����
 ���
�� ��

�� 	����
& $	�
�� �
�	���� ��� ����� �"��������
 ����	��

����
	���� !"�
	��
� ��� ��

,"����
������ ���� �
�	����

��� ��	����
 ���
�� 	� ��� ��	����
 �
��� �
	������

�
���"�� 	�
��/

"����	�	�

� ���� !��� ��� �� ���

�� ��	����
 ���
��
 ��� !� �
�	�����
	����
� �	�� ��
��
�

���� 	���� �����
��������
� ��	
 	
 �	

���	��
	��� ���

�
�	���	�� �� ��� �� ��	����
 ���
�� 	
 �%���
�
	���� ���

���� ������� ������
 ���
	���� �
�	���	�� �� ��� �� ��	����

���
�� 	
 ��
� � ��"�� �����%	���	�� !�
�� �� �
�� ��

�8 �"%	
	��� ���������
 ��� 	�
 �0 ������ ��� �!��	��� !�

���
���	�� �	��� ����
	����� �
��!��	� ���
���	��
�

),,, %-./�.0%)�/� �/ �.%%,-/ ./.
1�)� ./� 2.03)/,)/%,

)4,/0,� +�
$ ((� /�$ �5� �0%�*,- (555 ��9>

%.*
, �
,�������� ��������� �� ���)��
�� �� ��� 0���	��� ������ �" �����0���������� #��� ��������� %������� ��)��
�� �� ��� ����� ��!	����

��� ���������� ��� �������� �� ��� ����� ����� ����� ���� ����� �!����� ��� �������� �� �������� ������
! ����
������ "��! �� ��� �������� ���� �������� "������

%.*
, (
,�������� ��������� �� ���)��
� �� 0���	��� ������ #��� ��������� %������� ��)��
��

����� ���������� "��!
������ ��� �� �������� ������ "������ ��� �������� ���� �� ��� "�������� ����� �� ��� �������� ���� ��� �������� ����� ��"�� ������ �� ���
�������� ������ �� ��� ������� �� ����� �������

%.*
, >
,�������� �������� �� ���)��
� �� 0���	��� ������ #��� ��� %������ �� ��� ������)��
� ��!	����

��
$ 8$ %�� ���
� �� ��� ������ ������ �� ��� �#� ������ �������$

Paper 8: Self-calibration of a 1D Projective Camera and . . . , PAMI 2000 [10] 97

�� �	��� !"� ��	
 	
 � �	��� ��	��� �"� ������ ��� ���
��1"	�� ��� �
�	���	�� �� ��� ���	
�	�� ��	�� �� ��� �����	��
�%�
�

3 #4�#��%#���' �#�!'��

 �� �������	��
 ��
"
�
 ��� �� ������
�
�,��
	!���	�� ��� 	�

���
	���	��
 �� �� ������ ��
	!���	�� ���� !��� 	��
������� ���

�%���	������ ��
������	� ��� ���
 	����
� �"� ��
����

	�	���	��� �� �� ��� ���
��� ��� ��
"
�
 ��
������	� ����� ���

�
���	���
 ������

� ������� ���� ��

� #� ��
�
���
��� ���

�%���
�
� F���� �� ���
	��� �
�����	� �� � ���
 ������ ��"����

�� � ��!�� ���� ��
�1"����
 �� 	����
 ��� ��1"	��� !� ���

������ ���	�� 	� ��� �	������� �
���
� �� �	�
�
�1"���� �����	�

���� �	���%�� ���� �8 �� ��� 	����
 ���� $	�� 7� ��� ���
�����

�����	�
 �	��� �	���%�� ���� 0 �� �7��
 �� ��
	!���	�� ��	� ��
 "
�� �� ���� ��� ���"�� ��"�� ��� ���

	������
 ������ ���������
 ��	�� ���� !��� ���
"��� �

�� � �����
� �� � �����
� �� � ������ ��� �� � �
��� "
	�� �

������� ��
	!���	�� ������ '8)�
#� ��/� ��	�
��
 �� 	����
 ���� ��� �	�
�
�1"���� ���� ��� ����

��	�
��� �� �
�	���� ��� ��	����

	�� ��� ��� ���	
�	�� ��	�� �� ���

�����	�� �%�
 "
	�� ��� ����� �"��������
 ����	��
 �� ��� ��	�
���

 �� ��
�
�,��
	!���	�� 	
 ���
	�� ��� �
�	���	�� ��� 	����
 �� ���

�	��"
�� ��	��
 �
��� ��� ��	����

	��
� � ���
"��� ��� ���"���� ��

��� �
�	���	��� ��� 	����
 �� ��� �	��"
�� ��	��
 �� ��� ��	����
 �
���

��� ������"��� 	� ��� 	���� �
��� ���� ��� /���� 	������

���������
 !� 	����
���	�� ��� 	���� �� ��� �!
�
"�� ���	� �	�� ���

��	����

	��� �!
� �
���
 ��� ��
"
�
 ��� �	������� ��	�
��
 ��

	����
 �� ��� �	�
�
�1"�����
5	��� �� ���� ���� ���� ����� 	����
 ��� ���
��� �
����

���	�� �� ��� ������� �� ��"
� �

� �
�	���� ��� ��	����

	�� ���

��� ���	
�	�� ��	�� �� ��� �����	�� �%�
 !� "
	�� �

 ��� ���	
�!
�

�"��������
 ����	��
 �� ���
���� 	����
 �� ���
�1"����� ��

��
"
�
 "
	�� ���"����� 	����
 ��� ���
����� ��� �	������� ��	�
��

	� �!
� �� #� ���� ���

	��� 	���������� �� ��� ��
"
�
 ��������

�	�� ���
� ���
����� 	� �!
� ��
 ��
��� �%���	���� ��
 ����	�� �"� ��� ��� �����
�1"���� ��

	����
 ����� ��� ������ "�������� � �	������� �
���� ���	���

5	�	
�� ��
"
�
 �� ��� �	�
� 	����
�1"���� ��� �!��	���� #� ��
�

�	�� ��� ��
"
� ��� ��� ��	�
�� �� 	����
 	� �!
� � ��� ��	

�1"�����

:��� ���
�1"����
 �� 	����
� ���� �����
����	�� �� �

�	������� �
���� ���	��� �	�
� ��"� �	
�	��� 	���	���� ��	��
 ��

��� 	���� �
��� ��	�� �"
� !� �� ��� 	���� � �� ��� �!
�
"��

���	�� �

"�	�� ���� ����� 	
 �� ������
/��� �� ��"
� �	� �� ���
�

��"� ��	��
 �� 	���	���� �

	�
� "
	��
������� �����	1"�
 ���

����"�� ��� ��
"
�	�� 	������
 ���������
� :��� ���� �� �	� ���

"
� ��� ��
�A��
�� ���
���	�� �� ��� ���	
�	�� ��	�� �� ��� �����	��

�%�
 �� ��� �!
�
"�� ���	� �
 	� ��
 �	
�"

�� 	� 5���	�� 8� �	

���
���	�� 	
 ��� �"���	��

� ��
	�!
��
 � ���� �� 	��"	�	�� 	��� �� ��� �
���� ���	��
� ��� ��� ��	����

	��
 �������� �	�� ��� 	���� ���
���� 	� $	�� 8�

 �� "
�	���� ���
 ��
�
�,��
	!���	�� 	
 �� ��� �� ����	�

�����
��"��	��� �� �����
��"��	�� ���� ��� 	����
 �� ���
�1"����

	
 ��������� !� "
	�� ��� �
�	����� 	������
 ���������
 �

	

"
������ 	� $	�� -� � ���
"��� ��� �����
��"��	�� 1"�
	��� ��

�	� ���
��� �����
��"��	�� "
	�� ��� /���� 	������
 ���������
�

 ��
"�� �����
��"��	��
 �	���� ����
� !� � ��
	�	
��	��

����
������	�� ��	�� ��"
� !� ��
	
� �
�	������ �� ��
"
�	��

��
��	�� ����� ��� �����
	4�� �� �����	����
 !�
	�	
��	�� !������

��� �����
��"��	�� ����
�
�,��
	!���	�� ��� ���
	�� ��
	!���	�� 	

��� ��������

5 � ��'!�� �� ��� �)#� ���'����� ��

$	�
�� �� ���� �
��!
	
��� ���� ��� ��� 	������
 ���������
 �� �

�� ������ ��� !� "�	1"�
� ������	��� ����"�� ��� ��	����
 ���
��

�� ����� �� 	����
� 5	��� ��� ��	����
 ���
�� ��� !� �
�	�����

	����
� ���� ��
��
�
���� ��	��
 	� ����� �� 	����
� ��� ������

�� ��� ��
�
�,��
	!���	�� 	
 � ���

	���� ������ ����"
� ��� ����

���� �� ���� �� �	�� ��� ����
 �� � ��	�� ������ ��
����	�
 	� ���

���	�!
��� �� ����,���������	4��	�� ��
 	�����"����

5������ �� ���� ������ ���� 	� � �� ������ "�������
 � �
����

���	��� ��� �� ������ ���"��
 �� � �� ������ 	� ��� �
��� ��

���	��� �� ���"��	�� �� � �� 	���� �� � �� 	���� ��� !�

���	�	���
� ��������� !� "
	�� ��
� ��� �"��������
 ����	��
 ��

�� 	����
� ��
�� �� ��	
 ��
��	�� !������ �� ��� �� 	����
� ���

�
�,��
	!���	�� ������ ��� �� ������
 ��� !� ���
	�� ���
�
�,

��
	!���	�� � �� ������� *"� �%���	�����
 ��
"
�
 !�
�� �� ���

	����
�1"����

��� ��� ����
��!	
	�� �� ���
�
"�	��
 �	�
���

!� ��� ��
�
�,��
	!���	�� ������ ��� ��� ���"���� �� ����	�

�����
��"��	�� ���� ��� !� �!��	��� ���� ��� 	������
 ���������
 ��

��� �� ������ �
�	����� !� ��� ��
�
�,��
	!���	�� ������� ��

������ ���	��
 ���� ������ ���
�
�,��
	!���	�� ������ ����
����

	� 5���	�� 6 ��� ��
��	!�� 	� '�6)�

�#&#�#��#�
'�) <� ���
������ �� B	

������ ��� C� F���
��� H5�
�,��
	!���	�� ���� +����

 �	�
��
�I ����� ������ (���$
�% &�%-� &�)$��
� ?����%� �� �"%��� ���
C� �	��

�� ��
�� ��� �J�8� ���� �..8�

��� <� ���
������ H5�
�,��
	!���	�� ���� +���� 5�1"����
�I 3�� ���
	
� G�	��
�� *%����� �..8�

��� 2� ��
���K�� H+����	���� <�����
 ��� 3�	��
� �"���
� ��� 5"�����
 	�
����"���	���
 =	
	���I 3�� ���
	
� ;"�� G�	��� �..8�

��� 3��� �����

�� ��� �� B	

������ H���	�� ��
	!���	�� �� <�!	
� =��	�
�
�I
����� (���$
�&��%� @������$ A
�)
������ 4��
��%	 �%� �%+����%�� -�� &�)$��
�
?����%� C� <��� ��� �� #"� ��
�� ��� ��6J���� ���� �..7�

��9?),,, %-./�.0%)�/� �/ �.%%,-/ ./.
1�)� ./� 2.03)/,)/%,

)4,/0,� +�
$ ((� /�$ �5� �0%�*,- (555

��
$ 6$ %#� ���#� �� ��� ���	����
 >� ��������	����� �" ����������������$

98 Chapter 5. Camera Self-Calibration

��� � �"������� H �� �	
��� �"!	� ��� ������ ��
	!���	���I &�)$��
�
?����%� A��$����� �%� �)�	
 ����
���%	� ��
� 6�� ��� �� ��� ��(J���� ���� �.00�

�	� *� $�"����
 ��� D� �
���	� H������ ��
	!���	�� ��� �� ����"��� =	
	���I
����� �%�2� @������$ 4����%
 ?����% �%� 4����%
 �%�
���	
%�
� �.0-�

�
� *� $�"����
� H5����	�	���	�� �� ����,�	���
	���
 =	
	��& 3������	��� ���	���
��� <���	� C����
�����	��
�I :� �$����� #��� �)�� ��
� ��� ��� 687J606� �..7�

��� *� $�"����
 ��� 5� <��!��/� H<��	�� ���� 3�	�� <�����
& <"
�	�
	�	�� ��
5�
"�	��
�I �%�2� :� &�)$��
� ?����%� ��
� �� ��� 6� ��� ��7J�68� �..(�

��� *� $�"����
 ��� �� <�"���	�� H�!�"� ��� �����
��������
 �� 3�	��

������� +����
�I ����� @������$ �
$�
�
%�����% �- ?����� #�
%
�� ��� �-J66�
L"�� �..7�

��
� *� $�"����
� ;� M"��� ��� 3� 5�"��� H5�
�,��
	!���	�� �� � �� 3������	��
������ ��� +�
 ���
	���	�� �� ��� 5�
�,��
	!���	�� �� � �� 3������	��
�������I ����� (���$
�% &�%-� &�)$��
� ?����%� L"�� �..0�

���� C� F���
��� H+� ������� �� ��� 0,3�	�� �
���	����I ����� ��-�� �%�2� &�%-�
&�)$��
� ?����%� ��� ��(86J��(-(� L"�� �..7�

���� C�+� F���
��� H9"�
	���� C����
��"��	�� ���� G���
	!����� =	��
�I �����
=��$��(�$��� @������$ �$$�������%� �- �%+����%�� �% &�)$��
� ?����%� ��� �0-J
�(�� *��� �..��

���� C�+� F���
��� H� ;	���� <����� ��� C����
��"��	�� ���� ;	��
 ��� 3�	��
�I
����� ��-�� �%�2� &�%-� &�)$��
� ?����%� 9� D�	�
��� ���� ��� 00�J00-� L"��
�..7�

���� �� F������ HD������� ��� �
��!�� �� <"
�	�
� 3������	�� ���
�����,
�	��
�I 3�� ���
	
� ;"�� G�	��� �..7�

���� �� F����� ��� 2� �
����� H�
��!��	� 3������	�
 �� <"
�	
	���� ���,

���	��
�I ����� ������ (���$
�% &�%-� &�)$��
� ?����%� �� �"%��� ���
C� �	��

�� ��
�� ��� 8-�J80�� ���� �..8�

��	� �� F������ H� ������ $�������/ ��� <"
�	�
�,=	�� ��
��
�I �����
��-�� (���$
�% &�%-� &�)$��
� ?����%� ��� �J�.� L"�� �..0�

��
� M�, � ;"��� ��� *� $�"����
� H5�
�,��
	!���	�� �� � <��	�� ������ ����
3�	�� �����
��������
 ��� $"��������
 <���	��
�I 0�
 �%�2� :� &�)$��
�
?����%� ��
� ��� ��� �� ��� �8�J�0.� �..-�

���� 5�L� <��!��/ ��� *��� $�"����
� H� ����� �� 5�
� ��
	!���	�� �� � <��	��
�������I �%�2� :� &�)$��
� ?����%� ��
� 0� ��� �� ��� ���J�7�� �..��

���� <� 3�

����
� C� 2���� ��� ;� =�� D��
� H5�
�,��
	!���	�� ��� <���	�
C����
��"��	�� 	� 5�	�� �� =���	�� ��� G�/���� +������
 ������
3��������
�I �%�2� &�%-� &�)$��
� ?����%� ��� .(J.7� �..0�

��
� ;� M"�� ��� � 2������ H���	�� 5��"��"�� ���� ;	�� �����
��������
 �	��
G���
	!����� ���	�� ������
�I �(((0��%�� ����
�% �%��;��� �%� 4����%

�%�
���	
%�
� ��
� �.� ��� 0� ��� 0�6J067� �"�� �..-�

���� L�D� 5���
� ��� D� � 2���!���� ��	
5���� ����
���+
 A
�)
��;� *%����
5�	���� 3"!
	���	��� �.7��

���� �� 5��
�"�� H�
��!��	� $"���	��
 ��� C�����	�	���I �(((0��%�� ����
�%
�%��;��� �%� 4����%
 �%�
���	
%�
� ��
� �-� ��� 0� ��� --.J-0.� �"�� �..7�

���� <� 5���
�/	
 ��� L� �
�	����
� H� G�	�	�� ����� �� 5��"��"�� ����
<��	���I ����� =���� �)�	
 B%�
����%��%	 @������$� ��� �-�J�0�� �..(�

���� 3� 5�"��� H=	
	�� �� :�� ��
	!��N�& �����	!"�	��
 �O
� C����
��"��	��
3������	�� �� �N�"�� ��
 <�"������
 ��	�	1"�
 3�"� ;@�"��,��
	!�����I
3�� ��
	
� +:3D� ���� �..-�

���� 3�F�5� ��� ��� �� B	

������� H3���������� ���������	4��	�� �� $"���,
�����
 <���	% 9
�	���	�� G���� +���� ��������	���I 4����%
 ?����% �%�
�$$�������%�� ��
� .� ��� ���J���� �..-�

��	� �� �	��
� H<����	�� ���
���	��
 ��� ��� L�	�� +�����I 9� D�	�
��� ����
����� ��-�� �%�2� &�%-� &�)$��
� ?����%� ��� ��0J�6�� L"�� �..7�

��
� �� �	��
� H�"����
	!���	�� ��� ��� �!
�
"�� M"���	��I ����� �(((&�%-�
&�)$��
� ?����% �%� ����
�% �
��	%����%� ��� 8(.J8�6� L"�� �..-�

���� ���	
 B�

�� ��� *
	�	�� $�"����
� H������ 5�
�,��
	!���	�� ���� =	���
5�1"����
& �� 2�"��� 91"��	��
 ���	
	����I C�
����� ������ �-.�� +:C+��
$�!� �..8�

���� B� B����� C� ���	���� *� $�"����
� ��� M� � ;"���� H� C�!"
� ����	1"�
��� <����	�� �� G���
	!����� +����
 ���"�� ��� C������� �� ���
G�/���� 9�	��
�� D��������I ����-����� �%�
���	
%�
� ��
� -0� ��� 0-J��.�
�..7�

),,, %-./�.0%)�/� �/ �.%%,-/ ./.
1�)� ./� 2.03)/,)/%,

)4,/0,� +�
$ ((� /�$ �5� �0%�*,- (555 ��9@

Paper 8: Self-calibration of a 1D Projective Camera and . . . , PAMI 2000 [10] 99

Methods and Geometry for Plane-Based Self-Calibration∗

P. Gurdjos P. Sturm

IRIT-TCI, 118 Route de Narbonne INRIA Rhône-Alpes, 655 Avenue de l’Europe

31062 Toulouse Cedex 4, France 38330 Montbonnot, France

www.irit.fr/∼Pierre.Gurdjos/ www.inrialpes.fr/movi/people/Sturm

Abstract. We consider the problem of camera self-

calibration, from images of a planar scene with unknown

metric structure. The general case of possibly varying fo-

cal length is addressed. This problem is non-linear in gen-

eral. One of our contributions is a non-linear approach, that

makes abstraction of the (possibly varying) focal length, re-

sulting in a computationally efficient algorithm. In addi-

tion, it does not require a good initial estimate of the focal

length, unlike previous approaches. As for the initialization

of other parameters, we propose a practical approach, that

simply requires to take one image in roughly fronto-parallel

position. Closed-form solutions for various configurations

of unknown intrinsic parameters are provided. Our methods

are evaluated and compared to previous approaches, using

simulated and real images. Besides our practical contribu-

tions, we also provide a detailed geometrical interpretation

of the principles underlying our approach.

1. Introduction

Calibration of a camera consists in recovering its metric

properties, which are partially encoded as a set of so-called

internal parameters. Methods for calibration from 1D [16],

2D [11, 15, 2] and 3D known structures can be found in the

literature. When the structure of the observed world is un-

known (“0D” structure), this problem is referred to as “self-

calibration”. On the other hand, assumptions about the de-

gree of the observed (unknown) world space can sometimes

be made. When the observed scene is 2D, i.e. consists of

a plane, one refers to it as the plane-based self-calibration

problem. In addition to the internal parameters, plane-based

self-calibration consists in recovering the plane’s metric

structure. Besides the fact that, in many man-made environ-

ments, planes are widely present and easily identifiable, an

important advantage of plane-based self-calibration is that

it only requires to estimate inter-image homographies (in-

duced by world planes), using stabler and more accurate al-

gorithms than those for inter-image transformations arising

from projections of 3D points, e.g. the fundamental matrix.

In the rest of this paper, we suppose that we have taken n
images of a rigid planar object – the (world) plane – whose

metric structure is unknown. Further, we suppose that we

∗We acknowledge support from GdR ISIS (Projets Jeunes Chercheurs).

have at our disposal inter-image homographies Hij (there

exist “real-time” algorithms for estimating them, e.g. [4]).

The two main goals of our work are to calibrate the camera

and to compute the plane’s metric structure, allowing to rec-

tify its images. These goals are linked of course: given the

plane’s metric structure, we know how to calibrate [11, 15],

and given the calibration, how to rectify the plane [5]. Self-

calibration is based on constraints on the intrinsic parame-

ters. Concretely, we consider the rather general case of zero

skew, constant but unknown principal point and a possibly

varying unknown focal length.

2. A Stratified Problem Formulation

We first consider the case where we have prior knowledge of

the plane’s metric structure. The problem reduces to that of

camera calibration and linear solutions exist [11, 15], even

for varying intrinsics [11, 2]. We briefly outline the geomet-

rical basis of these methods. A plane’s metric structure is

encoded by the locus of its circular points (cf. §3). Here,

this means that we know the images of these points (ICP)

in all n views. Our goal here is camera calibration, which

can be solved by computing the image of the absolute conic

(IAC). The circular points of the plane lie on the absolute

conic, and thus the ICP lie on the IAC. Hence, calibration

can be seen as fitting a conic (the IAC) to all available ICP.

This can be done by solving a linear equation system.

Consider now the general case, where the plane’s metric

structure is unknown. We introduce unknowns to parame-

terize the ICP in one of our views, and compute the ICP in

the other views using inter-image homographies. The es-

timation problem becomes non-linear, and iterative meth-

ods for its solution have been proposed [13, 6]. One of

their drawbacks, common to non-linear problems, is the

need for good initial estimates. Another problem is that

the number m of unknowns may become relatively large

in the case of varying intrinsics, increasing the sensitivity to

the initial estimates and computation time (generally with

O(m3) complexity per iteration). One of our contributions

is a parameterization that allows to solve the problem us-

ing a fixed number of unknowns (reducing the complexity

to O(m)), and that has a nice geometric interpretation (not

shown completely in this paper due to lack of space).

Paper 9: Methods and Geometry for Plane-Based Self-Calibration, CVPR 2003 [12] 101

Up to now, we have considered two extreme cases: com-

pletely known or completely unknown metric plane struc-

ture. In the latter case we know at least its projective struc-

ture (every image is a projective “model” of the plane).

Consider now the obvious intermediate case: known affine

structure. The problem remains non-linear, but can be ex-

pressed using fewer unknowns and simpler equations. Most

importantly, closed-form solutions for interesting minimal

cases are now possible (see §5.3). One way of recovering

the plane’s affine structure is e.g. to identify the projections

of two sets of parallel lines on the plane. Another solution,

that we use in this paper, is to simply take a fronto-parallel

image of the plane. Taking an exactly fronto-parallel image

is of course difficult. However, we show that in practice, a

roughly fronto-parallel image is sufficient to get good initial

estimates using the closed-form solutions. We use them to

start a non-linear optimization process, where the assump-

tion of fronto-parallelism can be dropped.

We thus have established a stratification for plane-based

calibration: calibration relies on the knowledge of the

plane’s metric structure, whereas self-calibration only re-

quires its projective structure. The intermediate case of

known affine structure is analogous to using scene con-

straints in traditional (“3D”) self-calibration [5, 14], or, in

the case of a fronto-parallel image, to self-calibration based

on special motions (typically, pure translations [1, 8]).

3. Background
3.1. Calibration and the Absolute Conic (AC)
It is well known that camera (self-) calibration is equivalent

to computing the image of the absolute conic (IAC) [3]. If

A is the camera’s calibration matrix, then the IAC is given

by ω = A−⊤A−1, with:

ω ∼





τ2 0 −τ2u0

0 1 −v0

−τ2u0 −v0 τ2u2
0 + v2

0 + τ2f2



 , (1)

with 4 degrees of freedom (d.o.f.): the focal length f , the

aspect ratio τ and the principal point (u0, v0).

3.2. Representing the Euclidean Structure of a

World Plane in Images

Given some world plane Π projected onto an image plane

I, the world-to-image homography that maps points p on

Π onto pixels m on I is defined by a 3 × 3 matrix P such

that m ∼ Pp. We assume that Π is a Euclidean plane but,

a priori, the image of Π under P only yields its projective

structure. As for the world-to-image homography, we use

the following decomposition (e.g. see [5, pp. 41-44]):

P = PpPaPs =





1 0 0
0 1 0
µ λ 1









β α 0
0 1 0
0 0 1



Ps, (2)

where Pp (resp. Pa) is the projective (resp. affine) compo-

nent of P, with 4 d.o.f. in all, while the 3×3 matrix Ps is the

metric component of P with 4 d.o.f. (i.e. Ps is a 2D similar-

ity transformation in Π). The rôle of the scalars µ, λ, β, α
is discussed below, but note that they let (PpPa)−1 define

metric image rectification, by mapping points on I onto Π
w.r.t. some “arbitrary” Euclidean coordinate system. This

means that µ, λ, β and α are a representation of the world

plane’s Euclidean structure. In the sequel, we neglect the

“arbitrary” metric component of P, so we consider that

P = PpPa =





β α 0
0 1 0

µβ µα + λ 1



 . (3)

In the following paragraphs, we establish links between

the parameters µ, λ, β and α and the circular points and

their images, as well as the world plane’s vanishing line,

which encode its Euclidean respectively affine structure.

Vanishing Line. Under the world-to-image homography

P (see (3)), the world plane’s line at infinity is mapped to its

vanishing line v according to

v = P−⊤ (0, 0, 1)
⊤

= (−µ,−λ, 1)
⊤

(4)

Hence, λ and µ represent the plane’s affine structure.

Circular Points (CP). The circular points (CP) of a plane

have the following properties: (1) They lie on the absolute

conic. (2) Their coordinates i± ∼ (1,±i, 0)⊤ are the same

in every Euclidean coordinate system.

Image of Circular Points (ICP). Under P, the CP trans-

form into the ICP (images of circular points) according to:

Pi± = (β, 0, µβ)
⊤
± i (α, 1, µα + λ)

⊤
. (5)

The ICP are another representation, besides P, of the

world plane’s metric structure. They are defined by the

same parameters, µ, λ, β, α and lie on the vanishing line v.

Conic Dual to the Circular Points. The conic dual to the

circular points (CDCP) is defined by D∗
∞ = i+i⊤−+ i−i⊤+ ∼

diag(1, 1, 0). D∗
∞ is of rank 2 and transforms under any

rank 3 homography M ∈ IR3×3 into the symmetric rank 2

matrix MD∗
∞M⊤. Under P, the CDCP transforms into

Σ =

(

P̄P̄
⊤

P̄P̄
⊤

(µ, λ)
⊤

(µ, λ) P̄P̄
⊤

(µ, λ) P̄P̄
⊤

(µ, λ)
⊤

)

, (6)

where P̄ is the upper left 2 × 2 part of P. The conic Σ is

yet another representation of the world plane’s metric struc-

ture, which will be used in our self-calibration approach.

Note that null(Σ) = v = (−µ,−λ, 1)⊤.

Under A, the CDCP transforms into

Λ = AD∗

∞A⊤ ∼ diag(1, τ2, 0). (7)

We also have the following property, used later: image

lines m1 and m2 are orthogonal iff m⊤
1 Λm2 = 0.

102 Chapter 5. Camera Self-Calibration

4. Plane-based Calibration
In this section, we review constraints on the IAC ω that are

used to solve the plane-based calibration problem. We first

review the basic equations introduced in [11, 15]. In §4.2,

we then describe an approach leading to equations that do

not take into account the focal length. This allows the num-

ber of unknowns to remain constant, even in the case of a

varying focal length. This advantage may be very interest-

ing for the non-linear self-calibration problem, and in §5.2,

we accordingly extend the approach of §4.2.

4.1. Basic Equations
The CP lie on the AC, and hence the ICP lie on the IAC,

which is expressed by (Pi±)⊤ω(Pi±) = 0. Requiring that

both real and imaginary parts be zero, yields:

h⊤
1 ωh1 = h⊤

2 ωh2, h⊤
1 ωh2 = 0, (8)

where h1and h2 are the first two columns of P. These

constraints are linear in the elements of ω.

4.2. The Centre Line Constraint
Equations (8) include the unknown focal length (contained

in ω) which might be disadvantageous, as explained above.

Thus, we now describe an alternative approach, based on a

geometric constraint on the principal point and aspect ra-

tio, the centre line constraint [2], that is regardless of the

possibly varying focal length. This constraint results from

the central projection of a planar object, as an original way

of formulating the plane-based calibration problem. This

might seem unrelated to the geometrical background stated

above but one of our contributions is to give a more conve-

nient matrix representation of the centre line constraint in

terms of the imaged CDCP’s Λ and Σ in order to extend it

to self-calibration in §5.2. To remind the reader of the geo-

metrical background required to thoroughly understand this

approach, we give the following theorem1 and corollary.

Theorem 1 If one rotates the image plane around its in-

tersection with the world plane, while moving the camera

center “adequately” along a circle (called centre circle),

in a plane perpendicular to this intersection (called centre

plane), then the world points and the image points remain

in homographic correspondence under P.

Corollary 2 By orthogonally projecting the centre circle

onto the image plane, the locus of the principal point is a

line segment in the image plane called centre segment and

the line that contains it is called the centre line (cf. Fig. 1).

What the theorem says is best explained by referring to

the animation downloadable at XXX
2. For a proof, see [9,

1To our knowledge, until recently this theorem has never been reported

in the vision literature, even if G. Sparr in [10] showed algebraically that

the camera centre is constrained to an elliptical space curve.
2It is worthy of note that, as a result, if one only looks at the image,

there exist displacements of the planar object that are totally invisible, i.e.

for which the image of the object is the same.

pp. 511-517]. In our case, the most important issue is given

by the corollary: if the world-to-image homography matrix

P is known, then the principal point necessarily lies on a

certain line, called centre line (cf. Fig. 1). In [2], the fol-

lowing properties have been stated.

Properties 3 (1) The centre line coordinates φ only depend

on the aspect ratio τ and the world-to-image homography,

i.e. are irrespective of the focal length f :

φ =
(

−τ2ϕ1,−ϕ2, τ
2ϕ3 + ϕ4

)⊤
= φ(P,τ), (9)

where ϕi denotes the i-th element of the 4-vector

ϕ =

0

B

B

@

(P12P31 − P11P32)(P
2

31 + P 2

32)
P31(P

2

31 + P 2

32)
(P12P31 − P11P32)(P31P11 + P12P32)

P31P32

1

C

C

A

, (10)

and Pij is the element (i, j) of P.

(2) The centre line φ contains the principal point, i.e.

(u0, v0, 1)
⊤

φ = 0. (11)

This equation is called centre line constraint.

(3) The centre line is orthogonal to the vanishing line v,

hence (cf. §3), φ and v are conjugated w.r.t. Λ = AC∗

∞A⊤:

v⊤Λφ = 0. (12)

image boundaries

vanishing line

Centre Line

principal point

Figure 1: In the image, the centre line is the line passing through
the principal point and orthogonal to the vanishing line.

An important aspect is that it the centre line constraint

(with suitable normalization) can express a geometric error

(i.e. the distance from the principal point to the centre line

[2]) that can be minimized (in the least-squares sense) with

regard to the problem of plane-based calibration.

The pencil of centre lines. Consider the definition (9) of

the centre line. It depends linearly on the squared aspect

ratio, τ2. We may thus define the locus of the centre line as

a linear family, i.e. a line pencil, that is independent of τ .

To clarify this, let us rewrite (9):

φ = (0,−ϕ2, ϕ4)
⊤

+ τ2 (−ϕ1, 0, ϕ3)
⊤

= d1 + τ2d2.

Let us denote this line pencil by P . Given the definition

of ϕ in (10) and of P in (3), the two chosen “base lines” of

P can be written in terms of the image of the CDCP:

d1 = (Σe3) × µe1, d2 = (Σe3) × λe2,

Paper 9: Methods and Geometry for Plane-Based Self-Calibration, CVPR 2003 [12] 103

where e⊤1 = (1, 0, 0) , e⊤
2 = (0, 1, 0) , e⊤

3 = (0, 0, 1).
The vertex of P may be computed as follows:

d1 × d2 ∼ Σe3. (13)

By definition, this point belongs to the centre line φ. To-

gether with (11) and (12), we have thus established three

points on the centre line: the vertex of P , the principal

point p0 = (u0, v0, 1)
⊤

and the point given by Λv. These

points being collinear may be expressed as:

det (Σe3 | Λv | p0) = 0. (14)

This is an alternative representation of the centre line

constraint. It links the aspect ratio (contained in Λ, cf.

(7)), the principal point, and the parameters µ, λ, β, α of

the plane’s metric structure (in Σ and v). This constraint is

the basis for our self-calibration approach, cf. §5.2.

principal point

pole of the vanishing line

vertex of the pencil

d1

d2

φ
∈

P

v →
∞

Λv

Pi
−

Pi+

Figure 2: The pole of the vanishing line v w.r.t. Λ, the vertex of
the line pencil P (containing d1,d2) and the principal point are
aligned; Pi± denote the image of the CP i± under P.

Further notes. Within the above geometrical framework

based on the line pencil P , we give the following proposi-

tions (proofs are straightforward). (1) From (13), it follows

that the vertex of P is the pole of the image plane’s line at

infinity w.r.t. Σ. (2) The intersection point of the centre line

and the line at infinity is the pole of the vanishing line w.r.t.

Λ, i.e. φ × e3 = Λv.

The centre line constraint has never been used in image

rectification. In [5, pp. 57-63], a “rectangle ambiguity prob-

lem” in the estimation of the image of the CDCP from the

four angles of a rectangle is mentioned, that might be solved

by adding (14), with u0, v0, τ supposedly known.

5. Plane-Based Self-Calibration

5.1. Existing Non-Linear Solutions

“Basic” constraints on the IAC and ICP. In [13], a solu-

tion is given for plane-based calibration in the case of con-

stant internal parameters, which has been extended in [3,

§ 18.7, pp. 470-471] to the “varying focal length” case. Ge-

ometrically, this approach is based on two main ideas. First,

the ICP (which encode the metric structure of the plane) are

mapped from image to image via the inter-image homogra-

phies Hij ; if we denote by p1± = Pi± the ICP in some

key image (say image 1), then we have pj± = H1jp1±.

Second, the CPs lie on the AC (which encode the internal

parameters of the camera), hence calibration can be seen as

fitting (imaginary) conics ωj (the IACs) to all available ICP

pj±. Two equations are provided by each image j:

(H1jp1±)⊤ωj(H1jp1±) = 0. (15)

Given n inter-image homographies H1j (1 ≤ j ≤ n), the

self-calibration problem is that of solving the system of n
equations (15) for the 3 + m d.o.f. in ω and the 4 d.o.f. in

p1±, where m is the number of unknown focal lengths. If

m = 1, at least 4 inter-image homographies are required; if

m = n, at least 7 are required.

This problem is non-linear and can be solved using iter-

ative methodes. It requires initial values, in particular for

the (possibly different) focal lengths. This critical issue,

already mentioned in [13], motivated us to (1) seek a mini-

mization criterion that would be irrespective of f (see §5.2);

(2) find closed-form solutions for minimal cases (see §5.3).

5.2. A New Non-Linear Solution

The centre line constraint (14) in §4.2 was developed in

terms of the world-to-image homographyP, and is thus suit-

able when the world plane’s structure is known. Here, the

structure is only known indirectly (each image represents

the plane’s projective structure), so we have to adapt the

constraint to the use of inter-image homographies instead

of the world-to-image one. Consider some image as the key

image; let Hi be the inter-image homography matrix from

the key image to image i. Under Hi, the vanishing line v of

the key image transforms into vi = H−⊤

i v; the imaged Σ

of the key image transforms into Σi = HiΣH⊤
i .

It follows that the CL constraint (14) in image i is

det
(

HiΣH⊤
i e3 | ΛH−⊤

i v | p0

)

= 0. (16)

Problem 4 Given n inter-image homography matrices Hi

(1 ≤ i ≤ n), the self-calibration problem of a camera with

a possibly varying focal length is that of solving the system

of n equations (16) for the 2 d.o.f. in p0, the single d.o.f. in

Λ and the 4 d.o.f. in Σ, under the condition null(Σ) = v.

There is a fixed number of 7 unknowns (α, β, λ, µ and

u0, v0, τ) – even in the “varying focal length” case – so that

at least 7 inter-image homographies are required. Once the

constant internal parameters and Euclidean structure are re-

covered, the different focal lengths can be computed using

linear algorithms described in §4.

Implementation. Referring to (16), let us denote by M

the matrix
(

HΣH⊤e3 | ΛH−⊤v | p0

)

(we omit the index

104 Chapter 5. Camera Self-Calibration

for H). A solution to Problem 4 can be obtained by mini-

mizing a cost function depending on det M. This is a non-

linear problem but let us notice that since the condition

null(Σ) = v is directly ensured from the definition of Σ

in (6), no constrained optimization algorithm is required.

An interesting aspect of our formulation is that we

can easily attach a geometric meaning to the alge-

braic quantity det M. Indeed, detM is equal to the

mixed triple product of its three column vectors: this

means3 that δ = 1
k
|m⊤

1 (m2 × m3) |, where k =
√

(m2 × m3)⊤Λ (m2 × m3), represents the distance

from point m1 to (Centre) line (m2 × m3).

In our experiments, we used the non-linear least squares

implementation (Levenberg-Marquardt algorithm) avail-

able in the MATLAB Optimization Toolbox [7].

The Jacobian information for the objective function can

be easily supplied, using the following properties: (1)

detM = (H31 + µH33) detN1 + (H32 + λH33) det N2,

where Ni =
(

Hσi | m2 | m3

)

; σi is the i-th column

of Σ. (2) d detM

dx
= trace

{

dM

dx
adjM

}

, where adjM =
(detM)M−1 is the adjoint matrix of M.

5.3. Direct Solutions

We develop closed-form solutions, based on the assumption

that one image was taken in fronto-parallel position relative

to the world plane (i.e. image and world planes are parallel).

As mentioned in §2, we immediately have the world plane’s

affine structure; equivalently, we now have λ = µ = 0 for

the representations described in §3.2 As mentioned in §2,

we will use the assumption of fronto-parallelism only for

the algorithm initialization. For the subsequent non-linear

optimization, we drop this assumption.

Let us consider what we can say about the ICP in the

fronto-parallel image: they lie on both, the IAC and plane’s

vanishing line (here, the image plane’s line at infinity).

Hence, according to (1), they are given as:
(

τ−1, 0, 0
)⊤

± i (0, 1, 0)
⊤
∼ (1,±τi, 0)

⊤
. (17)

Consequently, using (5), we know that α = 0 and thus,

we can recover the world plane’s Euclidean structure up to

the single unknown β = τ−1.

We now sketch closed-form solutions for various scenar-

ios, depending if the aspect ratio and/or principal point are

known or not, and if the focal length is constant or varying.

In the case of a known aspect ratio, the fronto-parallel im-

age directly gives us the plane’s metric structure, and self-

calibration reduces to calibration [11, 15, 2]. So, in the fol-

lowing, we only consider an unknown aspect ratio.

As shown in (17), the ICP in the fronto-parallel image

can be parameterized by the unknown τ . Using inter-image

homographies, we also parameterize the ICP in the other

3Indices are interchangeable.

images using τ . Let H be the homography, mapping the

fronto-parallel to some other image. The basic calibration

equations (8) then become:

h⊤
1 ωh1 − τ2h⊤

2 ωh2 = 0, h⊤
1 ωh2 = 0. (18)

The second equation is linear and the same as in (8),

hence with 5 or more inter-image homographies, the un-

knowns can be recovered linearly. As for the first equation,

using the fact that τ2 = ω11/ω22, we may reformulate it as

ω22h
⊤
1 ωh1 − ω11h

⊤
2 ωh2 = 0.

This is quadratic in the set of coefficients of ω, with only

ω11 and ω22 appearing squared. In the following, we de-

scribe several minimal cases, but due to lack of space, with-

out much detail. Note that the focal length of the fronto-

parallel image can not be recovered [11], so we ignore it.

In the case of a known principal point, two images,

the fronto-parallel and another one, are sufficient for self-

calibration. The only unknowns are the aspect ratio and

the focal length of the second view (may be different from

that of the fronto-parallel view). We suppose that the im-

ages are centered in the principal point, i.e. we have

ω = diag(τ2, 1, τ2f2). Equations (18) thus become, after

replacing the unknowns by a = τ 2 and b = τ2f2:

H2
21 + a(H2

11 − H2
22) + bH2

31 − abH2
32 − a2H2

12 = 0

H21H22 + aH11H12 + bH31H32 = 0.

The two equations can be reduced a single quadratic one

in b. Writing down explicit closed-form solutions for τ and

f in terms of H is trivial.

In case of an unknown principal point and constant (resp.

varying) focal length, three (resp. four) images are suffi-

cient and the problem can be written as a cubic (resp. quar-

tic) polynomial in one variable. Hence, self-calibration has

a closed-form solution.

6. Experiments

Synthetic data. Self-calibration using the CL constraint

of §5.2 (“CL-NONL-SELF” has first been tested using syn-

thetic data. We compare it with the results of an algo-

rithm using the basic constraints, see §5.1 (“BAS-NONL-
SELF”). For each experiment, the camera has constant inter-

nal parameters with nominal values u0 = 255 ± 50 pixels,

v0 = 255 ± 50 pixels, τ = 1 ± 0.1 (with normal distribu-

tion). For each camera c in each experiment, the inclina-

tion angle between the world and the image plane is set to

30◦ ± 10◦ (except for the first for which it is set to ±10◦);

the angles for azimuth and rotation around the optical axis

are set to 0◦±90◦ (normal distribution); the (varying) focal

length is set to fc = 700 ± 700 pixels (normal distribu-

tion). 100 points are randomly generated in the first image,

then transferred to the others with a of perturbation±1 pixel

(Gaussian noise). The inter-image homographies have been

Paper 9: Methods and Geometry for Plane-Based Self-Calibration, CVPR 2003 [12] 105

estimated using the normalized DLT algorithm of [3], from

the perturbed points. We conducted 200 independent trials

for a number of cameras varying from 8 to 24, with a step

of 2. In Fig. 3, we show the computed absolute errors for

u0, v0, for world coordinates x, y (in mms), and relative er-

rors for τ and the focal lengths (in percent). We also sought

a threshold on the number of cameras for which the “CL-
NONL-SELF” and “BAS-NONL-SELF” algorithms have similar

accuracies. Regarding our tests, this threshold is about 15

views. Typically, the algorithm converges in 5 iterations. A

“good” initialization of the parameters proved to be crucial.

We used the direct solution given in §5.3, except in one case

for “BAS-NONL-SELF”: this case is plotted with the dashed

line with marker ‘*’ and corresponds to focal lengths ini-

tialized to 2000 pixels (which is quite realistic); one notes

that the convergence is significantly affected.

8 10 12 14 16 18 20 22 24
0

20

40

number of views

ab
s.

 e
rr

.
(p

ix
.)

8 10 12 14 16 18 20 22 24
0

20

40

number of views

ab
s.

 e
rr

.
(p

ix
.)

8 10 12 14 16 18 20 22 24
0

0.02

0.04

number of views

re
l.

 e
rr

.
(%

)

8 10 12 14 16 18 20 22 24
0

0.05

0.1

number of views

re
l.

 e
rr

.
(%

)

8 10 12 14 16 18 20 22 24
0

5

number of views

ab
s.

 e
rr

.
(m

m
s)

u0

v0

τ

f

x, y

Figure 3: Self-calibration results. (1) our CL-NONL-SELF

method (“square” marker). (2) BASIC-NONL-SELF (“star”);

dashed line shows influence of a “bad” initialization of f .

Real Images. To evaluate the performance of our non-

linear self-calibration algorithm (“CL-NONL-SELF”), we

compared the results with those obtained by both basic lin-

ear calibration (“BAS-LIN-CAL”) and basic non-linear self-

calibration (“BAS-NONL-SELF”) algorithms. We used 15 im-

ages of a calibration grid (with 80 points), taken from differ-

ent positions (see top of Fig. 4) using a NIKON COOLPIX

800 at 640 × 480 resolution. The corners of the squares

have been extracted in order to compute inter-image homo-

graphies. To avoid critical motions, we took care to ap-

ply significative rotations around the optical axis between

successive shots. The metric structure of the calibration

grid was only used by the calibration algorithm BAS-LIN-
CAL. The principal point and aspect ratio were assumed to

be constant; their estimated values are: (308, 250, 1.0083)
for BAS-LIN-CAL, (325, 253, 0.999) for BAS-NONL-SELF and

(325, 260, 0.999) for our CL-NONL-SELF algorithm. Note

that the relative error between the different aspect ratios is

less than 1%.

There could be variations of the focal length owing to

the camera’s auto-focus, so we assumed f to be varying.

The different focal lengths recovered by the algorithm BAS-
NONL-SELF are: 1368, 1390, 1383, 1352, 1357, 1357, 1371,

1322, 1346, 1352, 1358, 1345, 1390, 1394, 1387, with

mean 1364 and standard deviation around 20 (1%). Table

1 gives the the relative difference (percent) with BAS-LIN-
CAL obtained by CL-NONL-SELF. In brackets, the relative er-

rors with BAS-NONL-SELF are shown (a negative value means

“closer to BAS-LIN-CAL’s estimates”). The relative errors

between the calibration and self-calibration algorithms are

very small (in most cases less than 1%) for all focal lengths.

0.5 (−0.1) 0.4 (−0.1) 1.2 (−0.1) 0.9 (−0.1) 0.7 (0.1)

0.0 (−0.1) 0.3 (0.1) 1.6 (1.0) 0.2 (0.1) 0.3 (0.2)

0.6 (0.3) 0.4 (0.2) 0.9 (0.1) 1.3 (0.0) 0.1 (−0.1)

Table 1: Focal length self-calibration obtained by the CL-NONL-
SELF algorithm from the 15 images of Fig. 4. Relative errors (per-
cent) w.r.t. the BAS-LIN-CAL algorithm are shown. In brackets,
the difference with the BAS-NONL-SELF algorithm.

Calibration images

Figure 4: Calibration from 15 images of a planar pattern suppos-
edly unknown.

Videos of a comic book. We acquired several videos of

a comic book using a handheld digital camcorder (Pana-

sonic NV-MX 300). Acquisitions were started in roughly

fronto-parallel position. The videos were processed auto-

matically to extract and track interest points and to com-

pute inter-image homographies (using a RANSAC-based

method). This and the remaining processing was done on

1 out of every 10 frames. Figure 5 shows 8 of the 20 frames

used for one of the sequences. We used the closed-form so-

lution of §5.3 corresponding to an unknown aspect ratio but

known principal point (image center). This gave the focal

length for every frame but the first, and one estimate of the

aspect ratio per frame. A single value for the aspect ratio

was computed using robust statistics, and used to obtain an

initial solution of the world plane’s metric structure from

the fronto-parallel frame. Then, initial pose estimates for

all frames were obtained [12].

These initial estimates were refined by a bundle adjust-

ment (including position of points on the world plane and

radial distortion). Bundle adjustment was implemented in

106 Chapter 5. Camera Self-Calibration

the usual sparse way, and converged in 2 to 3 iterations,

each iteration taking a few seconds.

The results were compared with calibration values ob-

tained by filming a 3D calibration grid. The aspect ratio was

estimated with 0.2% error (1.0893, compared to a “ground

truth” of 1.0919). The principal point was estimated about

10 pixels off. As for the focal length, the results for the

first half of the frames were bad as expected (frames are

too close to fronto-parallel) whereas for the second half,

the mean value was 1366, which means an error of 3.5%
(ground truth was 1319). Similar results were obtained for

other sequences of the same object.

Figure 5 shows a rectified image of the world plane, ob-

tained from the first frame of the last row in the figure. The

structure is well recovered, considering that the page of the

comic book was not perfectly flat towards its left.

Figure 5: Left: some of the input images. Right: rectified

image of the world plane.

7. Conclusion

We addressed the problem of camera self-calibration, from

inter-image homographies induced by a plane with un-

known metric structure. A non-linear solution, based on

properties of circular points and the absolute conic, was pre-

viously proposed in [13]. This “basic” algorithm proved to

be efficient, but requires a good initial estimate of the focal

length. We solved this issue by first proposing a practical

approach, that simply requires to take one image in roughly

fronto-parallel position. Closed-form solutions for various

configurations were obtained. The assumption of fronto-

parallelism is only used for initialization and dropped for

non-linear optimization.

Another contribution is a new non-linear algorithm, so-

called Centre Line-based, that is irrespective of the (pos-

sibly varying) focal length. The underlying constraint has

already been used for plane-based calibration [2] but is ex-

tended here to self-calibration. This extension involves the

conic dual to the circular points (and all intrinsic parameters

except the focal length). The constraint has a nice geometric

interpretation which gives information about the conditions

under which the Centre Line-based algorithm is efficient

(i.e. by applying rotations around the optical axis). From

n ≥ 15 images, the accuracy of the Centre Line-based algo-

rithm is similar to the basic algorithm, while having a lower

algorithmic complexity: O(n) instead of O(n3). The need

of n ≥ 15 images can be explained by the intuition that the

Centre Line-based algorithm has a higher number of criti-

cal configurations than the basic one. Anyway, thanks to the

low algorithmic complexity and given that there exist “real-

time” algorithms for estimating inter-image homographies

[4], one can intend to carry out self-calibration using a large

set of images in order to reach a high accuracy.

References
[1] M. Armstrong, A. Zisserman, P. Beardsley. Euclidean Struc-

ture from Uncalibrated Images. BMVC, pp. 509-518, 1994.
[2] P. Gurdjos and R. Payrissat. Plane-based Calibration of a

Camera with Varying Focal Length: the Centre Line Con-
straint. BMVC, 623-632, 2001.

[3] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[4] F. Jurie and M. Dhome. A simple and efficient template
matching algorithm, ICCV, 2001.

[5] D. Liebowitz. Camera Calibration and Reconstruction of
Geometry from Images. PhD Thesis, Oxford, 2001.

[6] E. Malis and R. Cipolla. Multi-view Constraints between
Collineations: Application to Self-Calibration from Un-
known Planar Structures. ECCV, vol. 2, pp. 610-624, 2000.

[7] Optimization Toolbox User’s Guide. Version 2. The Math-
Works, Inc. September 2000.

[8] M. Pollefeys and L. Van Gool and M. Proesmans. Euclidean
3D Reconstruction from Image Sequences with Variable Fo-
cal Lengths. ECCV, pp. 31-42, 1996.

[9] J.-V. Poncelet. Applications d’Analyse et de Géométrie -
Traité des Propriétés Projectives des Figures. Tome I. Im-
primerie de Mallet-Bachelier, Paris. 1862.

[10] G. Sparr and L. Nielsen. Shape and Mutual Cross-ratios with
Applications to Exterior, Interior and Relative Orientation.
ECCV, pp. 607-609, 1990.

[11] P. Sturm and S. Maybank. On Plane-Based Camera Cali-
bration: a General Algorithm, Singularities, Applications.
CVPR, pp. 432-437, 1999.

[12] P. Sturm. Algorithms for Plane-Based Pose Estimation.
CVPR, pp. 1010-1017, 2000.

[13] B. Triggs. Autocalibration from Planar Scenes. ECCV, pp.
89-105, 1998.

[14] C. Zeller. Calibration projective, affine et euclidienne en vi-
sion par ordinateur et application à la perception tridimen-
sionnelle. PhD Thesis, École Polytechnique, 1996.

[15] Z. Zhang. A Flexible New Technique for Camera Calibra-
tion. PAMI, vol. 22, no. 11, pp. 1330-1334. 2000.

[16] Z. Zhang. Camera Calibration with One-Dimensional Ob-
jects. ECCV, vol. 4, pp. 161-174, 2002.

Paper 9: Methods and Geometry for Plane-Based Self-Calibration, CVPR 2003 [12] 107

Nonlinear Estimation of the Fundamental
Matrix with Minimal Parameters

Adrien Bartoli and
Peter Sturm, Member, IEEE Computer Society

Abstract—The purpose of this paper is to give a very simple method for

nonlinearly estimating the fundamental matrix using the minimum number of seven

parameters. Instead of minimally parameterizing it, we rather update what we call

its orthonormal representation, which is based on its singular value decomposition.

We show how this method can be used for efficient bundle adjustment of point

features seen in two views. Experiments on simulated and real data show that this

implementation performs better than others in terms of computational cost, i.e.,

convergence is faster, although methods based on minimal parameters are more

likely to fall into local minima than methods based on redundant parameters.

Index Terms—Structure-from-motion, bundle adjustment, minimal

parameterization, fundamental matrix.

�

1 INTRODUCTION

THE fundamental matrix has received a great interest in the

computer vision community, see, e.g., [5], [6], [11], [12], [20], [23],

[24]. It encapsulates the epipolar geometry or the projective motion

between two uncalibrated perspective cameras and can be used for

3D reconstruction, motion segmentation, self-calibration, etc.

Accurately estimating the fundamental matrix is therefore a major

research issue. Most of the time, point correspondences between

the two images are used. A linear solution is obtained using the

8-point algorithm [5], [11] optionally embedded in a robust

estimation scheme [20], [23]. This estimate is then nonlinearly

refined by minimizing a physically meaningful criterion that may

involve reconstructed 3D point coordinates as well (in particular

for bundle adjustment). However, nonlinearly estimating the

fundamental matrix suffers from the lack of a simple technique

to represent it efficiently. This paper, which is an extension of [2],

provides such a technique in Section 3, based on the orthonormal

representation of the fundamental matrix that we introduce. We

show in Section 4 how this method can be used to refine the

fundamental matrix by bundle adjustment of point features. We

demonstrate experimentally in Sections 5.1 and 5.2 that the

resulting algorithm performs better than existing ones in terms

of computational cost.

2 NOTATIONS AND RELATION TO PREVIOUS WORK

The fundamental matrix denoted as F is a homogeneous (i.e.,
defined up to scale) ð3� 3Þ rank-2 matrix. It therefore has nine
entries, but only 7 degrees of freedom.

There have been many attempts to minimally parameterize it,
i.e., to represent it with seven parameters. Most of the previous
works deal with directly parameterizing the epipolar geometry.
The fundamental matrix F is decomposed into the epipoles e and
e0 and the epipolar transformation, which is a 1D projective
transformation relating the epipolar pencils, represented by a
homogeneous ð2� 2Þ matrix g [4], [12], [23].

Representing these entities with minimal parameters requires
eliminating their arbitrary scale factors. This can be done by fixing,
e.g., the 2-norm of homogeneous entities, but then the parameter-
ization would not be minimal. Another solution is to freeze one
entry of each homogeneous entity (in practice, the largest entry),
which yields three possibilities for each epipole and four for the
epipolar transformation, so 3 � 3 � 4 ¼ 36 possible parameterizations.

In [12], the authors propose to restrict the two-view configura-
tions considered to the cases where both epipoles are finite and can
therefore be expressed in affine coordinates. Consequently, this
parameterization can be used only when both epipoles do not lie at
infinity. Due to the homogeneity of the epipolar transformation,
four distinct parameterizations are still necessary for g. A total of
four parameterizations are then needed to represent this restricted
set of fundamental matrices.

The method has been extended in [23] to the general case, i.e.,
when the epipoles can be either finite or infinite. In this case, it is
shown that all 36 distinct parameterizations are necessary. This
leads to a cumbersome and error-prone implementation of the
optimization process.

Note that there are nine different possibilities to form the
fundamental matrix—or any other 2D entity such as the extended
epipolar transformation [4] or the canonic plane homography H?

[13]—from e, e0, and g [23].
In [4], [24], the method has been revised so as to reduce the

number of parameterizations using image transformations. In [4],
the image transformations used are metric and the number of
distinct parameterizations is restricted to three plus one bilinear
constraint on the entries of g, while, in [24], the transformations
used are projective, which allows one to reduce the number of
parameterizations to one. The main drawback is that in the
transformed image space, the original noise model on the image
features is not preserved. A means to preserve it, up to first order
approximation, has been proposed in [24] for the gradient-
weighted criterion, which is not the one used for bundle
adjustment.

Another solution is the point-based parameterization of [19].
The idea is to represent the fundamental matrix by a set of 7-point
correspondences. Minimal optimization can then be conducted by
varying one coordinate for each point correspondence. The
fundamental matrix is obtained at each minimization step by
computing the standard 7-point solution, which means that the
null-space of a ð7� 9Þ matrix has to be computed and a cubic
equation has to be solved. There may be up to three solutions. The
one giving the lowest residual error is kept. The disadvantage of
this parameterization is that it is costly to obtain the fundamental
matrix given its parameters (i.e., the 7-point correspondences).
Also, analytic differentiation is not possible.

3 NONLINEAR OPTIMIZATION WITH SEVEN

PARAMETERS

In contrast to the existing work, we do not try to represent the
entire set of fundamental matrices using seven parameters. We
rather locally update it with seven parameters. Before going
further, we illustrate this idea by considering the case of the
nonlinear estimation of 3D rotations, which is simpler and, as will
be seen later, has similarities with the case of the fundamental
matrix.

3.1 The Case of 3D Rotations

There exist many representations of 3D rotations, see, e.g., [18],
including Euler angles, the Gibbs vector, Cayley-Klein parameters,
Pauli spin matrices, axis-and-angle systems, SOð3Þ matrices,1 and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004 1

. The authors are with INRIA Rhone-Alpes, 655 avenue de l’Europe, 38334
Saint Ismier cedex, France. E-mail: {Adrien.Bartoli, Peter.Sturm}@inria.fr.

Manuscript received 30 Apr. 2002; revised 26 Jan. 2003; accepted 19 July
2003.
Recommended for acceptance by M. Irani.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 116437.

1. SOð3Þ is the Lie group of ð3� 3Þ matrices R satisfying R>R ¼ I and
det R ¼ 1.

0162-8828/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

Paper 10: Non-Linear Estimation of the Fundamental Matrix With Minimal Parameters, PAMI 2004 [3] 109

unit quaternions. None of these representations is able to uniquely
represent all 3D rotations with the minimum three parameters. For
that reason, the following scheme is often used for their nonlinear
estimation, see, e.g., [1], [7], [21]. The rotation is represented by an
SOð3Þ matrix R and is locally updated using three parameters by

any well-behaved (locally nonsingular) representation, such as
three Euler angles ��> ¼ ð�1 �2 �3Þ as:

R R Rð��Þ; ð1Þ

where Rð��Þ ¼ Rxð�1Þ Ryð�2Þ Rzð�3Þ is the SOð3Þ matrix representa-
tion of the 3D rotation corresponding to �� with

Rxð�1Þ ¼

1 0 0

0 cos �1 � sin �1

0 sin �1 cos �1

0

B@

1

CA;

Ryð�2Þ ¼

cos �2 0 sin �2

0 1 0

� sin �2 0 cos �2

0

B@

1

CA;

Rzð�3Þ ¼

cos �3 � sin �3 0

sin �3 cos �3 0

0 0 1

0

B@

1

CA:

At the end of each iteration, R is updated and �� is reset to zero.
Hence, at each iteration, the estimated Euler angles are small
(initialized as zero), which makes this representation nonsingular.

3.2 Minimal Update

Following the example of 3D rotations, we propose the orthonormal
representation of the fundamental matrix where more parameters
than degrees of freedom are needed, but that can be easily updated
using the minimum seven parameters.

Given an estimate of the fundamental matrix F obtained using,
e.g., the 8-point algorithm, consider its singular value decomposi-
tion F � U�V>, where U and V are Oð3Þ matrices2 and � a
diagonal one containing the singular values of F. Since F has
rank 2, � � diagð�1; �2; 0Þ, where �1 � �2 > 0 [22]. We can scale �

such that F � U diagð1; �; 0Þ V>, where � ¼ �2=�1 (�1 6¼ 0 since
F 6¼ 0) and 1 � � > 0.

This decomposition shows that any fundamental matrix can be
represented by ðU;V; �Þ, i.e., two Oð3Þmatrices and a scalar, which
form what we call its orthonormal representation. Note that, in the
case � ¼ 1, i.e., when the fundamental matrix is an essential matrix
[8], the orthonormal representation is not unique (see below).

The orthonormal representation is consistent in that it yields
3þ 3þ 1 ¼ 7 degrees of freedom. The fundamental matrix can be
recovered as:

F � u1v
>
1 þ �u2v

>
2 ; ð2Þ

where ui and vi are the columns of U and V, respectively.
This representation suggests the following update scheme. Each

Oð3Þ matrix can be updated using an SOð3Þ matrix, using (1) as in
the case of 3D rotations, while � can be included as such into the
optimization:

U U RðxÞ V V RðyÞ � �þ ��: ð3Þ

Here, x and y are 3-vectors of Euler angles. Intuitively, the
orthonormal representation should be intrinsically well-condi-
tioned since U and V are Oð3Þ matrices.

Completeness. A first question that immediately follows about
the above-proposed method is whether all two-view configura-
tions are covered. Clearly, any fundamental matrix can be
decomposed into two Oð3Þ matrices and a scalar. The question

arises from the fact that U and V are Oð3Þ matrices, which may
have positive or negative determinants, and are updated using
SOð3Þ matrices, RðxÞ and RðyÞ, respectively, which have positive
determinants. Actually, this is not a problem since the signs of U
and V can be freely switched, which accordingly switches the signs
of their determinants, while leaving the corresponding F invariant:
F � ð�UÞ �ð�VÞ>.

Ensuring bounds on �. A second remark is about the bounds
on �: 0 < � � 1. There are several possibilities to ensure them while
leaving the corresponding F invariant. However, we have found
during our experiments that, in practice, this does not affect the
behavior of the underlying optimization process.

Essential matrices. As pointed out previously, in the case of
� ¼ 1, where the fundamental matrix considered is an essential
matrix, the proposed orthonormal representation is not unique: If
U and V represent F, then also U Rzð�Þ and V Rzð�Þ for any �.
This induces that the Jacobian matrix (6) has rank 6, as shown in
Section 4.3. We propose two ways to deal with this singularity.

First, one can use a nonlinear optimization technique that
handles singular parameterizations, e.g., damped Newton-type
techniques. Using Levenberg-Marquardt, we found in our experi-
ments that the singularity does not induce numerical instabilities.

Second, one can avoid singular configurations by properly
normalizing the image points. Indeed, an essential matrix arises
usually from a semicalibrated configuration where the origin of the
coordinate frame in the image lies close to the principal point and
where the image coordinates have been scaled by approximately
the inverse focal length. In practice, the principal point position is
unknown, but it is likely to be close to the image center. Hence,
singular configurations can be avoided by translating the origin of
the coordinate frame off the image center.

4 BUNDLE ADJUSTMENT

In this section, we show how the orthonormal representation can
be used for bundle adjustment of point features qi $ q0i, i 2 1 . . .m

seen in two views, through the minimization of the reprojection
error. Similar results can be derived for other criteria, such as the
minimization of the distances between points and epipolar lines or
the gradient-weighted criterion [12], [23]. However, in order to
obtain the maximum likelihood estimate of the fundamental
matrix, one has also to estimate corrected point positions
bqqi $ bqq0i, i.e., which satisfy exactly the epipolar geometry and,
therefore, correspond to 3D points Qi.

Bundle adjustment consists in minimizing a cost function
described in Section 4.1 over structure and motion parameters. In
projective space, there are 15 inherent degrees of gauge freedom,
due to the coordinate-frame ambiguity. In [9], a general framework
consisting in incorporating gauge constraints up to first order in
numerical estimation is introduced. The method of [15] falls in that
category. Another technique is to let the gauge be free to drift,
sometimes partially, while it is ensured that it does not move too
far at each iteration. These methods are compared to ours in
Section 5.

When the motion is represented by the fundamental matrix, the
gauge is completely eliminated. We call any pair of camera
matrices P and P0 a realization. In Section 4.2, we give analytical
formulae to compute a realization from the orthonormal repre-
sentation of F (as opposed to [12], [19], [23], [24]).

The algorithm is summarized in Table 1.

4.1 Cost Function

Bundle adjustment consists in solving the following optimization
problem, see e.g., [15], [21], [23]: mina;b

P
j r

2
j , where a and b are

respectively motion and structure parameters (or parameters used
to update them), r is the 4m-vector of residual errors defined by:

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004

2. Oð3Þ is the Lie group of ð3� 3Þ matrices R satisfying R>R ¼ I.

110 Chapter 5. Camera Self-Calibration

r>ð4m�1Þ ¼ . . . qi1 � bqqi1 qi2 � bqqi2 q0i1 � bqq0i1 q0i2 � bqq0i2 . . .
� �

;

where bqqi � PQi and bqq0i � P0Qi are predicted image points.

4.2 Computing a Realization

Due to the projective frame ambiguity, there exists a 15-parameter

family of realizations for a given fundamental matrix. A common

choice is the canonic projection matrices given by [13]:

P � ðIð3�3Þ 0ð3�1ÞÞ and P0 � ðH? �e0Þ; ð4Þ

where e0 is the second epipole, given by the left null-vector of F,

F>e0 � 0ð3�1Þ, and H? � ½e0��F is the canonic plane homography

[13]. The arbitrary scalar � fixes the relative scale between H? and

e0. Without loss of generality, we assume that � ¼ jje0jj ¼ 1. Any

other realization can then be obtained by postmultiplying P and P0

by a nonsingular 3D homography.
Computing the canonic projection matrices (4) can be achieved

directly from the orthonormal representation of F. The second

epipole is the last column of U: e0 � u3 (ku3k ¼ 1), so the canonic

plane homography can be formulated as:

H? � ½e0��F � ½u3�� u1v
>
1 þ �u2v

>
2

� �
:

Since U is an Oð3Þ matrix, ½u3��u1 ¼ �u2 and ½u3�u2 ¼ 	u1 which

yields H? � u2v
>
1 � �u1v

>
2 and, thus, the particularly simple and

direct form of the second projection matrix:

P0 � u2v
>
1 � �u1v

>
2 j u3

� �
: ð5Þ

4.3 Analytical Differentiation

Many nonlinear optimization methods necessitate computing the

Jacobian matrix J ¼ ðA j BÞ of the residual vector r with respect to

motion and structure parameters a and b. While this can be

achieved numerically using, e.g., finite differences [16], it may be

better to use an analytical form for both computational efficiency

and numerical accuracy. We focus on the computation of A ¼ @r
@a

since B ¼ @r
@b only depends upon structure parameterization. Let

p0 ¼ vectðP0Þ, where vectð:Þ is the row-wise vectorization. We

decompose Að4m�7Þ ¼
@r
@p0

@p0

@a ¼
�AAð4m�12Þ A

?
ð12�7Þ. Only the 12 entries

of P0 are considered since P is fixed in the canonic reconstruction

basis (4). The matrix �AA ¼ @r
@p0 depends on the chosen realization of

the fundamental matrix, i.e., on the coordinate frame employed.

We have chosen the canonic projection matrices (4). This Jacobian

matrix is employed directly for the overparameterization pro-

posed in [6]. Deriving its analytical form is straightforward. We

therefore concentrate on deriving a closed-form expression for A?.

One of the advantages of the update rule (3) is that there exists a

simple closed-form expression for A?. Nonlinear least squares

with analytical differentiation can be applied based on A?.
Let us consider the orthonormal representation ðU;V; �Þ. The

motion update parameters are minimal and defined by a> ¼

x1 x2 x3 y1 y2 y3 �ð Þ, where x> ¼ ðx1 x2 x3Þ and y> ¼ ðy1 y2 y3Þ are

used to update U and V, respectively. Since U and V are updated

with respect to the current estimate,A? is evaluated at ðU;V; �Þ, i.e.,

at a> ¼ a>0 ¼ ð0
>
ð6�1Þ �Þ. Equation (5) is used to derive a closed-form

expression of the second canonic projection matrix after updating.

By expanding, differentiating and evaluating this expression at a0,

we obtain:

A? ¼
@p0

@a
¼

@p0

@x1

� �
� � �

@p0

@y3

� �
@p0

@�

� �� �
; ð6Þ

where:

@p0=@x1 ¼ vectðu3v
>
1 j � u2Þ

@p0=@x2 ¼ vectð�u3v
>
2 j u1Þ

@p0=@x3 ¼ vectð�u1v
>
1 � �u2v

>
2 j 03�1Þ

@p0=@y1 ¼ vectð��u1v
>
3 j 03�1Þ

@p0=@y2 ¼ vectð�u2v
>
3 j 03�1Þ

@p0=@y3 ¼ vectðu2v
>
2 þ �u1v

>
1 j 03�1Þ

@p0=@� ¼ vectð�u1v
>
2 j 03�1Þ:

ð7Þ

In the general case, rankðA?Þ ¼ 7, but when � ¼ 1, rankðA?Þ ¼ 6

since @p0=@x3 þ @p0=@y3 ¼ 0.
If the minimal method of, e.g., [23] were used, 36 different

Jacobian matrices, one for each parameterization, would have to be

derived.

4.4 Particular Configurations

The epipolar geometry can be decomposed as a pair of epipoles

and the 3-degrees of freedom epipolar transformation [12], [23]. If

one or two of these components are a priori known, it may be

convenient to leave them invariant during optimization of the

fundamental matrix. Such features are easily added to our

estimation method, as follows.
Leaving an epipole invariant. Consider, e.g., the second

epipole encapsulated in the orthonormal representation as the

third column of U. The update U U RðxÞ does not affect u3 if

x1 ¼ x2 ¼ 0. Therefore, freezing the left or the right epipole can be

done by removing x1; x2 or y1; y2, respectively, from the estimation

and updating as U U Rzðx3Þ or V V Rzðy3Þ, respectively.
Leaving the epipolar transformation invariant. The epipoles

are encapsulated by the x1; x2 and the y1; y2 update parameters.

Hence, the 3 degrees of freedom of the epipolar transformation are

contained in the remaining update parameters: x3, y3, and �.

Removing them from the optimization freezes the underlying

epipolar transformation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004 3

TABLE 1
Implementing Our Minimal Estimator within the

Bundle Adjustment Levenberg-Marquardt-Based Framework
Given in [7, p. 574] (Algorithm A4.1)

Note that r is the number of residuals and that the second projection matrix has to
be extracted from the orthonormal representation using (5) (e.g., for computing the
residual vector).

Paper 10: Non-Linear Estimation of the Fundamental Matrix With Minimal Parameters, PAMI 2004 [3] 111

5 EXPERIMENTAL RESULTS

We compare an algorithm based on the orthonormal representa-
tion to other algorithms. We use simulated and real data in
Sections 5.1 and 5.2, respectively. Below, we give details about the
compared methods, the measured quantities, the computation of
an initial suboptimal solution for structure and motion, and the
nonlinear optimization scheme we use.

Compared methods. We compare the following motion
parameterizations:

. FREE directly optimizes the 24 entries of the camera
matrices. The gauge is left free to drift. The 24� 7 ¼ 17

extra parameters are the homogeneous factors of each
camera matrix and the 15-dimensional projective basis.

. NORMALIZED [15] is similar to FREE, but the gauge is
fixed since a normalized coordinate frame is used. This is
done by renormalizing the reconstruction before each step
of the nonlinear minimization and by including first-order
gauge constraints into the minimization. The reconstruc-
tion basis, as well as the homogeneous scale of the camera
matrices are constrained.

. PARFREE [6] partially fixes the gauge by optimizing only
the entries of the second camera matrix, while keeping
P � ðI 0Þ. The 12� 7 ¼ 5 extra parameters are the homo-
geneous scale of the second camera matrix, the global
scene scale, and the position of the plane at infinity.

. MAPS [3], [23] is a minimal parameterization based on
multiple maps.

. ORTHO uses the orthonormal representation proposed in
this paper.

Measured quantities. We measure two quantities characterisic
of a bundle adjustment process, computational cost, i.e., CPU time
to convergence and the error at convergence.

Structure parameterization. We use the structure parameter-
ization proposed in [7] which consists in scaling the reconstructed
points such that their third element is unity. The three remaining
free elements are then optimized. Note that this parameterization
can be used only when a canonical basis enforcing P � ðI 0Þ is
used. Therefore, methods FREE and NORMALIZED have their
own structure parameterization: They optimize the four elements
of each point.

Initialization. We compute an initial solution for the motion
using the normalized 8-point algorithm [5]. Image point coordi-
nates are standardized such that they lie in ½�1 . . . 1�. Each point is
reconstructed by minimizing its reprojection error.

Nonlinear optimization. We use the Levenberg-Marquardt
technique with analytic differentiation. This is a damped Gauss-
Newton method. Let J be the Jacobian matrix and H ¼ J>J the
Gauss-Newton approximation of the Hessian matrix. The damp-
ing consists in augmenting the normal equations H�� ¼ �J>r to
be solved at each iteration: H HþWð�Þ. The parameter � 2 IR

is tuned heuristically, as described in [7], [21]. We try two
approaches for the step control strategy, i.e., the choice of matrix
Wð�Þ. First, in [21], the authors recommend Wð�Þ ¼ �I. This is
the original idea of the Levenberg-Marquardt algorithm [10], [14].
This will be referred to as LM. Second, in [7], the authors
recommend Wð�Þ ¼ ð1þ �Þ diagðHÞ, i.e., multiply the diagonal
entries of H by 1þ �. This strategy is recommended in [16] and is
due to [17]. This will be referred to as SEBER.

Note that gauge freedoms cause H ¼ J>J to be rank-deficient,
but that the damped matrix is guaranteed to have full-rank. Hence,
Levenberg-Marquardt iterations change both the actual estimated
geometry as well as the gauge.

We take advantage of the sparse structure of H and J to
efficiently solve the augmented normal equations, as described in
[7], [21]. More precisely, the sparseness of the structure parameters

is exploited, and the complexity of the computation is Oðmp3Þ,
where m is the number of points and p is the number of motion
parameters. Hence, we can expect the computational cost for an
iteration to be similar for all parameterizations when the number
of points is very large, and to be very different when the number of
points is low.

We stop the estimation when the difference between two
consecutive residual errors is lower than a threshold �, chosen
typically in the range 10�8 � � � 10�4.

5.1 Simulated Data

5.1.1 Experimental Setup

We simulate points lying in a cube with one meter side length,

observed by two cameras looking at the center of the cube. The

standard configuration is the following: The focal length of the

cameras is 1,000 (expressed in number of pixels). They are situated

10 meters away from the center of the cube and the baseline

between them is one meter. The number of simulated points is 50.

We add a centered Gaussian noise on true point positions with a

2-pixel variance. The normal equations are augmented using

method LM. Each parameter of the above-described setup is

independently varied to compare the parameterizations in

different situations. The results are averaged over 100 trials.

Computing the median gives similar results.

5.1.2 Results

Fig. 1 shows the results. We observe that all methods have roughly
the same accuracy, i.e., they give the same reprojection errors, up
to small discrepancies. Further comments on these discrepancies
are given in the next paragraph.

On the other hand, there are quite large discrepancies between

the computational costs of each method. The methods that have

the highest computational costs are NORM and FREE, followed by

PARFREE. The minimal methods MAPS and ORTHO have the

lowest computational cost, roughly the same. These discrepancies

are explained by the fact that redundant methods have more

unknowns to estimate than minimal ones. Solving the normal

equations is therefore more expensive (see below). These observa-

tions are valid for other experiments (not shown here) where the

focal length of the cameras is varied from 500 to 2,000 pixels and

where the baseline is varied from one to three meters. We also

conduct the same experiments while augmenting the normal

equation using SEBER. The same observations as above are valid.

The results for all methods, compared to the LM augmentation, are

worse in terms of both computational cost and reprojection error,

while the discrepancies between the different methods for the

reprojection error are reduced.

We observe that, in our C implementation, the computational

cost of each iteration is dominated by the resolution of the normal

equations, whose size is directly linked to the number of

parameters. We measure the computational cost of an iteration

for the different parameterizations. As said above, the complexity

is linear in the number of points and cubic in the number of motion

parameters. For different numbers of points, we obtain the results

shown in Table 2.
These results show that the differences in computational costs

are largely dominated by the number of motion parameters. The
discrepancies become smaller when the number of points increases
beyond 10,000, which is very large in the case of structure from
motion for two views.

5.1.3 Convergence

As said above, there are small discrepancies in the reprojection
errors achieved by the different methods, see in particular Fig. 1a.

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004

112 Chapter 5. Camera Self-Calibration

These small discrepancies are due to the fact that each parameter-

ization may lead to a different local minimum of the cost function.

To better characterize this phenomenon, we measure the rate of

successful estimations for the different methods against the

distance from the scene to the cameras. An estimation is successful

if it is not improved by any of the other compared method. More

precisely, let M and M0 designate two methods and EMðM
0Þ be the

error achieved by method M initialized by the result of method M0.

We define the success of an estimation made with method M as:

SuccessðMÞ

�
8M0 6¼ M; jEMðINITÞ � EM0 ðMÞj � �

�
;

where � is the threshold used to stop the iterations. We obtain the

results as shown in Table 3.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004 5

Fig. 1. Reprojection error (left column) and CPU time to convergence (right column) measured against different simulation parameters: distance scene to cameras (first

row), image noise (second row), and number of points (third row). Concerning the reprojection error, the curves are almost always undistinguishable, apart from the

initialization. For the CPU time, methods are divided into three groups: (from top to bottom) FREE and NORM, PARFREE, then MAPS and ORTHO.

TABLE 2
Computation Time (Seconds) of an Iteration for

Different Parameterizations

Paper 10: Non-Linear Estimation of the Fundamental Matrix With Minimal Parameters, PAMI 2004 [3] 113

In the light of these results, we can say that methods using

minimal parameters fall into local minimamore often thanmethods

based on redundant parameters. An explanation is that the minimal

parameterizations are nonlinear, while the overparameterizations

are linear, in the entries of the projection matrices. Hence, the local

quadratic approximation of the cost fonction used in Levenberg-

Marquardt is more accurate for overparameterizations.

5.1.4 Essential Matrix

As pointed out in Section 3.2, the orthonormal representation has a

one-dimensional ambiguity when an essential matrix is considered.

We want to check if, in the essential or near-essential cases, the

orthonormal representation could induce numerical instabilities in

the optimization process. For that purpose, we repeat the previous

experiments, with the following two changes.
First, we map the fundamental matrix given by the 8-point

algorithm to the closest essential matrix [8] and use this as an

initial solution for the nonlinear optimization. Hence, the target

epipolar geometry is a fundamental matrix, but the initial solution

is an essential one.
Second, instead of using the coordinates of the points in the

images, we use the coordinates of the points on the retina. Hence,

the underlying true epipolar geometry is represented by an

essential matrix. We run the experiments based on varying the

geometry of the problem for both SEBER and LM.
We obtained results very similar to the previous experiments.

This means that the orthonormal representation can be used for

both fundamental and essential matrices, without inducing

numerical instabilities, when an appropriate nonlinear optimizer

is employed.

5.2 Real Data

We use different pairs of the images shown in Table 4, in order to

cover all possibilities for the epipoles to be close to the images or at

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004

TABLE 3
Convergence Results Shown as Success Rates in Percent

TABLE 4
Reprojection Error at Convergence, E, and CPU Time to Convergence, T , Obtained When Combining Pairs

of Images to Obtain Epipoles Close to the Images or Toward Infinity

114 Chapter 5. Camera Self-Calibration

infinity, with 60 point correspondences. The results are shown in

Table 4. For each combination of images and each algorithm, we

estimate the computational cost and the reprojection error. The last

row of the table shows mean values for each algorithm over the set

of image pairs. Note that, for any image pair, the reprojection error

is the same for all algorithms. Methods ORTHO, PARFREE, and

MAPS give the lowest computational costs, roughly twice as low as

those of methods FREE and NORM. We obtain similar results

using SEBER.

6 CONCLUSIONS

We studied the problem of estimating the fundamental matrix

over a minimal set of seven parameters. We proposed the

orthonormal representation which enables to easily update an

estimate of the fundamental matrix using seven parameters. The

canonic projection matrices can be directly extracted from the

orthonormal representation. The method can be plugged into most

of the (possibly sparse) nonlinear optimizers such as Levenberg-

Marquardt. We gave a closed-form expression for the Jacobian

matrix of the residuals with respect to the motion parameters for

bundle adjustment purposes, necessary for Newton-type optimi-

zation techniques.
We conducted experiments on simulated and real data. Our

conclusions are that the methods based on minimal parameter sets

have lower computational cost, but may be more frequently

trapped in local minima.

ACKNOWLEDGMENTS

The authors would like to thank Bill Triggs for discussions and one

of the anonymous reviewers for very useful comments.

REFERENCES

[1] K.B. Atkinson, ed., Close Range Photogrammetry and Machine Vision. Whittles
Publishing, 1996.

[2] A. Bartoli, “On the Non-Linear Optimization of Projective Motion Using
Minimal Parameters,” Proc. Seventh European Conf. Computer Vision, vol. 2,
pp. 340-354, May 2002.

[3] A. Bartoli and P. Sturm, “Three New Algorithms for Projective Bundle
Adjustment with Minimum Parameters,” Research Report 4236, INRIA,
Grenoble, France, Aug. 2001.

[4] A. Bartoli, P. Sturm, and R. Horaud, “Projective Structure and Motion from
Two Views of a Piecewise Planar Scene,” Proc. Eighth Int’l Conf. Computer
Vision, vol. 1, pp. 593-598, July 2001.

[5] R. Hartley, “In Defence of the 8-Point Algorithm,” Proc. Fifth Int’l Conf.
Computer Vision, pp. 1064-1070, June 1995.

[6] R.I. Hartley, “Projective Reconstruction and Invariants from Multiple
Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 10,
pp. 1036-1041, Oct. 1994.

[7] R.I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge Univ. Press, June 2000.

[8] T.S. Huang and O.D. Faugeras, “Some Properties of the E Matrix in Two-
View Motion Estimation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 11, no. 12, pp. 1310-1312, Dec. 1989.

[9] K. Kanatani and D.D. Morris, “Gauges and Gauge Transformations for
Uncertainty Description of Geometric Structure with Indeterminacy,” IEEE
Trans. Information Theory, vol. 47, no. 5, July 2001.

[10] K. Levenberg, “A Method for the Solution of Certain Non-Linear Problems
in Least Squares,” Quarterly of Applied Math., pp. 164-168, 1944.

[11] H.C. Longuet-Higgins, “A Computer Program for Reconstructing a Scene
from Two Projections,” Nature, vol. 293, pp. 133-135, Sept. 1981.

[12] Q.T. Luong and O. Faugeras, “The Fundamental Matrix: Theory,
Algorithms and Stability Analysis,” Int’l J. Computer Vision, vol. 17, no. 1,
pp. 43-76, 1996.

[13] Q.T. Luong and T. Vieville, “Canonic Representations for the Geometries of
Multiple Projective Views,” Computer Vision and Image Understanding,
vol. 64, no. 2, pp. 193-229, 1996.

[14] D.W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters,” J. Soc. for Industrial and Applied Math., vol. 11, no. 2, pp. 431-
441, June 1963.

[15] P.F. McLauchlan, “Gauge Invariance in Projective 3D Reconstruction,” Proc.
Multi-View Workshop, 1999.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C—The Art of Scientific Computing, second ed. Cambridge Univ.
Press, 1992.

[17] G.A.F. Seber and C.J. Wild, Non-Linear Regression. John Wiley & Sons, 1989.
[18] J. Stuelpnagel, “On the Parametrization of the Three-Dimensional Rotation

Group,” SIAM Rev., vol. 6, no. 4, pp. 422-430, Oct. 1964.
[19] P. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with

Application to Estimating Image Geometry,” Computer Vision and Image
Understanding, vol. 78, no. 1, 2000.

[20] P.H.S. Torr, A. Zisserman, and S.J. Maybank, “Robust Detection of
Degenerate Configurations While Estimating the Fundamental Matrix,”
Computer Vision and Image Understanding, vol. 71, no. 3, pp. 312-333, Sept.
1998.

[21] B. Triggs, P.F. McLauchlan, R.I. Hartley, and A. Fitzgibbon, “Bundle
Ajustment—A Modern Synthesis,” Proc. Int’l Workshop Vision Algorithms:
Theory and Practice, B. Triggs, A. Zisserman, and R. Szeliski, eds., 2000.

[22] R.Y. Tsai and T.S. Huang, “Uniqueness and Estimation of Three-
Dimensional Motion Parameters of Rigid Objects with Curved Surfaces,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 1, pp. 13-27,
Jan. 1984.

[23] Z. Zhang, “Determining the Epipolar Geometry and Its Uncertainty: A
Review,” Int’l J. Computer Vision, vol. 27, no. 2, pp. 161-195, Mar. 1998.

[24] Z. Zhang and C. Loop, “Estimating the Fundamental Matrix by
Transforming Image Points in Projective Space,” Computer Vision and Image
Understanding, vol. 82, no. 2, pp. 174-180, May 2001.

. For more information on this or any computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004 7

Paper 10: Non-Linear Estimation of the Fundamental Matrix With Minimal Parameters, PAMI 2004 [3] 115

116 Chapter 5. Camera Self-Calibration

Part III

Generic Camera Models and Unified

Treatment of Structure from Motion

117

Chapter 6

Calibration

Paper 11 [32]: P. Sturm and S. Ramalingam. A generic concept for camera calibration. In T. Pajdla

and J. Matas, editors, Proceedings of the 8th European Conference on Computer Vision, Prague, Czech

Republic, volume 3022 of Lecture Notes in Computer Science, pages 1–13. Springer-Verlag, May 2004.

Paper 12 [17]: S. Ramalingam, P. Sturm, and S.K. Lodha. Towards complete generic camera calibration.

In Proceedings of the Conference on Computer Vision and Pattern Recognition, San Diego, USA, volume 1,

pages 1093–1098, June 2005.

Paper 13 [16]: S. Ramalingam, P. Sturm, and S. Lodha. Theory and calibration algorithms for axial

cameras. In Proceedings of the Asian Conference on Computer Vision, Hyderabad, India, volume I, pages

704–713, January 2006.

Paper 14 [36]: J.-P. Tardif and P. Sturm. Calibration of cameras with radially symmetric distortion. In Pro-

ceedings of the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras,

Beijing, China, pages 44–51, October 2005.

119

A Generic Concept for Camera Calibration

Peter Sturm1 and Srikumar Ramalingam2

1 INRIA Rhône-Alpes, 38330 Montbonnot, France
Peter.Sturm@inrialpes.fr • http://www.inrialpes.fr/movi/people/Sturm/

2 Dept. of Computer Science, University of California, Santa Cruz, CA 95064, USA

Abstract. We present a theory and algorithms for a generic calibration
concept that is based on the following recently introduced general imag-
ing model. An image is considered as a collection of pixels, and each pixel
measures the light travelling along a (half-) ray in 3-space associated with
that pixel. Calibration is the determination, in some common coordinate
system, of the coordinates of all pixels’ rays. This model encompasses
most projection models used in computer vision or photogrammetry, in-
cluding perspective and affine models, optical distortion models, stereo
systems, or catadioptric systems – central (single viewpoint) as well as
non-central ones. We propose a concept for calibrating this general imag-
ing model, based on several views of objects with known structure, but
which are acquired from unknown viewpoints. It allows in principle to
calibrate cameras of any of the types contained in the general imaging
model using one and the same algorithm. We first develop the theory
and an algorithm for the most general case: a non-central camera that
observes 3D calibration objects. This is then specialized to the case of
central cameras and to the use of planar calibration objects. The validity
of the concept is shown by experiments with synthetic and real data.

1 Introduction

We consider the camera calibration problem, i.e. the estimation of a camera’s
intrinsic parameters. A camera’s intrinsic parameters (plus the associated pro-
jection model) give usually exactly the following information: for any point in
the image, they allow to compute a ray in 3D along which light travels that falls
onto that point (here, we neglect point spread).

Most existing camera models are parametric (i.e. defined by a few intrinsic
parameters) and address imaging systems with a single effective viewpoint (all
rays pass through one point). In addition, existing calibration procedures are
taylor-made for specific camera models.

The aim of this work is to relax these constraints: we want to propose and
develop a calibration method that should work for any type of camera model,
and especially also for cameras without a single effective viewpoint. To do so,
we first renounce on parametric models, and adopt the following very general
model: a camera acquires images consisting of pixels; each pixel captures light
that travels along a ray in 3D. The camera is fully described by:

– the coordinates of these rays (given in some local coordinate frame).
– the mapping between rays and pixels; this is basically a simple indexing.

Paper 11: A Generic Concept for Camera Calibration, ECCV 2004 [32] 121

This general imaging model allows to describe virtually any camera that
captures light rays travelling along straight lines3. Examples (cf. figure 1):

– a camera with any type of optical distortion, such as radial or tangential.
– a camera looking at a reflective surface, e.g. as often used in surveillance, a

camera looking at a spherical or otherwise curved mirror [10]. Such systems,
as opposed to central catadioptric systems [3] composed of cameras and
parabolic mirrors, do not in general have a single effective viewpoint.

– multi-camera stereo systems: put together the pixels of all image planes;
they “catch” light rays that definitely do not travel along lines that all pass
through a single point. Nevertheless, in the above general camera model, a
stereo system (with rigidly linked cameras) is considered as a single camera.

– other acquisition systems, see e.g. [4, 14, 19], insect eyes, etc.

Relation to previous work. See [9, 17] for reviews and references on existing cal-
ibration methods and e.g. [6] for an example related to central catadioptric de-
vices. A calibration method for certain types of non-central catadioptric cameras
(e.g. due to misalignment of mirror), is given in [2].

The above imaging model has already been used, in more or less explicit
form, in various works [8, 12–16, 19, 23–25], and is best described in [8], were
also other issues than sensor geometry, e.g. radiometry, are discussed. There are
conceptual links to other works: acquiring an image with a camera of our general
model may be seen as sampling the plenoptic function [1], and a light field [11]
or lumigraph [7] may be interpreted as a single image, acquired by a camera of
an appropriate design.

To our knowledge, the only previously proposed calibration approaches for
the general imaging model, are due to Swaminathan, Grossberg and Nayar [8,
22]. The approach in [8] requires the acquisition of two or more images of a
calibration object with known structure, and knowledge of the camera or object
motion between the acquisitions. In this work, we develop a completely general
approach, that requires taking three or more images of calibration objects, from
arbitrary and unknown viewing positions. The approach in [22] does not
require calibration objects, but needs to know the camera motion. Calibration
is formulated as a non-linear optimization problem. In this work, “closed-form”
solutions are proposed (requiring to solve linear equation systems).

Other related works deal mostly with epipolar geometry estimation and mod-
eling [13, 16, 24] and motion estimation for already calibrated cameras [12, 15].

Organization. In §2, we explain the camera model used and give some notations.
For ease of explanation and understanding, the calibration concept is first intro-
duced for 2D cameras, in §3. The general concept for 3D cameras is described
in §4 and variants (central vs. non-central camera and planar vs. 3D calibration
objects) are developed in §5. Some experimental results are shown in §6, followed
by discussions and conclusions.

3 However, it would not work for example with a camera looking from the air, into
water: still, to each pixel is associated a refracted ray in the water. However, when
the camera moves, the refraction effect causes the set of rays to move non-rigidly,
hence the calibration would be different for each camera position.

122 Chapter 6. Calibration

2 Camera Model and Notations

We give the definition of the (purely geometrical) camera model used in this
work. It is essentially the same as the model of [8] where in addition other issues
such as point spread and radiometry are treated. We assume that a camera
delivers images that consist of a set of pixels, where each pixel captures/measures
the light travelling along some half-ray. In our calibration method, we do not
model half-rays explicitly, but rather use their infinite extensions – camera rays.
Camera rays corresponding to different pixels need not intersect – in this general
case, we speak of non-central cameras, whereas if all camera rays intersect in
a single point, we have a central camera with an optical center.

Furthermore, the physical location of the actual photosensitive elements that
correspond to pixels, does in general not matter at all. On the one hand, this
means that the camera ray corresponding to some pixel, needs not pass through
that pixel, cf. figure 1. On the other hand, neighborship relations between pixels
are in general not necessary to be taken into account: the set of a camera’s
photosensitive elements may lie on a single surface patch (image plane), but may
also lie on a 3D curve, on several surface patches or even be placed at completely
isolated positions. In practice however, we do use some continuity assumption,
useful in the stage of 3D-2D matching, as explained in §6: we suppose that
pixels are indexed by two integer coordinates like in traditional cameras and that
camera rays of pixels with neighboring coordinates, are “close” to one another.

Curved reflective surface

Image plane of camera
looking at reflective surface

A pixel

The 3D ray of points
that are seen in the
pixel

(seen from the side)
a

Fig. 1. Examples of imaging systems. (a) Catadioptric system. Note that camera rays
do not pass through their associated pixels. (b) Central camera (e.g. perspective, with or
without radial distortion). (c) Camera looking at reflective sphere. This is a non-central
device (camera rays are not intersecting in a single point). (d) Omnivergent imaging
system [14, 19]. (e) Stereo system (non-central) consisting of two central cameras.

3 The Calibration Concept for 2D Cameras

We consider here a camera and scene living in a 2D plane, i.e. camera rays are
lines in that plane. Two images are acquired, while the imaged object undergoes
some motion. Consider a single pixel and its camera ray, cf. figure 2. Figures 2
(b) and (c) show the two points on the object that are seen by that pixel in the
two images. We suppose to be able to determine the coordinates of these two
points, in some local coordinate frame attached to the object (“matching”).

Paper 11: A Generic Concept for Camera Calibration, ECCV 2004 [32] 123

The case of known motion. If the object’s motion between image acquisitions is
known, then the two object points can be mapped to a single coordinate frame,
e.g. the object’s coordinate frame at its second position, as shown in figure 2
(d). Computing our pixel’s camera ray is then simply done by joining the two
points. This summarizes the calibration approach proposed by Grossberg and
Nayar [8], applied here for the 2D case. Camera rays are thus initially expressed
in a coordinate frame attached to the calibration object. This does not matter
(all that counts are the relative positions of the rays), but for convenience, one
would typically choose a better frame. For a central camera for example, one
would choose the optical center as origin or for a non-central camera, the point
that minimizes the sum of distances to the set of camera rays (if it exists).

Note that it is not required that the two images be taken of the same object;
all that is needed is knowledge of point positions relative to coordinate frames
of the objects, and the “motion” between the two coordinate frames.

Fig. 2. (a) The camera as black box, with one pixel and the associated camera ray.
(b) The pixel sees a point on a calibration object, whose coordinates are identified in
a frame associated with the object. (c) Same as (b), for another position of the object.
(d) Due to known motion, the two points on the calibration object can be placed in
the same coordinate frame. The camera ray is then determined by joining them.

The case of unknown motion. This approach is no longer applicable and we
need to estimate, implicitly or explicitly, the unknown motion. We show how to
do this, given three images. Let Q,Q′ and Q′′ be the points on the calibration
objects, that are seen in the same pixel. These are 3-vectors of homogeneous
coordinates, expressed in the respective local coordinate frame. Without loss
of generality, we choose the coordinate frame associated with the object’s first
position, as common frame. The unknown relative motions between the second
and third frames and the first one, are given by 2×2 rotation matrices R

′ and R
′′

and translation vectors t′ and t′′. Note that R′

11
= R′

22
and R′

12
= −R′

21
(same

for R
′′). Mapping the calibration points to the common frame gives points

Q

„

R
′ t′

0T 1

«

Q
′

„

R
′′ t′′

0T 1

«

Q
′′

.

They must lie on the pixel’s camera ray, i.e. must be collinear. Hence, the
determinant of the matrix composed of their coordinate vectors, must vanish:

∣

∣

∣

∣

∣

∣

Q1 R′

11
Q′

1
+ R′

12
Q′

2
+ t′

1
Q′

3
R′′

11
Q′′

1
+ R′′

12
Q′′

2
+ t′′

1
Q′′

3

Q2 R′

21Q
′

1 + R′

22Q
′

2 + t′2Q
′

3 R′′

21Q
′′

1 + R′′

22Q
′′

2 + t′′2Q′′

3

Q3 Q′

3
Q′′

3

∣

∣

∣

∣

∣

∣

= 0 . (1)

124 Chapter 6. Calibration

i Ci Vi

1 Q1Q
′

1Q
′′

3 + Q2Q
′

2Q
′′

3 R′

21

2 Q1Q
′

2Q
′′

3 − Q2Q
′

1Q
′′

3 R′

22

3 Q1Q
′

3Q
′′

1 + Q2Q
′

3Q
′′

2 −R′′

21

4 Q1Q
′

3Q
′′

2 − Q2Q
′

3Q
′′

1 −R′′

22

5 Q3Q
′

1Q
′′

1 + Q3Q
′

2Q
′′

2 R′

11R
′′

21 − R′′

11R
′

21

6 Q3Q
′

1Q
′′

2 − Q3Q
′

2Q
′′

1 R′

11R
′′

22 − R′′

12R
′

21

i Ci Vi

7 Q1Q
′

3Q
′′

3 t′2 − t′′2
8 Q2Q

′

3Q
′′

3 −t′1 + t′′1
9 Q3Q

′

1Q
′′

3 R′

11t
′′

2 − R′

21t
′′

1

10 Q3Q
′

2Q
′′

3 R′

12t
′′

2 − R′

22t
′′

1

11 Q3Q
′

3Q
′′

1 R′′

21t
′

1 − R′′

11t
′

2

12 Q3Q
′

3Q
′′

2 R′′

22t
′

1 − R′′

12t
′

2

13 Q3Q
′

3Q
′′

3 t′1t
′′

2 − t′′1 t′2
Table 1. Non-zero coefficients of the trifocal calibration tensor for a general 2D camera.

This equation is trilinear in the calibration point coordinates. The equation’s
coefficients may be interpreted as coefficients of a trilinear matching tensor; they
depend on the unknown motions’ coefficients, and are given in table 1. In the
following, we sometimes call this the calibration tensor. It is somewhat related
to the homography tensor derived in [18]. Among the 3 · 3 · 3 = 27 coefficients
of the calibration tensor, 8 are always zero and among the remaining 19, there
are 6 pairs of identical ones. The columns of table 1 are interpreted as follows:
the Ci are trilinear products of point coordinates and the Vi are the associated
coefficients of the tensor. The following equation is thus equivalent to (1):

13
∑

i=1

CiVi = 0 . (2)

Given triplets of points Q,Q′ and Q′′ for at least 12 pixels, we may compute
the trilinear tensor up to an unknown scale λ by solving a system of linear
equations of type (2). Note that we have verified using simulated data, that
we indeed can obtain a unique solution (up to scale) for the tensor. The main
problem is then that of extractin the motion parameters from the calibration
tensor. In [21] we give a simple algorithm for doing so4. Once the motions are
determined, the approach described above can be readily applied to compute
the camera rays and thus to finalize the calibration.

The special case of central cameras. It is worthwhile to specialize the calibration
concept to the case of central cameras (but which are otherwise general, i.e. not
perspective). A central camera can already be calibrated from two views. Let Z

be the homogeneous coordinates of the optical center (in the frame associated
with the object’s first position). We have the following collinearity constraint:
˛

˛

˛

˛

˛

˛

Z1 Q1 R′

11Q
′

1 + R′

12Q
′

2 + t′1Q
′

3

Z2 Q2 R′

21Q
′

1 + R′

22Q
′

2 + t′2Q
′

3

Z3 Q3 Q′

3

˛

˛

˛

˛

˛

˛

= Q
′T

0

@

R′

21Z3 −R′

22Z3 R′

22Z2 − R′

21Z1

R′

22Z3 R′

21Z3 −R′

21Z2 − R′

22Z1

Z3t
′

2 − Z2 Z1 − Z3t
′

1 Z2t
′

1 − Z1t
′

2

1

AQ = 0

The bifocal calibration tensor in this equation is a 3×3 matrix and somewhat
similar to a fundamental or essential matrix. It can be estimated linearly from
calibration points associated with 8 pixels or more. It is of rank 2 and its right
null vector is the optical center Z, which is thus easy to compute. Once this is
done, the camera ray for a pixel can be determined e.g. by joining Z and Q.

4 This is similar, though more complicated than extracting (ego-)motion of perspective
cameras from the classical essential matrix [9].

Paper 11: A Generic Concept for Camera Calibration, ECCV 2004 [32] 125

The special case of a linear calibration object. This is equally worthwhile to in-
vestigate. We propose an algorithm in [21], which works but is more complicated
than the algorithm for general calibration objects.

4 Generic Calibration Concept for 3D Cameras

This and the next section describe our main contributions. We extend the con-
cept described in §3 to the case of cameras living in 3-space. We first deal with
the most general case: non-central cameras and 3D calibration objects.

In case of known motion, two views are sufficient to calibrate, and the
procedure is equivalent to that outlined in §3, cf. [8]. In the following, we consider
the practical case of unknown motion. Input are now, for each pixel, three 3D
points Q,Q′ and Q′′, given by 4-vectors of homogeneous coordinates, relative to
the calibration object’s local coordinate system. Again, we adopt the coordinate
system associated with the first image as global coordinate frame. The object’s
motion for the other two images is given by 3 × 3 rotation matrices R

′ and R
′′

and translation vectors t′ and t′′. With the correct motion estimates, the aligned
points must be collinear. We stack their coordinates in the following 4×3 matrix:

0

B

B

@

Q1 R′

11Q
′

1 + R′

12Q
′

2 + R′

13Q
′

3 + t′1Q
′

4 R′′

11Q
′′

1 + R′′

12Q
′′

2 + R′′

13Q
′′

3 + t′′1Q′′

4

Q2 R′

21Q
′

1 + R′

22Q
′

2 + R′

23Q
′

3 + t′2Q
′

4 R′′

21Q
′′

1 + R′′

22Q
′′

2 + R′′

23Q
′′

3 + t′′2Q′′

4

Q3 R′

31Q
′

1 + R′

32Q
′

2 + R′

33Q
′

3 + t′3Q
′

4 R′′

31Q
′′

1 + R′′

32Q
′′

2 + R′′

33Q
′′

3 + t′′3Q′′

4

Q4 Q′

4 Q′′

4

1

C

C

A

. (3)

The collinearity constraint means that this matrix must be of rank less than
3, which implies that all sub-determinants of size 3 × 3 vanish. There are 4 of
them, obtained by leaving out one row at a time. Each of these corresponds to a
trilinear equation in point coordinates and thus to a trifocal calibration tensor
whose coefficients depend on the motion parameters.

Table 2 gives the coefficients of the first two calibration tensors (all 4 are given
in the appendix of [21]). For both, 34 out of 64 coefficients are always zero. One
may observe that the two tensors share some coefficients, e.g. V8 = W1 = R′

31.
The tensors can be estimated by solving linear equation system, and we

verified using simulated random experiments that in general unique solutions
(up to scale) are obtained, if 3D points for sufficiently many pixels (29 at least)
are available. In the following, we give an algorithm for computing the motion
parameters. Let V ′

i = λVi and W ′

i = µWi, i = 1 . . . 37 be the estimated tensors
(up to scale). The algorithm proceeds as follows.

1. Estimate scale factors: λ =
√

V ′2

8
+ V ′2

9
+ V ′2

10
and µ =

√

W ′2

1
+ W ′2

2
+ W ′2

3
.

2. Compute Vi =
V ′

i

λ
and Wi =

W ′

i

µ
, i = 1 . . . 37

3. Compute R
′ and R

′′:

R
′

=

0

@

−W15 −W16 −W17

−V15 −V16 −V17

V8 V9 V10

1

A R
′′

=

0

@

W18 W19 W20

V18 V19 V20

−V11 −V12 −V13

1

A .

They will not be orthonormal in general. We “correct” this as shown in [21].
4. Compute t′ and t′′ by solving a straightforward linear least squares problem,

which is guaranteed to have a unique solution, see [21] for details.

126 Chapter 6. Calibration

Using simulations, we verified that the algorithm gives a unique and correct
solution in general.

i Ci Vi Wi

1 Q1Q
′

1Q
′′

4 0 R′

31

2 Q1Q
′

2Q
′′

4 0 R′

32

3 Q1Q
′

3Q
′′

4 0 R′

33

4 Q1Q
′

4Q
′′

1 0 −R′′

31

5 Q1Q
′

4Q
′′

2 0 −R′′

32

6 Q1Q
′

4Q
′′

3 0 −R′′

33

7 Q1Q
′

4Q
′′

4 0 t′3 − t′′3
8 Q2Q

′

1Q
′′

4 R′

31 0

9 Q2Q
′

2Q
′′

4 R′

32 0

10 Q2Q
′

3Q
′′

4 R′

33 0

11 Q2Q
′

4Q
′′

1 −R′′

31 0

12 Q2Q
′

4Q
′′

2 −R′′

32 0

13 Q2Q
′

4Q
′′

3 −R′′

33 0

14 Q2Q
′

4Q
′′

4 t′3 − t′′3 0

15 Q3Q
′

1Q
′′

4 −R′

21 −R′

11

16 Q3Q
′

2Q
′′

4 −R′

22 −R′

12

17 Q3Q
′

3Q
′′

4 −R′

23 −R′

13

18 Q3Q
′

4Q
′′

1 R′′

21 R′′

11

19 Q3Q
′

4Q
′′

2 R′′

22 R′′

12

i Ci Vi Wi

20 Q3Q
′

4Q
′′

3 R′′

23 R′′

13

21 Q3Q
′

4Q
′′

4 t′′2 − t′2 t′′1 − t′1
22 Q4Q

′

1Q
′′

1 R′

21R
′′

31 − R′′

21R
′

31 R′

11R
′′

31 − R′′

11R
′

31

23 Q4Q
′

1Q
′′

2 R′

21R
′′

32 − R′′

22R
′

31 R′

11R
′′

32 − R′′

12R
′

31

24 Q4Q
′

1Q
′′

3 R′

21R
′′

33 − R′′

23R
′

31 R′

11R
′′

33 − R′′

13R
′

31

25 Q4Q
′

1Q
′′

4 R′

21t
′′

3 − R′

31t
′′

2 R′

11t
′′

3 − R′

31t
′′

1

26 Q4Q
′

2Q
′′

1 R′

22R
′′

31 − R′′

21R
′

32 R′

12R
′′

31 − R′′

11R
′

32

27 Q4Q
′

2Q
′′

2 R′

22R
′′

32 − R′′

22R
′

32 R′

12R
′′

32 − R′′

12R
′

32

28 Q4Q
′

2Q
′′

3 R′

22R
′′

33 − R′′

23R
′

32 R′

12R
′′

33 − R′′

13R
′

32

29 Q4Q
′

2Q
′′

4 R′

22t
′′

3 − R′

32t
′′

2 R′

12t
′′

3 − R32t
′′

1

30 Q4Q
′

3Q
′′

1 R′

23R
′′

31 − R′′

21R
′

33 R′

13R
′′

31 − R′′

11R
′

33

31 Q4Q
′

3Q
′′

2 R′

23R
′′

32 − R′′

22R
′

33 R′

13R
′′

32 − R′′

12R
′

33

32 Q4Q
′

3Q
′′

3 R′

23R
′′

33 − R′′

23R
′

33 R′

13R
′′

33 − R′′

13R
′

33

33 Q4Q
′

3Q
′′

4 R′

23t
′′

3 − R′

33t
′′

2 R′

13t
′′

3 − R′

33t
′′

1

34 Q4Q
′

4Q
′′

1 R′′

31t
′

2 − R′′

21t
′

3 R′′

31t
′

1 − R′′

11t
′

3

35 Q4Q
′

4Q
′′

2 R′′

32t
′

2 − R′′

22t
′

3 R′′

32t
′

1 − R′′

12t
′

3

36 Q4Q
′

4Q
′′

3 R′′

33t
′

2 − R′′

23t
′

3 R′′

33t
′

1 − R′′

13t
′

3

37 Q4Q
′

4Q
′′

4 t′2t
′′

3 − t′3t
′′

2 t′1t
′′

3 − t′′1 t′3

Table 2. Coefficients of two trifocal calibration tensors for a general 3D camera.

5 Variants of the Calibration Concept

Analogously to the case of 2D cameras, cf. §3, we developed important special-
izations of our calibration concept, for central cameras and planar calibration
objects. We describe them very briefly; details are given in [21].

Central cameras. In this case, two images are sufficient. Let Z be the optical
center (unknown). By proceeding as in §3, we obtain 4 bifocal calibration tensors
of size 4 × 4 and rank 2, that are somewhat similar to fundamental matrices.
One of them is shown here:









0 0 0 0
R′

31
Z4 R′

32
Z4 R′

33
Z4 −Z3 + Z4t

′

3

−R′

21
Z4 −R′

22
Z4 −R′

23
Z4 Z2 − Z4t

′

2

R′

21Z3 − R′

31Z2 R′

22Z3 − R′

32Z2 R′

23Z3 − R′

33Z2 Z3t
′

2 − Z2t
′

3









.

It is relatively straightforward to extract the motion parameters and the optical
center from these tensors.

Non-central cameras and planar calibration objects. The algorithm for this case
is rather more complicated and not shown here. Using simulations, we proved
that we obtain a unique solution in general.

Paper 11: A Generic Concept for Camera Calibration, ECCV 2004 [32] 127

Central cameras and planar calibration objects. As with non-central cameras,
we already obtain constraints on the motion parameters (and the optical center)
from two views of the planar object. In this case however, the associated calibra-
tion tensors do not contain sufficient information in order to uniquely estimate
the motion and optical center. This is not surprising: even in the very restricted
case of perspective cameras with 5 intrinsic parameters, two views of a planar
calibration object do not suffice for calibration [20, 26]. We thus developed an
algorithm working with three views [21]. It is rather complicated, but was shown
to provide unique solutions in general.

6 Experimental Evaluation

As mentioned previously, we verified each algorithm using simulated random
experiments. This was first done using noiseless data. We also tested our methods
using noisy data and obtained satisfying results. A detailled quantitative analysis
remains yet to be carried out.

We did various experiments with real images, using a 3M-Pixel digital camera
with moderate optical distortions, a camera with a fish-eye lens and “home-
made” catadioptric systems consisting of a digital camera and various curved
off-the-shelf mirrors. We used planar calibration objects consisting of black dots
or squares on white paper. Figure 3 shows three views taken by the digital
camera.

Fig. 3. Top: images of 3 boards of different sizes, captured by a digital camera. Bottom:
two views of the calibrated camera rays and estimated pose of the calibration boards.

128 Chapter 6. Calibration

Dots/corners were extracted using the Harris detector. Matching of these
image points to points on calibration objects was done semi-automatically. This
gives calibration points for a sparse set of pixels per image, and in general there
will be few, if any, pixels for which we get a calibration point in every view!
We thus take into account the continuity assumption mentioned in §2. For every
image, we compute the convex hull of the pixels for which calibration points were
extracted. We then compute the intersection of the convex hulls over all three
views, and henceforth only consider pixels inside that region. For every such
pixel in the first image we estimate the calibration points for the second and
third images using the following interpolation scheme: in each of these images,
we determine the 4 closest extracted calibration points. We then compute the
homography between these pixels and the associated calibration points on the
planar object. The calibration point for the pixel of interest is then computed
using that homography.

On applying the algorithm for central cameras (cf. §5), we obtained the
results shown in figure 3. The bottom row shows the calibrated camera rays and
the pose of the calibration objects, given by the estimated motion parameters. It
is difficult to evaluate the calibration quantitatively, but we observe that for every
pixel considered, the estimated motion parameters give rise to nearly perfectly
collinear calibration points. Note also, cf. the bottom right figure, that radial
distortion is correctly modeled: the camera rays are setwise coplanar, although
the corresponding sets of pixels in the image are not perfectly collinear.

The same experiment was performed for a fish-eye lens, cf. figure 4. The result
is slightly worse – aligned calibration points are not always perfectly collinear.
This experiment is preliminary in that only the central image region has been
calibrated (cf. figure 4), due to the difficulty of placing planar calibration objects
that cover the whole field of view.

Fig. 4. Left: one of 3 images taken by the fish-eye lens (in white the area that was
calibrated). Middle: calibrated camera rays and estimated pose of calibration objects.
Right: image from the left after distortion correction, see text.

Using the calibration information, we carried out two sample applications, as
described in the following. The first one consists in correcting non-perspective
distortions: calibration of the central camera model gives us a bunch of rays pass-
ing through a single point. We may cut these rays by a plane; at each intersection
with a camera ray, we “paint” the plane with the “color” observed by the pixel

Paper 11: A Generic Concept for Camera Calibration, ECCV 2004 [32] 129

associated with the ray in some input image. Using the same homography-based
interpolation scheme as above, we can thus create a “densely” colored plane,
which is nothing else than the image plane of a distortion-corrected perspective
image. See figure 4 for an example. This model-free distortion correction scheme
is somewhat similar to the method proposed in [5].

Another application concerns (ego-) motion and epipolar geometry estima-
tion. Given calibration information, we can estimate relative camera pose (or
motion), and thus epipolar geometry, from two or more views of an unknown
object. We developed a motion estimation method similar to [15] and applied
it to two views taken by the fish-eye lens. The epipolar geometry of the two
views can be computed and visualized as follows: for a pixel in the first view, we
consider its camera ray and determine all pixels of the second view whose rays
(approximately) intersect the first ray. These pixels form the “epipolar curve”
associated with the original pixel. An example is shown in figure 5. The esti-
mated calibration and motion also allow of course to reconstruct objects in 3D
(see [21] for examples).

Fig. 5. Epipolar curves for three points. These are not straight lines, but intersect in
a single point, since we here use the central camera model.

7 Discussion

The algorithm for central cameras seems to work fine, even with the minimum
input of 3 views and a planar calibration object. Experiments with non-central
catadioptric cameras however did so far not give satisfying results. One reason
for poor stability of the non-central method is the way we currently obtain our
input (homography-based interpolation of calibration points). We also think that
the general algorithm, which is essentially based on solving linear equations, can
only give stable results with minimum input (3 views) if the considered camera is
clearly non-central. By this, we mean that there is not any point that is “close”
to all camera rays; the general algorithm does not work for perspective cameras,
but for multi-stereo systems consisting of sufficiently many cameras5.

5 Refer to the appendix of [21] on the feasibility of the general calibration method for
stereo systems consisting of three or more central cameras.

130 Chapter 6. Calibration

We propose several ideas for overcoming these problems. Most importantly,
we probably need to use several to many images for a stable calibration. We have
developed bundle adjustment formulations for our calibration problem, which is
not straightforward: the camera model is of discrete nature and does not directly
allow to handle sub-pixel image coordinates, which are for example needed in
derivatives of a reprojection error based cost function. For initialization of the
non-central bundle adjustment, we may use the (stabler) calibration results for
the central model. Model selection may be applied to determine if the central
or non-central model is more appropriate for a given camera. Another way of
stabilizing the calibration might be the possible inclusion of constraints on the
set of camera rays, such as rotational or planar symmetry, if appropriate.

Although we have a single algorithm that works for nearly all existing cam-
era types, different cameras will likely require different designs of calibration
objects, e.g. panoramic cameras vs. ones with narrow field of view. We stress
that a single calibration can use images of different calibration objects; in our
experiments, we actually use planar calibration objects of different sizes for the
different views, imaged from different distances, cf. figure 3. This way, we can
place them such that they do not “intersect” in space, which would give less
stable results, especially for camera rays passing close to the intersection region.
We also plan to use different calibration objects for initialization and bundle
adjustment: initialization, at least for the central model, can be performed using
the type of calibration object used in this work. As for bundle adjustment, we
might then switch to objects with a much denser “pattern” e.g. with a coating
consisting of randomly distributed colored speckles. Another possibility is to use
a flat screen to produce a dense set of calibration points [8].

One comment on the difference between calibration and motion estimation:
here, with 3 views of a known scene, we solve simultaneously for motion and cal-
ibration (motion is determined explicitly, calibration implicitly). Whereas once
a (general) camera is calibrated, (ego-)motion can already be estimated from 2
views of an unknown scene [15]. Hence, although our method estimates motion
directly, we consider it a calibration method.

8 Conclusions

We have proposed a theory and algorithms for a highly general calibration con-
cept. As for now, we consider this mainly as a conceptual contribution: we have
shown how to calibrate nearly any camera, using one and the same algorithm.

We already propose specializations that may be important in practice: an
algorithm for central, though otherwise unconstrained cameras, is presented, as
well as an algorithm for the use of planar calibration objects. Results of pre-
liminary experiments demonstrate that the approach allows to calibrate central
cameras without using any parametric distortion model.

We believe in our concept’s potential for calibrating cameras with “exotic”
distortions – such as fish-eye lenses with hemispheric field of view or catadiop-
tric cameras, especially non-central ones. We are working towards that goal,
by developing bundle adjustment procedures to calibrate from multiple images,

Paper 11: A Generic Concept for Camera Calibration, ECCV 2004 [32] 131

and by designing better calibration objects. These issues could bring about the
necessary stability to really calibrate cameras without any parametric model in
practice. Other ongoing work concerns the extension of classical structure-from-
motion tasks such as motion and pose estimation and triangulation, from the
perspective to the general imaging model.

References

1. E.H. Adelson, J.R. Bergen. The Plenoptic Function and the Elements of Early
Vision. Computational Models of Visual Processing, MIT Press, 1991.

2. D.G. Aliaga. Accurate Catadioptric Calibration for Real-time Pose Estimation in
Room-size Environments. ICCV, 127-134, 2001.

3. S. Baker, S. Nayar. A Theory of Catadioptric Image Formation. ICCV, 1998.
4. H. Bakstein, T. Pajdla. An overview of non-central cameras. Proceedings of Com-

puter Vision Winter Workshop, Ljubljana, Slovenia, 2001.
5. P. Brand. Reconstruction tridimensionnelle d’une scène à partir d’une caméra en

mouvement.PhD Thesis, Université Claude Bernard, Lyon, October 1995.
6. C. Geyer, K. Daniilidis. Paracatadioptric Camera Calibration. PAMI, 2002.
7. S.J. Gortler et al.The Lumigraph. SIGGRAPH, 1996.
8. M.D. Grossberg, S.K. Nayar. A general imaging model and a method for finding

its parameters. ICCV, 2001.
9. R.I. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge University Press, 2000.
10. R.A. Hicks, R. Bajcsy. Catadioptric Sensors that Approximate Wide-angle Per-

spective Projections. CVPR, pp. 545-551, 2000.
11. M. Levoy, P. Hanrahan. Light field rendering. SIGGRAPH, 1996.
12. J. Neumann, C. Fermüller, Y. Aloimonos. Polydioptric Camera Design and 3D

Motion Estimation. CVPR, 2003.
13. T. Pajdla. Stereo with oblique cameras. IJCV, 47(1), 2002.
14. S. Peleg, M. Ben-Ezra, Y. Pritch. OmniStereo: Panoramic Stereo Imaging. PAMI,

pp. 279-290, March 2001.
15. R. Pless. Using Many Cameras as One. CVPR, 2003.
16. S. Seitz. The space of all stereo images. ICCV, 2001.
17. C.C. Slama (editor). Manual of Photogrammetry. Fourth Edition, ASPRS, 1980.
18. A. Shashua, L. Wolf. Homography Tensors: On Algebraic Entities That Represent

Three Views of Static or Moving Planar Points. ECCV, 2000.
19. H.-Y. Shum, A. Kalai, S.M. Seitz. Omnivergent Stereo. ICCV, 1999.
20. P. Sturm, S. Maybank. On Plane-Based Camera Calibration. CVPR, 1999.
21. P. Sturm, S. Ramalingam. A Generic Calibration Concept: Theory and Algorithms.

Research Report 5058, INRIA, France, 2003.
22. R. Swaminathan, M.D. Grossberg, and S.K. Nayar. Caustics of Catadioptric Cam-

eras. ICCV, 2001.
23. R. Swaminathan, M.D. Grossberg, S.K. Nayar. A perspective on distortions.

CVPR, 2003.
24. Y. Wexler, A.W. Fitzgibbon, A. Zisserman. Learning epipolar geometry from image

sequences. CVPR, 2003.
25. D. Wood et al.Multiperspective panoramas for cell animation. SIGGRAPH, 1997.
26. Z. Zhang. A flexible new technique for camera calibration. PAMI, 22(11), 2000.

132 Chapter 6. Calibration

Towards Complete Generic Camera Calibration

Srikumar Ramalingam1, Peter Sturm2, and Suresh K. Lodha1

1 Dept. of Computer Science, University of California, Santa Cruz, CA 95064, USA
2 INRIA Rhône-Alpes, GRAVIR-CNRS, 38330 Montbonnot, France

Abstract

We consider the problem of calibrating a highly generic

imaging model, that consists of a non-parametric associa-

tion of a projection ray in 3D to every pixel in an image.

Previous calibration approaches for this model do not seem

to be directly applicable for cameras with large fields of

view and non-central cameras. In this paper, we describe a

complete calibration approach that should in principle be

able to handle any camera that can be described by the

generic imaging model. Initial calibration is performed

using multiple images of overlapping calibration grids si-

multaneously. This is then improved using pose estimation

and bundle adjustment-type algorithms. The approach has

been applied on a wide variety of central and non-central

cameras including fisheye lens, catadioptric cameras with

spherical and hyperbolic mirrors, and multi-camera setups.

We also consider the question if non-central models are

more appropriate for certain cameras than central models.

1. Introduction

This paper is about camera calibration. We adopt a gen-

eral non-parametric imaging model that consists in asso-

ciating one projection ray to each individual pixel. By

projection ray we refer to the 3D (half-) line along which

light travels that falls onto the pixel (here, we neglect point

spread and the finite spatial extent of a pixel). Rays may be

unconstrained, i.e. they may not intersect in a single point,

in which case the camera is called non-central. This general

model has been used in various works [7, 12, 14, 15, 16, 19,

20, 22, 23, 25, 26], and is best described in [7], where prop-

erties other than geometric ones are also considered.

By adopting this model, one may formulate “black-

box calibration” and provide algorithms that allow to cal-

ibrate any camera (see figure 1 for examples), be it of pin-

hole type (with or without optical distortions), catadioptric

[2, 10], pushbroom [8], or some other acquisition system

[15, 20]. Such calibration algorithms have been proposed

in [3, 6, 7, 22]. In this paper, we adopt the approach of [22]

which allows to perform calibration from three images of

a calibration grid, without having to know the motion be-

tween the images. To calibrate the complete image with

only three images, one would need a calibration grid of ap-

propriate dimensions and shape; especially for omnidirec-

tional cameras (fisheye, catadioptric, etc), this will be cum-

bersome to produce and handle. In this paper, we propose a

(a) (b) (c) (d)

Figure 1. Examples of generic imaging model. (a) pinhole camera,

(b) catadioptric with hyperbolic mirror (central), (c) multi-camera,

(d) catadioptric with spherical mirror (non-central).

Figure 2. Examples of complete calibration. Left: 23 calibration

grids, used in calibrating a fisheye. Right: 24 calibration grids

used in calibrating a spherical catadioptric camera.

similar method, that uses multiple images to accurately and

completely calibrate large fields of view.

Our approach works as follows. An initial calibration

is done with images of calibration grids that present suf-

ficient overlap. We then recursively incorporate additional

images: at each step, we select the image that has the largest

overlap with the already calibrated image region. We show

how to compute the pose of the associated calibration grid.

Then, given the pose, one may compute projection rays for

previously uncalibrated pixels, thus enlarging the calibrated

image region. This is iterated until all images have been

used. We also propose a bundle adjustment method that can

be used at any stage of the procedure. This approach and

the underlying methods are developed for both, non-central

and central models, although the central case is described

in more detail here. Besides developing algorithms, we are

also interested in the question if for certain cameras it is

worth going to a full non-central model, cf. also [1, 11].

This paper is organized as follows. The calibration ap-

proach is described in §2 and some variants are proposed

in §3. Practical issues are discussed in §4. Experimental

results are presented in §5, followed by conclusions in §6.

Paper 12: Towards Complete Generic Camera Calibration, CVPR 2005 [17] 133

2. Complete Calibration

We first provide an overview of complete generic camera

calibration. We take several images of a calibration grid

such as to cover the entire image region. Then, matching

between image pixels and points on the calibration grids is

performed. From such matches, we then compute the pose

of each of these grids in a common coordinate system. After

this pose computation, a 3D projection ray is computed for

each pixel, as follows. For all grid points matching a given

pixel, we compute their 3D coordinates (via the pose of the

grids). The pixel’s projection ray is then simply computed

by fitting a straight line to the associated grid points.

For a non-central camera, atleast two grid points per

pixel are of course required. If the camera is (assumed to

be) central however, a single grid point is enough: as will

be seen later, the above stage of pose computation also com-

prises the estimation of the camera’s optical center (in the

same coordinate frame as the grids’ pose). Thus, we com-

pute projection rays by fitting lines to 3D points, but which

are constrained to contain the optical center.

In the following, we describe different parts of our ap-

proach in more detail. In this section, we describe the case

of central cameras. For conciseness, the non-central case

is described more briefly in §3.1. First, we show how to

use the images of multiple grids simultaneously, to com-

pute grid pose and the optical center. It is then shown how

to compute the pose of additional grids. Refinement of cal-

ibration after each step, through bundle adjustment, is then

discussed in §2.3.

2.1 Calibration using Multiple Grids

Our goal is to obtain the poses of multiple calibration

grids w.r.t. a common coordinate system. Let Bi denote

the image region covered by the ith calibration grid, for

i = 1 · · ·n. Let ∪ and ∩ refer to union and intersection op-

erations respectively. The calibration algorithm is applied

to a partial region given by ∪n
i=2(B1 ∩Bi). Once the poses

are computed the calibration is extended to a larger region

given by ∪n
i=1Bi.

We now outline the theory behind calibration using mul-

tiple grids. Consider one pixel and its associated grid points,

with homogeneous coordinates Qi = (Qi
1, Q

i
2, Q

i
3, Q

i
4)

T ,

for grids i = 1 · · ·n. In the following, we consider planar

calibration grids, and thus suppose that Qi
3 = 0. Let the

unknown grid poses be represented by rotation matrices Ri

and translation vectors ti, such that the point Qi, given in

local grid coordinates, is mapped to global coordinates via

(

Ri ti

0T 1

)









Qi
1

Qi
2

0
Qi

4









(1)

Furthermore, let O = (O1, O2, O3, 1) be the coordinates

of the camera’s optical center. As global coordinate system,

we adopt, without loss of generality, the reference frame of

the first grid, i.e. R1 = I and t1 = 0.

We now show how to estimate the unknown grid poses

and the optical center. This is based on the following

collinearity constraint: with the correct poses, the grid

points associated with one pixel, after mapping into the

global coordinate system via (1), must be collinear, and in

addition, collinear with the optical center. This is because

all these points must lie on the pixel’s projection ray, i.e. a

straight line. Algebraically, this collinearity constraint can

be formulated as follows. Consider the matrix containing

the coordinates of the collinear points:









O1 Q1
1 R2

11Q
2
1 + R2

12Q
2
2 + t21Q

2
4 · · ·

O2 Q1
2 R2

21Q
2
1 + R2

22Q
2
2 + t22Q

2
4 · · ·

O3 0 R2
31Q

2
1 + R2

32Q
2
2 + t23Q

2
4 · · ·

1 Q1
4 Q2

4 · · ·









(2)

The collinearity of these points implies that this 4× (n+
1) matrix must be of rank smaller than 3. Consequently, the

determinants of all its 3 × 3 submatrices must vanish. This

gives equations linking calibration point coordinates and the

unknowns (camera poses and optical center). On using the

first column (optical center) and two other columns with Qj

and Qk to form a submatrix, we get bilinear equations in

terms of calibration point coordinates Qj and Qk. Hence,

we may write the equations in the form:

(

Qj
)T

T3×3Q
k = 0 (3)

This matrix T (a bifocal matching tensor), depends on

camera pose and optical center, in a way specific to which

3 × 3 submatrix of (2) is considered. Using (3), we esti-

mate such tensors T from available correspondences. Since

3×3 submatrices can be obtained by removing one row and

n− 2 columns at a time, we have 4×
(

n+1
3

)

possible match-

ing tensors T . However, using simulations we observed

that not all of them can be estimated uniquely from point

matches. Let Tijk;i′j′k′ represent the tensor corresponding

to the submatrix with rows (i, j, k) and columns (i′, j′, k′).
In the following, we use 2× (n− 1) constraints of the form

Tx34;12y, (x = 1, 2; y = 3 · · ·n) for calibration, i.e. con-

straints combining the optical center and the first grid, with

the other grids. For these tensors, the equation (3) takes the

following form:
∑9

i=1 C
y
i V

y
i = 0 and

∑9
i=1 C

y
i W

y
i = 0

for T134;12y and T234;12y respectively. Here, C
y
i = Q1

jQ
y
k,

for appropriate indices j, as shown in Table 1.

V
y
i and W

y
i are computed up to scale using least squares.

Note that they share some coefficients (e.g. R
y
3,1), hence

they can be estimated up to the same scale factor, λy .

We perform this step for (n − 1) constraints by choosing

y = 3 · · ·n. We now combine all the coupled variables

134 Chapter 6. Calibration

Table 1. Tensors T134;12y and T234;12y for a central camera.
i j k V

y

i
W

y

i

1 1 1 0 R
y

3,1

2 1 2 0 R
y

3,2

3 1 4 0 −O3 + t
y

3

4 2 1 R
y

3,1 0

5 2 2 R
y

3,2 0

6 2 4 −O3 + t
y

3
0

7 4 1 −O2R
y

3,1 + O3R
y

2,1 −O1R
y

3,1 + O3R
y

1,1

8 4 2 −O2R
y

3,2 + O3R
y

2,2 −O1R
y

3,2 + O3R
y

1,2

9 4 4 −O2t
y

3
+ O3t

y

2
−O1t

y

3
+ O3t

y

1

contained in the different tensors, to obtain the following

system which links the pose variables of all the grids.

2

4

H2

6×2
J6×6 .. 06×6

..

Hn
6×2

06×6 .. J6×6

3

5

2

6

6

6

4

−O1

−O2

X2

6×1

..

Xn
6×1

3

7

7

7

5

=

2

4

Y 2

6×1

..

Y n
6×1

3

5 , (4)

H
i =

2

6

6

6

6

6

6

4

0 V i
4

0 V i
5

0 V i
6

V i
4

0

V i
5

0
V i
6

0

3

7

7

7

7

7

7

5

, J =

2

6

6

6

6

6

4

0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

3

7

7

7

7

7

5

,

X
i =

2

6

6

6

6

6

6

4

λiO3(ti
1
− O1)

λiO3(ti
2
− O2)

λiO3Ri
1,1

λiO3Ri
1,2

λiO3Ri
2,1

λiO3Ri
2,2

3

7

7

7

7

7

7

5

, Y
i =

2

6

6

6

6

6

6

4

V i
7

V i
8

V i
9

W i
7

W i
8

W i
9

3

7

7

7

7

7

7

5

We rewrite equation (4) as follows:

A6(n−1)×(2+6(n−1))Z2+6(n−1) = Y6(n−1)

Since A is of rank 6(n−1), we obtain the (2+6(n−1))
variables (Z ′s) up to a linear combination of three vectors.

The coefficients of the linear combination are computed us-

ing orthogonality constraints on rotation matrices Ri. More

details are given in [18].

Using the definition of Z , it is possible to compute the

pose variables uniquely except for a sign ambiguity in n

variables: there are two mirror solutions for each grid’s pose

(they can lie on either side of the optical center). In the case

of a pinhole camera we can resolve this ambiguity by ap-

plying the constraint that the grids must lie on the same side

of the optical center. However this constraint becomes dif-

ficult to apply for omnidirectional cameras where the grids

essentially get distributed around the center. We apply the

following technique. First we arbitrarily select one solution

for the first grid’s pose. Then we identify the correct loca-

tion of each of the other grids by minimizing their distance

with an already fixed grid, with which it has some overlap.

This is easily achieved because we usually collect images

in succession and not in a completely random order.

Having determined the pose of grids and the optical cen-

ter, we now compute projection rays for all pixels that have

at least one matching point in one of the grids used here.

2.2 Pose Estimation of Additional Grids

We suppose here that a partial calibration of the camera

has been performed with the method of the previous section.

The calibration is partial because only grids whose projec-

tion in the image had some overlap with one of the grids

(“the first grid”) were used. In order to make the calibration

complete, we use the pose estimation technique, described

in our earlier work [17], to include additional grids, which

do not have any overlap with the first grid, but with some of

the others. A 4th degree polynomial equation is solved to

compute the pose and the correct solution is identified from

the ambiguous ones as given in [9].

2.3 Bundle Adjustment

We use bundle adjustment [24] to refine the pose of all

grids (except for the first one) and the projection rays. Dur-

ing bundle adjustment, we minimize the generic ray-point

distance metric [17], i.e. the sum of distances between a

grid point and the projection ray of a pixel that has seen that

point. This can be applied at any stage of our approach;

we apply it after the initial calibration using multiple grids

(cf. §2.1), for refining the pose of each additional grid (cf.

§2.2), as well as at the end of the whole calibration [18].

3. Variants

3.1. Non­Central Cameras

In the non-central case, collinearity constraints require 3

or more grid points per pixel, instead of 2 for central cam-

eras (where the optical center, though unknown, is taken

into account). We use the same notations as in §2.1. For a

non-central camera, we apply the collinearity constraint on

the region given by ∪n
i=3(B1∩B2∩Bi). Once the poses are

computed the calibration is eventually extended to a larger

region given by ∪i,j=1···n;i6=j(Bi ∩ Bj).
We now summarize the calibration procedure, analo-

gously to §2.1. We have no optical center here, so do con-

sider the following 4 × n matrix of collinear points:








Q1
1 R2

11Q
2
1 + R2

12Q
2
2 + t21Q

2
4 · · ·

Q1
2 R2

21Q
2
1 + R2

22Q
2
2 + t22Q

2
4 · · ·

0 R2
31Q

2
1 + R2

32Q
2
2 + t23Q

2
4 · · ·

Q1
4 Q2

4 · · ·









Similarly to the central case we can apply the collinear-

ity constraint by equating the determinant of every 3 × 3
submatrix to zero. Using simulations we found, as in the

central case, that not all of these provide unique solutions.

In contrast to the central case, where we used the center and

the first grid to build a system linking all the pose variables,

we here use the first and second grid to build the system.

Thus we have 3 × (n − 2) possible tensors, represented by

T3jk;12y , (j, k ∈ {1, 2, 4}, y = 3 · · ·n). As in the central

Paper 12: Towards Complete Generic Camera Calibration, CVPR 2005 [17] 135

case, we are able to use these tensors to estimate the poses

of all the grids. More details are given in [18].

The next step of the calibration chain, pose estima-

tion and computation of further projection rays, is also

slightly different compared to central cameras (cf. §2.2).

Here, the calibration region is extended to Ck+1 =
∪i,j=1···n;i6=j(Bi ∩ Bj), i.e. it contains all pixels that are

matched to at least 2 grid points. As for the actual pose esti-

mation, it can be formulated in the same way as for central

cameras, but may lead to a set of 8 solutions that does not

contain reflected pairs [4, 13, 17]. Disambiguation can be

carried out using additional points besides the 3 used for the

minimal pose routine.

3.2. Slightly Non­Central Cameras

For slightly non-central cameras like fisheye, spherical

or hyperbolic catadioptric cameras, we start by running the

central version of the generic calibration to obtain an ini-

tial partial calibration. Typically we use four or five images

simultaneously to calibrate an image region and then use

pose estimation to add other images and cover the rest of

the image region. Next, we relax the central assumption;

projection rays are first computed from grid points, without

enforcing them to pass through an optical center. After this,

a non-central bundle adjustment is performed [18].

3.3. Selecting the Best Camera Model

The non-central calibration algorithm of §3.1, can not be

used as such to calibrate a central camera: data (pixel-to-

grid correspondences) coming from a central camera, will

lead to a higher rank-deficiency in the linear solution of the

tensors, causing an incorrect calibration (although residuals

will be lower). However, we may, by analyzing the rank

of the underlying equation system, detect this problem and

maybe even classify the camera as being central and then

apply the appropriate calibration algorithm. More gener-

ally speaking, this is a model selection problem, and the

rank-analysis or any other solution will allow to build a truly

complete black box calibration system.

To this end, we have to take into account a few interme-

diate camera models that may be encountered in practice.

One such case is the class of cameras for which there exists

a single line that cuts all projection rays (we call them ax-

ial cameras). Examples are the classical two-camera stereo

systems (the mentioned line is the baseline joining the two

optical centers) and certain non-central catadioptric cam-

eras, e.g. all catadioptric cameras with a spherical mirror. A

yet more special class of cameras are so-called crossed-slits

cameras [5], which encompass pushbroom cameras [8]. We

are currently specializing our calibration approach to these

additional general classes of camera types. Overall, it seems

that these 4 classes (central, axial, crossed-slits, fully non-

central) and their associated calibration algorithms, maybe

with a few additional classes, should be sufficient to cali-

brate most cameras.

Besides considering these general camera types, we

may also discuss the choice between parametric and non-

parametric models for a given camera. Generic calibration

not only allows to calibrate any camera system by treating

it as a black box, it also provides the ability to easily ob-

tain a parametric calibration once the model for the cam-

era is known. Every parametric calibration will just be a

model-fitting problem, which can be solved as a non-linear

optimization problem starting with the good initial solution

obtained using generic calibration.

4. Practical Issues

First, we found that grids with circular targets, using

point spread function to compute the centers, provide sta-

ble calibration compared to checkerboard patterns.

Secondly, the usage of grids with very different orienta-

tions and positions is important for stable calibration. One

way to easily achieve this is to use calibration grids of dif-

ferent sizes and to put them at different distances from the

camera (together with sufficient orientation differences).

Thirdly, by using a combination of local 4-point homog-

raphy based prediction, local collinearity and orthogonality

constraints, we start from four features (circular targets or

corners), located at the corners of a square, and incremen-

tally extend the matching of image features to grid coordi-

nates along all directions. This approach worked automat-

ically for all pinhole images as well as for several fisheye

and catadioptric images. However we also had to use man-

ual input for some images.

The last issue is concerned with a required interpolation

process: for every grid point in the first image we compute

the interpolated points in the other grids’ coordinate sys-

tems (since for other grids, the extracted targets or corners

do not lie on the same pixels in general). To take care of

the noise we impose collinearity constraints (globally for

central cameras and locally for non-central cameras) dur-

ing interpolation process for the originally collinear corners

in the calibration grids [18]. This improved the numerical

stability of the results significantly.

5. Experiments and Results

We have calibrated a wide variety of cameras (both cen-

tral and non-central) as shown in Table 2. Results are first

discussed for several “slightly non-central” cameras, and

then for a multi-camera system.

Slightly non-central cameras: central vs. non-central

models. For three cameras (a fisheye, a hyperbolic and

a spherical catadioptric system, see sample images in Fig-

ure 3), we applied both, central calibration and the proce-

dure explained in § 3.2, going from central to non-central.

136 Chapter 6. Calibration

Table 2. Bundle adjustment statistics for different cameras. (C)

and (NC) refer to central and non-central calibration respectively,

and RMS is the root-mean-square residual error of the bundle ad-

justment (ray-point distances). It is given in percent, relative to the

overall size of the scene (largest pairwise distance between points

on calibration grids).

Camera Images Rays Points RMS

Pinhole (C) 3 217 651 0.04

Fisheye (C) 23 508 2314 0.12

(NC) 23 342 1712 0.10

Sphere (C) 24 380 1441 2.94

(NC) 24 447 1726 0.37

Hyperbolic (C) 24 293 1020 0.40

(NC) 24 190 821 0.34

Multi-Cam (NC) 3 1156 3468 0.69

Eye+Pinhole (C) 3 29 57 0.98

Table 3. RMS error for circle fits to grid points, for turntable se-

quences (see text).

Camera Grids Central Non-Central

Fisheye 14 0.64 0.49

Spherical 19 2.40 1.60

Hyperbolic 12 0.81 1.17

Table 2 shows that the bundle adjustment’s residual errors

for central and non-central calibration, are very close to one

another for the fisheye and hyperbolic catadioptric cameras.

This suggests that for the cameras used in the experiments,

the central model is appropriate. As for the spherical cata-

dioptric camera, the non-central model has a significantly

lower residual, which may suggest that a non-central model

is better here.

To further investigate this issue we performed another

evaluation. A calibration grid was put on a turntable, and

images were acquired for different turntable positions. We

are thus able to quantitatively evaluate the calibration, by

measuring how close the recovered grid pose corresponds

to a turntable sequence. Individual grid points move on a

circle in 3D; we thus compute a least squares circle fit to the

3D positions given by the estimated grid pose. At the bot-

tom of Figure 3, recovered grid poses are shown, as well as a

circle fit to the positions of one grid point. Table 3 shows the

RMS errors of circle fits (again, relative to scene size, and

given in percent). We note that the non-central model pro-

vides a significantly better reconstruction than the central

one for the spherical catadioptric camera, which thus con-

firms the above observation. For the fisheye, the non-central

calibration also performs better, but not as significantly. As

for the hyperbolic catadioptric camera, the central model

gives a better reconstruction though. This can probably be

explained as follows. Inspite potential imprecisions in the

camera setup, the camera seems to be sufficiently close to

a central one, so that the non-central model leads to overfit-

Figure 3. Top: sample images for hyperbolic (left), spherical (mid-

dle) and eye based catadioptric cameras (right). Bottom: fisyeye

image (left), pose of calibration grids used to calibrate the fisheye

(middle) and a least squares circle fit to the estimated positions of

one grid point (right).

Figure 4. Multi-camera setup consisting of 3 cameras (left). Re-

covered projection rays and grid poses (right).

ting. Consequently, although the bundle adjustment’s resid-

ual is lower than for the central model (which always has

to be the case), it gives “predictions” (here, pose or motion

estimation) which are unreliable.

Calibration of a multi-camera system. A multi-camera

network can be considered as a single generic imaging sys-

tem. As shown in Figure 4 (left), we used a system of three

(approximately pinhole) cameras to capture three images

each of a calibration grid. We virtually concatenated the

images from the individual cameras and computed all pro-

jection rays and the three grid poses in a single reference

frame (see Figure 4 (right)), using the non-central algorithm

described in § 3.1.

In order to evaluate the calibration, we compared results

with those obtained by plane-based calibration [21, 27], that

used the knowledge that the three cameras are pinholes. In

both, our multi-camera calibration, and plane-based calibra-

tion, the first grid was used to fix the global coordinate sys-

tem. We can thus compare the estimated poses of the other

two grids for the two methods. This is done for both, the ro-

tational and translational parts of the pose. As for rotation,

we measure the angle (in radians) of the relative rotation be-

tween the rotation matrices given by the two methods, see

columns Ri in Table 4). As for translation, we measure the

Paper 12: Towards Complete Generic Camera Calibration, CVPR 2005 [17] 137

Table 4. Evaluation of non-central multi-camera calibration rela-

tive to plane-based calibration. See text for more details.

Camera R2 R3 t2 t3 Center

1 0.0117 0.0359 0.56 3.04 2.78

2 0.0149 0.0085 0.44 2.80 2.17

3 0.0088 0.0249 0.53 2.59 1.16

distance between the estimated 3D positions of the grids’

centers of gravity (columns ti in Table 4) expressed in per-

cent, relative to the scene size. Here, plane-based calibra-

tion is done separately for each camera, leading to the three

rows of Table 4.

From the non-central multi-camera calibration, we also

estimate the positions of the three optical centers, by clus-

tering the projection rays and computing least squares point

fits to them. The column “Center” of Table 4 shows the

distances between optical centers (expressed in percent and

relative to the scene size) computed using this approach and

plane-based calibration. The discrepancies are low, suggest-

ing that the non-central calibration of a multi-camera setup

is indeed feasible.

Another experiment we carried out was to calibrate a

small region of the exotic catadioptric system formed with

an eye as mirror, cf. an image in Figure 3 and bundle ad-

justment statistics in Table 2.

6. Summary and Conclusions

We have proposed a non-parametric, generic calibration

approach and shown its feasibility by calibrating a wide va-

riety of cameras. One of the important issues is in the iden-

tification of appropriate models, central or non-central, for

slightly non-central cameras. For understanding complex

cameras or mirror surfaces, where mathematical modeling

might be more demanding, generic calibration can be used

as a black box tool to first obtain the projection rays. The

nature of these projection rays can be experimented further

to identify the right parametric model.

Acknowledgments. We want to thank Tomaš Pajdla,

Branislav Mičušik, Bertrand Holveck and Thomas Bon-

fort for their help in the experiments. This work was par-

tially supported by the Multi University Research Initia-

tive (MURI) grant by Army Research Office under contract

DAA19-00-1-0352 and the NSF grant ACI-0222900.

References

[1] D. Aliaga. Accurate Catadioptric Calibration for Real-size

Pose Estimation of Room-size Environments. ICCV, 2001.

[2] S. Baker and S. Nayar. A Theory of Catadioptric Image For-

mation. ICCV, 1998.

[3] G. Champleboux, S. Lavallée, P. Sautot and P. Cinquin. Ac-

curate Calibration of Cameras and Range Imaging Sensors:

the NPBS Method. ICRA, 1992.

[4] C.-S. Chen and W.-Y. Chang. On Pose Recovery for Gener-

alized Visual Sensors. PAMI, 2004.

[5] D. Feldman, T. Pajdla and D. Weinshall. On the Epipolar

Geometry of the Crossed-Slits Projection. ICCV, 2003.

[6] K.D. Gremban, C.E. Thorpe, and T. Kanade. Geometric

Camera Calibration using Systems of Linear Equations.

ICRA, 1988.

[7] M.D. Grossberg and S.K. Nayar. A General Imaging Model

and a Method for Finding its Parameters. ICCV, 2001.

[8] R. Gupta and R.I. Hartley. Linear Pushbroom Cameras.

PAMI, 1997.

[9] R.M. Haralick, C.N. Lee, K. Ottenberg, and M. Nolle. Re-

view and Analysis of Solutions of the Three Point Perspec-

tive Pose Estimation Problem. IJCV, 1994.

[10] R.A. Hicks and R. Bajcsy. Catadioptric Sensors that

Approximate Wide-angle Perspective Projections. CVPR,

2000.

[11] B. Mičušik and T. Pajdla. Autocalibration and 3D Recon-

struction with Non-central Catadioptric Cameras. CVPR,

2004.

[12] J. Neumann, C. Fermüller, and Y. Aloimonos. Polydioptric

Camera Design and 3D Motion Estimation. CVPR, 2003.

[13] D. Nistér. A Minimal Solution to the Generalized 3-Point

Pose Problem. CVPR, 2004.

[14] T. Pajdla. Stereo with Oblique Cameras. IJCV, 2002.

[15] S. Peleg, M. Ben-Ezra, and Y. Pritch. Omnistereo:

Panoramic Stereo Imaging. PAMI, 2001.

[16] R. Pless. Using Many Cameras as One. CVPR, 2003.

[17] S. Ramalingam, S.K. Lodha, and P. Sturm. A Generic Cross-

Camera Structure-from-Motion Analysis. Omnivis, 2004.

[18] S. Ramalingam, P. Sturm, and S.K. Lodha. Theory and Ex-

periments towards Complete Generic Calibration. Research

Report, INRIA, April, 2005.

[19] S. Seitz and J. Kim. The Space of All Stereo Images. IJCV,

2002.

[20] H.Y. Shum and L.W. He. Rendering with Concentric Mo-

saics. SIGGRAPH, 1999.

[21] P. Sturm and S. Maybank. On Plane-Based Camera Cali-

bration: A General Algorithm, Singularities, Applications.

CVPR, 1999.

[22] P. Sturm and S. Ramalingam. A Generic Concept for Cam-

era Calibration. ECCV, 2004.

[23] R. Swaminathan, M.D. Grossberg, and S.K. Nayar. A Per-

spective on Distortions. CVPR, 2003.

[24] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.

Bundle Adjustment: A Modern Synthesis. Workshop on Vi-

sion Algorithms: Theory and Practice, 2000.

[25] Y. Wexler, A.W. Fitzgibbon, and A. Zisserman. Learning

Epipolar Geometry from Image Sequences. CVPR, 2003.

[26] D.N. Wood, A. Finkelstein, J.F. Hughes, C.E. Thayer, and

D.H. Salesin. Multiperspective Panoramas for Cel Anima-

tion. SIGGRAPH, 1997.

[27] Z. Zhang. A Flexible New Technique for Camera Calibra-

tion. PAMI, 2000.

138 Chapter 6. Calibration

Theory and Calibration for Axial Cameras

Srikumar Ramalingam1&2, Peter Sturm1, and Suresh K. Lodha2

1 INRIA Rhône-Alpes, Montbonnot St Martin, France
{Srikumar.Ramalingam, Peter.Sturm}@inrialpes.fr

2 University of California, Santa Cruz, USA
{lodha}@soe.ucsc.edu

Abstract. Although most works in computer vision use perspective or other central cameras, the inter-
est in non-central camera models has increased lately, especially with respect to omnidirectional vision.
Calibration and structure-from-motion algorithms exist for both, central and non-central cameras. An in-
termediate class of cameras, although encountered rather frequently, has received less attention. So-called
axial cameras are non-central but their projection rays are constrained by the existence of a line that cuts
all of them. This is the case for stereo systems, many non-central catadioptric cameras and pushbroom
cameras for example. In this paper, we study the geometry of axial cameras and propose a calibration
approach for them. We also describe the various axial catadioptric configurations which are more common
and less restrictive than central catadioptric ones. Finally we used simulations and real experiments to
prove the validity of our theory.

1 Introduction

Many camera models have been considered in computer vision and related fields and even more taylor-made
calibration methods have been developed. Most of those are designed for central cameras, but approaches
and studies for non-central or general ones also exist [5–9, 16, 12, 13, 3]. An intermediate class of cameras, lying
between central and fully non-central ones, is that of so-called axial cameras: their projection rays are constrained
by the existence of a line that cuts all of them, the camera axis, but they may not go through a single optical
center.

The axial model is a rather useful one (cf. figure 1(a) and (b)). Many misaligned catadioptric configurations
fall under this model. Such configurations, which are slightly non-central, are usually classified as a non-central
camera and calibrated using an iterative nonlinear algorithm [10, 2, 14]. For example, whenever the mirror is
a surface of revolution and the central camera looking at the mirror lies anywhere on the revolution axis, the
system is of axial type. Furthermore, two-camera stereo systems or systems consisting of three or more aligned
cameras, are axial. Pushbroom cameras [15] are another example, although they are of a more restricted class
(there exist two camera axes [4]).

In this paper, we propose a generic calibration approach for axial cameras, the first to our knowledge. It
uses images of planar calibration grids, put in unknown positions. We show the existence of multi-view tensors
that can be estimated linearly and from which the pose of the calibration grids as well as the position of the
camera axis, can be recovered. The actual calibration is then performed by computing projection rays for all
individual pixels of a camera, constrained to cut the camera axis.

The paper is organized as follows. The problem is formalized in section 2. In section 3, we show what can
be done with two images of calibration grids. Complete calibration using three images, is described in section 4,
followed by a bundle adjustment algorithm in section 5. Various types of axial catadioptric cameras are listed
in section 6. Experimental results and conclusions are given in sections 7 and 8.

2 Problem Formulation

In the following, we will call camera axis the line cutting all projection rays. It will be represented by a 6-vector
L and the associated 4× 4 skew-symmetric Plücker matrix [L]×:

[L]× =









0 −L4 L6 −L2

L4 0 −L5 −L3

−L6 L5 0 −L1

L2 L3 L1 0









The product [L]×Q gives the plane spanned by the line L and the point Q. Consider further the two 3-vectors:

A =





L5

L6

L4



 , B =





L2

L3

L1





Paper 13: Theory and Calibration Algorithms for Axial Cameras, ACCV 2006 [16] 139

(a) (b) (c)

Fig. 1. Examples of axial imaging models (a) stereo camera (b) a mirror formed by rotating a planar curve about an
axis containing the optical center of the perspective camera.(c) Calibration of axial cameras using calibration grids:
The projection rays, camera axis and two grids are shown. The axis intersects at a and b on the first and the second
calibration grids respectively.

for which the Plücker constraint holds: BTA = 0. A represents the point at infinity of the line. The Plücker
matrix can be written as:

[L]× =









0 −L4 L6 −L2

L4 0 −L5 −L3

−L6 L5 0 −L1

L2 L3 L1 0









=

(

[A]× −B

BT 0

)

The calibration problem considered in this paper is to compute projection rays for all pixels of a camera,
from images of planar calibration grids in unknown positions. We assume that dense point correspondences
are given, i.e. for (many) pixels, we are able to determine the points on the calibration grids that are seen in
that pixel. Computed projection rays will be constrained to cut the camera axis. The coordinate system in
which calibration will be expressed, is that of the first calibration grid. Calibration thus consists in computing
the position of the camera axis and of the projection rays, in that coordinate system. The proposed approach
proceeds by first estimating the camera axis and the pose of all grids but the first one.

3 What can be Done with Two Views of Calibration Grids?

Consider some pixel and let Q and Q′ be the corresponding points on the two calibration grids, given as 3D
points in the grids’ local coordinate systems. Since we consider planar grids, we impose Q3 = Q′

3 = 0.
We have the following constraint on the pose of the second grid (R′, t′) as well as the unknown camera axis

L: the line spanned by Q and Q′ cuts L, hence is coplanar with it. Hence, for the correct pose and camera axis,
we must have:

QT[L]×

(

R
′ t′

0T 1

)

Q′ = 0

Hence:




Q1

Q2

Q4





T 



0 −L4 L6 −L2

L4 0 −L5 −L3

L2 L3 L1 0





(

R̄′ t′

0T 1

)





Q′

1

Q′

2

Q′

4



 = 0

where R̄′ refers to the 3 × 2 submatrix of R
′ containing only the first and the second rows. We thus have the

following 3× 3 tensor that can be estimated linearly from point correspondences:

F ∼





0 −L4 L6 −L2

L4 0 −L5 −L3

L2 L3 L1 0





(

R̄′ t′

0T 1

)

(1)

It has only 7 degrees of freedom (9 - 1 for scale, -1 for rank-deficiency) so the 10 unknowns (4 for the camera
axis, 3 for R

′ and 3 for t′) can not be recovered from it.
We now look at what can actually be recovered from F. Let us first notice that its left null-vector is

(L3,−L2, L4)
T

(it truly is the null-vector, as can be easily verified when taking into account the Plücker con-
straint). We thus can recover 2 of the 4 parameters of the camera axis. That null-vector contains actually the

140 Chapter 6. Calibration

coordinates of the camera axis’ intersection with the first grid (in plane coordinates). Its 3D coordinates are

given by (L3,−L2, 0, L4)
T. Similarly, the right null-vector of F gives the plane coordinates of the axis’ intersec-

tion with the second grid. Besides this F also gives constraints on R
′ and t′. For example R

′ can be extracted up
to 2 to 4 solutions. We will later observe that once we locally shift the intersection points, between the camera
axis and calibration grids, to the origins of the respective grids the vector t′ will lie on the camera axis. Inspite
of all these additional constraints, arising from axial geometry, two views of calibration grids are not sufficient
to uniquely extract R

′ and t′. Thus we use three calibration grids as described below.

4 Full Calibration using Three Views of Calibration Grids

Let Q, Q′, Q′′ refer to the grid points corresponding to a single pixel in the three grids. The poses of the
grids are (I,0), (R′, t′) and (R′′, t′′) respectively. Since the three points Q, Q′ and Q′′ are collinear we use this
constraint to extract the poses of the calibration grids [12]. Every 3× 3 submatrix of the following 4× 3 matrix
has zero subdeterminant.

(

Q

(

R
′ t′

0T 1

)

Q′

(

R
′′ t′′

0T 1

)

Q′′

)

The submatrices constructed by removing the first and the second rows lead to the constraints
∑

CiT 1i = 0
and

∑

CiT 2i = 0 respectively (as described in Table 1). These are nothing but homogeneous linear systems
of the form AX = 0. The unknown vector X is formed from the 14 variables (Ci). Each of these variables
are coupled coefficients of the poses of the grids. The matrix A is constructed by stacking the trilinear tensors
T 1 and T 2, which can be computed from the coordinates of Q, Q′ and Q′′. In future when we refer to the
rank of a linear system AX = 0, we refer to the rank of the matrix A. The rank has to be one less than the
number of variables to estimate them uniquely upto a scale. For example, each of the above linear systems must
have a rank of 13 to estimate the coefficients (Ci) uniquely. These systems were used to calibrate completely
non-central cameras [10]. However in the case of axial cameras, these systems were found to have a rank of 12.
This implies that the solution can not be obtained uniquely. In order to resolve this ambiguity we will need
more constraints.

i Motion (Ci) T1i T2i i Motion (Ci) T1i T2i

1 R′

31 Q2Q
′

1Q
′′

4 Q1Q
′

1Q
′′

4 13 R′

22R
′′

32 − R′

32R
′′

22 Q4Q
′

2Q
′′

2 0

2 R′

32 Q2Q
′

2Q
′′

4 Q1Q
′

2Q
′′

4 14 R′

11t
′′

3 − R′

31t
′′

1 0 Q4Q
′

1Q
′′

4

3 R′′

31 −Q2Q
′

4Q
′′

1 −Q1Q
′

4Q
′′

1 15 R′

12t
′′

3 − R′

32t
′′

1 0 Q4Q
′

2Q
′′

4

4 R′′

32 −Q2Q
′

4Q
′′

2 −Q1Q
′

4Q
′′

2 16 R′

21t
′′

3 − R′

31t
′′

2 Q4Q
′

1Q
′′

4 0

5 t′3 − t′′3 Q2Q
′

4Q
′′

4 Q1Q
′

4Q
′′

4 17 R′

22t
′′

3 − R′

32t
′′

2 Q4Q
′

2Q
′′

4 0

6 R′

11R
′′

31 − R′

31R
′′

11 0 Q4Q
′

1Q
′′

1 18 R′′

11t
′

3 − R′′

31t
′

1 0 −Q4Q
′

4Q
′′

1

7 R′

11R
′′

32 − R′

31R
′′

12 0 Q4Q
′

1Q
′′

2 19 R′′

12t
′

3 − R′′

32t
′

1 0 −Q4Q
′

4Q
′′

2

8 R′

12R
′′

31 − R′

32R
′′

11 0 Q4Q
′

2Q
′′

1 20 R′′

21t
′

3 − R′′

31t
′

2 −Q4Q
′

4Q
′′

1 0

9 R′

12R
′′

32 − R′

32R
′′

12 0 Q4Q
′

2Q
′′

2 21 R′′

22t
′

3 − R′′

32t
′

2 −Q4Q
′

4Q
′′

2 0

10 R′

21R
′′

31 − R′

31R
′′

21 Q4Q
′

1Q
′′

1 0 22 t′1t
′′

3 − t′3t
′′

1 0 Q4Q
′

4Q
′′

4

11 R′

21R
′′

32 − R′

31R
′′

22 Q4Q
′

1Q
′′

2 0 23 t′2t
′′

3 − t′3t
′′

2 Q4Q
′

4Q
′′

4 0

12 R′

22R
′′

31 − R′

32R
′′

21 Q4Q
′

2Q
′′

1 0

Table 1. Trifocal tensor in the generic calibration of completely non-central cameras.

4.1 Intersection of axis and calibration grids

Using the technique described earlier we compute the intersection of the camera axis with the three grids at
a,b and c respectively. We translate the local grid coordinates such that these intersection points become their
respective origins. Without loss of generality we continue to use the same notations after the transformations.

Q←− Q− a, Q′
←− Q′

− b, Q′′
←− Q′′

− c,

Paper 13: Theory and Calibration Algorithms for Axial Cameras, ACCV 2006 [16] 141

We can obtain a collinearity constraint by putting these origins in the same coordinate system. Every 3 × 3
subdeterminant of the following 4× 3 matrix vanishes.

((

0

1

) (

R
′ t′

0T 1

) (

0

1

) (

R
′′ t′′

0T 0

) (

0

1

))

=









0 t′1 t′′1
0 t′2 t′′2
0 t′3 t′′3
1 1 1









The camera axis passes through O, t′ and t′′. This enables us to express t′′ as a multiple of t′ using some scalar
∆: t′′ = ∆t′. As a result, the variables C22 and C23 from Table 1 disappear.

C22 = t′1t
′′

3 − t′3t
′′

1 = t′1∆t′3 − t′3∆t′1 = 0

C23 = t′2t
′′

3 − t′3t
′′

2 = t′2∆t′3 − t′3∆t′2 = 0

On disappearing, C22 and C23 reduce the size of the linear systems
∑

CiT 1i = 0 and
∑

CiT 2i = 0 each by
one. Inspite of this reduction there still exists a rank deficiency of 2 in both these systems. The rank of each of
these systems is 11 with 13 nonzero coefficients to be estimated. In the next section we provide the details of
the usage of a coplanarity constraint, which exists in axial cameras, to remove the degeneracy problems.

4.2 Coplanarity constraints in axial cameras

The camera axis cuts all the projection rays. As observed earlier both O and t′ lie on the camera axis. Along
with these two points, we consider two grid points Q′ and Q′′ lying on a single projection ray. Since these four
points are coplanar, the determinant of the following 4× 4 matrix disappears.

















0
0
0
1

















t′1
t′2
t′3
1









(

R
′ t′

0T 1

)

Q′

(

R
′′ ∆t′

0T 1

)

Q′′









The corresponding constraint is a linear system
∑

αijQ
′

iQ
′′

j = 0 (see table 2). Note that Q′

4 and Q′′

4 are not
present because of the three zeros in the first column. We can solve this linear system to computer the solutions
for αij . We expand the above linear system and do some algebraic manipulation.

α11Q
′

1Q
′′

1 + α12Q
′

1Q
′′

2 + α21Q
′

2Q
′′

1 + α22Q
′

2Q
′′

2 = 0

Q4(α11Q
′

1Q
′′

1 + α12Q
′

1Q
′′

2 + α21Q
′

2Q
′′

1 + α22Q
′

2Q
′′

2) = 0

Q4Q
′

2Q
′′

2 = −
α11

α22

Q4Q
′

1Q
′′

1 −

α12

α22

Q4Q
′

1Q
′′

2 −

α21

α22

Q4Q
′

2Q
′′

1

This will enable us to represent both T 29 and T 113, from the earlier systems, in terms of other variables in the
tensors T 1 and T 2 respectively.

T 29 = −
α11

α22

T 26 −

α12

α22

T 27 −

α21

α22

T 28

T 113 = −
α11

α22

T 110 −

α12

α22

T 111 −

α21

α22

T 112

Using the above relation we obtain two new constraints given by
∑

AiA1i = 0 and
∑

AiA2i = 0. Note that
each of these constraints are linear systems with 12 nonzero coefficients each. Both of them have a rank of 11
and thereby producing unique solutions for their coefficients (Ai). The individual elements in the poses of the
grids are extracted from these coupled coefficients using orthonormality constraints of the rotation matrix [12].

142 Chapter 6. Calibration

i j αij

1 1 t′1(R
′

2,1R
′′

3,1 − R′′

2,1R
′

3,1) − t′2(R
′

1,1R
′′

3,1 − R′′

1,1R
′

3,1) + t′3(R
′

1,1R
′′

2,1 − R′′

1,1R
′

2,1)

1 2 t′1(R
′

2,1R
′′

3,2 − R′′

2,2R
′

3,1) − t′2(R
′

1,1R
′′

3,2 − R′′

1,2R
′

3,1) + t′3(R
′

1,1R
′′

2,2 − R′′

1,2R
′

2,1)

2 1 t′1(R
′

2,2R
′′

3,1 − R′′

2,1R
′

3,2) − t′2(R
′

1,2R
′′

3,1 − R′′

1,1R
′

3,2) + t′3(R
′

1,2R
′′

2,1 − R′′

1,1R
′

2,2)

2 2 t′1(R
′

2,2R
′′

3,2 − R′′

2,2R
′

3,2) − t′2(R
′

1,2R
′′

3,2 − R′′

1,2R
′

3,2) + t′3(R
′

1,2R
′′

2,2 − R′′

1,2R
′

2,2)

Table 2. Bifocal tensor from the coplanarity constraint on O, t′, Q′ and Q′′.

i Motion (Ai) A1i A2i i Motion (Ai) A1i A2i

1 R′

31 Q2Q
′

1Q
′′

4 Q1Q
′

1Q
′′

4 11 C12 − α21

α22

C13 Q4Q
′

2Q
′′

1 0

2 R′

32 Q2Q
′

2Q
′′

4 Q1Q
′

2Q
′′

4 12 ∆(R′

11t
′

3 − R′

31t
′

1) 0 Q4Q
′

1Q
′′

4

3 R′′

31 −Q2Q
′

4Q
′′

1 −Q1Q
′

4Q
′′

1 13 ∆(R′

12t
′

3 − R′

32t
′

1) 0 Q4Q
′

2Q
′′

4

4 R′′

32 −Q2Q
′

4Q
′′

2 −Q1Q
′

4Q
′′

2 14 ∆(R′

21t
′

3 − R′

31t
′

2) Q4Q
′

1Q
′′

4 0

5 t′3 − t′′3 Q2Q
′

4Q
′′

4 Q1Q
′

4Q
′′

4 15 ∆(R′

22t
′

3 − R′

32t
′

2) Q4Q
′

2Q
′′

4 0

6 C6 −
α11

α22

C9 0 Q4Q
′

1Q
′′

1 16 R′′

11t
′

3 − R′′

31t
′

1 0 −Q4Q
′

4Q
′′

1

7 C7 −
α12

α22

C9 0 Q4Q
′

1Q
′′

2 17 R′′

12t
′

3 − R′′

32t
′

1 0 −Q4Q
′

4Q
′′

2

8 C8 −
α21

α22

C9 0 Q4Q
′

2Q
′′

1 18 R′′

21t
′

3 − R′′

31t
′

2 −Q4Q
′

4Q
′′

1 0

9 C10 − α11

α22

C13 Q4Q
′

1Q
′′

1 0 19 R′′

22t
′

3 − R′′

32t
′

2 −Q4Q
′

4Q
′′

2 0

10 C11 − α12

α22

C13 Q4Q
′

1Q
′′

2 0

Table 3. Trifocal tensor for the generic calibration of axial cameras.

5 Bundle Adjustment Formulation

We give the details of a bundle adjustment which refines the estimated camera axis and poses of the calibration
grids. This is similar to our earlier method [10], except that we have an additional constraint coming from
the camera axis. The bundle adjustment is done by minimizing the distance between the grid points and the
corresponding projection rays. The cost function is given below.

Cost =

n
∑

i=1

∑

j=1

(A + λiD + µjiDi − [RjTj]Qji)

– (A,D) - represents the axis (point, direction)

– Di - unit direction vector of the ith projection ray

– λi - parameter selecting the intersection of the ith ray and the axis

– Qji - grid point on the jth grid lying the ith ray

– µji - parameter selecting the point on the ith ray closest to Qj

– (Rj ,Tj) - pose of the calibration grid

6 Axial Catadioptric Configurations

Our formulation can classify a given camera into either axial or not. For example on applying our method on
axial data we obtain unique solutions. On the other hand, a completely non-central camera will lead to an
inconsistent (no solution), whereas a central camera will produce a rank deficient system (ambiguous solutions).
Thus our technique produces unique solutions only for axial configurations. This can be used as a simple test
in simulations to study the nature of complex catadioptric arrangements (as shown in Figure 2(a)). Since axial
cameras are less restrictive than central cameras, they can be easily constructed using various combinations of
mirrors and lenses. For example there are very few central configurations [1] (also see Table 4). Furthermore
these configurations are difficult to build and maintain. For example, in a central catadioptric camera with
hyperbolic mirror and perspective camera, the optical center has to be placed precisely on one of the mirror’s
focal points. On the other hand, the optical center can be anywhere on the mirror axis to have an axial geometry.

Paper 13: Theory and Calibration Algorithms for Axial Cameras, ACCV 2006 [16] 143

mirror ctrl (pers) axial (pers) nctrl (pers) ctral (ortho) axial (ortho) nctrl (ortho)

hyperbolic o=f o ∈ MA o /∈ MA - OA ‖ MA OA ∦ MA

spherical - always - - always -

parabolic - o ∈ MA o /∈ MA OA ‖ MA - OA ∦ MA

elliptic o = f o ∈ MA o /∈ MA - OA ‖ MA OA ∦ MA

cone - o ∈ MA o /∈ MA - OA ‖ MA OA ∦ MA

planar always - planar - - -

mir-rot - always - - always -

Table 4. Catadioptric configurations. Notations: ctrl (pers) - central configuration with perspective camera, nctrl (ortho)
- non-central configuration with orthographic camera, mir-rot - mirror obtained by rotating a planar curve about the
optical axis, o - optical center of the perspective camera, f - focus of the mirror, MA - major axis of mirror, OA - optical
axis of the camera, = refers to same location, ∈-lies on, ‖-parallel, ∦-not parallel.

7 Experiments

7.1 Simulation

We started with perfect axial configurations for three scenarios (as shown in Figures 2(a), (b) and (c)) and
gradually change the configurations to make them non-central. We quantify this change from the perfect axial
configuration as disparity. For example, in Figure 2(a), the disparity represents the distance between the optical
center of the perspective camera and the orthographic camera axis passing through the center of the sphere.
This optical center is initially at a distance of 3 units from the center of the sphere (which is of radius 1 unit).
In Figure 2(b), the disparity represents the distance between the optical center of the perspective camera and
the major axis of the hyperboloid. Initially the optical center is at a distance of 5 units from the tip of the
hyperboloid, whose two radii are 5 and 10 units. In Figure 2(c), the disparity represents the distance between
the optical center of the third camera and the line joining the first two cameras. The distance between two
consecutive centers of the cameras is 40 units. We calibrate these systems in the presence of disparities. We
compute the mean angular error between the original and the reconstructed projection rays in Figure 2(d). Note
that the the mean angular error (given in radians) reaches zero only at the precise axial configuration.

(a) (b) (c) (d)

Fig. 2. Test for axial configuration. (a) Catadioptric (spherical mirror+pers.camera+ortho.camera): becomes non-central
when the two optical centers and the sphere center are not collinear (as shown).(b) Catadioptric (Hyperbolic mir-
ror+pers.camera): becomes non-central if the optical center is not on the axis of the hyperbolic mirror (as shown). (c)
Tristereo when one of the cameras is axially misplaced (as shown). (d) shows the mean angular error between the original
and reconstructed projection rays w.r.t disparity. The graphs shown in left, middle and right correspond to scenarios in
(a), (b) and (c) respectively (see text for more details).

7.2 Stereo camera

We captured three images of a calibration grid using two different cameras. The goal is to reconstruct the
projection rays of both the cameras in the same generic framework using our axial calibration algorithm. Here

144 Chapter 6. Calibration

the camera axis is the line joining the two optical centers (see Figure 3(a)). The image of the combined system
is formed by concatenating the images from the two cameras. Figure 2(d) shows that our algorithm is very
sensitive to noise. However using RANSAC, it is possible to obtain a good calibration. Once we compute the
pose of the grids we can compute the rays corresponding to individual cameras in the stereo system. These rays
can also be made to intersect separately and parameterized using a pinhole model. The RMS bundle adjustment
error, based on the distance between the projection rays and grid points on the calibration grids, is of the order
of 0.29% w.r.t overall size of the scene. The estimated camera parameters are close to the correct results. The
reconstructed projection rays and grids are shown in Figure 3(a).

7.3 Spherical catadioptric cameras

We calibrated a real spherical catadioptric camera and extracted the camera axis. We start with an initial
calibration using three grids using the above axial algorithm. This enables us to obtain an initial estimate for
the axis and the projection rays. Using this partial calibration, we use pose estimation to incrementally compute
the pose of newer grids. We followed our earlier method to obtain complete calibration [10]. The calibration grid
captured by a spherical catadioptric camera is shown in Figure 3(b). We estimated the pose of several grids on
a turntable sequence using the calibration. The grid positions and the axis are shown in Figure 3(c). For more
details about results and other experimental issues please refer to [11].

(a) (b) (c)

Fig. 3. Axial calibration: (a) Calibration of a stereo system (b) Image captured by a catadioptric system with a spherical
mirror and a perspective camera. (b) Estimated poses of several grids along with the camera axis.

8 Conclusions

We studied the theory and proposed a linear calibration algorithm for an intermediate class of cameras called
axial cameras. Further line of investigation needs to be carried out to test the accuracy of this approach with
respect to parametric and completely non-central approaches.
Acknowledgments: We thank Tomás̆ Pajdla, Branislav Mic̆us̆́ık and Diana Mateus for the data.

References

1. S. Baker and S. Nayar. A theory of catadioptric image formation. ICCV, 1998.
2. D. Aliaga. Accurate Catadioptric Calibration for Real-size Pose Estimation of Room-size Environments, ICCV, 2001.
3. H. Bakstein and T. Pajdla. An overview of non-central cameras. Computer Vision Winter Workshop, Ljubljana,

Slovenia, 2001.
4. Doron Feldman, Tomas Pajdla and Daphna Weinshall. On the Epipolar Geometry of the Crossed-Slits Projection.

ICCV, 2003.
5. M.D. Grossberg and S.K. Nayar. A general imaging model and a method for finding its parameters. ICCV, 2001.
6. J. Neumann, C. Fermüller, and Y. Aloimonos. Polydioptric Camera Design and 3D Motion Estimation. CVPR, 2003.
7. T. Pajdla. Stereo with oblique cameras. IJCV, 2002.

Paper 13: Theory and Calibration Algorithms for Axial Cameras, ACCV 2006 [16] 145

8. S. Peleg, M. Ben-Ezra, and Y. Pritch. Omnistereo: Panoramic Stereo Imaging. PAMI, 2001.
9. R. Pless. Using Many Cameras as One. In CVPR, 2003.

10. S. Ramalingam, P. Sturm and S.K. Lodha. Towards Complete Generic Camera Calibration. CVPR, 2005.
11. S. Ramalingam, P. Sturm and S.K. Lodha. Generic calibration of axial cameras. INRIA Research Report, France,

December 2005.
12. P. Sturm and S. Ramalingam. A generic concept for camera calibration. ECCV, 2004.
13. R. Swaminathan, M.D. Grossberg, and S.K. Nayar. A perspective on distortions. CVPR, 2003.
14. B. Micusik and T. Pajdla. Autocalibration and 3D Reconstruction with Non-central Catadioptric Cameras. CVPR,

2004.
15. R. Gupta and R.I. Hartley. Linear Pushbroom Cameras. PAMI 1997.
16. S. Seitz and J. Kim. The Space of All Stereo Images. IJCV, 2002.

146 Chapter 6. Calibration

Calibration of Cameras with Radially Symmetric Distortion

Jean-Philippe Tardif∗ Peter Sturm†

DIRO, Universit́e de Montŕeal INRIA Rhône-Alpes
Canada 38330 Montbonnot St Martin, France

Abstract

We present a theory and algorithms for plane-based cal-
ibration and pose recovery of general radially distorted
cameras. By this we understand cameras that have a distor-
tion center and an optical axis such that the projection rays
of pixels lying on a circle centered on the distortion center,
form a right cone centered on the optical axis. The camera
is said to have a singular viewpoint (SVP) if all such view
cones have the same vertex (the optical center), otherwise
we speak of non-SVP, and each view cone may have its own
optical center on the optical axis. This model encompasses
the classical radial distortion model, fisheyes, most central
or non-central catadioptric cameras, but also cameras with
radially symmetric caustics.
Calibration consists in the estimation of the distortion cen-
ter, the opening angles of all view cones and their optical
center. We present two approaches of computing a full cal-
ibration from dense correspondences of a single or multi-
ple planes with known euclidean structure. The first one is
based on a geometric constraint linking view cones and as-
sociated ellipses in the calibration plane; calibration of the
view cones can be solved by determining the closest point
to a set of hyperbolas. The second approach uses exist-
ing plane-based calibration methods to directly calibrate
individual view cones. A simple distortion correction al-
gorithm for calibrated SVP images is given. Preliminary
experiments show convincing results.

1. Introduction
In the last few years, we have seen an increasing interest
in non-conventional cameras and projection models, going
beyond affine or perspective projection. There exists a large
diversity of camera models; many of them specific to cer-
tain types of projections [1, 13] or families of cameras such
as central catadioptric systems [2, 8, 3, 6]. All these mod-
els are described by a few intrinsic parameters, much like
the classical pinhole model, possibly enhanced with radial
or decentering distortion coefficients. Calibration methods
exist for all these models, and they are usually tailor-made
for them, i.e. can not be used for any other projection
model. Several works address the calibration problem from

∗tardifj@iro.umontreal.ca
†peter.sturm@inrialpes.fr

View cone

Calibration plane

Distortion circle

Ellipse

Optical axis

Camera image Plane image

C

Figure 1: Our camera model (see text for explanations). The
inlayed illustrations show the distortion center (in blue) and
a distortion circle for a true image taken with a fisheye, and
the corresponding calibration ellipse overlaid on a pattern
shown on the calibration plane.

an opposite point of view, by adopting a very generic imag-
ing model that incorporates most commonly used cameras
[9, 5, 17, 10, 15]. In the most general case, cameras are
modeled by attributing an individual projection ray to each
individual pixel. Such a model is highly expressive, but it is
difficult to obtain a stable calibration of cameras with it.
In this paper, we propose a simple camera model (and as-
sociated calibration methods) that hopefully offers a good
compromise: it is sufficiently general to model many com-
mon camera types, but has much fewer parameters than the
above generic model, thus making calibration much easier
and more stable. We model cameras using the notions of a
distortion center in the image and anoptical axis in 3D.
For cameras withradially symmetric distortion , the pro-
jection rays associated with pixels lying on a same circle
centered on the distortion center, lie on a rightviewing cone
centered on the optical axis (cf. fig.1). This encompasses
many common camera models, such as pinhole (modulo as-
pect ratio and skew), the classical polynomial radial dis-

1

Paper 14: Calibration of Cameras with Radially Symmetric Distortion, OMNIVIS 2005 [36] 147

tortion model, fisheyes, or any catadioptric system whose
mirror is a surface of revolution, and for which the optical
axis of the perspective (or affine) camera looking at it is
aligned with the mirror’s revolution axis. Our model com-
prisescentral cameras (SVP), where all viewing cones have
the same vertex (theoptical center), but alsonon-central
ones (NSVP), for which the viewing cones’ vertices lie any-
where on the optical axis. In the latter case, we may speak
of one optical center per viewing cone.
Problem statement.We want to calibrate cameras based on
the above model, from one or several images of a calibration
plane in unknown positions. The input to the calibration
algorithms is a dense matching between the plane(s) and the
camera image, and the euclidean structure of the plane(s).
From this, we compute, for all viewing cones, their focal
length (equivalent to the opening angle). Our algorithms
assume a known position of the distortion center, but we
also show how to estimate it, using repeated calibrations
for different candidates. Calibration also comprises a pose
estimation problem: estimating the orientation of the optical
axis (relative to a calibration plane) and the location of each
viewing cone’s vertex on it.
Organization. A geometric study of our model is presented
in §2, together with our first calibration approach. The sec-
ond approach, based on the standard plane-based calibra-
tion method, is described in §3. In §4, we give an algorithm
for performing perspective image rectification based on cal-
ibration results. Several practical issues and experimental
results are presented in §5 and §6, respectively.

2. Geometry
2.1. One Distortion Circle
Let us consider one distortion circle in the image plane. We
suppose that we have determined the ellipse on the calibra-
tion plane that is mapped to that circle via the camera’s
projection function (see §5). If we knew the position of
the camera’s optical center relative to the calibration plane,
then we could compute the cone that has the optical cen-
ter as vertex and that contains the above calibration ellipse.
That cone has several interesting properties: its axis is the
camera’s optical axis and it is a right cone, i.e. rotationally
symmetric with respect to its axis. From the cone, the focal
length of the considered distortion circle can be easily com-
puted (the cone’s opening angle equals the field of view).
In practice, we do not know the optical center’s position rel-
ative to the calibration plane. In the following, we show ge-
ometrical relations between the calibration ellipse, the opti-
cal center and the optical axis of the camera. When talking
about optical center, we mean the optical center per distor-
tion circle; they all lie on the optical axis and in the SVP
case, they are identical.
Without loss of generality, we assume that the calibration

plane is the planeZ = 0, and that the calibration ellipse
is given by the matrix diag(a, b,−1), with b ≥ a > 0, i.e.
theX-axis is the ellipse’s major axis. Our aim is to provide
constraints on the position of the optical center, as well as
on the orientation of the optical axis, from this ellipse.
Let us first state a well-known result. Consider a right cone
(whose vertex is a point with real coordinates) and its inter-
section with a plane. For now, we only consider the case
where the intersection is an ellipse (the case of the hyper-
bola will be discussed later). It is easy to prove that the
orthogonal projection of the cone’s vertex onto the plane,
lies on the ellipse’s major axis (cf. fig.2a and §5). This
implies that the cone’s vertex lies in the plane that is or-
thogonal to the ellipse’s supporting plane and that contains
its major axis.
For our problem, this means that the optical center must lie
in the planeY = 0 (since the ellipse lies in planeZ = 0 and
has theX-axis as major axis). We may further constrain its
positionC = (X, 0, Z, 1)

T, as follows [4]. The cone with
C as vertex and that contains the calibration ellipse, is given
by (∝ represents equality up to scale):

Λ ∝









aZ2 0 −aX Z 0
0 bZ2 0 0

−aX Z 0 aX2 − 1 Z

0 0 Z −Z2









.

For this cone to be a right one, its upper left3 × 3 matrix Λ̄
must have a double eigenvalue. The three eigenvalues are:

bZ2 ,
aX2 + aZ2 − 1 ±

√

4aZ2 + (−aX2 − aZ2 + 1)
2

2

The second and third eigenvalues can not be equal for real
values ofX andZ (besides in the trivial caseX = Z = 0).
The first eigenvalue is equal to the third one ifZ = 0 and to
the second one if:

a bX2 + b(a − b)Z2 + (a − b) = 0. (1)

This equation tells us that the optical center lies on a conic
in the planeY = 0, given by the following matrix:

Ψ =





a b

b(a − b)
a − b



 .

This is a hyperbola, since(a − b) < 0. Furthermore, its
asymptotes correspond to the direction of the two cylinders
that contain the calibration ellipse.
Let us now consider the orientation of the optical axis. Due
to (1), let us consider an optical center with:

Z = ±

√

a bX2 + a − b

b(b − a)
.

In proceedings ofThe6
th the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,

(OMNIVIS’2005), in conjunction with ICCV’2005, october 2005.

148 Chapter 6. Calibration

C

πε

Ψ

ε c f

Optical axis

(a)

πε

ε

c
f

(b)

C

πε

Ψ

c f

(c)

Figure 2: Illustrations of the geometry of viewing cones, calibration ellipses and locationof optical center. cf. text.a)
Complete illustration for one viewing cone.b) View of the calibration plane, showing many cones’ calibration ellipses. Note
that their major axes are collinear.c) Side view of the hyperbolas associated with many calibration ellipses.

Here, we exclude the casea = b, which would correspond
to the camera looking straight at the calibration plane.
The direction of the cone’s axis is given by the eigenvector
associated with the single eigenvalue ofΛ̄, augmented with
a homogeneous coordinate0:









±
√

b(b − a)(a bX2 + a − b)
0

a bX

0









. (2)

We now show that the cone’s axis is identical with the tan-
gent of the hyperbolaΨ in the optical centerC, which is
given by (in the planeY = 0):

Ψ





X

Z

1



 =





a bX

∓
√

b(b − a)(a bX2 + a − b)
a − b



 .

Its point at infinity is (still in the planeY = 0):




±
√

b(b − a)(a bX2 + a − b)
a bX

0





i.e. it is identical with the point given in (2). Hence, for an
optical center onΨ, the optical axis is directly given by the
associated tangent.
The case where the intersection between a cone and the cal-
ibration plane yields a hyperbola, given by diag(a,−b,−1),
can be dealt with in a similar fashion. This typically occurs
with very wide angle cameras. Once again, the calibration
hyperbolas have their major axes aligned together. We can
show that the possible viewpoints lie on an ellipse given by
diag(a b, b(a + b),−a − b) and that the optical axis is tan-
gent to it. For simplicity’s sake, the rest of the article con-
centrates on the elliptic case; nevertheless, everything holds
when some intersections are hyperbolas.

2.2. Multiple Distortion Circles
So far, we have shown that for an individual distortion cir-
cle, the associated viewing cone can be determined from

the associated calibration ellipse, up to 1 degree of free-
dom (location on the hyperbolaΨ). We now show how to
get a unique solution, when considering several distortion
circles simultaneously. Let us first note that calibration el-
lipses corresponding to different distortion circles, are not
independent: their major axes are collinear (cf. fig.2b) 1.
Their centers are not identical however (unless they are all
circles, i.e. if the camera looks straight at the plane).
Let Ψd be the hyperbolas for different distortion circles,
given in the same coordinate frame. In the case of a single
viewpoint camera, the optical center must lie on all these
hyperbolas. Furthermore, the optical axis is tangent to all
of them. This implies that all hyperbolas touch each other
(have a double intersection point) in the optical center. This
is illustrated in figure2c. A näıve algorithm would compute
the hyperbolas for all ellipses and seek their single intersec-
tion/contact point. The drawback of this situation is that
very little noise can cause two hyperbolas to have no real
intersection point at all, instead of a double one.
Consider now the NSVP case: to each distortion circle and
viewing cone, corresponds a separate optical center. Hence,
the hyperbolas won’t have a single contact point anymore.
However, the optical axis is shared by all viewing cones.
Hence, it is the single (in general) line that is tangent to all
hyperbolas. Furthermore, the individual optical centers are
its contact points with the associated hyperbolas.

2.3. Calibration and Pose Estimation
A simple calibration method consists in computing the 3D
point which is closest in average to all hyperbolas (see next
paragraph). This gives the camera’s optical center (rela-
tive to the calibration plane). Then, viewing cones can be
spanned with individual calibration ellipses, and the focal

1This constraint is non-linear, but can be enforced when fi tting the el-
lipses in cases where the correspondences with the calibration plane have
large errors, or not uniformly distributed around the curve. It is not shown
here due to lack of space.

In proceedings ofThe6
th the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,

(OMNIVIS’2005), in conjunction with ICCV’2005, october 2005.

Paper 14: Calibration of Cameras with Radially Symmetric Distortion, OMNIVIS 2005 [36] 149

lengths for all distortion circles are computed based on their
opening angles. In the NSVP case, we would first compute
the optical axis. A plausible criterion would be to find the
line L that minimizes the sum of squared distances between
itself and the closest tangent line to each hyperbola parallel
to L. In the following, this calibration approach is referred
as the Right Cone Constraint method (RCC).
Closest point to the hyperbolas.Computing the orthogo-
nal distance of a point to a general conic requires solving
fourth degree polynomial [19]. Using this to compute the
closest point to our set of hyperbolas is not very practical.
Instead, we minimize a simpler cost function: the closest
pointq is found by solving:

min
q,qd

∑

d

dist(q,qd)
2, subject toqT

d Ψd qd = 0,

i.e. we also estimate one point per hyperbolaΨd that will,
after convergence, be the orthogonal projection ofq onΨd.
The problem is solved using theMinimizefunction ofMath-
ematica. Since the function and constraints are polynomial,
it uses a cylindrical algebraic decomposition that guarantees
a global minimum [18].

3. Calibration with the IAC
The RCC approach relied on pose recovery from the image
of one plane to calibrate. In practice, if many calibration
planes are available, one would want to use them to increase
robustness. We present another approach that first com-
putes the calibration (from one or many images of planes)
and then recovers the pose. The approach uses well-known
results on plane-based calibration for perspective cameras
[20, 16]. Indeed, it is possible to see the viewing cones
in terms of manyperspective cameras, with different focal
lengths but identical principal point. In the SVP case, their
extrinsic parameters are also identical, whereas an NSVP
camera can be modeled by adding a translation along the
optical axis per viewing cone.
Calibration. Let us consider the distortion circle of radius
d and one image of a calibration plane. From point corre-
spondences between pixels on this circle and points on the
calibration plane (on the calibration ellipse), we can com-
pute a plane-to-image homographyHd. For simplicity, let
us assume that image coordinates have been translated to
put the distortion center at the origin. The homography can
then be decomposed such that:





u

v

1



 ∝ Hd





x

y

1



 = Kd R





1 0
0 1 −t + tdr3

0 0









x

y

1





(3)
where(x, y) is a calibration point,(u, v) a pixel on the dis-
tortion circle, andR andt a rotation matrix and translation
vector representing camera pose (same for alld). The scalar

Rectified circle
Original circle

Optical axis

Cone in opposite direction

Πfront

Πback

fd

d

C

Figure 3: Viewing cones can also be seen as individual per-
spective cameras with different focal length. A rectified
image can be obtained by projecting the distortion circles
(which lie in different planes) on one planeΠfront (or Πback
for a field of view larger than180o).

td allows to model translational displacement of individual
viewing cones along the optical axis (given byrT

3 , the third
row of R), which is needed for NSVP cameras. For SVP
cameras, we settd = 0 for all d. As for Kd, it is a cali-
bration matrix2 diag(fd, fd, 1), wherefd is the focal length
associated with the considered distortion circle. We may in-
terpret the relation betweend andfd as a distortion function
applied to a perspective camera whose undistorted image
plane isπfront (cf. fig. 3).
Note that this parameterization only accounts for viewing
cones with field of view smaller than180o. Larger fields
of view can be modeled by adding a reflection to the rota-
tional component of the pose,R

′ = diag(1, 1,−1)R, and a
corresponding image planeπback.
FromHd, we first computeKd, using the approach of [20,
16]. Of course, this can be done using the homographies
given for multiple images of the calibration plane.
Once the calibration is known for each viewing cone, the
poseR andt can be computed from the homography of any
distortion circle, using [14]. In the SVP case, the pose is the
same for alld, and we may “average” the different estimates
or better, non-linearly optimize the pose and calibrations si-
multaneously for alld. In the NSVP case, we first compute
R, which is the same for alld. As for the position of opti-
cal centers (t and thetd), we must fix onetd, e.g. t0 = 0.

2As mentioned in the introduction, this model does not include a skew
between pixel axes or an aspect ratio different from1. Also, it assumes
that the distortion center is at the principal point. Generalizing this would
be straightforward though.

In proceedings ofThe6
th the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,

(OMNIVIS’2005), in conjunction with ICCV’2005, october 2005.

150 Chapter 6. Calibration

Then, fromH0, we can computet and finally from theHd,
the scalarstd. This time, non-linear optimization is recom-
mended and straightforward to perform.

3.1. Computing the Distortion Center
Until now, we have assumed, for both algorithms, that the
distortion center was known; this information was used to
select the distortion circles. Tests with noiseless simulated
data showed that the calibration may be quite sensitive to a
bad choice of distortion center; as for real cameras, using
the image center as an approximation was not satisfying in
general. Hence, the distortion center should be estimated as
part of the calibration process. The sensitivity of calibration
we observed in simulation suggests that it should be possi-
ble to estimate the distortion center rather reliably, which
was confirmed in practice.
We used the following heuristics to define an optimization
criterion for the distortion center. Let us apply the IAC ap-
proach of §3 with several images as input. The plane-based
calibration for each distortion circle is then capable of es-
timating a principal point, besides the focal lengthfd. It
seems plausible that the better the assumed distortion cen-
ter was, the closer the estimated principal points will be to
it. Since plane-based calibration is applied on images cen-
tered on the assumed distortion center, we can consider the
average norm of the estimated principal points (on per dis-
tortion circle) as a measure for the goodness of the center.
Figure 4 shows the values of this measure, computed for
distortion center positions on a60× 60 grid around the im-
age center, for real cameras. The shape of the cost surface
indicates that we can find the optimum distortion center us-
ing a simple steepest descent type method. We implemented
such an approach that accurately finds the distortion center
within a couple of minutes of computation. Note that the
second row of figure4b shows that, although the principal
points used to plot it were computed individually per distor-
tion circle, they are very densely clustered (average distance
to assumed distortion center of less than 3 pixels). This sug-
gests a high stability of the calibration.

4. Image Rectification
Once the calibration of an SVP camera is known, an image
can be perspectively rectified. Then, straight lines in the
scene appear straight in the image.
Rectification is done by placing a virtual perspective cam-
era at the actual camera’s optical center. LetK

v andR
v
3×3

represent the virtual camera’s calibration and orientation. A
näıve approach for image creation is to render each pixel
of the original (distorted) image into the virtual (distortion-
free) image, and then fill out the holes by interpolation (cf.
fig. 3). It is well known that an inverse approach is bet-
ter. We achieve this by inverting the relation betweend

0 10 20 30 40 50 60
0

10

20

30

40

50

60

X

Y

(a) 3.5mm

0 10 20 30 40 50 60
0

10

20

30

40

50

60

X

Y

(b) paracata

0 10 20 30 40 50 60
0

10

20

30

40

50

60

X

Y

(c) 8.0mm

10 20 30 40 50 60
line

2

4

6

8

10

12

14

cost

(d) 3.5mm

10 20 30 40 50 60
line

5

10

15

20

25

30
cost

(e) paracata

10 20 30 40 50 60
line

5

10

15

20
cost

(f) 8.0mm

Figure 4: Plots of the goodness measure for the distortion
center, obtained for three tested lens (cf. §6). a,b,c) 60 ×

60 grid around the image center (yellow meaning smaller).
d,e,f) One slice of the grid, through the best position.

and the view angleθ(d). As seen in figure11, this func-
tion is generally simple (close to linear), so easily invertable
(see §4). Let D(θ) denote this inverse function. One pixel
qv in the rectified image is backprojected in space with
qw = (Kv

R
v)−1qv. Then, we compute the angleθ be-

tween this pixel and the Z-axis (the optical axis of the origi-
nal camera). Finally, the corresponding position in the orig-
inal image is given byKD(θ) q

w.

5. Practical Issues
5.1. Dense Camera–Plane Correspondences
The easiest approach we found to get dense correspon-
dences between the calibration plane and the camera is to
use a flat screen as plane. We used a simple coded structured
light algorithm [12], which consists in successively dis-
playing patterns of horizontal and vertical black and white
stripes on the screen to encode the position of each screen
pixel (cf. fig. 5). Then, for each camera pixel, we iden-
tify the corresponding position on the calibration plane by
decoding the observed intensities in each pattern. When
performed in a controlled environment (low-constant am-
bient lighting, screen of high contrast and resolution), the
accuracy of such a method is reasonably good (around±2
pixel of error on average). Since the points located on the
distortion circles are given in floating point coordinates, we
compute their correspondences by a weighted sum of the
correspondences recovered for the four closest image pix-
els.

5.2. Omnidirectional Cameras
There are several issues worth mentioning for omnidirec-
tional cameras. If the field of view is larger than180◦, then
some distortion circles will have viewing cones that actually
approach planes. Their pose can not be estimated the same
way as for true cones. These can be detected as the ones

In proceedings ofThe6
th the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,

(OMNIVIS’2005), in conjunction with ICCV’2005, october 2005.

Paper 14: Calibration of Cameras with Radially Symmetric Distortion, OMNIVIS 2005 [36] 151

(a) (b) (c)

Figure 5: Projected patterns for correspondences are hori-
zontal and vertical black and white stripes. Images taken
with a) the Goyo 3.5 mm,b) catadioptric, andc) paracata-
dioptric camera.

whose correspondences on the calibration plane are close to
collinear. They can then be discarded from the actual cal-
ibration procedure and we may attribute them an unknown
focal length. In the case of the IAC, rank deficient homo-
graphies are discarded resulting once again in an unknown
focal length. Their actual value can be determine afterward
by interpolation (see §6)
In the NSVP case, we still need to compute the offsettd on
the optical axis of such (almost) “viewing planes”, since it
may differ from that of other viewing cones. This is simple
once the optical axis has been computed using other dis-
tortion circles and their exact opening angle has been de-
termined: the cones’ offset can be computed such that they
go through the extracted correspondences in the calibration
plane.

6. Experiments
We used a wide-angle Goyo 3.5 mm lens combined with
a CCTV A201bc Basler camera, a Cosmicar 8.0 mm with
little distortion, a paracatadioptric camera built with a Cos-
micar 12.5 mm (referred to as “paracata” in the text), and
also a homemade catadioptric device built from a Fujinon
12.5 mm lens, pointed at a roughly spherical mirror (cf. fig.
7). The calibration plane of known euclidean structure was
a 21 inch CRT screen in all cases, except for the paracata-
dioptric camera where a multimedia projector was carefully
placed in a fronto-parallel position w.r.t. to a wall. Even
though the alignment was not perfect and the camera self-
occluded, it did not affecte the solution significantly. The
only non-linear optimizations that were performed to ob-
tain the following results are in the hyperbola intersection
algorithm and the pose estimation for the IAC approach.
Figure10 gives the computed focal length of the 3.5 mm,
8.0 mm and paracatadioptric lenses, w.r.t. the distanced to
the distortion center, using both methods. The wide-angle
camera could already be calibrated from a single image of
the screen with both approaches (cf. fig.9a,b for the RCC),
although better results were obtained using five images and
the IAC approach. The paracatadioptric camera was cali-
brated with the two approaches with very similar results (cf.
fig. 9c); however, the RCC algorithm gave the best results.

Figure 7: Catadioptric camera built from a Basler A201bc
camera with a Fujinon 12.5 mm lens pointed at a roughly
spherical mirror.

(a) (b)

Figure 8: Image rectification of the paracatadioptric cam-
era. a) Original image. b) Rectified image for a rotated
camera.

Indeed the radius for which the focal length is 0 corresponds
better to the measurement of the correspondences’ colin-
earity. The radial configuration of the catadioptric camera
was not perfect. Nevertheless, the distortion center could
be found and a satisfying calibration could be obtained with
both methods. The IAC approach gave the best results be-
cause it could take advantage of up to eight images, which
is more robust to the imperfect configuration of the camera.
We also observed that the calibration is more stable for the
lens with the wider field of view. Indeed, when there is
very little distortion in the image, the hyperbolas’ curva-
tures are similar, which induces more instability for the re-
covered camera pose. We also calibrated the 8.0 mm with
the OpenCV library [11], and found the recovered focal
lengths to be inside the result’s uncertainty interval. Image
rectification also yielded almost identical results.
In practice, only a subset of distortion circles are used for
calibration; others can then be extrapolated or interpolated
from a polynomial fitting of the data. Let us define this
polynomialp; from the camera model, it is best to ensure
that its derivative at 0 (corresponding to the distortion cen-
ter) is 0. This constraint is due to the symmetry of the dis-
tortion model, and can be enforced by using a polynomial of
the formp(d) = a0+a1d

2+...+an−1d
n. In practice, poly-

nomials of degree 3 appeared to be sufficient. To handle the
case of omnidirectional cameras more appropriately, the in-
terpolation is carried out with the view angle instead of the
focal length. In this case, a polynomial passing through 0
can also be fitted (see fig.11).

In proceedings ofThe6
th the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,

(OMNIVIS’2005), in conjunction with ICCV’2005, october 2005.

152 Chapter 6. Calibration

(a) (b) (c)

Figure 6: Image rectification.a) Original images.b) Rectified image for the Goyo 3.5 mm.c) Rectified image for the
home-made catadioptric camera. Small inset images show rectification of the border regions.

350 400 450 500 550 600 650 700
X

400

500

600

700

800

Y

(a)

-100-50 50 100 150 200
pixel

-300

-200

-100

100

200

300

pixel

(b)

-1400-1200-1000-800-600-400-200
pixel

-1000

-500

500

1000

pixel

(c)

Figure 9: Calibration with the RCC approach.a) Fitted
ellipses for the Goyo lens andb) corresponding hyperbo-
las and computed intersection.c) For the paracatadioptric
camera, the intersection between the calibration plane and
the cones yielded ellipses and hyperbolas, constraining the
viewpoint to lie respectively on hyperbolas and ellipses.

Evaluating the results based on the reprojection error can
lead to biased conclusions in the case of a generic model.
Indeed, the model offers more freedom which allows to fit
the data better. This analysis goes together with the compar-
ison between SVP and NSVP constraints and the displace-
menttd of the viewpoints on the optical axis. This topic is
to be explored more thoroughly, but the preliminary results
obtained with the IAC approach indicate that our model is
useful (see table2). They show that the paracatadioptric and
to a lesser extent the 3.5 mm are probably NSVP. The dis-
placement along the optical axis confirms this observation;
the shape of the curves also leads us to believe that it is not
a result of overfitted data (see fig.12).

More meaningful quantitative results were obtained for the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

fo
ca

l l
en

gt
h

Radius

paracata RCC
paracata IAC
3.5mm RCC
3.5mm IAC

 1040

 1120

 1200

 1280 8.0mm RCC
8.0mm IAC

Figure 10: Recovered focal length (in pixel) from the two
algorithms and extrapolated values from polynomial fitting
of the data for the tested cameras.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500

vi
ew

 a
ng

le

Radius

paracata RCC
paracata IAC
3.5mm RCC
3.5mm IAC

8.0mm RCC
8.0mm IAC

Figure 11: View angle in degrees for the tested cameras.

In proceedings ofThe6
th the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,

(OMNIVIS’2005), in conjunction with ICCV’2005, october 2005.

Paper 14: Calibration of Cameras with Radially Symmetric Distortion, OMNIVIS 2005 [36] 153

Position Angle
Algorithms p01 p12 p02 a01 a12 a02

Ground truth 5 5 10 0
o

0
o

0
o

RCC 4.99 5.09 10.08 2.25o
0.89o

2.91o

IAC 4.89 5.13 9.99 0.6o
0.4o

1.1o

Table 1: Result for pose estimation. The camera was
moved to three positions with known relative motion. Coef-
ficientspij andaij denote the distance (in centimeters) and
relative angle (in degrees) between camera positionsi and
j.

Camera Constraint
Algorithms SVP NSVP

paracata 9.10 1.01
3.5 mm 5.18 2.23
8.0 mm 2.20 1.35

Table 2: Comparison of the average reprojection error for
different constraint of the viewpoint.

Goyo lens, using a pose estimation procedure. Using a
translation stage, the camera was moved to three positions
with known relative motion (no rotation, known transla-
tion). Using the calibration information (obtained using
other images), the pose of the camera relative to the calibra-
tion plane was computed for all three positions (the NSVP
configuration being very similar in all three cases). From
this, the relative motions were computed and compared to
the ground truth. The results presented in table1 show a
good stability for both methods.
Finally, images from the three panoramic cameras were rec-
tified based on the calibration results (cf. fig.6 and8). Es-
pecially for the wide-angle Goyo lens (with little NSVP),
the rectification seems to be very good, even towards the
image borders (cf. the inset image in fig.6b). As for our
paracatadioptric camera, the rectification is very good, al-
though not perfect, a likely result of its NSVP. Finally, the
rectification of our home-made catadioptric device is also
surprisingly good for a large part of the image, especially
around the borders. The remaining distortions in the center
were found to be caused by a small bump on the “mirror’s”
surface.

7. Summary and Conclusion
We have proposed new calibration approaches for a camera
model that may be a good compromise between flexibility
and stability for many camera types, especially wide-angle
ones. The RCC approach is theoretically very interesting
but its practical usability remains limited. This is due to the
fact that only one calibration plane can be used directly. We
also intend to perform a better analysis of its stability in the
future.
The IAC algorithm, especially when used with many im-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

di
sp

la
ce

m
en

t

radius

3.5mm
8.0mm

paracata

Figure 12: Displacement (in mm) along the optical axis for
the 8.0 mm, the 3.5 mm and the paracatadioptric. The gen-
eral curves’ form of the two last leads us to think that the
NSVP optimization is not a result of overfitting.

ages, showed greater stability. It is also the basis for the
distortion center estimation which is an important issue of
the calibration.
Our approach may be especially suitable for unknown con-
figurations (SVP/NSVP, mirror equation) or slightly mis-
aligned catadioptric systems.

References
[1] R. Bajcsy, S.-S. Lin. True single view point cone mirror omni-

directional catadioptric system. ICCV 2001.1
[2] S. Baker, S.K. Nayar. A Theory of Single-Viewpoint Catadioptric

Image Formation. IJCV, 35(2), 1–22, 1999.1
[3] J.P. Barreto, K. Daniilidis. Unifying image plane liftings for central

catadioptric and dioptric cameras. OMNIVIS 2004.1
[4] W. Boehm, H. Prautzsch.Geometric Concepts for Geometric De-

sign. A.K. Peters, 1994.2
[5] G. Champleboux, S. Lavallée, P. Sautot, P. Cinquin. Accurate Cali-

bration of Cameras and Range Imaging Sensors: the NPBS Method.
ICRA 1992. 1

[6] D. Claus, A.W. Fitzgibbon. A Rational Function Model for Fish-eye
Lens Distortion. CVPR 2005.1

[7] W. Gander, G.H. Golub, R. Strebel. Fitting of Circles and Ellipses.
BIT, 34, 556–577, 1994.

[8] C. Geyer, K. Daniilidis. A Unifying Theory for Central Panoramic
Systems and Practical Applications. ECCV 2000.1

[9] K.D. Gremban, C.E. Thorpe, T. Kanade. Geometric Camera Cali-
bration using Systems of Linear Equations. ICRA 1988.1

[10] M. Grossberg, S. Nayar. A general imaging model and a method for
fi nding its parameters. ICCV 2001.1

[11] Intel Open Source Computer Vision Library. URL http://
www.intel.com/research/mrl/research/opencv/.6

[12] J. Salvi, J. Pag̀es, J. Batlle. Pattern codifi cation strategies in struc-
tured light systems.Pattern Recognition, 37(4), 827–849, 2004.5

[13] D.E. Stevenson, M.M. Fleck. Nonparametric correction of distor-
tion. TR 95–07, University of Iowa, 1995.1

[14] P. Sturm. Algorithms for plane-based pose estimation. CVPR 2000.
4

[15] P. Sturm, S. Ramalingam. A generic concept for camera calibration.
ECCV 2004. 1

[16] P. Sturm, S. Maybank. On Plane-Based Camera Calibration. CVPR
1999. 4

[17] R. Swaminathan, M. Grossberg, S. Nayar. Caustics of catadioptric
cameras. ICCV 2001.1

[18] E.W. Weisstein et al. Cylindrical algebraic decomposi-
tion. http://mathworld.wolfram.com/CylindricalAlgebraicDecom-
position.html. 4

In proceedings ofThe6
th the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,

(OMNIVIS’2005), in conjunction with ICCV’2005, october 2005.

154 Chapter 6. Calibration

[19] Z. Zhang. Parameter estimation techniques: A tutorial with appli-
cation to conic fi tting. TR 2676, INRIA, 1995.4

[20] Z. Zhang. A Flexible New Technique for Camera Calibration.
PAMI, 22(11), 1330–1334, 2000.

4

In proceedings ofThe6
th the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,

(OMNIVIS’2005), in conjunction with ICCV’2005, october 2005.

Paper 14: Calibration of Cameras with Radially Symmetric Distortion, OMNIVIS 2005 [36] 155

156 Chapter 6. Calibration

Chapter 7

Self-Calibration

Paper 15 [18]: S. Ramalingam, P. Sturm, and S.K. Lodha. Towards generic self-calibration of central

cameras. In Proceedings of the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-

Classical Cameras, Beijing, China, pages 20–27, October 2005.

Paper 16 [37]: J.-P. Tardif, P. Sturm, and S. Roy. Self-calibration of a general radially symmetric distortion

model. In H. Bischof and A. Leonardis, editors, Proceedings of the 9th European Conference on Computer

Vision, Graz, Austria, Lecture Notes in Computer Science, May 2006.

157

Towards Generic Self-Calibration of Central Cameras

Srikumar Ramalingam1&2, Peter Sturm1, and Suresh K. Lodha2

1 INRIA Rhône-Alpes, GRAVIR-CNRS, 38330 Montbonnot, France
2 Dept. of Computer Science, University of California, Santa Cruz, CA 95064, USA

{Srikumar.Ramalingam, Peter.Sturm}@inrialpes.fr, lodha@soe.ucsc.edu

Abstract

We consider the self-calibration problem for the generic

imaging model that assigns projection rays to pixels without

a parametric mapping. In this paper, we consider the cen-

tral variant of this model, which encompasses all camera

models with a single effective viewpoint. Self-calibration

refers to calibrating a camera’s projection rays, purely from

matches between images, i.e. without knowledge about the

scene such as using a calibration grid. This paper presents

our first steps towards generic self-calibration; we con-

sider specific camera motions, concretely, pure translations

and rotations, although without knowing rotation angles

etc. Knowledge of the type of motion, together with image

matches, gives geometric constraints on the projection rays.

These constraints are formulated and we show for exam-

ple that with translational motions alone, self-calibration

can already be performed, but only up to an affine trans-

formation of the set of projection rays. We then propose a

practical algorithm for full metric self-calibration, that uses

rotational and translational motions.

1. Introduction

Many different types of cameras have been used in com-

puter vision. Existing calibration and self-calibration pro-

cedures are often taylor-made for specific camera models,

mostly for pinhole cameras (possibly including radial or de-

centering distortion), fisheyes, specific types of catadioptric

cameras etc. see examples e.g. in [1, 2, 7, 4, 9, 11].

A few works have proposed calibration methods for a

highly generic camera model that encompasses the above

mentioned models and others [5, 3, 6, 15, 14]: a camera ac-

quires images consisting of pixels; each pixel captures light

that travels along a projection ray in 3D. Projection rays

may in principle be positioned arbitrarily, i.e. no functional

relationship between projection rays and pixels, governed

by a few intrinsic parameters, is assumed. Calibration is

thus described by:

• the coordinates of these rays (given in some local co-

ordinate frame).

• the mapping between rays and pixels; this is basically

a simple indexing.

One motivation of the cited works is to provide flexi-

ble calibration methods that should work for many differ-

ent camera types. More importantly these calibration works

also provide the flexibility to build newer cameras for spe-

cial applications and still calibrate them with existing tech-

niques. The proposed methods rely on the use of a cali-

bration grid and some of them on equipment to carry out

precisely known motions.

The work presented in this paper aims at further flexi-

bility, by addressing the problem of self-calibration for the

above generic camera model. The fundamental questions

are: can one calibrate the generic imaging model, with-

out any information other than image correspondences, and

how? This work presents a first step in this direction, by

presenting principles and methods for self-calibration us-

ing specific camera motions. Concretely, we consider how

pure rotations and pure translations may enable generic self-

calibration.

Further we consider the central variant of the imaging

model, i.e. the existence of an optical center through which

all projection rays pass, is assumed. Besides this assump-

tion, projection rays are unconstrained, although we do need

some continuity (neighboring pixels should have “neighbor-

ing” projection rays), in order to match images.

2. Problem Formulation

We want to calibrate a central camera with n pixels. To

do so, we have to recover the directions of the associated

projection rays, in some common coordinate frame. Rays

need only be recovered up to a euclidean transformation,

i.e. ray directions need only be computed up to rotation.

Let us denote by Dp the 3-vector describing the direction

of the ray associated with the pixel p.

Input for computing ray directions are pixel correspon-

dences between images and the knowledge that the motion

between images is a pure rotation or a pure translation (with

unknown angle or length). For simplicity of presentation,

we assume that we have dense matches over space and time,

i.e. we assume that for any pixel p, we have determined

all pixels that match p at some stage during the rotational

or translational motion. Let us call a complete such set of

matching pixels, a flow curve. Flow curves can be obtained

Paper 15: Towards Generic Self-Calibration of Central Cameras, OMNIVIS 2005 [18] 159

from multiple images undergoing the same motion (rota-

tions about same axis but not necessarily by the same an-

gle; translation in same direction but not necessarily with

constant speed) or from just a pair of images I and I ′.

In Figure 1 we show flow curves obtained from a single

image pair each for a pure translation and a pure rotation

about an axis passing through the optical center. Let p and

p′ refer to two matching pixels, i.e. pixels observing the

same 3D point in I and I ′. Let p′′ refer to the pixel that in

I ′ matches to pixel p′ in I . Similarly let p′′′ be the pixel that

in I ′ matches to pixel p′′ in I , and so forth. The sequence

of pixels p, p′, p′′, p′′′, . . . gives a subset of a flow curve.

A dense flow curve can be obtained in several ways: by

interpolation or fusion of such subsets of matching pixels or

by fusing the matches obtained from multiple images for the

same motion (constant rotation axis or translation direction,

but varying speed).

Figure 1: Illustration of flow curves: translational motion

(top) and rotational motion (bottom).

3. Constraints From Specific Camera

Motions

We explain constraints on self-calibration of projection ray

directions that are obtained from flow curves due to specific

camera motions: one translational or one rotational motion.

3.1. One Translational Motion

Consider two matching pixels p and q, i.e. the scene point

seen in pixel p in image 1, is seen in image 2 in pixel q. Due

to the motion being purely translational, this implies that

the projection rays of these two pixels, and the motion line,

the ray along which the center of the camera moves while

undergoing pure translation, are coplanar (they indeed form

an epipolar plane, although we won’t use this notation in the

following).

It is obvious that this statement extends to all pixels in a

flow curve: their projection rays are all coplanar (and that

they are coplanar with the motion line). We conclude that

the ray directions of the pixels in a flow curve, lie on one

line at infinity. That line at infinity also contains the direc-

tion of motion.

When considering all flow curves for one translational

motion, we thus conclude that the ray directions of pixels

are grouped into a pencil of lines at infinity, whose vertex

is the direction of motion. Clearly, these collinearity con-

straints tell us something about the camera’s calibration.

When counting degrees of freedom, we observe the fol-

lowing: at the outset, the directions for our n pixels, have

2n degrees of freedom (minus the 3 for rotation R). Due to

the translational motion, this is reduced to:

• 2 dof for the motion direction

• 1 dof per flow curve (for the line at infinity, that is con-

strained to contain the motion direction)

• 1 dof per pixel (the position of its ray along the line at

infinity of its flow curve).

• minus 3 dof for R.

3.2. One Rotational Motion

Let L be the rotation axis (going through the optical center).

Consider two matching pixels p and q. Clearly, the associ-

ated rays lie on a right cone with L as axis and the optical

center as vertex, i.e. the angles the two rays form with the

rotation axis L, are equal. Naturally, the rays of all pixels in

a flow curve, lie on that cone. Each flow curve is associated

with one such cone.

When counting degrees of freedom, we so far observe

the following. Due to the rotational motion, the following

dof remain:

• 2 dof for the direction of the rotation axis

• 1 dof per flow curve (for the opening angle of the as-

sociated cone).

• 1 dof per pixel (the “position” of its ray along the as-

sociated cone).

• minus 3 dof for R.

We have not yet exploited all information that is pro-

vided by the rotational motion. Besides the knowledge of

rays lying on the same cone, we have more information, as

follows. Let Θ be the (unknown) angle of rotation. Then,

the angular separation between any two rays whose pixels

match in the two images, is equal to Θ. Hence, the rays for

each set of pixels that are transitive 2-view matches, can be

parameterized by a single parameter (an “offset” angle). We

remain with:

160 Chapter 7. Self-Calibration

• 2 dof for the direction of the rotation axis

• 1 dof for the rotation angle Θ

• 1 dof per flow curve (for the opening angle of the as-

sociated cone).

• 1 dof per set of matching pixels (the “offset” of its ray

along the associated cone).

• minus 3 dof for R.

Figure 2: The rays of the pixels in the rotation flow curve

form a cone.

3.2.1. Closed Flow Curves

Let us consider what we can do in addition, if the rotation

axis “pierces” the image, i.e. if there is a pixel whose ray is

collinear with the rotation axis. Then, in the vicinity of that

pixel, closed flow curves can be obtained. For example, for

a pinhole camera with square pixels and no skew, a rotation

about its optical axis produces flow curves in the form of

circles centered in the principal point, covering a large part

of the image.

What does a closed flow curve give us? Let us “start”

with some pixel p on a closed flow curve, and let us “hop”

from one matching pixel to another, as explained in Fig-

ure 1. We count the number of pixels until we get back to

p. Then, the rotation angle Θ can be computed by divid-

ing 360◦ by that number. Of course, pixel hopping may

not always lead us exactly to the pixel we started with, but

by interpolation, we can get a good approximation for Θ.

Furthermore, this can be done by starting from every single

pixel on every closed flow curve, and we may hope to get a

good average estimation of Θ.

4. Multiple Translational Motions

In this section, we explain that multiple translational mo-

tions allow to recover camera calibration up to an affine

transformation. First, it is easy to explain that no more

than an affine “reconstruction” of projection rays is pos-

sible here. Let us consider one valid solution for all ray

directions Di, i.e. ray directions that satisfy all collinearity

constraints associated with flow curves (cf. section 3.1). Let

us transform all ray directions by an affine transformation of

3-space
(

A b

0
T 1

)

i.e. we apply the 3 × 3 homography A to the Di. This may

be seen as a projective transformation inside the plane at

infinity, although we prefer to avoid any possible confusion

by such an interpretation, and simply think of the mapping

as an affine one. Clearly, the D
′

i = ADi also satisfy all

collinearity constraints (collinearity is preserved by affine

and projective transformations).

This situation is very similar to what has been observed

for perspective cameras: a completely uncalibrated perspec-

tive camera can be seen as one whose rays are known up to

an affine transformation of 3-space: the role of A is played

by the product KR of calibration and rotation matrix; since

calibration is only required up to rotation, only K matters.

So, the rays of a perspective camera are always (at least)

“affinely” calibrated (not to confuse with the concept of

affine calibration of a stereo system). Even with uncali-

brated perspective cameras, 3D reconstruction is possible,

but only up to projective transformations. Now, when mov-

ing a camera by pure translations, no further information on

calibration can be gained, although a projective reconstruc-

tion may be upgraded to affine [12].

Coming back to our generic camera model, it is thus ob-

vious that from pure translations, we can not reach farther

than recovering the rays up to an affine transformation (the

situation would be different for example if multiple trans-

lations were considered with the knowledge that speed is

constant).

We now provide a simple constructive approach to re-

cover actual affine self-calibration. Let us consider 4 trans-

lational motions, in different directions such that no 3 di-

rections are collinear. Let us carry out the translations such

that the FOE (focus of expansion) is inside the image, i.e.

such that there exists a pixel for each motion whose ray is

parallel to the motion line. Let these 4 pixels be pixels 1
to 4. Since we can recover ray directions up to a 3 × 3 ho-

mography only, we may, without loss of generality, attribute

arbitrary coordinates to the directions D1 · · ·D4 (such that

no 3 of them are collinear). We now alternate between the

following two steps:

1. Compute the line at infinity of ray directions for all

Paper 15: Towards Generic Self-Calibration of Central Cameras, OMNIVIS 2005 [18] 161

flow curves for which two ray directions have already

been determined.

2. Compute ray directions of pixels who lie on two flow

curves whose line at infinity has already been deter-

mined.

Repeat this until convergence, i.e. until no more directions

or lines at infinity can be computed.

In the first iteration, 6 lines at infinity can be computed,

for the flow curves that link pairs of our 4 basis pixels. After

this, 3 new ray directions can be recovered.

In the second iteration, 3 new lines at infinity are com-

puted. From then on, the number of computable ray direc-

tions and lines at infinity increases exponentially in general

(although pixels and flow curves will be more and more of-

ten “re-visited” towards convergence).

This algorithm is deterministic, hence the computed ray

directions will necessarily be an “affine reconstruction” of

the true ones.

There are a few issues with this “proof”:

• the construction does not state sufficient condition in

order to calibrate all ray directions of a camera; it just

says that the ray directions we do calibrate (i.e. that are

attained by the construction scheme), are indeed up to

the same global affine transformation equal to the true

ones.

• a practical implementation of the above algorithm will

have to deal with noise: for example, computed flows

curves are not exact and the lines at infinity computed

for flow curves that contain the same pixel, will not

usually intersect in a single point.

• strictly speaking, the above scheme for self-calibration

is not valid for cameras with finitely many rays. To

explain what we mean, let us consider a camera with

finitely many rays, in two positions. In general, i.e.

for an arbitrary translation between the two positions,

a ray in the second camera position, will have zero

probability of cutting any ray in the first camera po-

sitions! Hence, the concept of matching pixels has to

be handled with care. However, if we consider a cam-

era with infinitely many rays (that completely fill some

closed volume of space), a ray in one position will al-

ways have matching rays in the other position (unless

it is outside the other position’s field of view). Hence,

our constructive proof given in this section, is valid for

cameras with infinitely many rays. In future work we

will clarify this issue more properly.

5. Self-Calibration Algorithm

We put together constraints derived in section 3 in order to

propose a self-calibration algorithm that requires rotational

and translational motions.

5.1. Two Rotational Motions

From a single rotation we obtain the projection rays in sev-

eral cones corresponding to flow curves. The local offsets

and the opening angles are unknown in each of the cones.

In the presence of another rotation we obtain a new set of

cones around a different axis. It is possible to compute the

projection rays without any ambiguity using these two mo-

tions. However we propose a simple and practical algorithm

for computing the projection rays with two rotations and an

additional translation in the next subsection.

5.2. Two Rotations and One Translation

By combining our observations so far, we are able to for-

mulate a self-calibration algorithm that does not require any

initialization. It requires 2 rotational and 1 translational mo-

tions with at least one closed flow curve.

The translational motion only serves here to fix the offset

angles of all cones arising from the two rotational motions.

Let p1 be the center pixel of the first rotation and p2 that of

the second one. Consider the translational flow curve that

contains p1. All pixels on one side of the flow curve starting

from p1 will have the same φ1. Similarly let φ2 refer to

the offset angle for pixels lying on the flow curve passing

through p2. The same holds for the second rotation.

Without loss of generality, we set the first rotation axis

as the Z-axis, and set φ1 = 0 for p2, and φ2 = 0 for p1.

Hence, the ray associated with p2 is determined up to the

angle α between the two rotation axes. Below, we explain

how to compute this angle. If we already knew it, we could

immediately compute all ray directions: for every pixel p,

we know a line going through D1 (associated with its φ1)

and similarly for D2. The pixel’s ray is simply computed

by intersecting the two lines.

What about pixels whose rays are coplanar with the two

rotation axes? This is not a problem because every com-

puted ray direction gives the angle of the associated cone.

Hence, all pixels on that cone can directly by reconstructed,

by intersecting the line issuing from D1 or D2 with its cone.

This reasoning is also the basis for the computation of α.

However in general the flow curves are not always closed.

Thus we present a more detailed approach which can work

with several open flow curves. In order to understand the al-

gorithm let us first visualize a setup as shown in Figure 3(a).

Consider a plane π1 orthogonal to the first rotation axis.

The intersection of the cones associated with the first ro-

tation axis and the plane π1 will form concentric circles

C1, C2, ..Cn with radii r1, r2, ..rn. Let h be the distance

of the camera center from π1. Thus the opening angle of

the ith cone can be computed if we know the ri and h. Now

162 Chapter 7. Self-Calibration

(a) (b) (c)

Figure 3: a) We show two rotation axes and a plane orthogonal π1 to the first axis. We compute the rotation axis, radii of the

concentric circles around the first rotation axis, the distance between C1 and C2 and eventually the angle α between the two

axis. See text for more details. b) Two rotation flow curves and one translation flow curve on the image. c) Concentric circles

from rotation and a line translation on π1.

let us consider the intersection of the cones from the second

rotation with the plane π1. These intersections are ellipses.

As we observed earlier translational flow curves consists

of pixels whose corresponding projection rays are coplanar.

The intersection of these coplanar rays and the plane π1 is

a line. We use this information to compute the relation be-

tween ri and later the offset angles.

Here we briefly describe the technique used in comput-

ing ri. Let θ1 and θ2 be the two angles subtended by a single

translational curve with C1 and C2. We can compute the an-

gle subtended by two consecutive pixels in a rotation flow

curve. Thus it is possible to obtain the angle subtended by

any two pixels on the flow curve.We assume r1 to be unity.

Thus r2 can be computed as below.

r2 =
cos(θ1

2
)

cos(θ2

2
)

Similarly we can compute the radii of the circles of all other

cones.

The distance between C1 and C2, the distance d between

the two axes on π1, can be computed by constructing a flow

curve passing through the center pixel (pixel corresponding

to the axis) of the second rotation and estimating its radius.

Finally we need to compute the value of h to compute α.

In order to compute h let us consider the flow curve of the

second rotation passing through the center pixel of the first

rotation. The corresponding cone intersects π1 as an ellipse.

We intersect this flow curves with the flow curves about the

first axis to obtain some 3D points on π1. These points can

be used to parameterize the ellipse. Once we know the ma-

jor radius ra of the ellipse we can compute h and α as shown

below.

tan(2α) =
2tan(α)

1 − tan2(α)
,

2ra

h
=

d
h

1 − (d
h
)2

, α = tan−1(
d

h
)

The algorithm does not require all flow curves to be

closed. For example in Figure 5 we show the scenario where

we calibrate a fisheye camera with only few closed flow

curves.

5.3. Many Rotations and many Translations

For example, once we know the projection rays for a part

of the image and the inter-axis angle α, we can compute

the projection rays for pixels in the corners of the image

using flow curves from two different translational motions

or alternatively, from a single rotational motion.

6. Experiments

We tested the algorithm of section 5.2 using simulated and

real cameras. For the real cameras, ground truth is diffi-

cult to obtain, so we visualize the self-calibration result by

performing perspective distortion correction.

6.1. Dense Matching

It is relatively easy to acquire images in favorable condi-

tions. For pure translations, we use a translation stage. As

for pure rotations, one could use a tripod for example, but

another possibility is to point the camera at a far away scene

and perform hand-held rotations. To make the image match-

ing problem simpler we used planar surfaces. We consid-

ered two scenarios. The first approach uses simple coded

structured light algorithm [16], which involves in succes-

sively displaying patterns of horizontal and vertical black

Paper 15: Towards Generic Self-Calibration of Central Cameras, OMNIVIS 2005 [18] 163

and white stripes on the screen to encode the position of

each screen pixel. In the second scenario we consider a

planar scene with black dots. In both these cases we do

not know the physical coordinates of the scene. We used

OpenCV library to perform dense matching [13]. Neighbor-

hood matches were used to check the consistency in match-

ing and to remove false matches. Planar scene was used to

simplify the matching process. However our calibration al-

gorithm is independent of the nature of the scene. We tested

our algorithm with simulations and real data. In simulations

we tested a pinhole camera with and without radial distor-

tions. The virtual pinhole camera, constructed using an ar-

bitrary camera matrix, is made to capture a random surface.

We obtained matches in the case of pure translation and pure

rotations. The flow curves and calibrated 3D rays are shown

in Figure 4. We used ellipse parametrization for fitting the

flow curves. It is easy to realize that the flow curve in the

case of rotation is an ellipse for perspective cameras. The

ellipse fitting was reasonably accurate for fisheye cameras

as well. In the case of central catadioptric cameras the flow

curves will not be ellipses. In such scenarios we may need

to use nonparametric approaches. As expected we obtained

accurate results in simulations and it confirmed the validity

of our algorithm.

Secondly we tested our algorithm on Nikon coolpix fish-

eye lens, FC-E8, with a field of view of 183 degrees. In

Figure 5 we show the translation and rotation flow curves.

We fitted ellipses for both the rotational and translational

flow curves.

6.2. Distortion Correction

Once a camera is calibrated, one can perform distortion cor-

rection in a straightforward manner. We do this by plac-

ing a virtual perspective camera at the optical center of the

calibrated real camera, and apply the following simple ren-

dering scheme. One has to specify a field of view and the

image resolution of the virtual camera, i.e. a focal length

and the size of the distortion-corrected image. Further, one

needs to specify the virtual camera’s orientation. By de-

fault, we choose a rotation such that the center pixel of the

virtual camera and of the real camera, have collinear pro-

jection rays.

The distortion-corrected image is rendered as follows.

For every pixel of the image to be rendered, we compute

its projection ray, using the specified focal length and cam-

era orientation. We then determine the k closest (in terms

of angle) projection ray(s) of the real camera. We look up

the RGB values of the associated pixels in the original, dis-

torted image, and interpolate them to determine the RGB

value of the pixel to be rendered. Different interpolation

schemes are possible, i.e. nearest neighbor interpolation for

k = 1 or a weighted average (weights depending on angle

between real and virtual projection ray) for k > 1.

Figure 4: Top left: flow curves associated with a single ro-

tation on a perspective image. We also fitted ellipses on the

flow curves to analytically compute the intersections with

other flow curves. Top right and bottom: projection rays

after calibration in two different views.

For example we show the perspectively synthesized im-

ages in Figure 6. The minor artifacts could be due to the

imprecision in the experimental data during rotation. Nev-

ertheless, the strong distortions of the camera have been cor-

rected to a large extent.

7. Conclusions

We have studied the generic self-calibration problem and

calibrated general central cameras using different combina-

tions of pure translations and pure rotations. Our initial sim-

ulations and experimental results are promising and show

that self-calibration may indeed be feasible in practice. As

for future work, we are interested in relaxing the constraints

on the camera model and the motion scenarios.

References

[1] J.P. Barreto and H. Araujo. Paracatadioptric camera calibra-

tion using lines. ICCV, 1359–1365, 2003.

[2] D.C. Brown. Close-Range Camera Calibration. Photogram-

metric Engineering, 37(8), 855–866, 1971.

[3] G. Champleboux, S. Lavallée, P. Sautot, and P. Cinquin. Ac-

curate calibration of cameras and range imaging sensors: the

NPBS method. ICRA, 1552–1558, 1992.

[4] C. Geyer and K. Daniilidis. Paracatadioptric camera calibra-

tion. PAMI, 24(5):687–695, 2002.

164 Chapter 7. Self-Calibration

(a) (b)

Figure 5: a) Flow curves of pure rotation on a fisheye image.

b) Translational flow curves on a fisheye image.

[5] K.D. Gremban, C.E. Thorpe, and T. Kanade. Geometric

camera calibration using systems of linear equations. ICRA,

562–567, 1988.

[6] M.D. Grossberg and S.K. Nayar. A general imaging model

and a method for finding its parameters. ICCV, 2:108–115,

2001.

[7] R.I. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2000.

[8] R.A. Hicks and R. Bajcsy. Catadioptric sensors that approx-

imate wide-angle perspective projections. CVPR, 545–551,

2000.

[9] S.B. Kang. Catadioptric self-calibration. CVPR, 201–207,

2000.

[10] H.C. Longuet-Higgins. A computer program for recon-

structing a scene from two projections. Nature, 293:133–

135, 1981.

[11] B. Micusik and T. Pajdla. Autocalibration and 3D Recon-

struction with Non-central Catadioptric Cameras. CVPR,

2004.

[12] T. Moons, L. Van Gool, M. van Diest, and E. Pauwels.

Affine Reconstruction from Perspective Image Pairs.

DARPA–ESPRIT Workshop on Applications of Invariants in

Computer Vision, Azores, 249–266, 1993.

[13] OpenCV (Open Source Computer Vision Library), Intel,

www.intel.com/research/mrl/research/opencv/

[14] P. Sturm and S. Ramalingam. A generic concept for camera

calibration. ECCV, 1–13. 2004.

[15] R. Swaminathan, M.D. Grossberg, and S.K. Nayar. Caustics

of Catadioptric Cameras ICCV, 2001.

[16] J. Salvi, J. Pages and J. Batlle. Pattern codification strategies

in structured light systems. Pattern Recognition, 34(7), 827-

849, 2004.

Paper 15: Towards Generic Self-Calibration of Central Cameras, OMNIVIS 2005 [18] 165

Figure 6: Top: original images with the boundaries showing the calibration region. Middle and bottom: generated perspective

images.

166 Chapter 7. Self-Calibration

Self-calibration of a general radially symmetric

distortion model

Jean-Philippe Tardif1, Peter Sturm2, and Sébastien Roy1

1 DIRO, Université de Montréal,Canada.
{tardifj, roys}@iro.umontreal.ca

2 INRIA Rhône-Alpes. 38330 Montbonnot St Martin, France.
{Peter.Sturm}@inrialpes.fr

Abstract. We present a new approach for self-calibrating the distor-
tion function and the distortion center of cameras with general radially
symmetric distortion. In contrast to most current models, we propose a
model encompassing fisheye lenses as well as catadioptric cameras with
a view angle larger than 180o.
Rather than representing distortion as an image displacement, we model
it as a varying focal length, which is a function of the distance to the
distortion center. This function can be discretized, acting as a general
model, or represented with e.g. a polynomial expression.
We present two flexible approaches for calibrating the distortion func-
tion. The first one is a plumbline-type method; images of line patterns
are used to formulate linear constraints on the distortion function param-
eters. This linear system can be solved up to an unknown scale factor
(a global focal length), which is sufficient for image rectification. The
second approach is based on the first one and performs self-calibration
from images of a textured planar object of unknown structure. We also
show that by restricting the camera motion, self-calibration is possible
from images of a completely unknown, non-planar scene.
The analysis of rectified images, obtained using the computed distortion
functions, shows very good results compared to other approaches and
models, even those relying on non-linear optimization.

1. Introduction

Most theoretical advances in geometric computer vision make use of the pin-hole
camera model. One benefit of such a model is the linearity of the projection which
simplifies multi-view constraints and other structure-from-motion computations.
Unfortunately in many cases, this model is a poor representation of how the
camera samples the world, especially when dealing with wide angle cameras
where radial distortion usually occurs. In addition to these cameras, catadioptric
devices (i.e. cameras pointed at a mirror) also admit a very large field of view.
Their image distortion can also be seen as a type of radial distortion, although,
in general, it cannot be modeled with traditional models. This is because the
view angle of these cameras can be larger than 180o, which is not compatible

Paper 16: Self-Calibration of a Radially Symmetric. . . , ECCV 2006 [37] 167

2

with the usual image-displacement approach. The effect of radial distortion is
that straight lines in the scene are not in general projected onto straight lines in
the image, contrary to pin-hole cameras. Many calibration algorithms can deal
with distortion, but they are usually tailor-made for specific distortion models
and involve non-linear optimization.

In this paper, we introduce a general distortion model, whose main feature is
to consider radially symmetric distortion. More precisely, we make the following
assumptions on the camera projection function:

• the aspect ratio is 1,
• the distortion center is aligned with the principal point3,
• the projection function is radially symmetric (around the distortion center),
• the projection is central, i.e. projection rays pass through a single (effective)
optical center.

Given the quality of camera hardware manufacturing, it is common practice
to assume an aspect ratio of 1. As for the second and third assumptions, they
are made to ensure our model is consistent with both catadioptric devices and
regular fisheye cameras. Finally, a central projection is assumed for simplicity
even for very large field of view cameras [1, 22] in which a non-single viewpoint
might be induced by the lens [3], or by a misaligned mirror [18].

Our full camera model consists therefore of the position of the distortion
center and the actual distortion function that maps distance from the distor-
tion center to focal length. This model, together with the above assumptions,
fully represents a camera projection function. It is a good compromise between
traditional low-parametric camera models and fully general ones, modeling one
projection ray per pixel [10, 17], in terms of modeling power and ease and sta-
bility of calibration. The model is indeed general enough to represent cameras
of different types and with very different view angles.

Problem statement. In this paper, we intend to solve the proposed model re-
lying on images of collinear points in space. Our algorithm makes no assumption
on the distortion function and on the distortion center position. Only a rough
initial value of the latter is needed.

Organization. A short review of the most popular distortion models is pre-
sented in the first section. The model we adopt is presented in §3. In §4 we
propose a plumbline method for calibrating our model using images of collinear
points. Based on this, we propose a plane-based self-calibration approach, in §5.
Finally, the performance of our methods is analyzed and compared to another
similar approach [6].

2. Related Work

As the field of view of a camera lens increases, the distortion occurring in the
captured images becomes more and more important. Traditionally, researchers

3 We will see that this constraint may be dropped in some cases.

168 Chapter 7. Self-Calibration

3

have sought new models with more degrees of freedom and complexity. These
models include the traditional polynomial model [11] (which can be combined
with a field of view model (FOV) [6]), division [7] and rational [5]. Most of
the time the models are calibrated using non-linear optimization of either a full
projection model from points located on a calibration object [23] or a homogra-
phy mapping from a planar grid [5]. Recent papers have also shown that radial
distortion models can be calibrated linearly from a calibration grid [12] of by
feature point matching between images [7, 5, 19, 20].

Other approaches focus only on calibrating the distortion function by impos-
ing either that a straight line in space should appear straight in the image [4, 6]
or that spherical objects should appear circular [16].

The aforementioned models all apply to cameras with a field of view smaller
than 180o since the distortion is image-based. They fail to handle data captured
by a camera with a view angle larger than 180o, typical for catadioptric devices.
Different models and algorithm have been specifically designed to address these
cases [9, 14] and their parameters have an explicit geometric interpretation rather
than expressing distortion directly.

Finally, only few attempts were made to find models able to deal with dioptric
systems (including radial distortion) and catadioptric ones [22, 2]. The model we
propose fits in this category with the benefit that its distortion function can be
general.

3. Camera Model

We describe the camera model that corresponds to the assumptions explained in
the introduction. Consider a camera with canonical orientation, i.e. the optical
axis is aligned with the Z-axis and image x and y-axes are parallel to world
X and Y -axes respectively. Our camera model is then fully described by the
position of a distortion center (cx, cy)⊤ and a distortion “function” f : R → R,
such that an image point (x, y)⊤ is back-projected to a 3D line spanned by the
optical center and the point at infinity with coordinates:

[

x − cx, y − cy, f(r), 0
]⊤

, r =
√

(x − cx)2 + (y − cy)2

The distortion function (it should actually be called “undistortion function”, but
we did not find this very elegant) can for example be chosen as a polynomial
with even powers of r, in which case we have the division model, as used in [7,
19]. The model also subsumes fisheye models [8, 15] and cameras of the ’unified
central catadioptric model’ [9].

In this paper, we use two representations for the distortion function. The
first one is a polynomial of a degree d to be fixed, like in the division model,
however including odd powers:

f(r) =

d
∑

i=0

λir
i. (1)

Paper 16: Self-Calibration of a Radially Symmetric. . . , ECCV 2006 [37] 169

4

The second one is a discrete representation, consisting of a lookup table of the
distortion function values at a set of discrete values for r (in practice, we use
one sample per step of one pixel). We denote these values as:

f(r) = fr. (2)

Note that a constant function f allows the representation of a pinhole camera
with f ’s value as focal length. From the above back-projection equation, it is
easy to deduce equations for distortion correction, also called rectification in the
sequel. This can for example be done by re-projecting the points at infinity of
projection rays into a pinhole camera with the same optical center and orien-
tation as the original camera. As for the intrinsic parameters of the (virtual)
pinhole camera, we usually also adopt an aspect ratio of 1 and zero skew; if
the distortion center is to have the same coordinates in the rectified image as
in the original one, and if g denotes the rectified image’s focal length, then the
homogeneous coordinates of the rectified point are:





g 0 cx

0 g cy

0 0 1









x − cx

y − cy

f(r)



 .

In the following, we introduce a few geometric notions that will be used in
this paper. A distortion circle is a circle in the image, centered in the distortion
center. Projection rays of points lying on a distortion circle span an associated
viewing cone in space. In our model, all cones have the same axis (the optical
axis) and vertex (the optical center).

Each cone can actually be understood as an individual pinhole camera, with
f(r) as focal length (r being the distortion circle’s radius). Geometrically, this is
equivalent to virtually moving the image plane along the optical axis, according
to the distortion function. This situation is depicted in fig. 1. In the case of a
camera with a view angle larger than 180o, the focal length becomes equal or
smaller than zero. In the zero case, the cone is actually the principal plane,
i.e. the plane containing the optical center and that is perpendicular to the
optical axis. Let us call the associated distortion circle principal distortion

circle. A negative f(r) is equivalent to a camera with positive focal length,
looking backward and whose image is mirrored in x and y. Typical situations
for rectification are depicted in fig. 2.

Rectification for cameras with a view angle larger than 180o cannot be done
as usual: the above rectification operation is no longer a bijection (two points in
the original image may be mapped to the same location in the rectified one) and
points on the principal distortion circle are mapped to points at infinity (fig. 2b).
It is still possible to rectify individual parts of the image correctly, by giving the
virtual pinhole camera a limited field of view and allowing it to rotate relative
to the true camera.

4. Plumbline Calibration

In this section, we show that the distortion function f and the distortion center
can be recovered linearly from the images of lines (straight edges) or points that

170 Chapter 7. Self-Calibration

5

f

f
Original

RectiÞed

Optical center

Image
displacement

Image plane Virtual
image plane

Backward
virtual

image plane

Negative
focal length

Image
displacement

0

r

r

(a) (b)

Fig. 1. Distortion circles are associated with cones in space. Theoretically, any point
of the image can be projected into a single plane. a) Pixel from a cone looking forward,
b) one from a cone looking backward.

are collinear in space. This is thus akin to the classical plumbline calibration
technique [4, 6].

4.1. Calibration of Distortion Function

We obtain linear constraints on the distortion function as follows. Consider the
images of three collinear points, pi = (xi, yi)

⊤. For now, let us assume that the
distortion center is known and that the image coordinate system is centered in
this point. Hence, ri = ||(xi, yi)|| is the distance of a point from the distortion
center. Provided that these points should be collinear once rectified, we know
that:

∣

∣

∣

∣

∣

∣

x0 x1 x2

y0 y1 y2

f(r0) f(r1) f(r2)

∣

∣

∣

∣

∣

∣

= 0 (3)

which can be written explicitly as a linear constraint on the f(ri)’s:

f(r0)

∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

+ f(r1)

∣

∣

∣

∣

x2 x0

y2 y0

∣

∣

∣

∣

+ f(r2)

∣

∣

∣

∣

x0 x1

y0 y1

∣

∣

∣

∣

= 0. (4)

If f is of the form (1) or (2), then this equation gives a linear constraint on its
parameters λi respectively fr.

Constraints can be accumulated from all possible triplets of points that are
projections of collinear points in space. We thus obtain a linear equation system
of the form Ax = 0, where x contains the parameters of f (the λi’s or the fr’s).
Note that constraints from triplets where two or all three image points lie close
to one another are not very useful and hence can be neglected in order to reduce
the number of equations. Solving this system to least squares yields parameters
that maximize the collinearity of the rectified points4. Note that the equation

4 However, it is not optimal in terms of geometric distance.

Paper 16: Self-Calibration of a Radially Symmetric. . . , ECCV 2006 [37] 171

6

RectiÞed
line

Original
line

negative
displacement

(a) (b) (c)

Original

RectiÞed

Radial
 axis

!

!

Point on
principal plane

Parallel lines

Fig. 2. Situations where three points are rectified into collinear positions. a) Three
points corresponding to forward cones. b) One point located on principal distortion
circle, i.e. scene point on principal plane. c) Two points on forward cones and one on
a backward cone.

system is homogeneous, i.e. the distortion parameters are only estimated up to
scale. This is natural, as explained below; a unique solution can be guaranteed
by setting λ0 = 1 as is usually done for the division model, or by setting one fr

to a fixed value.

4.2. Calibration of Distortion Center

So far, we have assumed a known distortion center. In this section, we show
how it can be estimated as well, in addition to the actual distortion function.
A first idea is to sample likely positions of the distortion center, e.g. consider
a regular grid of points in a circular region in the image center, and compute
the distortion function for each of them using the above method. We then keep
the point yielding the smallest residual of the linear equation system as the
estimated distortion center. This approach is simple and not very elegant, but is
fully justified and works well in practice. Its downside is that the computation
time is proportional to the number of sampled points.

Therefore, we investigate a local optimization procedure, as opposed to the
above brute force one. Let (cx, cy) be the unknown distortion center. Equation
(3) now becomes:

∣

∣

∣

∣

∣

∣

∣

∣

x0 − cx x1 − cx x2 − cx

y0 − cy y1 − cy y2 − cy

f(

∥

∥

∥

∥

[

x0 − cx

y0 − cy

] ∥

∥

∥

∥

) f(

∥

∥

∥

∥

[

x1 − cx

y1 − cy

] ∥

∥

∥

∥

) f(

∥

∥

∥

∥

[

x2 − cx

y2 − cy

] ∥

∥

∥

∥

)

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (5)

First, this constraint cannot be used directly for the discretized version of the
distortion function. Second, if we use the polynomial model, the constraint is
highly non-linear in the coordinates of the distortion center.

We thus consider an approximation of (5): we assume that a current estimate
of the distortion center is not too far away from the true position (||(cx, cy)|| is

172 Chapter 7. Self-Calibration

7

small), so that f can be approximated with (cx, cy) = 0 and

f(

∥

∥

∥

∥

[

x

y

] ∥

∥

∥

∥

) ≈ f(

∥

∥

∥

∥

[

x − cx

y − cy

] ∥

∥

∥

∥

).

Equation (5) thus simplifies to:

∣

∣

∣

∣

∣

∣

∣

∣

x0 − cx x1 − cx x2 − cx

y0 − cy y1 − cy y2 − cy

f(

∥

∥

∥

∥

[

x0

y0

]
∥

∥

∥

∥

) f(

∥

∥

∥

∥

[

x1

y1

]
∥

∥

∥

∥

) f(

∥

∥

∥

∥

[

x2

y2

]
∥

∥

∥

∥

)

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (6)

which is linear in cx and cy. Once again, combining many constraints leads to an
over-determined linear equation system. The recovered distortion center may not
be optimal because the points are expressed relative to the approximate center
and because of the simplification of (5). Hoping that the previous assumptions
are applicable, this new center should nevertheless improve our rectification.
This estimation is used in a local optimization scheme of alternation type:

0. Initialize the distortion center with e.g. the center of the image.
1. Fix the distortion center and compute the distortion function (§4.1).
2. Fix the distortion function and update the distortion center (§4.2).
3. Go to step 1, unless convergence is observed.

Instead of using the least-squares cost function based on the algebraic distance
(3), we also consider a more geometric cost function to judge convergence in step
3. Consider a set of image points belonging to a line image. From the current
values of distortion center and function, we compute their projection rays and
fit a plane as follows: determine the plane that contains the optical center and
that minimizes the sum of (squared) angles with projection rays. The residual
squared angles, summed over all line images, give the alternative cost function.

4.3. Discussion

The estimation of distortion center and function is based on an algebraic distance
expressing collinearity of rectified image points. Better would be of course to use
a geometric distance in the original images; this is possible but rather involved
and is left for future work.

We briefly describe what the calibration of the distortion function amounts
to, in terms of full metric calibration. First, recall that the distortion function
can be computed up to scale only from our input (see §4.1). This is natural:
if we have a distortion function that satisfies all collinearity constraints, then
multiplying it by a scale factor results in a distortion function that satisfies them
as well. This ambiguity means that once the distortion function is computed (up
to scale) and the image rectified, the camera can be considered as equivalent to
a pinhole camera with unknown focal length, with the difference that the field
of view is potentially larger than 180o. Any existing focal length calibration or
self-calibration algorithm designed for pinhole cameras can be applied to obtain

Paper 16: Self-Calibration of a Radially Symmetric. . . , ECCV 2006 [37] 173

8

a full metric calibration. A direct application of such algorithms can probably
use only features that lie inside the principal distortion circle, but it should be
possible to adapt them so as to use even fields of view larger than 180o. At this
step, the second assumption of §1 can also be relaxed if desired: a full pinhole
model, i.e. not only focal length, can in principle be estimated from rectified
images.

5. Self-Calibration

We now develop a plane-based self-calibration approach that is based on the
plumbline technique of the previous section. Consider that the camera acquires
two images of a textured plane with otherwise unknown structure. We suppose
that we can match the two images densely; the matching does not actually need
to be perfectly dense, but assuming it simplifies the following explanations. This
is discussed below in more details.

We now describe how dense matches between two images of a planar scene
allow the generation of line images and hence to apply the plumbline technique.
Consider any radial line (line going through the distortion center) in the first
image; the projection rays associated with the points on that line are necessarily
coplanar according to our camera model. Therefore, the scene points that are
observed along that radial line must be collinear: they lie on the intersection of
the plane of projection rays, with the scene plane. Due to the dense matching,
we know the projections of these collinear scene points in the second image. By
considering dense matches of points along n radial lines in one image, we thus
obtain n line images in the other image, and vice versa. In addition, these line
images usually extend across a large part of the image, bringing about strong
constraints.

We now simply stack all plumbline constraints (4) for all pairs of images,
and solve for the distortion parameters as in §4. Here, we have assumed the
knowledge of the distortion center (in order to define radial lines); the distortion
center can of course also be estimated, using e.g. the exhaustive approach of
§4.2. Moreover, the input, once rectified, can be given to a classical plane-based
self-calibration algorithm to obtain a full metric calibration, using e.g. [21].

Dense Matching. Dense matching can be achieved rather straightforwardly.
If the camera acquires a continuous image sequence, most existing optical flow
algorithms can be applied for successive frames and their results propagated in
order to obtain a dense matching between two images with a substantial motion
between them. In addition, the fact that a planar scene is observed eliminates
the occlusion problem. If the scene is not sufficiently textured, but only allows to
extract and track sparse interest points, then we proceed as follows. We extract
dominant lines in each image using a Hough transform of the extracted interest
points, and only keep the lines passing near the current distortion center esti-
mate. These are almost radial lines. An example is shown in fig. 3a,b. The rest
of the self-calibration is as above.

Constrained Camera Motions. Another way to obtain line images without
the need for linear features in the scene is to acquire images under constrained

174 Chapter 7. Self-Calibration

9

camera motions. A first possibility is to carry out pure rotations about the
optical center, as suggested also by [19]. The scene can then be assimilated to a
plane, and the above self-calibration method can be directly applied. A second
possibility is to perform pure translations (with e.g. a tripod) and to track image
points across several images. In this case, any point track constitutes a line image
(an example is shown in fig. 3c,d).

(a) (b) (c) (d)

Fig. 3. (a)+(b) Two images of a planar scene. a) shows interest points lying on a
radial line in the first image and b) corresponding points in the second image. (c)+(d)
Two images of a general scene, taken with pure translation. c) shows two interest points
in the first image and d) their paths, accumulated in the last image.

6. Results and Analysis

We tested our algorithm with data acquired from real and simulated cameras.
An 8.0 mm lens, a 3.5mm fisheye lens and a para-catadioptric camera were used.
We also simulated ten cameras featuring distortions from small to very large.

6.1. Convergence Analysis of the Distortion Center Detection

Two aspects of convergence of the plumbline method were evaluated. First, eval-
uating if the minimization of the constraints given by (6) instead of (5) leads to
similar results. This is not critical though, as the path of the optimizer needs not
be the same to ensure convergence. On the other hand, if the paths are similar, it
suggests that the convergence pace is not penalized too much with the simplified
cost function. We proceeded as follows. For samples of distortion center positions
in a box around the initial position, we computed the two cost functions and
found their minima (fig. 4a,b). We see that the functions’ general shapes are
almost identical, as well the positions of their respective minima. Another eval-
uation consists in initializing the distortion center randomly around the optimal
one and finding the minima of the two cost functions. Figure 4c shows the av-
erage distance between these minima, as a function of the distance of the given
distortion center from the optimal one. It is generally small, suggesting that both
cost functions may lead to similar optimization paths.

Secondly, the overall convergence was tested with simulated and real data.
In the first case, three criteria were considered: the number of line images given

Paper 16: Self-Calibration of a Radially Symmetric. . . , ECCV 2006 [37] 175

10

(a) (b)

 0
 1
 2
 3
 4
 5
 6

 0 10 20 30 40 50 60D
is

ta
nc

e
be

tw
ee

n
th

e
 m

in
im

um
s

(p
ix

el
)

Distance from the best distortion center (pixel)

3 lines

(c)

Fig. 4. Plots of cost functions and optimization paths associated with (a) eq. (5) and
(b) eq. (6). (c) Distance between minima of these two cost functions, with respect
to distance of current estimate of distortion center from optimal one. Data from the
3.5mm fisheye lens.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6D
is

ta
nc

e
to

 d
is

to
rt

io
n

ce
nt

er
 (

pi
xe

l)

Noise (std pixel)

3 lines
5 lines
7 lines

11 lines

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6D
is

ta
nc

e
to

 d
is

to
rt

io
n

ce
nt

er
 (

pi
xe

l)

Noise (std pixel)

3 lines
5 lines
7 lines

11 lines

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

D
is

ta
nc

e
to

 d
is

to
rt

io
n

ce
nt

er
 (

pi
xe

ls
)

Initialization distance (pixels)

3 lines
5 lines
7 lines

11 lines

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

D
is

ta
nc

e
to

 d
is

to
rt

io
n

ce
nt

er
 (

pi
xe

ls
)

Initialization distance (pixels)

3 lines
5 lines
7 lines

11 lines

(b)

Fig. 5. Precision of the recovered distortion center on simulated data w.r.t. a) noise
and number of lines, b) number of lines and initialization distance.

as input, the amount of noise added to the data and the distance of the given
initial distortion center from the true one. For each simulated camera, up to 11
line segments were generated randomly, Gaussian noise of standard deviation 0
to 6 pixels was added to image point coordinates and these were then quantized
to pixel precision. For every camera, 50 initial values for the distortion center
were randomly chosen in a circle of 60 pixels radius around the true position (for
images of size 1000× 1000) and given as input to the algorithm. This a realistic
test considering that for our real cameras, we found that the estimated distortion
center converged to around 30 pixels from the initial value (image center) in the
worst case. The results in fig. 5 show that the number of lines has a much larger
impact on the quality of the recovered distortion center than the noise and the
initialization distance. This is especially true when the number of line is larger
than 7.

6.2. Plumbline Calibration

We acquired images of lines with our real cameras, calibrated the distortion and
then performed rectification. Once again, we tested the convergence and also the
quality of the rectification by checking the collinearity of rectified line images.
Convergence was never found to be an issue, especially for the two dioptric lenses
(fig. 6). Even with a really bad initialization of the distortion center, resulting
in a poor initial estimate of the distortion function, the algorithm converged

176 Chapter 7. Self-Calibration

11

(a) (b) (c)

Fig. 6. Convergence examples of the algorithm for a) the 8.0 mm, b) the 3.5 mm
fisheye, c) the para-catadioptric. The density plots show the value of the cost function
explained at the end of §4.2, with f computed using distortion center positions (cx, cy)
in a box of 60 × 60 pixels around the final distortion centers. In dark-green, different
initializations of the algorithm; in black, the centers at each step of the algorithm; in
purple, the final centers.

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500

D
is

to
rt

io
n

 f
u

n
c
ti
o

n

Radius (in pixels)

3.5mm, poly
8.0mm, poly

cata, gen
cata, poly

Fig. 7. Calibrated distortion functions for our real cameras. poly refers to (1) and gen

to (2). For the 8.0 and 3.5mm, both representations lead to virtually identical results
(details at table 1).

surprisingly fast (fig. 8). The distortion functions for our real cameras are shown
in fig. 7 as well as rectified images in fig. 9 (images not used for the calibration).
We compared our approach with the one presented in [6], run on the same data.
Since that approach performs non-linear optimization, it can easily incorporate
different distortion models. Results for different models are shown in table 1;
we initialized the distortion centers with the one that was estimated with our
approach and the distortion function as a constant.

Details are given in fig. 10 for the catadioptric cameras. We observe that a
polynomial function did not give satisfying results. Using higher degrees (up to
10) and changing the distortion function did not give much better results. On
the other hand, we see that a division function is very well suited to model the
distortion in the image.

6.3. Self-Calibration from Real Sequences

Two sequences were tested. In the first one, points were tracked from a flat
surface (our laboratory floor) with a hand-held camera. In the second case, a
tripod was used and the camera was translated in constant direction. Overall,
the results were satisfying although not as precise as with the direct plumbline
technique using images of actual linear features. Results are summarized in ta-
ble 2; values shown were computed like explained in table 1 and using images of

Paper 16: Self-Calibration of a Radially Symmetric. . . , ECCV 2006 [37] 177

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

D
is

to
rt

io
n
 f
u
n
c
ti
o
n

Radius (in pixels)

iter 1
iter 2
iter 3
iter 4
iter 5

Fig. 8. The distortion function of the fisheye lens, at different iterations of the cali-
bration algorithm for an initial center very far from the true position (200,400). The
final estimate of (512,523) was found in only 5 iterations (image of size 1000 × 1000
pixels). Subsequent steps were only minor improvements.

(a) (b) (c) (d)

Fig. 9. Rectification examples. a,b) A 3.5mm fisheye original and rectified images.
c,d) a catadioptric image. The radius of the principal distortion circle was estimated
as 329 pixels, so circles of radius 0 to 320 pixels were rectified.

actual lines. The distortion center detection was also not as precise. The algo-
rithm converged as usual, but not exactly to the best distortion center. In fact, it
was much closer to the image center. This is explained by the fact that towards
the image border, features are much more difficult to track: they are smaller and
blurry. In this case, they are usually dropped by the tracking algorithm resulting
in less data for large radiuses, where the distortion is the worst. Consequently,
the distortion is a little bit under-evaluated and the distortion center less well
constrained.

7. Conclusion

We presented flexible calibration methods for a general model for radial distor-
tion, one plumbline type method and one for plane-based self-calibration. The
methods were applied for simulated and real images of different cameras (fish-
eye and catadioptric). Results are satisfying, in terms of convergence basin and
speed, precision as well as accuracy.

The most closely related works are [19, 20]. There, elegant though rather more
involved procedures are proposed. These start with an even more general camera
model than here, that does not enforce radial symmetry; only after computing
and exploiting multi-view relations for that model, radial symmetry is enforced
in order to compute distortion parameters. Our methods are much simpler to
implement, use radial symmetry directly and can work with fewer images (two
for plane-based self-calibration). Future work will mainly concern improving the

178 Chapter 7. Self-Calibration

13

Table 1. Results using our models and algorithm (first two rows) and other models
and the non-linear algorithm of [6]. Shown values refer to residual distances for fitting
lines to rectified points (average and worst case). The rectified images were scaled to
have the same size as the original. For the catadioptric camera, our approach used all
the points, whereas the others used only the points corresponding to forward viewing
cones (they failed otherwise). “—” means the algorithm did not converge without
careful initialization or gave very bad results.

Models and rectifying equations 8mm 3.5mm catadioptric

Discrete model of (2) 0.16 1.03 0.35 3.7 0.51 7.6

Model of (1) with d = 6 0.16 1.12 0.35 5.5 0.47 6.3

6th order polynomial
p(1 + λ1||p|| + ... + λ6||p||

6)
0.16 1.08 0.42 7.0 1.5 14.4

6th order division (non-linear) 0.16 1.08 0.36 5.6 — —

FOV-model [6]: p tan(ω||p||)

2 tan(ω

2
)||p||

0.23 4.86 0.54 7.9 — —

FOV-model + 2nd order polynomial 0.16 1.06 0.37 6.1 — —

Table 2. Results for the 3.5mm fisheye with data from real sequences (fig. 3).

Models plane translation

Discrete model of (2) 0.68 8.05 0.55 7.0

Model of (1) with d = 6 0.58 9.7 0.85 14.6

tracking for the self-calibration method and investigating the optimization of
reprojection based cost functions.

References

1. S. Baker, S.K. Nayar. A Theory of Single-Viewpoint Catadioptric Image Forma-
tion. IJCV, 35(2), 1–22, 1999.

2. J.P. Barreto, K. Daniilidis. Unifying image plane liftings for central catadioptric
and dioptric cameras. OMNIVIS 2004.

3. M. Born and E. Wolf. Principles of Optics, Pergamon Press, 1965.
4. D.C. Brown. Close-Range Camera Calibration. Photogrammetric Engineering,

37(8), 855-866, 1971.
5. D. Claus, A.W. Fitzgibbon. Rational Function Model for Fish-eye Lens Distortion

CVPR 2005.
6. F. Devernay, O. Faugeras. Straight lines have to be straight: Automatic calibration

and removal of distortion from scenes of structured environments. MVA 2001.
7. A.W. Fitzgibbon. Simultaneous linear estimation of multiple view geometry and

lens distortion. CVPR 2001.
8. M.M. Fleck. Perspective Projection: The Wrong Imaging Model. TR 95–01, Uni-

versity of Iowa, 1995.
9. C. Geyer, K. Daniilidis. Catadioptric Camera Calibration. ICCV 1999.

Paper 16: Self-Calibration of a Radially Symmetric. . . , ECCV 2006 [37] 179

14

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

(a)

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

(b)

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

(c)

Fig. 10. Line images used as input of the algorithms and rectification results for the
catadioptric camera (with principal distortion circle found at 329 pixels). a) Input
(only shown for radius smaller than 315 pixels), b) Rectification with a traditional
model of degree 6 (model as in third row of table 1), c) with the polynomial distortion
function (1) and d = 6 (the discrete model of (2) gave almost identical results).

10. M.D. Grossberg, S.K. Nayar. A general imaging model and a method for finding
its parameters. ICCV 2001.

11. R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision Cambridge
University Press 2000.

12. R. I. Hartley, S. B. Kang. Parameter-free Radial Distortion Correction with Centre
of Distortion Estimation. ICCV 2005.

13. Intel Open Source Computer Vision Library.
http://www.intel.com/research/mrl/research/opencv/

14. B.Micusik, T.Pajdla. Autocalibration & 3D Reconstruction with Non-central Cata-
dioptric Cameras. CVPR 2004.

15. S. Shah, J.K. Aggarwal. Intrinsic Parameter Calibration Procedure for A (High-
Distortion) Fish-Eye Lens Camera with Distortion Model and Accuracy Estima-
tion. Pattern Recognition, 29(11), 1775-1788, 1996.

16. D.E. Stevenson, M.M. Fleck. Nonparametric correction of distortion. TR 95–07,
University of Iowa, 1995.

17. P. Sturm, S. Ramalingam. A Generic Concept for Camera Calibration. ECCV
2004.

18. R. Swaminathan, M. Grossberg, S. Nayar. Caustics of catadioptric cameras. ICCV
2001.

19. S. Thirthala, M. Pollefeys. The Radial Trifocal Tensor. A tool for calibrating the
radial distortion of wide-angle cameras. CVPR 2005.

20. S. Thirthala, M. Pollefeys. Multi-View Geometry of 1D Radial Cameras and its
Application to Omnidirectional Camera Calibration. to appear, ICCV 2005.

21. B. Triggs. Autocalibration from Planar Scenes. ECCV 1998.
22. X. Ying, Z. Hu Can We Consider Central Catadioptric Cameras and Fisheye

Cameras within a Unified Imaging Model. ECCV 2004.
23. Z. Zhang. A Flexible New Technique for Camera Calibration. PAMI, 22(11),

1330-1334, 2000.

180 Chapter 7. Self-Calibration

Chapter 8

Structure from Motion

Paper 17 [34]: P. Sturm, S. Ramalingam, and S.K. Lodha. On calibration, structure-from-motion and multi-

view geometry for general camera models. In R. Reulke and U. Knauer, editors, Proceedings of the 2nd

ISPRS Panoramic Photogrammetry Workshop, Berlin, Germany. International Society for Photogrammetry

and Remote Sensing, February 2005. Published in the Int. Archives of Photogrammetry, Remote Sensing

and Spatial Information Sciences, Vol. XXXVI-5/W8.

Paper 18 [35]: P. Sturm, S. Ramalingam, and S.K. Lodha. On calibration, structure from motion and multi-

view geometry for generic camera models. In K. Daniilidis, R. Klette, and A. Leonardis, editors, Imaging

Beyound the Pinhole Camera. Kluwer Academic Publishers, 2006.

181

ON CALIBRATION, STRUCTURE-FROM-MOTION AND MULTI-VIEW GEOMETRY
FOR PANORAMIC CAMERA MODELS

Peter Sturma, Srikumar Ramalingamb, Suresh K. Lodhab

a INRIA Rhône-Alpes, 655 Avenue de l’Europe, 38330 Montbonnot, France – Peter.Sturm@inrialpes.fr
b Dept. of Computer Science, University of California, Santa Cruz, USA – {srikumar,lodha}@cse.ucsc.edu

Commission V, WG V/1 and 5

KEY WORDS: Panoramic camera, Non-central camera, Multi-view geometry, Calibration, 3D Reconstruction, Motion estimation

ABSTRACT

We consider calibration and structure-from-motion tasks for a previously introduced, highly general imaging model, where cameras

are modeled as possibly unconstrained sets of projection rays. This allows to describe most existing camera types (at least for those

operating in the visible domain), including pinhole cameras, sensors with radial or more general distortions, and especially panoramic

cameras (central or non-central). Generic algorithms for calibration and structure-from-motion tasks (absolute and relative orientation,

3D point triangulation) are outlined. The foundation for a multi-view geometry of non-central cameras is given, leading to the formula-

tion of multi-view matching tensors, analogous to the essential matrix, trifocal and quadrifocal tensors of perspective cameras. Besides

this, we also introduce a natural hierarchy of camera models: the most general model has unconstrained projection rays whereas the

most constrained model dealt with here is the central one, where all rays pass through a single point.

1 INTRODUCTION

Many different types of cameras including pinhole, stereo, cata-

dioptric, omnidirectional and non-central cameras have been used

in computer vision and photogrammetry. Most existing camera

models are parametric (i.e. defined by a few intrinsic parameters)

and address imaging systems with a single effective viewpoint

(all rays pass through one point). In addition, existing calibration

or structure-from-motion procedures are often taylor-made for

specific camera models, see examples e.g. in (Barreto & Araujo,

2003; Gruen & Huang, 2001; Hartley & Zisserman, 2000; Geyer

& Daniilidis, 2002).

The aim of this work is to relax these constraints: we want to pro-

pose and develop calibration and structure-from-motion methods

that should work for any type of camera model, and especially

also for cameras without a single effective viewpoint. To do so,

we first renounce on parametric models, and adopt the following

very general model: a camera acquires images consisting of pix-

els; each pixel captures light that travels along a ray in 3D. The

camera is fully described by (Grossberg & Nayar, 2001):

• the coordinates of these rays (in a local coordinate frame).
• the mapping between rays and pixels; this is basically a sim-

ple indexing.

This is of course an idealistic model; other aspects, e.g. pho-

tometry and point-spread function are described in (Grossberg &

Nayar, 2001). This general imaging model allows to describe vir-

tually any camera that captures light rays travelling along straight

lines. Examples are (cf. figure 1):

• a camera with any type of optical distortion, e.g. radial or

tangential.
• a camera looking at a reflective surface, e.g. as often used

in surveillance, a camera looking at a spherical or otherwise

curved mirror (Hicks & Bajcsy, 2000). Such systems, as op-

posed to central catadioptric devices using parabolic or hy-

perbolic mirrors (Baker & Nayar, 1999; Geyer & Daniilidis,

2000), do not usually have a single effective viewpoint.
• multi-camera stereo systems: put together the pixels of all

image planes; they “catch” light rays that do not travel along

lines that all pass through a single point. Nevertheless, in the

above general camera model, a stereo system (with rigidly

linked cameras) is considered as a single camera.

Figure 1: Examples of imaging systems. (a) Catadioptric system.

Note that camera rays do not pass through their associated pix-

els. (b) Central camera (e.g. perspective, with or without radial

distortion). (c) Camera looking at reflective sphere. This is a non-

central device (camera rays are not intersecting in a single point).

(d) Omnivergent imaging system (Peleg 2001; Shum 1999). (e)

Stereo system (non-central) consisting of two central cameras.

• other acquisition systems, many of them being non-central,

see e.g. (Bakstein, 2001; Bakstein & Pajdla, 2001; Neuman

et al., 2003; Pajdla, 2002b; Peleg et al., 2001; Shum et al.,

1999; Swaminathan et al., 2003; Yu & McMillan, 2004),

insect eyes, etc.

In this article, we first review some recent work on calibration

and structure-from-motion for this general camera model. Con-

cretely, we outline basics for calibration, pose and motion esti-

mation, as well as 3D point triangulation. We then describe the

foundations for a mult-view geometry of the general, non-central

camera model, leading to the formulation of multi-view match-

ing tensors, analogous to the fundamental matrices, trifocal and

quadrifocal tensors of perspective cameras. Besides this, we also

introduce a natural hierarchy of camera models: the most gen-

eral model has unconstrained projection rays whereas the most

constrained model dealt with here is the central model, where all

rays pass through a single point. An intermediate model is what

we term axial cameras: cameras for which there exists a 3D line

that cuts all projection rays. This encompasses for example x-

slit projections, linear pushbroom cameras and some non-central

catadioptric systems. Hints will be given how to adopt the multi-

view geometry proposed for the general imaging model, to such

axial cameras.

Paper 17: On Calibration, Structure-from-Motion. . . , ISPRS-Workshop 2005 [34] 183

The paper is organized as follows. A hierarchy of camera models

is proposed in section 2. Sections 3 to 5 deal with calibration,

pose estimation, motion estimation, as well as 3D point triangu-

lation. The multi-view geometry for the general camera model

is given in section 6. A few experimental results are shown in

section 7.

2 CAMERA MODELS

A non-central camera may have completely unconstrained pro-

jection rays, whereas for a central camera, there exists a point

– the optical center – that lies on all projection rays. An inter-

mediate case is what we call axial cameras, where there exists

a line that cuts all projection rays – the camera axis (not to be

confounded with optical axis). Examples of cameras falling into

this class are:

• x-slit cameras (Pajdla, 2002a; Zomet et al., 2003) (also called

two-slit or crossed-slits cameras), and their special case of

linear pushbroom cameras (Hartley & Gupta, 1994). Note

that these form a sub-class of axial cameras, see below.
• stereo systems consisting of 2 central cameras or 3 or more

central cameras with collinear optical centers.
• non-central catadioptric cameras of the following construc-

tion: the mirror is any surface of revolution and the optical

center of the central camera (can be any central camera, i.e.

not necessarily a pinhole) looking at the mirror lies on its

axis of revolution. It is easy to verify that in this case, all

projection rays cut the mirror’s axis of revolution, i.e. the

camera is an axial camera, with the mirror’s axis of revolu-

tion as camera axis. Note that catadioptric cameras with a

spherical mirror and a central camera looking at it, are al-

ways non-central, and are actually always axial cameras.

These three classes of camera models may also be defined as:

existence of a linear space of d dimensions that has an intersec-

tion with all projection rays. In this sense, d = 0 defines central

cameras, d = 1 axial cameras and d = 2 general non-central

cameras.

Intermediate classes do exist. X-slit cameras are a special case of

axial cameras: there actually exist 2 lines in space that both cut

all projection rays. Similarly, central 1D cameras (cameras with

a single row of pixels) can be defined by a point and a line in

3D. Camera models, some of which do not have much practical

importance, are summarized in table 1. A similar way of defining

camera types was suggested in (Pajdla, 2002a).

It is worthwhile to consider different classes due to the following

observation: the usual calibration and motion estimation algo-

rithms proceed by first estimating a matrix or tensor by solving

linear equation systems (e.g. the calibration tensors in (Sturm &

Ramalingam, 2004) or the essential matrix (Pless, 2003)). Then,

the parameters that are searched for (usually, motion parameters),

are extracted from these. However, when estimating for example

the 6×6 essential matrix of non-central cameras based on image

correspondences obtained from central or axial cameras, then the

associated linear equation system does not give a unique solution.

Consequently, the algorithms for extracting the actual motion pa-

rameters, can not be applied without modification.

3 CALIBRATION

3.1 Basic Approach

We briefly review a generic calibration approach developed in

(Sturm & Ramalingam, 2004), an extension of (Champleboux

et al., 1992; Gremban et al, 1988; Grossberg & Nayar, 2001),

to calibrate different camera systems. As mentioned, calibration

consists in determining, for every pixel, the 3D projection ray as-

sociated with it. In (Grossberg & Nayar, 2001), this is done as

follows: two images of a calibration object with known structure

Points/lines cutting rays Description

None Non-central camera

1 point Central camera

2 points Camera with a single

projection ray

1 line Axial camera

1 point, 1 line Central 1D camera

2 skew lines X-slit camera

2 coplanar lines Union of a non-central 1D

camera and a central camera

3 coplanar lines without Non-central 1D camera

a common point

Table 1: Camera models, defined by 3D points and lines that have

an intersection with all projection rays of a camera.

are taken. We suppose that for every pixel, we can determine the

point on the calibration object, that is seen by that pixel1. For each

pixel in the image, we thus obtain two 3D points. Their coordi-

nates are usually only known in a coordinate frame attached to the

calibration object; however, if one knows the motion between the

two object positions, one can align the coordinate frames. Then,

every pixel’s projection ray can be computed by simply joining

the two observed 3D points.

In (Sturm & Ramalingam, 2004), we propose a more general ap-

proach, that does not require knowledge of the calibration ob-

ject’s displacement. In that case, three images need to be taken

at least. The fact that all 3D points observed by a pixel in differ-

ent views, are on a line in 3D, gives a constraint that allows to

recover both the motion and the camera’s calibration. The con-

straint is formulated via a set of trifocal tensors, that can be esti-

mated linearly, and from which motion, and then calibration, can

be extracted. In (Sturm & Ramalingam, 2004), this approach is

first formulated for the use of 3D calibration objects, and for the

general imaging model, i.e. for non-central cameras. We also

propose variants of the approach, that may be important in prac-

tice: first, due to the usefulness of planar calibration patterns, we

specialized the approach appropriately. Second, we propose a

variant that works specifically for central cameras (pinhole, cen-

tral catadioptric, or any other central camera). More details are

given in (Sturm & Ramalingam, 2003).

This basic approach only handles the minimum number of im-

ages (two respectively three, for central respectively non-central

cameras). Also, it only allows to calibrate the pixels that are

matched to the calibration object in all images. Especially for

panoramic cameras, complete calibration with this approach is

thus very hard (unless an “omnidirectional” calibration object is

available). Recently, we have thus developed an approach that

deals with these drawbacks; it handles any number of images and

also allows to calibrate image regions that are not covered by the

calibration object in all images. This approach is described in the

next paragraph.

3.2 General Approach

We propose two ideas to overcome the above mentioned limita-

tions of our basic calibration approach. First, we have recently

developed a method along the lines of (Sturm & Ramalingam,

2004) that can use more than the minimum number of images.

This method can not be described in full detail here; it will be

given in a future publication. This method nevertheless has the

drawback of only allowing to calibrate image regions that are

covered by the calibration object in all images used.

Our second idea is relatively straightforward. We first perform

1This can be achieved for example by using a flat screen as calibration

“grid” and taking images of several black & white patterns that together

uniquely encode the position of pixels on the screen.

184 Chapter 8. Structure-from-Motion

Figure 2: Examples of image regions corresponding to different

images of calibration objects. Left: 23 images of calibration ob-

jects with a fisheye camera. Right: 24 images with a spherical

catadioptric camera.

an initial calibration using our basic approach. This only allows

to calibrate an image region that is covered by the calibration ob-

ject in all images used. We then extend the calibration to the rest

of the image, as follows. For each image in which the calibra-

tion object covers a sufficiently large already calibrated region,

we can compute the object’s pose relative to the camera (see sec-

tion 4.1). Then, for each as yet uncalibrated pixel, we check if it

is matched to the calibration object in sufficiently many images

(one for central cameras, two for non-central ones); if so, we can

compute the coordinates of its projection ray. For a non-central

camera, we simply fit a straight line to the matching 3D points on

the calibration object for different positions/images. As for the

central model, we compute a straight line that is constrained to

pass through the optical center.

These two procedures – computation of pose and projection rays

– are repeated in alternation, until all available images have been

used. Figure 2 gives examples of image regions covered by cal-

ibration objects in different images, for panoramic cameras that

have been calibrated using our approach.

We also have developed a bundle adjustment that can be used

between iterations, or only at the end of the above process, to

refine calibration and pose. Our bundle adjustment minimizes

ray–point distance, i.e. the distance in 3D, between projection

rays and matching points on calibration objects. This is not the

optimal measure, but reprojection-based bundle adjustment is not

trivial to formulate for the generic imaging model (some ideas on

this are given in (Ramalingam et al., 2004)). The minimization

is done for the optical center position (only for central cameras),

the pose of calibration objects, and of course the coordinates of

projection rays. The ray–point distance is computed as

E =
r
X

i=1

n
X

j=1

‖Ci + λijDi − RjPij − tj‖
2

with:

• n is the number of calibration objects and r the number of

rays.
• Ci is a point on the ith ray (in the non-central case) or the

optical center (in a central model).
• Di is the direction of the ith ray.
• λij parameterizes the point on the ith ray that should corre-

spond to its intersection with the jth calibration object.
• Pij is the point on the jth calibration object that is matched

to the pixel associated with the ith ray.
• Rj and tj represent the pose of the jth calibration object.

4 ORIENTATION

4.1 Pose Estimation

Pose estimation is the problem of computing the relative posi-

tion and orientation between an object of known structure, and a

calibrated camera. A literature review on algorithms for pinhole

cameras is given in (Haralick et al., 1994). Here, we briefly show

how the minimal case can be solved for general cameras. For

pinhole cameras, pose can be estimated, up to a finite number of

solutions, from 3 point correspondences (3D-2D) already. The

same holds for general cameras. Consider 3 image points and the

associated projection rays, computed using the calibration infor-

mation. We parameterize generic points on the rays as follows:

Ai + λiBi.

We know the structure of the observed object, meaning that we

know the mutual distances dij between the 3D points. We can

thus write equations on the unknowns λi, that parameterize the

object’s pose:

‖Ai + λiBi − Aj − λjBj‖
2 = d2

ij

for (i, j) = (1, 2), (1, 3), (2, 3)

This gives a total of 3 equations that are quadratic in 3 unknowns.

Many methods exist for solving this problem, e.g. symbolic com-

putation packages such as MAPLE allow to compute a resultant

polynomial of degree 8 in a single unknown, that can be numeri-

cally solved using any root finding method.

Like for pinhole cameras, there are up to 8 theoretical solutions.

For pinhole cameras, at least 4 of them can be eliminated because

they would correspond to points lying behind the camera (Haral-

ick et al., 1994). As for general cameras, determining the maxi-

mum number of feasible solutions requires further investigation.

In any case, a unique solution can be obtained using one or two

additional points (Haralick et al., 1994). More details on pose

estimation for non-central cameras are given in (Chen & Chang,

2004; Nistér, 2004).

4.2 Motion Estimation

We outline how ego-motion, or, more generally, relative position

and orientation of two calibrated general cameras, can be esti-

mated. This is done via a generalization of the classical motion

estimation problem for pinhole cameras and its associated center-

piece, the essential matrix (Longuet-Higgins, 1981). We briefly

summarize how the classical problem is usually solved (Hartley

& Zisserman, 2000). Let R be the rotation matrix and t the trans-

lation vector describing the motion. The essential matrix is de-

fined as E = −[t]×R. It can be estimated using point correspon-

dences (x1,x2) across two views, using the epipolar constraint

xT

2Ex1 = 0. This can be done linearly using 8 correspondences

or more. In the minimal case of 5 correspondences, an efficient

non-linear minimal algorithm, which gives exactly the theoretical

maximum of 10 feasible solutions, was only recently introduced

(Nistér, 2003). Once the essential matrix is estimated, the motion

parameters R and t can be extracted relatively straightforwardly

(Nistér, 2003).

In the case of our general imaging model, motion estimation is

performed similarly, using pixel correspondences (x1,x2). Us-

ing the calibration information, the associated projection rays can

be computed. Let them be represented by their Plücker coordi-

nates (see section 6), i.e. 6-vectors L1 and L2. The epipolar con-

straint extends naturally to rays, and manifests itself by a 6 × 6
essential matrix (Pless, 2003):

E =

„

−[t]×R R

R 0

«

The epipolar constraint then writes: LT

2EL1 = 0 (Pless, 2003).

Once E is estimated, motion can again be extracted straightfor-

wardly (e.g., R can simply be read off E). Linear estimation of E

requires 17 correspondences.

There is an important difference between motion estimation for

central and non-central cameras: with central cameras, the trans-

lation component can only be recovered up to scale. Non-central

Paper 17: On Calibration, Structure-from-Motion. . . , ISPRS-Workshop 2005 [34] 185

cameras however, allow to determine even the translation’s scale.

This is because a single calibrated non-central camera already

carries scale information (via the distance between mutually skew

projection rays). One consequence is that the theoretical mini-

mum number of required correspondences is 6 instead of 5. It

might be possible, though very involved, to derive a minimal 6-

point method along the lines of (Nistér, 2003).

More details on motion estimation for non-central cameras and

intermediate camera models, will be given in a forthcoming pub-

lication.

5 3D RECONSTRUCTION

We now describe an algorithm for 3D reconstruction from two or

more calibrated images with known relative position. Let C =
(X, Y, Z)T

be a 3D point that is to be reconstructed, based on its

projections in n images. Using calibration information, we can

compute the n associated projection rays. Here, we represent the

ith ray using a starting point Ai and the direction, represented

by a unit vector Bi. We apply the mid-point method (Hartley

& Sturm, 1997; Pless, 2003), i.e. determine C that is closest in

average to the n rays. Let us represent generic points on rays

using position parameters λi, as in the previous section. Then,

C is determined by minimizing the following expression over

CT = (X, Y, Z) and the λi:
Pn

i=1
‖Ai + λiBi − C‖2.

This is a linear least squares problem, which can be solved e.g.

via the Pseudo-Inverse, leading to the following explicit equation

(derivations omitted):
0

B

B

B

@

C

λ1

...

λn

1

C

C

C

A

= M
−1

0

B

B

B

@

I3 · · · I3

−BT

1

. . .

−BT

n

1

C

C

C

A

0

B

@

A1

.

..

An

1

C

A

with

M =

0

B

B

B

@

nI3 −B1 · · · −Bn

−BT

1 1
.
..

. . .

−BT

n 1

1

C

C

C

A

where I3 is the identity matrix of size 3 × 3. Due to its sparse

structure, the inversion of M can actually be performed in closed-

form. Overall, the triangulation of a 3D point using n rays, can

by carried out very efficiently, using only matrix multiplications

and the inversion of a symmetric 3 × 3 matrix.

6 MULTI-VIEW GEOMETRY

We establish the foundations of a multi-view geometry for gen-

eral (non-central) cameras. Its cornerstones are, as with perspec-

tive cameras, matching tensors. We show how to establish them,

analogously to the perspective case.

Here, we only talk about the calibrated case; the uncalibrated case

is nicely treated for perspective cameras, since calibrated and un-

calibrated cameras are linked by projective transformations. For

non-central cameras however, there is no such link: in the most

general case, every pair (pixel, camera ray) may be completely

independent of other pairs.

6.1 Reminder on Multi-View Geometry for Perspective Cam-

eras

We briefly review how to derive multi-view matching relations

for perspective cameras (Faugeras & Mourrain, 1995). Let Pi be

projection matrices and qi image points. A set of image points

are matching, if there exists a 3D point Q and scale factors λi

such that:

λiqi = PiQ

This may be formulated as the following matrix equation:

0

B

B

B

@

P1 q1 0 · · · 0

P2 0 q2 · · · 0
..
.

..

.
..
.

. . .
..
.

Pn 0 0 · · · qn

1

C

C

C

A

| {z }

M

0

B

B

B

B

B

@

Q

−λ1

−λ2

...

−λn

1

C

C

C

C

C

A

=

0

B

B

B

@

0
0
..
.

0

1

C

C

C

A

The matrix M, of size 3n× (4+n) has thus a null-vector, mean-

ing that its rank is less than 4 + n. Hence, the determinants of all

its submatrices of size (4+n)×(4+n) must vanish. These deter-

minants are multi-linear expressions in terms of the coordinates

of image points qi.

They have to be considered for every possible submatrix. Only

submatrices with 2 or more rows per view, give rise to constraints

linking all projection matrices. Hence, constraints can be ob-

tained for up to n views with 2n ≤ 4 + n, meaning that only

for up to 4 views, matching constraints linking all views can be

obtained.

The constraints for n views take the form:

3
X

i1=1

3
X

i2=1

· · ·
3
X

in=1

q1,i1q2,i2 · · · qn,in
Ti1,i2,··· ,in

= 0 (1)

where the multi-view matching tensor T of dimension 3×· · ·×3
depends on and partially encodes the cameras’ projection matri-

ces Pi. Note that as soon as cameras are calibrated, this theory

applies to any central camera: for a camera with radial distortion

for example, the above formulation holds for distortion-corrected

image points.

6.2 Multi-View Geometry for Non-Central Cameras

Here, instead of projection matrices (depending on calibration

and pose), we deal with pose matrices:

Pi =

„

Ri ti

0T 1

«

These express the similarity transformations that map a point

from some global reference frame, into the cameras’ local co-

ordinate frames (since no optical center and no camera axis exist,

no assumptions about the local coordinate frames are made). As

for image points, they are now replaced by camera rays. Let the

ith ray be represented by two 3D points Ai and Bi. Eventually,

we will to obtain expressions in terms of the rays’ Plücker coor-

dinates. Plücker coordinates can be defined in various ways; the

definition we use is as follows. The line can be represented by

the skew-symmetric 4 × 4 so-called Plücker matrix

L = AB
T − BA

T

Note that the Plücker matrix is independent (up to scale) of which

pair of points on the line are chosen to represent it. An alterna-

tive representation for the line is its Plücker coordinate vector of

length 6:

L =

0

B

B

B

B

B

@

A4B1 − A1B4

A4B2 − A2B4

A4B3 − A3B4

A3B2 − A2B3

A1B3 − A3B1

A2B1 − A1B2

1

C

C

C

C

C

A

(2)

Our goal is to obtain matching tensors T and matching constraints

of the form (1), with the difference that tensors will have size

6 × · · · × 6 and act on Plücker line coordinates:

6
X

i1=1

6
X

i2=1

· · ·
6
X

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0 (3)

186 Chapter 8. Structure-from-Motion

In the following, we explain how to derive such matching con-

straints. Consider a set of n camera rays and let them be defined

by two points Ai and Bi each; the choice of points to represent

a ray is not important, since later we will fall back onto the ray’s

Plücker coordinates.

Now, a set of n camera rays are matching, if there exist a 3D point

Q and scale factors λi and µi associated with each ray such that:

λiAi + µiBi = PiQ

i.e. if the point PiQ lies on the line spanned by Ai and Bi. As for

perspective cameras, we group these equations in matrix form:

M

0

B

B

B

B

B

B

B

B

B

B

B

@

Q

−λ1

−µ1

−λ2

−µ2

...

−λn

−µn

1

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

@

0

0

...

0

1

C

C

C

A

with:

M =

0

B

B

B

@

P1 A1 B1 0 0 · · · 0 0

P2 0 0 A2 B2 · · · 0 0
.
..

.

..
.
..

.

..
.
..

. . .
.
..

.

..

Pn 0 0 0 0 · · · An Bn

1

C

C

C

A

As above, this equation shows that M must be rank-deficient.

However, the situation is different here since the Pi are of size

4×4 now, and M of size 4n×(4+2n). We thus have to consider

submatrices of M of size (4 + 2n) × (4 + 2n). Furthermore, in

the following we show that only submatrices with 3 rows or more

per view, give rise to constraints on all pose matrices. Hence,

3n ≤ 4 + 2n, and again, n ≤ 4, i.e. multi-view constraints are

only obtained for up to 4 views.

Let us first see what happens for a submatrix of M where some

view contributes only a single row. The two columns correspond-

ing to its base points A and B, are multiples of one another since

they consist of zeroes only, besides a single non-zero coefficient,

in the single row associated with the considered view. Hence, the

determinant of the considered submatrix of M is always zero, and

no constraint is available.

In the following, we exclude this case, i.e. we only consider sub-

matrices of M where each view contributes at least 2 rows. Let

N be such a matrix. Without loss of generality, we start to de-

velop its determinant with the columns containing A1 and B1.

The determinant is then given as a sum of terms of the form:

(A1,jB1,k − A1,kB1,j) det N̄jk

where j, k ∈ {1..4}, j 6= k, and N̄jk is obtained from N by

dropping the columns containing A1 and B1 as well as the rows

containing A1,j etc.

We observe several things:

• The term (A1,jB1,k − A1,kB1,j) is nothing else than one

of the Plücker coordinates of the ray of camera 1 (cf. (2)).

By continuing with the development of the determinant of

N̄jk , it becomes clear that the total determinant of N can be

written in the form:

6
X

i1=1

6
X

i2=1

· · ·

6
X

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0

i.e. the coefficients of the Ai and Bi are “folded together”

into the Plücker coordinates of camera rays and T is a match-

ing tensor between the n cameras. Its coefficients depend

exactly on the cameras’ pose matrices.

central non-central

views M useful M useful

2 6 × 6 3-3 8 × 8 4-4

3 9 × 7 3-2-2 12 × 10 4-3-3

4 12 × 8 2-2-2-2 16 × 12 3-3-3-3

Table 2: Cases of multi-view matching constraints for central and

non-central cameras. The columns entitled “useful” contain en-

tries of the form x − y − z etc. that correspond to sub-matrices

of M that give rise to matching constraints linking all views:

x − y − z etc. refers to submatrices of M containing x rows

from one camera, y from another etc.

• If camera 1 contributes only two rows to N, then the deter-

minant of N becomes of the form:

L1,x

6
X

i2=1

· · ·

6
X

in=1

L2,i2 · · ·Ln,in
Ti2,··· ,in

!

= 0

i.e. it only contains a single coordinate of the ray of camera

1, and the tensor T does not depend at all on the pose of

that camera. Hence, to obtain constraints between all cam-

eras, every camera has to contribute at least three rows to the

considered submatrix.

We are now ready to establish the different cases that lead to use-

ful multi-view constraints. As mentioned above, for more than 4

cameras, no constraints linking all of them are available: subma-

trices of size at least 3n × 3n would be needed, but M only has

4 + 2n columns. So, only for n ≤ 4, such submatrices exist.

Table 2 gives all useful cases, both for central and non-central

cameras. These lead to two-view, three-view and four-view match-

ing constraints, encoded by essential matrices, trifocal and quadri-

focal tensors. Deriving their forms is now mainly a mechanical

task.

6.3 Multi-View Geometry for Intermediate Camera Models

This multi-view geometry can be specialized to some of the inter-

mediate camera models described in section 2. We have derived

this for the axial and x-slit camera models. This will be reported

elsewhere in detail.

7 EXPERIMENTAL RESULTS

We have calibrated a wide variety of cameras (both central and

non-central) as shown in Table 3. Results are first discussed for

several “slightly non-central” cameras and for a multi-camera

system. We then report results for structure-from-motion algo-

rithms, applied to setups combining cameras of different types

(pinhole and panoramic).

Slightly non-central cameras: central vs. non-central models.

For three cameras (a fisheye, a hyperbolic and a spherical cata-

dioptric system, see sample images in Figure 3), we applied our

calibration approach with both, a central and a non-central model

assumption. Table 3 shows that the bundle adjustment’s resid-

ual errors for central and non-central calibration, are very close

to one another for the fisheye and hyperbolic catadioptric cam-

eras. This suggests that for the cameras used in the experiments,

the central model is appropriate. As for the spherical catadioptric

camera, the non-central model has a significantly lower residual,

which may suggest that a non-central model is better here.

To further investigate this issue we performed another evaluation.

A calibration grid was put on a turntable, and images were ac-

quired for different turntable positions. We are thus able to quan-

titatively evaluate the calibration, by measuring how close the

recovered grid pose corresponds to a turntable sequence. Individ-

ual grid points move on a circle in 3D; we thus compute a least

squares circle fit to the 3D positions given by the estimated grid

Paper 17: On Calibration, Structure-from-Motion. . . , ISPRS-Workshop 2005 [34] 187

Camera Images Rays Points RMS

Pinhole (C) 3 217 651 0.04

Fisheye (C) 23 508 2314 0.12

(NC) 23 342 1712 0.10

Sphere (C) 24 380 1441 2.94

(NC) 24 447 1726 0.37

Hyperbolic (C) 24 293 1020 0.40

(NC) 24 190 821 0.34

Multi-Cam (NC) 3 1156 3468 0.69

Eye+Pinhole (C) 3 29 57 0.98

Table 3: Bundle adjustment statistics for different cameras. (C)

and (NC) refer to central and non-central calibration respectively,

and RMS is the root-mean-square residual error of the bundle

adjustment (ray-point distances). It is given in percent, relative

to the overall size of the scene (largest pairwise distance between

points on calibration grids).

Camera Grids Central Non-Central

Fisheye 14 0.64 0.49

Spherical 19 2.40 1.60

Hyperbolic 12 0.81 1.17

Table 4: RMS error for circle fits to grid points, for turntable

sequences (see text).

pose. At the bottom of Figure 3, recovered grid poses are shown,

as well as a circle fit to the positions of one grid point. Table 4

shows the RMS errors of circle fits (again, relative to scene size,

and given in percent). We note that the non-central model pro-

vides a significantly better reconstruction than the central one for

the spherical catadioptric camera, which thus confirms the above

observation. For the fisheye, the non-central calibration also per-

forms better, but not as significantly. As for the hyperbolic cata-

dioptric camera, the central model gives a better reconstruction

though. This can probably be explained as follows. Inspite po-

tential imprecisions in the camera setup, the camera seems to be

sufficiently close to a central one, so that the non-central model

leads to overfitting. Consequently, although the bundle adjust-

ment’s residual is lower than for the central model (which always

has to be the case), it gives “predictions” (here, pose or motion

estimation) which are unreliable.

Calibration of a multi-camera system. A multi-camera net-

work can be considered as a single generic imaging system. As

shown in Figure 4 (left), we used a system of three (approxi-

mately pinhole) cameras to capture three images each of a cali-

bration grid. We virtually concatenated the images from the in-

dividual cameras and computed all projection rays and the three

grid poses in a single reference frame (see Figure 4 (right)), using

the algorithm outlined in section 3.

In order to evaluate the calibration, we compared results with

those obtained by plane-based calibration (Sturm & Maybank,

1999; Zhang, 2000), that used the knowledge that the three cam-

eras are pinholes. In both, our multi-camera calibration, and

plane-based calibration, the first grid was used to fix the global

coordinate system. We can thus compare the estimated poses of

the other two grids for the two methods. This is done for both, the

rotational and translational parts of the pose. As for rotation, we

measure the angle (in radians) of the relative rotation between the

rotation matrices given by the two methods, see columns Ri in

Table 5). As for translation, we measure the distance between the

estimated 3D positions of the grids’ centers of gravity (columns ti

in Table 5) expressed in percent, relative to the scene size. Here,

plane-based calibration is done separately for each camera, lead-

ing to the three rows of Table 5.

From the non-central multi-camera calibration, we also estimate

the positions of the three optical centers, by clustering the pro-

Figure 3: Top: sample images for hyperbolic and spherical cata-

dioptric cameras. Middle: two images taken with a fisheye. Bot-

tom: pose of calibration grids used to calibrate the fisheye (left)

and a least squares circle fit to the estimated positions of one grid

point (right).

jection rays and computing least squares point fits to them. The

column “Center” of Table 5 shows the distances between opti-

cal centers (expressed in percent and relative to the scene size)

computed using this approach and plane-based calibration. The

discrepancies are low, suggesting that the non-central calibration

of a multi-camera setup is indeed feasible.

Figure 4: Multi-camera setup consisting of 3 cameras (left). Re-

covered projection rays and grid poses (right).

Camera R2 R3 t2 t3 Center

1 0.0117 0.0359 0.56 3.04 2.78

2 0.0149 0.0085 0.44 2.80 2.17

3 0.0088 0.0249 0.53 2.59 1.16

Table 5: Evaluation of non-central multi-camera calibration rela-

tive to plane-based calibration. See text for more details.

Structure-from-motion with hybrid camera setups. We cre-

ated hybrid camera setups by taking images with both, pinhole

and fisheye cameras. Each camera was first calibrated individ-

ually using our approach of section 3. We then estimated the

relative pose of two cameras (or, motion), using the approach

188 Chapter 8. Structure-from-Motion

Figure 5: Combination of a pinhole and a fisheye camera. Top:

input images and matching points. Bottom: estimated relative

pose and 3D model.

Figure 6: Combination of a stereo system and a fisheye camera.

Top: input images and matching points. Bottom: estimated rela-

tive pose and 3D model.

outlined in section 4.2 and manually defined matches. Then, 3D

structure was computed by reconstructing 3D points associated

with the given matches.

Figure 5 shows this for a combination of a pinhole and a fish-

eye camera, and figure 6 for a combination of a stereo system

and a fisheye. Here, the stereo system is handled as a single,

non-central camera. Note that the same scene point usually ap-

pears more than once in the stereo camera. Therefore in the ray-

intersection approach of section 5, we intersect three rays to find

one 3D point here.

These results are preliminary: at the time we obtained them, we

had not developed our full calibration approach of section 3.2,

hence only the central region of the fisheye camera was calibrated

and used. Nevertheless, the qualitatively correct results demon-

strate that our generic structure-from-motion algorithms work,

and actually are applicable to different cameras, or combinations

thereof.

8 CONCLUSIONS

We have reviewed calibration and structure-from-motion tasks

for the general non-central camera model. We also proposed a

multi-view geometry for non-central cameras. A natural hier-

archy of camera models has been introduced, grouping cameras

into classes depending on, loosely speaking, the spatial distribu-

tion of their projection rays. We hope that the theoretical work

presented here allows to define some common ground for recent

efforts in characterizing the geometry of non-classical cameras.

The feasibility of our generic calibration and structure-from-motion

approaches has been demonstrated on several examples. Of course,

more investigations are required to evaluate the potential of these

methods and the underlying models.

Among ongoing and future works, there is the adaptation of our

calibration approach to axial and other camera models as well

as first ideas on self-calibration for the general imaging model.

We also continue our work on bundle adjustment for the general

imaging model, cf. (Ramalingam et al. 2004), and the exploration

of hybrid systems, combining cameras of different types (Sturm,

2002; Ramalingam et al. 2004).

Acknowledgements. This work was partially supported by the

NSF grant ACI-0222900 and by the Multidisciplinary Research

Initiative (MURI) grant by Army Research Office under contract

DAA19-00-1-0352.

REFERENCES

References from Journals:

Baker, S. and Nayar, S.K., 1999. A Theory of Single-Viewpoint

Catadioptric Image Formation. IJCV, 35(2), pp. 1-22.

Chen, C.-S. and Chang, W.-Y., 2004. On Pose Recovery for Gen-

eralized Visual Sensors. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(7), pp. 848-861.

Geyer, C. and Daniilidis, K., 2002. Paracatadioptric camera cal-

ibration. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(5), pp. 687-695.

Haralick, R.M., Lee, C.N., Ottenberg, K. and Nolle, M., 1994.

Review and analysis of solutions of the three point perspective

pose estimation problem. International Journal of Computer Vi-

sion, 13(3), pp. 331-356.

Hartley, R.I. and Sturm, P., 1997. Triangulation. Computer Vision

and Image Understanding, 68(2), pp. 146-157.

Longuet-Higgins, H.C., 1981. A Computer Program for Recon-

structing a Scene from Two Projections. Nature, 293, pp. 133-

135.

Pajdla, T., 2002b. Stereo with oblique cameras. International

Journal of Computer Vision, 47(1), pp. 161-170.

Peleg, S., Ben-Ezra, M. and Pritch, Y., 2001. OmniStereo: Panora-

mic Stereo Imaging. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 23(3), pp. 279-290.

Zhang, Z., 2000. A flexible new technique for camera calibration.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(11), pp. 1330-1334.

Zomet, A., Feldman, D., Peleg, S. and Weinshall, D., 2003. Mo-

saicing New Views: The Crossed-Slit Projection. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 25(6), pp.

741-754.

References from Books:

Gruen, A. and Huang, T.S. (editors), 2001. Calibration and Ori-

entation of Cameras in Computer Vision, Springer-Verlag.

Hartley, R.I. and Zisserman, A., 2000. Multiple view geometry in

computer vision. Cambridge University Press.

Paper 17: On Calibration, Structure-from-Motion. . . , ISPRS-Workshop 2005 [34] 189

References from Other Literature:

Non-central cameras for 3D reconstruction. Technical Report

CTU-CMP-2001-21, Center for Machine Perception, Czech Tech-

nical University, Prague.

Bakstein, H. and Pajdla, T., 2001. An overview of non-central

cameras. Computer Vision Winter Workshop, Ljubljana, Slove-

nia, pp. 223-233.

Barreto, J. and Araujo, H., 2003. Paracatadioptric Camera Cali-

bration Using Lines. International Conference on Computer Vi-

sion, Nice France, pp. 1359-1365.

Champleboux, G., Lavallée, S., Sautot, P. and Cinquin, P., 1992.

Accurate Calibration of Cameras and Range Imaging Sensors:

the NPBS Method. International Conference on Robotics and

Automation, Nice, France, pp. 1552-1558.

Faugeras, O. and Mourrain, B., 1995. On the Geometry and Al-

gebra of the Point and Line Correspondences Between N Images.

International Conference on Computer Vision, Cambridge, MA,

USA, pp. 951-956.

Geyer, C. and Daniilidis, K., 2000. A unifying theory of central

panoramic systems and practical applications. European Confer-

ence on Computer Vision, Dublin, Ireland, Vol. II, pp. 445-461.

Gremban, K.D., Thorpe, C.E. and Kanade, T., 1988. Geometric

Camera Calibration using Systems of Linear Equations. Inter-

national Conference on Robotics and Automation, Philadelphia,

USA, pp. 562-567.

Grossberg, M.D. and Nayar, S.K., 2001. A general imaging mo-

del and a method for finding its parameters. International Con-

ference on Computer Vision, Vancouver, Canada, Vol. 2, pp. 108-

115.

Hartley, R.I. and Gupta, R., 1994. Linear Pushbroom Cameras.

European Conference on Computer Vision, Stockholm, Sweden,

pp. 555-566.

Hicks, R.A. and Bajcsy, R., 2000. Catadioptric Sensors that Ap-

proximate Wide-angle Perspective Projections. Conference on

Computer Vision and Pattern Recognition, Hilton Head Island,

USA, pp. 545-551.

Neumann, J., Fermüller, C. and Aloimonos, Y., 2003. Polydiop-

tric Camera Design and 3D Motion Estimation. Conference on

Computer Vision and Pattern Recognition, Madison, WI, USA,

Vol. II, pp. 294-301.

Nistér, D., 2003. An Efficient Solution to the Five-Point Rela-

tive Pose Problem. Conference on Computer Vision and Pattern

Recognition, Madison, WI, USA, Vol. II, pp. 195-202.

Nistér, D., 2004. A Minimal Solution to the Generalized 3-Point

Pose Problem. Conference on Computer Vision and Pattern Recog-

nition, Washington DC, USA, Vol. 1, pp. 560-567.

Pajdla, T., 2002a. Geometry of Two-Slit Camera. Technical Re-

port CTU-CMP-2002-02, Center for Machine Perception, Czech

Technical University, Prague.

Pless, R., 2003. Using Many Cameras as One. Conference on

Computer Vision and Pattern Recognition, Madison, WI, USA,

Vol. II, pp. 587-593.

Ramalingam, S., Lodha, S. and Sturm, P., 2004. A Generic Struc-

ture-from-Motion Algorithm for Cross-Camera Scenarios. 5th

Workshop on Omnidirectional Vision, Camera Networks and Non-

Classical Cameras, Prague, Czech Republic, pp. 175-186.

Shum, H.-Y., Kalai, A. and Seitz, S.M., 1999. Omnivergent Ste-

reo. International Conference on Computer Vision, Kerkyra,

Greece, pp. 22-29.

Sturm, P., 2002. Mixing catadioptric and perspective cameras.

Workshop on Omnidirectional Vision, Copenhagen, Denmark, pp.

60-67.

Sturm, P. and Maybank, S., 1999. On Plane-Based Camera Cali-

bration: A General Algorithm, Singularities, Applications. Con-

ference on Computer Vision and Pattern Recognition, Fort Collins,

CO, USA, pp. 432-437.

Sturm, P. and Ramalingam, S., 2003. A Generic Calibration Con-

cept – Theory and Algorithms. Research Report 5058, INRIA.

Sturm, P. and Ramalingam, S., 2004. A generic concept for

camera calibration. European Conference on Computer Vision,

Prague, Czech Republic, pp. 1-13.

Swaminathan, R., Grossberg, M.D. and Nayar, S.K., 2003. A

perspective on distortions. Conference on Computer Vision and

Pattern Recognition, Madison, WI, USA, Vol. II, pp. 594-601.

Yu, J. and McMillan, L., 2004. General Linear Cameras. Euro-

pean Conference on Computer Vision, Prague, Czech Republic,

pp. 14-27.

190 Chapter 8. Structure-from-Motion

ON CALIBRATION, STRUCTURE FROM MOTION AND MULTI-VIEW

GEOMETRY FOR GENERIC CAMERA MODELS

Peter Sturm1, Srikumar Ramalingam2, and Suresh Lodha2

1 INRIA Rhône-Alpes, 2University of California, Santa Cruz

Abstract We consider calibration and structure from motion tasks for a previously introduced, highly general imaging model,

where cameras are modeled as possibly unconstrained sets of projection rays. This allows to describe most existing

camera types (at least for those operating in the visible domain), including pinhole cameras, sensors with radial or more

general distortions, catadioptric cameras (central or non-central), etc. Generic algorithms for calibration and structure

from motion tasks (pose and motion estimation and 3D point triangulation) are outlined. The foundation for a multi-view

geometry of non-central cameras is given, leading to the formulation of multi-view matching tensors, analogous to the

fundamental matrices, trifocal and quadrifocal tensors of perspective cameras. Besides this, we also introduce a natural

hierarchy of camera models: the most general model has unconstrained projection rays whereas the most constrained

model dealt with here is the central model, where all rays pass through a single point.

Keywords: Calibration, motion estimation, 3D reconstruction, camera models, non-central cameras.

1. Introduction

Many different types of cameras including pinhole, stereo, catadioptric, omnidirectional and non-central cam-

eras have been used in computer vision. Most existing camera models are parametric (i.e. defined by a few

intrinsic parameters) and address imaging systems with a single effective viewpoint (all rays pass through one

point). In addition, existing calibration or structure from motion procedures are often taylor-made for specific

camera models, see examples e.g. in [4, 15, 9].

The aim of this work is to relax these constraints: we want to propose and develop calibration and structure

from motion methods that should work for any type of camera model, and especially also for cameras without

a single effective viewpoint. To do so, we first renounce on parametric models, and adopt the following very

general model: a camera acquires images consisting of pixels; each pixel captures light that travels along a ray

in 3D. The camera is fully described by [11]:

the coordinates of these rays (given in some local coordinate frame).

the mapping between rays and pixels; this is basically a simple indexing.

This general imaging model allows to describe virtually any camera that captures light rays travelling along

straight lines. Examples are (cf. figure 1):

a camera with any type of optical distortion, such as radial or tangential.

a camera looking at a reflective surface, e.g. as often used in surveillance, a camera looking at a spherical

or otherwise curved mirror [16]. Such systems, as opposed to central catadioptric systems [1, 8] composed

of cameras and parabolic mirrors, do not in general have a single effective viewpoint.

multi-camera stereo systems: put together the pixels of all image planes; they “catch” light rays that

definitely do not travel along lines that all pass through a single point. Nevertheless, in the above general

camera model, a stereo system (with rigidly linked cameras) is considered as a single camera.

other acquisition systems, many of them being non-central, see e.g. [2, 3, 19, 23, 24, 27, 31, 32], insect

eyes, etc.

Paper 18: On Calibration, Structure from Motion and Multi-View Geometry. . . , Book Chapter 2006 [35] 191

Figure 1. Examples of imaging systems. (a) Catadioptric system. Note that camera rays do not pass through their associated pixels.

(b) Central camera (e.g. perspective, with or without radial distortion). (c) Camera looking at reflective sphere. This is a non-central

device (camera rays are not intersecting in a single point). (d) Omnivergent imaging system [24, 27]. (e) Stereo system (non-central)

consisting of two central cameras.

In this article, we first review some recent work on calibration and structure from motion for this general

camera model. Concretely, we outline basics for calibration, pose and motion estimation, as well as 3D point

triangulation. We then describe the foundations for a mult-view geometry of the general, non-central camera

model, leading to the formulation of multi-view matching tensors, analogous to the fundamental matrices, trifo-

cal and quadrifocal tensors of perspective cameras. Besides this, we also introduce a natural hierarchy of camera

models: the most general model has unconstrained projection rays whereas the most constrained model dealt

with here is the central model, where all rays pass through a single point. An intermediate model is what we

term axial cameras: cameras for which there exists a 3D line that cuts all projection rays. This encompasses for

example x-slit projections, linear pushbroom cameras and some non-central catadioptric systems. Hints will be

given how to adopt the multi-view geometry proposed for the general imaging model, to such axial cameras.

The paper is organized as follows. Section 2 explains some background on Plücker coordinates for 3D lines,

which are used to parameterize camera rays in this work. A hierarchy of camera models is proposed in section

3. Sections 4 to 7 deal with calibration, pose estimation, motion estimation, as well as 3D point triangulation.

The multi-view geometry for the general camera model is given in section 8. A few experimental results on

calibration, motion estimation and 3D reconstruction are shown in section 9.

2. Plücker Coordinates

We represent projection rays as 3D lines, via Plücker coordinates. There exist different definitions for them,

the one we use is explained in the following.

Let A and B be two 3D points given by homogeneous coordinates, defining a line in 3D. The line can be

represented by the skew-symmetric 4 × 4 Plücker matrix

L = ABT − BAT

=







0 A1B2 − A2B1 A1B3 − A3B1 A1B4 − A4B1

A2B1 − A1B2 0 A2B3 − A3B2 A2B4 − A4B2

A3B1 − A1B3 A3B2 − A2B3 0 A3B4 − A4B3

A4B1 − A1B4 A4B2 − A2B4 A4B3 − A3B4 0







Note that the Plücker matrix is independent (up to scale) of which pair of points on the line are chosen to

represent it.

192 Chapter 8. Structure-from-Motion

An alternative representation for the line is by its Plücker coordinate vector of length 6:

L =











A4B1 − A1B4

A4B2 − A2B4

A4B3 − A3B4

A3B2 − A2B3

A1B3 − A3B1

A2B1 − A1B2











(1)

The Plücker coordinate vector can be split in two 3-vectors a and b as follows:

a =





L1

L2

L3



 b =





L4

L5

L6





They satisfy the so-called Plücker constraint: aTb = 0. Furthermore, the Plücker matrix can now be conve-

niently written as

L =

(
[b]× −a

aT 0

)

where [b]× is the 3×3 skew-symmetric matrix associated with the cross-product and defined by: b×y = [b]×y.

Consider a metric transformation defined by a rotation matrix R and a translation vector t, acting on points

via:

C →

(
R t

0T 1

)

C

Plücker coordinates are then transformed according to

(
a

b

)

→

(
R 0

−[t]×R R

)(
a

b

)

3. A Natural Hierarchy of Camera Models

A non-central camera may have completely unconstrained projection rays, whereas for a central camera,

there exists a point – the optical center – that lies on all projection rays. An intermediate case is what we call

axial cameras, where there exists a line that cuts all projection rays – the camera axis (not to be confounded

with optical axis). Examples of cameras falling into this class are pushbroom cameras (if motion is translational)

[13], x-slit cameras [22, 33], and non-central catadioptric cameras of the following construction: the mirror

is any surface of revolution and the optical center of the central camera (can be any central camera, i.e. not

necessarily a pinhole) looking at the mirror lies on its axis of revolution. It is easy to verify that in this case, all

projection rays cut the mirror’s axis of revolution, i.e. the camera is an axial camera, with the mirror’s axis of

revolution as camera axis.

These three classes of camera models may also be defined as: existence of a linear space of d dimensions that

has an intersection with all projection rays. In this sense, d = 0 defines central cameras, d = 1 axial cameras

and d = 2 general non-central cameras.

Intermediate classes do exist. X-slit cameras are a special case of axial cameras: there actually exist 2 lines in

space that both cut all projection rays. Similarly, central 1D cameras (cameras with a single row of pixels) can

be defined by a point and a line in 3D. Camera models, some of which do not have much practical importance,

are summarized in table 1.

It is worthwhile to consider different classes due to the following observation: the usual calibration and

motion estimation algorithms proceed by first estimating a matrix or tensor by solving linear equation systems

(e.g. the calibration tensors in [30] or the essential matrix [25]). Then, the parameters that are searched for

(usually, motion parameters), are extracted from these. However, when estimating for example the 6×6 essential

matrix of non-central cameras based on image correspondences obtained from central or axial cameras, then the

associated linear equation system does not give a unique solution. Consequently, the algorithms for extracting

Paper 18: On Calibration, Structure from Motion and Multi-View Geometry. . . , Book Chapter 2006 [35] 193

Points/lines cutting the rays Description

None Non-central camera

1 point Central camera

2 points Camera with a single projection ray

1 line Axial camera

1 point, 1 line Central 1D camera

2 skew lines X-slit camera

2 coplanar lines Union of a non-central 1D camera and a central camera

3 coplanar lines without a Non-central 1D camera

common point

Table 1. Camera models, defined by 3D points and lines that have an intersection with all projection rays of a camera.

the actual motion parameters, can not be applied without modification. This is the reason why in [29, 30] we

already introduced generic calibration algorithms for both, central and non-central cameras.

In the following, we only deal with central, axial and non-central cameras. Structure from motion computa-

tions and multi-view geometry, will be formulated in terms of the Plücker coordinates of camera rays. As for

central cameras, all rays go through a single point, the optical center. Choosing a local coordinate system with

the optical center at the origin, leads to projection rays whose Plücker sub-vector b is zero, i.e. the projection

rays are of the form:

L =

(
a

0

)

This is one reason why the multi-linear matching tensors, e.g. the fundamental matrix, have a “base size” of 3.

As for axial cameras, all rays touch a line, the camera axis. Again, by choosing local coordinate systems

appropriately, the formulation of the multi-view relations may be simplified, as shown in the following. Assume

that the camera axis is the Z-axis. Then, all projection rays have Plücker coordinates with L6 = b3 = 0:

L =







a

b1

b2

0







Multi-view relations can thus be formulated via tensors of “base size” 5, i.e. the essential matrix for axial cameras

will be of size 5 × 5 (see in later sections).

As for general non-central cameras, no such simplification occurs, and multi-view tensors will have “base

size” 6.

4. Calibration

We briefly review a generic calibration approach developed in [30], an extension of [5, 10, 11], to calibrate

different camera systems. As mentioned, calibration consists in determining, for every pixel, the 3D projection

ray associated with it. In [11], this is done as follows: two images of a calibration object with known structure

are taken. We suppose that for every pixel, we can determine the point on the calibration object, that is seen

by that pixel. For each pixel in the image, we thus obtain two 3D points. Their coordinates are usually only

known in a coordinate frame attached to the calibration object; however, if one knows the motion between the

two object positions, one can align the coordinate frames. Then, every pixel’s projection ray can be computed

by simply joining the two observed 3D points.

In [30], we propose a more general approach, that does not require knowledge of the calibration object’s

displacement. In that case, three images need to be taken at least. The fact that all 3D points observed by a pixel

in different views, are on a line in 3D, gives a constraint that allows to recover both the motion and the camera’s

calibration. The constraint is formulated via a set of trifocal tensors, that can be estimated linearly, and from

which motion, and then calibration, can be extracted. In [30], this approach is first formulated for the use of 3D

calibration objects, and for the general imaging model, i.e. for non-central cameras. We also propose variants

194 Chapter 8. Structure-from-Motion

of the approach, that may be important in practice: first, due to the usefulness of planar calibration patterns, we

specialized the approach appropriately. Second, we propose a variant that works specifically for central cameras

(pinhole, central catadioptric, or any other central camera). More details are given in [29].

5. Pose Estimation

Pose estimation is the problem of computing the relative position and orientation between an object of known

structure, and a calibrated camera. A literature review on algorithms for pinhole cameras is given in [12]. Here,

we briefly show how the minimal case can be solved for general cameras. For pinhole cameras, pose can be

estimated, up to a finite number of solutions, from 3 point correspondences (3D-2D) already. The same holds

for general cameras. Consider 3 image points and the associated projection rays, computed using the calibration

information. We parameterize generic points on the rays as follows: Ai + λiBi.

We know the structure of the observed object, meaning that we know the mutual distances dij between the 3D

points. We can thus write equations on the unknowns λi, that parameterize the object’s pose:

‖Ai + λiBi − Aj − λjBj‖
2 = d2

ij for (i, j) = (1, 2), (1, 3), (2, 3)

This gives a total of 3 equations that are quadratic in 3 unknowns. Many methods exist for solving this problem,

e.g. symbolic computation packages such as Maple allow to compute a resultant polynomial of degree 8 in a

single unknown, that can be numerically solved using any root finding method.

Like for pinhole cameras, there are up to 8 theoretical solutions. For pinhole cameras, at least 4 of them can

be eliminated because they would correspond to points lying behind the camera [12]. As for general cameras,

determining the maximum number of feasible solutions requires further investigation. In any case, a unique

solution can be obtained using one or two additional points [12]. More details on pose estimation for non-central

cameras are given in [6, 21].

6. Motion Estimation

We describe how to estimate ego-motion, or, more generally, relative position and orientation of two calibrated

general cameras. This is done via a generalization of the classical motion estimation problem for pinhole cameras

and its associated centerpiece, the essential matrix [17]. We briefly summarize how the classical problem is

usually solved [15]. Let R be the rotation matrix and t the translation vector describing the motion. The essential

matrix is defined as E = −[t]×R. It can be estimated using point correspondences (x1,x2) across two views,

using the epipolar constraint xT
2
Ex1 = 0. This can be done linearly using 8 correspondences or more. In the

minimal case of 5 correspondences, an efficient non-linear minimal algorithm, which gives exactly the theoretical

maximum of 10 feasible solutions, was only recently introduced [20]. Once the essential matrix is estimated, the

motion parameters R and t can be extracted relatively straightforwardly [20].

In the case of our general imaging model, motion estimation is performed similarly, using pixel correspon-

dences (x1,x2). Using the calibration information, the associated projection rays can be computed. Let them be

represented by their Plücker coordinates, i.e. 6-vectors L1 and L2. The epipolar constraint extends naturally to

rays, and manifests itself by a 6 × 6 essential matrix, cf. [25] and section 8.3:

E =

(
−[t]×R R

R 0

)

The epipolar constraint then writes: LT
2
EL1 = 0 [25]. Once E is estimated, motion can again be extracted

straightforwardly (e.g., R can simply be read off E). Linear estimation of E requires 17 correspondences.

There is an important difference between motion estimation for central and non-central cameras: with central

cameras, the translation component can only be recovered up to scale. Non-central cameras however, allow to

determine even the translation’s scale. This is because a single calibrated non-central camera already carries scale

information (via the distance between mutually skew projection rays). One consequence is that the theoretical

minimum number of required correspondences is 6 instead of 5. It might be possible, though very involved, to

derive a minimal 6-point method along the lines of [20].

Paper 18: On Calibration, Structure from Motion and Multi-View Geometry. . . , Book Chapter 2006 [35] 195

7. 3D Point Triangulation

We now describe an algorithm for 3D reconstruction from two or more calibrated images with known relative

position. Let C = (X,Y,Z)T be a 3D point that is to be reconstructed, based on its projections in n images.

Using calibration information, we can compute the n associated projection rays. Here, we represent the ith ray

using a starting point Ai and the direction, represented by a unit vector Bi. We apply the mid-point method

[14, 25], i.e. determine C that is closest in average to the n rays. Let us represent generic points on rays using

position parameters λi. Then, C is determined by minimizing the following expression over X,Y,Z and the λi:∑n
i=1

‖Ai + λiBi −C‖2.

This is a linear least squares problem, which can be solved e.g. via the Pseudo-Inverse, leading to the following

explicit equation (derivations omitted):








C

λ1

...

λn








=








nI3 −B1 · · · −Bn

−BT
1

1
...

. . .

−BT
n 1








︸ ︷︷ ︸

M

−1






I3 · · · I3

−BT
1

. . .

−BT
n













A1

...

An






where I3 is the identity matrix of size 3 × 3. Due to its sparse structure, the inversion of the matrix M in this

equation, can actually be performed in closed-form. Overall, the triangulation of a 3D point using n rays, can

by carried out very efficiently, using only matrix multiplications and the inversion of a symmetric 3 × 3 matrix

(details omitted).

8. Multi-View Geometry

We establish the basics of a multi-view geometry for general (non-central) cameras. Its cornerstones are, as

with perspective cameras, matching tensors. We show how to establish them, analogously to the perspective

case.

Here, we only talk about the calibrated case; the uncalibrated case is nicely treated for perspective cameras,

since calibrated and uncalibrated cameras are linked by projective transformations. For non-central cameras

however, there is no such link: in the most general case, every pair (pixel, camera ray) may be completely

independent of other pairs.

8.1 Reminder on Multi-View Geometry for Perspective Cameras

We briefly review how to derive multi-view matching relations for perspective cameras [7]. Let Pi be projec-

tion matrices and qi image points. A set of image points are matching, if there exists a 3D point Q and scale

factors λi such that:

λiqi = PiQ

This may be formulated as the following matrix equation:








P1 q1 0 · · · 0

P2 0 q2 · · · 0
...

...
...

. . .
...

Pn 0 0 · · · qn








︸ ︷︷ ︸

M










Q

−λ1

−λ2

...

−λn










=








0
0
...

0








The matrix M, of size 3n× (4 + n) has thus a null-vector, meaning that its rank is less than 4 + n. Hence, the

determinants of all its submatrices of size (4 + n) × (4 + n) must vanish. These determinants are multi-linear

expressions in terms of the coordinates of image points qi.

They have to be expressed for any possible submatrix. Only submatrices with 2 or more rows per view,

give rise to constraints linking all projection matrices. Hence, constraints can be obtained up to n views with

2n ≤ 4 + n, meaning that only for up to 4 views, matching constraints linking all views can be obtained.

196 Chapter 8. Structure-from-Motion

The constraints for n views take the form:

3∑

i1=1

3∑

i2=1

· · ·

3∑

in=1

q1,i1q2,i2 · · · qn,inTi1,i2,··· ,in = 0 (2)

where the multi-view matching tensor T of dimension 3×· · ·×3 depends on and partially encodes the cameras’

projection matrices Pi.

Note that as soon as cameras are calibrated, this theory applies to any central camera: for a camera with radial

distortion for example, the above formulation holds for distortion-corrected image points.

8.2 Multi-View Geometry for Non-Central Cameras

Here, instead of projection matrices (depending on calibration and pose), we deal with pose matrices:

Pi =

(
Ri ti

0T 1

)

These express the similarity transformations that map a point from some global reference frame, into the camera’s

local coordinate frames (note that since no optical center and no camera axis exist, no assumptions about the

local coordinate frames are made). As for image points, they are now replaced by camera rays. Let the ith ray

be represented by two 3D points Ai and Bi.

Eventually, we will to obtain expressions in terms of the rays’ Plücker coordinates, i.e. we will end up with

matching tensors T and matching constraints of the form (2), with the difference that tensors will have size

6 × · · · × 6 and act on Plücker line coordinates:

6∑

i1=1

6∑

i2=1

· · ·

6∑

in=1

L1,i1L2,i2 · · ·Ln,inTi1,i2,··· ,in = 0 (3)

In the following, we explain how to derive such matching constraints.

Consider a set of n camera rays and let them be defined by two points Ai and Bi each; the choice of points to

represent a ray is not important, since later we will fall back onto the ray’s Plücker coordinates.

Now, a set of n camera rays are matching, if there exist a 3D point Q and scale factors λi and µi associated

with each ray such that:

λiAi + µiBi = PiQ

i.e. if the point PiQ lies on the line spanned by Ai and Bi.

Like for perspective cameras, we group these equations in matrix form:








P1 A1 B1 0 0 · · · 0 0

P2 0 0 A2 B2 · · · 0 0
...

...
...

...
...

. . .
...

...

Pn 0 0 0 0 · · · An Bn








︸ ︷︷ ︸

M















Q

−λ1

−µ1

−λ2

−µ2

...

−λn

−µn















=








0

0
...

0








As above, this equation shows that M must be rank-deficient. However, the situation is different here since

the Pi are of size 4 × 4 now, and M of size 4n × (4 + 2n). We thus have to consider submatrices of M of size

(4+2n)× (4+2n). Furthermore, in the following we show that only submatrices with 3 rows or more per view,

give rise to constraints on all pose matrices. Hence, 3n ≤ 4 + 2n, and again, n ≤ 4, i.e. multi-view constraints

are only obtained for up to 4 views.

Let us first see what happens for a submatrix of M where some view contributes only a single row. The two

columns corresponding to its base points A and B, are multiples of one another since they consist of zeroes

Paper 18: On Calibration, Structure from Motion and Multi-View Geometry. . . , Book Chapter 2006 [35] 197

central non-central

cameras M useful submatrices M useful submatrices

2 6 × 6 3-3 8 × 8 4-4

3 9 × 7 3-2-2 12 × 10 4-3-3

4 12 × 8 2-2-2-2 16 × 12 3-3-3-3

Table 2. Cases of multi-view matching constraints for central and non-central cameras. The second columns of “central” and “non-

central” contain entries of the form x − y − z etc. This refers to submatrices of M containing x rows from one camera, y from another

etc., whose determinant being equal zero, constitutes a matching constraint between all cameras.

only, besides a single non-zero coefficient, in the single row associated with the considered view. Hence, the

determinant of the considered submatrix of M is always zero, and no constraint is available.

In the following, we exclude this case, i.e. we only consider submatrices of M where each view contributes at

least two rows. Let N be such a matrix. Without loss of generality, we start to develop its determinant with the

columns containing A1 and B1. The determinant is then given as a sum of terms of the following form:

(A1,jB1,k − A1,kB1,j) det N̄jk

where j, k ∈ {1..4}, j 6= k, and N̄jk is obtained from N by dropping the columns containing A1 and B1 as well

as the rows containing A1,j etc.

We observe several things:

The term (A1,jB1,k − A1,kB1,j) is nothing else than one of the Plücker coordinates of the ray of camera

1 (cf. section 2). By continuing with the development of the determinant of N̄jk, it becomes clear that the

total determinant of N can be written in the form:

6∑

i1=1

6∑

i2=1

· · ·

6∑

in=1

L1,i1L2,i2 · · ·Ln,inTi1,i2,··· ,in = 0

i.e. the coefficients of the Ai and Bi are “folded together” into the Plücker coordinates of camera rays

and T is a matching tensor between the n cameras. Its coefficients depend exactly on the cameras’ pose

matrices.

If camera 1 contributes only two rows to N, then the determinant of N becomes of the form:

L1,x

(
6∑

i2=1

· · ·

6∑

in=1

L2,i2 · · ·Ln,inTi2,··· ,in

)

= 0

i.e. it only contains a single coordinate of the ray of camera 1, and the tensor T does not depend at all on

the pose of that camera. Hence, to obtain constraints between all cameras, every camera has to contribute

at least three rows to the considered submatrix.

We are now ready to establish the different cases that lead to useful multi-view constraints. As mentioned

above, for more than 4 cameras, no constraints linking all of them are available: submatrices of size at least

3n × 3n would be needed, but M only has 4 + 2n columns. So, only for n ≤ 4, such submatrices exist.

Table 2 gives all useful cases, both for central and non-central cameras. These lead to two-view, three-view

and four-view matching constraints, encoded by essential matrices, trifocal and quadrifocal tensors.

8.3 The Case of Two Views

We have so far explained how to formulate bifocal, trifocal and quadrifocal matching constraints between

non-central cameras, expressed via matching tensors of dimension 6× 6 to 6× 6× 6× 6. To make things more

concrete, we explore the two-view case in some more detail in the following. We show how the bifocal matching

tensor, or essential matrix, can be expressed in terms of the motion/pose parameters. This is then specialized

from non-central to axial cameras.

198 Chapter 8. Structure-from-Motion

8.3.1 Non-Central Cameras. For simplicity, we assume here that the global coordinate system coincides

with the first camera’s local coordinate system, i.e. the first camera’s pose matrix is the identity. As for the pose

of the second camera, we drop indices, i.e. we express it via a rotation matrix R and a translation vector t. The

matrix M is thus given as:

M =















1 0 0 0 A1,1 B1,1 0 0
0 1 0 0 A1,2 B1,2 0 0
0 0 1 0 A1,3 B1,3 0 0
0 0 0 1 A1,4 B1,4 0 0

R11 R12 R13 t1 0 0 A2,1 B2,1

R21 R22 R23 t2 0 0 A2,2 B2,2

R31 R32 R33 t3 0 0 A2,3 B2,3

0 0 0 1 0 0 A2,4 B2,4















For a matching pair of lines, M must be rank-deficient. In this two-view case, this implies that its determinant

is equal to zero. As for the determinant, it can be developed to the following expression, where the Plücker

coordinates L1 and L2 are defined as in equation (1):

LT

2

(
−[t]×R R

R 0

)

L1 = 0 (4)

We find the essential matrix E and the epipolar constraint that were already mentioned in section 6.

8.3.2 Axial Cameras. As mentioned in section 3, we adopt local coordinate systems where camera rays

have L6 = 0. Hence, the epipolar constraint (4) can be expressed by a reduced essential matrix of size 5 × 5:

(
L2,1 · · · L2,5

)









−[t]×R





R11 R12

R21 R22

R31 R32





(
R11 R12 R13

R21 R22 R23

)

02×2














L1,1

...

L1,5




 = 0

Note that this essential matrix is in general of full rank (rank 5), but may be rank-deficient. It can be shown

that it is rank-deficient exactly if the two camera axes cut each other. In that case, the left and right null-vectors

of E represent the camera axes of one view in the local coordinate system of the other one (one gets the Plücker

vectors when adding a zero between second and third coordinates).

8.3.3 Central Cameras. As mentioned in section 3, we here deal with camera rays of the form

(L1, L2, L3, 0, 0, 0)
T

. Hence, the epipolar constraint (4) can be expressed by a reduced essential matrix of

size 3 × 3:

(
L2,1 L2,2 L2,3

) (
−[t]×R

)





L1,1

L1,2

L1,3



 = 0

We actually find here the “classical” 3 × 3 essential matrix −[t]×R [15, 17].

9. Experimental Results

We describe a few experiments on calibration, motion estimation and 3D reconstruction, on the following

three indoor scenarios:

A house scene, captured by an omnidirectional camera and a stereo system.

A house scene, captured by an omnidirectional and a pinhole camera.

A scene consisting of a set of objects placed in random positions as shown in Figure 3(b), captured by an

omnidirectional and a pinhole camera.

Paper 18: On Calibration, Structure from Motion and Multi-View Geometry. . . , Book Chapter 2006 [35] 199

9.1 Calibration

We calibrate three types of cameras here: pinhole, stereo, and omni-directional systems.

Pinhole Camera: Figure 2(a) shows the calibration of a pinhole camera using the single center assumption

[30].

Stereo camera: Here we calibrate the left and right cameras separately as two individual pinhole cameras.

In the second step we capture an image of a same scene from left and right cameras and compute the motion

between them using the technique described in section 6. Finally using the computed motion we obtain both the

rays of left camera and the right camera in the same coordinate system, which essentially provides the required

calibration information.

Omni-directional camera: Our omni-directional camera is a Nikon Coolpix-5400 camera with an E-8 Fish-

Eye lens. Its field of view is 360 × 183. In theory, this is just another pinhole camera with large distortions.

The calibration results are shown in Figure 2. Note that we have calibrated only a part of the image because

three images are insufficient to capture the whole image in an omnidirectional camera. By using more than three

boards it is possible to cover the whole image.

(a) (b)

(c)

Figure 2. (a) Pinhole. (b) Stereo. (c) Omni-directional (fish-eye). The shading shows the calibrated region and the 3D rays on the

right correspond to marked image pixels.

9.2 Motion and Structure Recovery

Pinhole and Omni-directional: Pinhole and omni-directional cameras are both central. Since the omni-

directional camera has a very large field of view and consequently lower resolution compared to pinhole camera,

the images taken from close viewpoints from these two cameras have different resolutions as shown in Figure 3.

This poses a problem in finding correspondences between keypoints. Operators like SIFT [18], which are scale

invariant, are not camera invariant. Direct application of SIFT failed to provide good results in our scenario.

Thus we had to manually give the correspondences. One interesting research direction would be to work on the

automatic matching of feature points in these images.

Stereo system and Omni-directional: A stereo system can be considered as a non-central camera with two

centers. The image of a stereo system is a concatenated version of left and right camera images. Therefore the

same scene point appears more than once in the image. While finding image correspondences one keypoint in the

200 Chapter 8. Structure-from-Motion

(a) (b)

Figure 3. (a) Stereo and omni-directional. (b) Pinhole and omni-directional. We intersect the rays corresponding to the matching

pixels in the images to compute the 3D points.

omni-directional image may correspond to 2 keypoints in the stereo system as shown in Figure 3(a). Therefore

in the ray-intersection we intersect three rays to find one 3D point.

10. Conclusion

We have reviewed calibration and structure from motion tasks for the general non-central camera model.

We also proposed a multi-view geometry for non-central cameras. A natural hierarchy of camera models has

been introduced, grouping cameras into classes depending on, loosely speaking, the spatial distribution of their

projection rays.

Among ongoing and future works, there is the adaptation of our calibration approach to axial and other

camera models. We also continue our work on bundle adjustment for the general imaging model, cf. [26], and

the exploration of hybrid systems, combining cameras of different types [28, 26].

Acknowledgements. This work was partially supported by the NSF grant ACI-0222900 and by the Multidis-

ciplinary Research Initiative (MURI) grant by Army Research Office under contract DAA19-00-1-0352.

References

[1] S. Baker and S.K. Nayar. A Theory of Single-Viewpoint Catadioptric Image Formation. IJCV, 35(2), pp. 1-22, 1999.

[2] H. Bakstein. Non-central cameras for 3D reconstruction. Technical Report CTU-CMP-2001-21, Center for Machine Perception,

Czech Technical University, Prague, 2001.

[3] H. Bakstein and T. Pajdla. An overview of non-central cameras. Computer Vision Winter Workshop, Ljubljana, Slovenia, pp.

223-233, 2001.

[4] J. Barreto and H. Araujo. Paracatadioptric Camera Calibration Using Lines. International Conference on Computer Vision, Nice

France, pp. 1359-1365, 2003.

[5] G. Champleboux, S. Lavallée, P. Sautot and P. Cinquin. Accurate Calibration of Cameras and Range Imaging Sensors: the NPBS

Method. International Conference on Robotics and Automation, Nice, France, pp. 1552-1558, 1992.

[6] C.-S. Chen and W.-Y. Chang. On Pose Recovery for Generalized Visual Sensors. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(7), pp. 848-861, 2004.

[7] O. Faugeras and B. Mourrain. On the Geometry and Algebra of the Point and Line Correspondences Between N Images. Interna-

tional Conference on Computer Vision, Cambridge, MA, USA, pp. 951-956, 1995.

Paper 18: On Calibration, Structure from Motion and Multi-View Geometry. . . , Book Chapter 2006 [35] 201

[8] C. Geyer and K. Daniilidis. A unifying theory of central panoramic systems and practical applications. European Conference on

Computer Vision, Dublin, Ireland, Vol. II, pp. 445-461, 2000.

[9] C. Geyer and K. Daniilidis. Paracatadioptric camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(5), pp. 687-695, 2002.

[10] K.D. Gremban, C.E. Thorpe and T. Kanade. Geometric Camera Calibration using Systems of Linear Equations. International

Conference on Robotics and Automation, Philadelphia, USA, pp. 562-567, 1988.

[11] M.D. Grossberg and S.K. Nayar. A general imaging model and a method for finding its parameters. International Conference on

Computer Vision, Vancouver, Canada, Vol. 2, pp. 108-115, 2001.

[12] R.M. Haralick, C.N. Lee, K. Ottenberg, and M. Nolle. Review and analysis of solutions of the three point perspective pose

estimation problem. International Journal of Computer Vision, 13(3), pp. 331-356, 1994.

[13] R.I. Hartley and R. Gupta. Linear Pushbroom Cameras. European Conference on Computer Vision, Stockholm, Sweden, pp. 555-

566, 1994.

[14] R.I. Hartley and P. Sturm. Triangulation. Computer Vision and Image Understanding, 68(2), pp. 146-157, 1997.

[15] R.I. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge University Press, 2000.

[16] R.A. Hicks and R. Bajcsy. Catadioptric Sensors that Approximate Wide-angle Perspective Projections. Conference on Computer

Vision and Pattern Recognition, Hilton Head Island, USA, pp. 545-551, 2000.

[17] H.C. Longuet-Higgins. A Computer Program for Reconstructing a Scene from Two Projections. Nature, 293, pp. 133-135, 1981.

[18] D.G. Lowe. Object recognition from local scale-invariant features. International Conference on Computer Vision, Kerkyra, Greece,

pp. 1150-1157, 1999.

[19] J. Neumann, C. Fermüller, and Y. Aloimonos. Polydioptric Camera Design and 3D Motion Estimation. Conference on Computer

Vision and Pattern Recognition, Madison, WI, USA, Vol. II, pp. 294-301, 2003.

[20] D. Nistér. An Efficient Solution to the Five-Point Relative Pose Problem. Conference on Computer Vision and Pattern Recognition,

Madison, WI, USA, Vol. II, pp. 195-202, 2003.

[21] D. Nistér. A Minimal Solution to the Generalized 3-Point Pose Problem. Conference on Computer Vision and Pattern Recognition,

Washington DC, USA, Vol. 1, pp. 560-567, 2004.

[22] T. Pajdla. Geometry of Two-Slit Camera. Technical Report CTU-CMP-2002-02, Center for Machine Perception, Czech Technical

University, Prague, 2002.

[23] T. Pajdla. Stereo with oblique cameras. International Journal of Computer Vision, 47(1), pp. 161-170, 2002.

[24] S. Peleg, M. Ben-Ezra, Y. Pritch. OmniStereo: Panoramic Stereo Imaging. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23(3), pp. 279-290, 2001.

[25] R. Pless. Using Many Cameras as One. Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, Vol. II, pp.

587-593, 2003.

[26] S. Ramalingam, S. Lodha and P. Sturm. A Generic Structure-from-Motion Algorithm for Cross-Camera Scenarios. 5th Workshop

on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Prague, Czech Republic, pp. 175-186, 2004.

[27] H.-Y. Shum, A. Kalai, S.M. Seitz. Omnivergent Stereo. International Conference on Computer Vision, Kerkyra, Greece, pp. 22-29,

1999.

[28] P. Sturm. Mixing catadioptric and perspective cameras. Workshop on Omnidirectional Vision, Copenhagen, Denmark, pp. 60-67,

2002.

[29] P. Sturm and S. Ramalingam. A generic calibration concept-theory and algorithms. Research Report 5058, INRIA, 2003.

[30] P. Sturm and S. Ramalingam. A generic concept for camera calibration. European Conference on Computer Vision, Prague, Czech

Republic, pp. 1-13, 2004.

[31] R. Swaminathan, M.D. Grossberg, and S.K. Nayar. A perspective on distortions. Conference on Computer Vision and Pattern

Recognition, Madison, WI, USA, Vol. II, pp. 594-601, 2003.

[32] J. Yu and L. McMillan. General Linear Cameras. European Conference on Computer Vision, Prague, Czech Republic, pp. 14-27,

2004.

[33] A. Zomet, D. Feldman, S. Peleg and D. Weinshall. Mosaicing New Views: The Crossed-Slit Projection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 25(6), pp. 741-754, 2003.

202 Chapter 8. Structure-from-Motion

Chapter 9

Multi-View Geometry

Paper 19 [26]: P. Sturm. Multi-view geometry for general camera models. In Proceedings of the Con-

ference on Computer Vision and Pattern Recognition, San Diego, USA, volume 1, pages 206–212, June

2005.

Paper 20 [33]: P. Sturm and S. Ramalingam. Géométrie d’images multiples pour des modèles de caméra

généraux. Traitement du Signal, 22(5), October 2005.

Paper 21 [24]: P. Sturm. Mixing catadioptric and perspective cameras. In Proceedings of the Workshop on

Omnidirectional Vision, Copenhagen, Denmark, pages 37–44, June 2002.

203

Multi-View Geometry for General Camera Models

Peter Sturm

INRIA Rhône-Alpes, GRAVIR-CNRS, 38330 Montbonnot, France

Abstract

We consider the structure-from-motion problem for a

highly general imaging model, where cameras are mod-

eled as possibly unconstrained sets of projection rays. This

allows to describe most existing camera types, includ-

ing pinhole cameras, sensors with radial or more general

distortions, catadioptric cameras (central or non-central),

etc. We introduce a hierarchy of general camera models:

the most general model has unconstrained projection rays

whereas the most constrained model dealt with here is the

central model, where all rays pass through a single point.

Intermediate models are what we call axial cameras (all

rays touch a single line), and x-slit cameras (rays touch

two lines). The foundations for a multi-view geometry of

completely non-central cameras are given, leading to the

formulation of multi-view matching tensors, analogous to

the fundamental/essential matrices, trifocal and quadrifo-

cal tensors of perspective cameras. This framework is then

specialized explicitly for the two-view case, for the interme-

diate camera types mentioned above.

1. Introduction

Many types of cameras including pinhole, stereo, cata-

dioptric, omnidirectional and non-central cameras have

been used in computer vision. Most existing camera models

are parametric (i.e. defined by a few intrinsic parameters)

and address imaging systems with a single effective view-

point (all rays pass through one point). In addition, existing

calibration or structure-from-motion procedures are often

taylor-made for specific camera models, see e.g. [3, 11, 7].

The aim of this work is to relax these constraints: we

want to propose and develop calibration and structure-from-

motion methods that work for any type of camera model,

including cameras without a single effective viewpoint. To

do so, we first renounce on parametric models, and adopt a

very general imaging model: a camera acquires images con-

sisting of pixels; each pixel captures light traveling along a

ray in 3D. The camera is fully described by [9]:

• the coordinates of these rays (given in some local co-

ordinate frame).
• the mapping between rays and pixels; this is basically

a simple indexing.

Figure 1. Examples of imaging systems; (c)–(e) are non-central

devices. (a) Catadioptric camera. (b) Central camera (e.g. per-

spective, with or without radial distortion). (c) Camera looking at

reflective sphere. (d) Omnivergent system [18, 21]. (e) Stereo.

This general imaging model allows to describe virtually

any camera that captures light rays travelling along straight

lines. Examples are (cf. figure 1):

• a camera with any type of optical distortion, such as

radial or decentering.
• a camera looking at a reflective surface, e.g. as often

used in surveillance, a camera looking at a spherical

or otherwise curved mirror [12]. Such systems, as op-

posed to central catadioptric systems [1, 6] using e.g.

parabolic mirrors, do not in general have a single ef-

fective viewpoint.
• multi-camera stereo systems: put together the pixels of

all image planes; they “catch” light rays that definitely

do not travel along lines that all pass through a sin-

gle point. Nevertheless, in the above general camera

model, a stereo system (with rigidly linked cameras)

can be considered as a single camera.
• other acquisition systems, many of them non-central,

see e.g. [2, 14, 17, 18, 21, 25, 26], insect eyes, etc.

In this paper, we propose the foundations for a mult-

view geometry of the general, non-central camera model,

leading to the formulation of multi-view matching tensors,

analogous to the fundamental or essential matrices, trifocal

and quadrifocal tensors of perspective cameras. The multi-

view geometry will be formulated for calibrated cameras,

i.e. we do not directly work with image point correspon-

dences, but rather with correspondences between associated

camera rays in 3D.

We also introduce a natural hierarchy of camera models:

the most general model has unconstrained projection rays

Paper 19: Multi-View Geometry for General Camera Models, CVPR 2005 [26] 205

whereas the most constrained model dealt with here is the

central model, where all rays pass through a single point.

Intermediate models considered in this paper are axial and

x-slit cameras. The two-view geometry, first established for

non-central cameras, is specialized for these intermediate

camera types in this paper. Several works exist on epipo-

lar geometry for omnidirectional cameras, central and non-

central ones [5, 8, 15, 19, 22, 24]. Most of them aimed

at obtaining matching constraints between uncalibrated im-

ages, whereas in this paper, we deal with calibrated cameras

and give a rather complete treatment of the problem.

The paper is organized as follows. §2 gives some back-

ground on Plücker coordinates for 3D lines, used to param-

eterize projection rays. A hierarchy of camera models is

proposed in §3. §4 gives parameterizations of projection

rays, for the different camera models. The multi-view ge-

ometry for the general camera model, as well as two-view

geometry for intermediate models, is given in §5.

2. Plücker Coordinates

We represent projection rays as 3D lines, via Plücker co-

ordinates. Several definitions exist for them; we use the fol-

lowing. Let A and B be the homogeneous coordinates of

3D points defining a line. The line can be represented by the

skew-symmetric 4 × 4 Plücker matrix L = ABT − BAT.

It is independent (up to scale) of the points used to repre-

sent the line. An alternative representation for the line is its

Plücker coordinate vector of length 6:

L =











A4B1 − A1B4

A4B2 − A2B4

A4B3 − A3B4

A3B2 − A2B3

A1B3 − A3B1

A2B1 − A1B2











(1)

We sometimes split it in two 3-vectors a and b,

aT =
(
L1 L2 L3

)
bT =

(
L4 L5 L6

)

which satisfy the so-called Plücker constraint: aTb = 0.

Consider a metric transformation defined by a rotation

matrix R and a translation vector t, acting on points via:

Q →

(
R t

0T 1

)

Q

Plücker coordinates are then transformed according to
(

a

b

)

→

(
R 0

−[t]×R R

)(
a

b

)

Two lines intersect if the following relation holds:

LT

2

(
0 I

I 0

)

L1 = aT

2 b1 + bT

2a1 = 0 (2)

Table 1. Camera models, defined by 3D points and lines that have

a non-empty intersection with all projection rays of a camera.

Points/lines cutting rays Description

None Non-central camera

1 point Central camera

2 points Camera with a single ray

1 line Axial camera

1 point, 1 line Central 1D camera

2 skew lines X-slit camera

2 coplanar lines Union of a non-central 1D

camera and a central camera

3 coplanar lines without Non-central 1D camera

a common point

3. A Hierarchy of Camera Models

A non-central camera may have completely uncon-

strained projection rays, whereas for a central camera,

there exists a point – the optical center – that lies on all

projection rays. An intermediate case is what we call axial

cameras, where there exists a line that cuts all projection

rays – the camera axis (not to be confounded with optical

axis). Examples of cameras falling into this class are:

• x-slit cameras [16, 27] (also called two-slit or crossed-

slits cameras), and their special case of linear push-

broom cameras [10]. Note that these form a sub-class

of axial cameras, as explained below.
• stereo systems consisting of 2 central cameras or 3 or

more central cameras with collinear optical centers.
• non-central catadioptric cameras of the following type:

the mirror is any surface of revolution and the opti-

cal center of the central camera looking at it (can be

any central camera, not only pinhole), lies on its axis

of revolution. It is easy to verify that in this case, all

projection rays cut the mirror’s axis of revolution, i.e.

the camera is an axial camera, with the mirror’s axis

of revolution as camera axis. Note that catadioptric

cameras with a spherical mirror and a central camera

looking at it, are always axial cameras.

These three classes of camera models may also be de-

fined as: existence of a linear space of d dimensions that

has an intersection with all projection rays: d = 0 defines

central, d = 1 axial and d = 2 general non-central cameras.

Intermediate classes exist. X-slit cameras are a special

case of axial cameras: two 3D lines exist that both cut all

projection rays. Similarly, central 1D cameras (cameras

with a single row of pixels) can be defined by a point and

a line in 3D. Camera models, some of which without much

practical importance, are summarized in table 1. A similar

way of defining camera types was suggested in [16].

It is worthwhile to consider different classes due to the

following observation: the usual calibration and motion es-

timation algorithms proceed by first estimating a matrix or

206 Chapter 9. Multi-View Geometry

Table 2. Parameterization of projection rays for different camera models (see text).

Camera model Central Axial X-slit

finite infinite finite infinite finite+finite finite+infinite

Parameterization

of projection rays

(
a

0

)











0
0
a3

b1

b2

0

















a

b1

b2

0













0
a2

a3

b

















1 0 0 0
0 1 0 0
0 0 1 0
W 0 −Y 0
0 0 0 1
0 0 0 0

















a1

a2

a3

b2

















1 0 0 0
0 1 0 0
0 W 0 0
0 0 1 0
0 0 0 1
0 0 0 0

















a1

a3

b1

b2







tensor by solving linear equation systems (e.g. the calibra-

tion tensors in [23] or the essential matrix [19]). Then, the

parameters that are searched for (usually, motion parame-

ters), are extracted from these. However, when estimating

for example the 6 × 6 essential matrix of non-central cam-

eras based on image correspondences obtained from central

or axial cameras, then the associated linear equation system

does not give a unique solution (much like when estimating

a fundamental matrix from correspondences coming from

coplanar 3D points). Consequently, the algorithms for ex-

tracting the actual motion parameters, can not be applied

without modification.

In the following, we deal with central, axial, x-slit and

fully non-central cameras.

4. Parameterizations

Multi-view geometry will be formulated in terms of the

Plücker coordinates of projection rays. For other mod-

els than the fully non-central one, projection rays belong

to constrained sets, as explained in the previous section.

We may thus choose the cameras’ local coordinate systems

such as to obtain “simpler” coordinate vectors for projection

rays, and in turn simpler matching constraints. Since we

deal with calibrated cameras, rays are given in metric coor-

dinate systems, and we may apply rotations and translations

to fix local coordinate systems. Appropriate parameteriza-

tions for different models are explained in the following.

4.1. Central Cameras

All rays go through a single point, the optical center. We

distinguish the cases of a finite and infinite optical center.

Finite optical center. We choose a local coordinate sys-

tem with the optical center as origin. This leads to projec-

tion rays whose Plücker sub-vector b is zero, cf. table 2.

This is one reason why the multi-focal tensors, e.g. the fun-

damental matrix, can be written with a “base size” of 3.

Infinite optical center (e.g. affine camera). We can not

adopt the optical center as origin, thus choose a coordinate

system where it has coordinates (0, 0, 1, 0)T. Projection

rays are then of the form given in the 3rd column of table 2.

4.2. Axial Cameras

All rays touch a line, the camera axis. Again, by choos-

ing local coordinate systems appropriately, the formulation

of the multi-view relations may be simplified. We distin-

guish the cases of a finite and an infinite camera axis.

Finite axis. Assume that the camera axis is the Z-axis.

Then, all projection rays have Plücker coordinates with

L6 = b3 = 0, cf. the 4th column of table 2.

Infinite axis. We choose a local coordinate system where

the axis is the line at infinity with coordinates (1, 0, 0)T
(line

coordinates on plane at infinity). The camera axis’ Plücker

coordinates are then given by (0, 0, 0, 1, 0, 0)T. Projection

rays thus have coefficients with L1 = a1 = 0 (this is ob-

tained using equation (2)), cf. the 5th column of table 2.

Multi-view relations for axial cameras, with finite or in-

finite axis, can thus be formulated via tensors of “base size”

5, e.g. the essential matrix will be of size 5× 5 (see §5.3.2).

4.3. X­Slit Cameras

As mentioned above, x-slit cameras are defined as fol-

lows: there exist two lines – camera axes – that cut all pro-

jection rays. The case of the two axes cutting one another,

i.e. being coplanar, is not of much interest, so we consider

two mutually skew axes. Two cases are thus possible: (i)

both axes are finite lines or (ii) one of the two axes is a line

at infinity. In any case, one axis at least is a finite line; we

adopt a local coordinate system as said above for axial cam-

eras (finite axis is Z-axis). As for the second axis, we have

to distinguish the two cases.

Two finite axes. Having fixed the first axis, we still have

the freedom to rotate about it and translate along it. Since

the two axes are skew, we may thus obtain a local coordinate

system, where the second axis goes through a point on the

Y -axis, and is parallel to the XZ-plane. Hence, it will be

defined by two points as follows:

AT =
(
0 Y 0 1

)
BT =

(
X 0 Z 0

)

The second axis’ Plücker coordinates are thus given by:

CT

2
=
(
X 0 Z −Y Z 0 Y Z

)

Projection rays cut the two axes, so must be of the form:

LT =
(
a1 a2 a3

(
Y Z
X

a1 − Y a3

)
b2 0

)

Paper 19: Multi-View Geometry for General Camera Models, CVPR 2005 [26] 207

The division by X is no problem since X 6= 0 (otherwise

the second axis would be parallel to the first one, and thus

coplanar, which is excluded here). Let us replace Y Z
X

by W .

Then, each projection ray can be parameterized by 4 coef-

ficients (defined up to scale), as given in the 6th column of

table 2. W and Y may be seen as intrinsic parameters, since

they define the relative position of the two camera axes.

One finite and one infinite axis. Having fixed the first

axis, we still have the freedom to rotate about it and trans-

late along it. Translation has no effect on the infinite sec-

ond axis, but we may rotate about the first axis, such that

the second one has coordinates (0, cosΘ, sin Θ)
T

(homo-

geneous coordinates of a line at infinity) for some Θ. The

second axis’ Plücker coordinates are thus:

CT

2 =
(
0 0 0 0 cosΘ sin Θ

)

Projection rays cut the two axes, so must be of the form:

LT =
(
a1 −a3 tan Θ a3 b1 b2 0

)

For ease of notation, let us define W = − tanΘ. Then,

each projection ray can be parameterized by 4 coefficients

(defined up to scale), as given in the last column of table 2.

4.4. General Non­Central Cameras

No such simplification occurs, and multi-view tensors

will have “base size” 6.

5. Multi-View Geometry

We establish the foundations of a multi-view geometry

for general (non-central) cameras. Its cornerstones are, as

with perspective cameras, matching tensors. We show how

to establish them, analogously to the perspective case.

Here, we only deal with the calibrated case; the uncali-

brated case is nicely treated for perspective cameras, since

calibrated and uncalibrated images are linked by projective

transformations. For non-central cameras, there is no such

link: in the most general case, every pair pixel+projection

ray may be completely independent of other pairs.

5.1. Reminder on Perspective Multi­View Geometry

We briefly review how to derive multi-view matching re-

lations for perspective cameras [4]. Let Pi be projection

matrices of n images. Image points qi are matching, if there

exist a 3D point Q and scale factors λi with:

λiqi = PiQ, ∀i = 1 · · ·n

This may be formulated as the following matrix equation:








P1 q1 0 · · · 0

P2 0 q2 · · · 0
...

...
...

. . .
...

Pn 0 0 · · · qn








︸ ︷︷ ︸

M










Q

−λ1

−λ2

...

−λn










=








0
0
...

0








The matrix M, of size 3n×(4+n) has thus a null-vector,

meaning that its rank is less than 4 + n. Hence, the deter-

minants of all submatrices of size (4 + n) × (4 + n) must

vanish. These determinants are multi-linear expressions in

terms of the coordinates of image points qi. Every possi-

ble submatrix should be considered, but only those with 2

or more rows per view, give rise to constraints linking all

projection matrices. Hence, constraints can be obtained for

up to n views with 2n ≤ 4 + n, meaning that only for up

to 4 views, matching constraints linking all views can be

obtained.

The constraints for n views take the form:

3∑

i1=1

3∑

i2=1

· · ·
3∑

in=1

q1,i1q2,i2 · · · qn,in
Ti1,i2,··· ,in

= 0 (3)

where the multi-view matching tensor T of dimension

3 × · · · × 3 depends on and partially encodes the cameras’

projection matrices Pi.

Note that as soon as cameras are calibrated, this the-

ory applies to any central camera: for a camera with ra-

dial distortion for example, the above formulation holds for

distortion-corrected image points.

5.2. Multi­View Geometry of Non­Central Cameras

Here, instead of projection matrices (depending on cali-

bration and pose), we deal with pose matrices:

Pi =

(
Ri ti

0T 1

)

(4)

These are the similarity transformations that map a point

from some global reference frame, into the camera’s lo-

cal coordinate frames (note that since no optical center and

no camera axis exist, no assumptions about the local co-

ordinate frames are made). As for image points, they are

now replaced by projection rays. We will obtain expres-

sions in terms of the rays’ Plücker coordinates, i.e. we will

end up with matching tensors T and matching constraints of

the form (3), with the difference that tensors will have size

6 × · · · × 6 and act on Plücker line coordinates:

6∑

i1=1

6∑

i2=1

· · ·

6∑

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0 (5)

In the following, we explain how to derive such matching

constraints. Consider a set of n projection rays and let them

be defined by two points Ai and Bi each; the choice of

points to represent a ray is not important, since later we will

fall back onto the ray’s Plücker coordinates.

Now, a set of n projection rays are matching, if there

exist a 3D point Q and scale factors λi and µi with:

λiAi + µiBi = PiQ, ∀i = 1 · · ·n

i.e. if the point PiQ lies on the line spanned by Ai and Bi.

208 Chapter 9. Multi-View Geometry

Like for perspective cameras, we group these equations

in matrix form:








P1 A1 B1 · · · 0 0

P2 0 0 · · · 0 0
...

...
...

. . .
...

...

Pn 0 0 · · · An Bn








︸ ︷︷ ︸

M












Q

−λ1

−µ1

...

−λn

−µn












=








0

0
...

0








As above, this equation shows that M must be rank-

deficient. However, the situation is different here since the

Pi are of size 4 × 4, and M of size 4n × (4 + 2n). We thus

consider submatrices of size (4+2n)× (4+2n). In the fol-

lowing we show that only submatrices with 3 rows or more

per view, give rise to constraints linking all pose matrices.

Thus, 3n ≤ 4 + 2n, and n ≤ 4, i.e. multi-view constraints

are again only obtained for up to 4 views.

Let us first see what happens for a submatrix of M where

some view contributes a single row. The two columns cor-

responding to its base points A and B, are then multiples

of one another: they contain only zeroes, besides a single

non-zero coefficient, in the single row associated with the

considered view. Hence, the determinant of the submatrix

of M is always zero, and no constraint is available.

In the following, we exclude this case, i.e. we only con-

sider submatrices of M where each view contributes at least

two rows. Let N be such a matrix. Without loss of gener-

ality, we start to develop its determinant with the columns

containing A1 and B1. The determinant is then given as a

sum of terms of the following form:

(A1,jB1,k − A1,kB1,j) det N̄jk

where j, k ∈ {1..4}, j 6= k, and N̄jk is obtained from N by

dropping the columns containing A1 and B1 as well as the

rows containing A1,j and A1,k. We observe several things:

• The term (A1,jB1,k −A1,kB1,j) is nothing else than a

Plücker coordinate of the ray of camera 1 (cf. §2). By

continuing with the development of the determinant of

N̄jk, it becomes clear that the total determinant of N

can be written in the form:

6∑

i1=1

6∑

i2=1

· · ·

6∑

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0

i.e. the coefficients of the Ai and Bi are “folded to-

gether” into Plücker coordinates of projection rays and

T is a matching tensor relating the n cameras. Its coef-

ficients depend exactly on the cameras’ pose matrices.

• If camera 1 contributes only two rows to N, then the

determinant of N will have the form:

L1,x

(
6∑

i2=1

· · ·

6∑

in=1

L2,i2 · · ·Ln,in
Ti2,··· ,in

)

= 0

Table 3. Cases of multi-view matching constraints for central and

non-central cameras. Columns named “useful” contain entries of

the form x-y-z etc. that correspond to sub-matrices of M that give

rise to matching constraints linking all views: x-y-z refers to sub-

matrices containing x rows from one camera, y from another etc.

central non-central

views M useful M useful

2 6 × 6 3-3 8 × 8 4-4

3 9 × 7 3-2-2 12 × 10 4-3-3

4 12 × 8 2-2-2-2 16 × 12 3-3-3-3

i.e. it only contains a single coordinate L1,x of the ray

of camera 1, and the tensor T does not depend at all on

the pose of that camera. Hence, to obtain constraints

relating all cameras, each camera has to contribute at

least three rows to the considered submatrix of M.

We are now ready to establish the different cases that

lead to useful multi-view constraints. As mentioned above,

for more than 4 cameras, no constraints linking all of them

are available: submatrices of size at least 3n× 3n would be

needed, but M only has 4+2n columns. So, only for n ≤ 4,

such constraints exist.

Table 3 gives all useful cases, both for central and non-

central cameras. These lead to two-view, three-view and

four-view matching constraints, encoded by essential ma-

trices, trifocal and quadrifocal tensors. Deriving their forms

is now mainly a mechanical task.

5.3. The Case of Two Views

We have so far explained how to formulate bifocal, tri-

focal and quadrifocal matching constraints between non-

central cameras, expressed via matching tensors of dimen-

sion 6×6 to 6×6×6×6. To make things more concrete, we

explore the two-view case in some more detail in the follow-

ing. We show how the bifocal matching tensor, or essential

matrix, can be expressed in terms of the pose (or, motion)

parameters. This is then specialized from non-central to ax-

ial, x-slit and central cameras. The essential matrices for

these cases are summarized in table 4. That table also gives

the minimum numbers of correspondences required for esti-

mating them using linear equations. These are not explained

in detail due to lack of space, but can be derived easily by

considering coefficients in essential matrices, that are zero

or appear twice.

5.3.1. Non-Central Cameras

For simplicity, we assume here that the global coordinate

system coincides with the first camera’s local coordinate

system, i.e. the first camera’s pose matrix is the identity.

As for the pose of the second camera, we drop indices, i.e.

we express it via a pose matrix P, composed of a rotation

Paper 19: Multi-View Geometry for General Camera Models, CVPR 2005 [26] 209

Table 4. Essential matrices for different camera models. The last column gives the minimum number of correspondences between projection

rays required for computing essential matrices using linear equations.

Camera model Essential matrix Size # corr.

Non-central En =

(
−[t]×R R

R 03×3

)

6 × 6 17

Axial with finite axis Eaf =









−[t]×R





R11 R12

R21 R22

R31 R32





(
R11 R12 R13

R21 R22 R23

)

02×2









5 × 5 16

Axial with infinite axis Eai =









t1R32 − t3R12 t1R33 − t3R13 R21 R22 R23

t2R12 − t1R22 t2R13 − t1R23 R31 R32 R33

R12 R13 0 0 0
R22 R23 0 0 0
R32 R33 0 0 0









5 × 5 11

X-slit with two finite axes Exff =







1 0 0 W2 0
0 1 0 0 0
0 0 1 −Y2 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 0 1 0

W1 0 −Y1 0
0 0 0 1









4 × 4 13

X-slit with one finite and one infi-

nite axis

Exfi =







1 0 0 0 0
0 1 W2 0 0
0 0 0 1 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 W1 0 0
0 0 1 0
0 0 0 1









4 × 4 10

Central with finite optical center Ecf = −[t]×R 3 × 3 8

Central with infinite optical center Eci =





t2R13 − t1R23 R31 R32

R13 0 0
R23 0 0



 3 × 3 4

matrix R and a translation vector t, according to (4). The

matrix M is thus given as:

M8×8 =

(
I4×4 A1 B1 0 0

P 0 0 A2 B2

)

For a matching pair of rays, M must be rank-deficient.

Here, this implies that its determinant is equal to zero. It can

be developed to the following expression, where the Plücker

coordinates L1 and L2 are defined as in equation (1):

LT

2

(
−[t]×R R

R 0

)

︸ ︷︷ ︸

En

L1 = 0 (6)

We find the essential matrix En, as was done in [19].

5.3.2. Axial Cameras

Finite axis. As mentioned in §3, we adopt local coordi-

nate systems where projection rays have L6 = 0. Hence,

the epipolar constraint (6) can be expressed by a reduced

essential matrix of size 5×5, which acts on reduced Plücker

vectors, consisting of the first five Plücker coordinates. This

essential matrix is obtained from the non-central one En (6),

by dropping its sixth row and column, leading to Eaf , as

given in table 4.

Note that Eaf is in general of full rank (rank 5), but may

be rank-deficient. It can be shown that it is rank-deficient

exactly if the axes of the two cameras cut each other. In

that case, the left and right null-vectors of Eaf represent the

camera axes of one view in the local coordinate system of

the other one (one gets their Plücker vectors when adding a

zero as 6th coordinate to the length-5 null-vectors).

Infinite axis. The epipolar constraint (6) can be expressed

by a reduced essential matrix Eai (cf. table 4) of size 5× 5,

acting on reduced Plücker vectors, consisting of the last five

Plücker coordinates (cf. table 2). It is always rank-deficient

(the two camera axes are lines at infinity, thus always cut

each other, cf. the discussion in the previous paragraph).

5.3.3. X-Slit Cameras

Two finite axes. We get a reduced essential matrix Exff

(cf. table 4) of size 4×4, acting on reduced Plücker vectors

of the form (a1, a2, a3, b2)
T

(cf. §4.3).

Contrary to previous cases, the essential matrix now not

only encodes motion, but also “intrinsic parameters” (the

coefficients Wi and Yi of the two cameras’ second axes).

210 Chapter 9. Multi-View Geometry

One finite and one infinite axis. We get a reduced es-

sential matrix Exfi (cf. table 4) of size 4 × 4, acting on

reduced Plücker vectors of the form (a1, a3, b1, b2)
T

(cf.

§4.3). Again, it not only encodes motion, but also “intrinsic

parameters” (the coefficients Wi of the two cameras’ infi-

nite axes).

5.3.4. Central Cameras

Finite optical center. As mentioned in §3, we here deal

with projection rays of the form (L1, L2, L3, 0, 0, 0)
T

.

Hence, the epipolar constraint (6) can be expressed by a

3× 3 essential matrix. We actually find here the “classical”

3 × 3 essential matrix Ecf = −[t]×R [11, 13].

Infinite optical center. The essential matrix in this case

is Eci, cf. table 4. This resembles the affine fundamen-

tal matrix [20], but is not exactly the same: here, the es-

sential matrix acts on 3D lines, not on image points. For

example, the right null-vector of Eci is (0, R32,−R31)
T

,

which represents the 3D line with Plücker coordinates

(0, 0, 0, R32,−R31, 0)
T

. This is the line spanned by the two

optical centers, i.e. the baseline (expressed in the first cam-

era’s coordinate system).

6. Conclusion

We have proposed a multi-view geometry for non-central

cameras, the first to our knowledge. A natural hierarchy

of camera models has been introduced, grouping cameras

into classes depending on, loosely speaking, the spatial dis-

tribution of their projection rays. Two-view geometry was

specialized in detail to different camera models. We hope

that this theoretical work allows to define some common

ground for recent efforts in characterizing the geometry of

non-classical cameras.

Concerning possibilites for further work, geometrical

relations between cameras of different types would be

straightforward to derive along the lines used here, and all

expressions can of course be transcribed in tensor notation.

In this paper, we concentrated on the theory and did not

address the issue of actually estimating the matching ten-

sors and extracting motion parameters from them. It is rel-

atively straightforward though to extract the motion param-

eters from the various essential matrices, due to their forms

given in table 4. Experiments with the essential matrix for

non-central cameras were successful, as also reported in

[19], and experiments with intermediate camera types are

ongoing.

Finally, we would like to note that, although motivated

by the generic imaging model associating rays to pixels,

the multi-view relations derived here hold naturally for any

camera model that allows to attribute projection rays to im-

age points with sub-pixel precision.

References

[1] S. Baker, S.K. Nayar. A theory of single-viewpoint cata-

dioptric image formation. IJCV, 35(2), 1999.

[2] H. Bakstein, T. Pajdla. An overview of non-central cameras.

Computer Vision Winter Workshop, Ljubljana, 2001.

[3] J.P. Barreto, H. Araujo. Paracatadioptric camera calibration

using lines. ICCV, 2003.

[4] O. Faugeras, B. Mourrain. On the geometry and algebra

of the point and line correspondences between n images.

ICCV, 1995.

[5] D. Feldman, T. Pajdla, D. Weinshall. On the epipolar geom-

etry of the crossed-slits projection. ICCV, 2003.

[6] C. Geyer, K. Daniilidis. A unifying theory of central

panoramic systems and practical applications. ECCV, 2000.

[7] C. Geyer, K. Daniilidis. Paracatadioptric camera calibration.

PAMI, 24(5), 2002.

[8] C. Geyer, K. Daniilidis. Mirrors in Motion: Epipolar geom-

etry and motion estimation. ICCV, 2003.

[9] M.D. Grossberg, S.K. Nayar. A general imaging model and

a method for finding its parameters. ICCV, 2001.

[10] R.I. Hartley, R. Gupta. Linear pushbroom cameras. ECCV,

1994.

[11] R.I. Hartley, A. Zisserman. Multiple View Geometry in Com-

puter Vision. Cambridge University Press, 2000.

[12] R.A. Hicks, R. Bajcsy. Catadioptric sensors that approxi-

mate wide-angle perspective projections. CVPR, 2000.

[13] H.C. Longuet-Higgins. A computer program for recon-

structing a scene from two projections. Nature, 293, 1981.

[14] J. Neumann, C. Fermüller, Y. Aloimonos. Polydioptric cam-

era design and 3D motion estimation. CVPR, 2003.

[15] T. Pajdla. Epipolar Geometry of Some Non-classical Cam-

eras. Computer Vision Winter Workshop, Bled, 2001.

[16] T. Pajdla. Geometry of two-slit camera. Report CTU-CMP-

2002-02, Czech Technical University, Prague, 2002.

[17] T. Pajdla. Stereo with oblique cameras. IJCV, 47(1-3), 2002.

[18] S. Peleg, M. Ben-Ezra, Y. Pritch. Omnistereo: Panoramic

stereo imaging. PAMI, 23(3), 2001.

[19] R. Pless. Using many cameras as one. CVPR, 2003.

[20] L.S. Shapiro, A. Zisserman, M. Brady. 3D Motion Recovery

via Affine Epipolar Geometry. IJCV, 16(2), 1995.

[21] H.-Y. Shum, A. Kalai, S.M. Seitz. Omnivergent stereo.

ICCV, 1999.

[22] P. Sturm. Mixing catadioptric and perspective cameras.

Workshop on Omnidirectional Vision, Copenhagen, 2002.

[23] P. Sturm, S. Ramalingam. A generic concept for camera

calibration. ECCV, 2004,

[24] T. Svoboda. Central Panoramic Cameras: Design, Geom-

etry, Egomotion. PhD Thesis, Czech Technical University,

Prague, 1999.

[25] R. Swaminathan, M.D. Grossberg, S.K. Nayar. A perspec-

tive on distortions. CVPR, 2003.

[26] J. Yu, L. McMillan. General linear cameras. ECCV, 2004.

[27] A. Zomet, D. Feldman, S. Peleg, D. Weinshall. Mosaicing

new views: The crossed-slit projection. PAMI, 25(6), 2003.

Paper 19: Multi-View Geometry for General Camera Models, CVPR 2005 [26] 211

Géométrie d’images multiples pour des modèles de

caméras généraux

Multi-view geometry for general camera models

Peter Sturm Srikumar Ramalingam

INRIA Rhône-Alpes University of California

655 Avenue de l’Europe Dept. of Computer Science

38330 Montbonnot Santa Cruz

France USA

Peter.Sturm@inrialpes.fr srikumar@cse.ucsc.edu

Résumé. Nous considérons le problème de l’estimation de la structure et du mouvement pour
un modèle de caméras hautement général, qui représente une caméra par un ensemble de rayons
de projection. Ceci permet de décrire la plupart des types de caméras existants (du moins celles
qui opèrent dans le domaine visible), y inclus les caméras sténopé, les caméras avec des distorsions
radiales ou plus générales, les caméras catadioptriques (à point de vue unique ou non), etc. Nous
introduisons une hiérarchie de modèles de caméras généraux : le modèle le plus général peut posséder
des rayons de projection quelconques tandis que le modèle le plus contraint que nous considérons
ici est le modèle à point de vue unique (tous les rayons passent par un même point). Parmi les
modèles intermédiaires, nous identifions ce que nous appelons les caméras axiales (tous les rayons
touchent une même ligne) et les caméras connues sous le nom de « cross-slit » (les rayons touchent
deux lignes). Les fondements d’une géométrie d’images multiples pour le modèle de caméras le plus
général sont donnés. Ils se manifestent par la formulation de tenseurs d’appariement multi-vues,
qui sont l’analogue des matrices fondamentales/essentielles, tenseurs trifocaux ou quadrifocaux des
caméras perspectives. Ce cadre théorique général est ensuite spécialisé pour les modèles de caméras
intermédiaires mentionnés, pour le cas de deux images.

Mots clés. Modèle de caméras, caméra non centrale, caméra omnidirectionnelle, tenseur d’ap-
pariement, géométrie épipolaire, géométrie d’images multiples.

Abstract. We consider the structure from motion problem for a previously introduced, highly
general imaging model, where cameras are modeled as possibly unconstrained sets of projection
rays. This allows to describe most existing camera types (at least for those operating in the visible
domain), including pinhole cameras, sensors with radial or more general distortions, catadioptric
cameras (central or non-central), etc. We introduce a hierarchy of general camera models : the
most general model has unconstrained projection rays whereas the most constrained model dealt
with here is the central model, where all rays pass through a single point. Intermediate models are
what we call axial cameras (all rays touch a single line), and x-slit cameras (rays touch two lines).
The foundations for a multi-view geometry of completely non-central cameras are given, leading to
the formulation of multi-view matching tensors, analogous to the fundamental/essential matrices,
trifocal and quadrifocal tensors of perspective cameras. This framework is then specialized explicitly
for the two-view case, for the intermediate camera types mentioned above.

Keywords. Camera model, non-central camera, omnidirectional camera, matching tensor, epi-
polar geometry, multi-view geometry.

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]213

1 Introduction

Beaucoup de différents capteurs sont utilisés en vision par ordinateur, dont les caméras pers-
pectives, les systèmes stéréo, les caméras omnidirectionnelles (par exemple, celles catadioptriques),
etc. La plupart des modèles utilisés pour ces caméras sont paramétriques et définis par quelques
paramètres intrinsèques (distance focale, coefficients de distorsion, etc.) et considèrent surtout des
caméras à point de vue unique. De plus, les algorithmes existants de calibrage, de reconstruction
3-D ou d’estimation du mouvement, sont le plus souvent conçus pour un seul modèle de caméras à
la fois (voir par exemple [5, 15, 11]).

Le but de notre travail est de relâcher ces contraintes : nous voulons proposer et développer des
approches de calibrage, de reconstruction 3-D etc. qui puissent être appliquées quels que soient les
types des caméras utilisées, notamment les caméras omnidirectionnelles et/ou n’ayant pas de point
de vue unique. Pour ce faire, nous renonçons aux modèles paramétriques classiques et adoptons un
modèle très général [13] : une caméra acquiert des images qui consistent en un ensemble de pixels ;
chaque pixel capte la lumière qui se propage le long d’un rayon (rayon de projection). Une caméra
est alors complètement modélisée par :

– les coordonnées de ces rayons (en 3-D, données par rapport à un repère local de la caméra) ;
– la correspondance entre pixels et rayons.

Ce modèle général permet de décrire la plupart des types de caméra, par exemple (cf. la figure
1) :

– des caméras avec des distorsions optiques quelconques, telles les distorsions radiales ou tan-
gentielles ;

– les caméras catadioptriques, c’est-à-dire des caméras qui perçoivent la scène au travers d’une
réflexion dans un miroir, typiquement de forme convexe. De tels systèmes peuvent avoir un
point de vue unique [2, 10], mais uniquement si le miroir ainsi que la position relative miroir–
caméra sont bien choisis. Si un miroir sphérique est utilisé, ou un miroir dont la surface ne
correspond pas à une quadrique [16], le système catadioptrique n’aura pas de point de vue
unique ;

– des systèmes stéréo (deux caméras ou plus) : conceptuellement, on peut considérer un système
stéréo comme un seul capteur qui consiste de l’ensemble des pixels des caméras et des rayons
associés. Il s’agit bien évidemment d’un capteur qui n’a pas de point de vue unique ;

– d’autres systèmes d’acquisition, dont beaucoup n’ont pas de point de vue unique et/ou sont
de type omnidirectionnel [3, 4, 14, 6, 7, 18, 23, 24, 28, 33, 34] ;

– un exemple où le modèle énoncé ci-dessus ne s’appliquerait pas est celui d’une caméra qui
regarde une scène à travers une interface entre deux matières. Considérons par exemple une
caméra qui regarde dans l’eau mais n’y est pas plongée : les rayons de projection sont réfractés
et si la caméra se déplace, l’ensemble des rayons ne se déplacera pas de manière rigide.

Bien évidemment, le modèle de caméras que nous utilisons n’est qu’une approximation : en
réalité, un pixel capte non pas un seul rayon de lumière, mais plutôt de la lumière qui se propage
dans un certain volume. Cette remarque s’applique pourtant à la majorité des modèles existants.
D’autres aspects importants, par exemple ceux liés à la photométrie, sont très bien décrits dans
[13].

Dans cet article, nous introduisons les fondements pour une géométrie d’images multiples pour le
modèle de caméras générique décrit ci-dessus. Ils s’expriment au travers de tenseurs d’appariement,
similairement aux matrices fondamentales ou essentielles et aux tenseurs trifocaux ou quadrifocaux
des caméra perspectives. Nous rappelons ici simplement que les tenseurs d’appariement servent

214 Chapter 9. Multi-View Geometry

Surface reflechissante

Un pixel

Plan image de la camera

qui regarde la surface

reflechissante (vu de cote)

Rayon des points 3−D

qui sont vus par le pixel

’

^’’ ’

’’

Fig. 1 – Exemples de types de caméras. Première ligne : (i) Système catadioptrique (notons que
les rayons ne passent pas par les pixels associés). (ii) Système catadioptrique basé sur un miroir
sphérique (ce système n’a pas de point de vue unique – les rayons ne se coupent pas en un seul
point). (iii) Caméra à point de vue unique (par exemple, caméra perspective, avec ou sans distorsion
radiale ou autre). Deuxième ligne : (i) Caméra de type « push-broom ». (ii) Système d’acquisition
dit « omni-vergent » [24, 28]. (iii) Système stéréo.

à donner des contraintes pour l’appariement de primitives géométriques entre images. Ceci sera
mieux expliqué dans la suite.

Nous formulons la géométrie d’images multiples pour des caméras calibrées, c’est-à-dire pour
lesquelles la relation pixels–rayons est connue. Ainsi, les correspondances entre pixels d’images
différentes se traduiront directement en correspondances de rayons de projection en 3-D. Les ten-
seurs d’appariement que nous allons dériver, agissent alors sur les coordonnées des rayons.

Nous introduisons également une hiérarchie naturelle de modèles de caméras : le modèle le plus
général consiste d’un ensemble non contraint de rayons de projection tandis que le modèle le plus
contraint considéré ici est celui des caméras à point de vue unique. Dans la suite, nous utilisons
l’expression concise de caméra centrale pour désigner les caméras à point de vue unique. Des caméras
sans point de vue unique sont appelées caméras non centrales. Un modèle intermédiaire est ce que
nous appelons une caméra axiale : une caméra telle qu’il existe une droite en 3-D qui touche tous
les rayons de projection. Ce modèle comprend les caméras de type « push-broom » [14] et certaines
caméras catadioptriques. Une sous-classe est celle des caméras dites de type « cross-slit » : il existe
deux droites en 3-D qui touchent tous les rayons (les caméras de type « push-broom linéaire » sont
en effet de ce type).

La géométrie d’images multiples, formulée d’abord pour des caméras non centrales générales,
est ensuite spécialisée à ces modèles intermédiaires, pour le cas de base de deux vues (géométrie
épipolaire). Il existe plusieurs travaux sur la géométrie épipolaire de caméras omnidirectionnelles,
centrales ou non [9, 12, 20, 21, 25, 30, 32]. Le but de la plupart de ces travaux est d’obtenir des
contraintes d’appariement pour des caméras non calibrées (ce qui est difficile même pour certaines
caméras catadioptriques centrales). Dans cet article, nous abordons le cas de caméras calibrées et

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]215

donnons un traitement assez complet du problème.

Cet article est structuré comme suit. Dans la section 2, nous rappelons la définition et des
propriétés des coordonnées de Plücker pour les droites en 3-D, qui sont utilisées pour paramétrer
les rayons de projection. Une hiérarchie de modèles de caméras est proposée dans la section 3. Des
paramétrisations de rayons de projection pour différents modèles de caméras, sont proposées en
section 4. La géométrie d’images multiples pour le modèle de caméras général est développée dans
la section 5. Cette géométrie est ensuite explorée en détail pour le cas de deux vues et différents
modèles de caméras, en section 6.

Notations utilisées : les matrices sont notées en sans empattement (L, R, . . .), les vecteurs
en caractères gras (a,b, . . .) et les scalaires en caractères italiques (u, v, . . .). Les coefficients de
tenseurs, matrices ou vecteurs sont des scalaires, donc notés en italique (Ti,j,k, Li,j, . . .). Le produit
vectoriel de deux vecteurs de longueur 3 est écrit u × v. La notation [u]× désigne la matrice anti-
symétrique de dimension 3×3 définie par le produit vectoriel : [u]×v = u×v. La transposée d’une
matrice est notée par L

T. Les vecteurs sont parfois interprétés comme des matrices à une colonne ;
la transposée aT d’un vecteur désigne donc une matrice à une ligne.

2 Coordonnées de Plücker

Nous représentons les rayons de projection par des droites en 3-D, en utilisant leurs coordonnées
de Plücker. Nous en utilisons la définition suivante.

Soient A et B deux points 3-D, donnés en coordonnées homogènes. La droite définie par ces
points peut être représentée par la matrice 4 × 4 anti-symétrique L, dite matrice de Plücker :

L = ABT − BAT

=







0 A1B2 − A2B1 A1B3 − A3B1 A1B4 − A4B1

A2B1 − A1B2 0 A2B3 − A3B2 A2B4 − A4B2

A3B1 − A1B3 A3B2 − A2B3 0 A3B4 − A4B3

A4B1 − A1B4 A4B2 − A2B4 A4B3 − A3B4 0







Notons que la matrice de Plücker d’une droite est indépendante (à l’échelle près) de la paire
des points sur cette droite ayant servie à son calcul.

Une représentation alternative de la droite est le vecteur des coordonnées de Plücker, de longueur
6 :

L =











A4B1 − A1B4

A4B2 − A2B4

A4B3 − A3B4

A3B2 − A2B3

A1B3 − A3B1

A2B1 − A1B2











(1)

Nous identifions deux sous-vecteurs de longueur 3, a et b :

a =





L1

L2

L3



 b =





L4

L5

L6





216 Chapter 9. Multi-View Geometry

Ces deux vecteurs satisfont la contrainte dite de Plücker : aTb = 0. Un vecteur de longueur 6
correspond à des coordonnées de Plücker d’une droite si et seulement si il vérifie cette contrainte.
Avec cette définition de a et b, la matrice de Plücker peut s’écrire :

L =

(
[b]× −a

aT 0

)

Considérons maintenant comment les droites sont transformées par des changements de repère.
Soit une transformation euclidienne, définie par une matrice de rotation R et un vecteur de trans-
lation t, qui agit sur les points 3-D comme suit :

C →

(
R t

0T 1

)

C

Les coordonnées de Plücker sont alors transformées ainsi :

(
a

b

)

→

(
R 0

−[t]×R R

)(
a

b

)

Notons finalement que deux droites L1 et L2 se coupent exactement si la relation suivante est
satisfaite :

LT

2

(
0 I

I 0

)

L1 = aT

2
b1 + bT

2
a1 = 0 (2)

Interprétation euclidienne des coordonnées de Plücker. Si les points A et B sont donnés
en coordonnées affines (A4 = B4 = 1), les vecteurs a et b peuvent s’interpréter comme suit. Notons
d’abord ĀT = (A1, A2, A3) et B̄T = (B1, B2, B3) . Nous avons alors a = B̄ − Ā et b = B̄ × Ā. Le
vecteur a est donc le vecteur directeur de la droite. Quant à b, il est orthogonal au plan engendré
par l’origine et la droite. Finalement, la distance carrée de la droite de l’origine, c’est-à-dire la
distance carrée du point sur la droite le plus proche de l’origine, est donnée par :

d2 =
bTb

aTa

3 Une hiérarchie de modèles de caméras

Une caméra non centrale peut avoir des rayons de projections quelconques, tandis que pour
une caméra centrale, il existe un point – le centre optique – qui se trouve sur tous les rayons de
projection. Un cas intermédiaire est ce que nous appelons ici celui des caméras axiales : il existe
une droite qui touche tous les rayons de projection. Nous l’appelons l’axe de la caméra (à ne pas
confondre avec l’axe optique du modèle perspectif). Des exemples de caméras qui se trouvent dans
cette classe sont :

– les caméras dites de type cross-slit [22, 35] (ou bien, x-slit ou two-slit), et le cas particulier
des caméra dites push-broom linéaire [14]. Ces caméras forment en effet une sous-classe des
caméras axiales, comme il l’est expliqué plus bas ;

– des systèmes stéréo consistant de deux caméras centrales ou de plusieurs caméras centrales
avec des centres optiques collinéaires ;

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]217

Tab. 1 – Classes de caméras, définies par des configurations de points ou droites en 3-D qui touchent
tous les rayons de projection.

Points/droites touchant les rayons Description de la classe

Aucun Caméra non centrale
1 point Caméra centrale
2 points Caméra ayant un seul rayon de projection
1 droite Caméra axiale
1 point, 1 droite Caméra 1-D centrale
2 droites qui ne se coupent pas Caméra de type cross-slit
2 droites coplanaires Union d’une caméra centrale et d’une caméra 1-D

non centrale
3 droites coplanaires sans point Caméra 1-D non centrale
d’intersection commun

– certaines caméras catadioptriques non centrales : si le miroir est une surface de révolution
est si le centre optique de la caméra centrale qui le regarde (pas nécessairement une caméra
perspective) se trouve sur l’axe de révolution, il s’agit d’une caméra axiale. Il est facile de
vérifier que dans ce cas, tous les rayons de projection réfléchis par le miroir, coupent l’axe
de révolution, qui joue donc le rôle de l’axe de la caméra axiale. Remarquons qu’une caméra
catadioptrique avec un miroir sphérique est obligatoirement non centrale, et de type axial. Un
autre exemple est celui des systèmes basés sur un miroir conique (avec centre optique sur l’axe
du cône) [7]. Le modèle axial peut aussi servir à modéliser des systèmes catadioptriques qui,
à cause d’un mauvais alignement entre miroir et caméra, ne produisent pas une projection
centrale.

Ces trois classes de modèles de caméras peuvent aussi être définies ainsi : existence d’un espace
linéaire de dimension d qui a une intersection non vide avec chacun des rayons de projection. Avec
cette définition, d = 0 correspond aux caméras centrales, d = 1 aux caméras axiales et d = 2 aux
caméras complètement non centrales.

Des classes intermédiaires existent. Les caméras de type cross-slit, déjà mentionnées, sont un
cas spécial des caméras axiales : il existe deux droites qui toutes deux touchent tous les rayons
de la caméra. Similairement, on peut définir des caméras 1-D centrales (caméras ayant une seule
ligne de pixels) par un point et une droite en 3-D qui touchent chacun des rayons. Le tableau 1
résume des modèles de caméras définis de cette manière, dont certains n’ont bien sur aucun intérêt
pratique. Une approche similaire pour la définition de classes de caméras a été explorée dans [22] ;
le but de cette approche était de trouver une seule primitive géométrique qui touche tous les rayons
de projection et qui puisse donc servir à la définition d’une classe de caméras. Cette approche est
moins générale et moins intuitive que celle adoptée ici.

Il est intéressant de considérer certaines de ces classes de caméras plus en détail, grâce à l’ob-
servation suivante. Beaucoup d’algorithmes existants de calibrage ou d’estimation du mouvement
procèdent typiquement en deux étapes : (1) estimation d’une matrice ou d’un tenseur en résolvant
des systèmes d’équations linéaires (par exemple, la matrice de projection [1], la matrice essen-
tielle [25], les tenseur trifocaux [15], les tenseur de calibrage [31], etc.) ; (2) ensuite, les paramètres
recherchés (paramètres intrinsèques, matrice de rotation, etc.) sont extraits de ces matrices ou
tenseurs. Il y a deux problèmes intrinsèques :

– si un algorithme qui a été développé pour une classe de caméras est appliqué à une classe de

218 Chapter 9. Multi-View Geometry

caméras différente, l’étape (1) ne donnera pas de solution. Par exemple, l’estimation d’une
matrice fondamentale perspective (matrice 3×3) à partir de correspondances de points issues
de deux caméras catadioptriques, ne donnera évidemment aucun résultat exploitable ;

– ce premier problème est évident ; un problème plus subtil est le suivant. Si un algorithme qui
a été développé pour une classe de caméras est appliqué à une caméra appartenant à une
sous-classe, la résolution du système linéaire dans l’étape (1) n’aura pas de solution unique ;
il y aura en effet une infinité de solutions. L’étape (2), si effectuée avec une de ces solutions
choisie au hasard, donnera un résultat incorrect. Un exemple simple pour illustrer ce problème
est l’estimation de la matrice fondamentale perspective, à partir de correspondances de points
d’une scène qui ne contient qu’un plan : l’estimation est sous-contrainte. Un exemple plus
proche de nos préoccupations est le suivant : si l’on tente d’estimer la matrice essentielle du
modèle de caméras non central (une matrice 6× 6 [25]) à partir de correspondances obtenues
de caméras centrales ou axiales, alors le système d’équations linéaires associé n’aura pas de
solution unique.

Ce deuxième problème nous amène à définir la géométrie d’images multiples pour le modèle
le plus général d’abord, puis à la spécialiser à des sous-classes. Dans cet article, nous traitons les
caméras centrales, axiales, de type cross-slit et le modèle complètement non central.

4 Paramétrisations

La géométrie d’images multiples sera formulée en utilisant les coordonnées de Plücker des rayons
de projection. Les rayons de projection de toutes les classes de caméras sauf de la plus générale,
appartiennent à des sous-ensembles particuliers des droites en 3-D, cf. la section précédente. Nous
pouvons alors tenter de choisir un système de coordonnées local à une caméra tel que les vecteurs
de coordonnées de ses rayons aient une forme particulière, menant à des tenseurs d’appariement
de forme simplifiée. Comme nous considérons des caméras calibrées, les rayons sont donnés dans
un repère métrique et nous pouvons alors appliquer des rotations et translations pour en choisir un
de « sympathique ». Les transformations et paramétrisations de rayons de projection appropriées
pour différents modèles de caméras sont expliquées dans la suite.

4.1 Caméras centrales

Tous les rayons passent par un même point, le centre optique. Nous distinguons les cas où le
centre optique est un point fini ou à l’infini.

Centre optique fini. Nous choisissons un repère local avec comme origine le centre optique.
Ainsi, pour tous les rayons de projection le vecteur b (cf. la section 2) est nul, c’est-à-dire que les
rayons ont des coordonnées de la forme :

L =

(
a

0

)

Notons que ceci est en accord avec le fait que les tenseurs d’appariement des caméras perspectives
ont une « taille de base » de 3 : la matrice fondamentale par exemple, est une matrice 3 × 3.

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]219

Centre optique infini. Dans ce cas (par exemple, une caméra orthographique), nous ne pouvons
pas choisir le centre optique comme origine. A la place, nous orientons le repère tel que le centre
optique ait les coordonnées (0, 0, 1, 0)T. Les rayons de projection sont alors de la forme :

L =
(
0 0 a3 b1 b2 0

)

4.2 Caméras axiales

Tous les rayons touchent une droite particulière, l’axe de la caméra. Nous distinguons les cas
d’un axe étant une droite à l’infini ou non.

Axe fini. Nous choisissons un repère où l’axe de la caméra cöıncide avec l’axe des Z. Pour les
rayons de projection nous avons alors L6 = b3 = 0 :

L =







a

b1

b2

0







Axe infini. Choisissons un repère où l’axe est la droite à l’infini avec les coordonnées (1, 0, 0)T

(coordonnées d’une droite sur le plan à l’infini). Ceci correspond aux coordonnées de Plücker
(0, 0, 0, 1, 0, 0)T. Les rayons de projection ont donc des coordonnées avec L1 = a1 = 0 (ceci est
basé sur l’équation (2)).

L =







0
a2

a3

b







Pour les deux cas, nous voyons que les rayons de projection d’une caméra axiale peuvent être
représentés par 5 coordonnées de Plücker. Les tenseurs d’appariement auront alors une taille de
base de 5 ; par exemple, la matrice essentielle pour des caméras axiales sera de dimension 5 × 5
(voir plus loin).

4.3 Caméras de type cross-slit

Comme il a été mentionné, les caméras de type cross-slit sont définies par l’existence de deux
droites qui coupent tous les rayons de projection. Le cas où ces deux axes se coupent, c’est-à-dire
sont coplanaires, n’a pas d’intérêt ici (voir le tableau 1). Deux cas sont alors possibles : (i) tous les
deux axes sont des droites finies ou (ii) exactement un des deux axes est une droite à l’infini. Il y a
forcément au moins un axe fini ; nous adoptons un repère comme il a été décrit ci-dessus pour les
caméras axiales avec axe fini. Ceci nous laisse encore des degrés de liberté dans le choix du repère,
ce qui sera exploité pour obtenir des coordonnées simples pour le deuxième axe.

Deux axes finis. Ayant fixé le premier axe, nous avons toujours la possibilité d’effectuer des
rotations autour, ou des translations le long de cet axe. Nous pouvons alors choisir un repère où

220 Chapter 9. Multi-View Geometry

le deuxième axe de la caméra coupe l’axe des Y et est parallèle au plan X − Z. Ainsi, il contient
deux points avec des coordonnées de la forme :

A =







0
Y

0
1







B =







X

0
Z

0







Ses coordonnées de Plücker sont alors données par :

LT

2
=
(
X 0 Z −Y Z 0 Y Z

)

Les rayons de projection coupent les deux axes et doivent alors être de la forme :

LT =
(
a1 a2 a3

(
Y Z
X

a1 − Y a3

)
b2 0

)

Nous divisons par X, ce qui est permis ici puisque X 6= 0 (sinon, le deuxième axe serait parallèle
au premier, donc coplanaire, ce qui est exclu ici). Remplaçons ensuite Y Z

X
par W . Les rayons de

projection peuvent alors être paramétrés par les 4 coefficients a1, a2, a3, b2 (qui sont définis à une
échelle près) :

L =











1 0 0 0
0 1 0 0
0 0 1 0
W 0 −Y 0
0 0 0 1
0 0 0 0

















a1

a2

a3

b2







Les coefficients W et Y sont connus et identiques pour tous les rayons de projection (ils
représentent la position relative des deux axes de caméra, qui est connue puisque la caméra est
supposée être calibrée).

Un axe fini et un axe infini. Comme il a été dit ci-dessus, nous fixons d’abord l’axe fini comme
pour les caméras axiales, puis pouvons encore effectuer des rotations autour ou des translations le
long de cet axe pour obtenir des coordonnées particulières pour l’axe infini. Les translations n’ont
pas d’effet sur les coordonnées de l’axe infini ; quant à la rotation, nous pouvons la choisir telle que
l’axe infini ait les coordonnées (0, cos Θ, sin Θ)T (coordonnées homogènes d’une droite à l’infini),
pour un certain Θ. Ceci correspond aux coordonnées de Plücker :

LT

2
=
(
0 0 0 0 cos Θ sin Θ

)

Les rayons de projection doivent couper les deux axes, donc sont de la forme :

LT =
(
a1 −a3 tan Θ a3 b1 b2 0

)

Définissons W = − tanΘ. Les rayons de projection peuvent alors être représentés par 4 coeffi-
cients a1, a3, b1, b2 (définis à l’échelle près) :

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]221

L =











1 0 0 0
0 1 0 0
0 W 0 0
0 0 1 0
0 0 0 1
0 0 0 0

















a1

a3

b1

b2







Les tenseurs d’appariement pour des caméras de type cross-slit auront alors une taille de base
de 4.

4.4 Caméras non centrales générales

Aucune simplification des coordonnées des rayons de projection n’est possible ; ce seront alors
des coordonnées de Plücker générales. Les tenseurs d’appariement auront une taille de base de 6.

5 Géométrie d’images multiples

Nous établissons les fondements d’une géométrie d’images multiples pour des caméras générales
(non centrales). Elle sera incarnée, comme avec les caméras perspectives, par des tenseurs d’appa-
riement. Nous montrons comment les obtenir, de manière analogue au cas perspectif.

Ici, nous ne traitons que du cas calibré ; le cas non calibré n’est bien géré que pour les caméras
perspectives, puisque ces caméras, calibrées ou non, sont liées par des transformations projectives.
Pourtant, quant aux caméras non centrales, un tel lien n’existe pas en général : dans le cas le plus
général, chaque paire pixel+rayon de projection peut être complètement indépendante de toutes
les autres paires.

Dans la suite, nous rappelons d’abord la notion de tenseur d’appariement, puis les principes
d’une approche de géométrie d’image multiples pour les caméras perspectives. Cette approche
travaille avec des coordonnées de points dans les images. Nous appliquons ensuite les mêmes idées,
tout en travaillant avec des coordonnées de droites en 3-D, pour dériver notre géométrie des caméras
non centrales.

5.1 Tenseurs d’appariement

Il n’existe pas de véritable définition de la notion de tenseur d’appariement dans la littérature.
Néanmoins, il est entendu qu’il s’agit, pour les caméras perspectives, de tenseurs dont les coefficients
dépendent des matrices de projection d’un ensemble de vues considérées et qui permettent de
formuler des contraintes d’appariement pour des primitives géométriques dans ces vues. Il est
généralement sous-entendu que ces contraintes sont de forme multi-linéaire, c’est-à-dire que les
contraintes sont linéaires en les coordonnées de chaque primitive. L’exemple le plus connu est
le tenseur d’appariement bi-focal, ou bien la matrice fondamentale F, qui donne la contrainte
d’appariement bi-linéaire classique :

qT

2
Fq1 = 0

Plus généralement, pour n vues et des points q1 · · ·qn dans ces vues, on espère trouver des
tenseurs d’appariement T de dimension 3 × · · · × 3 qui permettent de formuler des contraintes

222 Chapter 9. Multi-View Geometry

d’appariement multi-linéaires :

3∑

i1=1

3∑

i2=1

· · ·
3∑

in=1

q1,i1q2,i2 · · · qn,inTi1,i2,··· ,in = 0 (3)

Ceci est décrit plus en détail dans la section suivante.

Ici, nous ne traitons que des tenseurs d’appariement pour n points, mais il en existe également
pour l’appariement de droites ou d’un mélange de droites et de points [15].

Notons aussi que les tenseurs d’appariement ont deux applications principales :

1. ils permettent d’établir des contraintes d’appariement, voir ci-dessus ;

2. réciproquement, des appariements entre images permettent de calculer les tenseurs. Puisqu’ils
dépendent des matrices de projection, on peut espérer de remonter à ces dernières, donc faire
de l’estimation du mouvement de caméra, de l’auto-calibrage, de la reconstruction 3-D etc.
Il existe un éventail assez large de telles applications et nous renvoyons à [15] pour un tour
d’horizon assez complet.

Le but principal de cet article est de montrer l’existence et la forme de tenseurs d’apparie-
ment pour nos modèles de caméras généraux. Plus concrètement, nous recherchons des contraintes
d’appariement qui seraient de la forme :

6∑

i1=1

6∑

i2=1

· · ·
6∑

in=1

L1,i1L2,i2 · · ·Ln,inTi1,i2,··· ,in = 0 (4)

où les L sont les coordonnées de Plücker de rayons de projection, ou bien des vecteurs de
coordonnées tels que définis section 4. Dans le cas le plus général, les tenseurs d’appariement
seraient alors de dimension 6 × · · · × 6. La contrainte (4) exprimerais que les rayons de projection
considérés peuvent se correspondre, c’est-à-dire que les pixels associés à ces rayons peuvent être un
appariement potentiel. Ces concepts seront introduits dans la section 5.3.

5.2 Rappels sur la géométrie d’images multiples des caméras perspec-

tives

Nous rappelons des principes de l’une des approches pour dériver les relations entre images
multiples, développée pour les caméras perspectives [8]. Soient Pi des matrices de projection et qi

des points image. Un ensemble de points image peut constituer une correspondance uniquement
s’il existe un point 3-D Q et des facteurs d’échelle scalaires λi tels que, pour tout i :

λiqi = PiQ

Ceci peut être écrit sous la forme d’une équation matricielle :








P1 q1 0 · · · 0

P2 0 q2 · · · 0
...

...
...

. . .
...

Pn 0 0 · · · qn








︸ ︷︷ ︸

M










Q

−λ1

−λ2

...
−λn










=








0
0
...
0








Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]223

Cette équation exprime que la matrice M, de dimension 3n × (4 + n), possède un vecteur nul,
c’est-à-dire qu’elle est de rang inférieur à 4 + n. Par conséquent, les déterminants de toutes ses
sous-matrices de dimension (4 + n) × (4 + n) valent zéro. Ces déterminants sont des expressions
multi-linéaires en termes des coordonnées des points image qi.

Il faut les développer pour toute sous-matrice possible de la bonne dimension. Notons que seule
une sous-matrice contenant deux lignes ou plus associées à chacune des vues, peut donner une
contrainte qui lie toutes les matrices de projection. Ainsi, des contraintes peuvent être obtenues
pour n vues avec 2n ≤ 4 + n, ce qui implique que des contraintes multi-vues (et multi-linéaires)
n’existent que jusqu’à 4 vues.

Les contraintes pour n vues sont de la forme (3), où T désigne donc un tenseur de dimension
3 × · · · × 3, appelé tenseur d’appariement. Les tenseurs dépendent uniquement des matrices de
projection Pi et constituent en effet une représentation compacte de celles-ci (représentation qui
permet d’extraire les Pi à une transformation projective près).

Notons que dès que l’on considère des caméras calibrées, cette théorie peut s’appliquer à n’im-
porte quelle caméra centrale (en plus des caméras perspectives) : des contraintes comme ci-dessus
peuvent par exemple être écrites pour des caméras avec distorsion radiale, en termes des coor-
données de points image corrigés.

5.3 Géométrie d’images multiples pour les caméras non centrales

Ici, nous traitons avec des matrices de pose au lieu de matrices de projection (qui, elles,
dépendent et de la pose et du calibrage) :

Pi =

(
Ri ti

0T 1

)

Ces transformations euclidiennes représentent des déplacements d’une caméra, ou bien le chan-
gement de repère d’un repère global vers le repère local de la caméra. Les points image du paragraphe
précédent sont maintenant remplacés par des rayons de projection. Soit le ie rayon représenté par
deux points 3-D Ai et Bi. Ultérieurement, nous voulons aboutir à des expressions en termes des
coordonnées de Plücker des rayons, c’est-à-dire des tenseurs T et des contraintes d’appariement de
la même forme que (3), mais avec des tenseurs de dimension 6× · · · × 6, qui agissent sur des coor-
données de Plücker, voir l’équation (4) ci-dessus. Dans la suite, nous expliquons comment obtenir
ces contraintes.

Considérons un ensemble de n rayons de projection, un pour chaque vue, qui chacun est
représenté par deux points Ai et Bi. Le choix des points sur une droite n’a aucune importance,
comme plus tard nous arriverons à des expressions en termes des coordonnées de Plücker.

Les n rayons peuvent être une correspondance s’il existe un point 3-D Q et des facteurs d’échelle
λi et µi tels que, pour chaque vue i = 1 . . . n :

λiAi + µiBi = PiQ

Cette équation exprime en effet que le point Q se trouve sur le ie rayon de projection (le tout
exprimé dans le repère local de la ie caméra).

Comme pour les caméras perspectives, nous regroupons les équations de toutes les vues en une
équation matricielle :

224 Chapter 9. Multi-View Geometry








P1 A1 B1 0 0 · · · 0 0

P2 0 0 A2 B2 · · · 0 0
...

...
...

...
...

. . .
...

...
Pn 0 0 0 0 · · · An Bn








︸ ︷︷ ︸

M
















Q

−λ1

−µ1

−λ2

−µ2

...
−λn

−µn
















=








0

0
...
0








Cette équation implique que M, de dimension 4n × (4 + 2n), n’est pas de rang plein. Par
conséquent, toutes ses sous-matrices de dimension (4 + 2n) × (4 + 2n) doivent être singulières,
c’est-à-dire avoir un déterminant nul. Dans la suite, nous montrons que seules les sous-matrices qui
contiennent au moins trois lignes associées à chacune des vues, mènent à des contraintes entre toutes
les matrices de pose Pi. Ceci veut dire que nous aurons des contraintes pour n vues si 3n ≤ 4+ 2n,
donc n ≤ 4 comme pour les caméras perspectives.

Regardons pour commencer le cas d’une sous-matrice de M qui contient, pour une des vues,
une seule ligne associée. Sans perte de généralité, supposons que ce soit le cas pour la première vue
et que seule la première ligne associée à cette vue soit présente dans la sous-matrice de M. Cette
sous-matrice sera donc de la forme :

N =








PT

11
A11 B11 0 0 · · · 0 0

P2 0 0 A2 B2 · · · 0 0
...

...
...

...
...

. . .
...

...
Pn 0 0 0 0 · · · An Bn








Ici, PT

11
désigne la première ligne de la matrice P1. Les deux colonnes contenant les scalaires A11

et B11 ne contiennent sinon que des zéros. L’une est donc le multiple de l’autre, ce qui implique
que le déterminant de N vaut toujours zéro. Il n’y a donc pas de contrainte exploitable.

Dans la suite, nous excluons ce cas, c’est-à-dire que nous ne considérons que des sous-matrices
de M avec au moins deux lignes associées à chacune des vues. Soit N une telle matrice. Sans perte
de généralité, nous commençons le développement de son déterminant avec la colonne contenant
A1 et B1. Le déterminant sera alors donné comme une somme de termes de la forme :

(A1,jB1,k − A1,kB1,j) det N̄jk

où j, k ∈ {1..4}, j 6= k et N̄jk est obtenue de N en omettant les colonnes contenant A1 et B1

ainsi que les lignes contenant A1,j et A1,k.

Nous observons différentes choses :

– Le terme (A1,jB1,k −A1,kB1,j) représente en effet une des coordonnées de Plücker du rayon de
la première vue, engendré par A1 et B1 (cf. la section 2). En continuant avec le développement
du déterminant de N̄jk et ainsi de suite, le déterminant de N pourra s’écrire sous la forme :

6∑

i1=1

6∑

i2=1

· · ·
6∑

in=1

L1,i1L2,i2 · · ·Ln,inTi1,i2,··· ,in = 0

où les Li,j sont des coordonnées de Plücker des rayons considérés, obtenues à partir des Ai

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]225

Tab. 2 – Les cas utiles de contraintes d’appariement pour des caméras centrales et non centrales.
Les colonnes sur-titrées par « cas utiles » contiennent des entrées de la forme x − y − z etc. Ceci
désigne la constitution des sous-matrices de M qui donnent lieu à des contraintes entre toutes les
vues : x − y − z par exemple veut dire que les sous-matrices contiennent x lignes associées à une
vue, y à une autre, etc.

central non-central
nombre de vues M cas utiles M cas utiles

2 6 × 6 3-3 8 × 8 4-4
3 9 × 7 3-2-2 12 × 10 4-3-3
4 12 × 8 2-2-2-2 16 × 12 3-3-3-3

et Bi. Les coefficients des matrices de pose Pi sont, eux, regroupés dans un tenseur T, de
dimension 6 × · · · × 6.

– Si N ne contient que deux lignes associées à la première vue, alors son déterminant sera de la
forme :

L1,x

(
6∑

i2=1

· · ·

6∑

in=1

L2,i2 · · ·Ln,inTi2,··· ,in

)

= 0

c’est-à-dire qu’une seule coordonnée du premier rayon sera présente dans l’expression. Cette
contrainte ne lie pas toutes les vues entre elles : elle est vérifiée si L1,x = 0, ce qui est une
condition indépendante des autres vues ou bien si l’expression entre parenthèses vaut zéro,
ce qui ne dépend que des vues 2 à n.
Ceci explique ce que nous avons constaté plus haut : pour obtenir des contraintes entre toutes
les vues, seules des sous-matrices contenant au moins trois lignes pour chacune des vues sont
utiles.

Nous sommes maintenant prêts à établir les différents cas qui mènent à des contraintes entre
images. Comme il a été dit, aucune contrainte (multi-linéaire) n’existe qui lierait plus de quatre
vues à la fois. Nous résumons alors les cas utiles, de deux à quatre vues, dans le tableau 2, pour les
caméras centrales (basé sur la théorie développée pour les caméras perspectives) et non centrales.
Le tableau donne les dimensions des sous-matrices de M, dont le déterminant donne des contraintes
d’appariement, représentées par des matrices essentielles (pour deux vues), des tenseurs trifocaux
ou quadrifocaux. L’écriture détaillée des tenseurs devient alors une tache plutôt « mécanique ».

6 Le cas de deux vues

Nous avons jusqu’alors expliqué comment formuler des contraintes d’appariement entre deux,
trois ou quatre caméras non centrales, représentées par des tenseurs de dimension 6×6 à 6×6×6×6.
Afin de rendre ces résultats plus concrets, nous explorons maintenant en détails le cas de deux vues.
Nous montrons comment le tenseur bifocal, ou matrice essentielle, dépend des paramètres de pose
(ou bien, du mouvement). Ceci est d’abord fait pour les caméras non centrales générales, puis
spécialisé aux caméras axiales, de type cross-slit et finalement aux caméras centrales. A la fin
de cette section, nous donnons quelques commentaires sur l’estimation des matrices essentielles,
introduites dans la suite.

226 Chapter 9. Multi-View Geometry

6.1 Caméras non centrales

Pour plus de simplicité, et sans perte de généralité, nous supposons ici que le repère global
cöıncide avec le repère de la première caméra. La matrice de pose P1 est donc l’identité. Quant à
la pose de la deuxième caméra, nous omettons alors les indices ; elle sera donc représentée par une
matrice de rotation R et un vecteur de translation t. La matrice M devient alors :

M =















1 0 0 0 A1,1 B1,1 0 0
0 1 0 0 A1,2 B1,2 0 0
0 0 1 0 A1,3 B1,3 0 0
0 0 0 1 A1,4 B1,4 0 0

R11 R12 R13 t1 0 0 A2,1 B2,1

R21 R22 R23 t2 0 0 A2,2 B2,2

R31 R32 R33 t3 0 0 A2,3 B2,3

0 0 0 1 0 0 A2,4 B2,4















Pour toute paire de rayons correspondants, M doit être singulière. Comme dans le cas présent
de deux vues M est carrée, ceci implique que son déterminant vaut zéro. En le développant d’après
les indications de la section précédente, nous obtenons la contrainte :

LT

2

(
−[t]×R R

R 0

)

L1 = 0 (5)

où les coordonnées de Plücker L1 et L2 sont définies selon (1).

Nous pouvons identifier la matrice essentielle, donnée dans [25] :

En =

(
−[t]×R R

R 0

)

(6)

L’équation (5) représente en effet une contrainte épipolaire, tout à fait similaire à celle des
caméras perspectives.

6.2 Caméras axiales

Axe fini. Comme il a été expliqué dans la section 3, nous adoptons des repères locaux pour nos
caméras où les rayons ont une coordonnée L6 = 0. Ainsi, la contrainte épipolaire (5) peut être
exprimée par une matrice essentielle amputée, de dimension 5 × 5, qui agit sur des vecteurs de
coordonnées de Plücker amputés de leur sixième coordonnée :

Eaf =









−[t]×R





R11 R12

R21 R22

R31 R32





(
R11 R12 R13

R21 R22 R23

)

02×2









(7)

Cette matrice essentielle est obtenue à partir de En (cf. (6)) en omettant les sixièmes ligne et
colonne.

Remarquons que Eaf est en général de rang plein, c’est-à-dire de rang 5. Elle est singulière
exactement si les axes des deux caméras se coupent. Dans ce cas-ci, les vecteurs nuls gauche et

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]227

droit de Eaf donnent les coordonnées des deux axes, exprimées dans le repère de l’autre caméra
respectivement (pour obtenir les coordonnées de Plücker, il faut juste rajouter un zéro comme
sixième coefficient).

Axe infini. Comme ci-dessus, la contrainte épipolaire (5) se simplifie, et est représentée par une
matrice essentielle de dimension 5 × 5 :











(
−t3 0 t1
t2 −t1 0

)




R12 R13

R22 R23

R32 R33





(
R21 R22 R23

R31 R32 R33

)





R12 R13

R22 R23

R32 R33



 0











En détail, la matrice essentielle s’écrit :

Eai =









t1R32 − t3R12 t1R33 − t3R13 R21 R22 R23

t2R12 − t1R22 t2R13 − t1R23 R31 R32 R33

R12 R13 0 0 0
R22 R23 0 0 0
R32 R33 0 0 0









Elle est toujours singulière (les axes des deux caméras sont des droites à l’infini, donc se coupent
forcément). Son vecteur nul de droite est (0, 0, R11, R12, R13)

T. Il représente l’axe de la deuxième
caméra, exprimé par rapport au repère de la première caméra. Réciproquement, le vecteur nul de
gauche est (0, 0, R11, R21, R31)

T, ce qui représente l’axe de la première caméra, dans le repère de la
deuxième.

6.3 Caméras de type cross-slit

Nous considérons les deux cas expliqués dans la section 4.3.

Deux axes finis. La contrainte épipolaire (5) se simplifie et peut s’écrire basée sur une matrice
essentielle de dimension 4 × 4, qui agit sur des vecteurs de coordonnées de Plücker amputés de la
forme (a1, a2, a3, b2)

T (cf. la section 4.3) :

Exff =







1 0 0 W2 0
0 1 0 0 0
0 0 1 −Y2 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 0 1 0

W1 0 −Y1 0
0 0 0 1









où Eaf est donnée dans (7). Contrairement aux cas précédents, la matrice essentielle contient
maintenant non seulement des paramètres de pose, mais aussi des « paramètres intrinsèques » (les
coefficients Wi et Yi des deuxièmes axes des caméras). En détail, elle peut s’écrire :

228 Chapter 9. Multi-View Geometry

Exff =

(
−[t]×R 0

0T 0

)

+







R11(W1 + W2) R12W2 R13W2 − R11Y1 R12

R21W1 0 −R21Y1 R22

R31W1 − R11Y2 −R12Y2 −R13Y2 − R31Y1 R32

R21 R22 R23 0







Un axe fini et un axe infini. Similairement, la contrainte épipolaire se simplifie et nous obtenons
une matrice essentielle de dimension 4 × 4 :

Exfi =







1 0 0 0 0
0 1 W2 0 0
0 0 0 1 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 W1 0 0
0 0 1 0
0 0 0 1









6.4 Caméras centrales

Centre optique fini. Les rayons de projection sont ici de la forme (L1, L2, L3, 0, 0, 0)T (voir la
section 3). La contrainte épipolaire (5) se réduit donc à l’expression :

(
L2,1 L2,2 L2,3

) (
−[t]×R

)





L1,1

L1,2

L1,3



 = 0

où nous retrouvons la matrice essentielle « classique » de dimension 3×3 : Ecf = −[t]×R [15, 17].

Centre optique infini. Dans ce cas, la matrice essentielle est donnée par :

Eci =





t2R13 − t1R23 R31 R32

R13 0 0
R23 0 0





Ceci ressemble à la matrice fondamentale affine [27], mais ne lui correspond pas exactement :
ici, la matrice essentielle agit sur des droites en 3-D, tandis que la matrice fondamentale agit sur
des points image. Par exemple, le vecteur nul de droite de Eci est (0, R32,−R31)

T, ce qui représente
la droite en 3-D avec les coordonnées de Plücker (0, 0, 0, R32,−R31, 0)T. C’est la droite engendrée
par les centres optiques des deux caméras (une droite à l’infini), exprimée par rapport au repère de
la première caméra.

6.5 Estimation des matrices essentielles

Cet article a une vocation théorique, mais nous voulons néanmoins donner quelques éléments
utiles pour l’estimation numérique des matrices essentielles introduites ainsi que pour l’extraction
des paramètres de mouvement à partir de celles-ci. Pour les caméras perspectives, deux types ma-
jeurs d’algorithmes pour l’estimation de la matrice essentielle et du mouvement ont été développés.
La première approche consiste à utiliser le moins de correspondances possible. Pour la matrice
essentielle perspective, il s’agit de 5 correspondances de points, et seulement très récemment, un

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]229

algorithme vraiment minimal a été trouvé [19]. Ce type d’algorithme correspond à la résolution
d’équations non linéaires, donnant un nombre fini de solutions.

L’autre type d’approche consiste en un premier lieu à ignorer la structure de la matrice essentielle
(c’est-à-dire comment elle est construite à partir de R et t) et de la traiter comme une matrice de
dimension 3 × 3 quelconque. La contrainte épipolaire permet alors de l’estimer en résolvant un
système d’équations linéaires cette fois-ci [17]. Les prix à payer sont un nombre plus important
de correspondances requises (8 au minimum) et que la matrice ainsi estimée ne correspond pas en
général (en présence de bruit) à une matrice essentielle exacte.

Il existe aussi des algorithmes intermédiaires, mais ceci n’est pas important pour notre propos.
Les deux types d’approche extrayent finalement les paramètres de mouvement R et t de la matrice
essentielle estimée. Pour la deuxième approche, ceci requiert une solution approximative, puisque
la matrice estimée ne respecte pas la structure d’une vraie matrice essentielle.

Dans la suite, nous esquissons la deuxième approche pour deux exemples de matrices essen-
tielles introduites dans cette section ; le développement d’approches minimales (par exemple pour
la matrice essentielle 6 × 6 des caméras non centrales) est un problème ouvert et probablement
assez difficile.

Caméras non centrales. La matrice essentielle a 36 coefficients, mais 9 d’entre eux sont toujours
zéro et 9 autres apparaissent en double (les coefficients de R). L’estimation linéaire doit alors
porter sur 18 coefficients, et comme elle se fait à partir d’équation linéaires et homogènes, 17
correspondances de rayons de projection sont suffisantes.

Comme il a été mentionné ci-dessus, l’estimation linéaire ne donnera pas une matrice essentielle
parfaite. Pour extraire les paramètres de mouvement R et t, nous devons alors en tenir compte.
Nous donnons l’esquisse d’un algorithme :

1. Soit A la sous-matrice 3× 3 en bas à gauche de En. Sans bruit, elle serait égale (à un facteur
d’échelle près) à la matrice de rotation R. En présence de bruit, nous pouvons obtenir une
matrice de rotation R via la SVD (décomposition en valeurs singulières [26]) de A : si A = UΣV

est la SVD de A, alors R = UV est la matrice de rotation qui est la plus proche de A (au sens
de la norme de Frobenius) [29]. Si le déterminant de R ainsi calculée vaut −1, il faut encore
multiplier la matrice avec −1.

2. Déterminer le scalaire λ qui minimise

‖λA − R‖F

où ‖ · ‖F désigne la norme de Frobenius d’une matrice. C’est un problème de moindres carrés
assez simple. Multiplier ensuite En avec λ.

3. Soit B la sous-matrice 3 × 3 en haut à gauche de En. Calculer t en minimisant

‖B + [t]×R‖F

ce qui revient à la résolution d’un problème de moindres carrés.

D’autres algorithmes sont bien sur possibles.

Caméras axiales avec axe fini. La matrice essentielle Eaf contient 17 coefficients différents et
peut alors être estimée en résolvant un système linéaire, à partir de 16 correspondances. L’algorithme
d’extraction de R et t est assez similaire au cas précédent. Soit A la sous-matrice 3 × 2 en haut à
droite de Eaf . Nous pouvons estimer R à partir de A basé sur sa SVD (voir les détails dans [29]).
Le reste de l’algorithme est analogue à celui des caméras non centrales.

230 Chapter 9. Multi-View Geometry

Tab. 3 – Résumé des matrices essentielles pour différents modèles de caméras. La dernière colonne
donne le nombre minimum de correspondances de rayons de projections qui sont requises pour une
estimation linéaire des matrices essentielles.

Modèle de caméras Matrice essentielle Nombre

Caméra non centrale En =

(
−[t]×R R

R 03×3

)

17

Caméra axiale avec axe
fini

Eaf =









−[t]×R





R11 R12

R21 R22

R31 R32





(
R11 R12 R13

R21 R22 R23

)

02×2









16

Caméra axiale avec axe
infini

Eai =









t1R32 − t3R12 t1R33 − t3R13 R21 R22 R23

t2R12 − t1R22 t2R13 − t1R23 R31 R32 R33

R12 R13 0 0 0
R22 R23 0 0 0
R32 R33 0 0 0









11

Caméra de type cross-
slit avec deux axes finis

Exff =







1 0 0 W2 0
0 1 0 0 0
0 0 1 −Y2 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 0 1 0

W1 0 −Y1 0
0 0 0 1









13

Caméra de type cross-
slit avec un axe fini et
un axe infini

Exfi =







1 0 0 0 0
0 1 W2 0 0
0 0 0 1 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 W1 0 0
0 0 1 0
0 0 0 1









10

Caméra centrale avec
centre optique fini

Ecf = −[t]×R 8

Caméra centrale avec
centre optique infini

Eci =





t2R13 − t1R23 R31 R32

R13 0 0
R23 0 0



 4

Autres cas. La plupart des autres cas (à l’exception de la caméra centrale avec centre optique
infini) peuvent être résolus de manière assez similaire et nous en omettons les détails. La forme des
matrices essentielles des différents modèles de caméras ainsi que le nombre minimum de correspon-
dances requises pour une estimation linéaire, sont donnés dans le tableau 3.

7 Conclusions

Nous avons proposé une géométrie d’images multiples pour des caméras non centrales générales,
la première d’après notre connaissance. Une hiérarchie naturelle de modèles de caméras a été intro-
duite, regroupant les caméras en classes selon la répartition spatiale de leurs rayons de projection.
La géométrie de deux vues a été spécialisée et décrite en détail pour différents modèles de caméras.
Nous espérons que ce travail théorique permet de définir un terrain commun pour de récents efforts
dans la caractérisation de la géométrie de caméras non classiques.

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]231

Nous donnons quelques perspectives de travail assez immédiates. Les relations géométriques
entre des caméras de différents types devraient être simples à dériver selon le schéma utilisé dans ce
travail. Par exemple, la matrice essentielle entre une caméra centrale et une caméra axiale sera de
taille 3×4. Aussi, une traduction de nos résultats en notation tensorielle est aisément envisageable.
Comme c’est le cas pour les caméras perspectives, des contraintes d’appariement pour des images
de droites au lieu de points peuvent probablement être développées.

Dans cet article, nous avons principalement considéré la théorie de la géométrie d’images mul-
tiples ; quant à l’estimation numérique des tenseurs et l’extraction des paramètres de mouvement,
nous avons esquissé des méthodes pour le cas de deux vues, mais un traitement complet nécessite
plus de travail. Des expériences pratiques avec l’estimation de la matrice essentielle pour des caméras
non centrales ont pourtant été achevées avec succès, comme ça l’a été le cas pour d’autres auteurs
[25]. Sinon, nous travaillons actuellement sur le développement de méthodes de calibrage spécifiques
aux caméras axiales et de type cross-slit, dans l’esprit de [31].

Références

[1] Y.I. ABDEL-AZIZ et H.M. KARARA, “Direct Linear Transformation from Comparator Coor-
dinates into Object Space Coordinates in Close-Range Photogrammetry”, ASP/UI Symposium
on Close-Range Photogrammetry, Urbana, Illinois, 1–18, 1971.

[2] S. BAKER et S.K. NAYAR, “A theory of single-viewpoint catadioptric image formation”,
International Journal of Computer Vision, 35(2) :1–22, 1999.

[3] H. BAKSTEIN, “Non-central cameras for 3D reconstruction”, Rapport Technique CTU-CMP-
2001-21, Center for Machine Perception, Czech Technical University, Prague, 2001.

[4] H. BAKSTEIN et T. PAJDLA, “An overview of non-central cameras”, Computer Vision Win-
ter Workshop, Ljubljana, Slovenie, 223–233, 2001.

[5] J.P. BARRETO et H. ARAUJO, “Paracatadioptric camera calibration using lines”, ICCV,
1359–1365, 2003.

[6] R. BENOSMAN et S.B. KANG (éditeurs), Panoramic Vision Sensors, Theory, and Applica-
tions. Springer Verlag, 2001.

[7] E. BRASSART, L. DELAHOCHE, C. CAUCHOIS, C. DROCOURT, C. PEGARD et E.
MOUADDIB, “Experimental Results Got With the Omnirectional Vision Sensor : SYCLOP”,
IEEE Workshop on Omnidirectional Vision, Hilton Head, Caroline du Sud, 145–152, 2000.

[8] O. FAUGERAS et B. MOURRAIN, “On the geometry and algebra of the point and line
correspondences between n images”, ICCV, 951–956, 1995.

[9] D. FELDMAN, T. PAJDLA et D. WEINSHALL, “On the epipolar geometry of the crossed-
slits projection”, ICCV, 988–995, 2003.

[10] C. GEYER et K. DANIILIDIS, “A unifying theory of central panoramic systems and practical
applications”, ECCV, 445–461, 2000.

[11] C. GEYER et K. DANIILIDIS, “Paracatadioptric camera calibration”, PAMI, 24(5) :687–695,
2002.

[12] C. GEYER et K. DANIILIDIS, “Mirrors in Motion : Epipolar geometry and motion estima-
tion”, ICCV, 2 :766–773, 2003.

[13] M.D. GROSSBERG et S.K. NAYAR, “A general imaging model and a method for finding its
parameters”, ICCV, 2 :108–115, 2001.

232 Chapter 9. Multi-View Geometry

[14] R.I. HARTLEY et R. GUPTA, “Linear pushbroom cameras”, ECCV, 555–566, 1994.

[15] R.I. HARTLEY et A. ZISSERMAN, Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[16] R.A. HICKS et R. BAJCSY, “Catadioptric sensors that approximate wide-angle perspective
projections”, CVPR, 545–551, 2000.

[17] H.C. LONGUET-HIGGINS, “A computer program for reconstructing a scene from two pro-
jections”, Nature, 293 :133–135, 1981.

[18] J. NEUMANN, C. FERMÜLLER et Y. ALOIMONOS, “Polydioptric camera design and 3D
motion estimation”, CVPR, II :294–301, 2003.

[19] D. NISTÉR, “An efficient solution to the five-point relative pose problem”, CVPR, II :195–202,
2003.

[20] T. PAJDLA, “Epipolar Geometry of Some Non-classical Cameras”, Computer Vision Winter
Workshop, Bled, Slovenie, 159–180, 2001.

[21] T. PAJDLA, T. SVOBODA et V. HLAVAC, “Epipolar Geometry of Central Panoramic Came-
ras”, Dans Panoramic Vision : Sensors, Theory, and Applications, R. Benosman et S.B. Kang
(éditeurs), 85–114, Springer Verlag, 2001.

[22] T. PAJDLA. “Geometry of two-slit camera”, Rapport Technique CTU-CMP-2002-02, Center
for Machine Perception, Czech Technical University, Prague, 2002.

[23] T. PAJDLA. “Stereo with oblique cameras”, IJCV, 47(1-3) :161–170, 2002.

[24] S. PELEG, M. BEN-EZRA et Y. PRITCH, “Omnistereo : Panoramic stereo imaging”, PAMI,
23(3) :279–290, 2001.

[25] R. PLESS, “Using many cameras as one”, CVPR, II :587–593, 2003.

[26] W.H. PRESS, S.A. TEUKOLSKY, W.T. VETTERLING et B.P. FLANNERY, Numerical
Recipes in C - The Art of Scientific Computing. Cambridge University Press, 1992.

[27] L.S. SHAPIRO, A. ZISSERMAN et M. BRADY, “3D Motion Recovery via Affine Epipolar
Geometry”, IJCV, 16(2) :147–182, 1995.

[28] H.-Y. SHUM, A. KALAI et S.M. SEITZ, “Omnivergent stereo”, ICCV, 22–29, 1999.

[29] P. STURM, “Algorithms for Plane-Based Pose Estimation”, CVPR, 1010–1017, 2000.

[30] P. STURM, “Mixing catadioptric and perspective cameras”, Workshop on Omnidirectional
Vision, Copenhagen, 37–44, 2002.

[31] P. STURM et S. RAMALINGAM, “A generic concept for camera calibration”, ECCV, 1–13.
2004.

[32] T. SVOBODA, Central Panoramic Cameras : Design, Geometry, Egomotion. Thèse de doc-
torat, Faculty of Electrical Engineering, Czech Technical University, Prague, 1999.

[33] R. SWAMINATHAN, M.D. GROSSBERG et S.K. NAYAR, “A perspective on distortions”,
CVPR, II :594–601, 2003.

[34] J. YU et L. McMILLAN, “General linear cameras”, ECCV, 14–27, 2004.

[35] A. ZOMET, D. FELDMAN, S. PELEG et D. WEINSHALL, “Mosaicing new views : The
crossed-slit projection”, PAMI, 25(6) :741–754, 2003.

Paper 20: Géométrie d’images multiples pour des modèles de caméra. . . , Traitement du Signal 2005 [33]233

Mixing Catadioptric and Perspective Cameras

Peter Sturm

INRIA Rhône-Alpes

655 Avenue de l’Europe, 38330 Montbonnot, France

Peter.Sturm@inrialpes.fr ⊙ http://www.inrialpes.fr/movi/people/Sturm

Abstract

We analyze relations that exist between multiple views of

a static scene, where the views can be taken by any mixture

of para-catadioptric, perspective or affine cameras. Con-

cretely, we introduce the notion of fundamental matrix, tri-

focal and quadrifocal tensors for the different possible com-

binations of these camera types. We also introduce the no-

tion of plane homography for mixed image pairs. Gener-

ally speaking, these novel multi-view relations may form

the basis for the typical geometric computations like mo-

tion estimation, 3D reconstruction or (self-) calibration. A

few novel algorithms illustrating some of these aspects, are

described, especially concerning what we call calibration

transfer, using fundamental matrices, and self-calibration

from plane homographies.

1. Introduction

This work has been motivated by the increasing inter-

est of vision researchers and practitioners in the theory and

use of omnidirectional cameras [12, 13, 3]. Our main goal

is to contribute to a unified theory encompassing omni-

directional and traditional (perspective) cameras. We are

especially interested in the study of geometrical and alge-

braic multi-view relations and their use in various geomet-

rical computations like 3D reconstruction, self-calibration

or motion estimation.

During the last decade and until today, multi-view rela-

tions between perspective views have been extensively stud-

ied [9, 5]. Among the most important concepts, one might

cite the multi-linear matching constraints (fundamental ma-

trix and trifocal tensors) that enable robust matching of im-

ages and are useful in motion estimation; self-calibration

and the notion of uncalibrated 3D vision; multi-view re-

construction using factorization etc. We would like to de-

rive analogous concepts for omnidirectional cameras. Some

of these concepts are already known, e.g. the fundamental

and essential matrices for para-catadioptric cameras [7, 17],

epipolar geometry for general central catadioptric cameras

[17], calibration [2, 6] and self-calibation [7, 10] of para-

catadioptric cameras.

In this paper, we generalize some previous results and in-

troduce several new concepts. Very important, in our opin-

ion, is to study multi-view relations that hold between omni-

directional and perspective cameras, and their applications.

An important potential application of omnidirectional cam-

eras, especially in video-surveillance, is to locate a visual

event, and to “guide” a perspective camera that might fixate

and zoom in on the event, to take close-ups. A perspective

camera with a large zoom is usually better modeled as an

affine camera (typically, an orthographic one). So, we study

the multi-view relations that hold between any combination

of omnidirectional, perspective and affine cameras. Con-

cretely, we will introduce the different types of fundamental

matrices, and show the existence of trifocal and quadrifo-

cal tensors, as well as plane homographies between pairs of

views. We then briefly discuss their use for (self-) calibra-

tion, by giving novel algorithms for calibration transfer and

self-calibration from planes.

Concerning the types of omnidirectional camera, our

eventual goal is to treat the various types of central cata-

dioptric cameras [1]. In this paper, we nearly exclusively

consider para-catadioptric cameras, e.g. systems consist-

ing of a parabolic mirror and an affine camera. Currently,

we are not able to generalize several of our results to the

other types of central catadioptric cameras (especially, those

based on hyperbolic mirrors), the problem being that the

multi-view relations are not multi-linear in general.

Organization. In §2, linear backprojection equations are

explained, that allow to derive multi-linear matching con-

straints in §3. Self-calibration and calibration transfer using

fundamental matrices and plane homographies for mixed

types of cameras, is shown in §4. Experimental results il-

lustrating these concepts are given in these sections. §5 con-

cludes and describes perspectives.

Notations. We denote matrices in sans serif (e.g. R),

vectors in bold (e.g. t), zero vectors as 0. The symbol ∼

means equality of vectors or matrices up to scale, account-

ing for homogeneous coordinates. The 3×3 identity matrix

is denoted as I. The skew-symmetric matrix associated with

the cross-product is represented by [v]×: [v]×w = v × w.

Paper 21: Mixing Catadioptric and Perspective Cameras, OMNIVIS 2002 [24] 235

(a) (b) (c)

Figure 1. Camera models used in this paper. (a) Perspective projection: the optical center F is at
position tp (see text). (b) Affine projection: the (back­) projection rays are all parallel, and their

direction is ra,3. (c) Para­catadioptric projection: the effective single viewpoint F is at position tc.

The effective intrinsic parameters r, x0 and y0 are measured in pixels.

2. Camera Models

In this section, we explain the models we use for the

camera types considered (see also figure 1). Since we are

interested in deriving multi-linear constraints among views,

we are keen to find linear projection equations. For perspec-

tive and affine cameras, 3 × 4 projection matrices linearly

map homogeneous 3D point coordinates to homogeneous

image point coordinates. As for catadioptric cameras, such

linear projection equations do not seem to exist. What we

will use instead are backprojection matrices, that map im-

age point coordinates to the direction of the (back-) pro-

jection ray between the original 3D point and the (effec-

tive) optical center. It is possible to derive such mappings,

that are linear, although not in standard image point coordi-

nates, but in “lifted” ones, which shall be explained below.

The backprojection equations derived in this section, will be

used in section 3 to derive multi-view matching constraints.

2.1. Perspective Cameras

Let the projection matrix of a perspective camera be

Pp ∼ KpRp

(
I −tp

)
, where Kp is a calibration matrix

(upper triangular 3 × 3), Rp a 3 × 3 rotation matrix and tp

the 3-vector of the optical center’s coordinates.

All (finite) 3D points projecting onto a given image point

qp can be parameterized by a scale factor λp via:

Q = tp + λpDp , (1)

where the direction Dp of the projection ray is given by:

Dp = (KpRp)
−1

qp = R
T

p K
−1

p qp . (2)

2.2. Affine Cameras

Let the projection matrix of an affine camera be:

Pa =

(
KaR̄a ta

0T da

)

,

with a 2×2 calibration matrix Ka, a 2-vector ta and a 2×3
“amputated” rotation matrix R̄a:

R̄a =

(
rT

a,1

rT

a,2

)

.

The missing third row gives the direction of the projection

rays (they are all parallel). It is obtained (up to sign) as the

cross-product of the other two rows: ra,3 = ra,1 ∧ ra,2.

All (finite) 3D points projecting onto an image point qa

(3-vector of homogeneous coordinates) can be parameter-

ized by a scale factor λ′

a as follows:

Q =
1

qa,3

R
T

aK
−1

a

(
da 0 −ta,1

0 da −ta,2

)

qa + λ′

ara,3 .

We will later use the following equation, obtained by

multiplying the previous one by qa,3:

qa,3Q = R
T

aK
−1

a

(
da 0 −ta,1

0 da −ta,2

)

qa

︸ ︷︷ ︸

Ba

+λara,3 , (3)

with λa = qa,3λ
′

a as free scale factor.

236 Chapter 9. Multi-View Geometry

2.3. Para­Catadioptric Cameras

In this paper, we consider catadioptric systems consist-

ing of a parabolic mirror and an affine camera. Concretely,

the mirror is radially symmetric, and its surface may be rep-

resented by the quadric with the following matrix, for some

scalar m defining the mirror’s “curvature”:

Ω ∼







4m2 0 0 0
0 4m2 0 0
0 0 0 −2m

0 0 −2m −1







.

Its two real focal points are the origin and the point at in-

finity of the Z-axis. Let the origin be the effective single

viewpoint of the para-catadioptric system – we will some-

times also call it the first focus, whereas the point at infinity

will be the second focus. Let Pc be the projection matrix of

an affine camera, whose optical center is the second focus:

Pc =

(
Kc 0 tc

0 0 0 dc

)

,

with a 2×2 calibration matrix Kc and a 2-vector tc. The cal-

ibration matrix allows to represent all types of affine cam-

era: para-perspective, weak perspective or orthographic.

For easier reading, we present in the following only formu-

las for orthographic projection, but note that all derivations

have also been done for the general affine camera. For the

orthographic camera, we have:

Pc =





k 0 0 tc,1

0 k 0 tc,2

0 0 0 dc



 .

Let qc be the 3-vector of homogeneous coordinates of a

point in the orthographic image. The direction D′

c of the ef-

fective (back-) projection ray (the line linking the effective

viewpoint and the original 3D point Q), can be computed

as follows (we omit the subscripts c for clarity):

D′ =






4mkq3 (q1d − q3t1)
4mkq3 (q2d − q3t2)

4m2

(

(q1d − q3t1)
2

+ (q2d − q3t2)
2
)

− k2q2
3




 .

This is not linear in the image coordinates, however, by

“lifting” them from the 3-vector qc to the 4-vector1

q̂c =







q2
c,1 + q2

c,2

qc,1qc,3

qc,2qc,3

q2
c,3







, (4)

we obtain the following linear backprojection equation:

D′

c = Bcq̂c ,

1This is similar to the lifted coordinates in [7], although here they are

obtained in a purely algebraic manner.

where (we again omit the subscripts c):

B =

0

@

0 4mkd 0 −4mkt1

0 0 4mkd −4mkt2

4m2d2
−8m2dt1 −8m2dt2 4m2

`

t2
1

+ t2
2

´

− k2

1

A .

The parameters m, k, d, t1 and t2 are not independent, and

we replace them by three effective intrinsic parameters:

r = k
2md

, x0 = t1
d

and y0 = t2
d

(cf. figure 1 (c)). With

these, the backprojection matrix takes the form:

Bc ∼





0 2r 0 −2rx0

0 0 2r −2ry0

1 −2x0 −2y0 x2
0 + y2

0 − r2



 . (5)

All (finite) 3D points projecting onto a given image point

qc can now be parameterized by a scale factor λc via:

Q = tc + λc R
T

c Bcq̂c
︸ ︷︷ ︸

Dc

, (6)

where Rc and tc represent the extrinsic parameters of the

para-catadioptric system.

3. Multi-Linear Multifocal Matching Con-

straints

We use the backprojection equations laid out in the pre-

vious section for perspective, affine and para-catadioptric

cameras, to obtain multifocal matching constraints. We pro-

ceed similarly to what has been done in the pure perspective

case to derive multi-linear matching constraints [4, 19]. In

the first paragraph, we describe the general scheme, and in

the following ones, we concentrate on special cases.

3.1. General Scheme

Consider projections of a 3D point Q (non-homogene-

ous coordinates) in a set of views. Consider the general case

of u perspective, v affine and w para-catadioptric views,

with image points q1
p, . . . ,q

u
p in the perspective views, and

analogously for the other camera types. In the following,

superscripts are associated to different images. The back-

projection equations (1), (3) and (6) may be grouped in a

single equation system as shown in equation (7) on top of

the following page. The vectors Di
p,B

j
a and Dk

c respec-

tively depend linearly on the (lifted) image points, and are

defined in equations (2), (3) and (6) respectively.

The matrix M of this equation system, in the follow-

ing also called joint matrix, has 3(u + v + w) rows and

(u + v + w + 4) columns. Relations among the different

projections of Q arise due to the fact that this matrix has a

non-trivial null-vector (the vector containing the λ’s and the

coordinates of the 3D point Q). Hence, M can not be of full

column rank, i.e. its rank must be lower than (u+v+w+4).
This is equivalent to the statement that the determinants of

all minors of size (u+v+w+4) vanish. It is these determi-

nants that give the multi-linear relations between matching

image points in different views.

Paper 21: Mixing Catadioptric and Perspective Cameras, OMNIVIS 2002 [24] 237




















t1
p D1

p I

...
. . . 0 0

...

tu
p Du

p I

B1
a r1

a,3 q1
a,3I

... 0
. . . 0

...

Bv
a rv

a,3 qv
a,3I

t1
c D1

c I

... 0 0
. . .

...

tw
c Dw

c I




















︸ ︷︷ ︸

M
























1
λ1

p

...

λu
p

λ1
a

...

λv
a

λ1
c

...

λw
c

−Q
























=




















0
...

0

0
...

0

0
...

0




















(7)

In the following, we make these relations explicit. We do

this especially for the various two-view cases, which gives

rise to different types of fundamental matrix. We then show

that, like in the purely perspective case, trifocal and quadri-

focal tensors exist, but no higher-order matching tensors.

3.2. Bifocal Constraints – Fundamental Matrices

With two views, of any mixture of camera types, the joint

matrix M is of size 6 × 6. Consider for example the joint

matrix for a perspective and a para-catadioptric view, shown

here in detail:










0 1 0 0

tp RT

p K−1

p qp 0 0 1 0

0 0 0 1

0 1 0 0

tc 0 RT

c Bcq̂c 0 1 0

0 0 0 1











︸ ︷︷ ︸

M











1
λp

λc

−Q1

−Q2

−Q3











= 0 .

This equation means that the 6 × 6 matrix M has a non-

trivial null-vector, and hence must be of rank lower than

6. This in turn implies that all minors (submatrices) of size

6 are singular. The only minor of size 6 of M is the ma-

trix itself. Hence, we obtain the bifocal matching constraint

(the epipolar constraint) by developing its determinant. By

doing so, one obtains an equation that is bilinear in the el-

ements of qp and q̂c. This equation may thus be written in

the following form:

qT

p Fpc q̂c = 0 ,

where the matrix Fpc is of size 3 × 4 and its coefficients

depend entirely on the entities defining the projections, i.e.

the extrinsic parameters Rp, tp, Rc, tc and the intrinsic pa-

rameters Kp and Bc.

One may recognize without difficulty in Fpc a fundamen-

tal matrix, which however relates here two views acquired

with different camera types, and which does not have the

usual dimensions, i.e. it is not even square as the funda-

mental matrix between two perspective views or between

two para-catadioptric views [7].

This example concerned a perspective view, combined

with a para-catadioptric one. The same findings hold for

any mixture of the camera types considered in this paper:

• for two perspective views, the “traditional” fundamen-

tal matrix [11] is obtained. Any 3× 3 matrix of rank 2

is a valid fundamental matrix.

• two affine views give a 3×3 affine fundamental matrix

[14]. Affine fundamental matrices have a special form

(upper left 2 × 2 submatrix is a null matrix).

• for two para-catadioptric views, a 4 × 4 fundamental

matrix of rank 2 is obtained [7].

• mixtures of camera types lead to fundamental matrices

of size 3× 3 (perspective-affine) or 3× 4 (perspective-

catadioptric or affine-catadioptric). They can all be

shown to be of rank 2.

A short comment is at order concerning affine cameras.

In equation (7), image coordinates of affine views appear

both in the first column (via the vectors Bj
a) and in the last

three columns (the identity matrices are multiplied by co-

ordinates q
j
a,3). Thus, it is not obvious that a development

of M’s minors will lead to equations that are linear in the

coordinates of each affine image point. Happily, it turns out

that the equations can be factored such as to lead indeed to

(multi-) linear equations.

In the following, we examine some properties of funda-

mental matrices of mixtures of a para-catadioptric with a

perspective or an affine view.

3.3. Fundamental Matrices and Plane Homogra­
phies for Mixed View Pairs

These fundamental matrices are of size 3 × 4 (or 4 × 3,

if we consider the transpose, which gives the “other direc-

238 Chapter 9. Multi-View Geometry

Figure 2. Estimated epipolar geometry for the stereo pair shown in figure 3. Points used to estimate

F are shown by white crosses. For all 20 points, the epipolar circles in the catadioptric view and the

epipolar lines in the perspective view, are shown. The two intersection points of the epipolar circles

are the two epipoles of the catadioptric view mentioned in the text, whereas the single intersection

point of the epipolar lines is the single epipole of the perspective view.

tion” of the epipolar constraint) and are of rank 2. The

one-dimensional left null-space represents the epipole of

the perspective (or affine) view, i.e. the image of the cata-

dioptric view’s effective viewpoint. The right null-space is

two-dimensional. However, the fundamental matrix is only

“valid” for 4-vectors of lifted coordinates, as defined in (4).

There are exactly two right null-vectors of F (up to scale)

that correspond to lifted coordinates. These are the two

epipoles of the catadioptric view, i.e. the two projections

of the perspective or affine camera’s optical center (cf. [7]).

Products Fq̂c are 3-vectors, representing the usual epipo-

lar lines in the perspective (or affine) view. As for products

F
Tqp, these are 4-vectors, representing the epipolar conics

of catadioptric views. Let x = FTqp. The usual symmetric

matrix of the associated epipolar conic is then given by:





2x1 0 x2

0 2x1 x3

x2 x3 2x4



 ,

which is a circle (the upper left 2 × 2 submatrix is a multi-

ple of the identity matrix), which is in accordance with the

known fact that epipolar conics of para-catadioptric systems

are circles [17] (although this is only true for systems whose

camera is perfectly orthographic).

Figure 2 shows the epipolar geometry (fundamental ma-

trix), estimated by the analogon of the linear 8-point algo-

rithm for the purely perspective case. Twenty manually se-

lected points were used for the estimation. The estimated

fundamental was also used for calibration transfer, see §4.3.

Figure 3. Stereo pair used in experiments.

Analogously to the purely perspective case, we may de-

compose the fundamental matrix to obtain the sometimes

convenient epipole-homography form:

F ∼ [ep]×H , (8)

where ep is the epipole in the perspective (or affine)

view, and H a 3 × 4 plane homography matrix represent-

ing the mapping between the projections of points on some

3D scene plane. For example, the analogon to the infin-

ity homography between two perspective views [9], for the

case of a perspective and a para-catadioptric view, is given

by the following 3 × 4 matrix:

H∞ = KpRpR
T

c Bc , (9)

with Bc defined as in equation (5). Using H∞, we may

derive the following expression for the fundamental matrix:

F ∼ K
−T

p [Rp(tc − tp)]×KpRpR
T

c Bc .

Paper 21: Mixing Catadioptric and Perspective Cameras, OMNIVIS 2002 [24] 239

Concerning the above plane homographies H, they can

be derived for all 3D scene planes Π: let q̂c be the pro-

jection of any point on Π, then qp ∼ Hq̂c is the projec-

tion of the same point in the perspective view, where H is a

3×4 matrix. Note however that there is an important differ-

ence to the purely perspective case. A plane homography,

as given above, is only defined in one direction: the map-

ping of an image point in the para-catadioptric view, via the

scene plane, and then onto the perspective view, is unique,

whereas the reverse direction isn’t. Indeed, the mapping of

an image point in the perspective view, onto a scene plane,

is unique, however the projection into the catadioptric cam-

era, leads to two (theoretically possible) image points. It

is possible to exclude the image point that is physically not

possible, but the projection equation is still not linear in gen-

eral, which prevents forming an homography matrix as for

the other direction.

In section 4, we examine further properties of fundamen-

tal matrices and plane homographies and show their appli-

cation for calibration.

3.4. Multifocal Constraints

Three views. Let us first consider the case of three views,

with any mixture of camera types. The joint matrix M is

of size 9 × 7 in this case. Its rank-deficiency implies that

the determinants of all minors of size 7 vanish. In other

words, the determinant of a submatrix of M, obtained by

choosing any 7 rows, must be equal to zero. Since to each

of the three views, three rows of M are associated, only the

following two possibilities of choosing 7 rows exist:

(a) 3 − 3 − 1

(b) 3 − 2 − 2

where the figures refer to the number of rows chosen per

one view. In case (a), it can be shown that the coordinates of

the point in the view with a single contributed row, can be

factored out from the resulting equation, and that we sim-

ply obtain the above bifocal relation for the two views with

three contributed rows.

As for case (b), this gives rise to trilinear equations,

which can be encoded via trifocal tensors. We identify ten-

sors of size 4× 4× 4 for the case of three para-catadioptric

views, of size 4 × 3 × 3 for a combination of one para-

catadioptric and two perspective views, and so forth. Study-

ing the properties of these tensors in more detail is beyond

the scope of this paper though. As for trifocal tensors be-

tween triplets of cameras of the same type, the perspective

case has been treated e.g. in [15] and the affine case in [18].

To our knowledge, no existing publication deals with the

trifocal tensor for three para-catadioptric views or for the

mixed configurations considered here.

Four views. In this case, the joint matrix is of size 12 ×

8. Its rank-deficiency implies that the determinants of all

minors of size 8 vanish. Analogously to the three-view case,

we consider the different possibilities of choosing 8 rows of

the joint matrix and their distribution among the four views:

(a) 3 − 3 − 2 − 0

(b) 3 − 3 − 1 − 1

(c) 3 − 2 − 2 − 1

(d) 2 − 2 − 2 − 2

Case (a) leads to trivial equations (always zero). Cases

(b) and (c) lead to bifocal and trifocal relations respectively,

whereas case (d) gives quadrifocal relations. Quadrifocal

tensors for perspective views are dealt with e.g. in [8, 16].

More than four views. With five views, the joint matrix

is of size 15 × 9. Obviously, there is no minor of size 9
that contains at least two rows per image. Hence, there are

no multi-linear matching constraints between five views (or

more), that can not be represented using bifocal, trifocal or

quadrifocal ones. The same holds for the purely perspective

case of course.

4. Calibration using Fundamental Matrices

and Plane Homographies

4.1. Self­Calibration from Plane Homographies

Let H be the 3 × 4 homography between a catadioptric

and a perspective view, associated with a 3D plane. It can

be shown (proof omitted due to lack of space) that the null-

vector of any such plane homography is:







r2 + x2
0 + y2

0

x0

y0

1







. (10)

Hence, self-calibration of the para-catadioptric camera is

possible from a single plane homography, defined with re-

spect to a perspective camera, by computing its null-vector

and extracting the three intrinsic parameters r, x0 and y0

from it in a straightforward manner.

This might also be explained intuitively as follows. A

para-catadioptric camera can be calibrated by identifying

line images (circles in the image plane, that constitute im-

ages of 3D lines). If we know a plane homography with

respect to a perspective view, we may virtually create all

possible lines images, by mapping all lines of the perspec-

tive view via the homography, to the catadioptric view. Cal-

ibration could then be done as e.g. shown in [6], or, better,

via the above solution using H’s null-vector.

This self-calibration approach was tested using the im-

age pair of section 3. Seven manually selected points lying

on the wall in the background of the right hand part of figure

3, were used to estimate the associated plane homography

240 Chapter 9. Multi-View Geometry

H, using a straightforward linear algorithm. The catadiop-

tric view’s intrinsic parameters, extracted from H, were 2%
(x0), 0.6% (y0) respectively 5% (r) off the ground truth val-

ues, obtained as the center of the circle circumscribing the

image (x0, y0) or via constructor-provided values (r).

4.2. Self­Calibration from Fundamental Matrices

It has been shown in [7], that the vector given in (10)

is a null-vector of any fundamental matrix that a para-

catadioptric camera shares with another camera of the same

type. Hence, fundamental matrices between catadioptric

cameras are useful for self-calibration [7, 10].

This observation can be generalized to self-calibration

from fundamental matrices between a para-catadioptric

view and e.g. a perspective one: the above vector can ac-

tually be identified as the single null-vector (up to scale) of

the 3 × 4 backprojection matrix Bc defined in equation (5).

Since F ∼ [ep]×KpRpR
T
c Bc (cf. equations (8) and (9)), it

follows that the null-vector of Bc is also in the null-space of

any fundamental matrix F. Hence, given several fundamen-

tal matrices, the null-vector of Bc can be found by “inter-

secting” all their right null-spaces, and intrinsic parameters

can then be extracted from it.

4.3. Calibration Transfer by Fundamental Matrices

Consider the surveillance scenario sketched in the intro-

duction. A typical configuration might consist of one static

catadioptric camera, which in addition can usually be as-

sumed to be pre-calibrated, and one or several traditional

cameras, perspective or affine. It might be useful to esti-

mate the position of a perspective camera, relative to the

catadioptric one. Another task might be to calibrate the per-

spective camera (e.g. after zooming or focusing), using the

fundamental matrix and the available calibration of the cata-

dioptric camera, which is what we call calibration transfer.

The analogous task for two perspective cameras has

been developed in [21]. The development for the mixed

perspective-catadioptric case, is similar. Concretely, given

a fully calibrated catadioptric view, a perspective view that

is calibrated besides the unknown focal length, and the fun-

damental matrix between the two, a closed-form solution

for the focal length, in terms of the SVD (singular value

decomposition) of the fundamental matrix, is possible. We

very briefly outline the algorithm (derivations are based on

an analogon to the classical Kruppa equations for perspec-

tive cameras [22]).

Let F be the 3 × 4 fundamental matrix between a cata-

dioptric camera and a perspective one. We assume that the

catadioptric camera is calibrated, so we know e.g. its back-

projection matrix Bc. As for the perspective camera, we

know all its intrinsic parameters, besides the focal length.

Let its calibration matrix Kp be decomposed in its known

part Kk and a diagonal matrix with the unknown focal

length:

Kp = Kk diag(f, f, 1) .

1. Compute a “semi-calibrated” fundamental matrix:

G ∼ K
T

k F B
+
c ,

where B+
c is the Moore-Penrose pseudo-inverse. It can

be shown that G is of the form:

G ∼ diag(1, 1, f) [t]×R ,

for a rotation matrix R. From this form, the following

steps can be derived (cf. [21]).

2. Compute the SVD of G (remember that it is of rank 2):

G = U diag(r, s, 0) V
T .

3. The focal length can be computed by the following

closed-form solution:

f =

√

s2u2
32 − r2u2

31

r2(u2
11 + u2

21) − s2(u2
12 + u2

22)
.

The algorithm was applied using the fundamental matrix

estimated for the stereo pair shown in §3. The estimated

focal length for the perspective camera was about 8% off the

ground truth, which is reasonable, considered that no non-

linear optimization was performed and that the points were

specified with an accuracy of probably less than a pixel.

5. Conclusion and Perspectives

We have shown that it is possible to obtain multi-linear

matching constraints, especially fundamental matrices and

trifocal tensors, for any mixed configuration of perspective,

affine or para-catadioptric cameras. Our approach unifies

the development of the previously known multifocal tensors

for pairs or triplets of cameras of the same type, and sub-

stantially generalizes the concept in that it allows a trans-

parent combination of cameras of different types.

We are only partly satisfied, since our basic goal is to get

a complete generalization that encompasses all central cata-

dioptric systems. We have already established (not shown

here) the existence of a 3×6 fundamental matrix between a

perspective or affine view, and a general central catadioptric

view, which however only “works in one direction” (there is

a linear mapping from points in the perspective view to the

corresponding epipolar conic in the catadioptric view; the

reverse however is not available yet). Thus, we currently do

not know if a complete generalization of our approach (in

the multi-linear framework), is possible.

In this paper, we have also outlined the possibility of

self-calibration and calibration transfer using “mixed fun-

damental matrices” and “mixed plane homographies”.

Paper 21: Mixing Catadioptric and Perspective Cameras, OMNIVIS 2002 [24] 241

Throughout the paper we have, for the sake of clar-

ity, only presented formulas for para-catadioptric systems

whose camera is an orthographic one. Note however, that

all formulas have an analogon for the general case of affine

cameras, the difference being that lifted image coordinates

are 6-vectors, resulting e.g. in 6 × 6 fundamental matrices

between two such catadioptric systems and similarly the di-

mension 4 is replaced by 6 for the other concepts.

As for our future work, we have several perspectives,

some of which should be relatively straightforward to real-

ize, others maybe not. Motion estimation for mixed camera

configurations should be straightforward, but has to be de-

veloped and tested. In this paper, we have introduced plane

homographies only for one direction: from catadioptric to

perspective views. We want to clarify if and how the map-

ping in the inverse direction can be represented linearly. It

should be relatively straightforward to develop trifocal ten-

sors for line images, again for mixed camera configurations.

A complete study of matching relations for mixed configu-

rations should also list in detail the different types of es-

sential matrices. A detailed study of algebraic properties of

such essential matrices and trifocal tensors is possible, but

is not central to our interests.

Besides the above mentioned generalization of our ap-

proach to general central catadioptric cameras, we are inter-

ested in the possibility of factorization-based methods for

3D reconstruction from multiple catadioptric views. For

practical applications, it might for example be fruitful to

develop methods similar to “reconstruction from N views

having one view in common” [20], for the case of several

perspective views, overlapping with a single catadioptric

camera.

Acknowledgements. I wish to thank João Barreto for

helpful discussions.

References

[1] S. Baker, S. Nayar, “A Theory of Catadioptric Image Forma-

tion,” Proceedings of the International Conference on Com-

puter Vision, Bombay, India, pp. 35–42, 1998.

[2] J.P. Barreto, H. Araujo, “Issues on the Geometry of Cen-

tral Catadioptric Image Formation,” Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

Kauai, USA, pp. 422–427, Vol. II, 2001.

[3] R. Benosman, S.B. Kang, (Editors), Panoramic Vision: Sen-

sors, Theory, and Applications, Springer Verlag, 2001.

[4] O. Faugeras, B. Mourrain, “On the Geometry and Algebra

of the Point and Line Correspondences Between N Images,”

Proceedings of the International Conference on Computer

Vision, Boston, USA, pp. 951–956, 1995.

[5] O. Faugeras, Q.-T. Luong, T. Papadopoulo, The Geometry

of Multiple Images, MIT Press, 2001.

[6] C. Geyer, K. Daniilidis, “Catadioptric Camera Calibration,”

Proceedings of the International Conference on Computer

Vision, Kerkyra, Greece, pp. 398–404, 1999.

[7] C. Geyer, K. Daniilidis, “Structure and Motion from Uncal-

ibrated Catadioptric Views,” Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, Kauai,

USA, pp. 279–286, Vol. I, 2001.

[8] R.I. Hartley, “Computation of the quadrifocal tensor,” Pro-

ceedings of the European Conference on Computer Vision,

Freiburg, Germany, pp. 20–35, Vol. I, 1998.

[9] R.I. Hartley, A. Zisserman, Multiple View Geometry in Com-

puter Vision, Cambridge University Press, 2000.

[10] S.B. Kang, “Catadioptric Self-Calibration,” Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, Hilton Head Island, USA, pp. 201–207, Vol.

I, 2000.

[11] Q.-T. Luong, O. Faugeras, “The Fundamental Matrix: The-

ory, Algorithms and Stability Analysis,” International Jour-

nal of Computer Vision, pp. 43–76, Vol. 17, No. 1, 1996.

[12] Proceedings of the IEEE Workshop on Omnidirectional Vi-

sion, Hilton Head Island, USA, IEEE Computer Society

Press, 2000.

[13] Proceedings of the ICAR Workshop on Omnidirectional Vi-

sion Applied to Robotic Orientation and Nondestructive

Testing (NDT), Budapest, Hungary, 2001.

[14] L.S. Shapiro, A. Zisserman, M. Brady, “3D Motion Recov-

ery via Affine Epipolar Geometry,” International Journal of

Computer Vision, pp. 147–182, Vol. 16, No. 2, 1995.

[15] A. Shashua, “Algebraic Functions for Recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

pp. 779–789, Vol. 17, No. 8, 1995.

[16] A. Shashua, L. Wolf, “On the Structure and Properties of

the Quadrifocal Tensor,” Proceedings of the European Con-

ference on Computer Vision, Dublin, Ireland, pp. 710–724,

Vol. I, 2000.

[17] T. Svoboda, T. Pajdla, V. Hlavác, “Epipolar Geometry for

Panoramic Cameras,” Proceedings of the European Confer-

ence on Computer Vision, Freiburg, Germany, pp. 218–232,

Vol. I, 1998.

[18] T. Thorhallsson, D. Murray, “The Tensors of Three Affine

Views,” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Fort Collins, USA, pp. 450–

456, 1999.

[19] B. Triggs, “Matching Constraints and the Joint Image,” Pro-

ceedings of the International Conference on Computer Vi-

sion, Boston, USA, pp. 338–343, 1995.

[20] M. Urban, T. Pajdla, V. Hlavac, “Projective reconstruction

from N views having one view in common,” Proceedings

of the ICCV Workshop on Vision Algorithms: Theory and

Practice, pp. 116-131, Springer Verlag, 2000.

[21] M. Urbanek, R. Horaud, P. Sturm, “Combining Off- and On-

line Calibration of a Digital Camera,” Proceedings of the

Third International Conference on 3D Digital Imaging and

Modeling, Québec City, Canada, pp. 99–106, 2001.

[22] C. Zeller, O. Faugeras, “Camera Self-Calibration from

Video Sequences: the Kruppa Equations Revisited,” Rap-

port de Recherche 2793, INRIA, France, 1996.

242 Chapter 9. Multi-View Geometry

Part IV

3D Reconstruction

243

Chapter 10

Using Geometric Constraints for 3D Vision

10.1 Piecewise Planar Scenes

Paper 22 [1]: A. Bartoli and P. Sturm. Constrained structure and motion from multiple uncalibrated views

of a piecewise planar scene. International Journal of Computer Vision, 52(1):45–64, 2003.

Paper 23 [8]: O. Chum, T. Pajdla, and P. Sturm. The geometric error for homographies. Computer Vision

and Image Understanding, 97(1):86–102, January 2005.

Paper 24 [9]: D. Cobzas and P. Sturm. 3D SSD tracking with estimated 3D planes. In Proceedings of the

Second Canadian Conference on Computer and Robot Vision, Victoria, Canada, May 2005.

10.2 Structure from Motion for Lines

Paper 25 [2]: A. Bartoli and P. Sturm. The 3D line motion matrix and alignement of line reconstructions.

International Journal of Computer Vision, 57(3):159–178, 2004.

Paper 26 [4]: A. Bartoli and P. Sturm. Structure from motion using lines: Representation, triangulation

and bundle adjustment. Computer Vision and Image Understanding, 100(3):416–441, December 2005.

10.3 Geometric Constraints

Paper 27 [30]: P. Sturm and S.J. Maybank. A method for interactive 3D reconstruction of piecewise planar

objects from single images. In T. Pridmore and D. Elliman, editors, Proceedings of the 10th British Machine

Vision Conference, Nottingham, England, pages 265–274. British Machine Vision Association, September

1999.

Paper 28 [22]: P. Sturm. A method for 3D reconstruction of piecewise planar objects from single panoramic

images. In Proceedings of the IEEE Workshop on Omnidirectional Vision, Hilton Head Island, South Car-

olina, pages 119–126. IEEE, June 2000.

Paper 29 [39]: M. Wilczkowiak, P. Sturm, and E. Boyer. Using geometric constraints through paral-

lelepipeds for calibration and 3D modelling. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 27(2):194–207, February 2005.

245

International Journal of Computer Vision 52(1), 45–64, 2003

c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Constrained Structure and Motion From Multiple Uncalibrated Views

of a Piecewise Planar Scene

ADRIEN BARTOLI AND PETER STURM

INRIA Rhône-Alpes, 655, avenue de l’Europe, 38334 Saint Ismier cedex, France

Adrien.Bartoli@inria.fr

Peter.Sturm@inria.fr

Received March 14, 2001; Revised September 13, 2002; Accepted September 13, 2002

Abstract. This paper is about multi-view modeling of a rigid scene. We merge the traditional approaches of

reconstructing image-extractable features and of modeling via user-provided geometry. We use features to obtain

a first guess for structure and motion, fit geometric primitives, correct the structure so that reconstructed features

lie exactly on geometric primitives and optimize both structure and motion in a bundle adjustment manner while

enforcing the underlying constraints. We specialize this general scheme to the point features and the plane geometric

primitives. The underlying geometric relationships are described by multi-coplanarity constraints. We propose a

minimal parameterization of the structure enforcing these constraints and use it to devise the corresponding maximum

likelihood estimator. The recovered primitives are then textured from the input images. The result is an accurate

and photorealistic model.

Experimental results using simulated data confirm that the accuracy of the model using the constrained methods

is of clearly superior quality compared to that of traditional methods and that our approach performs better than

existing ones, for various scene configurations. In addition, we observe that the method still performs better in a

number of configurations when the observed surfaces are not exactly planar. We also validate our method using real

images.

Keywords: 3D reconstruction, piecewise planar scene, constrained structure and motion, maximum likelihood

estimator

1. Introduction

The general problem of scene modeling is, given a

sequence of images without a priori information, to

recover a model of the scene as well as (relative) pose

and calibration. Performing this task accurately is one

of the key goals in computer vision.

In this paper, we focus on the geometric scene mod-

eling, i.e. we do not address aspects of lighting and

surface appearance recovery besides perspective cor-

rection of texture maps. We aim at devising a frame-

work for the recovery of photorealistic and accurate

models from a sparse set of images.

Existing works fall into two categories: the feature-

and the primitive-based approaches. By features, we

designate two- or lower-dimensional geometric enti-

ties that can be extracted from individual images (e.g.

points, lines, conics). By primitives, we mean other

entities, e.g. planes or higher-dimensional ones (cubes,

spheres). Let us examine these two approaches in more

detail. First, the primitive-based approach, see e.g.

Debevec et al. (1996), Lang and Förstner (1996), and

Streilein and Hirschberg (1995), in which the user typ-

ically provides parametric primitives through a model-

ing program. Parameters are determined using 3D-2D

or 2D-2D matches and possibly refined using photo-

metric criteria, such as maximization of the gradient

for wireframe models, to optimize their reprojection.

If necessary, camera calibration is performed and tex-

ture maps are extracted for each primitive to produce

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 247

46 Bartoli and Sturm

a renderable model. This approach has proven to give

convincing results, notably in terms of producing pho-

torealistic rendering.

The feature-based approach, see e.g. Beardsley et al.

(1996), relies on the existence of extractable image fea-

tures. These features are matched accross the different

views, typically using photometric and geometric crite-

ria or by hand. From these, structure and motion are re-

covered. If necessary, camera calibration is performed

and parameters refined in a bundle adjustment manner.

This approach has proven to provide accurate recon-

struction results, due to the high (in general) number

of features considered. The problem is that modeling

a scene with features alone does not allow to produce

photorealistic rendering. Several works consider this is-

sue, by using as features all the pixels, via dense match-

ing (Pollefeys et al., 2000), space-carving (Kutulakos

and Seitz, 1999; Seitz and Dyer, 1997), or plenoptic

modeling (Gortler et al., 1996; Levoy and Hanrahan,

1996). The main limitation of at least the latter ap-

proach is that a high number of images is necessary

to achieve accurate reconstruction. Other approaches

relying on an a priori known environment (e.g. using

turn-table sequences (Niem, 1994; Szeliski, 1993) or

apparent contours (Cross and Zisserman, 2000)) can

produce high quality rendering but do not work in the

general case.

Actually, there exists a continuum between the

two extreme feature- and primitive-based categories,

made of hybrid approaches using both features and

primitives.1 These approaches are made to draw on the

strength of both feature- and primitive-based cate-

gories: the high (in general) number of features might

allow to obtain an accurate model recovery (even more

accurate than for feature-based approaches) while the

primitives contribute to form a photorealistic model. In

hybrid approaches, the features and the primitives are

linked by geometric constraints.

We study such an hybrid approach based on the

point feature and the plane primitive. The geometric

constraints used are incidence of points with none,

one or several modeled planes and are called multi-

coplanarity constraints. The corresponding con-

strained structure and motion recovery process is then

called piecewise planar structure and motion.

These choices are motivated as follow. The point

is a standard, widespread feature that may be easily

extracted from the images. Most existing sparse struc-

ture and motion recovery systems deal with point fea-

tures. The plane is a primitive sufficiently general to

model a large number of real scenes, especially in

man-made environments. Moreover, there are several

works dealing with planes, that might be useful for an

integrated modeling system: plane detection (Baillard

and Zisserman, 1999; Berthilsson and Heyden, 1998;

Dick et al., 2001; Faugeras and Lustman, 1988;

Fornland and Schnörr, 1997; Sinclair and Blake, 1996;

Tarel and Vézien, 1995), plane-guided point match-

ing (Alon and Sclaroff, 2000; Faugeras and Lustman,

1988; Fornland and Schnörr, 1997; Sinclair and Blake,

1996; Viéville et al., 1995), and self-calibration us-

ing the knowledge of planes (Alon and Sclaroff, 2000;

Malis and Cipolla, 2000; Triggs, 1998a; Viéville et al.,

1995; Xu et al., 2000).

Concretely, we propose methods to parameterize

points and planes under multi-coplanarity constraints.

This parameterization is consistent in the sense that its

number of parameters is the same as the number of

degrees of freedom of the scene. It is employed to de-

rive maximum likelihood estimators. Scene structure

and camera motion are consistently estimated at once.

A projective as well as a Euclidean version of the es-

timator are derived. The recovered structure perfectly

satisfies the geometric constraints and is optimal in this

respect, where optimal means maximum likelihood un-

der a geometric error model.

In the following two sections, we present the piece-

wise planar structure and motion process and review

existing work.

1.1. Piecewise Planar Structure and Motion

Given point correspondences between images, tradi-

tional unconstrained structure and motion reconstruct

the points without using geometric constraints. First,

suboptimal methods, see e.g. Beardsley et al. (1996)

and Sturm and Triggs (1996), are used to compute an

initial solution. The result is then refined using bundle

adjustment (Slama, 1980; Triggs et al., 2000). If cam-

era calibration is not available, the result is a projective

reconstruction. In this case, the calibration informa-

tion can be recovered online using several techniques

(Heyden and Åström, 1998; Maybank and Faugeras,

1992; Pollefeys et al., 1998; Triggs, 1997). The uncal-

ibrated reconstruction is then upgraded to metric and

bundle adjustment is used to compute an optimal metric

structure and motion.

In the projective case, when only points are used as

features, then the scene has 11n − 15 + 3m essential

degrees of freedom, where n is the number of views

248 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 47

and m the number of points. Each view has 11 degrees

of freedom; 15 degrees of freedom for the choice of the

projective basis are deduced.

Assume now, that not only point correspondences

are available, but also their plane memberships. The

goal is to compute an optimal structure and motion in-

cluding the geometric constraints underlying to the spe-

cial multi-coplanar structure of the points. Ideally, this

process is a maximum likelihood estimator optimizing

features, primitive positions, and viewing parameters

while enforcing the underlying geometric constraints.

Consequently, there is a need for a new formulation

of structure and motion, that models both features and

primitives, and that preserves the relationships between

them, in our case, that models points and enforces

multi-coplanarity constraints. The use of such a con-

strained estimator has a strong impact on the structure

and motion process. Compared to the unconstrained

case, the use of primitives constituting an important

geometric constraint on both structure and motion,

we can expect better reconstruction results. It might

also be faster, as the number of parameters is usually

lower.

Intra-primitive constraints, such as a priori known

angles or parallelism of the modeled planes could be

used. One problem with these constraints is that, gen-

erally speaking, they can not be used in a projective

framework. Many other kinds of constraints could be

modeled, such as the collinearity of points.

Choosing the constraints to model is difficult. In-

deed, this is a trade-off between accuracy (the more

constraints are used, the more accurate the reconstruc-

tion will be) and the complexity of the algebraic mod-

eling. If too many kinds of constraints are used, then

we end up with a network of constraints, that may be

viewed as a graph linking features and primitives, and

that might be redundent in the sense of cycles in this

graph. Another issue is the automatization of an inte-

grated modeling system. High-order constraints, such

as the arrangement of planes in e.g. cuboı̈ds, are more

difficult to detect than the coplanarity of a set of points.

A comprehensive treatment of the possible geometric

constraints is out of the scope of this paper.

As said before, the incorporation of multi-

coplanarity constraints has an impact on the number of

essential degrees of freedom of the scene, e.g. a point

on one plane has 2 degrees of freedom instead of 3 in

the unconstrained case. Consequently, the number of

degrees of freedom of such a scene becomes equal to

11n −15+3p +3m −
∑

j jm j where the notation m j

designates the number of points lying on j of a total of

p modeled planes.

Let us review existing piecewise planar structure and

motion estimators.

1.2. Previous Work

Most of the existing works yield only a sub-optimal

estimation of the geometry. Actually, they fall into two

categories:

• The recovered structure is only approximately piece-

wise planar so clearly the results can not be opti-

mal (Faugeras and Lustman, 1988; McGlone, 1996;

Szeliski and Torr, 1998; Tarel and Vézien, 1995; Xu

et al., 2000);

• The recovered structure is piecewise planar but

the method is not optimal because it can not be

turned into a maximum likelihood estimator or only

the single-coplanarity constraint is modeled (Alon

and Sclaroff, 2000; Baillard and Zisserman, 1999;

Bartoli et al., 2001).

If we want our estimator to be optimal with respect

to piecewise planarity, it has to fall into the second

category, i.e. the recovered model has to be exactly

piecewise planar. The constrained structure and mo-

tion is a maximum likelihood estimator that incorpo-

rates points, planes and multi-coplanarity constraints in

a bundle adjustment manner. The cost function is non-

linear (Slama, 1980; Triggs et al., 2000) and subject

to constraints. There are several ways to conduct such

an optimization process, in particular, we could use

constrained optimization techniques such as sequential

quadratic programming or a specific structure and mo-

tion parameterization enforcing the multi-coplanarity

constraints (Bartoli and Sturm, 2001; Bartoli et al.,

2001).

Ideally, these two possibilities give the same results

because they are both consistent (i.e. the number of al-

gebraic degrees of freedom is the same as that of essen-

tial degrees of freedom of the scene) and the cost func-

tion being optimized is the same. However, in practice,

the convergence of the optimization process is deter-

mined by the number of parameters used which directly

influences numerical stability. This determines which

method to use in which case.

In our case, the number of parameters is high and

so we have to reduce it to or close to the minimum,

i.e. the number of essential degrees of freedom, if we

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 249

48 Bartoli and Sturm

want to ensure a stable optimization process. The first

possibility consists in systematically adding parame-

ters to the system to model constraints and is conse-

quently unadapted. The second possibility is less sys-

tematic, so needs more algebraic manipulations to be

derived. However, the number of parameters is so re-

duced that the convergence might be faster and more

reliable. Another issue that is important to be dealt with

for both estimation cost and stability is that of ana-

lytic differentiation for the non-linear minimizer, which

implies that the parameterization has a closed-form

expression.

We addressed the case of two views and points ly-

ing on one plane (i.e. the single-coplanarity constraint)

in Bartoli et al. (2001) and extended it to multi-view

and multi-coplanarity constraints in Bartoli and Sturm

(2001) where we derived the maximum likelihood es-

timator but without the possibility of analytic differ-

entiation. In this paper, we present an estimator and

the corresponding parameterization which is minimal

for the structure and quasi-minimal for the motion, for

n views and a quasi-general set of multi-coplanarity

constraints and which allows analytic differentiation.

As real world surfaces are only approximately pla-

nar, we experimentally evaluate the performance of the

constrained method compared to an unconstrained one

with respect to different degrees of deviation from pla-

narity and different scene configurations.

Since our approach needs to upgrade an uncalibrated

reconstruction to metric, we perform self-calibration.

To initialize a bundle adjustment procedure, we use the

linear method of Pollefeys (1999), inspired by Triggs

(1997), for the estimation of variable focal length. In

practice, we encountered a singular situation, that is

likely to occur in modeling applications: the optical

axes of all images meet in a single 3D point (which

will usually be the center of the modeled object). We

adapt the basic method to this case and validate the

approach on real images.

In Section 2 we give our notations. We then present

our parameterization and the corresponding maximum

likelihood estimator for a projective framework in

Section 3, followed by an equivalent scheme in the

Euclidean case in Section 4 where we also present

self-calibration. We report on experiments on simulated

data for constrained structure and motion in Section 5.

Finally, Section 6 shows experimental results obtained

using real images taken with an uncalibrated camera

which validate both the reconstruction and the self-

calibration processes, followed by our conclusions.

2. Notations

Physical entities (points, planes, etc.) are typeset us-

ing italic fonts (X, π, etc.) and their corresponding

homogeneous coordinate vectors using the same let-

ters in bold fonts (X,π, etc.). Matrices are designated

by sans-serif fonts such as H. Vector and matrix ele-

ments are typeset using italic fonts and indices, e.g.

X ∼ (X1, X2, X3, X4)⊤ where ⊤ is the transposition

and ∼ the equality up to a non-zero scale factor.

The notation X/j is used to designate the vector

formed with the elements of X with index different from

j . Similarly, X j←α represents the vector X with the

value α inserted at the j-th position. The cross product

is written × and the associated 3 × 3 skew-symmetric

matrix [·]×.

We model cameras using perspective projection,

described by a 3 × 4 homogeneous matrix P. Non-

linear optimization processes are conducted using the

Levenberg-Marquardt algorithm (Gill et al., 1981).

3. Constrained Projective Structure and Motion

In this section, we describe how to minimally param-

eterize the structure and quasi-minimally the motion

in the projective case. We then derive the maximum

likelihood estimator corresponding to the constrained

structure and motion.

As shown in the expression for the number of essen-

tial degrees of freedom of the scene, we have to take

into account 15 degrees of gauge freedom left by the ar-

bitrary choice for the projective basis of the reconstruc-

tion. Gauge freedom is defined as the internal freedom

of choice for a coordinate system (Triggs, 1998b). It can

be fixed using a particular formulation for the structure

(Heyden and Åström, 1995) or for the camera matri-

ces (Beardsley et al., 1996). Due to the complexity of

structure parameterization, we have chosen to absorb

the gauge freedom into the parameterization of motion.

In the next two sections, we describe respectively

our structure and motion parameterizations.

3.1. Structure Parameterization

As said in the introduction, we have to parameterize

both planes and points and in addition enforce the

underlying multi-coplanarity constraints. The param-

eterization consists in passing from the usual homo-

geneous 4-vectors that represent points and planes in

250 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 49

3D projective space, to a minimal set of parameters

representing the structure while enforcing the multi-

coplanarity constraints. We first give an homogeneous

and consistent parameterization for planes and points

and then remove the homogeneity to reach a mini-

mal parameterization. This last step is achieved us-

ing what we call mapped coordinates that allow to

locally remove homogeneity. This is also used in the

parameterization of the motion and in the Euclidean

case.

3.1.1. Multi-coplanarity Constraints. A multi-

coplanarity constraint is a geometric constraint be-

tween a point and a set of planes. Before parameterizing

the structure, we have to decide where, in the parame-

terization of planes, of points or both, these constraints

have to be incorporated. Actually, it seems inevitable

to incorporate them in the point parameterization. Let

us investigate the case of plane parameterization. In-

deed, consider the case of a point lying on more than

three planes. Such a point does not have, in general, any

degree of freedom, and can be determined using three

of the planes it lies on.2 Once this point has been de-

termined, it constrains the position of the other planes.

Consequently, plane parameterization is dependent on

multi-coplanarity constraints provided they contain a

point lying on more than three planes.

If we do not model points lying on more than three

planes (or take into account only three of the planes

they lie on), it is possible to parameterize each plane

independently while the multi-coplanarity constraints

up to three planes are to be taken into account only for

point parameterization. Considering that points lying

on four or more planes are rare, we make such an as-

sumption (an algebraic solution will just be sketched).

Let us see the corresponding parameterization.

3.1.2. Planes. As said above, planes do not incor-

porate multi-coplanarity constraints and each one has

therefore 3 degrees of freedom. An homogeneous

4-vector is then a consistent parameterization.

3.1.3. Points Under Multi-coplanarity Constraints.

We describe point parameterization performed under

a local incorporation of multi-coplanarity constraints.

Let us examine different possible means. We then

present our solution for the different multi-coplanarity

cases.

To simplify the reading, we consider the case of a

2D point x constrained to lie on a 2D line l, which

is similar to the 3D single-coplanarity case. Such a

constraint is expressed as l⊤x = 0 and is satisfied for

any point expressed in the nullspace of l⊤ ∼ (l1, l2, l3).

The approach that naturally comes to mind is to

compute a basis for the nullspace of l⊤ and to ex-

press the coordinates of point x in this basis. We

examine two ways to compute this nullspace basis

and show that each of them is not appropriate to our

problem.

A basis for the nullspace of l⊤ is given by the skew-

symmetric 3 × 3 cross-product matrix associated to l

(there are other possible bases):

L ∼ [l]× ∼







0 −l3 l2

l3 0 −l1

−l2 l1 0






.

One can easily check that, as required, l⊤L = 0⊤
3 and

rank L = 2 . Any point on l can be represented by a linear

combination of the 3 columns of L, thereby involving 3

homogeneous coefficients. This is not consistent since

a point on a line has only 1 degree of freedom. On the

other hand, one could think of using only 2 columns

of L as a basis for the nullspace, say drop the leading

column l1. In this case, the representation is consistent,

but it is no more complete: the point with coordinate l1
lying on l can not be represented as a linear combination

of the two last columns of L.

Another possibility is to compute an orthonormal

basis for the nullspace of l⊤ through e.g. its singular

value decomposition:

l⊤ ∼ l⊤diag(1, 0, 0)(l3×1 | V̄3×2).

In this case, the basis given by the two columns of

V̄ is minimal and the corresponding parameterization

would be consistent. However, since the entries of V̄

do not depend directly on the coefficients of l, analytic

differenciation would not be possible in the underlying

optimization process.

Consistency and analytic differenciation are the

main reasons for our specific parameterization to be

used. We successively deal with points lying on none,

one, two and three planes.

3.1.3.1. Unconstrained Points. Such a point does not

lie on any modeled plane and being therefore not sub-

ject to any modeled geometric constraint, it has 3 de-

grees of freedom. An homogeneous 4-vector is then a

consistent parameterization.

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 251

50 Bartoli and Sturm

3.1.3.2. Single-Coplanar Points. Let X be a point

constrained to lie on a plane π . Such a point has 2

degrees of freedom and our goal is then to express it

via an homogeneous 3-vector—instead of the general

homogeneous 4-vector—by incorporating the single-

coplanarity constraint.

Algebraically, this constraint is written as π⊤X = 0.

Let us find a change of projective basis where each point

lying on π has an element fixed to a constant value, so

that this element can be ignored in the parameterization

of X . For that purpose, we define the class of homo-

graphies H
j
π by the identity matrix of size 4 × 4 where

the j th row (j ∈ {1, . . . , 4}) has been replaced by the

4-vector π⊤ (e.g. H
1
π ∼ (π

⊤

03 I3×3
)). Let � ∼ H

j
πX be the

representation of X in this new basis. By definition of

H
j
π ,we have � j = 0 and the point X can therefore

be parameterized by �/j , the homogeneous 3-vector

formed from the 3 elements of � with index different

from j , X being further recovered using X ∼ (H j
π)−1�.

There are 4 possibilities for the choice of j . Since

(H j
π)−1 is necessary to recover X from �, we choose

j as the index that maximizes (in magnitude) the de-

terminant of H
j
π : j = argmaxi | det H

i
π | which in fact

leads to j = argmaxi |πi |. Such a choice ensures H
j
π

to be a bijective transformation since det H
j
π = π j

that, by construction, is always non-zero. Indeed, π is

an homogeneous vector and has therefore at least one

non-zero element.

Table 1 shows the practical algorithm for parameter-

izing/unparameterizing X ∈ π derived from the above

reasoning. In the unparameterization, we divide by π j

that, as said above, is always non-zero.

The dropped coordinate depends on the current es-

timate of π . Therefore, it might change between two

steps of the optimization process. However, this does

Table 1. Parameterization/unparameterization of a single-coplanar

point.

Let X be a point subject to a single-coplanarity constraint with

plane π . The homogeneous 4-vector X represents X in the current

projective basis while the homogeneous 3-vector X̃ is a

parameterization of X incorporating the single-coplanarity

constraint.

Parameterization (X → X̃):

• Choose j such that j = arg maxi |πi |subject to j ∈ {1, . . . , 4} in

the projective case and j ∈ {1, . . . , 3} in the Euclidean case;

• X̃ ∼ X/j .

Unparameterization (X̃ → X):

• Compute α = −
∑

i �= j πi Xi

π j
;

• X ∼ X̃ j←α .

not create discontinuities since after each optimization

step, the structure is unparameterized and standard ho-

mogeneous coordinates are recovered. The structure is

then reparameterized for the next iteration, and the in-

dex of the dropped coordinate may change. The pa-

rameterization is therefore used in a local manner,

which is important in order to keep smooth the cost

function.

3.1.3.3. Multi-coplanar Points, Two Planes. Let

X be a point constrained to lie on planes π and π ′.

Such a point has 1 degree of freedom provided that

π �= π ′ and our goal is then to express it via an homo-

geneous 2-vector—instead of the general homogen-

eous 4-vector—by incorporating the multi-coplanarity

constraint.

We follow the same reasoning as for the previous

case. We define the class of homographies H
j, j ′

π,π ′ by the

matrix H
j
π where the j ′-th row has been replaced by the

4-vector π′⊤ (e.g. H
1,2
π,π ′ ∼ (

π
⊤

π
′⊤

02×2 I2×2

)). Let us consider

� ∼ H
j, j ′

π,π ′X. By definition of H
j, j ′

π,π ′ , we have � j =
� j ′ = 0 and point X can therefore be parameterized

by �/j, j ′ , the homogeneous 2-vector formed from the

2 elements of � with index different from j and j ′, X

being further recovered using X ∼ (H
j, j ′

π,π ′)−1�.

Since j and j ′ must be different, this leaves 4 × 3 =
12 different choices for them. As (H

j, j ′

π,π ′)−1 is needed,

we choose j and j ′ such that the determinant of H
j, j ′

π,π ′

is maximized (in magnitude). Subsequently deriving a

practical algorithm as in the single-coplanarity case is

then straightforward.

3.1.3.4. Multi-coplanar Points, Three Planes. Let X

be a point constrained to lie on planes π, π ′ and π ′′.

As already mentioned previously, it is straightforward

to see that a point lying on three planes does not have,

in general, any degree of freedom.2 Such points are

therefore not represented in the parameterization and

have to be recovered from the three plane equations.

There are two ways to do that. One can either choose

a scheme similar to the one given previously or use

the generalized cross-product, which gives a closed-

form expression for the point (each point coordinate

is given by the determinant of a 3 × 3 matrix of plane

coefficients).

3.1.3.5. Multi-coplanar Points, More Than Three

Planes. As said previously, this case is rare. Deal-

ing with it properly would add a great complexity to

the system, in the sense that constraints would then be

252 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 51

expressed not only on points but also on planes, thereby

creating a graph of constraints with possible redundan-

cies and cycles. Let us sketch, however, how the case of

a point X lying on 4 planes π, π ′, π ′′ and π ′′′ could be

handled algebraically. Other higher order cases, though

more complicated, could then be handled in a similar

manner. The constraints are express as:

B
⊤X = 04 where B4×4 ∼ (π π

′
π

′′
π

′′′).

This equation means that the matrix B has a (at least)

1-dimensional nullspace, i.e. det B = 0, which yields

a 4-linear constraint on the coefficients of the plane

equations. If one chooses to constrain e.g. plane π ,

then one of its coordinates may be dropped by con-

sidering the above-derived equation, and by applying

a scheme similar to that described in Table 1, for the

single-coplanarity case.

3.1.3.6. Modeling Intra-primitive Metric Constraints.

In this paragraph, we give some hints on the algebraic

modeling of intra-primitive constraints, and in partic-

ular on the perpendicularity and the orthogonality of

planes. As explained in the introduction, a comprehen-

sive treatment of all these constraints is out of the scope

of this paper.

Firstly, consider the perpendicularity of two planes π

and π ′. This constraint can be algebraically expressed

by considering that the dot product between the normal

vectors of two such planes must vanish:

π1π
′
1 + π2π

′
2 + π3π

′
3 = 0.

This bilinear constraint can be enforced by the elim-

ination of one parameter to contrain one of the two

planes to be perpendicular to the other one. We end up

with the same problem as that of modeling the single-

coplanarity constraint described above.

Secondly, consider the modeling of the parallelism

of two planes π and π ′. The normal vectors of two such

planes must be equal, up to scale, which is equivalent

to nullifying there cross-product:











π2π
′
3 − π3π

′
2 = 0

π3π
′
1 − π1π

′
3 = 0

π1π
′
3 − π3π

′
1 = 0.

Among these 3 equations, only 2 are independent, but

one can not choose 2 of them a priori. Therefore, de-

pending of which plane is to be contrained and on

which axes, 2 equations are used to eliminate 2 of

its parameters. Since these equations are bilinear, we

end up with the same problem as that of modeling the

multi-coplanarity constraint with 2 planes, described

previously.

3.1.4. Mapped Coordinates. Homogeneous alge-

braic entities have an internal gauge freedom as they

are only defined up to a non-zero scale factor. Con-

sequently, they are not minimal in the sense that they

are overparameterized. We define a tool called mapped

coordinates that locally removes the homogeneity, in

other words produces a minimal version of an homoge-

neous entity. Let us consider the case of homogeneous

vectors of P
ν , which is not a restriction, the method be-

ing valid for any homogeneous entity (matrix, tensor).

In more detail, a (ν + 1)-vector v, can be decomposed

into a ν-vector ṽ and a map µ ∈ {1, . . . , ν + 1}, the in-

dex of a coefficient to be fixed. An important property

is that slightly changing v does not, in general, affect µ

but only ṽ, and if µ is affected, it will usually not create

numerical instability (in the sense that the maximum

coefficient of v will not tend towards zero during e.g.

optimization).

The map µ is chosen as the index of the entry of

v that has the largest absolute value. This choice can

be justified as follows. If we assume that all entries of

v have the same probability to become zero during an

optimization step, our choice minimizes the probability

that the selected entry (i.e. the one corresponding to the

map µ) vanishes.

Consequently, this system is adapted to non-linear

optimizers such as Levenberg-Marquardt (Gill et al.,

1981), where the map can be re-estimated at each step

of the optimization process. A practical algorithm for

using mapped coordinates is given in Table 2.

Table 2. Mapped coordinates for homogeneous entities. Only ṽ has

to be included in optimization processes.

Let v be an homogeneous (ν + 1)-vector. Any other homogeneous

entity (matrix, tensor) can be brought back to this case by stacking

its elements into a single vector. The inhomogeneous ν-vector

ṽ represents the mapped coordinates of v whereas the integer µ

represents its map.

Mapping (v → (ṽ, µ)):

• Choose µ such that µ = arg maxi |vi |;
• ṽ = v/µ

vµ
.

Unmapping ((ṽ, µ) → v):

• v ∼ ṽµ←1.

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 253

52 Bartoli and Sturm

3.1.5. Summary of Structure Parameterization. We

have given algorithms to exploit multi-coplanarity con-

straints for up to three planes per point. These con-

straints are enforced in an homogeneous manner while

reducing the number of parameters for each point, see

Section 3.1.3, and the homogeneity is removed using

mapped coordinates, as indicated in Table 2, to obtain

a minimal parameterization.

3.2. Motion Parameterization

In this section, we first parameterize camera projection

matrices in an homogeneous manner and then remove

the homogeneity using mapped coordinates to obtain a

quasi-minimal parameterization.

We have chosen previously to fix the projective re-

construction basis via the camera parameterization. It

has then to express 11n − 15 degrees of freedom but

actually has 10 + 11(n − 2) parameters (see below),

i.e. is overparameterized by 3. This is not a problem

for the optimization process since this number does

not depend neither on the number of views nor on the

number of points.

The number of parameters is obtained as follows.

Each of the n views is represented by 11 parameters

from its camera matrix, except for 2 of them, related

by the epipolar geometry (or equivalently, one special-

form projection matrix), that we represent using

10 parameters. More details are given below, where we

describe the geometry of one, two, three or more views.

Note that the motion parameterization is independent

from the structure, and in particular, does not depend

on the fact that the structure is constrained or not.

One View. The projective reconstruction basis can not

be uniquely fixed. However the camera matrix P can

be arbitrarily set, e.g. we use here P ∼ (I | 0).

Two Views. If we suppose that the first camera matrix

has been fixed, the second one has 7 degrees of freedom.

Indeed, the geometry of such a system is described by

Table 3. Motion parameterization. Notations H̃, ẽ′ and P̃k respectively designate the mapped

coordinates (see Table 2) of the canonic plane homography (see text), of the second epipole

(i.e. the projection of the first camera’s center of projection onto the image plane of the second

camera) and of other camera matrices. dof stands for degrees of freedom.

No. of views No. of dof No. of parameterization Parameters Gauge constraints

n = 2 7 10 H̃, ẽ′
H

⊤e′ = 0

n ≥ 3 7 + 11(n − 2) 10 + 11(n − 2) H̃, ẽ′, P̃k≥3 H
⊤e′ = 0

the epipolar geometry contained in the rank deficient

fundamental matrix F. Provided P has the form given

above, the second camera matrix can be extracted from

F as P
′ ∼ ([e′]×F | e

′) where e
′ is the second epipole

defined by F
⊤

e
′ = 0.

Minimally parameterizing the rank-2-ness of the

fundamental matrix requires the use of several maps

(Bartoli et al., 2001; Zhang, 1998) which is com-

plicated from an implementation point of view. Al-

ternatively, it is possible to overparameterize rank-2-

ness by using a plane homography H and the second

epipole e′. The second camera matrix is then formed as

P
′ ∼ ([e′]2

×H | e
′) where [e′]2

×H is the canonical plane

homography which is the only plane homography sat-

isfying H
⊤

e
′ = 0 (Bartoli and Sturm, 2001) (it is thus

singular).

In this paper, we use this second possibility. The

problem is parameterized by the 8 mapped coordinates

of H and the 2 mapped coordinates of e
′, which yield

10 parameters. Consequently, it is overparameterized

by 10 − 7 = 3 parameters, since the two-view motion

has only 7 degrees of freedom.

Three or More Views. Two or more views completely

fix the projective basis. Consequently, each additional

view adds 11 degrees of freedom to the system and in

the general case their camera matrices do not have any

special form and have to be entirely parameterized. We

use mapped coordinates for that purpose.

The motion parameterization is summarized in

Table 3.

3.3. Maximum Likelihood Estimator

We describe the maximum likelihood estimator for

constrained structure and motion using the previously

described parameterization. We first analyze which

kinds of points are reconstructable and under which

conditions, notably if they have to be included in the

constrained optimization process. We then show how to

initialize the parameterization from a general structure

254 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 53

and motion (when multi-coplanarity constraints are not

enforced), in the case of motion and then structure.

Finally, we give the cost function and details on the

maximum likelihood estimator.

3.3.1. Initialization. At this step, we suppose to have

a first guess of structure and motion as well as a cluster-

ing of points into multi-coplanar groups, see Section 6.

Feature Reconstructability. Planes are reconstructa-

ble provided that at least three points that they con-

tain can be themselves reconstructed without geometric

constraints. Once planes are reconstructed, new point

reconstructions can be obtained. Table 4 gives which

points, in terms of the number of views they are seen in

and number of planes they lie on, can be reconstructed

and if they have to be incorporated in the optimization

process (i.e. if they add redundancy useful for opti-

mization).

Motion. We have to change the projective basis such

that the first camera matrix becomes (I | 0). This is done

by post-multiplying all camera matrices by an appro-

priately chosen 3D homography and pre-multiplying

the structure by the inverse of this homography.

Constrained Structure. The initialization of points

depending on that of planes, we first estimate plane

equations and then points.

A plane is fitted to the points of each coplanar group.

If X is a point lying on the plane π , the constraint

Table 4. Summary of which points are reconstructable under which

condition. “unconstrained” indicates a reconstruction when planes

are not yet modeled, “optimization” indicates a reconstruction pos-

sible using planes and for points that add redundancy useful for

optimization and “constrained” indicates a reconstruction possible

only after the maximum likelihood estimation.

No. of No. of

views planes Unconstrained Optimization Constrained

0 0 No No No

1 No No No

2 No No No

≥3 No No Yes

1 0 No No No

1 No No Yes

≥2 No Yes No

≥2 Any Yes Yes No

X⊤
π = 0 holds. By stacking the equations for all

points lying on the plane, we obtain a linear system

for π which can be solved using e.g. singular value de-

composition. Another possibility is to estimate a plane

homography between two images of the plane and to

further extract the plane equation.

The unconstrained points and the multi-coplanar

points lying on three or more planes are easy to initial-

ize. Indeed, the former are not subject to any modeled

geometric constraint and are taken directly from the

initial structure, and the latter do not have any degree

of freedom and so do not need initial values.

On the other hand, single-coplanar and multi-

coplanar points lying on two planes need a special ini-

tialization. As we work in projective space, we can not

consider any metric in space (such as orthogonal pro-

jection) and have to do measurements in the images.

For a single-coplanar point X lying on a plane π ,

we consider one of its projections and reconstruct the

3D point by intersecting the associated viewing ray

with the plane π . We measure the reprojection error in

all images where X is visible. We iterate over the set

of images where X is visible and select the one that

minimizes the total reprojection error.

For a multi-coplanar point X lying on planes π and

π ′, we adopt the same method. However, to ensure

that the reconstructed point lies on the two planes, we

orthogonally project one of its image points onto the

projection of the intersection line of π and π ′ and then

reconstruct as above. Which plane π or π ′ is used to re-

construct does not matter. Details for this initialization

are given in Bartoli and Sturm (2001).

3.3.2. Optimization. Our goal is to derive an optimal

estimator, in the sense of the maximum likelihood, for

points and planes under multi-coplanarity constraints.

This result is obtained by enforcing exactly the con-

straints, as is does by our parameterization. The cost

function to minimize is the root mean square or, equiv-

alently, the sum of square of the reprojection residuals

(Slama, 1980; Triggs et al., 2000). In fact, this gives

the maximum likelihood estimator under the assump-

tion that errors in image point positions are identically

and independently distributed according to a centered

Gaussian, or normal, law.

We also include camera motion parameters into the

non-linear optimization since an independent computa-

tion of the maximum likelihood estimate for the struc-

ture only is not possible: both structure and motion have

to be estimated at once.

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 255

54 Bartoli and Sturm

The cost function, denoted by C, depends on mea-

sured image points xi j and on reprojected points x̂i j

predicted by structure and motion parameters S. It is

defined by:

C(S) =
∑

i

∑

j

wi j d2(xi j , x̂i j).

Indices i and j respectively represent the different im-

ages and the different structure points and d(., .) is the

Euclidean distance. We set wi j = 1 if and only if the

j-th point appears in the i-th image and 0 otherwise.

The optimal structure and motion parameters Ŝ are then

given by the minimization of C over S:

Ŝ = arg min
S

C(S).

This is done in practice using the Levenberg-Marquardt

algorithm with analytic differentiation.

Let us investigate how to upgrade the obtained struc-

ture and motion to a metric frame.

4. Constrained Euclidean Structure and Motion

In this section, we describe how to upgrade the pre-

viously recovered projective structure and motion to

metric and how to parameterize them in order to obtain

a constrained maximum likelihood estimator.

4.1. Upgrade to Metric

There exist several possibilities to upgrade a projective

reconstruction to metric, without a full prior calibra-

tion, e.g. by providing constraints on scene structure,

camera motion, or calibration. In this work, we perform

self-calibration. A Euclidean bundle adjustment is ini-

tialized using the linear method of Pollefeys (1999),

inspired by Triggs (1997), that assumes known intrin-

sic parameters, besides the variable focal length. The

method is rather straightforward, but we describe it

here since the basic method is subject to a degenerate

situation we encountered in practice, and that is likely

to occur quite often in modeling applications for e.g.

built environments. We give a variant of the method

that does not degenerate in this case.

Suppose that Pi are the projection matrices associ-

ated with the projective reconstruction obtained so far.

We suppose that all the intrinsic parameters are given,

besides the focal lengths, fi , for the individual images.

In practice, we assume the principal points (ui , vi) to

lie in the center of the respective image, and we know

the cameras’ aspect ratios τi (in fact, they could eas-

ily be included in the linear self-calibration routine).

The skew factor is neglected, i.e. we assume pixels to

be rectangular (in the linear method; skew is estimated

during bundle adjustment).

Self-calibration is based on estimating a projective

transformation T such that the transformed projection

matrices can be decomposed into extrinsic and intrinsic

parameters, such that the latter have the known values,

i.e.:

∃ fi , Ri , ti : Pi T ∼







τi 0 ui

0 1 vi

0 0 1













fi 0 0

0 fi 0

0 0 1






(Ri | ti),

where the Ri are orthonormal matrices and the ti

3-vectors. Considering only the leading 3 × 3 subma-

trix of the equation, and multiplying it by its transpose,

we get:

Pi T̄T̄
⊤

P
⊤
i

∼







τi 0 ui

0 1 vi

0 0 1













f 2
i 0 0

0 f 2
i 0

0 0 1













τi 0 ui

0 1 vi

0 0 1







⊤

,

where T̄ is the 4 × 3 matrix consisting of the first three

columns of T. Let

X = T̄ T̄
⊤

Mi =







τi 0 ui

0 1 vi

0 0 1







−1

Pi .

Then, the above equation becomes:

Mi X M
⊤
i ∼







f 2
i 0 0

0 f 2
i 0

0 0 1






. (1)

The matrix X represents the “absolute quadric” (Triggs,

1997), in the space of the projective reconstruction. It

is 4 × 4, symmetric and of rank 3.

Let m⊤
i j be the vector representing the j-th row of

Mi . From Eq. (1), the following linear equations on X

can be obtained:

m⊤
i1 X mi2 = 0

m⊤
i1 X mi3 = 0

m⊤
i2 X mi3 = 0

m⊤
i1 X mi1 − m⊤

i2Xmi2 = 0.

256 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 55

The rank-3 constraint on X can not be imposed via

linear equations, which implies that there exist singu-

larities for the linear method, that are not singular for

the generic case (Sturm, 2000). The generic singular-

ities (critical motions) for self-calibration of varying

focal length (with other intrinsic parameters known),

are described in Kahl et al. (2000) and Sturm (1999).

An imaging configuration that is singular for the linear

approach, but not in general, is the case where the opti-

cal axes of all views pass through one 3D point. Image

sequences taken for modeling objects will very often

be singular in this respect (e.g. the sequence shown in

Fig. 3).

Due to this singularity, the system of the above lin-

ear equations will have a one-dimensional family of

solutions:

X ∼ X1 + µX2.

The rank-3-constraint allows to solve for µ via the

equation det X = 0. This is a degree-4-polynomial in

µ. We solve it numerically, thus obtaining a maximum

of 4 solutions for X. To find a unique solution, we com-

pute the focal lengths that each solution gives rise to,

and choose the solution, where these respect practi-

cal bounds (they have to lie in an interval of the order

[300, 5000], depending on the camera used). In prac-

tice, we always found a single solution satisfying these

constraints, the others being far off.

Focal lengths are extracted by computing ωi ∼
Mi XM

⊤
i and then

fi =

√

1
2
(ωi,11 + ωi,22)

ωi,33

.

From the estimated X, we extract a projective trans-

formation that upgrades projection matrices and point

coordinates to metric. There is no unique solution for

this, so in practice we choose one that has roughly equal

singular values. Let X = ±U�U
⊤ be the singular value

decomposition of X. Since X is of rank 3, the 4-th sin-

gular value is zero. Let �′ be obtained by replacing

that zero with e.g. the largest singular value in �, we

obtain the projective upgrade transformation needed:

T = U

√
�′.

Extracting extrinsic parameters from the upgraded

projection matrices is then straightforward—it basi-

cally requires fitting of orthonormal matrices to gen-

eral 3×3 matrices (Horn et al., 1988). More details are

given in Section 4.4. The result is optimized via bundle

adjustment. An alternative to the described approach

would be to use the coplanarity information already

available, like Alon and Sclaroff (2000), Malis and

Cipolla (2000), Triggs (1998a), Viéville et al. (1995),

and Xu et al. (2000).

In the following paragraph, we just give a few nu-

merical details. In order to improve the condition of the

linear equation system, we transform the matrices Mi

as follows. First, we assume that images are normal-

ized using e.g. Hartley (1995). Second, we make use

of the free choice for the basis of the projective recon-

struction, by computing a projective transformation,

that hopefully leads to better conditioning. A simple

method to do that is as follows. We stack the Mi in a

matrix M of size 3n ×4, and compute its singular value

decomposition:

M = AŴB
⊤.

From A, we extract sub-matrices replacing the Mi in

the linear equations: A is orthonormal, so the linear

equations are more likely to be well conditioned. The

product ŴB
⊤ represents the projective transformation

corresponding to the mapping between the original and

the transformed Mi (naturally, the 3D points have to

be transformed accordingly). Using this normalization,

we obtained much more accurate initial values and ac-

tually prevented the bundle adjustment to fall in a local

minimum it got trapped in otherwise, in one case.

4.2. Structure Parameterization

In this section, we adapt the projective structure pa-

rameterization of Section 3.1 to the Euclidean case.

In this case, planes are modeled as homogeneous

4-vectors, whereas points can be written as inhomo-

geneous 3-vectors.

The plane parameterization has been described

in Section 3.1.2 and mapped coordinates (cf.

Section 3.1.4) were used to reach the minimality. The

point parameterization under multi-coplanarity con-

straints of Section 3.1.3 for the projective case can be

used either directly or adapted to take full advantage

of the Euclidean structure. We successively specialize

the different cases.

Unconstrained Points. As said above, points can be

parameterized using inhomogeneous 3-vectors, which

is minimal in this case.

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 257

56 Bartoli and Sturm

Single-Coplanar Points. Let X be a point lying on a

plane π . As for the projective case, we want to change

the reconstruction basis such as to fix an element of

X to a constant value. In the Euclidean case, we have

X⊤ ∼ (X̄⊤ | 1) in the homogeneous form, so that the

4-th element is already fixed. Consequently, we must

choose a transformation that preserves this element

while fixing another one. This class of transformation

is H
j
π where j ∈ {1 . . . 3}. The practical algorithm for

parameterizing/unparameterizing such a point in the

Euclidean case is similar to that of Table 1 but using

the constraint j ∈ {1 . . . 3} for the choice of j .

Multi-coplanar Points. We follow the same reason-

ing as in the previous case. A point lying on two planes

is then parameterized by a scalar and does not have

parameters in the three planes case. The practical algo-

rithms are then identical to the projective case, provided

a choice for the indices j and j ′ in {1 . . . 3} for the two

planes case.

4.3. Motion Parameterization

For motion parameterization in the Euclidean case, we

suppose that each camera has z unknown intrinsic pa-

rameters, where z ∈ {1 . . . 5}.

One View. We choose the reconstruction basis such

that P ∼ K (I | 0) where K is the calibration matrix,

containing the intrinsic parameters. We have therefore

z degrees of freedom for this first camera.

Two or More Views. The Euclidean basis has been

fixed by the first view up to a global scale factor. We

then have to completely parameterize the other cam-

era matrices. Such an additional camera is written as

P
′ ∼ K

′ (R | t). Making the same assumption on the

intrinsic parameters than for the first view, this leaves

z + 6 degrees of freedom for each view, its internal

parameters and the 6 parameters for the rotation R and

the translation t. These entities are minimally parame-

terized, as described in e.g. Atkinson (1996).

4.4. Maximum Likelihood Estimator

The maximum likelihood estimator in the metric case

is very similar to that of the projective case as the

cost function is the same. The intrinsic parameters

for each camera have been recovered previously, see

Section 4.1. In order to initialize our parameterization,

we still need to extract the relative pose of each camera,

i.e. factorize each projection matrix P ∼ (P̄ | p) under

the form P = 1
λ

K(R | t) where λ is an unknown scale

factor. Let us define S = K
−1

P̄. We first estimate the

scale factor as λ = 3
√

det S. The translation can then

be obtained by t = λK
−1p. In the noise-free case, λS

is an orthonormal matrix, but in practice it is not and

we choose the closest rotation matrix in the sense of

the Frobenius norm. This can be done using a singular

value decomposition of λS and a recomposition where

the matrix of singular values � is omitted: R = UV
⊤

where λS = U�V
⊤. Once this initialization has been

done, non-linear optimization of the cost function C

(cf. Section 3.3) can be launched using the Levenberg-

Marquardt algorithm (Gill et al., 1981) with analytic

differentiation.

5. Experimental Results Using Simulated Data

In this section, we compare our method to existing ones,

notably to that consisting in individually reconstruct-

ing each point and to that using approximate multi-

coplanarity constraints. We perform this comparison

for the structure results, then for the motion results.

The test bench consists of a cube of one meter side

length observed by a set of cameras. Points are gen-

erated on the cube, possibly offset from their planes

in order to simulate non-perfect coplanarity and pro-

jected onto the images, where centered Gaussian noise

is added. The default parameters of this simulation are

the following. Up to 50, 10 and 1 points are generated

on respectively each face, edge and vertex of the cube.

Two cameras with a focal length of 1000 (expressed in

number of pixels) and a 1 meter baseline are situated at

a distance of 10 meters from the cube. The standard de-

viation of image noise is up to 3.0 pixels. The intrinsic

parameters are not supposed to be known which yields

projective reconstructions.

In the sequel, we vary independently each of these

parameters to compare the different approaches under

various conditions, especially we want to determine

how the constrained methods behave when the ob-

served surfaces are only approximately planar.

We measure the quality of reconstructions using the

3D residual of its Euclidean distance to the ground

truth scene structure X : E =
√

1
m

∑m
j=1 d2(HX j , X j),

where H is a 3D homography (mapping the projective

to the Euclidean structure) estimated using non-linear

minimization of E . We measure the median value over

100 trials.

258 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 57

The estimators compared are:

• Po-ML: Optimal structure and motion obtained in a

bundle adjustment manner (Triggs et al., 2000) with-

out geometric constraints;

• Pl-wt: (wt stands for weights) similar to Po-ML but

uses heavily weighted (260 ≈ 1020) additional equa-

tions to approximate multi-coplanarity (McGlone,

1996; Szeliski and Torr, 1998);

• Pl-ML: Uses the parameterization described in this

paper to explicitly model multi-coplanarity;

• Pl-h: (h stands for homography) uses method Po-ML

described above with as input point correspondences

corrected by maximum likelihood estimation of

homographies. This method is described in more de-

tail below. Note that it works only with two images

and with the single-coplanarity constraint.

The last method evaluated relies on a simple

homography-based point correction. A plane observed

by two cameras induces an homography. This homo-

graphy relates the projections of the points lying

on the plane. The family of such homographies is

3-dimensional, provided that the epipolar geometry

is known (this is linked to the fact that a plane has

3 degrees of freedom). In the calibrated case, they de-

pend upon the relative pose between the two cameras

and on their intrinsic parameters. If all these consis-

tency constraints are ignored, and if the piecewise pla-

nar structure and motion problem is considered only

for two views and with single-coplanarity constraints,

one can devise a simple process to incorporate the

knownledge of coplanarity in a standard unconstrained

reconstruction method. Indeed, one can estimate in-

dependently each homography corresponding to each

coplanar group of points and correct them so that

they perfectly correspond through the homography. A

standard structure and motion algorithm can then be

launched with as input the corrected points. This is

what Pl-h does. Obviously, this process is suboptimal

since most consistency constraints have been ignored,

and since the final reconstruction is only approximately

planar. Extending the idea to multi-view and multi-

coplanarity constraints, by enforcing all the underlying

consistency constraints would yield the same result as

our estimator, up to the convergence of the underlying

non-linear optimizers. However, the algebraic structure

would be more complicated since more consistency

constraints have to be imposed in the images than in

the 3D space.

Let us describe the different experimental situations

when varying a scene parameter and the simulation

results we have obtained.

Added Image Noise (Fig. 1(a)): The standard deviation

of added image noise is varied from 0 to 3 pixels;

Baseline (Fig. 1(b)): The baseline is varied between 0.1

and 1 meter;

Number of Points (Fig. 1(c)): The number of points is

respectively equal to 50α, 10α and 1 for each face,

edge and vertex of the cube, where α varies from 0.1

to 1;

Number of Views (Fig. 1(d)): The number of views

varies from 2 to 10. The different cameras are situ-

ated such that the baseline between two consecutive

ones is 1 meter;

Distance Scene/Cameras (Fig. 1(e)): The distance be-

tween the cube and the cameras is varied between

10 and 20 meters.

In all these cases, the method Po-ML based only

on individual point reconstruction gives results of a

quality lower than methods Pl-modeling also planes

(the residual is at least twice as low). The method Pl-

ML performs slightly better than Pl-wt in all cases.

Finally, method Pl-h gives results slightly worse than

Pl-wt, but much better than Po-ML.

One aspect not shown on the graphs of Fig. 1, due

to the use of a median value over a large number of

trials, is that methods Po-ML and Pl-wt have a percent-

age of convergence lower than Pl-ML and Pl-h, espe-

cially for unstable configurations (large image noise,

small baseline, high distance scene/cameras etc.). For

example, the percentage of convergent estimations over

1000 trials is 95.2%, 89.1%, 97.5% and 97.3% for

Po-ML, Pl-wt, Pl-ML and Pl-h respectively, for a dis-

tance scene/cameras of 20 meters and a 0.1 meter

baseline.

Plane Unflatness (Fig. 1(f)): 3D points are offset from

the planes they lie on by distances drawn from a

normal distribution with standard deviation between

0 and 0.1 meters.

We observe that there is a threshold on the plane

unflatness where methods Pl- using the knowledge of

planes begin to perform worse than method Po-ML.

It is interesting to define the breakdown ratio, de-

noted by ε, as the ratio between the extent of 3D

noise and plane surface area, assuming that the scene

is seen completely in all views. In the case of Fig. 1(f),

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 259

58 Bartoli and Sturm

Figure 1. Comparison of the 3D residuals for different approaches versus different scene parameters. Note that method Pl-h is not visible on

(d) since it works with two views only.

260 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 59

Table 5. Breakdown ratio ε for different scene configurations

(image noise, number of views, distance scene/cameras).

3 m (%) 10 m (%) 20 m (%)

n = 2

1 pixel 0.5 2 4

3 pixels 2 6 9

n = 10

1 pixel 0.3 1.2 3

3 pixels 1.3 4 8

ε = 6%, recalling that each plane of the cube is

1 square meter. The value of ε depends on all scene

parameters.

Table 5 shows values of ε established experimentally

for various scene parameters. We observe that the less

stable the configuration is the higher is ε, i.e. the more

important is the incorporation of multi-coplanarity con-

straints, even if the scene is not perfectly piecewise

planar.

The values of one or several percent in Table 5 rep-

resent relatively large variations which are superior to

those of a great majority of approximately planar real

surfaces. Consequently, we can say that there are many

cases when a method using piecewise planarity will

perform better than any method based on individual

point reconstruction.

Similar results with other point- and plane-based

methods have been obtained in Bartoli and Sturm

(2001). We have also performed similar experiments in

Figure 2. Comparison of the 3D residuals for the motion for different approaches versus different scene parameters. Note that method Pl-h is

not visible on (b) since it works with two views only.

the calibrated case, i.e. the reconstructions obtained are

Euclidean, and we observed that this does not change

the results significantly. This can be explained by the

fact that the optimization criterion is image-based, and

so invariant to projective transformation (such as the

upgrade from projective to metric space).

Comparing the Motion Estimates. We compare the

results on the motion parameters provided by the dif-

ferent methods. We use the same experimental setup as

previously. The quality of the estimated motion is mea-

sured as follow. We extract the n projection centers Ci

of the estimated camera matrices and compute the 3D

residual of their Euclidean distances to the ground-truth

projection centers C i : Emotion =
√

1
n

∑n
i=1 d2(HCi , Ci).

The 3D homography H is estimated as in the previ-

ous case, using non-linear minimization of E , i.e. us-

ing estimated to ground-truth point correspondences

(estimating it with corresponding centers of projection

would be highly sensitive to noise, due to the low num-

ber of data). We measure the median value of Emotion

over 100 trials.

Let us describe the different experimental situations

and results obtained.

Added Image Noise (Fig. 2(a)): The standard de-

viation of added image noise is varied from 0 to

3 pixels;

Number of Views (Fig. 2(b)): The number of views

is varied from 2 to 10, a 3 pixels standard deviation

noise is added.

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 261

60 Bartoli and Sturm

As already observed for the results on the struc-

ture, the method Po-ML that do not use coplanarity

information performs worse than the others. The

method Pl-ML performs better than Pl-wt and the

method Pl-h performs worse than Pl-wt. We observe

that the gap between plane-based methods Pl- and

the point-based method Po-ML is reduced compared

to the error estimated on the structure. In all cases,

we also observe that the error measure obtained is

worse than for the structure. This is due to the fact that

the homography mapping the reconstruction result to

the ground-truth data is estimated by minimizing the

criterion E , based on the structure only.

6. Results Using Real Images

In this section, we present the reconstruction results

obtained using the images shown in Fig. 3. Similar re-

sults have been obtained with other images (see Bartoli

et al., 2001). We describe the different steps followed to

perform a complete reconstruction, from the images to

the 3D textured model. Table 6 shows the reprojection

errors obtained at various stages of the process.

Structure and Motion Initialization. This has been

obtained using image point matches given manually.

We perform a partial reconstruction from two images

using the method (Hartley, 1995; Hartley and Sturm,

1997) and incrementally add the other images to ob-

tain the complete structure and motion. We then run a

bundle adjustment to minimize the reprojection error

and to obtain the maximum likelihood estimate for an

unconstrained structure.

Multi-coplanarity Constraints. These relationships

are established semi-automatically using plane homo-

graphies. The user provides three image points matched

in at least one other view to obtain a first guess for the

plane. The other points lying on this plane are then

automatically detected. The user may interact to cor-

rect badly clustered points and add points visible in

only one view.

Figure 3. Images used to validate the method.

Table 6. Reprojection errors (pixel) and number of iterations

of non-linear optimizers at various stages of the reconstruction

process. MLE stands for Maximum Likelihood Estimator.

Rep. error No. of

Space Approach Step (pixels) iterations

Projective Unconstrained Init. 3.86 –

MLE 1.07 7

Constrained Init. 1.90 –

MLE 1.20 3

Metric Unconstrained MLE 2.69 6

Constrained Init. 3.86 –

MLE 1.43 9

Constrained Refinement of Structure and Motion.

From the previous data, the structure is parameterized

as described in Section 3 and the maximum likeli-

hood estimate for constrained structure and motion of

Section 3.3 is computed. According to Table 4, points

visible in only one view and constrained to lie on two

or more planes are reconstructed and involved in the

optimization process.

Structure Completion. Points appearing in only one

view and lying on one plane are then reconstructed.

The structure is complete in the sense that no more

points will be further added. Figure 5 shows structure

reprojection on an original image.

Calibration. The metric structure is obtained via

the self-calibration process described in Section 4.1

and the reprojection error is minimized while enforc-

ing the multi-coplanarity constraints as indicated in

Section 4.4. Figure 4 shows different views of the re-

covered structure and the positioning of the cameras

and Fig. 5 the reprojection of the model in two original

images. For the intrinsic parameters of each camera,

only the focal lengths are involved. It appears that also

including principal points does not change significantly

the results.

Texture Maps. The texture mapping requires the user

to provide a polygonal delineation for each planar facet

262 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 61

Figure 4. Recovered metric structure and motion. The structure is shown as a set of planar polygons while the different cameras (the motion)

are represented by pyramids. The height of a pyramid is proportional to the recovered focal length of the camera. The bottom-right image shows

a rendering from above the point of view of the right image of Fig. 5.

Figure 5. Reprojection of the recovered model onto the original images. The yellow crosses indicate the position of the reprojected point

features.

in one of the images. The texture maps are then ex-

tracted and perspectively corrected using calibrated

projection matrices and bicubic interpolation. Figure 6

shows different views of the recovered textured

model.

Quality Assessment. We have performed several

measures on the metric reconstruction “before” and

“after” the constrained optimization process (i.e. re-

flecting the changes when using the method described

in this paper). Two kinds of quantity are significant:

length ratios and angles. Table 7 shows measures of

such quantities. In this table, σ1 and σ2 are the vari-

ances of the length of respectively the height and width

of the largest windows on the two walls, whereas µ is

the mean of 1 − 2αi/π where αi are the measures of

right angles. The values given in Table 7 show that

the metric reconstruction obtained with our method

is clearly of superior quality than the unconstrained

one.

Table 7. Metric measures on the Euclidean reconstruction

“before” and “after” the constrained optimization. The lower

λ1, λ2 and µ (see text) are, the better the reconstruction is.

σ1 σ2 µ

Before 0.0489 0.0254 0.1032

After 0.0102 0.0168 0.0720

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 263

62 Bartoli and Sturm

Figure 6. Different views of the textured model. Note that artefacts may be induced by possibly unmodeled non-planar parts of the surfaces,

e.g. the pole bulging out of the roof in the top-right image is wrongly mapped to the roof plane, and is therefore distorted in other views, e.g. the

top-left one.

7. Conclusions

We have presented an hybrid approach that draws on the

strengths of both the traditional feature- and primitive-

based approaches, i.e. the reconstruction is accurate

and the recovered model allows to produce photoreal-

istic rendering. More precisely, we focus on the case

of points and planes related by multi-coplanarity con-

straints and on the design of a constrained structure and

motion maximum likelihood estimator in both the pro-

jective and the metric cases. This maximum likelihood

estimator uses a minimal parameterization of scene

structure, enforcing underlying geometric constraints

and a quasi-minimal parameterization of motion.

Experimental results on simulated data show that the

quality of the reconstruction obtained with our method

is clearly superior to those of traditional feature-based

methods, in a large variety of experimental configura-

tions, and for both structure and motion. We also con-

sider the case when surfaces are only approximately

planar and experimentally determined breakpoints of

plane unflatness above which the incorporation of

multi-coplanarity constraints makes the estimation less

reliable.

264 Chapter 10. Piecewise Planar Scenes

Constrained Structure and Motion 63

The method is validated using real images. The re-

sults are convincing, in terms of both rendering quality

and accuracy of metric values compared to a feature-

based method.

The implementation of our methods comprises

modules for unconstrained projective reconstruction

(“linear” ones and bundle adjustment), constrained pro-

jective reconstruction (initialization and optimization),

self-calibration (“linear” method and optimization), as

well as constrained Euclidean reconstruction (initial-

ization and bundle adjustment).

Notes

1. Note that this is very different from the hybrid approach of

Debevec et al. (1996) which is actually primitive-based.

2. This is not true if the planes form a pencil.

References

Alon, J. and Sclaroff, S. 2000. Recursive estimation of motion

and planar structure. In Proceedings of the Conference on Com-

puter Vision and Pattern Recognition, Hilton Head Island, South

Carolina, USA, pp. 550–556.

Atkinson, K.B. (Ed.). 1996. Close Range Photogrammetry and

Machine Vision. Whittles Publishing.

Baillard, C. and Zisserman, A. 1999. Automatic reconstruction of

piecewise planar models from multiple views. In Proceedings

of the Conference on Computer Vision and Pattern Recognition,

Fort Collins, Colorado, USA, IEEE Computer Society Press: Los

Alamitos, CA, pp. 559–565.

Bartoli, A. and Sturm, P. 2001. Constrained structure and motion

from N views of a piecewise planar scene. In Proceedings of the

First International Symposium on Virtual and Augmented Archi-

tecture (VAA’01), Dublin, Ireland, pp. 195–206.

Bartoli, A., Sturm, P., and Horaud, R. 2001. Projective structure

and motion from two views of a piecewise planar scene. In Pro-

ceedings of the 8th International Conference on Computer Vision,

Vancouver, Canada, Vol. 1, pp. 593–598.

Beardsley, P., Torr, P., and Zisserman, A. 1996. 3D model ac-

quisition from extended image sequences. In Proceedings of

the 4th European Conference on Computer Vision, Cambridge,

England, B. Buxton and R. Cipolla (Eds.), Vol. 1065 of Lecture

Notes in Computer Science. Springer-Verlag: Berlin, pp. 683–

695.

Berthilsson, R. and Heyden, A. 1998. Recognition of planar point

configurations using the density of affine shape. In Proceedings

of the 6th International Conference on Computer Vision, Bombay,

India, pp. 72–88.

Cross, G. and Zisserman, A. 2000. Surface reconstruction from mul-

tiple views using apparent contours and surface texture. In NATO

Advanced Research Workshop on Confluence of Computer

Vision and Computer Graphics, Ljubljana, Slovenia, A.

Leonardis, F. Solina, and R. Bajcsy (Eds.), pp. 25–

47.

Debevec, P.E., Taylor, C.J., and Malik, J. 1996. Modeling and ren-

dering architecture from photographs: A hybrid geometry- and

image-based approach. In SIGGRAPH’96, New Orleans.

Dick, A.R., Torr, P.H.S., Ruffle, S.F., and Cipolla, R. 2001.

Combining single view recognition and multiple view stereo for

architectural scenes. In Proceedings of the 8th International Con-

ference on Computer Vision, Vancouver, Canada.

Faugeras, O. and Lustman, F. 1988. Motion and structure from mo-

tion in a piecewise planar environment. International Journal of

Pattern Recognition and Artificial Intelligence, 2(3):485–508.

Fornland, P. and Schnörr, C. 1997. A robust and convergent itera-

tive approach for determining the dominant plane from two views

without correspondence and calibration. In Proceedings of the

Conference on Computer Vision and Pattern Recognition, Puerto

Rico, USA, IEEE (Ed.), pp. 508–513.

Gill, P.E., Murray, W., and Wright, M.H. 1981. Practical Optimiza-

tion. Academic Press: New York.

Gortler, S.J., Grzeszczuk, R., Szeliski, R., and Cohen, M. 1996.

The lumigraph. In Proceedings of SIGGRAPH, New Orleans, LA,

pp. 43–54.

Hartley, R. 1995. In defence of the 8-point algorithm. In Proceed-

ings of the 5th International Conference on Computer Vision,

Cambridge, MA, USA, pp. 1064–1070.

Hartley, R. and Sturm, P. 1997. Triangulation. Computer Vision and

Image Understanding, 68(2):146–157.

Heyden, A. and Åström, K. 1995. A canonical framework for se-

quences of images. In Workshop on Representation of Visual

Scenes, Cambridge, MA, USA, pp. 45–52.

Heyden, A. and Åström, K. 1998. Minimal conditions on intrinsic

parameters for euclidean reconstruction. In Proceedings of the

Third Asian Conference on Computer Vision, Hong Kong, Vol. II,

pp. 169–176.

Horn, B.K.P., Hilden, H.M., and Negahdaripour, S. 1988. Closed-

form solution of absolute orientation using orthonormal matrices.

Journal of the Optical Society of America A, 5(7):1127–1135.

Kahl, F., Triggs, B., and Åström, K. 2000. Critical motions for auto-

calibration when some intrinsic parameters can vary. Journal of

Mathematical Imaging and Vision, 13(2):131–146.

Kutulakos, K.N. and Seitz, S.M. 1999. A theory of shape by space

carving. In Proceedings of the 7th International Conference on

Computer Vision, Kerkyra, Greece, Vol. 1, pp. 307–314.

Lang, F. and Förstner, W. 1996. 3D-city modeling with a digital one-

eye stereo system. In Proceedings of the XVIII ISPRS-Congress,

Vienna, Austria.

Levoy, M. and Hanrahan, P. 1996. Light field rendering. In Proceed-

ings of SIGGRAPH, New Orleans, LA, pp. 31–42.

Malis, E. and Cipolla, R. 2000. Multi-view constraints between

collineations: Application to self-calibration from unknown pla-

nar structures. In Proceedings of the 6th European Conference

on Computer Vision, Dublin, Ireland, D. Vernon (Ed.), Vol. 1843

of Lecture Notes in Computer Science. Springer-Verlag: Berlin,

pp. 610–624.

Maybank, S.J. and Faugeras, O.D. 1992. A theory of self calibration

of a moving camera. International Journal of Computer Vision,

8(2):123–151.

McGlone, C. 1996. Bundle adjustment with geometric constraints

for hypothesis evaluation. In Proceedings of the XVIII ISPRS-

Congress, Vienna, Austria, pp. 529–534.

Niem, W. 1994. Robust and fast modelling of 3D natural objects

from multiple views. In Proceedings of the SPIE Conference on

Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views. . . , IJCV 2003 [1] 265

64 Bartoli and Sturm

Image and Video Processing II, San Jose, USA, Vol. 2182, pp. 388–

397.

Pollefeys, M. 1999. Self-calibration and metric 3D reconstruction

from uncalibrated image sequences. Ph.D. Thesis, Katholieke Uni-

versiteit Leuven, Belgium, Faculteit Toegepaste Wetenschappen,

Arenbergkasteel, B-3001 Heverlee, Belgium.

Pollefeys, M., Koch, R., and Van Gool, L. 1998. Self-calibration

and metric reconstruction in spite of varying and unknown inter-

nal camera parameters. In Proceedings of the 6th International

Conference on Computer Vision, Bombay, India, pp. 90–95.

Pollefeys, M., Vergauwen, M., and Van Gool, L. 2000. Automatic

3D modeling from image sequences. In Proceedings of the XIX

ISPRS-Congress, Amsterdam, the Netherlands, Vol. B5, pp. 619–

626.

Seitz, S.M. and Dyer, C.R. 1997. Photorealistic scene reconstruction

by voxel coloring. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, Puerto Rico, USA, IEEE Com-

puter Society Press: Los Alamitos, CA, pp. 1067–1073.

Sinclair, D. and Blake, A. 1996. Quantitative planar region detection.

International Journal of Computer Vision, 18(1):77–91.

Slama, C.C. (Ed.). 1980. Manual of Photogrammetry, Fourth edn.

American Society of Photogrammetry and Remote Sensing: Falls

Church, Virginia, USA.

Streilein, A. and Hirschberg, U. 1995. Integration of digital pho-

togrammetry and CAAD: Constraint-based modeling and semi-

automatic measurement. In Proceedings of the International

CAAD Futures Conference, Singapore.

Sturm, P. 1999. Critical motion sequences for the self-calibration of

cameras and stereo systems with variable focal length. In Proceed-

ings of the Tenth British Machine Vision Conference, Nottingham,

England, T. Pridmore and D. Elliman (Eds.), British Machine

Vision Association, pp. 63–72.

Sturm, P. 2000. A case against Kruppas equations for camera self-

calibration. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(10):1199–1204.

Sturm, P. and Triggs, B. 1996. A factorization based algorithm for

multi-image projective structure and motion. In Proceedings of

the 4th European Conference on Computer Vision, Cambridge,

England, B. Buxton and R. Cipolla (Eds.), Vol. 1065 of Lecture

Notes in Computer Science. Springer-Verlag: Berlin, pp. 709–720.

Szeliski, R. 1993. Rapid octree construction from image sequences.

Computer Vision, Graphics and Image Processing, 58(1):23–32.

Szeliski, R. and Torr, P.H.S. 1998. Geometrically constrained struc-

ture from motion: Points on planes. In 3D Structure from Mul-

tiple Images of Large-Scale Environments (SMILE’98). Springer

Verlag: Berlin.

Tarel, J.-P. and Vézien, J.-M. 1995. A generic approach for planar

patches stereo reconstruction. In Proceedings of the Scandinavian

Conference on Image Analysis, Uppsala, Sweden, pp. 1061–1070.

Triggs, B. 1997. Autocalibration and the absolute quadric. In Pro-

ceedings of the Conference on Computer Vision and Pattern

Recognition, Puerto Rico, USA, IEEE Computer Society Press:

Los Alamitos, CA, pp. 609–614.

Triggs, B. 1998a. Autocalibration from planar scenes. In Proceedings

of the 5th European Conference on Computer Vision, Freiburg,

Germany.

Triggs, B. 1998b. Optimal estimation of matching constraints. In

3D Structure from Multiple Images of Large-Scale Environments

(SMILE’98), Springer Verlag: Berlin.

Triggs, B., McLauchlan, P.F., Hartley, R.I., and Fitzgibbon, A. 2000.

Bundle ajustment—A modern synthesis. In Proceedings of the In-

ternational Workshop on Vision Algorithms: Theory and Practice,

Corfu, Greece, B. Triggs, A. Zisserman, and R. Szeliski (Eds.),

Vol. 1883 of Lecture Notes in Computer Science. Springer-Verlag:

Berlin, pp. 298–372.

Viéville, T., Zeller, C., and Robert, L. 1995. Using collineations to

compute motion and structure in an uncalibrated image sequence.

International Journal of Computer Vision, 20(3):213–242.

Xu, G., Terai, J.-I., and Shum, H.-Y. 2000. A linear algorithm for

camera self-calibration, motion and structure recovery for multi-

planar scenes from two perspective images. In Proceedings of the

Conference on Computer Vision and Pattern Recognition, Hilton

Head Island, South Carolina, USA.

Zhang, Z. 1998. Determining the epipolar geometry and its un-

certainty: A review. International Journal of Computer Vision,

27(2):161–195.

266 Chapter 10. Piecewise Planar Scenes

The geometric error for homographiesq

Ond�rej Chum,a,* Tom�a�s Pajdla,a and Peter Sturmb

a Center for Machine Perception, Department of Cybernetics, Czech Technical University in Prague,

Faculty of Electrical Engineering, Karlovo n�am�est�ı 13, 121 35 Praha 2, Czech Republic
b INRIA Rhône-Alpes, 655 Avenue de l’Europe, Montbonnot 38330, France

Received 23 July 2003; accepted 10 March 2004

Available online 22 April 2004

Abstract

We address the problem of finding optimal point correspondences between images related

by a homography: given a homography and a pair of matching points, determine a pair of

points that are exactly consistent with the homography and that minimize the geometric dis-

tance to the given points. This problem is tightly linked to the triangulation problem, i.e., the

optimal 3D reconstruction of points from image pairs. Our problem is non-linear and iterative

optimization methods may fall into local minima. In this paper, we show how the problem can

be reduced to the solution of a polynomial of degree eight in a single variable, which can be

computed numerically. Local minima are thus explicitly modeled and can be avoided. An ap-

plication where this method significantly improves reconstruction accuracy is discussed. Be-

sides the general case of homographies, we also examine the case of affine transformations,

and closely study the relationships between the geometric error and the commonly used Samp-

son�s error, its first order approximation. Experimental results comparing the geometric error

with its approximation by Sampson�s error are presented.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Homography; Geometric error; Sampson�s error; Triangulation

qThe authors were supported by Grants GACR 102/01/0971, FP5 EU IST-2001-39184, Aktion 34p24,

MSM 212300013, CTU0306013, and STINT Dur IG2003-2 062. We thank Mirko Navara for helping us

with the proofs.
*Corresponding author.

E-mail addresses: chum@cmp.felk.cvut.cz (O. Chum), pajdla@cmp.felk.cvut.cz (T. Pajdla),

Peter.Sturm@inrialpes.fr (P. Sturm).

1077-3142/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2004.03.004

Computer Vision and Image Understanding 97 (2005) 86–102

www.elsevier.com/locate/cviu

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 267

1. Introduction

Homographies are used in many applications, e.g., in mosaicing [1] or wide base-

line stereo matching [2,3]. In many applications we also need to compute the error

(or the distance) of a point correspondence with respect to a given homography H.

This is necessary for instance in RANSACRANSAC [4], a commonly used robust estimation al-

gorithm. Some applications may require not only to compute the distance of a given

point correspondence to the model of homography but actually need to determine

points, which are consistent with the given homography and are in a small neighbor-

hood of the measured, thus noisy, given points.

This work addresses the problem of finding optimal point correspondences be-

tween images related by an homography: given a known homography and a pair

of matching noisy points, determine a pair of points that are exactly consistent with

the homography and that minimize the geometric distance to the given noisy points.

There are two approaches to achieve such a goal [5]: (1) non-linear optimization us-

ing iterative methods and (2) parametric approach, where the solution is parame-

trized so that it automatically satisfies the given constraint. The paper

concentrates on the latter strategy.

A similar problem, based on the geometric error for the epipolar geometry, has

been addressed by Hartley and Sturm [6]. The geometric error for homographies

was introduced by Sturm [7, Appendix B], and independently derived by Chum

and Pajdla in [8,9]. In this paper, previous results are reviewed from a common per-

spective, the derivation of the geometric error for homographies is described and a

mathematical proof of its correctness given. Furthermore, we discuss the commonly

used approximation of the geometric error, Sampson�s error. Links between the two

are studied in detail, for the general case of homographies, as well as the case of af-

fine transformations between images.

The rest of the paper is structured as follows. Basic concepts are introduced in

Section 2. Section 3 contains the derivation of the formulae for the geometric error.

In Section 4, Sampson�s approximation is derived and studied. Geometric properties

of both error measures are studied in Section 5. Experiments are presented in Section

6. An application of the proposed method is described in Section 7 and conclusions

are given in Section 8.

2. Basic concepts

We assume that a planar homography H [10] and a noisy correspondence x $ x0

measured in the images are given. Let the homogeneous coordinates of the corre-

sponding points be x ¼ ðx; y; 1ÞT and x0 ¼ ðx0; y 0; 1ÞT and the homography be repre-

sented by the (regular) matrix

H ¼
h1 h2 h3
h4 h5 h6
h7 h8 h9

0

@

1

A:

O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 87

268 Chapter 10. Piecewise Planar Scenes

There are several possible ways to measure the ‘‘error’’ of that point correspondence

with respect to the homography. We will mention the geometric error and Sampson�s

approximation of it.

Supposing the Gaussian noise model for perturbations of image coordinates, the

maximum likelihood estimation of the position of the noise-free correspondence

x̂ $ Hx̂ is obtained by minimizing the geometric error d2
? ¼ dðx; x̂Þ2 þ dðx0;Hx̂Þ2 over

all x̂ (Fig. 1). This error measure could be thought of as the Euclidean distance of

point X ¼ ðx; y; x0; y0Þ 2 R4, representing the given point correspondence, to the

two-dimensional variety VH (Fig. 2) defined as

VH ¼ fY 2 R4 j tðYÞ ¼ 0g; ð1Þ

where t ¼ ðtx; tyÞ
T
and

tx ¼ Y1h1 þ Y2h2 þ h3 � Y1Y3h7 � Y2Y3h8 � Y3h9; ð2Þ

ty ¼ Y1h4 þ Y2h5 þ h6 � Y1Y4h7 � Y2Y4h8 � Y4h9; ð3Þ

i.e., such Y represent point correspondences that are consistent with H.

Fig. 2. The variety VH and points where different error measures of the measured noisy point correspon-

dence X with respect to homography H are minimized. The geometric error is minimized at X̂, Sampson�s

error at XS, and the error in the second image at X2.

Fig. 1. Two images linked by homography H. Points x and x0 are measured points, x̂ is the point minimiz-

ing d2 þ d 02 where d and d 0 are the distances x to x̂ and x0 to Hx̂.

88 O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 269

The first-order approximation of this error measure, called Sampson’s error, was

first used by Sampson [11] for conics. The derivation of Sampson�s error for homog-

raphies is described in Section 4.

The exact computation of the geometric error is equivalent to finding the point

X̂ 2 R4 on the variety VH, that minimizes the Euclidean distance to the measured

point X. We show that the geometric error can be exactly determined by solving a

polynomial of degree eight.

3. The geometric error

In this section the problem of computing the geometric error is transformed, so

that it reduces to finding roots of a polynomial of degree eight.

The distance of points lying on the variety VH to the measured point correspon-

dence X can be written as a function of the matrix H, the measured image points

x, x0, and a point x̂ in the first image. If we expand the matrix multiplication, we

have

eðx̂Þ ¼ ðx� x̂Þ2 þ ðy � ŷÞ2 þ ðx0 � x̂0Þ2 þ ðy0 � ŷ0Þ2; ð4Þ

where

x̂0 ¼
h1x̂þ h2ŷ þ h3

h7x̂þ h8ŷ þ h9
ð5Þ

and

ŷ0 ¼
h4x̂þ h5ŷ þ h6

h7x̂þ h8ŷ þ h9
: ð6Þ

Directly solving the equation ðoe=oŷÞ ¼ 0 leads to a polynomial in two variables of

order four in x̂ and order five in ŷ. The same happens for the partial derivative of e

with respect to x̂. Therefore, we first transform the images such as to lower the degree

of the polynomial. We use Euclidean transformations, which do not change dis-

tances, and thus the solution of the transformed problem will be the transformed

solution of the original problem.

At first we shift the points x and x0 to the origin of the first and the second image,

respectively. This is achieved by applying the following translations:

L ¼
1 0 �x

0 1 �y

0 0 1

0

@

1

A; L0 ¼
1 0 �x0

0 1 �y0

0 0 1

0

@

1

A:

After translating the images we have

L0x̂0 � L0HL�1Lx̂: ð7Þ

In this equation, � stands for ‘‘equal up to a nonzero scale.’’ Let B ¼ L0HL�1 be the

homography between the transformed images and �x ¼ Lx̂. We can easily verify that

O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 89

270 Chapter 10. Piecewise Planar Scenes

the first two entries in the third row of the matrix B equal the corresponding entries

in H after applying the translations, and so

B ¼
b1 b2 b3
b4 b5 b6
h7 h8 b9

0

@

1

A: ð8Þ

We can now rewrite (re-parameterize) the error term e as follows:1

eðx̂Þ ¼ eð�xÞ ¼ �x2 þ �y2 þ
b1�xþ b2�y þ b3

h7�xþ h8�y þ b9

 !2

þ
b4�xþ b5�y þ b6

h7�xþ h8�y þ b9

 !2

: ð9Þ

From (9) we can observe, that solving for the minimum of e would be simple if h8
were equal to 0, as oe=o�y would be linear in �y (e would be quadratic in �x). To achieve

this situation, we simply rotate the first image appropriately: we design a rotation

matrix R so that the homography between the rotated first image and the second

image, i.e., Q ¼ BR�1, satisfies q8 ¼ 0. With

R ¼
cosðaÞ � sinðaÞ 0

sinðaÞ cosðaÞ 0

0 0 1

0

@

1

A

the rotation angle a for which q8 ¼ h7 sinðaÞ þ h8 cosðaÞ ¼ 0 is obtained as

a ¼ arctan

�
�
h8

h7

�
: ð10Þ

Now we can rewrite the term e as follows:

eð~xÞ ¼ ~x2 þ ~y2 þ
q1~xþ q2~y þ q3

q7~xþ q9

 !2

þ
q4~xþ q5~y þ q6

q7~xþ q9

 !2

; ð11Þ

where ~x ¼ R�x ¼ RLx̂. The partial derivative oe=o~y is linear in ~y. The minimum is

reached in oe=o~y ¼ 0, so

~y ¼ �
q2q3 þ q5q6 þ q1q2~xþ q4q5~x

q22 þ q25 þ q29 þ 2q7q9~xþ q27~x
2
: ð12Þ

Now we can simply substitute (12) into (11) and find the minimum of e. Solving

oe

o~x
ð~x; ~yÞ ¼ 0

gives a polynomial of degree eight which is completely given in Appendix B. The

proof of correctness of the procedure described above, i.e., the proof that a global

minimum of the function e exists and that the partial derivatives are defined at it, can

be found in Appendix A.

1 The function e is parametrized not only by x̂, but also by x, x0, and H. The term eðx̂Þ actually stands

for eðx̂; x;x0;HÞ, whereas eð�xÞ stands for eð�x;Lx;L0x0;BÞ.

90 O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 271

3.1. The affine case

Eqs. (2) and (3) are linear in the entries of the mapping matrix and bilinear in the

entries of Y when a full homography matrix is sought.

Proposition 1. Eqs. (2) and (3) are linear in the entries of Y if and only if the mapping

is affine.

Proof. If (and only if) both h7 ¼ 0 and h8 ¼ 0, then (2) and (3) are linear in the entries

of Y. This exactly corresponds to affine mappings. �

For an affine transformation, x0 ¼ Ax, where

A ¼
a1 a2 a3
a4 a5 a6
0 0 1

0

@

1

A;

the geometric error can be easily obtained in closed form. As the error function

e ¼ ðx̂� xÞ
2
þ ðŷ � yÞ

2
þ ða1x̂þ a2ŷ þ a3 � y0Þ

2
þ ða4x̂þ a5ŷ þ a6 � y 0Þ

2

is order of two in both x̂ and ŷ, partial derivatives oe=ox and oe=oŷ are linear in both

x̂ and ŷ. Solving the system oe=ox̂ ¼ 0 and oe=oŷ ¼ 0 using, e.g. [12] yields (in the

general case) a unique solution

N ¼ ða25 þ 1Þða21 þ 1Þ � 2a1a2a4a5 þ a22 þ a22a
2
4 þ a24;

x̂ ¼
1

N
a1ða2a5a6
�

� a3 � a3a
2
5Þ þ a2a3a4a5 � ða4a6Þða

2
2 þ 1Þ þ xða25 þ a22 þ 1Þ

� yða1a2 þ a4a5Þ þ x0ða1 þ a1a
2
5 � a2a4a5Þ þ y 0ða4 � a1a2a5 þ a22a4Þ

�
;

ŷ ¼
1

N
a1ða3a4a5
�

þ a2a4a6Þ � ða5a6Þða
2
1 þ 1Þ � ða2a3Þða

2
4 þ 1Þ � xða1a2 þ a4a5Þ

þ yða21 þ a24 þ 1Þ þ x0ða2 � a1a4a5 þ a2a
2
4Þ þ y0ða5 � a1a2a4 þ a21a5Þ

�
:

4. Sampson’s error

To find the closest point on the variety VH to our measured correspondence

x $ x0, or X 2 R4, requires solving a polynomial of degree eight, which is computa-

tionally expensive. Another possibility is to compute an approximation of the geo-

metric error.

We can use the first-order Taylor approximation of tx and ty by their tangent hy-

perplanes in the measured point X. Let J be the Jacobian matrix

JH;x;x0 ¼

otxðXÞ

ox

otxðXÞ

oy

otxðXÞ

ox0
otxðXÞ

oy0

oty ðXÞ

ox

oty ðXÞ

oy

oty ðXÞ

ox0
oty ðXÞ

oy0

 !

:

O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 91

272 Chapter 10. Piecewise Planar Scenes

To simplify J for further use, we apply the observations that
otxðXÞ

oy0
¼ 0,

oty ðXÞ

ox0
¼ 0,

and
otxðXÞ

ox0
¼

oty ðXÞ

oy0
. We obtain J in the following form:

JH;x;x0 ¼ J ¼
j1 j2 j3 0

j4 j5 0 j3

� �
;

where j1 ¼ h1 � h7x
0, j2 ¼ h2 � h8x

0, j3 ¼ �h7x� h8y � h9, j4 ¼ h4 � h7y
0, and

j5 ¼ h5 � h8y
0 are the respective partial derivatives. Then, the first order Taylor ap-

proximation of t is

~tð~XÞ ¼ tðXÞ þ Jð~X� XÞ: ð13Þ

The approximate solution (Sampson�s error) might be found as the closest point

to X on the two-dimensional variety VS defined as follows:

VS ¼ f~X 2 R4 j ~tð~XÞ ¼ 0g:

As VS is linear, the solution is given by

XS ¼ JþtðXÞ þ X;

where Jþ ¼ JTðJJTÞ
�1

is the pseudo-inverse of the Jacobian J.

If we have a closer look at the function ~t (Eq. (13)), we can observe that it is sim-

ilar to the function t, but linear in the entries of ~X. If we examine it in more detail, we

find that Sampson�s error is in fact the geometric error for the affine transformation,

that locally approximates the homography H. The affine approximation x0 ¼ AHx of

the homography H in the measured points x $ x0 is as follows:

AH ¼
1

j3

j1 j2 �j1x� j2y � j3x
0 þ txðXÞ

j4 j5 �j4x� j5y � j3y
0 þ tyðXÞ

0 0 j3

0

@

1

A:

The affine transformation AH has the same partial derivatives as H in the measured

point X. Let us give a geometric interpretation of AH. The construction of AH based

on the points that are mapped identically by both, the homography H and its affine

approximation AH, gives an illustrative explanation. These points are given as the

fixed points of A�1
H
H. The eigenvectors and eigenvalues of A�1

H
H are in the general

case (using [12]) v1 ¼ ðh8;�h7; 0Þ
T
, k1 ¼ 1, v2 ¼ ð0; h7xþ h8y; h8Þ

T
, k2 ¼ 1, and

v3 ¼ H�1x0, k3 6¼ 1. Hence, there is a line of fixed points, passing through the points

v1 and v2 (including x ¼ xv1 þ v2) and a fixed point H�1x0. The point v1 is the only

point (in general) that is mapped by the non-affine homography from the line at

infinity to the line at infinity, i.e., H�1ðH�Tð0; 0; 1Þ
T
� ð0; 0; 1Þ

T
Þ, satisfying

ðh7; h8; h9Þv1 ¼ 0.

5. Geometric properties

An important property of an error measure is its independence of the choice of the

Cartesian coordinate system in the images. In this section, we study the behavior of

92 O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 273

the discussed error measures under the application of rigid transformations to the

images. The originally formulated relation x0 � Hx changes to

T0x0 � ðT0HT�1ÞTx;

where T and T0 represent the rigid image transformations of the first and the second

image, respectively.

As distances in the images are not affected by rigid transformations and the new

homography links the transformed points, the geometric error remains the same. We

already used this property in Section 3.

Proposition 2. The Jacobian J is covariant to any affine transformation of the images.

Let T and T0 be affine transformations of the first and second image respectively, and

H1, H2 be homographies satisfying JH1;x;x0 � JH2;x;x0 . Then JT0H1T
�1;Tx;T0x0 � JT0H2T

�1;Tx;T0x0 .

Proof. Denote the affine transformations as

T ¼
t1 t2 t3
t4 t5 t6
0 0 1

0

@

1

A and T0 ¼
t01 t02 t03
t04 t05 t06
0 0 1

0

@

1

A:

The Jacobian J after transforming the first and the second image, respectively can

be expressed in terms of the transformations T and T0 and the original Jacobian J as

follows:

JT0H;x;T0x0 ¼
j1t

0
1 þ j4t

0
2 j2t

0
1 þ j5t

0
2 j3 0

j1t
0
4 þ j4t

0
5 j2t

0
4 þ j5t

0
5 0 j3

� �
and ð14Þ

JHT�1;Tx;x0 ¼
�j2t4þj1t5
t1t5�t4t2

j2t1�j1t2
t1t5�t4t2

j3 0
�j5t4þj4t5
t1t5�t4t2

j5t1�j4t2
t1t5�t4t2

0 j3

 !

: ð15Þ

From Eqs. (14) and (15) it follows, that the transformed Jacobian can be expressed

as a function of the original Jacobian J and the affine transformations T and T0. The

proposition is a straightforward consequence of this fact. �

Proposition 3. Sampson’s error measure is invariant to the choice of Cartesian coor-

dinate system, i.e., any rotation or translation of the images does not affect it.

Proof. From its definition, the affine approximation AH of H has the same Jaco-

bian in the measured point X as H. From Proposition 2 the Jacobians

JT0HT�1;Tx;T0x0 � JT0AHT
�1;Tx;T0x0 for any affine transformations T and T0. The composition

of affine transformations T0AHT
�1 is an affine transformation, hence

AT0HT�1 ¼ T0AHT
�1: ð16Þ

Both rotation and translation fall into the family of affine transformations and so the

Eq. (16) holds for any choice of Cartesian coordinates. Sampson�s error is then a

geometric error for AT0HT�1 , which we already know is invariant to the choice of

Cartesian coordinate system. �

O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 93

274 Chapter 10. Piecewise Planar Scenes

Note that a general affine transformation does preserve neither the geometric nor

Sampson�s error, since it does not preserve perpendicularity and distances. However,

Sampson�s error changes in the same manner as the geometric error does, because it

is the geometric error of the affine approximation AH of H that is covariant to affine

transformations of images.

6. Experiments

From Section 5, we already know, that Sampson�s and the geometric error are

equivalent for pure affine transformations. The aim of this experiment is to show

their behavior with respect to the influence of the non-affine part of a general homog-

raphy H.

Consider now the decomposition H ¼ PA, where A is an affine transformation and

P has the form

P ¼
1 0 0

0 1 0

p7 p8 1

0

@

1

A:

Let the decomposition H ¼ PA exist. Let also P0 ¼ PT be of the same form as P and

let A0 ¼ T�1A be an affine transformation. Then it can be easily shown that if

H ¼ P0A0 then T must be the identity to keep both A0 affine and P0 in the desired form.

Hence, if such a decomposition exists then it is unique. Let G ¼ H�1. Then from

H�1P ¼ GP ¼ A�1 we get the equations for p7 and p8 as

p7 ¼ �
g7

g9
and p8 ¼ �

g8

g9
:

Thus, the decomposition exists iff g9 6¼ 0. The geometric meaning of this condition is

that the origin of the coordinate system of the second image does not lie on the image

of the line at infinity of the first image, i.e., ðH�Tl1Þ
Tð0; 0; 1ÞT 6¼ 0.

To acquire real data, we shot two images of a checkerboard, see Fig. 3. We

manually selected four corresponding points in each image. The four points form

rectangles R and R0 that are depicted in solid line in Figs. 3A and B, respectively.

From these four point-to-point correspondences the homography H was calculated.

The origin of the coordinate system was chosen to coincide with one of the corners

and is depicted by the �X� marker. The homography H was decomposed into

H ¼ PA. The dashed rectangle in Fig. 3B is the rectangle R mapped from the first

image to the second by the affine part A of H. The dashed line in Fig. 3A arose as a

mapping of the dashed rectangle in the second image back to the first by H�1, i.e.,

the image of R by H�1A within the first image.

In this experiment, we will use the following notation: x and x0 stand for noise-free

points, i.e., x0 � Hx; x0 and x0
0 denote the noisy points. The points, where the geomet-

ric error is minimized are x̂ and bx0, and points where Sampson�s error is minimized

are xS and x0
S. Note that bx0 � Hx̂, but x0

S¿HxS in general. In our experiment, we

measured different errors: d? and dS are the geometric and Sampson�s errors

94 O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 275

respectively, d�
? ¼

ffi
d2ðx; ~xÞ þ d2ðx0; ~x0Þ

p
, similarly d�

S ¼
ffi
d2ðx; xSÞ þ d2ðx0; x0

SÞ
p

. The

displacement of points xS and x0
S is measured either as the distance in the second im-

age d2ðxS; x
0
SÞ ¼ dðHxS; x

0
SÞ or by using the geometric error d?ðxS; x

0
SÞ. The errors

were measured at points depicted in Figs. 3A and B. A Gaussian noise with

r ¼ 0:3 was added to each coordinate of a noise-free point correspondence. All val-

ues were obtained as averages over all points over 1010 realizations of noise and are

shown in Fig. 4.

The graphs in Fig. 4 show that the geometric (A,B) and Sampson�s (C,D) error

provide very similar results independently of the value of the non-affine part of

the planar homography. The same graphs show that the realization of the noise

has a much stronger influence than the values of p7 and p8 on both types of the error.

The value of r of the Gaussian noise was set to r ¼ 0:3 in this experiment. We ob-

served the same behavior for r 2 h10�4; 10i. Graphs E and F show that the displace-

Fig. 3. Experimental setup. Two images of a checkerboard taken by a digital camera. The homography H

was estimated from four point-to-point correspondences, shown as corners of the solid-line rectangles. The

dashed rectangles show the effect of the affine part of the decomposed H. The origin of the decomposition

is depicted by the �X� marker.

O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 95

276 Chapter 10. Piecewise Planar Scenes

ment of the points where the Sampson�s error is minimized, i.e., xS and x0
S, depends

on the value of p7 and p8. The more the homography ‘‘squeezes’’ the image, the more

displaced the points are. On the other hand, the displacement is in four orders of

magnitude smaller than the error itself.

Fig. 4. Dependency of: (A) d?, (B) dS, (C) d
�
?, (D) d�

S , (E) dðHxS; x
0
SÞ, and (F) d?ðxS;x

0
SÞ on the non-affine

part of the homography H.

96 O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 277

The main conclusion of the experiment conducted in this section is that Sampson�s

error gives sufficiently good results in 2D that are comparable with the geometric er-

ror. The displacement of points xS and x0
S is small, but still significantly higher than

machine precision and can cause problems while reconstructing 3D points (see Sec-

tion 7).

7. Triangulation

The method presented in this paper would be useful in applications where a high

accuracy is desired. In this section, we will mention one problem where we can use

the geometric error for homographies to improve the accuracy of the reconstruction

of planes in the scene. We call it planar triangulation. It is an extension of the trian-

gulation problem [6].

The two rays in space, the first one from camera center C through image point x

in the first image and the other one from C0 through x0, will intersect only if

x0TFx ¼ 0. If noise is attached to the image coordinates, then the rays may not

meet.

In the triangulation problem [6], it is assumed that the fundamental matrix F is

known exactly. For this fundamental matrix, the points ~x and ~x0 are found, so that
~x0TF~x ¼ 0 and the sum of the square distances dðx; ~xÞ

2
þ dðx0; ~x0Þ

2
is minimal.

Assume there is a (dominant) plane in the scene and H is the homography induced

by this plane. When the triangulation method [6] is used, the additional constraint of

the planarity is omitted and the reconstructed points will in general not lie in a single

plane. The homography H is compatible [10, Section 12] with the fundamental matrix

if, and only if for all x̂

ðHx̂Þ
T
Fx̂ ¼ 0:

This means all the correspondences satisfying x̂0 � Hx̂ will automatically satisfy the

epipolar geometry x̂0TFx̂ ¼ 0 and hence the two rays in space, passing through x and

x0, respectively, will intersect. Moreover all these intersections in space given by

correspondences satisfying homography H lie on the plane inducing H.

7.1. Experiment

We have made synthetic experiments with the planar triangulation using images

of an artificial scene (Figs. 5A and B). From noise-free images we obtained the fun-

damental matrix F and the homography H. For testing purposes we used only the

points on the front face of the building. Then, we added Gaussian noise with stan-

dard deviation r to the image coordinates. From these noisy points we calculated

corrected points using the standard and the planar triangulation. Fig. 5 gives the

comparison of the distance of corrected points to the original noise-free points, de-

noted as 2D error (in pixels), and its standard deviation—graphs C and D. We then

computed a 3D reconstruction using the corrected points (both from the standard

and the planar triangulation). The distance of reconstructed 3D points to the

O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 97

278 Chapter 10. Piecewise Planar Scenes

Fig. 5. Synthetic experiment with images (A) and (B). The graphs compare errors in triangulation using

the fundamental matrix F (standard) and the homography H (planar) in images (C) and (D) and in 3D

space (E) and (F). For testing, only points lying in the plane of the frontal side of the building were used.

The dimensions of the building are 9� 7� 1 units.

98 O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 279

original 3D points is denoted as 3D-error (in units, the building dimensions are

9� 7� 1)—graphs E and F.

The result of this experiment shows that the decrease in the 2D error is not signif-

icant. On the other hand, the 3D error is considerably decreased by the planar trian-

gulation.

When we tried to use Sampson�s approximation followed by the standard trian-

gulation (it consists of computing pseudo-inversion and solving a polynomial of de-

gree six), we got similar results to those when using the planar triangulation.

The experiment shows that the accuracy of the reconstruction of a planar scene

could be improved by using the planar triangulation instead of the standard one. Us-

ing Sampson�s approximation together with the standard triangulation gives very

similar results as the planar triangulation but it is computationally more expensive

and the planarity of the reconstructed scene is not guaranteed.

8. Conclusions

In this paper, a new method for computing the geometric error for homography

was introduced. The main contribution of the paper is the derivation of the formula

for computing the error. This formula has not been known before. It is interesting to

see that the error is obtained as a solution of a degree eight polynomial. We have also

proved that there indeed exist a corrected correspondence that minimizes the geo-

metric distance to the measured correspondence, and that the proposed method finds

it correctly.

We tested two different methods of measuring correspondence error with re-

spect to given homography H, the geometric error by the Sampson�s error. Our

experiments had shown that the Sampson�s error is sufficiently precise for a wide

range of applications including RANSACRANSAC . We also discovered (and proved) nice

properties of the Sampson�s error with respect to affine transformations of im-

ages. The applications where the use of the geometric error could bring higher

accuracy were shown. This statement is encouraged with experiments with the

planar triangulation.

Appendix A. Proof of correctness

Proposition 4. Let H be a regular matrix of the following form:

H ¼
h1 h2 h3
h4 h5 h6
h7 0 h9

0

@

1

A:

Then the function

e ¼ x2 þ y2 þ
x0

w0

� �2

þ
y 0

w0

� �2

; ðA:1Þ

O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 99

280 Chapter 10. Piecewise Planar Scenes

where

x0 ¼ h1xþ h2y þ h3; ðA:2Þ

y0 ¼ h4xþ h5y þ h6; ðA:3Þ

w0 ¼ h7xþ h9 ðA:4Þ

has a global minimum. In this minimum the partial derivatives of e are defined and

equal to zero.

Proof. First of all we introduce the notation used throughout the proof. Let us write

e as a sum of three functions e1 ¼ x2 þ y2, e2 ¼ ðx0=w0Þ
2
, and e3 ¼ ðy 0=w0Þ

2
, i.e.,

e ¼ e1 þ e2 þ e3. Since all ei, i 2 f1; 2; 3g, are nonnegative, we have eP ei: We can

also define three lines, ‘x0 , ‘y0 , and ‘w0 in R2 letting x0, y 0, and w0 equal zero in (A.2),

(A.3), and (A.4), respectively. Let A be the point of intersection of ‘w0 with ‘x0 and B

be the point where ‘w0 intersects ‘y0 . Since H is regular, there does not exist any

x ¼ ðx; y; 1Þ
T
, so that Hx ¼ 0. Thus A and B are two different points. The situation is

depicted in the Fig. 6.

The function e is continuous and even differentiable throughout the region where

the denominator h7xþ h9 is nonzero and finite, i.e., in R2 n ‘w0 . The term e1 tends to

plus infinity in all points of ‘w0 except for A where it is guaranteed to be nonnegative.

Analogously, the term e2 tends to plus infinity in all points of ‘w0 except for B where

it is guaranteed to be nonnegative. The sum of e1 and e2, and thus e, tends to plus

infinity in all points of ‘w0 .

Fig. 6. Lines ‘x0 , ‘y0 , and ‘w0 are sets of points, where x0 ¼ 0, y 0 ¼ 0, and w0 ¼ 0, respectively.

100 O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 281

We choose a point in R2 n ‘w0 and take the value of e in it for a constant K. The set

I ¼ fðx; yÞ 2 R2 n ‘w0 j eðx; yÞ6Kg

is nonempty and closed. It is also bounded because it is a subset of the circle

fðx; yÞ 2 R2 j x2 þ y2 6Kg:

Therefore I is a compact set and so it contains all global minima of e. At least one

global minimum of e exists because the values of e on I are images of a compact set

under a continuous mapping, thus they form a compact subset of R. �

Appendix B. Coefficients of the polynomial

In Section 3, we derived the formula for computing the geometric error. Here we

focus on the implementation.

First of all we can see that the image rotation matrix R depends only on h7 and h8
(10). From (8) we know that R stays unchanged by the translations L and L0. So the

matrix R could be computed directly from H. Matrix R is the same for all the corre-

spondences.

Coefficients of the resulting polynomial of degree eight are sums of products of

entries of the matrix Q, which are quite complicated. We can apply image rotation

matrix R0 to the second image. We have

R0
~x0 ¼ R0Q~x;

and Q0 ¼ R0Q. To decrease the number of summands, we can design this rotation in

the same way as the matrix R to make q04 ¼ 0. Note, that q08 stays unchanged by the

rotation R0, so q08 ¼ q8 ¼ 0. Matrix R0 differs for each correspondence.

After applying the rotations on both images, we have homography �Q in the

form

�Q ¼
�q1 �q2 �q3
0 �q5 �q6
�q7 0 �q9

0

@

1

A:

The resulting polynomial is in the following form:

X8

i¼0

�pi~x
i:

Here is the list of the coefficients pi expressed in entries �q of the matrix �Q. We use the

following substitutions:

t ¼ �q3�q5 � �q2�q6;

r ¼ �q22 þ �q25 þ �q29:

The polynomial coefficients are:

�p0 ¼ �q39ðð��q23 � �q26Þ�q7�q9 þ �q1�q3rÞ þ �q1�q5�q9rt � �q7ð�q
2
9 þ rÞt2;

O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 101

282 Chapter 10. Piecewise Planar Scenes

�p1 ¼ � 4�q23�q
2
7�q

3
9 � 4�q26�q

2
7�q

3
9 þ 3�q1�q3�q7�q

2
9r þ �q9rð�q

2
1ð�q

2
5 þ �q29Þ þ �q29rÞ

� �q1�q5�q7rt � 4�q27�q9t
2;

�p2 ¼ �q7ð�q9ð�6ð�q23 þ �q26Þ�q
2
7�q9 � �q1�q3�q7ð�q

2
9 � 3rÞ þ 4�q39r þ 3�q9r

2

þ �q21�q9ð�q
2
5 þ �q29 þ 3rÞÞ � 5�q1�q5�q7�q9t � 2�q27t

2Þ;

�p3 ¼ �q27ð�q9ð�4ð�q23 þ �q26Þ�q
2
7 þ 4�q49 þ 14�q29r þ 3r2Þ þ �q21ð�ð�q25�q9Þ þ 3�q9ð�q

2
9 þ rÞÞ

þ �q1�q7ð�q3ð�3�q29 þ rÞ � 3�q5tÞÞ;

�p4 ¼ �q37ðð��q23 � �q26Þ�q
2
7 � 3�q1�q3�q7�q9 þ 16�q49 þ 18�q29r þ r2 þ �q21ð��q25 þ 3�q29 þ rÞÞ;

�p5 ¼ �q47ð�ð�q1�q3�q7Þ þ �q21�q9 þ 25�q39 þ 10�q9rÞ;

�p6 ¼ �q57ð19�q
2
9 þ 2rÞ;

�p7 ¼ 7�q67�q9;

�p8 ¼ �q77:

References

[1] Y. Kanazawa, K. Kanatani, Stabilizing image mosaicing by model selection, in: Proc. Second

Workshop on 3D Structure from Multiple Images of Large-scale Environments and Applications to

Virtual and Augmented Reality, 2000, pp. 10–17.

[2] P. Pritchett, A. Zisserman, Wide baseline stereo matching, in: Proc. Internat. Conf. Computer Vision,

1998, pp. 754–760.

[3] J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide baseline stereo from maximally stable

extremal regions, in: Proc. British Machine Vision Conf., vol. 1, BMVA, London, UK, 2002, pp.

384–393.

[4] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography, Commun. ACM 24 (6) (1981)

381–395.

[5] K. Kanatani, Statistical Optimization for Geometric Computation: Theory and Practice, vol. 18 of

Machine Intelligence and Pattern Recognition, Elsevier, Amsterdam, 1996.

[6] R.I. Hartley, P. Sturm, Triangulation, Comput. Vision Image Und. 2 (68) (1997) 146–157.

[7] P. Sturm, Vision 3D non calibr�ee—contributions �a la reconstruction projective et �etude des

mouvements critiques pour l�auto-calibrage, Ph.D. Thesis, INPG, Grenoble, France, 1997.

[8] O. Chum, The reconstruction of 3D scene from the correspondences in images, Master�s Thesis, MFF

UK, Prague, Czech Republic, January 2001.

[9] O. Chum, T. Pajdla, Evaluating error of homography, in: Proc. Computer Vision Winter Workshop,

Wien, Austria, 2002, pp. 315–324.

[10] R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University

Press, Cambridge, UK, 2000.

[11] P.D. Sampson, Fitting conic sections to very scattered data: An iterative refinement of the Bookstein

algorithm, Comput Graph. Image Process. 18 (1982) 97–108.

[12] Waterloo Maple Inc., Maple V, http://www.maplesoft.com.

102 O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102

Paper 23: The Geometric Error for Homographies, CVIU 2005 [8] 283

3D SSD Tracking with Estimated 3D Planes

Dana Cobzas∗ Peter Sturm
INRIA Rhone-Alpes

655 Av. de l’Europe, 38330 Montbonnot, France
{cobzas,sturm}@inrialpes.fr

Abstract

We present a tracking method where full camera posi-
tion and orientation is tracked from intensity differencesin
a video sequence. The camera pose is calculated based on
plane equations, and hence does not depend on point corre-
spondences. The plane based formulation also allows addi-
tional constraints to be naturally added, e.g. perpendicular-
ity between walls, floor and ceiling surfaces, co-planarity
of wall surfaces etc. A particular feature of our method is
that the full 3D pose change is directly computed from tem-
poral image differences without making a commitment to a
particular intermediate (e.g. 2D feature) representation.We
experimentally compared our method with regular 2D SSD
tracking and found it more robust and stable. This is due
to 3D consistency being enforced even in the low level reg-
istration of image regions. This yields better results than
first computing (and hence committing to) 2D image fea-
tures and then from these compute 3D pose.
Keywords: visual tracking, structure estimation

1. Introduction

In visual tracking the pose of an object or the camera mo-
tion is estimated over time based on image motion informa-
tion. Some applications such as video surveillance only re-
quire that the target object is tracked in image space. For
other applications such as augmented reality and robotics
full 3D camera motion is needed. In this paper we concen-
trate on tracking full 3D pose.

One way to classify tracking methods is into feature-
based and registration based. In feature-based approaches
features in a (usually apriori) 3D model are matched with
features in the current image. Commonly a feature detec-
tor is used to detect either special markers or natural im-
age features. Pose estimation techniques can then be used
to compute the camera position from the 2D-3D corre-
spondences. Many approaches use image contours (edges
or curves) that are matched with an apriori CAD model of

∗ Acknowledgments to NSERC Canada for supporting this work.

the object [11, 14, 6]. Most systems compute pose param-
eters by linearizing with respect to object motion. A char-
acteristic of these algorithms is that the feature detection is
relatively decoupled from the pose computation, but some-
times past pose is used to limit search ranges, and the global
model can be used to exclude feature mismatches [11, 2].

In registration based tracking the pose computation is
based on directly aligning a reference intensity patch with
the current image to match each pixel intensity as closely
as possible. These methods assume that the change in lo-
cation and appearance of the target in consecutive frames
is small. Image constancy can be exploited to derive effi-
cient gradient based schemes using normalized correlation,
or a sum-of-squared differences (e.g.L2 norm) criterion,
giving the technique its popular name SSD tracking. Un-
like the two previous approaches which build the definition
of what is to be tracked into the low level routine (e.g. a line
feature tracker tracks just lines), in registration based track-
ing any distinct pattern of intensity variation can be tracked.
The first such methods required spatial image derivatives to
be recomputed for each frame when “forward” warping the
reference patch to fit the current image [12], while more re-
cently, efficient “inverse” algorithms have been developed,
which allow the real time tracking for the 6D affine [7] and
8D projective warp [3]. A more complicated appearance
model can be used to compensate changes in intensity [7]
or can be learned as a mixture of stable image structure and
motion information [10].

In this paper we extend the registration-based techniques
by constraining the tracked regions to 3D planes. This will
allow tracking full 3D camera position like in the model-
based approaches but eliminates the need for explicit feature
matching. The update is based on the same SSD criterion as
the classical registration-based methods with the difference
that the update is done directly on the 3D parameters and
not on the 2D warp parameters. The approach is thus dif-
ferent from previous approaches that first estimate the ho-
mography warp from salient points and then the 3D mo-
tion parameters from the homography [15]. The 3D plane
parameters are estimated and optimized in a training phase
(typically≈ 100 frames) using structure-from-motion tech-
niques. The algorithm does not require complete scene de-

Paper 24: 3D SSD tracking with estimated 3D planes, CRV 2005 [9] 285

composition in planar facets, but works with few planar
patches identified in the scene. Man-made environments
usually contain planar structures (e.g. walls, doors). Some
advantages of using a global 3D model and local surface
patches are that only surfaces with salient intensity varia-
tions need to be processed, while the 3D model connects
these together in a physically correct way. We show ex-
perimentally that this approach yields more stable and ro-
bust tracking than previous approaches, where each surface
patch motion is computed individually.

Related work of incorporating a 3D model into registra-
tion based tracking involve a full 3D model (3D patches
defined by estimated 3D points) of the regions that are
tracked [5]. Another similar approach is presented by Baker
et al. [16] where the 3D model is calculated from a 2D active
appearance model (AMM) and used to improve the track-
ing. In the proposed technique we loosen this constraint and
require only the plane parameters to be estimated. Any re-
gions on these planes can then be tracked.

The rest of the paper is organized as follows: The
next section describes the tracking algorithm, then Sec-
tion 3 presents the method for estimating plane equations
from images. The complete tracking system is presented in
Section 4 and its qualitative and quantitative evalua-
tion in Section 5 followed by conclusions and a discussion
in Section 6.

2. Tracking 3D planes

We consider the problem of tracking the motion of a
camera looking at a rigid structure using image registration.
The structure is represented by a set of 3D planes that are
estimated a-priori as described later in Section 3. Full 3D
camera motion is tracked by registering image regions on
corresponding planes through the induced homography.

2.1. Homography induced by a plane

It is well known that images of points on a plane in two
views are related by a homography [8]. For planes in gen-
eral position this homography is uniquely determined by the
plane equation. A 3D plane is represented asπ = [nT , d],
wheren is the unit normal andd is the signed distance
from the origin to the plane. For pointsX on the plane
nTX + d = 0. If the world coordinate system is aligned
with the first camera coordinate system, the calibrated pro-
jection matrices have the form:

P0 = K[I|0] Pt = K[R|t] (1)

whereK is the camera matrix (internal parameters) andR, t
represents the 3D motion of the second camera with respect
to the first one. Now, the homography induced by the plane
π has the form:

H = K(R − tnT /d)K−1 (2)

Image points in the two viewsI1, I2 are then related by
u2 = Hu1. If the image points are normalized with re-
spect to camera internal parametersx = K−1u = [R|t]X
the homography becomes:

H = R − tnT /d (3)

In the tracking problem formulation the goal is to directly
estimate camera motionR, t that corresponds to the homog-
raphy that best aligns the image points in two views assum-
ing that the plane parameters are known.

2.2. Region-based tracking for planes

Assume we have estimated parameters in the plane equa-
tions for several planar regions in the scene. Letxk =
{x1,x2, . . .xKk

} denote all the (interior) normalized im-
age pixels that define the projection of the planar region
πk = [nT

k , dk] in imageI. We refer toI0 = T as theref-
erence imageand to the union of the projections of the pla-
nar regions inT , ∪kT (xk) as thereference template. The
goal of the tracking algorithm is to find the (camera) mo-
tion Pt = [Rt, tt] that best aligns the reference template
with the current imageIt. The problem is formulated as
finding an incremental motion update∆p from frameIt−1

to It that is added to the current motion. The model is de-
fined so it is aligned with the first frame (template). A more
precise formulation follows next (refer to Figure 1).

As described in the previous section the image motion
in imaget for each individual planar regionk can be per-
fectly modeled by a homography warpH(xk; Pt, πk) =
Rt − ttn

T
k /dk. In the following we denote the homogra-

phy warp byH(xk;pt) wherep = [αx, αy, αz , tx, ty, tz]
T

are column vectors of the 3D motion parameters that de-
fine the camera motion (Euler angles and translation). The
main difference from the previous approaches in registra-
tion based tracking [3] is that we directly compute 3D mo-
tion parameters unified over the whole scene as opposed to
2D warp parameters for each individual patch.

Under the common image constancy assumption (e.g. no
illumination variation, no occlusion) used in motion detec-
tion and tracking [9] the tracking problem can be formu-
lated as findingpt such as:

∪kT (xk) = ∪kIt(H(xk;pt)) (4)

pt = pt−1 ◦∆p (where ’◦’ denotes the composition opera-
tion) can be obtained by minimizing the following objective
function with respect to∆p:

∑

k

∑

x

[T (xk) − It(H(xk;pt−1 ◦ ∆p))]2 (5)

The update in position∆p is based on the image difference
between the template image and the current image warped
in the space of the template, the update in position being
place on the side of the current image. As a consequence,

286 Chapter 10. Piecewise Planar Scenes

[I|0]=p

H(x ;p)

0
[R | t]=pt t t

Stabilizing 3D planes

H(x ; p)k

k t

∆

H(x ;p)
t−1k

(n ,d)k k

Figure 1. Overview of the 3D plane based
tracking system. In standard SSD tracking
2D surface patches are related through a ho-
mography H between frames. In our system
a 3D planes are estimated (from video alone),
and global 3D pose change ∆p is computed,
and used to enforce a consistent update of all
the surface warps.

the computations are performed in the space of the current
image.

For efficiency, we solve the problem by an inversecom-
positional algorithm [3] that minimizes the error between
the template image and the current image warped in the
space of the template image, with the update on the tem-
plate image (see Equation 7). As shown below, working in
the space of the template image allow more computations
to be done only once at the initialization speeding up the
tracking. H becomes the homography from the imaget to
the template image (inverse of Equation 3). The goal is to
find ∆p that minimizes

∑

k

∑

x

[T (H(xk; ∆p)) − It(H(xk;pt−1))]
2 (6)

where in this case the 3D motion parameters are updated as:

Pt = Pt−1 ◦ inv(∆P) (7)

whereinv(P) = [RT | − RT t] for P = [R|t]. As a conse-
quence the homography warp update is:

H(xk;pt) = H(xk; ∆p)−1 ◦ H(xk;pt−1) (8)

Performing a Taylor expansion of Equation 6 gives:

∑

k

∑

x

[T (H(xk;0))+∇T
∂H

∂p
(xk;0)∆p−It(H(xk;pt))]

(9)
As the motion of the template image is zero (the model is
aligned with the template frame)T = T (H(xk;0)). Denot-
ing the image derivatives byM

M =
∑

k

∑

x

∇T
∂H

∂p
(10)

equation 9 can be rewritten as:

M∆p ≃ et (11)

whereet represents the image difference between the tem-
plate regions and warped image regions, and the motion∆p

is computed as the least squares solution to Equation 11.
The image derivativesM are evaluated at the reference

posep = 0 and they are constant across iterations and can
be precomputed, resulting in an efficient tracking algorithm
that can run in real time (see Section 4).

3. Estimating planes equations from images

The tracking algorithm described in Section 2.2 requires
knowledge of the plane parameters for each planar region
that is tracked. The plane equations are estimated from im-
ages in a bootstrapping phase. Salient feature points on each
plane are tracked using standard (2D image-plane) SSD
trackers as in [3, 7]. The grouping of the points depend-
ing on the plane can be easily solved by having the user
mark planar regions in the first frame.

We first present the algorithm that computes a plane
equation from images of points on the plane in two im-
ages. It is a special case of the structure from motion prob-
lem where the camera is internally calibrated and the fea-
ture points belong to a physical plane. The homography in-
duced by the planeH is robustly computed using RANSAC
from 4 or more corresponding points. Knowing that it is of
the formH = R− tnT /d, the motion and structure param-
eters{R, 1

d
t,n} can be computed [13]. There are in gen-

eral four solutions but only at most two are physically valid
by imposing the positive depth constraint (model points are
in front of the camera).

In a more general case, when multiple planes are viewed
in several images, a reference view is chosen and the cor-
responding plane homographies that relate the reference
view with additional views are computed. The motion for
each frame is averaged over the motions estimated from
each plane homography and the plane parameters are av-
eraged over the ones computed from several views. Assum-
ing a smooth motion between adjacent views only the so-
lution that corresponds to the motion closest to the motion
of the previous frame is chosen. For the first pair one of the

Paper 24: 3D SSD tracking with estimated 3D planes, CRV 2005 [9] 287

two physically valid solutions is chosen. The scale of the
scene is also disambiguated by fixing the distance to one
plane. At the end a nonlinear optimization using Levenberg-
Marquardt algorithm over all the frames is performed. The
error that we optimize is the symmetric transfer error for
points related through a homography:

{R2, t2, . . . Rm, tm;n1, d1, . . . ,nk, dk} =
argmin

∑
t

∑
k

∑
xtk

d2(xtk, Htkx1k) + d2(x1k, H−1

tk xtk)
(12)

This is not exactly the maximum likelihood estimator under
Gaussian noise but is more practical in our case as it will
give the best motion and plane structure without explicitly
computing the 3D points coordinates.

3.1. Incorporating constraints between planes

Known constraints between planes such as perpen-
dicularity or parallelism of walls can potentially stabi-
lize the tracking. We impose constraints by a minimum
parametrization of the plane parameters as in [4].

Consider two planesπ1 = [nT
1
, d1],π2 = [nT

2
, d2]. A

perpendicularity constraint can be algebraically expressed
by a vanishing dot product between the plane normals:

n11n21 + n12n22 + n13n23 = 0 (13)

This bilinear constraint can be enforced by eliminating one
plane parameter. We chose to eliminate the parameternik

such that the absolute value of the corresponding parameter
on the second planenjk is maximal over all the parameters.

For the other type of constraint when the planes are par-
allel we impose that the normals of the two planes are the
same. This eliminates all parameters that represent the unit
normal of one plane.

n1k = n2k, k = 1, 2, 3 (14)

The resulting plane parameters and the originally re-
covered motions are then optimized using the same Equa-
tion 12. A full parametrization of the planes is recovered for
every plane from Equations 13,14. A potentially somewhat
more accurate approach would involve obtaining a minimal
parameterization of 3D points on constrained planes and es-
timating the structure of those points and the camera mo-
tion from feature correspondences. This would allow defin-
ing a maximum likelihood estimator under Gaussian image
noise. The plane parameters are then computed from the es-
timated 3D points.

4. Tracking system overview

We incorporated the proposed plane tracking algorithm
into a system that first initializes plane equations from 2D
image tracking over a limited motion and then switches to
track points on the estimated 3D planes.

Bootstrapping phase

1. The user marks planar regions in the first frame and
specifies plane constraints (parallelism, perpendicular-
ity) as applicable. Feature points inside these regions
are tracked using standard SSD 2D trackers.

2. Plane parameters are first initialized by averaging close
form solutions from homographies and then a minimal
parametrization is optimized together with the esti-
mated motion over all the training frames as described
in Section 3.

3. The 3D planes are related to the current frame using
the 2D tracked points. This will align the origin of the
world coordinate system with the current frame. Then
the plane based tracking is initialized by computing the
derivative imagesM (Equation 10).

Tracking phase

The tracking now continues with 2D surface patches inte-
grated in the 3D model of the planes that enforces a glob-
ally consistent motion for all surface patches as described
in Section 2.2.

1. An incremental position update∆p is computed based
on image differences between the regions in the refer-
ence template and the warped regions from the current
image (Equation 11).

2. The global camera position is updated based on Equa-
tion 7.

5. Experiments

Two important properties of tracking methods are con-
vergence and accuracy. Tracking algorithms based on opti-
mization and spatio-temporal derivatives (Equation 9) can
fail to converge because the image difference between con-
secutive framesIt−1, It is too large (more than just few
pixels), and the first order Taylor expansion (Equation 9)
aroundpt−1is no longer valid, or some disturbance causes
the image constancy assumption to be invalid.

In the numerical optimization the pose update∆p is
computed by solving an overdetermined equation system,
Equation 11. Each pixel in a tracking patch provides one
equation and each model freedom (DOF) one variable. The
condition number of the linearized motion modelM affects
how measurement errors propagate into∆p, and ultimately
if the computation converges or not. In general, it is more
difficult to track many DOF. In particular, the homography
warp (that incorporates scaling and out-of-plane rotations)
causes less apparent image change compared to a 2D trans-
lational warp. By tracking a connected 3D model, the track-
ing convergence is no longer solely dependent on one sur-
face patch alone, and the combination of differently located
and oriented patches can give an accurate 3D pose estimate
even when each patch would be difficult to track individu-
ally.

288 Chapter 10. Piecewise Planar Scenes

In the first experiment we compared the tracking stability
for the plane based tracker and the traditional homography
based tracker. The results are shown in Figure 2 (above).
When three regions are individually tracked using an 8DOF
homography by the algorithm from [3] (top images) the first
region is lost already after70 frames. The conditionnum-
bers forM vary between4 ∗ 106 and1 ∗ 107, indicating a
numerically ill conditioned situation. When instead the re-
gions are related by the global model, pose is successfully
tracked through the whole sequence of 512 frames (middle,
bottom of Figure 2). The condition number of the 6DOF (3
rot, 3 trans) model is 1000, which is significantly better than
for the 8DOF homography. Imposing constraints on the esti-
mated planes (e.g. roof planes perpendicular to front plane)
further stabilizes the trackers (last row of Figure 2) . One of
the trackers (the window on the tall house) starts drifting at
about frame250 when using the unconstrained model (mid-
dle row of Figure 2). The experiment is illustrated also in
video1 [1] where the red trackers use 8DOF homography
the green trackers use general 3D planes and the blue ones
constrained 3D planes. The planes that become occluded are
eliminated using a Z-buffer algorithm.

One of the main advantages of the proposed approach
over traditional SSD tracking is that actual 3D camera pose
can be tracked. This is useful for example in robotics or aug-
mented reality applications. In the next experiment we eval-
uate the accuracy of tracking in an indoor lab scene tracked
by a moving camera. Ground truth was obtained by mea-
suring the camera path and performing a Euclidean calibra-
tion of the model. Figure 3 shows two tracked frames, and
the sequence can be seen invideo2 [1].

Figure 3. Tracking 3D planes. Pose accuracy
experiment. video2 [1]

The first test trajectory is a straight line in the horizon-
tal plane of 1m. Figure 4 (left) illustrates the recovered tra-
jectory. To measure the accuracy of the tracking algorithm
we calibrated the 3D model for the planes assuming given
real dimensions (distance from camera to one plane) so we
could get the translation in meters. Here the parallelism con-
straints imposed between planes (e.g. back wall and Syn-
crude sign) had a very small influence on the pose accu-
racy. We found that the trajectory had0.41 cm mean devi-
ation from a straight line and3.15 cm mean deviation from
the horizontal plane. The recovered line length was1.10 m,
that result in an error of10% with respect to the measured
ground truth. The camera was not rotated along the first tra-
jectory, that corresponds to the measured rotation (error was
less than 1.4 degree on average).

We tracked the second trajectory along two perpen-
dicular lines in the horizontal plane. In this experiment,
the physical motion was not particularly smooth and the

Paper 24: 3D SSD tracking with estimated 3D planes, CRV 2005 [9] 289

recorded data therefore also somewhat jumpy. We measured
the angle between the two lines fitted to the recoveredposi-
tions (see Figure 4) as76◦. Hence it had a considerable an-
gular error with respect to the ground truth. The MATLAB
implementation of the plane tracking runs at about 3Hz.

−20

0

20

40

60

80

−25

−20

−15

−10

−5

0

5
−2

0

2

4

6

8

10

Recovered position (planes)
Fitted line

−50
0

50
100

150 −10

0

10

20

30

40

−15

−10

−5

0

5

Recovered positions (plane)
Fitted lines

Figure 4. Recovered positions (in 3D space)
for the straight line trajectory (left) and the 2
perpendicular lines trajectory (left). The red
line are the fitted 3D lines to each line seg-
ment.

6. Discussion

We have presented a tracking algorithm that extends the
existing SSD homography tracking by computing a global
3D position based on precomputed plane equations. The
parameters of the 3D planes are estimated from an initial
sequence (about 100 frames) where feature points on the
planes are tracked using regular SSD translational trackers.
Constraints between planes are also incorporated using a
minimal parametrization of the planes. We showed that the
proposed tracking algorithm is more stable due to the re-
duced DOF compared to tracking individual homographies
and can handle a large range of motion.

A main advantage of the method is that it tracks full 3D
camera position that might be required in applications like
robotics or augmented reality. The pose is computed di-
rectly from image derivatives with respect to pose param-
eters that guarantes the best 3D pose update from the lin-
earized model. This is unlike the other model based ap-
proaches where 3D pose is estimated from tracked 2D im-
age correspondences.

The present version of the algorithm does not handle par-
tial occlusions and illumination variation. This problem can
be solved by using a robust norm like in [7].

References

[1] On-line mpeg movies of the experiments are available. See

videoX at http://www.cs.ualberta.ca/∼dana/CRV05.

[2] M. Armstrong and A. Zisserman. Robust object tracking. In

Second Asian Conference on Computer Vision, pages 58–62,

1995.

[3] S. Baker and I. Matthews.Lucas-Kanade 20 Years On: A

Unifying Framework. Technical Report CMU-RITR02-16,

2002.

[4] A. Bartoli and P. Sturm. Constrained structure and mo-

tion from multiple uncalibrated views of a piecewise pla-

nar scene.IJCV - International Journal of Computer Vision,

52(1):45–64, 2003.

[5] D. Cobzas and M. Jagersand. 3d ssd tracking from uncal-

ibrated video. InECCV 2004 Workshop on Spatial Coher-

ence for Visual Motion Analysis (SCVMA), 2004.

[6] T. Drummond and R. Cipolla. Real-time visual tracking of

complex structures.PAMI, 24(7):932–946, July 2002.

[7] G.D. Hager and P.N. Belhumeur. Efficient region tracking

with parametric models of geometry and illumination.PAMI,

20(10):1025–1039, October 1998.

[8] R. I. Hartley and A. Zisserman.Multiple View Geometry in

Computer Vision. Cambridge University Press, 2000.

[9] B.K.P. Horn. Computer Vision. MIT Press, Cambridge,

Mass., 1986.

[10] Allan D. Jepson, David J. Fleet, and Thomas F. El-Maraghi.

Robust online appearance models for visual tracking.PAMI,

25(10):1296–1311, 2003.

[11] D.G. Lowe. Fitting parameterized three-dimensional models

to images.PAMI, 13(5):441–450, May 1991.

[12] B. Lucas and T. Kanade. An iterative image registra-

tion technique with an application to stereo vision. In

Int. Joint Conf. on Artificial Intelligence, 1981.

[13] Y. Ma, S. Soatto, J. Kosecka, and S Sastry.An Invitation to

3D Vision. Springer, 2004.

[14] E. Marchand, P. Bouthemy, and F. Chaumette. A 2d-3d

model-based approach to real-time visual tracking.IVC,

19(13):941–955, November 2001.

[15] Gilles Simon, Andrew W. Fitzgibbon, and Andrew Zisser-

man. Markerless tracking using planar structures in the

scene. InIEEE and ACM International Symposium on Aug-

mented Reality (ISAR), 2000.

[16] Jing Xiao, Simon Baker, Iain Matthews, and Takeo Kanade.

Real-time combined 2d+3d active appearance models. In

Proc. of International Conference on Computer Vision and

Pattern Recognition (CVPR), 2004.

290 Chapter 10. Piecewise Planar Scenes

International Journal of Computer Vision 57(3), 159–178, 2004

c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

The 3D Line Motion Matrix and Alignment of Line Reconstructions∗

ADRIEN BARTOLI AND PETER STURM

INRIA Rhône-Alpes, 655, av. de l’Europe, 38334 St. Ismier cedex, France

Adrien.Bartoli@inria.fr

Received April 12, 2002; Revised February 20, 2003; Accepted July 3, 2003

Abstract. We study the problem of aligning two 3D line reconstructions in projective, affine, metric or Euclidean

space.

We introduce the 6 × 6 3D line motion matrix that acts on Plücker coordinates. We characterize its algebraic

properties and its relation to the usual 4 × 4 point motion matrix, and propose various methods for estimating 3D

motion from line correspondences, based on cost functions defined in images or 3D space. We assess the quality of

the different estimation methods using simulated data and real images.

Keywords: lines, reconstruction, motion

1. Introduction

The goal of this paper is to align two reconstruc-

tions of a set of 3D lines (Fig. 1). The recovered mo-

tions can be used in many areas of computer vision

(Demirdjian and Horaud, 2000; Devernay and

Faugeras, 1996; Horaud et al., 1997).

Lines are widely used for tracking (Hager and

Toyama, 1998; Zhang and Faugeras, 1990), for vi-

sual servoing (Andreff et al., 2000) or for pose esti-

mation (Liu et al., 1990) and their reconstruction has

been well studied (see e.g. Canny (1986) for image de-

tection, (Schmid and Zisserman, 1997) for matching

and Hartley (1997), Spetsakis and Aloimonos (1990),

Taylor and Kriegman (1995) and Zhang (1994) for

structure and motion).

There are three intrinsic difficulties to motion

estimation from 3D line correspondences, even in

Euclidean space. Firstly, there is no global linear and

minimal parameterization for lines representing their

4 degrees of freedom by 4 global parameters. Secondly,

∗A previous conference version appeared in Proceedings of the In-

ternational Conference on Computer Vision and Pattern Recognition

(CVPR’01), Kauai, Hawaii, USA, vol. I, pp. 287–289, December

2001.

there is no universally agreed error metric for compar-

ing lines. Thirdly, depending on the representation, it

may be non trivial to transfer a line between two dif-

ferent bases.

In this paper, which is an extended version of

Bartoli and Sturm (2001), we address the problem of

motion computation using line reconstructions from

images. We assume that two sets of images are given

and independently registered. We also assume that

correspondences of lines between these two sets are

known. Reconstructing lines from each of these image

sets provides the two 3D line sets to be aligned.

In projective, affine, metric and Euclidean space,

motion is usually represented by 4 × 4 matrices (ho-

mography, affinity, similarity or rigid displacement),

with different numbers of parameters, see Hartley and

Zisserman (2000) for more details. This representation

is well-suited to points and planes represented using

homogeneous coordinates. We call it the usual motion

matrix.

One way to represent 3D lines is to use Plücker coor-

dinates. They are consistent in that they do not depend

on particular points or planes used to define a line.

On the other hand, transferring a line between bases

is not direct (one must either recover two points lying

on it, transfer them and form their Plücker coordinates

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 291

160 Bartoli and Sturm

rigid scene

line reconstruction 1

line reconstruction 2

motion

camera set 1

camera set 2

Figure 1. Our problem is to align two corresponding line recon-

structions or, equivalently, to estimate the motion between the camera

sets.

or transform the 4 × 4 skew-symmetric Plücker matrix

representating the line). The problem with the Plücker

matrix representation is that applying the motion is

quadratic in the entries of the usual motion matrix

which therefore can not be estimated linearly from line

matches.

To overcome this, we derive a motion representa-

tion that is well-adapted to Plücker coordinates in that

it transfers them linearly between bases. The transfor-

mation is represented by a 6 × 6 matrix that we call

the 3D line motion matrix. We characterize its alge-

braic properties in terms of the usual motion matrix.

The expressions obtained were previously known in

the Euclidean case (Navab and Faugeras, 1997). We

also deal with projective and affine spaces. We give a

means of extracting the usual motion matrix from the

3D line motion matrix. A given general 6 × 6 matrix

can then be corrected so that it exactly represents a

motion1.

Using this representation, we derive several estima-

tors for 3D motion from line reconstructions. The mo-

tion allows lines to be transferred from the first re-

construction into the second one. Cost functions can

therefore be expressed either directly in the second re-

construction basis using 3D entities or in image-related

quantities, in terms of the observed and reprojected

lines in the second set of images.

Our first method is based on the direct comparison of

3D Plücker coordinates. Two other methods are based

on algebraic distances between reprojected lines and

either observed lines or points lying on them (such as

their end-points). A 6 × 6 matrix is recovered linearly,

then corrected so that it exactly represents a motion. A

fourth method uses a more physically meaningful cost

function based on orthogonal distances between repro-

jected lines and points lying on measured lines. This re-

quires non-linear optimization techniques that need an

initialization provided by e.g. one of the proposed lin-

ear methods. We also propose a means to quasi-linearly

optimize this cost function, which does not require a

separate initialization method.

Section 2 gives some preliminaries and our no-

tations. We introduce the 3D line motion matrix in

Section 3 and show in Section 4 how to extract the usual

motion matrix from it. Section 5 shows how these tech-

niques can be used to estimate the motion between two

reconstructions of 3D lines. We validate our methods on

both simulated data and real images in Sections 6 and

7 respectively, and give our conclusions in Section 8.

2. Preliminaries and Notations

We make no formal distinction between coordinate vec-

tors and physical entities. Equality up to a non-null

scale factor is denoted by ∼, transposition and trans-

posed inverse by T and −T, and the skew-symmetric

3 × 3 matrix associated with the cross product by

[·]×, i.e. [v]×q = v × q. Vectors are typeset us-

ing bold fonts (L, l), matrices using sans-serif fonts

(H, A, D) and scalars in italics. Everything is repre-

sented in homogeneous coordinates. Bars represent in-

homogeneous leading parts of vectors or matrices, e.g.

MT ∼ (M̄T m). We use ‖v‖ to designate the L2-norm

of vector v.

Plücker Line Coordinates. Given two 3D points

MT ∼ (M̄T m) and NT ∼ (N̄T n), one can form the

Plücker coordinates of the line joining them as a 6-

vector LT ∼ (aT bT) defined up to scale (Hartley and

Zisserman, 2000):

{
a = M̄ × N̄

b = mN̄ − nM̄.
(1)

Note that other choices of constructing 6-vectors of

Plücker coordinates are possible. Every choice goes

with a bilinear constraint that 6-vectors have to satisfy

in order to represent valid line coordinates. For our

definition, the constraint is aTb = 0. An alternative

representation is the Plücker matrix L, which is related

292 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 161

to L via:

L ∼
(

[a]× −b

bT 0

)
,

and to point coordinates by:

L ∼ MNT − NMT.

This is a skew-symmetric rank-2 4 × 4 matrix.

Usual Motion Representation. Transformations in

projective, affine, metric and Euclidean spaces are usu-

ally represented by 4 × 4 matrices. In the general pro-

jective case, the matrices are unconstrained, while in

the affine, metric and Euclidean cases they have the

following forms, where R is a 3×3 rotation matrix and

the other blocks do not have any special form:

Projective: Affine: Metric: Euclidean:

homography H affinity A similarity S displacement D

(
H̄ h1

hT
2 h

) (
Ā t

0T 1

) (
sR t

0T 1

) (
R t

0T 1

)

This block partitioning of H, A, S and D will be used

to define the corresponding 3D line motion matrices in

Section 3.

Camera Settings. We consider two sets of indepen-

dently registered cameras. In the projective space, with-

out loss of generality, we can express each set in a

canonical reconstruction basis (Luong and Vieville,

1996), and in particular, we can set reference cameras,

e.g. the first ones to:

P ∼ P
′ ∼ (I 0),

where P and P
′ are the reference cameras of the first

and the second set respectively, that we call the first

and the second reference cameras. Let H be the 4 × 4

usual homography matrix mapping points from the first

basis to the second one and P
′′ ∼ (P′′ p′′) the refer-

ence camera of the second set expressed in the first

basis. These notations are illustrated on Fig. 2. We

denote by π∞ and π
′
∞ the planes with coordinates

(0 0 0 1)T of the two reconstructions. In affine, met-

ric or Euclidean reconstructions, these are the plane at

infinity, while in projective reconstructions, they will in

general correspond to two finite planes. Let π′′
∞ be the

P

P
′

P
′′

F

e′

H

H̄π∞ π
′

∞

L∞
L′

∞

Q
Q′

q

q′

Figure 2. Camera settings. P is the perspective projection matrix

from the first basis to the first reference camera and P
′ from the second

basis to the second reference camera. P
′′ is the projection matrix of

the second reference camera expressed in the first basis, i.e. it projects

points expressed in the first basis in the second reference camera. P

and P
′ are assumed known while P

′′, which depends on the motion

parameters, is unknown. These settings can be easily transposed to

the affine, metric and Euclidean cases.

plane in the first reconstruction corresponding to π
′
∞.

We also make use of the lines L∞ and L′
∞ lying on π∞

and π
′
∞ respectively and related by H. In particular,

L∞ = π∞ ∩ π
′′
∞ = {Q ∼ (Q̄T q)

T | Q̄Th2 = q = 0}.
Let us give a geometrical interpretation of the com-

ponents of H. This will be useful to subsequently in-

vestigate the corresponding properties of the 3D line

motion matrices in Section 3. The fundamental ma-

trix (Luong and Faugeras, 1996) between the reference

views is given by:

F ∼ [p′′]×P̄
′′ ∼ [h1]×H̄.

Indeed, we have (H̄ h1) ∼ (P̄
′′

p′′) since:

P
′′ ∼ P

′
H

(P̄
′′

p′′) ∼ (I 0)

(
H̄ h1

hT
2 h

)

(P̄
′′

p′′) ∼ (H̄ h1).

These results may be easily specialized to the affine,

metric and Euclidean spaces. The other parts of H can

be interpreted as follows:

• H̄ is the 2D plane homography for points between the

reference views induced by the planeπ∞. Indeed, let

us consider Q ∈ π∞. One can easily check that QT ∼
(qT 0) where q is the corresponding point in the first

reference image and P
′
HQ ∼ H̄q. Hence, if we deal

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 293

162 Bartoli and Sturm

with affine, metric or Euclidean reconstructions, then

H̄ is the infinite homography (Hartley and Zisserman,

2000) between the two reference views.

• h1 contains the coordinates of the second epipole

since:

F
Th1 ∼ P̄

′′T[p′′]×
T
h1 ∼ H̄

T
[h1]×

Th1 ∼ 0.

• π
′′
∞ ∼ (hT

2 h)
T

contains the coordinates of the plane

at infinity of the second basis expressed in the first

basis. Indeed, π′′
∞ ∼ H

T
π

′
∞ ∼ (hT

2 h)
T
.

Perspective Projection Matrix for Lines. With our

choice of Plücker coordinates (1), the image projection

of a line (Faugeras and Mourrain, 1995; Hartley and

Zisserman, 2000) becomes the 3×6 linear transforma-

tion P̃:

P̃ ∼ (det(P̄)P̄
−T

[p]×P̄), (2)

where P ∼ (P̄ p) is the 3 × 4 perspective camera ma-

trix. This result can be easily demonstrated by finding

the image line joining the projections of two points on

the 3D line. An explicit proof is given in the appendix.

Specific forms for affine cameras and calibrated per-

spective cameras are straightforward to derive.

3. The 3D Line Motion Matrix

In this section, we define and examine the properties of

the 3D line motion matrix for the projective space first

and then specialize it to the affine, metric and Euclidean

spaces respectively.

3.1. The 3D Line Homography Matrix

The Plücker coordinates of a line, expressed in two

different bases, are linearly linked. The 6 × 6 matrix H̃

that we call the 3D line homography matrix describes

the transformation in the projective case and can be

parameterized as:

H̃ ∼

(
det(H̄)H̄

−T
[h1]×H̄

−H̄[h2]× hH̄ − h1hT
2

)
, (3)

where H is the usual 4 × 4 homography matrix for

points. If LT ∼ (aT bT) are Plücker line coordinates

(i.e. aTb = 0), then H̃L are the Plücker coordinates

of the transformed line (i.e. H̃L satisfies the bilinear

Plücker constraint).

The proof of this result is provided in the appendix.

Note that H̃ is a 6 × 6 matrix defined up to scale and

subject to 20 non-linear constraints since the projec-

tive motion has 15 degrees of freedom. Other algebraic

properties directly follow from Eq. (3). Firstly, the de-

terminant of H̃ can be expressed in terms of that of H as:

det(H̃) = (det(H))3,

which means that if H is full-rank, then H̃ is also full-

rank. Secondly, let G̃ denote the 3D line motion matrix

corresponding to the usual motion matrix G. Then:

G ∼ H
T ⇔ G̃ ∼ H̃

T

G ∼ H
−1 ⇔ G̃ ∼ H̃

−1
.

These properties can be easily verified using any lin-
ear algebra symbolic manipulation software such as

MAPLE.

Consistency Constraints on H̃. Let H̃ be subdivided

in 3 × 3 blocks as:

H̃ ∼
(

H̃11 H̃12

H̃21 H̃22

)
.

By ri j,k , we denote the k-th row of matrix H̃i j and by

ci j,l its l-th column. We express the 20 non-linear con-

sistency constraints that must hold on H̃ as follows:

(
rT

11,k

)
(r12,k) = 0, k = 1 . . . 3

(
rT

21,k

)
(r22,k) = 0, k = 1 . . . 3

(
cT

11,l

)
(c21,l) = 0, l = 1 . . . 3

(
cT

12,l

)
(c22,l) = 0, l = 1 . . . 3

(
rT

11,k

)
(r22,k ′) +

(
rT

12,k

)
(r21,k ′) = 0, k = 1 . . . 3,

k ′ = 1 . . . 3, k 	= k ′

(
rT

11,1

)
(r22,1) +

(
rT

12,1

)
(r21,1) =

(
rT

11,2

)
(r22,2)

+
(
rT

12,2

)
(r21,2)

=
(
rT

11,3

)
(r22,3)

+
(
rT

12,3

)
(r21,3).

A detailled derivation is given in the appendix. Note

that these contraints are bilinear in the entries of H̃.

These constraints are important in that they character-

ize the algebraic structure of a 3D line homography

matrix.

294 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 163

Geometric Interpretation of H̃

• the upper-left 3×3 block H̃11 ∼ H̄
−T

is the 2D plane

homography for lines, between the reference views,

induced by π∞. This follows from the observation

made in Section 2 that H̃
−T

11 ∼ H̄ is the corresponding

plane homography acting on points.

• the upper-right 3 × 3 block H̃12 is the fundamental

matrix between the reference views, i.e. H̃12 = F. In-

deed, H̃12 = [h1]×H̃ ∼ [p′′]×P̄
′′ ∼ F (cf Section 2).

• the upper 3 × 6 block (H̃11 H̃12) is the perspective

projection matrix for Plücker line coordinates from

the first basis to the second reference view. Indeed,

(H̃11 H̃12) = (det(H̄)H̄
−T

[h1]×H̄)

∼ (det(P̄
′′
)P̄

′′
[p]×P̄) ∼ P̃,

where P̃ corresponds to the perspective projection

matrix (2) for Plücker line coordinates (1) and P
′′ is

the perspective projection matrix from the first basis

to the second reference view (see Fig. 2).

• the lower-left 3 × 3 block H̃21 ∼ H̄[h2]× is a de-

generate line-to-point homography between the ref-

erence views, which can be interpreted as follows.

Let l be an image line in the first reference view.

The intersection of l and the line of equation h2 is a

point q ∼ [h2]×l. The backprojection of q onto π∞
lies on L∞ and is given by QT

∞ ∼ (qT 0). Its cor-

responding point in the second reconstruction lies

therefore on L′
∞ and is given by Q′T

∞ ∼ (q′T 0) with

q′ ∼ H̄[h2]×l. Projecting Q′
∞ into the second refer-

ence view gives finally q′ ∼ H̄[h2]×l.

So, H̃21 is somehow reciprocal to a fundamental

matrix that maps points to lines. Whereas a funda-

mental matrix gives matching constraints for image

points, H̃21 does not give any matching constraints

for general lines (there are none between two views).

• the lower-right 3 × 3 block H̃22 is the 2D plane ho-

mography for points, induced by π∞ (expressed in

the second basis), between the reference views. In-

deed, we have shown that H̄ is a plane homography

and h1 the second epipole corresponding to the pair

of reference views. Using the formulation of Luong

and Vieville (1996), H̃22 = hH̄−h1hT
2 is the 2D plane

homography induced by the plane (hT
2 h)

T
, which are

the coordinates of the plane at infinity of the second

basis expressed in the first one.

• the lower 3 × 6 block (H̃21 H̃22) transfers a line L

from the first basis to the second one and projects its

intersection point with π
′
∞ into the second reference

view. This can be seen as follows. Q′T
∞ ∼ (q′T 0)

with q′ ∼ (H̃21 H̃22)L is the point at infinity of H̃L

which projects to q′ in the second reference view.

3.2. The 3D Line Affinity Matrix

For affine reconstructions, the 3D line motion matrix

has the following form and we call it the 3D line affinity

matrix:

Ã ∼

(
det(Ā)Ā

−T
[t]×Ā

0 Ā

)
. (4)

This result is obtained by specializing the 3D line

homography matrix (3). The geometric interpretation

of this matrix is very similar to the projective case. In

particular, Ā is the homography at infinity between the

two reference views. Note that a 6 × 6 matrix defined

up to scale representing an affinity is subject to 23 con-

straints, many of them being linear or bilinear.

3.3. The 3D Line Similarity Matrix

In metric space, the 3D line motion matrix has the

following form and we call it the 3D line similarity

matrix:

S̃ ∼
(

sR [t]×R

0 R

)
. (5)

This result is obtained by specializing the 3D line

homography matrix (3). The geometric interpretation

of this matrix is straightforward. The 3 × 3 upper-right

block [t]×R is the essential matrix between the refer-

ence views while the other two non-zero 3 × 3 blocks

give the rotation matrix between the reference cameras,

as well as the relative scale of the two reconstructions.

Note that a 6×6 matrix defined up to scale representing

a similarity is subject to 28 constraints.

3.4. The 3D Line Displacement Matrix

In Euclidean space, the 3D line motion matrix has the

following form and we call it the 3D line displacement

matrix:

D̃ ∼
(

R [t]×R

0 R

)
. (6)

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 295

164 Bartoli and Sturm

This result is obtained by specializing the 3D line

homography matrix (3). It coincides with that ob-

tained in Navab and Faugeras (1997). The geomet-

ric interpretation of this matrix is very similar to the

metric case. Note that an homogeneous 6 × 6 ma-

trix representing a rigid displacement is subject to 29

constraints.

4. Extracting the Usual Motion Matrix

from the 3D Line Motion Matrix

Given a 6×6 3D line motion matrix, one can extract the

corresponding motion parameters, i.e. the usual 4 × 4

motion matrix. In this section, we show how to extract

a usual motion matrix from a 3D line motion matrix

in projective, affine, metric and Euclidean spaces. We

also give solutions for the cases where the 6×6 matrix

considered is corrupted by noise and therefore does not

exactly correspond to a motion, i.e. it differs from the

forms (3), (4), (5) or (6).

4.1. Projective Space

We give an algorithm for the noise-free case in Ta-

ble 1. Its simple proof is given in the appendix. In the

presence of noise, H̃ does not exactly satisfy the con-

straints (3) and steps 2–4 have to be achieved in a least

squares sense (see below). From there, one can further

improve the result, e.g. by non-linear minimization of

the Frobenius norm between the given (inexact) line

homography matrix and the one corresponding to the

recovered usual motion parameters.

We give one way to perform a least squares esti-

mation. Other algorithms might be possible. Steps 2

and 3 require to fit a skew-symmetric 3 × 3-matrix

[w]× to a general 3 × 3 matrix W. The following so-

lution minimizes the Frobenius norm of [w]× − W:

w = 1
2
(W32 − W23 W13 − W31 W21 − W12). Step 4

Table 1. Extracting the homography matrix from the

3D line homography matrix.

Let H̃ be subdivided in 3 × 3 blocks as: H̃ ∼
(

H
11

H
12

H
21

H
22

)
.

1. H̄: compute H̄ = ±
√

|det(H̃11)| H̃
−T

11

2. h1: compute [h1]× = ±H̃12H̄
−1

3. h2: compute [h2]× = ∓H̄
−1

H̃21

4. h: compute h via hI3×3 = ±(H̃22 + h1hT
2)H̄

−1
.

Note that extracted values are defined up to a global

change of sign.

Table 2. Extracting the affinity matrix from the 3D

line affinity matrix.

Let Ã be subdivided in 3 × 3 blocks as: Ã ∼
(

A11 A12

0 A22

)
.

1. Ā: compute Ā = Ã22

2. t: compute [t]× = Ã12Ā
−1

.

requires to fit a scaled 3×3 identity matrix λI to a gen-

eral 3×3-matrix �. The following solution minimizes

the Frobenius norm of λI − �: λ = 1
3

∑
i �i i .

4.2. Affine Space

We give a straightforward algorithm in Table 2. This

algorithm is valid for the noise-free case. For the noisy

case, one can modify the proposed steps as follows.

For step 1, Ā can be recovered from Ã11 as well as

Ã22. Their average, possibly weighted, can be used to

recover Ā. Step 2 can be conducted as indicated for the

projective case in the previous section.

4.3. Metric Space

We give an algorithm for the noise-free case in Table 3.

For the noisy case, one might average the two versions

of R available from D̃ as R =
˜D11/s2+ ˜D22

2
and correct

the result so that the obtained matrix exactly represents

a rotation by using e.g. (Horn et al., 1988) or R ← UV
T

where R = U�V
T is the SVD (Singular Value Decom-

position) of R. Step 4 can be achieved as indicated for

the affine and projective cases.

4.4. Euclidean Space

We give an algorithm for the noise-free case in Table 4.

For the noisy case, one might average the two versions

of R available from D̃ as R =
˜D11+ ˜D22

2
and correct the

result so that the obtained matrix exactly represents a

Table 3. Extracting the similarity matrix from the 3D

line similarity matrix.

Let S̃ be subdivided in 3 × 3 blocks as: S̃ ∼
(

S11 S12

0 S22

)
.

1. normalize S̃ such that det(S̃22) = 1;

2. s: compute s = 6
√

det(S̃11);

3. R: compute R = S̃22;

4. t: compute [t]× = S̃12R
T.

296 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 165

Table 4. Extracting the displacement matrix from the

3D line displacement matrix.

Let D̃ be subdivided in 3 × 3 blocks as: D̃ ∼
(

D11 D12

0 D22

)
.

1. normalize D̃ such that det(D̃11) = 1;

2. R: compute R = D̃11;

3. t: compute [t]× = D̃12R
T.

rotation as in the metric case. Step 3 can be achieved

as indicated for the affine and projective cases.

5. Aligning Two Line Reconstructions

We now describe how the 3D line motion matrix can

be used to align two sets of N corresponding 3D lines

expressed in Plücker coordinates. We examine the pro-

jective case but the method can also be used for affine,

metric or Euclidean frames. We assume that the two

sets of cameras are independently weakly calibrated,

i.e. their projection matrices are known up to a 3D ho-

mography, so that a projective basis is attached to each

set (Luong and Vieville, 1996). Lines can be projec-

tively reconstructed in these two bases. Our goal is to

align these 3D lines i.e. to find the projective motion

between the two bases, using the line reconstructions.

5.1. General Estimation Scheme

Estimation is performed by finding arg min ˜H
C where C

is the cost function considered. The scale ambiguity is

removed by using the additional constraint ‖H̃‖2 = 1.

Non-linear optimization is performed directly on the

usual motion parameters (the 16 entries of H and using

the constraint ‖H‖2 = 1) whereas the other estimators

determine an approximate 3D line homography matrix

H̃ first, then recover the usual homography matrix using

the algorithm in Table 1. Most employed cost functions

are non-symmetric, taking into account the errors only

in the second set of images.

5.2. Estimation Based on a 3D Cost Function

Our first alignment method is “Lin 3D”. One of the dif-

ficulties of using 3D lines for motion estimation is that

there is no universally agreed error metric between two

3D lines. For that reason, we propose only one estima-

tor based on 3D entities. This estimator is based on a

direct comparison of Plücker coordinates. A measure

of the distance between two 3D lines L and L̂ is given

by:

d2
3D(L, L̂) =

∑

k∈{1...6}

(∑

l∈{1...6},l 	=k

(Lk L̂ l − L l L̂k)
2

)
.

It can be constructed as follows. Consider the 6 × 6

matrix Z = LL̂
T − L̂LT. If L and L̂ are identical,

all entries of Z vanish. Therefore, d3D(L, L̂) = ‖Z‖F√
2

,

where ‖ · ‖F is the Frobenius matrix norm, can be used

as a distance measure between L and L̂.

The distance d3D induces the following cost function:

C3D =
∑

i

d2
3D(L2i

, L̂2i
),

where Lbi is the i-th reconstructed line in the b-th basis

(b ∈ {1, 2}) and L̂2i
∼ H̃L1i

is the estimated line after

transfer from the first to the second basis.

Finding H̃ that minimizes C3D is a linear least squares

problem. Concretely, it may be solved by finding the

null-vector of a 30N × 36 matrix, using e.g. SVD.

5.3. Estimation Based on 2D (Image-Related)

Cost Functions

The following cost functions are based on minimiz-

ing discrepancies between reprojected lines and lines

extracted in images. Concretely, we consider the pro-

jections in the second set of images, of 3D lines in the

first set, after transfer using the H̃ to be estimated. The

discrepancy of these reprojected lines and observed

ones is measured by comparing 2D lines directly or by

computing the distance between reprojected lines and

points on observed ones. The following cost functions

are expressed in terms of observed image lines, their

end-points or an arbitrary number of points along the

line, and reprojected lines in the second set of images.

These points need not be corresponding points.

If end-points are not available then they can be hal-

lucinated, e.g. by intersecting the image lines with the

image boundaries. The linear and quasi-linear methods

need at least 7 lines to solve for the motion while the

non-linear one needs 5 (which is the minimum number)

but requires an initial guess.

We derive a joint projection matrix mapping a 3D

line to a set of image lines in the second set of images.

Let P
′
j be the projection matrices of the M images cor-

responding to the second set of cameras (expressed in

the second basis) and P̃
′
j the corresponding 3 × 6 line

projection matrices (cf Eq. (2)). Similarly, let P j and

P̃ j be the point and line projection matrices for the first

set of cameras (expressed in the first basis).

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 297

166 Bartoli and Sturm

Linear Estimation 1. Our second alignment method

“Lin 2D 1” directly uses the line equations in the im-

ages. End-points need not be defined. We define an

algebraic measure of the distance between two image

lines l and l̂ by d2(l, l̂) = ‖l × l̂‖2. This distance does

not have any direct physical meaning, but it is zero if

the two lines are identical and simple in that it is bilin-

ear. If l and l̂ had unit norm and if they were interpreted

as vectors in Euclidean 3D space, then d2(l, l̂) would

be the absolute value of the sine of the angle between

them.

This distance induces the cost function:

C1 =
∑

i

∑

j

d2(li j , l̂i j),

where li j is the i-th observed line in the j-th image of

the second set and l̂i j the corresponding reprojection:

l̂i j ∼ P̃
′
j H̃L1i

. We normalize observed image lines such

that ‖li j‖2 = 1. Finding H̃ that minimizes C1 is a linear

least squares problem that may be solved by computing

the null-vector of a 3 MN × 36 matrix using e.g. SVD.

Linear Estimation 2. Our third method “Lin 2D 2”

uses points lying on the lines in the second image set

and the algebraic distance d2
a (x, l) = (xTl)2 between an

image point x and a line l. This distance would have a

physical meaning, i.e. the orthogonal distance between

x and l, if they were normalized such that x3 = 1 and

l2
1 + l2

2 = 1.

If we consider the end-points xi j and yi j of each line

i of the j-th image of the second image set, this gives

the cost function:

C2 =
∑

i

∑

j

(
d2

a (xi j , l̂i j) + d2
a (yi j , l̂i j)

)
.

One can observe that an arbitrary number of points

could be incorporated in C2 in a straightforward man-

ner. Finding H̃ that minimizesC2 is a linear least squares

problem that may be solved by computing the null-

vector of a 2MN × 36 matrix using e.g. SVD.

Non-Linear Estimation 1. Our fourth method

“NLin 2D 1” uses a geometrical cost function based

on the orthogonal distance between reprojected 3D

lines and their measured end-points (Liebowitz and

Zisserman, 1998), defined as d2
⊥(x, l) = (xTl)2

l2
1+l2

2

(pro-

vided x3 = 1):

C3 =
∑

i

∑

j

(
d2

⊥(xi j , l̂i j) + d2
⊥(yi j , l̂i j)

)
.

This is non-linear in the reprojected lines l̂i j and conse-

quently in the entries of H̃, which implies the use of non-

linear optimization techniques. We use the Levenberg-

Marquardt algorithm (Gill et al., 1981) with numerical

differentiation. The unknowns are minimally parame-

terized (we optimize directly the entries of H, not H̃),

so no subsequent correction is needed to recover the

motion parameters.

Quasi-Linear Estimation. The drawbacks of non-

linear optimization are that the implementation may

be complicated. For these reasons, we also developed

a quasi-linear estimator “Qlin 2D” that minimizes the

same cost function C3. Consider the cost functions C2

and C3. Both depend on the same data, measured image

points on the line (such as end-points) and reprojected

lines, the former using an algebraic and the latter the

orthogonal distance. We can relate these distances by:

d2
⊥(x, l) = w d2

a (x, l) where w =
1

l2
1 + l2

2

, (7)

and rewrite C3 as:

C3 =
∑

i

∑

j

wi j

(
d2

a (xi j , l̂i j) + d2
a (yi j , l̂i j)

)
. (8)

The non-linearity is hidden in the weight factors wi j . If

they were known, the cost function would be a sum of

squares of terms that are linear in the entries of H̃. This

leads to the following iterative algorithm. Weights, as-

sumed unknown, are initialized to unity and iteratively

updated. The loop is ended when the weights or equiv-

alently the residual errors converge. The algorithm is

summarized in Table 5. It is a quasi-linear optimization

that converges from the minimization of an algebraic

error to the geometrical one. Its main advantages are

that it is simple to implement (as a loop over a linear

method) and that it gives reliable results as will be seen

in the next sections.

Table 5. Quasi-linear motion estimation from 3D line corres-

pondences.

1. initialization: set wi j = 1;

2. estimation: estimate H̃ using standard weighted least

squares; the 6 × 6 matrix obtained is corrected so that it

represents a motion, see algorithm 1;

3. weighting: use H̃ to update the weights wi j according

to Eq. (7);

4. iteration: iterate steps 2 and 3 until convergence (see text).

298 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 167

Non-Linear Estimation 2. The cost function C3 em-

ployed in methods NLin 2D 1 and QLin 2D is ex-

pressed only in terms of entities of the second set of

images. Hence, it is not symmetric with respect to the

two sets of images. Our sixth method “NLin 2D 2” is

based on a cost function C4, similar to C3, but that is

symmetric with respect to the two sets of images.

Let x′
i j and y′

i j designate the end-points of line i in

the j-th image of the first set. In order to write the

expression of C4, we need the lines l̂′i j projected in the

first image set, after transfer from the second basis.

They are given by l̂′i j ∼ P̃ j H̃
−1

L2i
. The cost function

C4 can then be expressed as:

C4 = C3 +
∑

i

∑

j

(
d2

⊥(x′
i j , l̂′i j) + d2

⊥(y′
i j , l̂′i j)

)
. (9)

This is a non-linear function. As for method

NLin 2D 1, we optimize the entries of H using the

Levenberg-Marquardt algorithm with numerical differ-

entiation. At each optimization step, we form matrix

H̃. We do not compute directly the inverse of the 6 × 6

matrix H̃ to get H̃
−1

, but we rather compute the 4 × 4

matrix H
−1 and form the corresponding 3D line homo-

graphy matrix, which is H̃
−1 = H̃

−1.

Other Cost Functions. Other distance measures be-

tween image lines have been proposed in the literature.

In Taylor and Kriegman (1995), the authors proposed

the total squared distance, i.e. the sum of squared or-

thogonal distances along two line segments. In Zhang

(1994), the overlap between line segments is consid-

ered. These distances could be used for motion estima-

tion within the above described framework, requiring

non-linear optimization.

Singularities. It has been shown that there exist criti-

cal sets of 3D lines (Buchanan, 1992). In the case of mo-

tion estimation from 3D line correspondences, (Navab

and Faugeras, 1997) shows that these sets may contain

an infinite number of lines. For example, if all observed

lines are coplanar, motion estimation is ambiguous. We

did not encounter such a singular situation during our

experiments.

6. Results Using Simulated Data

We first compare our estimators using simulated data.

The test bench consists of four cameras that form two

stereo pairs observing a set of N = 50 3D lines ran-

domly chosen in a sphere lying in the fields of view of

all cameras. Lines are projected onto the image planes,

end-points are hallucinated at the image boundaries and

corrupted by additive Gaussian noise, and the equations

of the image lines are estimated from these noisy end-

points.

A canonical projective basis (Luong and Vieville,

1996) is attached to each camera pair and used to re-

construct the lines in projective space. We then compute

the 3D homography between the two projective bases

using the estimators given in Section 5. We assess the

quality of an estimated motion by measuring the RMS

(Root Mean Square) of the Euclidean reprojection er-

ror (orthogonal distances between reprojected lines and

end-points in both image pairs). This corresponds to the

symmetric cost function C4 (Eq. (9)) minimized by the

non-linear algorithm NLin 2D 2. We also monitor the

computational cost of each method. We show median

results over 100 trials.

Accuracy. Figure 3 shows the error as the level

of added noise varies. The non-linear method is

initialized using the quasi-linear one (an initialization

from Lin 2D 2 gives similar results). We observe

that the methods Lin 3D (based on an algebraic dis-

tance between 3D Plücker coordinates), Lin 2D 1 and

Lin 2D 2 perform worse than the others. This is due

to the fact that the cost functions used in these meth-

ods are not physically meaningful and biased com-

pared to C4. Method QLin 2D gives results close to

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Image noise standard deviation (pixel)

R
e
p
ro

je
c
ti
o
n
 e

rr
o
r

(p
ix

e
l)

Lin 3D

Lin 2D 1

Lin 2D 2

QLin 2D

NLin 2D 1

NLin 2D 2

Figure 3. Comparison of the reprojection error versus added image

noise for different motion estimators. The order of methods in the

legend corresponds to the curves from top to bottom.

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 299

168 Bartoli and Sturm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Image noise standard deviation (pixel)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

Lin 3D

Lin 2D 1

Lin 2D 2

QLin 2D

NLin 2D 1

NLin 2D 2

Figure 4. Comparison of the computation time versus added image

noise for different motion estimators. The order of methods in the

legend corresponds to the curves from top to bottom.

those obtained using NLin 2D 1. It is therefore a good

compromise between the linear and non-linear meth-

ods, achieving good results while keeping simplicity

of implementation. However, we observed that in a

few cases (about 4%), the quasi-linear method does

not enhance the result obtained by Lin 2D 2 while

NLin 2D does. QLin 2D estimates more parameters

than necessary and this may cause numerical instabil-

ities. The method that best minimizes the reprojection

error is NLin 2D 2. This results could have been ex-

pected since this method consists in minimizing the

reprojection error.

Computational Cost. Figure 4 shows the computa-

tional cost as the level of added noise varies. These re-

sults have been obtained using our C implementation,

on a 850 Mhz. Pentium III PC running under Windows.

As expected, the linear methods (Lin 2D 1, Lin 2D 2

and Lin 3D) give constant results, i.e. that do not de-

Figure 5. The two image pairs of a ship part used in the experiments, overlaid with extracted lines. Note that the extracted end-points do not

necessarily correspond.

pend upon the level of added noise. Note that for these

methods, the computational cost is dominated by the

singular value decomposition needed to solve the linear

system. Hence, the computational cost is directly linked

to the size of the linear system associated to the method.

This explains that method Lin 3D, with a 30N ×36 lin-

ear system to solve, has a much higher computational

cost than methods Lin 2D 1 and Lin 2D 2 which have

respectively 6N × 36 and 4N × 36 systems to solve.

On the other hand, non-linear methods (QLin 2D,

NLin 2D 1 and NLin 2D 2) give results depending on

the added noise level. Indeed, the noise level influ-

ences the number of iterations needed by the method

to convergence and hence, the computational cost. As

for linear methods, the computational cost for method

QLin 2D is dominated by the singular value decom-

position of successive linear systems, i.e. step 2 of the

algorithm shown in Table 5. Hence, the computational

cost is roughly given by the number of iterations mul-

tiplied by the computational cost of method Lin 2D 2,

on which QLin 2D is based. This corresponds to what

can be observed on Fig. 4. For methods NLin 2D 1 and

NLin 2D 2, we observe that the computational cost of

each Levenberg-Marquardt iteration is dominated by

the computation of the differentiation of the cost func-

tion, and slightly influenced by the resolution of the

normal equations. The fact that NLin 2D 2 has roughly

twice the computational cost of NLin 2D 1 is explained

by the fact that the number of terms in the symmetric

cost function C4 is twice that of the cost function C3.

7. Results on Real Images

We test our algorithms using real images. Two sce-

narios are considered, described in the following two

sections.

The first one considers two projective line recon-

structions obtained from a weakly calibrated stereo rig.

300 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 169

Figure 6. The lines transferred from the first reconstruction and reprojected onto the second image pair are shown overlaid on the left image

of the second pair in black for different methods while observed image lines are shown in white.

Figure 7. Reconstructed lines after self-calibration.

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 301

170 Bartoli and Sturm

Figure 8. The first set of images, overlaid with extracted lines.

The overlap between the two reconstructions is large

and the recovered motion is expected to be accurate.

A stereo self-calibration technique is then applied to

upgrade the reconstructions to metric space.

The second scenario is based on metric reconstruc-

tions obtained from multiple views of an indoor scene.

The overlap between the two reconstructions is small.

Hence, the alignment is expected to be unstable.

7.1. Largely Overlapping Reconstructions

We use images taken with a weakly calibrated stereo

rig, shown on Fig. 5. Weakly calibrated means that

the fundamental matrix between the left and right im-

ages is known. In practice, we estimate it from point

correspondences using the maximum likelihood esti-

mation technique given in Zhang (1998). The epipolar

302 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 171

Figure 9. The second set of images, overlaid with extracted lines.

geometry is the same for both image pairs. Hence,

stereo self-calibration techniques can be applied to re-

cover camera calibration from the computed 3D mo-

tion. From the fundamental matrix, we define a canon-

ical reconstruction basis for each pair (Luong and

Vieville, 1996). This also gives the line projection ma-

trices P̃ j and P̃
′
j . We track 21 lines across images by

hand and projectively reconstruct them for each image

pair. One can observe that all lines are visible in each

of the 4 images of Fig. 5.

Motion Estimation. We use the methods of Section 5

to estimate the projective motion between the two re-

constructions, but since we have no 3D ground truth we

will only show the result of transferring the set of re-

constructed lines from the first to the second 3D frame,

using the 3D line homography matrix, and reproject-

ing them. Figure 6 shows these reprojections, which

confirms that the non-linear and quasi-linear methods

achieve better results than the linear ones. Note that

the results appear visually slightly worse for method

NLin 2D 2 compared to method NLin 2D 1 since the

former minimizes the reprojection error in both image

sets, while the latter uses only the second image set.

We measure the reprojection error (in both image

sets) and computational cost for each method:

Method Reprojection error (pixel) Computation time (second)

Lin 3D 3.45 0.16

Lin 2D 1 3.36 0.03

Lin 2D 2 2.83 0.02

NLin 2D 1 2.05 0.15

QLin 2D 1.93 0.09

NLin 2D 2 1.53 0.26

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 303

172 Bartoli and Sturm

Figure 10. The 40 lines reconstructed from the first set of images.

Figure 11. The 40 lines reconstructed from the second set of images.

304 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 173

Figure 12. The two reconstructed sets of lines, from top to bottom: without alignment, alignment with linear methods and alignment with

non-linear/quasi-linear methods. The left column shows views of the reconstructions, while the right column shows the reprojection in an original

image.

These results confirm those observed on Fig. 6:

non-linear and quasi-linear methods achieve better re-

sults than linear ones. The methods with the low-

est computational costs are Lin 2D 1 and Lin 2D 2,

while the method with the highest computational cost

is NLin 2D 2. Methods Lin 3D and NLin 2D 1 have

roughly the same computational cost.

Even if there are some differences between the meth-

ods, it can be said that all of them give a correct result,

i.e. the reprojection error is reasonable.

Self-Calibration. We use the usual 4 × 4 homo-

graphy matrix estimated with the method NLin 2D 1

to self-calibrate the stereo rig using the method

described in Horaud et al. (2000) with a three-

parameter camera (zero skew and unit aspect

ratio).

The usual 4 × 4 upgrade matrix, which converts

a projective point reconstruction into a metric one,

has the following form (Horaud et al., 2000), where

K is the matrix of intrinsic parameters of the left

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 305

174 Bartoli and Sturm

Figure 13. Some views of the reconstructions aligned with the non-linear method NLin 2D 2, consisting of 65 lines and 14 cameras.

camera, aT ∼ (āT a) the coordinates of the plane at

infinity in the reconstruction basis and f the focal

length:

Hu ∼
(

K
−1 0

āT a

)
,

which gives the 6 × 6 3D line upgrade matrix as:

H̃u ∼

(
1
f 2 K

T
0

−K
−1[ā]× aK

−1

)
.

We compare the intrinsic parameters recovered for

the left camera to those estimated using off-line cali-

bration (Faugeras and Toscani, 1987):

Parameter Self-calib. Off-line calib. % error

f 1514.22 1461.02 3.51

u0 252.93 267.98 5.95

v0 250.68 241.03 3.84

where (u0, v0) are the image coordinates of the princi-

pal point.

306 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 175

Figure 7 shows different points of view of the re-

construction we obtained from the first pair. We hal-

lucinate 3D end-points by intersecting the viewing

rays of image end-points with the reconstructed lines

from the first pair (we use those from the left image

of the first pair). Qualitatively, the result seems to be

correct.

7.2. Slightly Overlapping Reconstructions

We use two sets of images, shown on Figs. 8 and 9,

taken with a calibrated camera. For each image set, we

use point correspondences to get camera positions and

used them to reconstruct 3D lines, as shown on Figs.10

and 11.

The observed scene is composed of two stacks of

boxes and a laptop. In the first image set, the leftmost

stack of boxes is not visible, while in the second image

set, the laptop is not visible. Hence, even if 40 lines

are reconstructed from each image set, the overlap is

constituted by 15 lines only, lying on the middle stack

of boxes and closely located in space.

We apply our alignment algorithms to these data. The

results are visible on Fig. 12. Visually, the results lie

in two categories. The linear methods give very biased

results, leading to bad alignment, while the non-linear

methods (including the quasi-linear one) give reliable

results.

We measure the reprojection error and computa-

tional cost for each method:

Method Reprojection error (pixel) Computation time (second)

Lin 3D 14.49 0.12

Lin 2D 1 15.10 0.02

Lin 2D 2 13.28 0.01

NLin 2D 1 2.95 0.17

QLin 2D 2.91 0.08

NLin 2D 2 1.76 0.31

These measurements confirm the previous observa-

tion: the reprojection error is of an order of 10 pixels

for linear methods, which is large, while it is of an

order of a few pixels for non-linear/quasi-linear meth-

ods. These results are explained by the fact that only

a few line correspondences are available and that they

are closely located in space.

8. Conclusions

We addressed the problem of estimating the motion

between two line reconstructions in the general projec-

tive case. We used Plücker coordinates to represent 3D

lines and showed that they could be transferred linearly

between two reconstruction bases using a 6×6 3D line

homography matrix. We specialized this result to the

affine, metric and Euclidean cases. We investigated the

algebraic properties of this matrix and showed how to

extract the usual 4 × 4 motion matrices (i.e. homog-

raphy, affinity similarity or rigid displacement) from

them.

We then proposed several 3D and image-based esti-

mators for the motion between two line reconstructions.

Experimental results on both simulated and real data

show that the linear estimators perform worse than the

non-linear ones, especially when the cost function is

expressed in 3D space. The non-linear and quasi-linear

estimators, based on orthogonal image errors give simi-

lar good results. Concerning the computational cost, we

show that linear methods based on 2D cost functions

are not expensive, compared to non-linear methods,

while the linear method based on a 3D cost function

may be as expensive as a non-linear method.

More specifically, when the overlap between the two

reconstructions is large, as it can be expected when a

continuous image sequence is processed, the aligne-

ment obtained with linear methods is reliable. Hence

these methods could be used for real-time stereo track-

ing of lines, in a manner similar to Demirdjian and

Horaud (2000).

Appendix: Proofs and Derivations

In this appendix, we derive and prove some results men-

tioned in this paper.

Perspective Projection Matrix for Lines. Consider a

line with Plücker coordinates LT ∼ (aT bT) defined by

two points MT ∼ (M̄T m) and NT ∼ (N̄T n) that are

projected onto m and n respectively by the perspec-

tive projection matrix P. The corresponding image line

is l. Expanding its expression leads to the perspective

projection matrix for lines, P̃ as:

l ∼ m × n

∼ (PM) × (PN)

∼ (P̄M̄ + mp) × (P̄N̄ + np)

∼ (P̄M̄) × (P̄N̄) + mp × (P̄N̄) − np × (P̄M̄)

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 307

176 Bartoli and Sturm

∼ det(P̄)P̄
−T

(M̄ × N̄) + [p]×P̄(mN̄ − nM̄)

∼ P̃L where P̃ ∼ (det(P̄)P̄
−T

[p]×P̄).

Deriving the 3D Line Homography Matrix. Con-

sider a line with coordinates LT
1 ∼ (aT

1 bT
1) defined

by two points MT
1 ∼ (M̄T

1 m1) and NT
1 ∼ (N̄T

1 n1)

in the first projective basis and Plücker coordinates

LT
2 ∼ (aT

2 bT
2) defined by points MT

2 ∼ (M̄T
2 m2) and

NT
2 ∼ (N̄T

2 n2) in the second projective basis. Expand-

ing the expressions for a2 and b2 according to the defi-

nition of Plücker coordinates (1) gives respectively the

3 × 6 upper and lower parts of H̃:

a2 = M̄2 × N̄2

= (H̄M̄1 + m1h1) × (H̄N̄1 + n1h1)

= det(H̄)H̄
−T

(M̄1 × N̄1) + [h1]×H̄(m1N̄1 − n1M̄1)

= det(H̄)H̄
−T

a1 + [h1]×H̄b1,

b2 = m2N̄2 − n2M̄2

= hT

2 (M̄1H̄N̄1 − N̄1H̄M̄1) + hT

2 (M̄1h1n1 − N̄1h1m1)

+hH̄(m1N̄1 − n1M̄1)

= −H̄[h2]×a1 − h1hT

2 b1 + hH̄b1.

The specialization of this result to the affine, metric

and Euclidean spaces shown in Sections 3.2, 3.3 and

3.4 respectively is straightforward.

Deriving the 20 Consistency Constraints on the 3D

Line Homography Matrix. We prove 20 non-linear

consistency constraints that must hold on the entries

of a 3D line homography matrix. Note that there exist

other possible constraints. We use the notation defined

in Section 3.1.

Consider the product H̃11H̃
T

12. Its expansion leads to:

H̃11H̃
T

12 ∼ H̄
−T

H̄
T
[h1]×

∼ [h1]×,

which is a skew-symmetric matrix. It means that its

diagonal entries vanish, which corresponds to the fol-

lowing 3 constraints on the 3D line homography matrix:

(
rT

11,k

)
(r12,k) = 0, k = 1 . . . 3.

Note that 3 other constraints could be derived from this

equation based on the off-diagonal entries.

Similarly, consider the product H̃21H̃
T

22. Its expansion

leads to:

H̃21H̃
T

22 ∼ H̄[h2]×
(
hH̄

T − h2hT

1

)

∼ H̄[h2]×hH̄
T − H̄[h2]×h2hT

1

∼ H̄[h2]×H̄
T

∼ [H̄
−T

h2]×,

where we used the rule:

[Jg]× = det(J)J−T[g]×J
−1 ∼ J

−T[g]×J
−1. (10)

As previously, we end up with a skew-symmetric ma-

trix whose diagonal entries vanish, giving another 3

constraints:

(
rT

21,k)(r22,k

)
= 0, k = 1 . . . 3.

Similarly, observe that:

H̃
T

11H̃21 ∼ H̄
−1

H̄[h2]×

∼ [h2]×,

and that:

H̃
T

12H̃22 ∼ H̄
T
[h1]×

(
hH̄ − h1hT

2

)

∼ H̄
T
[h1]×H̄

∼ [H̄
−1

h1]×,

which gives, respectively, the following 6 constraints:

(
cT

11,l

)
(c21,l) = 0, l = 1 . . . 3

(
cT

12,l

)
(c22,l) = 0, l = 1 . . . 3.

The first 12 constraints are derived. We derive the re-

maining 8 contraints as follows. Consider the following

equation:

H̃11H̃
T

22 + H̃12H̃
T

21 ∼ det(H̄)H̄
−T

(
hH̄

T − h2hT

1

)

+ [h1]×H̄[h2]×H̄
T
.

After expansion and by using Eq. (10) for the last term,

we obtain:

H̃11H̃
T

22 + H̃12H̃
T

21 ∼hI − det(H̄)H̄
−T

h2hT

1

+ [h1]× det(H̄)[H̄
−T

h2]×

∼ hI− H̄
−T

h2hT

1 − [h1]×[H̄
−T

h2]T×.

308 Chapter 10. Lines

The 3D Line Motion Matrix and Alignment of Line Reconstruction 177

Define a = H̄
−T

h2 and b = h1 and use the following

rule:

abT + [b]×[a]T× = (aTb)I,

which gives:

H̃11H̃
T

22 + H̃12H̃
T

21 ∼ hI −
(
hT

2 H̄
−1

h1

)
I

∼ I.

From this equation, we deduce that all diagonal en-

tries of matrix H̃11H̃
T

22 + H̃12H̃
T

21 are equal and all off-

diagonal entries are zero, which gives the remaining 8

constraints:

(
rT

11,k

)
(r22,k ′) +

(
rT

12,k

)
(r21,k ′)

= 0, k ∈ 1 . . . 3, k ′ ∈ 1 . . . 3, k 	= k ′

(
rT

11,1

)
(r22,1) +

(
rT

12,1

)
(r21,1)

=
(
rT

11,2

)
(r22,2) +

(
rT

12,2

)
(r21,2)

=
(
rT

11,3

)
(r22,3) +

(
rT

12,3

)
(r21,3).

Extracting the Usual Homography Matrix From the

3D Line Homography Matrix. To prove the correct-

ness of algorithm 1 we may reform the 3D line homog-

raphy matrix H̃
′

corresponding to the extracted usual

motion parameters (given by Eq. (3)) and verify that

each of its blocks corresponds to the original block of

H̃, as follows:

H̃
′
11 = det(H̄)H̄

−T

= det
(

±
√

|det(H̃11)|H̃−T

11

) ±1√
|det(H̃11)|

H̃11

= ±
√

|det(H̃11)|
3 1

det(H̃11)

±1√
|det(H̃11)|

H̃11

= ±H̃11

H̃
′
12 = [h1]×H̄

= ±H̃12(±H̄
−1

)H̄

= ±H̃12

H̃
′
21 = −H̄[h2]×

= − ∓ H̄(±H̄
−1

)H̃21

= ±H̃21

H̃
′
22 = hH̄ − h1hT

2

= ±
(
H̃22 + (±h1)

(
± hT

2

))
(±H̄

−1
)H̄ − h1hT

2

= ±H̃22.

Note

1. Compare this with the case of fundamental matrix estimation us-

ing the 8 point algorithm: the obtained 3 × 3 matrix is corrected

so that its smallest singular value becomes zero (Hartley and

Zisserman, 2000).

References

Andreff, N., Espiau, B., and Horaud, R. 2000. Visual servoing from

lines. In International Conference on Robotics and Automation,

San Francisco.

Bartoli, A. and Sturm, P. 2001. The 3D line motion matrix and align-

ment of line reconstructions. In Proceedings of the Conference on

Computer Vision and Pattern Recognition, Kauai, Hawaii, USA,

IEEE Computer Society Press, vol. I, pp. 287–292.

Buchanan, T. 1992. Critical sets for 3D reconstruction using lines. In

Proceedings of the 2nd European Conference on Computer Vision,

G. Sandini (Ed.), Springer-Verlag, Santa Margherita Ligure, Italy,

pp. 730–738.

Canny J. 1986. A computational approach to edge detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

8(6):679–698.

Csurka, G., Demirdjian, D., and Horaud, R. 1999. Finding the

collineation between two projective reconstructions. Computer Vi-

sion and Image Understanding, 75(3):260–268.

Demirdjian, D. and Horaud, R. 2000. Motion-egomotion discrimina-

tion and motion segmentation from image-pair streams. Computer

Vision and Image Understanding, 78(1):53–68.

Devernay, F. and Faugeras, O. 1996. From projective to euclidean

reconstruction. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, San Francisco, California, USA,

pp. 264–269.

Faugeras, O. and Mourrain, B. 1995. On the geometry and algebra

of the point and line correspondences between n images. In Pro-

ceedings of the 5th International Conference on Computer Vision,

Cambridge, Massachusetts, USA, pp. 951–956.

Faugeras, O.D. and Toscani, G. 1987. Camera calibration for 3D

computer vision. In Proceedings of International Workshop on

Machine Vision and Machine Intelligence, Tokyo, Japan.

Gill, P.E., Murray, W., and Wright, M.H. 1981. Practical Optimiza-

tion. Academic Press.

Hager, G. and Toyama, K. 1998. X vision: A portable substrate for

real-time vision applications. CVIU, 69(1):23–37.

Hartley, R.I. 1997. Lines and points in three views and the trifocal

tensor. International Journal of Computer Vision, 22(2):125–140.

Hartley, R.I. and Zisserman, A. 2000. Multiple View Geometry in

Computer Vision. Cambridge University Press.

Horaud, R., Csurka, G., and Demirdjian, D. 2000. Stereo calibration

from rigid motions. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(12):1446–1452.

Horaud, R., Dornaika, F., and Espiau, B. 1997. Visually guided object

grasping. IEEE Transactions on Robotics and Automation.

Horn, B.K.P., Hilden, H.M., and Negahdaripour, S. 1988. Closed-

form solution of absolute orientation using orthonormal matri-

ces. Journal of the Optical Society of America A, 5(7):1127–

1135.

Liebowitz, D. and Zisserman, A. 1998. Metric rectification for per-

spective images of planes. In Proceedings of the Conference

Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004 [2] 309

178 Bartoli and Sturm

on Computer Vision and Pattern Recognition, Santa Barbara,

California, USA, pp. 482–488.

Liu, Y., Huang, T.S., and Faugeras, O.D. 1990. Determination of

camera location from 2D to 3D line and point correspondences.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

12(1):28–37.

Luong, Q.T. and Faugeras, O. 1996. The fundamental matrix: Theory,

algorithms and stability analysis. International Journal of Com-

puter Vision, 17(1):43–76.

Luong, Q.T. and Vieville, T. 1996. Canonic representations for the

geometries of multiple projective views. Computer Vision and Im-

age Understanding, 64(2):193–229.

Navab, N. and Faugeras, O.D. 1997. The critical sets of lines for cam-

era displacement estimation: A mixed euclidean-projective and

constructive approach. International Journal of Computer Vision,

23(1):17–44.

Schmid, C. and Zisserman, A. 1997. Automatic line matching

across views. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, Puerto Rico, USA, pp. 666–

671.

Spetsakis, M. and Aloimonos, J. 1990. Structure from motion using

line correspondences. International Journal of Computer Vision,

4:171–183.

Taylor, C.J. and Kriegman, D.J. 1995. Structure and motion from

line segments in multiple images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17(11):1021–1032.

Zhang, Z. 1994. Estimating motion and structure from corre-

spondences of line segments between two perspective images.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(12):1129–1139.

Zhang, Z. 1998. Determining the epipolar geometry and its un-

certainty: A review. International Journal of Computer Vision,

27(2):161–195.

Zhang, Z. and Faugeras, O.D.1990. Tracking and grouping 3D line

segments. In Proceedings of the 3rd International Conference on

Computer Vision, Osaka, Japan, pp. 577–580.

310 Chapter 10. Lines

Structure-from-motion using lines:
Representation, triangulation,

and bundle adjustment

Adrien Bartoli a,*, Peter Sturm b

a LASMEA, 24, Avenue des Landais, 63177 Aubière cedex, France
b INRIA, 655, Avenue de l�Europe, 38334 St Ismier cedex, France

Received 12 March 2004; accepted 17 June 2005

Available online 11 August 2005

Abstract

We address the problem of camera motion and 3D structure reconstruction from line cor-
respondences across multiple views, from initialization to final bundle adjustment. One of the
main difficulties when dealing with line features is their algebraic representation. First, we con-
sider the triangulation problem. Based on Plücker coordinates to represent the 3D lines, we
propose a maximum likelihood algorithm, relying on linearizing the Plücker constraint and
on a Plücker correction procedure, computing the closest Plücker coordinates to a given 6-vec-
tor. Second, we consider the bundle adjustment problem, which is essentially a nonlinear opti-
mization process on camera motion and 3D line parameters. Previous overparameterizations
of 3D lines induce gauge freedoms and/or internal consistency constraints. We propose the
orthonormal representation, which allows handy nonlinear optimization of 3D lines using
the minimum four parameters with an unconstrained optimization engine. We compare our
algorithms to existing ones on simulated and real data. Results show that our triangulation
algorithm outperforms standard linear and bias-corrected quasi-linear algorithms, and that
bundle adjustment using our orthonormal representation yields results similar to the standard
maximum likelihood trifocal tensor algorithm, while being usable for any number of views.
� 2005 Elsevier Inc. All rights reserved.

www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 100 (2005) 416–441

1077-3142/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2005.06.001

* Corresponding author. Fax: +33 473 407 262.
E-mail addresses: Adrien.Bartoli@gmail.com (A. Bartoli), Peter.Sturm@inria.fr (P. Sturm).

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 311

Keywords: Structure-from-motion; Lines; Representation; Triangulation; Bundle adjustment

1. Introduction

The goal of this paper is to give methods for reconstruction of line features from
image correspondences over multiple views, from initialization to final bundle
adjustment. Reconstruction of line features is an important topic since it is used in
areas such as scene modeling, augmented reality, and visual servoing. Bundle adjust-
ment is the computation of an optimal visual reconstruction of camera motion and
3D scene structure, where optimal means maximum likelihood in terms of reproject-
ed image error. We make no assumption about the calibration of the cameras. We
assume that line correspondences over at least three views are available.1

While the multiple-view geometry of lines is well-understood, see, e.g. [5,11], there
is still a need for practical structure and motion algorithms. The factorization algo-
rithms [15,18,25] yield reliable results but requires all lines to be visible in all views.
We focus on the common three-stage approach, see e.g. [11, Section 17.5] consisting
in (i) computing camera motion using inter-image matching tensors, (ii) triangulat-
ing the features, and (iii) running bundle adjustment.

There exist reliable algorithms for step (i). In particular, it can be solved by com-
puting trifocal tensors for triplets of consecutive images, using, e.g., the automatic
computation algorithm described in [11, Section 15.6], and registering the triplets
in a manner similar to [6]. Other integrated motion estimation systems are [20], based
on Kalman filtering techniques and [26], registering each view in turn.

In steps (ii) and (iii), one of the main difficulties when dealing with line features
arises: the algebraic representation. Indeed, there is no minimal, complete and glob-
ally nonsingular parameterization of the four-dimensional set of 3D lines, see, e.g.
[11, Section 2.2]. Hence, they are often overparameterized, e.g., as the join of two
points or as the meet of two planes (eight parameters), or by the six coefficients of
their Plücker coordinates, which must satisfy the bilinear Plücker constraint. Anoth-
er overparameterization is two images of the line (six parameters). The most appro-
priate representation depends upon the problem considered. For example, the
algorithm in [11, Section 15.2] shows that the �two image lines� representation is
well-adapted to the computation of the trifocal tensor, while the sequential algo-
rithm of [20] is based on Plücker coordinates.

Concerning step (ii), many of the previous works assume calibrated cameras, e.g.
[14,21,23,27] and use specific Euclidean representations. The linear three view algo-
rithm of [27] and the algorithm of [23] utilize a �closest point + direction� representa-
tion, while [21] uses the projections of the line on the x = 0 and the y = 0 planes,
which has obvious singularities. These algorithms yield sub-optimal results in that
none of them maximizes the individual likelihood of the reconstructed lines.

Bundle adjustment, step (iii), is a nonlinear procedure involving camera and 3D line
parameters, attempting to maximize the likelihood of the reconstruction, correspond-
ing to minimizing the reprojection error when the noise on measured features has an

1 Line correspondences over two views do not constrain the camera motion.

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 417

312 Chapter 10. Lines

identical and independent (i.i.d.) normal distribution. Previously mentioned overpa-
rameterizations are not well-adapted to standard nonlinear optimization engines.
The �two point� and the �two plane� overparameterizations have four degrees of internal
gauge freedoms2 which may induce numerical instabilities. The �two image lines�
parameterization has two degrees of internal gauge freedoms and implies that one
may have to choose different images for different lines since all lines may not be visible
in all images. Also, one must check that the chosen images are not too close to each
other. Finally, direct optimization of Plücker coordinates makes sense only if a con-
strained optimization technique is used to enforce the bilinear Plücker constraint. An
appropriate representation would not involve internal constraint or gauge freedom.

To summarize, there is a need for an efficient optimal triangulation algorithm, and
a representation of 3D lines well-adapted to nonlinear optimization. We address
both of these problems through the following contributions.

In Section 3, we give an overview of various 3D line representations an their
characteristics.

In Section 4, we propose triangulation methods based on using Plücker coordi-
nates to represent the lines. A simple and optimal algorithm is obtained based on lin-
earizing the bilinear Plücker constraint within an iteratively reweighted least squares
approach.

In Section 5, we propose a nonlinear representation of 3D lines that we call the
orthonormal representation. This representation allows efficient nonlinear optimiza-
tion since only the minimum four parameters are computed at each step which al-
lows the use of a standard unconstrained optimization engine. With this
representation, there is no internal gauge freedom or consistency constraint, and
analytic differentiation of the error function is possible.

Finally, Section 6 validates our algorithms and compares them to existing ones.
The next section gives some preliminaries and notations and states the problem.

2. Preliminaries and notation

2.1. Notation

We make no formal distinction between coordinate vectors and physical entities.
Everything is represented in homogeneous coordinates. Equality up to scale is denot-
ed by �, transposition and transposed inverse by > and �>. Vectors are typeset using
bold fonts (L, l), matrices using sans-serif fonts (S, A, R), and scalars in italics. Bars
represent inhomogeneous leading parts of vectors or matrices, e.g. M> � ð �M

>
jmÞ.

The L2-norm of vector V is denoted iVi. The identity matrix is denoted I. SO(2)
and SO(3) denote the 2D and 3D rotation groups.

The 2Dorthogonal (Euclidean) distance between point q and line lweighted by q3 is:

d2
?ðq; lÞ ¼ ðq

>lÞ
2
=ðl21 þ l22Þ. ð1Þ

2 For the former one, the position of the points along the line, and the free scale factor of the

homogeneous representation of these points.

418 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 313

2.2. Matrix factorization

We make use of the singular value decomposition of matrices, dubbed SVD. The
SVD of matrix A is Am�n ¼ Um�nRn�nV

>
n�n, where U and V are orthonormal, and R

is diagonal, containing the singular values of A in decreasing order. The QR factor-
ization of matrix A is Am·n = Qm·m Rm·n, with Q orthonormal and R upper triangu-
lar. More details on these matrix factorizations can be read in, e.g. [7].

2.3. Maximum likelihood estimation

As noted in [11, Section 15.7.2], no matter how many points are used to represent
an image line l, the quadratic error function on it can be expressed in the form
d2
?ðx; lÞ þ d2

?ðy; lÞ for two weighted points x, y on l. We will use this representation
for simplicity. If we have 3D lines S ¼ fL1; . . . ;Lmg and cameras M ¼ fP1; . . . ;Png,
the negative log likelihood function EðS;MÞ for the reconstruction, corresponding
to the reprojection error, can be written in terms of individual reprojection errors
EðLj;MÞ for each line j:

EðS;MÞ ¼
Xm

j¼1

EðLj;MÞ; ð2Þ

EðLj;MÞ ¼
Xn

i¼1

ðd2
?ðx

ij; lijÞ þ d2
?ðy

ij; lijÞÞ. ð3Þ

3. Representing 3D lines

We describe several representations for 3D lines in projective space and their char-
acteristics. Some of these representations are �partial� in the sense that they can only
represent a subset of all 3D lines. For example, some work on metric reconstruction,
particularly in photogrammetry, assume that the reconstructed lines do not lie at
infinity. The goal of this study is to choose a representation for the triangulation
and bundle adjustment problems. Concerning the triangulation, the most important
criterion is that the reprojected lines is a linear function of the 3D line. Bundle adjust-
ment is a nonlinear procedure allowing more flexibility in the choice of the parame-
terization. The quality of the parameterization is assessed based on criteria such as
the number of internal gauge freedoms or internal constraints. A summary of the re-
viewed representations is finally provided. The first representation that we describe is
the Plücker coordinates. We link all the other representations to Plücker coordinates.

3.1. Complete representations

3.1.1. Plücker coordinates

Given two 3D points M> � ð �M
>
jmÞ and N> � ð�N

>
jnÞ, one can represent the line

joining them by a homogeneous �Plücker� 6-vector L> � (a> | b>), see e.g. [11, Sec-
tion 2.2]:

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 419

314 Chapter 10. Lines

a ¼ �M� �N;

b ¼ m�N� n �M.

�

ð4Þ

Other conventions for Plücker 6-vectors are also possible. Each comes with a bilinear
constraint that the 6-vector must satisfy to represent valid line coordinates. For our
definition, the constraint is

CðLÞ ¼ 0 where CðLÞ ¼ a>b. ð5Þ

Similarly, one can construct the Plücker coordinates of a line defined as the meet of
two planes. The Plücker coordinates of a line defined as the meet of two planes
P> � ð�P

>
jpÞ and Q> � ð �Q

>
jqÞ are given by:

a ¼ p �Q� q�P;

b ¼ �P� �Q.

(

ð6Þ

As an example, triangulation from two views has the following closed-form solution.
Let P1 and P

2 be the two projection matrices and l1 and l2 the two imaged lines. The
Plücker coordinates of the corresponding 3D line are given as the meet of the two
viewing planes pi � P

i>li.
Given a standard (3 · 4) perspective projection matrix P � ð�P jpÞ, a (3 · 6) matrix

projecting Plücker line coordinates [2,5] is given by

~P � ðdetð�PÞ�P
�>
j½p��

�PÞ. ð7Þ

It can be easily derived by expanding the expression of the 2D line joining the pro-
jections of two points:

l � m ^ n

� ðPMÞ ^ ðPNÞ

� ð�P �Mþ mpÞ ^ ð�P�Nþ npÞ

� ð�P �MÞ ^ ð�P�NÞ þ mp ^ ð�P�NÞ � np ^ ð�P �MÞ

� detð�PÞ�P
�>
ð �M ^ �NÞ þ ½p� ^ �Pðm�N� n �MÞ

� ~PL.

Seo and Hong [20] use the Plücker coordinates representation for sequential struc-
ture-from-motion with a Kalman filtering technique. Pottmann et al. [17] use these
coordinates for 3D shape reconstruction and understanding from 3D data.

3.1.2. Pair of points or pair of planes

These are two dual representations, described in details in [11, Section 2.2.2]. In
the first case, the line is defined as the join of two points M and N, and in the second
case, it is defined as the intersection of two planes P and Q. These representations
have similar characteristics. They have eight parameters, hence four degrees of gauge
freedom, the position of the points along the line (respectively, the position of the
planes in the pencil of planes around the line) and the scale factors in the homoge-
neous coordinates of the points or the planes. For metric reconstruction, if one drops

420 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 315

the lines at infinity, the two point representation has six parameters. There is a direct
link with Plücker coordinates using Eqs. (4) and (6). The reprojected line l is a bilin-
ear function of the entries of the point or the plane coordinates. For example, for the
two point representation, l � (PM) · (PN). Hartley [10] proposes a triangulation
algorithm based on these representations. Habib et al. [9] use the two point represen-
tation for bundle adjustment. They consider that the line is not at infinity. The ambi-
guity on the position of the points along the line is fixed by constraining them to
reprojected near the end-points observed in one of the images.

3.2. Partial representations

3.2.1. Closest point and direction

A 3D line is represented by its closest point to the origin, with coordinates
Q> � ð �Q

>
1Þ, and its direction, with coordinates Q1 � ð �Q

>

10Þ, giving a total of six
parameters. This representation does not include lines at infinity and hence cannot
be used in projective space. The link with the Plücker line coordinates L is given by

L �
�Q� �Q1

�Q1

 !

.

Reprojecting the line with the camera matrix P � ð�PpÞ is a bilinear function of the
line parameters: l � ð�P �Qþ pÞ � ð�P �Q1Þ. The line reconstruction algorithms pro-
posed by Weng et al. [27] for three views and by Taylor and Kriegman [23] for multi-
ple views use this representation. In the field of photogrammetry, Tommaselli and
Lugnani [24] use this representation for bundle adjustment. Mulawa and Mikhail
[16] use the additional constraint k �Q1k ¼ 1.

3.2.2. Two projections

A 3D line can be represented by two projections [10,21]. This is related to the fact
that reconstructing a line from two views has in general a unique solution.

Spetsakis and Aloimonos [21] use the intersection of two planes, one parallel to
the plane x = 0, and the other one parallel to the plane y = 0. These two planes
are formulated using four parameters a, b, c, and d by x = az + b and y = cz + d,
respectively. The pencil of points Q on the 3D line is parameterized by the z

coordinate

Q �

azþ b

czþ d

z

1

0

B
B
B
@

1

C
C
C
A
.

This representation has obvious singularities: lines which are parallel to the plane
z = 0 cannot be represented. Indeed, the points lying on such lines have a constant
z coordinate, and since the points are parameterized by this coordinate, one always
gets the same point if the z coordinate is constant. One can link this representation to

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 421

316 Chapter 10. Lines

the Plücker coordinates L of the line by considering any two points lying on the line,
e.g. for z = 0 and z = 1, and Eq. (4), giving

L �

d

�b

bc� da

a

c

1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

.

Ayache and Faugeras [4] use this representation for mobile robot navigation. In the
field of photogrammetry, Habib [8] extends this representation by using different
pairs of planes depending on the 3D line, to avoid the singularities.

Hartley [10] uses two images of the line. This representation has the following sin-
gularities: all 3D lines lying in an epipolar plane induced by the two cameras have the
same images in both views. The 3D lines that cannot be uniquely represented thus
form a Linear Line Complex, see e.g. [22]. Note that these singularities can be
encountered in practice. The Plücker coordinates corresponding to this representa-
tion can be calculated by intersecting the two viewing planes induced by the two im-
age lines using Eq. (6). Hartley shows that the reprojection of the line in other views
in a bilinear function of the parameters.

3.2.3. The Denavit–Hartenberg parameters

The Denavit–Hartenberg representation [3] has become the standard way of rep-
resenting robots and modeling their motions. The idea is to relate each joint to the
next by using the minimal four parameters, namely two distances and two angles. A
general 3D Euclidean transformation, between two Euclidean coordinate frames, has
six degrees of freedom. For using the Denavit–Hartenberg representation, the x-axis
of one coordinate frame has to be aligned with the line orthogonal to the z-axes of
both coordinate frames, which cancels out two degrees of freedom, one in rotation,
and one in translation. This suggests to represent a 3D line by the z-axis of a coor-
dinate frame, and to parameterize it by the four Denavit–Hartenberg parameters
with respect to a reference coordinate frame, e.g. the world coordinate frame. The
Plücker coordinates corresponding to these parameters can be obtained by e.g.
applying the coordinate transformation given by the four parameters to the z-axis
L>z � ð0 0 0 0 0 1Þ of the reference frame using a 3D line rigid displacement matrix
[2]. The projection equation is nonlinear in the Denavit–Hartenberg parameters since
it involves products and trigonometric operators.

One problem with this parameterization is that two distances are used as param-
eters, which prevents from representing the lines at infinity. There is also an indeter-
minacy in the choice of one of the coordinate frame when the line is parallel to the
z-axis of the reference coordinate frame.

Roberts [19] proposes to model 3D lines using two distances and two angles. His
representation has drawbacks similar to those described above.

422 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 317

Note that there are other representations for modeling robots. For example,
Hayati and Mirmirani [12] introduce an extra rotation parameter to the Denavit–
Hartenberg representation to model the error due to near parallel axes. This repre-
sentation is thus not minimal.

3.3. Summary

Table 1 summarizes the characteristics of the aforementioned representations, and
of the orthonormal representation that we propose in Section 5. We observe that the
only representation for which the reprojected lines is a linear function of the 3D line
parameters is the Plücker coordinates. It is also seen that besides our orthonormal
representation, no other complete representation allows a minimal update with four
parameters, which is due to gauge freedoms and/or internal consistency constraints.
Minimal update is an important criterion for using a representation within bundle
adjustment.

4. Triangulation

This section discusses computation of structure given camera motion. We propose
direct linear and iterative nonlinear methods to recover Plücker line coordinates.
These algorithms are general in the sense that they can be used with calibrated, par-
tially calibrated or uncalibrated cameras.

First, we describe a somehow trivial linear algorithm where a biased error func-
tion (compared to the reprojection error) is minimized. This algorithm is subject
to the same kind of drawback as the eight-point algorithm for computing the funda-
mental matrix: due to possible noise in the data, the resulting 6-vectors do not gen-
erally satisfy the bilinear Plücker constraint (5), similarly to the matrix computed by
the eight-point algorithm not being rank deficient [11, Section 10.2]. We propose
what we call a Plücker correction procedure, which allows to compute the closest
Plücker coordinates to a 6-vector.

Second, we propose an algorithm where the reprojection error of the line is mini-
mized. The cornerstone of this algorithm is the linearization of the Plücker constraint.

Table 1

Summary of different representations for 3D lines with their characteristics

Representation Complete Gauge freedoms Constraints Reprojection Minimal update

Closest point and direction No 1 1 Bilinear No

Two image lines No 2 0 Bilinear No

Denavit–Hartenberg No 0 0 Nonlinear Yes

Two points or two planes Yes 4 0 Bilinear No

Plücker coordinates Yes 1 1 Linear No

Orthonormal representation Yes 0 0 Nonlinear Yes

The number of gauge freedoms and internal constraints are strongly linked. The �reprojection� column is

about the equation for reprojecting the 3D line with a perspective camera. The column �minimal update�

indicates if the representation can be updated with four parameters.

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 423

318 Chapter 10. Lines

Since the reconstruction of each line is independent from the others, we drop the j
index in this section.

4.1. Linear algorithm

Wedescribe a linear algorithm, �LIN.� In the reprojection error (3), each term is based
on the square of the 2D point-to-line orthogonal distance d^, defined by Eq. (1). The
denominator of this distance is the cause of the nonlinearity. Ignoring this denomina-
tor leads to an algebraic distance denoted da, biased compared to the orthogonal dis-
tance. It is linear in the predicted line l and defined by d2

aðq; lÞ ¼ d2
?ðq; lÞw

2 ¼ ðq>lÞ
2
,

where the scalar factor w encapsulates the bias as w2 ¼ l21 þ l22

ðwiÞ
2
¼ ðð~P

i
LÞ1Þ

2
þ ðð~P

i
LÞ2Þ

2
. ð8Þ

We define the biased linear least squares error function:

BðL;MÞ ¼
Xn

i¼1

ðxi> ~P
i
LÞ2 þ ðyi

>
~P
i
LÞ2

� �

ð9Þ

¼kAð2n�6ÞLk
2 with A ¼

. . .

xi> ~P
i

yi
>
~P
i

. . .

0

B
B
B
@

1

C
C
C
A
. ð10Þ

Since L is an homogeneous vector, we add the constraint iLi2 = 1. The L that min-
imizes BðL;MÞ is then given by the singular vector of A associated to its smallest
singular value, that we compute using SVD. Due to noise, the recovered 6-vector does
not in general satisfy the Plücker constraint (5).

4.2. Plücker correction

The Plücker correction procedure is analogous to the standard rank correction of
the fundamental matrix based on SVD: the eight-point algorithm linearly computes a
full-rank matrix F, whose smallest singular value is nullified to obtained the rank-two
matrix F̂, see e.g. [11]. Matrix F̂ is the closest rank-two matrix to F, in the sense of the
Frobenius norm. It is used to initialize nonlinear algorithms.

The Plücker correction procedure computes the closest Plücker coordinates to a giv-
en 6-vector,where closest is to be understood in the sense of theL2-norm, equivalent to
thematrix Frobenius norm. It is also equivalent to the Euclidean distance between two
points inR6. This correction is necessary to initialize the nonlinear algorithms from the
solution provided by linear methods ignoring the Plücker constraint. Pottmann et al.
[17] use the Euclidean distance between Plücker coordinate vectors to compare 3D
lines. They underline the facts that this distance is practical for minimization purposes
and is in accordance with visualization in the region of interest, i.e., near the origin.

More formally, let L> � (a> | b>) be a 6-vector that does not necessarily satisfy
the Plücker constraint (5), i.e., a>b might be nonzero. We seek L̂

>
� ðu>jv>Þ, defined

424 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 319

by minL̂;u>v¼0kL̂� Lk
2
. This is a linear least squares optimization problem under a

nonlinear constraint. Although it has a clear and concise formulation, it is not trivial.
Obviously, one can modify one entry of the Plücker coordinates in accordance

with the Plücker constraint, e.g. set a1 = �(a2b2 + a3b3)/b1. This simple solution
has the disadvantage that the entry must be chosen depending on the actual values
of the coordinates since the correction rule uses a division. Also, all entries are clearly
not treated uniformly.

By comparison, our solution orthogonally projects the 6-vector on the Klein
quadric and treats all its entries the same way. Kanatani [13] proposes a general iter-
ative scheme for projecting points on nonlinear manifolds, such as projecting points
in R6 on the Klein quadric. Our algorithm performs this projection in a noniterative
manner, which thus guarantees that the optimal projected point on the Klein quad-
ric, i.e., the optimal 3D line, is found. Its derivation is quite tricky but it can be read-
ily implemented with few lines of code from its summary shown in Table 2.

4.2.1. A geometric interpretation

We interpret the 3-vectors a, b, u, and v as coordinates of 3D points. These points
are not directly linked to the underlying 3D line. This interpretation is just intended
to visualize the problem. The Plücker constraint u>v corresponds to the fact that the
lines induced by the origin with u and v are perpendicular. The correction criterion is
the sum of squared Euclidean distances between a and u and between b and v. Hence,
the problem may be formulated as finding two points u and v, as close as possible to
a and b, respectively, and such that the lines induced by the origin with u and v are
perpendicular. We begin by rotating the coordinate frame such that a and b are
transferred on the z = 0 plane. This is the reduction of the problem. We solve the re-

duced problem, by finding two points on the z = 0 plane, minimizing the correction
criterion and satisfying the Plücker constraint. Finally, we express the solution back
to the original space.

4.2.2. Reducing the problem

Let us define the (3 · 2) matrices �C � ðabÞ and Ĉ � ðuvÞ. The Plücker constraint is
fulfilled if and only if the columns of matrix Ĉ are orthogonal. We rewrite the cor-
rection criterion as

O ¼ kL� L̂k
2
¼ k�C� Ĉk

2
.

Table 2

The Plücker correction algorithm

• Compute the Singular Value Decomposition ðabÞ ¼ �U�R�V
>
.

• Let �Z ¼ �R�V
>
, form matrix T ¼

z21 z22
z12 �z11

� �

.

• Compute the singular vector v̂ associated to the smallest singular value of matrix T.

• Define �V ¼
v̂1 �v̂2
v̂2 v̂1

� �

and set ðuvÞ � �UV̂diagðV̂
>
�R�V
>
Þ.

Given a 6-vector L> � (a> Œ b>), this algorithm computes the closest Plücker coordinates L̂
>
� ðu>jv>Þ,

i.e., u>v = 0, in the sense of the L2-norm, i.e., kL̂� Lk2 is minimized.

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 425

320 Chapter 10. Lines

Using the following SVD �Cð3�2Þ ¼ �Uð3�2Þ�Rð2�2Þ�V
>

ð2�2Þ

O ¼ k�U�R�V
>
� Ĉk

2
¼ k�R�V

>
� �U

>
Ĉk

2
;

since �U has orthonormal columns. We define �Z ¼ �R�V
>
and Ẑ ¼ �U

>
Ĉ. Matrix �V is

orthonormal and �R is diagonal, hence the rows of �Z are orthogonal (i.e., �Z�Z
>
is diag-

onal, but not �Z
>
�Z). Note that Ẑ ¼ �U

>
Ĉ implies Ĉ ¼ �UẐ, even if �U�U

>
is not the iden-

tity.3 The problem is reduced to finding a column-orthogonal4 matrix Ẑ, as close as
possible to the row-orthogonal matrix �Z.

4.2.3. Solving the reduced problem

We parameterize the column-orthogonal matrix Ẑ as Ẑ ¼ V̂R̂, where V̂ is ortho-
normal and R̂ is diagonal. Hence

O ¼ k�R�V
>
� V̂R̂k

2
¼ kV̂

>
�R�V
>
� R̂k

2
.

The diagonal matrix R̂ which minimizes this expression is given by the diagonal en-
tries of V̂

>
�R�V
>
, and does not depend on the solution for V̂. The orthonormal matrix

V̂ ¼ ðv̂1 v̂2Þ is given by minimizing the sum of squares of the off-diagonal entries of

V̂
>
�Z, with �Z ¼ �R�V

>
¼ ðz1z2Þ

O ¼ ðv̂>1 z2Þ
2
þ ðv̂>2 z1Þ

2
.

Define the 2D rotation matrix with angle p/2 by M ¼
0 �1
1 0

� �

and parameterize
the orthonormal matrix V̂ by a unit vector v̂, as:

v̂1 ¼ v̂;

v̂2 ¼ Mv̂;

�

The correction criterion can be rewritten as

O ¼ ðv̂>z2Þ
2
þ ðv̂>M>z1Þ

2
¼ kTv̂k

2
with T ¼

z>2

z>1 M

� �

.

The unit vector v̂ minimizing this expression is given by the singular vector associat-
ed to the smallest singular value of matrix T.

4.2.4. Expressing the solution

From vector v̂ which solves the reduced problem, we form the orthonormal matrix

V̂ ¼
v̂1 �v̂2
v̂2 v̂1

� �

. The diagonal matrix R̂ is given by R̂ ¼ diagðV̂
>
�R�V
>
Þ.

3 Indeed, denote ui the columns of matrix �U and form U = (u1 u2 u1 · u2). We have

U> �U ¼ ðIð2�2Þ0ð2�1ÞÞ
>. Let us multiply the correction criterion by U> : O ¼ kð�V�R0ð2�1ÞÞ

> � U>Ĉk2.

Denote Yð3�2Þ ¼ U>Ĉ. The optimal solution has the form Y> ¼ ðẐ
>
0ð2�1ÞÞ, since, according to the

geometric interpretation, the corrected points u and v must lie on the plane defined by points a, b and the

origin, the plane z = 0. Therefore, we obtain Ĉ ¼ UY ¼ �U�Y.
4 The fact that matrix Ẑ ¼ �U

>
Ĉ is column-orthogonal is induced from the Plücker constraint. Indeed, this

constraint implies that Ĉ is column-orthogonal, hence Ĉ
>
Ĉ is diagonal. Matrix U>Ĉ, where

SOð3Þ 3 U ¼ ðu1 u2 u1 � u2Þ ¼ ð�U�uÞ, is also column-orthogonal. Observe that Ĉ
>
UU>Ĉ ¼ Ĉ

>
�U�U
>
Ĉþ

Ĉ
>
�u�u>Ĉ ¼ Ĉ

>
�U�U
>
Ĉ since �u>Ĉ ¼ 0>. Hence, matrix �U

>
Ĉ is column-orthogonal.

426 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 321

4.3. Quasi-linear algorithms

We describe algorithms �QLIN1� and �QLIN2,� that consider the reprojection error (3).
They are based on an iterative bias-correction, through reweighting of the biased er-
ror function (9). Such algorithms are coined quasi-linear.

We showed previously that the orthogonal and the algebraic distances are related
by a scalar factor, given by Eq. (8), depending on the 3D line. The reprojection error
and the biased error functions are therefore related by a set of such factors, one for
each image of the line. The fact that these factors depend on the unknown 3D line
suggests an iterative reweighting scheme.

The first approach that comes to mind is �QLIN1.� The linear system considered for
method LIN is formed and solved. The resulting 6-vector L0 is corrected to be valid
Plücker coordinates. This yields a biased estimate of the 3D line. Using this estimate,
weight factors that contain the bias of the linear least squares error function are com-
puted, and used to reweight the equations. The process is iterated to compute succes-
sive refined estimates Lk until convergence, where k is the iteration counter.
Convergence is determined by thresholding the difference between two consecutive
errors. It is typically reached in three or four iterations.

Experimental results show that this naive approach performs very badly, see Sec-
tion 6. This is due to the fact that the Plücker constraint is enforced afterhand and is
not taken into account while solving the linear least squares system.

To remedy to this problem, we propose �QLIN2,� that linearizes and enforces the
Plücker constraint (5), as follows. The algorithm is summarized in Table 3. Rewrite

the constraint as CðLÞ ¼ L>GL where Gð6�6Þ ¼
0 I

I 0

� �

. By expanding this expres-

sion to first order around the estimate Lk, and after some minor algebraic manipu-
lations, we obtain the following linear constraint on Lk+1:

CkðLkþ1Þ ¼ L>k GLkþ1 ¼ 0.

We follow the constrained linear least squares optimization method summarized in
[11, Section A3.4.3] to enforce this linearized constraint, as well as iLk+1i = 1. The
idea is to find an orthonormal basis of all possible vectors satisfying the constraint
and to solve for a 5-vector c expressed in this basis. Such an orthonormal basis is
provided by computing the nullspace of L>k G using SVD. Let �V be a (6 · 5) orthonor-
mal matrix whose columns span the basis (i.e., L>k G

�V ¼ 0), we define Lkþ1 ¼ �Vc,
hence CkðLkþ1Þ ¼ L>k G

�Vc ¼ 0 and iLk+1i = ici. We solve for c by substituting in

Table 3

The quasi-linear algorithm �QLIN2� for optimal triangulation

1. Plücker correction procedure described in Section 4.2. Set k = 0

2. Constraint linearization: Compute the singular value decomposition

L>k G � u>diagð1; 0; 0; 0; 0; 0Þðvð6�1Þj�Vð6�5ÞÞ
>

3. Estimation: Compute min
c;kck2¼1kA

�Vck2 and set Lkþ1 ¼ �Vc

4. Bias-correction: Reweight the linear system A by computing the weights according to Eq. (8)

5. Iteration: Iterate steps 2, 3, and 4 until convergence

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 427

322 Chapter 10. Lines

Eq. (10) ðkALkþ1k
2
¼ kA�Vck

2
Þ. The singular vector associated to the smallest singu-

lar value of matrix A�V provides the solution vector with unit L2-norm such that
BðLkþ1;MÞ is minimized.

5. Bundle adjustment

Bundle adjustment is the nonlinear minimization of the reprojection error (2),
over camera and 3D line parameters. We focus on the parameterization of 3D lines.
Parameterizing the camera motion has been addressed in e.g. [1,11, Section A4.6].

5.1. Problem statement

As said in Section 1, there are various possibilities to overparameterize the four-
dimensional set of 3D lines. In the context of nonlinear optimization, choosing an
overparameterized representation may induce the following problems. First, the
computational cost of each iteration is increased by superfluous parameters. Second,
artificial freedoms in the parameter set (internal gauge freedoms) are induced and
may give rise to numerical instabilities. Third, some internal consistency constraints,
such as the Plücker constraint, may have to be enforced.

These reasons motivate the need for a representation of 3D lines allowing nonlin-
ear optimization with the minimum four parameters. In that case, there is no free
scale induced by homogeneity or internal consistency constraints, and an uncon-
strained optimization engine can be used.

5.2. The orthonormal representation

The orthonormal representation has been introduced in [1] for the nonlinear opti-
mization of the fundamental matrix with the minimum seven parameters. It consists
in finding a representation involving elements of SO (n) and scalars (hence the term
�orthonormal representation�). In particular, no other algebraic constraints should be
necessary, such as the rank-two constraint of fundamental matrices or the bilinear
Plücker constraint. Using orthonormal matrices implies that the representation is
well-conditioned. Based on such a representation, local update using the minimum
number of parameters is possible.

Commonly used nonlinear optimization engine, e.g., Newton type such as Leven-
berg–Marquardt, often require the Jacobian matrix of the error function with respect
to the update parameters. In the orthonormal representation framework, we split it
as the product of the Jacobian matrix of the error function considered with respect to
the �standard� entity representation, e.g., the fundamental matrix or Plücker coordi-
nates, and the orthonormal Jacobian matrix, i.e., for the �standard� representation
with respect to the update parameters.

5.2.1. Example: representing P1

We derive the orthonormal representation of the one-dimensional projective
space P1. This is used in Section 5.3 to derive the orthonormal representation of

428 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 323

3D lines. Let r 2 P1. Such a 2-vector is defined up to scale and has therefore only
one degree of freedom. We represent it by an SO (2) matrix W defined by

W ¼
1

krk

r1 �r2

r2 r1

� �

. ð11Þ

The first column of this matrix is r itself, normalized to unit-norm. Let h be the
update parameter. A local update step is W‹ W R (h) where R (h) is the 2D rotation
matrix of angle h. The Jacobian matrix or

oh
evaluated at h0 = 0 (the update is with re-

spect to a base rotation) is given by

or

oh

�
�
�
�
h0

¼
ow1

oh

�
�
�
�
h0

¼
�r2

r1

� �

¼ w2; ð12Þ

where wi is the ith column of W.

5.2.2. Updating SO(3)

A matrix U 2 SO (3) can be locally updated using three parameters by any well-
behaved (locally nonsingular) representation, such as three Euler angles
h> = (h1 | h2 | h3) as

U URðhÞ with RðhÞ ¼ Rxðh1ÞRyðh2ÞRzðh3Þ; ð13Þ

where Rx (h1), Ry (h2), and Rz (h3) are SO (3) matrices representing 3D rotations
around the x-, y- and z-axes with angle h1, h2, and h3, respectively. The Jacobian ma-
trix is derived as follows. As in the SO (2) case, the update is with respect to a base
rotation. The orthonormal Jacobian matrix is therefore evaluated at h0 = 0(3·1)

oU

oh

�
�
�
�
h0

¼
oU

oh1

�
�
�
�
h0

j
oU

oh2

�
�
�
�
h0

j
oU

oh3

�
�
�
�
h0

 !

.

After minor algebraic manipulations, we obtain

oU

oh1

�
�
�
�
h0

¼
oðURxðh1ÞRyðh2ÞRzðh3ÞÞ

oh1

�
�
�
�
h0

¼ ð03ju3j � u2Þ; ð14Þ

where ui is the ith column of U. Similarly:

oU

oh2

�
�
�
�
h0

¼ð�u3j03ju1Þ ð15Þ

oU

oh3

�
�
�
�
h0

¼ðu2j � u1j03Þ. ð16Þ

These expressions are vectorized to form the orthonormal Jacobian matrix.

5.3. The case of 3D lines

The case of 3D lines is strongly linked with the cases of SO (2) and SO (3), as
shown by the following result:

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 429

324 Chapter 10. Lines

Any (projective) 3D line L can be represented by

ðU;WÞ 2 SOð3Þ � SOð2Þ;

where SO (2) and SO (3) are the Lie groups of respectively (2 · 2) and (3 · 3) rotation
matrices. (U,W) is the orthonormal representation of the 3D line L.

The proof of this result is obtained by showing that any 3D line has an orthonormal
representation (U,W) 2 SO (3) · SO (2), while any (U,W) 2 SO (3) · SO (2) corre-
sponds to a unique 3D line. The next paragraph illustrates this by means of Plücker
coordinates.

Note that this result is consistent with the fact that a 3D line has four degrees of
freedom, since an element of SO (2) has one degree of freedom and an element of
SO (3) has three degrees of freedom.

Using this representation of 3D lines, we show that there exists a locally nonsin-
gular minimal parameterization. Therefore, 3D lines can be locally updated with the
minimum four parameters. The update scheme is inspired from those given above for
2D and 3D rotation matrices, and can be plugged into most of the existing nonlinear
optimization algorithms. These results are summarized in Table 4.

5.3.1. Relating Plücker coordinates and the orthonormal representation

The orthonormal representation of a 3D line can be computed from its Plücker
coordinates L> � (a> | b>), as follows. Let �Cð3�2Þ � ðajbÞ be factored as

�C � a
kak

b
kbk

a�b
ka�bk

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SOð3Þ

kak

kbk

� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ðkakkbkÞ>2P1

.

In practice, we use QR decomposition, �Cð3�2Þ ¼ Uð3�3ÞRð3�2Þ. The special form of ma-
trix R, i.e., the zero at the (1,2) entry is due to the Plücker constraint. While
U 2 SO (3), the two nonzero entries of R defined up to scale can be represented by
an SO (2) matrix W, as shown in Section 5.2.

Going back from the orthonormal representation to Plücker coordinates is trivial.
The Plücker coordinates of the line are obtained from its orthonormal representation
(U,W) as

Table 4

Elements for 3D line optimization using the minimal four parameters through the orthonormal

representation

Initialization. The initial guess is given by the Plücker coordinates L>0 � ða
>
0 jb
>
0 Þ

• Compute the orthonormal representation (U,W) 2 SO (3) · SO (2) of L0 by QR decomposition

ða0jb0Þ ¼ U

� r1

r2

�

and set W ¼
r1 �r2
r2 r1

� �

• The four optimization parameters are p> = (h> Œh) where the 3-vector h and the scalar h are used to

update U and W, respectively

Update. (i.e., one optimization step)

• Current line is L> � ðw11u
>
1 jw21u

>
2 Þ and oL/op is given by Eq. (18)

• Compute p by minimizing some criterion

• Update U and W: U‹ U R(h) and W‹W R(h)

430 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 325

L> � ðw11u
>
1 jw21u

>
2 Þ; ð17Þ

where ui is the ith column of U.

5.3.2. A 4-parameter update

Consider (U,W) 2 SO (3) · SO (2), the orthonormal representation of a 3D line.
Since U 2 SO (3), as reviewed in Section 5.2, it can not be minimally parameterized
but can be locally updated using Eq. (13), as U ‹ UR (h) where h 2 R3. Matrix
W 2 SO (2) can be updated as W ‹ WR (h), where h 2 R. We define the update
parameters by the 4-vector p> � (h> | h).

We denote J the (6 · 4) Jacobian matrix of the Plücker coordinates, with respect
to the orthonormal representation. Matrix J must be evaluated at p0 = 0(4·1):

Jjp0 ¼
oL

oh1

�
�
�
�
p0

j
oL

oh2

�
�
�
�
p0

j
oL

oh3

�
�
�
�
p0

j
oL

oh

�
�
�
�
p0

!

.

By using the orthonormal representation to Plücker coordinates Eq. (17) and the
Jacobian matrices for SO (2) and SO (3), as defined by Eqs. (12), (14)–(16), we ob-
tain, after minor algebraic manipulations:

Jð6�4Þ ¼
0ð3�1Þ �r1u3 r1u2 �r2u1

r2u3 0ð3�1Þ �r2u1 r1u2

� �

. ð18Þ

5.3.3. Geometric interpretation

Each of the four above-defined update parameters p has a geometric interpreta-
tion. Matrix W encapsulates the ratio iai/ibi, hence the distance d from the origin
O to L. Thus, parameter h acts on d. Matrix U is related to a 3D coordinate frame
attached to L. Parameter h1 rotates L around a circle with radius d, centered on O,
and lying on the plane defined by O and L. Parameter h2 rotates L around a circle
with radius d, centered on O, and lying in a plane containing O, the closest point Q
of L to O, and perpendicular to L. Parameter h3 rotates L around the axis defined by
O and Q. For the last three cases, the angles of rotation are the parameters them-
selves. This interpretation allows to easily incorporate a priori knowledge while esti-
mating a line. For example, to leave the direction of the line invariant, one may use
the two update parameters h2 and h, while to leave the distance of the line to the ori-
gin invariant, one may use the three update parameters h. This allows to solve con-
strained line estimation cases, as summarized in the table below, indicating which
update parameters to optimize in which case

Scenario h1 h2 h3 h

Fixed direction · ·
Fixed normal to the plane formed with the origin · ·
Fixed distance to the origin · · ·

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 431

326 Chapter 10. Lines

6. Experimental results

6.1. Simulated data

Our simulated experimental setup consists of a set of cameras looking inwards at
3D lines randomly chosen in a sphere with a 1 m radius. Cameras are spread widely
around the sphere, at a distance of roughly 10 m away from the centre of the sphere.
We fix the focal length of the cameras to 1000 (in number of pixels). Note that this
information is not used in the rest of the experiments. The end-points of all lines are
projected in all views, where their positions are corrupted by an additive Gaussian
noise. We vary the parameters of this setup to assess and compare the quality of
the different estimators on various scene configurations.

We compare the four methods given in this paper: LIN, QLIN1, QLIN2, and MLE (bun-
dle adjustment based on our orthonormal representation of 3D lines), as well as the
method given in [11, Section 15.4.1], denoted by �MLE_HARTLEY.� This method con-
sists in nonlinearly computing the trifocal tensor as well as reconstructed lines by
minimizing the reprojection error (2) and parameterizing the 3D lines by two of their
three images. We also compare QLIN2 to a direct Levenberg–Marquardt-based min-
imization of the reprojection error, dubbed NLIN: the two methods gave undistin-
guishable results in all our experiments. Note that most existing methods, e.g.
[14,21,23,27] can be applied only when camera calibration is available.

Wemeasure the quality of an estimate using the estimation error, as described in [11,
Section 4], which also provides the theoretical lower bound. The estimation error is
equivalent to the value of the negative log likelihood (2) (i.e., the reprojection error).

The results are shown on graphs on Figs. 1 and 2. We observe that the different
methods are always in the same order. Three distinct behaviours can be seen. Meth-
ods LIN and QLIN1 give similar results since they are subject to the same bias induced
by ignoring the Plücker constraint until the final correction. Methods QLIN2 and NLIN

are undistinguishable. They give better results than the biased methods. Finally,
methods MLE and MLE_HARTLEY are hardly ever distinguishable. Their results are
the best since they adjust the camera positions along with the 3D line parameters.

Inmore details, we vary the added noise level from 0 to 2 pixels, while considering 20
lines and three views on Fig. 1A. One observes that, beyond one pixel noise, methods
LIN and QLIN1 behave very badly. This is mainly due to the bias introduced by the Plüc-
ker correction procedure.Methods QLIN2,MLE, andMLE_HARTLEY degrade gracefully as
the noise level increases. Method QLIN2 gives reasonable results. Methods MLE and
MLE_HARTLEY give undistinguishable results, very close to the theoretical lower bound.

We vary the number of lines from 15 to 60, while considering a one pixel noise and
three views on Fig. 1B. Similar conclusions as for the previous experiment can be
drawn, except for the fact, that when more than 30 lines are considered, methods LIN

and QLIN1 give reasonable results. Also, methods MLE and MLE_HARTLEY give results
undistinguishable from the theoretical lower bound when more than 45 lines are
considered.

Fig. 2A shows the results when the number of images is varied from 3 to 12. The
algorithms that do not optimize the cameras, namely LIN, QLIN1, QLIN2, and NLIN,

432 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 327

have an error which increases with the number of images, whereas the bundle adjust-
ment algorithms, namely MLE and MLE_HARTLEY, have an error which decreases. This
is due to the fact that when the number of images increases, the initial camera esti-
mation degrades, which is characteristic of the camera initialization algorithm.

When the distance between the lines and the cameras increases, Fig. 2B shows that
the error decreases for all methods. This is explained by the fact that the cloud of 3D
lines gets smaller and smaller in the images, which decrease the estimation error, but
does not mean that the estimate is better.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Noise standard deviation (pixels)

E
st

im
at

io
n

er
ro

r
(p

ix
el

s)

LIN

QLIN1

QLIN2

MLE

MLE HARTLEY

LOWER BOUND

15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of line correspondences

E
st

im
at

io
n

er
ro

r
(p

ix
el

s)

LIN

QLIN1

QLIN2

MLE

MLE HARTLEY

LOWER BOUND

_

_

_

_

A

B

Fig. 1. Estimation error for different methods when varying the variance of added noise on image end-

points (A) and the number of lines considered (B).

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 433

328 Chapter 10. Lines

We observed that the quasi-linear methods always converge within five iterations.

6.2. Real data

We tested our algorithms on several image sequences. For two of them, we show
results. We compared methods LIN, QLIN1, QLIN2, and MLE, since MLE_HARTLEY is for
three views only.

We observed that QLIN1 generally needs more iterations to converge than QLIN2.
This is due to the Plücker correction step that significantly modifies the estimate

3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of images

E
st

im
at

io
n

er
ro

r
(p

ix
el

s)

LIN

QLIN1

QLIN2

MLE

MLE HARTLEY

LOWER BOUND

6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

Scene to camera distance (meters)

E
st

im
at

io
n

er
ro

r
(p

ix
el

s)

LIN

QLIN1

QLIN2

MLE

MLE HARTLEY

LOWER BOUND

_

_

_

_

A

B

Fig. 2. Estimation error for different methods when varying the number of images (A) and the scene to

camera distance (B).

434 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 329

in QLIN1, while in QLIN2, since the constraint is linearized and enforced in the estima-
tion, the correction applied to the estimate is less important.

6.2.1. The �books� sequence

Fig. 3 shows images from this 5-frame sequence. We provided 45 line correspon-
dences by hand. Note that some of them are visible in two views only. We used these
line correspondences to compute the trifocal tensor corresponding to each subse-
quence formed by triplets of consecutive images, using the linear method described
in e.g. [11, Section 15.2]. We used method QLIN2 to reconstruct the lines associated
with each triplet. We registered these subsequences by using the method given in
[2]. At this point, we had a suboptimal guess of metric structure and motion. We fur-
ther refined it using our triangulation algorithms, to reconstruct each line by taking
into account all of its images. The corresponding estimation errors are, respectively

Fig. 3. Sample images out of the 5-frame �books� sequence overlaid with manually provided lines. Note

that the optical distortion is not corrected.

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 435

330 Chapter 10. Lines

LIN & QLIN1

QLIN2

MLE

Fig. 4. Zoom on some original (white) and reprojected lines (black) for the �books� sequence for different

methods.

436 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 331

for LIN, QLIN1, and QLIN2, 2.30, 2.27, and 1.43 pixels. Note the significant improve-
ment of QLIN2 compared to the biased methods LIN and QLIN1. Methods QLIN1 and
QLIN2, respectively, took four and three iterations to converge.

Fig. 5. Snapshots of the cameras and lines reconstructed by method MLE for the �books� sequence. The

images shown in Fig. 3 correspond to the top- and bottom-most cameras.

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 437

332 Chapter 10. Lines

We used the result of QLIN2 to initialize our maximum likelihood estimator for
structure and motion based on the proposed orthonormal representation together
with a metric parameterization of the camera motion, which ends up with a 0.9 pixel
estimation error.

For each estimation, we reconstructed the end-points corresponding to the first
view (shown on the left of Fig. 3). The maximum likelihood end-points are given
by orthogonally projecting their images onto the image of the corresponding line.

These results are visible on Fig. 4. Note the significant improvement of method
MLE over methods LIN, QLIN1 and QLIN2. The lines predicted by MLE and the original
lines are undistinguishable. Fig. 5 shows the cameras and lines reconstructed by MLE.
There is visually no difference with the reconstruction provided by algorithm QLIN2,
but that reconstructions provided by LIN and QLIN1 appear distorted.

Fig. 6. Sample images out of the 8-frame �laptop� sequence overlaid with manually provided lines. Note

that the optical distortion is not corrected.

438 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 333

6.2.2. The �laptop� sequence

Fig. 6 shows sample images for the 8-frame �laptop� sequence, overlaid with the 40
manually entered line correspondences. We performed 3D reconstruction by apply-

Fig. 7. Snapshots of the cameras and lines reconstructed by method MLE for the �laptop� sequence.

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 439

334 Chapter 10. Lines

ing the same algorithms as for the �books� sequence. We obtained the following esti-
mation errors for the triangulation algorithms, namely LIN: 1.34 pixels, QLIN1: 1.29
pixels, and QLIN2: 1.04 pixels. Methods QLIN1 and QLIN2 took respectively seven and
five iterations to converge. For the bundle adjustment algorithms, we obtained an
estimation error of 0.82 pixels. Fig. 7 shows snapshots of the reconstructed 3D
models.

These results show that accurate reconstructed models can be obtained on real
images taken by amateur digital cameras. They also show the importance of running
a final bundle adjustment after initial triangulation.

7. Conclusion

We addressed the problem of structure and motion recovery from line correspon-
dences across multiple views.

First, we proposed an optimal triangulation algorithm. Given camera motion, the
Plücker coordinates of the 3D lines are estimated by minimizing the reprojection er-
ror. The algorithm relies on an iteratively reweighted least squares scheme. We lin-
earized the bilinear Plücker constraint to incorporate it up to first order in the
estimation process. A Plücker correction procedure is proposed to find the nearest
Plücker coordinates to a given 6-vector.

Second, we proposed the orthonormal representation of 3D lines, which allows
nonlinear optimization with the minimal four parameters within an unconstrained
optimization engine, contrarily to previously proposed overparameterizations. This
representation is well-conditioned and allows analytic differentiation.

Experimental results on simulated and real data show that the standard linear
method and its naive bias-corrected extension perform very badly in many cases
and should only be used to initialize a nonlinear estimator. Our bias-corrected algo-
rithm including the Plücker constraint performs as well as direct Levenberg–Marqu-
ardt-based triangulation. It is therefore a good solution to initialize subsequent
bundle adjustment. Based on our orthonormal representation, bundle adjustment
gives results close to the theoretical lower bound and undistinguishable from the
three-view maximum likelihood estimator of [11, Section 15.4.1], while being usable
with any number of views.

References

[1] A. Bartoli, On the nonlinear optimization of projective motion using minimal parameters, in: Proc.

7th Eur. Conf. on Computer Vision, vol. 2, Copenhagen, Denmark, 2002, pp. 340–354.

[2] A. Bartoli, P. Sturm, The 3D line motion matrix and alignment of line reconstructions, Internat. J.

Comput. Vision 57 (3) (2004).

[3] J. Denavit, R.S. Hartenberg, A kinematic notation for lower pair mechanisms based on matrices,

ASME J. Appl. Mech. 22 (1955) 215–221.

[4] N. Ayache et Faugeras, Maintaining representations of the environment of a mobile robot, IEEE

Trans. Robotics Autom. 5 (6) (1989) 804–819.

440 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441

Paper 26: Structure From Motion Using Lines: . . . , CVIU 2005 [4] 335

[5] O. Faugeras, B. Mourrain, On the geometry and algebra of the point and line correspondences

between n images, in: Proc. 5th Internat. Conf. on Computer Vision, Cambridge, Massachusetts,

USA, 1995, pp. 951–956.

[6] A.W. Fitzgibbon, A. Zisserman, Automatic camera recovery for closed or open image sequences, in:

Eur. Conf. on Computer Vision, 1998, pp. 311–326.

[7] G.H. Golub, C.F. van Loan, Matrix Computation, The Johns Hopkins University Press, Baltimore,

1989.

[8] A. Habib, Motion parameter estimation by tracking stationary three-dimensional straight lines in

image sequences, Internat. Arch. Photogramm. Remote Sensing 53 (1998).

[9] A. Habib, M. Morgan, Y.-R. Lee, Bundle adjustement with self-calibration using straight lines,

Photogramm. Rec. (2002).

[10] R.I. Hartley, Lines and points in three views and the trifocal tensor, Internat. J. Comput. Vision 22 (2)

(1997) 125–140.

[11] R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University

Press, Cambridge, 2000.

[12] S.A. Hayati, M. Mirmirani, Improving the absolute positioning accuracy of robot manipulators, J.

Robotic Syst. 2 (4) (1985) 397–441.

[13] Kanatani K, Statistical Optimisation for Geometric Computation: Theory and Practice, Elsevier

Science, Amsterdam, 1996.

[14] Y. Liu, T.S. Huang, A linear algorithm for motion estimation using straight line correspondences,

Comput. Vision Graph. Image Process. 44 (1) (1988) 35–57.

[15] D. Martinec, T. Pajdla. Line reconstruction from many perspective images by factorization, in: Proc.

Conf. on Computer Vision and Pattern Recognition, vol. I, Madison, Wisconsin, USA, IEEE

Computer Society Press, 2003, pp. 497–502.

[16] D.C. Mulawa, E.M. Mikhail, Photogrammetric treatment of linear features, Internat. Arch.

Photogramm. Remote Sensing 27 (1988) 383–393.

[17] H. Pottmann, M. Hofer, B. Odehnal, J. Wallner. Line geometry for 3D shape understanding and

reconstruction, in: Proc. Eur. Conf. on Computer Vision, 2004.

[18] L. Quan, T. Kanade, Affine structure from line correspondences with uncalibrated affine cameras,

IEEE Trans. Pattern Anal. Mach. Intell. 19 (8) (1997) 834–845.

[19] K. Roberts, A new representation for a line, in: Proc. Conf. on Computer Vision and Pattern

Recognition, San Diego, California, USA, 1988, pp. 635–640.

[20] Y. Seo, K.S. Hong, Sequential reconstruction of lines in projective space, in: Proc. 13th Internat.

Conf. on Pattern Recognition, Vienna, Austria, 1996, pp. 503–507.

[21] M. Spetsakis, J. Aloimonos, Structure from motion using line correspondences, Internat. J. Comput.

Vision 4 (1990) 171–183.

[22] G.P. Stein, A. Shashua, On degeneracy of linear reconstruction from three views: linear line complex

and applications, IEEE Trans. Pattern Anal. Mach. Intell. 21 (3) (1999) 244–251.

[23] C.J. Taylor, D.J. Kriegman, Structure and motion from line segments in multiple images, IEEE

Trans. Pattern Anal. Mach. Intell. 17 (11) (1995) 1021–1032.

[24] A. Tommaselli, J. Lugnani, An alternative mathematical model to collinearity equations using

straight features, Internat. Arch. Photogramm. Remote Sensing 27 (1998) 765–774.

[25] B. Triggs, Factorization methods for projective structure and motion, in: Proc. Conf. on Computer

Vision and Pattern Recognition, San Francisco, California, USA, 1996, pp. 845–851.

[26] T. Viéville, Q.T. Luong, O.D. Faugeras, Motion of points and lines in the uncalibrated case, Internat.

J. Comput. Vision 17 (1) (1995).

[27] J. Weng, T.S. Huang, N. Ahuja, Motion and structure from line correspondences: closed-form

solution, uniqueness, and optimization, IEEE Trans. Pattern Anal. Mach. Intell. 14 (3) (1992) 318–

336.

A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441 441

336 Chapter 10. Lines

A Method for Interactive 3D Reconstruction of Piecewise Planar

Objects from Single Images

Peter F Sturm∗ and Stephen J Maybank

Computational Vision Group, Department of Computer Science

The University of Reading, Whiteknights, PO Box 225

Reading, RG6 6AY, United Kingdom

{P.F.Sturm,S.J.Maybank}@reading.ac.uk

Abstract

We present an approach for 3D reconstruction of objects from a single image. Obviously, constraints on the 3D

structure are needed to perform this task. Our approach is based on user-provided coplanarity, perpendicularity and

parallelism constraints. These are used to calibrate the image and perform 3D reconstruction. The method is described in

detail and results are provided.

1 Introduction

Methods for 3D reconstruction from images abound in the literature. A lot of effort has been spent on the development

of multi-view approaches allowing for high accuracy and complete modeling of complex scenes. On one hand, research

is directed towards completely automatic systems; these are relatively difficult to realize and it is not clear yet if they are

ready for use by a non expert. On the other hand, commercial systems exist, but they usually require a high amount of

user interaction (clicking on many points in many images) or a special camera setup (e.g. using structured light).

The guideline of the work described here is to provide an intermediate solution, reconstruction from a single image,

that needs relatively little user interaction. Naturally, there are limits on the kind of objects possible to be reconstructed

and on the achievable degree of completeness of reconstructions. However, our results suggest that such a minimal

solution for reconstruction might be quite useful, e.g. for visualization and augmented reality purposes.

Work on reconstruction from single images has been done by others. Shum et al. describe a method similar to ours in

[6]. Their method, however, allows to reconstruct only planes whose vanishing lines can be computed from two or more

sets of parallel lines, whereas our method can also reconstruct arbitrary planes, thus leading to a wider class of objects

that may be reconstructed. Liebowitz et al. describe two different methods for single-view 3D reconstruction in [5]. The

first method achieves the reconstruction by measuring heights of points with respect to a ground plane. The drawback

of the method is the requirement of the foot point for each 3D point to be reconstructed, i.e. the image of the vertical

intersection with the ground plane. This puts a limit to the nature of objects that may be reconstructed. The second

method of Liebowitz et al. requires, like the method by Shum et al., the computation of the vanishing lines of all planes

to be reconstructed. Their method also appears to be less straightforward than the one we describe in this paper, e.g. it

performs intermediate rectifications of the images of planar patches that might perhaps be omitted.

Reconstruction from single images requires geometrical constraints on the 3D structure of the observed object. The

approach described in this paper is based on three types of constraints: coplanarity of points, perpendicularity of di-

rections or planes and parallelism of directions or planes. Perpendicularity constraints are used to calibrate the image.

Together with parallelism constraints they provide the vanishing geometry of the scene which forms the skeleton of the 3D

reconstruction. Coplanarity constraints are used to complete the reconstruction, via alternating reconstruction of points

and planes.

The paper is organized as follows. In §2, we describe our camera model and the computation of vanishing points

and lines. Details on calibration and 3D reconstruction are given in §§3 and 4 respectively. The complete algorithm is

summarized in §5. §6 gives an example of how the algorithm works and presents some results. Conclusions are given in

§7.

∗This work is supported by the EPSRC funded project GR/K89221 (Vector).

Paper 27: A Method for Interactive 3D Reconstruction of. . . , BMVC 1999 [30] 337

2 Background

2.1 Camera Model

We use perspective projection to model cameras. A projection may be represented by a 3 × 4 projection matrix P that

maps points of 3-space to points in 2-space: q ∼ PQ. Here, ∼ means equality up to a non zero scale factor, which

accounts for the use of homogeneous coordinates. Since we consider a single view and may chose the 3D reference

frame arbitrarily, we align it with the camera, leading to the simple projection matrix P ∼ (K |0). Here, K is the 3× 3
calibration matrix:

K =

0

@

τf s u0

0 f v0

0 0 1

1

A .

In general, we distinguish 5 intrinsic parameters for the perspective projection model: the (effective) focal length f ,

the aspect ratio τ , the principal point (u0, v0) and the skew factor s accounting for non rectangular pixels. The skew

factor is usually very close to 0 and we ignore it in the following.

2.2 Vanishing Points and Lines

We compute vanishing points as the least squares solution for the intersection of sets of images of parallel 3D line

segments. The information of line segments being parallel is provided by the user.

Vanishing lines are determined from vanishing points and parallelism constraints. The assumption that a vanishing

point v belongs to a 3D direction parallel to a plane implies that v lies on the vanishing line l of that plane. Hence, two

or more vanishing points parallel to a plane define its vanishing line.

A vanishing point v that belongs to the 3D direction perpendicular to a plane, completely defines the vanishing line

(if the image is calibrated): l ∼ K
−T

K
−1v.

3 Calibration

In the following, we derive calibration equations that are based on vanishing points of pairs of perpendicular directions.

This approach is well known (cf. e.g. [1]); we briefly describe it and give then a closed-form solution for the focal length

which is usually the only intrinsic parameter that we calibrate in practice.

Let v1 and v2 be the vanishing points of two perpendicular 3D directions. Let the ideal points of the 3D directions

be written as: (VT

1 , 0)
T

and (VT

2 , 0)
T

. From the projection equations v1 ∼ KV1 and v2 ∼ KV2 we compute the ideal

points as:

V1 ∼ K
−1

v1

V2 ∼ K
−1

v2 .

The 3D directions being perpendicular means that VT

1V2 = 0, hence:

v
T

1K
−T

K
−1

v2 = 0 . (1)

This equation is homogeneous linear in the coefficients of the symmetric matrix ω ∼ K
−T

K
−1 (which represents the

image of the Absolute Conic). Having determined ω, using equations (1) or other means, the calibration matrix K may

be computed uniquely using Cholesky decomposition [4].

Each pair of perpendicular vanishing points gives one constraint on the intrinsic parameters in K. In a man-made en-

vironment, we will typically observe three pairs of mutually perpendicular vanishing points, sometimes more, sometimes

only a single pair. This puts a limit on the number of intrinsic parameters that may be computed. The aspect ratio τ can

often be assumed to be known. Depending on the number of calibration equations, we may estimate the principal point

and the focal length. For the experiments described later, we assumed that the principal point is in the center of the image,

and only estimated the focal length.

The equations for the focal length are particularly simple. We may decompose the calibration matrix in its known and

unknown parts:

K = K1K2 =

0

@

τ 0 u0

0 1 v0

0 0 1

1

A

0

@

f 0 0
0 f 0
0 0 1

1

A .

Transforming the vanishing points by K1:

v
′

p ∼ K
−1

1 vp

338 Chapter 10. Geometric Constraints

we obtain points v′
p for which the calibration equation (1) takes on the simple form:

(v′

1)
T

0

@

1 0 0
0 1 0
0 0 f2

1

Av
′

2 = 0 . (2)

The least squares solution for a set of equations (2) is given by:

f
2 = −

P

v′

p
⊥v′

q

v′
p,3v

′
q,3(v

′
p,1v

′
q,1 + v′

p,2v
′
q,2)

P

v′

p
⊥v′

q

(v′
p,3v

′
q,3)

2
.

Before solving for f , the v′
p should be normalized to unit norm.

What we observe is that vanishing points that lie on the ideal line in the image are useless for focal length calibration

(the term v′
p,3v

′
q,3 in the denominator is zero here). This means that the vanishing points that correspond to directions

that are parallel to the image plane, are useless, so we need at least two finite vanishing points that are perpendicular.

These considerations tell us how to position the camera to successfully calibrate it. Note that vanishing points at infinity

will not badly influence the determination of the focal length: the term in the denominator will be zero and the term in

the numerator very close to zero, so they won’t affect the sums in the equation. Infinite vanishing points might be used

for the determination of other intrinsic parameters, if required.

The images used in our experiments (see figures 3 and 4) only show small amounts of optical distortion. However,

wide-angle views which are likely to be used for single-view 3D reconstruction, might require distortion removal prior to

calibration and reconstruction. The automatic method by Devernay and Faugeras [2] might be used. Distortion removal

can also be achieved in a very simple way by manually adjusting the dominant first coefficient of radial distortion, by the

aid of a slider provided by the graphical user interface, such as to make line segments in the image roughly straight.

4 3D Reconstruction

The principal aim here is to reconstruct a set of 3D points and planes. Sets of coplanar 3D points define polygons onto

which texture can be mapped for visualization purposes.

We assume that vanishing points and lines have been computed where possible and that the image has been calibrated

as described in the previous section. This enables us to backproject image points to 3D along their projection rays – a 3D

point whose image is given by q, has coordinates:

Q =

„

λq′

1

«

, (3)

where q′ ∼ K
−1q and q′ has unit norm. The unknown λ expresses the distance of Q from the optical center and hence

defines its position on the projection ray.

If we know the vanishing line of a 3D plane, its position is also defined up to one unknown. Let l be the vanishing

line and n ∼ K
Tl such that n has unit norm. Then, the 3D position of any plane whose vanishing line is l, is given by:

Π =

„

n

d

«

. (4)

The vector n is the plane’s normal and d the plane’s distance from the optical center.

Unless a reference distance in the scene is known, 3D reconstruction can be achieved up to a global scale factor only.

Hence, we are free to set the position of one point (along its projection ray) or one plane (while preserving its vanishing

line). Suppose, we have fixed one point Q. The position of planes with known vanishing lines and containing Q is then

completely defined. Other points lying on these planes may then be reconstructed, by simply intersecting the projection

rays with the planes. In turn, other planes may then be reconstructed using the available points, and so on. This alternation

scheme allows to reconstruct objects whose parts are sufficiently “interconnected”, i.e. the points on the object have to

be linked together via coplanarity or other geometrical constraints.

In the following, we describe an extension of this basic reconstruction scheme. Basically, we bootstrap the alternating

point-plane reconstruction scheme via the simultaneous reconstruction of a set of points and a set of planes that are

linked together in a way described below. This is the central part of our reconstruction method. Other modules used for

reconstruction are described in §4.2. The complete algorithm is given in §5 and the way it works is illustrated in §6.

4.1 Simultaneous Reconstruction of Points and Planes

The coplanarity constraints provided by the user are in general overconstrained, i.e. several points may lie on more than

one plane. This means that, due to image noise, it is difficult to obtain a 3D reconstruction that satisfies all constraints

exactly. This may be achieved by constrained optimization, but there might be no batch method of doing so. Thus, in

Paper 27: A Method for Interactive 3D Reconstruction of. . . , BMVC 1999 [30] 339

the following we describe a direct least squares solution for reconstructing a subset of object planes and points, mini-

mizing the sum of squared distances between planes and points. Usually, the subsets of planes and points that may be

reconstructed this way cover already a large part of the object (cf. the example in §6).

Consider sets of images of coplanar points, Sr = {qir,1
, . . . ,qir,nr

}. A point may belong to more than one set Sr.

Let Πr be the plane corresponding to the set Sr . In the following, we only consider planes with known vanishing lines.

We say that two planes Πr1
and Πr2

are connected if they share a point, i.e. if the intersection of Sr1
and Sr2

is

non empty. This relationship may be visualized by a graph, whose vertices are planes, with edges being drawn between

connected planes. We choose a largest subgraph of connected planes (full connection is not required). Let S ′
r be the point

sets of the selected planes, points lying on one plane only having been eliminated.

We now show how the considered planes and points may be reconstructed simultaneously in a least squares manner.

Reconstruction is done via the determination of the scalars λ and d, as given in equations (3) and (4). Let Q be a point

lying on plane Π. The squared distance between them is given by:

“

d + (nT
q
′)λ
”2

.

We want to minimize the sum of squared distances for pairs of planes and points. The cost function is thus:

g =
X

r

nr
X

p=1

„

d
2

r + 2
“

(nr)
T
q
′

irp

”

λirp
dr +

“

(nr)
T
q
′

irp

”

2

λ
2

irp

«

.

Its partial derivatives are (divided by 2):

σg

σdr

=

nr
X

p=1

1

!

dr +

nr
X

p=1

“

(nr)
T
q
′

irp

”

λirp

σg

σλp

=
X

r,qp∈S′

r

“

(nr)
T
q
′

p

”

dr +

0

@

X

r,qp∈S′

r

“

(nr)
T
q
′

p

”2

1

Aλp

Nullifying these leads to a homogeneous linear equation system in the unknowns dr and λp, giving the least squares

solution. The solution is defined up to scale, as expected, since reconstruction can only be done up to scale.

The equation system has the following nice structure:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

D1 C11 C12 · · · C1n

D2 C21 C22 · · · C2n

. . .
...

...
...

Dm Cm1 Cm2 · · · Cmn

C11 C21 · · · Cm1 L1

C12 C22 · · · Cm2 L2

.

..
.
..

.

..
. . .

C1n C2n · · · Cmn Ln

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

d1

d2

...

dm

λ1

λ2

.

..

λn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0
0
...

0

0
0
.
..

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where:

Dr =

nr
X

p=1

1 Crp = (nr)
T
q
′

p Lp =
X

r,qp∈S′

r

“

(nr)
T
q
′

p

”2

Special sparse solution methods may be used like e.g. in [3], but for small problems (the size of the matrix is the

number of planes plus the number of points, which is usually at most a few dozens for single images) we simply use

singular value decomposition.

4.2 Other Modules

Our method requires basically two other reconstruction modules, the backprojection of a point onto a 3D plane and the

fitting of a plane to a set of 3D points, possibly including ideal points.

Backprojecting a point onto a plane. Backprojection of a point onto a plane is done by computing λp via:

λp = −
dr

(nr)
T
q′

p

.

340 Chapter 10. Geometric Constraints

Fitting a plane to a set of points. Several cases may be considered. In the general case, the cost function to be

minimized is the sum of squared distances (we omit here indices referring to the plane):

g =
n
X

p=1

„

d
2 + 2

“

n
T
q
′

p

”

λpd +
“

n
T
q
′

p

”

2

λ
2

p

«

. (5)

Nullifying the partial derivatives leads to a linear homogeneous equation system in the unknowns d and n. If we already

know the plane’s normal n, we obtain the following closed form solution for the unknown d:

d = −

Pn

p=1

`

nTq′
p

´

Pn

p=1
1

.

5 Complete Algorithm

1. Compute vanishing points and lines (cf. §2.2).

2. Calibrate (cf. §3).

3. Backproject all points up to scale, i.e. compute the vectors q′
p ∼ K

−1qp . Scale the q′
p to unit norm and use

extended coordinates for 3D points: QT

p = (λp(q
′
p)

T
, 1) .

4. From vanishing lines, compute plane normals (cf. equation (4)).

5. Partition the planes with known normal in sets of planes which are connected by at least one point (in a transitive

manner).

6. Choose the largest partition.

7. Reconstruct plane and point positions (distances from origin) as described in §4.1. Use only points that lie on more

than one plane in the actual partition.

8. Backproject points that lie on exactly one plane in the actual partition (cf. §4.2).

9. Reconstruct a plane not reconstructed yet by fitting it to 3D points (cf. §4.2). Each point provides one equation

and a vanishing line two. Choose the plane with the most equations.

10. Backproject points lying on the plane just reconstructed.

11. If there are planes not reconstructed yet, go to step 9.

We may optimize the reconstruction, respecting the geometric constraints. We have coded such a bundle adjustment

procedure, but in practice there is virtually no improvement in the quality of the reconstruction, so we usually omit this

step. From the 3D reconstruction, we automatically create textured VRML models (see examples in §6).

6 Sample Run and Examples of 3D Models

Figure 1 explains the user-provided input to our algorithm for the example shown in figure 3. On the left hand side, the

different directions present in the 3D object are represented via the dotted line segments which are used for computing the

vanishing points. Additionally, the user should flag perpendicular directions. On the right hand side, 5 groups of parallel

planar patches are shown, i.e. groups of patches sharing the same vanishing line. The edges in the middle of the graph

show which directions “belong” to which groups of planes. For example, for each of the second, third and fifth groups of

planes, we have two vanishing points, allowing us to compute the vanishing lines.

Some of the steps taken by the reconstruction algorithm for our example are shown in figure 2. The upper left figure

shows the result of the initial step described in §4.1. Note that a large part of the object is already reconstructed. The

upper right figure shows points that are backprojected onto the reconstructed planes (cf. step 8 of the algorithm). The

subsequent rows of figures show on the left a reconstructed plane (dark) and the (bold) points used to reconstruct it (step

9 of the algorithm). On the right, backprojected points are shown using bright circles (step 10). The reconstruction of the

whole 3D model for this example required 2 additional steps of alternating plane-point reconstruction, not shown here.

Figures 3 and 4 on page 8 show examples of 3D models obtained with our method. The first image in each figure is

the original image from which reconstruction was obtained. The other images show rendered views of created VRML

models. Texture maps were taken from the original images. For the model shown in figure 4, additional texture maps,

taken from frontoparallel views of two of the walls were used to enhance resolution.

Paper 27: A Method for Interactive 3D Reconstruction of. . . , BMVC 1999 [30] 341

Figure 1: User-provided input: directions of lines and planes.

Figure 2: First 6 steps of the reconstruction process.

342 Chapter 10. Geometric Constraints

7 Conclusion

We have presented a method for interactive 3D reconstruction of piecewise planar objects from a single view. Camera

calibration and 3D reconstruction are done using geometrical constraints provided by the user, that are simple in nature

(coplanarity, perpendicularity and parallelism) and may be easily provided without any computer vision expertise.

The major drawback of single-view 3D reconstruction is of course that only limited classes of objects may be recon-

structed and that the reconstruction is usually incomplete. The major advantages however are that it is a quick way of

obtaining 3D models, that it is rather easy to implement and to use and that due to user interaction and the small size of

the problem the reconstruction process becomes very reliable, compared to more automatic multi-view systems.

One advantage of our method compared to other approaches is that a wider class of objects can be reconstructed

(especially, there is no requirement of disposing of two or more vanishing points for each plane). The simultaneous

reconstruction of several planes and several points that forms the starting point of our method makes it likely that errors

are nicely spread over the whole 3D model, compared to more sequential approaches like [5].

There are several extensions that may be added to our basic method. For example, other primitives than points and

planes might be used, like lines, spheres or cylinders. Other types of geometrical constraints, like e.g. ratios of distances,

can be added, enlargening the class of objects that can be reconstructed. Also, it might be worth trying to stitch together

two or more 3D models obtained from single, possibly non-overlapping views (e.g. from the back and the front of a

house), to get complete 3D models.

We already adapted our method to the use of panoramic images, obtained using a parabolic mirror. Thus, we are able

to create 360◦ 3D models from one image, usually of the interior of a room.

Please contact the first author to get hard copies with color figures and images.

References

[1] B. Caprile and V. Torre, “Using Vanishing Points for Camera Calibration,” International Journal on Computer Vision,

Vol. 4, pp. 127–140, 1990.

[2] F. Devernay and O.D. Faugeras, “Automatic calibration and removal of distortion from scenes of structured environ-

ments,” Proceedings of the SPIE Conference on Investigate and Trial Image Processing, San Diego, California, USA,

Vol. 2567, SPIE - Society of Photo-Optical Instrumentation Engineers, August 1995.

[3] R.I. Hartley, “Euclidean Reconstruction from Uncalibrated Views,” Proceeding of the DARPA–ESPRIT Workshop on

Applications of Invariants in Computer Vision, Azores, Portugal, pp. 187-202, October 1993.

[4] A. Jennings, J.J. McKeown, Matrix Computation, 2nd edition, Wiley, 1992.

[5] D. Liebowitz, A. Criminisi and A. Zisserman, “Creating Architectural Models from Images,” Proceedings Euro-

Graphics, to appear, September 1999.

[6] H.-Y. Shum, R. Szeliski, S. Baker, M. Han, P. Anandan, “Interactive 3D Modeling from Multiple Images Using Scene

Regularities,” SMILE Workshop, Freiburg, Germany, pp. 236-252, June 1998.

Paper 27: A Method for Interactive 3D Reconstruction of. . . , BMVC 1999 [30] 343

Figure 3: Original image and rendered views of 3D VRML model.

Figure 4: Original image and rendered views of 3D VRML model.

344 Chapter 10. Geometric Constraints

A Method for 3D Reconstruction of Piecewise Planar Objects from Single

Panoramic Images

Peter Sturm∗

INRIA Rhône-Alpes

655 Avenue de l’Europe

38330 Montbonnot St Martin, France

Peter.Sturm@inrialpes.fr

Abstract

We present an approach for 3D reconstruction of objects

from a single panoramic image. Obviously, constraints on

the 3D structure are needed to perform this task. Our ap-

proach is based on user-provided coplanarity, perpendicu-

larity and parallelism constraints. The method is described

in detail for the case of a parabolic mirror-based omnidi-

rectional sensor and results are provided.

1. Introduction

Methods for 3D reconstruction from images abound in

the literature. A lot of effort has been spent on the develop-

ment of multi-view approaches allowing for high accuracy

and complete modeling of complex scenes. On one hand,

research is directed towards completely automatic systems;

these are relatively difficult to realize and it is not clear yet

if they are ready for use by a non expert. On the other hand,

commercial systems exist, but they usually require a high

amount of user interaction (clicking on many points in many

images).

The guideline of the work described here is to provide

an intermediate solution, reconstruction from a single im-

age, that needs relatively little user interaction. Naturally,

there are limits on the kind of objects possible to be recon-

structed and on the achievable degree of completeness of

reconstructions.

Work on reconstruction from single images has been

done before, see e.g. [9, 12, 13]. Most of the existing meth-

ods were developed for the use of a pinhole camera (with

the exception of [12] where mosaics are used). The scope

of several of these methods is limited, e.g. the approaches

described in [9, 12] only allow to reconstruct planar surfaces

∗This work is partially supported by the EPSRC funded project

GR/K89221 (Vector).

whose vanishing line can be determined in the image. One

of the two approaches in [9] achieves the reconstruction by

measuring heights of points with respect to a ground plane.

The drawback of the method is the requirement of the foot

point for each 3D point to be reconstructed, i.e. the image

of the vertical intersection with the ground plane.

In this paper, we present an approach for 3D reconstruc-

tion from a single panoramic image (work on panoramic

stereo and ego-motion estimation is described in e.g. [3,

5, 7, 14]). The concrete example of an image acquired

with a parabolic mirror-based omnidirectional camera is de-

scribed, but the method is easily adapted to other omnidi-

rectional sensors. Reconstruction from a single image re-

quires a priori constraints on the 3D structure. We use con-

straints that are easy to provide: coplanarity of points, per-

pendicularity of planes and lines, and parallelism of planes

and lines. The parallelism and perpendicularity constraints

are used to estimate the “directional geometry” of the scene

(line directions and plane normals) which forms the skele-

ton of the 3D reconstruction. Coplanarity constraints are

used to complete the reconstruction, via simultaneous re-

construction of points and planes. With the type of infor-

mation used we are able to reconstruct piecewise planar ob-

jects.

The paper is organized as follows. In §2, we describe

the camera model. The input to our reconstruction scheme

is explained in §3. The basic idea for 3D reconstruction

from a single image is outlined in §4. Details on 3D recon-

struction are given in §§5 and 6. The complete algorithm

is summarized in §7. §8 shows an experimental result and

conclusions are given in §9.

2. Camera Model

We use an omnidirectional camera formed by the com-

bination of a parabolic mirror and an orthographic camera

whose viewing direction is parallel to the mirror’s axis [10].

Paper 28: A Method for 3D Reconstruction of Piecewise Planar Objects. . . , OMNIVIS 2000 [22] 345

Orthographic projection can be obtained by using telecen-

tric optics [15]. Geometrically speaking, the projection cen-

ter of the orthographic camera coincides with the infinite

one among the two focal points of the paraboloid. Given the

image of a point and a small amount of calibration informa-

tion described below, it is possible to determine the 3D di-

rection of the line joining the original 3D point and the finite

focal point of the paraboloid. The finite focal point acts as

an effective optical center, relative to which correct perspec-

tive views of the scene can be created from the panoramic

image [1, 11].

In the following, we give formulas needed for calibrat-

ing the system and for 3D reconstruction. These formulas

are well known [10, 14], but presented here for the sake of

completeness.

2.1. Representation of Mirror and Camera

The mirror is a rotationally symmetric paraboloid. Its

shape is thus defined by a single parameter a. Without

loss of generality, we may represent the paraboloid in usual

quadric notation by the following symmetric matrix:

Ω ∼









4a2 0 0 0
0 4a2 0 0
0 0 0 −2a

0 0 −2a −1









where ∼ means equality up to scale, which accounts for the

use of homogeneous coordinates. The mirror’s axis is the Z-

axis and the finite focal point F is the coordinate origin, i.e.

FT = (0, 0, 0, 1). The parameter a describes the mirror’s

“curvature”.

The viewing direction of the orthographic camera is par-

allel to the Z-axis, thus the projection matrix can be written

as (using homogeneous coordinates):

P ∼





b 0 0 x0

0 b 0 y0

0 0 0 1



 .

The parameter b is the magnification factor of the ortho-

graphic projection. The coefficients x0 and y0 describe the

relative position of the image plane and the mirror, perpen-

dicular to the viewing direction.

2.2. Projection of a 3D Point

Let Q be a 3D point with coordinates (X, Y, Z, 1). Its

projection can be computed as follows. Let L be the line

joining Q and the mirror’s finite focal point F. Among the

two intersection points of L with the mirror Ω, choose the

one which lies on the same half-line as Q, with respect to

F. The image of Q is the orthographic projection of this

intersection point, giving the image coordinates:

x = x0 +
b

2a
X

Z +
√

X2 + Y 2 + Z2

X2 + Y 2

y = y0 +
b

2a
Y

Z +
√

X2 + Y 2 + Z2

X2 + Y 2
.

2.3. Calibration

The above projection equations show that the mirror’s

shape parameter a and the magnification b of the ortho-

graphic projection can be grouped together in a parameter

r = b
2a

describing the combined system. To calibrate the

system, we thus need to estimate the parameters x0, y0 and

r. These parameters have a simple geometrical meaning:

consider the horizontal circle on the paraboloid at the height

of the focal point F (cf. figure 1). The projection of this cir-

cle in the orthographic image is exactly the circle ω with

center (x0, y0) and radius r.

Figure 1. The paraboloidal mirror.

If the mirror’s top border does not lie at the height of

the focal point (e.g. as shown in figure 1), then we can not

directly determine the circle ω in the image. Instead, we

fit a circle ω′ to the border of the image as shown in figure

2 (a). This circle is cocentric with ω, thus x0 and y0 are

given by its center. The radius r′ of ω′, and r are related as

follows:

r = r′
cosα

1 + sin α

where α is the angle shown in figure 1, which is known by

construction.

The calibration procedure has to be done only once for

a fixed configuration. Another, more flexible calibration

method, is described in [2].

2.4. Backprojection

The most important feature of our mirror-camera system

is that from a panoramic image, we may create correct per-

346 Chapter 10. Geometric Constraints

spective images of the scene, as if they had been observed

by a pinhole camera with optical center at F.

This is equivalent to being able to backproject image

points via F: we are able to determine the projection ray

L (cf. §2.2) of a point Q, given its image point. Given the

calibration parameters, the projection rays are determined

in Euclidean space, which is useful for obtaining metric 3D

reconstructions as described later.

A projection ray may be represented by its ideal point1

which can be computed from the image coordinates (x, y)
as follows:









B

0









∼









2r(x − x0)
2r(y − y0)

(x − x0)
2 + (y − y0)

2 − r2

0









. (1)

3. Input

To prepare the description of the 3D reconstruction

method, we first explain the (user-provided) input. First

of course, the system has to be calibrated, as described in

§2.3 (also see figure 2 (a)). The basic primitives for our

method are interest points (see figure 2 (b)). Based on in-

terest points, coplanarity, parallelism and perpendicularity

constraints are provided as follows.

Lines are defined by two or more interest points and they

are grouped together into sets of mutually parallel lines (see

figures 2 (c) and (d)). In §5.2 it is described how to compute

the direction of a set of parallel lines. In the following, the

direction of the ith set of parallel lines will be represented

via the ideal point
(

DT

i , 0
)T

.

Planes are also defined by interest points and grouped ac-

cording to parallelism (see figures 2 (e) and (f)). The normal

direction of a set of parallel lines can be computed as de-

scribed in §5.3. The normal of the jth set of parallel planes

will be represented via the 3-vector nj .

Other useful constraints are:

• parallelism of lines and planes, expressed as:

DT

i nj = 0.

• perpendicularity of lines and planes: Di ∼ nj .

• perpendicularity of lines: DT

i1
Di2 = 0.

• perpendicularity of planes: nT

j1
nj2 = 0.

The input data are rather easy to provide interactively,

which typically takes 10-15 minutes per image.

1By ideal points and ideal lines we denote points and lines at infinity

respectively.

(a) Calibration: the dotted

line shows the circle ω (see

text).

(b) Interest points.

(c) A set of parallel lines. (d) A set of parallel lines.

(e) A set of parallel planes. (f) A set of parallel planes.

Figure 2. Illustration of camera calibration
and the input used for 3D reconstruction.

Crosses of the same color represent interest

points belonging to the same line or plane.

4. Basic Idea for 3D Reconstruction

The principal aim here is to reconstruct a set of 3D points

and planes. Sets of coplanar 3D points define polygons

onto which texture can be mapped for visualization pur-

poses. The reconstruction process is based on operations

which are described in the §§5 and 6. Here, we explain that

3D reconstruction from a single image is indeed possible,

given the considered types of constraints – coplanarity, par-

allelism and perpendicularity.

Paper 28: A Method for 3D Reconstruction of Piecewise Planar Objects. . . , OMNIVIS 2000 [22] 347

We assume that the image has been calibrated as de-

scribed in §2.3. Hence, it is possible to backproject im-

age points to 3D, which means that the position of each 3D

point is known up to one parameter, its depth. Parallelism

and perpendicularity constraints allow us to compute nor-

mal directions of some of the planes in the scene (this is

described in §§5.2 and 5.3). Hence, these planes are also

determined up to one unknown parameter each.

Unless a reference distance in the scene is known, 3D

reconstruction can be achieved up to a global scale factor

only. We are thus free to arbitrarily fix the position of one

point (along its projection ray) or one plane (while preserv-

ing its normal). Suppose, we have fixed one point Q. Planes

with known normal and which contain Q (known from the

input) are then completely defined. Other points lying on

these planes may then be reconstructed, by simply intersect-

ing the backprojection rays with the planes. In turn, other

planes may then be reconstructed by fitting them to the al-

ready reconstructed 3D points, and so on. This alternation

scheme allows to reconstruct objects whose parts are suffi-

ciently “interconnected”, i.e. the points on the object have

to be linked together via coplanarity or other geometrical

constraints.

This discussion shows that it is possible to obtain a 3D

reconstruction from one image and constraints of the types

considered. However, the alternation scheme just described

might not be the best practical solution, since it favors error

propagation throughout the reconstruction process. Instead

of reconstructing the scene step by step, we thus developed

a simple method for simultaneous reconstruction of poten-

tially large sets of points and planes linked together in a

way described in §6. Instead of being accumulated, errors

are potentially nicely spread over the 3D model. This initial

reconstruction is then completed via the alternating point-

plane reconstruction scheme outlined above.

In the following section, the basic modules needed for

3D reconstruction are described. The method for simulta-

neous reconstruction of points and planes is given in §6.

The complete algorithm is summarized in §7.

5. Basic Modules for 3D Reconstruction

5.1. Backprojection of Points

Let qp = (xp, yp)
T

be an image point and Bp be the 3D

direction of the backprojection ray, given by equation (1).

Then, the 3D point may be parameterized as

Qp =

(

λpBp

1

)

. (2)

The unknown λp expresses the distance of Qp from the fo-

cal point F and hence defines its position on the projection

ray.

5.2. Computation of the Direction of Parallel Lines

Given the input that two or more 3D lines are parallel,

we can compute the lines’ 3D direction as follows. We

suppose that lines are defined by sets of image points (cf.

figures 2 (c) and (d)), i.e. a line lik is given by points

qik,1, . . . ,qik,nik
. For each line, we may compute the 3D

interpretation plane, i.e. the plane spanned by the focal point

F and the 3D line. This plane is given by the backprojection

rays of the image points. If more than two points are given,

a least squares fit is done to determine the plane: the normal

is computed as the right singular vector Λik associated to

the least singular value [6] of the following matrix:









BT

ik,1

BT

ik,2

· · ·
BT

ik,nik









nik×3

.

The interpretation plane is then given by
(

ΛT

ik, 0
)T

.

Given the interpretation planes of two or more parallel

3D lines, we may determine the lines’ direction as the ideal

point obtained by intersection of the interpretation planes’

ideal lines. If more than two interpretation planes are given,

a least squares fit is done as above. In the following, let the

direction of the ith set of parallel lines be represented by the

ideal point
(

DT

i , 0
)T

.

5.3. Computation of the Normal Direction of a Set
of Parallel Planes

Planes are depicted by the user by indicating sets of

coplanar points in the image (cf. figures 2 (e) and (f)).

Given the knowledge that a plane is perpendicular to a set

of parallel lines the plane’s normal is directly given by the

direction of these lines, which may be determined as de-

scribed above.

A second method to compute a plane’s normal is the use

of parallelism constraints: given the knowledge that a plane

is parallel to two or more sets of mutually parallel lines,

then the planes’ normal vector nj can be computed in a

least squares manner: nj is obtained as the right singular

vector associated to the least singular value of the matrix

consisting of the row vectors DT

i .

If, by one of these methods, we are able to compute the

normal nj of a plane Πj , then the plane may be represented

as:

Πj =

(

nj

dj

)

, (3)

i.e. the plane’s position is determined up to its (oriented)

distance − dj

||nj||
from the focal point F. In the following,

we suppose that the normal vectors nj have unit norm.

348 Chapter 10. Geometric Constraints

5.4. Other Modules

Our method requires basically two other reconstruction

modules, the backprojection of a point onto a 3D plane and

the fitting of a plane to a set of 3D points, possibly including

ideal points.

Backprojecting a point onto a plane. Backprojection of

a point Qp onto a plane Πj is done by computing λp via:

λp = − dj

nT

j Bp

.

Fitting a plane to a set of points. Several cases may be

considered. In the general case, the cost function to be mini-

mized is the sum of squared distances (we omit here indices

referring to the plane):

g =

n
∑

p=1

(

d2 + 2
(

nTBp

)

λpd +
(

nTBp

)2

λ2

p

)

. (4)

Nullifying the partial derivatives leads to a linear homoge-

neous equation system in the unknowns d and n that is read-

ily solved.

If we already know the plane’s normal n, we obtain the

following closed form solution for the unknown d:

d = −
∑n

p=1

(

nTBp

)

∑n

p=1
1

.

6. Simultaneous Reconstruction of Points and

Planes

The coplanarity constraints provided by the user are in

general overconstrained, i.e. several points may lie on more

than one plane. This means that, due to image noise, it is

difficult to obtain a 3D reconstruction that satisfies all the

constraints exactly. This may be achieved by constrained

optimization, but there might be no batch method of do-

ing so. Thus, in the following we describe a direct least

squares solution for reconstructing a subset of object planes

and points, minimizing the sum of squared distances be-

tween planes and points. Usually, the subsets of planes and

points that may be reconstructed this way cover already a

large part of the object.

Consider sets of coplanar points, Sj =
{Qj,1, . . . ,Qj,nj

}. A point may belong to more than

one set Sj . Let Πj be the plane corresponding to the point

set Sj . In the following, we only consider planes with

known normal direction.

We say that two planes Πj1 and Πj2 are connected if

they share a point, i.e. if the intersection of Sj1 and Sj2 is

non empty. This relationship may be visualized by a graph,

whose vertices are planes, with edges being drawn between

connected planes. We choose a largest subgraph of con-

nected planes (full connection is not required). Let S ′
j be

the point sets of the selected planes, points lying on one

plane only having been eliminated.

We now show how the considered planes and points may

be reconstructed simultaneously in a least squares manner.

Reconstruction is done via the determination of the scalars

λ and d, as given in equations (2) and (3). Let Q be a point

lying on plane Π. The squared distance between them is

given by:
(

d + (nTB)λ
)2

.

We minimize the sum of squared distances for pairs of

planes and points. The general form of the cost function

is given in the following equation:

g =
∑

j

∑

p,Qp∈S′

j

(

d2

j + 2
(

nT

j Bp

)

λpdj +
(

nT

j Bp

)2

λ2

p

)

.

The partial derivatives (divided by 2) of the cost function

are given by:

σg

σdj

=





∑

p,Qp∈S′

j

1



 dj +
∑

p,Qp∈S′

j

((

nT

j Bp

)

λp

)

σg

σλp

=
∑

j,Qp∈S′

j

((

nT

j Bp

)

dj

)

+





∑

j,Qp∈S′

j

(

nT

j Bp

)2



λp .

Nullifying these equations leads to a homogeneous linear

equation system in the unknowns dj and λp, giving the least

squares solution. The solution is defined up to scale, as

expected, since reconstruction can only be done up to scale.

The equation system has the nice structure shown in

equation (5), where

Cjp =

{

nT

j Bp if Qp ∈ S′
j ,

0 else.

Dj =
∑

p,Qp∈S′

j

1

Lp =
∑

j,Qp∈S′

j

(

nT

j Bp

)2

.

The equation system is relatively well conditioned since

the nj and Bp are unit vectors and the Dj entries (the num-

ber of points on plane j) are usually not much larger than

10. Special sparse solution methods may be used like e.g.

in [4], but for small problems (the size of the matrix is the

number of planes plus the number of points, which is usu-

ally at most a few dozens for single images) we simply use

singular value decomposition [6].

Paper 28: A Method for 3D Reconstruction of Piecewise Planar Objects. . . , OMNIVIS 2000 [22] 349





























D1 C11 C12 · · · C1n

D2 C21 C22 · · · C2n

. . .
...

...
...

Dm Cm1 Cm2 · · · Cmn

C11 C21 · · · Cm1 L1

C12 C22 · · · Cm2 L2

...
...

...
. . .

C1n C2n · · · Cmn Ln

























































d1

d2

...

dm

λ1

λ2

...

λn





























=





























0
0
...

0
0
0
...

0





























. (5)

7. Complete Algorithm

1. Calibrate the system (cf. §2.3).

2. Backproject all points up to scale, i.e. compute the vec-

tors Bp (cf. §5.1). Scale the Bp to unit norm and use

extended coordinates for 3D points:

QT

p = (λp(Bp)
T
, 1) .

3. Compute line directions and normal directions of

planes (cf. §§5.2 and 5.3).

4. Partition the planes with known normal in sets of

planes which are connected by at least one point (in

a transitive manner).

5. Choose the largest partition.

6. Simultaneously reconstruct plane and point positions

as described in §6. Use only points that lie on more

than one plane in the actual partition (other points do

not add useful redundancy).

7. Backproject the other points that lie on planes in the

actual partition (cf. §5.4).

8. Reconstruct a plane not reconstructed yet by fitting it

to 3D points (cf. §5.4). Each point provides one equa-

tion (and the possibly known normal direction two).

Choose the plane with the most (independent) equa-

tions.

9. Backproject points lying on the plane just recon-

structed.

10. If there are planes not reconstructed yet, go to step 8.

Note that this process is done completely automatically.

From the 3D reconstruction, we may create textured

VRML models (see an example in §8).

8. Example

Figure 4 on the last page shows rendered views of a tex-

tured 3D model obtained from the image shown in figure 3

on the following page. The input image was obtained with

the CycloVision ParaShot system and an Agfa ePhoto 1680

camera. Texture maps were created from the panoramic

image using the projection equations in §2.2 and bicubic

interpolation [8]. With other images, similar results were

obtained.

9. Conclusion

We have presented a method for interactive 3D re-

construction of piecewise planar objects from a single

panoramic view. The method was developed for a sensor

based on a parabolic mirror, but its adaptation to other sen-

sors is straightforward. 3D reconstruction is done using ge-

ometrical constraints provided by the user, that are simple

in nature (coplanarity, perpendicularity and parallelism) and

may be easily provided without any computer vision exper-

tise.

The major drawback of single-view 3D reconstruction is

of course that only limited classes of objects may be recon-

structed and that the reconstruction is usually incomplete.

The major advantages however are that it is a quick way

of obtaining 3D models, that it is rather easy to implement

and to use and that due to user interaction and the small

size of the problem the reconstruction process becomes very

reliable, compared to more automatic multi-view systems.

Also, using geometrical constraints on the scene structure is

always a good idea in order to obtain realistic 3D models.

3D models from single images might be used to register

perspective views of scene details in order to obtain high

resolution global 3D models.

One advantage of our method compared to other ap-

proaches is that a wider class of objects can be reconstructed

(especially, there is no requirement of disposing of two or

more ideal points for each plane). The simultaneous recon-

struction of several planes and several points that forms the

starting point of our method makes it likely that errors are

nicely spread over the whole 3D model, compared to more

sequential approaches.

350 Chapter 10. Geometric Constraints

Please contact the author for getting a paper version with

color figures.

References

[1] S. Baker and S.K. Nayar, “A Theory of Catadioptric

Image Formation,” Proceedings International Confer-

ence on Computer Vision, Bombay, pp. 35-42, January

1998.

[2] C. Geyer and K. Daniilidis, “Catadioptric Camera

Calibration,” Proceedings International Conference

on Computer Vision, Kerkyra, Greece, pp. 398-404,

September 1999.

[3] J. Gluckman and S.K. Nayar, “Ego-Motion and Omni-

directional Cameras,” Proceedings International Con-

ference on Computer Vision, Bombay, pp. 999-1005,

January 1998.

[4] R.I. Hartley, “Euclidean Reconstruction from Uncal-

ibrated Views,” Proceeding of the DARPA–ESPRIT

Workshop on Applications of Invariants in Computer

Vision, Azores, Portugal, pp. 187-202, October 1993.

[5] H. Ishiguro, M. Yamamoto and S. Tsuji, “Omni-

Directional Stereo,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 14, No. 2, pp.

257-262, February 1992.

[6] A. Jennings, J.J. McKeown, Matrix Computation, 2nd

edition, Wiley, 1992.

[7] S.B. Kang and R. Szeliski, “3-D scene data recov-

ery using omnidirectional multi-baseline stereo,” Pro-

ceedings IEEE Conference on Computer Vision and

Pattern Recognition, San Francisco, pp. 364-370,

June 1996.

[8] R.G. Keys, “Cubic Convolution Interpolation for Dig-

ital Image Processing,” IEEE Transactions on Acous-

tics, Speech, and Signal Processing, Vol. 29, No. 6,

pp. 1153-1160, December 1981.

[9] D. Liebowitz, A. Criminisi and A. Zisserman, “Creat-

ing Architectural Models from Images,” Proceedings

EuroGraphics, vol. 18, pp. 39-50, September 1999.

[10] S.K. Nayar, “Catadioptric Omnidirectional Camera,”

Proceedings IEEE Conference on Computer Vision

and Pattern Recognition, Puerto Rico, pp. 482-488,

June 1997.

[11] V.N. Peri and S.K. Nayar, “Generation of Perspective

and Panoramic Video from Omnidirectional Video,”

Proceedings DARPA Image Understanding Workshop,

New Orleans, May 1997.

[12] H.-Y. Shum, R. Szeliski, S. Baker, M. Han, P. Anan-

dan, “Interactive 3D Modeling from Multiple Im-

ages Using Scene Regularities,” SMILE Workshop,

Freiburg, Germany, pp. 236-252, June 1998.

[13] P. Sturm and S. Maybank, “A Method for Interac-

tive 3D Reconstruction of Piecewise Planar Objects

from Single Images,” Proceeding British Machine Vi-

sion Conference, Nottingham, pp. 265-274, Septem-

ber 1999.

[14] T. Svoboda, Central Panoramic Cameras – Design,

Geometry, Egomotion, PhD Thesis, Faculty of Electri-

cal Engineering, Czech Technical University, Prague,

September 1999.

[15] M. Watanabe and S.K. Nayar, “Telecentric Optics for

Computer Vision,” Proceedings European Conference

on Computer Vision, Cambridge, pp. 439-451, April

1996.

Figure 3. The input image.

Paper 28: A Method for 3D Reconstruction of Piecewise Planar Objects. . . , OMNIVIS 2000 [22] 351

(a) An overhead view of the scene. On the left

hand side, a part of a hallway outside the office

that has been reconstructed, is visible.

(b) A wireframe model of the reconstruction.

(c) A view from below the floor. (d) A view from below and outside the recon-

structed office.

(e) Objects not visible in the input image obviously lead to holes in the 3D model.

Figure 4. Results.

352 Chapter 10. Geometric Constraints

Using Geometric Constraints through
Parallelepipeds for Calibration and 3D Modeling

Marta Wilczkowiak, Peter Sturm, and Edmond Boyer

Abstract—This paper concerns the incorporation of geometric information in camera calibration and 3D modeling. Using geometric

constraints enables more stable results and allows us to perform tasks with fewer images. Our approach is motivated and developed

within a framework of semi-automatic 3D modeling, where the user defines geometric primitives and constraints between them. It is

based on the observation that constraints, such as coplanarity, parallelism, or orthogonality, are often embedded intuitively in

parallelepipeds. Moreover, parallelepipeds are easy to delineate by a user and are well adapted to model the main structure of, e.g.,

architectural scenes. In this paper, first a duality that exists between the shape parameters of a parallelepiped and the intrinsic

parameters of a camera is described. Then, a factorization-based algorithm exploiting this relation is developed. Using images of

parallelepipeds, it allows us to simultaneously calibrate cameras, recover shapes of parallelepipeds, and estimate the relative pose of

all entities. Besides geometric constraints expressed via parallelepipeds, our approach simultaneously takes into account the usual

self-calibration constraints on cameras. The proposed algorithm is completed by a study of the singular cases of the calibration

method. A complete method for the reconstruction of scene primitives that are not modeled by parallelepipeds is also briefly described.

The proposed methods are validated by various experiments with real and simulated data, for single-view as well as multiview cases.

Index Terms—3D modeling, calibration, geometric constraints.

�

1 INTRODUCTION

EFFICIENT 3D modeling from images is one of the most
challenging issues in computer vision. The tremendous

research effort made to develop feasible methods has
proven that recovering 3D structures from 2D images is a
difficult and often underconstrained problem. Several
reasons account for that, including the fundamental fact
that, without any prior information on cameras or on the
scene to recover, a Euclidean reconstruction is not possible
at all [1]. This is why knowledge of the acquisition process
or of the scene is required. A number of approaches have
been proposed to exploit prior information, both on camera
and scene parameters. Such prior information not only
solves the projective ambiguity in the reconstruction but
also usually stabilizes the sensitive reconstruction process.
Furthermore, it often leads to simple and direct solutions
for the estimation of both camera and scene parameters,
which may eventually be adjusted nonlinearly for higher
accuracy. The method proposed in this paper is based on
the observation that constraints such as coplanarity,
parallelism, or orthogonality are often embedded intuitively
in parallelepipeds. Moreover, parallelepipeds are easy to
delineate by a user and are well adapted to model the main
structure of, e.g., architectural scenes. Using parallelepipeds
to constrain the calibration and reconstruction process
enables modeling from small sets of images, in particular
from single images, thus making possible reconstructions

from images not originally taken for that purpose, such as
archival images or images from the Internet.

An exhaustive review of the literature on using prior
information for self-calibration and Euclidean reconstruc-
tion is beyond the scope of this paper. We will concentrate
on works which have somehow inspired the method we
propose, especially direct approaches giving a good first
estimate of camera and scene parameters. There is a large
variety of information which can be incorporated into a
3D modeling process. This can be simple knowledge of
camera intrinsic parameters or pose (stationarity, pure
translation, etc.) or of global 3D scene structure (calibration
patterns); it can also be information on scene elements such
as points, lines, and planes, as well as on high-level
primitives like cubes, prisms, cylinders, etc. Nonetheless,
whatever the information is, it can be used at any stage of
the 3D modeling process, including the initial calibration,
pose estimation, model reconstruction, or an additional
nonlinear adjustment of the initial estimate at each step.

Approaches based on calibration patterns. Classical
calibration approaches are based on known positions of
points in 3D space or known calibration patterns [2].
Unfortunately, such information relies on specific acquisi-
tion systems and is thus seldom available in general
situations. The use of prior knowledge on some intrinsic
parameters, i.e., self-calibration, offers the opportunity to
build more flexible systems.

Self-calibration. In standard self-calibration algorithms
[3], [4], [5], [6], 3D reconstruction is done in three steps,
recovering, in order, the projective, affine, and Euclidean
strata, the projective-affine step being considered as themost
nonlinear and, thus, the most difficult step. One of the main
problems is critical motion sequences, for which self-
calibration does not have a unique solution [7]. This problem
has beendealtwith by restraining the cameramotions [8], [9],
[10] or by incorporating prior knowledge on the camera [11]

194 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

. M. Wilczkowiak is with the Department of Engineering, University of
Cambridge, Cambridge CB2 1PZ, UK. E-mail: mw373@cam.ac.uk.

. P. Sturm and E. Boyer are with INRIA Rhône-Alpes, 655 Avenue de
l’Europe, 38330 Montbonnot, France.
E-mail: {Peter.Sturm, Edmond.Boyer}@inrialpes.fr.

Manuscript received 5 Jan. 2004; revised 10 June 2004; accepted 25 June 2004;
published online 13 Dec. 2004.
Recommended for acceptance by C. Taylor.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0006-0104.

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration. . . , PAMI 2005 [39] 353

or on the scene. But, to get stable results for self-calibration, a
large number of images is usually necessary.

Structure and motion. The basic constraint is that back-
projection lines (planes) associated with corresponding
image points (lines) intersect in a single space point (line).
This observation allowsus to formulate thematching tensors,
which compactly describe two, three, and four view
geometry. When more views are accessible, it is necessary
to combine results computed from small subsets of images,
which decreases the accuracy of results. An overview of
tensor-based structure&motionmethods canbe found in [12].

Another category of approaches allows the simultaneous
recovery of cameras and 3D models via the factorization of
a measurement matrix of image points [13], [14], lines [15],
[16], or similar methods using planes in the scene [17], [18].
Factorization methods suffer from missing data, i.e., when a
primitive is not seen in all images, although some ways of
dealing with this problem have been proposed [13], [16].
Using only the above backprojection constraints, it is only
possible to recover the scene up to a projective or affine
transformation.

Incorporating Euclidean scene constraints. A large
variety of geometric constraints can disambiguate the
projective reconstruction to a Euclidean one and allow us
to decrease the number of images required to obtain a
satisfying reconstruction. Many of them can be easily
incorporated into a self-calibration framework. A common
constraint is given by vanishing points of mutually
orthogonal directions, as defined by known cubical struc-
tures [19], [20], [21] or by dominating scene directions [22].
Also, knowing the Euclidean structure of scene planes is
useful in this context, through rectified planes [23], maps
[24], or known plane-to-image homographies [25], [26]. It is
also possible to use multiple images of unknown planes, but
more images in general position are needed here [27], [28].

When cameras are calibrated, it is relatively easy to
reconstruct a 3D structure. However, and as mentioned
previously, using geometric constraints may dramatically
improve the reconstruction quality, especially when a single
or only a few images are considered [29]. Even simple
constraints can be very efficient, e.g., in [30], [31], vanishing
lines of planes and coplanarity constraints are used for
single image reconstruction. However, in general, dealing
with different types of scene objects and constraints is a
complicated problem. Some authors prefer to model the
scene by simple primitives like points, lines, and planes and
constraints between them, such as incidence, parallelism,
orthogonality, etc. Some direct approaches using the bi-
linear character of many useful constraints were proposed
in [32], [33], [34]. The results can be improved using
nonlinear methods applying penalty terms corresponding
to the constraints [35], constrained optimization techniques
[36], [37], [38], or a minimal scene parameterization [39],
[40]. Yet a different approach consists of high-level scene
descriptions using complex primitives like cubes, prisms,
cylinders, etc. [41], [42]. Recently, some effort has been
devoted to the automatic detection of such primitives [43].
All these methods ensure, by the strong inherent geometric
constraints, that the final models are visually correct.

Theproposed approach. In this paper,we address the first
part of the 3D modeling process—intrinsic and extrinsic
calibration (pose/motion estimation). In particular, we study
the use of a specific calibration primitive: the parallelepipeds.

Parallelepipeds are frequently present in man-made envir-
onments and they naturally encode the scene’s affine
structure. Any information about their Euclidean structure
(angles or ratios of edge lengths), possibly combined with
information about camera parameters, may allow us to
recover the entire scene’s Euclidean structure.Wepropose an
elegant formalism to incorporate such information, in which
camera parameters are dual to parallelepiped parameters,
i.e., any knowledge about one entity provides constraints on
the parameters of the others. Hence, the image of a known
parallelepiped defines the camera parameters and, recipro-
cally, a calibrated image of a parallelepiped defines its
Euclidean shape (up to size). In this paper, we synthesize
previousworkonparallelepipeds [44], [45] andproposemore
elegant and efficient approaches.

Camera and parallelepiped parameters are recovered in
two steps. First, a factorization-based approach is used to
compute their intrinsic andorientation (rotation) parameters.
The usual problems of factorization methods—missing data
and unknown scale factors—are dealt with rather easily.
Then, position and size parameters are recovered simulta-
neously using linear least squares. The use of well-con-
strained calibration primitives allows us to obtain good
calibration results even from as little as one image. However,
depending on the available constraints, singularities might
occur. These are described in a detailed catalogue.

Our calibration approach is conceptually close to self-
calibration, especially to methods that upgrade an affine
structure to Euclidean [5], [6] or methods considering
special camera motions [8], [9], [10]. The way Euclidean
information on a parallelepiped is used is also similar to
vanishing point-based methods [19], [20], [21], [22]. Some
properties of our algorithm are also common with plane-
based approaches [25], [26], [27], [28], [17], [18]. While more
flexible than standard calibration techniques, plane-based
approaches still require either Euclidean information or, for
self-calibration, many images in general position [27], or at
least one plane visible in all images [17]. In this sense, our
approach is a generalization of plane-based methods with
Euclidean information to three-dimensional parallelepipe-
dic patterns. Finally, our approach can be compared to
methods using complex primitives for scene representation.
However, unlike most such methods, we use the paralle-
lepiped parameters directly to solve the calibration pro-
blem, without requiring nonlinear optimization.

While the main contributions of the paper concern the
estimation of camera and parallelepiped parameters, we
show that the proposed method can be easily combined
with an approach for enhancing reconstructions with
primitives other than parallelepipeds [34]. The complete
system allows for both calibration and 3D model acquisition
from a small number of images with a reasonable amount of
user interaction.

The paper is organized as follows: Section 2 gives
definitions and some background. Section 3 introduces the
concept of camera-parallelepiped duality. Calibration using
parallelepipeds and a study on the singular configurations
are described in Sections 4 and 5. Sections 6 and 7 describe
our approaches for pose estimation and 3D reconstruction.
Experimental results are presented in Section 8.

WILCZKOWIAK ET AL.: USING GEOMETRIC CONSTRAINTS THROUGH PARALLELEPIPEDS FOR CALIBRATION AND 3D MODELING 195

354 Chapter 10. Geometric Constraints

2 PRELIMINARIES

2.1 Camera Parameterization

We represent cameras using the pinhole model. The
projection from a 3D point P to a 2D image point p is
expressed by: p � MP, where M is a 3� 4 matrix, which
can be decomposed as:

M ¼ K R tð Þ:

The 3� 4 matrix ðR t Þ encapsulates the camera’s pose in
the world coordinate system or its extrinsic parameters: The
rotation matrix R represents its orientation and the vector
�R>t its position. The 3� 3 calibration matrix K or,
equivalently, ! � K�>K�1 represents the camera’s intrinsic
parameters:

K ¼
�u s u0
0 �v v0
0 0 1

0

@

1

A

! � K�>K�1 �
1 0 �u0

0 �2 ��2v0
�u0 ��2v0 �2�2

v þ u2
0 þ �2v20

0

@

1

A; ð1Þ

where �u and �v stand for the focal length, expressed in
horizontal and vertical pixel dimensions, s is a skew
parameter considered as equal to zero in the following,
ðu0; v0Þ are the pixel coordinates of the principal point, and
� ¼ �u

�v
is the camera’s aspect ratio. ! represents the IAC

(image of the absolute conic) and is commonly used to
express constraints on the intrinsic parameters. In the
following, the term camera axes will be used for the axes
of the camera coordinate system, i.e., the coordinate system
attached to the camera’s optical center, two of them being
parallel to pixel edges and the third one being orthogonal to
the image plane (the optical axis).

2.2 Parallelepiped Parameterization

A parallelepiped is defined by 12 parameters: six extrinsic
parameters describing its orientation and position and six
intrinsic parameters describing its Euclidean shape: three
dimension parameters (edge lengths l1; l2, and l3) and three
angles between edges ð�12; �23; �13Þ. These intrinsic para-
meters are illustrated in Fig. 1. The parallelepiped may be
represented compactly by a 4� 4 matrix N:

N ¼ S v

0> 1

� �

l1 l2c12 l3c13 0

0 l2s12 l3
c23�c13c12

s12
0

0 0 l3

ffi

s2
12
�c2

13
s2
12
�ðc23�c13c12Þ2
s2
12

r

0

0 0 0 1

0

B
B
B
B
@

1

C
C
C
C
A

|ffl{zffl}

~LL

;

where S is a rotation matrix and v a vector, representing the
parallelepiped’s pose (extrinsic parameters). The 4� 4

matrix ~LL represents the parallelepiped’s shape (intrinsic
parameters) with: cij ¼ cos �ij, sij ¼ sin �ij, �ij 2 �0 �½, li > 0.

Thematrix ~LL represents the affine transformation between
a canonic cube and a parallelepiped with the given shape.
Concretely, a vertex ð�1;�1;�1; 1Þ> of the canonic cube is
mapped, by ~LL, to a vertex of our parallelepiped’s intrinsic

shape. Then, the pose part of N maps the vertices into the

world coordinate system.
Other parameterizations for ~LL may be chosen, but the

above one is attractive due to its upper triangular form. This

underlines the fact that ~LL plays the same role for the

parallelepiped as the calibration matrix K for a camera.
Analogous to a camera’s IAC ! is thematrix �, defined by:

� � L>L �
l21 l1l2 cos �12 l1l3 cos �13

l1l2 cos �12 l22 l2l3 cos �23
l1l3 cos �13 l2l3 cos �23 l23

0

@

1

A; ð2Þ

where L is the upper left 3� 3 matrix of ~LL.
Hence, there is a symmetry between the intrinsic

parameters of cameras and parallelepipeds ((1) and (2)).

The only difference is that, in some cases, the size of a

parallelepiped matters, as will be explained in the follow-

ing. As for cameras, the fact that K33 ¼ 1 allows us to fix the

scale factor in the relation ! � K�>K�1 and, thus, to extract

K uniquely from the IAC !, e.g., using Cholesky decom-

position. As for parallelepipeds, however, we have no such

constraint on its “calibration matrix” L, so the relation � �
L>L gives us a parallelepiped’s Euclidean shape, but not its

(absolute) size. This does not matter in general since we are

usually only interested in reconstructing a scene up to some

scale. However, when reconstructing several parallelepi-

peds, one needs to recover at least their relative sizes.
There are many possibilities to define the size of a

parallelepiped. We choose the following definition, moti-

vated by the equations underlying our calibration and

reconstruction algorithms below: The size of a parallele-

piped is defined as s ¼ ðdet LÞ1=3. This definition is actually

directly linked to the parallelepiped’s volume: s3 ¼ det L ¼
Vol=8 (the factor 8 arises since our canonic cube has an edge

length of 2).

3 PROJECTIONS OF PARALLELEPIPEDS

3.1 One Parallelepiped in a Single View

In this section, we introduce the concept of duality between

the intrinsic parameters of cameras and parallelepipeds.

Consider the projection of a parallelepiped’s vertices into a

camera. LetCi; i2½1::8� be the homogeneous coordinates of the

canonic cube’s vertices. Using results from Section 2.2, the

projection of the corresponding vertex in the image is:

196 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

Fig. 1. Parameterization of a parallelepiped: 2li are the edge lengths, �ij

are the angles between nonparallel edges.

Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration. . . , PAMI 2005 [39] 355

pi � MPi ¼ K R tð Þ S v

0> 1

� �

~LL

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~XX

Ci: ð3Þ

The matrix ~XXwill be called the canonic projection matrix. It
represents a perspective projection that maps the vertices of
the canonic cube onto the image points of the parallelepi-
ped’s vertices. This is illustrated in Fig. 2. Given image
points for at least six vertices,1 the canonic projection matrix
can be computed [2], even without prior knowledge on
intrinisic or extrinisic parameters. Our calibration and pose
algorithms are based on the link between the canonic
projection matrix ~XX (which we suppose given from now on)
and the camera’s and parallelepiped’s intrinsic and ex-
trinsic parameters.

Let us consider this in more detail. First, we may identify
the relative pose between camera and parallelepiped in (3),
represented by the following 3� 4 matrix:

R tð Þ S v

0> 1

� �

¼ RS Rvþ tð Þ:

Second, let us consider the leading 3� 3 submatrix X of
the canonic projection matrix ~XX, which is given by:
X � K RSð ÞL.

Due to the orthogonality of the rotation matrices R and S,
it is simple to derive the following relation between the
camera’s IAC ! and the corresponding entity � of the
parallelepiped:

X>!X � �: ð4Þ
This equation establishes an interesting duality between

the intrinsic parameters of a camera and those of a
parallelepiped. It shows (unsurprisingly) that knowing the
parallelepiped’s shape � allows us to calibrate the camera.
Conversely, knowing the camera’s intrinsic parameters
allows us to compute the parallelepiped’s Euclidean shape,
also from a single image. Moreover, even partial informa-
tion about one set of intrinsic parameters allows us to form
equations on the other set [44].

In the next sections, we generalize the use of this duality
for calibration and pose estimation to the case of multiple
parallelepipeds seen in multiple cameras and to the use of
partial knowledge about the camera’s or parallelepiped’s
intrinsic parameters. Before doing so, let us describe a few

interesting links between our and other (self-) calibration
scenarios.

Classical self-calibration usually proceeds in two main
steps: First, aprojective reconstructionof the scene is obtained
from image correspondences. Then, this is upgraded to a
Euclidean reconstruction using the available prior knowl-
edge on intrinsic parameters. Sometimes, an intermediate
upgrade to an affine reconstruction is performed.

In our scenario, we have a 3D reconstruction of the scene
already from a single rather than multiple images, which is,
furthermore, of affine rather than projective nature:We know
that the observed parallelepiped’s shape is that of a cube, up
to some affine transformation. Analogously, our canonic
projection matrix is equal to the true one up to an affine
transformation. Hence, self-calibration in our scenario does
not need to recover the plane at infinity, which is known to be
the hardest part of self-calibration. Indeed, our calibration
method is somewhat similar to the affine-to-Euclidean
upgrade of stratified self-calibration approaches, e.g., [5], [6].

Similarities also exist with (self-) calibration approaches
based on special camera motions: Calibrating a rotating
camera [8], [9] is more or less equivalent to self-
calibrating a camera in general motion once the affine
structure is known. Other approaches recover the affine
structure by first performing pure translations and then
general motions [10], [46].

Our approach is similar to all these. In the following
sections, we show how it allows us to efficiently combine
the usual self-calibration constraints with constraints on
scene structure. This enables us to perform calibration (and
3D reconstruction) from very few images; one image may
actually be sufficient.

3.2 n Parallelepipeds in m Views

Let us now consider the general case where n parallelepi-
peds are seen by m cameras. Let ~XXik be the canonic
projection matrix associated with the projection of the
kth parallelepiped in the ith camera and �ik a scale factor
such that (3) can be written as a component-wise equality:

�ik
~XXik ¼ Ki Ri tið Þ Sk vk

0> 1

� �

~LLk: ð5Þ

We may gather these equations for all m cameras and n
parallelepipeds into the following single matrix equation:

�11
~XX11 � � � �1n

~XX1n

..

. . .
. ..

.

�m1
~XXm1 � � � �mn

~XXmn

2

6
6
4

3

7
7
5

|ffl{zffl}

X3m�4n

¼

K1 R1 t1ð Þ
..
.

Km Rm tmð Þ

2

6
6
4

3

7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M3m�4

S1 v1

0> 1

� �

~LL1 � � � Sn vn

0> 1

� �

~LLn

� �

|ffl{zffl}

S4�4n

:

ð6Þ
This equation naturally leads to the idea of a factoriza-

tion-based calibration algorithm, which will be developed
in Section 4. It is based on the following observation: The
matrix X contains all information that can be recovered
from the parallelepipeds’ image points alone (below, we

WILCZKOWIAK ET AL.: USING GEOMETRIC CONSTRAINTS THROUGH PARALLELEPIPEDS FOR CALIBRATION AND 3D MODELING 197

1. In theory, five image points and one image direction are sufficient to
determine the 11 parameters of a projection matrix. Additional points make
the computation more stable.

Fig. 2. The projection of the canonic parallelepiped (cube) into the

image. Matrices K, L correspond to intrinsic parameters of camera and

parallelepiped and ðR; tÞ, ðS;vÞ correspond to extrinsic parameters of

camera and parallelepiped, respectively.

356 Chapter 10. Geometric Constraints

discuss the issue of computing the scale factors �ik). In
analogy with [13], we call it the measurement matrix. Since
the measurement matrix is the product of a “motion matrix”
M of four columns, with a “shape matrix” S of four rows,
its rank can be four at most (in the absence of noise).

We might aim at extracting intrinsic and extrinsic
parameters directly from a rank-4-factorization of X . One
step of factorization-based methods for structure and
motion recovery is to disambiguate the factorization’s
result: In general, for a rank-r-factorization, motion and
shape are recovered up to a transformation represented by
an r� r matrix (here, this would be a 3D projective
transformation). The ambiguity can be reduced using, e.g.,
constraints on intrinsic camera parameters (see more details
in Section 4). In our case, we observe that the 4� 4

subblocks of the shape matrix S are affine transformations.
We would have to include this constraint into the
disambiguation, but, nevertheless, the result would not, in
general, exactly satisfy the affine form of these subblocks.
We thus cut the problem into two steps, which allows us to
easily guarantee that the subblocks of the shape matrix will
be affine transformations. In the first step (Section 4), we
consider a “reduced measurement matrix” consisting of the
leading 3� 3 submatrices of the ~XXik. We extract intrinsic and
orientation parameters of our cameras and parallelepipeds
based on a rank-3-factorization and a disambiguation stage
using calibration and scene constraints. In the second step
(Section 6), we then estimate the position of cameras and
parallelepipeds, as well as the parallelepipeds’ size.

Just as a sidenote, we observe that, for two views i and j

and a parallelepiped k, the infinite homography between
the two views is given by the product XikX

�1
jk .

4 ESTIMATING INTRINSIC AND ORIENTATION

PARAMETERS BY FACTORIZATION

In this section, we concentrate on the computation of the
cameras’ and parallelepipeds’ intrinsic parameters and
orientation (rotation), based on (6) and the observations
concerning it, cf. the previous section. As mentioned, we
first restrict our attention to the leading 3� 3 submatrices of
the ~XXik, as in Section 3.1 for the establishment of the duality
between intrinsic parameters of cameras and parallelepi-
peds. We thus deal with the following subpart of (6):

�11X11 � � � �1nX1n

..

. . .
. ..

.

�m1Xm1 � � � �mnXmn

2

6
4

3

7
5

|ffl{zffl}

X 0
3m�3n

¼
K1R1

..

.

KmRm

2

6
4

3

7
5

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

M0
3m�3

S1L1 � � � SnLn½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S0
3�3n

:

ð7Þ
In the following, we describe the different steps of our

factorization-based method. We first deal with the problem
of missing data. Then, we describe how to compute the
scale factors �ik, needed to construct the measurement
matrix X 0. The factorization itself is described in Section 4.3,
followed by the most important aspect: how to disambig-
uate the factorization’s result in order to extract intrinsic
and orientation parameters. A summary of these steps and
a discussion of minimal cases and singularities is provided
at the end of this section and in Section 5. The subsequent

computation of position parameters and parallelepiped size
is dealt with in Section 6.

4.1 Missing Data

As is usual with factorization approaches, our methodmight
suffer from the problem of missing data, i.e., missing Xik.
Indeed, in practice, the condition that all parallelepipeds are
seen in all views is usually not satisfied. However, each
missingmatrixXik can be deduced from others if there is one
camera j and one parallelepiped l such that Xjl, Xjk, and Xil

are known. The missing matrix can be computed using:

Xik � Xil ðXjlÞ�1
Xjk: ð8Þ

Several equations of this type can be used simultaneously to
increase the accuracy. Care has to be taken since (8) is
defined up to scale only. This problem can be circumvented
very simply though by normalizing all Xik to unit
determinant.

These observations motivate a simple recursive method2

to compute missing matrices Xik: At each iteration, we
compute the one for which most equations of type (8) are
available. Previously computed matrices Xik can be in-
volved at every successive iteration of this procedure.

4.2 Recovery of Scale Factors

The reducedmeasurementmatrixX 0 in (7) is, in the absenceof
noise, of rank3, being theproduct of amatrix of three columns
and a matrix of three rows. This, however, only holds if a
correct set of scale factors �ik is used. For other problems,
these are often nontrivial to compute, see, e.g., [28], [14]. In
our case, however, this turns out to be rather simple.

Let us first write Ai ¼ KiRi and Bk ¼ SkLk. What we
know is that (in the absence of noise) there exist matrices
Ai; i ¼ 1::m and Bk; k ¼ 1::n such that: 8i; k : Xik � AiBk.
Since this equation is valid up to scale only, we also have:
8i; k : Xik � aiAið Þ bkBkð Þ for any nonzero scale factors ai; i ¼
1::m and bk; k ¼ 1::n. Consequently, this is also true for the
scale factors ai and bk that satisfy:

det ðaiAiÞ ¼ det ðbkBkÞ ¼ 1:

Note that we do not need to know these scale factors; it is
sufficient to know they exist!

Hence, there exist scale factors ai and bk with:

8i; k : Xik � aibkAiBk; ð9Þ

8i; k : det ðaibkAiBkÞ ¼ det ðaiAiÞ det ðbkBkÞ ¼ 1: ð10Þ

As for the sought for scale factors �ik, we use those that
give det ð�ikXikÞ ¼ 1. They are computed as:

�ik ¼ ðdetXikÞ�1=3:

Due to (9), we have �ikXik � aibkAiBk and, since the
determinants of both sides of this equation are equal (they
are both equal to 1, cf. the definition of �ik and (10)), the
equation not only holds up to scale, but component-wise:3

8i; k : �ikXik ¼ ðaiAiÞðbkBkÞ:

198 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

2. Compare with the analogous method in [18].
3. Two nonsingular 3� 3 matrices that are equal up to scale and whose

determinants are equal are also equal component-wise.

Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration. . . , PAMI 2005 [39] 357

This means that the measurement matrix in (7), with the

scale factors�ik as describedhere, is of rank 3: It is the product

of onematrix of three columns (the aiAi stackedon topof each

other) and one of three rows (the bkBk side-by-side).
In the following, we assume that the Xik are already

scaled to unit determinant, i.e., that �ik ¼ 1. Equation (7)

becomes:

X11 � � � X1n

..

. . .
. ..

.

Xm1 � � � Xmn

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X 0
3m�3n

¼
a1K1R1

..

.

amKmRm

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

M0
3m�3

b1S1L1 � � � bnSnLn½ �
|ffl{zffl}

S0
3�3n

:

ð11Þ

The scale factors ai and bk do not matter for now; all that

counts is that they exist and that the measurement matrix X 0

containing the normalized Xik is of rank 3 at most and can

thus be factorized as shown below.

4.3 Factorization

As usual, we use the SVD (Singular Value Decomposition)

to obtain the low-rank factorization of the measurement

matrix. Let the SVD of X 0 be given as:

X 0
3m�3n ¼ U3m�3n�3n�3nV

>
3n�3n:

The diagonal matrix � contains the singular values of X 0:

�1 � �2 � � � � � �3n. In the absence of noise, X 0 is of rank 3 at

most and �4 ¼ � � � ¼ �3n ¼ 0. If noise is present, X 0 is of full

rank in general. Setting all singular values to zero, besides

the three largest ones, leads to the best rank-3 approxima-

tion of X 0 (in the sense of the Frobenius norm).
In the following, we consider the rank-3 approximation

of X 0 (for ease of notation, we denote this also as X 0):

X 0 ¼ U3m�3n diagð�1; �2; �3; 0; . . . ; 0Þ V>
3n�3n:

In the matrix product on the right, only columns of U and

rows of V> corresponding to nonzero �j contribute. Hence:

X 0 ¼ U0
3m�3 diagð�1; �2; �3Þ V0>

� �

3�3n
;

where U0 (resp. V0) consists of the first three columns of U

(resp. V). Let us define U00 ¼ U0 diagð ffiffiffiffiffi
�1

p
;

ffiffiffiffiffi
�2

p
;

ffiffiffiffiffi
�3

p Þ and

V00 ¼ V0 diagð ffiffiffiffiffi
�1

p
;

ffiffiffiffiffi
�2

p
;

ffiffiffiffiffi
�3

p Þ. Thus, we have: X 0 ¼ U00V00>.

This represents a decomposition of the measurement matrix

X 0 into a product of a matrix of three columns (U00) with a

matrix of three rows (V00>). Note, however, that this

decomposition is not unique. For any nonsingular 3� 3

matrix T, the following is also a valid decomposition:

X 0 ¼ U00T�1
	

TV00>
� �

:

Making the link with (11), we obtain:

a1K1R1

..

.

amKmRm

2

6
4

3

7
5 b1S1L1 � � � bnSnLn½ � ¼ U00T�1

	

TV00>

� �

:

ð12Þ

Let us decompose matrices U00 and V00 in 3� 3 subma-
trices: U00> ¼ ½U>

1 � � �U>
m� and V00> ¼ ½V>

1 � � �V>
n �. Equation

(12) thus becomes:

a1K1R1

..

.

amKmRm

2

6
6
4

3

7
7
5

b1S1L1 � � � bnSnLn½ � ¼

U1T
�1

..

.

UmT
�1

2

6
6
4

3

7
7
5 TV>

1 � � � TV>
n

� �
:

ð13Þ

How to estimate T is explained in Section 4.4. Once a
correct estimate is given, we can directly extract the matrices
Ai ¼ aiKiRi and Bk ¼ bkSkLk from which, in turn, the
individual rotation and calibrationmatrices can be recovered
by Cholesky or QR-decompositions. The Cholesky decom-
position of AiA

>
i , e.g., results in an upper triangular matrix

Mi ¼ aiKi. Based on the requirement Ki;33 ¼ 1, we can
compute the unknown scale factor ai as ai ¼ Mi;33. The
calibration matrix is finally obtained as4 Ki ¼ 1

ai
Mi.

As for the parallelepipeds, there is no constraint similar
to Ki;33 ¼ 1 on the entries of their calibration matrices Lk.
Hence, we can compute them only up to the unknown scale
factors bk. This means that we can compute the shape of each
parallelepiped, but not (yet) their size (or volume). In
Section 6, we explain how to compute their (relative) size.

We now briefly discuss the structure and geometric
signification of matrix T. Note that T actually represents the
nontranslational part of a 3D affine transformation (its
upper left 3� 3 submatrix). This is just another expression
of the previously mentioned fact that, due to the observa-
tion of parallelepipeds, we directly have an affine recon-
struction (of scene and cameras).

The matrix T can only be computed up to an arbitrary
rotation and scale: For any rotation matrix R and scale
factor s, T0 ¼ sRT cannot be distinguished from T in the
factorization since T0�1

T0 � T�1T. This ambiguity is natural
and expresses the fact that the global Euclidean reference
frame for the reconstruction of parallelepipeds and cameras
can be chosen arbitrarily. Without loss of generality, we
may thus assume that T is upper triangular. This highlights
the fact that our estimation problem has only five degrees of
freedom (six parameters for an upper triangular 3� 3

matrix minus one for the free scale), which can also be
explained in more geometric terms: As explained pre-
viously, our problem is somewhat equivalent to self-
calibration with known affine structure. The five degrees
of the problem can thus be interpreted as the coefficients of
the absolute conic on the plane at infinity.

4.4 Disambiguating the Factorization

We now deal with the estimation of the unknown
transformation T appearing in (13). As will be seen below
and as is often the case in self-calibration problems, it is
simpler to not directly estimate T, but the symmetric and

WILCZKOWIAK ET AL.: USING GEOMETRIC CONSTRAINTS THROUGH PARALLELEPIPEDS FOR CALIBRATION AND 3D MODELING 199

4. In overconstrained situations, the computed calibration matrices will
not, in general, exactly satisfy the constraints used for their computation.
The best way of dealing with this would be a constrained nonlinear
optimization.

358 Chapter 10. Geometric Constraints

positive definite 3� 3 matrix Z defined as: Z ¼ T> T. (We
may observe that Z represents the absolute conic on the
plane at infinity.) Once Z is estimated, T may be extracted
from it using Cholesky decomposition. As described above,
T is defined up to a rotation and scale, so the upper
triangular Cholesky factor of Z can directly be used as the
estimate for T.

The matrix Z (and, thus, T) can be estimated in various
ways, using any information about the cameras or the
parallelepipeds, e.g., prior knowledge of the relative
positioning of some entities. Here, we concentrate on
exploiting prior information of the intrinsic parameters of
cameras and parallelepipeds. In the following, we consider
two types of information, first for cameras and then for
parallelepipeds:

. knowledge of the actual value of some intrinsic
parameter for some camera or parallelepiped,

. knowledge that two or more cameras (or parallele-
pipeds) have the same value for some intrinsic
parameter. We also sometimes speak of “constant”
intrinsic parameters.

4.4.1 Using Information on Camera Intrinsics

From (13), we have: aiKiRi ¼ UiT
�1. Due to the orthogon-

ality of Ri, we get:

a2i KiK
>
i

|fflffl{zfflffl}

!�1
i

¼ Ui T
�1T�>

|fflfflfflfflffl{zfflfflfflfflffl}

Z�1

U>
i :

Neglecting the unknown scale factor ai and taking the
inverse of both sides of the equation, we obtain (note that
the Ui are not orthogonal in general):

!i � U�>
i ZU�1

i : ð14Þ
We are now ready to formulate constraints on Z based on
information on the cameras’ intrinsics.

Known Values of Camera Intrinsics. Knowing the
aspect ratio and principal point coordinates of a camera i
and substituting !i according to (14) and (1), the following
linear constraints on Z can be written:

�2i U�>
i ZU�1

i

	

11
� U�>

i ZU�1
i

	

22
¼ 0

ui;0 U�>
i ZU�1

i

	

11
þ U�>

i ZU�1
i

	

13
¼ 0

vi;0 U�>
i ZU�1

i

	

22
þ U�>

i ZU�1
i

	

23
¼ 0:

A known value of the focal length �v can only be used to
formulate linear equations if all the other intrinsics are also
known. In such a fully calibrated case, other algorithms [25]
might be better suited, so we neglect that case in the
following.

Constant Camera Intrinsics. In the case when two
cameras i and j are known to have the same, yet unknown
value for one intrinsic parameter, we in general obtain
quadratic equations on Z. For example, the assumption of
equal aspect ratios leads to the quadratic equation:

U�>
i ZU�1

i

	

11
U�>

j ZU�1
j

� �

22
¼ U�>

j ZU�1
j

� �

11
U�>

i ZU�1
i

	

22
:

The situation is different if all intrinsic parameters of two
(ormore) views are known to be identical. In that case,we can
obtain linear equations instead of quadratic ones, as shown in

[8]: The matrices Ui are first scaled such as to have unit

determinant. Then, we can write the following component-

wise matrix equality between any pair ði; jÞ of views:

U�>
i ZU�1

i �U�>
j ZU�1

j ¼ 03�3:

This represents six linear equations on Z for each pair of

views, among which four are independent.

4.4.2 Information on Parallelepipeds

From (13), we have: bkSkLk ¼ TV>
k . Due to the orthogonality

of Sk, we get:

b2k L
>
k Lk

|fflffl{zfflffl}

�k

¼ Vk T
>T

|ffl{zffl}

Z

V>
k :

Neglecting the unknown factor bk:

�k � VkZV
>
k :

Knowledge of parallelepiped intrinsics can be used in

analogous ways as for camera parameters. For example,

suppose we know the length ratio of two parallelepiped

edges ruv ¼ lu
lv
. Referring to (2), we get the following linear

equation on Z:

r2k;uv�k;vv � �k;uu ¼ r2k;uv VkZV
>
k

	

vv
� VkZV

>
k

	

uu
¼ 0:

Similarly, the assumption that �uv is a right angle, i.e.,

cos �uv ¼ 0, also gives a linear equation:

�k;uv ¼ VkZV
>
k

	

uv
¼ 0:

A known angle �uv that is not a right angle does not lead to a

linear, but a bilinear equation [44].
Like for cameras, quadratic equations may be derived

from assumptions about two or more parallelepipeds

having the same, yet unknown value for some intrinsic

parameter. Also, two parallelepipeds having the same

shape give a set of linear equations on Z, even if the

parallelepipeds are of different size. Equal size of paralle-

lepipeds gives an additional linear equation, but which

constrains relative pose rather than intrinsic parameters.
Currently, we only exploit constraints on individual

parallelepipeds (right angles and length ratios) since they

are easier to provide for the user.

4.5 Complete Algorithm

1. Estimate the canonical projection matrices ~XXik.
2. Compute missing Xik.
3. Normalize the Xik to unit determinant.
4. Construct the measurement matrix and compute

its SVD.
5. From the SVD, extract the matrices Ui and Vk.
6. Establish a linear equation system on Z based on

prior knowledge of intrinsic parameters of cameras
and parallelepipeds and solve it to least squares.

7. If Z is positive, definite extract T from Z using
Cholesky decomposition.

8. Extract the Ki;Ri;Lk; Sk from the UiT
�1 and the

TV>
k using, e.g., QR-decomposition. Note that, at

this stage, the Lk can only be recovered up to

200 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration. . . , PAMI 2005 [39] 359

scale, i.e., the parallelepipeds’ (relative) sizes
remain undetermined.

This algorithm allows us to calibrate a set of cameras
using very little prior knowledge. Indeed, as mentioned in
this section, all constraints provided by knowledge of
cameras and parallelepipeds can be expressed in terms of
the five independent parameters of the matrix Z. Thus, to
calibrate the whole system, it is in general sufficient to
know values of a total of only five intrinsic parameters of
cameras or parallelepipeds. That is why, in practice, we
only use the associated linear equations. In most cases, they
are sufficient to find a unique solution. In some minimal
cases, when the available linear constraints are insufficient,
quadratic equations might be used to find a unique solution
or a finite set of solutions.

5 SINGULARITIES

Many calibration or self-calibration algorithms are subject
to more or less severe singularities, i.e., there exist situations
where the algorithm is bound to fail. Furthermore, even in
situations that are not exactly singular, but close to a
singularity, the results usually become very unstable. In this
section, we examine the singularities for the linear calibra-
tion algorithm described in Section 4.5. We separately study
the singularities for a parallelepiped being seen by one and
multiple cameras.

5.1 One Parallelepiped in a Single View

We have studied all possible combinations of a priori
knowledge, on both camera and parallelepiped intrinsic
parameters leading to linear equations (see Sections 4.1.1
and 4.4.2). We first formulate the meaning of a singularity
in terms of the ingredients of the calibration algorithm. The
existence of a singularity in our case means that (4) has
more than one solution for ! and � conforming to all
available a priori information, i.e., that there is at least one
solution different from the true one. It is easy to show that
the existence of a singularity does not depend on the
relative position of the camera and the parallelepiped, only
on the relative orientation and the a priori knowledge on
camera and parallelepiped intrinsic parameters. Proofs for
the following results are given in [47].

Table 1 explains the four considered cases of different
prior knowledge on camera intrinsics. Table 2 shows all
singularities for nearly all combinations of known camera
and parallelepiped parameters. Singularities are explained
in geometric terms by describing the relative orientation of
the parallelepiped with respect to the camera. In the
following paragraphs, we give a few comments on different
cases of prior knowledge on the parallelepiped. Several
singular situations that might occur in practice are illu-
strated in Fig. 3.

1. Three right angles, two length ratios (cases *-3-2 in
Table 2). In this case, the Euclidean structure of the
parallelepiped is completely given (up to scale) and
it can be used as a classical calibration object. There
are singularities proper to the use of a parallele-
piped, but, of course, the generic singularities
described in [48] apply here, too.

2. Three right angles, one length ratio (cases *-3-1). In
Table 2, u represents the direction of the parallele-
piped’s edge which is not “involved” in the known
length ratio.

3. Two right angles (cases *-2-*). Here, the parallelepiped
can be visualized as built around two rectangles
sharing an edge u. In Table 2, w is one of the edges
not parallel to u.

5.2 One Parallelepiped in Multiple Views

Two observations are useful to characterize the singularities

in the case when one parallelepiped is seen in multiple

images:

WILCZKOWIAK ET AL.: USING GEOMETRIC CONSTRAINTS THROUGH PARALLELEPIPEDS FOR CALIBRATION AND 3D MODELING 201

TABLE 1
Structures of ! Depending on Prior Knowledge

TABLE 2
Singular Relative Orientation (One Parallelepided in One View)

for Various Combinations of Prior Knowledge

Cases are denoted X-Y-Z, where X 2 fA;B;C;Dg refers to Table 1 and
YðZÞ is the number of known right angles (length ratios). � means the
image plane.

Fig. 3. Examples of singular and nonsingular configurations for
calibration based on a parallelepiped with three right angles (the
house’s main body). Left: The parallelepiped’s vertical edge is parallel to
the camera’s y-axis; this configuration is singular if the camera aspect
ratio and principal point are not given (cf. cases B-3-0 and C-3-0 in
Table 2. Middle: The parallelepiped’s vertical edge is parallel to the
image plane; this configuration is singular if the camera’s principal point
is not given (case B-3-0 in Table 2). Right: A rotation of the camera as
shown here removes these singularities.

360 Chapter 10. Geometric Constraints

. The way the canonic parallelepiped projection

matrix ~XX is computed implies that there is only an

affine ambiguity in the calibration process. Thus, the

singularities of calibration of images viewing one

parallelepiped are equivalent to singularities of

generic self-calibration when the plane at infinity is

known.
. It is natural to suppose that the prior knowledge of

the intrinsic parameters is the same for all cameras
used, thus all matrices !i are assumed here to belong
to the same among the groups defined in Table 1.

These observations make it possible to adapt the studies on

critical motions for self-calibration. In particular, we use the

results presented in [49] for scenarios with a known plane at

infinity. Depending on the type of knowledge about the

camera (cf. Table 1), the following rotations are singular for

calibration:

A. Always critical with fewer than five cameras. Critical
motions for five or more cameras are hard to
describe.

B. Critical if the cameras’ optical axes point in at most
two different directions.

C. Critical if one axis of each camera is pointing in some
common direction.

D. Critical if the optical axes of all cameras point in the
same direction.

Results for the cases A, B, D were given in [49] and the

proof of case C is given in [47].

6 ESTIMATING POSITION AND SIZE

In this section, we propose an algorithm for the estimation

of the (relative) positions of the cameras and parallelepi-

peds, as well as the (relative) sizes of the parallelepipeds.

After Section 4, this concludes our complete method for

intrinsic and extrinsic calibration.
Consider (5):

�ik
~XXik ¼ Ki Ri tið Þ Sk vk

0> 1

� �

~LLk:

The leading 3� 3 subpart of the two sides of the equation

were used in Section 4 to compute the intrinsic camera

parameters Ki and the rotation matrices Ri and Sk. The

parallelepipeds’ intrinsic parameters Lk were computed up

to scale only, i.e., up to the “size” of the parallelepipeds.

Let us consider this in detail. In the following, we

suppose that the matrices ~XXik are already scaled such that

the submatrices Xik have unit determinant, as in Section 4,

i.e., �ik ¼ 1. Let �KKi and �LLk be the calibration matrices scaled

to unit determinant. We know all matrices in the following

equation: Xik ¼ �KKiRiSk�LLk.
What we don’t know is the size sk of the parallelepipeds.

Let us observe the following:

~LLk ¼ sk�LLk 0

0> 1

� �

�
�LLk 0

0> 1=sk

� �

:

We may now rewrite (5):

~XXik ¼ �KKi Ri tið Þ Sk vk

0> 1

� �
�LLk 0

0> 1=sk

� �

:

Let xik be the fourth column of ~XXik. We have the
following equation:

xik ¼ �KKi Ri tið Þ Sk vk

0> 1

� �
0

1=sk

� �

¼ 1

sk
�KKiðRivk þ tiÞ:

From this, we get an equation that is linear in all unknowns
(sk, ti, and vk):

skxik � �KKiRivk � �KKiti ¼ 0:

The unknowns can be computed using linear least
squares: minimizing the sum of the squared L2 norms of
the vectors on the left hand side of the above equation, over
all camera-parallelepiped pairs. The estimates for the sk, ti,
and vk are, of course, defined up to a single global scale.
Note that, at this stage, missing data are not an issue any
more, contrary to the computations in Section 4.

7 3D RECONSTRUCTION

The presented calibration approach is well adapted to
interactive 3D reconstruction from a few images. It has a
major advantage over other methods: simplicity. Indeed,
only a small amount of user interaction is needed for both
calibration and reconstruction: A few points must be picked
in the image to define the primitives’ image positions. It
thus seems to be an efficient and intuitive way to build
models from images of any type, in particular from images
taken from the Internet for which no information about the
camera is known. For the reconstruction of points not
belonging to the parallelepiped, we use an iterative
approach described in [34]. This approach is actually
independent from the calibration method, although it uses
the same input in the first step. It allows us to propagate the
information on points, lines, and planes defining the model.
All the accessible information is processed simultaneously.
Interestingly, it allows 3D models to be computed from
nonoverlapping photographs (see, e.g., Fig. 10).

The following section illustrates this approach with
results obtained by solving linear systems only. Note that,
in order to refine the results, nonlinear optimization, taking
into account prior information, might be applied.

8 EXPERIMENTAL RESULTS

8.1 Synthetic Data

The main goal of our experiments with synthetic data is to
study the performance of the calibration algorithm in the
proximity of singular configurations. In this paper, we only
report on experiments on the minimal case: One parallele-
piped seen in one camera. Additional experiments, evalu-
ating calibration results in the proximity of singular
positions with respect to different numbers of parallelepi-
peds, as well as different types of prior information, are
described in [47].

Tests were performed with synthetic 600� 400 images,
taken by a camera with the following intrinsic parameters:

202 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration. . . , PAMI 2005 [39] 361

ð�u; �v; s; u0; v0Þ ¼ ð1; 000; 1; 000; 0; 300; 200Þ. Parallelepiped
parameters were varying over the different tests. The most
important parameter of the experiments is the relative
orientation parallelepiped-camera. For a given orientation,
six parallelepiped vertices were projected into the images
and random Gaussian noise was added to image points (for
the presented results, noise was of standard deviation
1 pixel). For a given setting (relative orientation, standard
deviation of noise, etc.), 100 such data sets were created
randomly and used as input for calibration. Calibration was
considered to have failed if any of the estimated matrices !
or �were not positive definite (in that case, K or L cannot be
retrieved). We give results by indicating the number of
failures, as well as median values for estimated parameters
(computed using valid calibration results only). Prior
information used was: The parallelepiped has only right
angles and known camera parameters were ðs; �Þ ¼ ð0; 1Þ
(i.e., case B-3-0 in Section 5). This is one of the minimal cases
for the calibration.

Tests were performed for different orientations of the
parallelepiped, as illustrated in Fig. 4. Orientation varies
continuously from that shown in Fig. 4a (x axes of
parallelepiped and camera are parallel) to that of Fig. 4c
(the y and z axes of the parallelepiped are parallel to the
image plane). The continuous rotation between the two
positions is parameterized by an angle ranging from 0�

(Fig. 4a) to 90� (Fig. 4c), see the horizontal axis of the graphs
in Fig. 5. According to Section 5, both extremal orientations
are singular. We also varied the size of the parallelepiped:
Maximal and minimal sizes are shown in Fig. 4a and Fig. 4d,
respectively.

The results of the calibration method described here are
compared to calibration based on vanishing points [19];
vanishing points were determined using the method [50]. In
the case tested here, both methods use the same constraints
(three right angles); the difference is that [19] uses
individually estimated vanishing points, whereas our
method, via the estimation of the canonical projection
matrix, accounts for the fact that the three vanishing points
of a parallelepiped are not fully independent.

Fig. 5 shows the number of successful calibrations, the
medianof estimatedvalues for�v, anderrorson theestimated
pose (medianof errors on the angleof the estimated rotational
part of pose). Results are shown with respect to the
orientation of the parallelepiped (horizontal axis of graphs,
see above) and its size (vertical axis, unit is coverage of image
by parallelepiped, from 5 percent to 50 percent).

Results are shown for both the parallelepiped-based
approach (first column) and the vanishing point approach

(second column). The effect of singular cases is clearly
visible in the upper two rows: Calibration often fails for
orientations within 10� of the singular ones. However, for
the intermediate range of orientations, the relative error of
calibration is smaller than 5 percent for both methods, when
the parallelepiped covers more than 20 percent of the
image. Results in case of successful calibration are slightly
better for the parallelepiped method.

8.2 Results on Real Scenes

We present 3D reconstruction results of our methods for
indoor and outdoor scenes. These examples correspond to
situations where automatic methods are bound to fail: Small
sets of images are used and occlusions are frequent. Each
reconstruction was performed in two steps: First, one or
more parallelepipeds were used to calibrate the intrinsic
and extrinsic camera parameters; second, scene points and
geometric constraints were used for the reconstruction (cf.
Section 7). Results from single as well as multiple images
are shown.

8.2.1 Kitchen Scene

Fig. 6a shows the original image used for the 3D reconstruc-
tion. The image was taken with a small focal length, leading,
therefore, to a slight optical distortion which was not
corrected here. Calibration was based on the cupboard in
the central part of the image.Note that the camerawas almost
frontoparallelwith respect to the cupboard and, thus, close to
a singular situation. Prior information used for calibration
was: right parallelepiped angles, zero camera skew, and

WILCZKOWIAK ET AL.: USING GEOMETRIC CONSTRAINTS THROUGH PARALLELEPIPEDS FOR CALIBRATION AND 3D MODELING 203

Fig. 4. Parallelepiped orientations in the experiment. (a) Initial
orientation (x axes of parallelepiped and camera are parallel),
(b) intermediate orientation, (c) final orientation (the y and z axes of
the parallelepiped are parallel to the image plane), (d) minimal
parallelepiped size.

Fig. 5. Calibration results as a function of the size and relative camera-
parallelepiped rotation angle. The two columns correspond to paralle-
lepiped-based and vanishing point-based calibration, respectively. From
top to bottom, the graphs show: 1) the number of successful
calibrations, 2) median values of relative errors on the estimation of
�v, 3) median rotation errors.

362 Chapter 10. Geometric Constraints

principal point in the image center. The full model was
reconstructed using 29 points, constrained by two parallele-
pipeds (the cupboard and the wooden belt), three parallelo-
grams, andsixcollinearity andcoplanarity constraints. Fig. 6b
shows the reconstructedparallelepipedsaswell as thecamera
pose. Due to the fact that a single image was used, only the
shape of the parallelepipeds can be reconstructed at first, but
not their relative size. This was then done using additional
constraints such as coplanarity, which were also used to
reconstruct the positions of additional points. Fig. 6c shows
the complete texturedmodel rendered fromanewviewpoint.

8.2.2 Notre Dame Square Scene

In this section, we present reconstructions of the Notre

Dame Square in Grenoble. Here, radial image distortion

was corrected offline.
Reconstruction from one image. The image and the

calibration parallelepiped are shown in Fig. 7a. Prior
information used for calibration as: right parallelepiped
angles, zero camera skew, and principal point in the image
center. The final model is composed of 42 points, three
parallelepipeds, four parallelograms, and four lines and
planes. Rendered views of the model are shown in Fig. 7.

Reconstruction frommultiple images.The sequenceused
for the reconstruction is composed of 15 images whose sizes
vary from 768� 1; 024 to 960� 1; 280 pixels. Calibration was
based on three parallelepipeds (shown in Fig. 8a, Fig. 8b,
Fig. 8c, Fig. 8d). Prior information used was: right angles for
parallelepipeds 1 and 2, zero camera skew, unit aspect ratios

and centered principal points for all images. Parallelepiped 3

is relatively small in those imageswhere bothparallelepipeds
2 and 3 appear. Consequently, the estimation of its vertices is
unstable and, thus, information about its intrinsic parameters
was not used for calibration. Calibration was performed in
two steps. First, the proposed linear factorization approach
was applied. Second, the parameters of cameras and
parallelepipeds obtained from the previous step were
nonlinearly optimized by minimizing the reprojection error
of vertices in a bundle adjustment.

Then, scene elements were added and reconstructed so
that the final model is composed of 194 points, 19 planes,
and 25 lines. The mean reprojection error over all the model
points was about 8 pixels (only linear methods were used
for reconstruction). As expected, the largest errors occurred
in images calibrated using parallelepiped 3.

For comparison, an unconstrained bundle adjustment,
using the Levenberg-Marquardt optimization method, was
performed over all the model points and the camera focal
lengths. This reduced the reprojection error to 2 pixels. It
did not, however, reduce the small artifacts occurring in the
final model.

The calibration primitives and cameras reconstructed
using the factorization method, the parallelepiped-based
nonliner optimization, and the point-based nonlinear
optimization are shown, respectively, in Fig. 8e, Fig. 8f,
Fig. 8g. Rendered views of the model reconstructed using
the parallelepiped-based calibration are shown in Fig. 8h
and Fig. 8j.

204 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

Fig. 6. Kitchen scene: (a) The original image, (b) the modeled parallelepipeds and camera pose, (c) textured model seen from a different viewpoint.

Fig. 7. Notre Dame square scene: (a) The original image, (b) and (c) screen-shots of the model obtained using the image on the left only.

Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration. . . , PAMI 2005 [39] 363

8.2.3 Kio Towers

Reconstruction was based on three images and two
calibration primitives. One of the images used for the
reconstruction is shown in Fig. 9a. Information used for
calibration was: two right angles in each tower, zero camera
skew, unit aspect ratio, and centered principal point. The
reconstructed cameras and primitives are shown in Fig. 9.

8.2.4 Opposite Viewpoints Scene

Fig. 10 shows the reconstruction of a modern building from
two images taken from completely opposite viewpoints.
The parallelepiped used for calibration and the estimated
cameras’ positions are shown in the two original images
(Fig. 10a and Fig. 10b). In the first image, intersections of

lines were computed to obtain the six points required to
define a parallelepiped (see Fig. 10a). The parallelepiped
and the cameras reconstructed by the factorization algo-
rithm are shown in Fig. 10c. New viewpoints of the whole
model, composed of 32 points, 13 parallelograms, and six
planes, are shown in Fig. 10d, Fig. 10e, and Fig. 10f.

9 CONCLUSION

We have presented an approach for calibration, pose
estimation, and 3D model acquisition from several uncali-
brated images based on user-provided geometric con-
straints on the scene. Useful constraints, such as
parallelism, coplanarity, and right angles, can often be

WILCZKOWIAK ET AL.: USING GEOMETRIC CONSTRAINTS THROUGH PARALLELEPIPEDS FOR CALIBRATION AND 3D MODELING 205

Fig. 8. Notre Dame Square scene: (a)-(d) Four images from the 15 used for the reconstruction. Parallelepipeds used for the reconstruction are

marked in white. (e) Cameras and parallelepipeds as estimated by the proposed linear factorization method. (f) Camera and parallelepiped

parameters after nonlinear optimization. (g) Cameras and 194 model points optimized by an unconstrained nonlinear method. (h)-(j) Synthetic

viewpoints of the textured model.

Fig. 9. Kio towers in Madrid: (a) The original image; (b) and (c) reconstructed model and camera poses.

364 Chapter 10. Geometric Constraints

nicely modeled via parallelepipeds. Especially, this allows

us to couple together constraints between several neighbor-

ing scene primitives (points, lines, planes), which poten-

tially brings about higher stability than only using

constraints between pairs of primitives. The projections of

parallelepipeds already encode the affine structure of the

scene. Metric information (length ratios and angles) is then

combined with prior information on camera parameters in a

self-calibration type approach, performing complete cali-

bration and pose estimation. This is formulated in a

factorization framework. The usual problems of missing

data and unknown scale factors are dealt with relatively

easily and a satisfying solution can already be obtained with

a small number of images and correspondences (starting

from four correspondences per image pair or six per image

and parallelepiped).
A detailed study on singular cases of this approach is

also presented: Singularities are derived theoretically and

the impact on the method’s performance due to the

proximity to singular configurations is shown by simulated

experiments. Experiments with real images show that our

calibration approach gives excellent initial results for

general 3D model reconstruction methods.
We believe that an approach such as the one presented

here is a useful tool for easily calibrating cameras using

images of unknown though constrained scenes. Also, it

allows us to efficiently obtain models of the global structure

of scenes (including camera pose), which are good starting
points for more automatic reconstruction methods.

ACKNOWLEDGMENTS

This work was partially supported by the European project

VISIRE (IST-1999-10756).

REFERENCES

[1] O. Faugeras, “What Can Be Seen in Three Dimensions with an
Uncalibrated Stereo Rig?” Proc. European Conf. Computer Vision,
pp. 563-578, 1992.

[2] R. Tsai, “An Efficient and Accurate Camera Calibration Technique
for 3D Machine Vision,” Proc. Conf. Computer Vision and Pattern
Recognition, pp. 364-374, 1986.

[3] S. Maybank and O. Faugeras, “A Theory of Self Calibration of a
Moving Camera,” Int’l J. Computer Vision, vol. 8, no. 2, pp. 123-151,
1992.

[4] B. Triggs, “Autocalibration and the Absolute Quadric,” Proc. Conf.
Computer Vision and Pattern Recognition, pp. 609-614, 1997.

[5] R. Hartley, “Euclidean Reconstruction from Uncalibrated Views,”
Proc. DARPA-ESPRIT Workshop Applications of Invariants in
Computer Vision, pp. 187-202, 1993.

[6] M. Pollefeys and L. Van Gool, “A Stratified Approach to Metric
Self-Calibration,” Proc. Conf. Computer Vision and Pattern Recogni-
tion, pp. 407-412, 1997.

[7] P. Sturm, “Critical Motion Sequences for Monocular Self-Calibra-
tion and Uncalibrated Euclidean Reconstruction,” Proc. Conf.
Computer Vision and Pattern Recognition, pp. 1100-1105, 1997.

[8] R.I. Hartley, “Self-Calibration of Stationary Cameras,” Int’l J.
Computer Vision, vol. 22, no. 1, pp. 5-23, 1997.

[9] L. de Agapito, R. Hartley, and E. Hayman, “Linear Self-
Calibration of a Rotating and Zooming Camera,” Proc. Conf.
Computer Vision and Pattern Recognition, pp. 15-21, 1999.

[10] M. Armstrong, A. Zisserman, and P. Beardsley, “Euclidean
Structure from Uncalibrated Images,” Proc. British Machine Vision
Conf., vol. 2, pp. 509-518, 1994.

[11] A. Zisserman, D. Liebowitz, and M. Armstrong, “Resolving
Ambiguities in Auto-Calibration,” Philosophical Trans. Royal Soc.
London, Series A, vol. 356, no. 1740, pp. 1193-1211, 1998.

[12] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge Univ. Press, 2000.

[13] C. Tomasi and T. Kanade, “Shape and Motion from Image Streams
under Orthography: A Factorization Method,” Int’l J. Computer
Vision, vol. 9, no. 2, pp. 137-154, 1992.

[14] P. Sturm and B. Triggs, “A Factorization Based Algorithm for
Multi-Image Projective Structure and Motion,” Proc. European
Conf. Computer Vision, pp. 709-720, 1996.

[15] B. Triggs, “Factorization Methods for Projective Structure and
Motion,” Proc. Conf. Computer Vision and Pattern Recognition,
pp. 845-851, 1996.

206 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

Fig. 10. Opposite viewpoints scene: (a), (b) The original images used for the reconstruction. (c) The reconstruction scenario with the computed

model and the cameras’ positions. (d), (e), (f) New viewpoints of the model.

Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration. . . , PAMI 2005 [39] 365

[16] D. Martinec and T. Pajdla, “Structure from Many Perspective
Images with Occlusions,” Proc. European Conf. Computer Vision,
pp. 355-369, 2002.

[17] C. Rother, S. Carlsson, and D. Tell, “Projective Factorization of
Planes and Cameras in Multiple Views,” Proc. Int’l Conf. Pattern
Recognition, pp. 737-740, 2002.

[18] P. Sturm, “Algorithms for Plane-Based Pose Estimation,” Proc.
Conf. Computer Vision and Pattern Recognition, pp. 1010-1017, 2000.

[19] B. Caprile and V. Torre, “Using Vanishing Points for Camera
Calibration,” Int’l J. Computer Vision, vol. 4, pp. 127-140, 1990.

[20] R. Cipolla and E. Boyer, “3D Model Acquisition from Uncali-
brated Images,” Proc. IAPR Workshop Computer Vision, pp. 559-568,
1998.

[21] C. Chen, C. Yu, and Y. Hung, “New Calibration-Free Approach
for Augmented Reality Based on Parameterized Cuboid Struc-
ture,” Proc. Int’l Conf. Computer Vision, pp. 30-37, 1999.

[22] J. Kosecka and W. Zhang, “Video Compass,” Proc. European Conf.
Computer Vision, pp. 476-491, 2002.

[23] D. Liebowitz and A. Zisserman, “Combining Scene and Auto-
Calibration Constraints,” Proc. Int’l Conf. Computer Vision, pp. 293-
300, 1999.

[24] D. Bondyfalat, T. Papadopoulo, and B. Mourrain, “Using Scene
Constraints during the Calibration Procedure,” Proc. Int’l Conf.
Computer Vision, pp. 124-130, 2001.

[25] P. Sturm and S. Maybank, “On Plane-Based Camera Calibration:
A General Algorithm, Singularities, Applications,” Proc. Conf.
Computer Vision and Pattern Recognition, pp. 432-437, 1999.

[26] Z. Zhang, “Flexible Camera Calibration by Viewing a Plane from
Unknown Orientations,” Proc. Int’l Conf. Computer Vision, pp. 666-
673, 1999.

[27] B. Triggs, “Autocalibration from Planar Scenes,” Proc. European
Conf. Computer Vision, pp. 89-105, 1998.

[28] E. Malis and R. Cipolla, “Camera Self-Calibration from Unknown
Planar Structures Enforcing the Multi-View Constraints between
Collineations,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 9, Sept. 2002.

[29] B. Boufama, R. Mohr, and F. Veillon, “Euclidean Constraints for
Uncalibrated Reconstruction,” Proc. Int’l Conf. Computer Vision,
pp. 466-470, 1993.

[30] A. Criminisi, I.D. Reid, and A. Zisserman, “Single View
Metrology,” Int’l J. Computer Vision, vol. 40, no. 2, pp. 123-148,
2000.

[31] P. Sturm and S. Maybank, “A Method for Interactive 3D
Reconstruction of Piecewise Planar Objects from Single Images,”
Proc. British Machine Vision Conf., pp. 265-274, 1999.

[32] H.-Y. Shum, M. Han, and R. Szeliski, “Interactive Construction of
3D Models from Panoramic Mosaics,” Proc. Conf. Computer Vision
and Pattern Recognition, pp. 427-433, 1998.

[33] E. Grossmann and J.S. Victor, “Single and Multi-View Reconstruc-
tion of Structured Scenes,” Proc. Asian Conf. Computer Vision,
pp. 93-104, 2002.

[34] M. Wilczkowiak, P. Sturm, and E. Boyer, “The Analysis of
Ambiguous Solutions in Linear Systems and Its Application to
Computer Vision,” Proc. British Machine Vision Conf., pp. 53-62,
2003.

[35] C. McGlone, “Bundle Adjustment with Object Space Geometric
Constraints for Site Modeling,” Proc. SPIE Conf. Integrating
Photogrammetric Techniques with Scene Analysis and Machine Vision
II, pp. 25-36, 1995.

[36] R. Szeliski and P. Torr, “Geometrically Constrained Structure from
Motion: Points on Planes,” Proc. SMILE Workshop, pp. 171-186,
1998.

[37] P. McLauchlan, X. Shen, A. Manessis, P. Palmer, and A. Hilton,
“Surface-Based Structure-from-Motion Using Feature Groupings,”
Proc. Asian Conf. Computer Vision, pp. 699-705, 2000.

[38] E. Grossmann and J. Santos-Victor, “Dual Representations for
Vision-Based 3D Reconstruction,” Proc. British Machine Vision
Conf., pp. 516-526, 2000.

[39] D. Bondyfalat and S. Bougnoux, “Imposing Euclidean Constraints
during Self-Calibration Processes,” Proc. SMILE Workshop, pp. 224-
235, 1998.

[40] M. Wilczkowiak, G. Trombettoni, C. Jermann, P. Sturm, and E.
Boyer, “Scene Modeling Based on Constraint System Decomposi-
tion Techniques,” Proc. Int’l Conf. Computer Vision, pp. 1004-1010,
2003.

[41] P. Debevec, C. Taylor, and J. Malik, “Modeling and Rendering
Architecture from Photographs: A Hybrid Geometry and Image-
Based Approach,” Proc. SIGGRAPH, pp. 11-20, 1996.

[42] D. Jelinek and C. Taylor, “Reconstruction of Linearly Parameter-
ized Models from Single Images with a Camera of Unknown Focal
Length,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 23, no. 7, pp. 767-774, July 2000.

[43] A. Dick, P. Torr, S. Ruffle, and R. Cipolla, “Combining Single View
Recognition and Multiple View Stereo for Architectural Scenes,”
Proc. Int’l Conf. Computer Vision, pp. 268-274, 2001.

[44] M. Wilczkowiak, E. Boyer, and P. Sturm, “Camera Calibration and
3D Reconstruction from Single Images Using Parallelepipeds,”
Proc. Int’l Conf. Computer Vision, pp. 142-148, 2001.

[45] M. Wilczkowiak, E. Boyer, and P. Sturm, “3D Modelling Using
Geometric Constraints: A Parallelepiped Based Approach,” Proc.
European Conf. Computer Vision, pp. 221-236, 2002.

[46] M. Pollefeys, L. Van Gool, and M. Proesmans, “Euclidean 3D
Reconstruction from Image Sequences with Variable Focal
Lengths,” Proc. European Conf. Computer Vision, pp. 31-42, 1996.

[47] M. Wilczkowiak, P. Sturm, and E. Boyer, “Using Geometric
Constraints through Parallelepipeds for Calibration and 3D
Modelling,” INRIA, Rapport de Recherche 5055, 2003.

[48] T. Buchanan, “The Twisted Cubic and Camera Calibration,”
Computer Vision, Graphics, and Image Processing, vol. 42, no. 1,
pp. 130-132, 1988.

[49] F. Kahl, B. Triggs, and K. �Aström, “Critical Motions for Auto-
Calibration when Some Intrinsic Parameters Can Vary,” J. Math.
Imaging and Vision, vol. 13, no. 2, pp. 131-146, 2000.

[50] D. Liebowitz and A. Zisserman, “Metric Rectification for
Perspective Images of Planes,” Proc. Conf. Computer Vision and
Pattern Recognition, pp. 482-488, 1998.

Marta Wilczkowiak received the PhD degree
from INPG (National Polytechnical Institute of
Grenoble, France) in 2004 after receiving the
MSc degree in engineering from Warsaw Uni-
versity of Technology in 2000 (first class grade).
She is currently a research associate at the
University of Cambridge, United Kingdom, in the
Computer Vision and Robotics Group. Her
research interests are in image-based 3D
modeling, including camera (self-)calibration,

3D reconstruction, and, more recently, texture description for region
filling and classification.

Peter Sturm received the PhD degree from
INPG (National Polytechnical Institute of Gre-
noble, France) in 1997, after receiving the MSc
degrees from INPG and the Technical University
of Karlsruhe, both in 1994. After a two-year
postdoctoral at Reading University, he joined
INRIA as a senior researcher in 1999. He has
acted as a program committee member for
ICCV, CVPR, ECCV, ICIP, ICPR, ACCV, and
several other conferences and (co)authored

more than 70 scientific publications. He received the SPECIF award
for 1998 for his PhD thesis (given to one French PhD thesis in computer
science per year). His current main research topics are in computer
vision, specifically, related to camera (self-)calibration, 3D reconstruc-
tion, and motion estimation, both for traditional perspective cameras and
omnidirectional sensors.

Edmond Boyer received the MS degree from
the Ecole Nationale Supérieure de l’Electronique
et de ses Applications, France, in 1993 and the
PhD degree in computer science from the
Institut National Polytechnique de Lorraine,
France, in 1996. He has been with the Institut
National de la Recherche en Informatique et
Automatique (INRIA) since 1993. He is currently
an assistant professor in computer science at
the University Joseph Fourier, Grenoble,

France, and a researcher at INRIA Rhône-Alpes, Grenoble. His
research interests include 3D modeling, silhouettes, motion capture,
motion recognition, and multiple camera environments.

WILCZKOWIAK ET AL.: USING GEOMETRIC CONSTRAINTS THROUGH PARALLELEPIPEDS FOR CALIBRATION AND 3D MODELING 207

366 Chapter 10. Geometric Constraints

Chapter 11

3D Reconstruction of Dynamic Scenes

Paper 30 [25]: P. Sturm. Structure and motion for dynamic scenes – the case of points moving in planes.

In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Proceedings of the 7th European Conference

on Computer Vision, Copenhagen, Denmark, volume 2351 of Lecture Notes in Computer Science, pages

867–882. Springer-Verlag, May 2002.

Paper 31 [31]: P. Sturm and L. Quan. Camera calibration and relative pose estimation from gravity.

In A. Sanfeliu, J.J. Villanueva, M. Vanrell, R. AlquÃ c©zar, J.-O. Eklundh, and Y. Aloimonos, editors,

Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, volume 1,

pages 72–75, September 2000.

367

Structure and Motion for Dynamic Scenes – The Case of

Points Moving in Planes

Peter Sturm

INRIA Rhône-Alpes, 38330 Montbonnot, France,

Peter.Sturm@inrialpes.fr,

WWW home page: http://www.inrialpes.fr/movi/people/Sturm

Abstract. We consider dynamic scenes consisting of moving points whose mo-

tion is constrained to happen in one of a pencil of planes. This is for example

the case when rigid objects move independently, but on a common ground plane

(each point moves in one of a pencil of planes parallel to the ground plane). We

consider stereo pairs of the dynamic scene, taken by a moving stereo system,

that allow to obtain 3D reconstructions of the scene, for different time instants.

We derive matching constraints for pairs of such 3D reconstructions, especially

we introduce a simple tensor, that encapsulates parts of the motion of the stereo

system and parts of the scene structure. This tensor allows to partially recover

the dynamic structure of the scene. Complete recovery of structure and motion

can be performed in a number of ways, e.g. using the information of static points

or linear trajectories. We also develop a special self-calibration method for the

considered scenario.

1 Introduction

Most existing works on structure and motion from images concentrate on the case of

rigid scenes. The rigidity constraint allows to derive matching relations among two

or more images, represented by e.g. the fundamental matrix or trifocal tensors. These

matching tensors encapsulate the geometry/motion of the cameras which took the un-

derlying images, and thus all the geometric information needed to perform 3D recon-

struction. Matching tensors for rigid scenes can also be employed for scenes composed

of multiple, independently moving objects [1, 2], which requires however that enough

features be extracted for each object, making segmentation, at least implicitly, possible.

Shashua and Wolf introduced the so-called homography tensors [9] – matching con-

straints that exist between three views of a planar scene consisting of independently

moving points (each point being static or moving on a straight line). Basically, given

correspondences of projections of such points in three images, the plane homographies

between all pairs of images can be computed from the homography tensor, which would

not be possible with only two images of the scene. It is important to note that this does

not make any assumption about the camera’s motion, i.e. the camera is indeed allowed

to move freely between image takings. So, this work is maybe the first that considers

Paper 30: Structure and Motion for Dynamic Scenes. . . , ECCV 2002 [25] 369

scenarios where everything is moving independently: the camera as well as any point

in the scene 1.

Naturally, the question arises if there are other dynamic scenarios that might be

interesting to examine. Wolf et al. considered the case of a rigid stereo system taking

stereo pairs of a threedimensional scene consisting of points moving on straight lines,

but independently from each other [11]. From each stereo pair, a 3D reconstruction of

the current state of the scene can be obtained (a projective reconstruction if the cameras

are not calibrated). Similarly to the above mentioned work on 2D homography tensors,

the aim is now to determine 3D homographies between pairs of 3D reconstructions,

that would allow to align them. If the stereo system were static, this would again be no

problem: the searched for 3D homography is simply the identity transformation. In case

of a moving stereo system however, Wolf et al. showed that there exist matching tensors,

between three 3D reconstructions, representing the state of the scene at three different

time instants. From these so-called join tensors, the 3D homographies between all pairs

of 3D reconstructions can be recovered, and the reconstructions can be aligned. These

3D homographies represent in fact the stereo system’s motions.

Other works along similar lines include that of Han and Kanade [3, 4], who consider

points moving with constant velocities (thus on linear trajectories), for the case of affine

or perspective cameras. Wolf and Shashua [12] consider several dynamic scenarios,

and derive matching constraints by embedding the problem representations in higher-

dimensional spaces than e.g. the usual projective 3-space for rigid scenes.

The work presented in this paper is inspired by these works. We consider the fol-

lowing scenario: a moving stereo system taking 2D views of a 3D scene consisting of

moving points, each point moving arbitrarily in what we call its motion plane. In ad-

dition, all motion planes are constrained to belong to the same pencil of planes. The

most practical instance of this kind of scenario is the case where all motion planes are

parallel to each other and, say, horizontal. This scenario covers for example all scenes

where objects move on a common ground plane.

For each time instant considered, the stereo system gives a 3D view of the current

state of the scene, which would be a projective reconstruction for example, if the sys-

tem is uncalibrated. In this paper, we derive matching constraints that exist between

such 3D views, and examine which amount of 3D motion and structure information can

be recovered from the associated matching tensors. We show that there already exists a

matching tensor between two 3D views, for two different time instants. This tensor is

more or less the analogue to the fundamental matrix between pairs of 2D views. How-

ever, it does not allow full recovery of the stereo system’s and the 3D points’ structure

and motion. Full recovery of these requires additional information, e.g. the knowledge

that certain points are static, or that certain points move on linear trajectories (if three

or more 3D views are available). In the latter case, the join tensors [11] may be applied,

but in our more constrained scenario (pencil of motion planes), a simpler matching

constraint exists, that can be estimated with fewer correspondences.

For the special case of parallel motion planes, we present a simple self-calibration

method that overcomes singularities that exist without the knowledge of parallelism.

1 Of course, if the camera were not moving, two images would be enough to do the job (the

plane homography between them, for any plane, is intrinsically known – it is the identity).

370 Chapter 11. 3D Reconstruction of Dynamic Scenes

2 Background and Notation

We will both use standard matrix-vector notations, and tensor notation. In tensor nota-

tion, points are specified by superscripts, e.g. P i. Transformations mapping points onto

points, have one superscript and one subscript, e.g. T m
i . Mapping the point P by T

gives a point Q with Qm = T m
i P i. Transformations mapping points to hyperplanes,

are denoted as e.g. Lij . Let ǫ denote the 3 × 3 × 3 “cross-product tensor”, which is de-

fined as ǫijkaibjck = detA where a, b and c are the three columns of matrix A. Among

the 27 coefficients of ǫ, 21 are zero (all coefficients with repeated indices), the others

are equal to +1 or −1.

A linear line complex in 3D is a set of lines that are all incident with a line A, the

axis of the linear line complex [8].

3D lines may be represented via 6-vectors of Plücker coordinates. Plücker coor-

dinate vectors are defined up to scale and they must satisfy one bilinear constraint on

their coefficients. The Plücker coordinates of a line A can be determined from any two

different points on A, as follows. Let B and C be two points on A (represented by

4-vectors of homogeneous coordinates). Define ([A]×)
ij

= BiCj − CiBj . This is a

skew-symmetric 4 × 4 matrix and has thus only six different non zero coefficients –

these are the Plücker coordinates of A. There are several possibilities of ordering the

coefficients to get a 6-vector, we choose the following:

[A]× =







0 −A4 A6 −A2

A4 0 −A5 −A3

−A6 A5 0 −A1

A2 A3 A1 0







.

3 Problem Statement

We consider a dynamic scene of the type described above. Any point of the scene may

move freely2 inside what we call its motion plane. All motion planes form a pencil of

planes, whose axis is a 3D line A (see figure 1). For ease of expression, we also call A

the horizon or horizon line of the motion (although A need not be a line at infinity in

general). Let the positions of some point at three different time instants be represented

by the 4-vectors of homogeneous coordinates, P, P ′ and P ′′. We call point motion the

“displacement” of an individual point between different time instants.

We consider that the scene is observed my a moving stereo system (consisting of

two or more cameras). We suppose that at each time instant, a 3D view of the current

state of the scene can be obtained. In the most general case, this will be a projective

reconstruction, based on a weak calibration of the stereo system, for the images taken

at the considered instant. The stereo system is considered to be moving3, so different

3D views are represented in different coordinate frames (see figure 1). We call stereo

motion the transformation between these coordinate frames. Let T ′ respectively T ′′ be

2 This includes that a point may actually be static.
3 Note that it is nowhere required that the stereo system be moving rigidly or the individual

cameras have constant intrinsic parameters or the like.

Paper 30: Structure and Motion for Dynamic Scenes. . . , ECCV 2002 [25] 371

Fig. 1. Left: the considered scenario – points moving in a pencil of motion planes. Right: 3D

views at two time instants.

the transformations mapping points from the second respectively third 3D view, into

the frame of the first one. Let Q, Q′ and Q′′ be the coordinates inside the 3D views,

of a moving point P at three time instants, i.e. of the points P, P ′ and P ′′. The basic

question dealt with in this paper is, which amount of stereo and point motion (i.e. scene

structure) can be reconstructed, given the input of matching 3D views.

We first study this question for the case of two 3D views, by deriving the associ-

ated matching tensor and showing what information on stereo and point motion can be

extracted from it. We show that in general, i.e. for unconstrained motion of individual

points inside their motion planes, a complete reconstruction is not possible, even if ar-

bitrarily many views (for arbitrarily many time instants) are available. Several ways of

obtaining a complete reconstruction, are then described. These are based on additional

knowledge about point motion, e.g. knowledge that individual points are actually static

or that points are moving on linear trajectories.

4 Two 3D Views – The Projective Case

4.1 The Matching Tensor – A Kind of 3D Epipolar Geometry

The structure of all points, observed at two time instants, may be represented as a linear

line complex: the lines spanned by pairs of corresponding points P and P ′, are all

bound to lie in the pencil of motion planes, thus they all intersect the pencil’s axis A.

Let us now consider two 3D views of the dynamic scene, taken at two different

time instants, by an uncalibrated stereo system. Hence, the 3D views are projective

reconstructions of the scene, at the respective time instants. Let point positions in the

first 3D view be denoted as Q and in the second one, as Q′. If we knew the stereo motion

T ′ and A, the point motion’s horizon line in the first 3D view, then, after mapping all

Q′ by T ′, the lines spanned by corresponding points Q and T ′Q′, would form a linear

line complex, with A as axis, as observed above. Let B and C be any two points on A.

We must have coplanarity of Q, T ′Q′, B and C, thus:

det





| | | |
B C Q T ′Q′

| | | |



 = 0 . (1)

372 Chapter 11. 3D Reconstruction of Dynamic Scenes

This equation is bilinear in the coefficients of the reconstructed 3D points Q and Q′

and we may rewrite it in the following form:

QiQ′jLij = 0 , (2)

where L is a 4× 4 matrix, that depends on the stereo motion and the point motion’s

horizon line. We might call L a “Linear Line Complex Tensor”, or, L-tensor for short,

for the reasons given above. The coefficients of the two points B and C, that appear in

L, can all be contracted to the Plücker coordinates of A. It is then easy to derive the

following decomposition of L:

L ∼ T ′T[A]× . (3)

In the following, we describe several properties of the tensor and in §4.2 we explain,

what information can be extracted from it.

The matrix [A]× is of rank two at the most, since its coefficients are Plücker coor-

dinates (they satisfy the constraint A1A4 + A2A5 + A3A6 = 0). Hence, L too is of

rank two at the most. The right and left null spaces of L represent nothing else than the

horizon line A: the right null space consists of the 3D points that lie on A, in the first

3D view, whereas the left null space contains the 3D points lying on the reconstruction

of the horizon line A′ in the second 3D view.

In the following, we give some geometric interpretation (cf. figure 2) of the L-tensor,

and actually show that there are some analogies to the epipolar geometry between two

2D views of a rigid scene. Let us first consider the action of L on a point Q in the first

3D reconstruction. The product ([A]×)ij Qi gives the motion plane Πj , that is spanned

by the horizon line A and the point Q [8]. The transformation T ′T maps planes from the

first 3D view, onto planes in the second one: Π ′
k ∼

(

T ′T
)j

k
Πj . The plane Π ′ contains

the horizon line A′. The correspondence of a point Q′ with Q is then expressed as Q′

lying on Π ′, or: Q′kΠ ′
k = 0.

Fig. 2. 3D epipolar geometry.

The analogy to the 2D epipolar geometry is straightforward. The horizon lines A

and A′ (they represent the same “physical” line, but in 3D views taken at different

stereo positions) play the role of the epipoles. In each 3D view, there is a pencil of

“epipolar motion planes” containing the horizon line, which is analogous to pencils of

epipolar lines in 2D views. Concerning the transformation T ′, there is an analogous

Paper 30: Structure and Motion for Dynamic Scenes. . . , ECCV 2002 [25] 373

expression to L ∼ T ′T[A]× for the 2D epipolar geometry: any plane homography,

multiplied by the skew-symmetrix matrix of an epipole, gives the fundamental matrix.

Plane homographies are those 2D homographies that map one epipole onto the other

and that map corresponding epipolar lines onto each other. Hence, plane homographies

are defined up to three parameters. Here, T ′ is a 3D homography. It is constrained

to map epipoles A and A′ onto each other and to map corresponding motion planes

onto each other. A difference compared to the 2D epipolar geometry is that here, the

epipoles (the horizon lines) do represent a part of the dynamic scene structure, and not

only the camera geometry. Also, for a given 3D view, the epipole with respect to any

other 3D view of the same dynamic scene, is always the same, whereas in the 2D case,

the epipoles of one view with respect to several other views, are in general different

from each other.

4.2 What Can Be Extracted From The L-Tensor?

It would be desirable to extract, from the tensor L, the stereo system’s motion T ′ and

the point motion’s horizon line A. Unhappily, this is not entirely possible, which is clear

when counting parameters: L offers at most 11 constraints (it is a rank-2 4 × 4 matrix,

defined up to scale), which is not sufficient to cover the 15+4 parameters for T ′ and A.

From the decomposition of L in (3), it is clear that the horizon line A can be ex-

tracted via the right nullspace of L (the horizon line A′ in the second 3D view is the

left nullspace). The question left is, how much information can be gained on the stereo

motion T ′ ? Let H be any non-singular 3D homography that maps A to the line at in-

finity consisting of all points (X, Y, 0, 0)
T

. It can be shown that multiplying equation

(3) from the right with the inverse of H leads to:

LH−1 ∼ T ′T







0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0







∼







0 0 −T ′
41 T ′

31

0 0 −T ′
42 T ′

32

0 0 −T ′
43 T ′

33

0 0 −T ′
44 T ′

34







.

Hence, L gives us 7 coefficients of T ′ (discarding the scale ambiguity).

Let M ′ be any 4× 4 matrix whose third and fourth rows are the same as that of T ′,

but with arbitrary coefficients in the first two rows. Any such M ′ maps the horizon line

A′ of the second 3D view onto A in the first 3D view (to be precise, it maps all points

on A′ onto points on A) and the motion planes of the second 3D view (planes spanned

by the Q′ and the line A′), onto the corresponding motion planes in the first view. What

remains unknown however, is the motion inside the individual motion planes.

Mapping the second 3D view by any such M ′ will in the sequel be called partial

alignment of 3D views. Methods for obtaining a full alignment are described further

below. We now describe one method of performing partial alignment. Since everything

is defined up to a global projective transformation, we perform the alignment such that

the horizon line becomes the line at infinity, consisting of all points (X, Y, 0, 0)
T

, which

leads to simpler expressions in the sequel. Let the Singular Value Decomposition (SVD)

374 Chapter 11. 3D Reconstruction of Dynamic Scenes

of L be given as (remember that L is of rank two):

L = U







a

b

0
0







V T .

Define the following projective transformations:

M =







√
a√

a√
b

−√
a







V T M ′ =







√
a √

a√
a √

b







UT .

These transformations are by construction non-singular (unless a = 0 or b = 0).

Transforming the first 3D view by M and the second one by M ′ leads to points MQ

and M ′Q′ that satisfy the following constraint:

(M ′Q′)
T L′ MQ = 0

where

L′ =







0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0







is the L-tensor of the partially aligned 3D views.

Before describing methods for full alignment, which will be done in §6, we consider

the specialization of our scenario to the Euclidean and affine cases.

5 Two 3D Views – The Euclidean Case

We now consider the case where the 3D views are Euclidean reconstructions, obtained

using e.g. a calibrated stereo system. In addition, we concentrate on the case of parallel

motion planes, which is probably the most interesting one to study. This means that A

is a line at infinity, thus A4 = A5 = A6 = 0 and

L ∼ T ′T[A]× ∼ T ′T







0 0 0 −A2

0 0 0 −A3

0 0 0 −A1

A2 A3 A1 0







.

The vector a = (A1, A2, A3)
T

contains the homogeneous coordinates of the line A, on

the plane at infinity. Thus, it also represents the homogeneous coordinates of the normal

direction of all motion planes.

Paper 30: Structure and Motion for Dynamic Scenes. . . , ECCV 2002 [25] 375

For Euclidean 3D views, the stereo motion is a similarity transformation, i.e. a rigid

motion possibly followed by a global scale change, which is needed since the two 3D

views might have different scales. Thus:

T ′ =







sR t

0T 1







for a rotation matrix R, a translation vector t and a scalar s. The tensor is thus given by:

L =







03×3 −sRTa

aT −tTa







.

It has a particularly simple structure with only 7 non zero coefficients, and no non-

linear constraint on them. However, if the global scale s of the second 3D view, is known

in advance, e.g. due to constant stereo calibration in which case s = 1, then there is one

non-linear constraint: the norm of the leading 3-vectors in the 4th column and the 4th

row of L are the same.

What information on stereo and point motion can be extracted from L ? The horizon

line can be read off directly, as the leading 3-vector of the 4th row. The scale s is

obtained as the ratio of the norms of the two leading 3-vectors in the 4th column and

4th row. As for R, it can be seen that it can be determined, up to a rotation about a, the

normal direction of the motion planes (see above). Finally, as for the translation t, only

its amount along the direction a, can be determined.

Thus, the L-tensor allows, like in the projective case, only partial alignment of 3D

views. Here, the ambiguity has three degrees of freedom: let T ′ be any similarity trans-

formation doing the partial alignment. Adding any transformation consisting of a rota-

tion about a and a translation perpendicular to a, will also result in a valid alignment

transformation. Contrary to the projective case, the ambiguous transformation is the

same for all motion planes, i.e. if the ambiguity can be cancelled in one motion plane

only, then it can be so for the entire 3D scene alignment (in the projective case, full

alignment of at least two planes is necessary).

6 Three 3D Views

As discussed previously, two 3D views are not sufficient for full alignment. We now ex-

amine if and how additional 3D views, obtained at other time instants, allow to reduce

the ambiguity. Let us first note that even with three or more 3D views of our scenario,

without additional information, full alignment is not possible. Every 3D view can be

partially aligned with the others, as described above, but it is easy to see that the ambi-

guity in the alignment can not be reduced without further information. In the following,

we outline a few types of additional information, that indeed may contribute to full

alignment of 3D views.

376 Chapter 11. 3D Reconstruction of Dynamic Scenes

First, suppose that every point has a linear trajectory. Wolf and Shashua have derived

the matching constraints for three 3D views of this scenario [11]. The so-called join

tensors, or J-tensors for short, allow to perform full alignment of the three 3D views.

This holds even if the linear trajectories are in general position, i.e. if they are not

bound to lie on a pencil of planes. The drawback of this general case is that a linear

solution of the J-tensors requires at least 60 corresponding point triplets. In §6.1, we

specialize the J-tensors to our scenario, and show how this allows full alignment using

fewer correspondences.

Second, we remind that until now we did not assume that there are more than one

point per motion plane. Thus, it might be interesting to study the case of one or sev-

eral motion planes containing several points. This can actually be detected after partial

alignment, see §7.2. In this case, motion planes with enough moving points on them,

can be dealt with individually, e.g. by estimating their homography tensor [9]. Since in

our scenario, we already know at least one line correspondence per motion plane (the

horizon line), we might consider a simplified version of the H-tensor (see §6.2). Each

motion plane for which the H-tensor can be estimated, can thus be fully aligned, and it

is easy to show that the alignment of two or more motion planes is sufficient to align

the rest of the scene.

Third, knowledge of static points helps of course in the alignment of the 3D views.

This will be described briefly in §6.3. Other possibly useful types of additional infor-

mation could be knowledge of conical trajectories, of motion with constant velocity, of

linear trajectories going in the same direction, etc.

6.1 Linear Trajectories

The join tensors, introduced for the general case of unconstrained linear trajectories

[11], can also be used here of course. However, in our specialized scenario, we can

exploit the additional constraint that the trajectories form a linear line complex (they

lie in a pencil of motion planes). It is possible to derive tensors that fully encapsulate

this constraint, but they are numerous and not very intuitive. Rather, we suppose in the

following that partial alignment of the three 3D views has been performed (e.g. the

second and third views have been aligned with the first one), as described in §4.2, and

derive matching constraints on the already partially aligned 3D views.

We remind that the horizon line A in the aligned 3D views, is the line at infinity

consisting of points (X, Y, 0, 0)T. Hence, the motion planes are given by 4-vectors of

homogeneous coordinates of the form (0, 0, s,−t)T. We are looking for transformations

T ′ and T ′′ for the second and third 3D views, that leave the horizon line and all motion

planes globally fixed. Hence, the transformations are of the following form:

T ′ =







a′ b′ c′ d′

e′ f ′ g′ h′

0 0 j′ 0
0 0 0 j′







T ′′ =







a′′ b′′ c′′ d′′

e′′ f ′′ g′′ h′′

0 0 j′′ 0
0 0 0 j′′







. (4)

Let Q, Q′ and Q′′ represent triplets of corresponding points. The matching con-

straint used here is that Q, T ′Q′ and T ′′Q′′ have to be collinear, which means that the

Paper 30: Structure and Motion for Dynamic Scenes. . . , ECCV 2002 [25] 377

rank of the 4×3 matrix composed of these 3 vectors, is two at the most. This constraint

can be expressed by a linear family with four degrees of freedom, of 4 × 4 × 4 join

tensors [11]. In our case, due to the special form of T ′ and T ′′, the four degrees of free-

dom remain, but some coefficients are known to be zero for all join tensors, i.e. fewer

than the 60 correspondences for the general family of join tensors, are needed here to

estimate them.

One problem here, that actually turns out as a benefit, is that the point correspon-

dences available to us in the considered scenario, are constrained – all triplets of points

Q, Q′, Q′′ lie in some “horizontal” plane (in the chosen projective frame). Hence, the

estimation of the join tensors is underconstrained 4. Hence, if we were to estimate gen-

eral 4 × 4 × 4 tensors, there would be a family of solutions of degree higher than four.

We now consider matching constraints for triplets of points lying in a motion plane

(0, 0, s,−t)
T

, thus Q ∼ (X, Y, t, s)
T
, Q′ ∼ (X ′, Y ′, t, s)

T
and Q′′ ∼ (X ′′, Y ′′, t, s)

T
.

These being collinear after alignment, is expressed by:

rank







X a′X ′ + b′Y ′ + c′t + d′s a′′X ′′ + b′′Y ′′ + c′′t + d′′s

Y e′X ′ + f ′Y ′ + g′t + h′s e′′X ′′ + f ′′Y ′′ + g′′t + h′′s

t j′t j′′t

s j′s j′′s







≤ 2 .

In the general case, four join tensors forming a basis for the 4-degree-of-freedom

family, might be extracted by expressing that the four possible 3-minor’s determinants

vanish. With our input, it is clear that the two minors containing both the third and

fourth rows of the above matrix, always vanish. Hence, the corresponding join tensors

can not be estimated. As for the other two minors, we may write:

ǫlpq

(
M l

iQ
i
) (

Mp
mT ′m

j Q′j
) (

M q
nT ′′n

k Q′′k
)

= 0

ǫlpq

(
M ′l

i Qi
) (

M ′p
mT ′m

j Q′j
) (

M ′q
n T ′′n

k Q′′k
)

= 0

where the 3×4 matrices M respectively M ′ project points (X, Y, Z, W)
T

to (X, Y, Z)
T

respectively (X, Y, W)
T

, i.e.

M =





1 0 0 0
0 1 0 0
0 0 1 0



 M ′ =





1 0 0 0
0 1 0 0
0 0 0 1



 .

We thus obtain the following two join tensors:

Jijk = ǫlpqM
l
i

(
Mp

mT ′m
j

)
(M q

nT ′′n
k) J ′

ijk = ǫlpqM
′l
i

(
M ′p

mT ′m
j

)
(M ′q

n T ′′n
k) .

The slices J4jk and J ′
3jk are zero matrices, and J3jk and J ′

4jk are identical. As

for the other two slices, the coefficients with indices lower than 3 inside the slice, are

identical in the two tensors. Among the other coefficients, there are several that are the

4 It is important to note that although T ′ and T ′′ conserve motion planes, their join tensors also

express the fact that Q, T ′Q′ and T ′′Q′′ may be collinear, for points Q, Q′ and Q′′ not lying

in the same motion plane.

378 Chapter 11. 3D Reconstruction of Dynamic Scenes

same in both tensors, but that stand at different places. Each one ofJ andJ ′ has only 30

non-zero coefficients. However, again due to the specific type of input correspondences,

the tensors can only be estimated up to a 3-degree-of-freedom family of solutions

each. Happily, the nature of the ambiguity in the solutions, is known and simple: 24

of the non-zero coefficients for each tensor, can be estimated without ambiguity (up to

scale). As for the remaining coefficients, what can be estimated are the following sums:

J134 + J143,J234 + J243,J334 + J343 and J ′
134 + J ′

143,J ′
234 + J ′

243,J ′
434 + J ′

443.

So, 26 point correspondences are in general sufficient to obtain a linear solution for

the 24 coefficients and the 3 sums of coefficients (per tensor). The following coefficients

of the alignment transformations can be read off directly from the estimated tensor

coefficients (after an arbitrary choice for j ′ and j′′): a′, b′, e′, f ′, a′′, b′′, e′′, f ′′. Having

determined them, one can establish, using coefficients of J and J ′, as well as the

estimated values of a′ etc., a simple linear equation system, to solve for the remaining

8 unknowns, c′, d′, g′, h′, c′′, d′′, g′′ and h′′.

In summary, 26 correspondences are sufficient to determine the alignment transfor-

mations T ′ and T ′′, and it is nowhere required that there be more than a single moving

point per motion plane.

6.2 Using Homography Tensors

We consider the same scenario as in the previous section, i.e. linear trajectories, but now

suppose that there are motion planes carrying several points (which can be detected, see

§7.2). In this case, we may deal with each motion plane separately.

Consider one motion plane, represented by (0, 0, s,−t)
T

. Let Q, Q′ and Q′′ rep-

resent triplets of corresponding points on that plane. Hence, they have the form given

in the previous section. The matching constraint for such triplets, corresponds to the

homography tensor, or H-tensor for short, introduced in [9]. In that work, the matching

constraint was derived for three 2D views of a dynamic planar scene, obtained by a

moving 2D camera. Each such 2D view constitutes a projective reconstruction of the

planar scene, at the corresponding time instant. Here, we start with three 3D views,

which essentially gives us again three projective reconstructions of the motion plane

considered.

In order to compute the homography tensor for a motion plane, we first project the

three 3D views of the plane by some projection matrix onto some 2D image plane. Let

us define the 4 × 4 projection matrix M :

M =





1
1

t s





whose optical center is guaranteed not to lie on the considered motion plane. We project

all three 3D views using M . For the resulting 2D views, there must exist 3 × 3 trans-

formations H ′ and H ′′ such that all triplets MQ, H ′MQ′ and H ′′MQ′′ are collinear.

In addition, we know a correspondence of a static line, the motion’s horizon line. This

line is mapped, by M , to the line at infinity of the 2D views. Hence, H ′ and H ′′ must

Paper 30: Structure and Motion for Dynamic Scenes. . . , ECCV 2002 [25] 379

be affine transformations of the form:

H ′ =





a′ b′ c′

e′ f ′ g′

0 0 j′



 H ′′ =





a′′ b′′ c′′

e′′ f ′′ g′′

0 0 j′′



 .

We obtain the following matching equation, in tensorial notation:

ǫlmn

(
M l

iQ
i
) (

H ′m
p M

p
j Q′j

) (
H ′′n

q M
q
kQ′′k

)
= 0

We may rewrite the equation:

(
M l

iQ
i
) (

M
p
j Q′j

) (
M

q
kQ′′k

) (
ǫlmnH ′m

p H ′′n
q

)

︸ ︷︷ ︸

Hlpq

= 0 .

We may identify Hlpq as the 3 × 3 × 3 homography tensor. It can be shown that, due

to the constrained form of H ′ and H ′′, the tensor has only 19 non-zero coefficients

(compared to 27 for the general H-tensor). Hence, a linear solution is possible with 18

or more correspondences. Extracting the individual transformations H ′ and H ′′ from

H can be done analogously to what is described in [9].

The tensor H, for one motion plane, allows to partially determine J and J ′ (valid

for all motion planes), dealt with in §6.1. Several coefficients of H occur identically in

J or J ′, and the others give linear equations on coefficients of the join tensors.

It is easy to show that the alignment of two motion planes is sufficient to fully align

the entire 3D views: for any 3D point in, say, the second 3D view, which we will call

Q′, let D′ be a line passing through it, but that is not contained in Q′s motion plane. Let

B′ and C ′ be the intersection points of D′ with the two motion planes for which full

alignment is possible. We thus may compute the positions B and C of the points B ′ and

C′, after alignment. The aligned position Q of Q′ is finally given by the intersection of

Q′s motion plane, with the line joining B and C.

6.3 Using Static Points

Given the special form of the alignment matrices (see (4)), it is clear that one static point

(that is known to be static), provides two independent equations on each of them. Hence,

correspondences associated to four static points in general position, should be sufficient

to achieve full alignment of the 3D views (compared to five correspondences that would

be required without the specific nature of our scenario). In the Euclidean case, two point

correspondences (actually, one and a half) are sufficient for full alignment (compared

to three that would be required without the specific nature of our scenario). It would be

interesting to study the general case of mixed static and moving points.

7 Other Issues

7.1 Projections P
5

→ P
3

The derivation of the matching tensor for the two-view scenario (see §4.1), could also

be performed in the framework of higher dimensional projection matrices used in [12].

380 Chapter 11. 3D Reconstruction of Dynamic Scenes

Without loss of generality (we deal with projective space), suppose that the horizon

A is the line at infinity containing all points (X, Y, 0, 0)
T

. Let P ∼ (X, Y, Z, W)
T

be a 3D point at the first time instant and let P ′ ∼ (X + a, Y + b, Z, W)
T

be the

same point, at the second instant, after having moved in the plane spanned by A and

P . We may form the following 6-vector that represents P and its moved version P ′:

ST =
(
X Y a b Z W

)
. We define two projection matrices P 5 → P 3:

M ∼







1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1







M ′ ∼







1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







.

We may observe that MS ∼ P and M ′S ∼ P ′. In our scenario, we do not observe P

and P ′ directly, but have projective 3D views of them, i.e.: λQ = TP and λ′Q′ = T ′P ′

for some 4× 4 projective transformations T and T ′ and scale factors λ and λ′. We may

derive the matching constraints for Q and Q′ in the way shown e.g. in [10]: due to

(
TM Q 0

T ′M ′ 0 Q′

)

︸ ︷︷ ︸

X8×8





S

−λ

−λ′



 = 0

we know that the matrix X is rank-deficient, i.e. that its determinant is equal to zero.

By developing the determinant, one obtains the same 4 × 4 tensor L as in §4.1 (if we

set T to the identity).

7.2 Segmentation of Points Moving in the Same Motion Plane

After partial alignment (see §4.2), the segmentation of points that move in the same

plane, is straightforward and can in principle be done in a single 3D view. This might

be done by checking, in 3D, if points are on the same motion plane. An alternative

would be to compute plane homographies between the 2D views inside a stereo system,

for individual motion planes, and check if corresponding projections of 3D points in the

2D views, are consistent with the plane homographies.

7.3 Self-Calibration

We briefly describe a self-calibration algorithm for the scenario of two projective 3D

views, under the assumption that the true motion planes are parallel to each other, i.e.

the true horizon line is a line at infinity. Using the L-tensor, the horizon line can be de-

termined in the 3D views. Since the true line is a line at infinity, it has two intersection

points with the absolute conic – the circular points of all motion planes. We may per-

form partial self-calibration by searching for the circular points, on the reconstructed

horizon lines in our 3D views.

Consider one of the 3D views, after partial alignment as described in §4.2. We sup-

pose that this 3D view has been obtained using two perspective cameras, with unknown

Paper 30: Structure and Motion for Dynamic Scenes. . . , ECCV 2002 [25] 381

and possibly different focal lengths, but known other intrinsic parameters. The two focal

lengths can in general be recovered from the epipolar geometry [5], but this is nearly

always singular in practice, due to optical axes passing close to each other [7]. The

knowledge of a line at infinity in the projective reconstruction, however, can be used to

overcome the singularity, as described in the following.

Let M and M ′ be the 3 × 4 projection matrices of the two 2D views. We suppose

that the known parts of the calibration matrices (containing aspect ratio and principal

point) have been undone, i.e. the unknown calibration matrices of M and M ′ are K =
diag(f, f, 1) and K ′ = diag(f ′, f ′, 1). We parameterize the problem in the circular

points on the horizon line, which, in the partially aligned 3D view, have coordinates

C± ∼ (a ± I, b, 0, 0)
T

for real a, b and b 6= 0. Our self-calibration constraints are that

the projections of C+ and C− lie on the images of the absolute conic in the respective

views, which leads to:

(am1 + bm2 + Im1)
T
K−TK−1 (am1 + bm2 + Im1) = 0

(am1 + bm2 − Im1)
T
K−TK−1 (am1 + bm2 − Im1) = 0

where mi is the ith column of M , and similar equations for the second view. Separating

the real and imaginary parts of the equations leads to two equations, whose resultant

with respect to f2 is quadratic in a and b. We get a similar equation for the second view.

The resultant of these two equations, with respect to a, finally, is the product of the term

b2 and a term that is linear in b2. Since b 6= 0, we thus get a single solution for b2, which

gives us b up to sign (the sign does not matter). From b, unique solutions for a and the

squared focal lengths may then be obtained.

We performed simulated experiments with this method. Twenty moving points on

each of three planes were simulated. The 3D points were projected in two stereo pairs,

and centered Gaussian noise with a standard deviation of 1 pixel was added to the image

coordinates. For each stereo pair, the fundamental matrix was computed using the 8-

point method [6], projective reconstruction was performed, and the L-tensor between

the two resulting point sets estimated. The point sets were then partially aligned. For

several stereo configurations (varying vergence angle), 100 simulation runs each were

performed. Self-calibration gave focal lengths with an average relative error of about

6% (excepting between 0 and 4 runs were computation failed).

8 Experimental Results

We conducted the following experiment using four stereo pairs of a dynamic scene

(see figure 3). About 60 points on the moving objects were manually extracted in all

eight images. The experiment was performed for the Euclidean case: the calibration

grid visible in the images, was used to obtain full stereo calibration, and thus Euclidean

3D reconstruction of the points. Each such 3D view underwent an arbitrary Euclidean

transformation, otherwise they would already have been aligned, since stereo calibra-

tion was with respect to the static calibration grid.

From this input, the Euclidean L-tensor between the first and second 3D views was

estimated and these 3D views were partially aligned (see §4.2). Then, the other two 3D

382 Chapter 11. 3D Reconstruction of Dynamic Scenes

views were aligned with the two first one, using a simpler variant of the method of §4.2

(the horizon line in the first two views is already known), not described here.

Full alignment was done for the first three 3D views, based on the knowledge that

individual points moved on linear trajectories (see §6.1), and by estimating join tensors

specialized to Euclidean alignment transformations. Finally, the fourth 3D view was

fully aligned with the others, again using a simplification of the method of §6.1. Some

recovered point trajectories are shown in figure 4. Qualitatively, the result seems to be

correct, although a quantitative evaluation should definitely be carried out.

Fig. 3. Two stereo pairs used in the experiments.

Fig. 4. Left: the moving points used in the experiment. Right: recovered linear trajectories of

several points (4 positions each), orthogonally projected onto the ground plane. The point group

on the left corresponds to a point on the horse, the group at the bottom to the caravan (3 moving

points shown), the group in between, to one of the cars on the grid. The other two point groups

belong to the truck and to the sportscar in front of the grid (2 moving points each).

9 Conclusion

We have considered the structure and motion problem for a dynamic scene, consisting

of individually moving points, with the restriction that motion happens in a pencil of

Paper 30: Structure and Motion for Dynamic Scenes. . . , ECCV 2002 [25] 383

motion planes. The scene is supposed to be observed by a moving stereo system, result-

ing in 3D views of the scene, at different time instants. We have derived the matching

constraints between two such 3D views, and shown that full alignment of the views is

not possible without further information. Information useful to fully recover the motion

of the stereo system as well as the motion and structure of the scene, are for example

knowledge of static points or linear trajectories. We have especially discussed how to

take into account linear trajectories, to achieve full recovery of structure and motion.

A preliminary experiment has shown that it may be feasible to solve the problem in

practice, at least in the calibrated case.

Among issues for further work on this topic, minimum numbers of correspondences

for the mixed case of known/unknown static and moving points, should be established,

and a more thorough experimentation is needed.

Acknowledgement. I wish to thank Adrien Bartoli for preparing the experimental

data of section 8.

References

1. Costeira, J., Kanade, T.: A Multi-Body Factorization Method for Motion Analysis. ICCV

(1995) 1071–1076

2. Fitzgibbon, A.W., Zisserman, A.: Multibody Structure and Motion: 3-D Reconstruction of

Independently Moving Objects. ECCV (2000) 891–906

3. Han, M., Kanade, T.: Reconstruction of a Scene with Multiple Linearly Moving Objects.

CVPR II (2000) 542–549

4. Han, M., Kanade, T.: Multiple Motion Scene Reconstruction from Uncalibrated Views. ICCV

I (2001) 163–170

5. Hartley, R.I.: Estimation of Relative Camera Positions for Uncalibrated Cameras. ECCV

(1992) 579–587

6. Hartley, R.: In Defence of the 8-Point Algorithm. ICCV (1995) 1064–1070

7. Newsam, G.N., Huynh, D.Q., Brooks, M.J., Pan, H.P.: Recovering Unknown Focal Lengths

in Self-Calibration: An Essentially Linear Algorithm and Degenerate Configurations. XVIIIth

ISPRS Congress Part B3 (1996) 575–580

8. Semple, J.G., Kneebone, G.T.: Algebraic Projective Geometry, Oxford Science Publ. (1952)

9. Shashua, A., Wolf, L.: Homography Tensors: On Algebraic Entities That Represent Three

Views of Static or Moving Planar Points. ECCV (2000) 507–521

10. Triggs, B.: Matching Constraints and the Joint Image. ICCV (1995) 338–343

11. Wolf, L, Shashua, A., Wexler, Y.: Join Tensors: On 3D-to-3D Alignment of Dynamic Sets.

ICPR (2000) 388–391

12. Wolf, L., Shashua, A.: On Projection Matrices P k
→ P 2, k = 3, · · · , 6, and their Applica-

tions in Computer Vision. ICCV I (2001) 412–419

384 Chapter 11. 3D Reconstruction of Dynamic Scenes

Camera Calibration and Relative Pose Estimation from Gravity

Peter F. Sturm and Long Quan

INRIA Rhône-Alpes

655 Avenue de l’Europe

38330 Montbonnot St Martin, France

Peter.Sturm@inrialpes.fr, Long.Quan@inrialpes.fr

Abstract

We examine the potential use of gravity for camera cal-

ibration and pose estimation purposes. Concretely, objects

being launched or dropped follow trajectories dictated by

the law of gravity. We examine if video sequences of such

trajectories give us exploitable constraints for estimating

the imaging geometry. It is shown that it is possible to

estimate the infinite homography and the epipolar geome-

try between pairs of views from this input, from which we

can estimate (some) intrinsic parameters and relative pose.

There are less singularities compared to approaches that do

not use the information that the observed trajectories follow

gravity. In this paper, we sketch the geometric principles of

our idea and validate them by numerical simulations.

1. Introduction

In this paper we consider the exploitation of gravity for

tasks such as camera calibration and relative pose estima-

tion for stereo systems. The basic idea is simple: if we take

video sequences of objects being dropped or launched, then

the image trajectories, combined with the assumption that

the 3D trajectories follow the law of gravity, might provide

us with information useful for estimating the imaging ge-

ometry. Two types of trajectory are of interest here: the

trajectory of an object dropping down in a straight line (e.g.

two or more such trajectories give us the vertical vanishing

point) and that of an object being launched in a non ver-

tical direction (i.e. with non zero horizontal velocity). In

the latter case, the 3D trajectory is a parabola with vertical

symmetry axis and we will see later that this information is

useful to recover the vanishing geometry of stereo systems.

The paper is organized as follows. In §2, the camera

model and some notations are introduced. The problem

dealt with in this paper is described concretely in §3 and

the geometric ideas leading to its solution are sketched in

§4. In §§5 to 8, several ways of extracting information

from image sequences of the described type are presented,

which are useful for epipolar geometry estimation, calibra-

tion, pose estimation and also synchronization of cameras.

Algorithms are briefly described in §9 and results of numer-

ical simulations are presented in §10. Some practical issues

are discussed in §11, followed by conclusions.

2. Background

Camera model. We use perspective projection to model

cameras. A projection may be represented by a 3 × 4
matrix P mapping points of 3-space to points in 2-space:

q ∼ PQ. Here, ∼ means equality up to a non zero scale

factor, which accounts for the use of homogeneous coor-

dinates. The projection matrix incorporates the so-called

extrinsic and intrinsic camera parameters; it may be decom-

posed as P ∼ KR(I3 |−t), where I3 is the 3×3 identity

matrix, R a 3 × 3 orthogonal matrix representing the cam-

era’s orientation, t a 3-vector representing its position, and

K the 3 × 3 calibration matrix containing the camera’s in-

trinsic parameters: the (effective) focal length f , the aspect

ratio τ , the principal point (u0, v0) and the skew factor s

accounting for non rectangular pixels.

Infinite homography. Consider the projections of a set

of coplanar features in two images. The image features are

linked by a 3 × 3 projective transformation, or homogra-

phy. If the 3D features considered are located on the plane

at infinity, the associated homography between the images

is often referred to as the infinite homography [1]. This ho-

mography depends only on the two cameras’ intrinsic pa-

rameters and their relative rotation R, as follows:

H∞ ∼ K2RK
−1

1
. (1)

In this paper, we will estimate the infinite homography

using corresponding vanishing points and lines and then use

it for calibration.

3. Problem Description

We consider one or several static video cameras and our

aim is to calibrate these and estimate their relative pose. We

examine the potential use of gravity for these tasks. Input

are video sequences of objects being dropped or launched.

The videos consist thus of “snapshots” of the objects, at dif-

ferent times during their trajectory. From each snapshot, an

image point is determined that is assumed to be the pro-

jection of the object’s center of mass (e.g. for a spherical

object, the center of the contour ellipse in the image is a

good approximation). Hence, the basic features we will use

for calibration etc. are image points.

We assume that the cameras’ frame rates are constant and

identical. The frame rates need not be known however, and

Paper 31: Camera Calibration and Relative Pose Estimation from Gravity, ICPR 2000 [31] 385

it is not required that the cameras are synchronized. Based

on these simple assumptions, we examine how to use the

image points and the knowledge that the corresponding 3D

points lie on trajectories dictated by gravity, for calibration

and pose estimation. Gravity gives us basically two useful

pieces of information: first, all trajectories contain the same

point at infinity (the vertical direction) and second, objects

travel at constant horizontal velocity while their vertical ve-

locity varies according to the law v(t) = v(0) − gt. Once

the vertical direction is known, this law allows us to com-

pute ratios of point coordinates to e.g. compute the point of

zero velocity of a linear trajectory (see below).

4. Geometric Ideas

Two types of trajectory are considered: linear ones, ob-

tained by letting an object drop, and parabolic trajectories

which are obtained when objects are launched. These tra-

jectories are projected to lines and conics. We will use the

trajectories as a whole, but also correspondences between

“snapshots” of the object taken during the trajectories.

Consider a camera taking an image sequence of drop-

ping objects. The objects drop vertically of course which

means that their linear trajectories all have the same point

at infinity. Consequently, the image trajectories are a set

of concurrent lines, the incidence point being the vanish-

ing point corresponding to the vertical direction, which can

thus be easily determined. However, we can not obtain cal-

ibration constraints from linear trajectories, even if several

cameras observe the trajectories.

Consider now a camera observing objects moving on

parabolic trajectories. The 3D trajectories are parabolas

with vertical symmetry lines, i.e. all these 3D parabolas

contain the vertical point at infinity, like the linear trajec-

tories. Hence, the conics obtained by projecting the trajec-

tories contain the vertical vanishing point. Interestingly, the

tangent of any such conic at the vertical vanishing point is

nothing else than the vanishing line of the motion plane,

i.e. the plane supporting the 3D parabola. Hence, if we

consider more than one camera, we can obtain correspon-

dences of one vanishing point and several vanishing lines

(one for each parabola). This alone is not sufficient to

compute the infinite homography, since all the considered

vanishing lines are concurrent. However, together with the

epipolar geometry, two correspondences of vanishing lines

are already enough to compute the infinite homography, and

obtain the associated calibration constraints (see §7).

The epipolar geometry can be estimated using snapshots

of the objects, which can be used as point correspondences

across the images. Projections of a minimum number of 3D

points on at least two planes are sufficient, i.e. two parabolic

or three linear trajectories in general position are enough.

5. Using Linear Trajectories

If the camera is calibrated, it is simple to determine the

horizon (the vanishing line of the horizontal planes) which

might be used for example to orient a camera such that its

gaze direction is horizontal. If q is the vertical vanishing

point, then the horizon line l is given by l ∼ K
−T

K
−1q. The

camera could then be oriented by rotating it while tracking

the horizon line, until it is horizontal and passes through the

camera’s principal point.

A second and maybe more interesting potential use of

linear trajectories concerns the synchronization of cameras.

Suppose we have determined the vertical vanishing points

in the images, by intersecting the linear trajectories. It is

then possible to determine, for each of the trajectories, the

image point which corresponds to the position of zero ve-

locity along the trajectory (three points on each trajectory

are sufficient to do so). In addition, we can determine the

time stamp of this event, given in frame numbers. Hence,

we can establish correspondence of one (virtual) frame be-

tween video sequences, which is enough to determine the

time lag between them and thus to synchronize.

This helps us to find point matches along trajectories:

given a point in one image, we can compute the frame num-

ber for another camera, which corresponds to the same time

instant. The frame number will in general not be an integer,

i.e. the corresponding image does not exist. However, us-

ing observed points, we can interpolate the image position

that would have been observed at the required time instant.

Hence, we are able to establish correspondences between

cameras, even if they are not synchronized. These might be

used to compute e.g. the epipolar geometry.

6. Using Parabolic Trajectories

As described above, projections of parabolic trajectories

are conics containing the vertical vanishing point. Impor-

tant for us is that the conics’ tangents at that vanishing point

are the vanishing lines of the supporting planes of the 3D

parabolas. Hence, observing parabolic trajectories in sev-

eral cameras provides us with correspondences of vanishing

lines. Given the epipolar geometry (see §5), two line corre-

spondences are sufficient to compute the infinite homogra-

phy. To see this, we note that the epipolar geometry gives

us point-wise correspondence along the vanishing lines. If

we establish point correspondences on at least two vanish-

ing lines, we already have enough constraints to compute

the infinite homography. How to use it for calibration and

pose estimation is described in §§7 and 8.

We can thus obtain calibration constraints by observing

parabolic trajectories in several views. What about single

views: do the projections of parabolic trajectories in a single

camera provide us with calibration constraints? The answer

is no. The quintessence of the proof for this statement is

386 Chapter 11. 3D Reconstruction of Dynamic Scenes

that it is possible to obtain the affine structure of the parabo-

las (we know the vanishing line), but not more (any affine

transformation that leaves the vertical direction fixed, maps

a set of points on a parabolic trajectory to a set of points on

another trajectory that also respects the law of gravity).

7. Calibration and Singularities

The infinite homography gives calibration constraints

that have been used for calibrating cameras by rotating

them about their optical centers [4] and for stratified self-

calibration of cameras [3, 7]. There are a total of 5 con-

straints: the 8 coefficients of the homography (9 minus 1

scale factor) cover 3 parameters for the rotation (cf. equa-

tion (1)) and the remaining 5 constraints can be used to es-

timate the intrinsic parameters.

The constraints can be used in several ways. It would be

possible e.g. to “transfer” calibration information from one

camera to another: from equation (1), we obtain K2K
T

2
∼

H∞K
T

1
K1H

T

∞
and from K2K

T

2
we may get the calibration

matrix K2 using e.g. Choleski decomposition [8]. The most

relevant practical situation however, is probably the case

where the focal lengths of the two cameras have to be cali-

brated, given the other intrinsic parameters. A quasi closed-

form solution is easy to derive from equation (1), but omit-

ted here due to lack of space.

As in many (self-) calibration scenarios, there exist

generic singularities in the form of relative pose configu-

rations for which there is no unique solution for calibration.

For the focal length calibration described above, the only

singularity occurs when the optical axes of the two cameras

are parallel (proof omitted due to lack of space). In that

case, there are infinitely many pairs of values for the two

focal lengths that are mathematically valid solutions.

It is known that the focal lengths can be estimated from

the epipolar geometry, without knowing the infinite homog-

raphy [2, 6]. However, this problem is subject to more sin-

gularities: whenever the two optical axes are coplanar (i.e.

the two cameras are fixated) and in some other cases, the

calibration problem has no unique solution [6]. In practice,

static stereo systems used for e.g. surveillance, will nearly

always be approximately fixated, which will cause numeri-

cal instability for the calibration.

Another advantage of being able to use the infinite ho-

mography is that more calibration constraints are available:

from the epipolar geometry, a maximum of 2 constraints on

the intrinsic parameters can be extracted, whereas the infi-

nite homography provides up to 5 constraints.

8. Pose Estimation

Once calibration has been determined, there are sev-

eral possibilities for estimating the relative pose between

cameras, from the infinite homography, calibration and the

epipolar geometry. The rotational component can be es-

timated e.g. using the infinite homography and calibration

(cf. equation (1)). Another possibility is to extract pose

information from the so-called essential matrix, which rep-

resents the calibrated epipolar geometry (see e.g. [5]).

9. Implementation

We briefly describe several parts of the implementation

of the ideas described. A first version computes the verti-

cal vanishing point in an image as the intersection of the

available linear trajectories. Conics are fitted to obtain the

projections of trajectories known to be parabolic. The tan-

gents of these conics are computed and used, together with

the epipolar geometry (see §5), to compute the infinite ho-

mography and then to calibrate.

An alternative algorithm does the computations in a

more direct manner and gives superior results: let qi be the

image coordinates of points arising from the projection of a

parabolic trajectory. Let Qi be points distributed on an arbi-

trary 3D parabolic trajectory, spaced according to the frame

numbers of the qi. We may compute the homography H that

maps the Qi to the qi. Even if the Qi do not represent the

“true” 3D trajectory, the homography H still enables com-

putation of the true vanishing line, i.e. the line obtained by

mapping the line at infinity by H is indeed the projection

of the line at infinity of the true 3D plane of motion. If sev-

eral images are used, correspondences of vanishing lines are

thus established, and in addition, the homographies H al-

low to establish correspondences between vanishing points,

which makes it unnecessary to compute the epipolar geom-

etry to determine the infinite homography.

10. Experimental Results

We tested our algorithms by numerical simulation. Here,

we present results for the second algorithm of the previ-

ous section and the camera configuration shown in figure

1. Two parabolic trajectories (i.e. the minimum data) were

created at random and image points were obtained by sam-

pling the trajectory at time instants corresponding to a frame

rate of 25 fps. The intrinsic parameters of the cameras were

f = 10mm, τ = 1, u0 = v0 = 256, for a 512 × 512 im-

age plane. The image points were perturbed by zero mean

Gaussian noise of a standard deviation between 0 and 1 pix-

els. For different noise levels and elevation angles β (see

figure 1), 100 random experiments each were performed.

Figure 1. Configuration used for simulations.

Paper 31: Camera Calibration and Relative Pose Estimation from Gravity, ICPR 2000 [31] 387

Figure 2 shows the median relative errors on the focal

lengths. In more than 60-95% of the experiments (depend-

ing on noise level), the errors were below 10%. These

results are encouraging, especially since only linear algo-

rithms were used (computation of homographies and focal

lengths). With more than 2 trajectories and an optimization

stage, the results should become significantly better.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

R
e

la
ti
v
e

 e
rr

o
r

[%
]

Noise

15 degrees
30 degrees
45 degrees

Figure 2. Errors of focal length calibration for

different elevation angles and noise levels.

An elevation angle of 0◦ would mean that the cameras

gaze at each other and, in particular, that the optical axes

are parallel. This situation is singular (cf. §7), which was

reflected by huge errors in the simulations (not shown in

the graph). The graphs in figure 2 suggest that the results

get better the further away the camera configuration is from

the singularity, but there might be other reasons for this, e.g.

for higher elevation angles, the vertical vanishing points are

closer to the image centers, leading to a better conditioned

computation of the infinite homography.

11. Practical Issues

To apply our approach in practice, we have to consider

several issues. First of course, the frame rate of the cameras

has to be high enough, i.e. the objects should be captured

several times during their trajectories. The required frame

rate depends mainly on the distance between the camera and

the observed scene, and the camera’s viewing angle. A sim-

ple computation shows that even in close-range conditions,

a frame rate of 25 images per second is highly sufficient.

Another issue is that we neglect air friction when mak-

ing the assumption of 3D trajectories obeying perfectly the

law of gravity. This should not introduce significant errors,

since the most interesting trajectories will be those close to

the vertex (point of zero vertical velocity), where the fric-

tion is minimal. Other critical issues, concerning the un-

derlying image processing, are shutter speed and contrast.

If the shutter speed is too low, motion blur is introduced,

making the extraction of objects more difficult. Of course,

sufficient contrast between the “calibration object” and the

background is needed. This can be achieved by using flu-

orescent objects. The natural choice for calibration objects

are spherical objects: they are perceived identically (if uni-

formly textured) independently of their orientation and the

projections of their centers of gravity are well approximated

by the centers of the ellipses perceived in the images.

12. Conclusions

We have presented ways of exploiting image sequences

of moving objects if it is known that their trajectories obey

the law of gravity. In particular, we have addressed the

tasks of camera synchronization, computation of epipolar

geometry, calibration and pose estimation. We mainly con-

sidered the calibration problem: while there are no useful

constraints for single cameras, we obtain more constraints

for stereo systems than would be possible without the ex-

ploitation of gravity. Maybe most importantly, the addi-

tional constraints suffer from fewer calibration singularities.

Especially, convergent (or fixated) two-camera systems do

not represent a singular configuration, as it is the case for

focal length calibration from epipolar geometry alone.

This research is not mature enough yet for practical ap-

plication. The simulation results however, are encouraging

and suggest that our approach might be useful e.g. for cal-

ibrating surveillance systems consisting of several cameras

at distant locations.

Some parts of the discussion in this paper were given in

informal style, due to lack of space. Please contact the first

author for proofs and more details.

We thank Bill Triggs for discussions and Frédérick Mar-

tin for help with initial experiments using video sequences.

References

[1] O. Faugeras, “Stratification of Three-Dimensional Vision:

Projective, Affine and Metric Representations,” Journal of

the Optical Society of America A, Vol. 12, 465-484, 1995.
[2] R.I. Hartley, “Estimation of Relative Camera Positions for

Uncalibrated Cameras,” ECCV, 579-587, 1992.
[3] R.I. Hartley, “Euclidean Reconstruction from Uncalibrated

Views,” DARPA-ESPRIT Workshop on Applications of In-

variants in Computer Vision, 187-202, 1993.
[4] R.I. Hartley, “Self-Calibration from Multiple Views with a

Rotating Camera,” ECCV, 471-478, 1994.
[5] H.C. Longuet-Higgins, “A Computer Program for Recon-

structing a Scene from Two Projections,” Nature, Vol. 293,

133-135, 1981.
[6] G.N. Newsam, D.Q. Huynh, M.J. Brooks, H.P. Pan, “Recov-

ering Unknown Focal Lengths in Self-Calibration: An Es-

sentially Linear Algorithm and Degenerate Configurations,”

ISPRS-Congress, Vienna, Vol. XXXI, 575-580, 1996.
[7] M. Pollefeys, L. van Gool, A. Oosterlinck, “The Modulus

Constraint: A new Constraint for Self-Calibration,” ICPR,

Vol. I, 349-353, 1996.
[8] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,

Numerical Recipes in C, Cambridge University Press, 1992.

388 Chapter 11. 3D Reconstruction of Dynamic Scenes

Chapter 12

Multi-View Dense 3D Reconstruction

Paper 32 [11]: P. Gargallo and P. Sturm. Bayesian 3D modeling from images using multiple depth maps.

In Proceedings of the Conference on Computer Vision and Pattern Recognition, San Diego, USA, volume 2,

pages 885–891, June 2005.

Paper 33 [19]: T. Rodriguez, P. Sturm, P. Gargallo, N. Guilbert, A. Heyden, J.M. Menendez, and J.I. Ronda.

Photorealistic 3d reconstruction from handheld cameras. Machine Vision and Applications, 16(4):246–257,

2005.

389

Bayesian 3D Modeling from Images using Multiple Depth Maps

Pau Gargallo and Peter Sturm

INRIA Rhône-Alpes, GRAVIR-CNRS, Montbonnot, France

Abstract

This paper addresses the problem of reconstructing the ge-

ometry and color of a Lambertian scene, given some fully

calibrated images acquired with wide baselines. In order

to completely model the input data, we propose to repre-

sent the scene as a set of colored depth maps, one per input

image. We formulate the problem as a Bayesian MAP prob-

lem which leads to an energy minimization method. Hidden

visibility variables are used to deal with occlusion, reflec-

tions and outliers. The main contributions of this work are:

a prior for the visibility variables that treats the geometric

occlusions; and a prior for the multiple depth maps model

that smoothes and merges the depth maps while enabling

discontinuities. Real world examples showing the efficiency

and limitations of the approach are presented.

1. Introduction

This paper addresses the problem of recovering high-

resolution 3D models of a scene from a small collection of

images. Reconstruction of 3D models from images has been

widely studied in computer vision. Many algorithms have

been proposed. Differences between them lie in the model

used to represent the scene, the prior on this model and the

optimization method used for estimating it. The scene rep-

resentation is a very important factor that practically deter-

mines the strengths and weaknesses of the approaches.

Volumetric models, such as voxel-based ones [8, 1, 10]

or using level-sets [3], are based on a discretization of 3D

space and their goal is to determine the full and the empty

cells. These methods can use a large number of images

taken from arbitrarily placed viewpoints. Any shape can be

represented and the visibility problem is handled in a deter-

ministic geometric manner. However, the initial discretiza-

tion limits their resolution. The only way of increasing the

resolution is to increase the size of the voxel grid. On the

other hand, mesh representations [6, 9, 19] can, in theory,

adapt their resolution to best reconstruct detailed shapes, but

have problems dealing with self-intersections and topologi-

cal changes during the search.

Depth maps have been mainly studied for two views

with a small baseline [12, 7, 15, 18]. The small baseline

makes it impossible to get accurate results and these meth-

ods are forced to use strong priors that usually introduce

fronto-parallel bias. The results of these methods are not

precise continuous depth maps but piece-wise planar sur-

faces. Recently depth map reconstruction from multiple

wide-baseline images has been developed with impressive

results [14, 13]. The wide-baseline configuration allows as-

tonishingly accurate results without the discretization and

topological problems of other methods.

These nice properties of the depth map representation

encourage us to use it. However, a single depth map is

usually not enough to represent the whole scene: only the

parts viewed in a reference view are modeled. A depth

map for every input image [17] is needed to ensure that ev-

ery input pixel is used and modeled. This is probably the

model best adapted to the resolution of the input and is the

model treated in this work. Alternatively to computing each

depth map independently and merging them in a postpro-

cessing step [11, 13], we will compute all the depth maps

at the same time which permits an efficient geometric visi-

bility/occlusion reasoning and ensures that the output depth

maps will be coherent.

In [13], depth map recovery was formulated as a maxi-

mum a posteriori (MAP) problem using the framework pro-

posed in [4] for the novel view synthesis problem showing

that the two problems are intrinsically the same. Here we

adopt this framework and adapt it to the case of multiple

reference views.

The main contributions of this paper to this framework

are: First, a reflection on and modification of the likelihood

formula. Second, a geometric visibility prior. We use the

current depth maps estimation to determine the prior on vis-

ibility of the model points. And finally, a multiple depth

maps prior that smoothes and merges the depth maps while

preserving discontinuities.

1.1. Problem Statement

Our goal is to find a 3D representation of a scene, from a

given set of images with full calibration information, i.e.

known intrinsic and extrinsic parameters. The model we

use to represent the scene consists of a set of colored depth

maps. For every pixel in the input images, we want to infer

the depth and color of the 3D point that this pixel is seeing.

Paper 32: Bayesian 3D Modeling from Images using Multiple Depth Maps, CVPR 2005 [11] 391

2. Modeling and Estimation

We treat the problem as a Bayesian MAP search. Input im-

ages I are regarded as a noisy measurement of the model θ.

The researched model is defined as the one that maximizes

the posterior probability p(θ|I) ∝ p(I|θ)p(θ).

We first define the relevant variables of the problem in

section 2.1. Next, in section 2.2 we decompose the joint

probability of the variables, determining the statistical de-

pendencies between them. In sections 2.3 to 2.5 we give a

form to each term of the decomposition. Finally in 2.6 we

present the optimization method used to estimate the MAP.

2.1. Depth and Color Maps and Visibility

Variables

The set of n input images is noted as {Ii}i=1..n. Ii(x) is

the color of pixel x in the ith image and lives in some color

space (graylevel, RGB, etc.). The cameras are represented

by a set of projection matrices {Pi}i=1..n. These matrices

have the usual form Pi = Ki(Ri|ti) and we scale them so

that (Ki)3,3 = 1. The depth of a point X = (X, Y, Z)⊤

with respect to a camera position Pi is then defined as

di(X) = (PiX̄)3, where X̄ = (X, Y, Z, 1)⊤. Conversely,

if pixel x = (x, y)⊤ of image i has a depth d, then the

euclidean coordinates of the corresponding 3D point are

Xi(x, d) = d(KiRi)
−1

x̄ − R⊤
i ti, where x̄ = (x, y, 1)⊤.

For every pixel in the input images we will compute its

depth and color. Depths will be stored in a set of depth maps

{Di}i=1..n and colors in a set of ideal images {I∗
i }i=1..n.

Di(x) and I∗
i (x) will then be the depth and the color of the

point seen by the pixel x of the ith image. Sometimes it will

be more illustrative to think of the set of colored depth maps

as a representation of the 3D point cloud {Xi(x,Di(x)) :
i = 1..n,x ∈ Ii} and treat all the points of the cloud in the

same manner, ignoring their origin, i.e. the image by whose

depth map a point is parameterized.

For simplicity, given a point X = Xi(x,Di(x)) in the

cloud, its estimated color I∗
i (x) will be noted by C(X).

The value of other images on its projection will be noted

as Ij(X) instead of Ij(PjX̄). Similarly, we write Dj(X)
instead of Dj(PjX̄). It is important to note that this is the

estimated depth of the pixel of image Ij , onto which the

3D point X is projected, and not the actual depth of the 3D

point X itself. The latter will be noted as dj(X), see above

and figure 1. As X is parameterized by the depth map of

image Ii, of course, Di(X) = di(X).

Due to geometric occlusions, specular reflections or

other effects not all the points of the cloud will be visible

in every input image. As proposed by Strecha et al. [13]

we introduce a boolean variable Vi,X for each model point

X and each image Ii, that signals whether X is visible or

not in image Ii. These variables are hidden and only their

probabilities will be computed.

scene

x

X

dj(X)

Dj(x) = Dj(X)

Xj(x,Dj(x))
Ij

Figure 1. For a given 3D point X, dj(X) denotes its depth relative

to image Ij . Dj(X) denotes the estimated depth of the pixel onto

which X is projected by Pj , x = PjX̄.

2.2. Decomposition

Having all the variables defined, the next step in a Bayesian

modeling task is to choose a decomposition of their joint

probability. The decomposition will define the statistical

dependencies between the variables that our model is con-

sidering. For completeness, we add to the previously de-

fined variables, a variable τ = {Σ, σ, σ′, v, l}, that repre-

sents the set of all the parameters that will be used in our

approach, see below. The joint probability of all the vari-

ables is then p(I,V , I∗,D, τ) and the proposed decompo-

sition (fig. 2):

p(τ) p(I∗|τ) p(D|τ) p(V|D, τ) p(I|V , I∗,D, τ) (1)

τ

I∗

I

D V

Figure 2. Network representation of the joint probability decom-

position. Arrows represent statistical dependencies between vari-

ables.

1. p(τ) is the prior probability of the parameters. We as-

sume a uniform one in this work and ignore this term.

2. p(I∗|τ) is the prior on the colors of the depth maps.

This term was used by Fitzgibbon et al. [4] to regu-

larize the novel view synthesis problem with great suc-

cess. The so-called image-based priors were introduced

to enforce the computed images I∗ to look like natural

images, which in practice was enforced by looking like

images of a catalogue of examples [5]. In this work, we

adopt a uniform prior, centering the regularization on

the depth maps like [13].

3. p(D|τ) is the prior on depth maps. Its work is to smooth

and integrate the different depth maps. It is developed in

section 2.5. Note that in contrast with [13], no statistical

dependence between I∗ and D is used here. Modeling

this dependence can help when dealing with constant

392 Chapter 12. Multi-View Dense 3D Reconstruction

albedo surfaces were image and depth discontinuities

are correlated. On the other hand, this can produce un-

dersmoothing of textured smooth surfaces.

4. p(V|D, τ) is the visibility prior. We propose to consider

visibility as dependent on D, to enable geometric rea-

soning on occlusions (section 2.4). In the E-step of the

EM algorithm described below, this geometric visibil-

ity prior will be probabilistically mixed with photomet-

ric evidence, giving an estimate of the visibility that is

more robust to geometric occlusions than using a uni-

form prior [13].

5. p(I|V , I∗,D, τ) is the likelihood of the input images.

Particular attention is paid to this term (section 2.3), be-

cause we find that usual formulae are not satisfactory

for the wide-baseline case.

The variables can be classified in three groups: the

known variables (or data) I and τ , the wanted variables (or

model) θ = (I∗,D) and the hidden ones V . The inference

problem is now stated as finding the most probable value

of the wanted variables, given the value of the known ones

and marginalizing out the hidden ones. That is, we want to

estimate

θ∗= arg max
θ

p(θ|I, τ) = argmax
θ

∫

p(I,V , I∗,D, τ)dV

The following sections give a form to each term of the

decomposition.

2.3. Likelihood

Pixels in input images are treated as noisy observations of

the model. We suppose the noise to be independently iden-

tically distributed. The likelihood can be decomposed as the

product of the per-pixel likelihoods:

p(I|V , θ) =
∏

i

∏

x

p(Ii(x)|V , θ) (2)

Note that this product is extended over the pixels in the input

images and not over the points in the 3D model, as opposed

to many of the previous works on Bayesian modeling of the

stereo problem that define the likelihood as

p(I|V , θ) =
∏

X

∏

i

p(Ii(X)|C(X),V) (3)

Although this has the great advantage of clearly represent-

ing the contribution of every model point to the total likeli-

hood, it is, strictly speaking, incorrect.

The problems related to this approximation are sketched

in figure 3. In the first case, many 3D points instantiated by

the first image’s depth map project to the same pixel in the

second image. Computing the product over the 3D points

as in (3) will overuse the second image’s pixel. This is not

scene

I1

I2

scene

I1

I2

Figure 3. On the left, many 3D points instantiated by the first im-

age project to the same pixel in the second one. On the right, many

pixels on the second image have no 3D point instantiated by the

first image that is projected onto them.

a good idea given that the viewing angle of this pixel is re-

ally steep, hence its color is quite random and depends on

the camera sensors. In the second case, only a few points

of the first image’s depth map project to the second image,

so many pixels of the second image will be unused even if

these pixels were seeing the scene better than any other.

In small-baseline situations, where there is almost a bi-

jection between pixels in each image and 3D model points

from any other image’s depth map, these effects are min-

imal and can be ignored. However, in our wide-baseline

applications it is desirable to deal with them. In the follow-

ing, we propose an approximation to the per-pixel product

likelihood (2).

The per-pixel likelihood p(Ii(x)|V , θ) measures the sim-

ilarity between the color Ii(x) observed in the pixel x of

image i, and the color that the model would predict for that

pixel, let us call it C∗
i (x). Remember that all 3D points

are used to explain all images, hence C∗
i (x) is computed

from the colors of all 3D points that are projected onto that

pixel, and may be different from I∗
i (x). Let us call Si,x the

set of points that are projected to x in image i. The color

C∗
i (x) is hard to define, because Si,x may contain many

points; its definition corresponds to a rendering problem.

It seems natural to define C∗
i (x) as the mean color of all

visible (Vi,X = 1) points in Si,x: since they are currently

considered to be visible by the pixel, they should contribute

to predicting its color. Sadly, the resulting expression of the

likelihood is difficult to deal with and in particular, the EM

formulas become intractable.

To approximate this solution with a more usable expres-

sion, we define the per-pixel likelihood as the geometric

mean of the likelihoods that the pixel would have if only

one of the points in Si,x was used,

p(Ii(x)|θ) =
∏

X∈Si,x

p(Ii(x)|C(X), Σ)
1

|Si,x| .

Computing the geometric mean of probabilities is equiva-

lent to computing the arithmetic mean of energies. The idea

behind is to cut the pixel’s information in |Si,x| parts and

give one to each point in Si,x. This is justified as a manner

Paper 32: Bayesian 3D Modeling from Images using Multiple Depth Maps, CVPR 2005 [11] 393

of using all the points in Si,x without overusing the pixel

x. It is a heuristic approximation of the correct solution (2)

but it solves the problems commented above and permits

writing the likelihood as a per-point product

p(I|θ) =
∏

X

∏

i

p(Ii(X)|C(X), Σ)
1

|Si,x| (4)

We refer to the term p(Ii(X)|C(X), Σ) as the pixel-point

likelihood and we model it by a mixture between a normal

distribution in the case that Vi,X = 1 and a uniform distri-

bution over the color space in case that Vi,X = 0. Since we

work with probabilities for the visibility variables, this is:

p(Ii(X)|C(X), Σ) = p(Vi,X = 1|D)N (Ii(X)|C(X), Σ)

+ p(Vi,X = 0|D)U(Ii(X)) (5)

When the prior on the visibility variables is constant, this

distribution is called a contaminated Gaussian [16]. The

following section describes the non-constant form that we

give to this visibility prior.

2.4. Geometric Visibility Prior

The mixture of the pixel-point likelihood (5) is balanced by

the visibility prior p(Vi,X|D). This models the prior be-

lief on whether the point X is visible or not in image Ii,

before taking into consideration the colors C(X) or Ii(x).
A uniform distribution is usually used for such a situation

[13, 17]. However, our decomposition (1) of the joint prob-

ability, allows using the depth maps’ information to give a

more interesting form to this prior.

Di(X) is the estimated depth of the pixel in image Ii

onto which X is projected, which is not the same (see sec-

tion 2.1) as the actual depth di(X) of X. If di(X) is similar

to Di(X), it suggests that X is near the point seen by x, so

it should be more likely that X is visible. Symmetrically,

if di(X) is very different from Di(X) the idea of image Ii

seeing X seems unlikely. Thanks to this simple observation

the geometric visibility can be easily and efficiently han-

dled, in a multiple depth map approach. In [17] a threshold

was used to strictly determine the visibility. Here we quan-

tify the above idea by the (smooth) expression

p(Vi,X = 1|D) = v exp

(

−
(di(X) −Di(X))2

2σ2

)

where v ∈ [0, 1] is the visibility prior for points at the esti-

mated depth Di(X) and σ models the tolerance that we give

to points that are not exactly at this depth.

The effect of this prior on the pixel-point likelihood is

in agreement with the above intuition. For points near the

depth Di(X), the prior is large and the normal distribution

centered at C(X) of the pixel-point likelihood mixture (5)

is weighted up. This makes pixel colors similar to C(X)

more probable. For points far from the depth Di(X), the

uniform distribution is favored. The color C(X) becomes

irrelevant, which is logical given that we don’t believe that

the pixel PiX̄ is seeing the point X.

2.5. Multiple Depth Map Prior

The multiple depth map prior p(D|τ) is supposed to eval-

uate the plausibility of a set of depth maps without using

any other information but the depth maps themselves. Two

main properties are desired:

1. Each depth map should be mostly smooth but (strong)

discontinuities have to be allowed.

2. The 3D points clouds belonging to the different depth

maps should be overlapping.

Instead of using separate terms to measure smoothness

and overlap, we evaluate the two properties in a single ex-

pression. To do so, we think of the set of depth maps as

a point cloud forgetting, for a moment, the 2D neighbor-

hood relation existing in the images. Smoothness and over-

lap will be reached by letting points attract one another, in-

dependently if they originate from the same depth map or

not.

We express the probability of the point cloud as a

Markov network:

p(D) ∝
∏

X∈D

∏

Y∈N(X)

ϕ(X,Y) (6)

where N(X) denotes the neighborhood of X and ϕ(X,Y)
is the compatibility probability for the (X,Y) pair. For

the moment, this neighbourhood extends to the totality of

points, N(X) = D \ {X}.

Like for the pixel-point likelihood (5), we model the

compatibility probabilities as mixtures of a normal and a

uniform distribution, balanced by a hidden line process L:

ϕ(X,Y) ∝ p(LX,Y = 1)N (Y|X, σ′)

+ p(LX,Y = 0)U(Y)

where p(LX,Y) is the constant prior on the line process.

l = p(LX,Y = 1) is a parameter of the method. σ′ is the

variance of the isotropic three dimensional normal distribu-

tion N . U is a uniform distribution over a volume contain-

ing the scene (U(Y) = U(X)).
The underlying idea is that the process LX,Y signals if

the two points should attract each other or not. IfLX,Y = 1,

we regard Y as a noisy measurement of X and its probabil-

ity distribution is set to a normal distribution centered on X

and with variance σ′. Note that this relationship is symmet-

rical. Otherwise, if LX,Y = 0 a uniform distribution is used

to reflect the idea that X and Y are not related.

394 Chapter 12. Multi-View Dense 3D Reconstruction

0

-0,1

-0,2

-0,4

40 2-2

x

-0,3

-4

Figure 4. In red, a plot of the clique potentials of our prior,

− log(N (x|0, 1) + 1). In blue, the kernel correlation based one,

−N (x|0, 1).

This prior is computationally expensive. If m is the num-

ber of points, there are O(m2) compatibility probabilities.

However, for all the points far enough from X, N (Y|X, σ′)
will be very small and ϕ(X,Y) will be constant. We can

thus restrict the neighborhood to the points near enough to

X. We define the neighborhood as the points inside a sphere

centered at X with a radius ρ dependent on σ′. Finding

this neighborhood is in itself a hard problem that can be

expensive. Luckily, our point cloud comes from a set of

depth maps where points are ordered. The projection of the

neighborhood sphere in each image is an ellipse. The set

of 3D points instantiated by the pixels inside these ellipses

contain all neighbors of X, greatly facilitating the task of

finding them.

As desired, the proposed prior smoothes and integrates

all the depth maps at the same time. Discontinuities are al-

lowed thanks to the hidden line process L that avoids distant

points to attract one another.

Kernel Correlation. Our prior is closely related to

leave-one-out kernel correlation. Tsin and Kanade showed

the capacities of the KC prior in smoothing while keep-

ing discontinuities and applied it successfully to the stereo

problem [18]. The KC prior can be written as a Markov

network with

ϕKC(X,Y) ∝ exp(N (X|Y, σ′))

In figure 4, the negative logarithms of our compatibility

probability and the KC-based one are plotted to show the

similar shape they have. The advantage of the mixture prior

over the KC is that it is defined in a probabilistic framework

that permits the incorporation of new cues of information.

We could, for example, use a statistical relation between the

color of points and the line process L, that makes points of

the same color have a better chance to be attracted to one

another.

2.6. Optimization

We maximize the posterior probability with the Expectation

Maximization algorithm [2]. Direct non-linear optimization

of our posterior is not only possible but also less expensive

than EM. However, EM is known to often be more stable

and easier to monitor as hidden variables are explicitly es-

timated. EM alternates between estimating the hidden vari-

ables’ probabilities and optimizing the model. We start with

a given initial model θ0 (see section 3) and repeat the next

steps until convergence.

E-step. In the expectation step we compute the posterior

probabilities of our hidden variables V given the current es-

timate of the model. We store them as a set of visibility

maps fi,X = p(Vi,X = 1|I, θt) and, by Bayes’ rule,

fi,X =
p(Vi,X = 1|D)N

p(Vi,X = 1|D)N + p(Vi,X = 0|D)U

where N = N (Ii(X)|C(X), Σ) and U = U(Ii(X)) (see

(5)). It is at this moment that the geometric visibility prior is

mixed with the photometric evidence to give an estimation

of the current visibility.

M-step. In the maximization step the expected visibility

maps are used to maximize the expected log-posterior,

θt+1 = arg max
θ

〈log p(I|V , θ)〉f + log p(D)

i.e. the sum of the expected log-likelihood (cf. (4) and (5)),

∑

X

∑

i

1

Si,x

(fi,X logN + (1 − fi,X) logU)

and the log-prior (cf. (6)),
∑

X

∑

Y
log ϕ(X,Y).

The maximum is searched by gradient descent. Analyti-

cal derivation of the log-posterior with respect to the model

variables can be easily computed from the above equations.

In our implementation, only one gradient descent iteration

is done at each M-step. The iteration finds a better guess for

θt+1 but not the best. This method is called the Generalized

EM algorithm. The motivation for doing this is that each

iteration of the gradient descent method is as expensive as

an E-step. Rapid alternation between E and M steps permits

a faster actualization of the visibility maps.

3. Experiments

We have implemented the algorithm in a pyramidal scheme

to speed up convergence and reduce the probability of being

trapped in irrelevant local minima. We start using reduced

versions of the original input images, and thus reduced ver-

sions of the colored depth maps. When convergence of EM

is achieved, a higher resolution level is initialized with the

obtained results, using bilinear interpolation.

In all our experiments, the noise variance Σ (see section

2.3) was included to the wanted variables and estimated dur-

ing the optimization process. The visibility prior, v, was set

to 0.9 expressing the idea that a point is likely to be visible

in an image if it is at a similar depth to that estimated for

that image (see section 2.4). σ′ was set to the same value as

Paper 32: Bayesian 3D Modeling from Images using Multiple Depth Maps, CVPR 2005 [11] 395

Figure 5. Loggia: One of the three input images (left) and render-

ings of its recovered depth maps.

Figure 6. Casino: One of the five input images on the left and un-

textured and textured renderings of the recovered surface viewed

from a very different angle.

σ (see sections 2.4 and 2.5). This value was heuristically set

to two times the robust mean of the distance between pairs

of 3D points instantiated from consecutive pixels in the im-

ages. The parameter l (see section 2.5) was the only one to

be specially adapted for each experiment. We present the

results on several datasets of increasing complexity.

Easy. The Loggia data set (figure 5) consists of three

wide-baseline images of a scene with rich textures and sim-

ple geometry. Initial depth maps were set to a constant value

(i.e. fronto-parallel) and the algorithm converged to the cor-

rect surface. The Casino data set (figure 6) contains five im-

ages with small baseline. Constant depth initialization was

also used. The results show the potential of the method in

capturing fine details. In both cases, large enough values of

l (l > 0.1) gave similar results.

Medium. We tested our method’s performance for the

Cityhall scene 1 to prove that the algorithm can achieve

state-of-the-art results in wide-baseline matching but with

several depth maps at once. Images 3, 4 and 5 of the dataset

were used. In this case, the model was initialized using the

3D feature point positions from the calibration step. Pix-

els with known depth were fixed while successive Gaussian

blurs were applied to the rest of the depth map pixels. From

this coarse initialization the algorithm converged, merging

the depth maps into a single surface. The results (figure 7)

show fine and rich details and the strong discontinuity be-

tween the foreground statues and the door was preserved.

Hard. To show the potential of the algorithm in deal-

ing with strong discontinuities and geometric occlusions,

we tested its performance on the challenging statue data set

(figure 8). The scene contains a statue in front of a far wall.

A single depth map is not enough to model the scene be-

cause none of the images sees the whole statue or wall. We

1The Cityhall images with full calibration can be downloaded from

http://www.esat.kuleuven.ac.be/˜cstrecha/testimages/

Figure 7. Cityhall: Untextured, textured and relighted renderings

of an estimated depth map viewed from two different angles. No

points were removed. The oversmoothed part at the bottom of

the model corresponds to points seen only in one image. The two

flat regions in the center correspond to discontinuities of the depth

map.

used the same coarse initialization method as for the City-

hall scene.

The main difficulty was to strictly estimate the large dis-

continuity between the statue and the wall. Smoothing in

this region would produce incorrect 3D points between the

foreground and the background. We set the l parameter to

a small value (l = 0.2) to motivate the points not to attract

each other too much (see section 2.5). The discontinuity

was then well preserved, but not at the exact position. Some

background points remained attached to the statue. In ad-

dition, when initializing a finer level of the pyramid from a

coarser one, we used bilinear interpolation which smoothed

out the discontinuity.

To solve these problems we alternated several EM iter-

ations with the following heuristic global search. For each

pixel x and image i, we consider all the depths of the 3D

points Si,x that are projected to that pixel (see section 2.3).

Then we test if the likelihood will be improved if we change

the depth of pixel x to any of these values. The value pro-

ducing the best improvement is kept. The large discontinu-

ity between the statue and the wall was detected by the EM

algorithm from the coarser level. The global search heuris-

tic placed this discontinuity at the correct position and man-

tained it there in the finer levels.

396 Chapter 12. Multi-View Dense 3D Reconstruction

Figure 8. Statue: On top, first and last of the five input images and

the visibility map of the first image with respect to last, i.e. the

estimated probabilities of the 3D points instantiated by the first

depth map to be visible in the last image. The next two rows show

a point rendering of the set of all the depth maps at the same time

during the evolution of the algorithm, from a very coarse initial-

ization, to the final model. On the last row, two renderings of the

estimated depth map D2 are shown. Note the well-preserved large

discontinuities between statue and background.

4. Discussion

The proposed method was formulated in a rigorous proba-

bilistic framework extending previous works. The experi-

ments proved the pertinence of this extensions. However,

there are still some issues to solve in order to make the

method more usable.

The probabilistic approach permits the parameters of the

method to be learned during the optimization. In effect,

treating the parameters as random variables we can either

estimate their most probable value or marginalize them out.

Our current implementation needs to manually set three pa-

rameters. Although these parameters represent well defined

concepts it will be preferable that the algorithm automati-

cally sets them.

The other issue of the method, like in any other gradi-

ent descent based method, is the initialization. The pyra-

midal implementation of the EM algorithm converges well

in cases where the strong discontinuities are captured from

earlier small resolution levels. However, without a good ini-

tialization, it seems likely that for images such as the ones

used in [12], the EM algorithm does not reach the global

optimum but a local one. Interestingly, one of the best per-

forming methods in this field [15], uses the same Bayesian

scheme, but the optimization is done with the Loopy Belief

Propagation algorithm. It is our interest to study the pos-

sibility of applying this or other global maximization tech-

niques to our posterior probability definition.

Acknowledgements. This work used resources devel-

oped by partners of the European project VISIRE (IST-

1999-10756). We especially would like to thank Martin Jo-

hansson and Anders Heyden for providing us with the data

for the statue sequence.

References

[1] A. Broadhurst, T. W. Drummond, R. Cipolla. A probabilistic

framework for space carving. ICCV, 2001.

[2] A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum like-

lihood from incomplete data via the em algorithm. J. R.

Statist. Soc. B, 39:1–38, 1977.

[3] O. Faugeras, R. Keriven. Complete dense stereovision using

level set methods. ECCV, 1998.

[4] A. Fitzgibbon, Y. Wexler, A. Zisserman. Image-based ren-

dering using image-based priors. ICCV, 2003.

[5] W. T. Freeman, E. C. Pasztor. Learning low-level vision.

IJCV, 40:25 – 47, 2000.

[6] P. Fua, Y. Leclerc. Object-centered surface reconstruction:

combining multi-image stereo shading. IUW, 1993.

[7] V. Kolmogorov, R. Zabih, S. J. Gortler. Generalized multi-

camera scene reconstruction using graph cuts. EMMCVPR,

2003.

[8] K. Kutulakos, S. Seitz. A theory of shape by space carving.

IJCV, 38(3):199–218, 2000.

[9] D. Morris, T. Kanade. Image-consistent surface triangula-

tion. CVPR, 2000.

[10] S. Paris, F. Sillion, L. Quan. A surface reconstruction

method using global graph cut optimization. ACCV, 2004.

[11] M. Pollefeys. Self-Calibration and Metric 3D Reconstruc-

tion from Uncalibrated Image Sequences. PhD thesis, 1999.

[12] D. Scharstein, R. Szeliski. A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. IJCV,

47:7–42, 2002.

[13] C. Strecha, R. Fransens, L. Van Gool. Wide-baseline stereo

from multiple views: a probabilistic account. CVPR, 2004.

[14] C. Strecha, T. Tuytelaars, L. Van Gool. Dense matching of

multiple wide-baseline views. ICCV, 2003.

[15] J. Sun, H.Y. Shum, N.N. Zheng. Stereo matching using be-

lief propagation. PAMI, 25(7), July 2003.

[16] R. Szeliski. Bayesian modeling of uncertainty in low-level

vision. IJCV, 5(3):271–301, 1990.

[17] R. Szeliski. A multi-view approach to motion and stereo.

CVPR, 1999.

[18] Y. Tsin, T. Kanade. A correlation-based model prior for

stereo. CVPR, 2004.

[19] G. Vogiatzis, P.H.S. Torr, R. Cipolla. Bayesian stochastic

mesh optimization for 3d reconstruction. BMVC, 2003.

Paper 32: Bayesian 3D Modeling from Images using Multiple Depth Maps, CVPR 2005 [11] 397

Machine Vision and Applications (2005) 16(4): 246–257
DOI 10.1007/s00138-005-0179-4

ORIGINAL PAPER

Tomás Rodríguez · Peter Sturm · Pau Gargallo ·

Nicolas Guilbert · Anders Heyden ·

Fernando Jauregizar · J. M. Menéndez · J. I. Ronda

Photorealistic 3D reconstruction from handheld cameras

Received: 24 March 2004 / Accepted: 29 March 2005 / Published online: 10 June 2005
C© Springer-Verlag 2005

Abstract One of the major challenges in the fields of com-
puter vision and computer graphics is the construction and
representation of life-like virtual 3D scenarios within a com-
puter. The VISIRE project attempts to reconstruct photo-
realistic 3D models of large scenarios using as input multiple
freehand video sequences, while rendering the technology
accessible to the non-expert.

VISIRE is application oriented and hence must deal with
multiple issues of practical relevance that were commonly
overlooked in past experiences. The paper presents both an
innovative approach for the integration of previously unre-
lated experiences, as well as a number of novel contribu-
tions, such as: an innovative algorithm to enforce closedness
of the trajectories, a new approach to 3D mesh generation
from sparse data, novel techniques dealing with partial oc-
clusions and a method for using photo-consistency and visi-
bility constrains to refine the 3D mesh.

Keywords Photo-realistic 3D reconstruction · Self
calibration · Structure from motion · Image based rendering
(IBR) · Video analysis

1 Introduction

Traditionally, reconstructing large scenarios in 3D has been
costly, time consuming, and required expert personnel.
Usually the results showed artificial look and produced
unmanageable heavy models. However, recent advances in

T. Rodríguez (B)
Eptron SA. R&D Dpt. Madrid, Spain
E-mail: tomasrod@eptron.es

P. Sturm · P. Gargallo
INRIA Rhône-Alpes Montbonnot, France

N. Guilbert · A. Heyden
Centre for Mathematical Science, Lund University, Sweden

F. Jauregizar · J. M. Menéndez · J. I. Ronda
E.T.S.I. Telecomunicaciones, Universidad Politécnica de Madrid,
Spain

the areas of video analysis, camera calibration, and texture
fusion allow us to think in a more satisfying scenario, where
the user just needs to wander around, aiming his camera,
making shoots, following the provided guidelines, and the
system will automatically do the 3D reconstruction of the
desired scenario for him. Our objective is to come closer
to this ideal scenario, but it is our belief that current state
of the art does not allow still for reliable full automatic 3D
reconstruction. For that reason we avoid dogmatic views and
accept human cooperation in the 3D reconstruction process
whenever it can lead to better results, faster processing, or a
personal touch.

In this document, the results of the EC funded project
VISIRE (IST-1999-10756) are presented. VISIRE [1]
attempts to reconstruct in 3D photorealistic interiors of
large scenarios from multiple freehand video sequences,
while rendering the technology accessible to the non-expert.
VISIRE offers an advanced authoring tool that empowers
the user to interact effortlessly with the underlying Com-
puter Vision (CV) software with the aim to process the
acquired video material off-line and obtain lightweight 3D
models highly resembling the original. VISIRE observed
certain basic assumptions that greatly influenced the design
of the system: no expert CV personnel should be needed,
no knowledge about the camera was assumed (i.e. unknown
intrinsic and extrinsic parameters), no proper calibration
should be required, and the system should work with the
only aid of a domestic camcorder (i.e. professional cameras,
tripods, lighting or measurement devices were discarded).

VISIRE deals with several CV disciplines: auto calibra-
tion, structure from motion, non-linear robust and iterative
methods, texture and geometry representation, etc. There
is a general belief in the scientific community that these
issues have been mostly solved. This statement is correct
with respect to the basic principles, but there is still a big
gap that must be filled between the scientific demonstration
and a technology that “works." The fact is the problem of
automatic 3D reconstruction of complex scenarios remains
largely unsolved and the technology never found its way to
the market in spite of its unquestionable interest.

Paper 33: Photorealistic 3D Reconstruction from Handheld Cameras, MVA 2005 [19] 399

Photorealistic 3D reconstruction from handheld cameras 247

VISIRE is application oriented and hence must ap-
proach multiple issues of practical relevance. As opposed
to previous experiences, aimed at technological demonstra-
tions based on ad-hoc solutions that must be modified by
the experts for every new situation or partial 3D reconstruc-
tions of elements of the scenario specially selected for the
task, VISIRE offers the innovation to consider a “global" ap-
proach and proposes instead methods and tools able to solve
a number of general situations. Obviously this approach is
more challenging and the price to pay is the need to de-
fine certain restrictions of use and consider new difficul-
ties previously ignored in this type of application, that now
acquires the category of critical problems: reliable tracking
in sparse environments, introducing constraints such as pla-
narity and closedness, occlusion reasoning, optimized auto-
calibration, combining and adapting textures from multiple
viewpoints, multiresolution, integrating manual and auto-
matic mesh generation methods, etc.

In that sense, existing autocalibration [2] methods are
mainly based on a small set of images, ranging from 2 to
20 in today’s very complex systems. VISIRE aims to break
this barrier in several orders of magnitude, mainly because
it can use the thousands of images typically found in video
streams. No system so far has ever tried to accomplish such a
complex scenario, in any of the above-mentioned tasks. An-
other important goal is to produce photorealistic 3D mod-
els, i.e. models that may be realistically rendered from syn-
thetic viewpoints. One way of doing so [2–4] is to apply
IBR (Image-Based Rendering). The other main method [5]
is to enhance a geometrical 3D model with texture maps
or other information e.g. surface reflectance properties. Up
to now, we concentrate on the second solution, which pro-
duces a more compact scene description. The challenge for
the 3D mesh generation process is that most existing meth-
ods are designed for sets of dense and regularly distributed
3D points. This is usually not the case in automatic struc-
ture from motion, so we have developed methods that use
information provided by the input images, via visibility and
photoconsistency constraints.

VISIRE follows a standard process division (see Fig. 1):
we start out in Sect. 2 with Feature Analysis. We continue
with a description of Calibration methods in Sect. 3. Next,
the approach to 3D Registration and Mesh Generation is

Fig. 1 VISIRE computer vision chain

introduced in Sect. 4. The authoring tool is illustrated in
Sect. 5. Results and experimental evaluation are presented
in Sect. 6. Finally, we end in Sect. 7 with the conclusions.

2 Feature analysis

The method selected for feature extraction in VISIRE relies
on the Tomasi/Kanade [6] approach, which first smoothes
the image by convolving it with a Gaussian and then the gra-
dients (in x and y) are computed by convolving the resulting
image with the derivative of a Gaussian. Later, a measure of
cornerness is applied for each pixel, evaluating the minimum
eigenvalue of the 2 × 2 gradient matrix computed in a 7 × 7
window around the pixel. This measure is used to sort in de-
scending order all pixels in the image, ensuring that selected
features are at least 10 pixels away from each other.

Feature tracking is applied through a robust method,
based on the Kanade–Lucas–Tomasi approach [6] that relies
on the assumption of an affine motion field in the projection
from the 3D point motion to the 2D surface of the image,
and on the computation of a weighted dissimilarity function
between consecutive images that is minimized using a
Newton–Raphson iterative method, over a limited spatial
window. After the trajectories are generated along time, they
are validated by checking their compliance to the assumed
model of rigid motion of the scene. To this purpose the
set of trajectories is processed in two steps corresponding,
respectively, to a local processing and a global processing.
For the local processing the sequence is divided into
non-overlapping temporal windows and for each of them
a RANSAC-based calibration is performed, which is later
optimized by bundle adjustment. The temporal windows
must be short enough to ensure that enough trajectories re-
main complete within it but long enough to include enough
motion. Local data from different temporal windows are
consolidated and reoptimized in the global processing step,
which operates iteratively consolidating data from pairs
of adjacent windows. After this analysis, a trajectory or
part of a trajectory results validated when it is successfully
approximated by the reprojection of a scene feature.

3 On-line calibration

Once a sufficient amount of reliable image correspondences
have been established the overall structure of the scene
may be recovered. This recovery is performed in two major
steps, namely the recoveries of projective and Euclidian
structure, respectively. Projective structure is recovered by
extracting camera matrices from the trifocal tensor, see e.g.
[7] and followed by a series of the resectionings in order to
obtain each of the subsequent cameras. However, the result
is only defined up to a projective transformation, and is
consequently useless for visualization purposes. However,
as shown in [8], very general constraints such as assuming
square pixels suffice to establish the in- and extrinsic camera

400 Chapter 12. Multi-View Dense 3D Reconstruction

248 T. Rodríguez et al.

calibration parameters. In VISIRE, the actual implementa-
tion makes use of the Cheirality inequalities, see e.g. [7]
followed by an identification of the plane at infinity and
eventually the recovery of the intrinsic and extrinsic camera
parameters and Euclidian structure.

Nevertheless, the estimation of the initial set of cameras
depend on the solution of a linearized problem, and are con-
sequently subject to errors. Hence, in order to achieve a max-
imum likelihood solution, so called bundle adjustment is ap-
plied, see eg. [9] for details. This involves minimizing the
reprojection error

∑

i, j

‖(xi j − p(Pi , X j))‖
2

where xi j indicates the j th image point in the i th im-
age, and p:(P, X) �→ R

2 projects the 3D homogeneous
point X using the camera matrix P. In VISIRE, bundle ad-
justment is implemented using the Levenberg–Marquardt
method and a sparse system solver, allowing for signifi-
cantly more effective processing and for longer sequences
than previously, i.e. sequences of up to 300 views and 15,000
3D points.

In building complete systems for solving structure and
motion, new questions and research subjects arise naturally.
One unique feature of the VISIRE system is the ability to
apply the constraint of closedness to a sequence. In a long
sequence, the same image feature is likely to appear on sev-
eral occasions, but will, however, under normal conditions
be reconstructed as a different 3D feature each time. For the
general case, enforcing identity on these features turns out to
be indispensable. Also, small errors and degrees of freedom
from partial reconstructions might accumulate to a very
large error so that the scene structure or camera motion ob-
tained from the feature the first time it is encountered might
not fit at all when it is re-projected to the images where the
feature appears later. One way to deal with this problem
is to make partial reconstructions from subsequences and
then stitch these together by minimizing the distances
between corresponding points in 3D via homographies of
the substructures as it is done in [10]. Another way would
be to impose soft constraints as described in [11], where a
penalty term on the difference between expected identical
parameters is included as a Lagrange multiplier in the error
function.

Both methods have important drawbacks we intended
to overcome. Our initial approach was to distribute the ac-
cumulated error equally on all the parameters, although in
the norm given by their covariance. Specifically, the repro-
jection error vector and its associated covariance structure
are projected onto their respective lower-dimensional man-
ifolds corresponding to the reduced system, i.e. the system
where identity of the parameters has been enforced. Using
the resulting values, the optimal reduced parameters are cal-
culated through the equivalent of a Levenberg–Marquardt
iteration.

3.1 Batch reconstruction from sparse data

This approach evolved to a method that takes closedness
constraints into account in the very first reconstruction step
(Batch process). This is in itself interesting for robustness
reasons, since as many constraints as possible should be en-
forced as early as possible to avoid ending up in a erratic
situation. Another robustifying feature of the algorithm is
that the auto-calibration step is performed from affine to Eu-
clidian, which is significantly simpler than the original pro-
jective to Euclidian. However, the algorithm has turned out
to play a more important role: basically, the sequential ap-
proach originally used in the VISIRE project (and most other
state-of-the-art structure from motion systems) is best suited
for applications where decisions need to be made as soon as
a new frame becomes available (i.e. robotics). There has pre-
viously been no alternative, since existing batch algorithms
[12–14], in practice, have required all features to be visible
in all images; something that is unlikely in a real scenario.

The new method developed [15] proposes a batch al-
gorithm that would work on sparse data. The basic idea
is to compute matching tensors between the images (fun-
damental matrices, trifocal or quadrifocal tensors) and fi-
nally determine all of the camera matrices in a single com-
putational step. The notion of F − e closure constraint, i.e.
F12P2 + [e21]×P1 = 0 was introduced in [16], denoting
bilinear constraints between camera parameters and match-
ing tensors. We derived an alternative closure constraint, the
F−closure:

XT PT
1 F12P2

︸ ︷︷ ︸

ϕ

X = 0, ∀X ∈ P
3. (1)

where P1 and P2 denote the camera matrices, F12 is the fun-
damental matrix, and X a set of 3D homogeneous points. In
the affine case, the structure of ϕ becomes particularly sim-
ple:

ϕ = PT
2 F12P1 =

[
03×3 a

−aT 0

]

(2)

By re-arranging (2) and by denoting the elements of F12 by

F12 =





0 0 a

0 0 b

c d e



 , (3)

we obtain four linear constraints on the coefficients of P1
and P2:

[

a b c d
]
[

P1

P2

]

=
[

03 −e
]

︸ ︷︷ ︸

r12

(4)

These constraints apply for each pair of views Pi1 and
Pi2 , i1 �= i2, provided Fi1i2 is defined. We construct a

Paper 33: Photorealistic 3D Reconstruction from Handheld Cameras, MVA 2005 [19] 401

Photorealistic 3D reconstruction from handheld cameras 249

linear system of equations using 4 with the form SP = R:









s12

s1i1

...

sik im
























P1

P2

...

...

...

Pm
















=









r12

r1i1

...

rik im









(5)

where ri1i2 is the right hand side of Eq. 4 and si1i2 are 1×2m
row vectors.

si1i2 =

[

. . . a b
︸︷︷︸

FirstBlock

. . . c d
︸︷︷︸

SecondBlock

. . .
]

(6)

One important advantage of the proposed algorithm is the
ability to include different types of constraints, such as
equality of given cameras. This feature is illustrated in Fig. 2
where a cubic point cloud is reconstructed given views taken
on a circular trajectory.

The point cloud consists of 300 3D points evenly dis-
tributed in the cube [0.5] × [0.5] × [0.5] and of 30 cam-
eras with focal length f = 100 equidistantly placed on a
circular path centered at (0, 0, 0). Each frame contains fea-
tures which are visible in the nine following frames. Gaus-
sian noise with σ = 1 is present in the images. Figure 2b
shows the initial reconstruction of the camera trajectory us-
ing affine approximation and in Fig. 2c an alternative recon-
struction where equality has been assumed between the first
and the last camera in the sequence. The perspective equiva-
lents of the affine cameras were obtained by choosing a focal
length < ∞ ensuring that all the 3D points would lie in front
of the cameras where they had been observed.

Clearly, the initial reconstructions capture the overall
structure of the scene and the motion, thus allowing for the
subsequent bundle adjustment to converge to the global min-
imum. One point of special interest is the fact that within
this framework, the affine camera model approximates the
perspective camera sufficiently well, even though the depth
of the object is approximately the same as the distance to the
object, i.e. a lot more than the 10% that are usually consid-
ered the upper limit.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−15 −10 −5 0 5 10 15

−20

−15

−10

−5

0

5

10

15

−4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) (b) (c)

Fig. 2 Reconstruction, object centered configuration a original configuration, b initial reconstruction using affine approximation, c same as, b
but assuming equality between the first and last camera

4 3D registration and mesh generation

Creation of photorealistic models is done in two major steps:
based on 3D points reconstructed during on-line calibration
or subsequently, we first generate a triangular mesh describ-
ing the scene’s surfaces; then, texture maps for the surface
patches are extracted using all available images.

After on-line calibration, we are provided with a set of
3D points, projection matrices of a set of images, and 3D-
to-2D point correspondences. Usually, only interest points
that could be tracked reliably, were used for on-line calibra-
tion and metric 3D reconstruction. However, once projection
matrices are known, additional point tracks can be checked
more easily for outliers if the correspondingly reconstructed
3D points are reliable. We may thus enrich the set of 3D
points before proceeding to mesh generation.

4.1 Geometric consistency constraints

Most existing methods for mesh generation from 3D points
rely mainly on 3D geometric reasoning, e.g. proximity con-
straints between points, see e.g. [17, 18] and references
therein. These methods give unusable results for our input
data, because they are designed for rather dense and regular
point sets. In order to work with more difficult data, other in-
formation besides pure 3D geometry should be used. Since
the 3D points are obtained by reconstruction from images,
we have such additional information. First, visibility con-
straints can be imposed to prune incorrect surface patches,
e.g. a hypothetical patch that would lie between a 3D point
and the optical center of a view where that point is visi-
ble, can be rejected (see left part of Fig. 3). Other, more
complicated, visibility constraints are also used: especially,
a surface patch that partially occludes another one, without
occluding an actual 3D point, is rejected (see right part of
Fig. 3). The drawback of verifying this situation is quite a
large computation time (naively, each hypothetical triangle
has to be tested against each triangle already in the mesh).
Nevertheless, and although this situation is rare, it occurred
in all our experiments; not taking it into account would
result in visually unpleasing models. Such visibility con-
straints were also used in [19], where a surface mesh is built

402 Chapter 12. Multi-View Dense 3D Reconstruction

250 T. Rodríguez et al.

Fig. 3 Visibility constraints. Left: the triangle will not be accepted since it would occlude a 3D point from a view where that point is visible (a
corresponding 2D interest point was extracted). Right: the light triangle would not be accepted since it would partially occlude a triangle already
existing in the mesh

incrementally, starting with a mesh obtained by a Delaunay
triangulation in one view, and then rejecting and adding tri-
angles based on visibility constraints of one additional view
after the other. We proceed differently, by iteratively adding
new triangles to automatically selected seed triangles, and
thus by letting a mesh grow, directly ensuring all available
visibility constraints (and other constraints, see below). This
way, we may end up with a better connected surface mesh,
which may be easier to edit/complete if necessary.

4.2 Photometric consistency constraints

Another constraint we use to test hypothetical surface
patches, is photoconsistency: a planar patch is acceptable, if
its projections into all images where the patch’s vertices are
visible, correspond to image regions with the same “texture.”
This is verified by the following process: image regions cor-
responding to a planar 3D surface patch, are warped (using
homographies associated to the 3D plane) to some common
frame (to undo perspective effects). The simplest method
to measure photoconsistency would then be a “multi-image
cross-correlation” using all warped image regions (e.g. com-
pute variance of greylevels) [20]. This can be problematic,
for example in cases where some images of a surface patch
are partially occluded or show specular highlights. Also, in-
dividual images are taken from different viewpoints which
usually result in changes of perceived intensity values. To
this end, we measure photoconsistency using the following
general and robust approach: we estimate an “average” tex-
ture map for the considered patch as well as parameters for
intensity transformations for the input images. This is a non-
linear optimization problem, whose cost function, in its most
general form, is as follows (for a patch with m pixels, seen
in n images):

m
∑

p=1

n
∑

i=1

∑

k=R,G,B

ρ(Iikp − αik Tkp − βik) (7)

Here, Tkp is the intensity value of the p-th pixel of the gener-
ated mean texture map, for color channel k. Iikp is the corre-
sponding intensity value, measured in image i . The αik and

βik are parameters for affine intensity transformations, for
image i and color channel k (we have implemented several
modes for intensity transformations: one affine transforma-
tion per color channel, but also restricted modes with the
same affine transformation for all channels or only intensity
scaling or offset for example). Finally, ρ(·) is an influence
function, that serves for weighting residuals; ρ(x) = x2

corresponds to a least squares cost function which is highly
non-robust. Here, we use robust influence functions [21], for
example the Huber-function, that downweight the influence
of outliers, which thus allows to handle specular highlights
in some images etc.

Optimization is done for the Tkp, αik , and βik and is
carried out using an M-estimator [21] (IRLS, Iteratively
Reweighted Least Squares). The estimation is initialized as
follows: we initialize the Tkp by the average of the corre-
sponding input greylevels Iikp, i.e.:

Tkp =
1

n

n
∑

i=1

Iikp

We then compute the initial values for the affine transforma-
tion coefficients αik and βik by minimizing (7) over these pa-
rameters (keeping the Tkp fixed), and with ρ(x) = x2 as in-
fluence function. This is thus a linear least squares problem,
solved using an SVD (Singular Value Decomposition) [22].
After this initialization, we optimize the Tkp, αik , and βik us-
ing IRLS, as mentioned above, now using a robust influence
function for ρ. This proceeds in iterations, as follows [21]:
at each iteration, we first compute weights wikp by eval-
uating the influence function for each residual (each term
Iikp − αik Tkp − βik in (7)), to be precise by evaluating it at
residuals after they are scaled by a global factor (see [21] for
details). Then, we solve the weighted least squares problem:

m
∑

p=1

n
∑

i=1

∑

k=R,G,B

wikp(Iikp − αik Tkp − βik)
2

This is a non-linear least squares problem, which we solve
using the Levenberg–Marquardt method [22]. Here, we
exploit the sparse structure of the normal equations to

Paper 33: Photorealistic 3D Reconstruction from Handheld Cameras, MVA 2005 [19] 403

Photorealistic 3D reconstruction from handheld cameras 251

drastically reduce the computation time, as it is common
practice for e.g. bundle adjustment, cf. [7].

The process of computing weights and solving the
weighted least squares problem, is iterated until convergence
(we use a small, fixed number of iterations, which proved to
be sufficient in practice). This optimization process is rather
time-consuming and we thus do not use it routinely for test-
ing hypotheses of surface patches. However, it is sometimes
employed as such to generate texture maps for the final sur-
face mesh, depending on the desired visual quality.

4.3 Overall procedure for mesh generation

We have so far described the geometric and photometric
constraints used for mesh generation. The overall process is
as follows. One or several “seed triangles” are created. This
can be done manually, since it creates little overhead, but
we also tried a simple automatic procedure: determine the
smallest roughly equilateral triangles in the reconstructed
point cloud, and accept them if they have a good photocon-
sistency measure. The mesh is thus initialized as the set con-
taining one or several such seed triangles. The edges that are
at the border of the mesh, are stored in a list. As soon as
the list is not empty, the following operations are run. We
first randomly pick one edge of the list. Then, all 3D points
are determined for which the triangle formed by a point and
the edge is not too thin (no angle smaller than 10◦, for exam-
ple). Sort these points by increasing distance to the edge. For
the closest point, check if the triangle it would form with the
edge, satisfies all geometric and photometric constraints (see
above). If this is the case, accept the triangle in the mesh and
update the associated data structures (e.g. remove the edge
from the list, and add the new outer edges to it). In the oppo-
site case, proceed with the next point. If none of the points
satisfies all criteria, the edge is removed from the list. After
having thus processed one border edge of the mesh, we iter-
ate by randomly selecting another one, as explained above.

4.4 Other mesh generation approaches

Other approaches for mesh generation were also developed.
Instead of iteratively growing a surface mesh, an alternative
approach is to perform a volumetric reconstruction: starting
with a discretization of 3-space (typically, a 3D Delaunay
tetrahedrization), one iteratively prunes volumes (here, tetra-
hedral), based on similar constraints as those used above.
The outer surface of the final volume is then taken as sur-
face mesh. Constraints used for pruning tetrahedra are vis-
ibility constraints (same as above), and photoconsistency
constraints, which are now applied differently: a tetrahe-
dron is kept if its visible faces have a good photoconsistency
score; if a face has a low score, the tetrahedron is pruned
only if this would increase the photoconsistency of the entire
model (pruning a tetrahedron makes other tetrahedra visible,
which might have an even lower score). This is still work in
progress, but it has already produced better results than the
mesh-growing method in cases where feature points were

Fig. 4 Ceiling of the Casino Royal Hall. Raw Automatic 3D Model

not tracked over many frames. In the opposite case, how-
ever, the mesh-growing method tended to stick better to the
true object surface.

4.5 Refining a mesh

We recently have developed an approach to refine 3D struc-
ture to get more dense reconstructions. The approach is in-
spired by [23], and roughly works as follows. 3D structure is
estimated as a set of depth maps (as opposed to using a single
depth map as in [23]). These are initialized from the coarse
triangular mesh, or even by directly interpolating from the
3D point cloud. Then, they are optimized based on photo-
consistency and visibility reasoning, as well as a 3D shape
prior. The method resembles that of [23], but many details
are novel. It would be beyond the scope of this article to
completely describe this approach; it will be published sep-
arately. Results are shown in Sect. 6.

Results are shown in Figs. 4–6. Figure 4 shows a detail
of the Casino scene, cf. Fig. 8. Figures 5 and 6 show results
for outdoor scenes. Especially the scene of Fig. 6 is very
challenging, due to the enormous depth discontinuities. For
Fig. 5, the calibration provided by the authors of [23], was
used, whereas for Fig. 6, the self-calibration and reconstruc-
tion tools described in this paper, were applied.

5 The authoring tool

Fully automatic 3D reconstruction of complex environments
is currently not a practical possibility for a number of

404 Chapter 12. Multi-View Dense 3D Reconstruction

252 T. Rodríguez et al.

Fig. 5 Casino sequence. Top row: rendered images. Bottom row: rendered images with artificial specular component added to textures, to better
show the underlying geometry

Fig. 6 Cityhall sequence [23]. Top row: the three input images. Middle and bottom rows: rendered images

reasons. Manual intervention is still required whenever CV
software is not able to cope with singular situations, when
automatic procedures are too slow, or simply when users de-
sire to add a personal touch; there are situations when a few
keystrokes may save hours of computational time or signif-
icantly improve the quality of the results. The VISIRE Au-
thoring Tool (VAT) has been designed specifically to operate

the underlying CV software. The tool (Fig. 7) supports the
following functions: manipulate the video material required
to construct a 3D model, guide and operate automatic CV
processes selecting the various parameters, and visualize 2D
and 3D results.

The VAT offers options to monitor the different CV
steps, visualize intermediate results, and modify parameters

Paper 33: Photorealistic 3D Reconstruction from Handheld Cameras, MVA 2005 [19] 405

Photorealistic 3D reconstruction from handheld cameras 253

Fig. 7 VISIRE Authoring Tool Screenshot

Fig. 8 Statue sequence. Top row: the five input images. Middle and bottom rows: rendered images. The background is not perfectly reconstructed,
since much of it is only seen in two or three images

with the aim to improve the finished results. The user may,
for example, visualize trajectories in the track editor and
manually insert or delete features that are automatically
tracked by the system. The VAT follows a “project" ap-
proach: a project gathers all the information necessary
to manipulate and process one or more video sequences.
When the user modifies a parameter, the system automat-
ically recalculates obsolete links and updates the resulting
3D mesh.

Project information is stored in three main structures:
Videos (2D image sequences), Tracks (structures containing
the information required to track individual features in one
or multiple video sequences), and Geometries (3D points,
3D meshes, and textures). The process of constructing a
3D model is progressive. Different parts of the scenario
are processed independently and then stitched together.
Three containers store the respective structures as they
are created and allow the user to manipulate them using a

406 Chapter 12. Multi-View Dense 3D Reconstruction

254 T. Rodríguez et al.

Fig. 9 Example of a shooting plan: a) Large room, b) Small room

drag and drop interface. Several combinations are possible:
object structures can be added, deleted, and joined (i.e. it
is possible to join videos, tracks, or geometries). This last
is a unique feature since it is almost impossible to cover a
complete scenario in a single shot.

The VAT implements the following additional charac-
teristics: integrated video editor, support for multiple input
video sequences, compatible with most popular video for-
mats, VRML output, integrated 3D browser, multiple in-
teractive tools (feature analysis, calibration, 3D rendering,
texture processing), and hot display capabilities (the result
of changed parameters is immediately updated in the 3D
model).

6 Results and evaluation

An exhaustive evaluation of VISIRE methods and soft-
ware in real conditions was performed using video mate-
rial acquired in different museums (Casino de Madrid, Uffizi
Gallery, and Palazzo Pitti in Florence), as well as available
test image libraries. Early in the project stage it was ac-
knowledged that image shooting procedures would become
critical and might determine the quality of the resulting 3D
models. For that reason precise guidelines (Fig. 9) were pro-
duced so that any person with minimum skills and basic
training could do the shooting. In most cases a mid size room
could be completed in no more than 2 h if guidelines are
closely followed. Tests were made using professional digital
Betacam cameras and domestic minDV camcorders. Due to
unusual shooting requirements, miniDV cameras performed
better than their professional counterparts since miniDV
cameras are lighter and easier to aim and differences in im-
age quality were hardly noticeable.

The abundant video material compiled was used to
construct several complete 3D models. Experience showed
VISIRE performs better in richly textured scenarios. Painted
walls (i.e. frescos) or textured materials (i.e. marble) pro-
duced very good results. The system offers remarkable
accuracy in the reconstruction of vaulted scenarios and
irregular shapes where human modellers would have diffi-
culties to achieve similar results. In planar surfaces where
extremely good accuracy in the assembly of the geometry
is required and even small errors are highly noticeable,
performance was more noisy; but nevertheless very good
for an automatic method.

As compared with the state of the art, VISIRE does a
great job handling occlusions by using information from al-
ternative views when part of the scenario is occluded. How-
ever, in certain circumstances the algorithm incorrectly joins
polygons from different objects. In most cases, those prob-
lems are due to irregular sampling and can be corrected
manually during post-processing (i.e. inserting seed features
manually). VISIRE also has difficulties with reflections (i.e.
mirrors) or unstable illumination. It must be considered the
system was required to use handheld cameras and no pro-
fessional lighting or measurement devices were allowed. Ill
posed situations, can be found in some cases due to improper
shooting of the images; most frequently when disparity be-
tween the acquired images is not sufficient. Fortunately, the
system detects this situation automatically. There were also
rare situations when the algorithm joining sequences did not
perform as expected and the model required manual adjust-
ments for a proper joining.

Generally speaking, VISIRE textures and lighting are
more realistic than human produced models. The geometry,
while closer to the real thing, tends to be more noisy and er-
ror prone. In that sense the system obtains a typical RMS of
no more than 0.338 in the reprojected points after projective
bundle and a maximum of 0.5 after Euclidian bundle. Those
figures are very good considering they were obtained using
fully automatic methods.

Results are shown in Figs. 4–6 and Fig. 10. Figure 4
shows a detail of the Casino scene, cf. Fig. 8. Figures 5 and 6
show results for outdoor scenes. Especially the scene of
Fig. 6 is very challenging, due to the enormous depth discon-
tinuities. For Fig. 5, the calibration provided by the authors
of [23], was used, whereas for Fig. 6, the self-calibration and
reconstruction tools described in this paper, were applied.
In Fig. 10 an almost complete model of the ceiling of the
Palazzo Pitti is presented.

Next, we will analyze in more detail one of the video se-
quences evaluated (Fig. 8). The Casino sequence consisted
of four slightly overlapping shots describing the edges of
a near-rectangular camera path. The whole sequence lasts
several min and was in the process reduced to 281 views
and 16,000 3D points. In order to bundle efficiently, only
the 835 longest point tracks were kept in the global bun-
dle adjustment. Figure 11a shows the magnitude of the tra-
jectory mismatch is such that usual bundle turned out to be
insufficient. Results improved dramatically when constraint
enforcement was performed as it is apparent in Figs. 11b

Paper 33: Photorealistic 3D Reconstruction from Handheld Cameras, MVA 2005 [19] 407

Photorealistic 3D reconstruction from handheld cameras 255

Fig. 10 Different views of a model from Museo degli Argenti in Palazzo Pitti

Fig. 11 Casino sequence: a open sequence trajectory, b trajectory after closing, c final reconstruction of closed sequence with 3D points

Table 1 Reprojection errors (RMS) for the Casino sequence

Constraint Closed
(Pixels) Open sequence enforcement sequence

Overall 0.3340 15.54 0.3667
Closure 777.6 10.55 0.6098

and c. The first row in Table 1 presents the overall RMS
reprojection error for all image points, while the sequence
is still open, after imposing the closure constraint and af-
ter bundle convergence of the closed sequence, respectively.
The second row provides similar information when repro-
jecting the five 3D points used for merging (hence visible in
both the last and the first images) onto the first image. Note
that the overall reprojection error increases when the con-
straint is enforced, since the error on the constraining image
points is in a sense distributed on the whole structure. The
important measure is, however, how well the algorithm sub-
sequently minimizes the reprojection error, which is seen to
fall very close to the error for the non-constrained structure.

7 Conclusion

In the paper a “complete" approach to 3D reconstruction in
real environments has been presented. The VISIRE system
succeeded in the use of video information, acquired from
handheld camcorders, as input to a near-automatic 3D mesh
generation system. A full functional authoring tool has been
developed to allow graphics professionals create photo-
realistic 3D models with less effort and better quality than it
was possible before. The system is specially well suited for
scenarios where architecture is rich and textured, with few
first plane objects occluding the view. Vaulted scenarios,
painted walls, or irregular geometries are excellent can-
didates, while scenarios with simpler geometries, fewer
textures, or showing big symmetries (i.e. where repli-
cated geometrical primitives can be used) are better
suited for manual modelling. In general, best perfor-
mance is obtained when VISIRE is used as an initial
automatic step that is completed by human post-processing.
To some extent manual and automatic processes are

408 Chapter 12. Multi-View Dense 3D Reconstruction

256 T. Rodríguez et al.

complementary, but there still exists important challenges
as to how to combine both approaches in a most efficient
way.

Even if VISIRE achieved important advances, the field
is still open to new improvements. In particular, it will be
highly desirable to implement methods to apply constraints
(i.e. planarity and pure rotations) to the produced 3D mod-
els in order to simplify the 3D reconstruction process and
improve the accuracy. One of our goals for future research is
to combine 3D and IBR approaches; applying IBR for scene
parts whose geometry cannot be modelled well. Another
possible point of improvement is to develop more advanced
methods for representing objects. Instead of triangular
meshes, more general object surfaces could be used, e.g.
level-set frameworks. Here it would also be desirable to in-
clude other surface properties, such as reflectance and local
geometry. More research will be also required to improve
some of the still pending problems arising from: severe
occlusions, texture-less or repetitive structures, irregular
sampling, etc. Finally, it must be mentioned it still remains a
difficult task to acquire sequences that cover every part of a
scene from several viewpoints. It is imaginable to develop a
system that detects parts of the scene that were not modelled
precisely, and guides the user to acquire the additional video
material.

Our main conclusion is the system is capable to perform
a good job in a broad range of conditions. There are still
problems related to CV, which presents limits that may cause
certain defects on the reconstructed models. This is certainly
a limitation, but is well compensated by the automatic func-
tioning of the system and the processing speed, which allows
to achieve a model of reasonable good quality in a very short
time. In our opinion the system can indeed simplify the pro-
cess of building up 3D models or at least provide a good
prototype of a model to work on.

References

1. Rodríguez, T., Sturm, P., Heyden, A., Menéndez, J.M., et al.:
Visire. photorealistic 3d reconstruction from video sequences.
In: IEEE International Conference on Image Processing, pp.
705–708. Barcelona, Spain (2003)

2. Pollefeys, M., Gool, L.V., Vergauwen, M., Verbiest, F., Cornelis,
K., Tops, J., Koch, R.: Visual modeling with a hand-held camera.
IJCV 59(3), 207–232 (2004)

3. Gortler, S., Grzeszczuk, R., Szeliski, R., Cohen, M.: The lu-
migraph. In: Proceedings of the 23rd Conference on Computer
graphics and Interactive Techniques, pp. 43–54 (1996)

4. Matusik, W., Pfister, H., Ngan, A., Beardsley, P., Ziegler, R.,
McMillan, L.: Image-based 3d photography using opacity hulls.
In: Proceedings of the ACM SIGGRAPH 2002, p. 427–437
(2002)

5. Takashi Machida, H.T.: Dense estimation of surface reflectance
properties based on inverse global illumination rendering. In:
ICPR’04, vol. 2, pp. 895–898. Cambridge, UK (2004)

6. Shi, J.C.T.: Good features to track. In: CVPR’94, pp. 593–600
(1994)

7. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Com-
puter Vision. Cambridge University Press, Cambridge, UK
(2000)

8. Heyden, A., Åström, K.: Euclidean reconstruction from image
sequences with varying and unknown focal length and principal
point. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition, pp. 438–443 (1997)

9. Triggs, W., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle
adjustment: A modern synthesis. In: Vision Algorithms: Theory
and Practice. Springer, Berlin Heidelberg New York (2000)

10. Fitzgibbon, A., Zisserman, A.: Automatic camera recovery for
closed or open image sequences. In: Proceedings of the European
Conference on Computer Vision, vol. I, pp. 311–326. Freiburg,
Germany (1998)

11. Triggs, B., McLauchlan, P., Ri, H., Fitzgibbon, A.: Bundle
adjustment—a modern synthesis. In: Vision Algorithms’99, pp.
298–372. in conjunction with ICCV’99, Kerkyra, Greece (1999)

12. Reid, I., Murray, D.: Active tracking of foveated feature clusrters
using affine structure. In: International Journal of Computer
Vision, pp. 41–60. Seattle, WA (1996)

13. Sturm, P., Triggs, B.: A factorization based algorithm for multi-
image projective structure and motion. In: Buxton, B., Cipolla, R.
(eds.) Computer Vision – ECCV’96, Lecture Notes in Computer
Science, vol. 1065, pp. 709–720. Springer, Berlin Heidelberg
New York (1996)

14. Tomasi, C., Kanade, T.: Shape and motion from image streams
under orthography: a factorization method. Int. J. Comput. Vis.
9(2), 137–154 (1992)

15. Guilbert, N., Bartoli, A.: Batch recovery of multiple views with
missing data using direct sparse solvers. In: British Machine
Vision Conference. Norwich, UK (2003)

16. Triggs, B.: Linear projective reconstruction from matching
tensors. Image Vis. Comput. 15(8), 617–625 (1997)

17. Hoppe, H.: Surface reconstruction from unorganized points.
Ph.D. thesis, Department of Computer Science and Engineering,
University of Washington (1994)

18. Petitjean, S., Boyer, E.: Regular and non-regular point sets:
Properties and reconstruction. Comput. Geom.—Theor. Appl. 19
(2001)

19. Manessis, A., Hilton, A., Palmer, P., McLauchlan, P., Shen, X.:
Reconstruction of scene models from sparse 3d structure. In:
Proceedings of the Conference on Computer Vision and Pattern
Recognition. Hilton Head, USA (2000)

20. Morris, D., Kanade, T.: Image-consistent surface triangulation. In:
Proceedings of the Conference on Computer Vision and Pattern
Recognition. Hilton Head, USA (2000)

21. Huber, P.: Robust Statistics. Wiley, New York (1981)
22. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical

Recipes in C. Cambridge University Press, Cambridge, UK (1988)
23. Strecha, C., Fransens, R., Gool, L.V.: Wide-baseline stereo

from multiple views: a probabilistic account. In: Proceedings of
the Conference on Computer Vision and Pattern Recognition,
pp. 552–559 Washington, DC (2004)

Tomas Rodriguez was born in
Madrid in 1961. Bachelor in
Physics and Master in Electronics
by the Universidad Complutense de
Madrid. He started his career in the
private R&D sector in 1987, when
he specialized in computer vision
and parallel processing systems. In
the early nineties he participated
in the EVA project; one of the
most outstanding traffic monitoring
system of the time. For more than
10 years, he has been involved
in international research projects
within the ambit of EUREKA,
ESPRIT, V and VI Framework
programmes. During this time, he

Paper 33: Photorealistic 3D Reconstruction from Handheld Cameras, MVA 2005 [19] 409

Photorealistic 3D reconstruction from handheld cameras 257

coordinated eight international projects (CAMELOT, CITRONE,
ON-LIVE, SAID, VISIRE, EVENTS, ITALES, HOLONICS) and
acted as principal investigator in two additional ones (CITRUS and
VICTORIA). Since the early days, he had the opportunity to collabo-
rate with some of the most prestigious research institutions in Europe:
Franhoufer Inst., INRIA, CNRS, University of Oxford, University of

Lund, DFKI, Siemens C-Lab, Philips Research Labs, etc. Evaluator
of R&D projects for the Spanish Ministry for Science and reviewer of
international scientific journals, he is currently the R&D manager and
coordinator for European projects at Eptron SA. His recent interests
include: computer vision, real time software, industrial control,
parallel processing, iTV, and mobile technologies, etc.

410 Chapter 12. Multi-View Dense 3D Reconstruction

Chapter 13

3D Reconstruction of Specular Surfaces

Paper 34 [6]: T. Bonfort and P. Sturm. Voxel carving for specular surfaces. In Proceedings of the 9th

International Conference on Computer Vision, Nice, France, volume 1, pages 591–596. IEEE Computer

Society Press, October 2003.

Paper 35 [7]: T. Bonfort, P. Sturm, and P. Gargallo. General specular surface triangulation. In Proceedings

of the Asian Conference on Computer Vision, Hyderabad, India, volume II, pages 872–881, January 2006.

Paper 36 [27]: P. Sturm and T. Bonfort. How to compute the pose of an object without a direct view?

In Proceedings of the Asian Conference on Computer Vision, Hyderabad, India, volume II, pages 21–31,

January 2006.

411

Voxel Carving for Specular Surfaces

Thomas Bonfort and Peter Sturm

MOVI - GRAVIR - INRIA, Grenoble, France

thomas.bonfort,peter.sturm@inrialpes.fr

Abstract

We present an novel algorithm that reconstructs voxels of a

general 3D specular surface from multiple images of a cal-

ibrated camera. A calibrated scene (i.e. points whose 3D

coordinates are known) is reflected by the unknown specu-

lar surface onto the image plane of the camera. For every

viewpoint, surface normals are associated to the voxels tra-

versed by each projection ray formed by the reflection of a

scene point. A decision process then discards voxels whose

associated surface normals are not consistent with one an-

other. The output of the algorithm is a collection of voxels

and surface normals in 3D space, whose quality and size

depend on user-set thresholds. The method has been tested

on synthetic and real images. Visual and quantified experi-

mental results are presented.

1. Introduction

3D shape reconstruction techniques obtain models of real-

world objects, that can then be used in computer graph-

ics, CAD, multimedia databases, etc... Most reconstruction

methods rely on the identification and matching of pixels

corresponding to a same object feature, and return the 3D

coordinates of the object’s feature using different geomet-

ric constraints. In the case of specular objects, these non-

specific methods will always fail to reconstruct the object’s

surface. Indeed, the observed texture of a specular object

is the reflection of the object’s surrounding environment,

rather than the texture of the object itself. As the view-

point changes, the observed texture moves along the object’s

surface, thus invalidating the geometric constraints used by

classical reconstruction methods.

This article describes a method recovering points of a

specular surface. Texture and shading contributions of the

surface are ignored, our focus being only on perfect mir-

rors like objects made of polished metal. We place our-

selves in the case of several views of calibrated cameras ob-

serving the specular surface, the images seen by these cam-

eras being the reflection of the object’s surrounding environ-

ment. We assume that the object’s environment (typically a

printed target, from now on referred to as scene points) is

calibrated, i.e. we know the 3D coordinates of a number of

scene points.

A realworld application of our reconstruction method

uses a printed target attached to a camera taking images of a

specular surface. Camera pose is obtained by taking images

of the system from a stereo rig. Once the matching of the

points on the target with the image of their reflection has

been accomplished, a set of voxels belonging to the surface

is obtained by our method, along with their corresponding

surface normals. A model of the object can then be obtained

by fitting a surface to the obtained points and normals.

1.1. Previous Work

Specularities have interested researchers in the field of com-

puter vision for the past 20 years. For example, Blake et al.

[1] studied the disparity of highlights on a specular surface

seen from two viewpoints. Zisserman et al. [17] tracked the

motion of specularities to obtain information on the surface.

Healey [5] used static images and a reflectance map to re-

cover 3D points on a specular surface. In [8], Oren and Na-

yar studied the classification of real and reflected features,

and recover the profile of a specular surface by tracking an

unknown scene point. The profile can be recovered with-

out further hypotheses only if the motion of the camera, the

scene point and its reflection in the mirror surface are copla-

nar, thus limiting practical applications. Halstead et al., in

[3], fit a spline surface to a set of normals, iteratively refin-

ing the result. Their method requires an initial seed point on

the specular surface, and was applied to the sub-micronic

reconstruction of the human cornea. Schultz recovers in

[11] the ocean’s surface given three calibrated images, an

irradiance map of the illumination, and known seed points.

An elevation map is obtained by propagating around the

known points using observed surface normals, while min-

imising the difference between real and rendered images.

In [9], Ripsman and Jenkin recover specular planes using

three views and active illumination. The aimed application

is the automatic inspection of orbital objects. Savarese and

Perona detail in [10] the information available for one view

of a specular object reflecting three or more intersecting cal-

ibrated lines. The second order surface geometry can be ob-

tained up to one unknown parameter. In the case of general

specular surfaces, Zheng and Murata in [16] reconstruct a

rotating specular object by studying the motion of the illu-

Paper 34: Voxel Carving for Specular Surfaces, ICCV 2003 [6] 413

mination created by two circular light sources.

The method we propose makes no assumptions on the

specular surface, and doesn’t need any initial seed points.

It extracts voxels of the surface independently from one an-

other, therefore preventing the accumulation of errors that

can occur in other methods.

2. Geometric Constraints

This paragraph presents the basic geometric constraints

used by our method. The following notation will be used

throughout the article:

• u is a vector of 3D space, i.e. u = (x y z)T , and û is

a normalised vector.

• s is a scalar.

• subscripts are used as follows:

– Oc is the camera’s projection centre.

– xs is a calibrated scene point.

– xm is the position of the reflection of xs on the

mirror surface (therefore it depends on the view-

point).

– xi is the projection of xm on the image plane of

the camera.

For the sake of simplicity, we assume that xi is a point of 3D

space, i.e. the 3D coordinates of the image point xi when

the position of the image plane is known (see figure 2). This

assumption causes no loss of generality, as xi is on the pro-

jection ray formed by xm for a given camera viewpoint Oc.

2.1 Ideal Specular Surfaces

We have chosen to consider only purely specular surfaces

such as mirrors, objects made of polished metal, etc... With

this assumption, the law of reflection shown in figure 1 links

the surface normal n̂m, the incoming light direction r̂i, and

the reflected light ray r̂r by the following constraint:

r̂r = r̂i − 2(n̂m .̂ri)n̂m

The formation of an image of a specular surface is shown

in figure 2: given a known scene point xs, a known mirror

point xm, and a known image point xi, the surface normal

nm at xm is constrained by:

• nm belongs to the plane formed by xs, xm and the

projection ray formed by Oc and xi.

• the angle αi between the incident line of sight and the

surface normal is equal to the angle αr between the

surface normal and the reflected line of sight.

normal
surface

surface
specular

incident ray

re
fl

ec
te

d
ra

y

i rαα

Figure 1: Law of reflection. The angle formed by the incident

line of sight and the surface normal equals the angle formed by the

surface normal and the reflected line of sight. The surface normal

and the rays are coplanar.

n

specular

x

O

x xsi

c

m

αiαr

m

surface

Figure 2: Image formation. A calibrated scene point is reflected

by the specular surface onto the image plane of a calibrated cam-

era.

Thus, the surface normal at xm is given by the bisector of

the angle formed by the scene point, the voxel and the cam-

era. This constraint is on its own clearly insufficient to de-

termine the surface’s position and orientation: given any

point on the projection ray formed by the camera’s projec-

tion centre Oc and the image point xi, we can find the orien-

tation of a specular surface passing by that point that would

lead to the same observation. Inversely, given any surface

normal, the position of a surface leading to the same obser-

vation can be obtained. Our aim being to reconstruct a spec-

ular surface, we need further constraints so as to find surface

position and orientation simultaneously. The method we

present in the following paragraphs uses multiple images of

the specular surface, and is based on the fact that the normal

at a given point on a specular surface is independent of the

viewpoint.

3. Reconstruction Method

This section presents our reconstruction method, using mul-

tiple views of a calibrated camera. We start by discretizing

the 3D space around the specular object, to obtain a vox-

elic representation of the working space. The reconstruc-

414 Chapter 13. 3D Reconstruction of Specular Surfaces

tion then takes place in two main phases: the first phase as-

sociates n ≥ 0 normals to every voxel of the 3D space sur-

rounding the specular surface. In the second phase, along

each projection ray, the voxel whose associated normals are

the most consistent with one another is kept. In essence, our

method is very similar to Seitz and Dyer [12] or Seitz and

Kutulakos [7] who rely on surface color to reject incorrect

voxels.

3.1. Phase 1: Normal Accumulation Process

In the previous section, we have seen that a single view of

the reflection of scene points was not sufficient to obtain a

specular surface’s position and orientation simultaneously.

Figure 3 shows the information available for one view-

point, once the 3D space has been discretized: for each

voxel traversed by the projection ray corresponding to an

image point and a scene point,we compute the surface nor-

mal associated to that voxel. This surface normal corre-

sponds to the normal of a surface passing through the cen-

tre of the voxel, that would produce the same observation.

In other words, for a given scene point xs reflected by the

specular surface onto the image plane at xi, we associate for

every voxel xm traversed by the projection ray [Ocxi) the

normal of a specular surface passing by the centre of that

voxel, that would reflect xs onto xi.

x

�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�

✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂

specular surface

y

calibrated scene points

possib
le surface positio

ns

s

z

voxelized 3D space

reference coordinate system

x
O

x

nm

i
c

mx

Figure 3: Normal construction for each voxel traversed by a pro-

jection ray. The process is repeated for each calibrated scene point

xs, and for each camera position Oc.

The normal calculation is repeated for every voxel tra-

versed by every projection ray corresponding to the reflec-

tion of the scene points, and for every camera position. Each

voxel in the 3D space surrounding the specular object will

then have zero or more surface normals associated to it.

In the next paragraph, we will explain how the disparity

of the surface normals stored for one voxel can determine

whether the voxel belongs to the specular surface or not.

3.2. Phase 2: Discarding Incorrect Voxels

Let us consider the voxels traversed by the projection ray

formed by the reflection of the scene point xs by the spec-

ular point xm onto the image point xi. There are two cases

occuring for the computed normal at a given voxel:

• case 1: the voxel does not belong to the specular sur-

face. In this case, the associated normal has no phys-

ical reality. If the voxel is traversed by a second ray

originating from another viewpoint, the second asso-

ciated normal has no reason to be similar to the first

one.

• case 2: the voxel belongs to the specular surface. In

this case, (assuming the voxelic discretization is in-

finitely precise, and there is no noise in the measures

of xs and xi), the associated normal is the normal of

the specular surface at that point. If the voxel is tra-

versed by another projection ray, the voxel’s second

associated normal will be identical to the first one.

Intuitively, voxels belonging to the surface can be deter-

mined by looking at the disparity of their associated nor-

mals, as illustrated on figure 4. Furthermore, as for each

viewpoint a single correct voxel corresponds to each pro-

jection ray, incorrect voxels can be discarded by stepping

along each projection ray and keeping the voxel with the

least disparity.

voxel

point 3

specular surface

scene point 1

correct voxel

camera 1 camera 2

scene

incorrect

scene point 2

Figure 4: Normals associated to a correct and incorrect voxel. The

normals associated to a voxel that does not belong to the specular

surface are dissimilar, whereas those associated to a voxel belong-

ing to the surface are consistent with one another.

Quantifying Normal Disparity

So as to discard incorrect voxels, a quantifiable disparity

measure is necessary. The simplest disparity measure is

given by the mean angle between each normal and the mean

normal:

disparity =

∑
n

i=1
arccos (n̂i.n̂)

n
(1)

Paper 34: Voxel Carving for Specular Surfaces, ICCV 2003 [6] 415

where n̂ stands for the mean normal associated to a voxel,

i.e.

n̂ =

P

n

i=1
n̂i

n

‖
P

n

i=1
n̂i

n
‖
.

This disparity measure is in practice insufficiently dis-

criminant. As well as normal disparity, depth information

must be taken into account: as illustrated in figure 5, the

distance of a voxel to the cameras plays an important role

in the disparity associated to a voxel’s normals. Two differ-

ent approaches have been used to obtain correct results, as

explained in the following paragraphs.

scene points

camera 2camera 1

specular surface

Figure 5: Disparity variation due to camera distance. Two equally

incorrect voxels have an associated normal disparity that depends

on their distance to the cameras. A threshold-based decision will

tend to keep incorrect voxels if they are further away from the

camera viewpoints.

Reprojection Error

The error measure seen in (1) relies only on the disparity

of the normals stored at a voxel to determine if the voxel is

correct. Additional information is available if we compare

the reconstructed surface to the images we have of it, by

checking that the images of every scene point reflected by

a given voxel (whose surface normal is the mean normal

seen in the previous paragraph) are close in the participating

cameras to the images of the same scene point reflected by

the original surface.

A given voxel is assumed to be a plane passing by the

centre of the voxel, whose normal is the voxel’s mean nor-

mal. Every participating scene point associated to the voxel

is then geometrically reflected by this plane onto the image

plane of the participating cameras. The reprojection error

measure becomes the mean square distance of the reflec-

tions to the original pixel.

This error measure does not take normal disparity into

account, and therefore is not sensitive to depth variations.

Qualitatively correct reconstructions have been obtained

with this method, but even better results have been obtained

with the following heuristics.

Heuristic Disparity Measures

We have tested several disparity measures that take depth

information of the voxels into account:

• Because of the perspective projection used by cameras,

voxels that are close to the region where the views were

taken are associated with a higher number of normals

than those which are far away. A first working dispar-

ity measure is to divide the variance calculated in (1)

by the number of associated normals, which will have

the effect of associating greater disparity measures to

the further voxels.

• The disparity measure that leads to the best results is

obtained by dividing the disparity obtained in (1) by

the mean angle formed by the scene points, the voxel,

and the different camera viewpoints. As these angles

tend to decrease as the voxels are further from the cam-

era viewpoints, this disparity measure penalises the

furthest voxels. The results we present were obtained

using this measure in the next sections.

Limitation

The reconstruction of a specular object is not straightfor-

ward: figure 6 shows that a projection ray that intersects

the object’s surface twice will cause correct voxels to be

associated with incorrect normals, thus invalidating a deci-

sion process based on normal disparity. This imposes that

the reconstruction take place in several steps, or that a ro-

bust disparity measure be used: a correct voxel will be as-

sociated with a number of inconsistent normals originating

from a double intersection, plus a number of identical nor-

mals corresponding to the surface normal. Thus, this lim-

itation could be overcome by selecting consistent normals

using robust statistics, and applying the disparity measure

on these selected normals. The results we present in the

next sections were obtained by placing the cameras in posi-

tions assuring no double intersections took place, therefore

reconstructing a patch on the specular surface.

4. Results on Simulation Data

We have tested our method on the reconstruction of specu-

lar spheres and planes, using simulation data and ray-traced

images. We deliberately limited ourselves to these simple

416 Chapter 13. 3D Reconstruction of Specular Surfaces

discarded
correct voxel

correct normal

correct normal

incorrect normal

incorrect normal

Figure 6: double intersections with the object’s surface cause cor-

rect voxels to be associated with inconsistent normals, and there-

fore be discarded when measuring their disparity.

objects so as to easily and automatically perform the corre-

spondence problem between the scene points and the image

points.

4.1. Setup

The results shown in the next paragraph were obtained us-

ing 40 ray-traced images of a specular sphere. A black on

white checkerboard target was reflected by the sphere onto

the image plane of the cameras, and a Harris corner de-

tector [4] was used to extract the corners in the obtained

images, thus creating some noise in the measures. The ex-

tracted points were then analytically matched with their cor-

responding scene points on the target, using the known ge-

ometry of the sphere.

4.2. Quantified Results

We have tested our reconstruction method with different

thresholds, as shown in table 1, using the heuristic disparity

measure seen above. The quality of the output depends on

the minimum number of normals a voxel must be associ-

ated with before the disparity measure can be trusted. With

less than 4 normals per voxel, a number of outliers can ap-

pear. With at least 8 normals, the extracted voxels are never

further than two voxel to the original surface.

4.3. Visual Results

The images we present in the appendix on page 8 show the

distribution of the extracted voxels on the specular sphere’s

surface. We have chosen to show all the voxels below a

given disparity measure, and not only the best voxel on each

projection ray, to show how this disparity evolves around

the specular surface.

strict medium laxist

4
363

93.4%

969

95.3%

3103

94.45%

8
161

100%

589

100%

1982

100%

Table 1: Results obtained using strict, medium and laxist thresh-

olds on normal disparity. The lines represent the minimum number

of normals associated to a voxel before this voxel can be consid-

ered. For each combination, the first number is the number of

accepted voxels, and the second one is the percentage of these

voxels that are either intersecting the specular surface or less than

two voxels away from an intersecting voxel.

Figure 11 shows the extracted voxels for a very strict

tolerance on normal disparity. Despite the relatively small

number of extracted voxels, surface shape can be recovered

thanks to the homogeneous distribution of the voxels on the

surface.

Figure 13 shows a medium threshold on normal dispar-

ity. A greater number of voxels are extracted, and no out-

liers have appeared.

Figure 14 shows the result after a laxist threshold on nor-

mal disparity. Practically all the intersecting voxels of the

surface have been extracted, but a greater number of adja-

cent voxels have appeared. No outliers were extracted.

Figure 15 shows the following extracted voxels when the

threshold is increased again. We see that the extracted vox-

els are further from the surface, however never being ex-

tremely false.

Figure 12 shows a cut through the reconstruction of the

specular sphere.

5. Results on Real Images

We have tested our method on the reconstruction of a part

of a specular spoon made of low end polished metal, thus

exhibiting consequent normal variation on some parts (see

figure 7, a little left from the center for example). In the

next paragraphs we present the experimental setup, detail

the calibration process which is non-trivial due to the lim-

ited information available, and present a couple of visual

results of the reconstruction.

5.1. Experimental Setup

Figure 8 shows the experimental setup. A color coded [6]

printed target was attached to an Olympus C2500 digital

camera taking images of the specular spoon from 56 dif-

ferent viewpoints, while a stereo rig was used to obtain the

pose of the target + camera system for every viewpoint. The

unique color code allowed us to automatically match a pixel

in the image corresponding to a circle, to the point on the

target that was reflected onto this pixel. We then extracted

Paper 34: Voxel Carving for Specular Surfaces, ICCV 2003 [6] 417

Figure 7: One of the 56 images used for reconstruction. Around

2 out of 3 colored circles were automatically extracted for this

image.

1890 voxels corresponding to the specular surface out of

a 100x100x100 cube of voxels, each of these voxels being

1 mm3. We wish to point out that we used low end imaging

devices, and that the automatic segmentation of the images

for feature extraction induces consequent noise in the loca-

tion of the pixels corresponding to the reflection of the tar-

get points. Therefore, pose estimation of the printed target

and the camera at the different viewpoints, and projection

lines corresponding to pixels were unlikely to be very ac-

curate, making us believe that this reconstruction method is

relatively robust to medium noise.

stereo rig

specular spoon

printed target camera

Figure 8: Experimental setup. The printed target is reflected by the

specular sphere onto the image plane of the camera. The system’s

pose is determined by the stereo rig.

One point that should be mentionned is blur. The images

we used exhibited large out of focus regions, thus compli-

cating feature extraction on the specular surface. While this

defocus did not prevent the reconstruction, having multiple

images with a different focus setting, for every viewpoint,

would be a simple method to resolve the problem.

5.2. Calibration

The main device used is the combination of the digital cam-

era and the target plane attached to it, whose reflection in

the specular object is what the camera sees. For each image

acquired using this device, we need to know the (relative)

pose of both, camera and target plane. Since they are rigidly

linked, the problem reduces to determining the pose of ei-

ther one of them for the current image, and the relative pose

between them, that is fixed.

Several potential solutions come readily to mind. For

example, we might put the specular object on a planar plat-

form with targets printed on it. The camera’s pose could

then be computed using these targets. We rejected this so-

lution because due to the specular object’s convex form, the

camera had to zoom deeply onto the object, in order to ex-

tract the reflected patterns in the image. So, it was not sure

that targets on the platform would be systematically visible.

We thus chose to use a fixed stereo system, placed behind

the specular object and that observes the camera + target

device (see figure 8). The stereo system gives us the pose of

the target plane for each acquisition position (the method of

[14] was used). Actually, the stereo system was calibrated

(intrinsics and relative pose) using directly the images of

the target plane acquired during the experiments (using the

methods described in [15, 13, 14]).

The remaining problem, estimating the relative position

of the camera and the target plane, is not trivial, since the

camera has no direct view of the targets. We solved the

problem in a way analogous to [2]. Instead of the specu-

lar object, we let the camera observe a 3D calibration grid.

A dozen images were acquired. The camera’s and the tar-

get plane’s ego-motions across the viewing positions, were

computed as follows. For the camera, this is done using the

3D calibration grid and a classical camera calibration + pose

algorithm. As for the target plane, its pose and thus ego-

motion is output by the stereo system, as described above.

The two sequences of ego-motions were then aligned using

a method inspired from [2] and whose formulation is closely

related to classical hand-eye calibration. This alignment

transformation allows finally to compute the rigid transfor-

mation that links the target plane and the camera.

Developing this calibration process was rewarding in it-

self, but details have to be omitted due to lack of space.

418 Chapter 13. 3D Reconstruction of Specular Surfaces

5.3. Results

Reconstruction results for a patch of the specular spoon are

shown in figures 9 and 10. What these images do not clearly

show but can be noticed in the 3D model is that there are no

holes greater than 1-2 voxels on the patch, and that the ex-

tracted thickness is around 1-3 voxels. The extracted vox-

els are qualitatively correct, and quantitatively correct up to

what we could measure.

Figure 9: Front view of the reconstructed voxels.

Figure 10: Side view of the reconstructed voxels. The spoon’s

curvature is clearly visible in one dimension. Views from other di-

rections show curvature is correct on all the reconstructed surface.

6. Conclusion and Future Work

We have developed a method reconstructing voxels and nor-

mals of a specular surface, requiring multiple views of a cal-

ibrated camera and the matching of calibrated scene points

with their reflection in the specular surface. We have tested

this method on simulated data and obtained qualitatively

correct results, and on real images and obtained correct re-

sults as far as we could measure.

The underlying foundation is based on the consistency

of surface normals whatever the viewpoint. A reprojection

error measure and several heuristic disparity measures have

been tested to extract surface voxels, one of the latter giv-

ing the best results. The principal advantage we see of the

method is that it makes no assumption on the surface, and

does not need any initial seed points to complete. It is there-

fore not subject to error accumulation that can occur when

assumptions on surface continuity or derivability are made.

An interesting challenge still remains the information

available for specular surfaces from uncalibrated views

and/or an uncalibrated reflected scene.

References

[1] A. Blake and G. Brelstaff, Geometry from Specularities,

ICCV, p 394–403, 1988

[2] Y. Caspi and M. Irani, Alignment of Non-Overlapping Se-

quences, ICCV, pp. 76-83, 2001

[3] M. Halstead, B. Barsky, S. Klein and R. Mandell, Recon-

structing Curved Surfaces from Specular Reflection Patterns

using Spline Surface Fitting of Normals, SIGGRAPH, 1996

[4] C.G. Harris and M. Stephens, A Combined Corner and Edge

Detector, 4th Alvey Vision Conference, p 147–151, 1988

[5] G. Healey and T. Binford, Local Shape from Specularities,

Computer Vision, Graphics, and Image Processing 42, p 62–

86, 1988

[6] P.M.Griffin, S. Narasimhan and S.R. Yee, Generation of

Uniquely Encoded Light Patterns for Range Data Acquisition,

Pattern Recognition 6,p 609–616, 1992

[7] K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space

Carving, International Journal of Computer Vision, 38(3),

pp 199-218, 2000

[8] M. Oren and S. Nayar, A Theory of Specular Surface Geom-

etry, International Conference on Computer Vision, p 740- ,

1995

[9] A. Ripsman and M. Jenkin, Local Surface Reconstruction of

Objects in Space, IEEE Int. Symposium on Computational In-

telligence, 2001

[10] S. Savarese and P. Perona, Local Analysis for 3D Recon-

struction of Specular Surfaces – Part II, European Conf. on

Computer Vision, 2002

[11] H. Schultz, Shape Reconstruction from Multiple Images of

the Ocean Surface, Photogrammetric Engineering and Re-

mote Sensing, vol. 62, no. 1, 1996

[12] S. M. Seitz and C. R. Dyer, Photorealistic Scene Reconstruc-

tion by Voxel Coloring International Journal of Computer Vi-

sion, 35(2), pp 151-173, 1999

[13] P. Sturm and S. Maybank, On Plane-Based Camera Cali-

bration: A General Algorithm, Singularities, Applications,

CVPR, pp. 432-437, 1999

[14] P. Sturm, Algorithms for Plane-Based Pose Estimation,

CVPR, p.. 1010-1017, 2000

[15] Z. Zhang, A Flexible New Technique for Camera Calibra-

tion, IEEE PAMI, Vol. 22, No. 11, pp. 1330-1334, 2000

[16] J. Zheng and A. Murata, Acquiring a Complete 3D Model

from Specular Motion under the Illumination of Circular-

Shaped Light Sources, IEEE Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, 2000

Paper 34: Voxel Carving for Specular Surfaces, ICCV 2003 [6] 419

[17] A. Zisserman, P.Giblin, and A. Blake, The Information

Available to a Moving Observer from Specularities, Image

and Video Computing 7, p 38–42, 1989

A. Results using Synthetic Images

Figure 11: synthetic reconstruction. 161 voxels extracted on

the sphere’s surface using a strict tolerance on normal disparity.

158 dark (blue) coloured voxels intersect the specular surface,

while 3 light (yellow) coloured ones are adjacent to an intersecting

voxel.No further voxels have been extracted.

Figure 12: synthetic reconstruction. Cut through a reconstruc-

tion of 973 voxels. Voxels on the edges are nearly as close to the

surface as the ones near the centre.

Figure 13: synthetic reconstruction. 589 voxels extracted on

the sphere’s surface, using a medium tolerance on normal dispar-

ity. 573 dark (blue) coloured voxels intersect the specular surface,

while 16 light (yellow) coloured ones are adjacent to an intersect-

ing voxel.No further voxels have been extracted.

Figure 14: synthetic reconstruction. 1982 voxels extracted on

the sphere’s surface, using a broad tolerance on normal disparity.

1659 dark (blue) coloured voxels intersect the specular surface,

while 323 light (yellow) coloured ones are adjacent to an inter-

secting voxel. Nearly all intersecting voxels were extracted, while

no voxels that were further to the surface have appeared.

Figure 15: synthetic reconstruction. 4162 extracted voxels, us-

ing a very laxist threshold on normal disparity. 1934 dark (blue)

coloured voxels intersect the specular surface, while 1765 light

coloured ones are adjacent to an intersecting voxel. An additional

463 voxels (in orange) were more distant, however never being

further than 5 voxels to the correct surface.

420 Chapter 13. 3D Reconstruction of Specular Surfaces

General specular Surface Triangulation

Thomas Bonfort, Peter Sturm, and Pau Gargallo

MOVI - GRAVIR - INRIA - 38330 Montbonnot, FRANCE
http://perception.inrialpes.fr

Abstract. We present a method for the reconstruction of a specular surface, using a single camera view-
point and the reflection of a planar target placed at two different positions. Contrarily to most specular
surface reconstruction algorithms, our method makes no assumption on the regularity or continuity of the
specular surface, and outputs a set of 3D points along with corresponding surface normals, all independent
from one another. A point on the specular surface can be reconstructed if its corresponding pixel in the
image has been matched to its source in both of the target planes. We present original solutions to the
problem of dense point matching and planar target pose estimation, along with reconstruction results in
real-world scenarii.

1 Introduction

Reconstructing surfaces from images usually relies on the identification and matching of pixels corresponding
to a same 3D point on the surface. On unpolished surfaces, matching can be fulfilled by analyzing surface
texture, and assuming that identical texture patches correspond to identical points on the surface. In the
case of specular surfaces, the apparent surface texture is the reflection of the object’s surroundings, being de

facto viewpoint-dependent, thus invalidating the geometric constraints used by all non-specific reconstruction
algorithms. Even standard laser scanners are unable to acquire specular surfaces, as all of the laser energy
is reflected symmetrically to the normal of the surface, and therefore cannot be detected by the sensor [1].
Consequently, specularities, and even more importantly specular objects, are usually discarded as noise by most
surface reconstruction algorithms. However, specular reflections give rise to strong constraints on surface depth
and orientation, and we take advantage of these additional cues to reconstruct a precise model of the surface.

We describe a method recovering points of a specular surface, independently from one another. We assume an
internally calibrated pinhole camera viewing the reflection of a planar target, and a dense matching of the camera
pixels with the points on the target. While the camera is rigidly attached to the specular surface, we acquire
images of the reflection of the target placed at two different unknown locations. The foundation of our method
is closely related to the work on general (i.e. non central) cameras, as the reconstruction of the specular surface
from the images of a calibrated camera is equivalent to the calibration of a non-central catadioptric system.
The output of the algorithm is a collection of 3D points of the specular surface, and the two transformations
(rigid displacements) from the camera reference coordinate system to the target plane coordinate systems.

1.1 Previous Work

Though less actively than for lambertian surfaces, the reconstruction of specular surfaces from images has
interested researchers in the field of computer vision for the past 20 years. For example, Blake and Brelstaff [2]
study the disparity of highlights on a specular surface in a stereoscopic framework. Zisserman et al. [3] tracked
the motion of specularities obtaining a degree-1 family of curvatures along the tracked path.

In [4], Oren and Nayar study the classification of real and reflected features, and recover the profile of a
specular surface by tracking an unknown scene point. The work was extended to complete object models by
Zheng and Murata in [5], who reconstruct a rotating specular object by studying the motion of the illumination
created by two circular light sources.

Halstead et al., in [6], fit a spline surface to a set of normals, iteratively refining the result. Their method
requires an initial seed point on the specular surface, and was applied to the sub-micronic reconstruction of
the human cornea. The approach was extended by Tarini et al. [7] who integrate around a seed point, and
use a global self-coherence measure to estimate the correct depth for the seed point. Under a distant light
configuration, Solem et al. [8] fit a level-set surface with a variational approach.

Paper 35: General Specular Surface Triangulation, ACCV 2006 [7] 421

Savarese et al. detail in [9] the mathematical derivations allowing the recovery of surface parameters up to
3rd order from one view of a smooth specular object reflecting two intersecting calibrated lines, when scale and
orientation can be measured in the images.

Bonfort and Sturm [10] present a space carving approach using surface normals instead of color as a consis-
tency measure.

1.2 Notation

The following notation will be used throughout the article: bold letters represent a vector in 3D space, while
italic letters represent scalars. Matrices are represented by CAPITAL letters.

2 Approach

Suppose a calibrated pinhole camera located at Oc = 0T observing the reflection in an unknown specular surface
of a known 3D feature Q. As the camera is calibrated, recovering the position of the surface at the point p of
reflection is simply the estimation of its depth along the corresponding projection ray. This already constrained
scenario is still insufficient in order to obtain a solution to the depth estimation, as for every point P along
the projection ray, we can compute a surface orientation that would produce an identical observation: depth
estimation of a point on a specular surface from one image gives rise to a one dimensional solution, function of
surface depth and orientation.

Now consider the same setup, except that for a given camera pixel p, two 3D point correspondences Q1 and
Q2 are given. This constraint is sufficient to uniquely determine the depth of the specular surface at p, namely
as the intersection of the lines formed by the camera’s projection center and p on the one hand, and Q1 and
Q2 on the other.

If we consider the (camera + specular surface) system as a general camera, finding two points Q1 and
Q2 for each p, and therefore obtaining a reconstruction of the surface, is equivalent to calibrating this camera,
as this is usually done as a one-to-one mapping of image pixels with lines in 3D space. In [11] or [12], such a
calibration is achieved by using points on calibration planes: pixels in the image are matched with their 2D
correspondent in the target planes, then the only step necessary in order to obtain 3D coordinates of these
points is to estimate the pose of the planes in the camera reference coordinate system. Figure 1 summarizes our
reconstruction method for 3 point correspondences: reconstructing the specular surface sums down to matching
camera pixels with their source in the target planes, then estimating the two transformation matrices T1 and
T2, that map points from the target reference coordinate system to the camera one.

P Q2

Q1

Oc

T1

p

T2

Fig. 1: Reconstruction Approach. Matching of image pixels with their source in the targets and estimating two plane
poses is sufficient to reconstruct the surface.

422 Chapter 13. 3D Reconstruction of Specular Surfaces

3 Dense Matching

The 3D position of a point on the specular surface corresponding to a given pixel in the camera image plane
can only be computed if a correspondence can be found in both of the target planes. As such, in order to obtain
a dense reconstruction of the specular surface, each pixel of the specular surface must be matched to its target
correspondence.

3.1 Initial Matching

We use a standard computer monitor displaying Gray codes, once original and once inverted [13]. The total
number of images taken for each pose of the target is therefore twice the binary resolution in each direction.

The resolution of the codes and the width of the low order stripes must be chosen according to the shape
of the specular object and the resolution of the camera. Too high resolution codes tend to be blurred out and
become unusable, whereas too coarse ones lack in precision. In most cases, multiple pixels in the camera image
correspond to the same code in the target planes. Figure 3 (top right) shows the result of a reconstruction if we
apply this initial matching directly.

3.2 Sub-pixel Matching

From the Gray code decoding we get an initial integer-valued estimate of the pixel matching. To get more
accurate correspondences, this initialization has to be refined. Let u(x, y) and v(x, y) denote the coordinates of
the target point corresponding to the camera pixel (x, y). Instead of directly smoothing u and v as in [13], we
use an energy minimization approach to ensure that the smoothed correspondences will still link camera pixels
with their corresponding origin on the target planes.

We minimize the following energy functional with respect to u and v:

E(u, v) =
∑

k

∫

Ω

(Gk(u, v) − Ik(x, y))2 dx dy

+ λ

∫

Ω

|∇u|2 + |∇v|2 dx dy

where Ω is the mirror image region, Gk are the Gray code images and Ik are the images captured by the camera.
The first energy term is the data term. It penalize correspondences for which the color Ik(x, y) captured

by the camera and it’s corresponding Gray code Gk(u, v) are not the same. We first scale the camera images
intensities pixel-wise, so that 0 and 1 intensities correspond to pure black and pure white. This referential is
computed by displaying entirely black and entirely white images on the planar targets. For non-integer values
of u and v, Gk(u, v) is computed using bilinear interpolation.

The second term is a homogeneous regularizer. It penalizes large variations on the correspondence functions.
The λ parameter sets the compromise between data evidence and smoothing.

The energy functional is minimized by a steepest descent. The descent direction is given by the Euler-
Lagrange equations,

∂ui

∂t
= −

∑

k

2(Gk − Ik)
∂Gk

∂ui

+ λ 2∆ui

for u1 = u and u2 = v.
Figure 3 (bottom right) shows the result of the reconstruction after having smoothed the orginal matches.

4 Target Pose Estimation

Our reconstruction algorithm requires knowledge of the relative pose between the camera and target plane, in
its different positions.

The first and simplest method is to ensure that the target plane is partially visible in the camera, as seen
in figure 3, and apply any pose estimation method [14]; we use the method proposed in [15].

To ensure a much higher flexibility, we wanted to be able to work with setups where the camera hasn’t
any direct view of the target plane; if this was possible then one would be able to take “better” images of the

Paper 35: General Specular Surface Triangulation, ACCV 2006 [7] 423

specular surface to be reconstructed. The second solution is to estimate the pose of the targets through the
reflection by a known mirror. We therefore suppose having a means of estimating the pose of the planar mirror:
this can either be done by placing markers on the mirror and performing a classical plane pose estimation, or
in our case by using a hard-drive platter, whose known interior and exterior radii allow an ellipse based pose to
be estimated. More details on the reflection by a known plane can be found in the next paragraph.

4.1 Pose Through Reflection by 3 Unknown Planes

We acquire images by holding a planar mirror in front of the camera in different positions, such that the target
plane’s reflection is seen by the camera. We now briefly describe how to solve the relative pose between camera
and target plane, from three or more such images, or one image of three or more such mirrors.

In the following, we adopt a global reference frame such that the target plane is at Z = 0, and first carry
out a pose estimation for each image, as if the image were a direct view of the target plane.

Target plane

(screen with

coded pattern)
Camera

Planar mirror

Virtual (reflected)

camera

Fig. 2: Reflected pose. The estimated pose of a reflected plane is equivalent to its pose viewed from a virtual reflected
camera.

This procedure gives us the pose of the virtual camera that would be produced by reflecting the real camera
in the planar mirror, cf. figure 2. If we knew the pose of the planar mirror, we could of course immediately
recover the camera’s true pose, as follows. Let the recovered pose of the virtual camera for image i be given via
the projection matrix:

P
v
i ∼ Si

(
I| − ti

)

where Si is a reflection matrix (a rotation matrix multiplied by −1), and let the associated pose of the planar
mirror be represented by homogeneous coordinates

Πi ∼

(
ni

di

)

where we distinguish the plane’s normal vector ni (of unit norm), and its distance di from the origin. The true
camera’s pose can be recovered by multiplying P

v
i with the transformation modeling the reflection in the plane

Πi:

Pi ∼ P
v
i

(
I− 2nin

T

i −2dini

0T 1

)

(1)

∼ Si

(
I− 2nin

T

i | − ti − 2dini

)

We now have to address the question how to recover the true camera’s pose, knowing that with the correct
mirror positions Πi, the camera poses Pi computed according to (1), have to be equal to one another: Pi ∼ Pj .
Due to det

(
I− 2nin

T

i

)
= detSi = −1, we can safely eliminate the scale ambiguity in the equation Pi ∼ Pj ,

and obtain element-wise equalities:

∀i, j : Si

(
I− 2nin

T

i

)
= Sj

(
I− 2njn

T

j

)
(2)

∀i, j : Si (ti + 2dini) = Sj (tj + 2djnj) (3)

424 Chapter 13. 3D Reconstruction of Specular Surfaces

Computing mirror plane normals ni. Let Xi = I − 2nin
T

i , which is of course a symmetric matrix. From
(2), we get:

Xi = S
T

i Sj
︸ ︷︷ ︸

Rij

Xj (4)

Furthermore, Xj is a reflection, i.e. XjXj = I, therefore:

Rij = XiXj (5)

Let aij be a vector orthogonal to ni and nj . We therefore have:

Rijaij = XiXjaij

=
(
I− 2nin

T

i

) (
I− 2njn

T

j

)
aij

=
(
I− 2nin

T

i

)
aij

= aij

which implies that aij is the eigenvector to the eigenvalue 1 of Rij , i.e. that aij is the rotation axis of Rij .
We now have the means to compute all mirror normals ni, provided at least 3 mirrors are used.

1. Compute the pose eq. (1) of all virtual cameras, as described above.
2. For all pairs of mirrors (i, j), compute Rij , as per eq. (4). Compute their eigenvectors to the eigenvalue +1,

i.e. vectors aij .
3. For every mirror i, stack all aT

ij (respectively aT

ki) in a matrix A of size (n − 1) × 3 (where n is the number

of mirrors), and compute ni as the unit eigenvector to the smallest eigenvalue of A
T
A.

Computing the true camera’s pose. The last step is to compute the least squares solution for the di of the
linear equation system composed of one equation (3) per pair of mirrors. The system’s design matrix is of size
3n(n − 1) × n and very sparse.

We now know all mirror planes Πi, and can compute the camera pose from any one of them, according
to eq. (1). In practice, we do this computation for every mirror, and then “average” the resulting rotation
matrices and position vectors that represent camera pose. We then apply a bundle adjustment style procedure
for simultaneously optimizing the pose of the camera and the planar mirrors. The cost function minimized here
is the reprojection error of target points, projected in the camera after reflection in the mirrors.

5 Optimization

In practice, we also perform a global non-linear optimization of the poses T1 and T2 of the target planes, before
the triangulation. The cost function to be minimized is the distance between matching lines in 3D space which
we minimize using a Levenberg Marquardt algorithm.

cost(T1, T2) =
∑

i∈{matches}

dist2((Oc,pi), (T1Q1i, T2Q2i))

6 Results

We tested our reconstruction method on real specular surfaces, using the different pose estimation methods
presented in section 4. As seen on figure 3, no continuity or regularity is assumed.

Having no ground truth results, we evaluated the correctness of the method by fitting a plane to the part of
the reconstruction we knew was planar, i.e. the hard drive platter (linear least squares fitting, without outlier
removal). In the reconstruction shown on figure 3, over 98% of the computed points were less than 0.2 mm away
from the surface, and 64% less than 0.1 mm. The approximate diameter of the reconstructed part of the platter
was 80 mm, resulting in a maximum 0.3% relative error in the reconstruction.

Paper 35: General Specular Surface Triangulation, ACCV 2006 [7] 425

Fig. 3: Validation Setup and Results. The top row shows two of the images used for the reconstruction. Notice the
3 curved mirrors (an ice-cream cup and two small wide-angle rear-view mirrors, the planar hard drive platter, and a
direct view of the target plane, in the upper part of the image. The second row shows the reconstruction viewed from two
locations. The model contains over 525 000 independent points. Note the planarity of the reconstructed hard drive platter
in the left image. Only a few points could be computed on the ice-cream cup, as its surface covered by the exploitable
Gray codes was limited. The two small rear-view mirrors (one with circular, the other with rectangular based shape)
were completely reconstructed (apart from a non specular dent in the circular one). The two images on the right show
the effect of the sub-pixel matching and constrained smoothing: top image shows result using raw gray codes, while the
bottom one shows results after the smoothing step.

The accuracy of the reconstruction also depends on the quality of the pixel matching. Indeed, when ex-
perimenting with purely piecewise planar surfaces, where the sub-pixel matching was ”easy” to compute, the
distances to the fitted planes dropped down to 99.9% of the computed points less than 0.1 mm away from the
surface, and 88% less than 0.05 mm. This is because the average quality of the matches is higher compared
to when the scene also contains curved specular surfaces. Hence the pose of the target planes and finally the
reconstruction are more precise.

We tested the reconstruction on another setup composed only of planes with the different pose estimation
techniques presented in section 4. Although the initial estimation of the poses given by the different techniques
are not exactly identical, the non-linear optimization converged to very similar poses in all cases. The histogram
of the point-plane distance, with the poses estimated with the three unknown planes (section 4.1), without
global optimization, can be seen in figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

2500

3000

3500

Fig. 4: Point-plane distance. Histogram of the distance in of each point to the linear least squares fitted plane (in
millimeters) with the poses estimated with the three unknown mirror planes (section 4.1).

426 Chapter 13. 3D Reconstruction of Specular Surfaces

Fig. 5: Real World Reconstruction. Reconstruction of a car windshield. The method allowed us to easily obtain a
800 000 + point model using a classical video projector, on a large scale reflective surface. The hole in the middle is due
to a non-specular patch on the surface.

7 Conclusion

We have presented a novel method that reconstructs a specular surface from two views. Compared to other
reconstruction methods, we attain a high level of accuracy, without having the need to suppose surface continuity
or regularity. We believe it could easily be implemented in an industrial surface inspection application, at least to
provide an accurate initialization for integration based reconstruction methods, probably the only purely vision
based ones able to detect surface micro-structure. We also proposed a novel method for the pose estimation of a
target plane even if it is never directly seen in the images, requiring the view of its reflection through unknown
planar mirrors.

The drawback of the method is the need to obtain a dense matching over the complete surface we want
reconstructed. This in practice is difficult to obtain with only two positions of the target plane, meaning
multiple reconstructions have to be computed then stitched together.

References

1. Chen, F., Brown, G.M., Song, M.: Overview of three-dimensional shape measurement using optical methods. Optical
Engineering 39 (2000)

2. Blake, A., Brelstaff, G.: Geometry from specularities. In: Second International Conference on Computer Vision
(Tampa,, FL), Washington, DC,, Computer Society Press (1988) 394–403

3. Zisserman, A., Giblin, P., Blake, A.: The information available to a moving observer from specularities. Image and
Vision Computing 7 (1989) 38–42

4. Oren, M., Nayar, S.K.: A theory of specular surface geometry. In: International Conference on Computer Vision.
(1995) 740–747

5. Zheng, J.Y., Murata, A.: Acquiring 3D object models from specular motion using circular lights illumination. In:
Procedings of the Sixth International Conference on Computer Vision (ICCV-98). (1998) 1101–1108

6. Halstead, M., Barsky, B., Klein, S., Mandell, R.: Reconstructing curved surfaces from specular reflection patterns
using spline surface fitting of normals. In: SIGGRAPH 96 Conference Proceedings. (1996) 335–342

7. Tarini, M., Lensch, H., Goesele, M., Seidel, H.: 3D acquisition of mirroring objects. In: Research Report MPI-I-
2003-4-001, Max-Planck-Institut fr Informatik (2003)

8. Solem, J.E., Aanæs, H., Heyden, A.: A variational analysis of shape from specularities using sparse data. In: 3DPVT,
IEEE Computer Society (2004) 26–33

9. Savarese, S., Chen, M., Perona, P.: Recovering local shape of a mirror surface from reflection of a regular grid. In:
European Conference on Computer Vision. (2004)

10. Bonfort, T., Sturm, P.: Voxel carving for specular surfaces. In: International Conference on Computer Vision. (2003)
591–596

11. Grossberg, M., Nayar, S.: A general imaging model and a method for finding its parameters. In: International
Conference on Computer Vision. (2001) 108–115

12. Sturm, P., Ramalingam, S.: A generic concept for camera calibration. In: Proceedings of the European Conference
on Computer Vision. Volume 2., Springer (2004) 1–13

13. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR (1), IEEE Computer
Society (2003) 195–202

14. Haralick, R., Lee, C., Ottenberg, K., Nolle, M.: Review and analysis of solutions of the three point perspective pose
estimation problem. IJCV 13 (1994) 331–356

15. Sturm, P.: Algorithms for plane-based pose estimation. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition, Hilton Head Island, South Carolina, USA. (2000) 1010–1017

Paper 35: General Specular Surface Triangulation, ACCV 2006 [7] 427

How to Compute the Pose of an Object without a Direct View?

Peter Sturm and Thomas Bonfort

INRIA Rhône-Alpes, 38330 Montbonnot St Martin, France
{Peter.Sturm, Thomas.Bonfort}@inrialpes.fr

Abstract. We consider the task of computing the pose of an object relative to a camera, for the case
where the camera has no direct view of the object. This problem was encountered in work on vision-based
inspection of specular or shiny surfaces, that is often based on analyzing images of calibration grids or
other objects, reflected in such a surface. A natural setup consists thus of a camera and a calibration
grid, put side-by-side, i.e. without the camera having a direct view of the grid. A straightforward idea for
computing the pose is to place planar mirrors such that the camera sees the calibration grid’s reflection.
In this paper, we consider this idea, describe geometrical properties of the setup and propose a practical
algorithm for the pose computation.

1 Introduction

Consider a calibration grid or any other known object, planar or not, and a camera. We would like to determine
their relative pose, but for the case where the camera does not see the object directly. This is an unusual
setting, but it is quite natural for the task of reconstructing specular or shiny surfaces, as explained in the
following. Modeling of specular or shiny surfaces is an important application in inspection of industrial parts,
especially in the car manufacturing industry (control of wind shields and bodywork) but also in the control
of optical lenses or mirrors, glasses of watches etc. Vision-based reconstruction of specular surfaces is usually
based on acquiring images of known patterns or light sources, reflected in the surface to be reconstructed [3, 4,
6, 7, 11, 14].

It is thus rather natural to place the camera and pattern such that the camera does not have a direct view
of the latter, or at most sees a small part of it. We have proposed practical approaches for the reconstruction
of specular surfaces where such an arrangement is indeed used. The question of how to compute the pose of an
object without a direct view is thus important for us and in addition scientifically appealing.

Our initial solution consisted in attaching the pattern rigidly to the camera and to move the two to a
few locations. During this, the camera acquired images of a calibration grid, and a secondary camera (static)
acquired images of our pattern. With this input, the pattern’s 3D trajectory was computed as well as the main
camera’s one. By registering the two trajectories into a common coordinate frame, along the lines of [2] and
of the classical hand-eye calibration problem, we finally computed the pose of the pattern relative to the main
camera. This approach was found to be too cumbersome in practice. A second camera is required and especially,
having to move the camera–pattern pair is not desirable, as we currently use an LCD monitor to produce the
pattern(s).

We are thus aiming at a lighter procedure. A natural idea is to proceed as follows: place a planar mirror
in different positions in front of the camera such that the pattern’s reflection is seen, and acquire images. The
question arises if this input is sufficient to solve our pose problem, and if yes, how many positions of the planar
mirror are required? We show in this paper that our pose problem can be solved up to 1 degree of freedom from
two positions, and can be fully solved from three or more positions.

2 Background

2.1 Camera model

We consider perspective projection as camera model. The projection of 3D points is modeled by a 3×4 projection
matrix P = KR

(
I| − t

)
, where K is the usual 3×3 calibration matrix with the camera’s intrinsic parameters, and

the orthogonal matrix R and the vector t represent camera orientation and position. For simplicity, we assume
that the camera is calibrated, i.e. that K is known (this will be relaxed later). We thus directly work with
geometric image coordinates, i.e. consider that 3D points Q are projected to image points q via the canonical
projection matrix q ∼ R

(
I| − t

)
Q. 2D and 3D points are expressed in homogeneous coordinates and ∼ means

equality of vectors or matrices, up to scale.

Paper 36: How to Compute the Pose of an Object without a Direct View?, ACCV 2006 [27] 429

2.2 Pose computation

A classical task of photogrammetry and computer vision is to compute the pose of a calibrated camera, relative
to an object of known structure. In this work, we use planar reference objects. There exist many algorithms for
the planar pose problem; we use [10].

2.3 Reflections in planes

Consider a plane Π = (nT, d)
T

in 3-space, i.e. consisting of points satisfying the equation n1X+n2Y +n3Z+d =
0. In the following, we will always suppose that the plane’s normal vector is of unit norm. The reflection in Π
can be represented by the following transformation matrix:

S =

(
I− 2nnT −2dn

0T 1

)

Let us denote the upper left 3×3 matrix of S by S̄. It is an orthogonal matrix, with determinant −1 (whereas
a rotation matrix has determinant +1). Further, it has +1 as double eigenvalue and −1 as single eigenvalue.
The plane normal n is an eigenvector of S̄ to the eigenvalue −1. Note also that S

−1 = S.

2.4 Planar motion and fixed-axis rotation

Planar motion usually means a translation in some direction, followed by a rotation about an axis that is
orthogonal to the translation direction. Such a motion can always be expressed as just a rotation about an axis
that is parallel to the above rotation axis; we thus prefer to call such motions fixed-axis rotations. It is easy to
show that any euclidian transformation that preserves some line point-by-point, is a fixed-axis rotation, whose
axis is that line.

Let the axis be represented by its direction vector D and a footpoint A such that A + λD represents the
points (in non-homogeneous coordinates) on the axis. Any finite point on the axis can serve as footpoint; we
always choose the one that is “orthogonal” to D: ATD = 0. This is the point on the axis that is closest to the
origin.

Let α be the angle of rotation and R be the rotation matrix representing rotation by α about D. Then, the
4 × 4 matrix representing the complete fixed-axis rotation, is:

T =

(
I A

0T 1

)(
R 0

0T 1

) (
I −A

0T 1

)

=

(
R A − RA

0T 1

)

2.5 Reflection in two planes

Consider successive reflections in two planes. It can be shown that this is a fixed-axis rotation, with the in-
tersection line of the two planes as rotation axis: the transformation preserves the intersection line of the two
planes point-by-point, and thus is a fixed-axis rotation.

Further, the rotation angle is twice the angle between the two planes. This is also easy to see: let the
transformation be the sequence S2S1 of reflections in two planes. Let us apply this transformation to the point

at infinity (nT

1
, 0)

T
, i.e. the normal direction of the first plane. This is a fixed point of S1, hence the transformation

gives the point’s reflection in S2. The angle between the original point at infinity, and the transformed one,
i.e. the fixed-axis rotation angle, is thus twice the angle between the original point at infinity and the second
reflection plane. Hence, as said above, the sequence of reflections in two planes is a fixed-axis rotation, whose
angle is twice the angle between the planes.

2.6 Horopter

The horopter of a stereo system is the set of 3D points that project to points with identical coordinates in
the two cameras. Let P1 and P2 be the two cameras’ projection matrices. The horopter thus consists of all 3D
points Q with P1Q ∼ P2Q. This is in general a quartic curve. If the two cameras have identical calibration and
are separated by a fixed-axis rotation, then the horopter “degenerates” into the union of a straight line and a
circle: the motion’s rotation axis and the circle in the motion plane that contains the two optical centers and
that cuts the rotation axis [5].

430 Chapter 13. 3D Reconstruction of Specular Surfaces

3 Outline of the Proposed Approach

We consider a camera and an object in fixed position, put a planar mirror in the scene in n different positions,
and take an image for each of those. We suppose that the camera sees the object’s reflection in each image. We
further suppose that the object’s structure is known and that correspondences between object and image points
can be obtained.

In the first step of our approach, the views of the reflected object are treated as if they were direct views.
We may thus compute a camera pose, from the camera’s calibration and the given point correspondences. This
will actually give the pose of a “virtual” camera that is the reflection of the true camera, in the planar mirror
(cf. figure 1). Overall, we thus get the pose of n virtual cameras, relative to the object.

In the second step, we try to infer the positions of the planar mirrors. The underlying constraint is that
reflecting the virtual cameras in mirrors with the correct positions, will lead to n identical cameras – the true
one. We show how the mirror positions can be computed using the above notions of horopter and fixed-axis
rotation. We further show that for n = 2, the problem can be solved up to 1 degree of freedom, and that with
n > 2 a unique solution can be found. These steps are described in the following sections.

4 Computing Pose of Virtual Cameras

In the following, we adopt the object’s coordinate system as our reference system, in which the pose of true and
virtual cameras will be expressed. Let the pose of the true camera be represented by the projection matrix

R
(
I| − t

)

Consider now a planar mirror, defined by the plane

Π =

(
n

d

)

Object points Q are projected into the true camera as follows:

q ∼ R
(
I| − t

)
(
I− 2nnT −2dn

0T 1

)

Q

From point correspondences (Q,q), we can run any pose computation algorithm and compute the projection
matrix of the virtual camera:

P = R
(
I| − t

)
(
I− 2nnT −2dn

0T 1

)

= R
(
I− 2nnT

) (
I 2dn−

(
I− 2nnT

)
t
)

(1)

One issue needs to be considered: pose algorithms for perspective cameras compute a pose consisting of a
rotation and a translation component, whereas the above projection matrix contains a reflection part. What
the pose computation will compute is thus a rotation matrix R′ and a camera position t′, with:

P ∼ R
(
2nnT − I

)

︸ ︷︷ ︸

R′

(
I −t′

)
with − t′ = 2dn−

(
I− 2nnT

)
t

Our input for the following steps is thus a set of n projection matrices Pi (we drop the ’ above the Ri and
ti):

Pi = Ri

(
I −ti

)

The basic constraint for solving our pose problem is the following (cf. §3): we try to compute n planes Πi

and associated reflection matrices Si such that

∀i, j : PiSi ∼ PjSj

If there is a unique solution for the set of planes, then any PiSi gives the pose of the true camera. In the above
equation, we may actually replace the equality up to scale by a component-wise equality, since the determinants
of the left 3 × 3 submatrices of the PiSi are all equal to −1. Hence, our constraint becomes:

∀i, j : PiSi = PjSj

Paper 36: How to Compute the Pose of an Object without a Direct View?, ACCV 2006 [27] 431

5 Two Mirror Positions

In this section, we investigate what can be done from just two mirror positions. Our basic constraint is:

P1S1 = P2S2

Instead of directly trying to compute the reflections S1 and S2, we first concentrate on:

P1 = P2S2S
−1

1
= P2S2S1

We have seen above that the sequence of two reflections gives a fixed-axis rotation. Let us thus compute R and
t in the following euclidian transformation between the two virtual cameras:

P1 = P2

(
R t

0T 1

)

We get R = RT

2
R1 and t = t2−RT

2
R1t1. In the following, we analyze what R and t reveal about the individual

reflections S1 and S2.
Let α be the rotation angle of R. We already know that it equals twice the angle between the two mirror

planes. Further, we want to compute the fixed axis (the intersection of the two mirror planes). Let us represent
it by its direction D and a footpoint A, cf. §2.4. The direction D is identical with the rotation axis of R and
can for example be computed as its eigenvector to the eigenvalue +1. Let D1 and D2 be an orthonormal basis
of the complement of D, such that:

R
(
D1 D2

)
=

(
D1 D2

)
(

cosα − sinα
sin α cosα

)

As for the footpoint A, we compute it as follows. Since we want A to be “orthogonal” to D, we can
parameterize it by two scalars a1 and a2:

A =
(
D1 D2

)
(

a1

a2

)

The translation part of the fixed-axis rotation would thus be (cf. §2.4):

A− RA =
(
D1 D2

)
(

1 − cosα sin α
− sinα 1 − cosα

) (
a1

a2

)

In the absence of noise, this would be equal to t. However, with noise, the computed R and t will in general not
exactly represent a fixed-axis rotation. We thus determine a1 and a2 that minimize the L2 norm of:

t−
(
D1 D2

)
(

1 − cosα sin α
− sinα 1 − cosα

) (
a1

a2

)

This is a linear least squares problem, with the following closed-form solution:

(
a1

a2

)

=
1

2

(
1 − cot α

2

cot α
2

1

) (
DT

1

DT

2

)

t

So far, we have computed the axis and angle of the fixed-axis rotation being the sequence of S2 and S1.
What does this tell us about the mirror planes Π1 and Π2? The axis being the planes’ intersection line, we know
that both planes must contain it; this determines each plane up to a rotation about the axis. Further, we know
the angle between the planes (α/2). In addition, not explained here in more detail, we know the “ordering” of
the two planes, i.e. the second plane has always to be on the same side of the first (in terms of rotation about
their intersection line). Overall, we thus have computed the two mirror planes up to a single unknown. It can
be shown (not done due to lack of space) that this can not be reduced further with only two planes.

A geometric illustration of the situation is given in figure 1. For simplicity, we show the scene as seen from
the direction of the mirror planes’ intersection line. On the right, the ambiguity in the inferred pose of the true
camera is shown: its position can lie anywhere on the circle that is centered in the fixed-axis rotation axis, is

432 Chapter 13. 3D Reconstruction of Specular Surfaces

True camera

Virtual
camera 1

Virtual
camera 2

Mirror 1

Mirror 2

Intersection line
(seen from above)

Reference object

Virtual
camera 1

Virtual
camera 2

Reference object True camera

Virtual
camera 1

Virtual
camera 2

Reference object

Fig. 1. Illustration of the case of two planar mirrors. Left: the virtual cameras are the reflections of the true one in the
planar mirrors. Middle: the horopter curve of the two virtual cameras is the union of the shown circle and the axis of
the fixed-axis rotation, i.e. the mirror planes’ intersection axis. Further shown is the angle α of the fixed-axis rotation.
Right: the true camera pose can be recovered up to one degree of freedom. The reconstructed camera position is only
constrained to lie on the shown circle.

“orthogonal” to the latter and passes through the two virtual camera positions. Let us call this circle the pose

circle. For every possible camera position on the pose circle though, the camera’s orientation is uniquely defined.
All possible poses for the true camera can be parameterized by an angle β as follows. Any plane containing

the axis of the fixed-axis rotation, can be written

Π ∼

(
D1 D2

−a1 −a2

) (
cosβ
sinβ

)

for some β. We can thus parameterize the possible poses of the true camera by β, by reflecting any of the virtual
ones, say the first, in the family of planes Π .

6 Three or More Mirror Positions
With three or more mirror positions, our pose problem will in general be solvable. Different approaches are
possible. One could for example use the solution of the previous section for all available pairs of mirror positions.
The problem could be geometrically expressed as one of finding the common point of a set of circles in 3-space
(the circles as sketched in the right part of figure 1). A few special cases need to be discussed:

– Consider the case where the planar mirror is rotated about some axis contained in the mirror plane. In that
case, the fixed-axis rotations for pairs of mirror positions will all have the same axis, and the resulting pose
circles will all be identical. The pose of the true camera will remain ambiguous. Note that this case also
refers to mirror positions that are parallel to each other (this can be seen as rotating the mirror about a
line at infinity).

– The case where the mirror moves in such a way that it remains tangent to some cylinder. This implies that
the lines of intersection for pairs of positions, will be parallel to one another. Hence, all pose circles lie on
the same plane but since we have three or more of them, there will be a single common point: the position
of the true camera.

– If there are intersection lines for pairs of mirror positions that are not parallel, then there are pose circles
with different supporting planes. It can be shown that there will be pose circles in at least three supporting
planes with different normals. Consequently, the set of pose circles can only have a single common point
(the intersection point of all supporting planes), meaning that again, the pose problem can be solved.

In the following, we present a less geometrical method for combining results from pairs of mirror positions.
Consider mirror position i. Using §5, we can compute the intersection lines of the mirror in that position, with
any other position. The plane at position i has to contain all these lines, and can thus be uniquely computed
from two or more lines, unless all of them are identical (cf. the above discussion). In the presence of noise, there
will not be a plane that exactly contains all these lines, and we perform a fitting procedure, as follows. First,
perform a least-squares fit to the direction vectors of all available lines. This will be used as the plane’s normal
vector. Then, compute the plane position (the scalar d appearing elsewhere in this paper) that minimizes the
sum of squared distances to the available footpoints. This method fails if all lines are parallel. An alternative
procedure for that case is simple to devise though.

Once mirror plane positions are computed, we reflect the virtual cameras in the corresponding planes, to
obtain the true camera’s projection matrix. The complete method is summarized in the next section.

Paper 36: How to Compute the Pose of an Object without a Direct View?, ACCV 2006 [27] 433

7 Complete Approach

1. For each mirror position, compute the pose of the virtual camera, relative to the object.

2. For each pair of mirror positions, compute the fixed-axis rotation between the virtual cameras.

3. For each mirror position, compute the mirror plane by fitting it to the associated axes of fixed-axis rotations.

4. Compute the true camera’s projection matrix by reflecting any virtual camera in the associated plane.

5. Do a non-linear bundle adjustment: minimize the sum of squared reprojection errors, over the pose of the
true camera and the positions of the mirror plane. This is implemented in the usual sparse manner [12].

For conciseness, we did not mention that in practice we also compute intrinsic camera parameters during
this procedure: in the first step, we also calibrate the camera. In practice, we use a planar reference object; we
thus use the method of [13, 9] to calibrate the camera from the reflected views (the reflection does not alter the
intrinsic parameters), prior to computing pose in step 1. Further, the bundle adjustment in the last step also
optimizes intrinsic camera parameters.

8 Experiments

8.1 Setup

We use an LCD monitor as reference object, considering it effectively as a planar surface. A structured light
type approach [8] is used to get correspondences between the screen and the image plane: for each position of
the planar mirror, we actually take a set of images, with the screen displaying a sequence of different patterns
(cf. figure 2). Patterns are designed such that for each pixel in the image plane, we can directly compute the
matching “point” on the screen, from the sequence of black-and-white (dark-and-light) greylevels received at
the pixel.

Fig. 2. Two images of our setup. Four planar mirrors (hard disk platters) are placed simultaneously in the scene. The
object in the middle is a curved mirror, which was not used for the experiments reported here. The LCD monitor is
partly visible in the image, but only its reflections are used to compute camera pose.

8.2 Surface Reconstruction

We tested our method on real images, cf. figure 2. It was difficult to evaluate the estimated pose, so we evaluate it
indirectly as follows. In [1], we describe an approach for the reconstruction of general specular surfaces from two
images of the reference object’s reflections. Here, to perform a quantitative evaluation, we reconstruct a planar
specular surface (a hard drive platter), without making use of the planarity information for the reconstruction.
Images are taken with a fixed pose of the camera and the specular surface (cf. figure 3), but with two different
positions of the LCD monitor. Each of the two positions is estimated using the approach presented in this paper,
by placing planar mirrors in the scene and making use of the knowledge of planarity.

The specular surface is reconstructed as a dense point cloud [1], to which we fit a plane (linear least squares
fitting without outlier removal). Over 98% of the roughly 525,000 computed points were less than 0.2 mm away
from the computed plane and 64% less than 0.1 mm. The approximate diameter of the reconstructed part of the
platter was 80 mm, resulting in a 0.3% relative error in the reconstruction. Refer to figure 4 for the histogram
of point-plane distances.

434 Chapter 13. 3D Reconstruction of Specular Surfaces

Fig. 3. Two of the images used for the reconstruction of the planar hard drive platter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

2500

3000

3500

Fig. 4. Point-plane distance. Histogram of the distance of each point to the linear least squares fitted plane (in mm).

9 Conclusions

We have addressed the problem of computing the pose of an object relative to a camera, without any direct
view of the object. This problem has to our knowledge not been studied yet. A theoretical study and a practical
algorithm have been provided, making use of planar mirrors put in unknown positions in the scene. It was shown
that with three mirror positions or more, the problem can in general be solved.

Although rather specific, this problem is very relevant for our work on specular surface reconstruction, which
like many similar works uses setups where the camera has not direct view of the reference object.

The method was shown to work with real images, although by an indirect evaluation via a specular surface
reconstruction method. A more in-depth evaluation using simulated data should be done, but it seems to be
reasonable to assume that the performances will be similar to those of calibration and pose estimation of a
camera from several images of a planar calibration grid [13, 9] (the number of parameters and the geometries
of the problems are similar).

References

1. T. Bonfort, P. Sturm, P. Gargallo. General Specular Surface Triangulation. ACCV, 2006.
2. Y. Caspi, M. Irani. Alignment of Non-Overlapping Sequences. ICCV, 76-83, 2001.
3. M.A. Halstead, B.A. Barsky, S.A. Klein, R.B. Mandell. Reconstructing Curved Surfaces from Specular Reflection

Patterns Using Spline Surface Fitting of Normals. SIGGRAPH, 335-342, 1996.
4. S. Kammel, F. Puente León. Deflectometric measurement of specular surfaces. IEEE Instrumentation and Measure-

ment Technology Conference, 531-536, 2005.
5. S. Maybank. Theory of Reconstruction from Image Motion. Springer Verlag, 1993.
6. M. Oren, S.K. Nayar. A Theory of Specular Surface Geometry. IJCV, 24(2), 1996.
7. S. Savarese, M. Chen, P. Perona. Recovering local shape of a mirror surface from reflection of a regular grid. ECCV,

2004.
8. D. Scharstein, R. Szeliski. High-accuracy stereo depth maps using structured light. CVPR, 195-202, 2003.

Paper 36: How to Compute the Pose of an Object without a Direct View?, ACCV 2006 [27] 435

9. P. Sturm, S. Maybank. On Plane-Based Camera Calibration. CVPR, 432-437, 1999.
10. P. Sturm. Algorithms for Plane-Based Pose Estimation. CVPR, 706-711, 2000.
11. M. Tarini, H. Lensch, M. Goesele, H.-P. Seidel. 3D acquisition of mirroring objects. Research Report MPI-I-2003-4-

001, Max-Planck-Institut für Informatik, 2003.
12. B. Triggs, P.F. McLauchlan, R.I. Hartley, A. Fitzgibbon. Bundle Ajustment – A Modern Synthesis. Vision Algorithms,

298-372, 1999.
13. Z. Zhang. A flexible new technique for camera calibration. PAMI, 22(11), 2000.
14. J.Y. Zheng, A. Murata. Acquiring 3D object models from specular motion using circular lights illumination. ICCV,

1101-1108, 1998.

436 Chapter 13. 3D Reconstruction of Specular Surfaces

Chapter 14

Modelling of 3D Geometry and Reflectance

Properties

Paper 37 [5]: N. Birkbeck, D. Cobzaş, P. Sturm, and M. Jägersand. Variational shape and reflectance

estimation under changing light and viewpoints. In H. Bischof and A. Leonardis, editors, Proceedings of

the 9th European Conference on Computer Vision, Graz, Austria, Lecture Notes in Computer Science, May

2006.

437

Variational Shape and Reflectance Estimation

Under Changing Light and Viewpoints

Neil Birkbeck1, Dana Cobzas1, Peter Sturm2, and Martin Jagersand1

1 Computer Science, University of Alberta, Canada
{birkbeck, dana, jag}@cs.ualberta.ca

2 INRIA Rhone-Alpes, France
peter.sturm@inrialpes.fr

Abstract. Fitting parameterized 3D shape and general reflectance
models to 2D image data is challenging due to the high dimensionality of
the problem. The proposed method combines the capabilities of classical
and photometric stereo, allowing for accurate reconstruction of both tex-
tured and non-textured surfaces. In particular, we present a variational
method implemented as a PDE-driven surface evolution interleaved with
reflectance estimation. The surface is represented on an adaptive mesh
allowing topological change. To provide the input data, we have designed
a capture setup that simultaneously acquires both viewpoint and light
variation while minimizing self-shadowing. Our capture method is feasi-
ble for real-world application as it requires a moderate amount of input
data and processing time. In experiments, models of people and everyday
objects were captured from a few dozen images taken with a consumer
digital camera. The capture process recovers a photo-consistent model
of spatially varying Lambertian and specular reflectance and a highly
accurate geometry.

1 Introduction

The automatic computation of 3D geometric and appearance models from im-
ages is one of the most challenging and fundamental problems in computer vi-
sion. While a more traditional point-based method provides accurate results
for camera geometry, a surface representation is required for modeling and vi-
sualization applications. Most surface-based approaches reconstruct the model
based on stereo correlation data [1, 2, 3]. That works well for textured Lamber-
tian surfaces but fails in the presence of specular highlights or uniform texture.
Additionally, stereo-based techniques reconstruct only the shape and not the
surface reflectance properties even though some approaches can handle specular
objects using robust scores [4, 5].

We are proposing a surface reconstruction method that uses texture and shad-
ing information to successfully reconstruct both textured and non-textured ob-
jects with general reflectance properties. The similarity cost functional uses a
parametric reflectance model that is estimated together with the shape. There
exist other approaches that combine stereo for textured regions with shape from

A. Leonardis, H. Bischof, and A. Prinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 536–549, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Paper 37: Variational Shape and Reflectance. . . , ECCV’06 [5] 439

Variational Shape and Reflectance Estimation 537

shading cues for texture-less regions [6, 7], but, in those works, the two scores are
separate terms in the cost function and the combination is achieved either using
weights [6] or by manually assigning regions [7]. Additionally, they only exploit
diffuse objects whereas our method can also handle specular objects. Like photo-
metric stereo, our method is able to reconstruct the surface of spatially varying
or uniform material objects by assuming that the object is moving relative to
the light source. Zhang et al. [8] and Weber et al. [9] also use light variation for
reconstructing spatially varying albedo. But, in contrast to our approach, they
do not consider the challenge of dealing with specular surfaces.

With respect to recovering specular surfaces, most of the approaches either
filter or remove specularities and use only diffuse observations in the reconstruc-
tion [5]. Another option is to design similarity scores that account for specular
highlights either by assuming a uniform surface material [10] or by enforcing
dimensionality constraints on the observed intensity variations [11]. A more gen-
eral approach is to explicitly model surface reflectance either with a parametric
model [12] or a non-parametric model (BRDF map). Obtaining a BRDF map
requires carefully calibrated lights and many samples [13]. For our system we
made the choice of using a parametric model for reflectance as we are interested
in reconstructing both shape and reflectance parameters.

Different representations have been proposed for shape reconstruction; they
can be divided in two main classes - image-based (depth/disparity) and object-
based (voxel grid, mesh, level set). Image-based representations are suitable for
single view or binocular stereo techniques, but object based representations,
which are not tied to a particular image, are more suitable for multi-view re-
construction. Mesh and level set techniques have the advantage over voxel rep-
resentations that they give readily computable normals (essential in recovering
shading). Additionally, the regularization terms can be easily integrated into a
mesh or level set. An implicit level set representation leads to an elegant algo-
rithm [2], but despite various efficient numerical solutions proposed for the level
set methods [14], they are still slow compared to mesh based approaches that can
take advantage of graphics hardware acceleration. We therefore decided to imple-
ment our method using an adaptive deformable mesh that allows for topological
changes. The mesh is evolved in time based on a variational algorithm. Fua and
Leclerc [6] and Duan et al. [15] have presented related variational mesh-based
approaches but not as general as they only reconstruct diffuse objects.

Due to the high dimensionality, reconstruction can be difficult, slow and re-
quire lots of image data. To ameliorate these problems, we propose a multi-
resolution algorithm that alternates between shape and reflectance estimation.
Although in theory a general reflectance model can be estimated at every step, in
practice we noticed that similar results are obtained more efficiently if the shape
reconstruction is performed on filtered diffuse pixels assuming Lambertian re-
flectance. A Phong parametric model is then calculated using the final shape.
Experiments show that the proposed method is able to reconstruct accurate and
photo-realistic models that can be rendered in novel illumination conditions. To
summarize, the main contributions of the paper are:

440 Chapter 14. Modelling of 3D Geometry and Reflectance Properties

538 N. Birkbeck et al.

– We designed a photo-consistency functional suitable for surfaces with non-
uniform general reflectance based on a parametric reflectance model;

– We present a variational method implemented as a PDE-driven mesh evolu-
tion interleaved with reflectance estimation. Our particular mesh implemen-
tation is robust to self-intersections while allowing topological changes;

– We designed a practical setup that provides the necessary light variation,
camera and light calibration and requires only commonly available hardware:
a light source, a camera, and a glossy white sphere.

2 Shape Refinement

We present the shape refinement problem beginning with a general continuous
formulation that is then discretized on the mesh triangles. Next, we describe
a numeric solution to the resultant optimization problem for an object with
Lambertian or specular reflectance.

2.1 Problem Definition

The proposed capture setup consists of a single camera viewing an object placed
on a turntable illuminated by a desk lamp. We take two sets of images of a full
rotation, each with a different light position. Considering the proposed capture
setup, the shape recovery problem takes the following as input:

– a set of n images I = {Ii|i = 1 · · ·n};
– the associated projection matrices Pi;
– the illumination information Li = (li, li), assuming a single distant light

source with direction li and color li;
– an initial shape S0;

and computes a refined shape, S, and the corresponding reflectance parameters
that best agree with the input images. A practical method for automatically
calibrating the camera and the light is presented in Section 4.

Given the projection matrix Pi = K[Ri, ti], the image coordinates pi =
(ui, vi, 1)T for a 3D point x are expressed as pi = Π(Pix). Π represents the
non-linear operator that transforms homogeneous coordinates into Cartesian
ones (division with the homogeneous component).

We assume that surface reflectance is a parametric function implied by the
surface (and surface normals) and imaging conditions. Therefore, the shape re-
construction problem is to recover a shape and its implied reflectance parameters
that best agree with the input images. The shape and reflectance are estimated
in an alternate fashion (see Section 4).

2.2 Shape Functional

We use a variational formulation for the shape recovery problem similar to the
one from Faugeras and Keriven [2].

E(S) =

∫
S

g(x,n)dS =

∫
v

∫
u

g(x,n)‖Su × Sv‖dudv (1)

Paper 37: Variational Shape and Reflectance. . . , ECCV’06 [5] 441

Variational Shape and Reflectance Estimation 539

where x = (x(u, v), y(u, v), z(u, v))T is a point on the surface and n = Su×Sv

‖Su×Sv‖

is the surface normal at point x.
The photo-consistency function g encodes the similarity between a point on

the surface, and the images in which it is observed. We investigate a similarity
function of the form:

g(x,n) =
∑

i

h(x,n, Pi, Li) (Ii(Π(Pix)) − R(x,n, Li))
2

(2)

where R is a rendering equation returning the color of point x under light condi-
tions Li. The function h is a weighting function that accounts for visibility and
discrete sampling effects. Refer to Fig. 1 for a explanation of our notations.

Fig. 1. An illustration of the sample points and the angles used in the shading equation

Rendering function. The function R encodes the reflectance model at a point x

on the surface. In fact, R is a function of the entire surface as it should account for
inter-reflections and shadowing of a point x. In our capture setup we minimized
self shadowing and inter-reflections and therefore ignored these subtleties. We
model R with a parametric BRDF which is fitted to Eq. 2 (assuming known
shape and imaging conditions).

For modeling the parametric BRDF we chose the Lambertian model to rep-
resent diffuse reflectance and the Phong model for the specular reflectance. The
two models are briefly summarized below1.

Lambertian model assumes constant BRDF and effectively models matte objects,
such as clay, where the observed shading is a result of the foreshortening con-
tribution of the light source. Integrating the Lambertian BRDF model into the
reflectance equation we get the following expression for the observed color at a
particular point x with normal n:

Rlamb(x,n, Li) = (〈n, li〉li + ai)kd,x (3)

1 The proposed method works with color images but for simplicity reasons we present
the theory for one color channel. In practice the colors are vectors in RGB space.

442 Chapter 14. Modelling of 3D Geometry and Reflectance Properties

540 N. Birkbeck et al.

where kd,x represents the Lambertian color (albedo). For better modeling of
light effects in a normal room we incorporate an ambient term to capture the
contribution of indirect light in each image ai.

Specular reflectance is typically modeled as an additive component to the Lam-
bertian model. We chose to represent the specular BRDF using the Phong model.
Letting oi be the outgoing direction from the point x to the center of the camera
i (i.e., the view direction), and hi the bisector of the angle between the view and
the light directions hi = oi+li

‖oi+li‖
the shading model for a specular pixel is (refer

to Fig. 1 for an illustration):

Rspec(x,n, Li) = (〈n, li〉li + ai)kd,x + 〈n,hi,x〉
mliks (4)

where ks is the specular color and m is the specular exponent. The specular
parameters are not indexed per point due to the fact that several observations
are needed for reliably estimating the BRDF. Instead (as discussed in Section 3)
we compute the specular parameters for groups of points having similar diffuse
component, thus likely to have the same material.

Weight function. The similarity measure with respect to an image should be
computed only for the visible points. This can be easily represented by setting
the weight function, h, to the binary visibility function V (x, S, Pi).

To ensure that only relevant image information is used in evaluation of g, we
use a subset of image observations for each point on the surface. In particular,
we use the ncameras closest cameras to the median camera [5], where the median
camera is chosen based on the azimuthal angle. This camera selection gives
another binary weight function V ′. Another sampling issue arises because a
surface patch projects to a different area in each image. We compensate for this
by giving more weight to observations that have frontal views and less weight
to grazing views. This is accomplished by weighting the samples by 〈n,oi〉.
Cumulating visibility and sampling into the function h we get:

h(x,n, Pi, L) = 〈n,oi〉V
′(x, S, Pi) (5)

2.3 Surface Evolution

Optimizing the photo-consistency function in Eq. 1 with respect to the surface
S results in a surface evolution problem. The gradient flow PDE is derived from
the Euler-Lagrange equation of Eq. 1. The PDE contains higher order terms [2]
resulting from the general form of g being a function of n. Instead of using
the full PDE, complete with the higher order terms, we use a simplified PDE
containing only the first order terms. This flow is accurate for a g that is only
a function of surface position x. Similar PDE’s were used by [16, 15] but with
different g functions.

∂S

∂t
= (2gκ− 〈∇g,n〉)n (6)

where κ is the mean curvature. The flow will move each point along the current
estimate for the normal. The first component of the motion in Eq. 6, 2gκ, is

Paper 37: Variational Shape and Reflectance. . . , ECCV’06 [5] 443

Variational Shape and Reflectance Estimation 541

−−−−−−−−−−−−−−−−−−−→
Input Image Mesh Refinement Textured Result

Fig. 2. An example of the mesh evolving to a refined shape

essentially a smoothing term, reducing the mean curvature of the object, whereas
the second component ensures the evolution decreases the error function on the
surface.

The shape refinement then proceeds by iteratively updating the initial shape,
S0, using Eq. 6 until convergence. We stop the evolution when there is no sig-
nificant change in the error function for several steps. Fig 2 gives an example of
our surface evolution algorithm starting from the visual hull.

2.4 Discretization on the Triangular Mesh

The numerical solution for the surface evolution depends on the chosen represen-
tation. As we explore the use of a mesh based representation, we must first break
the integral into a sum of integrals over the triangles. Let ∆ = (v1,v2,v3) be a
triangle having vertices v1,v2 and v3. An interior point on the triangle can be
expressed using the barycentric coordinates λ1, λ2, λ3 satisfying λ1 +λ2 +λ3 = 1
and λk ≥ 0 for k ∈ {1, 2, 3}: x = λ1v1 + λ1v2 + λ1v3. The triangle normal n is
then computed by smoothly interpolating the normals n1,n2,n3 of the vertices:
n = λ1n1 + λ2n2 + λ3n3.

The integrals are then composed into a sum of regularly spaced sample points
over the triangles, giving:

E(S) ≈
∑

{v1,v2,v3}∈∆

∑
{λ1,λ2,λ3}

g(λ1v1 + λ2v2 + λ3v3, λ1n1 + λ2n2 + λ3n3) (7)

The method of computing the error on sampling points within the triangles
relates our work to other mesh based approaches [6, 17, 10, 12]. An alternative
approach, used in the work of Duan et al. [15], is to sample the error on the
tangent plane of the mesh vertices.

Although a small number of samples points (e.g., using only the mesh vertices)
may be sufficient for textureless surfaces, a textured surface may require a dense
sampling that matches the image resolution. We use a dense sampling to ensure
the method works on either textured or textureless surfaces.

One way to implement the gradient flow given by Eq. 6 is to derive the ana-
lytic gradient of g. But, there are several problems with the analytic gradient.

444 Chapter 14. Modelling of 3D Geometry and Reflectance Properties

542 N. Birkbeck et al.

First, the visibility changes are not taken into account. While moving vertices
it is possible that some parts of the surrounding triangles become occluded or
visible (un-occluded), which is not taken into account by the analytic gradient.
A second remark is that the formulas do not account for reflectance changes as
the reflectance properties could only be computed after taking the step. Similar
to the visibility case, moving a vertex results in changes in the shading. For these
reasons we use a numerical computation for the gradient.

Numerical Gradient. The gradient of the similarity function along the direc-
tion of the normal, ∇g · n, is computed numerically using central differences.
Letting gv+ (resp. gv−) be the error computed on the mesh when a vertex v is
replaced with v+ = v + n∆n (resp. v− = v − n∆n), then:

∇g · n ≈
gv+ − gv−

2∆n

where ∆n = c∆σmesh and c∆ ∈ (0, 1], to ensure that the derivative step size is
bounded by the minimum edge length (a tuning parameter σmesh explained in
Section 4.1).

In order to compute the gradient efficiently, without displacing each vertex
individually and computing the error over the entire mesh, we compute the
gradient for a set of vertices simultaneously [18]. The idea is to partition the
mesh into disjoint sets of vertices such that moving a vertex from a set does not
influence the error for the rest of the vertices in that set. Ignoring visibility issues,
displacing a vertex v affects all triangles within distance 2 from v. Therefore,
the gradient computation for a vertex v must do the reflectance fitting and error
computation for these affected triangles. This means that we can displace other
vertices at the same time as long as they do not both affect the same triangles.

3 Reflectance Fitting

As previously mentioned, we assume that the reflectance function is implied by
the shape and imaging conditions. We experimented with two parametric re-
flectance models briefly introduced in Section 2.2 : Lambertian for diffuse and
Phong for specular surfaces. We describe here how we practically recover the
reflectance parameters from a set of images given a shape S, illumination con-
ditions Li and calibration parameters Pi.

3.1 Lambertian Reflectance

Lambertian reflectance has only one parameter per point x (the albedo kd,x).
The albedo for each point x on the mesh with normal n is fit to the image
observations for the current shape by minimizing

glamb(x,n) =
∑

i

〈n,oi〉V
′(x, Pi) (Ii(Π(Pix)) − (〈n, li〉li + ai)kd,x)

2
(8)

which has a simple closed form solution using least squares.

Paper 37: Variational Shape and Reflectance. . . , ECCV’06 [5] 445

Variational Shape and Reflectance Estimation 543

3.2 Specular Reflectance

The parameters of the specular reflectance can be estimated given a set of input
images, an object surface, and illumination information, by minimizing the sim-
ilarity measure (Eq. 2). For a low parameter BRDF model, as the Phong model,
given enough observations, the parameters can be estimated efficiently using an
indirect iterated linear approach [19] or by a more direct non-linear method [20].

In practice, with only a limited number of input images, it is not always
possible to fit a full reflectance model at each surface point. Instead of fitting
the full model at each surface point, we chose to use an interpolation method
that first attempts to fit the Phong model to the observations at each point.
A reliable fitting is only possible when a point has several observations with a
small angle between the surface normal and bisector of viewing and illumination
direction. If there are not enough observations, the specular parameters will not
be estimated correctly, leaving only a correctly fit Lambertian model. These
points are assigned the specular parameters of a point where the specular fitting
was successful. This assignment is based on the diffuse color of the point.

3.3 Filtering Specular Highlights

In practice, it is inefficient to fit a full reflectance model to each surface point
during the optimization. Instead of fitting the full reflectance model, we choose
to filter out the specular highlights during the optimization and perform the
shape refinement only for diffuse observations.

It is known that specular highlights occur at points having a large 〈n,hi〉.
As a consequence, one approach is to give smaller weights (in the h function)
to those observations [21]. But, for a surface estimation method it is not the
best approach as it relies on the current estimate of n. Another approach, and
the one used in this work, is to use the fact that specular highlights typically
cause a bright image observation. Therefore, a fraction of the samples having
the brightest intensity (typically 1/3) are excluded from the computation of the
albedo and the g measure for a point. This type of filtering is essentially another
binary function, like the visibility function V .

4 System and Implementation Details

Recall that our formulation of the shape refinement problem requires calibrated
input images, a calibrated light source, and an initial shape. We use a turntable
based capture setup as an easy way to capture many views of an object, while
automatically providing light variation, and allowing for an initial shape to be
computed from the object’s silhouette.

Our particular capture setup consists of a single camera viewing an object
rotating on a turntable (see Fig. 3). Each set of images observes a full rotation
of the object but has a different light position. In practice, the elevation of the
light is varied between the two sets of images, and the light is positioned in a

446 Chapter 14. Modelling of 3D Geometry and Reflectance Properties

544 N. Birkbeck et al.

Images From Light Position 1

Images From Light Position 2

Camera Calibration

Light Calibration

Silhouette Extraction Initial Geometry

Shape Refinement

Texture Coordinates

Reflectance Fitting

Final modelInput Images

...

Albedo Specular

Geometry

Geometry

Albedo

Albedo

Fig. 3. Overview of the system used to scan objects

manner to avoid cast shadows (i.e., the source is placed close to the camera,
implying that the camera also changes between the two sets of images).

The camera position is obtained through the automatic detection of a calibra-
tion pattern that is similar to the one used by Baumberg et al. [22]. A regular
desk lamp is used as the light source and provides the majority of the illumi-
nation. The object rotates in front of a solid colored background, and a PCA
based color segmentation is used to extract a set of silhouette images, which are
used with shape from silhouette (SFS) to provide an initial shape.

The light source position and color are calibrated using a single glossy white
sphere, which rotates along with the object on the turntable. Our approach is
similar to other approaches that use a set of metallic spheres to calibrate a
light source (e.g., [23]). The image of the specular highlight on the sphere in
several views is used to triangulate the position of the source. As we used a
white sphere, the non-specular pixels of the sphere are used to calibrate the
light source color.

In order to make the recovered model useful in computer graphics applications,
the reflectance model is represented in texture maps. As a prerequisite, we first
need to obtain texture coordinates for the refined model. For this task, we have
implemented a method similar to that of Lévy et al. [24].

4.1 Overview of the Shape Refinement Algorithm

The two components of the refinement in Eq. 6 are the gradient of the cost func-
tion and the regularizing component. The gradient is approximated per vertex
using central differences, which was discussed in Section 2.4. The driving force
behind the regularizing term is the mean curvature on the object, κ, which can
be effectively approximated using a paraboloid method [25]. For a particular
vertex, the mean curvature is computed by first finding the transformation tak-
ing the vertex to the origin and aligning its normal with the positive z axis.
This transformation is applied to the neighboring vertices, and a paraboloid,

Paper 37: Variational Shape and Reflectance. . . , ECCV’06 [5] 447

Variational Shape and Reflectance Estimation 545

z = ax2 + bxy + cy2, is then fit to the transformed points. The mean curvature
at the vertex is κ = a + c.

To handle topological changes in the mesh, we use the method proposed by
Lachaud and Montanvert [26]. The mesh has a consistent global resolution, where
edge lengths are confined to be within a certain range, i.e., if e is an edge in the
mesh then σmesh ≤ ‖e‖ ≤ 2.5σmesh. A simple remesh operation ensures that the
edges are indeed within this range and also performs the necessary operations
related to topology changes. The global resolution of the mesh can be adjusted
by altering this edge length parameter, σmesh.

The refinement starts with a low resolution mesh (i.e., large σmesh) and the
corresponding low resolution images in a Gaussian pyramid. When the progress
at a particular mesh resolution slows, the mesh resolution (and possibly the corre-
sponding resolution in the Gaussian pyramid) is increased. This multi-resolution
approach improves convergence, as there are fewer vertices (i.e., degrees of free-
dom), and enables the mesh to recover larger concavities.

5 Experiments

We have performed several experiments on synthetic and real image sequences
to demonstrate the effectiveness of the method described in this paper. For the
real sequences, the images were captured with either a consumer Canon Power-
shot A85 digital camera or a Point Grey Research Scorpion firewire camera. We
used roughly 6 mesh resolutions during the refinement, and the total time for
refinement was typically between 20 minutes and 1 hour. The captures contained
roughly 60 input images and we found that using ncameras = 12 simultaneous
images provided sufficient results for many of the sequences. In the final stages
of the refinement this parameter was increased to 24.

The first experiment demonstrates the refinement of an object that a stan-
dard correlation based method would have problems with: a 3D printout of the
Stanford bunny model with uniform Lambertian reflectance. An initial shape
obtained from SFS is a good approximation to the bunny, but several indenta-
tions near the legs of the bunny are not recovered (Fig. 4). These indentations
are recovered by our method as illustrated by comparing the distance from the
ground truth surface to the initial shape and the refined model (Fig. 5).

Fig. 4. From left to right a ground truth ren-
dering, the recovered shape from SFS, and the
refined model

0.0

Colormap
0.15

Fig. 5. A portrayal of the distance
from the ground truth object to the
SFS model (left) and the refined
model

448 Chapter 14. Modelling of 3D Geometry and Reflectance Properties

546 N. Birkbeck et al.

Fig. 6. From left to right, an input image of a synthetic specular object, the reconstruc-
tion from SFS, the reconstruction without specular filtering, and the reconstruction
with specular filtering

Input image SFS result Refined Textured Novel View

Fig. 7. Several reconstructed objects: a model house, a sad dog, and a human head

A second experiment, designed to test the effectiveness of the specular filter-
ing, was performed on a synthetic object. The object has several concavities that
were not reconstructed by the initial SFS shape (Fig. 6). The reconstruction ob-
tained without specular filtering has artifacts. The most noticeable artifact is a
sharp crease where the specularity was observed (second from the right of Fig. 6).
On the other hand, the refinement that used specular filtering successfully recov-
ered the indentations.

We have also tested the method on several real objects with both textured
and glossy surfaces (Fig. 7). Our method was capable of recovering an accurate
geometry on all the objects. Notice the large concavity that was recovered in the

Paper 37: Variational Shape and Reflectance. . . , ECCV’06 [5] 449

Variational Shape and Reflectance Estimation 547

house sequence. The fitted specular parameters give realistic highlights on the
reconstructed results (see the sad dog and human head results). Unfortunately,
the reconstructed specular component was not always as sharp as the true spec-
ular component, which is noticeable on the sad dog object (a similar observation
was made by Yu et al. [12]).

Fig. 8. An image of a real chess board (left), followed by a novel rendering of the
captured models combined into a chess game

Our high quality results are easily integrated into realistic computer graphics
applications. To illustrate this, we have captured several real models of a chess
game and combined them into a computer chess game (Fig. 8).

6 Discussion

We have presented a variational method that alternatively reconstructs shape
and general reflectance from calibrated images under known light. The sur-
face evolution is implemented on a deformable mesh at multiple resolutions.
We have demonstrated the usefulness of the proposed method on controlled
sequences, where an object was rotated relative to a light source. The results
are quite accurate, proving that the method is able to reconstruct a variety of
objects.

The capture setup used in this work provides an efficient way to capture a 3D
model of an object, but currently we need to be able to rotate this object in front
of the camera. As future work, we would like to extend our method to work on
objects where this form of light variation cannot be obtained. For small outdoor
statues, it may be sufficient to use the flash on the camera, or capture images
on a sunny day at different times to obtain the light variation on the object. A
less restrictive method would be required for larger objects (e.g., buildings).

Other future directions include finding a more efficient way to utilize the
information in specular highlights instead of filtering them out and to compare
the advantages of a level set implementation. We would also like to have some
guarantee that the recovered surface is at (or at least near) a global minimum
of the functional.

450 Chapter 14. Modelling of 3D Geometry and Reflectance Properties

548 N. Birkbeck et al.

References

1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vision 47 (2002) 7–42

2. Faugeras, O., Keriven, R.: Variational principles, surface evolution, pde’s, level set
methods and the stereo problem. IEEE Trans. Image Processing 7 (1998) 336–344

3. Robert, L., Deriche, R.: Dense depth map reconstruction: A minimization and
regularization approach which preserves discontinuities. In: ECCV ’96. (1996)
439–451

4. Yang, R., Pollefeys, M., Welch, G.: Dealing with textureless regions and specular
highlights - a pregressive space carving scheme using a novel photo-consistency
measure. In: ICCV. (2003)

5. Esteban, C.H., Schmitt, F.: Silhouette and stereo fusion for 3d object modeling.
Computer Vision and Image Understanding 96 (2004) 367–392

6. Fua, P., Leclerc, Y.: Object-centered surface reconstruction: combining multi-image
stereo shading. In: Image Understanding Workshop. (1993) 1097–1120

7. Jin, H., Yezzi, A., Soatto, S.: Stereoscopic shading: Integrating shape cues in a
variational framework. In: CVPR. (2000) 169–176

8. Zhang, L., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and motion under vary-
ing illumination: Unifying structure from motion, photometric stereo, and multi-
view stereo. In: ICCV. (2003)

9. Weber, M., Blake, A., Cipolla, R.: Towards a complete dense geometric and pho-
tometric reconstruction under varying pose and illumination. In: BMVC. (2002)

10. Yu, T., Xu, N., Ahuja, N.: Shape and view independent reflectance map from
multiple views. In: ECCV. (2004)

11. Jin, H., Soatto, S., Yezzi, A.: Multi-view stereo reconstruction of dense shape and
complex appearance. IJCV 63 (2005) 175–189

12. Yu, T., Xu, N., Ahuja, N.: Recovering shape and reflectance model of non-
lambertian objects from multiple views. In: CVPR. (2004)

13. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from
photographs. In: Siggraph. (1997)

14. Sethian, J.: Level Set Methods. Cambridge University Press (1996)
15. Duan, Y., Yang, L., Qin, H., Samaras., D.: Shape reconstruction from 3d and 2d

data using pde-based deformable surfaces. In: ECCV. (2004)
16. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object

segmentation. PAMI 19 (1997) 394–398
17. Zhang, L., Seitz, S.: Image-based multiresolution modeling by surface deformation.

Technical Report CMU-RI-TR-00-07, Carnegie Mellon University (2000)
18. Zach, C., Klaus, A., Hadwiger, M., Karner, K.: Accurate dense stereo reconstruc-

tion using graphics hardware. In: Eurographics 2003. (2003) 227–234
19. Ikeuchi, K., Sato, K.: Determining reflectance properties of an object using range

and brightness images. PAMI 13 (1991) 1139–1153
20. Lafortune, E.P., Foo, S.C., Torrance, K.E., Greenberg, D.P.: Non-linear approxi-

mation of reflectance functions. In: SIGGRAPH. (1997)
21. Marschner, S.R.: Inverse rendering for computer graphics. PhD thesis, Cornell

University (1998)
22. Baumberg, A., Lyons, A., Taylor, R.: 3D S.O.M. - a commercial software solution

to 3d scanning. In: Vision, Video, and Graphics (VVG’03). (2003) 41–48

Paper 37: Variational Shape and Reflectance. . . , ECCV’06 [5] 451

Variational Shape and Reflectance Estimation 549

23. Lensch, H.P.A., Goesele, M., Kautz, J., Heidrich, W., Seidel, H.P.: Image-based
reconstruction of spatially varying materials. In: Eurographics Workshop on Ren-
dering Techniques. (2001) 103–114

24. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for
automatic texture atlas generation. In: SIGGRAPH ’02. (2002) 362–371

25. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of
gaussian and mean curvatures triangular meshes. In: ICRA ’03. (2003) 1021–1026

26. Lachaud, J.O., Montanvert, A.: Deformable meshes with automated topology
changes for coarse-to-fine 3D surface extraction. Medical Image Analysis 3 (1999)
187–207

452 Chapter 14. Modelling of 3D Geometry and Reflectance Properties

Part V

Other Works

453

Chapter 15

Object Tracking

Paper 38 [14]: A. Jacquot, P. Sturm, and O. Ruch. Adaptive tracking of non-rigid objects based on color

histograms and automatic parameter selection. In Proceedings of the IEEE Workshop on Motion and Video

Computing, Breckenridge, Colorado, USA, pages 103–109, January 2005.

455

Adaptive Tracking of Non-Rigid Objects Based on Color Histograms and

Automatic Parameter Selection

A. Jacquot, P. Sturm O. Ruch

INRIA Rhône Alpes Thales Optronique

Grenoble, FRANCE Guyancourt, FRANCE

Abstract

One of the main difficulties in visual tracking is to take into

account appearance changes (not only of the target but also

of or due to the scene, illumination for example). The use

of a Bayesian framework is very flexible and has proven

to be very efficient in visual tracking. Moreover, color or

greylevel histograms allow to track an objet with a low com-

putational cost. The recently proposed color-based track-

ers integrated in a probabilistic framework [1, 3] are ef-

ficient for a given application (face tracking for example)

but can not be generalized easily, due to the initialization

and the adjustment of the different tracker parameters that

are dependent on the input sequence. This paper presents

a method based on color integrated in a particle filter that

allows to cope with some of the usual problems of visual

tracking (occlusions, target appearance changes, changes

in resolution or in illumination) and to adapt easily to dif-

ferent applications (tracking of structures in aerial imagery

as well as football players). The novelty of the tracker is its

ability to automatically regulate all the parameters needed

for tracking, which makes it flexible and easily usable for

different applications.

1. Introduction

Whatever the object we want to track, tracking is based on

some model describing its appearance: this model can in-

clude prior information on the target as well as informa-

tion extracted from the previous frames in the sequence.

The model can contain geometric contours, image patches,

global descriptors or other features. One of the main factors

that limits the performance of visual tracking algorithms is

the lack of a suitable appearance model for the target. Tem-

plate matching methods can not directly cope with appear-

ance changes and motion estimation based methods allow

the appearence model to change rapidly but tend to drift

away from targets.

This paper proposes a robust appearance model for track-

ing using color distributions. Histograms are robust to par-

tial occlusion, rotation and have a low computational cost.

Furthermore, particle filters have proven to be efficient and

reliable in cases of clutter and occlusions. Several trackers

based on color histograms integrated in probabilistic frame-

works have been proposed recently [1, 2, 3]; to the best of

our knowledge these algorithms are efficient for a given

application but can not be adapted easily to another tar-

get. Other techniques proposed by Bradski (the ”Camshift”

[4]), Comaniciu (the ”Mean Shift” [5]) or more recently

Zivkovic (who proposes an extension of the mean shift algo-

rithm in [7]) do not use probabilities but make a determinis-

tic search of the region whose color content best matches the

reference model. These methods have the same limitations

as the previous ones. The novelty of the proposed tracker

lies in the integration of some criteria which allow to auto-

matically select the number of bins of the histogram needed

for the tracking and in a new way to update the model. Our

tracker is robust to occlusions, changes in illumination as

well as changes of appearance of the target, and has shown

to be efficient in tracking objects with a hand-held camera

as well as tracking buildings or static structures in aerial

imagery.

The outline of this paper is as follows: in Section 2 we

briefly describe the basic method: particle filtering, the way

to use color for tracking and the way to integrate both. Sec-

tion 3 describes the improvements we have made: the gain

of spatial information obtained by dividing the patch of in-

terest, the model update and the automatic selection of the

number of bins of the model’s color histogram and param-

eters needed for the tracking. Finally some results are pre-

sented in Section 4.

2. Color-based probabilistic tracking

The aim of this section is to present the basis of the tracking

of non rigid objects using color histograms in conjunction

with a probabilistic framework [1, 3].

2.1. Recalls on particle filtering

We use the Bayesian framework to track objects in the case

where the posterior density P (Xt | Zt) and the observation

model P (Zt | Xt) are not necessarily Gaussian. The ob-

ject tracked is characterized by its state vector Xt, and the

1

Paper 38: Adaptive Tracking of Non-Rigid Objects Based on Color Histograms. . . , MOTION 2005 [14] 457

observations up to time t are defined by the vector Zt.

The idea of particle filtering is to approximate the prob-

ability distribution of the object state by a weighted sample

set. Each sample is an element which represents the hy-

pothetical state s of the object, associated with a weight π.

The sample set can be written as: S = {
(

s(i), π(i)
)

, i =

1, ..., n} where
∑n

i=1 π(i) = 1
The evolution of a sample set is given by propagating

each sample according to a system model (here a motion

model, see below). Each element of the set is then weighted

in terms of the observations, and the mean state of the object

is estimated at each step as:

E [S] =

n
∑

i=1

π(i)s(i) (1)

One of the advantages of particle filtering is that it models

uncertainty, thus making it more robust in case of occlusion

or clutter.

2.2. Color histogram as a model

As said previously, we use color distributions to model our

target because of their robustness to rotation, partial occlu-

sion and non rigidity of the target. Suppose the distributions

are discretized into K bins (see Section 3.1 for the automatic

selection of K). In our approach, we model the target by an

ellipsis. The histograms can be calculated in RGB or any

other color space, or simply in grey level space, depending

on the input sequence. To partially cope with the loss of

spatial information when using histograms, Nummiaro [1]

and Pérez [2] assigned different weights to the pixels of the

ellipsis to increase the reliability of the color distributions;

smaller weigths are given to the pixels far away from the

ellipsis center, using the following weighting function:

k(x) =

{

1 − x2 if x ≤ 1
0 otherwise

where x is the distance from the ellipsis center. Note that

other weighting functions can be used: Comaniciu, for ex-

ample in [5], uses the Epanechnikov kernel.

A color or greylevel distribution px = {p
(j)
x }j=1,...,K at

a location x is calculated as

p(j)
x = C

∑

xi∈E

k





‖x − xi‖
√

(l2x + l2y)



 δ (h(xi) − j) (2)

where δ is the Kronecker delta function, E is the set of

pixels in the ellipsis, lx and ly are the ellipsis half lengths,

h(xi) assigns one of the K bins of the histogram to a given

color at location xi and C is the normalization factor, which

ensures that
∑K

j=1 p
(j)
x = 1. The expression of C is given

by

C =





∑

xi∈E

k





‖x − xi‖
√

(l2x + l2y)









−1

The similarity of two distributions p and q is measured

by the Bhattacharyya coefficient

ρ [p, q] =

K
∑

j=1

√

p(j)q(j) (3)

For two identical distributions, we have ρ = 1, which cor-

responds to a perfect match. We use the Bhattacharyya dis-

tance d =
√

1 − ρ [p, q] in our algorithm.

2.3. How to combine color histograms and par-

ticle filtering?

We want to track a patch of interest in the image plane. We

choose to parameterize this patch by an ellipsis

s =
{

x, y, ẋ, ẏ, θ, lx, ly, l̇x, l̇y

}

where x and y represent the ellipsis center, ẋ and ẏ the ve-

locities of the center, θ the ellipsis orientation, lx and ly the

lengths of the ellipsis half axes, and l̇x and l̇y the veloci-

ties of lx and ly . This model is flexible in that the ellipsis

parameters can vary independently.

To propagate the sample set, we use a first order model

given by

st = Ast−1 + bt−1 (4)

where bt is a multivariate Gaussian random variable and A

is a matrix designed in order to describe an object moving

with constant velocity for x, y, lx and lx.

The tracker works as follows: in the first image the

model distribution is calculated, and the set of particles is

initialized. Then, for each image of the input sequence,

we propagate the set of particles using the dynamic model

previously defined. For each sample of the set, the Bhat-

tacharyya distance between the model distribution and the

sample distribution is calculated and used to compute the

weight π of the sample. The weight associated to each par-

ticle of the set favors samples whose color distributions are

similar to the target model. The weights are calculated us-

ing

π(i) = γ exp(−βd(i)) (5)

for each particle i of the set, where γ and β are some fixed

constants and d(i) represents the Bhattacharyya distance be-

tween the ith particle and the target model.

The last step is to re-sample the particles to ensure the

efficiency of the evolution, and to determine the mean state

of the object. During the re-sampling step, the particles

2

458 Chapter 15. Object Tracking

are eliminated or duplicated according to their weight: the

higher the weight of a particle, the more likely it is to be

duplicated. Different methods exist, we chose to use a sys-

tematic re-sampling [9]. It consists in dividing the interval

[0, 1] into n segments. Then a uniform random variable U is

generated on
[

0, 1
n

]

; we define U1 = U and Ui = Ui−1 + 1
n

for i = 2, .., n. If Ui belongs to the jth segment, then we

pose Ξi = Xj , where Ξi is an element of the new sample

set. The advantage of this method is that only O(n) com-

parison tests are needed to produce the new sample set.

3. Our contributions

Many approaches have been proposed for tracking ob-

jects (with or without shape deformations) based on color

histograms integrated in a probabilistic framework as de-

scribed in the last section. But none of them are flexible

enough to automatically regulate all the parameters in order

to make them easily usable for different applications. We

propose in this section some criteria that allow to automati-

cally determine the tracking parameters.

3.1. The appropriate number of bins

The number of bins in our histograms is a crucial parameter

and should be determined automatically. Too many bins in a

histogram do not cope with changes in illumination or in the

model appearence and most of the time the algorithm drifts

away from the target. On the opposite, too few bins do not

allow a good discrimination of the target, and the tracking

fails. This evidence has been confirmed by our experiments,

as shown in Section 4.

In most of the existing approaches, the number of bins

seems to be chosen arbitrarily and kept fixed during the

tracking. Nothing indicates that such a partition is optimal

given the n-sample density we want to estimate. If we could

find the optimal partition, the tracker should be more robust.

There have been many attempts in the past to solve the

problem of determining the optimal number of bins from the

data. Generally these methods are based on some asymp-

totic considerations. The problem with these approaches is

that they do not perform very well in the case of small sam-

ple sizes due to their asymptotic nature. Moreover, many of

them assume some prior information about the density. Re-

cently, Birgé and Rozenholc [10] have generalized Akaike’s

estimator. Akaike’s theorem is a statistical measure for

model selection which states that if two models fit the data

equally well, the simpler model will usually predict better.

In the following, we briefly summarize their method of de-

termining the optimal number of bins of our histograms.

For the theoretical arguments underlying it, refer to [10].

The purpose is to find a histogram estimator f̂ based on

some partition {I1, ..., IK} of [0, 1] into K intervals of equal

length. X1, X2, ..., Xn are n samples from the unknown

density f we want to estimate. K is given by

K = arg max
K

(Ln(K) − penalty(K)) (6)

where Ln(K) is the log-likelihood of the histogram with K

bins, given by

Ln(K) =

K
∑

j=1

Mj log(
KMj

n
) with Mj =

n
∑

i=1

1Ij
(Xi)

where 1Ij
is the indicator function defined by

1Ij
(x) =

{

1 if x ∈ Ij

0 otherwise

The penalty function is given by

penalty(K) = K − 1 + (log(K))2.5 for K ≥ 1

This approach is thus a typical example of model selec-

tion methods, making a compromise between the complex-

ity of the model and its fidelity to the data.

3.2. Incorporating spatial information

The problem with the use of histograms is that all spatial

information is lost, as opposed to templates, which use the

whole spatial information. As said previously, assigning

different weights to the pixels of the ellipsis according to

their distance to the center allows to integrate some spatial

information. We wanted our tracker to work with more spa-

tial information. We decided to divide our ellipsis in four

quarters, and proceed as previously explained for each one

of the ellipsis quarters. This division of the ellipsis increases

the robustness of the tracker since we have four measures of

similarity between a hypothesis and the model that can be

combined easily and allows a better discrimination between

the object and the rest of the scene.

Another advantage of dividing our ellipsis is to use the

criterion for the automatic selection of the number of bins

for each one of the quarters. The number of bins can be dif-

ferent in each quarter of the ellipsis according to the amount

of data available (an ellipsis quadrant containing an ho-

mogenous region does not need as many bins as a highly

textured region).

Finally, the division of the ellipsis into quarters makes

it easier to handle or detect partial occlusions: if the Bhat-

tacharyya coefficient is bad for one of the quarters but very

good for the others then a partial occlusion is detected. To

determine the mean state of the object, we combine the four

measures by calculating their median value.

3.3. The model update

The apparent color of an object can vary over time due to

changes in illumination, in camera parameters or in object

3

Paper 38: Adaptive Tracking of Non-Rigid Objects Based on Color Histograms. . . , MOTION 2005 [14] 459

motion. To deal with these appearance changes, the model

has to be updated. Particle filtering has already been used

with static [8] or adaptive [6] models. Most of the time, the

model is updated for each frame where the probability of

the mean state is above a threshold fixed arbitrarily at the

initialization. The risk with this method is to gradually drift

from the target.

The idea we propose is the following: why should we

update the model when it is still good? The model should

only be updated when its appearance changes too much. So

we use the following criterion: if the mean state is under

a threshold πT (see next paragraph for its setup), then we

update the model using the following equation:

pE[St] ≤ πT ⇒ q
j
t = (1 − α)qj

t−1 + αp
j

E[St]
(7)

Setting up of the threshold πT : This threshold depends

on different parameters more or less connected: the ellipsis

size and the number of bins of the histograms. In fact, the

larger the ellipsis is, the larger in general the number of bins

will be. This results in a lower Bhattacharyya coefficient

and the threshold for the model update should be lower too.

To set it up automatically, we make the hypothesis that in

the beginning of the sequence (the first images) the mean

state of the object is well estimated and we set the threshold

empirically: πT = ρ − c where c is a fixed constant.

The global scheme of the algorithm is given on Figure 1.

1. Initialization:

• Selection of the ellipsis in the first image

• Automatic determination of the number of bins

of each histogram according to equation (6)

• Computation of the model distribution in each el-

lipsis quarter with equation (2)

• Initialization of the sample set

2. For each new image:

• Propagate the sample set using the dynamic

model according to equation (4)

• For each sample of the set St, compute

– The color distribution with equation (2)

– The Bhattacharyya coefficients with (3)

– The weights with equation (5)

• Estimate the mean state according to equation (1)

• Update of the target model if necessary with (7)

• Re-sampling step (see Section 2.3)

Figure 1: The algorithm.

4. Experiments

This section evaluates the performances of our tracker. We

first show how performant the automatic selection of the

number of bins is, then we present the experimental results

of our tracker on various sequences. The description of the

sequences is made in Section 4.2.

4.1. Evalutation of our contributions

To give experimental evidence that our contributions lead

to better tracking, we ran our algorithm several times (15)

with the automatic selection of the numbers of bins and with

fixed number of bins in the case of the tracking on the en-

tire ellipsis. We use the mean value for our results, pre-

sented in Table 1; the numbers indicate the image number

from which the tracking fails and bold numbers correspond

to the results for the automatically chosen number of bins.

To measure that the tracking fails, we established a ”ground

truth” of each one of the sequences by keeping in a file the

coordinates of a good tracking. Tracking was then declared

as failed if for one image, the size of the ellipse is too large

or if the ellipsis center is too far away from the ground truth.

The results show that fixing arbitrarily a number of bin can’t

be a good solution for tracking various objects. But the

automatic selection leads most of the time to the optimal

tracking.

of bins Football Indoor License plate

2 16 19 31

4 87 23 46

6 107 111 55

8 109 125 41

10 95 172 60

12 118 169 94

14 90 168 92

16 121 164 84

18 117 132 93

20 111 217 61

22 75 108 78

24 88 135 62

26 72 90 63

28 86 107 73

30 76 78 74

32 69 85 82

34 102 70 61

36 92 92 86

38 102 76 69

40 87 59 91

Table 1: Performances of the tracker using the entire ellipsis

with various numbers of bins.

4

460 Chapter 15. Object Tracking

Figure 2 presents the results obtained for each sequence

with the automatic selection of the number of bins, in the

case of a tracking with the entire ellipsis or the 4 quadrants.

The graphs shows that using 4 quadrants improve largely

the performances of our tracking.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450

E
rr

o
r

Image number

Face tracking sequence

Ellipsis

4 ellipsis quadrants

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160

E
rr

o
r

Image number

Soccer player sequence

Ellipsis

4 ellipsis quadrants

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450 500

E
rr

o
r

Image number

4 ellipsis quadrants

Ellipsis

Figure 2: Influence of the ellipsis division into quadrants

for the 3 sequences.

4.2. Tracking results for different sequences

We tested our tracker on different types of input: the results

show that our approach allows us to use it efficiently for var-

ious applications independently of parameter initialization.

Three sets of results are provided; in each experiment grey

level sequences are used.

1. Face tracking: The sequence presents a per-

son entering and moving around a room

(http://www.ee.oulu.fi/˜mikak/tracking/FaceColor.html).

There are some important appearance changes since

the person turns around 360◦ during the sequence.

The results show that the way to update the model in

order to cope with appearance changes of the target

is efficient. Furthermore, the algorithm is able to

track even in the cases where the person moves with

changes in speed.

Figure 3: Face tracking results: images 1, 140, 395, 412 and

449 of the sequence.

5

Paper 38: Adaptive Tracking of Non-Rigid Objects Based on Color Histograms. . . , MOTION 2005 [14] 461

Figure 4: Car tracking results: images 1, 187, 347, 462 and

563 of the sequence.

3. Car tracking: The sequence is one of the PETS 2001

database (ftp://pets2001.cs.rdg.ac.uk/) in the context of

a driver assistance application. We made two experi-

ments, the results are presented in Figures 4 and 5: the

particle filter has to deal with rapid movements of the

target and the camera. The difficulties of this sequence

are the different viewing angles of the tracked car, the

changes in scale and the out of plane rotations; but we

can see the good performance of our algorithm dur-

ing the whole sequence. For the first experiment we

tracked the entire car, achieving equivalent results to

[1]. For the second one, we only tracked the rear li-

cense plate of the car. The additional difficulty of this

experiment is the small size of the object to be tracked.

The results presented in Figure 5 show that our tracker

is able to track efficiently even small objects.

4. Football player tracking: The sequence is taken from a

football match; the difficulties of this sequence are the

fast motions of the players and the occasional occlu-

sion of some players by others players on the ground.

In frame 78, a player is falling down and another player

attempts to catch the ball so a player is entirely oc-

cluded. Our tracker remains efficient even in this case.

Figure 5: License plate tracking results: images 1, 187, 347,

417, 520 of the sequence, and a zoom made on image 417.

5. Conclusions and discussion

These results suggest that our system is able to track:

• an object with large appearance changes such as shape

and/or orientation changes.

• an object in a scene with scale changes.

• an object that moves with varying velocity as illus-

trated by the football player sequence.

• a deformable object (the football player for instance).

We also tested our algorithm on aerial sequences; the results

show the robustness of our tracker for various applications.

The proposed tracker adds a criterion which allows to de-

tect the optimal number of bins needed for the histograms in

order to achieve robust tracking of various objects. More-

over we set up rules allowing the algorithm to work auto-

matically for various applications. Our approach is a step

towards a fully automatic and adaptative tracking. The

tracking algorithm is based on color distributions integrated

in a probabilistic framework. The experiments show that

the tracker is robust to partial and complete occlusions, to

appearance changes of the target as well as changes in il-

lumination of the scene. Furthermore, the division of the

ellipsis into smaller regions increases the robustness of the

tracker.

6

462 Chapter 15. Object Tracking

Notice that we divided the ellipsis into quarters; it would

be interesting to set up a criterion similar to the one used

to select the number of bins in order to find the best com-

promise between the amount of spatial information in the

model and the flexibility of histograms. Furthermore, we

think about updating the number of bins during the se-

quence if appropriate (for example if the target grows in

the image, updating the model with more bins in order to

profit from the increasing of information). Also, the model

update using the color distributions at the current mean state

is expected to run into problems if a similar looking object

is nearby; we work at solutions for this problem.

References

[1] K. Nummiaro, E. Koller-Meier, L. Van Gool, “Color Features for

Tracking Non-Rigid Objects”, ACTA Automatica Sinica, 2003.

[2] P. Pérez, C. Hue, J. Vermaak, M. Gangnet, “Color-based probabilistic

tracking”, In European Conference on Computer Vision, LNCS 2350,

pp 661-675, Copenhagen, Denmark,2002.

[3] A.D. Jepson, D.J. Fleet, T.F. El-Maraghi, “Robust Online Appearance

Models for Visual Tracking”, Proceedings of the International Confer-

ence on Computer Vision and Pattern Recognition, Vol I, pp 415-422,

2001.

[4] G.R. Bradski, “Computer vision face tracking as a component of a

perceptual user interface”, In Workshop on Applications of Computer

Vision, pp 214-219, Princeton, NJ, 1998.

[5] D. Comaniciu, V. Ramesh, P. Meer, “Kernel-Based Object Tracking”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol

25, no 5, 2003.

[6] K. Nummiaro, E. Koller-Meier, L. Van Gool, “Object Tracking with

an Adaptative Color-Based Particle Filter”, Image and Vision Comput-

ing, 2002.

[7] Z. Zivkovic, B. Krose, “An EM-like algorithm for color-histogram-

based object tracking”, Proceedings of the International Conference

on Computer Vision and Pattern Recognition, 2004.

[8] T. Heap, D. Hogg, “Wormholes in Shape Space: Tracking through

Discontinuous Changes in Shape”, Sixth International Conference on

Computer Vision, Bombay, India, 1998.

[9] F. Legland, “Filtrage particulaire”, Proceedings 19ème Colloque

GRETSI sur le Traitement du Signal et des Images, VolI, pp 1-8, Paris,

2003.

[10] L. Birgé, Y. Rozenholc, “How many bins should be put in a reg-

ular histogram”, Technological Report, Laboratoire Probabilités et

Modèles Aléatoires, Université Pierre et Marie Curie, Paris, France,

PMA-721, 2002.

Figure 6: Football player tracking results: images 1, 55, 76,

97 and 141 of the sequence. In frame 76, the white player

occludes the black one.

7

Paper 38: Adaptive Tracking of Non-Rigid Objects Based on Color Histograms. . . , MOTION 2005 [14] 463

464 Chapter 15. Object Tracking

Chapter 16

Model Selection for Two-View Geometry

Paper 39 [15]: S.J. Maybank and P. Sturm. MDL, collineations and the fundamental matrix. In T. Pridmore

and D. Elliman, editors, Proceedings of the 10th British Machine Vision Conference, Nottingham, England,

pages 53–62. British Machine Vision Association, September 1999.

465

MDL, Collineations and the Fundamental
Matrix

S.J. Maybank and P.F. Sturm, Department of Computer
Science, The University or Reading, Whiteknights, Reading,

Berkshire, RG6 6AY, UK.
(S.J.Maybank,P.F.Sturm)@reading.ac.uk

Abstract

Scene geometry can be inferred from point correspondences between twoim-
ages. The inference process includes the selection of a model. Four models
are considered: background (or null), collineation, affine fundamental ma-
trix and fundamental matrix. It is shown how Minimum Description Length
(MDL) can be used to compare the different models. The main result is that
there is little reason for preferring the fundamental matrix model over the
collineation model, even when the former the ‘true’ model.

1 Introduction

Model selection is a central task in computer vision: given data obtained from images
and given a number of models, which model is most strongly supported by the data? Is it
better to havei) a simple model fitting the data approximately; orii) a complicated model
fitting the data very closely [1, 6, 7, 9, 10, 15, 18, 20]? Accuracy of fitto the data is
by itself not a sufficient criterion for choosing a model. The fit can always be improved
by allowing a greater flexibility or generality in the model. In many cases,a sufficiently
general model fits the data with zero error.

In simple cases, the allowable models are specified by probability densityfunctions�✂✁☎✄✝✆ ✞✠✟ defined on the data✄ and depending on a parameter vector✞ with a fixed di-
mension. In such cases the Maximum Likelihood (ML) principle is a good, widely used
strategy: given✄ , select the value of✞ at which �✝✁✡✄☛✆ ✞✠✟ attains its maximum value. The
ML principle fails if the dimension of✞ can vary. Tt is necessary to introduce a penalty for
the number of model parameters, otherwise a model with a large number of parameters
will always be chosen in preference to models with only a few parameters.

In the literature there are several suggestions for penalising overparameterisation, for
example [1, 18]. The Bayesian Information Criterion (BIC) of [18] applies if the allow-
able models can be divided into separate families such that the ML principleholds for
each family separately. The BIC yields for each family an error criterion of the form☞✍✌✏✎ ✁✑�✂✁☎✄✝✆✓✒✞✔✟✕✟✗✖✘✁✚✙✜✛✏✢✏✟✕✣ ☞✍✌✏✎ ✁☎✤✥✟ where ✒✞ is the maximum likelihood estimate of✞ for the
family, ✣ is the total number of parameters in the model and✤ is the total number of
measurements. If the number of measurements is low, then the second term dominates
and models with low✣ are favoured. If the number of measurements is high, then the
first term dominates, because it depends on the fit of the model to the largenumber of
measurements, and the value of✣ is less important.

The BIC is applicable only if probability density functions are defined on the space of
possible errors in the measurements and on the space of parameter values for eachfamily

Paper 39: MDL, Collineations and the Fundamental Matrix, BMVC’99 [15] 467

British Machine Vision Conference 2

of models. These density functions are prior information which can strongly affect the
model choice.

Minimum Description Length (MDL) [9, 10] is an alternative way of comparingmod-
els. Unlike Bayesian methods it does not require explicit probabilitydensity functions for
the data and the parameters. In MDL the data are first expressed as a bit string � . If a
model

✁
fits the data, then� contains internal structure depending on

✁
. This structure

is removed, to give a compressed string. The compressed string and a bit string descrip-
tion of

✁
are concatenated to give a string✂☎✄ ✁ � ✟ . The model

✁
is strongly favoured if

✂✆✄ ✁ � ✟ is much shorter than� . The compression must be information preserving, in that
� can be recovered exactly from✂ ✄ ✁ � ✟ . Overparameterised models are penalised simply
because they require a long description.

The Shannon-Fano code [10] is an example of MDL. The code is for symbols supplied
randomly and independently. If a symbol✝ has probability� then the optimal 0,1 code
for ✝ has length✞ ✖ ☞✍✌✏✎ ✁ � ✟✠✟ , where

☞ ✌✠✎
is the logarithm to base 2. The key point here is

the close link between the model (✝ supplied with probability�) and the code length.
Applications of MDL to computer vision can be found in [3, 5, 8, 11, 13, 14]. In

many cases, for example [8, 11], MDL is used to assign a prior probability to a model.
The deviations of the data from the model are given probabilities assuming a standard
distribution such as the Gaussian. The probability of a model conditional on the data is
derived using Bayes’ theorem, and then maximised over the model parameters.

In this paper MDL is applied to sets of pairs of corresponding points obtained from
images of a room taken by a digital camcorder. The aim is to investigate a test case appli-
cation of MDL, and to see if it performs as expected. The models are✡ , ☛ , ☞ , ✌ , as listed
in ✍ 1.1. No explicit probabilistic assumptions are made. The only criterion for comparing
the models is the length of the compressed bit strings✂✏✎ ✁ � ✟ , ✂✒✑ ✁ � ✟ , ✂✆✓ ✁ � ✟ , ✂✆✔ ✁ � ✟ . The
main new result is that☛ achieves a good compression in all cases, in particular,

✆ ✂ ✔ ✁ � ✟ ✆✖✕ ✆ ✂ ✑ ✁ � ✟ ✆ when the ‘true’ model is✌✘✗ (1)

Without more information, for example, additional images or constraints on the shapes of
objects, there is little reason for ever preferring✌ to ☛ .

1.1 The models

To be specific, suppose the data are the pixel coordinates of corresponding points✙✖✚✜✛✢✙✤✣✚ ,✙✦✥★✧✩✥★✪ in two images of the same scene. Two points✙ , ✙✖✣ in different images
correspond if and only if they are projections of the same scene point [4]. The images
are embedded in the projective plane,✫ ✬✏✭ , by adding 1 as a third coordinate,✁✡✄✜✮✰✯ ✟✲✱✳
✁✡✄✜✮✰✯✴✮ ✙✜✟ . There are many possible models, each of which involves assumptions aboutthe
relative position of the two cameras or the scene geometry [18, 19]. In this paper the
following models are considered.

✡ ✟ Background: the image points have no discernable structure.
☛ ✟ Collineation: there is a collineation✵✷✶✸✫ ✬ ✭ ✳ ✫ ✬ ✭ such that✵ ✁ ✙✹✚ ✟✻✺ ✙✤✣✚ , ✙✼✥✽✧✾✥✿✪ .
☞ ✟ Affine fundamental: there is a❀❂❁❃❀ matrix ❄ with rank 2 such that❄❆❅❇❅ ✺ ❄❈❅ ✭

✺
❄ ✭ ❅

✺ ❄ ✭❉✭
✺❋❊ and ✙✸●✚ ❄❍✙✤✣✚ ✺❋❊ , ✙❈✥■✧☎✥✽✪ [17].

✌ ✟ Fundamental: there is a❀✒❁✏❀ matrix ❏ with rank 2 such that✙❑●✚ ❏▲✙✤✣✚ ✺❋❊ , ✙✼✥✽✧✾✥✿✪ .

468 Chapter 16. Model Selection for Two-View Geometry

British Machine Vision Conference 3

1.2 Notation

A bit string is an element of� ❊ ✮ ✙✂✁☎✄ . The length of a bit string� is ✆ � ✆ . The floor function
is ✄✿✱✳✝✆✡✄✟✞ and the ceiling function is✄ ✱✳ ✞ ✄ ✟ , where ✆ ✄✟✞ is the greatest integer such
that ✆ ✄✟✞ ✥ ✄ , and ✞ ✄ ✟ is the least integer such that✄ ✥ ✞ ✄ ✟ .

The fixed length code of length✠ for a non-negative integer✪ is ✡ ✁ ✪✆✮ ✠ ✟ . The usual
binary code for✪ is padded with zeros on the right to give a bit string of length✠ . If✪☞☛✘✙ , then✡ ✁ ✪✆✮ ✠ ✟ is defined only if✠ ☛ ✞ ☞✍✌✏✎ ✁ ✪ ✟ ✟✍✌ ✙ , where

☞✍✌✏✎
is the logarithm to base

2.
The logstar prefix code✎ ✶✸✫ ✏✒✑ ✳ � ❊ ✮ ✙✓✁✔✄ is implemented as described in [2],✍ 4.3.2.

Note that ✆ ✎ ✁ ✪ ✟ ✆❈✕ ☞✍✌✏✎ ✄ ✁ ✪ ✟✕✌ ✙ ✗ ✖ ✙✘✗ ✖☎✙✏✗✹✗ ✗ . A general discussion of the logstar code,
including the definition of

☞✍✌✏✎ ✄ , can be found in [10], with further information in [2]. The
map zton✶✛✚ ✳ ✫ ✏✜✑ is zton✁ ✪ ✟✏✺✘✢✸✪ for ✪✢☛ ✙ , and zton✁ ✪ ✟✏✺✘✢ abs✁ ✪ ✟✍✌ ✙ for ✪☞✣ ✙ ,
and the logstar code is redefined on✚ by ✤ ✁ ✪ ✟✻✺ ✎ ✁ zton✁ ✪ ✟ ✟ .

2 Coding the Data

In this section the strings✂ ✎ ✁ � ✟ , ✂ ✑ ✁ � ✟ , ✂ ✓ ✁ � ✟ , ✂ ✔ ✁ � ✟ are defined. All the codes are
constructed using rational arithmetic, in order to avoid inaccuracies arising from floating
point approximations. The algorithms are implemented in Mathematica [21].

The image points are defined for✙✿✥ ✧✘✥ ✪ by ✙ ✚ ✺ ✁✡✄ ✚ ✮❉✯ ✚ ✮ ✙ ✟ , ✙✤✣✚ ✺ ✁✡✄ ✣✚ ✮❉✯ ✣✚ ✮ ✙ ✟
where ✄ ✚ , ✯ ✚ , ✄ ✣✚ , ✯ ✣✚ are integers. If the feature points are located in each image to an
accuracy of 1 pixel then the✄ ✚ , ✯ ✚ etc. are the pixel coordinates. If feature points are
located with subpixel accuracy, then the✄ ✚ , ✯ ✚ etc. are scaled pixel coordinates. The code✥ ✶✦✚★✧ ✳ � ❊ ✮ ✙✂✁✔✄ used in this section is defined below in✍ 3.

2.1 Background ✩
Let ✄ ✮❉✯ ✮ ✄ ✣ ✮✰✯ ✣✫✪✬✚★✧ be the vectors with respective components✄ ✚ , ✯ ✚ , ✄ ✣✚ , ✯ ✣✚ . The code
for ✙✹✚ ✛✢✙✤✣✚ , ✙✼✥■✧✻✥■✪ under the background model✡ is ✂✾✎ ✁ � ✟✻✺✭✥✏✁✡✄ ✟ ✗ ✥✏✁ ✯ ✟ ✗ ✥ ✁✡✄ ✣ ✟ ✗ ✥ ✁ ✯ ✣ ✟ .

2.2 Collineation ✮
Let ✵ ✶ ✫ ✬✾✭ ✳ ✫ ✬✾✭ be a collineation, ie. a map of the the form✙ ✱✳✰✯ ✙ , where✯ is an
invertible ❀✲❁ ❀ matrix, and let✝ ✚ , ✠ ✚ , ✱ ✚ , ✲✹✚ be defined for✙▲✥✽✧☎✥■✪ by

✵ ✁ ✙ ✚ ✟ ✺ ✁ ✝ ✚ ✮ ✠ ✚ ✮ ✙ ✟ ●
✁ ✱ ✚ ✮ ✲ ✚ ✟ ✺ ✁✘✆ ✄ ✣✚ ✖ ✝ ✚ ✌ ❊ ✗ ✖ ✞ ✮✦✆ ✯ ✣✚ ✖ ✠ ✚ ✌✿❊ ✗✳✖ ✞✜✟

The point✙✸✣✚ can be recovered exactly from✵ , ✙ ✚ and the integers✱ ✚ , ✲ ✚ .
Let ✱ ✮ ✲✴✪✵✚★✧ be the vectors with respective coordinates✱ ✚ , ✲ ✚ and let code✁ ✵ ✟ be a

coding of ✵ . The ✙ ✚ , ✙✤✣✚ , ✙▲✥✿✧✾✥✽✪ are coded by the string

✶ ✺✭✥ ✁✡✄ ✟ ✗ ✥ ✁ ✯ ✟ ✗ code✁ ✵ ✟ ✗ ✥ ✁ ✱ ✟ ✗ ✥✏✁ ✲ ✟ (2)

If ✵ is a good fit to the data, then✱ , ✲ are small and compression is achieved.
How should code✁ ✵ ✟ be constructed? A key issue is the precision with which the com-

ponents of✵ are specified. If the precision is low, then✆ code✁ ✵ ✟ ✆ is small but✆ ✥ ✁ ✱ ✟ ✗ ✥✏✁ ✲ ✟ ✆ is

Paper 39: MDL, Collineations and the Fundamental Matrix, BMVC’99 [15] 469

British Machine Vision Conference 4

large. If the precision is high, then✆ code✁ ✵ ✟ ✆ is large but✆ ✥✏✁ ✱ ✟ ✗ ✥ ✁ ✲ ✟ ✆ is small. The problem
of choosing the best precision is circumvented by using RANSAC [16].

Let �✴✚ ✛✂✁✸✚ , ✙❆✥✷✧✏✥☎✄ be pairs of corresponding points in✫ ✬✏✭ , such that no three of
the �✴✚ are collinear and no three of the✁ ✚ are collinear. There is a unique collineation✵
such that✵ ✁ � ✚ ✟✏✺ ✁ ✚ , ✙ ✥✷✧✏✥✆✄ . A coding of the� ✚ , ✁ ✚ , ✙ ✥ ✧✾✥✆✄ yields a coding of✵ .
Ideally, all quadruples✙ ✚✞✝ ✛✢✙✤✣✚✞✝ , ✙▲✥✠✟❂✥✡✄ of corresponding points should be examined
to find the quadruple for which

✆ code✁ ✵ ✟ ✗ ✥ ✁ ✱ ✟ ✗ ✥ ✁ ✲ ✟ ✆ (3)

is a minimum. In practice there are too many quadruples, so a random selection of ✤
quadruples is made and (3) is minimised over the chosen quadruples.

An advantage of RANSAC is that the precision of✵ is appropriate for the data; in
addition, the code for✵ is redundant because it includes the points✙ ✚✞✝ , ✙▲✥☛✟ ✥☞✄ already
coded in ✥✏✁✡✄ ✟ ✗ ✥✏✁ ✯ ✟ . The redundancy is removed and compression achieved by omitting
the ✙✹✚ ✝ from code✁ ✵ ✟ , and instead coding the index of the four-tuple ✌ ✺ ✁ ✧ ❅ ✮❉✧ ✭ ✮✰✧✎✍✸✮❉✧✑✏ ✟ ,✧ ❅ ✣ ✧ ✭ ✣ ✧✎✍ ✣ ✧✒✏ in the list of all ordered four-tuples with distinct entries drawn from✪ . The code length for✌ is at most ✞ ☞✍✌✏✎ ✁ ✠ ✁ ✪✆✮✓✄✔✟ ✟✠✟✕✌✘✙ bits where✠ ✁ ✪✆✮✓✄✔✟ is the binomial
coefficient.

Further compression of
✶

in (2) is achieved by omitting from✱ , ✲ the eight entries
known to be zero, yielding the code✂☎✑ ✁ � ✟ .

2.3 Affine fundamental matrix ✔
Let ❄ be an affine fundamental matrix, and let✕ be the line✕✠✣ ✺ ✙✸●✻❄ . The geometrical
interpretation of the equation✙❑●✆❄❍✙✤✣ ✺ ❊ is that ✙✸✣ lies on ✕ ✣ . If ✙ , ❄ are given, then
✙✤✣ can be coded by giving its position on✕✠✣ . Compression is achieved because only one
coordinate is needed rather than two.

As with ☛ , RANSAC is used to find a suitable matrix❄ compatible with the✙✸✚✜✛✢✙✤✣✚ ,✙ ✥ ✧▲✥ ✪ . Let �✴✚ ✛✖✁✸✚ , ✙✘✥ ✧ ✥✗✄ be pairs of corresponding points in✫ ✬✏✭ such that
no three of the�✴✚ are collinear, no three of the✁ ✚ are collinear, none of the� ✚ , ✁✸✚ are on
the line at infinity and there is no affine transformation T such that✘✙�✜✚ ✺ ✁✸✚ , ✙❆✥■✧✏✥✆✄ .
Then there is a unique affine fundamental matrix❄ such that�✜●✚ ❄✚✁✸✚ ✺ ❊ , ✙▲✥✽✧☎✥✡✄ .

The point ✙✸✣✚ is specified relative to an origin which depends on✧ , the ✙✜✛ and ❄ . In
detail, there is a three dimensional family of collineations which preserve the epipolar
lines associated with❄ in that if ✢ is any one of the collineations and✕ is an epipolar line
of ❄ in the first image, then✢ ✁ ✕ ✟ is the corresponding epipolar line in the second image
[12]. The three dimensional family is spanned the collineations associatedwith any four
linearly independent matrices✯ for which

❄ ✯ ✌ ✯ ● ❄ ● ✺❋❊ (4)

Let ✙ ✚✣✝ ✛ ✙✤✣✚✞✝ , ✙❃✥✤✟✿✥✥✄ be the pairs of corresponding points which define❄ . From
the ✙ ✚✣✝ select the three points✙ ✚✞✝ , ✙ ✚✧✦ , ✙ ✚✩★ which define a triangle with the greatest area.
A unique collineation is specified by the matrix✯ for which ✯ ✙ ✚✞✝ ✺ ✙✤✣✚ ✝ , ✯ ✙ ✚✧✦ ✺ ✙✤✣✚ ✦ ,✯ ✙✹✚ ★ ✺ ✙✤✣✚ ★ and (4) holds.

Let ✪ ✚ be a unit vector in✫ ✫ ✭ parallel to✙✸●✚ ❄ , let ✪✭✬✚ be a unit vector perpendicular to
✪ ✚ , and define✎ ✚ , � ✚ by ✙✸✣✚ ✖ ✯ ✙ ✚ ✺ ✁ ✎ ✚ ✪ ✚ ✌ � ✚ ✪✭✬✚ ✮ ✙ ✟ as shown in Figure 1. Define integers

470 Chapter 16. Model Selection for Two-View Geometry

British Machine Vision Conference 5

✱ ✚ , ✲✹✚ by ✁ ✱ ✚ ✮ ✲ ✚ ✟✻✺ ✁ ✆☎✢ ✎ ✚ ✌✿❊ ✗✳✖ ✞ ✮ ✆☎✢ �✹✚ ✌✿❊ ✗✳✖ ✞ ✟ (5)

The factor 2 on the right hand side of (5) is needed to remove quantisationerrors.
� � � � � � � � � � � � � � �

✁
✯ ✙ ✚

✂ ✂
✂ ✂
✁✙✤✣✚

✕ ✣✚

✎ ✚ � ✚
���� ✄

� � � �✆☎
✂ ✂ ✝

✂✂ ✞

Figure 1. Definition of✎ ✚ , � ✚ .
The code for the✙ ✚ ✛✢✙✤✣✚ , ✙✼✥■✧☎✥✿✪ is

✥ ✁☎✄ ✟ ✗ ✥ ✁ ✯ ✟ ✗ code✁ ❄ ✟ ✗ ✥ ✁ ✱ ✟ ✗ ✥ ✁ ✲ ✟ (6)

The matrix ❄ is specified by giving the index of✌ ✺ ✁ ✧ ❅ ✮✰✧ ✭ ✮✰✧✎✍✸✮❉✧✒✏✜✟ in the list of ordered
four-tuples of distinct elements drawn from✪ . When coding✲ , the four entries known to
be zero are omitted.

A random selection of✤ quadruples is made and the length of the code (6) minimised
over the quadruples. The code with the minimum length is✂ ✓ ✁ � ✟ .

In a full reconstruction of the 3D scene the collineation✯ described above defines
a plane in space which passes near to the 3D points projecting down to corresponding
points in the two images.

2.4 Fundamental matrix ✟
The coding of� as ✂✻✔ ✁ � ✟ is similar to the coding as✂☎✓ ✁ � ✟ , with one significant change,
due to the fact that four pairs of image correspondences are not sufficient tospecify a
unique fundamental matrix. Let✙ ✚ ✝ ✛ ✙✤✣✚ ✝ , ✙ ✥ ✟✩✥ ✙ be seven pairs of corresponding
points. There are in general exactly two linearly independent❀✲❁ ❀ matrices❏ ❅ , ❏ ✭ such
that ✙✖●✚ ✝ ❏▲✙✤✣✚ ✝ ✺ ❊ , ✙ ✥✡✟❃✥ ✙ . The fundamental matrices compatible with the✙ ✚ ✝ ✛ ✙✤✣✚ ✝ ,✙▲✥✿✧✾✥ ✙ are obtained by solving the cubic polynomial equation in

✶
[19],

✠☛✡✌☞ ✁ ❏ ❅ ✌ ✶ ❏ ✭ ✟☎✺ ❊ (7)

There are at most three real roots. To specify a unique fundamental matrix itis necessary
to record the appropriate root of (7), which requires two bits.

Let
✶ ✛ be a real root of (7) and let✍❏ ✺ ❏✆❅ ✌ ✶ ✛ ❏ ✭ . The matrix ✍❏ is replaced by a

rational approximation❏ , retaining the constraint
✠☛✡✎☞ ✁ ❏ ✟ ✺ ❊ . Let ✍� be the eigenvector

of ✍❏ ●✏✍❏ with the least eigenvalue, let� be a rational approximation to✍� and let ✑ be a
rational approximation to✍❏ . The matrix❏ is defined by

❏ ✺ ✑ ✖ ✁ �✜✗ � ✟✓✒ ❅ ✑ �✕✔ �

Paper 39: MDL, Collineations and the Fundamental Matrix, BMVC’99 [15] 471

British Machine Vision Conference 6

3 Code for Vectors in � ✪

If ✥ ❅ ✮ ✗ ✗✹✗ ✮ ✥✂✁ are different codes for vectors✄ ✪ ✚✜✧ , then a new code✥ can be constructed
by first finding the index✟ such that

✆ ✥ ✛ ✁✡✄ ✟ ✆ ✺☎✄✝✆✟✞ � ✆ ✥ ✚ ✁☎✄ ✟ ✆ ✮ ✙❆✥✿✧☎✥ � ✁

and then setting✥ ✁✡✄ ✟ ✺ ✡ ✁✞✟ ✮ ✠ ✟ ✗ ✥ ✛ ✁✡✄ ✟ , where ✡ is defined in✍ 1.4. If � is small and✪ is
large, then✥ may give shorter average code lengths than any single code✥ ✚ .

The code✥ in ✍ 2 is constructed from four separate codes✥ ❅ , ✥ ✭ , ✥ ✍ , ✥ ✏ , which are
described in turn.

3.1 Codes✠☛✡ and ✠✌☞
Let ✍✏✎ be defined for✑☞✪ ✫ ✏ by

✍ ✎ ✺ � ✄ ✪ ✚ ✧ ✮✜✆ ✄ ✚ ✆ ✥ ✑ ✮ ✙ ✥✽✧☎✥■✪ ✁
The set✍ ✎ contains✁ ✢ ✑ ✌ ✙ ✟ ✧ points. The elements of✍ ✎ are enumerated by a function✒ ✎ ✶✓✍ ✎ ✳ ✫ ✏✜✑ constructed such that

✒✕✔ ✁ ❊✔✟✻✺ ✙ , and such that
✒ ✎ is an extension of

✒ ✎ ✒ ❅
for ✑ ☛✘✙ . The functions

✒ ✎ , ✑ ☛✷❊ together define a single function
✒ ✶ ✚✜✧ ✳ ✫ ✏ ✑ .

Let ✖ be the median of the✄ ✚ and let ✁ be the vector with components✁ ✚ ✺ ✄ ✚ ✖ ✖ ,✙▲✥✿✧✾✥✽✪ . The codes✥ ❅ , ✥ ✭ are defined by

✥ ❅ ✁✡✄ ✟☎✺ ✎ ✁ ✒ ✁☎✄ ✟✕✟ and ✥ ✭ ✁✡✄ ✟☎✺ ✎ ✁ zton✁ ✖ ✟✕✟ ✗ ✥ ❅ ✁ ✁ ✟

3.2 Code✠✌✗
Let ✑ ✺ abs✁✡✄ ✛ ✟ for some✟ , let � be the vector of components✄ ✚ such that abs✁☎✄ ✚ ✟ ✥ ✑ ,
and let ✁ be the vector of components✄ ✚ ✖ sign✁✡✄ ✚ ✟ ✑ for those✧ such that✆ ✄ ✚ ✆✙✘ ✑ . Let✚ ✎ ✪✢� ❊ ✮ ✙✂✁ ✧ be defined such that✁✛✚ ✎ ✟ ✚ ✺ ✙ if ✄ ✚ is a component of� and ✁✜✚ ✎ ✟ ✚ ✺ ❊ if✄ ✚ ✖ sign✁✡✄ ✚ ✟ ✑ is a component of✁ .

The code✡ ✎ is defined by✡ ✎ ✁✡✄ ✟ ✺✢✚ ✎ ✗ ✥ ❅ ✁ � ✟ ✗ ✥ ❅ ✁ ✁ ✟ . Let ✞ be the value of✑ at which✆ ✡ ✎ ✁☎✄ ✟ ✆ is a minimum over all the distinct values of✑ ✺ abs✁☎✄ ✚ ✟ , ✙ ✥ ✧ ✥ ✪ , that is✆ ✡✤✣ ✁✡✄ ✟ ✆ ✺☎✄✝✆✟✞ ✎ � ✆ ✡ ✎ ✁✡✄ ✟ ✆ ✁ . The code✥ ✍ is defined by✥ ✍✠✁✡✄ ✟✾✺ ✡✥✣ ✁☎✄ ✟ .
3.3 Code✠✧✦
Let ✖ be the median of✄ , let ✯ ❅ ✮ ✗ ✗✹✗ ✮❉✯★✁ be the distinct integers appearing in the set
� ✄ ✚ ✖ ✖ ✮ ✙ ✥ ✧ ✥ ✪ ✁ , and let ✯ ✚ occur ✩ ✚ times, ✙❋✥ ✧ ✥ � . Let ✪ be the set of
all permutations of✄ . The number✠ of elements of✪ is given by the multinomial✠ ✺✪✬✫ ✛ ✁ ✩ ❅ ✫ ✗ ✗✹✗✂✩✓✭ ✫ ✟ . The elements of✪ are ordered in any convenient way. Let✌ be the index
of ✄ in the chosen order, let✯ , ✩ be the vectors with the respective components✯ ✚ , ✩ ✚ , and
let ✖✯✮ be median of✩ . The code✥ ✏ is defined by

✰ ✁✡✄ ✟ ✺ ✤ ✁ ✩ ❅ ✖ ✖ ✮ ✟ ✗ ✤ ✁ ✯ ❅ ✟ ✗ ✗ ✗✹✗ ✗ ✤ ✁ ✩ ✁ ✖ ✖ ✮ ✟ ✗ ✤ ✁ ✯★✁✏✟
✥ ✏✔✁✡✄ ✟ ✺ ✤ ✁ ✖ ✟ ✗ ✤ ✁ ✖ ✮ ✟ ✗ ✰ ✁✡✄ ✟ ✗ ✡ ✁ ✌ ✮ ✠ ✟

If the ✄ ✚ are independent realisations of a random variable and✪ is large, then✆ ✥ ✏ ✁☎✄ ✟ ✆ ✛ ✪
is, with a high probability, close to the shortest possible expected length of a code word.

472 Chapter 16. Model Selection for Two-View Geometry

British Machine Vision Conference 7

See for example [10],✍ 1.11.4. In practice the effectiveness of✥ ✏ is reduced because of
the extra code needed for✯ , ✩ .

Figure 2. Images for collineation model.

10 15 20 25 30

600

800

1000

1200

Figure 3. Code lengths when the ‘true’ model is a collineation

✪

code length ✡ ☞✌☛

Figure 4. Images for affine fundamental matrix model.

4 Experiments

Images of a laboratory were taken by a Canon MV-1 Camcorder mounted on a tripod.
Typical pairs of images are shown in Figures 2, 4, 6 with the ‘true’ models shown in the
captions. In each case the ‘true’ model is known, but only because of the prior information
available to a human observer. Figure 2 shows two images of a flat poster,Figure 4 is

Paper 39: MDL, Collineations and the Fundamental Matrix, BMVC’99 [15] 473

British Machine Vision Conference 8

10 15 20 25 30

600

800

1000

1200

Figure 5. Code lengths when the ‘true’ model is an affine fundamental matrix

✪

code length ✡✌ ☞☛

obtained by translating the camera parallel to the image plane, and in Figure6 the camera
is moved forwards to produce significant projective distortions of the image.

The task of the program is to make the best choice of model using only thedata
✙ ✚ ✛✢✙✤✣✚ , ✙▲✥✿✧☎✥■✪ and the models✡ , ☛ , ☞ , ✌ . This best choice can and does differ from
the ‘true’ model.

The size of the original images in pixels is� ✄ ❊ ❁ ✄☎✗ ❊ . Feature points were located
in each image and matched to obtain pairs of corresponding points✙ ✚ ✛ ✙✤✣✚ , ✙❂✥✦✧ ✥✦✪ .
The graphs of code length against✪ for ✗ ✥ ✪ ✥ ❀ ❊ are shown in Figures 3, 5, 7. The
maximum number on the vertical scale is 1200 bits, and the spacing between numbers
is 200 bits. The number of random samples in the RANSAC algorithm was✤ ✺ ✙✹❊ .
Increasing the value of✤ as far as 20 did not produce significant changes in the graphs.
Higher values were not investigated because of the long run times.

It is apparent from the graphs that☛ is always the preferred model even when the
‘true’ model is ✌ . The models☞ , ✌ show a similar performance, and✡ is always the
worst model.

Figure 6. Images for fundamental matrix model.

5 Discussion

The experiments show that the collineation model☛ is a good choice even for sets of
image correspondences for which the ‘true’ model is a fundamental matrix. This is in
agreement with the comment in [18], Section 4, that for two images, simplemodels are
strongly favoured over more complex ones. Why does the model✌ perform so badly

474 Chapter 16. Model Selection for Two-View Geometry

British Machine Vision Conference 9

10 15 20 25 30

600

800

1000

1200

Figure 7. Code lengths when the ‘true’ model is a fundamental matrix

✪

code length ✡ ☞✌☛

under MDL? The reason can be seen in Figure 1. In the usual methods for assessing
the fit of ✌ to the data, the error measure is the sum of the squares of the� ✚ , and the
✎✹✚ , measuring distances along the epipolar lines, are ignored. In MDL the✎✖✚ must be
included, to obtain a loss free coding of the data. The extra code length needed for the✎ ✚
reduces the preference for✌ , so that in these experiments☛ is almost always preferred.
This argument suggests that☛ will still be preferred if all the image pixel values are used
rather than than just the locations of a few salient points.

If additional information is given, then✌ may become the preferred model. For
example, suppose that☛ is augmented by an assumption that✙❑✣✚ ✖ ✵ ✁ ✙ ✚ ✟ is a realisation
of a Gaussian random variable with a known covariance, and that✙❑✣✚ ✖ ✵ ✁ ✙ ✚ ✟ is coded
under this assumption. When the ‘true’ model is a fundamental matrix, then the code for
✙✤✣✚ ✖ ✵ ✁ ✙ ✚ ✟ will be long and✌ will be preferred to☛ .

Simple parameter counting, in agreement with general arguments based on the BIC,
suggest that for long image sequences a generalisation of✌ will be preferred over a
model in which pairs of images are related by a collineation. For example, suppose that
images 1,2,3 are given with fundamental matrices❏ ❅ ✭ , ❏ ✭ ✍ , ❏ ❅ ✍ . Let ✙ ✛ ✙✤✣☎✛ ✙✤✣ ✣ be
a triple of corresponding points. Then✙ ✣ ✣ is determined by✙ , ✙✸✣ and ❏ ❅ ✍ , ❏ ✭ ✍ , because
it is the intersection of the epipolar lines✙❑●✻❏ ❅ ✍ and ✙✸✣ ●☎❏ ✭ ✍ . If the ❏ ✚ ✛ are replaced by
collineations✯ ✚ ✛ such that✯ ✚ ✛ preserves the epipolar lines associated with❏✆✚ ✛ , then
there is no certain way of locating✙ ✣ ✣ given only ✙ , ✙✸✣ and the✯ ✚ ✛ . This suggests that the
fundamental matrix model will yield a shorter code for the points in the third image.

References

[1] H. Akaike, “A new look at statistical model identification,”IEEE Trans. Automation
and Control, Vol. 19, pp.716-723, 1974.

[2] R. Baxter, “Minimum message length inductive inference - theory and applications,”
Phd Thesis, Department of Computer Science, Monash University, Aus., 1996.

[3] T. Darrell and A. Pentland, “Cooperative robust estimation using layers of support,”
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 17, pp. 474-487, 1995.

[4] O.D. Faugeras,Three-Dimensional Computer Vision: a geometric viewpoint. MIT
Press, 1993.

[5] P. Fua and A.J. Hanson, “An optimization framework for feature extraction,”Machine
Vision and Applications, Vol. 4, pp. 59-87, 1991.

Paper 39: MDL, Collineations and the Fundamental Matrix, BMVC’99 [15] 475

British Machine Vision Conference 10

[6] K. Kanatani,Statistical Optimization for Geometric Computation: Theory and Prac-
tice. Elsevier, 1996.

[7] K. Kanatani, “Comments on nonparametric segmentation of curves into variousrep-
resentations.”IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 19, pp.
1391-1392, 1997.

[8] Y.G. Leclerc, “Constructing simple stable descriptions for image partitioning,” Inter-
national Journal of Computer Vision, Vol. 3, pp. 73-102, 1989.

[9] M. Li and P.M.B. Vitányi, “Inductive reasoning and Kolmogorov complexity,” J. of
Computer and System Sciences, Vol. 44, pp. 343-384, 1982.

[10] M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and Its
Applications, Graduate Texts in Computer Science, Springer, 2nd edition, 1997.

[11] T. Lindeberg and M.-X. Li, “Segmentation and classification of edges using min-
imum description length approximation and complementary junction clues,” Com-
puter Vision and Image Understanding, Vol. 67, pp. 88-98, 1997.

[12] Q.-T. Luong and T. Viéville, “Canonic representations for the geometries of multiple
projective views,” In J.-O. Eklundh (ed.)Computer Vision-ECCV’94, Vol I, Lecture
Notes in Computer Science, Vol. 800, pp. 589-599, Springer, 1994.

[13] S.J. Maybank and R. Fraile, “Minimum description length method forfacet match-
ing,” Proc. International Symposium on Multispectral Image Processing, ISMIP’98,
SPIE Vol. 3545, Wuhan, China, pp. 330-335, 1998.

[14] A. Pentland, “Part segmentation for object recognition,”Neural Computation, Vol.
1, pp. 82-91, 1989.

[15] P.L. Rosin and G.A.W. West, “Response to Kanatani,”IEEE Trans. Pattern Analysis
and Machine Intelligence, Vol. 19, pp. 1393-1394, 1997.

[16] P.J. Rousseeuw,Robust Regression and Outlier Detection, John Wiley, 1987.
[17] L.S. Shapiro, A. Zisserman and M. Brady “Motion from point matches using affine

epipolar geometry”. In J.-O. Eklundh (ed.)Computer Vision - ECCV’94, Vol. II, Lec-
ture Notes in Computer Science, Vol. 801, pp. 73-84, Springer, 1994.

[18] P. H. S. Torr and A. Zisserman, “Concerning Bayesian motion segmentation, model
averaging, matching and the trifocal tensor,” In H. Burkhardt and B. Neumann (eds.)
Computer Vision - ECCV’98, Vol. I, Lecture Notes in Computer Science, Vol. 1406,
pp. 511-527, Springer, 1998.

[19] P.H.S. Torr, A. Zisserman and S.J. Maybank, “Robust detection of degenerate con-
figurations whilst estimating the fundamental matrix,”Computer Vision, Graphics,
and Image Processing, Vol. 71, pp. 312-333, 1998.

[20] C.S. Wallace and P.R. Freeman, “Estimation and inference by compact coding,” J.
Royal Stat. Soc. Series B, Vol. 49, pp. 240-265, 1987.

[21] S. Wolfram,The Mathematica Book, 3rd Edition, Cambridge University Press, Cam-
bridge, 1996.

476 Chapter 16. Model Selection for Two-View Geometry

Bibliography

[1] A. Bartoli and P. Sturm. Constrained structure and motion from multiple uncalibrated views of a

piecewise planar scene. International Journal of Computer Vision, 52(1):45–64, 2003.

[2] A. Bartoli and P. Sturm. The 3D line motion matrix and alignment of line reconstructions. Interna-

tional Journal of Computer Vision, 57(3):159–178, 2004.

[3] A. Bartoli and P. Sturm. Non-linear estimation of the fundamental matrix with minimal parameters.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(4):426–432, 2004.

[4] A. Bartoli and P. Sturm. Structure from motion using lines: Representation, triangulation and bundle

adjustment. Computer Vision and Image Understanding, 100(3):416–441, December 2005.

[5] N. Birkbeck, D. Cobzaş, P. Sturm, and M. Jägersand. Variational shape and reflectance estimation

under changing light and viewpoints. In H. Bischof and A. Leonardis, editors, Proceedings of the 9th

European Conference on Computer Vision, Graz, Austria, Lecture Notes in Computer Science, May

2006.

[6] T. Bonfort and P. Sturm. Voxel carving for specular surfaces. In Proceedings of the 9th International

Conference on Computer Vision, Nice, France, volume 1, pages 591–596. IEEE Computer Society

Press, October 2003.

[7] T. Bonfort, P. Sturm, and P. Gargallo. General specular surface triangulation. In Proceedings of the

Asian Conference on Computer Vision, Hyderabad, India, volume II, pages 872–881, January 2006.

[8] O. Chum, T. Pajdla, and P. Sturm. The geometric error for homographies. Computer Vision and Image

Understanding, 97(1):86–102, January 2005.

[9] D. Cobzas and P. Sturm. 3D SSD tracking with estimated 3D planes. In Proceedings of the Second

Canadian Conference on Computer and Robot Vision, Victoria, Canada, May 2005.

[10] O. Faugeras, L. Quan, and P. Sturm. Self-calibration of a 1d projective camera and its application to

the self-calibration of a 2d projective camera. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(10):1179–1185, October 2000.

[11] P. Gargallo and P. Sturm. Bayesian 3D modeling from images using multiple depth maps. In Pro-

ceedings of the Conference on Computer Vision and Pattern Recognition, San Diego, USA, volume 2,

pages 885–891, June 2005.

[12] P. Gurdjos and P. Sturm. Methods and geometry for plane-based self-calibration. In Proceedings of

the Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, volume 1,

pages 491–496, June 2003.

477

478 Bibliography

[13] P. Hammarstedt, P. Sturm, and A. Heyden. Closed-form solutions and degenerate cases for camera

calibration with one-dimensional objects. In Proceedings of the 10th International Conference on

Computer Vision, Beijing, China, October 2005.

[14] A. Jacquot, P. Sturm, and O. Ruch. Adaptive tracking of non-rigid objects based on color histograms

and automatic parameter selection. In Proceedings of the IEEE Workshop on Motion and Video Com-

puting, Breckenridge, Colorado, USA, pages 103–109, January 2005.

[15] S.J. Maybank and P. Sturm. MDL, collineations and the fundamental matrix. In T. Pridmore and

D. Elliman, editors, Proceedings of the 10th British Machine Vision Conference, Nottingham, Eng-

land, pages 53–62. British Machine Vision Association, September 1999.

[16] S. Ramalingam, P. Sturm, and S. Lodha. Theory and calibration algorithms for axial cameras. In

Proceedings of the Asian Conference on Computer Vision, Hyderabad, India, volume I, pages 704–

713, January 2006.

[17] S. Ramalingam, P. Sturm, and S.K. Lodha. Towards complete generic camera calibration. In Pro-

ceedings of the Conference on Computer Vision and Pattern Recognition, San Diego, USA, volume 1,

pages 1093–1098, June 2005.

[18] S. Ramalingam, P. Sturm, and S.K. Lodha. Towards generic self-calibration of central cameras. In

Proceedings of the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical

Cameras, Beijing, China, pages 20–27, October 2005.

[19] T. Rodriguez, P. Sturm, P. Gargallo, N. Guilbert, A. Heyden, J.M. Menendez, and J.I. Ronda. Photo-

realistic 3d reconstruction from handheld cameras. Machine Vision and Applications, 16(4):246–257,

2005.

[20] P. Sturm. Algorithms for plane-based pose estimation. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, Hilton Head Island, South Carolina, USA, pages 1010–1017, June

2000.

[21] P. Sturm. A case against Kruppa’s equations for camera self-calibration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(10):1199–1204, October 2000.

[22] P. Sturm. A method for 3D reconstruction of piecewise planar objects from single panoramic images.

In Proceedings of the IEEE Workshop on Omnidirectional Vision, Hilton Head Island, South Carolina,

pages 119–126. IEEE, June 2000.

[23] P. Sturm. Critical motion sequences for the self-calibration of cameras and stereo systems with vari-

able focal length. Image and Vision Computing, 20(5-6):415–426, 2002.

[24] P. Sturm. Mixing catadioptric and perspective cameras. In Proceedings of the Workshop on Omnidi-

rectional Vision, Copenhagen, Denmark, pages 37–44, June 2002.

[25] P. Sturm. Structure and motion for dynamic scenes – the case of points moving in planes. In A. Hey-

den, G. Sparr, M. Nielsen, and P. Johansen, editors, Proceedings of the 7th European Conference on

Computer Vision, Copenhagen, Denmark, volume 2351 of Lecture Notes in Computer Science, pages

867–882. Springer-Verlag, May 2002.

[26] P. Sturm. Multi-view geometry for general camera models. In Proceedings of the Conference on

Computer Vision and Pattern Recognition, San Diego, USA, volume 1, pages 206–212, June 2005.

Bibliography 479

[27] P. Sturm and T. Bonfort. How to compute the pose of an object without a direct view? In Proceedings

of the Asian Conference on Computer Vision, Hyderabad, India, volume II, pages 21–31, January

2006.

[28] P. Sturm, Z.L. Cheng, P.C.Y. Chen, and A.N. Poo. Focal length calibration from two views: Method

and analysis of singular cases. Computer Vision and Image Understanding, 99(1):58–95, July 2005.

[29] P. Sturm and S. Maybank. On plane-based camera calibration: A general algorithm, singularities,

applications. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Fort

Collins, Colorado, USA, pages 432–437, June 1999.

[30] P. Sturm and S.J. Maybank. A method for interactive 3D reconstruction of piecewise planar objects

from single images. In T. Pridmore and D. Elliman, editors, Proceedings of the 10th British Ma-

chine Vision Conference, Nottingham, England, pages 265–274. British Machine Vision Association,

September 1999.

[31] P. Sturm and L. Quan. Camera calibration and relative pose estimation from gravity. In A. Sanfeliu,

J.J. Villanueva, M. Vanrell, R. Alquézar, J.-O. Eklundh, and Y. Aloimonos, editors, Proceedings of

the 15th International Conference on Pattern Recognition, Barcelona, Spain, volume 1, pages 72–75,

September 2000.

[32] P. Sturm and S. Ramalingam. A generic concept for camera calibration. In T. Pajdla and J. Matas,

editors, Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic,

volume 3022 of Lecture Notes in Computer Science, pages 1–13. Springer-Verlag, May 2004.

[33] P. Sturm and S. Ramalingam. Géométrie d’images multiples pour des modèles de caméra généraux.

Traitement du Signal, 22(5), October 2005.

[34] P. Sturm, S. Ramalingam, and S.K. Lodha. On calibration, structure-from-motion and multi-view ge-

ometry for general camera models. In R. Reulke and U. Knauer, editors, Proceedings of the 2nd ISPRS

Panoramic Photogrammetry Workshop, Berlin, Germany. International Society for Photogrammetry

and Remote Sensing, February 2005. Published in the Int. Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, Vol. XXXVI-5/W8.

[35] P. Sturm, S. Ramalingam, and S.K. Lodha. On calibration, structure from motion and multi-view

geometry for generic camera models. In K. Daniilidis, R. Klette, and A. Leonardis, editors, Imaging

Beyound the Pinhole Camera. Kluwer Academic Publishers, 2006.

[36] J.-P. Tardif and P. Sturm. Calibration of cameras with radially symmetric distortion. In Proceedings of

the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Beijing,

China, pages 44–51, October 2005.

[37] J.-P. Tardif, P. Sturm, and S. Roy. Self-calibration of a general radially symmetric distortion model.

In H. Bischof and A. Leonardis, editors, Proceedings of the 9th European Conference on Computer

Vision, Graz, Austria, Lecture Notes in Computer Science, May 2006.

[38] M. Urbanek, R. Horaud, and P. Sturm. Combining off- and on-line calibration of a digital camera.

In Proceedings of the Third International Conference on 3D Digital Imaging and Modeling, Québec

City, Canada, pages 99–106, May 2001.

[39] M. Wilczkowiak, P. Sturm, and E. Boyer. Using geometric constraints through parallelepipeds for

calibration and 3D modelling. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(2):194–207, February 2005.

	II Calibration and Self-Calibration of Perspective Cameras
	4 Camera Calibration
	4.1 Plane-Based Calibration
	4.2 Using Linear Calibration Objects
	4.3 Calibration of Zoom Lenses
	Paper 1: On Plane-Based Camera Calibration: A General Algorithm, Singularities, Applications, CVPR 1999
	Paper 2: Algorithms for Plane-Based Pose Estimation, CVPR 2000
	Paper 3: Closed-form Solutions and Degenerate Cases for Camera Calibration with One-Dimensional Objects, ICCV 2005
	Paper 4: Combining Off- and On-line Calibration of a Digital Camera, 3DIM 2001

	5 Camera Self-Calibration
	5.1 Crititcal Motions for Kruppa Equations
	5.2 Focal Length Self-Calibration
	5.3 Self-Calibration for Planar Motions
	5.4 Plane-Based Self-Calibration
	5.5 Optimal Fundamental Matrix Estimation
	Paper 5: A Case Against Kruppa's Equations for Camera Self-Calibration, PAMI 2000
	Paper 6: Critical Motion Sequences for the Self-Calibration of Cameras and Stereo Systems with Variable Focal Length, IVC 2002
	Paper 7: Focal Length Calibration from Two Views: Method and Analysis of Singular Cases, CVIU 2005
	Paper 8: Self-calibration of a 1D Projective Camera and its Application to the Self-calibration of a 2D Projective Camera, PAMI 2000
	Paper 9: Methods and Geometry for Plane-Based Self-Calibration, CVPR 2003
	Paper 10: Non-Linear Estimation of the Fundamental Matrix With Minimal Parameters, PAMI 2004

	III Generic Camera Models and Unified Treatment of Structure from Motion
	6 Calibration
	Paper 11: A Generic Concept for Camera Calibration, ECCV 2004
	Paper 12: Towards Complete Generic Camera Calibration, CVPR 2005
	Paper 13: Theory and Calibration Algorithms for Axial Cameras, ACCV 2006
	Paper 14: Calibration of Cameras with Radially Symmetric Distortion, OMNIVIS 2005

	7 Self-Calibration
	Paper 15: Towards Generic Self-Calibration of Central Cameras, OMNIVIS 2005
	Paper 16: Self-Calibration of a General Radially Symmetric Distortion Model, ECCV 2006

	8 Structure from Motion
	Paper 17: On Calibration, Structure-from-Motion and Multi-View Geometry for General Camera Models, ISPRS-Workshop 2005
	Paper 18: On Calibration, Structure from Motion and Multi-View Geometry for Generic Camera Models, Book Chapter 2006

	9 Multi-View Geometry
	Paper 19: Multi-View Geometry for General Camera Models, CVPR 2005
	Paper 20: Géométrie d'images multiples pour des modèles de caméra généraux, Traitement du Signal 2005
	Paper 21: Mixing Catadioptric and Perspective Cameras, OMNIVIS 2002

	IV 3D Reconstruction
	10 Using Geometric Constraints for 3D Vision
	10.1 Piecewise Planar Scenes
	10.2 Structure from Motion for Lines
	10.3 Geometric Constraints
	Paper 22: Constrained Structure and Motion From Multiple Uncalibrated Views of a Piecewise Planar Scene, IJCV 2003
	Paper 23: The Geometric Error for Homographies, CVIU 2005
	Paper 24: 3D SSD tracking with estimated 3D planes, CRV 2005
	Paper 25: The 3D Line Motion Matrix and Alignment of Line Reconstructions, IJCV 2004
	Paper 26: Structure From Motion Using Lines: Representation, Triangulation and Bundle Adjustment, CVIU 2005
	Paper 27: A Method for Interactive 3D Reconstruction of Piecewise Planar Objects from Single Images, BMVC 1999
	Paper 28: A Method for 3D Reconstruction of Piecewise Planar Objects from Single Panoramic Images, OMNIVIS 2000
	Paper 29: Using Geometric Constraints Through Parallelepipeds for Calibration and 3D Modelling, PAMI 2005

	11 3D Reconstruction of Dynamic Scenes
	Paper 30: Structure and Motion for Dynamic Scenes -- The Case of Points Moving in Planes, ECCV 2002
	Paper 31: Camera Calibration and Relative Pose Estimation from Gravity, ICPR 2000

	12 Multi-View Dense 3D Reconstruction
	Paper 32: Bayesian 3D Modeling from Images using Multiple Depth Maps, CVPR 2005
	Paper 33: Photorealistic 3D Reconstruction from Handheld Cameras, MVA 2005

	13 3D Reconstruction of Specular Surfaces
	Paper 34: Voxel Carving for Specular Surfaces, ICCV 2003
	Paper 35: General Specular Surface Triangulation, ACCV 2006
	Paper 36: How to Compute the Pose of an Object without a Direct View?, ACCV 2006

	14 Modelling of 3D Geometry and Reflectance Properties
	Paper 37: Variational Shape and Reflectance Estimation under Changing Light and Viewpoints, ECCV 2006

	V Other Works
	15 Object Tracking
	Paper 38: Adaptive Tracking of Non-Rigid Objects Based on Color Histograms and Automatic Parameter Selection, MOTION 2005

	16 Model Selection for Two-View Geometry
	Paper 39: MDL, Collineations and the Fundamental Matrix, BMVC'99

	Bibliography

