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RESUMES 
 
 Résumé en français 

L’axe IL-12-IFN-γ joue un rôle important dans l’immunité anti-mycobactérienne. J’ai 

identifié et étudié une cohorte de 137 patients présentant un déficit autosomique récessif 

complet d’IL12RB1 qui code la sous-unité β1 des récepteurs de l’IL-12 et de l’IL-23. Ces 

patients sont issus de 101 familles provenant de 30 pays. Ils présentent une grande diversité 

génétique avec 52 allèles mutants différents. Le phénotype cellulaire avec un défaut complet 

de réponse à l’IL-12 est homogène chez tous les patients. Les phénotypes cliniques sont eux 

très hétérogènes allant de l’absence d’infection jusqu’au décès. Il s’agit en grande majorité 

d’infections mycobactériennes (BCG, mycobactéries environnementales et tuberculose) et/ou 

à salmonelles. La candidose est aussi retrouvée associée à ce défaut chez un grand nombre de 

patients. 

L’axe IL-23-IL-17 participe à la différentiation et à l’activation des lymphocytes T 

CD4+ dits de type Th17. les cytokines et les mécanismes contrôlant la différentiation de ces 

cellules sont peu connus. J’ai étudié le développement des lymphocytes producteurs d’IL-17 

chez des patients porteurs de défauts génétiques affectant la voie du TGF-β (patients 

TGFBR1, TGFBR2 et TGFB1), de l’IL-1β (patients IRAK4 et MYD88), de l’IL-6 (patients 

STAT3) et de l’IL-23 (patients IL12B et IL12RB1). Pour cela, j’ai quantifié la production et la 

sécrétion d’IL-17 dans deux modèles expérimentaux ex vivo et in vitro. Les patients IL12B-/- 

et IL12RB1-/-, et de façon plus drastique les patients STAT3-/- présentent une diminution des 

lymphocytes producteurs d’IL-17, ce qui suggère l’importance de ces molécules dans la 

différentiation et l’expansion des cellules Th17 in vivo. 

 Mots clés en français 

Génétique, Immunologie, IL12RB1, Mycobactérie, Salmonelle, Candida, IL-12, IFN-γ, IL-23, 

IL-17, STAT3 



 6 

 Résumé en anglais 

 The IL-12-IFN-γ axis plays an important role in the immunity against mycobacteria. I 

have identified and studied a cohort of patients with a complete autosomal recessive IL12RB1 

deficiency coding for the β1 subunit of the IL-12 and IL-23 receptors. We herein report an 

international survey of 137 patients from 101 kindreds and 30 countries. A total of 52 

IL12RB1 mutant alleles were found. All patients had a functional complete IL-12Rβ1 

deficiency, most with a lack of IL-12Rβ1 expression at the cell surface. Clinical phenotypes 

are heterogeneous from an absence of infection to the death following infection. In most 

cases, infection consisted in mycobacterial diseases (BCG, environmental mycobacteria and 

tuberculosis) and/or salmonella diseases. Candidiasis was also being frequently associated to 

this defect. 

 The IL-23-IL-17 axis seems to play a role in the differentiation and activation of the 

Th17 CD4+ T cells. The cytokines controlling the development of these cells are not well 

known. We addressed the question of the development of human IL-17–producing T helper 

cells in vivo by quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and 

by T cell blasts expanded in vitro from patients with particular genetic disorders affecting 

TGF-β (patients TGFB1, TGFBR1 and TGFBR2), IL-1β (patients IRAK4 and MYD88), IL-6 

(patients STAT3), or IL-23 (patients IL12B and IL12RB1) responses. Mutations in STAT3 and, 

to a lesser extent mutations in IL12B and IL12RB1, impaired the development of IL-17–

producing T cells. These data suggest that these molecules play a key role in the 

differentiation and/or expansion of human IL-17–producing T cell populations in vivo. 

 
 Mots clés en anglais 

Genetic, Immunology, IL12RB1, Mycobacteria, Salmonella, Candida, IL-12, IFN-γ, IL-23, 

IL-17, STAT3 
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ABREVIATIONS UTILISEES 
 
 
aa   Acide Aminé 
ADN   Acide Désoxyribonucléique 
ARNm   Acide Ribonucléique messager 
BCG   Bacille de Calmette et Guérin 
B-EBV  Lymphocytes B immortalisés par le virus d’Epstein-Barr 
Blastes PHA  Lymphocytes T activés par la Phytohémagglutinine-P  
BTK   gène codant la Bruton Tyrosine Kinase 
CYBB   gène codant le Cytochrome B-245 Beta polypeptide (GP91phox) 
ELISA   Enzyme-Linked ImmunoSorbent Assay 
FACS   Fluorescent-Activating Cell Sorting 
FNIII   domaine Fibronectine de type III 
FOXP3  Forkhead Box P3 (facteur de transcription) 
GATA3  GATA binding protein 3 (facteur de transcription) 
IFN-   Interféron 
IL-   Interleukine 
IL12A   gène codant la sous-unité p35 de l’IL-12 
IL12B   gène codant la sous-unité p40 commune de l’IL-12 et de l’IL-23 
IL-12Rβ1  chaîne β1 commune des récepteurs de l’IL-12 et de l’IL-23 
IL-12Rβ2  chaîne β2 du récepteur de l’IL-12  
IL23A   gène codant la sous-unité p19 de l’IL-23 
IL-23R   chaîne 2 du récepteur de l’IL-23 
IRAK4   Interleukin-1 Receptor-Associated Kinase 4 
IRF4   Interferon Regulatory Factor 4 (facteur de transcription) 
JAK2   Janus Kinase 2 
MSMD  Mendelian Susceptibility to Mycobacterial Diseases 
MYD88  Myeloid Differentiation primary response gene 88 
NEMO   NF-κB Essential Modulator 
NK   lymphocyte Natural Killer 
OMIM   Online Mendelian Inheritance in Man 
pb   Paire de Base 
PBMC   Peripheral Blood Mononuclear Cells 
PCR   Polymerase Chain Reaction 
PHA   Phytohémagglutinine-P 
PMA   Phorbol 12-Myristate 13-Acetate (ester de Phorbol) 
RORC   gène RAR-related Orphan Receptor C codant la protéine RORγt  
   (facteur de transcription) 
RT-PCR  Reverse Transcription PCR 
STAT1/3/4  Signal Transducer and Activator of Transcription-1/3/4 (facteurs de 
   transcription) 
TBET/TBX21  T-Box Expressed in T cells ou T-Box 21 (facteur de transcription) 
TGF-β   Transforming Growth Factor β (codé par le gène TGFB1) 
TGFBR1/2  TGF-β Receptor 1/2 
Th   T « helper »  
TLR   Toll-Like Receptor 
Treg   lymphocyte T régulateur 
TYK2   Tyrosine Kinase 2 
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INTRODUCTION 
 

 L’immunologie est l’étude des mécanismes de défense du corps contre les infections. 

Le système immunitaire est très complexe, spécialement chez les vertébrés, et sa fonction 

principale est la protection contre les microorganismes. Cependant, les infections sont la 

cause de décès la plus importante dans l’histoire de l’homme. Jusqu’au siècle dernier, la durée 

de vie moyenne était de 25 ans. L’allongement de la durée de la vie à près de 80 ans 

aujourd’hui résulte d’un meilleur contrôle des maladies infectieuses grâce à l’effet combiné 

des mesures d’hygiène, de la vaccination et des antibiotiques et non pas d’un ajustement du 

système immunitaire aux microbes par des mécanismes d’évolution tel que la sélection 

naturelle (revue dans (1)). Le système immunitaire, très efficace à l’échelle de la population 

dans la défense contre les agents infectieux, est beaucoup moins fiable à l’échelle de 

l’individu. Il ne permet pas une résistance à tous les pathogènes chez tous les individus. Une 

grande proportion de ces dérèglements individuels du système immunitaire est d’origine 

génétique. Le premier déficit immunitaire primaire décrit est l’agammaglobulinémie en 1952 

par Bruton (2), dont le défaut moléculaire a été identifié en 1993 sur le gène BTK (3, 4). 

Depuis, de nombreux expérimentalistes se sont lancés dans l’étude de ces déficits et de leurs 

mécanismes (5). L’étude de ces nombreux cas d’erreurs innées du système immunitaire est 

très utile pour en comprendre le fonctionnement normal. 

 

 L’immunologie moléculaire et cellulaire a fait de grandes avancées dans ces 20 

dernières années non seulement grâce aux études réalisées chez la souris mais surtout grâce à 

l’avènement et au développement de la biologie moléculaire. L’importance des études sur des 

animaux modèles tels que la souris, le rat, la drosophile ou le zebrafish n’est plus à démontrer. 

Ces études permettent un accès à des informations souvent inaccessibles chez l’homme. Bien 

que l’utilité et la complémentarité qu’offrent les modèles animaux et les études réalisées chez 
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l’homme pour la dissection du système immunitaire ne soient plus à démontrer, il existe des 

différences fondamentales entre les deux (6). En effet, les études chez l’homme sont réalisées 

en conditions naturelles alors que chez l’animal elles sont faites en conditions expérimentales. 

Une grande différence est que le fonds génétique de l’hôte et son environnement sont 

totalement incontrôlés chez l’homme (ce qui entraîne une grande variabilité inter- et intra-

individuelle), alors qu’ils sont contrôlés chez l’animal (ce qui permet de diminuer cette 

variabilité). L’utilisation d’un seul ou de quelques fonds génétiques a l’avantage de diminuer 

la variabilité, mais peut aussi fausser d’éventuelles généralisations vers d’autres fonds de la 

même ou d’autres espèces. De plus, les agents infectieux utilisés chez l’animal ont rarement 

un tropisme naturel pour celui-ci. Les doses d’agents infectieux et la pureté de l’inoculum 

utilisées sont très souvent supérieures aux doses rencontrées dans la nature. Les moyens 

d’infection des animaux sont souvent différents des voies naturelles utilisées par les 

pathogènes. Notre méthode pour comprendre le système immunitaire est donc de rechercher, 

d’identifier et d’étudier des mutants génétiques de susceptibilité aux agents infectieux in 

natura (7). 

 

 Ces mutants naturels permettent de définir le ou les rôle(s) des fonctions atteintes en 

condition normale d’utilisation chez l’homme. Le syndrome de prédisposition mendélienne 

aux infections mycobactériennes (MSMD, OMIM 209950 (8)) est un syndrome clinique rare 

qui se manifeste par des infections sévères et récurrentes à des souches peu virulentes de 

mycobactéries, telles que le vaccin vivant du Bacille de Calmette et Guérin (BCG) ou les 

mycobactéries environnementales. Ce syndrome a été initialement décrit chez des enfants 

avec des infections disséminées par le BCG (9-12). Des infections à salmonelles sont 

communément retrouvées dans de nombreux cas, associées ou non à des infections 

mycobactériennes. A mon arrivée dans le laboratoire, des mutations de cinq gènes 
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autosomiques participant à l’immunité médiée par l’IFN-γ avaient été identifiées : trois gènes 

dont les mutations sont responsables d’un défaut de réponse à l’IFN-γ (IFNGR1 et IFNGR2 

codant respectivement les sous-unités IFN-γR1 et IFN-γR2 du récepteur de l’IFN-γ, et STAT1 

codant un facteur de transcription de la voie de réponse à l’IFN-γ) ; deux autres gènes dont les 

mutations sont responsables d’un défaut de production d’IFN-γ (IL12B qui code la sous-unité 

IL-12p40 commune de l’interleukine (IL-)12 et de l’IL-23, et IL12RB1 qui code la sous-unité 

β1 commune des récepteurs de l’IL-12 et de l’IL-23). Des mutations de deux autres gènes 

situés sur le chromosome X ont été identifiés plus récemment (NEMO et CYBB) (revue dans 

l’article 5, Bustamante et al, en révision). Ces mutations définissent 13 maladies génétiques 

différentes (tableau 1). 

 

Tableau 1: Etiologies génétiques du syndrome de prédisposition mendélienne aux 
infections mycobactériennes. 13 différentes étiologies génétiques ont été décrites dans 7 
gènes et classées en fonction de: 1- leur mode de transmission autosomique (A) ou lié à l’X 
(X), récessif (R) ou dominant (D). 2- leur défaut fonctionnel complet (C) ou partiel (P). 3- 
leur niveau d’expression de la protéine mutante normale (E+), surexprimée (E++), diminuée  
(E-) ou non exprimée (E0). 
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 J’ai eu la chance au cours de ma thèse de travailler sur deux voies de signalisation 

ayant comme point commun la molécule IL-12Rβ1 : l’axe IL-12-IFN-γ et l’axe IL-23-IL-17. 

Une partie de mon travail de thèse a consisté à identifier et à décrire des patients ayant un 

défaut de réponse à l’IL-12 causé par des mutations dans le gène IL12RB1. La première partie 

de ce manuscrit portera donc sur l’identification de patients déficients en IL-12Rβ1. Après un 

bref état des connaissances sur la réponse immunitaire anti-mycobactérienne et le récepteur de 

l’IL-12, je vous présenterai la situation de la cohorte de patients à mon arrivée, et les 

méthodes utilisées pour recruter de nouveaux patients. Je discuterai les résultats et les limites 

de cette étude de cohorte. Une autre partie de mon travail s’est portée vers une nouvelle 

population de cellules récemment identifiées : les lymphocytes T producteurs d’IL-17. Dans 

la deuxième partie de ce manuscrit, je commencerai par situer le paradigme Th1-Th2-Th17 de 

différentiation des lymphocytes T CD4+. Puis je vous décrirai un exemple d’utilisation de 

mutants humains dans le cadre de la dissection de la différentiation des lymphocytes T 

producteurs d’IL-17. Ensuite, je décrirai le modèle expérimental que nous avons choisi pour 

cette étude. Enfin, je discuterai les résultats que nous avons obtenus, ainsi que les avancées 

que nous apportons au modèle de différentiation de ces cellules. J’ai délibérément fait le choix 

de ne pas répéter ni rediscuter ce qui a déjà été écrit dans les publications en annexes ou dans 

l’article en préparation qui sont à la fin de ce document. 
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1. ETUDE DE PATIENTS PORTEURS DE MUTATIONS DANS LE GENE IL12RB1 
 

 1.1. La réponse immunitaire anti-mycobactérienne 

 La réponse immunitaire dirigée contre les micro-organismes intracellulaires et en 

particulier les mycobactéries est caractérisée par la production d’une cytokine clé : l’IFN-

γ (13). La phagocytose de la mycobactérie par les macrophages ou les cellules dendritiques 

induit la production d’IL-12 (figure 1). L’IL-12, cytokine hétérodimérique proinflammatoire 

composée de deux sous-unités IL-12p40 et IL-12p35, se fixe sur son récepteur présent à la 

surface des lymphocytes T et NK (14). Le récepteur de l’IL-12 composé de deux sous-unités, 

IL-12Rβ1 et IL-12Rβ2 (15), permet l’activation de deux Janus kinase, JAK2 et TYK2, qui 

vont à leur tour activer le facteur de transcription STAT4 qui induit, entre autre, la production 

d’IFN-γ (16). L’IFN-γ produit va alors autoactiver les lymphocytes en se fixant à son 

récepteur. L’IFN-γ se fixe aussi à la surface des macrophages et des cellules dendritiques qui, 

via le facteur de transcription STAT1, vont activer la transcription de plus d’une centaine de 

gènes cibles pour permettre la destruction et l’élimination de la bactérie. L’implication de 

NEMO, activé par l’interaction cellule-cellule via la voie CD40-CD40L a été mise en 

évidence en 2006 (article 17). Plus récemment, l’impact du système NADPH oxydase dans 

certains types cellulaires a été démontré comme jouant un rôle important dans l’immunité 

anti-mycobactérienne (Bustamante et al, en révision). 

 

Figure 1: Schéma de la réponse immunitaire anti-mycobactérienne. IL-12Rβ1 est l’une 
des chaînes du récepteur de l’IL-12p70 et est importante dans l’axe IL-12-IFN-γ. Des 
mutations du gène IL12B (codant l’IL-12p40), IL12RB1, IFNGR1, IFNGR2, STAT1, NEMO 
et CYBB (codant la GP91phox) perturbent la réponse immunitaire et prédisposent aux 
infections mycobactériennes (BCG, mycobactéries environnementales et Mycobacterium 
tuberculosis). Des mutations de la voie de l’IL-12 (IL12B et IL12RB1) prédisposent aussi aux 
infections à salmonelles. 
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 1.2. Du gène IL12RB1 à la protéine IL-12Rβ1 

 La chaîne IL-12Rβ1 est codée par le gène IL12RB1 sur le chromosome 19 en position 

19p13.1 chez l’homme (17, 18) (figure 2). Ce gène permet la synthèse d’un ARNm de 2100 

bases dont la très grande majorité est codante (1986 bases). IL-12Rβ1 est une protéine 

membranaire de 662 acides aminés avec un peptide signal (acides aminées 1 à 23), un 

domaine extracellulaire (aa 24-545), un domaine transmembranaire (aa 546-570) et un 

domaine intracellulaire (aa 571-662). C’est un membre de la famille des récepteurs gp-130 

(récepteurs de cytokines de type I) dont le domaine extracellulaire est constitué de cinq 

domaines fibronectine de type III (FNIII) (19). Le site de fixation de la cytokine (Cytokine 

Binding Domain, CBD) des récepteurs de la famille des gp-130 est localisé dans les 200 

acides aminés N-terminaux, et correspond aux deux premiers domaines FNIII (20, 21). 

Cependant dans le cas d’IL-12Rβ1 ce domaine est plus étendu (article 12). En effet, nous 

avons identifié un patient présentant une large délétion des exons 8 à 13 d’IL12RB1. Cette 
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mutation permet l’expression d’un récepteur délété des trois derniers domaines FNIII. Ce 

récepteur tronqué contient les deux premiers domaines FNIII (CBD) en phase avec le 

domaine transmembranaire et intracellulaire mais ne permet pas la fixation de l’IL-12. 

 

Figure 2: D’IL12RB1 à IL-12Rβ1. (A) Chez l’homme, le gène IL12RB1 est localisé en 
position 19p13.1. (B) Il fait 27326 pb et est composé de 17 exons tous codants. (C) Il est à 
l’origine d’un transcrit de 2100 pb. (D) La protéine IL-12Rβ1 de 662 acides aminés de long 
est composée d’un peptide signal (L), d’un domaine extracellulaire avec 5 domaines FNIII 
(FNIII 1 à 5), d’un domaine transmembranaire (TM) et d’un domaine intracellulaire (IC). 
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 1.3. IL-12Rβ1, IL-12 et IL-23  

 Les membres de la famille de l’IL-12 diffèrent des autres cytokines de type I par le fait 

qu’elles sont hétérodimériques. L’IL-12 (IL-12p70 sous sa forme active) comprend deux 

protéines reliées par un pont disulfure (IL-12p40 codé par le gène IL12B et IL-12p35 codé par 

le gène IL12A) (figure 3) (14). La sous-unité p40 est homologue à la famille des récepteurs de 

cytokines de type I (IL-6Rα, CNTFR), alors que la sous-unité p35 est homologue aux 

cytokines à quatre hélices α (IL-6, GCSF). En 2000, une nouvelle protéine appelée IL-23p19 

(codée par le gène IL23A) a été identifiée grâce à son homologie avec l’IL-6 et l’IL-12p35 

(22). Cette protéine associée avec l’IL-12p40 forme l’IL-23. De plus, l’IL-12 et l’IL-23 

partagent une chaîne réceptrice commune : IL-12Rβ1. IL-12Rβ1 s’associe avec IL-12Rβ2 

pour former le récepteur de l’IL-12 et avec IL-23R pour former le récepteur de l’IL-23. 

L’activation par l’IL-12 entraîne la phosphorylation du facteur de transcription STAT4 alors 

que l’activation par l’IL-23 entraîne la phosphorylation de STAT3. L’axe IL-12-IFN-γ et sa 

fonction sont assez bien décrits dans la littérature. Cependant, au début de ma thèse, le rôle et 

la fonction de l’IL-23 étaient peu décrits, mais seront relancés par la mise en évidence de 

l’axe IL-23-IL-17 décrit dans la deuxième partie de ce manuscrit (16, 23). 

 

Figure 3: Voies de signalisation de l’IL-12 et de l’IL-23. La sous-unité IL-12p40 et la 
chaîne IL-12Rβ1 sont communes aux voies de l’IL-12 et de l’IL-23. La fixation de la 
cytokine sur son récepteur hétérodimérique entraîne l’autophosphorylation des tyrosines 
kinases TYK2 et JAK2 qui vont alors phosphoryler les chaînes IL-12Rβ2 et IL-23R. Les 
facteurs de transcription STAT vont ensuite être recrutés (STAT4 pour la voie de l’IL-12, et 
STAT3 pour la voie de l’IL-23), puis phosphorylés. La phosphorylation des protéines STAT 
va permettre leur dimérisation, puis leur translocation vers le noyau pour activer la 
transcription de gènes cibles. 
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 1.4. Etat de la cohorte en 2004 

 A mon arrivée au laboratoire, Frédéric Altare et Claire Fieschi avaient identifiés, 

depuis 1998, 46 patients avec un défaut complet de réponse à l’IL-12 dû à des mutations dans 

le gène IL12RB1 (24-31). D’autres équipes hollandaise, japonaise, tunisienne et américaine 

ont aussi identifié 15 patients (32-38). L’étude de la cohorte la plus importante a été réalisée 

par Claire Fieschi en 2003 sur 41 patients issus de 29 familles provenant de 17 pays (27). Ces 

mutations ont été mises en évidence chez des patients atteints d’infections opportunistes par le 

BCG, des mycobactéries environnementales et des salmonelles non typhiques. Cette étude a 

démontré une pénétrance clinique incomplète. En effet, Claire Fieschi a mis en évidence des 
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patients déficients en IL-12Rβ1 mais sans phénotype infectieux. La pénétrance des infections 

opportunistes est alors calculée parmi les frères et sœurs génétiquement atteints. Elle est 

estimée à 45%. Les patients IL-12Rβ1 déficients étudiés ont une résistance large aux autres 

micro-organismes puisqu’ils ne font aucun autre type d’infections notables (virus, bactéries, 

champignons…). Ces patients présentent une issue qui est relativement favorable puisque le 

taux de mortalité parmi les patients infectés est de 15% seulement. 

 

 1.5. Recrutement des patients et méthodes employées 

 Les patients que nous recrutons au sein du laboratoire sont des patients présentant des 

mycobactérioses et/ou des salmonelloses atypiques. Ces infections sont des infections 

opportunistes causés par du BCG (sévères ou récurrentes, localisées ou disséminées), des 

mycobactéries environnementales, et des salmonelles non typhiques. Nous recrutons aussi des 

patients présentant des infections par des pathogènes plus virulents comme Mycobacterium 

tuberculosis. Les tuberculoses étudiées sont des maladies graves (sévères ou récurrentes), 

atypiques (forme miliaire ou méningite) ou disséminées. Ces patients sont recrutés grâce à un 

très important réseau de collaborateurs pédiatres ou immunologistes du monde entier. Dans 

certains cas, les médecins nous envoient par courrier express du sang hépariné du malade et 

de sa famille. Ce sang est alors utilisé dans le cadre d’un test sur sang total de l’axe IL-12-

IFN-γ réalisé par Jacqueline Feinberg (article 11). Ce test mesure le bon fonctionnement de la 

boucle IL-12-IFN-γ chez les patients. En cas de réponse anormale, cela permet une orientation 

dans la poursuite de l’étude du patient. Les patients ayant un défaut de production d’IFN-γ en 

réponse à l’IL-12 dans ce test sont alors suspectés d’être porteurs d’un déficit complet en IL-

12Rβ1. 

 Je séquence alors les régions des 17 exons d’IL12RB1 en ADN génomique, ainsi que 

les régions introniques flanquantes. Pour les patients dont les échantillons biologiques 
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n’étaient malheureusement pas accessibles, j’ai identifié leur défaut directement par 

séquençage. Les mutations ayant un impact sur le splice (épissage des ARN) sont confirmées 

et validées par l’amplification et le séquençage de l’ADN complémentaire. L’impact des 

mutations identifiées est validé par l’étude de l’expression de la protéine IL-12Rβ1 à la 

surface des cellules. Ce test peut être réalisé sur des blastes T activés par la PHA ou sur des 

lignées de lymphocytes B transformés par l’EBV (figure 4A). Cette expérience est réalisée 

par cytométrie en flux à l’aide de deux anticorps reconnaissant deux épitopes différents sur le 

récepteur. Tous les patients étudiés n’ont pas d’expression du récepteur à la surface de leurs 

cellules, excepté pour une mutation qui permet l’expression à la surface d’une protéine 

tronquée non fonctionnelle (articles 4 et 12). Cette absence d’expression de la protéine 

sauvage à la surface des cellules empêche la fixation de la cytokine sur son récepteur (figure 

4B). Cela entraîne un défaut de phosphorylation de STAT4 en réponse à l’IL-12, ce qui ne 

permet pas l’activation de la synthèse d’IFN-γ (figure 4C). Tous les patients présentent le 

même phénotype cellulaire. 

 

Figure 4: Phénotype cellulaire par FACS des patients avec un déficit complet en IL-
12Rβ1. (A) Absence d’expression du récepteur à la surface des cellules révélée par deux 
anticorps anti-IL12Rβ1 (24E6 et 2B10). (B) Défaut de fixation de l’IL-12 à la surface des 
cellules révélé par un anticorps anti-IL-12 après incubation des cellules sans ou avec IL-12. 
(C) Défaut de phosphorylation de STAT4 en réponse à l’IL-12 et pas à l’IFN-α révélé par un 
anticorps anti-phospho-STAT4. 
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 1.6. Diversité et homogénéité observées dans le défaut complet en IL-12Rβ1 

 La cohorte de patients déficients en IL-12Rβ1 est de 137 patients issus de 101 familles 

(articles 1, 4, 7, 9, 10 et article 13 en préparation qui présente les informations de l’étude sur 

toute la cohorte). Tout d’abord les patients présentent une grande diversité ethnique et 

géographique. Ils proviennent de 30 pays répartis sur toute la surface du globe. Ils présentent 

une grande diversité génétique avec 52 allèles délétères différents pour 101 familles. Cette 

diversité génétique entraîne au niveau cellulaire une très grande homogénéité avec un 

phénotype cellulaire complet identique chez tous les patients (figure 5). Il me semble très 

intéressant de noter que l’expression clinique de cette maladie est très diverse et s’étend d’une 

absence de phénotype clinique (patients asymptomatiques) à des formes sévères et 

disséminées d’infections pouvant conduire à la mort. Cependant, le spectre d’agents 

pathogènes semble réduit aux mycobactéries et aux salmonelles. Les patients atteints de ce 

syndrome sont aussi susceptibles à Mycobacterium tuberculosis (OMIM 607948). Nous avons 
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décrit les premiers cas de tuberculose mendélienne (article 10). Il n’existe pas de corrélations 

entre le génotype et le phénotype clinique. 

 
Figure 5: Diversité et homogénéité observées dans l’étude du défaut complet en IL-
12Rβ1. 

 

 1.7. Exemples d’utilisation des mutants humains IL12RB1 

 Les mutants que nous avons identifiés peuvent servir à la dissection chez l’homme de 

phénotypes et de mécanismes. Ils permettent d’étudier l’impact de l’absence de réponse à 

l’IL-12 (et à l’IL-23). Nous avons donc collaboré avec des laboratoires plus spécialisés et 

intéressés par l’étude de ces phénotypes chez les patients que nous avons identifiés. Les 

mutants de la voie de l’IFN-γ (IFNGR1 et IFNGR2), ainsi que les mutants IL12B et IL12RB1 

ont été utilisés pour disséquer les mécanismes d’activations des cellules dendritiques par les 

lymphocytes T CD4+ (article 6). Les études effectuées ont pu démontrer que l’activation des 
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cellules dendritiques se faisait par un contact physique entre les deux populations de cellules 

via notamment l’interaction CD40-CD40L. De plus, la signalisation via l’IL-12 des 

lymphocytes T était requise pour induire efficacement l’expression des molécules de 

costimulation ainsi que la production d’IL-12p70 par les cellules dendritiques. Cette 

activation passe par l’activation de la synthèse d’IFN-γ. La boucle IL-12-IFN-γ entre la 

cellule dendritique et le lymphocyte T doit être fonctionnelle pour activer la réponse 

immunitaire et amplifier le signal. Cela confirme les résultats mis en évidence au laboratoire 

sur l’importance des deux systèmes d’interactions cytokinique et physique (article 17). 

 

 Le rôle de l’IL-12 sur les cellules NK est assez peu connu, bien que cette cytokine a 

été identifiée à la base sur sa capacité à induire la cytotoxicité des cellules NK et la production 

d’IFN-γ (14, 39). Les mutants IL12RB1 ont été utilisés pour l’étude des différentes 

populations de cellules NK (CD3-CD56+) et de lymphocytes T CD56+ (CD3+CD56+) chez 

l’homme (article 3). Ces résultats ont permis de confirmer chez un plus grand nombre de 

patients déficients en IL-12Rβ1 que ces cellules sont en nombre normal mais que leur 

fonction est altérée en terme de production d’IFN-γ et de cytotoxicité. Des expériences de 

compétition avec un anticorps anti-IL-12 montrent que la capacité cytotoxique de ces cellules 

serait dépendante d’un priming des cellules in vivo. La population de lymphocytes T CD56+ 

est réduite chez les patients ayant un défaut de la voie de l’IL-12 (IL12B et IL12RB1). Cette 

population de cellules est équipée d’un appareil permettant la cytotoxicité, et est capable de 

produire de l’IFN-γ en réponse à l’IL-12. Les cellules T CD56+ sont différentes des cellules 

NKT. Les cellules NKT sont des cellules CD4+ ou CD4-CD8- avec un TCR invariant. Les 

cellules T CD56+ sont principalement CD8+TCRαβ+ et ont des attributs de cellules T CD8+ 

mémoires ainsi qu’un pouvoir cytolytique (40). Leur voie de différentiation reste encore 

inconnue. 
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 1.8. Conclusions 

 Cette maladie génétique est l’étiologie la plus fréquente du syndrome de 

prédisposition mendélienne aux infections mycobactériennes. Elle représente 45% des cas 

avec des défauts moléculaires identifiés (figure 6). Nous avons pu collecter les informations 

de la quasi-totalité des patients de la littérature. Cette étude a permis de poursuivre l’étude de 

2003 sur un plus grand nombre de patients. Au niveau des phénotypes cliniques, nous avons 

confirmé la part importante de patients atteints de maladies à salmonelles (43%) bien que ces 

patients souffrent majoritairement de mycobactérioses (82%). Le nombre de patients ayant 

fait la tuberculose a augmenté (10 patients). Concernant les nouveaux phénotypes, nous avons 

maintenant trois patients qui ont présenté des infections à Klebsiella pneumoniae (Anderson 

et al, Pedraza et al, en préparation). Ce type d’infection devra donc être surveillé chez nos 

patients. Il serait intéressant de tester des patients atteints de klebsiellose pour l’axe IL-12-

IFN-γ et plus spécialement un défaut complet en IL-12Rβ1. Un des patients a présenté une 

infection à Nocardia nova sans infections mycobactériennes ou à salmonelles associées 

(Picard et al, en préparation). Nous avons aussi identifié un cas de paracoccidioidomycose et 

un cas de leishmaniose. Nous ne pouvons pas encore tirer de conclusions de ces cas isolés. 

 

Figure 6: Répartition des défauts génétiques identifiés chez 299 patients MSMD dont les 
mutations entraînent un phénotype cellulaire complet (c) ou partiel (p). 
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 Il est très intéressant de noter que 29 patients (23%) ont présenté une infection à 

Candida albicans (Rodriguez-Gallego et al, en préparation). Les patients IL-12Rβ1 semblent 

donc sensibles à la candidose. L’explication physiopathologique n’est pas encore identifiée, 

mais l’une des hypothèses concernant l’implication de l’axe IL-23-IL-17 sera discutée dans la 

deuxième partie de cette thèse. Par rapport à 2003, la pénétrance des infections opportunistes 

a nettement augmenté (de 45% en 2003 à 64% en 2008). La mortalité est aussi en nette 

augmentation (de 15% en 2003 à 28,5% en 2008). L’hypothèse du lieu de vie des patients et 

du niveau global du système de santé ne semble pas en cause. En effet, si nous classons les 

patients en groupes en fonction de leur région d’habitation (Europe, Orient, Asie, Amérique 

du Sud), il n’y a pas de différences significatives du taux de mortalité. En revanche, si nous 

étudions le taux de mortalité en fonction du type d’infection, nous pouvons remarquer que les 

patients atteints de mycobactérioses environnementales ont un taux de mortalité beaucoup 

plus élevé (52%), et les patients atteints de salmonelloses beaucoup plus bas (19%). L’effet 

protecteur du BCG sur la survenue de mycobactériose environnementale est confirmé sur un 

plus grand nombre de patients. Par contre, le BCG n’a aucun effet protecteur sur la survenue 

de tuberculose ou de salmonellose. 

 

 1.9. Discussion 

 La quasi-totalité de nos patients ont fait des infections à mycobactéries et à 

salmonelles. Il ne faut pas oublier que ce sont les infections mycobactériennes qui sont 

étudiées historiquement au laboratoire, et que l’étude des infections à salmonelles a débuté 

après l’observation de l’association entre les deux. Une quantité non négligeable de patients 

font des infections à salmonelles uniquement. Des mutations du gène IL12RB1 peuvent donc 

prédisposer à un nouveau syndrome : le syndrome de « prédisposition mendélienne aux 

infections à salmonelles ». L’étude poussée de ces deux phénotypes entraîne donc forcément 
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un biais de recrutement important. Nous ne pouvons exclure que des mutations de ce gène ne 

soient pas associées à d’autres phénotypes infectieux. Il serait très intéressant de tester la 

fonctionnalité de l’axe IL-12-IFN-γ, ou de séquencer IL12RB1 dans des cohortes de patients 

avec d’autres infections par des pathogènes intracellulaires (candidose, chlamydiose, 

shigellose, légionellose, brucellose, ulcère de Buruli, nocardiose…). Dans un premier temps, 

il faudrait commencer par les formes atypiques de l’enfant (infections des jeunes enfants, 

récurrentes ou disséminées) chez des patients sans immunodéficience connue. 

 

 Cette maladie semble plus grave que dans l’étude de 2003 avec une nette 

augmentation de la pénétrance et de la mortalité. Ces résultats sont peut-être dus à un temps 

de suivi plus long et à un suivi plus approfondi des patients. Une certaine proportion non 

négligeable de « patients » reste tout de même asymptomatique. Nous pouvons émettre 

l’hypothèse que l’environnement dans lequel ils évoluent est identique à celui de leurs frères 

et sœurs malades qui nous ont permis d’identifier leur défaut. L’exposition serait donc 

sensiblement la même chez les patients symptomatiques ou non. La différence observée entre 

ces individus pourrait donc être génétique. L’hypothèse de gènes modificateurs, c'est-à-dire 

d’autres mécanismes moléculaires permettant de pallier le défaut de réponse à l’IL-12 semble 

intéressante. L’identification de ces gènes permettrait d’expliquer pourquoi certains patients 

meurent dans l’enfance de leur maladie alors que d’autres arrivent asymptomatiques à l’âge 

adulte, mais peut-être aussi d’expliquer les différences de sensibilité face aux différents 

pathogènes. 

 

 Il est assez bien établi qu’IL-12Rβ1 participe à l’immunité anti-mycobactérienne 

essentiellement par la formation du récepteur de l’IL-12 dont l’activation permet la 

production d’IFN-γ. Cependant, IL-12Rβ1 et l’IL-12p40 sont aussi impliquées dans 
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l’immunité anti-salmonelle. En effet, 50% des patients déficients en IL-12Rβ1 ou IL-12p40 

présentent des infections à salmonelles contre seulement 6% des patients mutés dans la voie 

de réponse à l’IFN-γ. Cette observation nous permet d’émettre l’hypothèse que l’immunité 

anti-salmonelle est IL-12Rβ1/IL-12p40 dépendante, mais indépendante de la production 

d’IFN-γ. La découverte de l’axe IL-23-IL-17 permet de donner une voie candidate à cette 

hypothèse. Cependant, nous n’avons pas encore testé cette hypothèse. Mais cela pourrait aussi 

bien être de nouvelles voies IL-12 et/ou IL-23 dépendantes. Nous espérons un jour pouvoir 

identifier des mutants propres de l’IL-12 (IL-12p35 ou IL-12Rβ2) et de l’IL-23 (IL-23p19 ou 

IL-23R) pour mieux comprendre le rôle et la fonction de chacune de ces molécules dans 

l’immunité anti-infectieuse. Si nous n’avons pas pu en identifier à l’heure actuelle, c’est peut-

être que les phénotypes infectieux de ces patients sont différents de ceux étudiés, ou alors 

beaucoup moins graves et donc pas rapportés à notre laboratoire par notre réseau. 
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2. ETUDE DE LA POPULATION DE LYMPHOCYTES T PRODUCTEURS D’IL-17 
 

 2.1. Le paradigme Th1-Th2-Th17 

 Dans les années 1970, les cellules T ont été divisées en deux groupes grâce à la 

présence de marqueurs à la surface des cellules : CD4 et CD8. Les CD8+ ont un rôle de lyse 

des cellules (lymphocytes T cytotoxiques), et les CD4+ d’aide à la synthèse d’anticorps 

(lymphocytes T « helpers ») (revue dans (41)). En 1986, les lymphocytes T CD4+ ont à leur 

tour été divisés en deux groupes : Th1 et Th2 (42-44). Ces deux groupes de cellules existent et 

se distinguent par un profil différent de cytokines sécrétées après activation ainsi que par des 

fonctions régulatrices et effectrices différentes. Pendant plus de vingt ans, les chercheurs et les 

étudiants en immunologie ont travaillé avec ce paradigme de différentiation des cellules CD4+ 

« helpers » de type Th1 pour l’immunité cellulaire et de type Th2 pour l’immunité humorale. 

L’IL-17A est une cytokine avec des propriétés proinflammatoires qui a été mise en évidence 

en 1993 et dont le rôle et la fonction sont étudiés depuis quelques années (revue dans (45)). 

Elle appartient à la famille de l’IL-17 qui est composée de six membres (IL-17A à F). L’IL-

17A (que nous appelleront IL-17 dans la suite de ce document) a été caractérisée comme étant 

induite par l’IL-23 dans des cellules T CD4+ (46, 47). Les caractéristiques moléculaires des 

cellules CD4+ productrices d’IL-17 étant différentes des caractéristiques des cellules Th1 et 

Th2, elles ont alors été nommées « Th17 » (47) (figure 7, tirée de (48)). 

 
 
 
Figure 7: Schéma de différentiation des lymphocytes T CD4+. 
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 2.2. Les Th17 chez la souris 

 Depuis l’identification de cette population de lymphocytes, de nombreuses équipes ont 

étudié plus en avant les Th17 dans le modèle murin (revue dans (49, 50)). Les premiers 

travaux montrent que cette population est inhibée par les cytokines de type Th1 (IFN-γ) ou 

Th2 (IL-4) (51, 52). Le TGF-β est décrit comme étant une cytokine critique pour 

l’engagement des Th17 en coopération avec l’IL-6 (53-55). Les cellules T régulatrices (Treg) 

représentent un autre type de cellules T CD4+ inductibles, mais leur rôle est de réprimer la 

réponse immune. Ces deux populations (Th17 et Treg) bien qu’ayant des rôles opposés sont 

reliées par une cytokine commune : le TGF-β. Si les cellules CD4+ naïves sont activées par le 

TGF-β en coopération avec l’Acide Rétinoïque ou l’IL-2, elles se différentieront alors en Treg 

grâce à l’activation du facteur de transcription FOXP3 (56, 57). Au contraire, l’activation par 

le TGF-β en coopération avec l’IL-6 et l’IL-21 entraîne la différentiation en Th17 via le 
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facteur de transcription RORγt (58-60) (figure 8, tirée de (49)). 

 
Figure 8: Etat des connaissances des voies de différentiation des lymphocytes T CD4+ 
chez la souris et chez l’homme. 

 

 

 L’engagement d’une cellule dans une voie de différentiation se fait par l’action de 

facteurs de transcription lignages spécifiques en plus de l’action de l’environnement de 

cytokines. Le facteur TBET est important pour les cellules Th1 et GATA3 pour les Th2. 

STAT3 est décrit comme un des facteurs importants dans la différentiation Th17, 

certainement à cause de son implication dans la réponse à de nombreuses cytokines dont l’IL-

6 (56, 61). RORγt serait un régulateur clé de la différentiation en Th17 (62). RORγt est induit 
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par le TGF-β et l’IL-6, et les souris RORC-/- n’ont pas de Th17. IRF4 semble aussi jouer un 

rôle certainement dans l’induction de RORγt en plus de celui joué sur la différentiation Th2 

(63). L’effet de l’IL-23 n’est pas encore résolu. Les premiers travaux montrent que l’IL-23 

aurait un rôle dans l’activation de la sécrétion de l’IL-17 plus que dans leur différentiation 

(47). Le rôle de l’IL-1β est peu connu, mais est avancé par certaines équipes (64). De très 

nombreuses études in vivo et in vitro sont réalisées chez la souris et permettent d’avoir un 

modèle complexe, mais qui reste néanmoins encore incomplet aujourd’hui. 

 

 2.3. Les Th17 chez l’homme 

 Chez l’homme, la population Th17 est peu décrite (figure 7). Les premières études ont 

d’abord porté sur l’identification de marqueurs phénotypiques de ces cellules (65-67). Les 

quatre premiers groupes qui ont étudié les voies de différentiation de ces cellules sont arrivés 

à des résultats contradictoires et différents du modèle murin (68-71). Ils suggèrent tous que le 

TGF-β n’est pas requis pour la différentiation en cellules productrices d’IL-17. Le TGF-β 

serait même inhibiteur dans trois études (68, 69, 71). L’IL-6 a été montrée comme ayant une 

activité inhibitrice de cette différentiation dans une étude (69) et redondante dans trois autres 

(68, 70, 71). L’IL-1β a été identifiée comme un régulateur positif de cette population dans 

deux études (68, 69), tandis que l’IL-21, testée dans une étude, ne semble pas indispensable 

(71). Quand à l’IL-23, elle a été décrite comme ayant la capacité d’accroître le développement 

des cellules T productrices d’IL-17 dans les quatre études (68-71). La différentiation de ces 

cellules est donc mal connue et les données disponibles en 2007 ne permettent pas d’établir un 

modèle consensuel. Des études complémentaires viendront ensuite enrichir ce modèle en 

2008 (72-76). Au vu de ces données, il nous a semblé important de voir comment nous 

pouvions disséquer ce modèle. 
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 2.4. Une dissection génétique de la différentiation Th17 

 Depuis le début de ma thèse je souhaitais développer un projet qui utiliserait les 

patients IL12RB1-/- comme des « KO naturels » pour disséquer le rôle et la fonction de cette 

molécule. Nous savions depuis quelques années que les patients déficients en IL-12Rβ1 ont 

un défaut de réponse à l’IL-12 et à l’IL-23 (77). Cependant, les fonctions respectives de ces 

molécules étaient à mon arrivée au laboratoire assez mal connues, et étaient même décrites 

comme redondantes. La description de l’axe IL-23-IL-17 semble donc intéressante. L’idée 

simple est de trouver un modèle pour étudier les lymphocytes T producteurs d’IL-17 et de 

comparer les patients avec des individus contrôles. En regardant plus en avant les travaux 

chez la souris et chez l’homme, il semble exister en plus de l’IL-23 toute une série de 

molécules responsables de la différentiation et de l’activation de ces cellules : le TGF-β, l’IL-

6, l’IL-1β, STAT3 et FOXP3. Nous avons la chance dans le laboratoire d’étudier des patients 

porteurs de mutations dans des gènes impliqués dans ces voies, et surtout d’avoir un important 

réseau de collaborateurs nous permettant d’entrer en contact avec ces patients. 

 

 2.5. Les différents patients utilisés 

  2.5.1. Les mutants de la voie du TGF-β 

 Des mutations des gènes TGFBR1 et TGFBR2 codant le récepteur du TGF-β ont été 

identifiées chez des patients atteints du syndrome de Loeys-Dietz (OMIM 609192) (78, 79) 

(revue dans (80)). Ce syndrome de type Marfan est caractérisé par des atteintes multiples au 

niveau cardiovasculaire, craniofacial, squelettique, de la peau et du système oculaire. Les 

atteintes sont très différentes d’un patient à l’autre et parfois même au sein de la même 

famille. Des mutations du gène TGFB1, codant le TGF-β, ont été identifiées chez des patients 

atteints d’un syndrome de Camurati-Engelmann (OMIM 131300) (81, 82) (revue dans (83)). 

Ce syndrome est caractérisé par une dysplasie osseuse généralisée (formation excessive d’os) 
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avec un élargissement diaphysaire des os longs. Elle débute dans l'enfance. Cliniquement, ce 

syndrome se manifeste par des douleurs osseuses principalement au niveau des jambes, une 

faiblesse musculaire avec atrophie, une démarche dandinante, une fatigabilité accrue, des 

céphalées, des déficits des nerfs crâniens, et un retard pubertaire. Dans ces deux syndromes, la 

transmission est autosomique dominante, et ces mutations sont associées avec une auto-

activation de la voie du TGF-β.  

 

  2.5.2. Les mutants de la voie de l’IL-1β 

 Depuis 2003, il a été démontré que les patients qui ont des mutations dans le gène 

IRAK4 présentent un défaut complet de réponse à l’IL-1β (84, 85). IRAK4 est une sérine 

thréonine kinase présente dans les voies de signalisation des TLRs et de la superfamille de 

l’IL-1R. Ces patients présentent une susceptibilité restreinte aux infections par des bactéries 

pyogènes. La majorité des patients souffrent d’infections invasives, et souvent récurrentes, à 

pneumocoque (Streptococcus pneumoniae) ou à staphylocoque (Staphylococcus aureus) 

entraînant des manifestations variées telles que pneumonie, arthrite septique, cellulite, 

ostéomyélite, otite moyenne, méningite, sinusite et septicémie. Les infections par d’autres 

pathogènes sont très rares chez ces patients. Ces infections surviennent dans la jeune enfance 

(dans les deux premières années de vie majoritairement) et entraînent la mort dans la moitié 

des cas. Les infections deviennent de moins en moins fréquentes avec l'âge chez ces patients. 

En 2008, des mutations du gène MYD88 ont été identifiées chez des patients atteints 

d’infections semblables et qui présentaient un défaut de réponse à l’IL-1β sans mutation 

identifiée dans IRAK4 (86). MYD88 est une molécule adaptatrice des voies de signalisation 

des TLRs et de l’IL-1R en amont d’IRAK4. La transmission génétique de ces deux défauts est 

autosomique récessive. 
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  2.5.3 Les mutants de la voie de l’IL-6 

 Le syndrome Hyper-IgE (HIES) est un déficit immunitaire héréditaire de transmission 

autosomique dominante décrit en 1966 et également appelé syndrome de Buckley (87). Il se 

caractérise par des infections cutanées récurrentes à staphylocoques, des pneumopathies 

bactériennes et fongiques, des candidoses cutanéo-muqueuses chroniques et par une 

augmentation importante des immunoglobulines E (IgE). Les autres manifestations cliniques 

associées à ce déficit immunitaire sont un eczéma, une ostéopénie, une hyperlaxité 

ligamentaire, un retard de la chute des dents lactéales, ainsi qu’une dysmorphie. Des 

mutations dominantes négatives du gène STAT3 ont été identifiées en 2007 pour la forme 

autosomique dominante du syndrome (AD-HIES) (88). Il a été montré chez ces patients un 

défaut de réponse des cellules à l’IL-6 (ainsi qu’à l’IL-10). STAT3 est un facteur de 

transcription impliqué dans de très nombreuses voies de signalisation moléculaire (les 

membres de la famille de l’IL-6 : IL-6, IL-11, IL-27, IL-31, LIF, OSM, CNTF et 

cardiotrophin-1 ; les membres de la famille des IFNs : IL-10, IL-19, IL-20, IL-22, IL-24, IL-

26, IFN-α/β et IFN-γ ; les membres de la famille de l’IL-2 : IL-2, IL-7, IL-9, IL-15 et IL-21 ; 

d’autres cytokines et hormones comme l’IL-5, IL-23, CSF3/G-CSF, EGF, CSF1, et la 

leptine). 

 

  2.5.4. Les mutants de la voie de l’IL-23 

 En plus des patients porteurs de mutations dans le gène IL12RB1, nous avons utilisé 

des patients porteurs de mutations dans le gène IL12B (89, 90). Ces patients souffrent du 

syndrome de prédisposition mendélienne aux infections mycobactériennes. Ils sont atteints 

d’infections à mycobactéries et à salmonelles (voir première partie de ce manuscrit, revue 

dans (91)). Les patients déficients en IL-12Rβ1 ont un défaut de réponse à l’IL-23 et à l’IL-

12, mais sont capables de produire ces cytokines. A l’opposé, les patients déficients en IL-
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12p40 ne sont pas capables de produire de l’IL-23 et de l’IL-12, mais ils sont capables de 

répondre à ces cytokines. Sur ces derniers, nous pouvons donc complémenter leur défaut, et 

voir l’action de ces molécules sur des cellules qui n’ont jamais été en contact avec ces 

cytokines. Les phénotypes cliniques de ces deux types de patients sont assez proches avec en 

particulier un pourcentage de patients présentant des infections à salmonelles assez élevé 

(environ 45%). 

 

  2.5.5 Les autres patients  

 Nous avons aussi étudié un patient avec des auto-anticorps anti-IL-6 (92). Ce patient a 

développé des infections à Staphylococcus aureus. Ce patient est capable de produire de l’IL-

6, mais les anticorps IgG1 dirigés contre l’IL-6 présents dans son plasma neutralisent la 

cytokine. Les cellules sanguines de ce patient ne sont donc pas activées sous l’action de l’IL-6 

in vivo. Cependant, in vitro en l’absence de sérum, ce patient peut répondre à l’IL-6. Ce 

patient est très intéressant pour voir l’impact du priming in vivo de l’IL-6. Nous avons un seul 

patient de ce type, ce qui ne permet donc pas de réaliser une étude statistique robuste. Nous 

avons aussi étudié des patients porteurs de mutations dans le gène FOXP3 (93). Ces patients 

souffrent du syndrome IPEX (Immunodysregulation, Polyendocrinopathy and enteropathy, X-

linked) qui est une pathologie rare survenant chez les garçons (94). Elle est caractérisée 

cliniquement par une diarrhée rebelle, une dermatite ichtyosiforme, un diabète sucré insulino-

dépendant, une thyroïdite, une anémie hémolytique, des troubles auto-immuns et des 

infections graves. La transmission de la maladie est récessive liée au chromosome X. Les 

lourds traitements immunosuppresseurs chez ces patients, ainsi que le faible nombre de 

patients identifiés et testés ne nous ont malheureusement pas permis de tirer des conclusions 

définitives quant à l’impact de ce défaut sur la population de cellules T productrices d’IL-17. 
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 2.6. Choix du modèle expérimental 

 Nous savons que chez l’homme, il est difficile de faire des études comparatives de 

populations cellulaires à cause de l’existence d’une grande variabilité inter- et intra-

individuelle. Cette variabilité est le reflet de l’influence de la génétique et de l’environnement 

sur le phénotype d’intérêt. Pour pallier ces problèmes inhérents au modèle humain, il faut 

donc être sûr des phénotypes observés et avoir une statistique puissante, c'est-à-dire avec un 

nombre d’individus étudiés suffisant. Pour pouvoir tester un grand nombre d’individus, le 

modèle doit être le plus simple possible techniquement. Le matériel biologique dont nous 

pouvons disposer est constitué d’échantillons sanguins de contrôles et de patients en « faible » 

quantité (5 à 30 ml de sang suivant l’âge et l’état du patient). La purification des cellules 

sanguines se fait par une centrifugation sur gradient de ficoll. Certains papiers ont décrit les 

effets de l’interaction entre les monocytes et les cellules dendritiques sur la différentiation des 

cellules Th17 (68, 71). J’ai donc testé mes modèles avec ou sans une étape d’adhérence des 

PBMCs sur une flasque allongée pendant deux à trois heures dans l’étuve. Cette étape permet 

d’éliminer les monocytes, et de récupérer les lymphocytes « seuls ». Expérimentalement, 

j’obtenais un pourcentage de cellules CD3+IL-17+ plus élevé chez des contrôles après cette 

étape d’adhérence. J’ai donc ensuite inclus cette étape dans mon protocole expérimental. 

 

 Notre premier modèle est le modèle « ex vivo » (figure 9). Pour révéler la présence 

d’IL-17 intracellulaire, nous sommes obligés d’activer nos cellules avec la PMA-ionomycine. 

Sans cette activation, nous ne détectons aucune production de cytokine. Cette activation est 

réalisée sur la nuit pendant une période de 11 à 12 heures en présence d’un inhibiteur de 

sécrétion (afin de retenir les molécules produites à l’intérieur des cellules). Malheureusement, 

l’activation par les esters de phorbol entraîne une diminution d’expression à la surface du 

marqueur CD4 comme cela a été décrit depuis plus de quinze ans (95, 96). L’utilisation du 
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marqueur CD4 n’est donc pas possible après activation par la PMA-ionomycine. Notre choix 

a été de regarder la proportion de cellules CD3+IL-17+. Nous avons aussi étudié la production 

d’autres cytokines (IFN-γ, IL-4, IL-22) par les cellules CD3+. Notre deuxième modèle est un 

modèle de différentiation « in vitro ». Les PBMCs non adhérents sont mis en culture avec un 

anticorps anti-CD3 et un cocktail des cytokines étudiées (TGF-β, IL-23, IL-6 et IL-1β). Du 

milieu contenant de l’IL-2 et les cytokines d’intérêt est ajouté au bout de trois jours. Deux 

jours plus tard, les cellules sont activées avec la PMA-ionomycine pour étudier par FACS la 

proportion de cellules IL-17+, IFN-γ+, ou IL-22+. La quantité de cytokines produites est 

mesurée par ELISA après 48 heures d’activation. 

 

Figure 9: Schéma du modèle expérimental pour l’étude ex vivo et in vitro des cellules T 
productrices d’IL-17. 
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 2.7. Résultats 

 Les résultats de cette étude sont présentés en détail dans l’article 2. Le tableau 2 

présente la comparaison des différents systèmes expérimentaux que nous avons testés entre 

les contrôles et les groupes de patients. Le groupe de patients de la voie de l’IL-1β (IRAK4 et 

MYD88) présente un pourcentage de cellules T productrices d’IL-17 statistiquement 

comparable au groupe contrôle. En terme de production de cytokine IL-17 et IL-22, ces 

patients présentent une production basale d’IL-17 diminuée par rapport aux contrôles. Les 

patients avec des mutations gains de fonctions du TGF-β (TGFB1, TGFBR1 et TGFBR2) ont 

un nombre de cellules productrices d’IL-17 et une production d’IL-17 et d’IL-22 

statistiquement comparable aux contrôles. Les patients de la voie de l’IL-12 et de l’IL-23 

(IL12B et IL12RB1) montrent un pourcentage de cellules productrices d’IL-17 diminué par 

rapport aux contrôles. Chez ces patients, la production d’IL-17 est comparable aux contrôles, 

mais la production d’IL-22 est statistiquement diminuée. Le groupe de patients STAT3 est 

celui pour lequel le phénotype est le plus drastiquement diminué par rapport au groupe 

contrôle que ce soit en pourcentage de cellules productrices d’IL-17 ou en production d’IL-17 

et d’IL-22. Il est intéressant de noter que notre patient avec des auto-anticorps anti-IL-6 

présente un phénotype exactement comparable à celui des patients déficients en STAT3.  

 
 
 
Tableau 2: Phénotypes observés dans les différents groupes de patients. Comparaison 
entre les phénotypes des contrôles et des patients obtenus avec notre modèle expérimental ex 
vivo et in vitro pour l’étude des cellules T productrices d’IL-17. La distribution des résultats 
observés est comparable (=), diminuée (↓), ou très diminuée (↓↓) par rapport au groupe 
contrôle. 
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 2.8. Conclusions 

 STAT3 est chez l’homme un facteur primordial pour le développement des cellules 

productrices d’IL-17 (figure 10). Le phénotype obtenu chez le patient avec des auto-anticorps 

anti-IL-6 nous laisse penser que cette voie serait importante pour un priming précoce in vivo 

des cellules. L’IL-12 est un facteur inhibiteur puissant de la différentiation de ces cellules 

(data not shown). L’IL-23 est un facteur important pour la différentiation en cellules 

productrices d’IL-17, mais qui ne semble pas primordial pour la production de cette cytokine. 

L’IL-23 semble jouer un rôle sur la production d’IL-22. L’IL-1β n’apparaît pas comme un 

facteur primordial pour la différentiation de ces cellules bien qu’il permette l’augmentation du 

nombre de celles-ci. L’IL-1β semble aussi jouer un rôle dans la sécrétion basale d’IL-17. Le 

TGF-β ne joue pas du tout un rôle inhibiteur dans nos conditions expérimentales, ce qui a été 

confirmé par d’autres groupes (74-76). Dans notre modèle de différentiation, la condition qui 

induit le plus grand nombre de cellules productrices d’IL-17 est la condition TGF-β plus IL-
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23. L’IL-22 est décrite comme étant une cytokine produite par les cellules Th17 (97). 

Cependant, avec un double marquage IL-17-IL-22, nous mettons en évidence qu’il existe bien 

des populations IL-17+IL22- et IL-17-IL-22+ en plus de la population double positive IL-

17+IL-22+. Ces deux cytokines ne sont donc certainement pas redondantes et semblent 

produites par des types différents de cellules. Existe-t-il une population de cellules « Th22 » ? 

 

Figure 10: Apport de notre étude dans le modèle de différentiation des lymphocytes T 
producteurs d’IL-17. 

 

 

 2.9. Discussion 

 Nous avons étudié la population de lymphocytes T producteurs d’IL-17, mais qu’en 

est-il de la population Th17 ? Nous avons vérifié que l’IL-17 est très majoritairement produite 

par les lymphocytes T CD4+ (90%). Cependant, il serait intéressant de savoir si cette 

production d’IL-17 par les autres cellules est dépendante des mêmes voies de signalisation. 
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Nous nous sommes heurtés à un problème récurrent dans les études chez l’homme qui est la 

variabilité. Nous observons chez les contrôles une variabilité très importante. Nous avons 

choisi une stratégie statistique, c'est-à-dire de réaliser les expériences sur un grand nombre de 

contrôles et de patients avec plus de 120 individus testés. De plus, nous avons choisi deux 

modèles expérimentaux, ex vivo et in vitro, pour pallier à cette variabilité. Nous avons obtenu 

les mêmes conclusions sur les patients déficients en STAT3 que deux autres groupes 

américain et australien (98, 99). Ces patients ont le phénotype le plus marqué probablement à 

cause de leur défaut de réponse à l’IL-6 et à d’autres cytokines. Les autres groupes ont réalisé 

ces mêmes types d’expériences à partir de CD4 naïves purifiées. Malheureusement, nous 

n’avions pas assez de sang pour faire ces études. Nous ne pouvions pas demander de 

deuxième prélèvement pour chaque patient. De plus, nous étions limités par le temps, et il 

n’était pas envisageable de tester autant de patients sur des cellules purifiées. Nous avons fait 

le choix de la puissance statistique avec un grand nombre de patients testés. De plus, notre 

principal apport dans le domaine a été de tester d’autres défauts génétiques. 

 

 Une des questions la plus importante à mon sens, est de savoir quelle est la fonction de 

la population Th17 dans l’immunité anti-infectieuse. Cette question n’est malheureusement 

pas encore résolue, même si nous disposons de certains éléments de réponse. La souris 

déficiente en IL-17R est sensible à l’infection par Candida albicans (100). L’infection par 

Candida albicans peut induire la production de l’ARNm de IL17A (100), et une production 

d’IL-17 (101). Les cellules T mémoires humaines spécifiques pour Candida albicans sont 

surreprésentées dans la population Th17 (65). Ce qu’il est intéressant de noter est que les 

patients mutés dans STAT3 font assez communément des candidoses périphériques et cutanéo-

muqueuses (environ 82%) (87, 102). De plus, les patients IL12RB1 présentent des candidoses 

dans une proportion non négligeable (29 patients sur 137 soit 21% des cas) (Rodriguez-
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Gallego et al, en préparation). Ce sont des formes orales dans la plupart des cas, mais souvent 

récurrentes. Dans quelques cas, nous observons des formes sévères. Le point commun entre 

ces deux maladies distinctes est leur faible pourcentage de cellules productrices d’IL-17. 

L’IL-17 pourrait donc jouer un rôle dans l’immunité anti-candida. 
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CONCLUSIONS, PERSPECTIVES 
 

 Durant ces quatre années, nous sommes passés de l’axe IL-12/23-IFN-γ aux axes IL-

12-IFN-γ et IL-23-IL-17. J’ai identifié, suivi et décrit une cohorte de patients avec un défaut 

complet en IL-12Rβ1, molécule commune de ces deux derniers axes. L’axe IL-12-IFN-γ est 

important dans l’immunité anti-mycobactérienne. Cependant, des mutations de cet axe ne sont 

pas retrouvées chez tous les patients atteints de ce type d’infection. Nous disposons au 

laboratoire d’une cohorte de plus de 1000 patients avec des formes idiopathiques du syndrome 

MSMD. La grande majorité d’entre eux ne sont pourtant pas élucidés au plan moléculaire. Le 

spectre clinique de ces patients est très hétérogène allant de cas sporadiques à des formes 

familiales d’infections par différents pathogènes (BCG, mycobactéries environnementales, 

tuberculose, salmonelles…). L’âge de ces patients est aussi variable (cas pédiatriques à 

adultes). Afin de pouvoir générer de nouvelles hypothèses, nous avons sélectionné un panel 

de 22 familles consanguines dont au moins un des enfants a développé une infection sévère au 

BCG. Une étude par liaison génétique est réalisée dans le laboratoire afin d’identifier des 

régions chromosomiques puis des mutations dans de nouveaux gènes morbides impliqués 

dans l’immunité anti-mycobactérienne. 

 

 Nous avons identifié des patients avec un déficit complet en IL-12Rβ1, mais sans 

phénotype infectieux. Nous pensons que l’explication est génétique et serait due à des gènes 

modificateurs. Par manque de temps, je n’ai malheureusement pas pu me lancer sur cette voie 

de recherche. Nous avons aujourd’hui un réseau de collaborateurs dans des zones où la 

consanguinité est très élevée (20 à 30% de mariages entre cousins germains en Turquie, 

Arabie Saoudite et Qatar). Il serait intéressant de tester ces familles élargies et villages pour 

l’intégrité de la protéine IL12Rβ1 soit par le test en sang total, l’expression du récepteur, ou 
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simplement par génotypage afin d’enrichir le panel de porteurs asymptomatiques. Nous 

pourrions alors réaliser une étude de liaison par criblage complet du génome. L’identification 

de variations dans ces gènes modificateurs permettrait une meilleure explication de la 

physiopathologie de ce défaut. De plus, cela permettrait sans doute de générer de nouveaux 

gènes ou voies candidats. 

 

 Le rôle et la fonction différentielle de l’IL-12 et de l’IL-23 sont en train d’évoluer avec 

l’exploration de l’axe IL-23-IL-17. Cependant, l’impact de chacun de ces axes dans 

l’immunité anti-infectieuse n’est pas encore résolu, et nous ne disposons pas de mutants 

propres de ces cytokines (IL12A, IL23A, IL12RB2, IL23R). Beaucoup de questions restent 

encore ouvertes. Nous savons que les patients déficients en IL-12p40 et en IL-12Rβ1 sont 

beaucoup plus sensibles aux salmonelles, mais nous ne savons pas de quelles molécules 

l’immunité anti-salmonelle est dépendante. Nous ne savons pas non plus quel est précisément 

le rôle de l’IL-17 dans l’immunité anti-infectieuse. L’identification de patients porteurs de 

mutations de l’IL-17 et/ou de son récepteur serait un atout majeur pour la compréhension de 

sa fonction. L’IL-17 est-elle spécifique d’un pathogène comme peut l’être l’IFN-γ vis à vis 

des mycobactéries ? En effet, je ne pense pas que le rôle de l’IL-17 soit aussi central que le 

décrivent les publications de ces derniers mois, et qu’elle soit « la » molécule clé du système 

immunitaire. 
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ARTICLE IN PRESS
Letter to the Editor
Simultaneous presentation of 2 rare hereditary
immunodeficiencies: IL-12 receptor b1 defi-
ciency and ataxia-telangiectasia

To the Editor:
About 150 primary immunodeficiencies (PIDs) have been

described, with more than 100 genetic etiologies identified, as
reviewed by Casanova and Abel.1 Most known PIDs are rare and
first manifest symptoms in infancy or early childhood. They con-
fer predisposition to various clinical phenotypes, including infec-
tion and cancer. Most PIDs predispose affected children to
infectious diseases, the nature and range of which depend on
the condition. Autosomal recessive IL-12 receptor b1 (IL-
12Rb1) deficiency is the most common cause of hereditary
predisposition to mycobacterial diseases and salmonellosis in
otherwise healthy patients, as reviewed by Filipe-Santos et al.2

Many PIDs also confer predisposition to cancer, whether because
of impaired control of oncogenic viruses, impaired DNA repair, or
both. The best known example is ataxia-telangiectasia (A-T),
which is associated with a high rate of lymphoma and leukemia,
as reviewed by Lavin et al.3 Known PIDs are typically rare, with a
prevalence between 1/100,000 and 1/1,000,000 cases per live
births. We report the first patient with 2 hereditary PIDs: IL-
12Rb1 deficiency and A-T.

A 7-year-old Arab girl had presented in the Allergy-Immunol-
ogy Clinic of Hamad Medical Corporation in Doha, Qatar, since
early childhood because a sister died at age 10 years with A-T (Fig
1). She was full-term, from an uneventful pregnancy, born to
healthy, first-degree cousins. At age 4 days, laboratory workup
showed a low lymphocyte count but normal IgG, IgA, and IgM
levels. Lymphocyte subsets revealed low proportions of CD3,
CD4, and CD8. She was thus considered as a probable case of
A-T. She had her immunization series except live vaccines and
was given inactivated poliomyelitis vaccine.

At 14 months, she was admitted to the hospital with a 10-day
fever without other symptoms. Blood cultures were positive for
Salmonella serotype group D. She was treated with Ceftriaxone
intravenously for 10 days. Blood cultures became negative after
4 days of Ceftriaxone, and the patient was discharged from the
hospital. Two weeks later, the patient was readmitted with a his-
tory of a 2-day fever; she was otherwise asymptomatic. Blood cul-
ture again was positive for Salmonella serotype group D. She
received 14 days of Ceftriaxone intravenously and was dis-
charged with negative blood cultures. Two weeks later, she was
readmitted again with a 3-day fever (40.68C). Blood cultures
were again positive for Salmonella serotype group D. She re-
ceived a 10-day course of intravenous Ceftriaxone and Amikacin
and was discharged from the hospital.

At age 22.5 months, she was admitted to the hospital with fever,
limping, and a painful, swollen left knee for 4 days with limited
range of motion. There was extensive oral candidiasis. No
telangiectasia were noted over eyes, ears, or nose. She had
bilateral, submandibular, mobile, nontender lymph nodes of 2 3 2
cm. Blood and urine cultures were negative. MRI with contrast for
the left lower limb showed multiple discrete lesions in the
metaphysis and diaphysis of the proximal tibia and fibula
enhancing on contrast medium. She was diagnosed as having
acute osteomyelitis. She received a 14-day antibiotic course of
intravenous Ceftriaxone and Cloxacillin, with oral antifungal
treatment for candidiasis, and was discharged from the hospital.

At age 45 months, she was admitted to the hospital with another
4-day fever. Physical examination revealed an underweight, feb-
rile child without ocular or cutaneous telangiectasia. There was
enlargement of bilateral submandibular, nontender, mobile lymph
nodes (1.5 3 2 cm). Ultrasound of the neck revealed multiple, en-
larged, right-sided lymph nodes of submandibular (1.2 3 0.9 cm),
intraparotid (1.5 3 1 cm), and jugulodigastric (2.1 3 0.7 cm)
location. On the left side, jugulodigastric nodes measured 2.6 3

0.9 cm. Blood culture was again positive for Salmonella
serotype group D. A 14-day course of intravenous Ceftriaxone
was initiated.

The recurrent Salmonella infections prompted further testing
for a genetic predisposition. She was proven to have IL-12Rb1
deficiency on the basis of impaired expression of IL-12Rb1 by
EBV-transformed B cells by using flow cytometry with 2 anti-
bodies that recognize different epitopes (Fig 2). She was also
homozygous for the C186S (556T>A) mutation in IL12RB1.
This mutation had been previously shown to confer IL-12Rb1 de-
ficiency in other related kindreds of Arabic descent (families 12
and 13 in Fieschi et al4). She was started on IFN-g (50 mg/m2 sub-
cutaneously 3 times a week) and prophylactic daily oral ciproflox-
acin. She has since been doing well, with no recurrence of
salmonellosis over a period of more than 1 year.

At age 5.5 years, she started showing an ataxic gait similar to
that of her older sister. This was accompanied by bilateral
conjunctival telangiectasia and an abnormal finger-to-nose test.
Serum alpha-fetoprotein was now 132 IU/mL. The diagnosis of
A-T was confirmed on the basis of increased radiosensitivity of
an EBV-transformed B-cell line, as described by Sun et al,5

lack of A-T mutated (ATM) protein by Western blotting, as
described by Chun et al,6 and absence of ATM kinase activity,
as described by Nahas et al7 (Fig 2). In addition, DNA sequencing
revealed homozygosity for the 8395del10 mutation in the ATM
gene. Because of the radiosensitivity noted in the patient’s
B-EBV cell line, 3 unrelated patients with IL-12Rb1 deficiency
were also tested; all had normal colony survival responses to
1 Gy of irradiation and expressed normal levels of ATM protein.
Conversely, cell lines from other, unrelated patients with A-T ex-
pressed normal levels of IL-12Rb1, as detected by flow cytometry
(Fig 2).

When the patient was asymptomatic, erythrocyte sedimenta-
tion rate, C-reactive protein, C3 and C4 were normal. As for
serum immunoglobulins, IgG was elevated at 2170 mg/dL, IgM
was elevated at 615 mg/dL, and IgA was undetectable at <7
mg/dL. The proportions of lymphocyte subpopulations showed
persistently low CD3 and elevated CD4 counts, with normal
CD8 and CD19 and elevated CD3-CD161CD561.

Patients with 2 seemingly unrelated genetic disorders are
extraordinarily rare experiments of nature and can be difficult
to diagnose. We report the simultaneous presentation of 2 rare he-
reditary immunodeficiencies, A-T and IL-12Rb1 deficiency, in a
child from Qatar. These diagnoses are based on both functional
and genetic assays. Her EBV-B cells did not express IL-12Rb1
and were radiosensitive, thereby displaying typical cellular phe-
notypes for both diseases. The patient was homozygous for dis-
ease-causing mutations in ATM (8395del10) and IL12RB1
1



FIG 1. Family pedigree of proband (II.6). A sister (II.1) died at age 10 years

with severe bronchiectasis secondary to A-T. Another sister (II.2) died at 2

months with sepsis. Parents are first-degree cousins.

FIG 2. Expression of IL-12Rb1 protein and ATM kinase activity in response

to irradiation in EBV-B cell lines derived from the patient and unrelated

controls.
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(C186S). The 2 genes are located on distinct chromosomes
(IL12RB1: 19p13.1; ATM: 11q23.1) and the fortuitous association
of the 2 autosomal recessive syndromes was favored by parental
consanguinity.

The prevalences of A-T and IL-12Rb1 deficiency in the Gulf
region are unknown, but the prevalence world-wide is low for
both: for A-T, about 1 in 40,000 live births, and for IL-12Rb1
deficiency, about 1 in 100,000 to 1,000,000 births. Therefore, the
likelihood of the same disease affecting a random child can be
estimated at approximately 1 in 4 3 109 to 1 in 4 3 1010 births.
However, this estimate would be higher in ethnic groups with a
higher coefficient of consanguinity or inbreeding, such as the
Gulf region, as noted by Bener et al.8 To our knowledge, this is
the first association of 2 PIDs and is almost certainly a spurious co-
incidence. On the other hand, our study suggests that other patients
with 2 recessive diseases are likely to be diagnosed in regions of
the world where consanguineous marriages are common, thus em-
phasizing the importance of a complete family history.

A second underlying syndrome should be considered in
patients with clinical features that are not commonly associated
with the primary diagnosis. For example, recurrent extraintesti-
nal, nontyphoidal salmonellosis has never been reported in
patients with A-T, as noted by Nowak-Wegrzyn et al.9 The IL-
12Rb1 deficiency could have also caused recurrent mycobacterial
disease. Likewise, ataxia and telangiectasia are not seen with IL-
12Rb1 deficiency. A further compounding factor might arise if
the 2 disorders were to ameliorate or aggravate one another.

The fact that the clinical features of IL-12Rb1 deficiency and
A-T in our patient were so characteristic of each disorder strongly
suggests that the pathogenesis of each does not intersect with the
other. The course of salmonellosis was typical of IL-12Rb1
deficiency, as reviewed by Filipe-Santos et al.2 Likewise, the rates
of neurologic progress and the telangiectasia were characteristic
of A-T. The unchanging cellular phenotypes corresponding to
each of the disorders further support the conclusion of indepen-
dent pathophysiologies for IL-12Rb1 deficiency and A-T. This
is not surprising given that IL-12Rb1 deficiency creates a cell sur-
face defect, whereas ATM deficiency affects primarily intranu-
clear signaling.

This said, it will be important to follow the patient, because IL-
12 has been shown to exert antitumoral actions in the mouse
model, whether directly or via the induction of IFN-g, as noted by
Elzaouk et al.10 The compounded effects of the 2 genetic defi-
ciencies on the immune system may lead to the development of
even more severe malignancy than seen in patients with A-T.
Moreover, the progressive lymphopenia commonly seen in A-T
may worsen the susceptibility to infections caused by
mycobacteria and Salmonella as the patient matures. Finally, diag-
nostic procedures involving ionizing radiation and the use of radi-
omimetic drugs should be avoided in patients with A-T, and this
principle applies here as well. This may conflict with other clinical
decisions, further complicating the patient’s long-term treatment.
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 We used a novel approach to address this issue, making use 
of patients with various inborn errors of immunity impairing 
most of these cytokine signaling pathways separately to investi-
gate the development of IL-17 T cells in vivo. We studied the 
following groups: (a) patients with autosomal-dominant devel-
opmental disorders associated with various mutations in the 
TGF- �  pathway associated with enhanced TGF- �  signaling, 
such as Camurati-Engelmann disease, with mutations in  TGFB1  
( 14 ), or Marfan-like syndromes, with mutations in  TGFBR1  
or  TGFBR2  ( 15 ); (b) patients with autosomal-recessive sus-
ceptibility to pyogenic bacteria and loss-of-function mutations 
in  IRAK4  ( 16 ) or  MYD88  (unpublished data), whose cells do 
not respond to IL-1 �  and related cytokines or to Toll-like re-
ceptors (TLRs) other than TLR3; (c) patients with autosomal-
dominant hyper-IgE syndrome (AD-HIES) associated with 
dominant-negative mutations in  STAT3  ( 17, 18 ), whose cells 
respond poorly to several cytokines, including IL-6; and (d) 
patients with autosomal-recessive susceptibility to mycobacterial 
diseases and loss-of-function mutations in  IL12B  or  IL12RB1  
( 19 ), whose cells do not express or do not respond to IL-12 
and IL-23 (Table S1, available at http://www.jem.org/cgi/
content/full/jem.20080321/DC1). The role of IL-21 cannot 
be studied in this way, as the only known defects in this path-
way (i.e., JAK3 and common  �  chain defi ciencies) are typically 
associated with a total absence of T cells ( 20 ). 

  RESULTS AND DISCUSSION  

 We used fl ow cytometry to investigate the percentage of IL-
17 – expressing blood T cells ex vivo in 49 healthy controls. 
Nonadherent PBMCs were stained for CD3, CD4, CD8, 
and IL-17. No IL-17 – producing T cells were detected in the 
absence of activation (unpublished data). Upon activation 
with PMA-ionomycin, the percentage of CD3-positive cells 
producing IL-17 ranged from 0.06 to 2% ( Fig. 1, A and B ).  
The vast majority ( > 90%) of IL-17 – positive cells were CD4-
positive and CD8-negative (unpublished data). Thus, within 
the general population, there is considerable interindividual 
variability in the numbers of IL-17 – producing cells present 
among freshly isolated T cells activated ex vivo. This makes 
it diffi  cult to assess the impact of genetic lesions on the develop-
ment of IL-17 – producing T cells. We tested nine patients 
with null mutations in  IRAK4  or  MYD88 , whose cells were 
unresponsive to IL-1 �  (and most TLRs and other IL-1 cyto-
kine family members). The proportion of IL-17 – producing 

    IL-17A (IL-17) is the fi rst of a six-member family of cyto-
kines (IL-17A – F). IL-17 is produced by NK and T cell sub-
sets, including helper  � / �  T cells,  � / �  T cells, and NKT 
cells, and it binds to a widely expressed receptor ( 1 ). This 
cytokine was fi rst described 10 yr ago, but interest in this 
molecule was recently revived by the identifi cation of a spe-
cifi c IL-17 – producing T helper cell subset in the mouse ( 1 ). 
The specifi c development and phenotype of IL-17 – producing 
helper T cells have been characterized in the mouse model, 
in which these cells have clearly been identifi ed as a Th17 
subset. The hallmarks of mouse Th17 cells include (a) a pat-
tern of cytokine production diff erent from those of the Th1 
and Th2 subsets, with high levels of IL-17 production, often 
accompanied by IL-17F and IL-22; (b) dependence on TGF- �  
and IL-6 for early diff erentiation from naive CD4 T cells, 
followed by dependence on IL-21 and IL-23 for further ex-
pansion; and (c) dependence on at least four transcription 
factors for diff erentiation: the Th17-specifi c retinoic acid re-
ceptor – related orphan receptor  � t (ROR � t) and ROR � , and 
the more promiscuous STAT-3 and IFN regulatory factor 4 
(for review see reference  1 ). 

 Increasingly detailed descriptions of the in vitro and in vivo 
diff erentiation of the Th17 subset in mice are becoming avail-
able. In contrast, the tremendous, uncontrolled genetic and 
epigenetic variability of human samples has made it diffi  cult 
to characterize human IL-17 – producing T cells ( 2 – 13 ). It has 
proved very diffi  cult to identify the cytokines governing the 
diff erentiation of these cells in vitro. The fi rst four groups 
that have investigated this issue all suggested that TGF- �  was 
not required for the diff erentiation of human IL-17 – produc-
ing T helper cells from purifi ed naive CD4 T cells in vitro 
( 5 – 8 ). TGF- �  was even found to inhibit diff erentiation in 
three studies ( 5, 6, 8 ). IL-6 was inhibitory in one study ( 6 ) 
and redundant in three others ( 5, 7, 8 ). In contrast, IL-23 was 
found to enhance the development of IL-17 T cells in all four 
studies ( 5 – 8 ) and IL-1 �  was identifi ed as a positive regulator 
in two studies ( 5, 6 ), whereas IL-21, which was tested in one 
study, was found to be redundant ( 8 ). In contrast, three re-
cent studies showed that TGF- �  is essential in this process, 
whereas there was more redundancy between the four ILs 
( 11 – 13 ). In vitro studies using recombinant cytokines and 
blocking antibodies have therefore yielded apparently con-
fl icting results, particularly if the results for human cells are 
compared with those for mice. 

 The cytokines controlling the development of human interleukin (IL) 17 – producing T helper cells in vitro have been 

diffi cult to identify. We addressed the question of the development of human IL-17 – producing T helper cells in vivo by 

quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from 

patients with particular genetic traits affecting transforming growth factor (TGF)  � , IL-1, IL-6, or IL-23 responses. 

Activating mutations in  TGFB1 ,  TGFBR1 , and  TGFBR2  (Camurati-Engelmann disease and Marfan-like syndromes) and 

loss-of-function mutations in  IRAK4  and  MYD88  (Mendelian predisposition to pyogenic bacterial infections) had no 

detectable impact. In contrast, dominant-negative mutations in  STAT3  (autosomal-dominant hyperimmunoglobulin E 

syndrome) and, to a lesser extent, null mutations in  IL12B  and  IL12RB1  (Mendelian susceptibility to mycobacterial 

diseases) impaired the development of IL-17 – producing T cells. These data suggest that IL-12R � 1 –  and STAT-3 – depen-

dent signals play a key role in the differentiation and/or expansion of human IL-17 – producing T cell populations in vivo. 
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 We tested 16 patients with AD-HIES bearing mutations in 
 STAT3 . They displayed normal proportions of CCR6-positive 
CCR4-positive CD4 T cells but low proportions of CCR6-
positive CCR4-negative CD4 T cells (Table S2, available at 
http://www.jem.org/cgi/content/full/jem.20080321/DC1). 
These patients had signifi cantly fewer IL-17 – positive T cells 
than controls (P = 9.7  ×  10  � 7 ;  Fig. 1, A and B ). However, as 
observed in patients with IL-12p40 or IL-12R � 1 defi ciency, 
some AD-HIES patients had normal proportions of IL-17 –
 producing T cells, perhaps refl ecting genetic or epigenetic 
heterogeneity between individuals, residual STAT-3 sig-
naling, or both. In these experimental conditions, the huge 
variations in IL-17 secretion between healthy controls (from 
50 to 5,000 pg/ml), as measured by ELISA, prevented rigorous 
comparison with the small number of patients studied (un-
published data). We did not assess other potential features of 
IL-17 – producing T cells in the patients studied, such as the 
production of IL-22, a cytokine produced by Th17 cells in 
mice ( 1 ) and humans ( 5, 6 ), or expression of ROR � t, a key 

T cells was not signifi cantly diff erent from that in healthy 
controls, as shown by Wilcoxon tests comparing the values 
for each individual between the two groups ( Fig. 1, A and B ). 
We then tested 17 patients with null mutations in  IL12B  or 
 IL12RB1 , whose cells did not produce (for  IL12B  mutations) 
or did not respond (for  IL12RB1  mutations) to IL-23 (and 
IL-12). Interestingly, there were clearly fewer IL-17 – pro-
ducing T cells in these patients than in healthy controls (P = 
4.7  ×  10  � 3 ;  Fig. 1, A and B ). However, some patients had 
normal numbers of IL-17 – producing T cells. In contrast, cells 
from patients with mildly enhanced TGF- �  responses owing 
to mutations in  TGFB1  or  TGFBR2  did not diff er signifi -
cantly from controls ( Fig. 1 B ). These results suggest that IL-
1R – associated kinase 4 (IRAK-4) and MyD88 are not required 
for the development of IL-17 – producing T cells in vivo, that 
TGF- �  probably does not markedly inhibit this process, and 
that both IL-12p40 and IL-12R � 1 are required, at least in 
most individuals and in these experimental conditions of fl ow 
cytometry on T cells activated ex vivo. 

  Figure 1.     Identifi cation of IL-17 – producing T cells ex vivo.  (A) Flow cytometry analysis of CD3 and IL-17 in nonadherent PBMCs activated with 

PMA-ionomycin as a representative control, an IRAK-4 – defi cient patient (P4), an IL-12R � 1 – defi cient patient (P17), and a STAT-3 – defi cient patient (P36; 

Table S1, available at http://www.jem.org/cgi/content/full/jem.20080321/DC1). The percentage indicated in the gate is that of IL-17 –  and CD3-positive 

cells. (B) Percentage of CD3-positive cells that were also IL-17 – positive, as determined by fl ow cytometry of nonadherent PBMCs activated with PMA-

ionomycin. Each symbol represents a value from an individual control (black circles) or patient (red circles). Horizontal bars represent medians. The p-

values for Wilcoxon tests between controls ( n  = 49) and patients with mutations in  IRAK4  or  MYD88  ( n  = 9),  IL12B  or  IL12RB1  ( n  = 17),  TGFB1  or  TGFBR2  

( n  = 7), and  STAT3  ( n  = 16) are indicated.   
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patients bearing specifi c IL-23(R) mutations would be re-
quired to rigorously test this hypothesis. We then tested seven 
patients with mutations associated with mildly enhanced TGF- �  
responses and found no signifi cant diff erences from controls 
in the four conditions tested ( Fig. 2 ). 

 In contrast, 14 patients with mutations in  STAT3  had al-
most no detectable IL-17 – producing T cells in any of the four 
conditions tested (P = 3.2  ×  10  � 8 , 4.9  ×  10  � 9 , 1.9  ×  10  � 9 , and 
3.6  ×  10  � 9 , respectively;  Fig. 2 ). This phenotype was clearly 
more pronounced than that observed with cells from IL-
12p40 –  and IL-12R � 1 – defi cient patients, as the almost com-
plete lack of IL-17 – positive T cells was not complemented by 
IL-23, IL-1 � , or a combination of the four cytokines. T cells 
from the 11 patients with  STAT3  mutations studied prolif-
erated normally in these conditions. Our results demonstrate 
that STAT-3 is required for the expansion of IL-17 – produc-
ing T cell blasts, at least in these experimental conditions. In 
these conditions, all the groups of patients studied had fewer 
IFN- �  – producing cells than controls (Fig. S2, available at 
http://www.jem.org/cgi/content/full/jem.20080321/DC1). 

 Finally, we assessed the secretion of IL-17, IL-22, and 
IFN- �  by T cell blasts from controls and patients, with or 
without activation with PMA-ionomycin, as measured by 
ELISA ( Fig. 3 ; and Figs. S3 and S4, available at http://www
.jem.org/cgi/content/full/jem.20080321/DC1).  Control T 
cell blasts cultured without recombinant cytokine produced 
detectable amounts of IL-17 in the absence of activation by 
PMA-ionomycin (mean = 137  ±  149 pg/ml;  Fig. 3 A ). The 
amounts of IL-17 secreted increased signifi cantly (P = 3  ×  
10  � 4 ) upon activation with PMA-ionomycin (mean = 7,338  ±  
11,134 pg/ml). However, considerable interindividual vari-
ability was observed in both sets of experimental conditions. 
The addition of IL-23, IL-1 � , or a combination of IL-23, IL-
1 � , TGF- � , and IL-6 signifi cantly increased the amounts of 
secreted IL-17 in the absence of activation with PMA-iono-
mycin (P = 10  � 4  and 8  ×  10  � 4 , and P  <  10  � 4 , respectively; 
 Fig. 3, B – D ). Upon PMA-ionomycin activation, only IL-1 �  
signifi cantly increased the amount of IL-17 secretion (P = 
0.04). Four patients with IRAK-4 or MyD88 defi ciency were 
tested. They displayed low levels of IL-17 secretion in the ab-
sence of activation with PMA-ionomycin in the four sets 
of conditions tested (P = 4  ×  10  � 3 , 10  � 5 , 10  � 4 , and 8  ×  10  � 4 , 
respectively;  Fig. 3 ). Upon PMA-ionomycin activation, the 
level of IL-17 secretion is not signifi cantly diff erent from the 
controls, except in the presence of IL-1 �  (P = 0.04;  Fig. 3 ). 
These results suggest that the Toll/IL-1R signaling pathway, 
and possibly the IL-1R pathway, may be involved in the secre-
tion of IL-17 in T cell blasts. These patients produced amounts 
of IL-22 that were similar to the controls (Fig. S3). 

 T cell blasts from the 13 IL-12p40 –  or IL-12R � 1 – defi -
cient patients tested secreted normal amounts of IL-17 in the 
absence of cytokine stimulation ( Fig. 3 A ). The 10 patients 
tested produced normal amounts of IL-17 in the presence of 
IL-1 �  ( Fig. 3 C ). In the presence of the four cytokines, pa-
tients with IL-12R � 1 defi ciency did not secrete normal 
amounts of IL-17 without (P = 2  ×  10  � 3 ) or with (P = 10  � 3 ) 

transcription factor in mouse ( 1 ) and human Th17 cells ( 11 ), 
as too few blood samples were available. Our results nonethe-
less suggest that STAT-3 is required for the diff erentiation 
of human IL-17 – producing T cells in vivo ,  as suggested by 
fl ow cytometry analysis on ex vivo – activated T cells. We also 
assessed the production of IFN- �  in some patients (Fig. S1). 
The proportion of IFN- �  – producing T cells was found to 
be lower in patients with mutations in  IRAK4  and  MYD88  
(P = 1.2  ×  10  � 4 ),  IL12RB1  and  IL12B  (P = 1.8  ×  10  � 3 ), or 
 STAT3  (P = 8  ×  10  � 4 ), but not in patients with mutations in 
 TGFB1  or  TGFBR2  (P = 0.11). 

 No consensus has yet been reached on how to best in-
duce the diff erentiation of human IL-17 T cells from naive 
CD4 precursors in vitro ( 5 – 8, 11 – 13 ), and only small amounts 
of blood from a limited number of blood samples from our 
patients were available. We therefore tried to induce specifi c 
IL-17 memory T cell responses using the cytokines shown to 
be critical for this lineage in the mouse. We evaluated IL-17 
production by populations of T cell blasts expanded in vitro 
from PBMCs. All patients studied, in particular STAT-3 – de-
fi cient patients, displayed normal proportions of CD4 and 
CD8 T cells (Table S3, available at http://www.jem.org/cgi/
content/full/jem.20080321/DC1). We incubated nonadher-
ent PBMCs from controls with OKT3 for 5 d, alone or in the 
presence of IL-23, IL-1 � , TGF- � , or IL-6, or a combination of 
these four cytokines, and then activated them with PMA-
ionomycin. We did not assess the development of antigen-
specifi c IL-17 – producing T cells. There were no IL-17 – positive 
T cells in any control or in any set of experimental conditions 
in the absence of activation with PMA-ionomycin, as shown 
by fl ow cytometry (unpublished data). In the absence of 
 cytokine stimulation, the percentage of IL-17 – positive T cells 
found in healthy controls after stimulation with PMA-iono-
mycin was highly variable (from 0.12 to 10%;  Fig. 2 A ).  
A statistically signifi cant increase in the number of IL-17 –
 producing T cells was observed after stimulation with IL-23 
(P = 7  ×  10  � 3 ) and IL-1 �  (P = 0.04), but not after stimula-
tion with TGF- �  (P = 0.1) or IL-6 (P = 0.3), as shown by 
paired  t  tests ( Fig. 2  and not depicted). This recall-response 
pattern is consistent with IL-1 �  and IL-23 playing an impor-
tant role in maintaining and expanding IL-17 T cell popula-
tions in mice ( 1 ) and humans ( 11 – 13 ). 

 We then investigated IL-17 production by T cell blasts 
from various patients in the same experimental conditions. 
For four patients with IRAK-4 or MyD88 defi ciency and 
impaired responses to IL-1 � , the proportion of IL-17 – pro-
ducing cells appeared to be normal in the various experimen-
tal conditions, except in response to IL-1 �  ( Fig. 2 ). 16 patients 
with IL-12p40 ( n  = 2) or IL-12R � 1 ( n  = 14) defi ciency were 
found to have much smaller proportions of IL-17 – producing 
T cells in the absence of cytokine stimulation (P = 7  ×  10  � 5 ; 
 Fig. 2 A ). The two IL-12p40 – defi cient patients, unlike the 
IL-12R � 1 – defi cient patients (P = 5  ×  10  � 5 ), apparently re-
sponded to IL-23 in these conditions ( Fig. 2 B ). These data 
suggest that IL-23 makes a major contribution to the expan-
sion of the IL-17 T cell population in this assay. However, 
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mans ( 25 ). Impaired IL-6 signaling may be the key factor in-
volved, as suggested by the results obtained for IL-6 – defi cient 
mice ( 1, 26, 27 ). However, STAT-3 is also involved in other 
relevant pathways, including the IL-21 and IL-23 pathways. 
Our data for IL-12p40 –  and IL-12R � 1 – defi cient cells suggest 
that IL-23 is required for the optimal development of IL-17 –
 producing T cells. IL-23 is probably the only cytokine in-
volved, as the patients also lacked IL-12 responses, which 
might be expected to enhance the development of this subset 
( 1 ). This is consistent with the mouse model, in which IL-23 
is required for the maintenance and expansion of these cells ( 1, 
28, 29 ), and with the results of previous human studies based 
on the use of recombinant cytokines ( 5 – 8, 11 – 13 ). In contrast, 
our fi ndings for IRAK-4 –  and MyD88-defi cient cells do not 
support the notion that IL-1 �  (or any of the IL-1Rs and TLRs 
other than, possibly, TLR3 and TLR4) is essential for the 
development of human IL-17 – producing T cells ( 5, 6 ), con-
sistent with the phenotype of IL-1 – defi cient mice ( 1 ). Finally, 

PMA-ionomycin stimulation ( Fig. 3 D ). In all culture condi-
tions, cells from patients with  IL12B  and  IL12RB1  mutations 
secreted less IL-22 than control cells (Fig. S3). T cell blasts 
from all patients with mutations in the TGF- �  pathway se-
creted normal amounts of IL-17, whereas T cell blasts from 
all patients with STAT-3 defi ciency secreted much smaller 
amounts of IL-17 (P = 8  ×  10  � 6 , 9  ×  10  � 7 , 9  ×  10  � 11 , 2  ×  
10  � 7 , 10  � 8 , 3  ×  10  � 7 , 4  ×  10  � 9 , and 3  ×  10  � 6 , respectively) 
and IL-22 in all experimental conditions ( Fig. 3  and Fig. S3). 
These data indicate that STAT-3 is required for the mainte-
nance and expansion of IL-17 – secreting human T cell blasts 
and for the secretion of IL-22 by human T cell blasts, at least 
in these experimental conditions. 

 Patients with STAT-3 defi ciency had the most severe IL-
17 phenotype of all the patients tested, with a profound im-
pairment of IL-17 production by T cells ex vivo and T cell 
blasts in vitro. This observation is consistent with fi ndings for 
STAT-3 – defi cient mice ( 1, 21 – 24 ) and a recent report in hu-

  Figure 2.     Identifi cation of IL-17 – expressing T cell blasts expanded in vitro.  Intracellular production of IL-17 in T cell blasts activated with PMA-iono-

mycin for controls (black circles) and patients (red circles), as assessed by fl ow cytometry. The cells were cultured in different stimulation conditions: OKT3 only 

(A), or OKT3 with IL-23 (B), IL-1 �  (C), or IL-23, IL-1 � , TGF- � , and IL-6 (D). Each symbol represents a value for an individual control or patient. Horizontal bars 

represent medians. In controls, stimulation with IL-23 and IL-1 �  had a signifi cant effect with respect to medium alone (P  <  0.05). The p-values for Wilcoxon 

tests between each patient group and the control group are indicated. In B and D, the patients circled in blue carry  IL12B  mutations and cannot produce IL-12 

and IL-23, but can respond to both cytokines. The p-value of the  IL12B-IL12RB1  group was therefore calculated only with IL-12R � 1 – defi cient patients (*).   
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some present with peripheral candidiasis (unpublished data). 
Mycobacterial disease is exceedingly rare in STAT-3 – defi -
cient patients, but not in IL-12p40 –  and IL-12R � 1 – defi cient 
patients, in whom it results from impaired IFN- �  immunity, 
which is consistent with the redundancy of IL-17 in mouse 
primary immunity to mycobacteria ( 36, 37 ). Staphylococcal 
disease is the main infection seen in STAT-3 – defi cient patients. 
Mouse IL-17 seems to be involved in immunity to  Staphylo-
coccus  ( 38 ). However, both IL-12p40 –  and IL-12R � 1 – defi cient 
patients are normally resistant to  Staphylococcus . The function 
of human IL-17 and related cytokines in host defense there-
fore remains unknown. The genetic dissection of human in-
fectious diseases should help us to attribute a function to this 
important cytokine in natura ( 39, 40 ). 

 MATERIALS AND METHODS 
 Patients and controls.   55 healthy, unrelated individuals of various ages 

from 12 countries (Argentina, Canada, Cuba, France, Germany, Israel, Por-

tugal, Spain, Switzerland, Turkey, UK, and USA) were tested as controls. 

We also investigated 50 patients with mutations in  IRAK4 ,  MYD88 ,  IL12B , 

the paradoxical suggestion that TGF- �  may have no eff ect or 
may even inhibit the development of human IL-17 – produc-
ing T cells ( 5 – 8 ) was neither supported nor disproved by our 
data for patients with mildly enhanced TGF- �  responses ( 1 ). 

 Does our report provide any clues to the possible function 
of IL-17 in host defense? The mouse Th17 subset plays a key 
role in mucosal defense ( 30 ). IL-23 –  and IL-17 – defi cient 
mice are vulnerable to  Klebsiella  ( 31, 32 ). This may account 
for the greater susceptibility of IL-12p40 –  and IL-12R � 1 – de-
fi cient patients than of IFN- � R – defi cient patients to both 
 Klebsiella  (Levin, M., and S. Pedraza, personal communica-
tion; Table S1) and the related  Salmonella  ( 19 ). However, nei-
ther  Klebsiella  nor  Salmonella  is commonly found as a pathogen 
in STAT-3 – defi cient patients despite the apparently greater 
defect of these patients in terms of IL-17 – producing T cell 
development ( 17, 18 ). Mice with impaired IL-17 immunity 
are also susceptible to  Candida  ( 33 – 35 ). This may account for 
the peripheral candidiasis commonly seen in STAT-3 – defi -
cient patients. Interestingly, although most IL-12p40 –  and 
IL-12R � 1 – defi cient patients are not susceptible to  Candida  ( 19 ), 

  Figure 3.     IL-17 secretion by T cell blasts expanded in vitro.  Secretion of IL-17 by T cell blasts from controls (black circles) and patients (red circles), as 

measured by ELISA. Open circles represent values in the absence of stimulation, and closed circles correspond to values obtained after stimulation with PMA-

ionomycin. Different stimulation conditions are shown: OKT3 only (A), or OKT3 with IL-23 (B), IL-1 �  (C), or IL-23, IL-1 � , TGF- � , and IL-6 (D). Each symbol corre-

sponds to a value obtained from an individual. Horizontal bars represent medians. The p-values for Wilcoxon tests between each patient group and the control 

group, either unstimulated or stimulated with PMA-ionomycin, are indicated. In B and D, patients circled in blue carry  IL12B  mutations and cannot produce 

IL-12 and IL-23, but can respond to both cytokines. The p-values of the  IL12B-IL12RB1  group were therefore calculated only with IL-12R � 1 – defi cient patients (*).   
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microwell peroxidase substrate (KPL). The reaction was stopped by adding 

1.8 M H 2 SO 4 . Optical density was determined with a microplate reader 

(MRX; Thermolab Systems). 

 Statistical analysis.   We fi rst assessed diff erences between controls and pa-

tients (when there were more than two patients) for (a) the percentage of 

circulating IL-17 – producing T cells, (b) the percentage of IL-17 – positive T 

cells in vitro, and (c) the level of IL-17 production in various stimulation 

conditions, as assessed by ELISA. As the distribution of these three variables 

could not be assumed to be normal and some of the patient groups examined 

were very small, we used the nonparametric Wilcoxon exact test, as imple-

mented in the NPAR1WAY module of SAS software (version 9.1; SAS In-

stitute). A second set of tests was performed on controls only to assess the 

eff ects of diff erent stimulation conditions on (a) the percentage of IL-17 – pos-

itive T cells in vitro and (b) the level of IL-17 production, as assessed by 

ELISA. We used a strategy of matching, with paired  t  tests performed with 

the TTEST procedure of SAS software (version 9.1) to investigate the corre-

lation between observations for diff erent controls. For all analyses, P  <  0.05 

was considered statistically signifi cant. 

 Online supplemental material.   Fig. S1 shows the percentage of CD3-

positive IFN- �  – positive cells, as determined by fl ow cytometry of nonad-

herent PBMCs activated with PMA-ionomycin from controls and patients. 

Fig. S2 shows intracellular IFN- �  production in T cell blasts activated with 

PMA-ionomycin from controls and patients in the various culture condi-

tions, as assessed by fl ow cytometry. Fig. S3 shows the secretion of IL-22 by 

T cell blasts from controls and patients in the various culture conditions, as 

measured by ELISA. Fig. S4 shows the secretion of IFN- �  by T cell blasts 

from controls and patients in the various culture conditions, as measured by 

ELISA. Table S1 shows the genetic and clinical features of the patients stud-

ied. Table S2 shows the proportions of CCR6-positive CD4 T cells in con-

trols and STAT-3 – defi cient patients. Table S3 shows the proportions of 

CD4 and CD8 T cells in patients. Online supplemental material is available 

at http://www.jem.org/cgi/content/full/jem.20080321/DC1. 
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Figure S1. Identification of IFN-γ–producing T cells ex vivo.

Figure S1. Identification of IFN-γ–producing T cells ex vivo. Percentage of CD3-
positive cells producing IFN-γ, as determined by flow cytometry of nonadherent PBMCs
activated with PMA-ionomycin. Each symbol represents a value for an individual control 
(black circles) or patient (red circles). Horizontal bars represent medians. The p-values for 
Wilcoxon tests between controls (n = 49) and patients with mutations in IRAK4 or MYD88 (n
= 9), IL12B or IL12RB1 (n = 17), TGFB1 or TGFBR2 (n = 7), and STAT3 (n = 16) are 
indicated. 
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Figure S2. Identification of IFN-γ–producing T cell blasts expanded in 
vitro.

Figure S2. Identification of IFN-γ–producing T cell blasts expanded in vitro.
Intracellular IFN-γ production in T cell blasts activated with PMA-ionomycin for controls
(black circles) and patients (red circles), as detected by flow cytometry. The cells were
cultured in different stimulation conditions: OKT3 only (A), or OKT3 with IL-23 (B), IL-1β (C), 
or IL-23, IL-1β, TGF-β, and IL-6 (D). Each symbol represents a value for an individual
control or patient. Horizontal bars represent medians. In controls, stimulation with IL-1β or 
with IL-23, IL-1β, TGF-β and IL-6 had a significant effect with respect to medium alone (P < 
0.05). In B and D, the patients circled in blue carry IL12B mutations and cannot produce IL-
12 and IL-23 but can respond to both cytokines. Therefore, the p-value of the IL12RB1-
IL12B group was calculated only with IL-12Rβ1–deficient patients (*). 
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Figure S3. IL-22 secretion by T cell blasts expanded in vitro.

Figure S3. IL-22 secretion by T cell blasts expanded in vitro. Secretion of IL-22 by T 
cell blasts from controls (black circles) and patients (red circles), as measured by ELISA. 
Open circles represent values in the absence of stimulation, and closed circles correspond 
to the values obtained after stimulation with PMA-ionomycin. The cells were cultured in 
different stimulation conditions: OKT3 only (A), or OKT3 with IL-23 (B), IL-1β (C), or IL-23, 
IL-1β, TGF-β, and IL-6 (D). Each symbol corresponds to a value obtained from an individual. 
Horizontal bars represent medians. In B and D, patients circled in blue carry IL12B
mutations and cannot produce IL-12 and IL-23 but can respond to both cytokines. 
Therefore, the p-values of the IL12RB1-IL12B group were calculated only with IL-12Rβ1–
deficient patients (*). 
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Figure S4. IFN-γ secretion by T cell blasts expanded in vitro.

Figure S4. IFN-γ secretion by T cell blasts expanded in vitro. Secretion of IFN-γ by T 
cell blasts from controls (black circles) and patients (red circles), as measured by ELISA. 
Open circles represent values in the absence of stimulation, and closed circles correspond 
to the values obtained after stimulation with PMA-ionomycin. The cells were cultured in 
different stimulation conditions: OKT3 only (A), or OKT3 with IL-23 (B), IL-1β (C), or IL-23, 
IL-1β, TGF-β, and IL-6 (D). Each symbol corresponds to a value obtained from an individual. 
Horizontal bars represent medians. In B and D, patients circled in blue carry IL12B
mutations and cannot produce IL-12 and IL-23 but can respond to both cytokines. 
Therefore, the p-values of the IL12RB1-IL12B group were calculated only with IL-12Rβ1–
deficient patients (*). 
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Table S1. Genetic and clinical features of the patients 

Patient Syndromea Gene Mutations Age Sex Origin Infections References 
    (yr)   Pneumococcus Staphylococcus Salmonellab Mycobacteriac Candida  
1 MPPBI IRAK4 E402X 11 M Spain + � � � � Ku et al.d 

2 MPPBI IRAK4 1-1096_40+23del 11 M Israel + � � � � Ku et al. 

3e MPPBI IRAK4 M1V/1188+520A>G 3 F Slovenia � � � � � Ku et al. 

4 MPPBI IRAK4 1189-  
1G>T/1188+520A>G 

10 M Hungary + � � � � Ku et al. 

5 MPPBI IRAK4 Q293X 33 F UK + � � � � Ku et al. 

6 MPPBI IRAK4 Q293X 28 M Canada + � � � � Ku et al. 

7 MPPBI MYD88 L93P/R196C 4 F Turkey + � � � � unpublished data 

8 MPPBI MYD88 R196C 16 F Portugal + � + � � unpublished data 

9 MPPBI MYD88 R196C 10 M Portugal + + + � � unpublished data 

10 MSMD IL12B 297del8 7 M Tunisia � � Se � � This report 

11 MSMD IL12B 297del8 24 M Tunisia � � � � � This report 

12 MSMD IL12RB1 1791+2T>G 12 F Spain � � � Mtb � Caragol et al.f 

13 MSMD IL12RB1 1791+2T>G 20 F Spain � � Se Mtb � Caragol et al. 

14 MSMD IL12RB1 1791+2T>G 22 F Spain � � � � � Caragol et al. 

15 MSMD IL12RB1 628-644dup 12 M Turkey � � � BCG � Tanir et al.g 

16 MSMD IL12RB1 628-644dup 3 M Turkey � � � � + Tanir et al. 



17 MSMD IL12RB1 Q32X 12 F France � � � BCG � Fieschi et alh 

18 MSMD IL12RB1 K305X 29 F Morocco � � St BCG � Fieschi et al. 

19 MSMD IL12RB1 700+362_1619-944del 11 F Israel � � � � � Scheuerman et al.i 

20 MSMD IL12RB1 C198R 15 M Turkey � � � BCG � Lichtenauer-Kaligis et al.j 

21 MSMD IL12RB1 R173P 14 M Turkey � � Se � � This report 

22 MSMD IL12RB1 1745-46delinsCA/  
1483+182_1619-1073del

37 F France � � + BCG � Fieschi et al. 

23 MSMD IL12RB1 C198R 8 F Turkey � � � � � This report 

24 MSMD IL12RB1 C198R 4 M Turkey � � + BCG � This report 

25 MSMD IL12RB1 Y367C 8 M Cameroon � � Sd BCG � Fieschi et al. 

26 MSMD IL12RB1 1791+2T>G 24 F Sri Lanka � � � BCG � Fieschi et al. 

27 CE TGFB1 R218C 31 F France � � � � � Campos-Xavier et al.k 

28 CE TGFB1 R218C 62 F France � � � � � Campos-Xavier et al. 

29 CE TGFB1 R218C 53 M France � � � � � Campos-Xavier et al. 

30 MLS TGFBR1 K333Q 7 F  France � � � � � This report 

31 MLS TGFBR2 R537C 34 M France � � � � � Mizuguchi et al.l 

32 MLS TGFBR2 C394W 41 F France � � � � � This report 

33 MLS TGFBR2 C394W 14 F France � � � � � This report 

34 MLS TGFBR2 C394W 10 F France � � � � � This report 

35 AD-HIES STAT3 V463del 34 F France � + � � � This report 



36 AD-HIES STAT3 V463del 8 M France + + � � + This report 

37 AD-HIES STAT3 V463del 9 F France � + � � � This report 

38 AD-HIES STAT3 K709E 17 M France � + � � + This report 

39 AD-HIES STAT3 T412S 19 F France � + � � � This report 

40 AD-HIES STAT3 V463del 37 F Pakistan � + � � + This report 

41 AD-HIES STAT3 V463del 9 M Pakistan + + � � + This report 

42 AD-HIES STAT3 K642E 36 M France � + � � + This report 

43 AD-HIES STAT3 R382W 28 F France � + � � + This report 

44 AD-HIES STAT3 R382Q 19 M Turkey � + � � + This report 

45 AD-HIES STAT3 R382W 21 F France + + � � + This report 

46 AD-HIES STAT3 R382W 16 M Algeria + + � � + This report 

47 AD-HIES STAT3 R382W 23 M France + + � � + This report 

48 AD-HIES STAT3 V463del 28 M France � + � � + This report 

49 AD-HIES STAT3 N472D 17 M France � + � � + This report 

50 AD-HIES STAT3 I665N 43 F France � + � � + This report 

aShown are Mendelian predisposition to pyogenic bacterial infections (MPPBI), Mendelian susceptibility to mycobacterial diseases (MSMD), 

Camurati-Engelmann (CE) disease, Marfan-like syndromes (MLS), and AD-HIES. 

bInfections caused by Salmonella enteritidis (Se), Salmonella typhimurium (St), and Salmonella dublin (Sd). 

cInfections caused by Bacille Calmette-Guerin (BCG) or by Mycobacterium tuberculosis (Mtb). 
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Table S2. Percentage of CCR6-positive CD4 T cells in controls and STAT-3–deficient 

patients ex vivo 

Patients and controlsa Age  
(yr) 

CCR6+ CCR4+  
CD4+ T cells (%) 

CCR6+ CCR4�  
CD4+ T cells (%) 

P 35 7 4.4 0.5 

P 36 9 5.7 0.5 

P 37 34 6.7 1.1 

P 38 16 8.7 7 

P 46 16 8.9 1.4 

Other patientb 7 4.7 2.4 

Other patientb 15 3.1 0.2 

Other patientb 21 4.9 0.5 

C 1 5 7.8 1.5 

C 2 7 6.8 6.5 

C 3 7 6.6 8.8 

C 4 7 11.1 6.2 

C 5 12 16.6 15.2 

C 6 13 6.8 12.2 

C 7 16 8.4 18.5 

C 8 unknown 8.3 11.8 

C 9 unknown 10.9 20.3 

aEight STAT-3–deficient patients (P) and nine healthy controls (C) were studied. 

bThese patients, not described in Table S1, were not studied for IL-17 production. 



Table S3. Percentage of CD4- and CD8-positive T cells in controls and patients ex vivo 
Patient Gene Age Lymphocytes CD4+ CD8+ 
   (yr) (�109 per µl) (%) (%) 
2 IRAK4 11 4.8 63 17 

4 IRAK4 10 1.9 45 25 

6 IRAK4 28 1.3 46 20 

17 IL12RB1 12 Not done 35 19 

18 IL12RB1 29 1.8 23 37 

38 STAT3 17 1.3 37 21 

39 STAT3 19 Not done 38 33 

40 STAT3 37 2.9 41 23 

41 STAT3 9 3.4 31 12 

42 STAT3 36 0.8 46 20 

43 STAT3 28 3 28 21 

45 STAT3 21 2.6 40 34 

46 STAT3 16 3.3 43 22 

47 STAT3 23 1.5 35 24 

49 STAT3 17 Not done 35 19 

50 STAT3 43 1 39 21 
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Natural killer (NK) cells have been origi-
nally defined by their “naturally occur-
ring” effector function. However, only a
fraction of human NK cells is reactive
toward a panel of prototypical tumor cell
targets in vitro, both for the production of
interferon-� (IFN-�) and for their cytotoxic
response. In patients with IL12RB1 muta-
tions that lead to a complete IL-12R�1
deficiency, the size of this naturally reac-
tive NK cell subset is diminished, in par-
ticular for the IFN-� production. Similar

data were obtained from a patient with a
complete deficit in IL-12p40. In addition,
the size of the subset of effector memory
T cells expressing CD56 was severely
decreased in IL-12R�1– and IL-12p40–
deficient patients. Human NK cells thus
require in vivo priming with IL-12/23 to
acquire their full spectrum of functional
reactivity, while T cells are dependent
upon IL-12/23 signals for the differentia-
tion and/or the maintenance of CD56�

effector memory T cells. The susceptibil-

ity of IL-12/23 axis–deficient patients to
Mycobacterium and Salmonella infec-
tions in combination with the absence of
mycobacteriosis or salmonellosis in the
rare cases of human NK cell deficiencies
point to a role for CD56� T cells in the
control of these infections in humans.
(Blood. 2008;111:5008-5016)

© 2008 by The American Society of Hematology

Introduction

Natural killer (NK) cells have been initially described as non-T,
non-B lymphocytes that are “naturally” elicited to mediate their
effector functions (ie, cytotoxicity and cytokine production) with-
out prior sensitization.1 Both arms of NK cell effector functions
participate in the direct innate defense and in the shaping of the
adaptive immune response.2 In several mouse models, NK cells
limit the development of tumors and microbial infections.3-5 In
particular, NK cells control the early steps of mouse cytomegalovi-
rus (MCMV) infection, both by directly killing virus-infected cells
and by producing IFN-�.6

The natural acquisition of NK cell effector function has
recently been challenged through the demonstration that only a
minor fraction of circulating human NK cells or splenic mouse
NK cells is reactive toward prototypical NK cell targets in
single-cell assays.7-13 It is thus becoming increasingly clear that
NK cells are following various steps of maturation, culminating
into the final effector stage.10-15 In mice, the production of
interleukin (IL)–15 by dendritic cells is one of the factors that
primes naive NK cells into effectors.9,13

These results suggest that the fraction of NK cells that qualifies
as effectors in vitro corresponds to the NK cells that had been
exposed to in vivo priming prior to the in vitro assays. This
hypothesis prompted us to determine the host genetic factors that
contribute to NK cell reactivity in humans. We focused our interest
on the IL-12 family of cytokines, as IL-12 had been initially
identified on the basis of its ability to enhance NK cell cytotoxicity
and interferon-� (IFN-�) production.16-19 A number of studies have
indeed demonstrated that IL-12 affects NK cell effector func-
tion,20-23 especially with respect to NK cell activation by dendritic
cells. IL-12 (IL-12p40:IL-12p35) and IL-23 (IL-12p40:IL-23p19)
are structurally related heterodimeric cytokines that regulate cell-
mediated immune responses and Th1-type inflammatory reac-
tions.24 The IL-12 receptor is composed of 2 chains, IL-12R�1 and
IL-12R�2, the former being also part of the IL-23R.24 In mice,
numerous studies have shown a critical role for IL-12 in protective
immunity to various pathogens.25 In contrast, the description of
human patients with inherited IL-12 or IL-12R deficiencies has
revealed that IL-12 is redundant for human defense against most

Submitted November 14, 2007; accepted February 20, 2008. Prepublished
online as Blood First Edition paper, March 4, 2008; DOI 10.1182/blood-2007-
11-122259.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge
payment. Therefore, and solely to indicate this fact, this article is hereby
marked ‘‘advertisement’’ in accordance with 18 USC section 1734.

© 2008 by The American Society of Hematology

5008 BLOOD, 15 MAY 2008 � VOLUME 111, NUMBER 10

 For personal use only. at INSERM DISC on May 13, 2008. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


microorganisms.26-30 Noticeable exceptions include Mycobacte-
rium, such as environmental Mycobacterium, BCG vaccines, and
M tuberculosis, as well as Salmonella infections, which critically
depend on IL-12/23.26,27 Overall, patients with mutations in
molecules involved in the IFN-�/IL-12/23–dependent pathway are
affected by the syndrome of Mendelian susceptibility to mycobac-
terial disease (MSMD).26,27,30,31 This syndrome is biologically
characterized by deeply impaired or absent IFN-� production or
function, and is clinically defined by the susceptibility to mycobac-
teriosis and salmonellosis. Here, we analyzed the phenotypic and
functional features of circulating NK and NK-like CD56� T cells in
a group of 9 patients who present a complete IL-12R�1 or
IL-12p40 deficiency.

Methods

Patients and controls

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-
Hypaque density gradient centrifugation (GE Healthcare, Little Chalfont,
United Kingdom) from whole blood samples obtained from healthy
volunteer donors, and IL-12R�1– and IL-12p40–deficient patients de-
scribed in Table 1. These human studies were performed and informed
consent from all participating subjects was obtained in accordance with the
Declaration of Helsinki.

Reagents

The following monoclonal antibodies (mAbs) were used: PE-conjugated
anti-CD16 (mouse IgG1, 3G8), anti-CD25 (IgG2a, B1.49.9), anti-CD62L
(IgG1, Dreg 56), anti-CD94 (IgG2a, HP-3B1), anti-CD158a,h (IgG1, EB6),
anti-CD158b1/b2/j (IgG1, GL183), anti-CD158e1 (IgG1, Z27), anti-
CD158i (IgG2a, FESTR172), anti-CD161 (IgG2a, 191B8), anti-NKp30
(IgG1, Z25), anti-NKp44 (IgG1, Z231), anti-NKp46 (IgG1, Bab281),
anti-NKG2A (IgG2b, Z199); FITC-conjugated anti-CD3 (IgG1, UCHT1);
PECy5-conjugated anti-CD56 (IgG1, NKH-1); APC-conjugated anti-CD56
(NKH-1; Beckman Coulter Immunotech, Marseille, France); PE-conju-
gated anti-CD69 (IgG1, FN50), antiperforin (IgG2b, 27–35), anti–IFN-�
(IgG1, 4S-B3); FITC-conjugated anti-CD107a (IgG1, H4A5), anti-CD107b
(IgG1, H4B4); PerCP-Cy5.5–conjugated anti-CD3 (IgG1, SK7; Becton
Dickinson, Lincoln Park, NJ); purified anti–IL-12 (IgG1, 24910; R&D
Systems, Minneapolis, MN), biotin-conjugated anti-CD162R (IgM, 5H10;
Innate Pharma, Marseille, France); and PE-labeled streptavidin (Southern-
Biotechnology Associated, Birmingham, AL). Human recombinant IL-12
(219-IL) and IL-23 (1290-IL) were purchased from R&D Systems; human
IL-2 (Proleukin), from Chiron (Emeryville, CA); human IL-15(200–15),
from Peprotech (Rocky Hill, NJ); and human IL-18 (B003–5), from MBL
(Watertown, MA).

NK cell analysis

PBMCs were analyzed by 3-color flow cytometry using a FACSCalibur
cytometer (Becton Dickinson). NK cells were defined as CD3�CD56� cells
within the lymphocyte gate. Natural cytotoxicity was assessed using the
MHC class I� human erythroleukemic K562 target cells, as well as
fibroblastic hamster CHO and human HeLa target cells. Antibody-
dependent cell cytotoxicity (ADCC) was assessed using the P815 mouse
mastocytoma cells coated with rabbit antimouse lymphocyte antibodies
(Accurate Biochemicals, Westbury, NY). NK cell effector functions were
tested in a single-cell assay using CD107 mobilization and IFN-� produc-
tion, as previously described.7 In these assays, PBMCs were incubated for
4 hours at 37°C in the presence of GolgiStop (1/1500; Becton Dickinson),
anti-CD107 mAb, and various stimuli. The effector-target ratio was 2.5:1.
Cells were then washed in PBS supplemented with 2% FCS, 1 mM EDTA
and stained for 30 minutes at 4°C with PerCP-Cy5.5–conjugated anti-CD3,
APC-conjugated anti-CD56, and normal mouse serum 2%. After fixation in
paraformaldehyde 2% and permeabilization (PermWash; Becton Dickin-
son), the expression of IFN-� was detected by incubation with PE-
conjugated anti–IFN-� for 30 minutes at 4°C. As a negative control,
species- and isotype-matched control mAbs were used for all stainings.

Generation of IL-2–activated NK cells

NK cell–enriched PBMCs were obtained using the RosetteSep Human NK
Cell kit (StemCell Technologies, Vancouver, BC). Then, NK cells were
resuspended in RPMI 10% FCS containing human IL-2 at 100 U/mL and
PHA (Invitrogen, Frederick, MD) at 10 �g/mL in 96-well U-bottom plate.
For expansion, NK cells needed previously irradiated (50 gray) allogeneic
PBMCs at the concentration 2 � 106 cells/mL. Every 2 days, the medium
was replaced by RPMI 10% FCS supplemented with IL-2 100 U/mL.

Whole-blood activation by live BCG

Venous blood samples of healthy donors were collected into heparinized
tubes. Blood (500 �L) was dispensed into wells of a 6-well plate for a final
volume of 1 mL/well (dilution with RPMI 1640 supplemented with
100 U/mL penicillin and 100 �/mL streptomycin). The diluted blood
sample then incubated in a 2-stage procedure during 24 and 48 hours at
37°C in an atmosphere containing 5% CO2 and under 3 conditions of
activation: with medium alone, with live bacillus Calmette-Guerin (M bovis
BCG, Pasteur substrain) at an MOI of 20 BCG/leukocytes,32 and with BCG
plus IL12 (20 ng/mL; R&D Systems). Six hours before the end of
activation, GolgiStop (1/1500; Becton Dickinson) was added in each well.
The production of IFN-� was detected by intracellular staining as described
in “NK cell analysis” and analyzed by flow cytometry.

Statistical analysis

Graphic representation and statistical analysis of NK cell distribution were
performed using GraphPad Prism software (GraphPad Software, San

Table 1. Patient characteristics

Patient Age, y Sex Onset Mutations
Historical clinic

status
Experimental time

clinic status

1* 25 F Morocco IL12RB1 K305X BCGite � Salmonella Salmonella suspicion

2*† 34 F France [IL12RB1 1745]�1746insCA�1483�182-1619-1073del BCGite � Salmonella Asymptomatic

3* 4 F France IL12RB1 Q32X BCGite Asymptomatic

4* 16 F Belgium IL12RB1 Q32X Asymptomatic Asymptomatic

5 11 M Turkey IL12RB1 R173P Salmonella Asymptomatic

6* 6 M Israel IL12RB1 700�362-1619-944del Salmonella Asymptomatic

7 9 M Saudi Arabia IL12RB1 1190-1G�A BCGite � Salmonella Salmonella

8 13 M Saudi Arabia IL12RB1 1190-1G�A Salmonella Salmonella

9 5 M Tunisia IL12 297del8 Salmonella Salmonella � asymptomatic

Indicated IL-12R�1– or IL-12p40–deficient patients (n � 9, 13.7 	 10 years old, M/F ratio: 5:4) were analyzed in comparison with healthy control individuals (n � 16,
26.1 	 12.0 years old, M/F ratio: 4:12 for the phenotypic analysis; n � 13, 29.5 	 8.4 years old, M/F ratio: 3:10 for the functional analysis).

*The patients P1, P2, P3, P4, and P6 were previously described in Fieschi et al27 as 1.II.2, 19.II.1, 20.II.1, 21.II., and 10.II.1, respectively.
†The patient contracted hepatitis C virus (HCV) after a blood transfusion.
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Diego, CA). Comparison of distributions was performed using Mann
Whitney test. *P was less than .05; **P was less than .01; ns indicates not
significant. The statistical analysis never included the IL-12p40�/� patient
together with the IL-12R�1�/� patients. Age-matched statistical analysis
was performed as described in Table 1 (L.A.).

Results

NK cell phenotype in IL-12R�1–deficient patients

The role of IL-12 and IL-23 on human NK cells in vivo was first
tested by analyzing circulating NK cell counts in a cohort of
IL-12R�1–deficient patients presenting a complete IL-12R�1
deficiency (Table 1). Normal PBMC counts have been previously
reported in a large cohort of IL-12R�1–deficient patients.27 No
alteration in the percentage CD3�CD56� NK cells within PBMCs
was detected here in our cohort of 8 IL-12R�1–deficient patients
(Figure 1A). Human NK cells can be divided in 2 reciprocal
subsets, based on the cell surface expression of CD56. CD56bright

NK cells represent a minority of blood NK cells, but are prominent
in secondary lymphoid organs.33 CD56bright NK cells readily
produce IFN-� in response to proinflammatory cytokines such as
IL-12, IL-18, and IL-15.7,34 In contrast, most circulating NK cells
have a CD56dim phenotype; they initiate their cytolytic and
cytokine production programs upon interaction with tumor cell
targets.7 No difference between the size of the CD56bright and
CD56dim NK cell subsets was detected when control and IL-12R�1–
deficient patients were compared (data not shown). The NK cell
surface phenotype of IL-12R�1–deficient patients was also indistin-
guishable from that of control individuals, for the expression of
MHC class I–specific receptors (killer cell Ig-like receptors:
CD158/KIR, CD94, CD159a/NKG2A), of a panel of activating and
cell adhesion receptors (CD16, CD161/NKR-P1, CD162R/PEN5,
CD62L/L-selectin) as well as of NK cell activation markers (CD25
and CD69). Importantly, the intracytoplasmic NK cell content in
perforin was comparable between control and IL-12R�1–deficient
individuals (Figure 1B). In control individuals, CD56bright NK cells
expressed slightly lower cell surface levels of NKp30 and higher
levels of NKp46 than CD56dim NK cells (Figure S1A, available on
the Blood website; see the Supplemental Materials link at the top of
the online article). In IL-12R�1–deficient patients, a slight de-
crease in NKp30 cell surface density was observed mainly on
CD56dim NK cells (Figure S1A,B). A minor down-regulation of
NKp46 expression was also observed (Figure S1B), but this trend
did not reach statistical significance. Thus, circulating NK cells did
not present gross abnormalities in counts or in their phenotype,
including the repertoire of MHC class I receptors, showing that
IL-12 and IL-23 are dispensable for the phenotypic development of
human NK cells in vivo.

NK cell effector functions in IL-12R�1–deficient patients

We then analyzed NK cell effector functions using single-cell
assays. We quantified the IFN-� production and the cytotoxicity

potential (via the CD107 degranulation assay), using peripheral
blood NK cells from patients and control individuals, in response to
a panel of tumor cell lines. The response of patients’ NK cells to the
prototypical MHC class I� tumor cell target K562 was diminished
compared with control individuals (Figure 2A). The reduction in
NK cell response was more pronounced for IFN-� production than
for the CD107 degranulation assay, as only the former reached
statistical significance in these experimental settings (Figure 2B).

Figure 1. Normal NK cellularity and phenotype in
IL-12/23 axis–deficient patients. (A) The percentages
of NK cells present in peripheral blood of indicated
individuals were computed from the percentages of
CD3�CD56� cells within the lymphocyte. Each dot indi-
cates the value obtained from one individual. (B) Circulat-
ing NK cells from indicated individuals were explored for
their cell surface phenotype (except for perforin, where
an intracytoplasmic staining was performed). Each dot
indicates the value obtained from one individual.

Figure 2. NK cell hyporesponsiveness in IL-12/23 axis–deficient patients.
(A) A representative experiment comparing the in vitro reactivity of NK cells from
healthy control individuals and IL-12R�1–deficient patients is shown. PBMCs were
incubated for 4 hours in the presence or absence of K562 cells and assessed for
CD107 and IFN-� expression. (B) PBMCs prepared from a cohort of healthy control
individuals, IL-12R�1–deficient patients and one IL-12p40–deficient patient were
analyzed for their NK reactivity in the presence of indicated tumor cells; ADCC:
antibody-coated P815 cells. Values indicate mean plus or minus SD. Each dot
represents the data obtained from one individual.
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A trend toward a decrease in NK cell effector function (both IFN-�
production and degranulation) was also observed in response to
2 other tumor cell lines (CHO and HeLa), as well as upon
antibody-dependent cell cytotoxicity (ADCC) challenge (Figure
2B). It is likely that the small size of our cohort of IL-12R�1–
deficient patients was responsible for the fact that the decrease in
NK cell reactivity did not reach statistical significance. K562,
HeLa, and CHO cells are recognized by a combination of NK cell
receptors including NKp30 (data not shown). However, the slight
decrease in NKp30 expression observed in patients’ NK cells was
unlikely to be solely responsible for the decreased NK cell
reactivity observed with IL-12R�1–deficient cells. Indeed, the
ADCC response of IL-12R�1–deficient NK cells followed the
same trend, but is CD16 dependent and NCR independent. In
addition, no correlation could be found between the extent of
NKp30 down-regulation and the reduced reactivity observed with
NK cells from IL-12R�1–deficient patients (data not shown).
Therefore our data rather suggest that signaling via IL-12R�1
partially controls critical transduction components that are down-
stream of and common to various NK cell activating pathways.
Patients included in this study were symptomatic or asymptomatic
(Table 1), and no correlation between the decrease in IFN-�
production upon K562 stimulation and the clinical status could be
established (data not shown).

NK cells in an IL-12p40–deficient patient

We further tested the role of IL-12R�1–dependent signals on NK
cells by analyzing the reactivity of circulating NK cells isolated
from a patient presenting a genetic deficiency in IL-12p40 (IL12B).
NK cells from the IL-12p40–deficient patient were hyporesponsive
to K562 and ADCC challenge (Figure 3). The IL-12p40–deficient
patient was tested under symptomatic and asymptomatic condi-
tions, and no correlation between the decrease in NK cell reactivity
and the clinical status was detected (data not shown). As for
IL-12R�1–deficient patients, no gross abnormalities in circulating
NK cell counts and phenotype were observed in the IL-12p40–
deficient patient (Figure 1A,B closed triangles). The lack of other
IL-12p40–deficient patients available prevented us from analyzing
whether the intensity of the NK cell defect was different in
IL-12p40– and IL-12R�1–deficient patients. Nevertheless, the NK
cell hyporesponsiveness in both the IL-12p40– and the IL-12R�1–
deficient patients strongly advocates for a role of IL-12/23 in the
acquisition NK cell effector function (ie, in NK cell priming in vivo

in humans). In contrast to IL-12,25 we could not detect a significant
in vitro effect of IL-23 treatment on healthy NK cell IFN-�
production (Figure 4), suggesting that the decrease in NK cell
IFN-� production in IL-12R�1–deficient patients was due to IL-12
rather than IL-23.

Role of IL-12 in NK cell priming

We then tested whether IL-12 was required during the contact
between NK cells present in PBMCs and the tumor cell target or
whether IL-12 was one of the factors that contributes to human NK
cell priming in vivo. As shown in Figure 5, the addition of a
blocking anti–IL-12 mAb during the 4-hour incubation between
healthy PBMCs and K562 target cells did not influence NK cell
response. The NK cell defect observed in IL-12R�1–deficient
patients was thus most likely not the consequence of a role for
IL-12 during the 4-hour in vitro assay, but resulted from a role of
IL-12 in vivo prior to the isolation of peripheral blood cells.

Complementation of IL-12–dependent NK cell defects

To further address the role of IL-12 in NK cell function, PBMCs
prepared from the IL-12p40–deficient patient and IL-12R�1–
deficient patients were treated in vitro with recombinant human
IL-12, and the reactivity of NK cells to K562 was assessed.
Exogenous IL-12 complemented the defect in NK IFN-� produc-
tion of the IL-12p40–deficient patient, but not of IL-12R�1–
deficient patients, as expected (Figure 6A). By contrast, no

Figure 3. NK cell hyporesponsiveness in an IL-12p40–deficient patient.
A representative experiment comparing the in vitro reactivity of NK cells from one
control individual and one IL-12p40–deficient patient is shown. PBMCs were
incubated for 4 hours in the presence or absence of K562 cells and assessed for
CD107 and IFN-� expression.

Figure 4. Differential role of IL-12 and IL-23 on IFN-� production by NK cells in
vitro. PBMCs prepared from healthy control individuals were cultured for 4 hours in
vitro with the indicated concentrations of human recombinant IL-12 or IL-23, and then
assayed for IFN-� production. Results are expressed as mean plus or minus SD of
3 independent experiments.

Figure 5. No detectable role for endogenous IL-12 during in vitro NK cell
stimulation by K562 cells. PBMCs from healthy control individuals were incubated
with K562 target cells for 4 hours at 37°C, in the presence or absence of anti–hIL-12
mAb (10 �g/mL). IFN-� production and CD107 mobilization were assessed in a
4-hour K562 stimulation assay.
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difference in the reactivity to K562 was observed in IL-2–cultured
NK cells from control, IL-12p40–deficient, and IL-12R�1–
deficient patients (Figure 6B), showing that IL-12 played a
redundant role in the priming of NK cells, when grown in IL-2.

Lack of CD56� T cells in IL-12/23 axis–deficient patients

During their maturation, T cells can acquire some NK cell
attributes, such as the cell surface expression of NK cell recep-
tors.35 In contrast to the lack of major NK cell phenotypic alteration
in IL-12/23 axis–deficient patients, the size of the subset of T cells
that expresses CD56 was severely reduced in both IL-12R�1– and

IL-12p40–deficient patients (Figure 7A,B). The small size of the
subset of CD56� T cells in patients prevented us from precisely
analyzing their functional characteristics in great detail. Neverthe-
less, in control individuals CD56� T cells were mainly CD8�

T cells, whereas a few consisted of V
24 invariant NKT cells and
�� T cells (data not shown). The low fraction of invariant V
24�

T cells in CD56� T cells (from 1% to 5% of CD56� T cells) is
consistent with previous results,36 and makes it unlikely to be
responsible for the drastic reduction in the size of the CD56� T-cell
subset in IL-12/23 axis–deficient patients (from 4.2% 	 2.6% to
1.6% 	 1.5% of total lymphocytes in control individuals vs
patients, respectively, Figure 7B). In control individuals, CD56�

T cells also included a substantial fraction of T cells expressing
other NK cell phenotypic features such as KIR, CD94/NKG2A,
and CD161 (Figure 8A). CD56 surface expression on T cells
correlated with high intracytoplasmic perforin content (Figure 8A),
consistent with previous results.37 Importantly, CD56� T cells were
not only equipped as cytolytic effectors, but they also shared with
NK cells the capacity to produce IFN-� upon IL-12 � IL-18
treatment,38 and to a lesser extent upon IL-15 stimulation (ie, in
absence of TCR engagement; Figure 8B). In addition, a substantial
fraction of NK cells and CD56� T cells, but barely detectable
CD56� T cells, produced IFN-� in vitro in presence of live BCG
(Figure 8C) and in response to Salmonella typhimurium–infected
macrophages (N. Lapaque and J. Trowsdale, personal communica-
tion, December 17, 2007). The IL-12/23 axis deficiency was also
associated with a lower expression of CD161 on CD56� T cells.
Since the size of the CD56� T-cell subset increases with aging and
most of the IL-12/23 axis–deficient patients comprised infants and
young adults,39 a careful statistical analysis was conducted to find
out whether age had a confounding effect on our results. However,
the restriction of the cohort of healthy control individuals to
age-matched patients still revealed a statistically significant reduc-
tion in the size of the CD56� T-cell subsets in IL-12/23–deficient
patients (data not shown). Thus, IL-12/23 was mandatory for the
expansion of a subset of T cells, mainly CD8�, that presents
features shared by both NK cells and effector memory T cells: cell
surface expression of CD56, intracytoplasmic expression of per-
forin, and IFN-� production in response to IL-12 � IL-18. IL-
12/23 was critical for the final CD8� T-cell maturation steps and/or
for the maintenance of this CD56� T-cell subset in PBMCs.

Discussion

IL-12 and IL-23 are cytokines that represent a functional bridge
between the early resistance and the subsequent antigen-specific
adaptive immunity.24,26,32,40 Here we have shown that IL-12/23 was

Figure 6. Complementation of the IL-12–dependent NK cell hyporesponsive-
ness. (A) PBMCs from one representative control individual, one representative
IL-12R�1–deficient patient, and one IL-12p40–deficient patient were cultured for
24 hours in vitro with human recombinant IL-12 (1 ng/mL), and then assayed for
IFN-� production in response to 4-hour K562 stimulation. Results are expressed as
the percentage of IFN-�� NK cells in patients normalized to the percentage of IFN-��

NK cells in the control individual (set to 100%). (B) NK cell cultures of indicated origin
(healthy controls, IL-12R�– and IL-12p40–deficient patients) were generated by
incubating NK cell–enriched PBMCs with recombinant human IL-2 (100 U/mL) for
3 weeks. Resting NK cells or IL-2–cultured NK cells of the same individuals were then
compared in parallel in a 4-hour K562 stimulation.

Figure 7. Reduced size of the CD56� T-cell subset in IL-12/23 axis–deficient patients. (A,B) The percentages of CD56� T cells present in peripheral blood of indicated
individuals were computed within the total lymphocyte gate. Each dot represents the value obtained from one individual (B).
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differentially required by 2 subsets of effector lymphocytes in vivo
in humans: NK cells and CD56� T cells. While acting on NK cells
as a priming factor, IL-12/23 was required for the differentiation
and/or the maintenance of CD56� effector memory T cells.

Previous observations had revealed that NK cells were present
in normal numbers in IL-12R�1–deficient patients.21,41 We con-
firmed these observations, and extended the phenotypic analysis to
a large panel of receptors expressed at the NK cell surface. All
described NK cells subsets develop normally in vivo in absence of
IL-12 and IL-23 stimulation. In particular, we did not detect
alterations in the CD56dim or CD56bright circulating NK cells subsets
in IL-12R�1–deficient patients, contrasting with a role for IL-12 in
the maturation of CD56bright NK cells, suggested earlier by in vitro
experiments.42 Furthermore, the repertoire of Ig-like and lectin-like
MHC class I receptors did not present any gross abnormalities in
IL-12/23 axis–deficient patients. Thus, the variegation at the KIR
locus, which is still poorly understood, occurs in an IL-12– and
IL-23–independent manner. A defect in NK cell IFN-� production
was also reported in the pioneering description of one IL-12R�1–
deficient patient.21 The high variability of NK cell reactivity in
vitro, combined with the large variations in peripheral NK cell
counts, prompted us to complete this first characterization, by
increasing the number of patients and the number of tumor cell
targets, and by using single NK cell assays. We confirmed in these
4-hour short-term stimulation protocols, the low IFN-� production
by NK cells from IL-12R�1–deficient patients in response to the
prototypical MHC class I� K562 tumor cells. We also showed a
trend toward a broader hyporesponsiveness of NK cells for IFN-�
production and for cytotoxicity to a lesser extent to various human
tumors as well as to antibody-coated target cells. This phenotype
was recapitulated with NK cells from an IL-12p40–deficient
patient and complemented with exogenous IL-12. Consistent with
an earlier report,43 we did not detect much impact of IL-23 of NK
cell effector function in vitro, suggesting, but not formally proving,
that IL-12 and not IL-23 was responsible for the weak reactivity of

NK cells from IL-12R�1– and IL-12p40–deficient patients. Recent
data in humans and mice point to a reappraisal of the “natural”
effector function of NK cells. In mice, IL-15 and MHC class I
participate in the acquisition of the full spectrum of NK cell
reactivity.7,9-13 Thus, NK cells do not distinguish themselves from
classical T and B cells by their naturally occurring reactivity with
targets, but rather by the presence of a substantial fraction of
primed and broadly reactive NK cells in the circulation. Yet, the
factors that contribute to NK cell priming in vivo may vary
between humans and mice. Indeed, we showed here that IL-12/23
is one of the NK cell priming factors in humans. In contrast, IL-12
was recently shown to be redundant for mouse NK cell priming,9

despite the moderate but detectable defect in NK cell antitumor
cytolytic activity detected in Il-12– (data not shown), Il-12rb1–, or
Il-12rb2–deficient mice.44-48

The size of the subset of T cells expressing surface CD56 was
drastically reduced in IL-12/23 axis–deficient patients. Much
confusion exists regarding the characterization and the function
of the subsets of T cells that share phenotypic similarities with
NK cells.35,49 In particular, CD56� T cells have been too often
referred as to NKT cells. There is, however, a consensus
defining NKT cells as a subset of CD4� or CD4�CD8� T cells
that express invariant TCRs, such as CD1d-restricted V
24
T cells in humans, CD1-restricted V
14 T cells in mice, or
MR1-restricted mucosal associated invariant T (MAIT) in both
species.50,51 CD56� T cells are clearly different from aforemen-
tioned invariant NKT cells, as they are mainly CD8�TCR
��

cells with a high cytolytic potential in absence of in vitro
maturation.37 CD56�TCR
�� cells express a diverse TCR
repertoire, which tends to oligoclonality, and the size of this
subset expands with aging.39 CD56� T cells thus have attributes
of effector memory CD8 T cells, although the precise steps of
differentiation of CD56� T cells from naive CD8 T cells are still
unknown. In vitro data have argued for a role for IL-12 in their
development and/or expansion,52-55 but one report disputed the

Figure 8. Altered T-cell phenotype in IL-12/23 axis–deficient patients. (A) Circulating CD56� T cells (top panel) and CD56� T cells (bottom panel) from indicated individuals
were explored for their cell surface phenotype (except for perforin, where an intracytoplasmic staining was performed). Each dot indicates the value obtained from one
individual. (B) Circulating CD56� T cells, CD56� T cells, and NK cells from 4 representative healthy control individuals were assayed for their IFN-� production in response to
24-hour treatment in the presence or absence of indicated cytokines: IL-2 (50 U/mL), IL-15 (10 ng/mL), IL-18 (20 ng/mL), IL-12 (5 ng/mL). (C) Circulating CD56� T cells,
CD56� T cells, and NK cells from 5 healthy individuals were assayed for their IFN-� production in response to live BCG alone or BCG plus IL-12 (20 ng/mL) during 24 and
48 hours. Each line represents the response obtained with one individual.
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in vivo relevance of these findings for the pool of hepatic
CD56� T cells.55 We also previously showed that most CD56�

T cells constitutively express IL-12R�1.56 Similarly, IL-12
priming during primary antigenic challenge increased the popu-
lation of memory CD8� T cells in mice.57,58 Our data unambigu-
ously show that IL-12/23 is required for the maturation of CD8�

T cells into circulating CD8�CD56� T cells and/or for the
maintenance of the latter in vivo in PBMCs in humans. Although
IL-12/23 plays a necessary role in the determination of the size
of CD56� T cells, it is not sufficient. Indeed, addition of IL-12 in
vitro did not lead to the induction or expansion of CD56� T cells
(data not shown), consistent with results obtained from the
monitoring of IL-12–treated patients.59 Along this line, TCR,
IL-2, and/or IL-15 stimulations have been show to be involved
in the induction/maintenance of CD56� T cells.55,60-62

Altogether, the presence of CD56� T cells correlates with
several conditions of chronic inflammation such as celiac
disease63 or melanoma.64 In cirrhotic livers, a decreased number
of CD56� T cells may be related to their susceptibility to
hepatocellular carcinoma.65

Although we favor the possibility that IL-12/23 acts directly
on NK cells and CD56� T cells, the effect of IL-12/23 deficiency
might be indirect (ie, function through a different cell type as
opposed to directly these lymphocytes). Irrespective of this
possibility, IL-12/23 is involved in the priming of NK cell
effector function and in the differentiation and/or the mainte-
nance of CD56� effector memory T cells. The IL-12/IFN-� axis
is a critical molecular pathway in the susceptibility of mycobac-
teriosis and salmonellosis. Yet, the precise identification of the
cells that produce protective IFN-� in vivo in response to IL-12
during natural Mycobacterium or Salmonella infection in human
is still lacking. In the case of Mycobacterium, the in vitro
production of IFN-� by whole blood cells upon live BCG
stimulation is shown to be specific and sensitive to identify
disease-causing genes in MSMD patients. Importantly, IFN-�
production by whole blood upon live BCG stimulation was
abrogated in patients lacking NK cells or NK and T cells.32 In
the same study, the production of IFN-� by whole blood from
IL-12p40– and IL-12R�1–deficient patients is abolished or
severely reduced, respectively.32 Taken together with the strong
genetic epidemiologic data showing that IFN-�/IL-12/23 axis is
critical for the protection against Mycobacterium and Salmo-
nella in vivo in humans,30 these results indicate that NK cells
and T cells are the source of IFN-� and that IL-12p40 and
IL-12R�1 are required for this production. In the case of
Salmonella, NK and CD56� T cells produce IFN-� in response
to Salmonella typhimurium–infected macrophages in vitro (N.
Lapaque and J. Trowsdale, personal communication, December
17, 2007). Although the NK cell hyporesponsiveness observed
in IL-12/23 axis–deficient patients is moderate, the biologic
consequences of this defect should not be hastily underesti-
mated. A quantitative difference in NK cell reactivity in vitro
might be translated in vivo by a delay in the early control of
microbial replication and/or in the arming of the immune
response (eg, myeloid cell activation as well as T- and B-cell
activation by IFN-� production). In such a situation of competi-
tion between the onset of the immune response and the
development of an aggression, the consequences of a reduction
and/or a postponement of the NK cell response might be more
severe that intuitively thought. Moreover, the clinical conse-
quences might be limited to certain disease conditions. For
instance, MHC class I deficiency in mice leads to a targeted

deficit in the rejection of MHC class I� tumors or hematopoietic
grafts, but does not compromise the ability of NK cells to keep
in check MCMV infections.66 However, the potential role for
mouse NK cells in the control of M tuberculosis in vivo43 is
disputed.67 Furthermore, the rare cases of true NK cell–selective
deficiencies do not advocate for a role of NK cells in MSMD. No
mycobacteriosis nor salmonellosis has been described in these
patients, although mouse NK cells have been recently reported
to control Salmonella enterica serovar Typhimurium infec-
tions.68 The recent description of 4 children with a novel
primary NK cell immunodeficiency rather showed that these
patients developed Epstein-Barr virus–driven lymphoprolifera-
tive disorder or severe respiratory illnesses of probable viral
etiology.69 Other clinical reports are also consistent with a role
of NK cells in defense against human herpesviral infection.70 By
contrast, few studies have analyzed the impact of CD56� T cells
during Mycobacterium or Salmonella infections, but the size of
this T-cell subset in PBMCs is increased in both conditions.71,72

In the presence of live BCG and Salmonella typhimurium–
infected macrophages in vitro, CD56� T cells, but not CD56�

T cells, appear to produce IFN-� in absence of TCR stimulation.
Thus, consistent with other reports on mouse memory CD8
T-cell subsets, a major functional feature of the subset of CD56�

T cells resides in their “NK-like” effector functions.73 Interest-
ingly, high counts of circulating CD56� T cells at diagnosis of
pulmonary tuberculosis correlated significantly with negative
sputum culture after 8 weeks of treatment.74 Taken together with
their expansion in a limited set of inflammatory conditions and
their high effector potential (both IFN-� production and cytotox-
icity), these data pave the way to dissect whether NK-like
CD56� T cells might be critical players in the protective
IL-12/23/IFN-�–dependent immune response against Mycobac-
terium and Salmonella in humans.

Acknowledgments

The authors thank Nicolas Lapaque and John Trowsdale (Cam-
bridge) for sharing unpublished results, and Corinne Beziers-
Lafosse (CIML) for her help in the illustrations.

This work was supported by Inserm, CNRS, the European
Community (“ALLOSTEM,” E.V.), Ligue Nationale contre le
Cancer (“Equipe labellisée La Ligue”), the Agence Nationale de la
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Defects in the interleukin-12/interferon-
gamma axis may cause selective suscep-
tibility to intracellular pathogens such as 
atypical mycobacteria, bacillus Calmette-
Guérin and salmonella [1]. Contrary to 
most other immunodeficient patients, 
these patients are usually not susceptible 
to other pathogens. 

We describe a child in whom recurrent 
salmonella infection and chronic mycobac-
terial cervical lymphadenitis was found to 
be due to a defect in IL-12Rβ1.

Patient Description
A 6 year old boy was admitted because 
of massive cervical lymphadenopathy of 
2 months duration. Past medical history 
included two episodes of aspiration-con-
firmed Salmonella typhimurium cervical 
lymphadenitis before age 2, and one event 
of Salmonella typhimurium bacteremia. His 
parents are first-degree cousins of Arab 
descent, and he has two healthy sisters. 
Pregnancy and delivery were normal.

Physical examination revealed bilat-
eral massive cervical lymphadenopathy 
with firm, non-tender lymph nodes of 
5–6 cm diameter. Enlarged lymph nodes 
were also palpated in the axillae and 
groin. Abdominal examination yielded 
hepatosplenomegaly and several large firm 
masses in the right lower quadrant. 

Laboratory findings were remarkable 
for high levels of C-reactive protein and 
erythrocyte sedimentation rate, numerous 
atypical lymphocytes without blasts on 
blood smear, and positive rheumatoid 
factor. Serology for Epstein-Barr virus, 

IL = interleukin

cytomegalovirus, human immunodeficiency 
virus and toxoplasma were negative. 
Cervical and abdominal ultrasonography 
demonstrated large lymphadenopathy 
without liquefaction. 

Fine-needle biopsy from the cervical 
nodes showed granuloma formula-
tion, and culture yielded Mycobacterium 
avium. Immunological workup revealed 
IgG 2910 mg/dl, IgM 470 mg/dl and IgA 
220 mg/dl. Complement, B lymphocytes, 
T lymphocytes, number of natural killer 
cells, lymphocyte stimulation tests, NK 
cell function tests and neutrophil function 
tests were normal. However, on the basis 
of the clinical findings, a defect in the 
IL-12/IFNγ axis was suspected.

Incubation of the patient’s lymphocytes 
with bacillus Calmette-Guérin did not 
yield the expected INFγ production, nor 
did the addition of IL-12. Genetic analysis 
revealed a large defect in the cDNA of the 
IL-12Rβ1 gene (caused by a deletion of 
exons 8 to 13 on chromosome 1), estab-
lishing the diagnosis. 

Following treatment with clarithromy-
cin and rifampicin or rifabutin and IFNγ 
(50–100 µg/day) for 1 year, the abdominal 
masses disappeared but the cervical 
lymph nodes remained enlarged; repeated 
aspiration from the cervical lymph nodes 
again yielded Mycobacterium avium complex. 
Based on the in vitro susceptibility tests, 
treatment was changed to clarithromycin, 
rifabutin, and cycloserin, and IFNγ 150 
µg/day.

One year later, apparently as a conse-

NK = natural killer
IFN = interferon

quence of discontinuation of treatment, 
the patient presented with weight loss, 
hepatomegaly, enormous spleen and left 
pleural effusion. Blood, bone marrow, and 
pleural fluid cultures yielded multiresistant 
Mycobacterium avium complex. The patient 
was treated with five anti-mycobacterial 
medications, corticosteroids and a high 
dose of IFNγ (200 mg/day), and was fed 
by nasogastric tube. Splenectomy was 
performed for the non-functional spleen 
and histology revealed numerous acid-
fast bacilli in multiple granulomata and 
abscesses. The patient’s clinical condition 
improved and he was discharged home on 
the same medications.

Comment
In the normal mechanism of defense 
against intracellular mycobacteria [Figure], 
IL-12 released from infected macrophages 
activates specific receptors on natural kill-
er cells/T lymphocytes. In response, these 
cells secrete IFNγ which interacts with its 
specific receptors on the macrophages, 
starting a metabolic cascade of enhanced 
killing of the intracellular pathogen and 
further activation of the macrophages and 
T cells [2]. Five disease-causing autosomal 
genes of this axis have been identified, ac-
counting for least 12 disorders that result 
in impaired IFNγ-mediated immunity.

IL-12Rβ1 deficiency, first described in 
1996 [3,4], is the most frequent genetic 
defect of Mendelian susceptibility to my-
cobacterial disease. Inheritance is usually 
autosomal recessive [2]. Clinical features 
range from chronic lymphadenopathy to 
disseminated disease, and death. Over 80 
patients have been reported worldwide 
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(our unpublished data). In most cases, 
the IL-12Rβ1 is not found on the cell 
surface, because of a premature stop 
codon or misfolding and intracellular 
retention of the mutant proteins [2]. Our 
patient exhibited a mutation similar to 
that in another Israeli patient reported 
by Fieschi et al. [5], also of Arab/Bedouin 
descent. Both had a large deletion (12165 
nucleotides), encompassing exons 8 to 13 
of the IL-12Rβ1 gene which encode the 
proximal NH2-terminal half of the extra-
cellular domain that led to the surface 

expression of the internally truncated 
receptor and its consequent inability to 
bind IL-12 or IL-23. Although, to the best 
of our knowledge, the families of these 
two patients were not directly related, the 
same mutation in the two Arab kindreds 
in Israel may reflect a founder effect. 

In conclusion, IFNγ axis defects should 
be suspected in the clinical setting of 
chronic BCG or atypical mycobacterial 
infection or recurrent salmonella infection. 

BCG = bacillus Calmette-Guérin

The present report indicates that IL-12Rβ1 
deficiency due to the surface-expression 
of non-functional receptors is not limited 
to a single family. Our evaluation also 
highlighted the importance of broad 
cellular assays and in-depth molecular 
investigations in certain unusual infec-
tions. The accurate diagnosis of genetic 
defects of the IL-12/IFNγ axis may have 
therapeutic implications as exemplified 
by the addition of IFNγ treatment to the 
anti-mycobacterial agents in our patient.
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IL-12 and INFγ axis in mycobacteria immunity: Infected macrophages release IL-12 which binds 
to a high affinity receptor on natural killer cells (NK) or T helper cells (TH1), or cytotoxic T 
cells. The receptor has two subunits (β1+β2). The activation of the receptor results in secretion 
of IFNγ that adheres to a receptor on the macrophage, which also consists of two subunits. 
This binding to the IFNγ receptor induces intracellular events via IFNγ-responsive signal 
transducers and activators. Defects in any of the five genes: namely, IL-12 heterodimer (IL-
12p40), IL-12-receptor (IL-12Rβ1), IFNγ receptor (IFNγR1 and IFNγR2), or STAT-1 can cause 
susceptibility to intracellular pathogens, especially mycobacteria. 

Elucidation of the cellular signaling pathways that contribute 
to cancer development often begins with the identification of 
a gene mutated in human tumors. Complementary biochemical 
approaches become especially important when the sequence 
of the newly identified gene provides few clues as to its 
function. Major et al. used analysis of protein interaction 
networks to define the function of WTX, a tumor suppres-
sor gene found very recently to be mutated in an inherited 

kidney cancer called Wilms tumor. The WTX protein forms a 
complex with several proteins in the WNT signaling cascade, 
including beta-catenin, AXIN1, beta-TrCP2 (beta-transducin 
repeat-containing protein 2), and APC (adenomatous pol-
yposis coli) and antagonizes WNT signaling by promoting 
beta-catenin degradation.

Science 2007;316:1043
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bstract

Mendelian susceptibility to mycobacterial diseases confers predisposition to clinical disease caused by weakly virulent mycobacterial species in
therwise healthy individuals. Since 1996, disease-causing mutations have been found in five autosomal genes (IFNGR1, IFNGR2, STAT1, IL12B,

L12BR1) and one X-linked gene (NEMO). These genes display a high degree of allelic heterogeneity, defining at least 13 disorders. Although
enetically different, these conditions are immunologically related, as all result in impaired IL-12/23-IFN-�-mediated immunity. These disorders
ere initially thought to be rare, but have now been diagnosed in over 220 patients from over 43 countries worldwide. We review here the molecular,

ellular, and clinical features of patients with inborn errors of the IL-12/23-IFN-� circuit.
2006 Elsevier Ltd. All rights reserved.
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. Introduction

Mendelian susceptibility to mycobacterial diseases (MSMD)
MIM 209950, [1]) is a rare congenital syndrome that was
robably first described in 1951 in an otherwise healthy child
ith disseminated disease caused by bacillus Calmette-Guérin

BCG) vaccine [2]. It is defined by severe clinical disease,
ither disseminated or localized and recurrent, caused by weakly
irulent mycobacterial species, such as BCG vaccines and non-
uberculous, environmental mycobacteria (EM), in otherwise
ealthy individuals [3–7]. Understandably, patients with MSMD
re also susceptible to the more virulent species Mycobacterium

uberculosis [8–12]. Severe disease caused by non-typhoidal
nd, to a lesser extent, typhoidal Salmonella serotypes is also
ommon—observed in nearly half the cases, including patients

Abbreviations: MSMD, Mendelian susceptibility to mycobacterial dis-
sases; BCG, bacillus Calmette-Guérin; EM, environmental mycobacteria; IFN,
nterferon; IL, interleukin; Stat, signal transducer and activator of transcription;
EMO, NF-�B essential modulator
∗ Corresponding author. Tel.: +33 1 40 61 56 87; fax: +33 1 40 61 56 88.

E-mail address: casanova@necker.fr (J.-L. Casanova).
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ho did not have any mycobacterial disease before the diagno-
is of salmonellosis, or even at last follow-up [6,7,13]. The title
MSMD” is therefore misleading, and it may be more accu-
ate to refer to the underlying genetic defects: inborn errors
f the IL-12/23-IFN-� circuit. Other infectious diseases have
arely been reported in these patients, and have mostly involved
athogens phylogenetically (e.g. Nocardia) or pathologically
e.g. Paracoccidioidomyces) related to mycobacteria, suggest-
ng that these infections were not coincidental. However, most of
hese infections occurred in single patients, making it impossi-
le to draw definitive conclusions as to whether these infections
ruly reflect syndromal predisposition [14–19]. As always in
uman genetics, there is a need to explore both the disease-
ausing genotypes of patients with MSMD and the clinical
henotype of patients with known disorders of the IL-12-IFN-�
ircuit.

The first genetic etiology of MSMD was described in 1996,
ith null recessive mutations in IFNGR1, encoding the IFN-�
eceptor ligand-binding chain, in two kindreds [20,21]. Ten
ears later, distinct types of disease-causing mutations were
eported in IFNGR1 [8,20–23] and four other autosomal genes:
FNGR2, encoding the accessory chain of the IFN-� receptor

mailto:casanova@necker.fr
dx.doi.org/10.1016/j.smim.2006.07.010
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Fig. 1. Geographical origin of the kindreds with genetics defects of the IL-12/23-IFN-� circuit. The 220 published and unpublished patients referred to in this
review originate from 43 countries on five different continents: Africa (Algeria, Cameroon, Morocco, Tunisia); America (Argentina, Brazil, Canada, Chile, Mexico,
United States, Venezuela); Asia (China, India, Indonesia, Iran, Israel, Japan, Lebanon, Malaysia, Pakistan, Qatar, Saudi Arabia, Sri Lanka, Taiwan, Turkey); Europe
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viral diseases, caused by null recessive alleles in STAT1 result-
ing in impaired cellular responses to both IFN-� and IFN-�/�
[36,37]. Similarly, MSMD-causing mutations in NEMO were
Belgium, Bosnia, Cyprus, France, Germany, Greece, Italy, Malta, The Netherla
ceania (Australia).

24–27]; IL12B, encoding the p40 subunit shared by IL-12
nd IL-23 [28]; IL12RB1, encoding the �1 chain shared by the
eceptors for IL-12 and IL-23 [29–31], and STAT1, encoding
he signal transducer and activator of transcription 1 (Stat-1)
32,33]. Specific mutations in an X-linked gene – NEMO,
ncoding the NF-�B essential modulator (NEMO) – were also
ecently found [34]. The six gene products are physiologically
elated, as all are involved in IL-12/23-IFN-�-dependent immu-
ity. Defects in IFNGR1, IFNGR2, and STAT1 are associated
ith impaired cellular responses to IFN-�, whereas defects

n IL12B, IL12RB1 and NEMO are associated with impaired
L-12/IL-23-dependent IFN-� production. Causal mutations
ave been found in 220 patients and 140 kindreds from 43
ountries (Fig. 1). IL-12R�1 deficiency is the most common
enetic etiology of MSMD, being responsible for ∼40%
f cases, closely followed by IFN-�R1 deficiency (∼39%)
Fig. 2). IL-12p40 deficiency was identified in only ∼9% of the
atients, Stat-1 deficiency in 5%, IFN-�R2 deficiency in 4%,
nd NEMO deficiency in only 3% of the cases (Fig. 2).

However, these six deficiencies are not the most clinically
elevant genetic diagnoses, as there is considerable allelic het-
rogeneity (Figs. 3 and 4), probably greater than that for all other
nown primary immunodeficiencies, owing to the occurrence
f MSMD-causing genes with dominant and recessive alle-
es (IFNGR1) [21,22], hypomorphic and null alleles (IFNGR1,
FNGR2) [8,24,27], null alleles with or without protein produc-
ion (IFNGR1, IFNGR2, IL12RB1) [23,26,29–31], and alleles

hat affect different functional domains of the same protein
STAT1) [32,33]. In total, the various alleles of the six genes
efine 13 different genetic disorders associated with MSMD
Table 1). Additional novel types of MSMD-causing alleles may

F
d
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orway, Portugal, Poland, Slovakia, Spain, Sweden, United Kingdom, Ukraine);

xist for these six genes, as a null allele of IFNGR2 was shown
o be dominant in vitro [25], and a recessive allele of IL12RB1
as been reported to be hypomorphic [35]. The study of MSMD
nd its genetic etiologies has even led to the description of a
elated clinical syndrome of vulnerability to mycobacterial and
ig. 2. Known inherited disorders of the IL-12/23-IFN-� circuit. The genetic
efects of 220 published (150) and unpublished (70) patients with MSMD.
he percentage of defects in the corresponding autosomal (IFNGR1, IFNGR2,
TAT1, IL12B, IL12RB1) and X-linked (NEMO) genes is indicated.
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Fig. 3. Published mutations in IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1 and NEMO. Exons and the corresponding coding regions are represented for each gene.
Exons are designated by roman numerals. Blue: recessive loss-of-function mutations associated with complete defects and surface expression of a non-functional
molecule. Red: recessive loss-of-function mutations associated with a lack of expression of the protein on the cell surface. Green: dominant mutations causing partial
deficiency. Purple: recessive mutations causing partial deficiency.
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Fig. 4. MSMD-causing gene products in the IL-12/23-IFN-� circuit. Schematic
representation of cytokine production and cooperation between mono-
cytes/dendritic cells and NK/T cells. The IL-12/23-IFN� loop and the CD40L-
activated CD40 pathway corresponding to cooperation between T cells and
monocyte/dendritic cells are crucial for protective immunity to mycobacterial
infection in humans. IL-12 production is under the control of both IFN-� and
CD40-NEMO signaling. Mutant molecules in patients with MSMD are indi-
cated in gray. Allelic heterogeneity of the five autosomal disease-causing genes
results in the definition of twelve genetic disorders and specific alleles of NEMO
leucine zipper (LZ) domain cause the X-linked form of MSMD, as they impair
the CD40-dependent induction of IL-12. IL-23 and its receptor are not repre-
sented but may be involved in protective immunity against mycobacteria and/or
salmonella.

Table 1
Genetic etiology of MSMD*

Gene Inheritance Defect Protein References

IFN-�R1

AR C E+ [23]
AR C E− [20,21]
AD P E+ [22]
AR P E+ [8]

IFN-�R2
AR C E+ [26]
AR C E− [24]
AR P E+ [27]

Stat-1
AD P E+P− [32]
AD P E+B− [33]

IL-12B AR C E− [15,28]

IL-12R�1
AR C E+ [31]
AR C E− [29,30,99]

NEMO XR P E+ [34]

* The 13 known genetic etiologies of MSMD. Modes of inheritance are either
autosomal dominant (AD), autosomal recessive (AR) or X-linked recessive
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XR). The functional defects are either complete (C) or partial (P). The mutant
roteins are either expressed (E+) or not (E−), being not phosphorylated (P−)
r not binding DNA (B−) upon IFNs stimulation.

dentified only after other NEMO mutations had been reported to
ause anhidrotic ectodermal dysplasia with immunodeficiency
EDA-ID) [38–40]. Many reviews have focused specifically on

SMD and disorders of the IL-12/23-IFN-� circuit (Fig. 4)
6,7,13,41–58]. Ten years after identification of the first genetic
tiology of MSMD, we review here the molecular, cellular, and
linical features of inborn errors of the IL-12/23-IFN-� circuit.
. IFN-�R1 deficiency

IFN-� is a pleiotropic cytokine produced principally by nat-
ral killer (NK) cells and T lymphocytes [59]. Its heterodimeric
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urface receptor is ubiquitously expressed and consists of a
igand-binding chain (IFN-�R1) and an associated chain (IFN-
R2) [60,61]. Homodimeric IFN-� recruits two IFN-�R1 and

wo IFN-�R2 chains, and formation of the resulting tetramer
ctivates two constitutively associated kinases, Jak1 and Jak2,
hich phosphorylate IFN-�R1, allowing the docking of Stat-1
olecules, their phosphorylation and release into the cytosol,
here they form phosphorylated homodimers. These phospho-

ylated homodimers are translocated to the nucleus, where they
rive the transcription of multiple target genes [60]. In the mouse
odel, IFN-� is critical for host defenses against various infec-

ious agents, including mycobacteria [62]. This observation,
espite the broad susceptibility of mutant mice, was critical for
he definition of IFNGR1 as a candidate gene in the search for the
rst etiology of MSMD by linkage studies [20,21]. The IFNGR1
ene contains seven exons (Fig. 3) encoding an extracellular
FN-�-binding domain, a transmembrane domain and the cyto-
lasmic domain required for signal transduction and receptor
ecycling [59,61].

Inherited IFN-�R1 deficiency was the first genetic etiol-
gy of MSMD to be identified, in 1996 [20,21]. In the last
0 years, 30 different IFNGR1 mutations have been identified
n 86 patients from 62 kindreds and 28 countries world-wide
unpublished data). Twenty-four of these mutations have been
ublished (Fig. 3) and fall into four distinct categories defin-
ng different allelic disorders: two forms of autosomal recessive
omplete IFN-�R1 deficiency, with (n = 6, blue mutations in
ig. 3) or without (n = 11, red mutations in Fig. 3) cell surface
xpression of the receptor, and two forms of partial IFN-�R1
eficiency, which may be recessive (n = 1, purple mutation in
ig. 3) or dominant (n = 6, green mutations in Fig. 3). Reces-
ive complete (RC) IFN-�R1 deficiency was the first identified
orm of IFN-�R1 deficiency [20,21]. Other kindreds have since
een reported, bringing the total number of known patients to
7, in 23 kindreds from 16 countries [23,63–72]. Twenty-one
ausal mutations have been identified, and 17 were published
ncluding the 523delT recurrent mutation (Fig. 3). Most (n = 22)
atients are homozygous, but a few are compound heterozygous
n = 5). Most mutations are nonsense or frameshift mutations,
recluding IFN-�R1 expression on the cell surface due to the
resence of a premature termination codon before the segment
ncoding the transmembrane domain (Fig. 3, red mutations)
20,21,63–67,69,70]. Only six mutant alleles – all including
issense mutations or in-frame deletions – encode cell surface-

xpressed (Fig. 3, blue mutations), dysfunctional molecules that
o not recognize their natural ligand IFN-�, despite being rec-
gnized by certain specific antibodies [23,68]. The cells of all
he affected children fail to respond to IFN-� in vitro, in terms of
tat-1 DNA-binding activity in EBV-transformed B cells [41,44]
0 to 30 minutes after IFN-� stimulation, or in terms of HLA-II
nduction in fibroblasts [44] and the upregulation of TNF-� and
L-12 in blood cells [65,73] 24 to 74 hours after stimulation.

Complete IFN-�R1 deficiency is a very severe condition,

ith an early onset of infection and a poor prognosis. Children

re mostly infected by BCG and environmental mycobacteria,
otably rapidly growing mycobacteria [41]. Children with dis-
eminated disease caused by such weakly virulent environmen-
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al mycobacteria as M. fortuitum [23,41], M. chelonae [3,20],
. smegmatis [63,64], M. peregrinum [70], and M. scrofulaceum

72] have been reported. Salmonellosis was documented in three
atients [20,21,41]. The tissue lesions typically show poorly
elineated, lepromatous-like, multibacillary granulomas [74]. A
ew other infections have been noted, including viral infections,
aused by cytomegalovirus [16] and human herpes virus 8 [17].
owever, these infections occurred in single patient, making it
ifficult to determine whether the genetic lesion was causal. The
linical penetrance of IFN-�R1 deficiency is complete in child-
ood, and the mean age at onset of first infection is 3.1 years [41].
ost of the affected children died in childhood and only four

f the 22 published patients reached the age of 12 years [41].
ntibiotic treatment does not give full and sustained clinical

emission and IFN-� has no effect in the absence of a functional
eceptor. Hematopoietic stem cell transplantation (HSCT) was
arried out in nine patients, with 12 HSCT operations, using
ells donated by members of the patients’ families. Four of these
atients died within eight months of transplantation and two
urvived despite autologous reconstitution [75–78]. However,
SCT was curative in three children [75–78]. The use of a non T-

ell depleted transplant from an HLA-identical sibling and fully
yeloablative conditioning regimen has been to shown to pro-

ide better results [75,78]. There is a high rate of graft rejection,
ven for transplants from an HLA-identical relative, in contrast
o what is observed for patients with other genetic diseases. This
igh rate of rejection may be related to the high levels of IFN-�
etected in the serum of these patients, possibly impairing the
evelopment of IFN-�R1-expressing heterologous hematopoi-
tic cells [79]. In any event, successful clinical complementation
y HSCT in humans, indicates that IFN-�R1 deficiency is pri-
arily a hematopoietic condition.
The specific I87T mutation (Fig. 3, purple mutation) in

FNGR1 is the only known mutation responsible for a reces-
ive form of partial (RP) IFN-�R1 deficiency [8,80]. The same
omozygous mutation was documented in five patients from
our families from Portugal, Poland, and Chile [8,80] (unpub-
ished data). It is not known whether the recurrence reflects a
ounder effect or a hotspot. Cells from these patients show a
esidual response to IFN-�, in terms of both Stat-1 DNA-binding
about 25–30% GAS-binding activity) and HLA-II induction
8,44], and in terms of blood cellular responses [8,73]. RP IFN-
R1 deficiency is associated with BCG or EM disease, but is
uch less severe than complete IFN-�R1 deficiency. All known

atients with RP IFN-�R1 deficiency were alive and well at last
ollow-up, at ages ranging from 2 to 20 years. Interestingly, RP-
FN-�R1 deficiency was also the first genetic etiology of MSMD
o be associated with clinical tuberculosis [8], providing prelim-
nary evidence that defects in IFN-�-mediated immunity may
redispose patients to tuberculosis, as was subsequently shown
nambiguously for M. tuberculosis-infected children with IL-
2R�1 deficiency [12]. Patients with RP-IFN-�R1 deficiency
hould be treated with antibiotics and, if needed, with recom-

inant IFN-�. Given the favourable prognosis, HSCT is not
ndicated.

Dominant partial (DP) IFN-�R1 deficiency typically results
rom a truncation in the cytoplasmic domain, resulting in the
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ccumulation at the cell surface of dominant-negative, non-
unctional IFN-�R1 proteins [22]. The mutant molecules accu-
ulate on the cell surface due to deletion of the recycling motif,

ut cannot signal, because they lack Jak-1- and Stat-1-binding
omains, preventing most IFN-�R1 dimers from functioning,
nd resulting in weak, but not entirely absent cellular responses
o IFN-� [22,81,82]. Up to 54 patients have been identified
o date, with 22 simplex and 13 multiplex kindreds (unpub-
ished data). Several heterozygous IFNGR1 mutations have been
eported (Fig. 3, green mutations) [16,18,22,41,81–85]. The
18del4 mutation is by far the most common dominant IFNGR1
utation, found in 47 patients and 28 kindreds (of 54 patients

nd 35 kindreds with DP IFN-�R1 deficiency). Interestingly, this
eletion was the first hotspot for small deletions identified in the
uman genome [22]. Small deletion hotspots have since been
eported in IFNGR1 (561del4, [69]) and other genes [86–89].
he 811del4, 813del5, 817insA, 818delT, and E278X mutations

n IFNGR1 were each found in only one patient [16,22,41,82,83]
Clinically, DP-IFN-�R1 deficiency is less severe than RC-

FN-�R1 deficiency [41]. The mean age at onset of mycobacte-
ial infection is 13.4 years (range: 1.5–57 years) [41]. Patients
re susceptible to BCG and environmental mycobacteria, but
apidly growing bacteria are rarely involved. Salmonellosis has
een documented in only 5% of DP-IFN-�R1-deficient patients,
n contrast to what was found for IL-12R�1-deficient patients,
espite a similar life expectancy (see below) [13,41]. Other
nfections, each documented in only one patient, include fun-
al infections with species such as Histoplasma capsulatum
18], and viral infection with varicella zoster virus (VZV) [16].
ntriguingly, these patients typically suffer from mycobacte-
ial osteomyelitis. A diagnosis of mycobacterial osteomyelitis,
hether unifocal or multifocal, should trigger to the search of
P-IFN-�R1 deficiency [18,41,68,81]. The prognosis is fairly
ood, with only two deaths among 38 patients, occurring at
he ages of 17 and 27 years [41]. Patients should be treated
ith antibiotics and, if necessary, with recombinant IFN-�. The
igh rate of mycobacterial relapses and infections with unusual
ycobacterial species raise the question as to whether preven-

ive antibiotics and/or IFN-� should be given, at least to selected
atients with the most severe clinical disease. Despite the possi-
le occurrence of multiple and recurrent mycobacterial diseases,
SCT is not indicated.

. IFN-�R2 deficiency

IFN-�R2, like IFN-�R1, belongs to the class II cytokine
eceptor family [60,61]. IFN-�R2 binds strongly to IFN-�R1
pon stimulation with IFN-�. The organization of the IFN-�R2
ene resembles that of the IFN-�R1 gene, with seven exons
Fig. 3) encoding an extracellular domain that interacts with the
FN-�-IFN-�R1 complex (but not itself playing a major role
n ligand binding), a transmembrane domain, and a cytoplas-

ic domain required for signal tranduction [59,61]. IFN-�R2

s constitutively expressed at low levels, but its expression is
egulated in certain cell types, with expression levels being a
ritical factor in IFN-� responsiveness. Both IFN-�R1 and IFN-
R2 are synthesized in the endoplasmic reticulum and modified
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osttranslationally, by the addition of N-linked carbohydrates
uring passage from the endoplasmic reticulum to the Golgi
pparatus [59–61].

IFN-�R2 deficiency is one of the rarest genetic etiologies
f MSMD: only nine children have been identified, including
even children from the six families reported to date [24–27].
he first patient was reported in 1998 [24]. This child and six
ther patients (including two siblings) had recessive complete
RC) IFN-�R2 deficiency [24–26]. Two forms of RC IFN-�R2
eficiency were documented. Three patients had no detectable
xpression of the protein on the cell surface, due to a prema-
ure termination codon or an in-frame deletion in the coding
egion (Fig. 3, red mutations) resulting in intracellular protein
egradation [24,26] (unpublished data). In three patients from
wo families, IFN-�R2 was found to be non functional, despite
urface expression (Fig. 3, blue mutation) [26]. The causal mis-
ense mutation results in the addition of a novel, pathogenic
arbohydrate, but the mechanism by which this polysaccha-
ide impairs IFN-�R signaling is unclear. In another family,
ne child presented with recessive partial (RP) IFN-�R2 defi-
iency, due to a homozygous R114C (Fig. 3, purple) mutation,
hich impaired, but did not abolish cellular responses to IFN-
[27]. A new IFNGR2 mutation was recently identified in a

hild with RP IFN-�R2 deficiency (unpublished data). Finally,
n a kindred with RC-IFN-�R2 deficiency, the 791delG muta-
ion that was clinically pathogenic in homozygotes was found
o exert a dominant-negative effect in heterozygous cells [25].
t is unclear whether the corresponding heterozygous individu-
ls will develop clinical disease, and whether other mutations in
FNGR2 are dominant.

The study of IFN-�R2 deficiency has had unexpected genetic
mplications, beyond the field of MSMD and even that of
rimary immunodeficiencies. The T168N missense mutation
n IFN-�R2 creates a new N-glycosylation site (N-X-S/T-X),
esulting in the synthesis of a new polysaccharide branched to the
FN-�R2 chain (on Asn 168) [26]. The mutant protein expressed
n the cell surface has a higher molecular weight than the
ild-type protein. The additional N-glycosylation of the T168N

FN-�R2 protein was demonstrated by digesting the N-linked
arbohydrate with PNGase-F or blocking the assembly of the
ipid-linked oligosaccharide precursor with tunicamycin [26].
he additional N-carbohydrate was found to be necessary and
ufficient to account for the pathogenic effect of the mutation.

utant IFN-�R2-expressing cells were even functionally com-
lemented with PNG-ase F or tunicamycin or other inhibitors of
aturation of N-linked glycosylation [26] (unpublished data).
his provided an example of chemical complementation in vitro
f a germline mutation, paving the way to the exploration of
harmacological treatments for inherited disorders in humans
26]. This interesting finding was also extended to other mis-
ense mutations involved in a number of other human inherited
isorders. Up to 1.4% of all missense mutations described in the
uman Gene Mutation Database (HGMD) are potential gain-

f-glycosylation mutants [26].

Complete IFN-�R2 deficiency seems to be as severe as com-
lete IFN-�R1 deficiency, with an early onset of mycobacterial
isease, poorly defined and multibacillary granulomas, and a
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evere outcome (three deaths among the seven affected chil-
ren) [24–26] (unpublished data). HSCT seems to be the only
ossible cure for these patients [24–26]. Given the small num-
er of patients identified to date, it is too soon to determine
hether there are subtle clinical differences between RC-IFN-
R1 and RC-IFN-�R2 patients, and whether their management
hould therefore be tailored to the individual genetic lesion. The
nly child with a partial recessive form of IFN-�R2 reported
ad a modest clinical phenotype, similar to that of children with
P-IFN-�R1 deficiency [27]. Overall, the level of IFN-� respon-

iveness seems to be strongly correlated to clinical phenotype,
n all disorders of the IFN-�R1 and IFN-�R2 chains [44]. IFN-
-mediated immunity seems to be an almost continuous trait,
etermining the outcome of mycobacterial invasion in humans.
atients should be offered precise molecular genetic diagnosis,
aking it possible to tailor the treatment to the individual.

. Stat-1 deficiency

Signal transducer and activator of transcription-1 (Stat-1)
s critical for cellular responses to type I (IFN-�/�) and type
I (IFN-�) IFNs, and to the less well characterized type III
FNs (IFN-�) [90]. IFN-� stimulation induces the phosphoryla-
ion and homodimerization of Stat-1 (gamma activating factors,
AF), whereas IFN-�/� stimulation specifically leads to the

ormation of ISGF-3 heterotrimers, composed of Stat-1, Stat-2,
nd IRF-9 [90]. The activation of GAF homodimers and ISGF-3
eterotrimers results in the translocation of these molecules to
he nucleus, where they act as IFN-responsive gene transcrip-
ion factors, binding to discrete cis-acting regulatory sequences
n DNA: gamma activating sequences (GAS) and interferon-
timulated response elements (ISRE), respectively [60,90]. The
TAT1 gene has 25 exons (Fig. 3) and encodes a protein with four
omains found in other Stats, the Src homology 2 (SH2) domain,
hich plays an important role in the interaction with IFN-�R1

nd other Stats, the DNA-binding (DNA-B), tail segment (TS)
nd the transactivator (TA) domains [91].

Germline mutations in STAT1 were found in 2001 in patients
ith MSMD [32]. Ten patients with such mutations have since
een described in four kindreds from three countries (Fig. 3)
32,33]. The L706S Stat-1 mutation was the first mutation dis-
overed, in two unrelated children with MSMD [32]. This muta-
ion impairs the nuclear accumulation of GAF but not of ISGF-3
n heterozygous cells from the patients stimulated with IFN-

and IFN-�/�, respectively [32]. The mutation is nonetheless
oss-of-function for these two phenotypes, as Stat-1-deficient
tably cells transfected with the L706S mutant allele show no
ctivation of GAF or ISGF3, due to a loss of phosphoryla-
ion at Tyr 701 [33]. Mechanistically, the L706S molecule is
ot phosphorylated at Tyr 701, preventing GAF activation and
ccounting for the negative dominance observed in heterozy-
ous cells. It also displays no affinity for phosphorylated Stat-2,
s leucine 706 is crucial for dimerization. As a result, it cannot

e recruited for the formation of Stat-1/Stat-2/p48 trimers, the
FN�/�-activated ISGF3 complexes, accounting for the normal
ormation of ISGF3 complexes and recessivity in heterozygous
ells. The L706S allele is thus deleterious for two phenotypes,
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ut is dominant for one (GAF activation) and recessive for the
ther (ISGF-3 activation), accounting for the narrow clinical
henotype, in this pure MSMD without susceptibility to viruses
32,33].

Two other mutations, E320Q and Q463H, both located in
he DNA-binding domain of Stat-1, were recently found in het-
rozygous patients from two unrelated kindreds from Germany
33]. These mutations define a novel form of partial Stat-1 defi-
iency, as Tyr 701 is normally phosphorylated but the nuclear-
ranslocated Stat-1-containing complexes do not bind correctly
o GAS-DNA regulatory elements. Like L706S, the E320Q
nd Q463H STAT1 alleles are dominant for IFN�-inducing
AF-mediated anti-mycobacterial immunity, but recessive for

FN�/�-induced ISGF3-mediated anti-viral immunity, account-
ng for the patients’ clinical phenotype of MSMD without
usceptibility to viral diseases [33]. As no more than half the
FN-�/�-induced ISGF-3 complexes contain a mutant Stat-1,
nd there is no haplo-insufficiency for this phenotype, the three
utations are recessive in heterozygous cells [33]. The dom-

nance of the three Stat-1 mutations is accounted for by the
nability of three in every four homodimers to form (L706S)
r to bind normally to IFN-�-induced-GAS elements (E320Q
nd Q463H). The study of these three Stat-1 mutations thus
ed to the description of human germline mutations deleterious
or two phenotypes but dominant for one and recessive for the
ther [33]. In any event, children with DP-Stat-1 deficiency have
elatively mild clinical disease, resembling that of children with
P-IFN-�R1 and RP-IFN-�R2 deficiency, and should be treated
ccordingly.

Other mutations in STAT1 have been implicated in a related
yndrome of susceptibility to mycobacteria and viruses, due
o impaired IFN-�- and IFN-�/�-mediated immunity, respec-
ively [36,37a,37b][36,37]. Three homozygous mutations, all
ocated in the region encoding the SH2-domain of Stat-1, are
oss-of-expression and loss-of-function, and are consequently
ssociated with recessive complete (RC) Stat-1 deficiency and a
ack of formation of both GAF and ISGF-3 complexes. This con-
ition overlaps with, but differs from, MSMD, as the children
re exposed to life-threatening viral disease [32,33,36,37a,37b].
he first two children suffered from BCG-osis, like children
ith severe forms of MSMD, but died of viral diseases, such of
erpes simplex encephalitis, unlike children with MSMD (even
hose with RC-IFN-�R1 or RC-IFN-�R2 deficiency). The diag-
osis was made post mortem in two children, for whom only
BV-transformed B cells were available. Two cousins were also

ecently diagnosed with this condition post-mortem (unpub-
ished data). Finally, a fifth patient, from a third kindred, was
iagnosed before hematopoietic stem cell transplantation was
ttempted [37]. His blood cells were shown not to respond to
FN-� and his fibroblasts did not respond to IFN-� and IFN-�/�.
e died shortly after transplantation, due to the consequences of
CG-osis. Intriguingly, he seemed to have been able to control
t least some weakly virulent viruses, suggesting that Stat-

-independent mechanisms of anti-viral immunity operate in
umans [37]. Complete Stat-1 deficiency defines a novel, innate,
evere immunodeficiency, which should be considered in young
hildren with severe, unexplained infectious diseases, particu-
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arly, but not exclusively, mycobacterial and viral disease. HSCT
hould be attempted in the affected children, despite the possible
nvolvement of non-hematopoietic cells in the development of
iral diseases.

. IL-12p40 deficiency

IL-12 comprises two disulfide-linked subunits, p35 and p40,
ncoded by the IL12A and IL12B genes, respectively [92,93].
he p40 subunit may also associate with the p19 subunit to form

L-23 [92,93]. IL-12 binds to a heterodimeric receptor consist-
ng of two chains (IL-12R�1 and IL-12R�2) expressed on NK
nd T lymphocytes, and induces the production of large amounts
f IFN-� and enhances the proliferation and cytotoxic activity
f NK and T cells [92,93]. IL-23 binds to a heterodimeric recep-
or (IL-12R�1 and IL-23R) and induces IFN-� and, to greater
xtent, IL-17 [92]. The IL12B gene is composed of eight exons
Fig. 3) and its mRNA is produced only in IL-12-producing
ntigen-presenting cells.

The first patient with IL-12p40 deficiency was reported in
998 [28]. IL-12p40 deficiency remains the only known immun-
deficiency resulting from a cytokine gene defect. In the last
years, 20 patients have been identified, with five different
utations in the IL12B gene, four of which have been pub-

ished (Fig. 3) [15,28,94,95] (unpublished data). All known
L12B mutations are recessive and loss-of-function, resulting
n recessive complete (RC) IL-12p40 deficiency with a lack
f detectable IL-12p40 secretion by the patients’ blood cells
nd EBV-transformed B cells [15,28,73]. A lack of biologically
ctive IL-12p70 has also been reported, but IL-23 levels cannot
et be determined due to the lack of a specific antibody. The
atients’ cells produce only small amounts of IFN-� in vitro,
robably accounting for the observed susceptibility to mycobac-
eria [15,28,73,94].

A large homozygous deletion (g.482+82 856-854del) in the
L12B gene has been identified in one Pakistani and two Indian
indreds, and a frameshift insertion (315insA) has been found
n four kindreds from Saudi Arabia [15] (Fig. 3). Two kindreds
three patients) from Tunisia have also been shown to carry the
omozygous 297del8 IL12B mutation [94], and one patient from
ran has been found to carry a homozygous frameshift dele-
ion mutation (526del2) [95] (Fig. 3). Another affected child
as also recently identified in Malaysia (unpublished data).
ounder effects were documented for two of the four known
L12B mutations. A conserved haplotype encompassing the
L12B gene was found to account for the recurrence of both
.482+82 856-854del and 315insA IL12B mutations. The two
ounder mutational events occurred ∼700 years ago in the Indian
ubcontinent and ∼1100 years ago in the Arabian Peninsula,
espectively [15]. The g.482+82 856-854del IL12B mutation is
4.6-kb frameshift deletion encompassing coding exons V and
I and resulting in the loss of 167 of the original 328 amino

cids, and the addition of 45 new amino acids in the COOH-

erminal region [15]. Three mutations were found within the
oding region of the IL12B gene – one mononucleotide insertion
315insA) and two nucleotide deletions (297del8 and 526del2)
all causing a frameshift [15,28,94,95].
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All IL-12p40-deficient patients vaccinated with BCG have
uffered from BCG disease [15,28,94,95], and EM disease has
lso been described in one patient [15]. One IL-12p40-deficient
atient from Saudi Arabia with BCG-osis and S. paratyphi C dis-
ase also had tuberculosis [15]. Moreover, half the cases were
nfected with Salmonella, often together with mycobacterial dis-
ase [13,15,28,43]. One child, who was not vaccinated with
CG, developed recurrent and disseminated infection caused
y non-typhoidal Salmonella [15]. A similar observation was
ade for the more numerous IL-12R�1-deficient patients, half

f whom also suffered from salmonellosis (see below). In con-
rast, few cases (∼6%) of Salmonella infection were observed
mong MSMD patients bearing mutations affecting the IFN-�-
ignaling pathway [7,13,41], and isolated Salmonella infections
ave never yet been reported in patients with IFN-�-signaling
efects. These observations suggest that IL-12/IL-23 plays a key
ole in protective immunity against Salmonella, probably via
FN-�-independent mechanisms. It is not clear whether IL-12,
L-23, or both are involved in immunity to Salmonella [13,96].
L-12 drives IFN-� production, whereas IL-23 seems to stimu-
ate a unique T-cell subset to produce IL-17, at least in mice [92].
ccordingly, we recently showed that IL-12 can complement
efect in the IFN-� production of blood cells from IL12-p40-
eficient patients, while IL-23 cannot (unpublished data). In any
vent, patients with IL-12p40 deficiency have a fairly good prog-
osis and should be given recombinant IFN-�, which can be
ife-saving.

. IL-12R�1 deficiency

Functional IL-12 receptors are expressed primarily on acti-
ated T and NK cells [92,93]. The coexpression of IL-12R�1
nd IL-12R�2 is required for high-affinity IL-12 binding and sig-
aling. IL-12R�1 also combines with IL-23R to constitute the
L-23R complex for IL-23 signaling [92,93]. IL-12 and IL-23
ctivate Janus kinase 2 (Jak2) and Tyk2, which in turn acti-
ate several Stat proteins [92,93,97]. However, IL-12 and IL-23
trongly induce the phosphorylation of Stat-4 and Stat-3, respec-
ively [92,93,97]. The IL12RB1 gene contains 17 exons (Fig. 3),
ncoding a gp130-like protein, formed by an extracellular N-
erminal immunoglobulin (Ig)-like domain, a transmembrane
omain, and an intracellular domain [92,93].

The first seven cases of IL-12R�1 deficiency were pub-
ished in 1998 [29,30]. Eight years later, 89 IL-12R�1-deficient
atients have been described, including 62 published cases
9–11,19,29–31,35,73,80,94,98–109] (unpublished data). IL-
2R�1 deficiency is therefore the most frequent known genetic
tiology of MSMD. Forty-one mutant alleles have been iden-
ified, 29 of which have been published (Fig. 3). All mutant
lleles are recessive, loss-of-function and cause recessive com-
lete (RC) IL-12R�1 deficiency. The mutations are diverse and
nclude nonsense, missense, and splice mutations, microinser-
ions, microdeletions, microduplications and large deletions.

n most cases, no IL-12R�1 is expressed on the cell surface
Fig. 3, red mutations), with the exception of two kindreds bear-
ng a large in-frame deletion of 12,165 nucleotides (Fig. 3, blue
utation). Despite being the largest described genetic lesion
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n IL12RB1, this deletion paradoxically results in the surface
xpression of non-functional IL-12R�1, defining a novel form
f RC-IL-12R�1 deficiency [31]. None of the patients tested
espond to IL-12 and IL-23 [31,73], with the possible exception
f one patient thought to present partial IL-12R�1 deficiency
35,53]. However, there is no conclusive evidence that this
atient suffers from true partial IL-12R�1 deficiency. IL-12R�1
as not documanted on the surface of T cells and NK cells. The

ntracellular expression of the mutated IL-12R�1 was shown
ut it was not formally demonstrated that this receptor is able to
ind IL-12/IL-23 and to induce IFN-� in response to its ligands
35].

Mycobacterial disease and salmonellosis are the most fre-
uent infectious diseases in patients with IL-12R�1 deficiency
13,99]. Other infectious phenotypes have been observed only
arely, in one patient each. Disseminated disease, caused by
facultative intracellular dimorphic fungus, Paracoccidioides

rasiliensis, has been reported in one IL-12R�1-deficient patient
19], and resembled that found in a patient with DP-IFN-�R1
eficiency and histoplasmosis [18]. Mycobacteria, Histoplasma,
nd Paracoccidioides are therefore similar not only in terms of
heir clinical impact and pathological lesions, but also in terms of
he immunological reactions they elicit. Like IL-12p40-deficient
atients, about half of all the known IL-12R�1-deficient
atients have developed Salmonella infection, and nine patients
ave presented isolated (often recurrent) Salmonella infection
9,10,19,29–31,35,94,98,99,101,102,104–106,110]. Infectious
iseases occurred before the age of 12 years in symptomatic
atients, as in patients with RC-IFN-�R1 or IFN-�R2 deficiency.
owever, unlike these patients, the clinical outcome was rela-

ively good, with only 17% deaths, and most patients surviving
nto adulthood. The clinical prognosis of IL-12R�1-deficient
atients is thus quite good, especially following molecular diag-
osis, facilitating careful follow-up and the aggressive and pro-
onged treatment of infectious episodes with multiple antibiotics
nd recombinant IFN-�. Abdominal surgery is often required to
emove splenic and mesenteric lesions, which seem to be poorly
ccessible to antibiotics and IFN-�. Finally, HSCT is not indi-
ated in patients with IL-12R�1 deficiency.

The penetrance of IL-12R�1 deficiency for the case-
efinition phenotypes of disseminated BCG/EM and/or non-
yphoidal systemic salmonellosis is low, at about 40% [99]
unpublished data). Most genetically affected siblings of index
ases were found to be asymptomatic [99]. The actual ascer-
ainment bias is therefore not as predicted when IL-12R�1
eficiency was identified in 1998, in that the disease appears to
e less severe overall than initially predicted based solely on the
henotype of the first index cases. How can we account for the
nterindividual variability of IL-12R�1-deficient patients? Mod-
fier genes may be involved, but environmental factors have been
hown to be critical, as BCG vaccination confers resistance to
M disease [99]. Similarly, very few relapses of EM disease have
ccurred and there has been only one patient with clinical disease

aused by multiple EM species (Kumararatne, personal commu-
ication). These observations strongly suggest that IL-12/23 is
ritical for primary, but not secondary immunity to mycobac-
eria. In contrast, given the long duration of salmonellosis in
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atients, IL-12/23 seems to be equally important for primary
nd secondary immunity to Salmonella. Finally, it is intrigu-
ng that no p35-deficient and IL-12R�2-deficient patient has yet
een reported. This may reflect a higher rate of mutations in
L-12p40 and IL-12R�1. Alternatively, and more likely, it may
eflect the dual impact of IL-12p40 and IL-12R�1 deficiency on
oth IL-12- and IL-23-mediated immunity. The clinical pheno-
ype of patients with a pure deficit of IL-12 or IL-23, or of either
eceptor may be milder, overlapping, or different.

The discovery of IL-12R�1 deficiency has had important
mplications beyond the study of MSMD, as it led to the dis-
overy of the first cases of Mendelian predisposition to tuber-
ulosis [9–12]. Indeed, children from three unrelated kindreds
ere found to suffer from culture-proven severe tuberculosis

9–11], providing a proof-of-principle that childhood tubercu-
osis can reflect a bona fide Mendelian predisposition, in at least
fraction of patients [12]. A child with RP-IFN�R1 deficiency

nd symptomatic primary tuberculosis (without bacteriologi-
al confirmation) was reported in a previous study [8] and
linical tuberculosis has also been reported in several children
ith MSMD [9–12]. The three IL-12R�1-deficient patients with

uberculosis, from Morocco, Spain, and Turkey, provide useful
nformation, because they had no personal history of BCG or
M disease [10,99]. The patient from Morocco was investigated
ecause her brother had IL-12R�1 deficiency and BCG-osis;
he was vaccinated three times with live BCG with no adverse
ffect but developed abdominal tuberculosis. The patient from
pain had disseminated tuberculosis, and she was investigated
ecause her sister had a history of extra-intestinal non-typhoidal
almonella adenitis in early childhood [10]. The patient from
urkey was investigated due to clinically severe tuberculosis, in

he absence of any relevant personal or familial history. These
bservations raise the possibility that a substantial proportion
f children world-wide suffer from disseminated tuberculosis
ue to a Mendelian predisposition [12,111]. This possibility is
urrently being investigated in population-based studies.

. Mutations in the NEMO leucine zipper domain

The five genes involved in MSMD described above are
ll autosomal. NEMO, encoding NF-�B essential modulator
NEMO), is an X-linked gene consisting of 10 exons (Fig. 3).
EMO is a regulatory subunit of the IKK complex that activates

he canonical NF-�B signaling pathway, thereby regulating the
xpression of numerous target genes [112]. Multiple receptors
rom several superfamilies, including that containing TNF-�R
nd IL-1R, can activate NF-�B via IKK and NEMO. The IKK
omplex phosphorylates the NF-�B-bound inhibitors of NF-
B, promoting their ubiquitination and degradation, releasing
F-�B dimers and promoting their nuclear translocation and

ccumulation. NEMO has no known kinase activity, but contains
wo coiled-coil motifs (CC1, CC2), a leucine zipper (LZ) domain
nd a putative zinc finger (ZF) motif thought to be involved in

rotein–protein interaction. The activation of the IKK complex
nvolves NEMO trimerization, and the CC2 and LZ domains
eem to be the minimal requirement for this oligomerization
113–115]. Amorphic mutations in the human X-linked NEMO
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ene have been shown to be lethal in utero in male fetuses [116],
hereas hypomorphic mutations in NEMO are associated with

he syndrome of anhidrotic ectodermal dysplasia with immun-
deficiency [38–40].

Two specific mutations (E315A and R319Q, Fig. 3) in the
EMO LZ domain were recently shown to be associated with
-linked recessive MSMD in a multiplex American kindred and

n two sporadic cases from France and Germany [34]. This is
he most infrequent genetic etiology of MSMD. The previously
eported hypomorphic NEMO mutations defined three different
isorders in male patients, based on developmental, infectious,
nd cellular phenotypes: (1) anhidrotic ectodermal dysplasia
ith immunodeficiency (EDA-ID) in patients with various lev-

ls of developmental abnormalities of skin appendages (hypo-
r anodontia or conical teeth, absence or rarity of eccrine sweat
lands and hypohidrosis with sparce scalp hair and eyebrows)
nd immunodeficiency (ID), resulting in various infections,
ncluding mycobacterial disease [38,39,117]; (2) O(L)-EDA-ID
n patients with EDA-ID associated with osteopetrosis [118]
nd/or lymphoedema [38,119]; (3) pure ID in patients with
o detectable developmental phenotype but with severe infec-
ious diseases [120–122]. To date, excluding the six XL-MSMD
atients referred to here, 43 patients bearing 25 different NEMO
utations have been described [38–40,116–134].
Mycobacterial diseases in (OL-)EDA-ID patients have long

een documented, as eleven of these patients have developed
evere mycobacterial infection, mostly caused by M. avium,
nd always in a context of coinfections with other microor-
anisms, of many different types, such as encapsulated bac-
eria. The X-linked recessive (XR) form of MSMD was first
linically described in 1991, in a multiplex kindred with dis-
eminated M. avium complex infection in otherwise healthy
ndividuals [65,135–137]. Analysis of this kindred suggested
-linked recessive inheritance of predisposition to mycobacte-

ial infection, as all the cases were male and maternally related
135,138]. Abnormal T cell-dependent production of IL-12 was
ater reported, with normal IL-12 in response to microbes, pro-
iding further evidence for an underlying genetic abnormality,
ifferent from the other genetic etiologies of MSMD [136,137].
oor IL-12 and IFN-� production by blood cells from XR-
SMD patients was observed in response to PHA and CD3

65,136,137]. A profound defect in IL-12 (and secondary IFN-�)
roduction was observed when purified monocytes were cocul-
ured with PHA-activated T cells [34,136,137], indicating a
efect in the T cell-dependent pathway of monocyte IL-12 pro-
uction.

IL-12 production is positively regulated by two major path-
ays: a microbe-dependent, T cell-independent pathway, and a
icrobe-independent, T cell-dependent pathway. Microbes can

irectly stimulate macrophages and dendritic cells, notably, but
ot exclusively via the activation of Toll-like receptors (TLR),
s illustrated by the potent effect of LPS on IL-12 secretion
ia TLR-4. The T cell-dependent pathway is largely medi-

ted by the engagement of CD40 on antigen-presenting cells
nd CD40 ligand on T cells [93]. IL-12 production via the T
ell-independent pathway was found to be normal when blood
ells from XR-MSMD patients were stimulated with microbes
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r microbial components. In this context, it is interesting that
RAK4-deficient patients [139,140] with a profound defect in
he common Toll-IL1 receptor (TIR) signaling pathway, did
ot produce IL-12 in response to TLR stimulation and did not
evelop mycobacterial infections [139,140]. This suggests that
he TLR-dependent production of IL-12 is redundant for protec-
ive immunity to mycobacteria. It further raises the question of
hich microbe-dependent pathways leading to IL-12 produc-

ion are critical for protective immunity to mycobacteria. The
nvestigation of patients with MSMD lacking a genetic etiology
hould provide new insight into this question.

The engagement of monocyte CD40 by CD40L-expressing
cells is required for the optimal induction of IL-12 produc-

ion, suggesting that LZ-NEMO mutations may be responsible
or the impairment of CD40 signaling. This was found to be the
ase when monocyte-derived dendritic cells (MDDC) from XR-
SMD patients were activated by CD40L; these cells showed a

elayed nuclear accumulation of c-Rel, but not RelA, and strong
mpairment of IL-12 production [34]. E315 and R319 amino
cids are structurally similar and form a highly conserved salt
ridge within the LZ domain of NEMO, suggesting that muta-
ions in these two amino acids may disturb the local plasticity of
he LZ-helix of NEMO, interfering with the CD40-NEMO-NF-
B signaling pathway [34]. CD40 signaling is not completely

mpaired in X-linked MSMD, as B-lymphocyte signaling seems
o be intact, like several pathways in myeloid cells, accounting
or the differences observed between these patients and those
ith complete CD40 and CD40L deficiency [141,142]. Even

f some CD40L-deficient patients frequently develop localized
iseases caused by BCG and severe tuberculosis [143], CD40
nd CD40L are not bona fide MSMD-causing genes, as these
atients do not suffer from disseminated BCG or EM diseases.
he selective impairment of CD40 signaling in monocytes and
endritic cells, and the subsequent defect in the production of
L-12 and IFN-� thus account largely for the pathogenic effect
f LZ-NEMO mutations in patients with XR-MSMD [34]. Other
echanisms are probably involved.
X-linked mycobacterial disease has been diagnosed in six

atients from three unrelated kindreds. In five of these patients,
o other invasive infections were documented; the remaining
atient suffered from invasive disease caused by Haemophilus
nfluenzae b, a Gram-negative bacterium. The Haemophilus
nfluenzae b infection suggests that these NEMO mutations may
ot be exclusively associated with mycobacterial disease. Nev-
rtheless, the lack of other infections in these patients is probably
ccounted for by their normal responses to other ligands gen-
rally requiring NF-�B for signalling (IL-1, TLR). M. avium
nfection is the most common type of mycobacterial infection,
ut one of the six patients had bacteriologically proven M. avium
nd M. tuberculosis disease and two others probably had tuber-
ulosis, implicating NEMO, like IL12RB1, in tuberculosis. This
bservation is interesting, in the context of the known higher
ncidence of tuberculosis in men and boys than in women and

irls [144]. XR-MSMD patients seem to display some clini-
al heterogeneity, with a more severe course of mycobacterial
isease in American than in European kindreds, although this
ifference may reflect age differences, the American patients
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eing older than the European ones. The American patients have
een shown to benefit from IFN-� therapy, suggesting that such
reatment may also be beneficial to the other patients [135,138].

. Conclusion

The genetic dissection of the molecular and cellular basis
f the clinical syndrome of MSMD, over the last 10 years,
as had important clinical, genetic, and immunological implica-
ions. Molecular diagnosis can now be offered to patients with

SMD, improving the prediction of individual clinical outcome
nd facilitating treatment based on a rational understanding of
he pathogenesis of infections. IFN-� has been a life-saving
reatment in patients producing little IFN-�, because it replaced
he missing component of protective immunity. In patients lack-
ng a functional receptor for IFN-�, HSCT appears to be the
nly curative option available, despite unexpected engraftment
roblems in these patients. Finally, genetic counseling can now
e offered to the families, whether affected by autosomal or X-
inked, dominant or recessive disorders associated with MSMD.
he clinical implications of these studies are likely to become
ore extensive in light of the recent discovery of a Mendelian

redisposition to tuberculosis in patients with mutations in IL-
2R�1 [9–11] and NEMO [12,34].

In immunological terms, the most surprising observation –
oth at the time of its initial reporting in 1996, and even more
o now that major ascertainment biases have almost entirely
een eliminated – is that patients with lesions in the IL-12/23-
FN-� loop are apparently resistant to most infectious agents.
heir vulnerability to mycobacteria is not surprising, as it was
redicted from results obtained in the mouse model and was
rucial in the identification of human mutations, together with
inkage data [62]. The resistance of these patients to most infec-
ions challenges the currently prevailing immunological dogma

the Th1/Th2 paradigm – according to which IL-12 is the
ignature inducer cytokine and IFN-� the signature effector
ytokine of immunity to intracellular agents. The observation
f resistance even to mycobacteria in IL-12p40- and IL-12R�1-
eficient patients is also intriguing. Leaving aside the possible
ontribution of IL-23 to the phenotype, IL-12 seems to be com-
letely redundant for protective immunity in most individuals, at
dds with the role classically attributed to this cytokine. The spe-
ific vulnerability of these patients reflects the fact that immunity
o infection in man occurs in natural, as opposed to experi-

ental, conditions [7,45,111,145]. The human model allows
genetic definition of the ecologically relevant functions of

mmune genes. This is important biologically, because natural
election results in genes being selected during evolution based
n their function in the wild, resulting in the fitness of individ-
als and populations. The IL-12/23-IFN-� circuit seems to be
pecifically devoted to the control of mycobacteria.

The high level of allelic heterogeneity among MSMD patients
as resulted in genetic findings of more general interest, beyond

he field of MSMD, and even beyond that of primary immun-
deficiencies [22,26,33]. The first hotspot for small deletions
as reported in IFNGR1, validating the consensus cis elements
reviously proposed by Krawczak and Cooper responsible for



s in I

s
b
a
o
e
t
g
I
n
c
i

t
m
n
t
t
t
p
n
t
a
b
m
s
t
c
t
a
a
t
o

A

D
o
M
S
o
m
s
t
a
b
o
a
0
R
o

R

O. Filipe-Santos et al. / Seminar

mall deletions [146]. Other small deletion hotspots have since
een reported, including some in IFNGR1 [86–89]. Mutations
ssociated with two deleterious phenotypes but dominant for
ne and recessive for the other, at the cellular and clinical lev-
ls, were first discovered in STAT1 [32,33]. Last, but not least,
he discovery that human mutations include a large number of
ain-of-glycosylation mutations also resulted from the study of
FNGR2 [26]. Up to 1.4% of human missense mutations are
ow predicted to be gain-of-glycosylation mutations for which
hemical complementation may be possible in vitro, and perhaps
n vivo.

Perspectives in the field of MSMD and genetic disorders of
he IL-12/23-IFN-� loop include (i) the genetic diagnosis of

ore patients with MSMD, possibly revealing novel mecha-
isms of mutation or pathogenesis and improving definition of
he clinical features of mycobacterial diseases associated with
he underlying genetic disorders; it will be particularly impor-
ant to study the genetically affected relatives of index cases, in
articular in regions of the world where MSMD patients have
ot been diagnosed to date, in order to circumscribe the acer-
ainment bias; (ii) the identification of new clinical phenotypes
ssociated with known genotypes, for tuberculosis in particular,
ut possibly also for other infectious diseases, such as histoplas-
osis and paracoccidioidomycosis; again it will be important to

tudy patients from various genetic backgrounds and exposed
o diverse microbial flora; (iii) the identification of new disease-
ausing genes in patients with MSMD, as approximately half
he known patients still lack a genetic etiology; a candidate gene
pproach will probably not be sufficient and a genome-wide
pproach will be required. We therefore expect the next 10 years
o be as exciting and fruitful as the last 10 years, and that the study
f MSMD will provide new fundamental and clinical insights.
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T Cell-Dependent Activation of Dendritic Cells Requires IL-12
and IFN-� Signaling in T Cells1

Francesc Miro,* Cinzia Nobile,* Nicolas Blanchard,* Marianne Lind,* Orchidée Filipe-Santos,†

Claire Fieschi,† Ariane Chapgier,† Guillaume Vogt,† Ludovic de Beaucoudrey,†

Dinakantha S. Kumararatne,‡ Françoise Le Deist,§ Jean-Laurent Casanova,†

Sebastian Amigorena,* and Claire Hivroz2*

Patients presenting with genetic deficiencies in IFNGR1, IFNGR2, IL-12B, and IL-12RB1 display increased susceptibility to
mycobacterial infections. We analyzed in this group of patients the cross-talk between human CD4� T lymphocytes and dendritic
cells (DCs) that leads to maturation of DC into producers of bioactive IL-12 and to activation of T cells into IFN-� producers. We
found that this cross-talk is defective in all patients from this group. Unraveling the mechanisms underlying this deficiency, we
showed that IL-12 signaling in T cells is required to induce expression of costimulatory molecules and secretion of IL-12 by DCs
and that IFNGR expression is required on both DCs and CD4� T cells to induce IL-12 secretion by DCs. These data suggest that
CD4� T cell-mediated activation of DCs plays a critical role in the defense against mycobacterial infections in humans. The
Journal of Immunology, 2006, 177: 3625–3634.

H umans with defective response to IFN-� or IL-12 share
a common vulnerability to infections due to nontuber-
culous mycobacteria or vaccine-associated bacille

Calmette-Guérin (BCG)3 and to a lesser degree to Salmonella and
some intracellular bacteria (1). They also display modest vulner-
ability to �20% of common viruses (2, 3). This susceptibility to
mycobacteria, BCG, and other intracellular opportunistic patho-
gens is shared by another group of patients presenting with muta-
tions in CD40L, who were first described for their hyper-IgM syn-
drome (4–6) and have been shown to develop localized disease
due to BCG and severe tuberculosis (6, 7).

CD40L/CD40 interactions, IFN-�, and IL-12 are all major play-
ers of the cross-talk between dendritic cells (DCs) and Th cells,
cross-talk that regulates the Ag-presenting functions of DCs and
influences the polarization of Th1 responses and priming of CTL
(8, 9) (reviewed in Ref. 10). Indeed, although the process of DC
maturation, which is required for naive T cell priming (11), is
initially triggered by microbial products through TLR (12), inter-
actions of maturing DCs with various lymphocyte populations ori-
entate the priming capacity of mature DCs. CD4� Th lymphocytes
have been shown to license or educate DCs to prime CTLs or to

orientate CD4� T cell priming toward Th1 or Th2 responses (re-
viewed in Refs. 13, 14).

Mouse studies have shown that CD4� T cells can be replaced by
agonistic anti-CD40 Abs for the induction of CD8� T cell priming
(15–17), suggesting a major role for CD40-CD40L interactions in
the induction of full DC maturation. In vitro, CD40-deficient DCs
are partially defective for CD8� T cell priming, suggesting a ma-
jor, but not exclusive, role for CD40-CD40L interactions in DC
licensing (18). In human models, anti-CD40 Abs, soluble trimeric
CD40L, or CD40L-transfected cell lines have been shown to in-
duce expression of costimulatory molecules (19, 20) and secretion
of bioactive IL-12 by DCs (21, 22). Moreover, it has been shown
that effective human CTL priming in vitro requires the presence of
Ag-specific CD4 T cells and TNF-�-activated DCs (23). Thus,
although the Ag-specific encounter between CD4� T lymphocytes
and immature or maturing DCs is generally recognized as a major
step in the development of an adaptive immune response, little is
known about the molecular players involved at this level.

The present study was designed to determine: 1) whether the
cross-talk between CD4� T cells and DCs from patients presenting
with mutations in CD40L, IL-12B, IL-12RB1, IFNGR1, and
IFNGR2 was efficient; and 2) the relative contribution of T cell and
DC responses to IL-12 and IFN-� in this cross-talk.

Materials and Methods
Medium and reagents

Medium used was as follows: RPMI 1640 Glutamax, 1% pyruvate, 5 �
10�5 M 2–2-ME, 100 U/ml penicillin, 100 �g/ml streptomycin (Invitrogen
Life Technologies), and 10% FCS (Biowest). Human rIL-4 and GM-CSF
were purchased from BRUCELLS; IFN-� from Roussel; IL-12p70, IL-23,
TNF-�, and anti-IL-12 from R&D Systems; and anti-IFN-� from BD
Pharmingen. The agonist anti-human CD40 mAb (clone G28-5) was a gift
from Y. Richard (Institut Paris-Sud sur les Cytokines, Clamart, France).
Recombinant bacterial superantigen, toxic shock syndrome toxin 1
(TSST1), was purchased from Toxin Technology, and LPS and brefeldin A
were obtained from Sigma-Aldrich.

Patients

PBMC were obtained from two unrelated patients presenting with CD40L
mutations, resulting in a complete defect in CD40L expression (6), one
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patient with recessive complete IFNGR1 deficiency described previously
(1) and one patient with a homozygous mutation of the IFNGR2-encoding
gene (24), resulting in both cases in complete deficiencies in IFN-� re-
sponse, one patient with a homozygous deletion in the IL-12p40-encoding
gene (25) and three unrelated patients presenting with mutations in the
gene encoding IL-12R�1 (26). This study has been approved by the Comité
Consultatif de Protection des Personnes dans la Recherche Biomédicale of
Necker Hospital.

DC preparation

Anti-CD14-conjugated magnetic microbeads (Miltenyi Biotec) were used
to purify monocytes from controls’ or patients’ PBMCs. DCs were gener-
ated, as described (27), by culturing monocytes in medium supplemented
with 100 ng/ml GM-CSF and 40 ng/ml IL-4 for 5 days. Populations of
immature DCs obtained were 100% CD1a�/CD14�.

Sorting of CD4� T cells and purification of CD45RA� and
CD45RO� CD4� T cells

After depletion of CD14� cells (see above), the CD4� T cell isolation kit
II from Miltenyi Biotec was used to negatively select CD4� T cells. Sorted
CD4� T cells were 97–99% CD4�/CD3�. Isolation of CD45RO� memory
or CD45RA� naive CD4� T cells was performed by incubation of CD4�

T cells with anti-CD45RA (Alb11; Beckman Coulter) or anti-CD45RO
mAbs (UCHL1; a gift from P. Beverley, Edward Jenner Institute for Vac-
cine Research, Compton, U.K.), respectively, and depletion with anti-
mouse IgG magnetic beads (Dynal Biotech; Invitrogen Life Technologies).
The memory CD45RA�CD4� and naive CD45RO�CD4� T cell popula-
tions obtained were 95–98% CD45RO� and CD45RA�, respectively.

In vitro DC activation assay

Cocultures of immature DCs and CD4� T cells (5 � 104 DCs and equal
number of T cells, unless otherwise stated) were performed in flat-bottom
96-well plates. In experiments addressing trans activation, 2 � 105 mono-
cyte-derived DCs were cocultured with 2 � 105 T cells in 24-well plates
containing cell culture inserts with a permeable membrane (0.4-�m pore
size, Transwell from BD Biosciences); several combinations of cells were
used in the upper and lower well. Twenty-four hours later, cytokine pro-

duction in supernatants and expression of maturation markers by DCs and
CD4� T cells were analyzed.

Cytokine detection

Cytokine production was measured in the supernatants by ELISA using
matched paired Abs specific for IL-12p70 (DuoSet; R&D Systems), IL-2,
or IFN-� (OptIEA; BD Biosciences). In some experiments, the cytometric
bead array human inflammation kit (BD Biosciences) was used to measure
inflammatory production.

FACS analysis

The following murine mAbs, anti-CD1a FITC, anti-CD14 PE, anti-CD86
FITC, anti-HLA-DR FITC, anti-CD80 PE, anti-CD83 PE, anti-CD40 PE,
anti-CD4 PE, and anti-CD69 allophycocyanin, and IgG1 PE, IgG1 allo-
phycocyanin, and IgG2a FITC isotypic controls were purchased from BD
Pharmingen. Anti-TCRV�2 FITC was from Beckman Coulter. Samples
were analyzed on a FACSCalibur using the CellQuest software (BD Bio-
sciences). Intracellular production of IFN-� was measured by FACS.
Brefeldin A (5 �g/ml) was added during the last 3 h of cocultures. Cells
were then labeled with anti-CD4 mAbs coupled to FITC, fixed with 3%
paraformaldehyde, and permeabilized with the Cytoperm/Wash kit from
BD Biosciences before labeling with anti-IFN-� mAb coupled to PE
(Beckman Coulter).

Immunolabeling and fluorescence microscopy

After cocultures, cells were settled in RPMI 1640 onto poly(L-lysine)-
coated coverslips for 15 min. After one PBS wash, cells were fixed with
3% paraformaldehyde (Carlo Erba) for 20 min and incubated for 10 min in
10 mM PBS glycine to quench free aldehyde groups. Cells were then
permeabilized and labeled for 1 h by incubation with anti-IL-12p70 and
anti-IFN-� Abs diluted in PBS, 0.2% BSA (Sigma-Aldrich), 0.05% sapo-
nin (ICN Biomedicals), and secondary Abs labeled with Alexa 647-con-
jugated F(ab�)2 anti-species-specific Abs from Molecular Probes diluted in
the same buffer. Cells were then labeled with either anti-CD1a FITC (BD
Biosciences) or anti-TCRV�2 FITC (Beckman Coulter). Coverslips were
finally mounted onto glass slides using Fluoromount-G (Southern Biotech-
nology Associates). Fluorescence images were acquired using a Leica TCS
SP2 confocal scanning microscope equipped with a 100 Å� 1.32 NA HCX

FIGURE 1. Activation of DCs by CD4� T cells. Immature monocyte-derived DCs (5 � 104) were cultured for 24 h with or without CD4� T cells (5 �
104) and the superantigen TSST1 (10 ng/ml) or with a combination of LPS (500 ng/ml) and IFN-� (20 U/ml). A and B, Flow cytometric analysis of DC
maturation markers. A, Histograms of a representative experiment. B, For each marker, expression was plotted as a ratio between the mean fluorescence
intensity (MFI) obtained in different conditions and the MFI measured in immature DC (fold increase MFI). Data are presented as mean � SD of triplicates
from 15 independent experiments performed with 11 unrelated donors. IFN-� secretion (C) or IL-12p70 secretion (D) was measured by ELISA in
supernatants from 11 and 9 individual donors, respectively. The mean of cytokine production is indicated in each column. Significant differences between
the groups were assessed by Mann-Whitney’s unpaired t test (��, p � 0.0002; ���, p � 0.0001).
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PL APO oil immersion objective, and Ar and HeNe lasers emitting at
wavelengths of 633 nm.

Results
T cells induce DC activation in the presence of superantigen

We set up a human model to study T cell-induced activation of
immature DCs. Human monocyte-derived immature DCs and au-
tologous or allogenic CD4� T cells were purified from control
donors and cocultured with or without the bacterial superantigen
TSST1. Maturation of DCs was studied 24 h later, by measuring
the surface expression of DC maturation markers (CD40, CD80,
CD83, CD86, and HLA-DR) and the production of IL-12p70.

DC activation was not significantly induced when cultured with
either TSST1 or CD4� T cells alone (Fig. 1B). In contrast, imma-
ture DCs cocultured for 24 h in the presence of CD4� T cells and
TSST1 showed increased expression of CD86, CD80, CD83, and
CD40. Expression of HLA-DR was not always enhanced (Fig. 1,
A and B). Statistical analysis of the data demonstrated that the
expression of CD80, CD86, CD83, CD40, and HLA-DR was sig-
nificantly increased by coculture with T cells and TSST1. DC mat-
uration induced by CD4� T cells and TSST1 was comparable to
the maturation induced by LPS � IFN-� (Fig. 1B). It was repro-
ducibly observed in 15 independent experiments with monocyte-
derived DCs from 11 different donors.

Induction of CD69 expression on the T cells (data not shown) as
well as production of IFN-� (Fig. 1C) were observed when the
CD4� T cells were cultured with immature DCs and TSST1
(2536 � 222.2 pg/ml; n � 46; 9 different donors). This production
was 30-fold what was produced when T cells were cultured with
TSST1 alone (75.90 � 26.43 pg/ml; n � 17).

Finally, immature DCs produced IL-12p70 only when cocul-
tured with TSST1 and CD4� T cells (Fig. 1D). The mean concen-
tration of IL-12p70 in supernatants of immature DCs cultured with
TSST1 and CD4� T cells was 167.5 � 14.4 pg/ml (50 independent
experiments; 11 different donors) as compared with 7927 � 1655
pg/ml in supernatants of immature DCs activated by LPS � IFN-�.
Up-regulation of maturation markers and IL-12 production de-
pended on the T cell number and were observed, respectively, for
a DC:CD4� T cell ratio of up to 25 DCs for 1 T cell and 5 DCs
for 1 T cell (data not shown). IL-6, IL-8, IL-10, and TNF-� were
also produced in the cocultures in the presence of TSST1 (Fig. 7);
no detectable IL-4 was found in these conditions (data not shown).
No significant difference in DC maturation and IL-12p70 produc-
tion was observed when DCs and CD4� T cells were autologous
or allogenic (data not shown).

This model may be used to study the T cell-driven activation of
human immature DCs.

CD4� T cell-driven DC activation requires direct contact
between the two cell populations

We next asked whether direct contact between human CD4� T
cells and immature DCs was required to induce expression of co-
stimulatory molecules and IL-12p70 secretion by DCs. Using
Transwell plates, we did not observe any phenotypic maturation of
the DCs when TSST1-bearing immature DCs were seeded in the
lower chamber and CD4� T cells in the upper chamber (Fig. 2A).
Therefore, direct contacts between the two cell types are required
to induce DC maturation. However, DCs of the lower chamber
showed moderate increased expression of CD86 and CD83, when
exposed to supernatants of DCs � TSST1 � CD4 produced in the
upper chamber (Fig. 2A).

Concerning IL-12p70 production, addition of a 24-h supernatant
produced by CD4� T cells � immature DCs � TSST1 did not
induce IL-12p70 production by TSST1-pulsed DCs and did not

synergize with CD4� T cells to induce more IL-12p70 secretion by
TSST1-pulsed immature DCs (Fig. 2B).

We conclude that some phenotypic maturation of DCs is in-
duced in the absence of direct contact with T cells, but that a direct
contact between the two cell types is required for IL-12
production.

Memory T cells mediate T cell-driven DC activation

It has been shown previously that memory T cells induce IL-12
production by DCs (22, 28); we checked whether this was true in
our model. Memory CD45RO�CD4� T cells and naive
CD45RA�CD4� T cells were purified from control donors, and
their ability to induce expression of maturation markers and se-
cretion of IL-12p70 by DCs was compared. The same percentage
(8–12%) of TSST1-specific, V�2�CD4� T cells was measured in
the naive and memory CD4� T cell populations (data not shown).
However, for all the donors tested, the induction of CD69 by
TSST1-pulsed immature DCs was less pronounced in naive than in
memory CD4� T cells (see representative experiment in Fig. 3A).
Naive CD45RA�CD4� T cells were less efficient at inducing
CD86, CD83, and CD40 expression by DCs than memory

FIGURE 2. DC activation by T cells requires a direct contact between
DC and CD4� T cells. A, Immature DCs or TSST1-pulsed DCs were
seeded in the lower chamber (L) of a Transwell plate, and CD4� T cells,
DC � TSST1 � CD4, or medium in the upper chamber (U). Expression of
maturation markers by the DCs of the lower chamber was analyzed after
24 h and expressed as in Fig. 1B. B, IL-12p70 secretion was measured in
24-h supernatants of DCs pulsed with TSST1 with or without CD4� T cells
and compared with production of IL-12p70 by TSST1-pulsed DCs cultured
for 24 h with 50 �l of a supernatant of DC � TSST1 � CD4 containing
30 pg/ml IL-12p70. The same supernatant was added to DC � TSST1 �
CD4. Data are presented as mean triplicates. One representative experi-
ment of three is shown in A and B.
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CD45RO�CD4� T cells (Fig. 3B); they also produced lower
amount of IFN-� (25 pg/ml) than memory T cells (Fig. 3C).

Finally, as shown in Fig. 3D, naive T cells induced low levels of
IL-12p70 secretion by immature DCs, which was not only due to
the absence of IFN-� in the coculture because addition of IFN-�
did not restore the IL-12p70 production to level obtained with total
or memory CD4� T cells (Fig. 3D).

These results show, in our model, that only memory CD4� T
cells induce DC activation and IL-12 secretion.

CD4� T cell-driven DC activation requires CD40L (CD154)
expression by T cells

The CD40 pathway has been shown to play an important role in
eliciting costimulatory molecule expression and bioactive IL-12
secretion by DCs. To directly test the role of this pathway in our
model, we used CD4� T cells purified from two unrelated immuno-
deficient patients with complete defects in CD40L expression (6).

As shown in Fig. 4A, CD40L-deficient CD4� T cells (CD4�/
CD40L�) were efficiently activated by the TSST1-pulsed imma-
ture DCs, as witnessed by the increased expression of CD69.
Moreover, CD40L-deficient CD4� T cells induced increased ex-
pression of CD80, CD86, CD83, and CD40 by DCs, which was
comparable to the expression induced by CD4� T cells from a
control donor (Fig. 4B). In contrast, CD40L-deficient CD4� T
cells from the two patients, although producing significantly higher
amount of IFN-� than in the absence of TSST1, produced 7–15
times less IFN-� than CD4� T cells from control donors (Fig. 4C).

Moreover, CD40L-deficient T cells did not induce any IL-12p70
production by DCs (Fig. 4D).

We next tested whether the absence of IL-12 production (Fig.
4D) was due to the low production of IFN-� by T cells. Addition
of 1000 U/ml IFN-� to CD40L-deficient CD4� T cells did not
restore IL-12 production by TSST1-bearing DCs (Fig. 4D). In the
same experiment, 40 U/ml IFN-� increased by 4.5-fold IL-12p70
secretion induced by LPS in immature DCs (Fig. 4D), demonstrat-
ing the biological activity of the IFN-� we used. These results
suggested that CD40 triggering by CD40L was required for IL-
12p70 production by DCs and could not be replaced by IFN-�. To
test this hypothesis, we added an activating anti-CD40 mAb to the
cocultures of CD40L-deficient T cells and TSST1-pulsed imma-
ture DCs. As shown in Fig. 4E, addition of the anti-CD40 mAb to
the cocultures containing CD40L-deficient T cells induced the se-
cretion of IL-12p70, whereas no IL-12p70 production was induced
when a control IgG was added at the same concentration (Fig. 4E).
The IL-12p70 production observed with anti-CD40 mAb was ac-
companied by a markedly increased production of IFN-� in the
cocultures (data not shown), which probably explains why the ad-
dition of IFN-� in the cocultures containing anti-CD40 mAb only
moderately increased the production of IL-12p70 (Fig. 4E). This
reciprocal activation of immature DCs and CD40L-deficient T
cells leading to IL-12p70 and IFN-� production was observed only
in the presence of TSST1. Indeed, no IL-12p70 production was
observed when immature DCs were cocultured with CD4� T cells,
the activating anti-CD40 mAb, and IFN-� (Fig. 4E).

FIGURE 3. T cell-driven DC activation is mediated by memory, but not by naive T cells. Immature DCs from a control donor were cultured with
allogenic purified total CD4� (Total CD4), naı̈ve CD4�CD45RA�CD45RO� (Naive CD4), or memory CD4�CD45RO�CD45RA� (Memory CD4) T cells
from the same donor at a ratio of 1:1 with or without TSST1 (10 ng/ml). A, CD69 expression by T cells. B, Expression of maturation markers by DCs
cultured either with naive (upper row) or memory (lower row) CD4� T cells and TSST1 for 24 h. Number above bracketed lines indicates percentage of
cells in that area. Results are representative of three independent experiments. IFN-� (C) or IL-12p70 (D) secretion in 24-h supernatants. In D, IL-12p70
was also measured in supernatants of naive CD4� T cells � DCs � TSST1 cultured with IFN-� (1000 U/ml). One representative experiment of three.
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T cell-driven secretion of bioactive IL-12 by human DCs thus
requires at least three signals, CD40 stimulation, IFN-�, and an-
tigenic stimulation of T cells.

IL-12 signaling in CD4� T cells is required for T cell-induced
DC activation

IL-12 is a key regulator of CD4� T cell differentiation to the Th1
phenotype (8, 9), thus regulating IFN-� production by CD4� T
cells. We analyzed IL-12 production by DCs in our model. As
shown in Fig. 5A (lower panels), after coculture with CD4� T cells
in the presence of superantigens, anti-IL-12 Ab strongly labeled
CD1a� DCs’ dendrites, some of which enwrapped CD4� T cells.
Eighty to ninety percent of the DCs, in conjugates or not, were
labeled with anti-IL-12 Abs. This IL-12 labeling of DCs was never
observed in the absence of superantigen (Fig. 5A, upper panels). A
kinetic analysis of the production of IL-12p70 and IFN-� revealed
a rapid production of both IL-12p70 and IFN-�, which are detected
in the supernatants after 12 h of coculture (data not shown).

We then studied the role of IL-12 secretion by DCs in the cross-
talk between CD4� T cells and immature DCs by using CD4� T
cells from three unrelated patients presenting with mutations in
IL-12RB1, resulting in a totally defective expression of this recep-
tor (3). TSST1-pulsed immature DCs from normal donors induced
CD69 expression in 15% of the CD4�/IL-12R�1� T cells (data
not shown) witnessing their activation. However, these activated
CD4�/IL-12R�1� T cells produced low level or no IFN-� in co-
culture with TSST1-pulsed DCs (Fig. 5B), showing that IL-
12R�1-mediated signaling is required for optimal IFN-� produc-
tion. IL-12R�1 is a common subunit for both IL-12R and IL-23R,

which binds the IL-12p40 subunit shared by these two cytokines
(10). To distinguish the requirement for these two cytokines in
IFN-� secretion by T cells, we analyzed the ability of DCs derived
from a patient presenting with a total defect in IL-12p40 expres-
sion (25) to induce IFN-� production by CD4� T cells from con-
trol donors. As expected, IL-12p40-deficient DCs did not secrete
IL-12p70 when cocultured with TSST1 � CD4� T cells from a
control donor (data not shown). IL-12p40-deficient DCs induced 7
times less IFN-� production by T cells than DCs from a control
donor (Fig. 5C), yet they induced CD69 expression by 20–25%
CD4� T cells, showing T cell activation (data not shown). This
result confirmed the key role of IL-12p40 in the induction of IFN-�
production by T cells. To find out the relative role of IL-12 and
IL-23 in IFN-� production by T cells, we added either IL-12p70 or
IL-23 to cocultures of TSST1-pulsed IL-12p40-deficient DCs and
CD4� T cells and measured IFN-� production in the supernatants.
Whereas no effect of IL-12 or IL-23 was observed on CD69 ex-
pression by T cells (data not shown), IL-12p70 was able to in-
crease by almost 3-fold the IFN-� production by CD4� T cells
activated by TSST1-pulsed IL-12p40-deficient DCs, whereas
IL-23 had no effect (Fig. 5C). These results confirm that the DC-
induced IFN-� production by human CD4� T cells is strongly
regulated by IL-12 and show that it is not regulated by IL-23.
Moreover, addition of an anti-IL-12-blocking mAb to cocultures of
control donor DC � TSST1 � control donor CD4� T cells in-
duced an inhibition of IFN-� and TNF-� production in the cocul-
tures (data not shown), showing that IFN-� and TNF-� production
are controlled by IL-12 in cells from control donors.

FIGURE 4. CD40L (CD154) expression by T cells is required to induce DC activation. Immature DCs were cultured as in Fig. 1 with CD4/wild-type
(WT) or T cells from two CD40L deficiencies (CD4/CD40L�, 1 and 2). A, FACS analysis of CD69 expression by CD4� T cells. B, Expression of
phenotypic maturation markers in DCs is plotted as in Fig. 1B. IFN-� (C) and IL-12p70 (D and E) secretion in supernatants (mean � SD of triplicates).
D, Human rIFN-� (rhuIFN-�) at 1000 U/ml was added to cocultures of DC � CD4 and DC � CD4 � TSST1. IL-12p70 in supernatants of DCs cultured
with LPS (200 ng/ml) or LPS � IFN-� (40 U/ml). E, A total of 3 �g/ml anti-hemagglutinin Ab or anti-CD40 Ab was added alone or in combination with
IFN-� (1000 U/ml) to the cultures. One representative experiment of two is shown in A–E.
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FIGURE 5. IL-12 signaling is required for T cell-dependent DC activation. A, Fixed cells were permeabilized and labeled with anti-IL-12p70 and CD1a
Abs and visualized by confocal microscopy. B and C, IFN-� production in 24-h supernatants of: B, CD4� T cells from control (CD4/WT) or three
IL-12R�1-deficient patients (CD4/IL12R�1�, #1–3) with or without control DCs and/or TSST1; C, CD4� T cells from a control donor cocultured with
DCs from an allogeneic control donor (DC/WT) or from an IL-12p40-deficient donor (DC/IL12B�). IL-12p70 (5 ng/ml), IL-23 (5 ng/ml), or medium was
added at the beginning of the coculture. D, Expression of maturation markers in DCs from control donors cultured for 24 h in the presence of CD4� T
cells from allogenic control donor (CD4/WT) or from IL-12R�1-deficient patients presenting with a complete defect of IL-12R�1 (CD4/IL12R�1�). E and
F, IL-12p70 secretion in 24-h supernatants of T cells from control donor or from two IL-12R�1-deficient patients activated in the presence of TSST1, DC,
or DC � TSST1. Various concentrations of IFN-� (E) and 10 ng/ml TNF-� (F) were added to cocultures, and IL-12p70 secretion was measured. IL-12p70
was also measured in supernatants of DCs cultured with LPS (500 ng/ml) or LPS � IFN-� (40 U/ml) (E, �). G, Expression of CD80 and CD83 by DCs
cultured without (gray line) or with 10 ng/ml TNF-� (black line). One representative experiment of two is shown in all panels.
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We then analyzed whether IL-12 signaling in T cells plays a role
in the T cell-driven DC activation. Surprisingly, CD4�/IL-
12R�1� T cells induced neither expression of maturation markers
nor IL-12p70 production by DCs in the presence of TSST1 (mat-
uration markers, Fig. 5D; IL-12, Figs. 5E and 7). This absence of
IL-12p70 production was accompanied by an absence of produc-
tion of TNF-�, IL-10, and IL-6 (Fig. 7). Because CD4�/IL-
12R�1� T cells produced low amount of IFN-� and TNF-�, we
added IFN-� or TNF-� in the cocultures and measured IL-12p70
production. Addition of 4–400 U/ml (corresponding to 20–20,000
pg/ml) IFN-�, i.e., the range of IFN-� produced by CD4� T cells
from control donors activated by TSST1 and immature DCs, re-
stored neither phenotypic maturation of DCs (data not shown) nor
IL-12 production induced by CD4�/IL-12R�1� T cells (Fig. 5E).
Nonetheless, these concentrations of IFN-� added to LPS-induced
IL-12p70 secretion by immature DCs (Fig. 5E). Addition of

TNF-� did not restore IL-12 production induced by CD4�/IL-
12R�1� T cells either (Fig. 5F). In the same conditions, TNF-�
induced some phenotypic maturation of DCs (Fig. 5G) as wit-
nessed by the increase expression of CD80 and CD83; however, it
did not increase the phenotypic maturation of DCs induced by
CD4�/IL-12R�1� T cells (data not shown).

These results show that IL-12 signaling in T cells is required to
induce expression of costimulatory molecules and bioactive IL-12
secretion by DCs, and that this requirement is at least partially
IFN-� and TNF-� independent.

T cell-driven DC activation requires stimulation of both CD4�

T cells and DCs by IFN-�

Results presented in Fig. 4E showed that IFN-� controls IL-12p70
secretion by DCs. We thus better characterized the production of
IFN-� in the conjugates formed between CD4� T cells and DCs.

FIGURE 6. T cell-driven DC activation requires stimulation by IFN-� of both T cells and DCs. A, Immature DCs were cultured for 10 h with CD4�

T cells without (upper panels) or with (lower panels) 10 ng/ml TSST1. Fixed cells were permeabilized and labeled with anti-IFN-� and anti-V�2 Abs. B,
FACS analysis of the IFN-� production by CD4� T cells cocultured for 10 h with TSST1-pulsed DCs (one representative experiment of three). C,
Expression of CD86 (left histogram) and CD83 (right histogram): left panel, on DCs from a control (DC/WT, gray line) or on IFNGR2-deficient DCs
(DC/IFNGR2�, black line) cocultured for 24 h with control CD4� T cells and TSST1; right panel, on control DCs cocultured for 24 h with IFNGR2-
deficient or control CD4� T cells and TSST1. IFN-� (D) or IL-12p70 (E) secretion was measured in 24-h supernatants of CD4� T cells from a control
donor or from two patients with a complete defect in IFNGR1 (R1�) or IFNGR2 (R2�) cultured with allogenic immature DCs from a control (labeled “c”),
or DCs derived from the same patients (R1�, R2�) cultured with allogenic control CD4� T cells (labeled “c”). Results in C and D are expressed as a
percentage of cytokine production in DC/WT � CD4 � TSST1 (�100%).
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Confocal analysis of immature DCs cocultured for 10 h with
CD4� T cells in the absence or presence of TSST1 (10 ng/ml) was
performed. In the absence of TSST1, no IFN-� labeling of T cells
or DCs was observed (Fig. 6A, upper panels), confirming the
ELISA results. In the presence of TSST1, 7–12% of the conju-
gates, depending on the donors, showed labeling for IFN-� on V�2
T cells. Only rare DCs were labeled. The IFN-� labeling was, in
most cases, polarized toward the DCs (Fig. 6A, lower panels).
These figures corresponded to the percentage of T cells, which
responded to TSST1, i.e., V�2� T cells (data not shown), and to
the percentage of CD4� T cells with intracellular IFN-� labeling
by FACS (Fig. 6B). These FACS analyses also confirmed that only
T cells presented intracellular IFN-� labeling. Therefore, CD4� T
cells secreted IFN-� in an Ag-specific manner when interacting
with immature DCs. Moreover, IFN-� labeling is polarized toward
the zone of interaction.

The role of IFN-� in IL-12p70 secretion by DCs has been re-
ported previously; however, the exact contribution of T cell and
DC responses to IFN-� requirement is not clearly characterized.
We thus evaluated these contributions. To do so, we prepared
monocyte-derived DCs and CD4� T cells from two patients pre-
senting with a total defect in IFNGR1 (1) (the IFN-�-binding chain
of the receptor) or IFNGR2 expression (24) (the accessory chain
that contributes to signal transduction (29)). As shown in Fig. 6C,
IFN-� signaling was required in neither T cells nor DCs for the T
cell-driven induction of CD86 and CD83 expression by DCs (left
panel for IFNGR2-deficient DCs; right panel for IFNGR2-defi-
cient CD4� T cells). TSST1-pulsed DCs derived from healthy
donors or from IFNGR1- and R2-deficient patients induced similar
levels of IFN-� production by control CD4� T cells (Fig. 6D).
IFNGR2-deficient CD4� T cells were also able to secrete IFN-�
when activated with control DCs and TSST1, whereas IFNGR2-
deficient T cells did not secrete any IFN-� (Fig. 6D). These results
highly suggest that IFN-� binding to CD4� T cells is required to
induce IFN-� secretion by T cells, but that IFN-� signaling in T
cells is not required. IFNGR expression by DCs or CD4� T cells
is not required either for IL-8, IL-10, or TNF-� production in
cocultures (Fig. 7). In contrast, as shown in Fig. 6E, IFNGR1 and

IFNGR2 expression were required on both DCs and CD4� T cells
to induce IL-12p70 secretion by DCs.

Discussion
Patients affected by the clinical syndrome known as Mendelian
susceptibility to mycobacterial disease present with specific sus-
ceptibility to live BCG vaccine, poorly virulent environmental my-
cobacteria, Salmonella, and few other intracellular pathogens (re-
viewed in Ref. 3). These patients have been shown to present with
genetically distinct germline mutations in at least five genes,
IL12B, IL12RB1, IFNR1, IFNR2, and STAT1, but have in common
a defective IL-12/IFN-� axis. Although known for 10 years now,
the underlying mechanisms for this susceptibility to very specific
intracellular pathogens are still unclear.

In this study, we specifically analyzed the T cell-driven matu-
ration of DCs between highly purified human monocyte-derived
DCs and CD4� T lymphocytes from patients presenting with Men-
delian susceptibility to mycobacterial disease and compared it with
interactions between DCs and CD4� T cells from control donors.
We found out that the T cell-driven maturation of DCs is abolished
in all the patients.

Although based on a human in vitro model using monocyte-
derived DCs, purified CD4� T cells, and recombinant superanti-
gen, this experimental model reconstitutes a number of the known
characteristics of the interactions between DCs and CD4� T cells
during DC licensing in vivo (in mice). These similarities include
the absolute need for an Ag- and CD40-CD40L-dependent direct
cell-cell contact for the induction of IL-12 secretion by DCs (30),
because CD40L-deficient CD4� T cells are unable to induce IL-
12p70 secretion by DCs (Fig. 4). Interestingly, CD40L expression
in T cells was required for the induction of IL-12p70 by human
DCs, but not of other immunomodulatory cytokines (such as IL-8,
IL-10, and TNF) (Fig. 7). Although CD40 plays a crucial role in
the education of human DCs, anti-CD40 agonist mAbs were un-
able to induce IL-12p70 secretion by immature human DCs even
in the presence of IFN-� (Fig. 4). These results show that DCs
require at least three signals coming from T cells, namely CD40L

FIGURE 7. Simultaneous quantification of
five cytokines using a cytometric bead array as-
say. IL-8, IL-6, IL-10, TNF-�, and IL-12p70
were measured using a multiplexed flow cyto-
metric assay from 24-h supernatants of CD4� T
cells and DCs cocultured in presence or absence
of 10 ng/ml TSST1.
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expression and IFN-� production by T cells and yet another signal,
which is TCR dependent and remains to be found.

Also supporting the in vivo relevance of our in vitro model, the
efficiency of CD4� T cells for inducing IL-12 secretion by imma-
ture DCs is very high: one Ag-specific T cell for 125 immature
DCs is sufficient to induce significant levels of IL-12 (at a ratio of
total T cells:DCs of 1:5 (data not shown), and 4–5% of total pu-
rified T cells are V�2� (TSST1 responsive) with a memory phe-
notype). However, some of our results differ from results obtained
in mice models that showed that bioactive IL-12 by DCs can be
initiated by T cell-derived signals only in the presence of microbial
signal (31, 32). In our study, we did not add any microbial product,
and, although not completely excluded, the presence of trace
amounts of endotoxins was not detected in our culture medium or
in the rTSST1 (data not shown). These discrepancies in the re-
quirement for microbial products may be due, apart from the spe-
cies diversity, to several differences in the experimental models.
First, we used monocyte-derived human DCs, whereas mouse
splenic CD11chigh DCs were used. Because different DC popula-
tions can have very different functions (33), this difference may be
critical. Second, we show in this study that only memory human T
cells are able to induce IL-12p70 secretion by immature human
DCs, whereas in the murine model only newly activated naive T
cells have been tested for their ability to promote IL-12p70 pro-
duction by DCs (32). Third, in this study, we used a superantigen,
a polyclonal activator of T cells, whereas in the mice models,
monoclonal populations of transgenic T cells were activated with
their cognate MHC/peptide complex.

Using combinations of purified CD4� T cells from patients and
DCs from control and vice versa, we showed that T cell responses
to IL-12 and IFN-� are required to induce maturation of DCs
and/or IL-12 secretion by DCs. Indeed, most studies addressing the
question of the role of IL-12 and/or IFN-� have used blocking Abs
(22) or, when using patients or animals presenting with individual
genetic defects in the IFN-�/IL-12 axis, have measured the re-
sponses of mixed population of cells (PBMCs or splenocytes) (34–
37). These experiments did not allow discriminating the role
played by each cytokine on each cell population.

We observed that CD4�/IL-12�1R� T cells were even more
defective than CD4�/CD40L� T cells in inducing DC activation.
This was witnessed by the low increase in the expression by DCs
of CD86, CD80, CD83, and CD40 induced by CD4�/IL-12�1R�

T cells and TSST1 and the absence of IL-12, but also IL-10, and
TNF-� in the supernatants of DCs cultured in the same conditions
(Fig. 7).

The absence of DC activation by CD4�/IL-12�1R� T cells can-
not be attributed to deficient T cell triggering because TSST1-
pulsed immature DCs induced TCR down-regulation and expres-
sion of CD69 by CD4�/IL-12�1R� T cells (data not shown).
Thus, an IL-12�1R-dependent T cell signaling controls T cell-
driven DC activation. This signal is IL-12 and not IL-23 depen-
dent, as shown by the experiments performed with IL-12B-defi-
cient DCs (Fig. 5C). Moreover, this signal does not depend on
IFN-� or TNF-� only, because addition of IFN-� or TNF-� to
IL-12�1R�/CD4� T cell TSST1 and immature DCs does not re-
store IL-12p70 secretion by DCs (Fig. 5, E and F) or expression of
maturation markers to levels obtained with control CD4� T cells
(data not shown). The absence of IL-12 secretion may be due to the
low level of CD40 expression by immature DCs cocultured with
IL-12�1R�/CD4� T cells, a level that may be insufficient to in-
duce triggering of DCs.

In our study, we confirm that IFN-� signaling in DCs is required
to induce production of bioactive IL-12 by DCs because IFNGR1-
and IFNGR2-deficient DCs are unable to secrete IL-12 (Fig. 6).

Indeed, DCs that cannot bind IFN-� (IFNGR1 deficient) or cannot
signal through IFNGR (IFNGR2 deficient) showed an increased
expression of CD83 and CD86 (Fig. 6C), but did not produce
detectable amount of IL-12 (Fig. 6E). This absence of IL-12 pro-
duction did not preclude IFN-� production, which in our model
was only produced by T cells. This IFN-� may be induced by type
I IFNs in an IL-12-independent manner, as already reported (38).
In vivo the source of IFN-� may also come from NK cells (39) or
some populations of DCs (40).

We show that IFN-� signaling is also required on the CD4� T
cell side for a cross-talk between CD4� T cells and DCs that leads
to IL-12 production. These results demonstrate that IFN-� induces
a signal in T cells that makes them competent to induce DC acti-
vation. What could be this signal? The first possibility is that the
absence of functional cross-talk observed with IFNGR-deficient T
cells is not due to an absence of IFN-� secretion by these T cells
because: 1) IFNGR2-deficient T cells are still able to produce
IFN-� when cocultured with DCs and superantigen (Fig. 6); 2)
addition of IFN-� in the cocultures did not restore IL-12 produc-
tion by DCs (data not shown). IFNGR signaling in T cells may be
required, as shown in CD4� mice T cells (41), to induce IL-12R�2
expression by T cells. IFNGRs would thus control IL-12 response
of T cells, which as shown in this study is implicated in the T
cell-driven DC activation. The second possibility is that IFNGR
expression by T cells is important to correctly present IFN-� to
DCs. Indeed, a polarized delivery of several receptors at the im-
munological synapse has been shown, i.e., TCR (42), CD40L, and,
more recently, IFNGRs (43, 44). The directional delivery of both
cytokines and their receptors at the synapse probably allows the for-
mation of a high local concentration of cytokines, which is required
for functional responses. Such mechanisms may also ensure, in the
case of the T cell-driven activation of DCs, that reciprocal activation
of the two cells will only happen in an Ag-dependent manner.

Immunity against intracellular pathogens such as mycobacteria
strongly depends upon the induction of a Th1 CD4� T cell re-
sponse. Interactions of DCs with CD4� Th lymphocytes have been
shown to license or educate DCs to prime CTLs or to orientate
CD4� T cell priming toward Th1 or Th2 responses (reviewed in
Refs. 13, 14). It is thus tempting to speculate that the defective
cross-talk between CD4� T cells and DCs in patients presenting
defective response to IFN-� or IL-12 or CD40 triggering may ac-
count for their shared vulnerability to mycobacteria, Salmonella,
and other discrete intracellular pathogens.
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Complete interleukin-12 receptor β1 deficiency is the
most frequent known genetic etiology of the syndrome of
Mendelian susceptibility to mycobacterial diseases (MSMD,
OMIM 209950). Eleven disorders caused by different
types of mutations in five different gene defects related to
the IL-12 and IL-23/interferon (IFN)-γ axis have been
described to date [2]. Refer to Fig. 1 for the pathways of
IL-12/IL-23-dependent interferon IFN-gamma immunity.
Patients with MSMD are vulnerable to the Bacillus-
Calmette-Guérin (BCG) vaccine species Mycobacterium
bovis, environmental mycobacteria and M. tuberculosis.
Infectious diseases other than those caused by Salmonella
species, the latter of which infect almost one-half of all
patients, are rare [1, 3, 6]. We report here various and
unusual clinical manifestations of three unrelated patients
with complete IL-12Rβ1 deficiency due to three different
mutations in the IL-12RB1 gene, of which two are novel
(711insC, 628–644dup).

The first patient was an 1-year-old infant girl who had
BCG lymphadenitis at 6 months of age and disseminated
mycobacterial infection complicated with spontaneous
pneumomediastinum and subcutaneous emphysema at
12 months of age. She was treated with isoniazide,
rifampin, ethambutol, amikacin, clarithromycin and clo-
fazimine. Pre-tracheal fasciotomy was undertaken for sub-
cutaneous emphysema. A complete IL-12 receptor
β1 deficiency associated with the 711insC mutation in
IL-12RB1 was detected (Fig. 2). The patient is still in
remission.

The second patient was an 19-month-old infant boy who
presented with five episodes of infections attributable to
Salmonella and two episodes of Salmonella enteritidis
meningitis. There was no mycobacterial disease, including
no adverse reaction to BCG immunization that was prac-
ticed at the age of 2 months. He was treated with
meropenem, rIFN-γ and external ventricular drainage and
then ventriculo-peritoneal shunting for hydrocephalus.
Immunologic and molecular genetic examinations revealed
complete IL-12Rβ1 deficiency and a IL-12RB1 783+
1G>A mutation (Fig. 2) [3].

The third patient, a 4.5-year-old boy, had fistulized BCG
lymphadenitis in early childhood followed by disseminated
mycobacterial infection and splenic abscess with Salmo-
nella bacteremia at 44 months of age. He was treated with
meropenem and with isoniazide, rifampin, ethambutol,
clarithromycin and amikacin. The patient improved; how-
ever, he was lost to follow-up and has been reported to have
died. DNA sequencing revealed a 628–644dup mutation
in IL-12RB1 (Fig. 2). A complete IL-12 receptor β1
deficiency is suspected. All three patients had persistent
oral moniliasis.

Among a total of 56 cases of IL-12 receptor β1
deficiency reported in the literature, the rate of infection
with BCG M. bovis is 73% (27/37), environmental myco-
bacteria 21% (22/56), non-typhoidal Salmonella species
46% (26/56) and tuberculosis 7% (4/56) [4–6]. Paracoc-
cidioides brasiliensis-disseminated disease has also re-
cently been reported in an IL-12Rβ1-deficient patient.
None of the 37 patients with BCG disease subsequently
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developed environmental mycobacterial disease, whereas
12 of the 19 patients who had no BCG disease developed
environmental mycobacterial disease [3–6].

Conclusion Our findings illustrate the heterogeneous
clinical presentation of IL-12Rβ1 deficiency, a relatively
common primary immunodeficiency in Turkey. Children
with unusual disease symptoms caused by BCG, environ-
mental mycobacteria or non-typhoidal Salmonella should
be investigated for IL-12Rβ1 deficiency and related
disorders.
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Abstract Disseminated BCG infection is a rare compli-
cation of vaccination that occurs in patients with im-
paired immunity. In recent years, a series of inherited
disorders of the IL-12-IFN-c axis have been described
that predispose affected individuals to disseminated dis-
ease caused by BCG, environmental Mycobacteria, and
non-typhoidal Salmonella. The routine immunological
work-up of these patients is normal and the diagnosis
requires specific investigation of the IL-12-IFN-c circuit.
We report here the first two such patients originating
from and living in Iran. The first child is two years old
and suffers from complete IFN-c receptor 2 deficiency
and disseminated BCG infection. He is currently in
clinical remission thanks to prolonged multiple antibiotic
therapy. The other, a 28-year-old adult, suffers from IL-
12p40 deficiency and presented with disseminated BCG
infection followed by recurrent episodes of systemic sal-
monellosis. He is now doing well. A third patient of

Iranian descent, living in North America, was reported
elsewhere to suffer from IL-12Rb1 deficiency. These
three patients thus indicate that various inherited defects
of the IL-12-IFN-c circuit can be found in Iranian peo-
ple. In conclusion we recommend to consider the disor-
ders of the IL-12-IFN-c circuit in all patients with severe
BCG infection, disseminated environmental mycobacte-
rial disease, or systemic non-typhoidal salmonellosis,
regardless of their ethnic origin and country of residence.

Keywords BCG Æ Immunodeficiency Æ Interferon-c Æ
Interleukin-12 Æ Salmonella

Abbreviations IFN-c: Interferon-gamma Æ IL:
Interleukin Æ MSMD: Mendelian susceptibility to
mycobacterial disease

Introduction

Interferon-c (IFN-c) is a critical cytokine produced by
NK and T-cells [2]. The differentiation of T-helper cells
into IFN-c-producing cells is regulated by several cyto-
kines, but principally interleukin-12 (IL-12). IL-12 is
produced by antigen-presenting cells — particularly
dentritic cells and macrophages — in response to
infection [32]. IL-12 not only promotes T-helper cell
differentiation, but also induces IFN-c production in
other cells, such as NK cells. Deleterious germline
mutations in five genes involved in the IL-12-IFN-c
circuit have been found in human patients: IFNGR1,
encoding the ligand-binding chain of the IFN-creceptor
(IFN-cR1); IFNGR2, encoding the associated chain of
the IFN-c receptor (IFN-cR2); STAT1, encoding the
signal transducer and activator of transcription-1 (Stat-
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1) in the IFN-c receptor signalling pathway; IL12B,
encoding the p40 subunit shared by IL-12 and IL-23 and
IL12RB1, encoding the beta 1 subunit shared by the IL-
12 and IL-23 receptors (IL-12Rb1).

The various types of mutation (dominant or recessive,
amorphic or hypomorphic) in these five genes define up to
ten distinct inherited disorders [16]. All are associated
with a rare human syndrome, known as Mendelian sus-
ceptibility to mycobacterial disease (MSMD) (MIM
209950) [24]. Patients with MSMD are prone to clinical
diseases caused by poorly virulent mycobacterial species
such as live BCG vaccines and environmental Mycobac-
teria. They are also susceptible to develop extra-intestinal
disease caused by weakly virulent non-typhoidal serovars
of Salmonella [4, 5, 6, 11, 23,26]. Such patients are also
susceptible to more virulent Mycobacteria and Salmo-
nella, and may therefore present with severe forms of
tuberculosis or typhoid fever [3].

Disseminated BCG infection is a typical clinical
presentation in patients with an inherited disorder of the
IL-12-IFN-c axis, as BCG is often the first pathogen to
which patients are exposed. BCG substrains are derived
from Mycobacterium bovis. BCG vaccination is rou-
tinely carried out in most regions of the world, with up
to 85% coverage of children worldwide [27]. BCG pre-
vents severe forms of childhood tuberculosis, including
miliary tuberculosis and meningitis in particular [7];
However, in rare patients, BCG vaccination results in
disseminated infection involving lymph nodes, lungs,
kidney, spleen and other organs. Such infections are
referred to as ‘‘BCG-osis’’ and are considered to be the
most serious complication of BCG injection, with high
(71%) rates of mortality [5, 6,7].

BCG-osis invariably indicates the presence of an
underlying congenital or acquired immune deficiency,
such as severe combined immunodeficiency (SCID),
chronic granulomatous disease (CGD), or HIV infection
[31]. Patients with these conditions are also vulnerable to
various other microbes. Of the remaining patients with
BCG-osis, half present MSMD. About half of the known
MSMD patients have been shown to present an inherited
defect of the IL-12-IFN-c axis, whereas the remaining
cases remain asymptomatic. We report here the first two
cases of hereditary defects in the IL-12-IFN-c- axis
diagnosed in Iran, in patients presenting with BCG-osis.

Case reports

Patient 1

A healthy boy, weighing 3.95 kg and measuring 47 cm,
was born at full term. This boy was the only child of a
married couple originating from and living in Iran. The
mother is the maternal granddaughter of the patient’s
paternal grandfather’s sister. The patient received rou-
tine vaccinations in Iran, including BCG at birth, OPV
and DTP 1.5 months later. At the age of 38 days, the
infant presented with fever, chills, bloody diarrhoea and

decreased reflexes. He was hospitalized and underwent
laboratory investigations and antibacterial therapy. All
culture samples (blood, stool and urine) were proved to
be negative. On physical examination, the patient had a
generalized cutaneous maculopapular rash, hepato-
splenomegaly, and bilateral axillary lymphadenopathy.

Liver function tests were normal and the patient
developed thrombocytopenia whilst febrile. Leukocyte
counts increased to 29,500/m3, distributed as follows:
polymorphonuclear cells (PMN)=51%, lympho-
cytes=27%, eosinophils=9%, and band cells=11%.
TORCH study results were negative. Bone marrow
evaluation showed myeloid hyperplasia and a slight de-
crease in the number of erythroid and megakaryocyte
cells. Bone marrow staining revealed numerous acid-fast
bacilli and Mycobacterium bovis (BCG) sensitive to
isonizid, rifampin, ethambutol and streptomycin was
cultured.

The patient was treated at the age of two months
(weight=3.8 kg; height=47 cm) with a regimen con-
sisting of: isoniazid, rifampin, ethambutol, streptomycin
associated with steroids (1 mg/kg/day). Clinical symp-
toms were incompletely resolved after two months of
treatment. We therefore tapered corticosteroid doses
and initiated a new antibiotic regimen of isoniazid,
rifampin, clarithromycin and ofloxacin. Corticostoroids
were discontinued at the age of six months. Splenectomy
and lymphadenopathy resection were performed at the
age of 12 months to reduce microbial burden. Smears of
spleen and lymph node aspirates revealed numerous
acid-fast bacilli, despite long-term treatment but culture
results were negative, suggesting a possible inhibitory
effect of the new antibiotic regimen. The child is now 34
months old, is still treated with drugs and has normal
physical growth (weight=14.4 kg; height=93.5 cm),
and a completely normal physical examination. All
serological tests for Brucella, Salmonella, Toxoplasma,
Treponema pallidum, Leishmania, and for IgM against
HSV1, HSV2 and CMV were negative.

Immunological assessments, including the measure-
ment of serum IgG, IgM, IgA, IgE, and complement
levels, and the nitroblue tetrazolium test (NBT) tests gave
normal results. Flow cytometry analysis of peripheral
blood B lymphocytes (CD19), T lymphocytes (CD3), T-
cell subpopulations (CD4, CD8), natural killer cells
(CD56), and adhesion molecules (CD11a, CD11b,
CD11c, CD18) on the surface of neutrophils, monocytes,
lymphocytes and co-stimulatory molecules (CD28,
CD80, CD86) on T-cells and macrophages, gamma
interferon receptor 1 (CD119) on monocytes, all were
normal. Serological assays and PCR for HIV, HCV,
HBV were negative. The lymphocyte transformation test
(LTT) was within normal limits for mitogens, Candida
and PPD. Investigation of the IL-12-IFN-c axis by means
of a recently developed whole-blood assay [14] revealed a
lack of IL-12 secretion by blood cells in response to BCG
plus IFN-c. Sequencing of the IFNGR1, IFNGR2, and
STAT1genes revealed that the patient was homozygous
for a missense mutation in IFNGR2 (T168N). The par-
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ents were heterozygous for this mutation, which was not
found in 100 healthy controls tested. The pathogenic ef-
fects of this mutation were shown to be due to the crea-
tion of a novel N-glycosylation site in IFN-cR2 . The
receptors were expressed on the cell surface, defining a
novel form of IFN-cR2 deficiency. These data unam-
biguously demonstrated the presence of an autosomal
recessive, complete IFN-cR2 deficiency in this patient.

Patient 2

A 28-year-old man was admitted with a cough and
excessive sputum production, which began six months
earlier. His parents were cousins and he had five brothers
and three sisters. One of his brothers died 12 years ago, at
the age of five years, from severe acute gastroenteritis.
One of his sisters died three years ago, at the age of 29
years, from acute abdomen. The patient’s parents and his
other siblings are in good health. The patient received all
the routine vaccinations carried out in Iran. He was
vaccinated with BCG at the age of seven years, and four
months later presented fistulous enlarged bilateral
lymphadenopathies of the axillary and cervical regions.
M. bovis BCG was isolated from the discharging sinuses.
Axillary and cervical lymph nodes were excised on two
occasions, at the ages of eight and 17 years, and on both
occasions histological examination revealed widespread
macrophage and polymorphonuclear infiltration in the
dermis and lymph nodes without granuloma formation,
suggestive of necrotizing lymphadenitis, with a negative
result of staining for acid-fast bacilli. The patient re-
ceived several courses of long-term antituberculosis
therapy, and responded reasonably well. He also suffered
from bilateral upper lobe pneumonia, which responded
to treatment with ceftriaxone, eight months before his
last admission. On admission, the patient presented
enlarged lymph nodes at the same places described,
pleural effusion on the right side and a maculopapular
rash covering the lower exteremities.

The Erythrocyte sedimentation rate was 105 mm/h
and the haemoglobin concentration had decreased to
8.6 g/dl. Platelets, leukocytes, reticulocyte count and
haemoglobin electrophoresis were normal. Chest X-ray
film and lung CT scan demonstrated a loculated pleural
effusion at the right costophrenic angle. A abdominal CT
scan with contrast revealed mild hepatosplenomegaly
with enlarged para-aortic lymphadenopathies. Ultra-
sound-guided paracentesis of pleural fluid was per-
formed: the fluid was cloudy and turbid in appearance,
and displayed marked inflammation (protein concen-
tration: 7.8 g/dl; WBC: high, with 100% neutrophils;
sugar concentration <20 mg/dl; RBC: high; LDH
>10000 IU/l; pH: 7.09; ADA: 427 IU/l). Gram-negative
bacilli were seen on direct examination of the pleural
fluid and Salmonella gallinarum, a subspecies of Sal-
monella e nteritidis, was cultured. Skin biopsy revealed
neutrophilic dermatosis. The patient was treated with a
combination of two antibiotics — ceftriaxone plus cip-

rofloxacin — and by chest drainage. He recovered com-
pletely but suffered another episode of Salmonella
infection, manifesting as sepsis, one year later. The bac-
terium involved in this episode was not serotyped.
Interferon-gamma treatment was recently initiated to
prevent recurrent infections. The patient, now aged 29
years, is in clinical remission. The serological tests for
Brucella, Salmonella, Leishmania, Toxoplasma, Trep-
onema pallidum, and IgM against HSV1, HSV2 and
CMV were negative.

Normal results were obtained in all immunological
tests including flow cytometry for CD3+, CD4+
CD8+, CD19+, CD56+, CD11a+, CD11b+,
CD11c+, CD18+, CD28+, CD80+, CD86 and
CD119+molecules, neutrophil chemotaxis, NBT, serum
immunoglobulin and complement levels. PPD tests, se-
rologicla assays and PCR for HIV, HCV, and HBV were
negative. Investigation of the IL-12-IFN-c axis with a
recently developed whole-blood assay [14] revealed a lack
of IL-12 production by blood cells in response to stim-
ulation with live BCG plus IFN-c. Sequencing of the
IL12B gene revealed that the patient was homozygous
for a missense mutation in IL12B (g526–528delCT). The
parents were heterozygous for this mutation, which was
not found in 100 healthy controls tested. This mutation
exerts its pathogenic effect by creating a premature stop
codon in IL12B. These data clearly demonstrated that
the patient suffers from an autosomal recessive, complete
IL-12p40 deficiency, resulting in a lack of IL-12p70 and
probably a lack of IL-23.

Discussion

To our knowledge, these cases of hereditary defects in the
IL-12 - IFN-c axis are the first to be reported in patients
from Iran. One American child of Iranian descent has
been reported to suffer from IL-12Rb1 deficiency [9,15].
Three distinct genetic disorders have thus been identified
in three patients of Iranian descent, with mutations in
IL12RB1, IL12B, and IFNGR2. These data suggest that
other genetic disorders of the IL-12-IFN-c axis are likely
to be identified in Iranian patients, provided that patients
with BCG-osis or invasive disease caused by environ-
mental mycobacteria or non-typhoid Salmonella are
investigated. This report should encourage both Paedi-
atricians and Internists to consider a diagnosis of inher-
ited defects of the IL-12-IFN-c axis in selected Iranian
patients. It indicates that such patients are indeed iden-
tified if such a diagnosis is contemplated, suggesting the
presence of undiagnosed patients in many countries
worldwide in which such genetic disorders have not been
reported. For example, a patient from Cameroon was
diagnosed with IL-12Rb1 deficiency following transfer to
a hospital in Switzerland [15]. Patients in the countries
bordering Iran, such as Iraq and Afghanistan, probably
remain undiagnosed due to the lack of appropriately
trained clinicians and immunologists.
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Our first case, with IFN-cR2 deficiency, is also
important because this patient is the first to be reported
with documented disseminated BCG infection associated
with IFN-cR2 deficiency. The other two patients with
complete IFN-cR2 deficiency suffered from environ-
mental mycobacteriosis [10,29]. By analogy with other
IFN-cR2-deficient patients and the larger number of
patients with complete IFN-cR1 deficiency [12], this pa-
tient probably has a poor prognosis, despite his current
clinical remission. More advanced treatment procedures,
such as bone marrow transplantation or gene therapy,
might improve the prognosis of such patients in the fu-
ture. This patient’s defect was recently corrected in vitro,
by biochemical means, using inhibitors of N-glycosyla-
tion, raising the possibility of a novel treatment in vivo.

The second patient also ran a classical course, as IL-
12p40 deficiency is known to be relatively benign [1, 13,
22,28]. Our patient presents a novel mutation in IL12B,
indicating that IL-12 deficiency is not restricted geo-
graphically and that the spectrum of mutations is not as
limited as previously thought [28]. The patient suffered
chronic infection with a reasonably good outcome. We
suggest that the overall prognosis of such cases is good,
with broad resistance, low penetrance of the mutation
and a favourable outcome regarding of infection [7]. The
production of small amounts of IFN-c (1%–10% of
normal), perhaps induced by cytokines such as IL-18
and IL-27, partly compensates for the lack of IL-12- and
IL-23-mediated induction [17, 19, 20, 23, 25,31]. In pa-
tients with this condition, aggressive antibiotic therapy
and IFN-c injections are likely to control infections,
particularly those caused by mycobacteria and Salmo-
nella species [6]. Finally, although pleural empyema due
to Salmonella enteritides has been documented in
immunocompromised patients, particularly those with
AIDS, tuberculosis, and cancers [8, 18, 30,33], it has not
been reported in patients suffering from MSMD. Pleural
effusion due to Salmonella gallinarum, which causes ty-
phoid in poultry, does not seem to have been reported
elsewhere, in any patient [21].

We conclude that defects in the IL-12-IFN-c axis may
cause disseminated BCG infection and invasive salmo-
nellosis in Iranian patients. This group of hereditary
disorders should be considered in the evaluation of such
patients, particularly in countries like Iran, where BCG
vaccination is part of the national health programme
and outbreaks of non-typhoid gastroenteritis are com-
mon. Patients with severe BCG infections and extra-
intestinal non-typhoidal salmonellosis should be inves-
tigated for the IL-12-IFN-c circuit.
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(See the article by Zerbe and Holland on pages e38–41)

Background. Paracoccidioides brasiliensis is a facultative intracellular dimorphic fungus that causes paracoc-
cidioidomycosis (PCM), the most important deep mycosis in Latin America. Only a small percentage of individuals
infected by P. brasiliensis develop clinical PCM, possibly in part because of genetically determined interindividual
variability of host immunity. However, no primary immunodeficiency has ever been associated with PCM.

Methods. We describe the first patient, to our knowledge, with PCM and a well-defined primary immuno-
deficiency in the b1 subunit of the interleukin (IL)–12/IL-23 receptor, a disorder previously shown to be specifically
associated with impaired interferon (IFN)–g production, mycobacteriosis, and salmonellosis.

Results. Our patient had a childhood history of bacille Calmette-Guérin disease and nontyphoid salmonellosis
and, at the age of 20 years, presented to our clinic with a disseminated (acute) form of PCM. He responded well
to antifungal treatment and is now doing well at 24 years of age.

Conclusions. This unique observation supports previous studies of PCM suggesting that IL-12, IL-23, and
IFN-g play an important role in protective immunity to P. brasiliensis. Tuberculosis and PCM are thus not only
related clinically and pathologically, but also by their immunological pathogenesis. Our study further expands the
spectrum of clinical manifestations of inherited defects of the IL-12/IL-23–IFN-g axis. Patients with unexplained
deep fungal infections, such as PCM, should be tested for defects in the IL-12/IL-23–IFN-g axis.

During the past 10 years, the molecular basis of the

syndrome of Mendelian susceptibility to mycobacterial

disease (MIM209950) was determined in a number of

patients [1–3]. Mutations of the genes encoding the

ligand-binding chain (R1) [4, 5] and associated chains

(R2) [6] of the IFN-g receptor, the b1 subunit of the

IL-12 receptor (IL-12Rb1) [7, 8], the p40 subunit of

IL-12 (IL-12p40) [9], and signal transducer and acti-

vator of transcription type 1 (STAT-1) [10, 11] have

been recognized. The severity of clinical disease was

found to correlate with the extent of failure to either
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produce or respond to IFN-g. Patients with a complete

deficiency of IFN-gR1, IFN-gR2, or STAT-1 lack cel-

lular responses to IFN-g and have early-onset and life-

threatening infections caused by poorly pathogenic my-

cobacteria and salmonellae. Milder and often curable

diseases due to these pathogens are seen in patients

with partial IFN-gR1, IFN-gR2, and STAT-1 deficien-

cies and in patients who lack IL-12p40 (shared by IL-

12 and IL-23; hereafter, “IL-12/IL-23p40”) or IL-12Rb1

(shared by the IL-12 and IL-23 receptors; hereafter, “IL-

12/IL-23Rb1”).

The latter 2 disorders result in normal responses to

IFN-g but abnormal IL-12–dependent and IL-23–de-

pendent production of IFN-g. Up to 19 patients with

IL-12/IL-23p40 deficiency [3, 9, 12, 13] and 54 with

IL-12/IL-23Rb1 deficiency [7, 8, 13–20] have been de-

scribed. Salmonellosis, another well-known feature of

the syndrome of Mendelian susceptibility to mycobac-

terial disease [21, 22], is particularly common in pa-
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Figure 1. Radiograph showing the sequelae of Salmonella enterica serotype Typhimurium osteoarticular infection. The radiograph shows extensive
destruction of the head and neck of the femur and also of the acetabulus of the ileum.

tients with IL-12/IL-23p40 and IL-12/IL-23Rb1 deficiency [3,

23]. Additional unusual infectious diseases have not been

reported.

Paracoccidioidomycosis (PCM) is a deep mycosis caused by

the dimorphic fungus Paracoccidioides brasiliensis, which is en-

demic in certain regions of South America [24]. P. brasiliensis

naturally undergoes a complex transformation from inhaled

environmental conidia into the pathogenic yeast form in the

human lungs. According to the current classification, 2 main

clinical forms of PCM are distinguished: the acute or juvenile

form (AF) and the chronic or adult form (CF) [25]. The CF

affects mainly males, who show a high frequency of pulmonary,

skin, and mucosal involvement. The lesions affect only few

tissues/organs and are associated with tuberculoid granulomas

containing a small number of fungi [26]. The AF is charac-

terized by the widespread involvement of the reticuloendo-

thelial system, including lymph nodes, spleen, liver, and bone

marrow. The lesions are disseminated and associated with nec-

rotizing host cells and abundant fungal cells.

An intriguing feature of P. brasiliensis infection is that not

all infected individuals develop disease. In areas of endemicity

in Brazil, P. brasiliensis infects 10%–40% of the population, as

detected by serological testing, whereas the incidence of CF and

AF PCM is probably less than 1% and 0.1% of infected indi-

viduals, respectively. Interestingly, patients with HIV infection

are more prone to develop a severe form of PCM, with features

of the 2 polar forms of the disease, mainly due to reactivation

of latent foci but often resembling the AF of PCM [27]. Nev-

ertheless, despite the increasing number of known primary im-

munodeficiencies and their improved diagnosis in Brazil, no

patient with PCM associated with primary immunodeficiency

was reported in the medical literature. This leaves open the

question of whether a genetic predisposition may account for

PCM clinical disease in the general population. Herein, we

describe the first patient with clinical PCM disease and a pri-

mary immunodeficiency affecting the IL-12/IL-23–IFN-g axis.

CASE REPORT

Our patient is a 24-year-old man of Portuguese descent. He is

the first son of a nonconsanguineous couple and was born in

a small city in the inlands of São Paulo State, Brazil. After

bacille Calmette-Guérin (BCG) vaccination as a newborn, he

presented to the hospital at 7 months of age with a cervical

adenopathy caused by Mycobacterium bovis BCG. The infection

resolved after a 6-month course of rifampin, isoniazid, and

ethambutol. At 2 years of age, he presented with relapses of

lymphadenitis, which responded only partially to multiple an-

tibiotic treatments. At the age of 6 years, disseminated disease

caused by Salmonella enterica serotype Typhimurium was di-

agnosed with multiple lymphadenitis, arthritis of the right hip,

and osteomyelitis of the right ilium and femur. This infection
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Figure 2. Axial CT of the abdomen during Paracoccidioides brasiliensis disseminated infection. It is important to note the extensive intra-abdominal
lymphadenomegaly.

lasted 7 years and led to osteoarticular sequellae (figure 1). At

20 years of age, after a period of 7 years without symptoms,

he developed persistent fever and abdominal pain with dissem-

inated lymphadenopathy and hepatosplenomegaly (figure 2).

Biopsy of an abdominal lymph node showed a juvenile (acute)

form (AF) of paracoccidioidomycosis, supported by high titers

of serum antibodies to P. brasiliensis antigens (figure 3). The

infection was controlled by trimethoprim-sulfamethoxazole

(160 mg trimethoprim and 800 mg sulfamethoxazole twice per

day). At the time of writing, the patient is 24 years of age and

is healthy after completion of a 5-year course of therapy.

Findings of laboratory analysis conducted during AF PCM

showed mild leukopenia (3400 cells/mm3) and moderate lym-

phopenia (600 cells/mm3); normal serum IgM levels (41 mg/

dL), low serum IgA and IgG levels (37 mg/dL and 533 mg/dL,

respectively), and elevated IgE levels (383 IU/L); test results

that were positive for IgG antibody to cytomegalovirus and

negative for IgM antibody to cytomegalovirus, rubella, and Tox-

oplasma gondii; and serological test results that were negative

for Epstein-Barr virus and positive for P. brasiliensis. Lympho-

cyte phenotyping showed depletion of CD4+ T cells before and

after treatment of PCM (figure 4). Evaluation of the lympho-

proliferative capacity of the patient’s T lymphocytes before ther-

apy showed normal stimulation indexes for phytohemagglu-

tinin and pokeweed mitogen and a decreased stimulation index

for the anti-CD3 monoclonal antibody (figure 5). In contrast,

the antigen-specific T cell proliferation in vitro was depressed

for all of the following antigens that were tested: Candida met-

abolic antigen (CMA), tetanus toxoid, Mycobacterium tuber-

culosis purified protein derivative, and the 43-kD glycoprotein

from P. brasiliensis (gp43). Improvement of the antigen-specific

responses was verified after initiation of treatment, revealing a

normal stimulation index for CMA. The rate of IL-2 secretion

induced by phytohemagglutinin and CMA and gp43 antigens

was low, and the rate of IFN-g secretion induced by CMA and

gp43 was high (figure 6).

A mutation in the gene encoding IL-12Rb1 was suspected

by single-strand conformational polymorphism and was iden-

tified as a homozygous missense mutation resulting in substi-

tution of leucine for phenylalanine at amino acid 77 [17]. The

mutation is recessive and associated with loss of function re-

sulting in complete IL-12/IL-23Rb1 deficiency, with no de-

tectable surface expression of the receptors. The patient’s par-

ents are heterozygous for this mutation. One his 2 siblings, a
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Figure 3. Histopathologic characteristics of an affected lymph node biopsy specimen. Top, Hematoxylin-eosin–stained specimen showing granuloma
with extensive areas of necrosis (original magnification, �100). Bottom, Grocott-stained specimen showing multiple fungal structures inside the
granuloma, with characteristic budding (arrows; original magnification, �400).

20-year-old brother, is heterozygous for the gene encoding IL-

12Rb1, and the other, a 14-year-old sister, has 2 wild-type

IL12RB1 alleles [17]. Both siblings were vaccinated with BCG

without adverse reaction and, at the time of writing, are healthy.

DISCUSSION

We herein describe the first patient with PCM disease and a

well-defined primary immunodeficiency—inherited IL-12/IL-

23Rb1 deficiency. This is also the first patient from a PCM-

endemic country to be described with a defect of the IL-12/

IL-23–IFN-g axis. This association may be coincidental,

because this is the first and only known case of PCM associated

with a defect in the IL-12/IL-23–IFN-g axis. Moreover, al-

though the patient developed an acute (disseminated) form of

PCM, there was a prompt and full response to therapy with

oral trimethoprim-sulfamethoxazole, which is usually indicated
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Figure 4. Lymphocyte counts for patient before (red circles) and 6
months after (black circles) the beginning therapy. Data are presented as
absolute total leukocyte counts (Leukoc), lymphocyte counts (Lymph), T
cell counts (CD3+), helper T cell counts (CD4+), cytotoxic T cell counts
(CD8+), B cell counts (CD19+), and NK cell counts (CD3�CD56+). Gray boxes,
range of normal values [39].

Figure 5. Proliferative response of mononuclear cells under the fol-
lowing stimuli: phytohemagglutinin (PHA), monoclonal antibody anti-CD3
(OKT3), pokeweed mitogen (PWM), Candida metabolic antigen (CMA),
tetanus toxoid (TT), Mycobacterium tuberculosis purified protein derivative
(PPD), and 43-kD glycoprotein from Paracoccidioides brasiliensis (gp43).
Data were obtained at the beginning of the treatment course (red circles)
and after 6 months of therapy (black circles) during clinical remission of
the disease. Gray boxes, 95% CIs established by the analysis of a normal
population studied at the Laboratory of Investigation in Dermatology and
Immunodeficiencies (São Paulo, Brazil); open circle, pretreatment stimu-
lation index not determined.

for milder cases of PCM. On the other hand, the characteristics

of P. brasiliensis infection suggest that PCM in our patient was

not fortuitous but, rather, a consequence of the IL-12/IL-23Rb1

defect. Indeed, there is a striking clinical and histological re-

semblance between PCM and mycobacterial diseases, partic-

ularly tuberculosis [29]. Although phylogenetically distant, the

infectious agents of this 2 diseases invade the host via the re-

spiratory tract, persist within macrophages, cause granuloma

formation, and disseminate within the reticuloendothelial sys-

tem. This study illustrates the importance of the microbial

environment in the clinical presentation of primary immu-

nodeficiencies [30].

The studies of IFN-g knockout mice established the crucial

role of IFN-g in PCM [31. This research showed that IFN-g

is essential for the resistance and survival of P. brasiliensis–

infected mice. Furthermore, mice deficient in IFN-g receptor

were also highly susceptible to P. brasiliensis intratracheal in-

fection, with increased morbidity and mortality [32]. It is in-

teresting that dissemination of the infection was not observed

in association with murine deficiencies in IFN-a or IFN-b re-

ceptors [33]. IL-12 knockout mice also demonstrated that IL-

12 is of paramount importance in host defense against P. bras-

iliensis [34]. Our present study is thus consistent with the

findings in animal models of PCM, which, in turn, suggest that

the association of human IL-12Rb1 deficiency and PCM is not

fortuitous.

Patients with PCM often show a suppression of IFN-g se-

cretion in response to P. brasiliensis antigens, contributing to

the inability to restrict the dissemination of P. brasiliensis [35].

The importance of these immune functions is underscored by

the potent secretion of IFN-g depicted by healthy sensitized

subjects who live in areas of endemicity and have positive par-

acoccidioidin skin test results. As a result, these individuals

probably develop an efficient immune response that prevents

the onset of the disease. Previous studies showed a preferential

secretion of IL-4, IL-5, and IL-10 in patients with AF PCM

[36]. These mediators associated with low IFN-g levels were

correlated with a more severe manifestation of the disease. In-

termediate immune responses were observed in patients with

CF PCM, whose IFN-g and IL-10 production did not differ

from that observed in the group with AF PCM, although IL-

4 and IL-5 levels were significantly lower.

Furthermore, in our laboratory, G. Benard and colleagues

demonstrated that patients with either AF or CF PCM showed

diminished IL-12 secretion in response to gp43, the main P.

brasiliensis antigenic component [37]. Addition of IL-12 mark-

edly enhanced the mean rate of gp43-elicited IFN-g secretion

by PBMCs. The addition of IL-2 resulted in an additional in-

crease in the IFN-g production [38], probably owing to the

fact that IL-2 is crucial for the persistence of the IL-12Rb2

subunit after peptide stimulation of T cells through T cell re-

ceptor [39]. Indeed, lymphocytes exposed to gp43 obtained

from patients with PCM express very low levels of the b2-

subunit, compared with cured patients (C. C. Romano and G.

Benard, personal communication). Our patient did not secrete

high levels of IL-10, showing a selective depression of IL-12

responsiveness without an increase of IL-4 and IL-10. This
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Figure 6. Production of cytokines (after 6 months of antifungal therapy and clinical remission of the infection) in response to stimulation with
phytohemagglutinin for 24 h, Candida metabolic antigen (CMA) for 72 h, and the 43-kD glycoprotein from Paracoccidioides brasiliensis (gp43) for 72
h. PBMCs obtained from 1 patient (black circles) and 10 control subjects (box plots) were stimulated in culture, and supernatants were assessed for
IL-2, IFN-g, IL-4, and IL-10. Boxes, interquartile ranges; horizontal lines within boxes, median values; whiskers, maximum and minimum values.

finding could be related to a possible minor role played by IL-

10, instead of IFN-g, in the control of PCM

In conclusion, the present case report emphasizes that the

diagnosis of defects of the IL-12–IFN-g axis should not only

be considered for patients with mycobacterial and/or Salmo-

nella infection, but also for patients presenting with PCM or

other deep mycoses. This assumption can be emphasized by

the fact that an article in this issue describes an autosomal

dominant negative IFN-gR1–deficient patient from the United

States who presented with disseminated histoplasmosis [40].

Histoplasma and Paracoccidioides organisms are taxonomically

closely related and even belong to the same family—Onygen-

aceae. Their differences lie in the genus: Ajellomyces (Histo-

plasma) and Paracoccidioides. Therefore, patients who present

with severe or refractory systemic mycoses may have defects in

the genes of the Mendelian susceptibility to mycobacterial dis-

ease group and should be investigated for inherited distur-

bances of the IL-12/IL-23–IFN-g axis.
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An 11-year-old girl who presented with disseminated tuber-

culosis associated with secondary hemophagocytosis received

a diagnosis of interleukin-12 receptor b1 chain deficiency.

This diagnosis of immunodeficiency should, therefore, be

considered for children with disseminated tuberculosis, even

in the absence of any personal or familial history of prior

infection by weakly pathogenic Salmonella and Mycobacte-

rium species.

Mendelian susceptibility to mycobacterial disease (MIM 209950)

is a rare syndrome that predisposes patients to clinical disease

caused by weakly virulent mycobacterial species, such as bacille

Calmette-Guérin (BCG) vaccines and nontuberculous environ-

mental mycobacteria [1–4]. Patients are also susceptible to the

more virulent species Mycobacterium tuberculosis, the agent of

tuberculosis [5–8]. Other infectious diseases rarely occur in

these patients, with the exception of nontyphoid salmonello-

sis. Five disease-causing autosomal genes (IFNGR1, IFNGR2,

STAT1, IL12B, IL12RB1) have been identified, and allelic het-

erogeneity accounts for the existence of 10 defined disorders

that result in impaired IFN-g–mediated immunity [3, 4]. De-

fects in the IFNGR1, IFNGR2, and STAT1 genes are associated

with impaired cellular responses to IFN-g, and defects in IL12B

and IL12RB1 are associated with impaired IL-12–dependent

and IL-23–dependent production of IFN-g. Complete defi-
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ciencies of the 2 IFN-g receptor components (IFN-gR1 and

IFN-gR2) are associated with severe mycobacterial diseases that

have an early onset. Partial IFN-gR1, IFN-gR2, and signal

transducer and activator of transcription (STAT)–1 molecule

deficiencies, like complete IL-12p40 and IL-12Rb1 deficiencies,

are associated with a later onset and a better prognosis [3, 4].

IL-12Rb1 deficiency is the most common genetic etiology of

Mendelian susceptibility to mycobacterial disease, with 54 pa-

tients with this syndrome in the literature [6, 8, 9–19]. The

known mutations in the IL12RB1 gene are recessive and are

associated with the abolition of the response to both IL-12 and

IL-23 [18, 19]. In all patients except one, no IL-12Rb1 was

detectable on the cell surface. In that one patient, the mutation

was associated with the surface expression of nonfunctional,

internally truncated receptors [19]. Patients with IL-12Rb1 de-

ficiency classically experience clinical disease caused by BCG,

environmental mycobacteria, and nontyphoid Salmonella spe-

cies. One patient from Morocco had abdominal tuberculosis

at 18 years of age, and she received a diagnosis of IL-12Rb1

deficiency after the deficiency had been diagnosed in her

younger brother, an index case patient with BCG disease and

nontyphoid, extraintestinal salmonellosis [6]. In a family from

Spain, a diagnosis of IL-12Rb1 deficiency was considered for

a 6-year-old girl with disseminated tuberculosis, because her

sister had a history of extraintestinal nontyphoid salmonellosis

[8]. The patient’s sister also developed pulmonary tuberculosis,

despite receipt of isoniazid prophylaxis. To date, IL-12Rb1 de-

ficiency has thus been diagnosed in a few children and teenagers

with tuberculosis, on the basis of a personal or familial history

of clinical disease that was caused by weakly virulent myco-

bacteria or Salmonella species. We describe a child with IL-

12Rb1 deficiency and disseminated tuberculosis who had no

relevant personal or familial history.

Case report. An 11-year-old girl was admitted to the hos-

pital (Department of Pedicatrics, Baskent University, Ankara,

Turkey) with fever, a cervical mass with purulent discharge,

abdominal pain, weakness, and night sweats. The patient was

the fourth child of healthy, consanguineous parents. The patient

and her parents and siblings had been vaccinated with BCG

vaccine, with no adverse effect. One of the patient’s sisters had

died of an infection of unknown origin at the age of 1 year.

An analysis of the family’s medical history revealed no cases

of tuberculosis, and the patient’s mother and siblings had neg-

ative tuberculin skin test results. The patient’s illness began 3

months before admission, with fever, anorexia, fatigue, and

night sweats. Her weight and height were below the third per-
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Figure 1. Frontal (A) and horizontal (B) views of MRI of the abdomen showing a large abscess (black arrow) with a thick wall (white arrow) and
septum in close contact with the left hemipelvis.

Figure 2. A well-circumscribed tuberculous granuloma in a biopsy
sample of the abdominal mass (hematoxylin-eosin stain).

centile. The patient’s diphtheria-tetanus-pertussis and attenu-

ated poliovirus vaccinations were up to date. The patient had

been revaccinated with BCG vaccine after she had received a

negative tuberculin skin test result at 7 years of age; no com-

plications occurred.

Physical examination revealed fever, hepatomegaly, and bi-

lateral packed cervical and supraclavicular lympadenopathies—

some of which were fistulized—that measured 3 cm in diameter.

An intra-abdominal mass measuring 4 cm in diameter was

palpable in the periumbilical area. Laboratory test results were

as follows: hemoglobin concentration, 9.9 g/dL; WBC count,

cells/L; platelet count, platelets/L; and se-9 921.5 � 10 933 � 10

rum C-reactive protein concentration, 96 mg/L. Serum levels

of electrolytes, glucose, and creatinine, as well as the results of

renal and liver function tests, were within normal ranges. No

bacterial pathogens were detected in blood or stool cultures. No

serum antibodies to herpes simplex virus, Epstein-Barr virus,

cytomegalovirus, Toxoplasma gondii, and human herpes virus 8

were detected.

Ultrasonography of the abdomen showed multiple enlarged

lymph nodes of 3 cm in diameter on the periportal, celiac,

mesenteric, para-aortic, and pericaval areas. CT of the cervix,

thorax, abdomen, and pelvis demonstrated multiple cervical,

mediastinal, and abdominal lymphadenopathies with no de-

tectable sign of primary infection of the lungs. MRI of the

abdomen revealed the formation of an abscess in the left psoas

muscle (figure 1). An increase in activity for the left hemipelvis

and the lateral condyl of the femur was detected by technetium

Tc 99m methyldiphosphonate scintigraphy of the skeletal sys-

tem. The findings of thoracic and lumbar MRI were normal.

Biopsy of an abdominal lymph node showed tuberculoid

granulomas and numerous visible acid-fast bacilli within his-

tiocytes (figure 2). Bone marrow aspiration and biopsy showed

the marrow to be hypercellular, with numerous macrophages

and marked hemophagocytosis. Liver biopsy revealed granu-

lomatous hepatitis, with granulomas consisting of epitheloid

histiocytes and multinucleated giant cells, some of which dis-

played emperipolesis. A culture of pus obtained from the ab-

scess in the psoas muscle revealed M. tuberculosis, which was

resistant to isoniazid and ethambutol. The tuberculin skin test

result was positive ( mm). The patient received a di-18 � 15

agnosis of disseminated drug-resistant tuberculosis and sec-

ondary hemophagocytosis. Because the initial microbiological

and pathologic findings suggested an atypical, multidrug-

resistant mycobacterial infection, a daily regimen of rifampin,

clarithromycin, ciprofloxacin, and streptomycin was initiated.

The patient’s fever subsided 13 days after the initiation of treat-

ment, with improvement of the other symptoms noted. The

findings of subsequently performed physical examinations were
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normal, and laboratory test results gradually returned to nor-

mal. Treatment with streptomycin was ended after 30 days.

However, the patient developed a relapse of tuberculosis in the

abdominal lymph nodes 8 months after treatment initiation,

as was shown by signs of abdominal lymph node enlargement

on an ultrasound scan and by the results of a lymph node

biopsy, which revealed epitheloid histiocytes and multinucle-

ated giant cells without acid-fast bacilli. The culture result for

this biopsy specimen was negative for acid-fast bacilli and my-

cobacteria. Amikacin and cycloserine were added to the regi-

men, and the patient responded well to treatment during the

5 months after treatment initiation.

Whole blood samples were diluted, plated, and stored at

37�C, either unstimulated, stimulated with BCG alone, or stim-

ulated with BCG and IL-12. IFN-g was quantified in the su-

pernatant after 48 h, as described elsewhere [20]. IFN-g pro-

duction did not increase in response to the addition of IL-12

to the test well, whereas a 1.5-log increase was observed for

the wells corresponding to the control specimen and the spec-

imen from the patient’s mother (not shown). The Epstein-Barr

virus–transformed B cells of the patient lacked IL-12Rb1, as

shown by flow cytometry performed with 2 different antibodies

(24E6 and 2B10; Pharmingen). The exon and flanking intron

regions of the IL12RB1 gene (encoding IL-12Rb1) were am-

plified by PCR. Direct sequencing of the PCR products revealed

a homozygous mutation affecting a consensus splice site (1021

+ 1 G 1 C). This mutation results in the skipping of exon 9, as

shown by cDNA-PCR. Despite the residual expression of a wild-

type IL12RB1 mRNA, blood cells and T cell blasts failed to

respond to IL-12 in vitro, in terms of IFN-g production. The

patient’s parents, brother, and sister were heterozygous for the

mutant allele and for the wild-type allele. The patient therefore

received a diagnosis of IL-12Rb1 deficiency due to a homo-

zygous mutation in the IL12RB1 gene. The present study was

conducted according to the principles expressed in the Helsinki

Declaration, and informed consent was obtained from the pa-

tient’s family.

Discussion. In the present report, we describe a child with

disseminated tuberculosis and inherited IL-12Rb1 deficiency.

Tuberculosis in children with IL-12Rb1 deficiency appears to

run a relatively unusual course, because the children described

in previous reports had abdominal tuberculosis [6], dissemi-

nated tuberculosis [8, 15], or pulmonary tuberculosis, despite

receipt of isoniazid prophylaxis [8]. The case reported here

lends weight to the argument that a diagnosis of inherited IL-

12Rb1 deficiency should be considered for children with severe,

extrapulmonary tuberculosis. These children probably develop

a severe form of tuberculosis soon after infection. Children

with other disorders of the IL-12/IFN-g axis are probably also

prone to such severe forms of tuberculosis with early onset, as

suggested by our previous description of tuberculosis in chil-

dren with partial IFN-gR1 deficiency [5] and IL-12p40 defi-

ciency [7].

The prevalence of tuberculosis in IL-12p40–deficient and IL-

12Rb1–deficient patients is lower than that of disease due to

BCG or nontuberculosis mycobacteria infection [21]. To date,

only 4 of 73 patients with IL-12p40 or IL-12Rb1 deficiency

have been reported to experience tuberculosis (3 [5.6%] of 54

patients with complete IL-12Rb1 deficiency and 1 [5.3%] of

19 patients with complete IL-12p40 deficiency) [21]. This may

be because patients are less frequently exposed to M. tuberculosis

than to the BCG vaccines (which have 85% coverage world-

wide) and to the almost ubiquitous environmental mycobac-

teria. This, in turn, probably accounts for the fact that all 4

previously described case patients had a personal or familial

history of clinical disease caused by weakly virulent mycobac-

teria or Salmonella species.

The patient described here is the first patient with an in-

herited disorder of the IL-12/IFN-g axis and tuberculosis to be

identified in the absence of any relevant personal or familial

history. The 2 previous BCG inoculations had possibly pro-

tected the patient from subsequent nontuberculosis mycobac-

teria disease [15]. In keeping with the low penetrance of com-

plete IL-12Rb1 deficiency for the case definition phenotype of

BCG/ environmental mycobacteria clinical disease, the present

report thus suggests that there may be other patients with IL-

12Rb1 deficiency and tuberculosis as the sole clinical manifes-

tation. Together with our previous reports [5–8], the present

report provides strong evidence that the development of tu-

berculosis in the general population may be favored by a Men-

delian predisposition. A diagnosis of IL-12Rb1 deficiency or of

another related genetic defect [4] should thus be considered

for select children with unusually severe tuberculosis, even if

they have no personal or familial history of infection with

weakly virulent Mycobacterium or Salmonella species.
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2 Institut National de la Recherche Agronomique, Paris, France, EU
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The IL-12/IFN-c axis is crucial for protective immunity toMycobacterium in humans andmice.

Our goal was to analyze the relative contribution of various human blood cell subsets and

molecules to the production of, or response to IL-12 and IFN-c. We designed an assay for the

stimulation of whole blood by live M. bovis Bacillus Calmette-Guérin (BCG) alone, or BCG

plus IL-12 or IFN-c, measuring IFN-c and IL-12 levels. We studied patients with a variety of

specific inherited immunodeficiencies resulting in a lack of leukocytes, or T, B, and/or NK

lymphocytes, or polymorphonuclear cells, or a lack of expression of key molecules such as

HLA class II, CD40L, NF-jB essential modulator (NEMO), and IL-1 receptor-associated

kinase-4 (IRAK-4). Patients with deficiencies in IL-12p40, IL-12 receptor b1 chain (IL-12Rb1),
IFN-cR1, IFN-cR2, and STAT-1 were used as internal controls. We showed that monocytes

were probably themain producers of IL-12, and that NK and T cells produced similar amounts

of IFN-c. NEMO and IRAK-4 were found to be important for IL-12 production and subsequent

IFN-c production, while a lack of CD40L or HLA class II had no major impact on the IL-12/

IFN-c axis. The stimulation of whole blood by live BCG thus triggers the IL-12/IFN-c axis by an
IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK, and

T lymphocytes.

Key words: Human / Primary immunodeficiency / Mycobacterium / Cytokines / Cellular
activation

1 Introduction

IL-12p70, the biologically active form of IL-12, consists of

two subunits – IL-12p35 and IL-12p40 – encoded by the

IL12A and IL12B genes, respectively, and is produced

principally by phagocytes and dendritic cells [1]. IL-

12p70 is required to stimulate the production of large

amounts of IFN-c by natural killer (NK) and T cells.

Phagocytes have also been shown to respond to IL-12

and to produce IFN-c, although generally in smaller

amounts [2]. IFN-c is a noncovalently linked homodimeric

glycosylated protein. Its production is induced principally

by IL-12, but also by other cytokines such as IL-1b, IL-18,
IL-23, IL-27, and TNF-a [3, 4]. The p40 subunit is also a

component of IL-23, which binds to a receptor sharing a

b1 subunit with the IL-12R and shares many biological

properties with IL-12.The crucial role played by the IL-12/

23/IFN-c axis in mycobacterial immunity was first

demonstrated in mice [5].

Recent investigations of human patients with Mendelian

susceptibility to mycobacterial disease (MSMD) have

[DOI 10.1002/eji.200425221]
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demonstrated that the IL-12/23/IFN-c axis is also

important in human immunity to mycobacteria [6, 7].

Patients with MSMD are susceptible to disease caused

by live BCG vaccine and mildly virulent environmental

mycobacteria. Paradoxically, they are resistant to most

others microorganisms, with the exception of Salmonella

[6]. Several types of mutations (recessive and dominant,

amorphic and hypomorphic) have been identified in five

genes (IL12B, IL12RB1, IFNGR1, IFNGR2, STAT1), which

cause ten different genetic diseases [6, 8]. Patients with

IL-12p40 and IL-12R b1 chain (IL-12Rb1) deficiency with

impaired IL-12- and IL-23-mediated immunity display

defects in the production of IFN-c, whereas patients with

IFN-cR1, IFN-cR2, and STAT-1 deficiency display an

impaired response to IFN-c.

The cooperation and relative contributions of the various

blood cells subsets involved in the production of, or

response to, IL-12/IL-23 and IFN-c in response to

mycobacteria are largely unknown. We dissected the

cellular and molecular basis of the production of, and

response to, the IL-12/IFN-c axis, upon stimulation by live

mycobacteria, in patients with a variety of well-defined

primary immunodeficiencies [9]. The conditions studied

included reticular dysgenesis, T– B– NK+ and

T– B+ NK– SCID, NK cell deficiency, X-linked agamma-

globulinemia, CGD, HIES, CD40L, HLA class II, NF-jB
essential modulator (NEMO), IL-1R-associated kinase-4

(IRAK-4), IFN-cR1, IFN-cR2, STAT-1, IL-12p40 and IL-

12Rb1 deficiencies [8, 10–13] (see Table 1 for abbrevia-

tions). We studied the production of IL-12 and IFN-c in

Table 1. Description of the three groups of patients in the study and their vulnerability to mycobacteria

Disordera) Abbreviation Susceptibilityb) No.

Controls

Internal healthy controls – 50

Group 1: Selective cellular defects

Kostmann’s syndrome PMN– – 3

Bruton’s disease B– – 2

Natural killer cell deficiency NK– – 1

SCID T/B T– B– + 4

SCID T/NK T– NK– + 3

Reticular dysgenesis RD + 1

Group 2: Defects other than MSMD without cytopenia

XL-anhidrotic ectodermal dysplasia with immunodeficiency XL-EDA-ID + 2

IRAK-4 deficiency IRAK-4 – 3

Chronic granulomatous disease CGD + 3

Hyper-IgE syndrome HIES � 2

CD40L deficiency CD40 L � 2

HLA class II immunodeficiency HLA-II – 4

Group 3: MSMD defects

Complete IFN-cR1 deficiency cIFN-cR1 + 5

Complete IFN-cR2 deficiency cIFN-cR2 + 3

Partial IFN-cR1 deficiency pIFN-cR1 + 10

Partial STAT-1deficiency pSTAT-1 + 6

Complete IL-12p40 deficiency cIL-12p40 + 3

Complete IL-12Rb1 deficiency cIL-12Rb1 + 33

a) Group 1: Kostmann’s syndrome (lack of PMN cells), Bruton’s disease (lack of B cells), NK cell deficiency (lack of NK cells) [11],

SCID T/B (lack of T and B cells), SCID T/NK (lack of T and NK cells) and reticular dysgenesis (lack of leukocytes). Group 2: XL-

anhidrotic ectodermal dysplasia with immunodeficiency (identified NEMO mutation), IRAK-4 deficiency (IRAK4 mutation with

pyogen microorganisms susceptibility), autosomal or X-recessive chronic granulomatous disease (mutations in the genes

encoding the NADPH oxidase subunits), hyper-IgE syndrome (gene defect not known), CD40L deficiency (mutation in the

CD40L gene), HLA-II deficiency (mutation in transactivating factors). Group 3: complete or partial molecular deficiencies

(mutation in IFNGR1, IFNGR2, STAT1, IL12B, and IL12RB1).
b) Susceptibility to poorly virulent mycobacteria; these conditions were associated with a high risk (+), low risk (�) or no risk (–) of

BCG/environmental mycobacteria disease [9].
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vitro in the blood of these patients, in response to live

BCG, BCG plus IFN-c, and BCG plus IL-12.

2 Results

2.1 Production of IL-12 and IFN-c in whole blood
from healthy controls

We compared the production of IL-12 or IFN-c after

stimulation with BCG alone, BCG plus IFN-c, and BCG

plus IL-12 in purified PBMC and diluted whole blood. We

added IL-12 or IFN-c to BCG as they are known to be

potent inducers of IFN-c and IL-12. We chose to assess

both the IL-12p70 and IL-12p40 response of blood cells,

as IL-12p70 is the natural cytokine, but IL-12p40 is

expressed in higher amounts. We decided to use whole

blood for the study, as this method was more likely to be

better fitted for the purpose of this assay, being more

reliable (whole blood is the most appropriate medium in

which to study cytokine production in vitro) and taking

into account the reciprocal interactions of all the blood

cells. It was also quicker and easier to perform (data not

shown). In vitro depletion of human cells would result in

difficulties inherent to the depletion techniques. Anti-

body-mediated depletion would cause cytokine release

whereas column depletion would cause a mechanical

stress. From this preliminary study we found that (1)

levels of IL-12 and IFN-c production were maximal for a

multiplicity of infection (MOI) of 20 BCG per leukocyte

(not shown); (2) levels of IL-12p70 and IL-12p40

production in response to BCG or BCG plus IFN-c were

maximal after 12–18 h of activation; and (3) levels of IFN-

c in response to BCG alone or BCG plus IL-12 were

highest after 48 h of stimulation (not shown).

Whereas PBMC counting is known to vary with age, we

also determined the influence of age and gender in the

50 healthy subjects. Age and gender had no significant

effect on the production of IFN-c, IL-12p70, or IL-12p40
by controls, regardless of the type of stimulation (not

shown). Among the 50 healthy controls, there was no

significant correlation between the levels of blood

monocytes and IL-12p40 or IL-12p70 production (not

shown). We have not tested healthy children, but results

for cytokine production were standardized with respect

to the number of PBMC and are expressed as pg/ml/

106 PBMC.

In the 50 healthy BCG-vaccinated controls analyzed,

levels of IL-12p40 at 18 h were generally low without

activation (mean 60 pg/ml/106 PBMC) with a 95%

confidential interval of the mean (CI95%) ranging 0–655.

Following stimulation with BCG, IL-12p40 levels in-

creased by a factor of 5 (mean 248 pg/ml/106 PBMC,

CI95% 10–2,051). Activation with BCG plus IFN-c
increased the levels of this cytokine 8 times more than

stimulation with BCG (mean 2,074 pg/ml/106 PBMC,

CI95% 211–8,599; Figs. 1A–3A). In contrast, IL-12p70 was

barely detectable following stimulation with BCG (mean

2 pg/ml/106 PBMC, CI95% 0–6). The addition of IFN-c
amplified the response to BCG, resulting in 100 to

150 times more IL-12p70 production (mean 148 pg/ml/

106 PBMC, CI95% 7–861; (Figs. 1B–3B). IFN-c levels at

48 h were very low in medium alone (mean 6 pg/ml/

106 PBMC, CI95% 0–21). In the presence of BCG, IFN-c
levels were about 700 times higher (mean 4,403 pg/ml/

106 PBMC, CI95% 266–21,026). The addition of IL-12 to

BCGfurther increased IFN-cproduction, to levels17 times

higher than those with BCG (mean 76,265 pg/ml/

106 PBMC, CI95% 18,059–223,263; Figs. 1C–3C).

We also analyzed the IL-12p40, IL-12p70, and IFN-c
production of healthy controls who had not been

vaccinated with BCG (n=8), five of whom had been

activated with a delay due to the shipment. We observed

a similar range of variation to that observed for the BCG-

vaccinated healthy controls. Similar responses were

found for the subgroup of non-vaccinated healthy travel

controls, with slightly lower values (not shown). Thus,

these results for a limited cohort of non-BCG-vaccinated

healthy subjects suggest that prior BCG vaccination has

no effect on the results of the assay. The BCG status of

the controls was shown to have no significant impact on

this in vitro blood test. In any event, most (over 90%) of

the patients we analyzed had been vaccinated with BCG.

2.2 Response of patients with selective cellular
defects (group 1)

We evaluated the contributions of the various human

blood cell subsets to the production of, and response to,

IL-12 and IFN-c, by analyzing six types of patients with

primary immunodeficiency diseases involving various

specific cellular defects (Table 1). Normal production of

IL-12p40 and IL-12p70 was observed in patients lacking

PMN cells (n=2), B cells (n=2), NK cells (n=1, analyzed

twice), and in patients lacking both T and B cells (n=4) or

both T and NK cells (n=3). A subnormal IL-12p70 (but not

IL-12p40) production was observed for one PMN–

patient and may reflect an undergoing illness. Thus,

B cells, NK cells, and T cells do not significantly

contribute to whole-blood IL-12p40 and IL-12p70

production in response to BCG infection. More surpris-

ingly, the contribution of PMN cells to IL-12 production [1]

is not demonstrated by this blood assay.

It was not possible to check the major role of monocytes

in IL-12 production in the absence of known selective

3278 J. Feinberg et al. Eur. J. Immunol. 2004. 34: 3276–3284
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defects in monocytes. However, such a role was

indirectly suggested by the study of a patient with

reticular dysgenesis, who had no leukocytes and failed to

produce IL-12p40 or IL-12p70 (Fig. 1A, B). Our data are

consistent with the notion that monocytes are the blood

cells responsible for the production of IL-12 in response

to BCG in vivo.

We then analyzed the contribution of the various cell

subsets to IFN-c production. Patients with neutropenia

(n=3) produced IFN-c in similar amounts to the controls in

response to BCG and BCG plus IL-12. Patients lacking

B cells (n=2) respond to stimulation with BCG alone by

producing low to “normal” levels of IFN-c. The addition of

IL-12 increased IFN-c production by a factor of about 50.

In both defects, levels of IFN-c production were similar to

those in healthy controls, taking into account the

individual variability of the response observed in controls.

In contrast, our patient lacking NK cells failed to produce

detectable IFN-c in response to BCG alone, but

produced 1,100 pg/ml/106 PBMC IFN-c after activation

with BCG plus IL-12. SCID patients that lacked both

T and B cells (n=4) displayed no detectable IFN-c
production after BCG activation and a low level of IFN-

c production in response to BCG plus IL-12 (mean

4,000 pg/ml/106 PBMC). Strikingly, patients lacking both

T and NK cells (n=3) produced no detectable IFN-c in

response to BCG, and very little IFN-c in response to

BCG plus IL-12 (mean 99 pg/ml/106 PBMC). In the

absence of T and NK cells, these small amounts of

IFN-c were probably produced by the patients’ mono-

cytes, detected by this in vitro blood assay. Our patient

with reticular dysgenesis was unable to produce IFN-c,
even after stimulation with BCG plus IL-12 (Fig. 1C). This

suggests that NK and T cells are primarily responsible for

the production of IFN-c in the blood in response to live

BCG. Further investigations of a larger number of

patients with NK deficiency are required to determine

more accurately the relative contributions of NK and

T cells, which seem to be equivalent, based on the

present study.

2.3 Response of patients with immune defects
impairing T cell/antigen-presenting cell
cooperation (group 2)

We analyzed, in group 2, six primary immunodeficiency

diseases (Table 1) [9, 13]. Patients with complete CGD
·

Fig. 1. Cytokine production in the supernatants of whole-

blood cells from patients with a lack of PMN (PMN–), B (B–),

NK (NK–), Tand B (T– B–), Tand NK (T– NK–), or myeloid and

lymphoid cells (reticular dysgenesis, RD), unstimulated or

stimulated by BCG alone or BCG plus cytokine, as detected

by ELISA. The amounts of cytokine secreted are normalized

for 106 PBMC on a logarithmic scale and averages are

indicated as solid bars. (A) IL-12p40 production at 18 h. (B)

IL-12p70 production at 18 h. (C) IFN-c production at 48 h.

The same set of control data are replicated for each group of

patient.
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(n=3), CD40 ligand (CD40L; n=2), and HLA-II (n=4)

deficiency displayed normal induction of IL-12p40 and

IL-12p70 (Fig. 2A, B), despite a high background

production of IL-12p40 in some patients. Low, but

detectable, levels of IL-12p40 associated with low to

normal levels of IL-12p70 were obtained for HIES (n=2)

and IRAK-4-deficient (n=3) patients, following activation

with BCG or BCG plus IFN-c. Patients with X-linked

anhidrotic ectodermal dysplasia with immunodeficiency

(XL-EDA-ID; n=2) also showed no or only a small increase

in IL-12p40 production after activation with BCG. The

levels of this cytokine increased by a factor of only 2 to 5

after BCG plus IFN-c activation. The defect in IL-12

production in these patients was confirmed by no IL-

12p70 detected in supernatants after activation with

BCG, associated to low levels detected after BCG plus

IFN-c (Fig. 2A, B). Overall, these data indicate that the

respiratory burst and CD40/CD40L interaction are not

involved in the production of IL-12p40 and IL-12p70 in

vitro after activation by BCG or BCG plus IFN-c , whereas

NEMO and IRAK-4, important triggers of NF-jB activa-

tion, play an important role in IL-12 production in

humans.

Consistent with our findings of normal levels of IL-12p40

and IL-12p70 production, patients with complete CGD

(n=3), HIES (n=2) and CD40L deficiency (n=2) produced

amounts of IFN-c in response to live BCG and BCG plus

IL-12 similar to those produced by the controls. The three

patients with IRAK-4 deficiency displayed normal

responses to BCG alone, but poor responses to the

addition of IL-12 to BCG. Patients with HLA-II deficiency

(n=4) produced little IFN-c after activation with BCG, and

IFN-c production levels did not normalize following the

addition of IL-12. This most likely resulted from the CD4

lymphopenia observed in HLA-II deficiency [14]. The

patients with XL-EDA-ID (n=2) also displayed a profound

defect in IFN-c production after BCG activation, and

levels of this cytokine increased little following stimula-

tion with IL-12 plus BCG (Fig. 2C). These data indicate

that the NF-jB signaling pathway plays a major role in

IFN-c production by blood cells in vitro in response to

infection with live BCG. The IRAK-4-deficient patients

also displayed an impaired response to BCG plus IL-12

activation in vitro.
·

Fig. 2. Cytokine production in the supernatants of whole-

blood cells from patients with XL-EDA-ID, IRAK-4 deficiency,

CGD, HIES, a mutation in the CD40L, and HLA-II immuno-

deficiency, unstimulated or stimulated by BCG alone or BCG

plus cytokine, as detected by ELISA. The amounts of

cytokine secreted are normalized for 106 PBMC on a

logarithmic scale and averages are indicated as solid bars.

Data for blood samples activated 24–48 h after collection are

plotted as closed circles. (A) IL-12p40 production at 18 h. (B)

IL-12p70 production at 18 h. (C) IFN-c production at 48 h.
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2.4 Response of patients with specific
molecular defects resulting in impairment of
the IL-12/IFN-c axis (group 3)

IL-12p40 was quantified in patients with MSMD

(MIM209950, [7]) (n=60). Thirty-three patients with

complete IL-12Rb1 deficiency were analyzed. Basal

levels of IL-12p40 production, in the absence of

stimulation, and levels of this cytokine after stimulation

with BCG or BCG plus IFN-c were similar to those in

healthy controls. We also generally observed an IL-12p70

response to live BCG plus IFN-c in these patients that

was similar to that in healthy subjects.

In contrast, no IL-12p40 or IL-12p70 was detected in the

blood of patients with complete IL-12p40 deficiency

(n=3), regardless of the type of stimulation. Patients with

complete IFN-cR1 (n=5) or IFN-cR2 (n=3) deficiency

displayed normal levels of IL-12p40 production following

activation with BCG, but no further response was

observed following the addition of IFN-c to live BCG

(similar levels or doubling at most). No IL-12p70

production in response to BCG or BCG plus IFN-c was

detected in patients with complete IFN-cR deficiency,

confirming previous reports of a complete lack of

response to IFN-c. Patients with partial IFN-cR1 defi-

ciency (n=10) or partial STAT-1 deficiency (n=6) displayed

normal IL-12p40 production in response to BCG alone,

but only a weak response to the addition of IFN-c
(increase by a factor of 1.5). Neither the patients with IL-

12p40 deficiency (n=3) nor those with partial or complete

defects in the IFN-c pathway (n=24) produced detectable

amounts of IL-12p70 in response to BCG plus IFN-c
(Fig. 3A, B). These data confirm that IL-12p70 production

by blood monocytes in response to BCG plus IFN-c is

principally controlled by the IFN-cR and the associated

transcription factor STAT-1.

IFN-cwas quantified in whole blood in the same cohort of

patients. Patients with complete IL-12Rb1 deficiency

produced only small amounts of IFN-c with BCG, and

displayed a complete lack of response to IL-12 (no

increase of the IFN-c production following the addition of

IL-12 to BCG). The three patients with the IL12B null

mutation displayed no detectable IFN-c production with

BCG. Low levels of IFN-c production were, however,

detected following activation with BCG plus IL-12,

probably reflecting the response of blood cells to the

exogenous IL-12 added to the medium. Patients with

complete IFN-cR deficiency (n=8), partial IFN-cR1
deficiency (n=10), or partial STAT-1 deficiency (n=6)

produced only small amounts of IFN-c after activation

with BCG, but displayed normal increase in IFN-c
production following the addition of IL-12 to live BCG

for stimulation (Fig. 3C). Thus, the production of IFN-c by

whole blood stimulated with BCG or BCG plus IL-12

strongly depends on the IL-12 pathway, and involves

both IL-12p70 and the IL-12R.

3 Discussion

Few studies of the IL-12/IFN-c axis have been carried out

in humans with PBMC or whole blood activated by live

mycobacteria [15, 16]. A study reported IFN-c production
in response to stimulation with live BCG in four

volunteers, completed by an in vitro whole-blood assay

[15]. Several studies of the IL-12/IFN-c axis have reported
the activation of PBMC or whole blood by heat-killed

mycobacteria or mycobacterial antigens such as PPD,

ESAT6, and CFP10 ([17] and references therein). These

studies aimed at describing the immune response to

M. tuberculosis and developing diagnostic assays for

tuberculosis. In a different perspective, Levin et al. [18,

19] reported a decrease in the level of TNF-a produced by

PBMC in response to endotoxin plus IFN-c/endotoxin
and in levels of IFN-c in response to mycobacterial

antigens in IFN-cR1 deficiency. Holland et al. [20] later

reported a 10% decrease in IL-12p40 and IFN-c
production in response to PHA in the PBMC of two

patients with MSMD due to loss-of-function mutations in

IFN-cR1. They also reported a decrease in PHA-induced

IFN-c production in a patient with a mutation affecting the

extracellular domain of IFN-cR2 [21].

However, the cellular basis of IL-12 and IFN-c production,
as well as that of the response to IL-12 and IFN-c, upon
blood stimulation by live or even dead mycobacteria, has

not been determined. Whole blood cultures and stimula-

tion by live mycobacteria enable the evaluation of the

contributions and reciprocal interactions of all cell types

and molecules in the sample. Our study is the first to

investigate a large cohort of patients (n=90) with such a

variety (n=18) of specific inherited immunodeficiencies to

dissect the IL-12/IFN-c axis at the cellular and molecular

level. Our studymostly dealt with small groups of patients

andwe cannot exclude the possibility that inter-individual

variability would somewhat change the global picture.

The normal IL-12p70 production in most patients lacking

T, B, NK, or PMN cells and the lack of IL-12p70

production in the patient with reticular dysgenesis,

suggest that the major blood cells responsible for IL-

12p70 production in response to BCG and BCG plus IFN-

c are probably monocytes (including bona fide mono-

cytes and dendritic cells), although the absence of a

specific humanmonocyte defect or defect of monocytes/

dendritic cells precludes definitive conclusions [22]. IL-

12p70 production is also strongly dependent on the NF-

jB pathway, as demonstrated by the diminished IL-12
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production in patients with NEMO and IRAK-4 deficiency.

Our results are also consistent with IL-12 production in

response to mycobacteria and IFN-c being largely

independent of molecules such as CD40L, HLA-II and

of the respiratory burst. However, this IL-12 response to

live BCG is controlled by the IL12B gene and IL-12

production in response to BCG plus IFN-c is heavily

dependent on the presence of functional IFN-cR1, IFN-
cR2, and STAT-1 molecules.

NK and T cells have been shown to make a major

contribution to IFN-c production in response to BCG.

Patients lacking NK or T cells or both NK and T cells

displayed similar profound defects in IFN-c production

following stimulation with BCG alone or BCG plus IL-12

(less pronounced than patients lacking both NK and

T cells). In contrast, neither B cells nor PMN cells seem to

be involved in the IFN-c production, as demonstrated by

the normal levels of IFN-c production in this assay for

patients with Kostmann’s and Bruton’s diseases. We

were also able to suggest the importance of molecules

such as IRAK-4 and NEMO which contribute to IFN-c
production, induced by IL-12 activation of NK and T cells.

Similarly, the absence of other molecules, such as CD40L

and components of the gpPHOX complex, had no

detectable effect on the IFN-c production induced by

live BCG. We confirmed with MSMD patients that IFN-c
production in response to BCG infection depends on IL-

12/23 priming, and that IFN-c production in response to

BCG plus IL-12 heavily depends on the IL-12/23

pathway, particularly on the integrity of the IL-12Rb1
molecule.

This study has also significant clinical implications, as

this assay can be used to identify deficient pathways in

patients with high levels of susceptibility to mycobacter-

ia, and could therefore be used to search directly for

mutations. This test proved to be particularly useful for

the screening of patients with MSMD or a suspicion of

NEMO or IRAK-4 mutation. The known genetic etiologies

of MSMD (complete IFN-cR1 or partial IFN-cR1 and

complete IFN-cR2 deficiencies, partial STAT-1 deficiency,

complete IL-12p40 deficiency, and complete IL-12Rb1
deficiency) were successfully diagnosed at the molecular

level, following an initial screening with our whole-blood

assay. Furthermore, the rapid diagnosis of complete IFN-

cR1/2 deficiencies in infected patients was confirmed by
·

Fig. 3. Cytokine production in the supernatants of whole-

blood cells from patients with complete IFN-cR1, complete

IFN-cR2, partial IFN-cR1, partial STAT-1, complete IL-12p40,

or complete IL-12Rb1 deficiencies, unstimulated or stimu-

lated by BCG alone or BCG plus cytokine, as detected by

ELISA. The amounts of cytokine secreted are normalized for

106 PBMC on a logarithmic scale and averages are indicated

as solid bars. Data for blood samples activated 24–48 h after

collection are plotted as closed circles. (A) IL-12p40

production at 18 h. (B) IL-12p70 production at 18 h. (C)

IFN-c production at 48 h.
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the detection of IFN-c in the patient’s serum [23]. Our

blood assay appears to be specific and sensitive to

successfully identify impaired pathways in the IL-12/IFN-

c circuit and guide the search for disease-causing genes

in patients with MSMD.

4 Materials and methods

4.1 Subjects and patients

We compared three different groups of patients with adult

local (n=50) healthy subjects. Mean age (standard deviation)

was 34 years (6.5) for controls and 10.5 years (9) for patients.

For group description see Table 1. Our study was conducted

according to the principles expressed in the Helsinki

Declaration, with informed consent obtained from each

patient or the patient’s family. The genetic defects were

identified in all patients from group 3 and in some, but not all,

patients from groups 1 and 2. The diagnosis criteria were

clinical and immunological, following current states of

knowledge [10].

Group 1 included 14 patients lacking a specific blood cell

type. For description see Table 1. The SCID patients do not

have detectable autologous T cells in the blood. Group 2

included 14 patients with primary immunodeficiency dis-

eases other than MSMD (for description see Table 1). All

patients with complete CGD had no detectable respiratory

burst. Group 3 included 60 patients with MSMD due to

recently identified molecular defects [6].

4.2 Whole-blood cultures and activation by live BCG

Venous blood samples were collected into heparinized

tubes. They were diluted 1:2 in RPMI 1640 (GibcoBRL)

supplemented with 100 U/ml penicillin and 100 lg/ml

streptomycin (GibcoBRL). We dispensed 6 ml of the diluted

blood sample into 4 wells (1.5 ml/well) of a 24-well plate

(Nunc). It was then incubated in a two-stage procedure

during 18 and 48 h at 37�C in an atmosphere containing 5%

CO2/95% air, and under four different conditions of

activation: with medium alone, with live BCG (M. bovis

BCG, Pasteurj sub-strain) at an MOI of 20 BCG/leukocytes,

with BCG plus IFN-c (5,000 IU/ml; Imukinj, Boehringer

Ingelheim) and with BCG plus recombinant IL-12p70 (20 ng/

ml; R&D Systemsj). An MOI of at least 20 in individuals

without any cytopenia was used. The first incubation stage

was completed after 18 h of culture, 450 ll supernatant was

collected from each culture well and frozen at –80�C. After

48 h, by the end of the second incubation stage, whole

remaining volume of each well was recovered, centrifuged at

1,800�g for 10 min, and the supernatant was stored frozen

at –80�C until analysis. For patients whose blood samples

were transported from elsewhere, we also analyzed a “travel”

control in parallel, when available.

4.3 Cytokines ELISA

Cytokine concentrations were analyzed by ELISA, using the

human Quantikine IL-12p70 HS and IL-12p40 kits from R&D

Systems and the human PelikinTM or Pelipair IFN-c kit from

Sanquin, according to the manufacturers’ guidelines. These

kits were applied using matched antibody pairs. Optical

density was determined using an automated MR5000 ELISA

reader (Thermolab Systems).

Quantitative analysis was carried out using the non-linear

four-parameter logistic (4PL) calibration model developed

by O’Connell [24]. An in-house software based on Microsoft

Excelj application language was developed for this pur-

pose. Intermediate results for each cytokine are expressed

in pg/ml. However, PBMC counts vary according to the

subject, and are dependent on age, in particular. We

therefore standardized the final results by expressing them

per million PBMC, in the unit pg/ml/106 PBMC. The number

of PBMC was determined from blood cell counts carried out

on day 0.

4.4 Statistical analysis of the data

An initial Q-plot statistical study demonstrated that cytokine

data were not normally distributed for the healthy population

(controls). These data were log-transformed, and the

resulting distribution generally approximated a normal

distribution.

The effect of gender and age on IL-12p40, IL-12p70, and

IFN-c levels under four different sets of activation conditions

(no stimulation, stimulation with BCG alone, stimulation with

BCG plus IFN-c, and stimulation with BCG plus IL-12) was

assessed by the means of one-way analysis of variance for

gender and linear regression analysis for age. Intra-individual

correlation of IL-12p40, IL-12p70, and IFN-c values was

taken into account for these analyses. All computations were

made with the generalized linear model (GLM) procedure of

SAS software v8.2 (SAS Institute, Cary, NC).
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Holland, S. M., Casanova, J. L., Mycobacterial diseases in
primary immunodeficiencies. Curr. Opin. Allergy. Clin. Immunol.
2001. 1: 503–511.

10 Ochs, H., Smith C. I. E. and Puck, J., Primary immunodefi-
ciencies: a molecular and genetic approach, 2nd Edn. Oxford
University Press, New York 2002

11 Bernard, F., Picard, C., Cormier-Daire, V., Eidenschenk, C.,
Pinto, G., Bustamante, J. C., Jouanguy, E., Teillac-Hamel, D.,
Colomb, V., Funck-Brentano, I. et al., A novel developmental
and immunodeficiency syndrome associated with intrauterine
growth retardation and a lack of natural killer cells. Pediatrics
2004. 113: 136–141.

12 Doffinger, R., Smahi, A., Bessia, C., Geissmann, F., Feinberg,
J., Durandy, A., Bodemer, C., Kenwrick, S., Dupuis-Girod, S.,
Blanche, S. et al., X-linked anhidrotic ectodermal dysplasia with
immunodeficiency is caused by impaired NF-kappaB signaling.
Nat. Genet. 2001. 27: 277–285.

13 Picard, C., Puel, A., Bonnet, M., Ku, C. L., Bustamante, J.,
Yang, K., Soudais, C., Dupuis, S., Feinberg, J., Fieschi, C. et
al., Pyogenic bacterial infections in humans with IRAK-4
deficiency. Science 2003. 299: 2076–2079.

14 Klein, C., Lisowska-Grospierre, B., LeDeist, F., Fischer, A. and
Griscelli, C., Major histocompatibility complex class II defi-
ciency: clinical manifestations, immunologic features, and out-
come. J. Pediatr. 1993. 123: 921–928.

15 van Crevel, R., van der Ven-Jongekrijg, J., Netea, M. G., de
Lange, W., Kullberg, B. J. and van der Meer, J. W., Disease-
specific ex vivo stimulation of whole blood for cytokine

production: applications in the study of tuberculosis. J. Immunol.
Methods 1999. 222: 145–153.

16 Gooding, T. M., Kemp, A. S., Robins-Browne, R. M., Smith, M.
and Johnson, P. D., Acquired T-helper 1 lymphocyte anergy
following infection withMycobacterium ulcerans. Clin. Infect. Dis.
2003. 36: 1076–1077.

17 Vankayalapati, R., Wizel, B., Weis, S. E., Klucar, P., Shams, H.,
Samten, B. and Barnes, P. F., Serum cytokine concentrations do
not parallel Mycobacterium tuberculosis-induced cytokine pro-
duction in patients with tuberculosis. Clin. Infect. Dis. 2003. 36:
24–28.

18 Levin, M., Newport, M. J., D’Souza, S., Kalabalikis, P., Brown,
I. N., Lenicker, H. M., Agius, P. V., Davies, E. G., Thrasher, A.,
Klein, N. et al., Familial disseminated atypical mycobacterial
infection in childhood: a human mycobacterial susceptibility
gene? Lancet 1995. 345: 79–83.

19 Newport, M. J., Huxley, C. M., Huston, S., Hawrylowicz, C. M.,
Oostra, B. A., Williamson, R. and Levin, M., A mutation in the
interferon-gamma-receptor gene and susceptibility to mycobac-
terial infection. N. Engl. J. Med. 1996. 335: 1941–1949.

20 Holland, S. M., Dorman, S. E., Kwon, A., Pitha-Rowe, I. F.,
Frucht, D. M., Gerstberger, S. M., Noel, G. J., Vesterhus, P.,
Brown, M. R. and Fleisher, T. A., Abnormal regulation of
interferon gamma, interleukin 12, and tumor necrosis factor alpha
in interferon gamma receptor 1 deficiency. J. Infect. Dis. 1998.
178: 1095–1104.

21 Dorman, S. E. and Holland, S. M., Mutation in the signal-
transducing chain of the interferon-gamma receptor and
susceptibility to mycobacterial infection. J. Clin. Invest. 1998.
101: 2364–2369.

22 Geissmann, F., Jung, S. and Littman, D. R., Blood monocytes
consist of two principal subsets with distinct migratory proper-
ties. Immunity 2003. 19: 71–82.

23 Fieschi, C., Dupuis, S., Picard, C., Smith, C. I., Holland, S. M.
and Casanova, J. L., High levels of interferon gamma in the
plasma of children with complete interferon gamma receptor
deficiency. Pediatrics 2001. 107: E48.

24 O’Connell, M., Belanger, B. and Haaland, P., Calibration and
assay development using the four-parameter logistic model.
Chemometrics and Intelligent Laboratory Systems 1993. 20:
97–114.

Correspondence: Jacqueline Feinberg or Jean-Laurent

Casanova, Laboratoire de Génétique Humaine des Maladies
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Faculté de Médecine Necker, 156 rue de Vaugirard, F-75015

Paris, France, EU

Fax: +33-1-4061-5688

e-mail: feinberg@necker.fr or casanova@necker.fr

Rainer Doffinger’s present address: Department of Clinical

Biochemistry and Immunology, Addenbrookes Hospital,

Cambridge, UK

3284 J. Feinberg et al. Eur. J. Immunol. 2004. 34: 3276–3284

f 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji.de



 153

 
 
 
 
 

Article 12 
 
 
 
 
 
 
 
 
 
 

A novel form of complete IL-12/IL-23 receptor beta1 deficiency with cell surface-
expressed nonfunctional receptors 

 
 
 
 
 
 
 
 

Fieschi, C., M. Bosticardo, L. de Beaucoudrey, S. Boisson-Dupuis, J. Feinberg, 
O. Filipe-Santos, J. Bustamante, J. Levy, F. Candotti, and J.L. Casanova 

 
 
 
 
 
 
 
 
 
 
 

Blood 
2004, 104:2095-2101 

 
 
 
 
 
 
 
 
 



IMMUNOBIOLOGY

A novel form of complete IL-12/IL-23 receptor �1 deficiency with cell
surface–expressed nonfunctional receptors
Claire Fieschi, Marita Bosticardo, Ludovic de Beaucoudrey, Stéphanie Boisson-Dupuis, Jacqueline Feinberg,
Orchidée Filipe Santos, Jacinta Bustamante, Jacov Levy, Fabio Candotti, and Jean-Laurent Casanova

Complete interleukin-12/interleukin-23 re-
ceptor �1 (IL-12R�1) deficiency is the
most frequent known genetic etiology of
the syndrome of Mendelian susceptibility
to mycobacterial disease. The patients
described to date lack IL-12R�1 at the
surface of their natural killer (NK) and T
cells due to IL12RB1 mutations, which
either interrupt the open reading frame or
disrupt protein folding. We describe a
patient with a large in-frame deletion of
12165 nucleotides (nt) in IL12RB1, encom-
passing exons 8 to 13 and resulting in the
surface expression of nonfunctional IL-
12R�1. These 6 exons encode the proxi-

mal NH2-terminal half of the extracellular
domain downstream from the cytokine-
binding domain. Five of 6 monoclonal
anti–IL-12R�1 antibodies tested recog-
nized the internally truncated chain on
the cell surface. However, IL-12 and IL-23
did not bind normally to the patient’s
IL-12R�1–containing respective het-
erodimeric receptors. As a result, signal
transducer and activator of transcrip-
tion-4 (STAT4) was not phosphorylated
and interferon-� (IFN-�) production was
not induced in the patient’s cells upon
stimulation with even high doses of IL-12
or IL-23. The functional defect was com-

pletely rescued by retrovirus-mediated
IL-12R�1 gene transfer. Thus, the detec-
tion of IL-12R�1 on the cell surface does
not exclude the possibility of complete
IL-12R�1 deficiency in patients with myco-
bacteriosis or salmonellosis. Paradoxi-
cally, the largest IL12RB1 mutation de-
tected is associated with the cell surface
expression of nonfunctional IL-12R�1, de-
fining a novel genetic form of IL-12R�1
deficiency. (Blood. 2004;104:2095-2101)

© 2004 by The American Society of Hematology

Introduction

Mendelian susceptibility to mycobacterial disease (MSMD)
(Mendelian Inheritance in Man, MIM209950; Online Mendelian
Inheritance in Man [OMIM]: http://www.ncbi.nlm.nih.gov/
Omim/)1 is a rare syndrome predisposing affected individuals to
infectious diseases caused by poorly virulent mycobacteria,
such as bacille Calmette-Guérin (BCG) vaccines and environ-
mental mycobacteria (EM), and poorly virulent Salmonella
strains, such as nontyphoidal “minor” serovars. Patients are also
susceptible to infections caused by the more virulent Mycobac-
terium tuberculosis and typhoidal “major” Salmonella sero-
types.1,2 Unlike patients with “classic” immunodeficiencies,
these patients are otherwise quite healthy and only rarely suffer
from other unusually severe bacterial, viral, fungal, or parasitic
diseases.2,3 The spectrum of infections is narrow, but the
spectrum of severity is broad—from disseminated BCG disease
in infancy to localized environmental mycobacterial disease in
the elderly. Moreover, whereas some sporadic and most familial
cases seem to involve autosomal recessive heredity, the syn-
drome has been found to segregate in an autosomal dominant4,5

or X-linked recessive6 pattern in other families, further suggest-
ing genetic heterogeneity.

Five disease-causing autosomal genes have been identified
since 1996,7,8 and allelic heterogeneity accounts for the existence
of 9 defined disorders, all of which result in impaired interferon-�
(IFN-�)–mediated immunity.1,2 Null recessive mutations in the
IFN-� receptor ligand-binding chain (IFN-�R1)–encoding gene
(IFNGR1) abolish either receptor expression7,8 or the binding of
surface-expressed receptors to IFN-�.9,10 Partial recessive11 and
dominant4 IFN-�R1 deficiencies have also been described. Differ-
ent recessive mutations in the gene encoding the IFN-� signaling
chain (IFN-�R2), IFNGR2, are responsible for complete12 or
partial13 IFN-�R2 deficiency. A dominant mutation in STAT1 is
responsible for partial signal transducer and activator of transcrip-
tion-1 (STAT-1) deficiency and defines the remaining disease in
which cellular responses to IFN-� are impaired.5 Complete reces-
sive STAT-1 deficiency is a related but distinct disorder involving
susceptibility to both mycobacteria and viruses, due to the impair-
ment of IFN-�– and IFN-�/�–mediated immunity.14
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In about half of all patients with MSMD and a well-defined
genetic disorder, cellular responses to IFN-� are normal, but the
interleukin-12 (IL-12)– and interleukin-23 (IL-23)–dependent pro-
duction of IFN-� is severely impaired. Nineteen children homozy-
gous for null mutations in IL12B, encoding the p40 subunit of
IL-12 and IL-23, have been identified.15-17 Null recessive IL12RB1
mutations have been identified in 54 other patients with IL-12 and
IL-23 receptor �1 chain deficiency.17-28 Patients with IL-12 p40 and
IL-12R�1 deficiency share a number of common clinical character-
istics: low penetrance of genetic susceptibility to mycobacteriosis
and salmonellosis; high proportion of extraintestinal salmonellosis
among symptomatic patients; broad resistance to other microorgan-
isms; and a favorable clinical outcome.29,30 From a molecular point
of view, 53 of 54 known patients with complete IL-12R�1
deficiency17-26,28 have no detectable IL-12R�1 on the cell surface,
due to mutations that either interrupt the open reading frame (ORF)
(nonsense and frameshift mutations) or disrupt folding of the
protein (missense mutations). We report here the molecular investi-
gation of a patient with complete IL-12R�1 deficiency despite the
presence of IL-12R�1 at the cell surface.

Patients, materials, and methods

The patient

The patient (P) is a 6-year-old boy born to first-cousin parents of Bedouin
origin living in Israel (Figure 1). He was not inoculated with BCG and was
first seen at the age of 12 months with disseminated Salmonella enteritidis
disease (septicemia and multiple adenitis). Between the ages of 1 and 3
years, the patient suffered 8 recurrences of systemic Salmonella infection,
with the same serovar implicated on each occasion. The detailed clinical
and bacteriologic features of these infections have been reported else-
where,27 and this patient was patient 10.II.3 in a previous study26 in which
his genotype was described. The negative control (C�) used in this study
was also previously described (patient 20.II.126) and is homozygous for a
nonsense mutation resulting in a premature stop in the ORF (Q32X).

Our study was approved by the Institutional Review Board of the
Université de Paris René Descartes. Informed consent was obtained from
the patient’s family according to the Declaration of Helsinki.

Cell culture and stimulation

Epstein-Barr virus–transformed lymphoblastoid cell lines (EBV-B cell
lines) were cultured as previously described.16 Peripheral blood mono-
nuclear cells (PBMCs) were cultured in RPMI 1640 supplemented with
10% heat-inactivated pooled human AB serum and activated by incubation
with phytohemagglutinin-P (PHA) (Bacto, Becton Dickinson, Heidelberg,
Germany) for 72 hours to generate PHA-activated T cells. PHA–T-cell
blasts were restimulated every 48 hours with IL-2 (40 IU/mL) (Chiron,
Amsterdam, The Netherlands) and cultured in Panserine 401 (Pan Biotech,
Aidenbach, Germany) with 10% heat-inactivated pooled human AB serum
and 2 mM L-glutamine. For cytokine stimulation, we plated 0.5 � 106

PHA–T-cell blasts in complete medium in each well of a 48-well plate on
day 6 and added IL-23 and IL-12p70 (both from R&D Systems, Minneapo-
lis, MN) at various concentrations to a final volume of 500 �L. As a positive
control for activation, PHA–T-cell blasts were stimulated with 10�7 M
phorbol myristate acetate (PMA) (Sigma-Aldrich, St Louis, MO) and 10�5

M ionomycin. Supernatants were harvested after 48 hours.

ELISA and cell surface flow cytometry

Cell culture supernatants were assayed for IFN-� by enzyme-linked
immunosorbent assay (ELISA), according to the kit manufacturer’s recom-
mendations (Pelikin Compact, CLB, Amsterdam, The Netherlands). IFN-�
concentration was calculated per 1 million PHA–T-cell blasts. For flow
cytometry, PHA–T-cell blasts and/or EBV-transformed B cells were first
incubated with an IL-12R�1–specific mouse immunoglobulin G1 (IgG1)

monoclonal antibody (mAb) (24E6), an IL-12R�1–specific rat IgG2a mAb
(2B10), or matched isotypic control mAbs; then with a biotinylated rat
anti–mouse Ab or a biotinylated mouse anti–rat Ab; and finally with
streptavidin-phycoerythrin (streptavidin-PE) (all reagents were from Pharm-
ingen, San Diego, CA). Mouse antibodies B101, B103, and 12RB44 were
all generously provided by the Genetics Institute (Andover, MA). One
additional commercial mAb—an anti–human IL-12R�1 mAb (clone 69310
coupled to R-phycoerythrin from R&D Systems)—and a matched isotype
control were tested for IL-12R�1 staining. The cells were fixed by
incubation in 4% paraformaldehyde for 30 minutes and were then stained.
All washing and incubation steps were performed in the presence of 0.1%
saponin (Sigma-Aldrich). Signals were analyzed with a FACScan and the
Cellquest software (Becton Dickinson Immunocytometry Systems, San
Jose, CA).

Fluorescent IL-12/IL-23 binding and phospho-STAT4 detection

IL-12p70 or IL-23 fluorescence binding experiments were performed as
follows: 400 000 day 6 PHA–T-cell blasts were incubated in 20 �L
phosphate-buffered saline (PBS) with (or without) 50 ng IL-12p70 or 100
ng recombinant human IL-23 (rhIL-23) (R&D Systems) for 30 minutes at
4°C and then with mouse anti–IL-12p40-p70 IgG1, biotinylated rat
anti–mouse IgG1, and finally with streptavidin-PE (all reagents and
antibodies were from Pharmingen). Phospho-STAT4 detection by flow
cytometry was adapted from Uzel et al31: PHA–T-cell blasts were either left
unstimulated or stimulated by IFN-� (105 U/mL during 30 minutes) or
IL-12 (100 ng/mL during 15 minutes) at 37°C. Cells were then fixed with
4% paraformaldehyde (PFA) in PBS, followed by 100% methanol fixation
while vortexing, permeabilized with saponin, and stained with rabbit
polyclonal anti-STAT4 Ab or rabbit polyclonal antiphospho-STAT4 Ab
(both from Zymed, South San Francisco, CA) (or matched isotype control),
followed by goat anti–rabbit Alexa Fluor 488 (Molecular Probes, Eugene,
OR). Signals were analyzed with a FACScan using Cellquest software
(Becton Dickinson).

Retroviral-mediated gene transfer

The retroviral vector, MND–IL-12R�1 (myeloproliferative sarcoma virus
enhancer, negative control region deleted, dl587 rev primer-binding site
substituted), was constructed using the MND-X-IRES-EGFP vector (a gift
from Dr D. B. Kohn, Children’s Hospital, Los Angeles, CA) and by
replacing the internal ribosome entry site–enhanced green fluorescent
protein (IRES-EGFP) fragment with human IL-12R�1 cDNA (gift from Dr
J. J. O’Shea, National Institute of Arthritis and Musculoskeletal and Skin
Diseases [NIAMS], National Institutes of Health [NIH], Bethesda, MD).
Infectious retroviral particles were generated using the PG13 cell line32 as
previously described.33 Retroviral supernatant stocks were produced by
incubating producer cells in Dulbecco modified Eagle medium (DMEM)
(Life Technologies, Bethesda, MD), 10% fetal bovine serum (FBS) for 72
hours at 32°C. PHA–T-cell blasts (1 � 106/mL) were incubated for 24
hours in fibronectin-coated plates (20 �g/mL Retronectin, Takara Bio,
Shiga, Japan) preloaded with retroviral supernatant. The transduction
procedure was repeated the following day. After 48 to 72 hours, cells were
stained with anti–human IL-12R�1 (24E6 or 2B10), stimulated with IFN-�
and IL-12, followed by intracellular flow cytometry phospho-STAT4
detection or stimulated with increasing doses of IL-12. In this last case,
supernatants were harvested after 48 hours, and IFN-� was measured by
ELISA (hIFN-� Quantikine kit; R&D Systems).

DNA and RNA extraction, cDNA synthesis, and
PCR amplification

Genomic DNA and total RNA were extracted from EBV-transformed B
cells or T-cell blasts as previously described.16 RNA was reverse transcribed
in the presence of oligo(dT) with Superscript II reverse transcriptase
(Invitrogen Life Technologies, Paisley, United Kingdom).16 The IL12RB1
cDNA, coding exons, and flanking intron regions were amplified using
pairs of primers and polymerase chain reaction (PCR) conditions available
in Table S1 of the supplementary material (at the Blood website, see the
Supplemental Table link at the top of the online article).
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Sequencing

PCR was carried out with pairs of intron primers flanking each IL12RB1
exon, under conditions available upon request. PCR products were se-
quenced by dideoxynucleotide termination with nested primers (Table S1)
and the ABI PRISM dGTP BigDye Terminator Cycle Sequencing Kit
(Applied Biosystems, Courtaboeuf, France). PCR products were sequenced
on an ABI Prism 3100 apparatus and analyzed with Sequencing Analysis
software (Applied Biosystems).

Results

A large in-frame deletion in IL12RB1

We previously reported a patient for whom we were unable to amplify
exons 8 to 13 of IL12RB1 (10.II.2 26). The sequencing of introns 7 and
13 made it possible to identify the genomic breakpoints of a large
deletion of 12165 nucleotides (12165 nt), and the mutation was
designated 700 � 362_1619-944 del 34 (the deletion occurred beginning
362 nucleotides [nt] 3� of exon 7, which ends at nt 700, and ending 944
nucleotides 5� of nt 1619, which is the first nucleotide of exon 14). The
patient was homozygous for this mutation, inherited from his 2
heterozygous parents. No other mutations of IL12RB1 were found.
Amplification of the IL12RB1 ORF from cDNAs produced from both
an EBV-transformed B-cell line and PHA–T-cell blasts yielded a
fragment of lower molecular weight than was obtained for the control
(not shown). Sequencing showed that exon 7 was directly spliced to
exon 14 (Figure 1). Exon 1 encodes the signal peptide, and exon 14
encodes the IL-12R�1 transmembrane domain. The aberrant mRNA
detected is in frame, contains no novel codon, and is predicted to result
in the production of a 356–amino acid protein with an internally
truncated extracellular domain but intact transmembrane and intracellu-
lar domains. In comparison, the wild-type (WT) protein contains 662
amino acids (Figure 1). The putative mature mutant protein (following
cleavage of the signal peptide) would thus lack 306 (59%) of the 521
extracellular amino acids and sequences corresponding to 6 of the 12
exons encoding the mature extracellular domain.

Detection of an IL-12R�1 chain by intracellular staining

By Northern blot analysis, we detected a transcript with a lower
molecular weight than the WT transcript, although their molecular
amounts as determined by PhosphorImager (Molecular Dynamics,

Sunnyvale, CA) quantification were equal (not shown). Because the
deletion was in frame, we first tried to detect a mutant receptor chain by
intracellular flow cytometry (fluorescence-activated cell sorter [FACS])
analysis. Staining of day 5 PHA–T-cell blasts with the mouse IgG1
anti–IL-12R�1 mAb 24E6 resulted in the detection of an intracellular
chain in P, although staining was less intense than in the positive control
(C�), with this chain not detected in cells from the negative control
(C�) (not shown). Staining with rat IgG2a anti–IL-12R�1 mAb 2B10
was negative in C�, C�, and P (not shown). We also assessed the
intracellular staining of IL-12R�1 with 4 other mAbs: clearly positive
results were obtained for C� and P with clones B101, 12RB44, and
69310, whereas the signal obtained with clone B103 was weak in C�,
and no signal was detected in P (not shown). These results were
confirmed by the intracellular staining of EBV-transformed B-cell lines,
although the signal was less intense for both C� and P in these cell lines
(not shown). The mutant receptor encoded by the IL12RB1 allele in P,
who carries the large 700 � 362_1619-944 deletion, can therefore be
detected by flow cytometry in 2 types of cell, EBV-transformed B cells
and PHA–T-cell blasts, with 4 of the 5 mAbs that stained the wild-type
IL-12R�1 chain.

A detectable IL-12R�1 chain on the cell surface

Because intracellular IL-12R�1 was detectable in P, we used FACS
analysis to investigate IL-12R�1 expression on the cell surface.
IL-12R�1 was present in large amounts on the surface of PHA–T-cell
blasts on day 5 in C�, as shown by staining with all 6 mAbs tested,
including 3 commercially available (clones 24E6, 2B10, 69310) mAbs.
PHA–T-cell blasts from P also tested positive with 5 of the 6 mAb tested
(clones 24E6, B101, B103, 12RB44, 69310). No signal was obtained
with the 2B10 mAb in P (Figure 2). Similar results were found when
staining EBV-B cells of C�, P, and C� (not shown). The
700 � 362_1619-944 del IL12RB1 allele therefore encodes a detectable
surface-expressed IL-12R�1 chain in our patient. Remarkably, none of
the other 53 patients with IL-12R�1 deficiency described to date17-26,28

were found to express detectable levels of these receptors at the cell
surface. In contrast, IL-12R�1 was present in large amounts at the cell
surface in P and was detected with 5 of the 6 mAbs tested, including 2 of
the 3 commercially available mAbs. With the 5 mAbs, the level of
surface expression of the mutant IL-12R�1 chain detected is reduced.
This may be due to an impaired surface expression of the protein or to an

Figure 1. A large in-frame deletion in IL12RB1. (A)
Schematic representation of the wild-type IL-12R�1 chain
containing 17 coding exons (Arabic numerals) encoding
662 amino acids, with a peptide leader sequence (L),
extracellular domain (exons 2 to 13, EC), transmem-
brane domain (exon 14, TM), and an intracellular, cyto-
plasmic domain (exons 15 to 17, IC). The mutation found
in P is also indicated (700 � 362_1619-944 del). The
mature IL-12R�1 chain contains 5 fibronectin III (FNIII)
domains shown in the bottom row in light gray. (B)
Schematic representation of the mutant protein, lacking
the sequences encoded by 6 of the exons (8 to 13) in the
wild-type gene. The mutant protein contains 356 amino
acids and only the first 2 FNIII domains of the extracellu-
lar domain but has intact transmembrane and intracellu-
lar domains. In the family tree, the patient is indicated by
an arrow.
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abnormal conformation of the molecule, as suggested by the various
levels of expression found using different mAbs.

A lack of phosphorylated STAT4 upon IL-12 stimulation

STAT4 is a major transducer of the signals mediated by IL-12R.35,36

It is phosphorylated by the activated Janus kinases TYK2 and
JAK2 upon the binding of IL-12 to its heterodimeric receptor
(IL-12R�1 and IL-12R�2). Homodimers of phosphorylated STAT4
(P-STAT4) are formed and translocate to the nucleus, where they
induce IFNG and other target genes. We thus tried to detect STAT4
phosphorylation following the stimulation of PHA–T-cell blasts, by
means of intracellular FACS, as previously described.31 In unstimu-
lated PHA–T-cell blasts from C�, C�, and P, no P-STAT4 was
detected, whereas unphosphorylated STAT4 was clearly present
(not shown). Following 30 minutes of stimulation with IFN-�,
P-STAT4 was detected in PHA–T-cell blasts from C�, C�, and P,
with no change in the total amount of STAT4 present (not shown).
Following stimulation with IL-12, P-STAT4 was detected in
PHA–T-cell blasts from C� but not in those from P and C�
(Figure 3). Thus, despite the presence of IL-12R�1 at the cell
surface, P cells did not respond to IL-12, as detected by STAT4
phosphorylation, a critical early activation event.

A lack of IFN-� secretion in response to IL-12

We then investigated the impact of the IL12RB1 mutation on a
more distal and equally crucial event—the induction of IFN-�—by
stimulating whole blood with BCG alone or BCG plus IL-12.26 By
ELISA, no IFN-� was induced by IL-12 in P cells, in contrast to
what was observed in C� (not shown), implying that peripheral T
and natural killer (NK) cells do not respond to IL-12. Indeed, we
have shown in another study that IFN-� is secreted by both NK and
T cells in this assay (J.F., in preparation). We then stimulated
PHA–T-cell blasts from P, C�, and C� with various doses of IL-12
(1 pg/mL to 100 ng/mL) (Figure 4A). PHA–T-cell blasts from C�
produced large amounts of IFN-� in response to IL-12, with a
dose-dependent response up to 10 ng/mL, where a plateau was
reached. In contrast, cells from P, like PHA–T-cell blasts from C�,
did not respond to even high doses of IL-12, ruling out a partial
defect with residual signaling in P. The cells from the patient’s
mother, who is heterozygous for the large deletion and expresses
both wild-type and mutant receptors, as detected by flow cytom-

etry, showed a normal response to IL-12, ruling out a dominant
negative effect of the mutant allele for IL-12 responsiveness (not
shown). Homozygosity for 700 � 362_1619-944 del is thus associ-
ated with a cellular phenotype of complete IL-12R�1 deficiency, as
shown by early (STAT4 phosphorylation) and late (IFN-� induc-
tion) events in both NK and T cells ex vivo and in PHA–T-cell
blasts in vitro.

Figure 2. IL-12R�1 chain detected at the cell surface
by FACS analysis. PHA–T-cell blasts from a positive
control (C�), the patient (P), and a negative control (C�)
were stained with various purified mouse monoclonal
antibodies (24E6, B101, B103, 12RB44), rat mAb (2B10),
or matched isotype control, followed by biotinylated
matched Ab and phycoerythrin-conjugated streptavidin.
IL-12R�1 clone 69310, directly conjugated to R-PE, was
compared with a matched conjugated isotype control.
Specific signals are represented as plain lines; matched
isotype controls are represented as dotted lines.

Figure 3. Lack of phosphorylated STAT4 upon IL-12 stimulation, as shown by
FACS analysis. PHA–T-cell blasts from a positive control (C�), a negative control
(C�), and the patient (P) were left unstimulated (plain line) or were stimulated (dotted
line) with IFN-� (105 U/mL) (left) for 30 minutes or with IL-12 (100 ng/mL) (right) for 15
minutes. Cells were fixed by PFA and methanol, permeabilized with saponin, and
stained with a phospho-STAT4 rabbit polyclonal Ab (Zymed) (or matched isotype
control), followed by goat anti–rabbit Alexa Fluor 488 (Molecular Probes).
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A cellular phenotype of complete IL-23R deficiency

IL-12R�1 binds to the IL-23R chain to generate the heterodimeric
receptor for a recently described cytokine, IL-23, that is composed of the
p19 specific subunit and the p40 subunit that also forms part of
IL-12.37-39 Several patients with IL-12R�1 deficiency due to a lack of
surface receptor expression were previously shown not to respond to
IL-23.25,40 We therefore stimulated PHA–T-cell blasts with various
doses of IL-23 (5 pg/mLto 500 ng/mL). Cells from C� produced IFN-�
in a dose-dependent manner in response to IL-23 (although less than in
response to IL-12), whereas cells from P and C� did not respond to
even high concentrations of IL-23 (Figure 4B). Cells from P therefore
respond neither to IL-12 nor to IL-23 (Figure 4). P thus displays
complete IL-12 and IL-23 receptor deficiency despite the presence of
detectable IL-12R�1 at the cell surface.

The absence of cytokine binding to IL-12R�1 molecules at the
cell surface

We investigated the reasons for the lack of response to IL-12 and IL-23 in
P despite the presence of the IL-12R�1 chain at the cell surface. We
performed fluorescence binding assays to assess the binding of IL-12 and
IL-23 to PHA–T-cell blasts. A mAb specific for IL-12p40 was added to
PHA–T-cell blasts after their incubation with large doses of recombinant
IL-12 or IL-23. IL-12 and IL-23 binding was detectable by FACS analysis
in most cells from C�, indicating that this antibody recognizes both IL-12
(p40-p35) and IL-23 (p40-p19).As expected, in the absence of cell surface
IL-12R�1 in C�, there was no detectable binding of IL-12. Similarly, no
IL-12 binding was detected in P either (Figure 5). Thus, although our
assay does not exclude the possibility that IL-12 binds to Pcells with a low
affinity, the cell surface IL-12R heterodimers comprising mutant IL-
12R�1 molecules in P did not bind normally their natural ligand, IL-12.
C� displayed residual binding of IL-23, indicating that IL-23 binds to the
IL-23R chain in the absence of IL-12R�1 (Figure 5). Moreover, Pshowed
similar levels of IL-23 binding to C� whereas C� displayed much higher
levels of binding, indicating that the heterodimeric IL-23 receptors

comprising mutant IL-12R�1 chains in P were impaired in their ability to
normally recognize IL-23 and that the weak binding to IL-23R was not
sufficient to trigger stimulation. Despite residual binding of IL-23 (and
possibly of IL-12 to an even lower extent), complete IL-12 and IL-23
receptor defects in P therefore result at least in part from the impairment of
IL-12 and IL-23 binding to heterodimers comprising the mutant IL-
12R�1 chains at the cell surface. Our data do not exclude the possibility
that the mutant IL-12R�1 chains do not interact normally with other
signaling components, further contributing to the functional cytokine
receptor defect.

IL-12R�1 expression and function are restored by retroviral
transduction

We checked that the lack of response to IL-12 was truly caused by
the IL12RB1 genotype, and not by a defect in another receptor
chain or signaling molecule, by complementing the cellular defect
by means of retrovirus-mediated transfer. We demonstrated that
STAT4 was phosphorylated and activated in response to IFN-� but
not to IL-12 in P. The transduction of T-cell blasts from P with a
retrovirus encoding WT IL-12R�1 restored normal IL-12R�1
expression, as detected by the 2B10 mAb, which did not recognize
the mutant chain (Figure 6A). The expression of a WT IL-12R�1
chain was accompanied by the restoration of STAT4 phosphoryla-
tion upon the IL-12 stimulation of transduced T cells, as shown by
intracellular FACS analysis (not shown). WT IL-12R�1 expression
not only restored STAT4 phosphorylation but also the ability of
T-cell blasts to respond to IL-12 in terms of IFN-� production
(Figure 6B). The complete lack of response to IL-12 documented in
P despite the presence of IL-12R�1 molecules at the cell surface is

Figure 5. Lack of cytokine binding to the surface of PHA–T-cell blasts.
PHA–T-cell blasts from a positive control (C�), a negative control (C�), and the
patient (P) were incubated without (dotted line) or with (plain line) IL-12p70 or IL-23
for 30 minutes at 4°C. The PHA–T-cell blasts were then incubated with a purified
mouse anti–IL-12 p40 antibody, followed by a biotinylated anti–mouse antibody, and
antibody binding was detected by incubation with PE-conjugated streptavidin.

Figure 4. Lack of IFN-� production in response to IL-12 and IL-23. PHA–T-cell
blasts from a positive control (C�), a negative control (C�), and the patient (P) were
plated in 24-well plates and were left unstimulated (NS) or were stimulated with
increasing concentrations of IL-12 for 48 hours (A) or IL-23 for 72 hours (B).
Supernatants were harvested, and IFN-� was quantified by ELISA.
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therefore due to the absence of surface IL-12R�1 molecules able to
bind IL-12 normally.

Discussion

IL-12R�1 deficiency is the most frequent genetic defect respon-
sible for the syndrome of MSMD, with 54 patients from 16
countries reported to date.17-28 All patients except the patient
reported here lack IL-12R�1 at the surface of all cells examined,
due to mutations creating a premature stop codon in the coding
region or to disrupting protein folding and stability. We describe
here a patient with a large in-frame deletion of 12165 nt, which
results in the surface expression of internally truncated IL-12R�1
chains, as documented by flow cytometry with 5 of the 6 mAbs
tested. Impaired binding of IL-12 and IL-23 to their surface-
expressed heterodimeric receptors, including IL-12R�1, accounts
at least in part for the complete absence of response to both
cytokines. The abnormal conformation of the receptor may also
affect its interaction with other signaling molecules. This patient
thus defines a novel genetic form of complete IL-12R�1 deficiency.

A similar situation had been found for complete IFN-�R1 defi-
ciency, caused by the lack of surface receptors,1,2,7,8 or surface-
expressed nonfunctional receptors.9,10 However, the mutations in
the latter patients were much smaller, consisting of short in-frame
deletions or missense mutations.9,10

What molecular lessons can we learn from this experiment of
nature? The mutant IL-12R�1 protein is stable, expressed on the
cell surface, and lacks the proximal half of the extracellular
domain. The wild-type IL-12R�1 chain is a member of the
glycoprotein (gp) 130 family of receptors (type I cytokine recep-
tor), the extracellular domain of which contains 5 fibronectin type
III (FNIII) domains, each about 100 amino acids long.41 An FNIII
domain contains 7-stranded �-sandwich motifs organized in an
antiparallel manner.42 In IL-12R�1, the first 2 FNIII domains
consist essentially of the translation products of exons 2 to 7
(Figure 1). In our patient, who lacks exons 8 to 13, the 3 C-terminal
FNIII domains are removed by the large deletion. The truncated
protein is stable, probably because the first 2 FNIII domains are
intact, and the remaining 3 are completely lacking. Consistent with
this view, another IL-12R�1–deficient patient (19.II.226) lacking
IL-12R�1 surface expression bears another in-frame deletion,
encompassing only exon 13 (1483 � 182-1619-1073 del). The
protein generated from the 1483 � 182-1619-1073 del allele is not
stable, probably due to the disruption of only half of the fifth FNIII
domain—normally encoded by exons 12 and 13.

The cytokine-binding domain of receptors of the gp 130 family
is located in the 200 N-terminal amino acids of the mature chain
and consists, more precisely, of the first 2 FNIII domains, which are
linked by a short proline-rich hinge, allowing an 80-degree elbow
for the binding of the ligand.42,43 These 2 FNIII domains are also
called “hematopoietin receptor domains”,41 or the “cytokine-
binding homology region” (CHR).43 The first N-terminal FNIII
domain (D1) contains 3 amino acids forming the CXW motif
(CSW in IL-12R�1). The second N-terminal FNIII domain (D2)
contains the SWXSW motif (SWKSW in IL-12R�1). Both motifs
are signatures of the gp 130 family of cytokine receptors.41 Horsten
et al44 have demonstrated that D1 and D2 are necessary and
sufficient for the binding of IL-6 to gp130. In our patient, however,
despite the integrity of these 2 FNIII domains, the recognition and
binding of IL-12 is profoundly impaired. The difference between
the 2 situations may be due to the different receptors involved
(IL-6R and IL-12R) and possibly to IL-12 being itself a “truncated”
receptor that may need to interact not only with the CHR of its
receptor but also with other IL-12R�1 FNIII domains. Alterna-
tively, IL-12R�1 CHR folding may be influenced by extracellular
residues outside the CHR itself.

The impact of the (700 � 362_1619-944 del) mutation on
IL-12R�1–specific Ab recognition was much less pronounced than
that on cytokine binding. Indeed, the deletion of 6 exons from
IL12RB1 is consistent not only with receptor expression at the cell
surface but also with receptor recognition by 5 of the 6 available
IL-12R�1–specific antibodies. This study therefore makes it pos-
sible to map the epitopes of some anti–human IL-12R�1 antibod-
ies. The 5 mAbs that bound (clones 24E6, B101, B103, 12RB44,
69310) were probably generated against the first 2 FNIII domains
(the CHR). The 5 epitopes located in the IL-12 recognition site are
not significantly altered by the large (700 � 362_1619-944 del)
deletion, which respects the first 2 FNIII domains. However, the
low levels of receptor expression detected with these mAbs may
result from an abnormal conformation of the receptor. Moreover,
one epitope (recognized by 2B10) either maps outside the CHR or,
if it is located within the CHR, is conformational and strictly

Figure 6. Correction of the patient’s IL-12R�1 defect by retroviral-mediated
gene tranfer. (A) PHA–T-cell blasts from the patient (P), a negative control (C�),
MND–IL-12R�1–transduced PHA–T-cell blasts from the patient (Ptd), or the negative
control (C�td) were stained with anti–IL-12R�1 mAb (24E6 or 2B10, plain line) or
matched isotype control (dotted line). (B) IFN-� production in response to IL-12.
PHA–T-cell blasts from the patient (P), a negative control (C�), and MND–IL-12R�1–
transduced PHA–T-cell blasts from the patient (Ptd) or the negative control (C�td)
were plated in 24-well plates and were either left unstimulated (NS) or were
stimulated with increasing concentrations of IL-12 for 48 hours. Supernatants were
harvested, and IFN-� was quantified by ELISA.
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depends on residues located in the other 3 FNIII domains, which
are lacking in our patient.

Our report highlights the lack of correlation between the
IL12RB1 genotype and IL-12R�1 expression: Paradoxically, the
700 � 362_1619-944 del mutation is the largest deletion described
in IL12RB1 and the only known mutation allowing cell surface
expression. Whereas a small IL12RB1 genomic lesion, such as a
missense mutation, may be responsible for the lack of protein at the
cell surface due to misfolding and degradation,21-24,26 a very large
deletion of 12165 nt, encompassing half the exons encoding the
extracellular domain, can lead to the presence of detectable
receptors at the cell surface. This report also demonstrates that a
diagnosis of IL-12R�1 deficiency should not be excluded solely on
the basis of a conserved surface expression on flow cytometry. The
clinical implications of these findings are important for individual

patients. Therapeutic options can best be tailored to the patient, on a
rational basis, if accurate molecular diagnosis is achieved. Indeed,
recombinant IFN-� administration can save the lives of IL-12R�1–
deficient patients. Our report thus stresses the importance of
in-depth molecular diagnostic investigation in patients with MSMD.
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Guérin and Salmonella enteritidis disseminated in-
fection. J Clin Invest. 1998;102:2035-2040.

16. Picard C, Fieschi C, Altare F, et al. Inherited inter-
leukin-12 deficiency: IL12B genotype and clinical
phenotype of 13 patients from six kindreds. Am J
Hum Genet. 2002;70:336-348.

17. Elloumi-Zghal H, Barbouche MR, Chemli J, et al.
Clinical and genetic heterogeneity of inherited auto-
somal recessive susceptibility to disseminated Myco-
bacterium bovis bacille calmette-guerin infection.
J Infect Dis. 2002;185:1468-1475.

18. Altare F, Durandy A, Lammas D, et al. Impairment of
mycobacterial immunity in human interleukin-12 re-
ceptor deficiency. Science. 1998;280:1432-1435.

19. de Jong R, Altare F, Haagen IA, et al. Severe my-
cobacterial and Salmonella infections in interleu-
kin-12 receptor-deficient patients. Science. 1998;
280:1435-1438.

20. Verhagen CE, de Boer T, Smits HH, et al. Re-
sidual type 1 immunity in patients genetically
deficient for interleukin 12 receptor beta1 (IL-
12Rbeta1): evidence for an IL- 12Rbeta1-inde-
pendent pathway of IL-12 responsiveness in
human T cells. J Exp Med. 2000;192:517-528.

21. Aksu G, Tirpan C, Cavusoglu C, et al. Mycobacte-
rium fortuitum-chelonae complex infection in a
child with complete interleukin-12 receptor beta 1
deficiency. Pediatr Infect Dis J. 2001;20:551-553.

22. Altare F, Ensser A, Breiman A, et al. Interleukin-12
receptor beta1 deficiency in a patient with abdominal
tuberculosis. J Infect Dis. 2001;184:231-236.

23. Sakai T, Matsuoka M, Aoki M, Nosaka K, Mitsuya H.
Missense mutation of the interleukin-12 receptor
beta1 chain-encoding gene is associated with
impaired immunity against Mycobacterium avium
complex infection. Blood. 2001;97:2688-2694.

24. Lichtenauer-Kaligis EG, De Boer T, Verreck FA,
et al. Severe Mycobacterium bovis BCG infec-
tions in a large series of novel IL-12 receptor
beta1 deficient patients and evidence for the exis-
tence of partial IL-12 receptor beta1 deficiency.
Eur J Immunol. 2003;33:59-69.

25. Cleary AM, Tu W, Enright A, et al. Impaired accu-
mulation and function of memory CD4 T cells in
human IL-12 receptor beta1 deficiency. J Immu-
nol. 2003;170:597-603.

26. Fieschi C, Dupuis S, Catherinot E, et al. Low pen-
etrance, broad resistance, and favorable out-
come of interleukin 12 receptor beta1 deficiency:
medical and immunological implications. J Exp
Med. 2003;197:527-535.

27. Staretz-Haham O, Melamed R, Lifshitz M, et al. IL 12
receptor beta1 deficiency presenting as recurrent Sal-
monella infection. Clin Infect Dis. 2003;37:137-140.

28. Caragol I, Raspall M, Fieschi C, et al. Clinical tu-
berculosis in two of three siblings with interleu-
kin-12 receptor beta1 deficiency. Clin Infect Dis.
2003;37:302-306.

29. Fieschi C, Casanova JL. The role of interleu-
kin-12 in human infectious diseases: only a faint
signature. Eur J Immunol. 2003;33:1461-1464.

30. Casanova JL, Abel L. The human model: a ge-
netic dissection of immunity to infection in natural
conditions. Nat Rev Immunol. 2004;4:55-66.

31. Uzel G, Frucht DM, Fleisher TA, Holland SM. De-
tection of intracellular phosphorylated STAT-4 by
flow cytometry. Clin Immunol. 2001;100:270-276.

32. Miller AD, Garcia JV, von Suhr N, Lynch CM, Wil-
son C, Eiden MV. Construction and properties of
retrovirus packaging cells based on gibbon ape
leukemia virus. J Virol. 1991;65:2220-2224.

33. Candotti F, Johnston JA, Puck JM, Sugamura K,
O’Shea JJ, Blaese RM. Retroviral-mediated gene
correction for X-linked severe combined immuno-
deficiency. Blood. 1996;87:3097-3102.

34. den Dunnen JT, Antonarakis SE. Nomenclature
for the description of human sequence variations.
Hum Genet. 2001;109:121-124.

35. Kaplan MH, Sun YL, Hoey T, Grusby MJ. Im-
paired IL-12 responses and enhanced develop-
ment of Th2 cells in Stat4-deficient mice. Nature.
1996;382:174-177.

36. Thierfelder WE, van Deursen JM, Yamamoto K,
et al. Requirements for Stat4 in interleukin-12-
mediated responses of natural killer and T cells.
Nature. 1996;382:171-174.

37. Oppmann B, Lesley R, Blom B, et al. Novel p19
protein engages IL-12p40 to form a cytokine, IL-
23, with biological activities similar as well as dis-
tinct from IL-12. Immunity. 2000;13:715-725.

38. Parham C, Chirica M, Timans J, et al. A receptor for
the heterodimeric cytokine IL-23 is composed of IL-
12Rbeta1 and a novel cytokine receptor subunit,
IL-23R. J Immunol. 2002;168:5699-5708.

39. Trinchieri G. Interleukin-12 and the regulation of
innate resistance and adaptive immunity. Nat Rev
Immunol. 2003;3:133-146.

40. Hoeve MA, de Boer T, Langenberg DM, Sanal O,
Verreck FA, Ottenhoff TH. IL-12 receptor defi-
ciency revisited: IL-23-mediated signaling is also
impaired in human genetic IL-12 receptor beta1
deficiency. Eur J Immunol. 2003;33:3393-3397.

41. Boulay JL, O’Shea JJ, Paul WE. Molecular phy-
logeny within type I cytokines and their cognate
receptors. Immunity. 2003;19:159-163.

42. Bravo J, Heath JK. Receptor recognition by
gp130 cytokines. EMBO J. 2000;19:2399-2411.

43. Bravo J, Staunton D, Heath JK, Jones EY. Crystal
structure of a cytokine-binding region of gp130.
EMBO J. 1998;17:1665-1674.

44. Horsten U, Schmitz-Van de Leur H, Mullberg J,
Heinrich PC, Rose-John S. The membrane distal
half of gp130 is responsible for the formation of a
ternary complex with IL-6 and the IL-6 receptor.
FEBS Lett. 1995;360:43-46.

INTERLEUKIN-12/23 RECEPTOR DEFICIENCY 2101BLOOD, 1 OCTOBER 2004 � VOLUME 104, NUMBER 7



 161

 
 
 
 
 

Article en préparation 
 
 
 
 
 
 
 
 
 
 

Revisiting human IL-12Rβ1 deficiency: 
higher penetrance, broader susceptibility, and poorer outcome 

 
 
 
 

Ludovic de Beaucoudrey, Jacqueline Feinberg, Jacinta Bustamante, Aurélie Cobat, Arina 
Samarina, Lucile Jannière, Orchidée Filipe-Santos, Ariane Chapgier, Stéphanie Boisson-
Dupuis, Yoann Rose, Frédéric Altare, Capucine Picard,  Alain Fischer, Carlos Rodriguez-

Gallego, Isabel Caragol, Claire-Anne Sigriest, Janine Reichenbach, David Nadal, Klara 
Frecerova, Yaryna Boyko, Barbara Pietrucha, Renate Blütters-Sawatzki, Jutta Bernhöft, 
Joachim Freihorst, Ulrich Baumann, Olle Jeppsson, Darko Richter, Filomeen Haerynck, 

Suzanne Anderson, Michael Levin, Dinanthaka S. Kumararatne, Smita Patel, Rainer 
Doffinger, Andrew Exley, Vas Novelli, David Lamas, Kinda Scheppers, Françoise Mascart, 
Christiane Vermylen, David Tuerlinckx, Chris Nieuwhof, Malgorzata Pac, Walther H. Haas, 

Namik Özbek, Yildiz Camcioglu, Figen Dogu, Aydan Ikinciogullari, Gonul Tanir, Saniye 
Gülle, Necil Kutuculer, Guzide Aksu, Melike Keser, Ayper Somer, Nevin Hatipoglu, Cigdem 

Aydogmus, Mohammad S. Ehlayel, Abdullah Al Alangari, Sami Al Hajjar, Suliman Al 
Jumaah, Husn Frayha, Sulaiman Al Ajiji, Saleh Al Muhsen, Ben Zion Garty, Jacob Levy, 

Parisa Adimi, Davood Mansouri, Aziz Bousfiha, Jamila El Baghdadi, Ridha Barbouche, Imen 
Ben Mustapha, Mohammed Bejaoui, Slim Abdelmoula, Salem Kachboura, Jalel Chemli, 

Zohra Fitouri, Revathi Raj, Kuender D. Yang, Xiaochuan Wang, Liping Jiang, Zhu Chaomin, 
Xie Yuanyuan, Yang Xiqiang, Masao Matsuoka, Tatsunori Sakai, Aileen Cleary, David B 
Lewis, Steven Holland, Gabriela Castro, Natera Ivelisse, Ana Codoceo, Alejandra King, 

Sergio Rosenzweig, Judith Yancoski, Liliana Bezrodnik, Daniela Di Giovani, Maria Isabel 
Gaillard, Dewton de Moraes-Vasconcelos, Alberto José da Silva Duarte, Ruth Aldana, Saul 
Valverde Rosas, Francisco Javier Espinosa-Rosales, Sigifredo Pedraza, Laurent Abel, Claire 

Fieschi, Ozden Sanal and Jean-Laurent Casanova 
 
 
 
 
 
 



Revisiting human IL-12Rβ1 deficiency: 

higher penetrance, broader susceptibility, and poorer outcome 

 

 

de Beaucoudrey, L., J. Feinberg, J. Bustamante, A. Cobat, A. Samarina, L. Jannière, S. 

Boisson-Dupuis, Y. Rose, O. Filipe-Santos, A. Chapgier, F. Altare, C. Picard, A. Fischer, C. 

Rodriguez-Gallego, I. Caragol, C.A. Sigriest, J. Reichenbach, D. Nadal, K. Frecerova, Y. 

Boyko, B. Pietrucha, R. Blütters-Sawatzki, J. Bernhöft, J. Freihorst, U. Baumann, O. 

Jeppsson, D. Richter, F. Haerynck, S. Anderson, M. Levin, D. S. Kumararatne, S. Patel, R. 

Doffinger, A. Exley, V. Novelli, D. Lamas, K. Scheppers, F. Mascart, C. Vermylen, D. 

Tuerlinckx, C. Nieuwhof, M. Pac, W. H. Haas, N. Özbek, Y. Camcioglu, F. Dogu, A. 

Ikinciogullari, G. Tanir, S. Gülle, N. Kutuculer, G. Aksu, M. Keser, A. Somer, N. Hatipoglu, 

C. Aydogmus, M. S. Ehlayel, A. Al Alangari, S. Al Hajjar, S. Al Jumaah, H. Frayha, S. Al 

Ajiji, S. Al Muhsen, B.Z. Garty, J. Levy, P. Adimi, D. Mansouri, A. Bousfiha, J. El Baghdadi, 

R. Barbouche, I. Ben Mustapha, M. Bejaoui, R. Raj, K. D. Yang, X. Wang, L. Jiang, Z. 

Chaomin, X. Yuanyuan, Y. Xiqiang, M. Matsuoka, T. Sakai, A. Cleary, D. B Lewis, S. 

Holland, G. Castro, N. Ivelisse, A. King, S. Rosenzweig, J. Yancoski, L. Bezrodnik, D. Di 

Giovani, M. I. Gaillard, D. de Moraes-Vasconcelos, A. J. da Silva Duarte, R. Aldana, S. 

Valverde Rosas, F. Javier Espinosa-Rosales, S. Pedraza, L. Abel, C. Fieschi, O. Sanal and J.L. 

Casanova. 

 

 
Address all correspondence to Jean-Laurent Casanova: Laboratory of Human Genetics of 

Infectious Diseases, Paris Descartes University – INSERM U550, Necker Enfants-Malades 

Medical School, 156 rue de Vaugirard, 75015 Paris, France. Phone: 33 1 40 61 56 87; Fax: 33 

1 40 61 56 88. Email: jean-laurent.casanova@inserm.fr 

 

 

Running title: Human interleukin-12 receptor deficiency.  



V20081002 

Beaucoudrey et al 
Human interleukin-12 receptor deficiency 

2/24

Abstract  

First discovered in 1998, autosomal recessive, complete IL-12Rβ1 deficiency is the 

most common genetic etiology of the syndrome of Mendelian predisposition to mycobacterial 

disease and the first described genetic etiology of pediatric tuberculosis. In 2003, a study of 

41 cases suggested that IL-12Rβ1 deficiency shows low penetrance, broad resistance, and 

favorable outcome. We herein report an international survey of 137 patients from 101 

kindreds and 30 countries. Among the 101 index cases, the first infection occurred at ages 2 

week-31,7 years and consisted in mycobacterial disease in 75 cases, caused by BCG (n = 64), 

environmental mycobacteria (n = 8) and M. tuberculosis (n = 3). Some presented first with 

non-typhoidal, extra-intestinal salmonellosis (n = 22). Up to 72% of the known genetically 

affected siblings of index cases were clinically affected (n = 26), with only 10 remaining 

asymptomatic. However 54 of the 164 siblings were not genotyped. Among the 127 

symptomatic patients, recurrences of infection were rare (n = 40) and concerned mostly 

salmonellosis (n = 34). Up to 27% (n = 34) of patients had both salmonellosis and 

mycobacteriosis. BCG or EM disease strongly protected from subsequent EM disease. Other 

infectious diseases occurred, most in single or few patients (klebsiellosis, leishmaniasis, 

paracoccidioidomycosis, candidiasis). Only two-third of the patients (88 = 69%) survived, 

now aged 0.7-46.4 years. Altogether, these data corroborate the previous description of IL-

12Rβ1 deficiency, which is characterized by childhood-onset mycobacteriosis and 

salmonellosis with only rare recurrent or multiple infections. It also refines its clinical picture, 

with somewhat higher clinical penetrance, broader vulnerability to infections, and less 

favorable outcome than previously thought.  
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Introduction 

 Mendelian Susceptibility to Mycobacterial Diseases (MSMD, MIM 209950) is a 

clinical syndrome predisposing otherwise healthy individuals to infectious diseases caused by 

poorly virulent mycobacteria, such as bacillus Calmette-Guérin (BCG) vaccines and 

environmental mycobacteria (EM) (1). Since 1996, mutations in six genes defined thirteen 

genetic etiologies of MSMD (reviewed in (2)). Defects were found in five autosomal genes, 

which encoded either chain of the IFN-γ receptor (IFNGR1 and IFNGR2), the signal 

transducer and activator of transcription factor 1 (STAT1), the p40 subunit of IL-12 and IL-23 

(IL12B), and the β1 chain shared by the IL-12 and IL-23 receptors (IL12RB1), and one X-

linked gene coding for nuclear factor-κB essential modulator (NEMO) (2). These defects all 

result in impaired IFN-γ mediated immunity. The allelic heterogeneity is such that mutations 

in six genes define thirteen distinct genetic traits, a given gene being possibly associated with 

recessive or dominant inheritance, complete or partial defect, and loss of expression or 

expression of non-functional molecules. Patients with MSMD are also susceptible to the more 

virulent species Mycobacterium tuberculosis, and IL-12Rβ1 deficiency was even the first 

identified Mendelian genetic etiology of pediatric tuberculosis in children normally resistant 

to BCG and EM (3-6). The patients are also susceptible to Salmonella infections, in less than 

half of the cases (2, 7). A few other infections were diagnosed, albeit often in single patients 

with any of or even the combination of the aforementioned genetic traits, making it difficult to 

draw firm conclusions as to whether their pathogenesis is related to the underlying genetic 

defect(s).  

 The most common genetic etiology of MSMD is autosomal recessive IL-12Rβ1 

deficiency, first reported in 1998 (8, 9). NK and T cells from the patients do not respond to 

IL-12 and produce low levels of IFN-γ. The first large series of patients was reported in 2003, 

with 41 patients from 29 unrelated families in 17 countries (10). This survey resulted in the 
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description of key clinical features of IL-12Rβ1 deficiency, when compared with other 

genetic etiologies of MSMD such as IFN-γR1 deficiency (11). Five features of IL-12Rβ1 

deficiency were of specific clinical and immunological interest. First, infectious diseases 

typically first appeared in childhood, with no adult onset of disease. Second, recurrence of 

mycobacterial disease was rare, with BCG and EM disease protecting from EM disease. 

Third, there was incomplete clinical penetrance, with up to 45% of asymptomatic affected 

siblings. Four, the patients showed broad resistance to infectious agents, with a phenotype 

largely dominated by mycobacterial disease and salmonellosis. Fifth, there was a favorable 

outcome, with an overall mortality of only 15%. By now, individual case reports and small 

series have brought up the number of patients described in the literature to 71 (3-5, 12-45). 

There is a need to further reduce the ascertainment bias, in particular to assess the potential 

impact of the genetic background and microbial flora on the clinical phenotype, in order to 

draw better clinical and immunological conclusions from the study of this disorder. We herein 

describe the molecular, cellular, and clinical features of an international series of 137 patients 

with complete IL-12Rβ1 deficiency.  

 

 Patients and methods 

Subjects and kindreds.  

We investigated patients and their families with disseminated and/or recurrent 

mycobacterial or atypical salmonella diseases history. Our study was conducted in accordance 

with the Helsinki Declaration, with informed consent obtained from each patient or patient’s 

family, as requested and approved by the institutional review boards of the various institutions 

involved, including the Necker Medical School. 

 

Whole-blood activation 

Venous blood samples were collected into heparinized tubes and send at room-

temperature by express mail. Blood is diluted ½ in RPMI 1640 medium (Invitrogen) 

supplemented with 100 U/ml penicillin and 100 µg/ml streptomycin (Invitrogen). 1 ml per 
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well of a 24 wells plate were activated under four conditions: with medium alone, with live 

BCG (Mycobacterium bovis BCG, Pasteur strain) either at 20:1 multiplicity of infection, with 

BCG more IFN-γ (5000 UI/ml, Imukin Boheringer Ingelheim), or with BCG more IL-12p70 

(20 ng/ml, R&Dsystems) (40). Supernatants were collected between 12 and 18 hours, and the 

remaining volume is collected after 48 hours, centrifuged at 1800 g for 5 minutes. All the 

supernatants were stored at -20°C until analysis. 

 

Determination of cytokine levels by ELISA 

IL-12p40, IL-12p70 levels (12/18 hours supernatant) and IFN-γ levels (48 hours 

supernatants) were determined by ELISA. We used the capture antibodies, detection 

antibodies and standards supplied in the R&D Systems kits for IL-12p40 and IL-12p70 

(Duoset DY1240 and Quantikine HS120) and in the Sanquin kit for IFN-γ (M9333), diluted in 

HPE dilution buffer (M1940, Sanquin). Milk was used for blocking and antibody binding was 

detected with streptavidin poly-HRP (M2032, Sanquin) and TMB microwell peroxidase 

substrate (50-76-00, KPL). The reaction was stopped by adding H2SO4 (1.8 M). Optical 

density was determined with an MRX microplate reader (Thermolab Systems). Quantitative 

analysis involving a non-linear four parameter logistic (4PL) calibration model was made by 

an in-house software based on the Microsoft Excel application language developed for this 

purpose (gift from Max Feinberg). Intermediate results for each cytokine are expressed in 

pg/ml/106 PBMC. 

 

Cell culture 

Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-B cell lines) were 

cultured RPMI 1640 (Invitrogen) supplemented with 10% heat-inactivated Foetal Bovine 

Serum (FBS) (Invitrogen). To generate PHA activated T-cells, peripheral blood mononuclear 

cells (PBMCs) were purified by centrifugation on a Ficoll-Paque Plus gradient (GE 

Healthcare), resuspended in RPMI-10% FBS and activated with phytohemagglutinin-P (PHA, 

Becton Dickinson ) for 72 to 96 hours. PHA-T-cell blasts were restimulated every 48 hours 

with IL-2 (50 IU/ml, Proleukin i.v. from Chiron) and cultured in Panserin 401 (Pan Biotech) 

with 10% FBS and 2 mM L-glutamine (Invitrogen) at 2 x 105 cells/ml. All cells were 

incubated at 37°C, under an atmosphere containing 5% CO2. 

 

Flow cytometry 
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PHA-T-cell blasts or EBV-B cells were washed in PBS and dispensed into a 96-well 

plate for labeling. The cells were incubated with an anti-IL-12Rβ1 antibody (1/100e of 

556064 and/or 559253 from BD Biosciences) or a matched isotypic control (555746 and/or 

555840 from BD Biosciences) for 20 minutes in PBS-2% FBS on ice. The cells were then 

washed twice with cold PBS-2% FBS. Cells were then incubated for 20 minutes on ice with 

anti-mouse- or anti-rat-Alexa Fluor 488 (A-11029 or A-11006 from Invitrogen) Cells were 

washed twice with PBS-2% FBS and analyzed with a FACScan machine and the Cellquest 

software (Becton Dickinson).  

 

Genetic analysis 

Human genomic DNA was isolated from pellet of PBMC purification, whole blood or 

cell lines. The cells were lysed in extraction buffer (10 mM Tris, 0.1 M EDTA, 0.5% SDS, 

and 10 mg/ml proteinase K) overnight at 37°C. The DNA was isoletd by phenol/chloroform 

extraction, precipitated in isopropanol and ethanol and resuspended in TE 10:1 (10 mM Tris, 

1 mM EDTA, pH 7.6). RNA was isolated from EBV-B cells or PHA-T cell blats with Trizol 

reagent (Invitrogen) according to the manufacturer’s instructions. RNA was reverse 

transcribed by oligo-dT with Superscript II reverse transcriptase (Invitrogen). The first-strand 

cDNA was then stored at -20°C. PCR amplification was performed using AmpliTaq DNA 

polymerase (Applied Biosystems) and the GeneAmp PCR system 9700 (Applied 

Biosystems). Primers and conditions used for PCR amplification of the coding exons, 

including the flanking intronic sequences, or the cDNA of IL12RB1 are available on request. 

Amplified PCR products were controlled by gel electrophoresis in a 1% agarose gel and were 

purified by centrifugation through Sephadex G-50 Superfine resin (Amersham GE) on filter 

plates multiscreen MAHV-N45 (Millipore). PCR products were sequenced by 

dideoxynucleotide termination with the BigDye terminator kit v1.1 (Applied Biosystems) and 

the PCR primers. Sequencing products were purified by centrifugation through Sephadex G-

50 Superfine resin and analysed on an ABI Prism 3100 or 3130xl apparatus (Applied 

Biosystems). Sequences files and chromatograms were analyzed with GENALYS Software 

from CNG, France (46). 

 

Statistical methods 

The proportion of infection free, survival and penetrance were estimated by the 

Kaplan-Meier method for all type of infection and according to infection type. Curves were 

compared using the log-rank test. Clinical penetrance of IL-12Rβ1 deficiency was assessed 
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after excluding all probands. All calculations and curves were performed with the survival 

package of the R software. 

 

Results  

 Identification of 137 patients carrying two IL12RB1 mutant alleles 

 We sequenced the 17 IL12RB1 coding exons and flanking intron regions in patients 

with severe mycobacterial disease (MSMD and severe tuberculosis) and/or systemic 

salmonellosis (non-typhoidal and typhoidal) referred to our laboratory. We identified 101 

unrelated index cases from 30 countries with two IL12RB1 mutant alleles (Table 1; Figure 1 

and 2). There were a total of 52 mutant alleles (Table 1; Figure 3). The patients were 

homozygous (n = 86) or more rarely compound heterozygous (n = 12) for nonsense (n = 11), 

missense (n = 15), and splice (n = 10) mutations, small insertions (n = 3), small deletions (n = 

7), large deletions (n = 2), and deletions/insertions (n = 4). All predicted splice mutations had 

a major impact on the IL12RB1 mRNA structure, with a lack of detectable full-length 

mRNAs, as determined by RT-PCR (data not shown). Systematic investigation of most 

relatives, siblings in particular, led to a suspicion of IL-12Rβ1 deficiency in up to 137 cases. 

Up to 25 siblings of index cases died uncluding 17 of unknown or unrelated  cause and eight 

of BCG-osis (26.II.1, 62.II.1, 73.II.1 and 73.II.1, 81.II.1), M. avium disease (4.II.1), 

disseminated tuberculosis (65.II.1) and salmonellosis (S. enteritidis, 30.II.5) (Table 1). They 

probably carried the disease-associated IL12RB1 genotype. Among the 164 surviving siblings, 

54 were not genotyped and up to 28 were homozygous or compound heterozygous for the 

corresponding mutations (Figure 1). Altogether, up to 137 individuals from 101 kindreds had 

proven (n = 129) or probable (n = 8) IL-12Rβ1 deficiency. Up to 159 parents were genotyped 

and all were found to be heterozygous except one mother (47.I.2) who was found to be 

homozygous for the familial mutation. 
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 Abolished cellular responses to IL-12 

 Up to 65 IL-12Rβ1-deficient patients (47 index cases and 18 relatives were 

investigated for their blood IL-12/IFN-γ circuit. We measured the production of IFN-γ by 

whole blood, in response to stimulation with BCG alone (partly resulting from BCG-

dependent, endogenous IL-12 production) and BCG plus exogenous, recombinant IL-12, as 

previously described (10, 40). All patients tested had an abolished response to IL-12 in this 

assay (Figure 4). In particular, there was no increased production of IFN-γ upon stimulation 

with BCG plus IL-12, when compared with BCG alone. The cellular phenotype of all patients 

tested is therefore uniform, with functional complete IL-12Rβ1 deficiency. At odds with a 

few previous report, we did not detect any residual IL-12 responses in patient 64.II.1 carrying 

the C186S mutation (16). We then assessed IL-12Rβ1 expression on the surface of T cell 

blasts and/or EBV-B cells by flow cytometry with two specific antibodies that recognize 

distinct epitopes on the extracellular domain of IL-12Rβ1. No IL-12Rβ1 molecules were 

detected on the surface of cells from the 90 patients tested, except for four patients from two 

Israeli families (kindreds 10 and 43) carrying the same mutation, as previously described (18). 

This truncated, cell surface-expressed protein is non-functional and causes complete IL-

12Rβ1 deficiency. Interestingly, the 15 missense IL12RB1 mutations detected, unlike the 4 

missense SNPs, were both loss-of-expression and loss-of-function. 

 

 Presenting clinical features of 101 index cases 

 We studied the age of onset and the nature of the first infectious diseases in 101 index 

cases with IL-12Rβ1 deficiency. They developed infections caused by weakly virulent 

microorganisms (BCG, EM and non typhoidal Salmonella) (n = 97) or by more virulent 

microorganisms (Mycobacterium tuberculosis) (n = 3). One patient developed a Nocardia 

nova infection (97.II.2). The first infections occurred at 2 weeks-31.7 years (mean 2.8 years). 
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Most cases presented with BCG infection (64 among 84 BCG-vaccinated index cases). Eight 

of them presented with EM diseases and three of them suffered from M. tuberculosis 

infection. Salmonellosis was the first infection diagnosed in 22 cases. Two patients presented 

with two different infections simultaneously (patients 17.II.2 and 68.II.1); they suffered from 

EM and Salmonella diseases. We need to complete the clinical data for two patients. 

 

 Presenting clinical features of 28 genetically affected siblings 

 We have identified two IL12RB1 null alleles causing complete IL-12Rβ1 deficiency in 

28 relatives (27 brothers or sisters and one mother). The defect was also probable in 8 siblings 

deceased of chronic infection. Among the 36 genetically affected siblings, 10 displayed no 

overt infectious phenotype. This asymptomatic group presented with the same cellular 

phenotype than their clinically affected IL-12Rβ1-deficient siblings. Among these ten 

patients, two were vaccinated with BCG and did not develop any BCG disease. As first 

infection, fourteen other genetically affected parents developed BCG disease (among 22 

BCG-vaccinated), four had environmental mycobacteriosis, three tuberculosis and four 

salmonellosis. One patient presented with two infections at the same time (BCG diseases and 

salmonellosis in patient 40.II.1). Altogether, the infectious phenotype was comparable to that 

of the index cases. The age of infection in these 28 patients did not differ either from that of 

index cases (mean 1.6 years, range 1 week-8 years). Their age was also comparable (mean 7.8 

years, range 1.2-28 years). The remarkable observation is that ten patients had no overt 

phenotype, although being aged 0.7-21.5 years. 

 

 Incomplete clinical penetrance 

 Interestingly, 10 of the 36 IL-12Rβ1-deficient (whether proven or suspected) siblings 

or parents were completely free of unusual infections at their last follow-up visit (mean 
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duration of follow-up: 12.6 years, range: 0.7-21.5 years). These asymptomatic patients have 

been identified because they are related (siblings or parents) to the index cases. To estimate 

the clinical penetrance of the defect, we used the 26 symptomatic (follow-up from 1.2 to 28 

years, mean = 7.8 years) and the 10 asymptomatic siblings (follow up from 0.7 to 21.5 years, 

mean = 12.6 years). Overall, the penetrance of infections was estimated to be 78% 

(confidence interval 95%: 51-90%) when calculated with survival analysis techniques to 

account for differences in follow-up period (Figure 6). The penetrance of opportunistic 

infections (BCG, EM and salmonella diseases) was estimated to be 64% (confidence interval 

95%: 41-78%). The BCG disease penetrance among vaccinated is 61% (confidence interval 

95%: 31-78%), EM penetrance is 14% (confidence interval 95%: 0-25%), salmonella 

penetrance is 35% (confidence interval 95%: 12-52%). The penetrance of tuberculosis was 

estimated to be 28% (confidence interval 95%: 0-55%). These figures are somewhat higher 

than in the previous series. However, up to 54 (34%) of asymptomatic siblings were not 

genotyped. In contrast, all symptomatic siblings were considered to be IL-12Rβ1-deficient, 

even when they were not genotyped. In 2003, only X% of siblings had not been genotyped. It 

is therefore difficult to conclude that the penetrance is higher than expected. 

 

 Mycobacterial diseases in the 137 patients  

 Mycobacterial diseases were the most frequent infections (Figure 5), as they were 

diagnosed in 104 of 127 infected patients (82%). We first analyzed the individuals who 

developed case-definition opportunistic infections caused by weakly virulent mycobacteria. 

BCG was the leading pathogen, as up to 106 patients were vaccinated with live BCG, 81 of 

whom have developed BCG disease (localized, n = 19; disseminated, n = 57; not known, n = 

5). In contract, only 23 patients developed EM diseases due to M. avium (n = 13), M. triplex 

(n = 1), M. chelonae (n = 2), M. genavense (n = 2), M. simiae (n = 1), M. bovis (n = 1). 
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Remarkably, only two patients suffered from two or more EM infections (4.II.1 and 7.II.5). 

More virulent mycobacterial infections were also diagnosed in IL-12Rβ1-deficient patients, 

especially due to M. tuberculosis. Ten cases of tuberculosis were documented (Figure5). 

Interestingly, in line with previous reports, tuberculosis was the only infectious disease in five 

patients (2.II.1, 24.II.3, 31.II.2, 65.II.1, 93.II.1). Three of them suffered also from BCG 

disease, one from EM disease and another from salmonellosis. 

 

 Salmonellosis in the 127 patients 

 Salmonellosis occurred in up to 54 of 127 patients and was the only infectious disease 

in 20 patients; the remaining 34 patients developed salmonellosis with mycobacteriosis. Non-

typhoidal Salmonella were documented among 53 patients, including S. enteritidis (n = 23), S. 

typhimurium (n = 10), S. dublin (n = 3), S. enteritica (n = 1), S. portland (n = 1), S. hadar (n = 

1), S. group B (n = 5) or S. group D (n = 10). Only one patient suffered from typhoid fever 

(patient 84.II.1), caused by S. typhi and S. paratyphi. Salmonella infection was found in 43% 

of the 127 infected IL-12Rβ1-deficient patients. Three deaths were attributable to 

salmonellosis. Up to 8 patients suffered from salmonellosis caused by multiple groups of 

serotypes (3.II.1, 9.II.3, 30.II.6, 56.II.2, 67.II.4, 74.II.1, 79.II.2 and 84.II.1). Among the total 

of 127 symptomatic patients, up to 40 patients (31%) had multiple infections (Figure 5). Most 

(n = 37) had only two infections. Up to 32 patients had both salmonellosis and 

mycobacteriosis (80% of the multiple infected patients). Only nine of 127 patients had two 

different types of mycobacterial disease. Five patients have developed two opportunistic types 

of mycobacterial diseases with EM and BCG diseases. Three patients had salmonellosis and 

two mycobacterial infections (patients 8.II.2, 40.II.2 and 56.II.2). The four other made one 

opportunistic mycobacterial disease (3 BCG and 1 EM) with tuberculosis. 
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 Infections caused by agents other than mycobacteria and salmonella 

 One patient did not developed mycobacterial or salmonella diseases but presented with 

Nocardia nova infection (patient 97.II.2), consistent with the phylogenetic and biochemical 

proximity of Mycobacteria and Nocardia. Interestingly, up to 29 patients have developed 

muco-cutaneous disease caused by Candida albicans (23%). The large majority of patients 

had recurrent oral thrush, often occurring when the patients were off all antibiotics treatment. 

The detailed clinical features of candidiasis in IL-12Rβ1-deficient patients will be reported 

elsewhere. One patient developed recurrent visceral leishmaniasis (77.II.2) (27), one 

disseminated Paracoccidioides brasiliensis (29.II.1) (20), and one disseminated 

histoplasmosis (57.II.1). Most bacterial infections were benign, except for three patients who 

were infected by Klebsiella pneumoniae (70.II.2, 86.II.1 and 97.II.2), and another who 

developed sepsis and meningitis due to Citrobacter freundii (36.II.4). The occurrence of 

Klebsiellosis may be related to the susceptibility to Salmonella, as the two species are 

phylogenetically and biochemically very close. There were no unusually severe fungal, 

bacterial or viral infections in our 127 symptomatic patients. 

 

 Clinical outcome of IL-12Rβ1-deficient patients 

The mortality rate among symptomatic patient was 31% (39 out of 127 infected 

patients). This rate is more important than the 15% previously reported (10). Among the 39 

patients , most died due to BCG-osis (n = 21), and fewer due to EM disease (n = 9), 

tuberculosis (n = 2), or salmonellosis (n = 3). One patient died due to oesophageal carcinoma 

(patient 30.II.6) (Rodriguez-Gallego et al, submitted) and three of unknown causes. The 

global mortality, including asymptomatic patients, is increased, at 28.5% (compared with 

15% in a previous report). 
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 Age of onset of infections among the 127 patients 

 We focused our analysis on the 127 symptomatic patients (101 index cases and 26 

siblings). The age of the first onset of infection is during the first infancy with a mean at 2.8 

years (range: 1 week-31.7 years) (Figure 6). In most cases the first infection is due to the 

vaccination with live BCG (BCG-it is or BCG-osis). It occurred from 2 weeks to 10.1 years 

with a mean of 8.6 months of age (from 1 week to 3.2 years after vaccination, with a mean at 

4.8 months after vaccination). In nearly all cases, (95%) BCG disease occurred in the first 

year of life after vaccination. Salmonella (range: 3 months to 30.5 years, mean 4.4 years) and 

EM (range 1 week to 31.7 years, mean 6.4 years) diseases occurred around at the same period 

of life. For tuberculosis, the age of onset is later. M. tuberculosis infection occurred from 2.5 

to 31 years with a mean of 11.3 years. BCG disease is the first infection in 78 cases (61%), 

EM in 12 (9%), M. tuberculosis in 6 (5%) and Salmonella in 26 cases (20%). Three of them 

have a mycobacterial infection and a salmonella infection at the same time as first (BCG n = 

1, EM n = 2). In 95% of the cases, symptoms appeared during infancy, before age 1 year in 

BCG-vaccinated individuals and before age 5 years in the others. However, there were some 

patients who developed their first symptomatic infection at a relatively advance age (2 

weeks). 

 

 Impact of BCG vaccination and EM disease on other mycobacterial diseases 

 Up to 40 patients among the 127 (31%) have had multiple infections (Figure 5). Up to 

29 patients presented with BCG disease as their first infection (72%). We determined the 

impact of BCG vaccination and disease on the clinical phenotype of the 127 patients. BCG 

disease strongly protects from subsequent EM diseases (Figure 6). Only 5 of 81 patients with 

BCG diseases developed EM diseases. Only 7 of the 25 patients resistant to BCG (BCG 

inoculation without BCG disease) suffered from EM diseases with late onset of the diseases. 
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In contrast, up to 11 of the 26 patients (42%) who had not been vaccinated with BCG suffered 

from EM diseases, with early onset of the disease. The difference in age at onset of EM 

disease between the three groups of patients was highly significant (p = 6 x 10-4, Figure 6). 

This difference was most particularly important if patients with BCG disease were compared 

with patients not inoculated with BCG (p = 1.7 x 10-4). The difference between patients 

resistant to BCG and non-vaccinated patients was not statistically significant (p = 0.09). 

Finally, the difference in incidence of EM disease between BCG inoculated (with or without 

BCG disease) and non-vaccinated patients was highly significant (p = 3.6 x 10-4). This 

observation made for EM diseases was not true for the onset of tuberculosis (p = 0.48). The 

comparison of the age of onset of salmonella diseases was not statistically significant between 

this three groups (p = 0.30). 

 

 Discussion 

 We herein report 137 patients with IL-12Rβ1 deficiency. The patients originate from 

30 countries on four continents and comprise individuals from various ethnic groups (e.g. 

Europeans, Africans, Arabs, Chinese…). Consistent with the geographic and ethnic 

heterogeneity, there is substantial genetic heterogeneity, with up to 52 mutant alleles in 101 

kindreds. In all but two kindreds from Israel (18, 28), the patients suffer from IL-12Rβ1 

deficiency without surface expression of the receptor. In all patients, the cells do not respond 

to both IL-12 and IL-23, defining a complete form of IL-12Rβ1 deficiency. A diagnosis of 

partial, as opposed to complete, IL-12Rβ1 deficiency was proposed by other investigators in a 

child homozygous for mutation C186S but these findings were not confirmed here in a patient 

carrying the same mutation (16). Likewise, an IL-12Rβ1-independent T cell response to IL-12 

was proposed by the same investigators, but these findings were not confirmed in our assays 

(37). In all patients tested, including patients with IL-12Rβ1 expression on the cell surface, 
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there was no detectable cellular response to IL-12 in our whole blood assay (40). In any event, 

the high number of kindreds diagnosed, in various ethnic groups, with various mutant alleles, 

strongly suggests that IL-12Rβ1 deficiency will be diagnosed in many other families world-

wide, especially with increased awareness of the clinical features of MSMD and IL-12Rβ1 

deficiency. The present study is expected to contribute to this process.  

 Interestingly, the uniform cellular phenotype is associated with a substantial 

heterogeneity of the clinical phenotype, ranging from early death in infancy to an 

asymptomatic course until adulthood. Mycobacterial infections remain the vast majority of 

infections: up to 76% of symptomatic patients suffered from one or another type of 

mycobacterial disease. The high proportion of mycobacterial diseases, BCG and EM disease 

in particular, may reflect an ascertainment bias as patients with MSMD are primarily studied 

for the IL-12Rβ1 chain. We also report five cases with tuberculosis as their sole clinical 

manifestation (3-5). The IL12RB1 gene can be considered as the first tuberculosis Mendelian 

susceptibility gene. The prevalence of tuberculosis in IL-12Rβ1-deficient patients is lower 

than that of disease due to BCG or EM infection. This may be because patients are less 

frequently exposed to M. tuberculosis than to the BCG vaccines (which have 85% coverage 

world-wide) and the almost ubiquitous EM. This also is less likely to be due to the possibility 

that a first mycobacterial infection might protect from tuberculosis. There are however 2 

patients with BCG-osis and TB.  

 Salmonellosis is the second most common infection, found in 43% of symptomatic IL-

12Rβ1-deficient patient. It is the only infection for 37% of those cases (20/54) and 16% of the 

symptomatic and 15% of all patients. The remaining patients suffered from both 

mycobacteriosis and salmonellosis. It is clear from our study that IL-12Rβ1 deficiency should 

be considered in patients with a pure phenotype of salmonellosis, extra-intestinal non-

typhoidal salmonellosis in particular (typhoid fever was only diagnosed in one patient). 
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Infections other than those caused by mycobacteria and salmonella are also increasingly 

diagnosed. Leishmaniasis, paracoccidioidomycosis, and nocardiosis were diagnosed in one 

patient each. The three organisms are intra-macrophagic pathogens, consistent with the 

plausible role of IL-12Rβ1 deficiency in the pathogenesis. Moreover, a child with nocardiosis 

was previously reported to suffer from IL-12p40 deficiency (47). Klebsiellosis was diagnosed 

in three patients. The natural history of these intra-cellular infections suggests that IL-12Rβ1 

deficiency is involved but more cases need to be diagnosed to confirm this hypothesis. 

Surprisingly, mild forms of chronic mucocutaneous candidiasis were diagnosed in up to 29 

patients (Rodrigues-Gallego et al, in preparation). Interestingly, in the last few years, IL-

12Rβ1 was implicated in the human IL-23-IL-17 axis (48-51), previously described in mouse 

model (reviewed in (52, 53)). Mice with impaired IL-17 immunity are also susceptible to 

Candida (54, 55). Moreover, mouse IL-17 has, paradoxically, been shown to impair immunity 

to Candida in certain experimental conditions (56, 57). The actual function of human IL-23-

IL-17 axis in host defense remains unknown but it has been demonstrated that patient with IL-

12Rβ1 deficiency have an impaired development of IL-17-producing T cells (45). This 

relatively high proportion of patient with this clinical course may reflect an impact of IL-12 or 

IL-23 on the immunity against Candida. As the IL-12-IFN-γ axis was described for anti-

mycobacteria immunity, perhaps the IL-23-IL-17 axis could be involved in the anti-candida 

or the anti-salmonella immunity in humans. Genetic dissection of immunity against 

Salmonella or Candida could help us to understand this clinical specificity of IL-12Rβ1-

deficient patients. In any event, the infectious phenotype of IL-12Rβ1-deficient patients 

appears to be broader than initially thought. 

 We also confirm that the penetrance of MSMD in IL-12Rβ1 deficiency is not 

complete, whether for BCG or EM disease. The penetrance of salmonellosis is also 

incomplete, although it is difficult to define which patients have been exposed to Salmonella. 
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This is even more pronounced for tuberculosis, as only a small fraction of patients were 

probably exposed to M. tuberculosis. We also confirm that IL-12Rβ1 deficiency is a disease 

of childhood onset. When compared with our 2003 survey, the higher number of patients (137 

against 41) results in a penetrance of MSMD increased from x% to 49% and that of MSMD 

plus salmonellosis from 45 to 64%. If we include tuberculosis, the global penetrance raised to 

78%. Altogether, even healthy siblings of probands, and their more distant relatives in 

consanguineous kindreds, should be investigated. We further confirm that the prognosis of IL-

12Rβ1 deficiency is quite good. However, consistent with the higher penetrance, the outcome 

is not nearly as good as that observed in 2003 with fewer patients. The overall mortality rate 

of IL-12Rβ1-deficient patients now reaches up to 28.5%, against 15% in 2003. It does not 

seem to correlate with the country of origin, but the type of infection has a detectable impact, 

with EM disease being associated with a poor prognosis. Among 81 BCG-infected patients, 

24 died (30%); among 23 EM-infected patients, 12 died (52%); among 10 patients with 

tuberculosis, 3 died (30%); and among 54 patients with Salmonellosis, only 10 died (19%). 

The outcome improved with age, with no death after age 38 years. Most (??) patients are 

currently healthy off all treatment. Overall, IL-12Rβ1 deficiency is often but not always 

symptomatic, presents typically in childhood, is lethal in up to a third of the patients, 

especially in patients with EM disease, and its prognosis seems to improve with age. 

 

 Legends to table and figures 

 Table 1: Genetic and clinical features of the patients with IL-12Rβ1 deficiency. 

  

 Figure 1: Pedigrees of 101 families with IL-12Rβ1 deficiency. Each kindred are 

designated by a capital number (1–101), each generation by a roman numeral (I–II), and each 

individual by an Arabic numeral (from left to right). Symbols are partitioned in two parts by a 
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horizontal line: the upper part indicates infections with Mycobacteria (in black, patients with 

BCG-osis or atypical mycobacteriosis; in gray, patients with tuberculosis); the lower part in 

black indicates infections with salmonella. The probands are indicated by an arrow. 

Individuals whose genetic status could not be evaluated are indicated by the symbol “E?”. 

Asymptomatic individuals carrying two mutant IL12RB1 alleles are represented by a vertical 

line. 

 

 Figure 2: Kindred’s origin. Geographical origin’s of the 137 patients with complete 

IL-12Rβ1 deficiency. They are originated from 30 countries (Argentina, Belgium, Bosnia and 

Herzegovina, Brazil, Cameroon, Chile, China, Cyprus, France (continental and Martinique), 

Germany, India, Iran, Israel, Japan, Morocco, Mexico, Netherlands, Pakistan, Poland, Qatar, 

Saudi Arabia, Slovakia, Spain (continental and Canaries), Sri Lanka, Taiwan, Tunisia, Turkey, 

United Kingdom, Ukraine and Venezuela).  

 

 Figure 3: Mutated alleles in IL12RB1 genes. Schematic representation of the coding 

region of the IL-12Rβ1 chain containing 17 coding exons encoding a 662 amino acids protein, 

with a peptide leader sequence (exon1, L), extracellular domain (exons 2 to 13, EC), 

transmembrane domain (exon 14, TM) and an intracellular cytoplasmic domain (exons 15 to 

17, IC). Missense mutations are noted in parm, nonsense in red, complex in sienna. Splicing 

mutations are noted in blue, and large deletions are in green. 

 

 Figure 4: Impaired cellular response to interleukin-12. Production of IFN-γ by 

whole blood cells from 38 healthy “local” positive controls (fresh blood), from 49 healthy 

“travel” positive controls and from 65 patients, either unstimulated (-) or stimulated with 

BCG alone or with BCG plus recombinant IL-12p70. The horizontal bars represent the 



V20081002 

Beaucoudrey et al 
Human interleukin-12 receptor deficiency 

19/24

median of the values. 

 

 Figure 5: Repartition of the clinical phenotype of the IL-12Rβ1-deficient patients. 

Each patient is classified according to mycobacterial infections (in red, BCG for BCG 

disease, EM for EM disease, Mtb for tuberculosis) and salmonella infections (in green, 

salmonella for salmonella disease).  

 

 Figure 6: Epidemiological features of IL-12Rβ1 deficiency. First onset (A) and 

outcome (B) of infectious diseases in 119 deficient patients, according to infections: BCG 

(broken blue line), EM (broken gray line), M. tuberculosis (broken green line), Salmonella 

(broken red line), and all 4 infections (solid black line). (C) Onset of BCG disease among 

patients. (D) Variations in onset of EM disease among the 124 deficient patients, who had 

been vaccinated with BCG and suffered BCG disease (broken red line, n = 80), who had been 

vaccinated with BCG without developing BCG disease (resistance to BCG, broken blue line, 

n = 25), or who had not been vaccinated with BCG (solid black line, n = 27). Penetrance of 

infectious diseases (E) and opportunistic case-definition infectious diseases (F) in 31 of the 36 

IL-12Rβ1–deficient siblings (excluding all probands). 

 

 Legends to supplementary figures 

 Supplementary figure 1: Repartition of clinical phenotypes of IL-12Rβ1-deficient 

patients. (A) Global repartition of clinical phenotypes. (B) Repartition of salmonella disease. 

(C) Repartition of mycobacterial diseases. (D) Repartition of non vaccinated, resistant to BCG, 

and BCG diseases.  

 

Supplementary figure 2: Penetrance of clinical phenotypes in the IL-12Rβ1-deficient 
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siblings (excluding all probands). (A) Penetrance of BCG diseases in vaccinated deficient 

siblings. (B) Penetrance of EM diseases in deficient siblings. (C) Penetrance of tuberculosis in 

deficient siblings. (D) Penetrance of salmonella disease in 36 deficient siblings. 

 

Supplementary figure 3: Variations in onset of EM (A) diseases and tuberculosis (B) among 

the 132 deficient patients, who had been vaccinated with BCG and suffered BCG disease 

(broken red line, n = 80), who had been vaccinated with BCG without developing BCG 

disease (resistance to BCG, broken blue line, n = 25), or who had not been vaccinated with 

BCG (solid black line, n = 27). 
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Table1 : Familial, genetical, geographical and clinical features of patients with IL-12Rβ1 deficiency. 
 
Kindred Code Mutation Origin Death Age BCGa EMb Mtbc Salmonellad Candidae 

1 II.2 K305X Morocco alive 29 D - - Stm NA 

2 II.3 R213W Morocco alive 17 D - - Sen NA 

 II.1 R213W Morocco alive 28 R - Mtb - NA 

3 II.3 Y367C Cameroon alive 8 D - - Sd, Sh - 

4 II.1 1623_1624delinsTT Cyprus alive 39 R Ma, Mt, Mg - Se - 

4 II.3 1623_1624delinsTT Cyprus alive 27 R - - S. spp - 

 II.2 NA Cyprus deceased 7 R Ma - - - 

5 II.3 783+1G>A Turkey (Kurdes) alive 22 D - - - - 

 II.4 783+1G>A Turkey (Kurdes) alive 17 nv - - - - 

6 II.2 783+1G>A Turkey (Kurdes) alive 20 D - - Se - 

 II.3 783+1G>A Turkey (Kurdes) alive 15 D - - - - 

7 II.5 R173P Turkey deceased 17 R Ma, Mfc Mtb - Ca 

8 II.2 R173P Turkey alive 15 D Mc - Se - 

9 II.3 557-563delins8 Turkey alive 18 D - - Se, Stm Ca 

10 II.2 700+362_1619-944del Israel alive 10 nv - - SD Ca 

11 II.2 1190-1G>A Saudi Arabia alive 8 D - - - - 

12 II.2 C186S Qatar alive 12 D - - Se - 

 II.6 C186S Qatar deceased 3 D - - - - 

13 II.5 C186S Qatar alive 10 R M. spp - SD - 

 II.7 C186S Qatar alive 8 R M. spp - S. spp - 

14 II.2 1791+2T>G Iran alive 14 nv - - Se - 

15 II.2 S321X Pakistan alive 24 D - - Se - 

16 II.1 1791+2T>G Sri Lanka alive 24 D - - - - 

17 II.2 Q32X/1623_1624delinsT France alive 14 nv Mg - Stm NA 

 II.1 Q32X/1623_1624delinsT France alive 19 R - - - NA 

18 II.1 Q376X France alive 31 R - - Sd Ca 

19 II.1 [1745-46delinsCA + 1483+182_1619-1073del] France alive 37 D - - S. spp, Sd Ca 

20 II.1 Q32X France alive 12 D - - - NA 

21 II.2 Q32X Belgium deceased 7 nv Ma - Se Ca 

 II.1 Q32X Belgium alive 22 nv - - - NA 

22 II.1 1623_1624delinsTT Germany deceased 4 nv Ma - - NA 

23 II.1 1623_1624delinsTT Germany alive 15 D - - Se - 

 II.2 1623_1624delinsTT Germany alive 12 nv - - - - 

24 II.2 1791+2T>G Spain alive 19 nv - Mtb Se - 

24 II.1 1791+2T>G Spain alive 22 nv - - - - 

 II.3 1791+2T>G Spain alive 12 nv - Mtb - - 

25 II.1 1791+2T>G Spain deceased 8 nv Ma - Se Ca 

26 II.4 549+2T>C Bosnia Herzegovina alive 12 nv M. spp - - - 

 II.1 NA Bosnia Herzegovina deceased 4 D - - - - 

27 II.2 [1442_1149delins16 + Q171P] Slovakia deceased 2 D - - - - 

28 II.3 [1007_1008delinsG + Q171P] Slovakia alive 9 D - - - - 

29 II.1 L77P Brazil alive 30 D - - Stm - 

30 II.5 NA Spain deceased 7 NA - - Se Ca 

 II.6 1791+2T>G Spain deceased 30 nv - - Se, Sp Ca 

31 II.2 1021+1G>C Turkey alive 15 R - Mtb ?? - 

32 II.8 1791+2T>G Mexico alive 34 R - - SB - 

33 II.2 [1623_1624delinsTT + 65delCTGC] Belgium deceased 14 nv Ma - - - 

34 II.1 C196Y/1483+182_1619-1073del  France alive 28 R - - Stm NA 

35 II.2 [I369T + 1623_1624delinsTT] Poland alive 4 D - - - - 



36 II.3 Y88X Saudi Arabia alive 12 D - - SD - 

 II.4 Y88X Saudi Arabia alive 6 D - - SD - 

37 II.6 C186S Qatar alive 8 R - - SD - 

38 II.1 R173P Turkey alive 14 R - - Se - 

39 II.2 711insC Turkey deceased 2 D - - - Ca 

40 II.1 628-644dup Turkey alive 11 D - - S. spp - 

 II.2 628-644dup Turkey deceased 5 D Ma - S. spp Ca 

 II.5 628-644dup Turkey alive 3 D - - - Ca 

41 II.3 1336delC Saudi Arabia deceased 4 D - - - - 

 II.2 1336delC Saudi Arabia alive 8 D - - - - 

42 II.2 783+1G>A Turkey deceased 3 R - - Se Ca 

43 II.2 700+362_1619-944del Israel (arabic) deceased 9 nv Ma - Stm - 

 II.1 700+362_1619-944del Israel (arabic) alive 12 nv - - - - 

 II.3 700+362_1619-944del Israel (arabic) deceased 2 nv Ma - - - 

44 NA R486X Turkey alive NA D NA NA NA NA 

45 II.1 NA Mexico deceased 4 D - - - Ca 

 II.2 1791+2T>G Mexico alive 2 nv - - - - 

 II.3 1791+2T>G Mexico alive 1 nv - - - - 

46 II.4 1791+2T>G Iran alive 9 D - - - - 

47 I.2 580+1G>A Iran alive NA NA - - - NA 

 II.2 580+1G>A Iran alive 4 D - - - - 

48 II.1 [983_999del + R173W] Brazil alive 6 D - - - - 

49 II.1 Y88X Saudi Arabia alive 3 D - - - - 

50 II.1 783+1G>A Turkey deceased 2 D - - - Ca 

51 II.1 1791+2T>G Brazil deceased 2 D - - - - 

52 II.2 Y88X Saudi Arabia alive 5 D Ms - - - 

53 II.3 R173W Venezuela alive 14 R - - Se Ca 

54 II.1 K305X Morocco deceased 15 D - Mtb - - 

56 II.2 [1189+2T>A + 1791+2T>G] Ukraine alive 9 D M. spp - Stm, Se - 

57 II.1 R521X India alive 7 D - Mtb - - 

58 II.1 R211P Taiwan alive 24 R - - Se - 

59 II.1 R173W Poland alive 17 D - - Se - 

60 II.1 1791+2T>G Mexico alive 15 D Mb? - - - 

 II.5 1791+2T>G Mexico deceased 3 D Mb? - - - 

62 II.1 NA China deceased 1 D - - - - 

 II.2 1791+2T>G China alive 2 D - - - - 

63 II.1 [169delA + C62G] Chile deceased 2 D - - - - 

64 II.2 C198R Turkey alive 4 D - - S. spp - 

 II.1 C198R Turkey alive 8 R - - - - 

65 II.1 NA China deceased 11 R - Mtb - - 

 II.2 Q285X China deceased 2 D - - - - 

66 II.1 R521X Iran alive 8 D - - - - 

67 II.4 1190-1G>A Saudi Arabia alive 9 R - - SD, Se H - 

 II.2 1190-1G>A Saudi Arabia alive 13 D - - Stm H Ca 

68 NA Q376X Netherlands deceased 0 nv Ma - SB - 

69 II.1 [E67X + 1623_1624delinsTT] Argentina alive 3 D - - - - 

70 II.1 1623_1624delinsTT United Kingdom  deceased 6 nv MAIc - - - 

71 II.1 E480X Ukraine alive 12 D - - Stm - 

 II.2 E480X Ukraine alive 3 D - - Stm - 

73 II.6 R175W Turkey alive 3 D - - - - 

 II.3 NA Turkey deceased 4 D - - - NA 

 II.4 NA Turkey deceased 5 D - - - NA 



74 II.1 R175W Turkey alive 6 R - - Se, SB - 

76 II.1 1765delG Martinique alive 32 NA - - SD - 

77 II.1 467_484del Turkey deceased 5 D - - - - 

 II.2 467_484del Turkey alive 7 R - - SD - 

78 II.2 C198R Turkey alive 15 D - - - - 

79 II.1 783+1G>A Turkey deceased 4 D - - - Ca 

 II.2 783+1G>A Turkey alive 10 R M. spp - SB, SD Ca 

81 II.1 NA Turkey deceased 4 D - - - - 

 II.2 783+1G>A Turkey alive 10 nv - - SD - 

82 II.1 783+1G>A Turkey deceased 7 D - - - Ca 

 II.2 783+1G>A Turkey deceased 4 D - - - Ca 

83 II.1 783+1G>A Turkey alive 6 D - - - - 

84 II.1 R173P Turkey alive 17 D - - Se, St, Spt - 

86 NA R486X Mexico deceased NA NA NA NA NA NA 

87 II.5 Y88X Saudi Arabia alive 6 R - - SB - 

 II.6 Y88X Saudi Arabia alive 1 D - - - - 

88 II.7 C186S Qatar alive 1 D - - - - 

89 II.1 64+2T>G Turkey alive 4 D - - - Ca 

90 II.5 1425delC Turkey alive 3 D - - Se Ca 

91 II.1 783+1G>A Turkey alive 4 D - - - Ca 

92 NA G569D Iran alive NA NA NA NA NA NA 

93 NA T355del Iran alive 34 R - Mtb - NA 

94 NA 1791+2T>G Saudi Arabia NA NA NA NA NA NA NA 

95 II.1 64+2T>G Turkey alive 2 D - - - - 

96 II.1 Q32X United Kingdom  alive 47 D - - - - 

97 II.2 1791+2T>G Turkey alive 1 nv - - - - 

98 II.1 1623_1624delinsTT Argentina alive 5 D - - - - 

99 II.2 W531X Argentina alive 10 D - - - - 

100 II.1 [1623_1624delinsTT + DelEx4] Argentina alive 8 D - - - - 

101 II.3 1623_1624delinsTT Argentina alive 20 D - - - - 

102 II.2 R213W Japan deceased 38 R Ma  - - 

103 II.4 64+2T>G Tunisia alive 11 D - - - Ca 

104 II.1 NA Tunisia deceased 1 D - - - Ca 

105 II.1 NA Tunisia alive 28 R M. spp - - Ca 

106 II.1 550-2A>G Tunisia deceased 8 D - - S.spp - 

107 II.1 64+5G>A Tunisia alive 2 D - - - Ca 

 
 
a BCG, Bacille Calmette-Guérin ; D, Disseminated BCG infection ; R, Resistant, no adverse 
reaction to BCG vaccination ; nv, Not Vaccinated with BCG ; NA, information not available. 
 
b. Ma, Mycobacterium avium ; Mt, M. triplex ; Mg, M. genevense ; Mfc, M. fortuitum-chelonae 
complex ; Mc, M. chelonae ; Mspp, patient who respond well to empirical mycobacterial treatment 
without identification of species ; Ms, M. simiae ; MAIc, M. avium-intracellulare complex. 
 
c. Mtb, M. tuberculosis. 
 
d. Stm, Salmonella typhimurium ; Sen, S. enteritica ; Sd, S. Dublin ; Sh, S. hadar ; Se, S. 
enteritidis ; Sp, S. Portland ; SB, S. group B ; SD, S. group D ; Se H, Se group H ; Stm H, Stm 
group H ; St, S. typhi ; Spt, S. paratyphimurium. 
 
e. Ca, Candida albicans. 
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Case study

BCG-osis and tuberculosis in a child with
chronic granulomatous disease

Jacinta Bustamante, MD, PhD,a,b Guzide Aksu, MD,c Guillaume Vogt, PhD,a,b

Ludovic de Beaucoudrey, MS,a,b Ferah Genel, MD,c Ariane Chapgier, MS,a,b

Orchidée Filipe-Santos, PhD,a,b Jacqueline Feinberg, PhD,a,b Jean-Francxois Emile,

MD, PhD,d Necil Kutukculer, MD,c and Jean-Laurent Casanova, MD, PhDa,b,e

Paris and Boulogne, France, and Bornova-Izmir, Turkey

A few known primary immunodeficiencies confer predisposition

to clinical disease caused by weakly virulent mycobacteria, such

as BCG vaccines (regional disease, known as BCG-itis, or

disseminated disease, known as BCG-osis), or more virulent

mycobacteria, such asMycobacterium tuberculosis (pulmonary

and disseminated tuberculosis). We investigated the clinical

and genetic features of a 12-year-old boy with both recurrent

BCG-osis and disseminated tuberculosis. The patient’s

phagocytic cells produced noO2
2. A hemizygous splicemutation

was found in intron 5 ofCYBB, leading to a diagnosis of X-linked

chronic granulomatous disease. Chronic granulomatous disease

should be suspected in all children with BCG-osis, even in the

absence of nonmycobacterial infectious diseases, and in

selected children with recurrent BCG-itis or severe tuberculosis.

(J Allergy Clin Immunol 2007;120:32-8.)

Key words: BCG, tuberculosis, chronic granulomatous disease

The patient was born in 1994 to a nonconsanguineous
Turkish family living in Turkey. He was vaccinated with
Mycobacterium bovis BCG at birth. Three months later,

he developed progressive regional axillary lymphadenop-
athy. He was treated with antibiotics for 3 months with a
favorable response. At the age of 13 months, the patient
was admitted to the hospital with abdominal distension.
Physical examination revealed ascites and hepatomegaly.
A computerized tomography scan of the abdominal region
was performed, which confirmed the clinical findings.
Liver tissue biopsy revealed an infiltration of mononuclear
cell into the portal spaces. Cultures of liver material
obtained by needle biopsy, blood, and urine were negative
for bacteria, fungi, and acid-fast organisms. BCG-osis
was suspected, and the patient received antituberculous
treatment with izoniazid, rifampin, and streptomycin for
4 months. The patient made a full clinical recovery.

At the age of 4 years, the patient presented with a
high fever and cough. Gastric aspirates tested negative
by culture for acid-fast bacilli, but PCR tests for
Mycobacterium tuberculosis complex were positive. His
chest x-ray showed no infiltrates in the lungs. A tuberculin
skin test (TST) with purified protein derivative was
strongly positive, producing a weal 23 mm 3 24 mm.
The medical history of the patient’s family was analyzed,
and no cases of tuberculosis were detected. It was not pos-
sible to discriminate between a recurrence of BCG-osis or
a primary tuberculosis. The patient was prescribed izonia-
zid, rifampin, and pyrazinamide therapy for 9 months. He
recovered fully.

At the age of 6 years, the patient underwent surgery for
a hepatic cystic lesion. Liver histology showed hepatic
abscess. No acid-fast bacilli were detected, and biopsy
cultures for bacteria, mycobacteria, and fungi were neg-
ative. The patient received antituberculous medication

Abbreviations used
CGD: Chronic granulomatous disease

EM: Environmental mycobacteria

MSMD: Mendelian susceptibility to mycobacterial diseases

NADPH: Nicotinamide dinucleotide phosphate

PMA: Phorbol 12-myristate 13-acetate

PMN: Polymorphonuclear neutrophil

TST: Tuberculin skin test
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ELECTRONIC LETTER

A novel X-linked recessive form of Mendelian susceptibility to
mycobaterial disease
Jacinta Bustamante, Capucine Picard, Claire Fieschi, Orchidée Filipe-Santos, Jacqueline Feinberg,
Christian Perronne, Ariane Chapgier, Ludovic de Beaucoudrey, Guillaume Vogt, Damien Sanlaville,
Arnaud Lemainque, Jean-François Emile, Laurent Abel, Jean-Laurent Casanova
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J Med Genet 2007;44:e65 (http://www.jmedgenet.com/cgi/content/full/44/2/e65). doi: 10.1136/jmg.2006.043406

Background: Mendelian susceptibility to mycobacterial disease
(MSMD) is associated with infection caused by weakly virulent
mycobacteria in otherwise healthy people. Causal germline
mutations in five autosomal genes (IFNGR1, IFNGR2, STAT1,
IL12RB1, IL12B) and one X-linked (NEMO) gene have been
described. The gene products are physiologically related, as
they are involved in interleukin 12/23-dependent, interferon c-
mediated immunity. However, no genetic aetiology has yet
been identified for about half the patients with MSMD.
Methods: A large kindred was studied, including four male
maternal relatives with recurrent mycobacterial disease,
suggesting X-linked recessive inheritance. Three patients had
recurrent disease caused by the bacille Calmette–Guérin
vaccine, and the fourth had recurrent tuberculosis. The
infections showed tropism for the peripheral lymph nodes.
Results: Known autosomal and X-linked genetic aetiologies of
MSMD were excluded through genetic and immunological
investigations. Genetic linkage analysis of the X-chromosome
identified two candidate regions, on Xp11.4–Xp21.2 and
Xq25–Xq26.3, with a maximum LOD score of 2.
Conclusion: A new X-linked recessive form of MSMD is
reported, paving the way for the identification of a new
MSMD-causing gene.

M
endelian susceptibility to mycobacterial disease
(MSMD, MIM 209950) is a rare syndrome1 2 involving
predisposition to clinical disease caused by poorly

virulent mycobacterial species, such as bacille Calmette–
Guérin (BCG) vaccines3 4 and non-tuberculous, environmental
mycobacteria.5 The patients are also vulnerable to the more
virulent Mycobacterium tuberculosis.6–11 Typically, patients are not
particularly prone to other infections, except salmonellosis,
which affects less than half the cases. MSMD is clinically
heterogeneous, and outcome is correlated with the type of
histological lesions present.12 It was initially believed that
MSMD was inherited as an autosomal recessive trait as a rule,3–5

until X-linked recessive inheritance patterns were reported in
one multiplex kindred.13 14

Five disease-causing autosomal genes (IFNGR1, IFNGR2,
STAT1, IL12RB1 and IL12B) have been found.2 15 IFNGR1 and
IFNGR2 encode the interferon (IFN) cR1 and IFN cR2 chains of
the receptor for IFN c, a pleiotropic cytokine secreted by natural
killer and T lymphocyte cells. STAT1 encodes signal transducer
and activator of transcription 1 (Stat 1), an essential molecule
in the IFN cR signalling pathway. IL12B encodes the p40
subunit of interleukin (IL) 12 and IL23, two cytokines secreted
by macrophages and dendritic cells. Finally, IL12RB1 encodes
the b1 chain shared by the receptors for IL12 and IL23,
expressed in natural killer and T cells. Mutations in IFNGR1,
IFNGR2 and STAT1 impair cellular responses to IFN c, and mu-
tations in IL12B and IL12RB1 impair the production of IFN c.
The five MSMD-causing autosomal genes are thus immunolo-
gically related. A high degree of allelic heterogeneity at these
five loci accounts for the existence of at least 12 known distinct
genetic disorders including autosomal dominant IFNGR1
deficiency.2 15–19

Familial X-linked recessive MSMD was clinically described
in 1994.13 21 Four males in two generations of a non-
consanguineous family developed disseminated mycobaterial
complex infection.20 21 The patients’ monocytes showed
impaired IL12 production on phytohaemagglutinin (PHA)
activation, even though their T cells were intrinsically able to
produce IFN c on stimulation by control monocytes.13 Together
with S M Holland, we recently identified the molecular genetic
basis of XR-MSMD in this American kindred and in two other
unrelated families from France and Germany.14 Surprisingly,
specific mutations affecting the leucine zipper domain (LZD) of
nuclear factor-kB essential modulator (NEMO)22 26 were found
in the three kindreds. We describe here a large French kindred
with a new X-linked recessive form of MSMD (XR-MSMD).

Case reports and family data
Figure 1 shows the pedigree. All members of the kindred live in
France and are of French descent. Informed consent was
obtained from all the family members (fig 1A).
Patient 1 (P1, III-4) was born in 1953 and was not vaccinated

with BCG in infancy. He remained healthy until the age of
10 years, at which time he presented with symptomatic primary
tuberculosis of the lungs, with a positive tuberculosis skin test
(Mantoux skin test) indicating delayed-type hypersensitivity to
tuberculous purified protein derivative. He was treated with
isoniazid for 12 months and recovered. At 34 years of age, he

Key points

N Mendelian susceptibility to mycobacterial disease
(MSMD) is characterised by clinical disorders caused
by poorly virulent mycobacteria in otherwise healthy
people.

N Mutations in NEMO leucine zipper domain are asso-
ciated with X-linked recessive MSMD.

N We have reported a novel form of X-linked recessive-
MSMD.

Abbreviations: BCG, bacille Calmette–Guérin; EBV, Epstein–Barr virus;
IFN, interferon; LOD, logarithm of odds; LZD, leucine zipper domain;
MSMD, Mendelian susceptibility to mycobacterial disease; NEMO, nuclear
factor-kB essential modulator; PBMC, peripheral blood mononuclear cells;
Stat 1, signal transducer and activator of transcription 1; XR-MSMD, X-
linked recessive MSMD
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Novel STAT1 Alleles in Otherwise Healthy
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, Angela Rösen-Wolff

10
, Klaus Magdorf

9
, Joachim Roesler

10
,

Jean-Laurent Casanova
1,2,11*
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The transcription factor signal transducer and activator of transcription-1 (STAT1) plays a key role in immunity against
mycobacterial and viral infections. Here, we characterize three human STAT1 germline alleles from otherwise healthy
patients with mycobacterial disease. The previously reported L706S, like the novel Q463H and E320Q alleles, are
intrinsically deleterious for both interferon gamma (IFNG)–induced gamma-activating factor–mediated immunity and
interferon alpha (IFNA)–induced interferon-stimulated genes factor 3–mediated immunity, as shown in STAT1-deficient
cells transfected with the corresponding alleles. Their phenotypic effects are however mediated by different molecular
mechanisms, L706S affecting STAT1 phosphorylation and Q463H and E320Q affecting STAT1 DNA-binding activity.
Heterozygous patients display specifically impaired IFNG-induced gamma-activating factor–mediated immunity,
resulting in susceptibility to mycobacteria. Indeed, IFNA-induced interferon-stimulated genes factor 3–mediated
immunity is not affected, and these patients are not particularly susceptible to viral disease, unlike patients
homozygous for other, equally deleterious STAT1mutations recessive for both phenotypes. The three STAT1 alleles are
therefore dominant for IFNG-mediated antimycobacterial immunity but recessive for IFNA-mediated antiviral
immunity at the cellular and clinical levels. These STAT1 alleles define two forms of dominant STAT1 deficiency,
depending on whether the mutations impair STAT1 phosphorylation or DNA binding.

Citation: Chapgier A, Boisson-Dupuis S, Jouanguy E, Vogt G, Feinberg J, et al. (2006) Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet
2(8): e131. DOI: 10.1371/journal.pgen.0020131

Introduction

Mendelian susceptibility to mycobacterial disease (MSMD)
is characterized by the occurrence of clinical disease caused
by weakly virulent mycobacteria in otherwise healthy
individuals (reviewed in [1,2]). This syndrome covers a broad
range of clinical phenotypes, reflecting the diversity of
environmental and host factors involved, notably the under-
lying genetic lesions. The five genes known to cause this
syndrome are involved in IL12/23-dependent interferon
gamma (IFNG)–mediated immunity. Two genes control the
production of IFNG: IL12B, encoding the p40 subunit of IL12
and IL23, and IL12RB1, encoding the b1 chain of the IL12 and
IL23 receptors (IL12RB1). Three genes control the response
to IFNG: IFNGR1 and IFNGR2, encoding the IFNG receptor
(IFNGR) chains, and STAT1, encoding the signal transducer
and activator of transcription-1 (STAT1). Allelic heteroge-
neity results in a total of 11 inherited disorders (Table 1):
recessive complete IL12p40 [3,4] and IL12RB1 deficiency with
[5] or without [6–8] surface-expressed receptors, recessive
complete IFNGR1 deficiency with [9] or without [10,11]
surface-expressed receptors, dominant [12] or recessive [13]
partial IFNGR1 deficiency, recessive complete IFNGR2
deficiency with [14] or without [15] surface-expressed

receptors, recessive partial IFNGR2 deficiency [16], and
dominant partial STAT1 deficiency [17]. Complete IFNGR1
and IFNGR2 deficiencies run a more severe clinical course
than the other defects, which are associated with residual
IFNG-mediated immunity [1,2,18,19].
The binding of homodimeric IFNG to its tetrameric

receptor leads to the activation of constitutively associated
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Germline mutations in fi ve autosomal genes involved in interleukin (IL)-12–dependent, 

interferon (IFN)-𝛄–mediated immunity cause Mendelian susceptibility to mycobacterial 

diseases (MSMD). The molecular basis of X-linked recessive (XR)–MSMD remains unknown. 

We report here mutations in the leucine zipper (LZ) domain of the NF-𝛋B essential modula-

tor (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were 

produced in normal amounts in blood and fi broblastic cells. However, the patients’ mono-

cytes presented an intrinsic defect in T cell–dependent IL-12 production, resulting in defec-

tive IFN-𝛄 secretion by T cells. IL-12 production was also impaired as the result of a specifi c 

defect in NEMO- and NF-𝛋B/c-Rel–mediated CD40 signaling after the stimulation of 

monocytes and dendritic cells by CD40L-expressing T cells and fi broblasts, respectively. 

However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells 

and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the 

patients’ blood and fi broblastic cells responded to other NF-𝛋B activators, such as tumor 

necrosis factor-𝛂, IL-1𝛃, and lipopolysaccharide. These two mutations in the NEMO LZ 

domain provide the fi rst genetic etiology of XR-MSMD. They also demonstrate the impor-

tance of the T cell– and CD40L-triggered, CD40-, and NEMO/NF-𝛋B/c-Rel–mediated induc-

tion of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans.
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The NEMO Mutation Creating the Most-Upstream Premature Stop Codon
Is Hypomorphic Because of a Reinitiation of Translation
Anne Puel,1,* Janine Reichenbach,1,*,† Jacinta Bustamante,1 Cheng-Lung Ku,1
Jacqueline Feinberg,1 Rainer Döffinger,1,‡ Marion Bonnet,1,§ Orchidée Filipe-Santos,1
Ludovic de Beaucoudrey,1 Anne Durandy,2 Gerd Horneff,6,k Francesco Novelli,1,¶
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6Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany

Amorphic mutations in the NF-kB essential modulator (NEMO) cause X-dominant incontinentia pigmenti, which
is lethal in males in utero, whereas hypomorphic mutations cause X-recessive anhidrotic ectodermal dysplasia with
immunodeficiency, a complex developmental disorder and life-threatening primary immunodeficiency. We charac-
terized the NEMO mutation 110_111insC, which creates the most-upstream premature translation termination
codon (at codon position 49) of any known NEMO mutation. Surprisingly, this mutation is associated with a pure
immunodeficiency. We solve this paradox by showing that a Kozakian methionine codon located immediately
downstream from the insertion allows the reinitiation of translation. The residual production of an NH2-truncated
NEMO protein was sufficient for normal fetal development and for the subsequent normal development of skin
appendages but was insufficient for the development of protective immune responses.
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The human IKBKG locus is located on chromosome
Xq28 and encodes NEMO. Amorphic NEMO muta-
tions are associated with a complete lack of NF-kB ac-
tivation via the classical pathway. They are responsible
for incontinentia pigmenti (IP), an X-linked dominant
disorder that is lethal in hemizygous males in utero and
is characterized by abnormalities in ectoderm-derived
tissues, including the skin, eyes, CNS, and teeth, in het-
erozygous females. About 85% of patients with IP who
have NEMO mutations carry a complex rearrangement
of the NEMO gene that results in a frameshift deletion

of exons 4–10 and encodes a putative truncated protein
consisting of the first 133 N-terminal amino acids. A
number of other IP-causing mutations have been iden-
tified in exons 2–10, including mutations associated with
premature stop codons (Smahi et al. 2000; Aradhya et
al. 2001b; Fusco et al. 2004). Blood leukocytes and fi-
broblasts expressing the mutated X-chromosome are se-
lectively eliminated around the time of birth, leading to
skewed X-inactivation in female carriers (Parrish et al.
1996).

Other NEMO mutations are hypomorphic, since they



Gains of glycosylation comprise an unexpectedly large
group of pathogenic mutations
Guillaume Vogt1, Ariane Chapgier1, Kun Yang1,2, Nadia Chuzhanova3,4, Jacqueline Feinberg1,
Claire Fieschi1,5, Stéphanie Boisson-Dupuis1, Alexandre Alcais1, Orchidée Filipe-Santos1, Jacinta Bustamante1,
Ludovic de Beaucoudrey1, Ibrahim Al-Mohsen6, Sami Al-Hajjar6, Abdulaziz Al-Ghonaium6, Parisa Adimi7,
Mehdi Mirsaeidi7, Soheila Khalilzadeh7, Sergio Rosenzweig8,17, Oscar de la Calle Martin9, Thomas R Bauer10,
Jennifer M Puck11, Hans D Ochs12, Dieter Furthner13, Carolin Engelhorn14, Bernd Belohradsky14,
Davood Mansouri7, Steven M Holland8, Robert D Schreiber15, Laurent Abel1, David N Cooper4,
Claire Soudais1 & Jean-Laurent Casanova1,2,16

Mutations involving gains of glycosylation have been considered rare, and the pathogenic role of the new carbohydrate chains
has never been formally established. We identified three children with mendelian susceptibility to mycobacterial disease who
were homozygous with respect to a missense mutation in IFNGR2 creating a new N-glycosylation site in the IFNcR2 chain.
The resulting additional carbohydrate moiety was both necessary and sufficient to abolish the cellular response to IFNc. We
then searched the Human Gene Mutation Database for potential gain-of-N-glycosylation missense mutations; of 10,047 mutations
in 577 genes encoding proteins trafficked through the secretory pathway, we identified 142 candidate mutations (B1.4%) in
77 genes (B13.3%). Six mutant proteins bore new N-linked carbohydrate moieties. Thus, an unexpectedly high proportion of
mutations that cause human genetic disease might lead to the creation of new N-glycosylation sites. Their pathogenic effects
may be a direct consequence of the addition of N-linked carbohydrate.

Mendelian susceptibility to mycobacterial disease (MSMD; OMIM
209950) is a rare syndrome that confers predisposition to illness
caused by moderately virulent mycobacterial species, such as Bacillus
Calmette-Guérin (BCG) vaccines and nontuberculous environmental
mycobacteria, and by the more virulent Mycobacterium tuberculosis1.
Other types of microorganism rarely cause severe clinical disease in
individuals with MSMD, with the exception of Salmonella, which
infects o50% of these individuals. The demonstration that this
condition was associated in some affected individuals with deficiency
of interferon g receptor ligand-binding chain (IFNgR1) provided the
first evidence for a genetic etiology2,3. Subsequent studies identified
mutations in the genes encoding IFNgR2 (ref. 4), the interleukin-12
p40 (IL-12p40) subunit shared by IL-12 and IL-23 (ref. 5), the
IL-12Rb1 subunit shared by the IL-12 and IL-23 receptors6,7, and
the signal transducer and activator of transcription-1 (Stat-1)8. Allelic

heterogeneity at these five disease-associated autosomal gene loci is
responsible for ten known disorders, all of which involve impaired
function of the IL-12/23-IFNg circuit9–15. Complete Stat-1 deficiency
is associated with a related but more severe syndrome of vulnerability
to mycobacterial and viral infections due to an impaired cellular
response to both IFNg and IFNa/b16.
IFNgR2 deficiency is the most infrequent of the inherited forms of

MSMD: only three children with MSMD have been reported, two with
complete IFNgR2 deficiency4,17 and one with partial IFNgR2 defi-
ciency14. By contrast, 22 individuals are known to have complete
IFNgR1 deficiency, and 38 are known to have partial IFNgR1
deficiency15. Here we report four children with complete IFNgR2
deficiency, from three unrelated families. One of these children has an
in-frame microdeletion in the gene IFNGR2 such that the encoded
protein does not reach the cell surface normally. The other three
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