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Abstract

We present the design, development, and test of three novel, distinct automatic target
recognition (ATR) systems for the recognition of airplanes and, more specifically, non-
cooperative airplanes, i.e. airplanes that do not provide information when interrogated,
in the framework of passive bistatic radar systems. Passive bistatic radar systems use
one or more illuminators of opportunity (already present in the field), with frequencies
up to 1 GHz for the transmitter part of the systems considered here, and one or more
receivers, deployed by the persons managing the system, and not co-located with the
transmitters. The sole source of information are the signal scattered on the airplane
and the direct-path signal that are collected by the receiver, some basic knowledge
about the transmitter, and the geometrical bistatic radar configuration.
The three distinct ATR systems that we built respectively use the radar images, the
bistatic complex radar cross-section (BS-RCS), and the bistatic radar cross-section (BS-
RCS) of the targets. We use data acquired either on scale models of airplanes placed in
an anechoic, electromagnetic chamber or on real-size airplanes using a bistatic testbed
consisting of a VOR transmitter and a software-defined radio (SDR) receiver, located
near Orly airport, France.
We describe the radar phenomenology pertinent for the problem at hand, as well as
the mathematical underpinnings of the derivation of the bistatic RCS values and of the
construction of the radar images.
For the classification of the observed targets into pre-defined classes, we use either
extremely randomized trees or subspace methods. A key feature of our approach is
that we break the recognition problem into a set of sub-problems by decomposing the
parameter space, which consists of the frequency, the polarization, the aspect angle,
and the bistatic angle, into regions. We build one recognizer for each region.
We first validate the extra-trees method on the radar images of the MSTAR dataset,
featuring ground vehicles. We then test the method on the images of the airplanes
constructed from data acquired in the anechoic chamber, achieving a probability of
correct recognition up to 0.99.
We test the subspace methods on the BS-CRCS and on the BS-RCS of the airplanes
extracted from the data acquired in the anechoic chamber, achieving a probability of
correct recognition up to 0.98, with variations according to the frequency band, the
polarization, the sector of aspect angle, the sector of bistatic angle, and the number of
(Tx,Rx) pairs used.
The ATR system deployed in the field gives a probability of correct recognition of 0.82,
with variations according to the sector of aspect angle and the sector of bistatic angle.

Keywords: Automatic target recognition (ATR), non-cooperative target recogni-
tion (NCTR), classification, extremely randomized trees (extra-trees), subspace, pas-
sive radar, bistatic radar, radar cross-section, complex radar cross-section, illuminator
of opportunity, VOR, software-defined radio (SDR), airplanes, anechoic chamber, air
traffic control.
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Résumé

I Introduction

I.1 Problème à traiter

Dans cette thèse, nous étudions le problème de la reconnaissance automatique
de cibles en utilisant des signaux de radars passifs bistatiques, afin de détecter des
anomalies dans le trafic aérien civil. Les cibles considérées sont donc des avions.

Dans cette section, nous décrivons d’abord le fonctionnement du contrôle du trafic
aérien civil, et expliquons les raisons pour lesquelles des anomalies peuvent se produire.
Nous présentons ensuite la solution que l’on implémente, et en particulier, les différents
concepts que sont les radars passif bistatiques et la reconnaissance automatique de
cibles.

I.2 Contexte: le contrôle du trafic aérien civil

Le trafic aérien civil est contrôlé par deux types de radars: les radars primaires
et les radars secondaires. Les radars primaires détectent la présence d’avions. Ils
émettent un signal qui est réfléchi sur les avions. Par calcul à partir du signal réfléchi,
ils détectent et localisent les avions.

Les radars secondaires servent à l’identification des avions. Les radars secondaires
interrogent les transpondeurs des avions, et ceux-ci leur répondent en envoyant des
informations telles que leur identification ICAO et leur position acquise par GPS.

L’identification d’avions requiert donc un radar secondaire et un transpondeur de
bord. Des avions tels que les petits avions personnels n’étant pas équipés de tels
transpondeurs, leur identification n’est pas garantie par des radars secondaires. Pour
reconnaitre des avions, nous utilisons, dans cette thèse, des radars passifs bistatiques.

I.3 Solution au problème posé

Nous procédons à la reconnaissance des avions, appelés cibles, par l’utilisation de
signaux de radars passifs bistatiques. Le schéma de la figure 1 représente une situation
réaliste du problème traité. Un avion inconnu est illuminé par le signal émis par un
émetteur d’opportunité. Ce signal est réfléchi par l’avion, et acquis par un récepteur.
Le système de reconnaissance automatique de cibles (RAC) détermine ensuite la classe
de l’avion sur base de ce signal réfléchi.
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Les classes des avions à reconnaitre sont définies sur la base des caractéristiques
physiques de ces avions (aspect et taille). Par exemple, deux avions de même taille
se verront attribuer la même classe, même s’ils sont de marques et/ou de compagnies
aériennes différentes.

Figure 1: Configuration du système de RAC par radar passif bistatique servant à
déterminer la classe de l’avion.

Un radar bistatique se caractérise par le fait que l’émetteur (Tx) et le récepteur
(Rx) ne sont pas co-localisés, comme représenté à la figure 2. L’angle bistatique β
est un paramètre-clé de la configuration bistatique. Un radar est dit passif quand
l’émetteur utilisé est déjà présent dans l’environnement, et n’est pas conçu ni utilisé
spécifiquement à des fins de radar. Les émetteurs de radio FM sont un exemple
d’émetteur d’opportunité.

A partir du signal réfléchi par un avion et acquis par le récepteur, la surface
équivalente radar, complexe (SERC) ou réelle (SER), de cet avion peut être calculée.
L’image radar de cet avion peut être construite à partir de sa SERC. Chacun des
trois systèmes RAC que nous discutons dans cette thèse se base sur une de ces
trois quantités. La système RAC utilisant l’image radar des avions est discuté à la
section III, celui utilisant la SERC ou la SER acquise à partir de mesures en chambre
anéchoïque est discuté à la section IV, et celui utilisant la SER acquise à partir de
mesures en extérieur est discuté à la section V.

Dans cette thèse, nous nous plaçons dans le contexte de l’apprentissage supervisé,
c’est-à-dire que le nombre de classes est connu au préalable, et que des données
(images, SERC ou SER) pour chacune de ces classes sont disponibles, tant au moment
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β

Avion

Tx Rx

Figure 2: Illustration de la configuration bistatique.

de la construction du modèle de reconnaissance que du test de ce modèle. La figure 3
montre le bloc-diagramme schématique de l’étage de reconnaissance d’un système
RAC. Les données sont séparées en un ensemble d’apprentissage (LS) et un ensemble
de test (TS). Un certain nombre de vecteurs d’attributs sont extraits des données de
chaque ensemble. Les vecteurs d’attributs du LS servent à construire un modèle de
reconnaissance/classification qui est ensuite testé sur les vecteurs d’attributs du TS.

Figure 3: Bloc-diagramme de l’étage de reconnaissance des systèmes RAC.

Deux techniques de classification sont utilisées dans cette thèse; le modèle de re-
connaissance consiste soit en un ensemble d’arbres de décision rendus extrêmement
aléatoires (extra-trees), soit en un ensemble de sous-espaces vectoriels. Chacun des
trois systèmes RAC utilise l’une ou l’autre de ces deux méthodes de classification.

I.4 Organisation du résumé

Le présent résumé est organisé comme suit. La section II résume les concepts de
phénoménologie importants pour le problème traité, ainsi que la stratégie de recon-
naissance que nous définissons à partir de la phénoménologie radar bistatique. La
section III discute le système RAC basé sur les images des avions. La section IV dis-
cute le système RAC basé sur les SERC et les SER des avions acquises en chambre
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anéchoïque. La section V discute le système RAC basé sur les SER d’avions acquises
par un banc expérimental déployé dans le cadre de cette thèse. La section VI conclut
le travail et résume les perspectives envisagées.

II Phénoménologie radar bistatique et stratégie de

reconnaissance

Les trois systèmes de reconnaissance automatique de cibles (RAC) discutés dans
les sections suivantes se basent sur la notion de surface équivalente radar, complexe
(SERC) ou réelle (SER). Nous présentons dans cette section les éléments-clés de la
phénoménologie radar bistatique qui nous permettent de définir une stratégie de re-
connaissance.

II.1 Surface équivalente radar complexe et réelle

La figure 4 représente la géométrie d’une configuration bistatique. La cible illuminée
est située au centre d’un repère orthonormé. L’émetteur est situé au point T et le
récepteur au point R, à des distances respectives rT et rR de la cible. Les polarisations
de l’émetteur et du récepteur sont respectivement notées par θ̂T et φ̂

T
, et par θ̂R, φ̂

R
.

b b

b

T

R

P

φ

θ

rP

y

z

x

rR

rT
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O
k̂T

φ̂T

θ̂T
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φ̂
R

r̂T

r̂R = k̂R

r̂P

p̂

p̂

p̂

p̂

Figure 4: Géométrie de la configuration bistatique considérée.

La surface équivalente radar réelle (SER) d’un objet, ici la cible, dénotée par σ,
est définie dans la littérature comme étant la mesure de l’énergie d’un signal qui est
réfléchie par cet objet dans la direction du récepteur. On l’exprime comme

σ = lim
rR→∞

4πr2
R

|Ēr
(rR)|2

|Ēt
(0)|2

, (1)

où rR est la distance entre l’objet et le récepteur, Ē
r
(rR) le champ électrique au

récepteur, et Ē
t
(0) le champ électrique transmis à la cible.

xiv



La surface équivalente radar complexe (SERC) d’un objet, dénotée par
√
σ, est

définie dans la littérature par

√
σ = lim

rR→∞
2
√
πrR

Ē
r
(rR)

Ē
t
(0)

ejkrR, (2)

avec les mêmes notations que pour la définition de la SER σ.

La littérature montre que, pour une configuration bistatique, la SERC et la SER
d’un objet dépendent de quatre facteurs: la fréquence f du signal illuminant l’objet,
le couple Pol de polarisations de l’émetteur et du récepteur, l’angle d’aspect α, et
l’angle bistatique β. La figure 5 illustre la définition des angles α et β. L’angle α est
défini comme l’angle entre la bissectrice b̂ de l’angle bistatique et la direction de vue
de l’objet ŝ.

b

α

BIS

T R

LOSRLOST

ŝ

b̂

αT
αR β

l̂T

l̂R

bb

S

b b

Figure 5: Illustration des angles d’aspect α et bistatique β.

L’angle bistatique β est défini comme l’angle entre les lignes de vue de l’émetteur
et du récepteur, dénotées respectivement par l̂T et l̂R. On distingue trois régions de
bistatisme: la région pseudo-monostatique pour laquelle β ≤ 5◦, la région purement
bistatique pour laquelle 5◦ ≤ β ≤ 180◦, et la région de diffusion vers l’avant pour
laquelle β → 180◦. Dans cette thèse, nous nous plaçons dans la région purement
bistatique.

Les quatre paramètres f , Pol, α et β définissent ainsi l’espace des paramètres de
la SER, complexe ou réelle, d’un objet.
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II.2 Régions de diffusion et définition des classes d’avions

Parmi les quatre paramètres dont dépendent la SER et la SERC, nous étudions
brièvement, dans cette section, l’influence de la fréquence sur la SER et la SERC. En
effet, la littérature montre que, selon la zone de diffusion dans laquelle se produisent
les mécanismes de diffusion contribuant à la SER, soit la taille soit la forme de l’objet
prédomine. La zone de diffusion est déterminée suivant le rapport λ/D, où λ correspond
à la longueur d’onde du signal transmis, et D à la dimension caractéristique de l’objet.
Ceci peut être résumé comme suit:




λ

D
≫ 1 ⇒ Région de Rayleigh ⇒ Le volume est important pour la SER

λ

D
≈ 1 ⇒ Région de résonance ⇒ Le volume et la taille sont importants pour la SER

λ

D
≪ 1 ⇒ Région optique ⇒ La taille est importante pour la SER

(3)
Cette notion de région de diffusion est utilisée dans la suite pour définir les classes

des avions à reconnaitre. En effet, deux avions de même taille dont les mécanismes de
diffusion sont en région de Rayleigh pourront difficilement être discriminés, et seront
donc considérés comme appartenant à la même classe.

II.3 Stratégie de reconnaissance

La SER, complexe ou réelle, dépend des quatre paramètres que sont la fréquence f
du signal émis, le couple de polarisations Pol de l’émetteur et du récepteur, l’angle
d’aspect α et l’angle bistatique β.

Afin de définir la stratégie de reconnaissance, considérons une trajectoire d’un
avion telle que celle représentée en deux dimensions à la figure 6. On considère que
plusieurs émetteurs (Tx) et plusieurs récepteurs (Rx) sont présents dans le voisinage
de l’avion, définissant ainsi un certain nombre de paires Tx-Rx. A chaque échantillon
de la trajectoire de l’avion, nous pouvons y associer une valeur de SER (ou SERC)
qui est fonction de la localisation (x, y) de l’avion, de la fréquence fi et du couple de
polarisation Poli de la ième paire Tx-Rx.

Afin de relier l’espace physique à l’espace des paramètres, nous utilisons la figure 5
pour passer des coordonnées en (x, y) aux angles (α, β). La trajectoire d’un avion dans
l’espace physique peut être alors représentée par plusieurs trajectoires dans l’espace
des paramètres, comme illustré à la figure 7 pour deux paires Tx-Rx dans le voisinage
de l’avion, les deux paires opérant à la même fréquence et la même polarisation.

Il est réaliste de supposer qu’un avion n’est observé que sur une partie de sa
trajectoire. De plus, les couloirs aériens sont déterministes. Il est donc logique de
penser qu’un avion ne sera observé que sur une partie du plan (α, β). Il est donc
légitime de partitionner le plan (α, β) en régions, comme illustré à la figure 8, et
de construire un classificateur par région. On procèdera alors à une expérience de
classification par région.

L’espace des paramètres est également partitionné suivant la bande de fréquences,
étant donné que les mécanismes de diffusion ne contribuent pas de la même manière

xvi



x

y

bc

Tx1 Trajectory

Airplane

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

u

r

u

r

r

Tx3

Tx2

Rx2

Rx1

σ(x, y, fi, Poli)

Figure 6: Représentation de l’espace physique des paramètres.
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Figure 7: Représentation de la trajectoire d’un avion dans le plan (α, β) de l’espace
des paramètres.

suivant la fréquence utilisée. De même, l’espace des paramètres est partitionné suivant
la polarisation. En résumé, on a donc un espace de paramètres à quatre dimensions, f ,
Pol, α, β, que l’on partitionne en régions suivant chacune des quatre dimensions. Un
classificateur sera construit pour chaque région et une expérience de reconnaissance sera
conduite pour chaque région. Les développements des sections suivantes concernent
systématiquement une seule région.

II.4 Conclusion

Dans cette section, les notions de SER, complexe et réelle, ont été définies, ainsi
que les quatre paramètres dont elles dépendent, étant donné que les systèmes de
reconnaissance automatique de cibles discutés dans les sections suivantes sont tous
basés sur la notion de SER, complexe ou réelle.

Nous avons montré comment exprimer un échantillon de la trajectoire d’un avion
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Figure 8: Illustration du partitionnement en régions du plan (α, β) de l’espace des
paramètres.

en fonction de ces paramètres. Cette expression a permis de définir une stratégie
de reconnaissance, consistant en le partitionnement de l’espace de ces paramètres en
régions, avec la construction d’un classificateur par région.

III Reconnaissance de cibles via leurs images

radars

III.1 Introduction

Un grand nombre d’algorithmes de reconnaissance automatique de cibles (RAC)
utilisent les images radars de ces cibles pour les reconnaitre. Il apparait donc logique
de reconnaitre des avions sur base de leurs images radars, à partir de données acquises
en mode bistatique. A cette fin, nous utilisons la surface équivalente radar complexe
(SERC) d’avions, extraite à partir de données acquises en chambre anéchoïque de
l’ONERA. Comme le montre le bloc-diagramme de la figure 9, les images radars sont
construites à partir de ces SERC. Les cibles sont ensuite reconnues à partir de leurs im-
ages radars à l’aide d’arbres de décision construits de manière aléatoire (par opposition
aux arbres de décision classiques, construits de manière déterministe).

III.2 Construction d’images radars

La construction d’images à partir de la SERC est basée sur les principes de la
tomographie. Nous illustrons le principe de la construction d’images dans le cas
monostatique, c’est-à-dire quand l’émetteur et le récepteur sont co-localisés, et
simplement appelés le radar.

Comme indiqué à la figure 10, le radar illumine l’objet, en l’occurrence un avion,
et reçoit le signal réfléchi. Le signal est transmis à une certaine fréquence f , pour un
certain angle de vue α. La transformée de Fourier à deux dimensions appliquée sur ce
signal réfléchi donne un point dans l’espace de Fourier, dont la valeur est la SERC.
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Figure 9: Bloc-diagramme du système de reconnaissance automatique de cibles basé
sur les images radars des avions.

En illuminant l’objet sur une certaine bande de fréquences et à différents angles α,
on remplit l’espace de Fourier. Bien entendu, étant donné que l’on est limité à une
certaine bande de fréquences et un certain espace angulaire, les valeurs de SERC ne
sont disponibles que pour une certaine portion de l’espace de Fourier, comme indiqué
à la figure 11. L’image radar de l’objet illuminé est construite par application de la
transformée de Fourier à deux dimensions aux valeurs de SERC.

b

Radar

b

x u

vy

α α

σ(f, θ)

⇐⇒
2DFT

Espace de FourierEspace physique

Figure 10: Illustration de mesures de SERC en mode monostatique.

On généralise au cas bistatique en ajoutant à l’angle d’aspect le demi-angle bista-
tique. L’image radar bistatique I(x, y) est alors obtenue à partir de la SERC

√
σ(f, α)

par l’équation suivante:

I(x, y) =
∫ +∞

0

∫ 2π

0

√
σ(f, φ)e4πj f

c
cos(β/2)(x cos(α+β/2)+y sin(α+β/2)|4f cos2(β/2)

c2
|dβdf, (4)

où l’intégration est faite sur l’angle bistatique (et non pas sur l’angle d’aspect) car,
dans la chambre anéchoïque, l’émetteur et l’objet sont fixes, tandis que le récepteur
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Figure 11: Illustration du remplissage de l’espace de Fourier disponible dans les don-
nées.

varie, et fait donc varier l’angle bistatique.

En pratique, étant donné que le but est la classification des images radars, il est
primordial de construite un nombre important d’images. A partir des données de
SERC disponibles, des sous-tableaux de SERC sont sélectionnés. Une image radar
est construite pour chaque sous-tableau. La figure 12 montre des exemples d’images
radars de Beechcraft construites pour chacune des quatre bandes de fréquences
utilisées dans la chambre anéchoïque.

Pour la plus basse bande de fréquences, l’image consiste en un seul point brillant.
C’est dû au fait que pour cette bande de fréquences, la résolution de l’image est à peu
près égale à la taille de l’avion. Plus on croît en fréquence, meilleure est la résolution,
et donc plus de points brillants apparaissent sur les images.

III.3 Reconnaissance par arbres extrêmement aléatoires

L’algorithme de reconnaissance est basé sur l’utilisation conjointe de la technique
d’extraction de fenêtres et d’arbres rendus extrêmement aléatoires. Comme indiqué à
la figure 13, les données, qui sont ici les images radars, sont séparées en un ensemble
d’apprentissage (LS) et un ensemble de test (TS).

Pour chaque image du LS, un certain nombre NLS de fenêtres sont extraites par la
technique d’extraction de fenêtres, illustrée à la figure 14. Chaque fenêtre est choisie
aléatoirement, et est d’une taille aléatoire. Une fenêtre est caractérisée par les valeurs
des pixels à l’intérieur de cette fenêtre. Les fenêtres sont ensuite re-dimensionnées, de
telle manière à ce qu’elles contiennent toutes le même nombre de pixels, car ce sont
les pixels qui sont utilisés comme attributs. Chaque fenêtre est labellisée par la classe
de son image d’origine.

Les fenêtres extraites sont utilisées pour construire un ensemble de T arbres
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Figure 12: Exemple d’images radars de Beechcraft construites à partir de SERC, pour
chacune des quatre bandes de fréquences utilisées.
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Figure 13: Bloc-diagramme du classificateur.

Figure 14: Illustration de l’extraction de fenêtres sur une image. Les attributs sont
les pixels de ces fenêtres préalablement mises à la même échelle, de sorte que chaque
fenêtre contient le même nombre de pixels.

extrêmement aléatoires (extra-trees). La figure 15 illustre un arbre de décision. Un
arbre de décision est un ensemble hiérarchique de nœuds reliés entre eux par des
branches. A chaque nœud, on teste un des attributs des fenêtres, l’un des pixels
des fenêtres en l’occurrence. On sépare ensuite l’ensemble des fenêtres en deux
sous-ensembles, suivant le résultat du test. On continue à développer l’arbre jusqu’à
ce qu’un nœud ne contienne que des fenêtres appartenant toutes à la même classe.

La différence entre un arbre de décision classique et un extra-tree réside dans
le choix du couple attribut-valeur seuil (ai, vi) pour chaque nœud. Dans un arbre
de décision classique, le meilleur couple est choisi à chaque nœud. Pour un arbre
aléatoire, le meilleur couple est choisi parmi un ensemble restreint de couples choisis
aléatoirement.

La classe d’une image du TS est déterminée de la manière suivante: un nombre
NTS de fenêtres sont extraites de l’image et ensuite re-dimensionnées. Chacune de
ces fenêtres est propagée dans chacun des T extra-trees du modèle de reconnaissance.
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Figure 15: Illustration d’un arbre de décision.

La classe de l’image est déterminée par un vote de majorité sur les NTS × T classes
obtenues par la propagation de chaque fenêtre dans chaque arbre.

III.4 Expériences de reconnaissance

L’algorithme de reconnaissance a été conçu pour être utilisé principalement sur des
images optiques. Il importe donc d’abord de le valider sur des images radars. Pour ce
faire, nous le testons sur les images de la base de données MSTAR afin de comparer les
résultats obtenus avec ceux obtenus par d’autres méthodes et publiés dans la litérature.
Ensuite, l’algorithme est testé sur les images construites à partir des données de la
chambre anéchoique de l’ONERA.

III.4.1 Reconnaissance sur les images MSTAR

La version de la base de données MSTAR utilisée se compose d’images de 5
objets; les chars BMP-2 et BTR-70, le tank T-72, des fausses cibles, et d’images
d’environnement, telles qu’illustrées à la figure 16. Chaque type d’objets est considéré
comme une seule classe. Il y a donc cinq classes d’objets.

En appliquant l’algorithme de reconnaissance à la base de données MSTAR, on
obtient des résultats de classification correcte de l’ordre de 98%, à condition de réduire
le speckle présent dans les images autour des objets en eux-mêmes. Ce taux de recon-
naissance est parmi les meilleurs résultats publiés dans la litérature. L’application de
l’algorithme de reconnaissance basé sur les extra-trees à des images radars est donc
expérimentalement validé.

III.4.2 Reconnaissance sur les images ONERA

Les données sont acquises en chambre anéchoïque pour 4 types d’avions (figure
17) sur 4 bandes de fréquences (FB1 = [20; 80] MHz, FB2 = [190; 250] MHz, FB3
= [450; 550] MHz et FB4 = [1.2; 1.3] GHz), sur 4 couples de polarisation émetteur-
récepteur (HH , HV , V H et V V ), pour 3 angles d’aspect (α ∈ {0◦, 45◦, 90◦}), et pour
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(a) Char BMP-2. (b) Char BTR-70. (c) Tank T-72.

(d) Exemple d’image de

fausse cible.

(e) Exemple d’image

d’environnement.

(f) Exemple d’image

d’environnement.

Figure 16: Illustration des cinq classes des données MSTAR.

des angles bistatiques allant de 6◦ à 160◦. Les images sont construites en utilisant les
données acquises pour la polarisation HH .

(a) Beechcraft. (b) F117.

(c) F16. (d) Learjet.

Figure 17: Modèle CAD de chacun des avions utilisés.

Les résultats obtenus donnent un taux de reconnaissance d’à peu près 30% pour
les images de la FB1. Ce faible taux de reconnaissance s’explique par (1) la faible
résolution des images qui est comparable à la taille des avions, et (2) par le fait que
pour la FB1, la taille des avions influence plus la SERC que leur forme et que tous
les avions sont de même taille. A l’inverse, les taux de reconnaissance sont proches de
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100% pour les trois hautes bandes de fréquences car la résolution des images est plus
élevée et que la forme des avions influence plus la SERC que leur taille.

III.5 Conclusion

Dans cette section, nous avons procédé à la reconnaissance des avions en utilisant
leurs images radars et un algorithme de reconnaissance basé sur l’utilisation d’arbres
rendus extrêmement aléatoires. L’algorithme de reconnaissance a d’abord été testé
sur des images radars de la base de données MSTAR, et ensuite sur les images radars
construites à partir des SERC d’avions fournies par des mesures en chambre anéchoïque.
Les taux de reconnaissance avoisinent les 100%, à l’exception de la bande de fréquences
disponible la plus basse, étant donné que tous les avions sont de même taille et, à cette
fréquence, n’apparaissent chacun que comme un seul point brillant.

IV Reconnaissance de cibles via leurs SER com-

plexes et réelles

IV.1 Introduction

La reconnaissance par imagerie, bien que très performante, nécessite la construction
d’images radars des cibles. Pour construire une image radar d’une cible, un utilisateur
doit disposer de valeurs de SERC sur une certaine partie de l’espace de Fourier. Il
faut donc pouvoir disposer de paires émetteurs-récepteurs opérant sur des fréquences
adjacentes et dont les angles bistatiques soient également adjacents. En pratique,
à cause des principes d’allocation des fréquences, il est invraisemblable de pouvoir
disposer d’émetteurs opérant sur des fréquences adjacentes et étant adjacents.

On cherche donc à reconnaitre les avions en utilisant directement leur SER, réelle
ou complexe, acquise à partir d’un nombre limité de paires émetteur-récepteur, comme
indiqué à la figure 18. Par rapport au bloc-diagramme de la figure 9, l’étape de con-
struction d’images radars a été supprimée.

IV.2 Reconnaissance par méthodes de sous-espaces

La figure 19 montre le bloc-diagramme de l’étage de reconnaissance de la figure 18.
L’algorithme de reconnaissance est basé sur les méthodes de sous-espaces.

Les données, soit de SER, soit de SERC, sont séparées en un ensemble
d’apprentissage (LS) et un ensemble de test (TS). Des vecteurs d’attributs sont
formés pour chaque classe représentée dans le LS. Chaque vecteur d’attributs consiste
en une séquence de valeurs de SER ou de SERC acquises à des angles bistatiques
consécutifs. Chaque vecteur d’attributs peut donc être vu comme la réalisation d’une
variable aléatoire représentant la SER ou la SERC pour ces angles bistatiques. Pour
chaque classe, l’ensemble des vecteurs d’attributs est concaténé dans une matrice,
notée X.

Chaque classe est caractérisée par un sous-espace construit par décomposition
en valeurs singulières de la matrice X. On a donc X : UΣV H , où U est la matrice
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Figure 18: Bloc-diagramme du système de reconnaissance automatique de cibles basé
sur les SER complexes (SERC) ou réelles (SER) des avions.

des vecteurs singuliers, et Σ la matrice diagonale des valeurs singulières. Le meilleur
sous-espace est constitué en gardant les vecteurs singuliers de U correspondant aux
valeurs singulières de Σ les plus grandes. Le modèle de reconnaissance consiste donc
en un ensemble de sous-espaces, chaque sous-espace représentant une classe.

La classe d’un vecteur d’attributs du TS est déterminée de la manière suivante. Le
vecteur est projeté dans chacun des sous-espaces du modèle de reconnaissance. Ensuite,
une mesure de chaque projection, équivalente à l’énergie de la projection du vecteur
dans chacun des sous-espaces, est calculée. La classe attribuée à ce vecteur est celle
correspondant au sous-espace dont l’énergie de la projection est la plus grande.

IV.3 Expériences de reconnaissance sur les données ONERA

Le modèle de reconnaissance automatique de cibles décrit plus haut est testé suc-
cessivement sur les SER puis sur les SERC des quatre avions présentés précédemment.
Rappelons que les valeurs de SER et de SERC sont acquises en chambre anéchoïque.
Le cas d’une seule paire émetteur-récepteur est d’abord testé. Les taux de recon-
naissance sont indiqués à la figure 20 par bande de fréquences, pour la polarisation HH .

Pour la bande de fréquences la plus faible, les taux de reconnaissance sont très
faibles, alors qu’ils augmentent aux fréquences plus élevées, et ce pour les mêmes
raisons que dans le cas des images radars. Pour chaque bande de fréquences, le taux
de reconnaissance varie suivant la région de l’espace (α, β) dans laquelle l’objet est
illuminé.

On voit aussi clairement qu’il est plus intéressant de travailler avec la SER
complexe (donc la phase) que réelle. C’est probablement dû à la différence dans les
formes des avions utilisés.

Le cas de trois paires émetteur-récepteur est ensuite considéré. La classe d’un
avion est déterminée par vote de majorité sur les résultats de classification de chaque
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Figure 19: Bloc-diagramme du classificateur basé sur les sous-espaces.

paire émetteur-récepteur. On considère un seul émetteur et trois récepteurs dont les
angles bistatiques sont différents les uns des autres. La figure 21 montre les taux de
reconnaissance par bande de fréquences, pour la polarisation HH .

On voit clairement que la combinaison de plusieurs récepteurs augmente le taux
de reconnaissance aux fréquences plus élevées. Ceci est à mettre en parallèle avec les
résultats obtenus sur les images radars, pour lesquels un nombre plus important de
paires émetteur-récepteur ont été nécessaires.

IV.4 Conclusion

Dans cette section, nous avons montré que l’on pouvait reconnaitre des avions sur
base de leur SER, complexe ou réelle, acquise en chambre anéchoïque par un nom-
bre limité de paires émetteur-récepteur. L’algorithme de classification repose sur des
méthodes de sous-espaces, chaque classe d’avions étant représentée par un sous-espace.

xxvii



0 FB1 FB2 FB3 FB4
0

0.2

0.4

0.6

0.8

1

 Bande de fréquence

P
cc

SERC

SER

Figure 20: Taux de reconnaissance moyen par bande de fréquences, pour une seule
paire Tx-Rx. La variation au sein d’une même bande dépend de la région du plan
(α, β) dans laquelle l’objet est illuminé.
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Figure 21: Taux de reconnaissance moyen par bande de fréquences, pour trois paires
Tx-Rx. La variation au sein d’une même bande dépend de la région du plan (α, β)
dans laquelle l’objet est illuminé.
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V Reconnaissance de cibles via leurs SER réelles,

acquises expérimentalement

V.1 Introduction

Dans la section précédente, on a montré que l’on pouvait reconnaitre de manière
performante des avions en utilisant leur SER, complexe ou réelle, acquise en chambre
anéchoïque. On teste maintenant la reconnaissance d’avion en utilisant leur SER
réelle acquise à partir d’un banc de test basé sur un radar passif bistatique, déployé
en extérieur.

Les opérations à mener ont été décrites à la figure 1. Les avions doivent d’abord
être détectés et localisés. Un émetteur d’opportunité est sélectionné afin d’acquérir son
signal qui est réfléchi par les avions détectés. La SER des avions est extraite de ce signal
acquis, et sert ensuite à leur reconnaissance. La figure 22 représente le bloc-diagramme
de ce système de reconnaissance.

Figure 22: Bloc-diagramme du système de reconnaissance automatique de cibles basé
sur les SER des avions acquises par banc de test expérimental.

V.2 Banc de test de radar passif bistatique

Le banc de test déployé aux alentours de l’aéroport d’Orly (figure 23) consiste en un
récepteur ADS-B et un récepteur SDR basé sur la radio-logicielle. Les signaux ADS-B
servent à la détection et à la localisation des avions, étant donné que les signaux
ADS-B émis par les avions commerciaux contiennent leurs informations de localisation.

Le récepteur ADS-B a permis de détecter 1329 avions pendant une campagne
ayant duré une dizaine de jours. Parmi ces avions, les 47 Airbus de la famille des A340
(65 mètres de long, 4 moteurs) sont utilisés comme classe de grands avions, et les 549
Airbus de la famille des A320 (35 mètres de long, 2 moteurs) comme classe d’avions
de taille moyenne.

L’émetteur d’opportunité sélectionné est un VOR (celui de Rambouillet) ser-
vant à la navigation aérienne. Plus précisément, une sous-porteuse de son signal
est utilisée comme signal d’opportunité. Le récepteur SDR permet d’acquérir à
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Figure 23: Configuration du banc de test déployé. L’émetteur sélectionné est le VOR
de Rambouillet. Les récepteurs sont localisés au point marqué "HOUSE". Le cercle
indique la région dans laquelle les avions sont détectés, de par le rapport signal-sur-
bruit suffisamment élevé des signaux réfléchis par les avions.

la fois le signal émis par le VOR qui est reçu directement, et le signal réfléchi
par un avion, comme le montre l’exemple de spectrogramme des signaux reçus à
la figure 24. Ces deux signaux sont utilisés pour le calcul de la SER des avions détectés.

La SER des avions est calculée de la manière suivante. La puissance du signal direct,
notée PRD, et la puissance du signal réfléchi, notée PRS, correspondent, à chaque instant
t, aux pics du signal direct et du signal réfléchi sur le spectrogramme de la figure 24.
En combinant l’équation radar bistatique et l’équation de bilan de liaison, la SER peut
s’exprimer comme

σ =
PRS
PRD

GRT

GRS
G

(4π)3R2
TSR

2
RS

λ2L
, (5)

où les différentes grandeurs sont indiquées sur la figure 25. La figure 26 montre les
valeurs de SER des avions de taille moyenne en fonction des angles d’aspect α et
bistatique β. Il est clair que les valeurs sont cohérentes d’un avion à l’autre, et qu’elles
peuvent donc être utilisées pour reconnaitre les avions.

Afin d’ajouter une classe d’avions, la SER d’avions de petite taille (4 mètres de
long) est simulée de manière numérique en utilisant les trajectoires des avions de taille
moyenne. Ce type d’avions n’étant pas équipé d’émetteur ADS-B, le banc de test ne
permet pas de les détecter, d’où le recours à la simulation.

La base de données consiste donc en des valeurs de SER de trois classes
d’avions. Pour chaque classe d’avions, un tiers des avions détectés forme l’ensemble
d’apprentissage, et les deux autres tiers forment l’ensemble de test.

V.3 Reconnaissance par méthodes de sous-espaces

Le même algorithme de classification basé sur les méthodes de sous-espaces et décrit
précédemment est utilisé pour procéder à la reconnaissance des avions. La figure 27
montre le taux de reconnaissance obtenu par région de l’espace (α, β). Les régions en
bleu correspondent à des zones pour lesquelles aucune donnée n’a pu être récoltée. Le
taux de reconnaissance obtenus pour les autres régions varie de 40% à 99%. Le taux

xxx



Signal direct Signal réfléchi par l’avion

Figure 24: Exemple de spectrogramme d’un signal reçu. On distingue le signal direct
par sa fréquence fixe, et le signal réfléchi par un avion présentant un shift Doppler.

global de reconnaissance obtenu est de 83%.

Certaines régions apparaissent donc plus intéressantes que d’autres pour la recon-
naissance des classes d’avions décrites ci-dessus. Étant donné que les couloirs aériens
sont déterministes, il convient alors de bien choisir l’emplacement du récepteur pour
obtenir un taux de reconnaissance élevé.

V.4 Conclusion

Dans cette section, on a montré que des avions commerciaux peuvent être reconnus
de manière performante sur base de leur SER réelle acquise à partir d’un banc de
test déployé aux alentours de l’aéroport d’Orly et basé sur un radar passif bistatique
utilisant un VOR comme émetteur d’opportunité et un récepteur de radio-logicielle.
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Figure 26: Valeurs de SER pour les avions de taille moyennes, dans le plan (α, β).
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Figure 27: Taux de reconnaissance des avion par région de l’espace (α, β).

VI Conclusions et perspectives

Dans cette thèse, nous avons étudié la problématique de la reconnaissance d’avions
(aussi appelés cibles) en utilisant des signaux de radars passifs bistatiques, en vue
de la détection d’anomalies dans le trafic aérien civil. Une anomalie peut en effet
survenir quand un avion n’est pas équipé pour répondre aux interrogations de radars
secondaires.

Une stratégie de reconnaissance a d’abort été définie, basée sur la phénoménologie
radar. En effet, la SER, complexe ou réelle, d’un objet dépend de quatre facteurs
que sont la fréquence du signal transmis, le couple de polarisation de l’émetteur et
du récepteur, l’angle d’aspect et l’angle bistatique. Etant donné que les mécanismes
de diffusion contribuant à la SER dépendent de ces quatre paramètres et qu’il est
par ailleurs invraisemblable d’observer un avion sur l’entièreté de sa trajectoire, la
stratégie de reconnaissance consiste en la séparation de cet espace de paramètres en
régions, et en la construction d’un classificateur par région.

Les premières expériences de reconnaissance ont été menées sur des données
acquises en chambre anéchoïque. Les avions ont d’abord été reconnus en utilisant leurs
images radars construites à partir des SER complexes, et en appliquant l’algorithme
des arbres rendus extrêmement aléatoires sur ces images radars. Bien qu’ayant obtenus
des taux de reconnaissance excellents, la construction d’images demande l’utilisation
d’un certain nombre de paires émetteur-récepteur. Les avions ont donc été reconnus
en utilisant directement leur SER, réelle ou complexe, et en utilisant un classificateur
basé sur les méthodes de sous-espaces. Les taux de reconnaissance obtenus varient
suivant la région de l’espace des paramètres dans laquelle est illuminé l’avion, et
peuvent atteindre 98%.

Afin de tester l’algorithme de reconnaissance sur des données de SER réelles, un
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banc de test basé sur un radar passif bistatique a été dṕloyé aux alentours de l’aéroport
d’Orly. Le banc de test détecte et localise les avions en utilisant leurs signaux ADS-B.
Le signal d’opportunité choisi est la sous-porteuse du signal émis par un VOR. La
SER des avions est calculée sur base du ratio entre la puissance du signal réfléchi
sur les avions et la puissance du signal direct, ces signaux étant collectés par un
récepteur de radio-logicielle. L’algorithme de reconnaissance est basé sur les méthodes
de sous-espaces. Le taux de reconnaissance obtenu est de 83% et varie suivant les
régions de l’espace des paramètres, démontrant ainsi expérimentalement la faisabil-
ité de la reconnaissance de cibles par utilisation de signaux de radars passifs bistatiques.

Différentes perspectives sont envisagées afin de rendre le système le plus opéra-
tionnel possible. Tout d’abord, il convient de pouvoir détecter et localiser les cibles
d’une autre manière qu’en utilisant les signaux ADS-B, par définition des anomalies
dans le trafic aérien. Ensuite, différents émetteurs d’opportunité peuvent être utilisés
et combinés, la bonne localisation des récepteurs et des émetteurs pouvant permettre
d’augmenter significativement le taux de reconnaissance. L’utilisation de la phase de
la SER peut aussi contribuer à améliorer les résultats de reconnaissance. Étant donné
que les taux de reconnaissance varient suivant la polarisation, l’angle d’aspect et l’angle
bistatique, il conviendrait d’étudier théoriquement l’influence de ces paramètres. En-
fin, nous donnons quelques pistes concernant la reconnaissance elle-même, telles que
l’utilisation d’autres techniques de classification, ou la définition des classes de cibles
suivant des méthodes d’apprentissage non-supervisé comme le clustering.

xxxiv



Chapter 1

Introduction

Contents
1.1 Motivation for the thesis . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Targets considered . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Automatic target recognition (ATR) . . . . . . . . . . . . . . 2

1.1.3 Class of a target . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Bistatic radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.5 Passive radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Developed techniques . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Scene parameters . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Quantities used for the recognition of targets . . . . . . . . . 6

1.2.3 Proposed ATR systems . . . . . . . . . . . . . . . . . . . . . 6

1.3 Background: conventional air traffic control (ATC) . . . . 8

1.3.1 Primary surveillance radar . . . . . . . . . . . . . . . . . . . 9

1.3.2 Secondary surveillance radar . . . . . . . . . . . . . . . . . . 10

1.3.3 Non-cooperative target recognition within ATC . . . . . . . . 11

1.4 Contributions of the thesis . . . . . . . . . . . . . . . . . . . 11

1.5 Organization of the manuscript . . . . . . . . . . . . . . . . 12

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Motivation for the thesis

The motivation for this thesis is the automatic recognition of targets using passive
bistatic radar signals. The objective of the thesis is to design, implement, and test
a system able to recognize, at low cost, targets. We call this system an automatic
target recognition (ATR) system. In this section, we define the types of targets that
are considered, and the notions of ATR, target class, bistatic radar, and passive radar.

1



2 1.1. MOTIVATION FOR THE THESIS

1.1.1 Targets considered

In this work, we consider non-cooperative targets. Non-cooperative targets are
targets that do not provide information about their identity or location when asked to
do so, by contrast with cooperative targets that provide this information. Examples
of non-cooperative targets are personal cars. In general, we often refer to targets as
objects.

Without loss of generality, we consider non-cooperative air targets. Non-cooperative
air targets are not able to reply to requests from air traffic control (ATC) radars,
either because of the absence of a transponder on-board, because of a failure of such
a transponder, or because the transponder is off (willingly or not). ATC is described
in Section 1.3. We discuss the application of the proposed ATR systems, described in
Section 1.2, to other types of targets in Chapter 9.

1.1.2 Automatic target recognition (ATR)

Automatic target recognition (ATR) is defined as the process of recognizing targets
without human involvement [17, 95, 173]. ATR is called non-cooperative target recog-
nition (NCTR) in case of non-cooperative targets, as in this thesis, and identification
friend-or-foe (IFF) in case of cooperative targets [187]. NCTR aims at recognizing
a target from the radar echo signals received from the target to be recognized. IFF
systems rely on the interrogation of the transponder on-board the target that sends
its identification back to the interrogator.

The word "recognition" in ATR implies classification. We equivalently use both
terms in this thesis. Classification is defined as the act of assigning to input data one
class among a set of pre-defined classes [54,134]. The task of the classifier is to assign a
class to an unknown object described by features, called attributes. To do so, the clas-
sifier derives rules from objects described by attributes and for which their respective
class is known. Usually, a classification model describing these rules is derived using
a subset of the available data called the learning set (LS). The classification model is
tested on another subset of the data called the test set (TS). Other ways of partitioning
the data, such as cross-validation, can be used [134]. Cross-validation is used when the
amount of data is insufficient to create an LS and a TS that are independent, and that
each contains a sufficient amount of objects. We do not consider cross-validation in
this thesis since a particular effort is made to obtain a dataset as complete as possible.
The fact that we learn and train the ATR systems, described in Section 1.2, on real
data, making up complete datasets, is another key feature of this thesis. Indeed, as will
be explained in Chapter 2, many ATR systems for passive radar rely on simulated data.

Classification is a part of supervised learning [54, 134]. In supervised learning
problems, objects belong to different categories, called classes. Supervised learning
aims at deriving relationships between the attributes of objects. These relationships
are used to predict the true class of an object. Supervised learning problems are either
regression problems or classification problems. In regression problems, the prediction
is a (continuous) numerical value, whereas in classification problems the predicted
output is a discrete class.
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Supervised learning is a part of machine learning. Machine learning is a subfield of
automatic learning that aims at designing rules that are similar to those that human
experts derive [221]. In machine learning problems, each object is characterized by a
set of features called attributes. Machine learning is divided into supervised learning
and unsupervised learning. Unsupervised learning, also called clustering, aims at
deriving probabilistic or causal relationships between objects. For example, clustering
methods try to form groups of objects based on the features of the objects. The use of
unsupervised learning in our ATR problem is part of our future work, and is discussed
in Chapter 9.

In short, the problem addressed in this thesis is an ATR problem, and more specif-
ically, an NCTR problem. We aim at classifying/recognizing non-cooperative air tar-
gets. Air targets are characterized by some number of attributes.

1.1.3 Class of a target

In this work, the proposed ATR systems label each unknown target of interest with
a particular target class. The notion of target class is not uniquely defined in the
radar ATR literature. The nature of the prediction of a classifier thus varies from one
ATR system to the other. For example, a target is defined in [187] first according
to its general nature, which can be defined as aircraft, ship, or bird. Each type of
general nature of target is then divided into different target types. Example target
types for airplanes are fighter planes and helicopters. Each target type can be further
separated into different target classes that can be F16, F22, and B2. The callsign of a
target, such as AF123, can eventually be determined. This latter operation is referred
to as identification, and not as classification/recognition. Identification is usually
implemented in a cooperative target recognition system (IFF), since it requires the
target to send its identification number or identification code.

In this thesis, we use a single target class for all airplanes sharing the same physical
properties. Looking ahead to Chapter 8, large-size airplanes and mid-size airplanes
shall be labelled two different classes, while an A318 airplane and an A319 airplane
shall be labelled the same class, since they are both mid-size airplanes.

1.1.4 Bistatic radar

A radar system is called bistatic (BS) when the transmitter and the receiver are
not co-located, as shown in Fig. 1.1, by contrast with the monostatic (MS) radar for
which the transmitter and the receiver are co-located [89]. By comparison with MS
configurations, a BS configuration is characterized by an additional parameter, which
is the bistatic angle, β. The bistatic angle β is defined as the angle (defined to be
positive and less than 180◦) between the transmitter and the receiver, with its vertex
at the target [224].

1.1.5 Passive radar

Passive radars are radars that use illuminators of opportunity as transmitters. Illu-
minators of opportunity are transmitters that are already present in the environment,
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Figure 1.1: Bistatic geometry for one pair of transmitter and receiver.

such as analog TV transmitters, digital video broadcast - terrestrial (DVB-T) TV
transmitters, or mobile phone base transceiver stations (BTSs). We propose to use
one or multiple illuminators of opportunity as source of radar illumination, as in [225].
It is assumed that the different characteristics of the signals transmitted illuminators
of opportunity, such as their location, frequency, modulation, and polarization are
known but are not controlled.

The qualifier "passive" means that the transmitter is not aware of being used as a
radar transmitter, although it must evidently be active. The transmitter is thus called
non-cooperative. The different illuminators of opportunity that are used in actual
passive radar systems are presented in Chapter 2.

Since the transmitter used is already present, the implementation of a passive radar
requires few technical investments, especially since fast digital signal processors that
make the acquisition and the processing of the scattered signals easy are available.
Using illuminators of opportunity thus contributes to the low-cost aspect of the
solution. Another advantage of a passive radar is that, since the transmitter is already
operational, it allows for an immediate access to the frequency spectrum. The main
disadvantage is that the characteristics of the signal transmitted are not controlled,
since such a transmitter is usually not designed specifically for radar purposes.

Illuminators of opportunity considered in this work operate on the "low" frequency
bands, defined here as frequencies lower than 1 GHz. The use of low frequencies
for classification/recognition purposes is justified by the following reasons. First,
since the wavelength is of the order of several meters, and since the length of the
targets are of the order of tens of meters, the radar signature and its variations are
essentially dependent on the larger parts of a target, and less sensitive to its smaller
parts. The signature is thus robust and reproducible from one aircraft to the other
at low frequencies. Second, transmitters operating at low frequencies are present
everywhere in the environment: radio transmitters, TV transmitters, mobile phone
BTSs. Therefore, the use of signals transmitted at these corresponding frequencies is
straightforward. Third, low frequencies are suitable to defeat the possible stealthiness
of air targets. Indeed, at low frequencies, no material can efficiently absorb the
energy of the incident wave and be used in operation. Absorbing energy at these low
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frequencies would require that the size of the stealth layer be very large, of the order
of the wavelength, i.e. of about 3 m for a signal transmitted at a frequency of 100 MHz.

Passive radars are inherently bistatic. Such radars are called passive bistatic radars
(PBRs). As explained in Chapter 2, PBRs are mainly used today for detection and
location purposes. The use of PBRs for the recognition of air targets is a key feature
of this thesis.

1.2 Developed techniques

We use radar signals transmitted by one or multiple transmitters (Tx’s) of oppor-
tunity, scattered by a target, and collected by one or multiple receivers (Rx’s). The
configuration of the radar system is shown in Fig. 1.2 for a single (Tx,Rx) pair. The
three ATR systems implemented in this thesis assign a class to the unknown, detected
air target from the signal scattered by this air target and from the direct signal. The
performances of the three proposed ATR systems will be compared in Chapter 9, in
terms of (1) their probabilities of correct recognition, defined as the ratio of the number
of objects correctly recognized to the total number of objects, and (2) the number of
(Tx,Rx) pairs needed.

Figure 1.2: Configuration of the radar system for a single (Tx,Rx) pair. An ATR
system assigns a class to the unknown, detected air target based on the received
scattered signal.

1.2.1 Scene parameters

We assume that an unknown airplane to recognize has already been detected and
tracked: we know its position and line-of-sight, i.e. its direction. However, we do not
know its exact orientation, i.e. its yaw, pitch, and roll angles. These assumptions are
realistic since the detection and tracking of an airplane is performed by a primary
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surveillance radar (PSR) when the airplane is taking-off or landing, as described in
Section 1.3. When the airplane is en-route, passive bistatic radars (PBRs) can detect
and track airplanes, as explained in Chapter 2.

We assume that we know the location, polarization, and frequency of the Tx(s)
of opportunity used, but we do not control them. We also assume that we know the
location and polarization of the Rx(s), since the Rx(s) are under our full control. We
call these parameters the scene parameters.

1.2.2 Quantities used for the recognition of targets

Consider the case of a PBR consisting of a single Tx of opportunity and a single Rx.
One can extract, from the signal transmitted by the Tx, scattered by the unknown,
detected air target, and collected by the Rx, the bistatic complex radar cross-section
(BS-CRCS) and the bistatic radar cross-section (BS-RCS), which both characterize
the target. We present the notions of BS-CRCS and BS-RCS in Chapter 3. The
extraction of both the BS-CRCS and the BS-RCS from the signal scattered by an
(air) target is explained in Chapter 4.

As described in Chapter 2, images of targets are often used in ATR. The radar
image of a target is defined as a two-dimensional (2D) BS-CRCS density. We thus
first perform the recognition of targets by using their radar images constructed from
their BS-CRCS.

However, constructing radar images of air targets based on signals transmitted by
illuminators of opportunity is difficult, as the required space and frequency diversity
constraints (described in Chapter 5) would be difficult to meet in an operational
system. Therefore, in a second step, we suggest to recognize targets by using either
their BS-CRCS or their BS-RCS.

We test the first two ATR systems on data acquired in an anechoic chamber. For
the third ATR system, we recognize targets by using their real-life BS-RCS, since, as
shown in Chapter 8, the phase of the BS-CRCS is difficult to acquire in an operational,
outdoor ATR system.

1.2.3 Proposed automatic target recognition (ATR) systems

We present three ATR systems. The three systems share the following characteristics:

• The raw input data of each ATR system consists of the signals transmitted by
an illuminator of opportunity, scattered by a detected air target, and collected
by a receiver. The input data is separated into a learning set (LS), and a test set
(TS).

• The scene parameters are known, and are an input of each of the three ATR
systems.

• The recognition, that we also call the classification, consists in a learning step
and a test step. The learning step consists in the construction of the target class
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model based on data in the LS. The test step consists in the determination of
the target class of data in the TS, thus attributing a class to each data instance
of the TS.

• The output of each of the three ATR systems is the class of the unknown, detected
air target. We quantify the performance of each of the three ATR systems by
computing the probability of correct recognition for each.

The three following subsections give a block diagram of each of our three ATR
systems, as well as the characteristics of each of them.

ATR system using radar images

Our first ATR system recognizes targets by using their radar images. We will use
this system as a reference to evaluate our two other ATR systems, which recognize
targets by using either their BS-CRCS or their BS-RCS.

Figure 1.3 shows the block diagram of this first ATR system. The BS-CRCS of the
targets are extracted from the raw input data, for both the LS and the TS (Chapter 4).
The images of targets are then constructed from these BS-CRCS (Chapter 5). The
images in the LS are used to generate the target class model. The target class of each
image of the TS is determined by passing each image in the TS through the target
class model (Chapter 6).

Figure 1.3: Block diagram of our ATR system using radar images of targets.

ATR system using either bistatic complex RCS (BS-CRCS) or bistatic RCS
(BS-RCS)

Since the construction of images of targets is not feasible in an operational low-
frequency passive bistatic radar system, as will be described in Chapter 5, we recognize
targets by directly using either their BS-CRCS or their BS-RCS. Figure 1.4 shows the
block diagram of our second ATR system. The BS-CRCS or the BS-RCS of the targets
are extracted from the raw input data, for both the LS and the TS (Chapter 4).
The class of unknown targets is determined by passing either their BS-CRCS or their
BS-RCS through the target class model (Chapter 7).
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Figure 1.4: Block diagram of our ATR system using the bistatic complex radar cross-
sections or the bistatic radar cross-sections of targets.

ATR system using real-life bistatic radar cross-sections (BS-RCSs)

In order to design an operational ATR system, we add a detection stage and
a discrimination and pre-classification stage to the second ATR system, as shown
in Fig. 1.5. This ATR system, that we discuss in Chapter 8, will be tested in an
operational mode. For reasons to be explained in Chapter 8, we use the BS-RCS and
not the BS-CRCS of air targets.

Figure 1.5: Block diagram of our ATR system using real-life bistatic radar cross-
sections of targets.

We perform the discrimination between detected targets of interest and other de-
tected man-made targets in the discrimination and pre-recognition stage. The BS-RCS
of the targets of interest are extracted in the extraction of BS-RCS stage, and are the
input of the recognition stage. The class of targets of interest is determined by passing
their BS-RCS through the target class model.

1.3 Background: conventional air traffic control

(ATC)

In this thesis, we address the problem of the recognition of non-cooperative targets,
called non-cooperative target recognition (NCTR). Since the targets considered in
this work are air targets, we describe the principles of air traffic control (ATC).
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In Europe, ATC is performed by secondary surveillance radars (SSRs) when air-
planes are en-route. Around airports, i.e. for take-off and landing operations, ATC
is performed by airport surveillance radars (ASRs), consisting in the joint use of pri-
mary surveillance radars (PSRs) and SSRs. In the United States, ASRs are used both
en-route and near airports [204]. We now briefly describe PSRs and SSRs, in order to
point out their limitations for ATC for the recognition of non-cooperative airplanes.

1.3.1 Primary surveillance radar

A primary surveillance radar (PSR), also called moving target detector (MTD), is
a particular type of moving target indicator (MTI) radar [187, 204]. As for any radar,
it sends out electromagnetic pulses. If an (air) target is present, the surface of this
target will reflect the incident pulse back to the radar. The time taken by the pulse to
reach the target and return to the PSR gives the distance from the radar antenna to
the target according to

D =
cτ

2
, (1.1)

where D is the distance from the antenna to the target, c the speed of light, and τ the
round-trip delay.

The bearing of the target is given by the azimuth orientation of the PSR antenna.
The elevation angle of the target is not measured. The PSR radar scans the entire
horizon at some scan rate, which means that a particular portion of the sky is not
continuously monitored, therefore limiting the dwell time.

Figure 1.6 shows the key stages of a PSR radar [137]. First, the signal scattered
on the target is digitized by an analog-to-digital converter (ADC). Second, the signal
scattered on the target is separated from clutter by using clutter cancellation filters,
such as digital Doppler filters. Then, the signal scattered on the target is separated
from thermal noise using a constant false alarm rate (CFAR) thresholding algorithm.
A scan-to-scan correlation-and-tracking algorithm generates a single report per target,
from a cluster of range-azimuth-Doppler target reports, so that a target is represented
by a single dot on the plan-position indicator (PPI).

Figure 1.6: Simplified block diagram of a primary surveillance radar.

The main advantage of the PSR is that it does not require the cooperation of the
target itself. It is also capable of detecting small energy responses, making it available
to monitor weather. The main disadvantage of the PSR is its inability to discriminate
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between targets presenting the same level of return energy. Another disadvantage of
the PSR is the large amount of transmitting power required so that the echo signal has
a power high enough to be measurable. This limits its range. Moreover, echo signals
are subject to external factors such as changes of target attitude, resulting in fading of
these echo signals.

1.3.2 Secondary surveillance radar

A secondary surveillance radar (SSR) is used to identify an air target, whether
it has been detected by a PSR radar [192] if the air target is near airports, or
not if it is en-route. SSRs can be seen as the civilian adaptation of the military
identification friend-or-foe (IFF) radar systems that were initially developed during
World War II [68]. During this war, air targets equipped with IFF systems had to
respond with a specific signal to signals transmitted by ground-based transmitters. A
correct response made the aircraft be identified as friend, while an incorrect response
made the aircraft be identified as foe.

Figure 1.7 shows the principle of an SSR. The SSR transmitter sends out an inter-
rogation signal to the transponder (transmitter/receiver working on radar frequencies)
carried aboard the cooperative target. The on-board transponder responds to the SSR
interrogation by sending a signal containing information such as the target identity
(squawk code) and position. Upon reception, the response signal is processed by the
receiver in order to identify the target on the operator plan-position indicator (PPI).
If the target transponder does not respond, it is considered as a non-cooperative target
in civilian aviation, and as an enemy in military aviation.

Figure 1.7: Simplified block diagram of the receiving stage of a secondary surveillance
radar.

The main advantage of the SSR is that the transmitting power from the SSR
transmitter can be reduced. Indeed the power of the received signal decreases by
a factor of D2 instead of D4 in the PSR case, since both the radar and the target
transmit in the SSR case. Another advantage is the complete identification and
location of the air target through the information sent from the target.
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The automatic dependent surveillance (ADS) system is the SSR used today. An
ADS system relies on a transponder aboard an air target that transmits data, such as its
position, altitude, and speed, to the ground station. Today, the automatic dependent
surveillance- broadcast (ADS-B) mode [22,209], which is part of the new Traffic Alert
and Collision Avoidance System (TCAS), is used [9].

1.3.3 Non-cooperative target recognition (NCTR) within air

traffic control (ATC)

As described above, the identification process is based on the presence of a
transponder aboard the air target, and on the confidence in the response from such
transponder. In case there is no transponder aboard the target, or its transponder is
not working properly, or it is turned off, the target cannot be identified.

Near airports, one could think of analyzing the signals transmitted by the PSR
and scattered by the air target back to the PSR to characterize the target. However,
for conventional and existing PSRs, as the scan rate is high, the dwell time is limited,
of the order of a few milliseconds. Moreover, as the range is important, the distance
resolution is also low. It is therefore difficult to analyze the target using a PSR, and
even more difficult to create an image or a high-resolution range profile of the target
to recognize it. Furthermore, because of the limited "time-on-target", PSRs will not
be used as transmitters of opportunity.

However, studies aiming at designing new PSRs that would be able to combine
both tracking and identification modes within the same scan are currently on-going.
These new PSRs are not considered here, as they are not operational yet.

In conclusion, the use of conventional PSRs and SSRs does not allow one to identify
non-cooperative targets. Moreover, even though SSRs are able to identify cooperative
targets, SSRs do not provide any verification mean, since SSRs trust the information
received from the target transponder.

1.4 Contributions of the thesis

We list here the main contributions of the thesis. First, we use low-frequency
passive bistatic radar signals for the classification/recognition of air targets. Indeed,
many passive bistatic radar signals are used for the detection and location of targets,
but not for their recognition. The use of illuminators of opportunity contributes to
the low-cost aspect of the proposed solution. The use of low-frequency radar signals
for the recognition of targets is not common, since many automatic target recognition
(ATR) systems operate at higher frequencies.

Our first ATR system recognize targets by using their radar images. Although the
expression for the construction of the radar image of a target from its bistatic complex
radar cross-section (BS-CRCS) is known, we provide its derivation from the principles
of tomographic imaging, as second contribution. The reason is that we could not find
this derivation in the literature.
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Third, we recognize non-cooperative air targets, based on either their BS-CRCS or
their bistatic radar cross-section (BS-RCS). This is a major difference with many ATR
systems that mainly use either high-resolution range profiles or radar images of targets.

Fourth, we developed three ATR systems that use two recognition techniques,
which are the extremely randomized trees and the subspace methods. To the best of
our knowledge, the use of tree-based classification methods in the radar ATR domain
is novel. To the best of our knowledge, vector subspaces are mainly used in the radar
domain for detection, and not for classification/recognition.

Fifth, we learn and train the recognition stage of each of our three ATR systems
on real data.

Sixth, we deploy a passive bistatic radar that we use for the acquisition of real-life
passive bistatic radar signals. We extract the real-life BS-RCS of commercial airplanes
from these signals.

1.5 Organization of the manuscript

Chapter 2 presents a literature review of passive bistatic radars, illuminators of
opportunity, and automatic target recognition (ATR).

Chapter 3 presents the notions of bistatic complex radar cross-section (BS-CRCS)
and bistatic radar cross-section (BS-RCS), and their variations according to different
physical parameters. The reason is that our three ATR systems rely on either the
BS-CRCS or the BS-RCS of targets.

Chapter 4 presents the extraction of both the BS-CRCS and the BS-RCS of
targets, and illustrates experimentally the variations of both the BS-CRCS and the
BS-RCS of air targets as a function of different physical parameters.

Chapter 5 presents the theoretical and practical computation of the radar images
of targets from their BS-CRCS, for both a monostatic configuration and a bistatic
configuration.

Chapter 6 presents the design, implementation, and test of the recognition stage
of the ATR system recognizing targets by using their radar images.

Chapter 7 presents the design, implementation, and test of the recognition stage
of the ATR system recognizing targets by using either their BS-CRCS or their BS-RCS.

Chapter 8 presents the design, implementation, and test of the ATR system
recognizing targets by using their real-life BS-RCS. This chapter also presents the
experimental testbed we implemented to acquire real-life, outdoor passive bistatic
radar signals from which we extract the BS-RCS of the air targets of interest.

Chapter 9 summarizes the work performed in this thesis. It also compares the
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performances of our three ATR systems, and discusses future developments to be per-
formed to validate an operational ATR system based on passive bistatic radar signals.

1.6 Conclusion

In this chapter, we presented the motivation for this thesis, which consists in
the low-cost classification/recognition of non-cooperative air targets. We recognize
such air targets by the use of signals transmitted by low-frequency illuminators of
opportunity, and scattered by these air targets. The automatic target recognition
(ATR) systems proposed here thus use passive bistatic radar. The notions of ATR,
target class, passive radar, and bistatic radar were defined.

We presented three different ATR systems. The input of each ATR system consists
in the known parameters of the scene, and in the signals scattered by an air target.
The output of each ATR system consists in the class of this unknown air target. The
three ATR systems recognize targets by respectively using their radar images, their
bistatic complex radar cross-section (BS-CRCS), and their bistatic radar cross-section
(BS-RCS).

Since we consider non-cooperative air targets, we briefly described some key
principles of air traffic control (ATC), which is based on primary surveillance radars
(PSRs) and secondary surveillance radars (SSRs). We discussed the reasons why
current PSRs and SSRs cannot be used for the recognition of non-cooperative air
targets.

We listed the contributions of this thesis, and we presented the organization of this
manuscript.
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Chapter 2

Passive bistatic radar, illuminators
of opportunity, and automatic
target recognition: state-of-art
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In this chapter, we review the literature about passive bistatic radars and automatic
target recognition. Section 2.1 describes the state-of-art of passive bistatic radars.
Section 2.2 lists the different illuminators of opportunity used in actual passive bistatic
radar systems. Section 2.3 describes the state-of-art of automatic target recognition.
Section 2.4 concludes.

2.1 Passive bistatic radar

The word "RADAR" is an acronym meaning "RAdio Dection And Ranging" [187].
The first radar experiments were conducted by Christian Hulsmeyer, in 1904 [84].
He publicly demonstrated the capability of detecting a ship from the Hohenzoellern
Bridge over the Rhine River in Cologne, Germany. However, since the demonstration
failed to capture the attention of the military authorities, the invention was forgotten.
The theories of bistatic radar [186] and bistatic radar cross-section [48, 49, 98] were
developed in the 1950s. A complete history of radar and, more specifically, of bistatic
radar can be found in [187,224,225].

A bistatic radar is a particular type of radar for which the transmitter and the
receiver are not co-located, by constrast with a monostatic radar for which the
transmitter and the receiver are necessarily co-located. The first radar systems were

15
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essentially bistatic, mainly for technical reasons. Indeed, the duplexer, that enables
one to use a common transmit and receive antenna, was invented only in 1936. Thus,
the transmit and receive antennas had to be isolated from each other. In practice,
the transmitter and the receiver were separated by a distance equal to the distance
between the transmitter and the target [224].

Although many bistatic radar experiments were conducted in the 1920s and 1930s,
bistatic radar was heavily developed during World War II. For example, during this
war, the German receiver, called the "Klein Heidelberg", detected the presence of
Allied airplanes by receiving the signals transmitted by the British "Chain Home",
which is a series of transmitters, and scattered by the Allied airplanes crossing the
English Channel. This made the receiving system undetectable. The Klein Heidelberg
appears to be the first use of non-cooperative transmitters [78, 187]. This type of
transmitter is referred to as a "transmitter of opportunity" or as an "illuminator of
opportunity" [75]. This type of radar is called a passive bistatic radar (PBR). The
term "passive" refers to the fact that the transmitter used is not specifically dedicated
to this particular radar application.

The geometry of (passive) bistatic radar systems is thoroughly described in [91,224].
The principles, advantages, and disadvantages of PBRs are extensively described in
[224], and summarized in [73–75]. Some key points are:

• The bistatic radar receiver is potentially simple, and thus cheap.

• The bistatic radar receiver is passive, and thus covert.

• The modulation of the transmitted signals of opportunity is not chosen for radar
purposes.

• The use of low frequencies enables to counter stealth (as explained in Chapter 1).

• The cancellation of the direct-path signal, of multipath signals, and of interference
signals requires one to use sophisticated signal processing at the receiver.

• The bistatic radar cross-section of a given target is generally different from its
monostatic radar cross-section (as discussed in Chapter 3).

Today, PBRs are mainly used for detection and location purposes. PBRs are thus
often called passive coherent location (PCL) radar [75]. Different passive bistatic radar
systems are presented, and their performance discussed, in [6,7,18,47,76,112,115,121,
172,200,207]. The different illuminators of opportunity used are now briefly described.

2.2 Illuminators of opportunity

Passive bistatic radars are called passive since they use the signal broadcast by
a transmitter designed for other purposes, such as FM radio, DAB (Digital Audio
Broadcast) radio, analog TV, digital TV, or mobile phones communications. A
comprehensive list of illuminators of opportunity used today in passive bistatic radar
systems is given in [73]. The most commonly used illuminators of opportunity in
passive bistatic radar (PBR) systems are AM radio transmitters [172], FM radio
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transmitters [86, 116, 172], DAB transmitters [45, 71, 159, 172, 206], analog TV trans-
mitters [77, 85, 172], digital video broadcast (DVB) transmitters [71, 159], and mobile
phone base stations [120, 197, 198, 201–203]. All these transmitters operate on low
frequency bands, i.e. at frequencies lower than 1 GHz. Their signals are narrowband,
except for DVB signals.

Among the other illuminators of opportunity used, wireless networks, such as
in [80, 81], are used for limited-range applications, due to the low power of the trans-
mitters. Satellite-based transmitters are also used, as in [42]. Since satellites carrying
these transmitters are not geostationary, these transmitters do not illuminate the same
geographic region permanently, in contrast to fixed ground-based transmitters of oppor-
tunity, such as FM radio stations. Satellite-based transmitters and wireless networks
are thus not considered in this thesis.

2.3 Automatic target recognition (ATR)

In this section, we first describe the canonical block diagram of usual ATR systems,
as presented in the literature. We then present the adaptation of this canonical block
diagram to our problem. The block diagrams of the three ATR systems (Chapter 1)
are designed according to this adapted block diagram.

We then present the input data and the classification techniques of the main ATR
systems reported in the literature.

2.3.1 Canonical block diagram of a conventional automatic
target recognition (ATR) system

Figure 2.1 presents the canonical block diagram of a conventional ATR system, as
presented in [17,44]. The block diagrams of other recognition systems published in the
literature [106, 214, 215, 229] are designed according to this canonical block diagram.
Starting with raw data, the first stage consists in the detection of a potential target
in the midst of thermal noise. The second stage, called discrimination, consists in dif-
ferentiating between a potential target and surrounding clutter. The pre-classification
stage distinguishes between targets of interest and targets that are not of interest. The
fourth stage consists in the classification of the targets of interest. It assigns a class to
every object to be classified. The last stage is the identification stage. It can be seen
as a refining classification stage, as each object is being assigned a sub-class. It should
be noted that the representation of Fig. 2.1 is not the only one possible, but it has the
advantage of comprising the key stages of most ATR systems.

Figure 2.1: Block diagram of a canonical ATR system [44].
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2.3.2 Adaptation of the canonical ATR block diagram to our
problem

In this section, we discuss the adaptation of the canonical block diagram of an
ATR system to our problem. Here, the raw data consist of any signal collected by the
receiver of the passive bistatic radar system. The detection stage consists in detecting
an air target. The discrimination stage and the pre-classification stages are performed
together. Indeed, since the signal echoed by an air target has a Doppler shift due to
the motion of the air target, and since this Doppler shift is higher than the Doppler
shift induced by ground-moving vehicles, an air target is separated from clutter and
from ground-moving targets by a Doppler processing stage, as will be seen in Chapter 8.

We add a signal processing stage to compute either the bistatic complex radar
cross-section, the bistatic radar cross-section, or images of the targets from the signal
transmitted by an illuminator of opportunity, scattered by a detected target, and
collected by the receiver.

The classification stage, which we also call the recognition stage, computes the
target class model, and assigns a target class to the unknown targets.

There is no identification step in our ATR systems, as this requires the target to
be cooperative. Indeed, the callsign of an air target is known only if sent by the air
target, since it does not rely on any physical parameter of the air target.

Figure 2.2 presents the adapted block diagram of the ATR system. We design each
of the three proposed ATR systems described in Section 1.2.3 according to this adapted
block diagram.

Figure 2.2: Block diagram of the implemented automatic target recognition system.

2.3.3 Input data and classification techniques of usual auto-
matic target recognition (ATR) systems

This section describes the input data of the recognition stage (Fig.2.2) and the most
popular classification techniques used in ATR systems. We present the ATR systems
according to the type of input data. Today, most ATR systems use two different input
data; indeed, classifiers recognize targets using either their high range resolution (HRR)
profiles or their radar images [4,17,44,55,148]. ATR systems are also beginning to use
radar cross-sections (RCSs) of targets as input data.

First technique: ATR using high-resolution range profiles of targets

Since many ATR systems use HRR profiles, we describe such systems briefly. Some
reasons for not using such HRR range profiles are also explained in the present work.
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In HRR radar, a transmitter transmits a wideband signal (e.g. a chirp signal). A
wideband signal is defined as a signal whose bandwidth is of the same order as its
central frequency. The radar receiver receives the scattered pulses over a period of
time. HRR range profiles are defined as the one-dimensional (1D) measurement of
the target radar reflectivity along the radar to target line of sight (LOS) [133, 227].
It is known that the resolution of the range profile is inversely proportional to the
bandwidth of the transmitted signal [222].

The interest of using HRR profiles for classification is discussed in [93, 133, 136].
Examples of ATR systems using HRR data are [37, 52, 66, 88, 92,93, 101, 111, 143, 190,
218,223,234]. In [37,52,66,88,92,93,111,223,234], targets are classified directly based
on their HRR profiles. In [101,143,190], explicit features such as the target length, its
center of mass, or its number of scatterers are extracted using diverse signal processing
methods such as MUSIC [101]. The classification techniques used are mainly the
Bayes classifier [101, 234], the k-nearest neighbor algorithm (kNN) [37], the linear
discriminant analysis (LDA) [190], the multiple discriminant analysis (MDA) [190],
likelihood functions [92,93], and the maximum a posteriori (MAP) criterion [88]. Many
of these ATR systems reported in the literature use simulated HRR profiles of targets.
For example, a method for constructing a database of HRR profiles is described in [143].

Using HRR profiles for the problem addressed in this thesis is not feasible. Indeed,
as described in Section 2.2, most illuminators of opportunity work at frequencies lower
than 1 GHz. Moreover, their signals are narrowband. Therefore, obtaining the signal
scattered by a target over a wide frequency band would require to use a large number
of illuminators of opportunity operating on adjacent frequency bands. A large number
of receivers would also be needed in order to consider the same bistatic angle for
each (Tx,Rx) pair, since the transmitters would not be located at the same point. It
thus seems unrealistic to obtain HRR profiles by using illuminators of opportunity as
transmitters of a passive bistatic radar system.

Second technique: ATR using radar images of targets

Many ATR systems recognize targets by using radar images of these targets.
A two-dimensional (2D) radar image of a target is defined as the 2D complex
radar cross-section density of this target. We derive the expression of the radar
image of targets in Chapter 5. In practice, a 2D radar image of a target is ob-
tained by applying a 2D inverse Fourier Transform to a 2D array of complex radar
cross-sections of targets. Elements of the 2D array vary according to two different
parameters that can be frequency, aspect angle, or bistatic angle [24, 138, 167, 189].
Usually, targets are acquired at different frequencies (over a limited frequency
band) and at different angular values [102, 158, 196]. Therefore, diversity in both
frequency and angle is needed in order to fill the Fourier space, so that images of
targets can be constructed. Usually, images are constructed at a high resolution, and
thus, at frequencies higher than the ones used by illuminators of opportunity [131,165].

Today, many image-based ATR systems reported in the literature use Syn-
thetic Aperture Radar (SAR) images. The formation of SAR images is discussed
in [32,51,114,191], and will not be treated here, as it is beyond the scope of this work.
A thorough literature review of SAR ATR can be found in [140]. Among the different
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approaches, let us mention [166], which extracts scattering centers and contours from
each image, and then classifies targets using a nearest neighbor algorithm. In [38]
and [217], features are extracted out of images of targets by using time-frequency
techniques such as those based on wavelets. A bistatic SAR ATR system is described
in [132].

Many image-based ATR algorithms use the standard MSTAR data [174], where
MSTAR stands for "Moving Stationary Target Acquisition and Recognition". The
MSTAR data consists of SAR images of targets collected and distributed under the
DARPA MSTAR program. The MSTAR data allows researchers to test and compare
their ATR algorithms. Various reports and articles in the literature present different
classification methods, such as support vector machines (SVMs) [83,228,231], adaptive
boosting [199], neural networks [144], template-matching [31], likelihood test [31], and
MINACE filters [145]. In [144], tree-structured directional filter banks (DFB) extract
features from SAR images, and high-order neural networks (HONN) classify targets.
In [231], SVMs are a fairly good classifier, but a pose estimator as in [232] is needed
to estimate the poses of the targets. Other classification techniques tested, such
as k-nearest neighbor (kNN) [228] and SVM [83, 228], all rely on feature extraction
techniques, such as principal component analysis (PCA). In [199], the use of adaptive
boosting also needs pose estimation and feature extraction. Template-matching [31] is
also an efficient classification technique. However, it requires to determine a matching
score function such as the mean-squared error (MSE) between the test image and the
template. In [145], the MINACE filter requires to tune the filter parameters, and to
compute the inverse of the images’ spectral envelope matrix, which is computationally
demanding.

ATR systems in other domains, such as Laser Detection and Ranging (LADAR),
also rely on the use of images of targets as in [213, 215,216].

There are several limitations to the implementation of an image-based passive radar
ATR system. Even though the need for angular diversity could be satisfied by using
a sufficient number of transmitters and receivers, and by locating the receivers appro-
priately, the need for frequency diversity appears to be difficult to meet. Indeed, it is
very unlikely that a sufficient number of transmitters of opportunity, operating on ad-
jacent frequencies and in a common geographical region, are available. However, since
image-based ATR systems are very popular, our first ATR system recognizes targets
by using their radar images. This system will be used as a basis of comparison for our
two other ATR systems.

Third technique: ATR using RCS of targets

In [13], Bares investigated the recognition of air targets based on their low-frequency
RCSs. The classification methods use either kNNs or NNs. The RCSs of air targets
were both simulated using the Numerical Electromagnetic Code (NEC2) software
and obtained from experimental data. As described in [13, 30], the radar used, called
MOSAR-4F, operates on the high frequency (HF) and very high frequency (VHF)
bands, in a monostatic configuration. The monostatic configuration, and thus, the
use of an active radar is a major difference with the problem addressed in this thesis,
since we recognize targets based on signals transmitted by illuminators of opportunity



2.4. CONCLUSION 21

("passive" transmitters), and collected by a receiver, with the transmitters and the
receiver being in a bistatic configuration.

In [82], Herman reported a new ATR system based on passive radar. This system
also bypasses the construction of images of targets by using directly their RCS. The
RCS of targets are numerically computed using the method of moments implemented
in the FISC (Fast Illinois Solver Code) software. However, the computational costs of
the implemented particle filter used for tracking and classification are prohibitive, as
stated in [82].

In [59–64, 168], Ehrman et al. developed a less computationally-intensive ATR
system that is based on passive radar and that classifies targets directly from their
RCS. The RCS of different airplanes along simulated trajectories are computed by
jointly using the FISC software, a coordinated flight model, the NEC2 software,
and the Advanced Refractive Effects Prediction System (AREPS). The power
of the signal scattered by an airplane and collected by the receiver antenna is
generated by the joint use of FISC and a coordinated flight model. The flight
model is used to estimate the yaw, roll, and pitch angles of the airplane, in order
to compute the RCS of this airplane as accurately as possible. AREPS takes into
account the propagation losses, and NEC2 models the gain of the receiver antenna [61].

The target class model consists of a library of such pre-computed RCSs. The RCS
of an unknown, detected airplane to be classified is computed by using the signal
scattered on the airplane, and the flight model. A class is assigned to an unknown
airplane by comparing its RCS to the precomputed RCSs of known airplanes using a
Rician likelihood model.

The key feature of the ATR system proposed by Ehrman et al. is to model as
accurately as possible the RCS of an airplane along its trajectory. Different airplane
trajectories were simulated in [59, 61, 63, 64].

To the best of our knowledge, the ATR system implemented by Ehrman et al. is the
only ATR system that recognizes targets by directly using their RCS, and that is based
on a passive (bistatic) radar. The fact that this ATR system is based on simulation is
a major difference with the ATR systems implemented in this thesis, which all rely on
data acquired either in an anechoic chamber (Chapter 4) or operationally (Chapter 8).

2.4 Conclusion

This chapter presented the state-of-art of passive (bistatic) radar (PBR). We
showed that PBRs are so far mainly used for detection and location purposes. We
enumerated the different illuminators of opportunity that are used in today’s passive
bistatic radar systems.

We presented the canonical block diagram of a usual automatic target recognition
(ATR) system, and described its successive stages, i.e. the detection of a target, the
discrimination between a target and surrounding clutter, the pre-classification of this
target as being of interest or not, the classification of this target, and its identification.
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We also presented the adaptation of this canonical representation to our problem,
resulting in the grouping of the discrimination and pre-classification stages, and in the
discarding of the identification stage.

We showed that current radar ATR systems classify targets mainly by using either
the high range resolution (HRR) profiles or the radar images of these targets. We
also listed the main classification techniques that have been used in ATR systems to
date, such as support vector machines (SVM), neural networks (NN), and template-
matching. We stated the reasons for using neither HRR profiles nor radar images of
targets in an operational ATR system for a PBR. We described the few existing passive
bistatic radar ATR systems that classify targets based on their RCSs, and we stated
their limitations.



Chapter 3

Bistatic radar phenomenology

Contents
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Bistatic scattering geometry . . . . . . . . . . . . . . . . . . 24

3.4 Definition of the BS-CRCS and the BS-RCS . . . . . . . . 26

3.5 Scattering mechanisms . . . . . . . . . . . . . . . . . . . . . 27

3.6 Scattering regions . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 BS-RCS of a perfectly conducting sphere . . . . . . . . . . 31

3.7.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.2 Transmitted electric and magnetic fields . . . . . . . . . . . . 33

3.7.3 Scattered electric field . . . . . . . . . . . . . . . . . . . . . . 35

3.7.4 BS-CRCS and BS-RCS as a function of the bistatic angle . . 38

3.7.5 Application to the case of the perfectly conducting sphere . . 40

3.7.6 BS-RCS of canonical objects . . . . . . . . . . . . . . . . . . 41

3.8 Monostatic-to-bistatic equivalence theorems . . . . . . . . 42

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Section 3.1 presents the motivation for the presentation of bistatic radar phe-
nomenology. Section 3.2 presents the notations used in this chapter. Section 3.3 defines
the geometry of the bistatic configuration considered. Section 3.4 defines the notions
of bistatic complex radar cross-section (BS-CRCS) and of bistatic radar cross-section
(BS-RCS). Section 3.5 presents the scattering mechanisms responsible for the radar
cross-section (RCS) of a target, whether real or complex, and whether monostatic or
bistatic. Section 3.6 presents the different scattering regions. Section 3.7 presents
the theoretical computation of the BS-RCS of a simple generic object, a perfectly
conducting sphere, thus highlighting the parameters that the BS-RCS is a function of.
Section 3.8 discusses the application of the monostatic-to-bistatic equivalence theorems
for the computation of the BS-RCS of an object. Section 3.9 concludes.

23



24 3.1. MOTIVATION

3.1 Motivation for the presentation of bistatic

radar phenomenology

In the radar domain, targets, also referred to as objects, are characterized either
by their complex radar cross-section (CRCS), traditionally denoted by the monolithic
symbol

√
σ, or by their radar cross-section (RCS), traditionally denoted by σ [103,188].

We emphasize that
√
σ is complex-valued, whereas σ is real-valued. We also emphasize

that
√
σ is a symbol, i.e.

√
σ must not be interpreted as the mathematical square

root of σ.

Our three automatic target recognition (ATR) systems presented in Chapter 1
and discussed in Chapters 6, 7, and 8, respectively, rely on either the bistatic CRCS
(BS-CRCS) or the bistatic RCS (BS-RCS). Our first ATR system recognizes targets
by using their radar images that are constructed from their BS-CRCS (Chapter 5).
Our second ATR system recognizes targets by using either their BS-CRCS or their
BS-RCS, without computing their radar images. Our third ATR system detects
targets, and then recognizes them by using their BS-RCS.

The design of each of our three ATR systems thus relies heavily on the notions of
BS-CRCS and BS-RCS, and more specifically on the physical parameters upon which
they depend. Indeed, as will be discussed later, targets can be accurately recognized,
i.e. discriminated from one another, only if their respective BS-RCS, whether complex
or real, differ. It is thus of primary importance to have a complete understanding of
the notions of BS-CRCS and BS-RCS, and of the parameters that they are function
of.

3.2 Notations

In this chapter, unless otherwise specified, we use the following notations for a quan-
tity "x":

• a real number in R is denoted by x,

• a complex number in C, is denoted with an overbar, such as x̄,

• a (real) geometrical vector in the (x, y, z) axes, i.e. in R3, is denoted by an
underline, such as x,

• a geometrical unit vector in the (x, y, z) axes, i.e. in R3, is denoted with both an
underline and a hat, such as x̂,

• a complex vector (in the complex plane C) is denoted by x̄,

• a matrix of complex vectors is denoted by x̄
˜
.

3.3 Bistatic scattering geometry

Figure 3.1 shows the geometry of the bistatic (BS) configuration considered in this
chapter. A generic target for which the expressions of both its bistatic complex radar
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cross-section (BS-CRCS) and its bistatic radar cross-section (BS-RCS) are derived is
placed at the origin of the coordinate system. Even though we can envision the use of
multiple transmitters and receivers, we consider here the case of a single transmitter
(Tx) and a single receiver (Rx), thus forming a single (Tx,Rx) pair. The Tx is located
at point (xT , yT , zT ), i.e. at a distance rT from the target and, more precisely, from
the center of the coordinate system located somewhere on, or near, the object. The
Rx is located at point (xR, yR, zR), i.e. at a distance rR from the target. We consider
both distances to be equal, and thus |rT | = |rR| = r. In summary, we have

|rT | = |rR| = r

|r̂T | = |r̂R| = 1

rT = rr̂T
rR = rr̂R.

The wave transmitted by the Tx travels from T to O in the direction of −rT , and is
characterized by its wave vector kT , with orientation −rT . The wave travelling from O
to R in the direction rR is characterized by its wave vector kR. Both wave vectors have
same magnitude k = 2π/λ = 2πf/c, where λ is the wavelength, and c is the speed of
light. We thus have

kT = kk̂T ,

kR = kk̂R
|kT | = |kR| = k

|k̂T | = |k̂R| = 1.

The pairs of unit vectors φ̂
t

and θ̂t, and φ̂
r

and θ̂r, will be introduced in Section 4.2
to denote the polarization basis of the transmitter and the receiver, respectively.
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Figure 3.1: Geometry of the bistatic configuration considered.

A major characteristic of BS configurations is that the Tx and the Rx are not
necessarily co-located. Therefore, at least xT 6= xR, yT 6= yR, or zT 6= zR. Since the
Tx and the Rx are not co-located, a major characteristic of BS configurations is the
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bistatic angle β, defined as the angle between the Tx and the Rx with vertex at the
target, i.e. at the origin O of the coordinate system (Fig. 3.1). One can intuitively
understand that the bistatic angle β will influence the bistatic radar cross-section of
an object, whether complex or not, as is discussed below.

The monostatic (MS) configuration (Fig. 3.2), i.e. a configuration for which the
Tx and the Rx are co-located, is a particular case of the BS configuration. In an
MS configuration, xT = xR, yT = yR, and zT = zR. In Fig. 3.2, we also show the
representation of the location of a generic point P in the spherical coordinates (r, θ, φ).

b

b
T (xT , yT , zT ) ≡ R (xR, yR, zR)

P (x, y, z)

φ

θ

r

y

z

x

rT = rR

Target O

Figure 3.2: Geometry of a monostatic configuration.

3.4 Definitions of the bistatic complex RCS and the

bistatic RCS

We define the notions of complex and real RCS. Since we deal with bistatic
configurations, we introduce the bistatic complex radar cross-section (BS-CRCS),
denoted by

√
σ
BS , and the bistatic radar cross-section (BS-RCS) denoted by σBS . The

superscript "BS" is used in order to avoid confusion with the monostatic MS-CRCS√
σ and the monostatic MS-RCS σ. The superscript "BS" will be dropped when the

context is clear enough.

The agreed definition of the BS-CRCS
√
σ
BS is [46, 170, 205,212]

√
σ
BS

= lim
rR→∞ 2

√
πrR

Ē
r
(rR)

Ē
t
(0)

ejkrR, (3.1)

where rR is the range from the target to the receiver, Ē
r
(rR) is the electric field

(E-field) at the Rx, and Ē
t
(0) is the Tx E-field at the target.

The BS-RCS σBS is defined in [8, 188] as a "measure of energy scattered from the
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target in the direction of the receiver". It is expressed as

σBS = lim
rR→∞

4πr2
R

|Ēr
(rR)|2

|Ēt
(0)|2

= lim
rR→∞

4πr2
R

|H̄r
(rR)|2

|H̄t
(0)|2

, (3.2)

where rR is the range from the target to the Rx, |Ēr
(rR)| the magnitude of the scat-

tered E-field at the Rx, and |Ēt
(0)| the magnitude of the incident E-field at the target.

Similarly, |H̄r
(rR)| is the magnitude of the scattered magnetic field H̄

r
(rR) at the Rx,

and |H̄t
(0)| the magnitude of the incident magnetic field H̄

t
(0) at the target. The

expression (3.2) for the BS-RCS will be used in Chapter 4 for its practical computation.

The coherency of the notation
√
σ
BS for the BS-CRCS and the notation σBS for

the BS-RCS is verified by replacing Eq. (3.1) into Eq. (3.2), which gives

σBS = lim
rR→∞

4πr2
R

∣∣∣ e
−jkRrR

2
√
πrR

√
σ
BS
Ē
t
(0)
∣∣∣
2

∣∣∣Ē
t
(0)
∣∣∣
2

= lim
rR→∞

4πr2
R

∣∣∣
√
σ
BS
∣∣∣
2

4πr2
R

= σBS . (3.3)

It must be emphasized that Eqs. (3.1) and (3.2) are valid only when the receiver
and the transmitter are "in-view" of each other. In the case of forwardscattering (Sec-
tion 3.7.4), i.e. when β = 180◦, these formulas are not valid. Instead, Cherniakov
proposed another definition in [41]. Since we do not deal with forwardscattering, we
do not further examine this here.

3.5 Scattering mechanisms

When illuminated by an incident wave, a conducting object scatters an echo signal.
This echo signal is collected by the receiver. In order to be able to recognize targets,
the characteristics of the echo signal must be understood in terms of the basic echo
sources, called scattering mechanisms. In [104], Knott lists seven basic scattering
mechanisms that contribute to the echo signal, and thus, to the radar cross-section,
whether complex or real, of a typical airborne target (Fig. 3.3). Unlike canonical
objects such as spheres or dihedrals, airplanes are complex targets, i.e. their total
echo signal is the result of the combined action of different elementary scattering
mechanisms.

According to Knott [104], for a monostatic configuration, the following mechanisms
contribute to the total echo signal: (1) re-entrant structures such as exhausts ducts or
jet intake ducts, (2) specular scatterers that are surfaces oriented perpendicular to the
line-of-sight to the radar, (3) travelling-wave echoes, (4) diffraction at tips, edges, and
corners, that increases with the square of the wavelength, (5) surface discontinuities,
(6) creeping waves that occur for smooth surfaces such as spheres, and (7) interactions
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Figure 3.3: Scattering mechanisms that occur for a synthetic airplane [104].

between different surfaces occurring at particularly favorable aspect angles. In [104],
the importance of each echo source is discussed for a monostatic (MS) configuration.

As stated in [104], the importance of each scattering mechanism in the total
echo signal depends on the aspect angle in a very significant way. As shown in
Fig. 3.4(a) for an MS configuration, the aspect angle is defined as the angle between
the line-of-sight ŝ of the target and the line-of-sight l̂ of the radar, with vertex at the
reference point on the target. We denote the aspect angle by θ, for a two-dimensional
configurations.

For a bistatic (BS) configuration, as illustrated in Fig. 3.4(b), there are two aspect
angles to be taken into consideration, which are the aspect angle of the target relative
to the transmitter, denoted by αT , and the aspect angle relative to the receiver,
denoted by αR. In this work, we choose to use the aspect angle α and the bistatic
angle β instead of the aspect angles αT and αR. As illustrated in Fig. 3.4(b), α is
defined as the angle between the line-of-sight ŝ of the target and the bisector b̂ of
the bistatic angle, with vertex at the reference point on the target. While, in an MS
configuration, the notion of line-of-sight between the radar and the target is quite
obvious, this is not the case for a BS configuration. In the BS case, we find it useful
to define this line-of-sight b̂ of the bisector of the bistatic angle as the line-of-sight for
a single (Tx,Rx) pair.

In [65], five of the above mechanisms are recognized as important for BS configura-
tions; they are (1) end region (reentrant structures), (2) creeping wave, (3) diffraction
at tips, edges, and corners, (4) multibounce from interactions, and (5) specular reflec-
tions. However, the importance of each scattering mechanism on the total echo signal
as a function of the aspect angle α and the bistatic angle β is not discussed in [65].
Since the focus is put in this work on measured data, we leave the theoretical study of
the importance of the elementary mechanisms on the total echo signal as part of future
work (Chapter 9). However, one can intuitively understand that the echo signal, and
thus the BS-CRCS and the BS-RCS of a target, depend on the aspect angle of the
target, and on the bistatic angle between the transmitter and the receiver.
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uration, and (b) a bistatic configuration.
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3.6 Scattering regions

As explained in [65, 104, 187], the scattering mechanisms, and thus the complex
and the real RCS, depend on the ratio of the characteristic dimension of an object,
denoted by D, to the wavelength of the transmitted signal, denoted by λ, this for
either a monostatic or a bistatic configuration.

In [65, 104, 187], three different regions are defined: the Rayleigh region, the reso-
nance region (also called the Mie region), and the optical region. When the ratio λ/D
is much larger than unity, the scattering mechanisms occur in the Rayleigh region. In
the Rayleigh region, the phase distribution of the scatterers of an object varies little,
and the echo signal of this object is determined mainly by its volume, rather than by
its shape. When the ratio λ/D is close to unity, the scattering mechanisms are said
to occur in the resonance region. In the resonance region, both the volume and the
shape of the target strongly influence its (C)RCS, since the phase distribution starts to
vary over the surface. When the ratio λ/D is much smaller than unity, the scattering
mechanisms occur in the optical region. In the optical region, the (C)RCS of the target
is determined by a distribution of discrete scatterers determined by the shape of the
object (or its components), rather than by its volume. In the optical region, changes
of aspect angle (and of bistatic angle in the bistatic case) have a strong impact on the
(C)RCS level and its fluctuations. In summary, we can write





λ

D
≫ 1 ⇒ Rayleigh region ⇒ Volume is significant for RCS

λ

D
≈ 1 ⇒ resonance region ⇒ Volume and shape are significant for RCS

λ

D
≪ 1 ⇒ optical region ⇒ Shape is significant for RCS

(3.4)

In [41] and [188], the variation of the RCS of a perfectly conducting sphere as a
function of frequency, and the corresponding scattering region, for an MS configuration
is shown (Fig. 3.5).

We will use this notion of scattering region to determine the separation of the
different types of airplanes into classes (Chapters 4 and 8). For example, it will a
priori be difficult to discriminate between two airplanes having the same volume and
illuminated by electric fields at frequencies such that the scattering mechanisms occur
in the Rayleigh region.
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Figure 3.5: RCS of a perfectly conducting sphere as a function of the ratio of its
circumference to the wavelength. The three scattering regions are also shown [188].

3.7 Computation of the bistatic RCS of a simple

object, the perfectly conducting sphere

In the previous sections, we investigated the mechanisms responsible for the echo
signal, and thus the bistatic radar cross-section (BS-RCS) and the bistatic complex
radar cross-section (BS-CRCS) of a target. It was intuitively shown that the nature
of the target, the aspect angle at which it is viewed, the frequency of the incident
wave, and the bistatic angle between the transmitter (Tx) and the receiver (Rx) are
parameters that influence the value of both the BS-RCS and the BS-CRCS.

In order to completely define the parameters that the BS-CRCS and the BS-RCS
depend on, and to provide physical insight into the nature of the BS-RCS, we derive,
in this section, the exact expression for the BS-RCS of the perfectly conducting sphere.
Given the complexity of the derivation for an object as simple as a sphere, it is easy
to understand that it is difficult to derive the exact expression for the BS-RCS of a
complex object in an analytical way. This derivation will show that the theoretical
formulation of the BS-RCS of a complex target is difficult to obtain. The derivation
is similar for the BS-CRCS.

The derivation of exact and approximated expressions for the BS-RCS of ob-
jects is performed in [49, 180, 182, 194, 195]. We give here the main steps for the
derivation of the exact expression for the BS-RCS of a generic object, so that this
expression can be discussed in terms of its parameters, exactly as in [50,65,98,181,188].

The geometry considered is the one described in Section 3.3. An electromagnetic
field is transmitted by a Tx, considered to be a point source. The electromagnetic
field is scattered by the target, and then collected by an Rx. According to Eqs. (3.1)
and (3.2), in order to compute either the BS-CRCS or the BS-RCS of the object,
we have to compute either the ratio of the received electric field (E-field) to the
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transmitted E-field, or the ratio of the received magnetic field (H-field) to the
transmitted H-field. Even though we can use either the H-field or the E-field, we adopt
the common convention of using the H-field in the computations below [49, 180, 182].
Therefore, the computations below aim at expressing the received H-field in terms of
the transmitted H-field.

In Section 3.6, we showed that both the BS-CRCS and the BS-RCS depend on
the scattering region (Rayleigh, resonance, or optical). As will be seen in Chapters 4
and 8, the scattering mechanisms of the air targets that we classify occur mainly in
the optical region, i.e. when the characteristic dimension D of a target is much greater
than the wavelength λ of the transmitted and scattered signals. Therefore, we will
use the physical optics approximation when possible, exactly as in [180, 182]. The
use of the physical optics approximation is justified in [182]. The computation of the
RCS of generic targets in the Rayleigh and resonance scattering regions can be found
in [50,180]. Other RCS prediction techniques, such as numerical methods, can be found
in [188].

3.7.1 Hypotheses

We perform the derivation of the expression for the BS-RCS under four common as-
sumptions [49,182,194,195]. First, we assume the far-field conditions are met. Second,
we assume that the waves transmitted by any transmission source are plane in the far-
field [212]. Third, we assume that the generic object for which the BS-RCS is derived
is perfectly conducting. Fourth, we assume that the scattering surface dimensions are
large compared to the wavelength of the incident wave. Below, we explain the first two
assumptions.

Far-field condition

Three spatial regions around a transmitter are defined: the reactive near-field region,
the near-field region, also called the Fresnel region, and the far-field region, also called
the Fraunhofer region [8,23,109]. We consider the far-field region for the derivation of
the expression of the BS-RCS. In [8,23,109], the far-field region is defined as the region
of space where the angular field distribution is, for all practical purposes, independent
of the distance from the antenna. The far-field region is reached when the following
three conditions are all met: 




rT >
2D2

λ

rR >
2D2

λ

D ≥ λ,

(3.5)

where D is the characteristic dimension of the target, λ is the wavelength of the
transmitted signal, and rT and rR the distances from the target to the Tx and the Rx,
respectively.

We consider the far-field region, since it will be the case of the subsequent config-
urations considered. For example, in Chapter 8, the characteristic dimension of the
large-size airplanes for which the BS-RCS is computed is 65 m at most, and the wave-
length of the transmitted signal is 3×108/(114.7×106) = 2.616 m. Therefore, in order
to satisfy the far-field condition, rT and rR must be at least 3.23 km, which is the case
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for the configuration used, as described in Chapter 8. Of course, the characteristic di-
mension D = 65 m is greater than the wavelength λ = 2.616 m. The far-field condition
is thus satisfied.

Plane waves

Being in the far-field region allows one to use the hypothesis of plane waves. The
plane wave assumption is explained as follows. We assume that the signal emitted by a
point source, denoted here by Tx, is monochromatic, and isotropic (Fig. 3.6). We also
assume that the transmitted signal has a constant amplitude. We can thus express
the transmitted signal st(t), with superscript t standing for "transmit", via a periodic
complex exponential

st(t) = Aejωt, (3.6)

where A represents the constant amplitude of the signal, and ω the (constant)
pulsation of the signal, related to its frequency via ω = 2πf . Note that we will often
abusively refer to ω as the frequency of the signal. Also note that ω, and thus f , are
signed quantities.

For simplicity, we perform the development below in a two-dimensional (2D) plane.
One can easily extend it to a three-dimensional space. Around the point source, we
assume that the front wave is circular, since the point source is assumed to be isotropic.
The plane wave condition means that, at a distance large enough from the point source,
both the amplitude and the the phase of the signal are the same for all points on any line
segment perpendicular to the direction of propagation of the signal, i.e. the wavefront.
For example, as shown in Fig. 3.6, both the amplitude and the phase of the signal st(t)
at points P1 and P2 are the same, under the plane wave condition.

b

b

b

b b bTx

P1

P2

st(t)

Figure 3.6: Illustration of the plane wave condition.

3.7.2 Transmitted electric and magnetic fields

The electric field (E-field) transmitted by a monochromatic point source Tx can be
expressed as [108]

Ē
t
(r, t) = Ē0(r)e

j(ωt−k· r), (3.7)

where E0 is the amplitude of the field, ω the pulsation, k the wave vector, and r a
position vector in R3.

At any point P , the E-field can be expressed as [108]

Ē(rP , t) = Ē0(rP )e−jk· rP ejωt = Ē(rP )ejωt. (3.8)
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In Eq. (3.8), Ē(rP , t), Ē(rP ), and ejωt are complex-valued. Ē(rP ) is a complex number
that is specific to point P . It is multiplied by the complex exponential ejωt to produce
the time-varying complex-valued representation of the E-field at P , i.e. Ē(rP , t).
Ē(rP , t) is a complex value that varies with time (for a given location) and with
location (for a given time).

From a signal processing point of view, the multiplication of Ē(rP ) by ejωt

can usefully be interpreted as the rotation of the fixed complex number Ē(rP )
by an angle ωt in the complex plane, as illustrated in Fig 3.7. Therefore, the
E-field representation, which is defined in Eq. (3.8) as being the product of Ē(rP )
by ejωt, can be viewed as a vector of length |Ē(rP )| rotating at angular speed ω
in the complex plane, starting at angle ∠Ē(rP ) (the phase of Ē(rP )) at t = 0.
Ē(rP ) and Ē(rP , t) are both called phasors. We will refer to Ē(rP ) as a fixed pha-
sor, and to Ē(rP , t) as a time-varying phasor or, more specifically, as a rotating phasor.

Re

Im

Ē(rP , t = 0)
Ē(rP , t)

|Ē(rP )|

∠Ē(rP )

ωt

E(rP , t)

Figure 3.7: Representation of Ē(rP , t) in the complex plane.

Carefully note that, to determine the complex value of Ē(rP , t) at a given point
P, and for all t’s, we only need to know the fixed phasor Ē(rP ) specific to point P
(and of course, ω). Note that Ē(rP ) is not completely arbitrary. If the direction of
propagation k̂ of the plane wave and the value of Ē(rP ) at some point such as the
origin O are known, the value of Ē(rP ) can be automatically determined for all points
P in the (x, y, z) axes.

Of course, in real life, all physical electric fields are real-valued. But the actual value
of the physical E-field can be obtained by projecting, at any time t, the complex-valued
rotating phasor Ē(rP , t) on the real axis of the complex plane. This means that the
real-valued physical E-field, which is denoted by E(rP , t), is also simply the real part
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of the rotating phasor Ē(rP , t),

E(rP , t) = ℜ{Ē(rP , t)} = ℜ{Ē(rP )ejωt}, (3.9)

as illustrated in Fig. 3.7. Observe that we use Ē for the complex-valued E-field and
E for the corresponding physical real-valued E-field. Below, we deal with both the
electric field and the magnetic field. We can similarly express the H-field transmitted
by a point source as

H̄
t
(r, t) = H̄0(r)e

j(ωt−k· r), (3.10)

and one can make the same reasoning as for the E-field.

3.7.3 Scattered electric field

We derive the expression for the scattered electric field (E-field) according to [49,
182, 194,195]. The derivation starts from the Maxwell equations [23, 109, 194]

∇ × Ē = −∂B̄

∂t
, (3.11)

∇ × H̄ =
∂D̄

∂t
+ J̄ , (3.12)

∇ · D̄ = ρ, (3.13)

∇ · B̄ = 0, (3.14)

where Ē represents the electric field, B̄ the magnetic induction, H̄ the magnetic field,
D̄ the electric displacement, J̄ the current density, and ρ the charge density. By
assuming an harmonic time dependence of Ē and H̄ of the form of ejωt, and by assuming
an homogeneous, isotropic, and source-free region, Ē and H̄ both satisfy the wave
equation [23, 49, 109, 182,194,195]

(
∇2 + k2

)
ψ̄ = 0, (3.15)

where ψ̄ can represent either Ē or H̄.

At the interface of two perfect dielectrics, the boundary conditions of continuity
can be expressed as

n̂× (Ē
1 − Ē

2
) = 0 (3.16)

n̂× (H̄
1 − H̄

2
) = 0 (3.17)

n̂· (D̄
1 − D̄

2
) = 0 (3.18)

n̂· (B̄
1 − B̄

2
) = 0, (3.19)

where n̂ stands for the normal unit vector, and the superscripts 1 and 2 stand for each
side of the interface, as shown in Fig. 3.8.

Since we assume that the object is perfectly conducting, we have

n̂× Ē = 0 (3.20)

n̂· B̄ = 0. (3.21)
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Figure 3.8: Simplified illustration of the different electric and magnetic fields at the
interface between two perfect dielectrics.

Since we assume an incident plane wave, both Ē and H̄ are of the form

ψ̄ = ψ̄
I

+ ψ̄
S
, (3.22)

where the superscripts I and S stand for the incident and scattered fields, respectively.
The general solution of Eq. (3.15), expressed in its scalar form, is [49]

ψ(r̄) = ψI(r̄) +
∫

S

(
f
∂G

∂n
− gG

)
dS, (3.23)

where f = ψ and g = ∂ψ/∂n. In the case of Ē and H̄ , and by using the boundary
conditions of Eq. (3.19), one can get [49]

Ē = Ē
I

+
1
ik

∇ ×
∫

S
∇G×

(
n̂× H̄

)
dS, (3.24)

H̄ = H̄
I −

∫

S
∇G×

(
n̂× H̄

)
dS, (3.25)

where G is the Green function defined by

G(r, r′) =
1

4π
e−jk|r−r′|

|r − r′| , (3.26)

where r is the distance vector from the center of the coordinate system to the observa-
tion point, i.e. the receiver, and r′ the distance vector from the center of the coordinate
system to the integration point on the surface S of the object. We can rewrite this last
expression as

G(R) =
1

4π
e−jk|R|

|R| , (3.27)

where R = r − r′. The gradient of the Green function is written as

∇G =
1

4π

(
−jke

−jkR

R
− e−jkR

R2

)
R̂ (3.28)

=
1

4π

(
−jke

−jk(r−r′)

r − r′ − e−jk(r−r′)

(r − r′)2

)
r̂. (3.29)
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Since the distance r is very large, one can approximate the gradient of the Green
function as

∇G ≈ −ejkr

4πr
jkr̂e−jkr̂· r′

(3.30)

We can thus express the scattered electric and magnetic fields as [49]

Ē
S

= −ejkr

4πr
r̂∇ ×

∫

S
e−jkr̂· r′ ×

(
n̂× H̄

)
dS (3.31)

H̄
S

=
ejkr

4πr
jkr̂ ×

∫

S
e−jkr̂· r′

(
n̂ × H̄

)
dS. (3.32)

In [182], the scattered magnetic field H̄
S

is equivalently expressed as

H̄
S

=
1

4π

∫

S

(
n̂× H̄

)
× ∇

(
e−jkR

R

)
dS, (3.33)

where n̂ still denotes the unit vector normal to the surface S, k is still the wave
number, and S is the integration region, which is the outer surface of the object. R is
now the distance from the observation point, i.e. the receiver, to the integration point
on S. H̄ denotes the tangential component of the magnetic field on the surface of the
object.

Since we assume that the dimensions of the surface of the object are large compared
to the wavelength, we can use the physical optics approximation as in [182] to express
the magnetic field H̄ as

H̄ =





2iTH0e

−jk· r, on the illuminated side of the object

0, otherwise,
, (3.34)

where iT = â − (â· n̂)n̂, where â represents the direction of propagation of the
incident magnetic field, H0 stands for the magnitude of the incident magnetic field, k
the wave number vector, and r the distance vector from the origin of the coordinate
system to any point on the surface of the object.

By using Eq. (3.30), and assuming H0 = 1, we get [182]

H̄
S

=
e−jkR′

R′ F̄ (β), (3.35)

where R′ is the distance from the center of the coordinate system to the receiver, and
where F̄ (β) is expressed as

F̄ (β) =
jk

2π

[
(n̂0 · â) f̄ −

(
n̂0 · f̄

)
â
]
, (3.36)

where n̂0 is the unit vector from the receiver to the origin, and f̄ is defined as

f̄ =
∫

S′

n̂e−jkr· (n̂0+k̂)dS, (3.37)

where S ′ stands for the illuminated side of the object.
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By using Eq. (3.2), we can thus express the BS-RCS of the object as

σ(β) = 4π|F̄ (β)|2. (3.38)

The dependence of the BS-RCS on the aspect angle, the bistatic angle, and the
frequency appears through the definition of f̄ (Eq. (3.37)). More precisely, the
dependence of the BS-RCS on the aspect angle appears through the vector r. The
dependence of the BS-RCS on the bistatic angle is expressed through the addition of
the vectors n̂0 and k̂. This dependence is discussed in Section 3.7.4. The dependence
of the BS-RCS on the frequency f comes through the wave number k = 2π/λ = 2πf/c.

Up to now, we have not introduced the polarization of the incident and scattered
electromagnetic fields. In [182], the polarization of the receiver is introduced through
unit vector d̂. We thus express the BS-RCS as

σ(β) = 4π|F̄ · d̂|2

=
4π
λ2

∣∣∣(n̂0 · â)
(
f̄ · d̂

)
−
(
n̂0 · f̄

) (
â· d̂

)∣∣∣
2
. (3.39)

In order to analytically determine the BS-RCS of any object, Eq. (3.37) requires that
one be able to give an analytical expression for the outer surface of the object. While it
is possible to give an analytical expression for the scattering surface of simple objects
such as spheres, spheroids, or cones, it is, however, extremely difficult, if not impossible,
to give such expression for complex objects, such as airplanes. For illustration purposes,
we present the simple example of a sphere in Section 3.7.5.

3.7.4 Bistatic complex RCS and bistatic RCS as a function of

the bistatic angle

The bistatic geometry is characterized by the bistatic angle β [91]. We showed in
Section 3.7.3 that the BS-CRCS and the BS-RCS depend on the value of the bistatic
angle β, among other parameters.

In [188], three different regions of bistatic RCS are defined, according to the value
of the bistatic angle: the pseudo-monostatic RCS region, the bistatic RCS region, and
the forwardscatter RCS region. The pseudo-monostatic RCS region corresponds to
β ≤ 5◦. In this region, one can compute the BS-RCS by using the monostatic-bistatic
equivalence theorem (MBET), as shown in Section 3.8. The MBET states that the
BS-RCS of an object is equal to its monostatic RCS measured at an aspect angle
equal to β/2, and at a frequency equal to f csc(β/2).

The bistatic RCS region corresponds to 5◦ ≤ β ≤ 180◦. When the bistatic angle is
higher than 5◦, the monostatic-bistatic equivalence theorem can no longer be applied.
The reasons, explained in [98, 188], are that the relative phases between the different
(discrete) scatterers constituting the object change, and that the amplitude and phase
of the different scatterers vary according to the bistatic angle. To our knowledge, no
theoretical model for the computation of the BS-RCS of a complex object exists for
the bistatic RCS region.
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The forwardscatter RCS region corresponds to β → 180◦. Around this value of the
bistatic angle, it is shown in [181] that the BS-RCS of an object is equal to 4πA2/λ2,
where A is the effective area of the object. Methods for predicting the forwardscatter
RCS of different targets are discussed in [43, 184, 185]. The recognition of objects
based on their forwardscatter RCS is discussed in [39, 40].

For illustration purposes, and in preparation for Chapter 8, we compute the
BS-RCS of a sample airplane as a function of the azimuth aspect angles with respect
to the transmitter and the receiver, denoted by θTx and θRx, respectively. The model
of the airplane consists of a fuselage of size 5.42m × 1m, and two wings of size
2.58m × 1m. A stationary current runs through the fuselage and the wings. Figure 3.9
shows the BS-RCS of this airplane at a frequency of 115 MHz. As explained above,
when θTx + θRx ≈ 180◦, i.e. in forwardscattering, the BS-RCS of the airplane is
maximum, constant, and equal to 10 log(4πA2/λ2) ≈ 20 dB.

One can also see in Fig. 3.9 that, for the pseudo-monostatic region, when the
bistatic angle β is small, i.e. when θTx ≈ θRx (on the anti-diagonal of the graph), the
value of the csc(β/2) is small, and therefore the amplitude of the BS-RCS does not
vary much. The variations are much noticeable for large bistatic angles, but smaller
than 180◦.

Figure 3.9: RCS of a sample airplane as a function of its aspect angles with respect
to the transmitter and the receiver, denoted by θTx and θRx, respectively.

In this work, we focus on the bistatic RCS region. Since the BS-RCS of complex
objects cannot be easily predicted by any theoretical model, there is a crucial need for
experimental data. Moreover, since we focus on the recognition of such complex objects,
the amount of data must be sufficient, in order to perform meaningful classification
experiments.
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3.7.5 Application to the case of the perfectly conducting
sphere

In this section, we compute the BS-RCS of a sphere of radius R0, from the equations
derived in Section 3.7.3. Since the sphere is a symmetric object in all directions, one
can intuitively understand that its BS-RCS does not depend on the aspect angle.

As in [49,182], and as shown in Fig. 3.10, we assume that the transmitter is located
at T , on the positive side of the z-axis, thus resulting k̂ = −îz. We also assume that
the direction of propagation â of the incident magnetic field is directed along the
y-axis. We assume that the receiver is located at R, in the yz-plane, and that its
polarization is directed along the y-axis, îy. The sphere is located at O.

y

z

x

O

b

b

n̂

r̂

k̂

â

n̂0

TR

r

r′

α0
dS

β

Figure 3.10: Configuration used for the theoretical computation of the BS-RCS of a
sphere, as in [49,182].

Under these assumptions (and those used from Section 3.7.1 to Section 3.7.3), it is
shown in [181,182] that, for a prolate spheroid with major axis a and minor axis b, the
inner part of Eq. (3.39) is equal to

2πb2
∫ 1

0

∫ 2π

0
ηe

−j
(
kb sinβ

√
1−η2 sinφ−ka(1+cos β)−ka(1+cos β)η

)

dφdη, (3.40)

where η and φ are the (angular) spherical coordinates of a generic point on the prolate
spheroid. By using the fact that [1]

∫ 2π

0
e−jkψ sinφdφ = 2πJ0(kψ), (3.41)

where J0 is the zero-order Bessel function, and by performing the change of variables
η = sin θ, Eq. (3.40) becomes

2πb2
∫ π/2

0
sin θ cos θJ0(kb sin β sin θ)ejka(1+cos β) cos θdθ. (3.42)

In the case of a sphere, a = b = R0, and the expression reduces to

2πR2
0

∫ π/2

0
sin θ cos θJ0(kR0 sin β sin θ)ejkR0(1+cos β) cos θdθ. (3.43)
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The BS-RCS of the sphere is thus equal to

σ(β) =
4π
λ2

4π2R2
0

∣∣∣∣∣

∫ π/2

0
sin θ cos θJ0(kR0 sin β sin θ)ejkR0(1+cos β) cos θdθ

∣∣∣∣∣ . (3.44)

As explained in [181, 182], this integral is evaluated by the double stationary phase
theorem, which is applicable when the characteristic dimension D of the object is
much larger than the wavelength of the incident field (physical optics approximation).
The results achieved is exactly the same as the result achieved by geometrical optics.
In the case of the prolate spheroid, we get

σ(β) ≈ 4πb4

a2

(
(1 + cosβ +

b2

a2
(1 − cosβ)

)−2

. (3.45)

In the case of the sphere, a = b = R0, and we thus get

σ(β) ≈ πR2
0. (3.46)

One must notice that the bistatic angle β does not appear on the right-hand side of
this equation. In [182], a comparison with measured BS-RCSs of a sphere shows that
the result of Eq. (3.46) is valid for bistatic angle smaller than 120◦.

3.7.6 Bistatic RCS of canonical objects

In Section 3.7.5, we presented the theoretical computation of the sphere, which is
a particular canonical object. In this section, we list the BS-RCS values for other
canonical objects, computed under the same assumptions as those used for the sphere.

The BS-RCS of the finite cone of length r0 and half cone angle γ is expressed
in [181, 182] as

σ(β) ≈ 4πr2
0 sin(4γ)

(sin2 β sin2 γ − cos2 γ(1 + cosβ)2)2

[
cos γ(1 + cosβ)J2

0 (kr0 sin β sin γ)+

sin2 β sin2 γJ2
1 (kr0 sin β sin γ)

]
.

(3.47)

Similarly, the BS-RCS of the paraboloid defined by

x2 + y2 = −4Pz (3.48)

is expressed as [181, 182]
σ(β) = 4πP 2 sec4 (β/2) . (3.49)

The BS-RCS of the ellipsoid defined by

x2

A2
+
y2

B2
+
z2

C2
= 1 (3.50)

is expressed as [181, 182]

σ(β) =
4πA2B2

C2

[
(1 + cosβ) +

B2

C2
(1 − cos β)

]−2

. (3.51)

One can find expressions for the BS-RCS of other canonical objects in [181,182]. Com-
parisons with measurements of BS-RCS of objects are available in [41,49,224,225]. In
all cases considered in this section, the BS-RCS σ depends explicitly on the bistatic
angle β.
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3.8 Monostatic-to-bistatic equivalence theorems

In Section 3.7, we presented the theoretical computation of the bistatic radar
cross-section (BS-RCS) of a perfectly conducting sphere. The main difficulty lied in
the analytical formulation of the shape of the object. Another way of getting the
BS-RCS of an object is to obtain its value from its monostatic radar cross-section
(MS-RCS), which is the purpose of the monostatic-to-bistatic equivalence theorem
(MBET).

In [98], Kell proposed the following MBET for relatively smooth objects

σBS(θ = β, f) = σMS

(
θ =

β

2
, f csc

(
β

2

))
, (3.52)

where σBS represents the BS-RCS, σMS the MS-RCS, θ the azimuth angle of the
object, β the bistatic angle, and f the frequency.

In [48], Crispin and Siegel proposed another MBET, extended for complex objects,

σBS(θ = β, f) = σMS

(
θ =

β

2
, f

)
, (3.53)

which is identical to Eq. (3.52) for β = 0.

Eigel performed the analysis of both MBET’s on three simple objects: a plate and
two cylinders mounted on a base [65]. Eigel showed that both MBET’s start to fail at
bistatic angles larger than 20◦, mainly due to the change of scattering centers growing
with increasing bistatic angle. One can find a more thorough analysis of MBET’s
in [41]. Because of this limitation, we will not use MBET’s to obtain the BS-RCSs of
complex objects such as airplanes.

3.9 Conclusion

Our three automatic target recognition (ATR) systems, that we further discuss in
Chapters 6, 7, and 8, all use either the bistatic complex radar cross-section (BS-CRCS)
or the bistatic radar cross-section (BS-RCS). In this chapter, we defined these two
quantities, and we identified the parameters they depend on.

In particular, we defined the BS-CRCS and of BS-RCS in terms of the transmitted
and scattered electromagnetic fields. We presented the different scattering mechanisms
that are responsible for both the BS-CRCS and the BS-RCS. We also defined the three
scattering regions: the Rayleigh region, the resonance region, and the optical region.
The dominant scattering mechanisms that contribute to both the BS-CRCS and the
BS-RCS of an object differ according to the ratio of the characteristic dimension of
the object to the wavelength of the transmitted electromagnetic field. In particu-
lar, the separation of targets into different classes in our three ATR systems relies
on the determination of the scattering region in which the scattering mechanisms occur.
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We also defined the different bistatic RCS regions, according to the value of
the bistatic angle β: the pseudo-monostatic region, the bistatic region, and the
forwardscatter region. We illustrated the variations of the BS-RCS as a function of
the bistatic angle on a simple model of a small airplane.

The BS-RCS depends on the following parameters: the nature of the object, the
aspect angle of this object with respect to either the transmitter or the receiver,
the bistatic angle between the transmitter and the receiver, the polarizations of the
transmitter and the receiver, and the frequency of the illuminating wave. Our three
ATR systems all take advantage of the analysis of the variation of either the BS-CRCS
or the BS-RCS in terms of these parameters. In order to illustrate the influence
of these parameters on the BS-RCS, we presented the theoretical computation of
the BS-RCS of the simple perfectly conducting sphere, under the physical optics
approximation. We showed that the theoretical computation of the BS-RCS of a
generic target requires the analytical expression of its shape. Since this analytical
expression is not available for complex objects, the geometry of complex objects is
often discretized by an ensemble of canonical shapes, such as spheres or dihedrals. It
follows that the BS-CRCS and BS-RCS of such targets cannot be computed exactly,
and that their computation requires either a large amount of time or a large amount
of computational resources.

We also expressed the limitations of the monostatic-to-bistatic equivalence theorems
that aim at computing the BS-RCS of an object from the values of the monostatic
RCS of this object. These theorems will thus not be used for the computation of the
BS-RCSs of complex objects such as airplanes. Therefore, since a large amount of data
is needed to perform meaningful classification experiments, we will put a particular
effort, in Chapters 4 and 8, into the collection of a sufficient amount of data.
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In this chapter, we extract both the bistatic complex radar cross-section (BS-CRCS)
and the bistatic radar cross-section (BS-RCS) of targets from the transmitted and
received electric fields. We also describe the experimental setup used to collect the
received electric fields. We then illustrate the variations of both the BS-CRCS and
the BS-RCS as a function of the parameters investigated in Chapter 3.

Section 4.1 states the motivation for the extraction of both the BS-CRCS and
the BS-RCS. Section 4.2 presents the computation of both the BS-CRCS and the
BS-RCS of a generic target from the transmitted and received electric fields. Section 4.3
presents the experimental setup we used for the extraction of both the BS-CRCS and
the BS-RCS of targets. Section 4.4 defines the scattering regions in the frequency bands
of interest. Section 4.5 defines the classes of targets to classify. Section 4.6 illustrates
the variations of both the BS-CRCS and the BS-RCS as a function of the different
parameters that we described in Chapter 3. Section 4.7 concludes.

4.1 Motivation for the extraction of the bistatic

complex and real RCS of targets

Our first automatic target recognition system (ATR), whose block diagram is shown
in Fig. 4.1, recognizes targets by using their radar image. We compute the radar
images of targets from the bistatic complex radar cross-section (BS-CRCS) of these
targets (Chapter 5). Our second ATR system, whose block diagram is represented
in Fig. 4.2, recognizes targets by using either their BS-CRCS or their bistatic radar
cross-section (BS-RCS).

Figure 4.1: Block diagram of our ATR system using radar images of targets.

We consider, in this chapter, the first stage of these two ATR systems, which is the
extraction of either the BS-CRCS or the BS-RCS of targets, for both the learning set
(LS) and the test set (TS).
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Figure 4.2: Block diagram of our ATR system using the bistatic complex radar cross-
sections or the bistatic radar cross-sections of targets.

4.2 Extraction of the bistatic complex and real

RCS of an object from the Tx and Rx electro-

magnetic fields

We showed in Chapter 3 that the theoretical computation of both the bistatic
complex radar cross-section (BS-CRCS) and the bistatic radar cross-section (BS-RCS)
of a generic object requires the analytical expression of the shape of such object. Since
analytical expressions for the scattering surface of complex objects such as an airplane
are not available, we have to compute both the BS-CRCS and the BS-RCS of complex
objects from the incident and scattered electric (or magnetic) fields, according to the
definitions of both the BS-CRCS and the BS-RCS (Eqs. (3.1) and (3.2), respectively).
This computation is the object of the present section.

We consider the same bistatic (BS) configuration as that of Chapter 3, that we
reproduce here in Fig. 4.3 for convenience. The object is located at the center of the
coordinate system, and illuminated by a single transmitter (Tx). A single receiver
(Rx) collects the signal scattered by the object.

The discussion that follows is strongly inspired by [212]. We made slight adaptations
to the notations in [212], in order to consider the bistatic configuration.

4.2.1 Transmitted electric field

As in Section 3.7.2, we can express the transmitted electric field (E-field) at any
point P as

Ē(rP , t) = Ē0(rP )e−jk· rP ejωt = Ē(rP )ejωt, (4.1)

where Ē denotes the complex value of the E-field at point P , Ē0 its amplitude at
point P , k the wave number, rP the distance vector of point P , and ω the angular
frequency of the wave. The interpretation is exactly the same as in Section 3.7.2, in
particular the interpretation of the E-field as a phasor.
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Figure 4.3: Geometry of the bistatic configuration considered.

4.2.2 Polarization

In contrast to the theoretical computation of the BS-RCS, we introduce the
polarization of the incident and scattered electric fields from the start. For sim-
plicity, we start with linear polarization. If an electromagnetic field (EM-field),
or wave, is linearly polarized, the polarization is necessarily characterized by an
orientation in space, i.e. in the (x, y, z) axes of Fig. 4.3. As is customary, we
choose the orientation of the electric field E to characterize the orientation of the po-
larization [108]. Alternatively, one could choose the orientation of the magnetic field H .

In the case of a propagating plane wave characterized by its wave vector k, and thus
travelling in the direction of k (and k̂), we know that the electric field E (E-field) and
the magnetic field (H-field) are perpendicular to k. The unit vector p̂ characterizing
the orientation of the linearly polarized E-field Ē is shown in Fig. 4.3. We show p̂
"attached" not only to O but also to Tx, to Rx, and to some arbitrary point P . In any
case, p̂ can be thought of as being located in the plane perpendicular to the direction
of propagation k̂.

A linearly-polarized E-field is characterized by the direction p̂ of its polarization,
and by its real-valued amplitude E(rP , t). The corresponding E-field vector in the
(x, y, z) axes is denoted by E(rP , t) and given, by inspection and construction, by

E(rP , t) = E(rP , t)p̂. (4.2)

Keep in mind that E and p̂ are three-element vectors in the (x, y, z) axes.

Before moving on, it is critical to have a crystal-clear view of the notations used so
far, and of the quantities they represent.

• p̂ represents the direction of polarization, which is assumed linear. It is a unit
vector in the (x, y, z) axes, i.e. in R3. As all vectors of R3, it has three elements
and these are real-valued.

• rP is the position vector of some point P. It is a vector in the (x, y, z) axes, i.e.
in R3.
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• E(rP , t) is the real value (i.e. the time-varying amplitude) of the linearly polar-
ized E-field vector at location rP , i.e. at P, and at time t.

• E(rP , t) is the real value of the physical E-field vector at rP and t, characterized
by the orientation p̂ and the physical (real-valued, scalar) time-varying amplitude
E(rP , t). It is a vector in the (x, y, z) axes, i.e. in R3.

• Ē(rP , t) is the complex time-varying rotating phasor representation of the value
of the time-varying amplitude E(rP , t). It rotates counterclockwise at angular
speed ω. It is a complex number in the complex plane C. As any complex number,
it can also be viewed as a two-element vector with real-valued components (its
real and imaginary parts), and thus as a vector in R2.

• Ē(rP ) is a fixed phasor corresponding to Ē(rP , t). It is a fixed complex number.
It can also be viewed as a two-element vector with real-valued components, and
thus as a vector in R2.

Horizontal and vertical linear polarizations

The horizontal polarization (often denoted by H) and the vertical polarization
(often denoted by V ) are perhaps the most fundamental and the most common types
of linear polarization. (Please do not mix up the symbol H used for both the magnetic
field and the horizontal polarization.) Furthermore, other types of polarization, such
as circular polarization, are naturally described as the proper combinations of some H
and V polarizations [108].

To define the linear H polarization and the linear V polarization, we simply need
to indicate what the corresponding vectors p̂ in the (x, y, z) axes are. With reference
to Fig. 4.3, we have

p̂ = φ̂ for H polarization

p̂ = θ̂ for V polarization,

where the unit vectors φ̂ and θ̂ are defined as follows. θ̂ is the unit vector "located" in
the plane defined by the z-axis and the direction of propagation k̂, perpendicular to k̂,
and oriented in the positive sense of the (polar) angle θ. φ̂ is the unit vector "located"
in the horizontal plane, perpendicular to k̂, and oriented in the positive sense of the
(azimuth) angle φ.

Carefully note that the direction φ̂ of horizontal (H) polarization and the direction
θ̂ of vertical (V ) polarization form a right-handed system of axes with k̂ = −r̂, but not
with r̂. This is perfect since what really matters from an electromagnetic standpoint
is the direction of propagation (i.e. k̂) and the directions of the H and V polarizations.

It should be noted that, while φ̂ is oriented parallel to the horizontal plane, and
is thus horizontal, θ̂ is not oriented vertically. However, θ̂ is in a vertical plane. One
should thus be careful concerning the meaning of the qualifiers "horizontal" and "verti-
cal" when talking about polarization. The V polarization is generally not vertical, and
it could be horizontal if k̂ is aligned with the z-axis. A particular case is when φ̂ is in
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the horizontal plane, and when the receiver is at a long distance from the target. In
this case, θ̂ is vertical.

Arbitrary linear polarizations

We have indicated that the orientation vector p̂ of a given linear polarization is nec-
essarily perpendicular to the direction of propagation k̂. This means that this vector
p̂ is in the plane defined by φ̂ (H polarization) and θ̂ (V polarization). Therefore,
the real-valued E-field vector corresponding to an arbitrary linear polarization can
be expressed in terms of its real-valued components along the φ̂ and θ̂ vectors (or axes).

More generally, we can define an arbitrary polarization by defining the (time-
varying) real-valued amplitudes associated with the (physical) directions φ̂ and θ̂. In
other words, we express the E-field vector E(rP , t) corresponding to this arbitrary
polarization in terms of its components along the φ̂ and θ̂ axes,

E(rP , t) = Eφ̂(rP , t) + E θ̂(rP , t), (4.3)

where the terms on the right-hand side are defined by a simple adaptation of Eq. (4.2)

Eφ̂(rP , t) = Eφ̂(rP , t)φ̂ (4.4)

E θ̂(rP , t) = Eθ̂(rP , t)θ̂, (4.5)

which gives
E(rP , t) = Eφ̂(rP , t)φ̂+ Eθ̂(rP , t)θ̂. (4.6)

Once again, in Eq. (4.6), Eφ̂(rP , t) and Eθ̂(rP , t) are the components of the E-field

vector E(rP , t) along the φ̂ and θ̂ axes, respectively.

By dropping the time component, i.e. the term ejωt, we can write

E(rP ) = Ēφ̂(rP )φ̂+ Ēθ̂(rP )θ̂. (4.7)

Equation (4.7) is very important for subsequent developments. One of its advantages
is that time t does not appear in it. Specifically, ejωt does not appear. All the
information is contained in the phasors Ēφ̂(rp) and Ēθ̂(rp), which are fixed phasors for
each given point P.

Although we have focused on linear polarizations, it is important to understand
that the above discussion and formulas can be extended to arbitrary polarizations by
proper choices of Ēφ̂(rP ) and Ēθ̂(rP ). Changes of polarization bases come in handy for
this [20, 21, 212].

4.2.3 Expressions for the transmitted and received electro-
magnetic fields

Equation (4.7) expresses the three-element complex vector representing a polarized
plane wave, whether it is linearly polarized or not, travelling in the direction of k̂.
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We assume, for both the wave arriving on the scatterer at O and the wave scattered
towards the receiver at Rx, the hypothesis of a plane wave (defined in Section 3.7.1)
as long as the target is in the far-field of both the Tx and the Rx. This means that we
can use Eq. (4.7) to express both the transmitted (Tx) E-field and the received (Rx)
E-field. We use the superscripts t and r to distinguish the Tx quantities and the Rx
quantities, respectively.

We can express both the transmitted (Tx) electric field (E-field) and the received
(Rx) E-field in terms of their polarization basis. The polarization bases for the Tx
and the Rx are denoted by φ̂

t
and θ̂t, and φ̂

r
and θ̂r, respectively.

We thus adapt Eq. (4.7) to the bistatic configuration, which gives, for the Tx E-field
at rT and for the Rx E-field at rR,

Ē
t
(rT ) = Ēt

φ̂
t

(rT )φ̂
t
+ Ēt

θ̂t
(rT )θ̂t (4.8)

Ē
r
(rR) = Ēr

φ̂
t

(rR)φ̂
r

+ Ēr
θ̂r

(rR)θ̂r. (4.9)

Similarly, we write the relations between the Rx phasors at rR, Ēr
φ̂

r

(rR) and Ēr
θ̂r

(rR),

and the Tx phasors at rP = 0, Ēt
φ̂

t

(0) and Ēt
θ̂t

(0), as

Ē
t
(0) = Ēt

φ̂
t

(0)φ̂
t
+ Ēt

θ̂t
(0)θ̂t, (4.10)

Ē
r
(rR) = Ēr

φ̂
r

(rR)φ̂+ Ēr
θ̂r

(rR)θ̂. (4.11)

In the present case, the ultimate goal is to relate the Rx phasors Ēr
φ̂

r

(rR) and Ēr
θ̂r

(rR)

to the Tx phasors Ēt
φ̂

t

(0) and Ēt
θ̂t

(0). The Tx phasors at 0, Ēt
φ̂

t

(0) and Ēt
θ̂t

(0), and the

Tx phasors at rT , Ēt
φ̂

t

(rT ) and Ēt
θ̂t

(rT ), are related by

Ēt
p̂(rT ) = Ēt

p̂(0)e−jkT · rT , (4.12)

with p̂ being either φ̂
t

or θ̂t. This can also be expressed as

Ē
t
(rT ) = Ēt

φ̂
t

(0)e−jkT · rT φ̂
t
+ Ēt

θ̂t
(0)e−jkT · rT θ̂t

=
[
Ēt
φ̂

t

(0)φ̂
t
+ Ēt

θ̂t

(0)θ̂t
]
e−jkT · rT

= Ē
t
(0)e−jkT · rT . (4.13)

Note that we have
kT · rT = krk̂T · r̂T . (4.14)

In the present context, we denote the scalar product of two vectors a and b by a· b.
Although the alternate notation aT b with ()T denoting "transpose" is preferred, we do
not use it here because the transpose sign would make some equations cumbersome,
such as in Eq. (4.13). Note that if a is complex-valued, we should use a†b, where ()†

denotes "complex conjugate".
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Since the unit vectors k̂T and r̂T point in opposite directions, we have k̂T · r̂T = −1,
and thus

kT · rT = −kr. (4.15)

Equation (4.12) thus becomes

Ēt
p̂(rT ) = Ēt

p̂(0)e−jkT · rT . (4.16)

Using Eq. (4.15), we get
Ēt
p̂(rT ) = Ēt

p̂(0)ejkr, (4.17)

as well as the inverse relation

Ēt
p̂(0) = Ēt

p̂(rT )e−jkr. (4.18)

4.2.4 Bistatic polarization scattering matrix

As indicated in [87,100,183,211,212], it is well-known that Ēr
φ̂

r

(rR) and Ēr
θ̂r

(rR) are

each linearly related to both Ēt
φ̂

t

(0) and Ēt
θ̂t

(0). This linear relation is expressed in

matrix form as



Ēr
φ̂

r

(rR)

Ēr
θ̂r

(rR)



 = α(kR, rR)




SBS
φ̂

t
φ̂

r

SBS
θ̂tφ̂r

SBS
φ̂

t
θ̂r

SBS
θ̂tθ̂r








Ēt
φ̂

t

(0)

Ēt
θ̂t

(0)



 , (4.19)

or as
Ē
˜
r(rR) = α(kR, rR)SBSĒ

˜
t(0), (4.20)

where Ē
˜
r(rR) and Ē

˜
t(0) are special cases of two-element complex vectors,

Ē
˜
r(rP ) =



Ēr
φ̂

r

(rP )

Ēr
θ̂r

(rP )


 (4.21)

Ē
˜
t(rP ) =



Ēt
φ̂

t

(rP )

Ēt
θ̂t

(rP )


 , (4.22)

and where α(kR, rR) is a factor further discussed below, and

SBS =



SBS
φ̂

t
φ̂

r

SBS
θ̂tφ̂r

SBS
φ̂

t
θ̂r

SBS
θ̂tθ̂r


 . (4.23)

The elements of the scattering matrix SBS are complex-valued. The superscript BS de-
notes the fact that the scattering matrix corresponds to a bistatic configuration. Since
SBS depends on the frequency of the illuminating wave, on the aspect angle θ at which
the object is illuminated, and on the bistatic angle β, SBS should, strictly speaking, be
noted as SBS(f, θ, β). This notation will not be used, in order to simplify the equations.

For completeness, let us rewrite the matrix relation (4.19) in terms of the two scalar
equations, as

Ēr
φ̂

r

(rR) = α(kR, rR)SBS
φ̂

t
φ̂

r

Ēt
φ̂

t

(0) + α(kR, rR)SBS
θ̂tφ̂r

Ēt
θ̂t

(0) (4.24)

Ēr
θ̂r

(rR) = α(kR, rR)SBS
φ̂

t
θ̂r
Ēt
φ̂

t

(0) + α(kR, rR)SBS
θ̂tθ̂r

Ēt
θ̂t

(0). (4.25)
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The reason for the factor α(kT , rR) in Eqs. (4.19) and (4.20) is that there is no
universal agreement in the literature concerning the definitions of the elements of SBS ,
and thus of SBS itself [212]. Typical values found in the literature for α(kT , rR) are 1,
e−jkT rR

rR
, and e−jkT rR

kT rR
, where rR is the range from the object to the receiver. α(kT , rR)

is thus denoted as α(k, r), since |kT | = k, and since |rR| = r. The rationale for the
possible factors 1 and e−ikr is likely related to the choice of using the value at the
origin or at the radar for the Tx E-field [212].

In any case, the matrix SBS is called the bistatic polarization scattering matrix
(BS-PSM), or simply the bistatic scattering matrix (BS-SM). We will call its elements
the bistatic polarization scattering coefficients (BS-PSC), or simply the bistatic scat-
tering coefficients (BS-SCs). It is clear that the BS-SCs depend on the frequency f
of the Tx E-field, on the polarization Pol of both the Tx and Rx E-fields, on the pair
(θ, φ) of aspect angles (where θ is the aspect angle in the horizontal plane, and φ the
aspect angle in the vertical plane), and on the bistatic angle β. The main difference
with the monostatic scattering coefficients described in [87, 100, 183, 211, 212] is that
the BS-SCs also depend on the bistatic angle.

4.2.5 Components of the bistatic polarization scattering ma-
trix

This section describes the way the coefficients Sp̂
t
p̂

r
of the bistatic polarization

scattering matrix (BS-PSM) S can be experimentally measured. Once again, the
presentation that follows closely follows that of [212].

Let us consider a Tx E-field that is linearly polarized, either along φ̂
t

or along θ̂t.

To be specific, let us consider the case where the linear polarization is along φ̂
t
. Let us

denote the corresponding Ēt
φ̂

t

(0) by E0,

Ēt
φ̂

t

(0) = E0. (4.26)

Of course, E0 is a fixed phasor, i.e. a fixed complex number. Since the linear polariza-
tion is along φ̂

t
, we have

Ēt
θ̂t

(0) = 0. (4.27)

The matrix expression (4.19) thus becomes




Ēr
φ̂

r

(r)

Ēr
θ̂r

(r)



 = α(kR, rR)




SBS
φ̂

t
φ̂

r

SBS
θ̂tφ̂r

SBS
φ̂

t
θ̂r

SBS
θ̂tθ̂r




(
Ē0

0

)
, (4.28)

which gives

Ēr
φ̂

r

(r) = α(kR, rR)SBS
φ̂

t
φ̂

r

Ē0 (4.29)

Ēr
θ̂r

(r) = α(kR, rR)SBS
φ̂

t
θ̂r
Ē0. (4.30)
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It follows that

SBS
φ̂

t
φ̂

r

=
1

α(kR, rR)

Ēr
φ̂

r

(r)

Ē0

(4.31)

SBS
φ̂

t
θ̂r

=
1

α(kR, rR)

Ēr
θ̂r

(r)

Ē0

. (4.32)

Therefore, by measuring Ēr
φ̂

r

(r) and Ēr
θ̂r

(r), one can easily obtain the values for SBS
φ̂

t
φ̂

r

and SBS
φ̂

t
θ̂r

.

We now further examine the expression (4.31) for Sφ̂
t
φ̂

r

. (We consider later the three

other elements of the BS-PSM.) The factor Ēr
φ̂

r

(r) appearing in it can be expressed in

a different form. Indeed, let us consider Eq. (4.11). By taking the scalar product of
each side with φ̂

r
, we have

Ē
r
(r) · φ̂

r
= Ēr

φ̂
r

(r)φ̂
r
· φ̂

r
+ Ēr

θ̂r
(r)θ̂r · φ̂

r

= Ēr
φ̂

r

(r), (4.33)

where we have used the fact that φ̂
r

and θ̂r are of unit length and perpendicular to
each other. This gives an alternate expression for Ēr

φ̂
r

(r)

Ēr
φ̂

r

(r) = Ē
r
(r) · φ̂

r
. (4.34)

By substituting into Eq. (4.31), we get

SBS
φ̂

t
φ̂

r

=
1

α(kR, rR)

Ē
r
(r) · φ̂

r

Ē0

. (4.35)

By starting from Eq. 4.31, one can easily find the corresponding result for SBS
φ̂

t
θ̂r

,

Sφ̂
t
θ̂r

=
1

α(kR, rR)
Ē
r
(r) · θ̂r
Ē0

. (4.36)

In Eqs. (4.35) and (4.36), the quantity Ē
r
(r) is the complex vector representing the

E-field received at R as a results of transmitting an E-field that is linearly polarized
along φ̂

t
, i.e. 


Ēt
φ̂

t

(0)

Ēt
θ̂t

(0)



 =

(
Ē0

0

)
. (4.37)

To remember that the transmitted polarization is along φ̂
t

(in this case), we rewrite
Ē
r
(r) as Ē

r

φ̂
t

(r). As a result, Eqs. (4.35) and (4.36) are rewritten as

SBS
φ̂

t
φ̂

r

=
1

α(kR, rR)

Ē
r

φ̂
t

(r) · φ̂
r

Ē0

(4.38)

SBS
φ̂

t
θ̂r

=
1

α(kR, rR)

Ē
r

φ̂
t

(r) · θ̂r

Ē0

. (4.39)
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By transmitting an E-field linearly polarized along θ̂t, one can obtain the corre-
sponding expressions for SBS

θ̂tφ̂r

and SBS
θ̂tθ̂r

,

SBS
θ̂tφ̂r

=
1

α(kR, rR)

Ē
r

θ̂t
(r) · φ̂

r

Ē0

(4.40)

SBS
θ̂tθ̂r

=
1

α(kR, rR)

Ē
r

θ̂t
(r) · θ̂r

Ē0

. (4.41)

The four Eqs. (4.38), (4.39), (4.40), and (4.41) can be generically written as

SBSp̂
t
p̂

r

=
1

α(kR, rR)

Ē
r

p̂
t

(r) · p̂
r

Ē0

. (4.42)

This generic expression will prove useful later. It is important to keep in mind the
meaning of all quantities appearing in this expression, in particular the meaning of
Ē
r

p̂
t

(r). For memory, it is a complex vector. Indeed, keep in mind that Ē
r

p̂
t

(r) is the

complex vector Ē
r
(r) that was introduced initially, and that is specialized to the case

of the E-field received at the radar receiver at r, and for the case where the transmitted
E-field is linearly polarized along p̂

t
.

4.2.6 Bistatic complex RCS

Contrary to the definition of the elements of the bistatic polarization scattering
matrix (BS-PSM), i.e. the bistatic polarization scattering coefficients (BS-PSCs),
there appears to be a general agreement on the definition of the complex bistatic
radar cross-section (BS-CRCS), which is denoted in this work by √σp̂

t
p̂

r

BS , where p̂
t

and p̂
r

are the polarization of the Tx E-field and the polarization of the Rx E-field,
respectively [212]. As for the definition of the BS-CRCS introduced in Section 3.4,
note that the full, monolithic "√σp̂

t
p̂

r

BS" symbol constitutes the notation for the
BS-CRCS. This means that √σp̂

t
p̂

r

BS should not be interpreted as the square root
operation. It is an integral part of the symbol for the BS-CRCS.

Using the notations introduced above, the agreed definition for the BS-CRCS√σp̂
t
p̂

r

BS is [46, 170]

√
σp̂

t
p̂

r

BS = lim
rR→∞

2
√
πrR

Ē
r

p̂
t

(rR) · p̂
r

Ē0

ejkrR. (4.43)

Compared to the definitions introduced in Section 3.4, we simply added the polarization
basis. Assuming that rR is large enough (since we use a far-field approximation), we
ignore the taking of the limit, and we write

√
σp̂

t
p̂

r

BS
= 2

√
πrR

Ē
r

p̂
t

(rR) · p̂
r

Ē0

ejkrR. (4.44)

By combining Eqs. (4.44) and (4.42), we get

√
σp̂

t
p̂

r

BS
= 2

√
πrα(kR, rR)SBSp̂

t
p̂

r

ejkrR, (4.45)
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i.e.

SBSp̂
t
p̂

r

= β(kR, rR)
√
σp̂

t
p̂

r

BS
, (4.46)

where

β(kR, rR) =
e−jkrR

√
πrRα(kR, rR)

. (4.47)

The three possible values for β(kR, rR) result directly from the three possible values
for α(kR, rR).

Expression (4.46) relates the BS-PSC SBSp̂
t
p̂

r

and the BS-CRCS √σp̂
t
p̂

r

BS . We
emphasize that there is universal agreement on the definition of the BS-CRCS√σp̂

t
p̂

r

BS , but not on the bistatic polarization scattering coefficient SBSp̂
t
p̂

r

.

We emphasize that the Eq. (4.42), used to relate √σp̂
t
p̂

r

BS and SBSp̂
t
p̂

r

, was initially
introduced for providing a means of measuring the BS-PSCs.

4.2.7 Bistatic polarization complex radar cross-section matrix
(BS-PCRCSM)

In this section, we introduce the matrix that is the counterpart of matrix SBS for
the √σp̂

t
p̂

r

BS ’s. We continue to closely follow the developments in [212]. We call this
matrix the "bistatic polarization CRCS matrix" (BS-PCRCSM), and we denote it by
the symbol

√
σ
BS . The BS-PCRCSM is thus defined as

√
σ
BS

=




√
σφ̂

t
φ̂

r

BS √
σφ̂

t
θ̂r

BS

√
σθ̂tφ̂r

BS √
σθ̂tθ̂r

BS


 . (4.48)

This is the counterpart of Eq. 4.23. Matrices SBS and
√
σ
BS are related by

SBS = β(kR, rR)
√
σ
BS
. (4.49)

The key equation in which SBS appears is Eq. (4.20). By using Eqs. (4.49)
and (4.47), Eq. (4.20) can be expressed as

Ē
˜
r(rR) = α(kR, rR)β(kR, rR)

√
σ
BS
Ē
˜
t(0)

=
e−jkRrR

2
√
πrR

√
σ
BS
Ē
˜
t(0), (4.50)

where Ē
˜
r(rR) and Ē

˜
t(0) are special cases of two-element complex vectors, as in

Eq. (4.20). Observe that the quantity α(kR, rR) has disappeared from this equation,
which is excellent since there is no general agreement on the nature of the expression
for α(kR, rR).

For conciseness, Eq. (4.50) is rewritten as

Ē
˜
r(rR) = γ(kR, rR)

√
σ
BS
Ē
˜
t(0), (4.51)
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where we introduced γ(kR, rR) defined by

γ(kR, rR) =
e−jkrR

2
√
πrR

. (4.52)

The major advantage of Eq. (4.51) over Eq. (4.20) is that there is a unique expression
for γ(kR, rR), this by contrast with α(kR, rR) for which there are at least three
candidate expressions.

Equation (4.51) can be expressed as



Ēr
φ̂

r

(rR)

Ēr
θ̂r

(rR)


 = γ(kR, rR)




√
σφ̂

t
φ̂

r

BS √
σφ̂

t
θ̂r

BS

√
σθ̂tφ̂r

BS √
σθ̂tθ̂r

BS






Ēt
φ̂

t

(0)

Ēt
θ̂t

(0)


 , (4.53)

which is the counterpart of Eq. (4.19). Once again, the quantities √σp̂
t
p̂

r

BS are
"monolithic" symbols.

In case there is any doubt, the √σp̂
t
p̂

r

BS ’s are complex numbers. We could make
this appear more explicitly by adding an overbar, but this would not be the conven-
tional notation. The BS-CRCS depends on the frequency f of the Tx E-field, on the
polarization Pol of both the Tx and Rx E-fields, on the pair (θ, φ) of aspect angles,
and on the bistatic angle β. The BS-CRCS depends on the same parameters as the
BS-SCs.

4.2.8 Position of the transmitter as reference for the trans-

mitted electric field

The value of the Tx E-field at the transmitter is often used, rather than at the origin.
The expression relating the value of the Tx E-field at 0 and at rP is given by Eq. (4.12).
Using Eq. (4.15), we get

Ēt
p̂(rT ) = Ēt

p̂(0)ejkrT , (4.54)

Using this last relation in Eq. (4.20) gives

Ē
˜
r(rR) = α(kR, rR)e−jkrTSBSĒ

˜
t(rT ). (4.55)

We can proceed in exactly the same fashion with the other fundamental relation, i.e.
Eq. (4.51), linking Ē

˜
r(rR) and Ē

˜
t(0). Indeed, by using Eqs. (4.52) and (4.54), we get

Ē
˜
r(rR) =

e−jk(rT +rR)

2
√
πrR

√
σ
BS
Ē
˜
t(rT ). (4.56)

The roundtrip distance rT + rR appears in the first factor of the right-hand side of
Eq. (4.56). In the case of forwardscattering, i.e. when the bistatic angle is equal to
180◦, r̂T = −r̂R, and the exponential term of Eq. (4.56) is equal to 1.

We can use Eqs. (4.55) and (4.56) to compute both the BS-CRCS and the BS-RCS
from the Tx E-field at r̂T and the Rx E-field located at r̂R.
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4.2.9 Case of a single linear polarization

Let us consider the case of a single linear polarization, meaning that the Tx E-field
is polarized along some (physical) direction p̂, and that we sense only the component
of the Rx E-field along the same direction p̂. For simplicity, we consider here only the
cases of horizontal polarization (p̂ = φ̂) and of vertical polarization (p̂ = θ̂).

If we transmit along φ̂ and we receive along φ̂, it should be clear that the only part
of interest that remains from Eq. (4.56) is

Ēr
φ̂
(rR) =

e−jk(rT +rR)

2
√
πrR

√
σφ̂φ̂Ē

t
φ̂
(rT ). (4.57)

If we transmit along θ̂ and we receive along θ̂, the corresponding relation is

Ēr
θ̂
(rR) =

e−jk(rT +rR)

2
√
πrR

√
σθ̂θ̂Ē

t
θ̂
(rT ). (4.58)

If the polarization is not considered, all the subscripts can be dropped, which results
in

Ēr(rR) = α′(k, rT , rR)
√
σĒt(rT ), (4.59)

where

α′(k, rT , rR) =
e−jk(rT +rR)

2
√
πrR

. (4.60)

Equation (4.59) will be used in Chapter 5 for the construction of images of targets
from their BS-CRCS.

From Eq. (4.59), we can express the BS-CRCS
√
σ as

√
σ =

1
α′(k, rT , rR)

Ēr(rR)
Ēt(rT )

(4.61)

= 2
√
πrRe

jk(rT +rR) Ē
r(rR)

Ēt(rT )
, (4.62)

which is exactly the definition of the BS-CRCS given by Eq. (3.1).

Similarly, we can express the BS-RCS σ as

σ = 4πr2
R

|Ēr(rR)|2
|Ēt(rT )|2

, (4.63)

which is, not surprisingly, exactly the definition of the BS-RCS expressed in Eq. (3.2).
We can thus express both the BS-CRCS and the BS-RCS of a target in function of the
transmitted and received electric fields, provided that we know the distances rT and
rR.
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4.2.10 Practical measurement of the bistatic RCS of targets

In [119,122], it is indicated how the BS-RCS of targets can be measured in practice.
A calibration is needed for both outdoor measurements (in the field) and indoor
measurements (in the anechoic chamber).

The calibration phase consists in the successive measurement of the scattering co-
efficients, i.e. of the elements of the bistatic polarization scattering matrix (BS-PSM),
of (1) the target of interest in background clutter, (2) background clutter, and (3)
an object of reference, called a calibration object in background clutter. Indoor, the
practical BS-RCS σBS of a target at some frequency fi and some aspect angle θi is
then computed as

σBS =

∣∣∣∣∣∣

(
SBS1 − SBS2

)
(fi, θi)

(SBS3 − SBS2 ) (fi, θ0)
SBS0 (fi, θ0)

∣∣∣∣∣∣

2

, (4.64)

where SBS0 is the theoretical bistatic scattering coefficient due to the calibration object
with aspect angle θ0, usually a sphere, SBS1 the measured bistatic scattering coefficient
due to the target in background clutter, SBS2 the measured bistatic scattering coefficient
due to background clutter, and SBS3 the measured bistatic scattering coefficient due to
the calibration object in background clutter.

4.3 Acquisition of raw data: experimental setup

This section describes the experimental setup used for the acquisition of raw data.
Raw data consist in signals sent out by a transmitter (Tx), scattered by a target
of interest (here an airplane), and collected by a receiver (Rx). The acquisition of
raw data was conducted using scaled models of airplanes in an anechoic chamber at
ONERA, Palaiseau, France. We thus call this data the ONERA data. We extract the
bistatic complex radar cross-section (BS-CRCS) and the bistatic radar cross-section
(BS-RCS) from the raw data acquired, as described in Section 4.2.

We successively describe the reason for using scaled models of targets, the experi-
mental setup used for the acquisition of raw data, and the acquisition of raw data.

4.3.1 Motivation for using scaled models in an anechoic cham-

ber

The far-field conditions described in Section 3.7 imply (1) that the distances rT (from
the transmitter to the target) and rR (from the target to the receiver) must both be
larger than the ratio of twice the square of the characteristic dimension D of the target
to the wavelength λ of the transmitted signal, and (2) that D is much larger than λ,

{
rT , rR ≫ 2D2

λ

D ≫ λ.
(4.65)

The frequencies f at which the scattered signals must be measured are comprised
between 20 MHz and 1 GHz. The maximum wavelength corresponds to the lowest
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frequency (since λ = c/f). More specifically, for the minimum frequency of 20 MHz,
the corresponding wavelength is 15 m. This is the maximum wavelength we must
handle. We will see in Section 4.3.4 that the characteristic dimension D of the targets
of interest is 15 m. Therefore, according to the far-field conditions in Eq. (4.65), rT
and rR must be both larger than 30 m. Since the anechoic chamber at ONERA cannot
handle such ranges, one must resort to using scale models of the targets of interest.

Since we use scale models, we measure the BS-CRCS
√
σ of targets at a frequency

f ′ different from the desired frequency f . The frequency f ′ is equal to the product
of the desired frequency f and the scale factor s, f ′ = f × s. A scale factor s of 10
means that the scale model of an object is 10 times smaller than the real-size object.
This ensures that the contribution of the scale model illuminated at frequency f ′ to
the echo-path signal is the same as would be the contribution of the real-size target
illuminated at frequency f . This homothety is applicable since scale models are made
of perfectly conducting materials.

To obtain the full-scale BS-CRCS at frequency f , one can show that one must simply
multiply by the scale factor the BS-CRCS obtained from the BS-CRCS measured on
the scale model [104]:

√
σ(full scale, f) =

√
σ(scale s, f ′) × s. (4.66)

As a consequence of the definitions of the BS-CRCS and the BS-RCS, we have [104]

σ(full scale, f) = σ(scale s, f ′) × s2. (4.67)

4.3.2 Configuration geometry

Figure 4.4 shows the configuration geometry. The origin of the coordinate system is
located at the turntable, in the center of the anechoic chamber. The target of interest
S, also called the object, is fixed and placed on the turntable, and thus at the origin
O of the coordinate system. The transmitter (Tx) is fixed, and located on the x-axis,
at a distance rT from the origin O. The receiver (Rx) can move along one-half of the
circumference of a circle, in the xy-plane, in order to make the bistatic angle β vary.
The distance rT from the transmitter to the object is kept constant and equal to the
distance rR from the object to the receiver. Thus, rT = rR = r.

We define the orientation of the object as the angle between the line-of-sight of
this object and the x-axis. The orientation of the object is defined in terms of both its
azimuth angle θ and its elevation angle φ (Fig. 4.4). The azimuth angle θ is the angle
measured positively from the x-axis to the projection of the longitudinal axis of the
airplane in the (x, y) plane. The elevation angle φ is the angle measured positively
from the x-axis to the projection of the longitudinal axis of the airplane in the (y, z)
plane.

In the configuration described above, the airplane and the Tx are fixed. The Rx
moves, thus making the bistatic angle β vary. The rotation of the receiver around the
fixed airplane is equivalent to the rotation, in the opposite direction, of the airplane
with a fixed receiver. Experiments are thus conducted as if airplanes were rotating.
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Figure 4.4: Experimental setup used to collect raw data in an anechoic chamber.

In real-life situations, although airplanes can fly arbitrary trajectories, they gener-
ally fly according to a linear trajectory, at least locally. In a linear trajectory, for a
fixed transmitter and a fixed receiver, the bistatic angle β varies with the translation
of the airplane, as shown in Fig. 4.5. Figure 4.6 illustrates the variation of the bistatic
angle β along a real-life airplane trajectory, as will be seen in Chapter 8. Therefore,
the rotation of the receiver in the anechoic chamber corresponds to the translation of
an airplane along its trajectory.
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Figure 4.5: Illustration of the variation of the bistatic angle β for an airplane flying
a linear trajectory.

4.3.3 Acquisition of raw data

In the anechoic chamber, at a particular time instant, the Tx sends out a signal at
a particular carrier frequency f and at a particular polarization Polt, where t stands
for "transmitter". The signal is scattered by a target with a fixed orientation, i.e. with
fixed angles θ and φ. The Rx is at a fixed location. The bistatic angle β is thus
fixed. The Rx collects the scattered signal at a particular polarization Polr, where
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Figure 4.6: Example evolution of the bistatic angle β through time, for an A319
airplane flying a real trajectory, probably close to linear.

the subscript r stands for "receiver". The values used for the azimuth angle θ and
the elevation angle φ of the target, for the bistatic angle β, for the polarizations Polt
and Polr, and for the frequency f are listed below. As explained in Chapter 3, these
parameters all influence the value of both the BS-CRCS and the BS-RCS.

Orientation of the target

The orientation of the target is determined by both its azimuth angle θ and its eleva-
tion angle φ. Data was recorded for the following values of θ and φ: θ ∈ {0◦, 45◦, 90◦}
and φ ∈ {−10◦, 0◦, 5◦}.

Frequencies

Our goal is to use frequencies from 20 MHz to 1.3 GHz. Note that these are the
real-life frequencies of interest, and that these must be scaled for use with the scale
models. The above frequency range is covered with the four following frequency bands:
FB1 ([20; 80] MHz), FB2 ([190; 250] MHz), FB3 ([450; 550] MHz), and FB4 ([1.2; 1.3]
GHz). These are the four frequency bands for which raw data was acquired. We use
several frequencies within each band, spaced by 0.1 MHz for FB1, and by 1 MHz for
the three others.

Bistatic angles

Since we only consider the bistatic RCS region (Section 3.7.4), we kept the bistatic
angle β in the range from 5◦ to 180◦. More specifically, we kept the bistatic angle
between 6◦ and 160◦, so that β ∈ [0◦; 180◦]. The increment in β was varied according
to the frequency band used: ∆β = 2◦ for FB1, ∆β = 1◦ for FB2, ∆β = 0.5◦ for FB3,
and ∆β = 0.25◦ for FB4.
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Polarizations

The polarizations of the Tx and the Rx are generally denoted by the pair Polt Polr.
For linear polarizations, i.e. horizontal (H) and vertical (V ) polarizations, the possible
polarization pairs are HH,HV, V H, V V . For circular polarizations, i.e. left (L) and
right (R) polarizations, the possible polarization pairs are LL,LR,RL,RR. In our
experiments, we used the linear polarizations only.

4.3.4 Airplanes of interest

The four airplanes considered for the experiments in the anechoic chamber are a
Super King Air 200 (Beechcraft), an F117 stealth fighter (F-117), an F16 fighter, and
a Learjet. These airplanes are illustrated in Figs. 4.7, 4.8, 4.9, and 4.10, respectively.
The illustrating views were generated from Computer-Aided Design (CAD) models.

In order to constitute the different classes of targets, it is useful to examine the
differences in shape and sizes among these four airplanes. They all have a length of 15
meters, and wingspans of about 10 meters. They thus do not differ in size. However,
they present major differences in shape. The Beechcraft is made of a rounded fuselage
and has two propeller engines located on the wings. It also has a horizontal stabilizer
at its rear. The F117 is made of numerous planar facets in order to defeat radar. The
F16 is made of a rounded fuselage, two triangular wings, a rudder, and a sharp nose.
It also has two missiles at the wingtips. The Learjet is similar to the Beechcraft, but
with jet engines located directly on the fuselage, and above the wings. It also has one
fuel tank at each wingtip.

Figure 4.7: Perspective view of a Beechcraft produced from a three-dimensional CAD
model [210].
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Figure 4.8: Perspective view of an F117 produced from a three-dimensional CAD
model [210].

Figure 4.9: Perspective view of an F16 produced from a three-dimensional CAD model
[210].

Figure 4.10: Perspective view of a Learjet produced from a three-dimensional CAD
model [210].
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4.4 Scattering regions for the frequency bands of

interest

We saw in Section 3.6 that the scattering mechanisms, and thus the scattering
regions, are functions of the ratio λ/D, where λ = c/f is the illuminating wavelength,
and D the characteristic dimension of the airplane. Table 4.1 gives, for each frequency
band of interest, the ratio λ/D for the two frequencies at the edges of the band for
D = 15 m, which is the characteristic dimension of all airplanes of interest. This
allows one to determine the scattering region for each of the bands. These are shown
at the bottom of the columns. Note that the scattering region for FB2 is mostly optical.

Freq.
band

FB1 FB2 FB3 FB4

Freq.
limits

F1Min

20MHz
F1Max

80MHz
F2Min

190MHz
F2Max

250MHz
F3Min

450MHz
F3Max

550MHz
F4Min

1.2GHz
F4Max

1.3GHz

λ (m) 15 3.75 1.5 1.2 0.66 0.55 0.25 m 0.2

λ/D 1 0.25 0.1 0.08 0.044 0.0367 0.0167 0.0133

Scatt.
region

Resonance Resonance/optical Optical Optical

Table 4.1: Determination of the scattering region for each frequency band, according
to the ratio λ/D, with D = 15 m.

We saw in Section 3.6 that the geometric parameter that most affects the scattering
in each of the three scattering regions are the following:

• Rayleigh region: volume,

• Resonance region: volume and shape,

• Optical region: shape.

Since the scattering mechanisms at work for FB1 are those of the resonance region, we
conclude that the measured values of both the BS-CRCS and the BS-RCS for this band
will be more a function of the volume than of the shape. Since the volumes of the four
airplanes are similar, one cannot expect high classification rates for the first frequency
band. Since the scattering mechanisms at work for FB2, FB3, and FB4 are those of
the optical region, we conclude that the measured values of both the BS-CRCS and
the BS-RCS will be more a function of the shape than of the volume for these three
bands.

4.5 Classes of airplanes

The conclusion just reached above indicates that it makes a lot of sense to define
as many classes of airplanes as there are significantly different shapes of airplanes of
interest. As a result, the four airplanes of interest, here Beechcraft, F117, F16, and
Learjet, certainly deserve their own individual class.
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4.6 Illustration of the bistatic complex and real

RCS of targets

We now show examples of the squared magnitude and phase of the bistatic complex
radar cross-section (BS-CRCS)

√
σ for the different targets of interest. The squared

magnitude of the BS-CRCS is equal to the bistatic radar cross-section (BS-RCS), as
discussed in Chapter 3. We illustrate the variation of both the squared magnitude
and the phase of the BS-CRCS as a function of the different parameters that have
an influence on the BS-CRCS, i.e. the bistatic angle, the frequency, the polarizations
of both the transmitter and the receiver, and the orientation (in both azimuth and
elevation) of the target. We also show how the squared magnitude and phase of the
BS-CRCS vary according to the type of target. We will see that the four airplanes of
interest exhibit differences.

As indicated in Section 4.3, we acquired the BS-CRCS
√
σ for four airplanes, over

four different frequency bands, four polarization pairs, and for bistatic angles varying
from 6◦ to 160◦, all this for three different azimuth angles θ and three different elevation
angles φ. For confidentiality reasons, the maximum value of the squared magnitude of
the BS-CRCS is not reported, but the graphs are normalized according to a common
reference for all airplanes, so that it is possible to compare the squared magnitudes
and the phase of the BS-CRCS of different airplanes. The squared magnitudes are
displayed on a logarithmic scale, and the phase is always reduced to the interval [0, 2π[.

For conciseness, we do not show the total amount of data acquired. We simply
show the variations of both the squared magnitude and the phase of the BS-RCS
for one parameter at a time. Figure 4.11 is used as the reference for the compar-
ison of the variation of the BS-CRCS as a function of the different parameters.
The figure shows the squared magnitude and the phase of the BS-CRCS of a
Beechcraft at an azimuth angle θ = 0◦ and an elevation angle φ = −10◦. We show
the values of the BS-CRCS for FB2, i.e. for frequencies ranging from 190 MHz to
250 MHz, for the HH polarization pair, and for bistatic angles ranging from 6◦ to 160◦.

4.6.1 Variation of the bistatic complex RCS as a function of
the bistatic angle

Figure. 4.12 shows the variation of both the squared magnitude (in dBs) and the
phase of the BS-CRCS as a function of the bistatic angle β for each of the four
airplanes of interest at the center frequency of FB1, i.e. 50 MHz. Figures 4.13, 4.14,
and 4.15 show the corresponding graphs for the three other frequency bands, i.e. FB2
to FB4.

For a particular frequency, the variations of both the squared magnitude and the
phase of the BS-CRCS as a function of β do not seem to be particular. Therefore,
we do not a priori favor any bistatic angle for the recognition of the four airplanes of
interest.
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Figure 4.11: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of the frequency f and bistatic angle β, for FB2 (f ∈
[190; 250] MHz), and for the following fixed parameters: Pol = HH, θ = 0◦, and
φ = −10◦.
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Figure 4.12: Squared magnitude (left) and phase (right) of the BS-CRCSs as a func-
tion of β for each of the four airplanes of interest, for the following fixed parameters:
f = 50 MHz (in FB1), Pol = HH, θ = 0◦, and φ = −10◦.
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Figure 4.13: Squared magnitude (left) and phase (right) of the BS-CRCSs as a func-
tion of β for each of the four airplanes of interest, for the following fixed parameters:
f = 220 MHz (in FB2), Pol = HH, θ = 0◦, and φ = −10◦.
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Figure 4.14: Squared magnitude (left) and phase (right) of the BS-CRCSs as a func-
tion of β for each of the four airplanes of interest, for the following fixed parameters:
f = 500 MHz (in FB3), Pol = HH, θ = 0◦, and φ = −10◦.
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Figure 4.15: Squared magnitude (left) and phase (right) of the BS-CRCSs as a func-
tion of β for each of the four airplanes of interest, for the following fixed parameters:
f = 1.25 GHz (in FB4), Pol = HH, θ = 0◦, and φ = −10◦.

4.6.2 Variation of the bistatic complex RCS as a function of
the frequency

We illustrate here the variations of the squared magnitude and the phase of the
BS-CRCS as a function of the frequency, for the four airplanes of interest. Figure 4.11
already illustrated the variations of both the squared magnitude and the phase of the
BS-CRCS of the Beechcraft as a function of frequency, for FB2. Figures 4.16, 4.17,
and 4.18 illustrate the variations of both the squared magnitude and the phase of
the BS-CRCS of the same Beechcraft for the three other frequency bands. Although
we do not show the variations of both the squared magnitude and the phase of the
BS-CRCS for the three other airplanes (F16, F117, and Learjet), their variations are
similar, and the conclusions drawn for the Beechcraft apply to the three other airplanes.

More specifically, it can be seen in Figs. 4.11, 4.16, 4.17, and 4.18 that the number
of oscillations of the phase of the BS-CRCS as a function of the bistatic angle (over
the range β = [6◦; 160◦]), at a particular frequency, is approximately equal to the
ratio of the characteristic dimension D = 15 m of the target to the wavelength λ.
For example, at a frequency of 220 MHz, λ ≈ 1.36 m, and thus D/λ = 11, which is
approximately the number of oscillations of the phase of the BS-CRCS for each of the
four types of targets, as can be seen in Fig. 4.11. Similar observations can be made
for the other frequency bands, i.e. at 50 MHz in Fig. 4.16, at 500 MHz in Fig. 4.17,
and at 1.25 GHz in Fig. 4.18.

We illustrate in Figs. 4.19, 4.20, 4.21, and 4.22 the squared magnitude and the
phase of the BS-CRCS of the four targets as a function of frequency, for a bistatic
angle β = 20◦, for each of the four frequency bands. The number of oscillations
of the squared magnitude of the BS-CRCS of the four airplanes increases as the
frequency increases. This is explained by the fact that the scattering mechanisms
move from the resonance region for the first frequency band, to the optical region
for the fourth frequency band. Similar variations of the squared magnitude of the
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Figure 4.16: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of frequency f and bistatic angle β, for FB1 (f ∈ [20; 80]
MHz), and for the following fixed parameters: Pol = HH, θ = 0◦, and φ = −10◦.
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Figure 4.17: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of frequency f and bistatic angle β, for FB3 (f ∈ [450; 550]
MHz), and for the following fixed parameters: Pol = HH, θ = 0◦, and φ = −10◦.
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Figure 4.18: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of frequency f and bistatic angle β, for FB4 (f ∈ [1.2; 1.30]
GHz), and for the following fixed parameters: Pol = HH, θ = 0◦, and φ = −10◦.

BS-CRCS occur at the other available bistatic angles, but we do not discuss them here.
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Figure 4.19: Squared magnitude (left) and phase (right) of the BS-CRCSs as a func-
tion of the frequency f for each of the four airplanes of interest, for FB1 (f ∈ [20; 80]
MHz), and for the following fixed parameters: β = 20◦, Pol = HH, θ = 0◦, and
φ = −10◦.

For a particular bistatic angle, the variations of both the squared magnitude and
the phase of the BS-CRCS as a function of the frequency f do not seem to be partic-
ular. Therefore, we do not a priori favor any frequency for the recognition of the four
airplanes of interest.



72 4.6. ILLUSTRATION OF THE BS-CRCS AND THE BS-RCS OF TARGETS

1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
8

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

frequency [Hz]

S
qu

ar
ed

 m
ag

ni
tu

de
 [d

B
]

Squared magnitude of CRCS of airplanes as a function of frequency, for β = 20°

 

 
Beechcraft
F117
F16
Learjet

1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
8

−4

−3

−2

−1

0

1

2

3

4

frequency [Hz]

P
ha

se
 o

f C
R

C
S

 [r
ad

]

Phase of CRCS of airplanes as a function of frequency, for β = 20°

 

 
Beechcraft
F117
F16
Learjet

Figure 4.20: Squared magnitude (left) and phase (right) of the BS-CRCSs as a
function of the frequency f for each of the four airplanes of interest, for FB2
(f ∈ [190; 250] MHz), and for the following fixed parameters: β = 20◦, Pol = HH,
θ = 0◦, and φ = −10◦.
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Figure 4.21: Squared magnitude (left) and phase (right) of the BS-CRCSs as a
function of the frequency f for each of the four airplanes of interest, for FB3
(f ∈ [450; 550] MHz), and for the following fixed parameters: β = 20◦, Pol = HH,
θ = 0◦, and φ = −10◦.
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Figure 4.22: Squared magnitude (left) and phase (right) of the BS-CRCSs as a
function of the frequency f for each of the four airplanes of interest, for FB4
(f ∈ [1.2; 1.3] GHz), and for the following fixed parameters: β = 20◦, Pol = HH,
θ = 0◦, and φ = −10◦.

4.6.3 Variation of the bistatic complex RCS as a function of
the polarization

We illustrate here the variations of both the squared magnitude and the phase of the
BS-CRCS as a function of the polarization, for the Beechcraft, for each polarization
pair, i.e. HH,HV, V H , and V V , in Figs. 4.11, 4.23, 4.24, and 4.25, respectively.
One must notice, as expected, that both the squared magnitude and the phase of the
BS-CRCS obtained for the cross-polarizations V H and HV are not equal, since we
are in a bistatic configuration, while they would be equal in a monostatic configuration.

Although we do not show the variations of both the squared magnitude and the
phase of the BS-CRCS for the three other airplanes (F16, F117, and Learjet), their
variations are similar, and the conclusions drawn for the Beechcraft apply to the three
other airplanes.

Since the variations of the squared magnitude and the phase of the BS-CRCS are
similar from one polarization to the other, we do not a priori favor any particular
polarization for the recognition of the four airplanes of interest.

4.6.4 Variation of the bistatic complex RCS as a function of

the orientation

We illustrate here the variations of both the squared magnitude and the phase of the
BS-CRCS as a function of the orientation of the airplane, for the Beechcraft. We con-
sider different orientation pairs (θ, φ) : (0◦,−10◦), (45◦,−10◦), (90◦,−10◦), (0◦,−5◦),
and (0◦, 0◦) in Figs. 4.11, 4.26, 4.27, 4.28, and 4.29, respectively.

Since the variations of the squared magnitude and the phase of the BS-CRCS are
similar from one orientation pair to the other, we do not a priori favor any particular
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Figure 4.23: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of the frequency f and bistatic angle β, for HV polar-
ization, and for the following fixed parameters: f ∈ [190; 250] MHz, θ = 0◦, and
φ = −10◦.

Frequency [Hz]

B
is

ta
tic

 A
ng

le
 [°

]

Squared magnitude of CRCS of Beechcraft, for frequency band 2 and polarization VH

 

 

1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
8

20

40

60

80

100

120

140

160 −100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency [Hz]

B
is

ta
tic

 A
ng

le
 [°

]

Phase of CRCS of Beechcraft, for frequency band 2 and polarization VH

 

 

1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
8

20

40

60

80

100

120

140

160 0

1

2

3

4

5

6

Figure 4.24: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of the frequency f and bistatic angle β, for V H polar-
ization, and for the following fixed parameters: f ∈ [190; 250] MHz, θ = 0◦, and
φ = −10◦.
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Figure 4.25: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of the frequency f and bistatic angle β, for V V polar-
ization, and for the following fixed parameters: f ∈ [190; 250] MHz, θ = 0◦, and
φ = −10◦.

orientation for the recognition of the four airplanes of interest.
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Figure 4.26: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of the frequency f and bistatic angle β, for θ = 45◦

and φ = −10◦, and for the following fixed parameters: f ∈ [190; 250] MHz, and
Pol = HH.

4.6.5 Conclusions about the variations of the bistatic com-

plex RCS as a function of the bistatic angle, frequency,
polarizations, and orientation

The above sections confirmed, based on real data, that both the squared magnitude
and the phase of the BS-CRCS vary with the bistatic angle, the frequency, the
polarizations of the Tx and the Rx, the azimuth angle, and the elevation angle. In
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Figure 4.27: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of the frequency f and bistatic angle β, for θ = 90◦

and φ = −10◦, and for the following fixed parameters: f ∈ [190; 250] MHz, and
Pol = HH.
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Figure 4.28: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of the frequency f and bistatic angle β, for θ = 0◦

and φ = −5◦, and for the following fixed parameters: f ∈ [190; 250] MHz, and
Pol = HH.
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Figure 4.29: Squared magnitude (left) and phase (right) of the BS-CRCSs of a
Beechcraft as a function of the frequency f and bistatic angle β, for θ = 0◦ and
φ = 0◦, and for the following fixed parameters: f ∈ [190; 250] MHz, and Pol = HH.

particular, we illustrated the fact that the scattering mechanisms occur in different
scattering regions according to the frequency band. We also illustrated the fact that
the oscillation rate of both the squared magnitude and the phase of the BS-CRCS
vary according to the ratio D/λ. This will influence the classification rate. Indeed, if
both the squared magnitude and the phase of the BS-CRCS are similar for each of the
four airplanes of interest (Beechcraft, F117, F16, and Learjet), the recognition rate is
expected to be smaller than if they vary significantly.

According to the examples shown, we cannot a priori consider that a particular
bistatic angle, a particular frequency band, a particular polarization, or a particular
orientation would be preferable for the recognition of the four airplanes of interest.
This observation will be confirmed by the achieved classification rates (Chapter 6).

4.7 Conclusion

The first step of each of the first two automatic target recognition (ATR) systems
is the extraction of either the bistatic complex radar cross-section (BS-CRCS) or the
bistatic radar cross-section (BS-RCS) of targets. In this chapter, we presented the
computation of both the BS-CRCS and the BS-RCS of a generic object from the
transmitted electric field and the received electric field, the latter being the raw data
used at input of each of the first two ATR systems.

We presented the experimental setup used to acquire the raw data in an anechoic
chamber. In particular, we explained the reasons for using scale models of the airplanes
of interest. We also presented the geometry of the setup, and the parameters used for
the acquisition of raw data, which are four frequency bands ranging from 20 MHz to
1.3 GHz, the four polarization pairs HH , HV , V H , and V V , the bistatic angles of
interest, i.e. from 6◦ to 160◦, the azimuth angle that is equal to either 0◦, 45◦, or 90◦,
and the elevation angle that is equal to either 0◦, 5◦, or −10◦. We also described the
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four airplanes of interest, i.e. a Beechcraft, an F117 stealth fighter, an F16 fighter,
and a Learjet.

We determined the scattering region which the scattering mechanisms occur in, for
each frequency band. We also determined that the scattering is more influenced by
the shapes of the airplanes than by their volumes, except for the first frequency band.
This made us consider each type of airplane as one class.

We illustrated the variations of both the squared magnitude and the phase of the
BS-CRCS of the four airplanes of interest as a function of the bistatic angle, the
frequency, the polarization, the azimuth angle, and the elevation angle. According to
the examples shown, it seems that no particular bistatic angle, no particular frequency,
no particular polarization, no particular azimuth angle, and no particular elevation
angle seem to be a priori preferable for the recognition of the four airplanes of interest.
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Construction of radar images
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Section 5.1 states the motivation for the construction of radar images of the airplanes
of interest. Section 5.2 reviews some fundamental principles used in tomographic imag-
ing. Sections 5.3 and 5.4 describe the principles of radar imaging for a monostatic con-
figuration and a bistatic configuration, respectively. Section 5.5 presents the practical
construction of radar images of objects from the bistatic complex radar cross-sections
(BS-CRCSs) of these objects. Section 5.6 shows examples of constructed radar images
of the airplanes of interest. Section 5.7 concludes.

5.1 Motivation for the construction of radar images

of targets

Our first automatic target recognition system (ATR), the block diagram of which is
shown in Fig. 5.1, recognizes targets by using their radar images. We discuss, in this

79
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chapter, the second stage of this ATR system, i.e. the construction of the radar images
of targets from the bistatic complex radar cross-section (BS-CRCS) of these targets.

Figure 5.1: Block diagram of our ATR system using radar images of targets.

5.2 Review of tomographic imaging

We derive the expression for the radar image of an object in terms of the complex
radar cross-sections of this object by following the principles of tomographic imaging.
In this section, we review three fundamental principles that are used in tomographic
imaging, which are the Radon Transform (RT), the Fourier Transform (FT), and the
projection-slice theorem (PST). We also review the rotation property of the FT.

5.2.1 The Radon Transform

Figure 5.2 illustrates the Radon Transform (RT) [24,97,138,139,167]. Let us consider
an object characterized by its two-dimensional (2D) density distribution f(x, y). We
denote the projection of f(x, y) on a line x′ at orientation φ by pφ(x′). We have

pφ(x
′) =

∫

l(x′)
f(x, y) dy′, (5.1)

where l(x′) is any line orthogonal to line x′. pφ(x′) is also called a line integral [97].

The RT of f(x, y), denoted by Rf(x′, φ), is defined as the projection of f(x, y) for
any orientation φ. We define it mathematically as [24, 97, 138, 139,167]

Rf(x′, φ) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(x cosφ+ y sin φ− x′) dxdy, (5.2)

where δ is the Dirac delta function, and the coordinates x, y, x′, and φ are defined in
Fig. 5.2.

5.2.2 The two-dimensional Fourier Transform and its rotation

property

We define the one-dimensional (1D) FT F (ω) of a function f(x) as [24, 142]

F (ω) = f̂(ω) =
∫ +∞

−∞
f(x)e−jωx dx, (5.3)
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x
′y′

p φ
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′ )

l(x′)

b

O

Figure 5.2: Illustration of the Radon Transform. The projection of f(x, y) on a line
x′ at orientation φ is denoted by pφ(x

′).

where ω is the pulsation. We define the inverse FT as

f(x) =
1

2π

∫ +∞

−∞
F (ω)ejωx dω. (5.4)

We similarly define the 2D FT F (ωx, ωy) of a function f(x, y) as [24, 142]

F (ωx, ωy) = f̂(ωx, ωy) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−jπ(ωxx+ωyy) dxdy. (5.5)

The 2D inverse FT is defined as

f(x, y) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
F (ωx, ωy)e

−jπ(ωxx+ωyy) dωxdωy. (5.6)

In polar coordinates, the function f(x, y) is expressed as fp(r, θ), where the subscript
p stands for "polar", and r and θ are the polar coordinates, with x = r cos θ and
y = r sin θ, as shown in Fig. 5.3. The 2D FT Fp(ρ, φ) of a function fp(r, θ) is defined
as

Fp(ρ, φ) =
∫ +∞

0

∫ 2π

0
fp(r, θ)e

−j2πρr cos(φ−θ)r dθdr, (5.7)

where ωx = ρ cosφ, and ωy = ρ sin φ.

Observe that we use two possible notations for the FT of a function f , i.e. either
F or f̂ (Fig. 5.3). Our preferred notation is F , but it is sometimes easier to use f̂ .

The rotation theorem of the 2D FT, defined in [24], states that if a function fp(r, θ)
undergoes a rotation of angle α, so does its 2D FT, as illustrated in Fig. 5.4. Mathe-
matically, we express it as

fp(r, θ − α)
2DFT⇐⇒ Fp(ρ, φ− α). (5.8)
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Figure 5.3: Illustration of the correspondence between the functions f(x, y) and its
polar form fp(r, θ), and their respective Fourier Transforms F (ωx, ωy) and Fp(ρ, φ).

In Cartesian coordinates, this gives

f(x cosα−y sinα, x sinα+y cosα)
2DFT⇐⇒ F (ωx cosα−ωy sinα, ωx sinα+ωy cosα). (5.9)

The rotation property is used in [24] to derive the projection-slice theorem.

5.2.3 The projection-slice theorem

Figure 5.5 illustrates the projection-slice theorem (PST). According to the PST, the
1D FT of the projection of f(x, y) along lines l(x′) orthogonal to some line x′ at ori-
entation φ is equal to the slice through the 2D FT F (ωx, ωy) in the same direction φ [24].

Mathematically, the projection of the function f(x, y) in the direction φ is usually
denoted by pφ(x′). The 1D FT of pφ(x′) is denoted by Pφ(ω′). According to the PST,
Pφ(ω

′) is equal to the slice through the 2D FT of f(x, y) in the direction φ, where
F (ω′, φ) is the slice of F (ωx, ωy) at angle φ as a function of ω′ (Fig. 5.5), i.e. Fp(ω

′, φ).
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Figure 5.4: Illustration of the rotation theorem of the 2D Fourier Transform. If a
function fp(r, θ) is rotated by an angle α, then being denoted by gp(r, θ), so does its
Fourier Transform Fp(ρ, φ), then being denoted by Gp(ρ, φ).
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′, φ) of f(x, y) at orientation

φ.
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5.3 Principles of monostatic radar imaging

In this section, we present the principles of radar imaging for a monostatic (MS)
configuration. We first describe the MS configuration. We then derive the expression
of the complex radar cross-section (CRCS) density of an object, i.e. the radar image of
an object, as a two-dimensional (2D) inverse Fourier Transform (FT) of the monostatic
complex radar cross-section (MS-CRCS) of this object.

5.3.1 Monostatic (MS) configuration

Figure 5.6 shows the MS configuration that we consider. Let us consider a generic
object that is illuminated by a transmitter. Since we are in an MS configuration, the
transmitter and the receiver are co-located, and simply called the radar.

We choose a reference point O located on or near the object. The line-of-sight of
the radar, i.e. the line between the radar and the reference point O is the x-axis. The
angle φ is defined as the angle between the line-of-sight of the radar and the x-axis.
Here, φ = 0◦. The perpendicular to the x-axis at O is the y-axis.

We assume that the object is characterized by its 2D isotropic complex radar cross-
section (CRCS) density, denoted by

√
σ0(x, y) [24]. We express the location of any

point P of the object in terms of its Cartesian coordinates (x, y). We also assume that
the reference point O is located at a distance r0 from the radar, in the far-field of the
radar.

b

b

r(x, y)

O

P (x, y)

Radar x

y

r(x, y) ≈ r0 + x

r0

√
σ0(x, y)

Figure 5.6: Two-dimensional monostatic radar configuration. The object is repre-
sented by its 2D CRCS density

√
σ0(x, y), located at the center of the coordinate

system, at a distance r0 from the radar.

5.3.2 Monostatic (MS) radar imaging

We start with Eq. (4.59) into which rT = rR = r since the transmitter and the
receiver are co-located. The received electric field (E-field) for a point object charac-
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terized by
√
σ is thus expressed as

Ēr(r) = α′(k, r)
√
σĒt(r), (5.10)

where

α′(k, r) =
e−2jkr

2
√
πr
, (5.11)

and Ēr(r) is the received electric field (E-field), Ēt(r) the transmitted E-field, and k
the wavenumber.

For N point objects, each object being characterized by
√
σi, the received E-field

is given by

Ēr(r) =
N∑

i=1

α′(k, ri)
√
σiĒ

t(ri), (5.12)

For a patch dxdy, located at P (x, y), of an object described by its CRCS density√
σ0(x, y) (Fig. 5.6), the differential phasor received is, according to Eq. (5.10),

dĒr(r) = α′(k, r(x, y))
√
σ0(x, y)Ēt(r)dxdy. (5.13)

For a distributed object, the full Rx E-field is obtained by "summing" the differential
phasors dĒr(r) over all patches,

Ēr(r) =
∫ +∞

−∞

∫ +∞

−∞
α′(k, r(x, y))

√
σ0(x, y)Ēt(r)dxdy

=
(∫ +∞

−∞

∫ +∞

−∞
α′(k, r(x, y))

√
σ0(x, y)dxdy

)
Ēt(r). (5.14)

We express the distance r(x, y) in α′ in terms of the distance r0 and the coordinates
(x, y) of the patch dxdy. The following small-angle approximation is made, for the
quantity r(x, y) (Fig. 5.6),

r(x, y) =
√

(r0 + x)2 + y2

= (r0 + x)

√

1 +
(

y

r0 + x

)2

≈ r0 + x, (5.15)

which is intuitively true by simple inspection of Fig. 5.6. This allows us to rewrite
Eq. (5.11) as

α′(k, r(x, y)) =
e−2jkr(x,y)

2
√
πr(x, y)

≈ e−2jk(r0+x)

2
√
π(r0 + x)

. (5.16)

Since we assume a far-field condition, we have x ≪ r0. We can thus write

α′(k, r(x, y)) ≈ e−2jk(r0+x)

2
√
πr0

. (5.17)
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By substituting Eq. (5.17) into Eq. (5.14), we have

Ēr(r) =

(
e−2jkr0

2
√
πr0

∫ +∞

−∞

∫ +∞

−∞
e−2jkx

√
σ0(x, y)dxdy

)
Ēt(r)

=

(
e−2jkr0

2
√
πr0

∫ +∞

−∞

(∫ +∞

−∞

√
σ0(x, y)dy

)
e−2jkxdx

)
Ēt(r). (5.18)

The inner integral
∫+∞

−∞
√
σ0(x, y)dy is the projection of

√
σ0 along the y-axis. Ac-

cording to the definition of the Radon Transform (RT) introduced in Section 5.2.1, the
inner integral is the RT for an angle φ = 0◦. We thus denote the above integral by
R√

σ0(x
′, φ). Since φ = 0◦, x′ = x, and we can write

R
√
σ0(x, 0) =

∫ +∞

−∞

√
σ0(x, y)dy. (5.19)

Equation (5.18) thus becomes

Ēr(r) =
e−2jkr0

2
√
πr0

(∫ +∞

−∞
R

√
σ0(x, 0)e−2jkxdx

)
Ēt(r). (5.20)

The remaining integral has the form of a 1D FT, defined by Eq (5.3). We can thus
write ∫ +∞

−∞
R

√
σ0(x, 0)e−2jkxdx = R̂

√
σ0(2k, 0). (5.21)

We can then rewrite Eq. (5.20) as

Ēr(r) =
e−2jkr0

2
√
πr0

R̂
√
σ0(2k, 0)Ēt(r). (5.22)

We usefully interpret Eq. (5.22) as follows. First, Ēr(r) is the fixed phasor of the
total E-field received at the radar when the object is illuminated with Ēt(r). Second,
Eq. (5.22) is exactly of the same form as the fundamental Eq. (5.10). By comparing

these two equations, one can see that R̂√
σ0(2k, 0) can be interpreted as the monostatic

complex radar cross-section (MS-CRCS) corresponding to the entire object, i.e. to the
entire distribution

√
σ0(x, y). Since the object is illuminated at an angle φ of zero, we

denote this MS-CRCS by
√
σ(k, 0). We can thus write

√
σ(k, 0) = R̂

√
σ0(2k, 0), (5.23)

which is a remarkable result since it links the CRCS density
√
σ0(x, y) of the object

to the overall MS-CRCS
√
σ of this object.

By expanding the right-hand side of Eq. (5.23), the explicit relation between the
MS-CRCS and the 2D CRCS density

√
σ0(x, y) in the (x, y) coordinates is

√
σ(k, 0) =

∫ +∞

−∞

(∫ +∞

−∞

√
σ0(x, y)dy

)
e−2jkxdx. (5.24)

We use the projection slice-theorem (PST) introduced in Section 5.2.3 to generalize
Eq. (5.24) for any orientation φ. We thus have

√
σ(k, φ) =

∫ +∞

−∞

∫ +∞

−∞

√
σ0(x, y)e−2jk(x cosφ+y sinφ)dxdy. (5.25)
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Equation (5.25) expresses the MS-CRCS
√
σ(k, φ) of an object as a function of the 2D

density of the MS-CRCS in the spatial domain
√
σ0(x, y).

By using the following change of variables

ωx = 2k cosφ

ωy = 2k sin φ,

Eq. (5.25) takes the form of a 2D FT, as defined by Eq. (5.5). By inverting the 2D
FT, and performing the inverse change of variables, we get

√
σ0(x, y) =

1

(2π)2

∫ +∞

0

∫ 2π

0

√
σ(k, φ)e2jk(x cosφ+y sinφ)|4k|dφdk. (5.26)

Since it is usual to use the frequency f instead of the wavenumber k, with k = 2π/λ =
2πf/c., we can write

√
σ0(x, y) =

∫ +∞

0

∫ 2π

0

√
σ

′
(f, φ)e4πj f

c
(x cos φ+y sinφ)|4f

c2
|dφdf, (5.27)

where
√
σ

′
(f, φ) is the MS-CRCS expressed in terms of the frequency f and the angle

φ. Equation (5.27) links the 2D CRCS density of an object to the MS-CRCS of this
object computed at a frequency f , for an orientation φ of the radar.

5.4 Principles of bistatic radar imaging

In this section, we extend the principles of radar imaging to a bistatic (BS) config-
uration. We first describe the BS configuration. We then derive the expression of the
radar image, i.e. the 2D CRCS density, of an object as an inverse two-dimensional
(2D) Fourier Transform (FT) of the bistatic complex radar cross-section (BS-CRCS)
of this object.

5.4.1 Bistatic (BS) configuration

Figure 5.7 shows the BS configuration that we consider. Let us consider a generic
object that is illuminated by a transmitter. Since we are in an BS configuration, the
transmitter Tx and the receiver Rx are not co-located.

We choose a reference point O located on or near the object. We denote by l̂T the
line-of-sight of the Tx, and by l̂R the line-of-sight of the Rx. The bistatic angle β is
the angle between the Tx and the Rx with vertex at the center of the object. The line
between the bisector Bis of the bistatic angle and the reference point O is the x-axis.
The angle φ is defined as the angle between the bisector Bis and the x-axis. Here,
φ = 0◦. The perpendicular to the x-axis at O is the y-axis.

We assume that the object is characterized by its 2D isotropic complex radar cross-
section (CRCS) density, denoted by

√
σ0(x, y) [24]. We express the location of any

point P of the object in terms of either its Cartesian coordinates (x, y) or its polar
coordinates (r, θ). We denote by rT and rR the distances from the transmitter Tx and
the receiver Rx to the point P , respectively. We also assume that the reference point
O is located at a distance r0 from both the Tx and the Rx, in the far-field of both the
Tx and the Rx.
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Figure 5.7: Two-dimensional bistatic radar configuration. The object is represented
by its 2D complex radar cross-section density

√
σ0(x, y), located at the center of the

coordinate system, at a distance r0 from the Tx and the Rx.

5.4.2 Bistatic (BS) imaging

In the monostatic (MS) configuration, we consider the projection of
√
σ0(x, y) in the

direction of φ, which is the direction of the radar. The line integrals are perpendicular
to the line-of-sight of the radar.

In the bistatic (BS) configuration, we define the bistatic distance as the sum of the
distance from the reference point O on the object to the Tx and the distance from the
reference point O on the object to the Rx. The bistatic distance remains equal when
the object moves along an ellipse whose foci are the Tx and the Rx [224]. The reflexivity
property of ellipses tells us that, at any point on the ellipse, the tangent of the ellipse,
and thus the line integrals, are perpendicular to the bisector of the bistatic angle [224],
as shown in Fig. 5.8. Therefore, we can consider a BS configuration as an MS configu-
ration, with the radar being located on the bisector of the bistatic angle, at a distance
that is half of the sum of the distances from the Tx and the Rx to the reference point O.

If we can express the bistatic distance rT + rR in terms of 2r0 +X, we can consider
Eq. (5.24), into which we replace the MS roundtrip distance 2x by X. We thus need
to compute the distances rT and rR.

Without loss of generality, we assume the distances from the Tx and the Rx to
the center of coordinates to be equal to r0. By inspection of Fig. 5.7, we express the
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Figure 5.8: Illustration of the reflexivity property of the ellipse with the Tx and the
Rx located at its foci. The line integral are perpendicular to the bisector Bis of the
bistatic angle.

distance rT as

rT =
√

(r0 + r cos(β/2 − θ))2 + (r sin(β/2 − θ))2

=
√
r2

0 + 2rr0 cos(β/2 − θ) + r2

= r0

√

1 + 2
r

r0

cos(β/2 − θ) +
r2

r2
0

≈ r0

√
1 + 2

r

r0
cos(β/2 − θ)

≈ r0 + r cos(β/2 − θ), (5.28)

where the second to last line is obtained by considering the far-field approximation
(r ≪ r0), and the last line by performing a first-order Taylor development on the
square root.

In a similar way, we obtain the distance rR,

rR = r0 + r cos(β/2 + θ). (5.29)

We thus express the bistatic distance as

rT + rR = 2r0 + r (cos(β/2 − θ) + cos(β/2 + θ))

= 2r0 + 2r cosβ/2 cos θ

= 2r0 + 2x cos(β/2) (5.30)

We can thus substitute 2x by 2x cos(β/2) into Eq. (5.24) to get

√
σ
BS

(k, 0) =
∫ +∞

−∞

(∫ +∞

−∞

√
σ0(x, y)dy

)
e−2jkx cos(β/2)dx. (5.31)



90 5.5. PRACTICAL CONSTRUCTION OF BISTATIC RADAR IMAGES

where the superscript "BS" stands for the bistatic configuration.

We use the PST introduced in Section 5.2.3 to generalize Eq. (5.31) for any orien-
tation φ of the bisector as

√
σ
BS

(k, φ) =
∫ +∞

−∞

∫ +∞

−∞

√
σ0(x, y)e−2jk cos(β/2)(x cosφ+y sinφ)dxdy. (5.32)

Equation (5.32) expresses the BS-CRCS
√
σ
BS

(k, φ) of an object as a function of the
2D CRCS density

√
σ0(x, y).

By using the following change of variables

ωx = 2k cos(β/2) cosφ

ωy = 2k cos(β/2) sinφ,

Eq (5.32) takes the form of a 2D FT, as defined by Eq. (5.5). By inverting the FT,
and performing the inverse change of variables, we thus get

√
σ0(x, y) =

1

(2π)2

∫ +∞

0

∫ 2π

0

√
σ
BS

(k, φ)e2jk cos(β/2)(x cos φ+y sinφ)|4k cos2(β/2)|dφdk.
(5.33)

Since it is usual to use the frequency f instead of the wavenumber k, with k = 2π/λ =
2πf/c, we can write

√
σ0(x, y) =

∫ +∞

0

∫ 2π

0

√
σ

′BS
(f, φ)e4πj f

c
cos(β/2)(x cosφ+y sinφ)|4f cos2(β/2)

c2
|dφdf, (5.34)

where
√
σ

′BS
(f, φ) is the BS-CRCS expressed in terms of the frequency f . Equa-

tion (5.34) links the 2D CRCS density of an object to the BS-CRCS of this object
computed at a frequency f , for an orientation φ of the bisector of the bistatic angle.

In the anechoic chamber that we used to extract the BS-CRCS of the airplanes of
interest (Chapter 4), the Tx is fixed, and located on the x-axis. This corresponds to a
rotation of β/2 of the configuration depicted in Fig 5.7. Moreover, the object is fixed,
and the Rx moves around the object. We thus integrate over the bistatic angle β rather
than on the aspect angle φ. We thus get

√
σ0(x, y) =

∫ +∞

0

∫ 2π

0

√
σ

′BS
(f, φ)e4πj f

c
cos(β/2)(x cos(φ+β/2)+y sin(φ+β/2)|4f cos2(β/2)

c2
|dβdf.
(5.35)

5.5 Practical construction of bistatic radar images

As shown in Fig. 5.1, we compute the radar images of the targets of interest, i.e. the
2D CRCS density

√
σ0(x, y) of these targets, from the complex radar cross-sections

(CRCSs) of these targets, for a bistatic configuration. In this section, we detail the
practical construction of these radar images.



5.5. PRACTICAL CONSTRUCTION OF BISTATIC RADAR IMAGES 91

Recall from Chapter 4 that the available bistatic complex radar cross-section
(BS-CRCS) is computed over four different frequency bands, four different polar-
izations, and several bistatic angles, at three azimuth angles and three elevation
angles, for the four airplanes of interest. For computational reasons, we decide to use
the values of the BS-CRCS that are extracted for the HH polarization only. For a
particular azimuth angle, a particular elevation angle, a particular polarization, and a
particular frequency band, the BS-CRCS of a particular target is extracted over some
frequency range and some range of bistatic angles. We can thus usefully represent the
BS-CRCS as a two-dimensional array of values of BS-CRCS, the dimensions of the
array being the frequency f and the bistatic angle β, as shown in Fig. 5.9.

For recognition purposes (Chapter 6), we split the values of the BS-CRCS into a
learning set (LS), and a test set (TS). For a particular frequency band, the LS contains
the values of BS-CRCS that are available over the lower half of this frequency band,
and the TS contains the values of BS-CRCS that are available over the upper half of
this frequency band. Images of targets are constructed using values of BS-CRCS that
belong to either the LS or the TS. The constructed images thus belong to either the
LS of images or the TS of images, in order to guarantee the independence of the LS
and the TS in our recognition experiments [221].

β
f

LS

TS

∆β

∆f

fm

fM

βm βM

BS-CRCSs selected

to contruct an image

Figure 5.9: Illustration of the practical reconstruction of an image of a target from
the BS-CRCSs of this target.

In Section 5.4, we expressed the radar images of targets as an inverse 2D Fourier
Transform of the bistatic complex radar cross-section (BS-CRCS) of these targets.
In particular, Eq. (5.35) states that the value of each pixel (x, y) of an image of a
target is obtained by "summing" the BS-CRCS of the target over an infinite range of
frequencies, and a particular range of bistatic angles. As shown in Fig. 5.9, the values
of BS-CRCS that are used to construct an image of a target can thus be viewed as
belonging to a sub-array of the available values of BS-CRCS. The dimensions of this
sub-array are [βm; βM ] × [fm; fM ], where the subscripts "m" and "M" stand for the
minimum and maximum values of each of the dimensions of the array, respectively.



92 5.5. PRACTICAL CONSTRUCTION OF BISTATIC RADAR IMAGES

We arbitrarily decide to fix the range of the bistatic angle as being comprised
between 20◦ and 25◦. We thus have ∆β = βM − βm ∈ [20◦; 25◦].

In order to fix the frequency range, we use the definitions of the range resolution
rBSx and of the cross-range resolution rBSy , where the superscript "BS" indicates, as
above, that we are in a bistatic configuration. For a monostatic (MS) configuration,
the range resolution rMS

x and the cross-range resolution rMS
y are given by [165]

rMS
x =

c

2∆f
(5.36)

and
rMS
y =

c

2fc∆θ
, (5.37)

where c is the speed of light, ∆θ is the aspect angular range (in radians), and ∆f
and fc are the frequency range and the central frequency of the data selected to
reconstruct an image, respectively.

For a bistatic (BS) configuration, the range resolution rBSx and the cross-range
resolution rBSy are given by [41]

rBSx =
c

2∆f cosβ/2
(5.38)

and
rBSy =

c

fc∆β
, (5.39)

where c is the speed of light, and β and ∆β are the bistatic angle and the bistatic
angular range of the data selected to reconstruct an image, respectively.

Since we use the constructed images for classification, we want all the images to
have similar range resolutions and similar cross-range resolutions. In order to do so,
we arbitrarily decide that we want the ratio of the range resolution and the cross-range
resolution of an image to be almost equal to unity. We also want to construct a number
of images large enough to perform meaningful classification. We can thus express these
two conditions as

1

α
≤ rBSx
rBSy

≤ α, (5.40)

where α is experimentally chosen to comply with the two conditions stated above.
Table 5.1 lists the chosen values of α, for each frequency band.

In short, for a given range of bistatic angle, and for a given frequency range, we
compute rBSx and rBSy . If Eq. (5.40) is satisfied, we construct the radar image based
on Eq. (5.35). Otherwise, we do not construct any image for the selected sub-array of
values of BS-CRCS. The construction process is repeated for all possible sub-arrays.

Table 5.2 shows, for each frequency band, the mean and standard deviation of the
range resolution rBSx and of the cross-range resolution rBSy , for the constructed images
of the Beechcraft from the BS-CRCSs of the LS. Similarly, Table 5.3 shows, for each
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Frequency band α ∆β

FB1: 20 − 80 MHz 1.001 [20; 25]◦

FB2: 190 − 250 MHz 1.02 [20; 25]◦

FB3: 450 − 550 MHz 1.2 [20; 25]◦

FB4: 1.2 − 1.3 GHz 2.9 [20; 25]◦

Table 5.1: Experimentally chosen values of α for each frequency band.

frequency band, the mean and standard deviation of the range resolution rBSx and of
the cross-range resolution rBSy , for the constructed images of the Beechcraft from the
BS-CRCS of the TS.

rx [m] ry [m]
Frequency band Mean Std. dev. Mean Std. dev.

FB1: 20 − 80 MHz 21.07 2.30 21.06 2.31
FB2: 190 − 250 MHz 3.12 0.11 3.12 0.10
FB3: 450 − 550 MHz 1.61 0.03 1.38 0.04
FB4: 1.2 − 1.3 GHz 1.58 0.02 0.55 10−4

Table 5.2: Mean and standard deviation of the range resolution rBSx and of the cross-
range resolution rBSy of the reconstructed images of the Beechcraft belonging to the
LS.

rx [m] ry [m]
Frequency band Mean Std. dev. Mean Std. dev.

FB1: 20 − 80 MHz 11.35 1.19 11.35 1.20
FB2: 190 − 250 MHz 3.11 0.10 3.12 0.09
FB3: 450 − 550 MHz 1.62 0.02 1.38 0.0024
FB4: 1.2 − 1.3 GHz 1.59 10−13 0.55 10−14

Table 5.3: Mean and standard deviation of the range resolution rBSx and of the cross-
range resolution rBSy of the reconstructed images of the Beechcraft belonging to the
TS.

From Tables 5.2, and 5.3, we make the following observations for the Beechcraft:

• For each frequency band, and for both the LS and the TS, the means (and
standard deviation) of rBSx and rBSy are very similar. This makes sense since both
rBSx and rBSy are computed from Eq. (5.40).

• For each frequency band, the mean value of rBSx is greater for the LS than for
the TS, and the same is true for rBSy . This makes sense since the images of the
LS and the TS are constructed from the lower part and the upper part of the
frequency band, respectively.
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The same observations apply to the three other airplanes of interest, since their
BS-CRCSs are computed for the same parameters (frequency, polarization, bistatic
angle, azimuth angle, and elevation angle).

Table 5.4 shows the number of constructed images of each type of airplane for both
the LS and the TS, for each frequency band. These images are used in Chapter 6 for
the recognition of the four airplanes of interest.

Frequency band Number of images
LS TS

FB1: [20; 80] MHz 6,480 11,520
FB2: [190; 250] MHz 12,600 11,340
FB3: [450; 550] MHz 14,580 7,290
FB4: [1.2; 1.3] GHz 14,040 4,680

Table 5.4: Number of constructed images of each type of airplanes for the LS and the
TS, per frequency band.

5.6 Examples of constructed radar images

In this section, we show examples of constructed images of the four airplanes
of interest. For conciseness, we choose to show images that are constructed from
their BS-CRCS computed only for bistatic angles ranging from 6◦ to 43.5◦, for an
orientation angle θ of 0◦ and for an elevation angle φ of 0◦. The values of the frequency
and bistatic angles are chosen such that they satisfy Eq. (5.40).

Figure 5.10 shows one radar image (shown in pseudocolor for ease of visualization)
for each of the four airplanes of interest. These images are constructed for the data
acquired in the first frequency band, FB1. Figures 5.11, 5.12, and 5.13 give the
corresponding images for the three other frequency bands, FB2, FB3, and FB4,
respectively. The values in each image are normalized to a maximum value of 1 (0
dB).

Tables 5.2 and 5.3 show that the means of rBSx and of rBSy are about 21 m, which
is slightly larger than the characteristic dimension of the airplanes, i.e. 15 m. As
a result, each target appears essentially as a single bright point (Fig. 5.10). Since
rBSx and rBSy decrease when the frequency increases, targets are characterized by an
increasing number of smaller bright points when the frequency increases.
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Figure 5.10: Example radar images computed from BS-CRCSs collected over the first
frequency band FB1 ([20; 80] MHz). The images are shown using a pseudocolor scale.
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Figure 5.11: Example radar images computed from BS-CRCSs collected over the
second band FB2 ([190; 250] MHz). The images are shown using a pseudocolor scale.
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Figure 5.12: Example radar images computed from BS-CRCSs collected over the third
frequency band FB3 ([450; 550] MHz). The images are shown using a pseudocolor
scale.
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Figure 5.13: Example radar images computed from BS-CRCSs collected over the
fourth frequency band FB4 ([1.2; 1.3] GHz). The images are shown using a pseudo-
color scale.
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5.7 Conclusion

We presented in this chapter the construction of radar images of targets, since this
is the second step of the first automatic target recognition (ATR) system. We derived
the expression of the two-dimensional (2D) spatial representation of an object from the
complex radar cross-section (CRCS) of this object for the monostatic configuration.
We then extended this expression to the bistatic configuration. In both configurations,
the 2D radar image of a target is basically a 2D inverse Fourier Transform of the
CRCS of this target.

We then presented the practical construction of radar images from their bistatic
complex radar cross-section (BS-CRCS), for each of the frequency bands of interest.
We constructed each image from a 2D array of values of BS-CRCS of targets, whose
dimensions are the bistatic angle and the frequency. The size of each dimension is
determined such that the ratio of the range resolution and the cross-range resolution
of the obtained image is comprised between 1/α and α. For each frequency band, the
value of α was experimentally chosen in order to obtain a number of images that is
large enough to perform a meaningful classification (as further discussed in Chapter 6).
We showed, for each frequency band of interest, examples of radar images of each of
the four airplanes of interest.



98 5.7. CONCLUSION



Chapter 6

Recognition of targets
by using their radar images
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100 6.1. MOTIVATION

In this chapter, we perform the recognition of targets by using their radar images.
Section 6.1 states the motivation for the recognition of targets by using their radar
images. Section 6.2 describes the physical and the parameter spaces in which we
express both the bistatic complex radar cross-section (BS-CRCS) and the bistatic radar
cross-section (BS-RCS), and thus the images, of a target. Section 6.3 describes the
recognition strategy that we use to design the recognizer. Section 6.4 describes the
block diagram of the recognizer. Section 6.5 describes the production of feature vectors.
Section 6.6 describes the determination of the target class model. Section 6.7 describes
the determination of the class of an unknown target based on a target class model.
Section 6.8 presents the criteria we use for the quantification of the performance of the
recognizer. Sections 6.9 and 6.10 describe the recognition experiments we performed
and the recognition rates we achieved on the MSTAR images and on the ONERA
images, respectively. Section 6.11 concludes.

6.1 Motivation for the recognition of targets by us-

ing their radar images

As explained in Chapter 2, the recognition of targets by using their images is one
of the most popular recognition method in automatic target recognition (ATR) for
radars. Our first ATR system, whose block diagram is shown in Fig. 6.1, is designed to
recognize targets by using their radar images. In this chapter, we design, implement,
and test the recognition stage of this ATR system.

Figure 6.1: Block diagram of our ATR system using radar images of targets.

As explained in Chapter 5, the construction of radar images of targets from the
bistatic complex radar cross-section (BS-CRCS) of these targets requires that the
BS-CRCS of the targets be available over some range of frequencies and over some
range of bistatic angles. However, this two-dimensional (2D) diversity is unlikely
to be met in an operational system. Indeed, at a particular time instant and for a
particular target, it is possible to compute the BS-CRCS of this target at a particular
frequency and over a large range of bistatic angles by suitably positioning a sufficient
number of receivers (Rx’s). The frequency diversity requires that the signals of a
sufficient number of transmitters (Tx’s), operating on distinct, adjacent frequencies,
and covering in an adequate way a frequency band that is large enough, be scattered
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on the target at the same time instant. However, the frequency band planning does
not allow transmitters of opportunity to cover such a large frequency band.

Since the construction of radar images from their BS-CRCS appears difficult to
perform in an operational passive bistatic radar system, we will use the recognition of
targets by using their radar images as a reference to evaluate the two subsequent ATR
systems.

6.2 Physical and parameter spaces

We showed in Chapter 3 that both the complex radar cross-section (CRCS) and
the radar cross-section (RCS) of a particular object depend on electromagnetic and
geometric parameters. Since we construct images of targets from the CRCS of these
targets, the images also depend on the same electromagnetic and geometric parameters.
The two electromagnetic parameters are the frequency and the polarization (of both
the transmitter (Tx) and the receiver (Rx)). For a monostatic (MS) configuration, the
geometric parameter is the aspect angle α, and, for a bistatic (BS) configuration, the
geometric parameters are the aspect angle α and the bistatic angle β. We refer to this
set of parameters as the parameter space.

In the present context, the objects of interest are airplanes. Airplanes fly arbitrary
trajectories that are expressed in the (x, y, z) coordinates, which we call the physical
space. We thus need to establish the mapping between the physical space and the
parameter space. We first present the physical space, and then the mapping between
the physical space and the parameter space. We discuss the cases of both the RCSs
and the CRCSs. The discussion is similar for the images of the targets.

6.2.1 Physical space

For ease of explanation, and as is commonly done [186], we consider that the
physical space containing the Tx’s, the Rx’s, and the objects of interest (and, thus,
their trajectories) is planar, i.e. 2D. Thus, we also refer to this planar physical
space as the "physical plane". The positions of the above elements are given with
respect to some system of orthogonal (x, y) axes located in this plane. This 2D situ-
ation is illustrated in Fig. 6.2. We consider a single frequency and a single polarization.

While the discussion to follow is cast into a 2D framework, it is conceptually easy
to extend it to 3D. Furthermore, real-life situations where the objects of interest are
located at sufficient distances from the Tx’s and Rx’s can generally be handled as
though they were 2D. The physical plane can then be interpreted as an overhead view
of the situation.

In this 2D framework, each object necessarily follows a continuous true trajec-
tory in the physical plane (Fig. 6.2). Each (Tx,Rx) pair looks at this object at
specific discrete time instants and, thus, at specific, corresponding discrete (true)
positions along its true trajectory; these positions are shown with open circles in
Fig. 6.2. The discrete "looks" thus result in a sampling of the true (unknown)
trajectory. By analogy with the qualifiers "continuous time (CT)" and "discrete



102 6.2. PHYSICAL AND PARAMETER SPACES

x

y

bc

Tx1
Trajectory

Object

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

ut

ut ut

ut

ut

ut

ut

ut

utut ut

ut

ut

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

u

r

u

r

r

rs

Tx3

Tx2

Rx2

Rx1

Figure 6.2: 2D physical space, also called (x, y) plane. The figure illustrates a pas-
sive radar system consisting of three transmitters Txi and two receivers Rxi, and
observing an object following a particular trajectory. The open circles on this true
trajectory indicate the true position of S at each time instant one specific (Tx,Rx)
pair looks at the object. The open triangles indicate where this pair actually es-
timates that the object is. The open rectangles correspond to another pair, which
will generally provide other position estimates and, furthermore, will generally use
different look instants.

time (DT)" of signal processing [142], we respectively use "continuous space (CS)"
and "discrete space (DS)" to qualify the continuous trajectory and the sequence of
points resulting from sampling. These trajectories are the domains of definition of
both the radar-cross-section (RCS) functions and the complex radar cross-section
(CRCS) functions. We can thus complete the analogy by talking about CS CRCS
signals and DS CRCS sequences, and, similarly, CS RCS signals and DS RCS sequences.

In practice, each (Tx,Rx) pair may "look" at different instants, so that, for each
object, one must associate a specific DT trajectory (and either a corresponding DT
CRCS sequence or a corresponding DT RCS sequence) to each such (Tx,Rx) pair.
Furthermore, the estimates of positions for each pair will generally not fall on the true
trajectory (Fig. 6.2).

We thus distinguish between true CS, true DS, and measured DS trajectories. The
latter two are specific to each (Tx,Rx) pair. For illustration purpose, we often show
the sampling points of a measured DS trajectory on a CS curve, but this curve is
purely conceptual.

The above trajectories are those of a reference point S on the object (Fig. 6.3),
typically its center of gravity. The orientation of the object is characterized by
the orientation of a reference (unit) vector ŝ (Fig. 6.3), typically aligned with the
longitudinal axis of the object and pointing to its front. A fundamental assumption of
our work is that we can determine (estimates of) S and ŝ at each instant that each
(Tx,Rx) pair looks at the object.

If there is no wind, ŝ essentially coincides with the oriented tangent t̂ to the
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Figure 6.3: Stylized object with reference point S on it, and reference orientation
vector ŝ through S. When the object moves, S traces the true trajectory of the object
in the (x, y) plane. Vector t̂ is defined by the tangent to this trajectory at S and the
direction of motion of the object.

underlying true CS trajectory at S. Otherwise, there is an angle γ from t̂ to ŝ
(Fig. 6.3). (All angles are measured counterclockwise.) While it is relatively easy
to get t̂, perhaps following an interpolation of the measured DS trajectory, it may
be more difficult to get ŝ. However, in one way or another, we need to know the
position S and the orientation ŝ. If necessary, we assume that ŝ is t̂. This is a
reasonable assumption when airplanes approach or leave a runway that is well aligned
with the wind direction. In an operational system, the positions of S are obtained
from either secondary surveillance radars or passive bistatic radars.

For a particular frequency f and a particular polarization Pol, both the MS-CRCS√
σ and the MS-RCS σ of an object vary with the aspect angle α from the line-of-sight

(LOS) vector l̂ to the LOS ŝ of the object (Fig. 6.4(a)). We conceptually represent
this variation by the functions

√
σ(α) and σ(α). Below, we review some elementary

"geometrical" considerations for the MS-CRCS and MS-RCS [91]. We place ourselves
in a 2D configuration, i.e. we do not consider the elevation angle. This last elevation
angle is thus not a parameter of the parameter space used here.

We distinguish between symmetric and asymmetric objects. This is why the
stylized object used in Fig. 6.4 has an optional circular part that allows one to make it
symmetric (by omitting this part) or not. For a symmetric object, one can intuitively
deduce from Fig. 6.4(a) that

√
σ(α) and σ(α) are even in α, i.e.

√
σ(α) =

√
σ(−α)

and σ(α) = σ(−α). This means that, for such an object, one only needs to examine
the variations of

√
σ and σ over the limited [0, π] range, instead of over the full [−π, π]

(or [0, 2π]) range, since all values of
√
σ(α) and σ(α) for α in [−π, 0] can be obtained

from those in [0, π]. However, this does not mean that
√
σ(α) and σ(α) have period π;

indeed, they have period 2π. As an aside,
√
σ(α) and σ(α) are generally not equal to√

σ(α+ π) and σ(α+ π), respectively. For an asymmetric object, one obviously needs
to consider

√
σ(α) and σ(α) over the full [−π, π] range. In conclusion, in the MS case,

we use α to parametrize the variations of both the MS-CRCS and MS-RCS.
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The BS equivalent of the MS aspect angle α is the pair of BS aspect angles αT and
αR, defined as in the MS case, but with respect to the LOS vector l̂T (from T ), and
the LOS vector l̂R (from R), respectively (Fig. 6.4(b)). Although we could use αT and
αR to parametrize the variations of both the BS-CRCS

√
σ
BS and the BS-RCS σBS ,

we use instead the bistatic angle β defined as the angle from l̂T to l̂R, and the angle α
defined as the angle from b̂ to ŝ, where the vector b̂ bisects β and points towards the
outside of the triangle TSR. One can easily derive the analytical relations between
the pairs (αT , αR) and (α, β). This shows that one can use either pair to parametrize
the variations of both the BS-CRCS and the BS-RCS. Here, we use the pair (α, β).

When the BS configuration reduces to an MS configuration, (1) the BS vectors l̂T ,
l̂R, and b̂ coincide, and become the MS LOS vector l̂, (2) the BS angle α becomes the
MS angle α, hence justifying the use of the same symbol α in both cases, despite the
different meanings, and (3) the angle β becomes zero. We use the term "aspect angle"
to refer to both the MS angle α and the BS angle α.

In [188], Skolnik states that "σBS is a function of aspect angle and bistatic angle",
but he does not define this aspect angle α precisely. Even though the term "bistatic
(BS) angle" generally denotes the interior angle of the triangle TSR between the sides
ST and SR [186], we also use this term to refer to the β introduced above (which can
take values in [0, 2π], by contrast to the usual [0, π]).

The assumed knowledge of S and of ŝ at any specific time allows us to compute the
values of α and β for this time. Since we assume that we know S and ŝ at all times
of interest during an observation window, we can associate a pair (α, β) to each point
along any trajectory. Adding

√
σ
BS and σBS , we can associate two triplets (α, β, σBS)

and (α, β,
√
σ
BS

) to each such point.

6.2.2 Parameter space

The parameters α and β are used to define a system of orthogonal (α, β) axes and
a corresponding 2D space, referred to here as the parameter plane. We also refer to it
as the (α, β) space and the (α, β) plane.

For example, consider a specific measured discrete space (DS) trajectory in the
physical plane, due to one specific (Tx,Rx) pair and one specific object. For each point
(x0, y0) along this trajectory, we can compute the corresponding values of α0 and β0,
which define a corresponding point (α0, β0) in the (α, β) plane. Each point (x0, y0) can
thus be mapped into a point (α0, β0). Since the mapping preserves the time ordering,
the mapping of all the points (x0, y0) along the trajectory in the (x, y) plane results in
a corresponding trajectory in the (α, β) plane. The values of both the CRCS

√
σ and

the RCS σ are also carried over in the mapping. (In the case of polarimetric radars,
one complex value per polarization pair would be carried over.) It is useful to visualize
one value of

√
σ, or one value of σ, associated with each point on each (x, y) and

(α, β) trajectory and, thus, functions
√
σ(x, y) and

√
σ

′
(α, β), or σ(x, y) and σ′(α, β),

which are continuous space (CS) functions (using "Dirac walls" [94]) or DS sequences
(using "lollipops" [33]).
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The customary range of β is [0, π]; the maximum range of α is [0, π] for symmetric
objects, and [−π, π] for asymmetric objects; at a given β,

√
σ
BS

(α) and σBS(α)

always have a period of 2π, and
√
σ
BS

(α) and σBS(α) are even for symmetric objects.
However, when considering the (α, β) plane, we must always consider the full [−π, π]
range of α, even for symmetric objects. Figure 6.5 shows the "central part" of the
(α, β) plane, as well as two example trajectories, corresponding either to a single
trajectory observed by two (Tx,Rx) pairs, or two distinct trajectories observed by a
single pair.
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Figure 6.5: 2D parameter space, also called (α, β) plane. The rectangle shown is the
boundary of the central part of the plane corresponding to α ∈ [−π, π] and β ∈ [0, π].
Two example (α, β)-plane trajectories are shown, both in continuous form and in
discrete form. The dots on each trajectory correspond to the instants one (Tx,Rx)
pair looks at the object.

We will use the parameter space, in terms of which we express both the BS-CRCS
and the BS-RCS of targets, in the design of each of the three recognizers.

6.3 Recognition strategy

In this section, we define the recognition strategy that we follow for the recognition
stage (i.e. the recognizer) of each of the three automatic target recognition ATR
systems. The lifecycle of any of the recognizers starts with the laboratory development,
where the recognizer is constructed and tested. It continues with the operational use.
The input data are either images, bistatic complex radar cross-section (BS-CRCS), or
bistatic radar cross-section (BS-RCS) of the targets of interest. We partition the data
into a learning set (LS) used for constructing the recognizer, and a test set (TS) used
for testing it, and quantifying its performance [53, 134].

Recognition consists in assigning a "class" to data, in particular that of the TS. In
supervised learning (as assumed here), this class is one among a set of Nc predefined
classes, each denoted here by Class ic, with ic ∈ [1, Nc].

The LS can be viewed as being organized into a set of (f, Pol, α, β) spaces, where
each space corresponds to a predefined class, and is filled with data of this class. The
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data corresponds to either images, BS-CRCS values, or BS-RCS values of the targets
of interest.

In the present context, since the polarization pair takes discrete values (HH, HV,
VH, VV), we will consider each polarization independently of the others. Similarly,
since the available data is computed for different non-adjacent frequency bands (FB1
to FB4), we will also consider each frequency band independently of the others.
Moreover, since the scattering mechanisms remain the same inside each frequency
band, we do not partition the data within a frequency band into sub-bands. Therefore,
for each frequency band, and for each polarization, the LS can very advantageously be
viewed as being organized into a set of (α, β) planes, where each plane corresponds to
a predefined class, and is filled with data of objects of this class.

In short, for each frequency band and for each polarization, we construct one
recognizer for each of the (α, β) plane filled with data of the Nc classes. Recall that
it is sufficient to consider the central part of the (α, β) plane, which corresponds to
α ∈ [−π, π] and β ∈ [0, π].

During test, one typically observes an object at a particular frequency and at a
particular polarization, over a part of the (α, β) plane. The basic ingredient for using
the recognizer is one (α, β) plane that contains a small amount of data. Since the goal
of the recognizer is to assign one of the Nc classes to the data in this (α, β) plane, it is
very advantageous to say that this plane corresponds to the unknown class, which we
call "Class x", by analogy with "Class ic". Once again, it is sufficient to consider the
central part of this plane. The goal of the recognizer is to attribute one of the values
ic’s to x.

We now have, for each frequency band and for each polarization, a set of Nc (α, β)
planes filled with data and ready to be used for constructing the recognizer, and one
(α, β) plane for holding the data to be recognized, i.e. a sort of scratchpad to hold
data temporarily. Figure 6.6(a) illustrates, for each frequency band and for each polar-
ization, the central part of each of these planes and the measured DS data they contain.

As will soon become clear, our approach to recognition can be applied either to
the central parts of these planes, or to any common subset thereof. As illustrated
in Fig. 6.7, this subset, called here "cookie-cutter region", can be of arbitrary shape.
Figure 6.6(b) shows such a region overlayed on the central parts. This region
automatically segments out the data in (the central part of) all (α, β) planes. One can
then consider only the data that is segmented out (Fig. 6.6(c)).

A key feature of our approach is that, for each frequency band and each polariza-
tion, we use the data from the same region in the Nc planes to construct a recognizer
specific to this region and the Nc classes. We call the recognizer specific to a given
region a sub-recognizer. During test, the data from the same region in the plane for
Class x is presented to the (sub-)recognizer.

Instead of cutting out a single region from the (α, β) plane, we can cut out
several regions, whether overlapping or not, and construct one recognizer for each.
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Figure 6.6: Illustration of the use of the generic cookie-cutter region of Fig. 6.7 to
extract the same corresponding region from the (α, β) plane of each class of interest,
i.e. Class 1, ..., Class Nc, and Class x. The cookie-cutter region automatically
segments out portions of the data present in the various (α, β) planes. The recognizer
is built from the data so isolated for Classes 1 to Nc. The recognition is performed
using the data so isolated for Class x.
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Figure 6.7: Illustration of the (generic) cookie-cutter region. It delimits one region -
consisting of one or more subregions - in the central part of the generic (α, β) plane.
It is used as a cookie cutter to isolate the same region in the (α, β) planes of the
classes of interest, i.e. Class 1, ..., Class Nc, and Class x.
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To handle the full central part, it is sufficient to define a collection of overlapping or
non-overlapping subsets of it. One important covering is obtained by subdividing the
α and β axes into contiguous intervals, and using these intervals to define rectangular
tiles (Fig. 6.8). One recognizer specific to each tile must be constructed. One can
choose regions/tiles that overlap or not.
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Figure 6.8: Partitioning of the central part of the (α, β) plane using an example 4 ×3
array of butting, non-overlapping tiles fully covering the central part (with 4 and 3
corresponding to α and β, respectively). A recognizer would be built for each tile,
and recognition would be performed tile-by-tile.

One advantage of decomposing the central part into several regions is that the
recognizer constructed for each tile will likely have better performance, since it must
only deal with limited angular coverages in α and β. One disadvantage lies in the
number of recognizers one must construct.

Figure 6.9 gives a bird’s eye view of the recognizer we build for any given
region, such as a rectangular tile for a particular frequency band and for a par-
ticular polarization. The first block diagram concerns the "construction" of the
corresponding sub-recognizer, which uses the LS data for all Nc classes to produce
a target class model. For each of the Nc classes, one first produces feature vectors
(FVs) [134,208], and one then computes the "best" target class model from all the FVs.

The second block diagram concerns the "test" of the recognizer and its "operational
use". In both cases, one first produces one FV (at a time) from the appropriate data for
the region of interest. One then determines the class that the (sub-)recognizer assigns
to this FV by using the corresponding target class model. The difference between test
(TS) and operational use (operational data) is the availability of the ground truth for
the TS, which allows one to quantify the performance of the (sub-)recognizer for the
region considered.

If enough computational power is available, one can envision adjusting the cookie-
cutter region on-the-fly. This would imply recomputing the FVs and the target class
model on-the-fly, prior to testing the new FV of interest on the target class model.
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Figure 6.9: Block diagrams summarizing the generic architecture of any of the sub-
recognizers of the recognition stage (i.e. the recognizer) of each of the three ATR
systems. (a) shows the successive steps in building the target class model, and (b) the
successive steps in performing the recognition, either for testing (and performance
evaluation) or for operational use.
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6.4 Block diagram of the recognizer

The input data of the recognizer are the images that we constructed from the bistatic
complex radar cross-section (Chapter 5) of the targets of interest. The four targets
of interest are a Beechcraft, an F117 fighter, an F16 fighter, and a Learjet. Each
type of target corresponds to a particular target class. We thus consider Nc = 4 classes.

Each image is labelled a value for each of the parameters of the parameter space,
which are the frequency band f , the polarization Pol, the aspect angle α, and the
bistatic angle β. As described in Section 6.3, we divide the parameter space into tiles,
and we build a recognizer for each tile. As explained in Chapter 5, we constructed
images for the HH polarization only, for each of the four frequency bands, each of the
three aspect angles, and several bistatic angles ranging from 6◦ to 160◦. We arbitrarily
divide the range of bistatic angle into 12 overlapping sectors, as described in Table 6.1.
We thus build 4 × 3 × 12 recognizers, one for each frequency band, and for each tile of
the (α, β) plane.

Bistatic angular sector index Bistatic angular sector (degrees)

1 (6, 43.5)
2 (18.5, 56)
3 (31, 68.5)
4 (43.5, 81)
5 (56, 93.5)
6 (68.5, 106)
7 (81, 118.5)
8 (93.5, 131)
9 (106, 143.5)
10 (118.5, 156)
11 (131, 168.5)
12 (143.5, 181)

Table 6.1: Bistatic angular sectors considered.

Figure 6.10 gives the block diagrams of the recognizer we build for any given
tile. The first block diagram concerns the "construction" of the corresponding sub-
recognizer, which uses the LS data for all Nc classes to produce a recognition "model"
consisting of a list of extremely randomized trees (extra-trees). We describe the
determination of the target class model in Section 6.6. For each of the Nc classes, one
first produces feature vectors (FVs). Each FV consists in an ensemble of windows that
we extract from each input image. We describe the extraction of windows in Section 6.5.

The second block diagram concerns the "test" of the sub-recognizer and its
"operational use". In both cases, one first produces one FV (at a time) from the
appropriate data for the tile of interest. One then propagates each FV through
each of the extra-tree, thus assigning a class to each window of the FV for each
extra-tree. A majority vote among the assigned classes determines the class that the
(sub-)recognizer assigns to this FV. The difference between test (TS) and operational
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Figure 6.10: Block diagrams summarizing the architecture of any of the sub-
recognizers of the recognition stage. (a) shows the successive steps in building the
target class model, and (b) the successive steps in performing the actual recognition,
either for testing (and performance evaluation) or for operational use.

use (operational data) is the availability of the ground truth for the TS, which allows
one to quantify the performance of the recognizer for the tile considered.

The joint use of windows extracted from an image and of extra-trees was developed
and tested by Marée for the classification/recognition of non-radar images of objects,
and reported in [123, 124].

6.5 Production of feature vectors by window ex-

traction

The first step of the recognizer, for both the construction of the target class model
and the test of the target class model, consists in the production of feature vectors
(FVs). Each FV consists in the pixel values inside a fixed number of windows which
we extract out of each image. The method for the extraction of windows is reported
in [126, 129].

For each image of the learning set (LS), we extract a large number Nls of square
windows of random sizes (constrained between α% and β% of the image size), at
random positions. Figure 6.11 shows an example of 4 windows that are extracted out
of a particular radar image. We then resize each window to a fixed, given size w × h,
so that all windows are described by the same number of pixels. Each window is
characterized by its pixel values i.e. w × h numerical values in the case of grayscale
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images. Each window is also assigned the class of its parent image.

Figure 6.11: Example of four windows that we extract out of a particular image.

A similar process is repeated for the construction of the FV for any image of the
test set (TS). The number of extracted windows can be different, and is denoted by
Nts. The locations of the windows extracted from images of the LS and for the TS
can be different. The main difference is that each window is labelled, but only for
quantifying the performance of the recognizer.

6.6 Determination of the target class model by

extra-trees

In this section, we present the determination of the target class model from the
feature vectors (FVs) that we extracted from the images of the learning set (LS).
The target class model consists of an ensemble of extremely randomized decision
trees (extra-trees). The first tree-based methods classified objects based on a single
deterministic decision tree [25]. Then, tree-based methods started using ensemble of
trees, called forests, to classify objects. Different methods to randomize the trees are
used, such as bagging [26], random forests [27], and extra-trees [69]. A brief history of
the different decision-trees methods appears in [124].

6.6.1 Deterministic decision tree

Before describing the concept of an extra-tree, we first briefly describe the classical
(binary) deterministic decision tree. Below, we successively describe the construction
of the tree and its use for classifying previously-unseen inputs, as illustrated in
Fig. 6.12. A deterministic decision tree is a collection of "if-then" mutually exclusive
decision rules that recursively separate objects of the input LS into disjoint subsets
of objects, until each subset contains objects of (mainly) a single class (in case of
fully-developed trees). When a subset contains objects of (mainly) a single class, it is
called a terminal node, or leaf. The links between two nodes are called branches.
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We first describe the construction of a (binary) decision tree. Let us consider that
objects to be classified are characterized by two attributes a1 and a2, and belong either
to class c1 or c2. At each node, a subset is separated into two subsets (since we deal
with a binary tree) according to a decision rule performed over one of the attributes of
the objects. For example, at the top node of Fig. 6.12, the objects of the learning set
(LS) are separated into two subsets according to the value of their attribute a1, either
greater or smaller than a value v1. In the example, the objects for which the value of
a1 is greater than v1 all belong to class c1. This terminal node, or leaf, is labelled as
class c1. The procedure is repeated for the subset of objects for which the attribute a1

is smaller than v1.

At each node of the decision tree, the best decision rule is applied. Different
criteria, described in [54], exist for determining the best decision rule, i.e. for choosing
the best attribute to be tested at a particular node, and the best corresponding
threshold value for this attribute. The collection of rules constitutes the decision tree.

c1

c1c2

a1 < v1

a2 < v2

Yes No

Yes No

Figure 6.12: Example of a decision tree [124].

We continue with the use of the tree for the recognition of a previously-unseen
object. During test (and operational use), an object of the test set (TS) is propagated
through the trees, which means that, at each node, starting from the top node, the test
that has been established at the time of construction is performed on the attributes
describing the unknown object, until a leaf is reached. The class of this leaf becomes
that of the unknown object.

6.6.2 Extremely randomized trees

An extremely randomized tree (extra-tree) is a randomized version of a decision
tree. At each node of an extra-tree, the attribute is randomly chosen among the set
of attributes describing the objects of the LS. The threshold value is also randomly
chosen [124]. In the example of Fig. 6.12, the first node of the tree splits the input
data according to attribute a1 and the corresponding threshold value v1. In the case of
an extra-tree, both the attribute and its corresponding threshold value are randomly
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chosen, while their choice is deterministic in the case of a decision tree.

The classification model consists in T extra-trees. Each extra-tree is built in the
following way. Starting at the top node with the feature vectors (FVs), i.e. the
windows that are extracted from the images of the LS, we build a fully-developed
decision tree according to the classical top-down decision tree induction procedure [28].
The main difference between an extra-tree and other tree methods is that, while
growing a tree, the extra-tree splits nodes by choosing both attributes and threshold
values at random. At each node, a binary test compares the value of a pixel (graylevel
intensity) at a fixed location within a window to a threshold value. In order to filter
out irrelevant attributes, the filtering parameter k corresponds to the number of
attributes (i.e. the number of pixels) chosen at random at each node, where k can
take all possible values from 1 to the number of attributes describing each window of
the FVs. For each of these k attributes, a pixel intensity value threshold is randomly
chosen. The score of each binary test is then computed on the current subset of
windows, according to an information criterion [220]. The best test among the k
tests is chosen to split the current node. The procedure is repeated recursively on
all subsets of windows until the tree is fully developed. In each terminal node, the
class frequencies of windows of images of the LS that were propagated to that leaf
are stored. We build the T fully-developed trees according to this scheme. (Images of
the LS and their extracted windows are no longer required for test and operational use.)

6.6.3 Motivation for using extremely randomized trees

Various classification methods have been used to classify radar images of targets
in radar automatic target recognition (ATR) (Section 2.3). These methods extract,
from the images of the objects of interest, features that characterize these objects.
The objects are then classified based on the extracted features. The more popular
classifiers/recognizers used are the nearest neighbor (kNN) method, the support vector
machine (SVM) method, and neural networks (NN).

Unlike these recognition methods, the extra-trees-based image classifier is generic
in the sense that the algorithm only needs the (raw) images as input. No explicit
feature is computed from the images, since the windows that we extract are not based
on features of the objects of interest. Therefore, adding a new target class does not
require to recompute any feature, thus limiting the overall processing time.

To our knowledge, few of the radar ATR methods based on images of targets
published in the literature rely on the use of decision trees. However, it is empir-
ically shown in [124] that extra-trees achieve a classification rate as high as that
of other conventional classification techniques, such as SVM. Among the different
tree-based classification methods, it is shown in [69] that classification results are
higher for extra-trees than for classical decision trees. It is also empirically proven
in [118,124,178,179] that random decision trees and forests, and thus extra-trees, are
as fast as other classification techniques. In [177], random trees are implemented on a
GPU, thus making it available for real-time processing. Moreover, extra-trees do not
need a fine tuning of the parameters, unlike other classification methods such as SVM
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and NN. Extra-trees have also been successfully tested on conventional images, such
as in [146, 147].

Furthermore, it has been empirically shown in [124] that the joint use of windows
extraction and extra-trees is robust to the rotation of targets. Therefore, the joint
use of windows extraction and of an ensemble of extremely randomized decision trees
appears to be a promising classification technique.

The image classifier based on the joint use of windows extraction and extra-trees
defined in [124] has been tested on numerous datasets of classical images, such as
in [124, 125, 127, 128]. In order to validate the extra-trees-based method as a robust
and accurate recognizer of radar images, we first test below the recognizer on the
well-known MSTAR database. We compare the achieved recognition rates with the
recognition rates of other ATR systems tested on the MSTAR dataset, and published
in the literature.

6.7 Determination of the target class

During both test and operational use, we first produce a feature vector (FV) char-
acterizing the input image. The FV is a set of Nts windows from this image. We then
propagate each window of the FV into each of the T extra-trees. The assigned classes of
all windows at terminal nodes are aggregated, and the majority class is assigned to the
image. This approach has also been extended for content-based image retrieval [130]
and semantic segmentation [56].

6.8 Quantification of performance

We quantify the performance of the recognizer during the test phase, in the following
way. The primary criterion is the error rate. The error rate is defined as the ratio of
the number of images that are wrongly classified to the total number of images that
are classified. The second criterion is the individual window error rate. The individual
window error rate is defined as the ratio of the number of windows that are wrongly
classified to the total number of windows that are classified.

The error rate and the individual window error rate are obtained from the
confusion matrices. A confusion matrix is a two-dimensional matrix. The different
true classes of the objects to be classified are each represented by a row, and the
different classes assigned by the recognizer are each represented by a column. In the
experiments performed below, the obtained confusion matrices are square, since we
force the recognizer to assign a class to every image that we wish to classify. Each
cell (i, j) of a confusion matrix represents the number of objects of the true class
i that are labelled by the computed class j. The sum of all the elements in a row
is equal to the number of objects that truly belong to the class of the row. The
recognition rate for a target class i is the ratio between the number of objects of
that class that are truly recognized, reported in cell (i, i), to the total number of
objects of that class. The total recognition rate is the ratio of the sum of the diagonal
elements of the confusion matrix to the sum of all the elements of the confusion
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matrix. The total error rate is equal to one minus the total recognition rate. For
the error rate, an object is an image of a target of interest, while, for the individual
window error rate, an object is a window extracted from an image of a target of interest.

We choose the values of the parameters of the recognizer in order to remain com-
putationally efficient. However, for two different sets of parameters, if both the error
rates and the window error rates are equal, the set of parameters for which the error
rate is achieved faster is preferred.

6.9 Recognition experiments on MSTAR images

We quantify the performance of the recognizer on images of the MSTAR data. We
first describe the MSTAR data, and the six different sets of images we built for the
recognition experiments. We then describe the parameters of the recognizer, and the
recognition results we achieve for each of the six sets of images.

6.9.1 Description of MSTAR images

The MSTAR data is a well-known database that is collected and distributed under
the DARPA Moving and Stationary Target Recognition program. The MSTAR
database is shared by the synthetic aperture radar (SAR) ATR community. SAR
produces images of targets with sufficient resolution (because of the high frequency
used, usually in the GHz) to be classified [169,171,222].

The MSTAR data consist of X-band (10 GHz) SAR images of targets. We consider
three targets of interest that are the BMP-2 and the BTR-70 armored personal
carriers (APCs), and the T-72 tank. We also consider SLICY canonical targets that
are defined in [175] as "a precisely designed and machined engineering test target
containing standard radar reflector primitive shapes such as flat plates, dihedrals,
trihedrals, and top hats". Images of clutter, i.e. containing "things" other than the
targets of interest (BMP-2, BTR-70, T-72) and the SLICY targets, are also available.
Figure 6.13 shows examples of images of each type.

Images of each of the three targets of interest were captured at two depression
angles, which are 15◦ and 17◦, over a full range of aspect angles, from 0◦ to 360◦. Each
image is of size 128 pixels × 128 pixels. Images of the SLICY target were captured
at the depression angles of 15◦ and 30◦. The clutter images were captured at the
depression angle of 15◦.

Note that the term "clutter" is used here in the sense used by the MSTAR commu-
nity, i.e. for anything that is other than the targets of interest, whether man-made or
natural.

6.9.2 Experimental sets of images

We consider the recognition of the three different targets of interest, in presence of
clutter and/or SLICY targets. Each target of interest is considered here to be a class.
SLICY targets are also considered to be a class. Even though it is not possible to
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(a) BMP-2 APC. (b) BTR-70 APC. (c) T-72 tank.

(d) SLICY target. (e) CLUTTER. (f) CLUTTER.

Figure 6.13: Example SAR images of the various objects available in the MSTAR
database and used for our recognition experiments.

model the clutter, we call the class representing the clutter images the non-target class.

We make up six different sets of images. We first consider the recognition of the
three targets of interest. We thus first exclusively consider images of the three targets
of interest, i.e. images of the BMP-2 APC’s, the BTR-70 APC’s, and the T-72 tanks.
The first set is made up of the raw images of the three targets of interest (128 × 128
pixels), as depicted in Table 6.2(a).

To get rid off the background speckle, we manually crop the raw images. The
second set is made up of the cropped images (Table 6.2(b)). The cropped images are
the central 64 pixels ×64 pixels of the raw images, since the target and its shadow are
always located in the central part of the raw images.

We then rotate the images of the targets, in order to get rid off the aspect angle.
The third set is made up of the images of the three targets of interest that we rotate
to get all the targets pointing to the same direction (Table 6.2(c)). We thus assume
that we know the orientation of the target. We perform the rotation by using the
information provided in the header file of each image. We could use a pose estimator
to get the azimuth angle for the rotation, but rotating the target using this a priori
information is not necessary, as we will show in Section 6.9.4. It has also been
empirically shown in [124] that the classifier is robust to the rotation of the targets.
Furthermore, we also crop the images, for the same reason as for the second set.
However, since the images are rotated, we now keep the central region of 80 × 80
pixels. More background speckle is present in the 80 × 80 images than in the 64 × 64
images. This additional background speckle is not a problem, as we will show when
we discuss the results (Section 6.9.4).
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(a)

(b)

(c)

Table 6.2: SAR images of BMP-2 targets at different aspect angles for each of the
first three sets. (a) 128×128 raw images of the first set. (b) Cropped 64×64 images
of the second set. (c) Cropped and rotated 80 × 80 images of the third set.

We then consider the recognition of the three targets of interest in the presence of
non-targets (i.e. clutter). The fourth set of images is thus made up of the images of
the three targets of interest and the non-target images.

We then consider the recognition of the three targets of interest in the presence of
SLICY targets, that act as false targets. The fifth set of images is thus made up of
the images of the three targets of interest and the images of the SLICY targets.

Last, we consider the recognition of the three targets of interest in the presence
of both SLICY targets, that act as false targets, and non-targets (i.e. clutter). The
sixth set of images is thus made up of the images of the three targets of interest, the
images of the SLICY targets, and the non-target images.

For each of the six sets, we choose to put all the images obtained for depression
angles of 17◦ and 30◦ in the learning set (LS), and to put all the images obtained for
a depression angle of 15◦ in the test set (TS). For the non-target images, since the
available images were all taken at a depression angle of 15◦, we choose to put half of
the images in the LS, and the other half in the TS. This partitioning of the images into
a LS and a TS is similar to the partitionings of the MSTAR images that are reported
in the literature. We are thus able to compare our results to those reported in the
literature. Table 6.3 gives, for each set, the number of images for each class, for both
the LS and the TS.
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BMP-2 BTR-70 T-72
NON-

TARGETS
SLICY Total

Set 1:
LS/TS

698/587 233/196 463/582 0/0 0/0 1394/1365

Set 2:
LS/TS

698/587 233/196 463/582 0/0 0/0 1394/1365

Set 3:
LS/TS

698/587 233/196 463/582 0/0 0/0 1394/1365

Set 4:
LS/TS

698/587 233/196 463/582 50/50 0/0 1444/1415

Set 5:
LS/TS

698/587 233/196 463/582 0/0 288/274 1682/1639

Set 6:
LS/TS

698/587 233/196 463/582 50/50 288/274 1732/1689

Table 6.3: Number of images of each class (BMP-2, BTR-70, T-72, NON-TARGETS,
and SLICY) in each prepared set, for the LS and the TS. For each class, the number
of images is indicated, both for the LS and the TS.

6.9.3 Parameters of the recognizer

The different parameters of the recognizer that we can tune are the number Nls = Nts

of windows extracted from each image, the random sizes of the windows, the number T
of trees of the target class model, and the number k of random tests performed at
each node of each tree.

For the first three sets, and to stay computationally efficient, we choose to
train and test the recognizer by extracting either 10 or 100 windows per image,
i.e. Nls = Nts ∈ {10, 100}. The size of each window is randomly taken be-
tween α = 90% and β = 100% of the size of the image. Each window is then resized to
get only w × h = 16 × 16 pixel windows. The target class model consists of either 10
or 20 extra-trees, i.e. T ∈ {10, 20}, here again for computational reasons. We consider
different values of the number of random tests, i.e. k ∈ {1, 16, 256}. Therefore, two
recognition experiments differ by one or more of the following parameters: the number
of windows extracted per image, the number of trees of the target class model, and
the number of tests performed at each node.

The parameters of the recognition experiments we perform on the last three sets
are those that give the best results for the first three sets.

6.9.4 Recognition results

This section describes the results achieved for the recognition experiments we perform
on each of the six sets of the MSTAR data, for the different sets of parameters. We
assign to each recognition experiment a label n1.n2, where n1 corresponds to the set of
images, and n2 corresponds to the set of parameters we use for the experiment.
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Recognition results for Set 1

We consider the recognition of the three targets of interest by using the raw
128 × 128 images of the three targets of interest only. Table 6.4 gives the error rate
achieved for each set of parameters. The lowest achieved error rate is just less than
20% (Experiment 1.5). This is due to the presence of background speckle in the
images. Recall that only the central 64 × 64 pixels contain relevant information, and
that, here, we consider all the 128 × 128 pixels of the image. One must notice that
the error rate does not diminish significantly, neither when taking more windows
(Nls = 500 instead of Nts = 100), nor when taking more trees (T = 20 instead of
T = 10). However, taking more tests (k = 256 instead of k = 1) helps to improve
the results, even though we cannot, to keep our method computationally efficient,
consider too many tests.

Error rates per experiment
Experiment Nls = Nts T k Error rate

1.1 100 10 1 42.56%
1.2 100 10 16 32.97%
1.3 100 10 256 21.47%
1.4 100 20 256 21.61%
1.5 500 10 256 19.34%

Table 6.4: Five distinct experiments carried out using the first set of MSTAR SAR
images. The table shows, for each experiment, the values of the parameters Nls =
Nts, T , and k, and the achieved error rate.

We show the confusion matrix obtained for Experiment 1.5 in Table 6.5. The
confusion matrix shows that the algorithm is unable to recognize BMP-2 APCs. The
fact that it classifies BMP-2 APCs as T-72 tanks and not as BTR-70 APCs indicates
that the background speckle plays a major role in the classification of the targets.

Confusion matrix for Experiment 1.5
True vs. computed BMP-2 BTR-70 T-72 Recognition rate per target

BMP-2 346 14 227 346/587 = 58.94%
BTR-70 1 184 11 184/196 = 93.88%

T-72 9 2 571 571/582 = 98.11%
Total 356 200 809

Mean error rate = 19.34%

Table 6.5: Confusion matrix obtained for the experiment of Table 6.4 giving the lowest
error rate, i.e. 19.34% (Experiment 1.5).

Recognition results for Set 2

We consider the recognition of the three targets of interest by using the cropped
64 × 64 images of the three targets of interest only. Table 6.6 gives the error rate
achieved for each set of parameters. The lowest achieved error rate is just less than
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1.5% (Experiment 2.3). The difference with the lowest achieved error rate of Set 1 is
explained by the cropping of the images, which results in less speckle in each image.
The same conclusions can be drawn concerning the influence of the different parameters.

Error rates per experiment
Experiment Nls = Nts T k Error rate

2.1 100 10 1 34.72%
2.2 100 10 16 10.53%
2.3 100 10 256 1.42%
2.4 100 20 1 36.99%
2.5 100 20 256 1.48%
2.6 10 10 1 32.16%
2.7 10 10 16 13.20%
2.8 10 10 256 5.86%
2.9 10 20 16 11.16%
2.10 10 20 256 4.72%

Table 6.6: Ten distinct experiments carried out using the second set of MSTAR SAR
images. The table shows, for each experiment, the values of the parameters Nls =
Nts, T , and k, and the achieved error rate.

We show the confusion matrix obtained for Experiment 2.3 in Table 6.7. The
confusion matrix shows that the algorithm is able to recognize the three targets of
interest.

Confusion matrix for Experiment 2.3
True vs. computed BMP-2 BTR-70 T-72 Recognition rate per target

BMP-2 578 0 9 578/587 = 98.47%
BTR-70 2 584 2 584/588 = 99.32%

T-72 12 0 570 570/582 = 97.94%
Total 592 584 581

Mean error rate = 1.42%

Table 6.7: Confusion matrix obtained for the experiment of Table 6.6 giving the lowest
error rate, i.e. 1.42% (Experiment 2.3).

Recognition results for Set 3

We consider the recognition of the three targets of interest by using the cropped and
rotated 80 × 80 images of the three targets of interest only. Table 6.8 gives the error
rate achieved for each set of parameters. The lowest achieved error rate is just less
than 1% (Experiment 3.3). The rotation of the images improves somewhat the error
rate. The same conclusions can be drawn concerning the influence of the different
parameters.

We show the confusion matrix obtained for Experiment 3.3 in Table 6.9. All three
targets are recognized almost perfectly.
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Error rates per experiment
Experiment Nls = Nts T k Error rate

3.1 100 10 1 22.86%
3.2 100 10 16 6.15%
3.3 100 10 256 0.88%
3.4 100 20 1 23.44%
3.5 100 20 16 5.64%
3.6 100 50 16 5.64%
3.7 10 10 1 30.40%
3.8 10 10 16 15.82%
3.9 10 10 256 6.08%
3.10 10 20 256 3.96%
3.11 10 50 256 3.37%

Table 6.8: Eleven distinct experiments carried out using the third set of MSTAR
SAR images. The table shows, for each experiment, the values of the parameters
Nls = Nts, T , and k, and the achieved error rate.

Confusion matrix for Experiment 3.3
True vs. computed BMP-2 BTR-70 T-72 Recognition rate per target

BMP-2 585 0 2 585/587 = 99.66%
BTR-70 0 194 2 194/196 = 98.98%

T-72 8 0 574 574/582 = 98.63%
Total 592 584 581

Mean error rate = 0.88%

Table 6.9: Confusion matrix obtained for the experiment of Table 6.8 giving the lowest
error rate, i.e. 0.88% (Experiment 3.3).

Recognition results for Set 4

We consider the recognition of the three targets of interest in presence of non-targets.
In this case, non-target is considered as a particular class of target. Table 6.10 gives
the error rate achieved for each set of parameters. The lowest achieved error rate is
just less than 4% (Experiment 4.4). A comparison with the corresponding sets of
parameters of the best results achieved for the second set of MSTAR images shows
that the addition of non-target images raises the error rate by about 4 to 10 percent,
depending on the parameters.

We show the confusion matrix obtained for Experiment 4.4 in Table 6.11. All
three targets are recognized almost perfectly, except for the BTR-70. Non-targets are
perfectly classified. However, no conclusion can really be reached as the number of
non-target images is quite small with respect to the number of images of the other tar-
gets. Let us emphasize that the non-target class is hard to characterize. For example,
Fig. 6.13 shows two sample images of non-target images that are very different.
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Error rates per experiment
Experiment Nls = Nts T k Error rate

4.1 100 10 256 4.24%
4.2 10 10 256 10.04%
4.3 100 10 16 14.98%
4.4 100 20 256 3.6%
4.5 100 20 16 15.62%
4.6 10 10 16 23.46%

Table 6.10: Six distinct experiments carried out using the fourth set of MSTAR SAR
images. The table shows, for each experiment, the values of the parameters Nls =
Nts, T , and k, and the achieved error rate.

Confusion matrix for Experiment 4.4
True vs.

computed
BMP-

2
BTR-

70
NON-

TARGET
T-72 Recognition

rate per target
BMP-2 579 0 0 8 579/587 =

98.64%
BTR-70 28 165 0 3 165/196 =

84.18%
NON-

TARGET
0 0 50 0 50/50 =

100.00%
T-72 12 0 0 570 570/582 =

97.94%

Total 619 165 50 573
Mean error rate = 3.60%

Table 6.11: Confusion matrix obtained for the experiment of Table 6.10 giving the
lowest error rate, i.e. 3.60% (Experiment 4.4).

Recognition results for Set 5

We consider the recognition of the three targets of interest in presence of SLICY
targets that act as false targets. In this case, SLICY targets are considered as a
particular class. Table 6.12 gives the error rate achieved for each set of parameters.
The lowest achieved error rate is just less than 2.5% (Experiment 5.4). A comparison
with the corresponding sets of parameters of the best results achieved for the second
set of MSTAR images shows that the addition of images of SLICY targets raises the
error rate by about 2 to 10 percent, depending on the parameters.

We show the confusion matrix obtained for Experiment 5.4 in Table 6.13. All three
targets of interest and SLICY targets are recognized almost perfectly, except for the
BTR-70.

Recognition results for Set 6

We consider the recognition of the three targets of interest in presence of both
SLICY targets and non-target. In this case, SLICY targets are considered as a
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Error rates per experiment
Experiment Nls = Nts T k Error rate

5.1 100 10 256 3.11%
5.2 10 10 256 9.15%
5.3 100 10 16 13.79%
5.4 100 20 256 2.26%
5.5 100 20 16 13.24%
5.6 10 10 16 22.64%

Table 6.12: Six distinct experiments carried out using the fifth set of MSTAR SAR
images. The table shows, for each experiment, the values of the parameters Nls =
Nts, T , and k, and the achieved error rate..

Confusion matrix for Experiment 5.4
True vs.

Computed
BMP-

2
BTR-

70
SLICY T-72

Recognition
rate per target

BMP-2 582 0 0 5
582/587 =

99.15%

BTR-70 17 174 0 5
174/196 =

88.78%

SLICY 0 1 273 0
273/274 =

99.64%

T-72 9 0 0 573
573/582 =

99.45%

Total 608 175 273 583
Mean error rate = 2.26%

Table 6.13: Confusion matrix obtained for the experiment of Table 6.12 giving the
lowest error rate, i.e. 2.26% (Experiment 5.4).

particular class of target, and non-target as another class. Table 6.14 gives the error
rate achieved for each set of parameters. The lowest achieved error rate is just less
than 3.5% (Experiment 5.4). A comparison with the corresponding sets of parameters
of the best results achieved for the second set of MSTAR images shows that the
addition of images both SLICY targets and non-targets raises the error rate by about 3
to 8 percent, depending on the parameters.

We show the confusion matrix obtained for Experiment 6.4 in Table 6.15. All three
targets of interest, SLICY targets, and non-targets are recognized almost perfectly,
except for the BTR-70.

Discussion of the recognition results achieved for the MSTAR images

We considered the recognition of the three targets of interest, for different versions
of the images of the MSTAR data. The lowest error rate achieved for Set 1 (raw
images) is of about 20%, which is very high. The lowest error rate achieved for Set 3
(cropped and rotated images) is better than the lowest error rate achieved for Set 2
(cropped images). However, since we needed to rotate the images to obtain images
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Error rates per experiment
Experiment Nls = Nts T k Error rate

6.1 100 10 256 3.43%
6.2 10 10 256 9.71%
6.3 100 10 16 14.32%
6.4 100 20 256 3.43%
6.5 100 20 16 13.74%
6.6 10 10 16 22.02%

Table 6.14: Six distinct experiments carried out using the sixth set of MSTAR SAR
images. The table shows, for each experiment, the values of the parameters Nls =
Nts, T , and k, and the achieved error rate.

Confusion matrix for Experiment 6.4

True vs.
Computed

BMP-2
BTR-

70
NON-

TARGET
SLICY T-72

Recognition
rate per
target

BMP-2 580 0 0 0 7
580/587 =

98.81%

BTR-70 24 170 0 0 2
170/196 =

86.73%
NON-

TARGET
0 0 46 4 0

46/50 =
92.00%

SLICY 0 1 7 266 0
266/274 =

97.08%

T-72 13 0 0 0 569
569/582 =

97.77%

Total 617 171 53 270 578
Mean error rate = 3.43%

Table 6.15: Confusion matrix obtained for the experiment of Table 6.14 giving the
lowest error rate, i.e. 3.43% (Experiment 6.4).

of Set 3, we can consider that the most significant result is the error rate of 1.42%
computed for Set 2. Eliminating as much background speckle as possible from the
images is nevertheless essential to get high recognition rates. The elimination of
background speckle is the only image pre-processing step we used.

We then considered the recognition of the three targets of interest in presence
of non-targets (Set 4), SLICY targets (Set 5), or both (Set 6). Results show that
the addition of non-target images, SLICY target images, or both, increases the error
rate by about 2% to 4%. Our method has thus proven to be robust for recognizing
images of targets in the presence of images of both non-targets and SLICY targets.
However, it must be emphasized that, since the number of images of the non-target
class is small, the non-target class cannot be considered as completely characterized.
Therefore, one must take the achieved results with extreme care.

Comparing the classification rates achieved by our method with the results achieved
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by other methods reported in the literature (Section 2.3) is difficult in the sense that
different versions of the MSTAR database are used by the various automatic target
recognition (ATR) methods reported in the literature. However, when comparing
our best error rate, 3%, with error rates obtained by ATR methods published in the
literature, we can say that the extra-trees-based method produces one of the lowest
error rates reported (between 1% and 9%). Furthermore, the extra-trees-based method
does only need to crop the images in order to reduce the amount of speckle on the
images. No explicit feature extraction is needed, since the algorithm classifies images
based on the raw values of their pixels. Moreover, the algorithm remains generic in
the sense that adding a new class does not imply to recompute new features. This is a
major difference with almost all existing algorithms (listed in Section 2.3), which need
to compute features.

As discussed in Section 6.6.3, a tree-based recognizer is usually faster than other
recognizers based on neural networks or support vector machines. Testing the model
on a few hundred SAR images only requires between a few seconds and one minute on
a regular computer (a laptop with 4 Gb of RAM, equipped with a dual-core processor
working at 2 GHz), depending on the parameters. The method is thus computationally
efficient.

6.10 Recognition experiments on ONERA images

We now perform the recognition of the four targets of interest by using the radar
images of the targets of interest. We constructed the images of these targets from
the bistatic complex radar cross-section (BS-CRCS) of these targets (Chapter 5). The
BS-CRCS of these targets was extracted from signals acquired in the anechoic chamber
at ONERA (Chapter 4).

6.10.1 Experimental sets of images

We described in Chapter 5 the construction of the radar images of four targets of
interest from the BS-CRCS of these targets at various frequencies, various bistatic
angles, various azimuth angles, and various elevation angles. The four targets of
interest are a Beechcraft, an F117 fighter, an F16 fighter, and a Learjet. Each target
is considered as a separate class.

According to the recognizer we described in Section 6.4, we build one recognizer
for each tile of the parameter space into which we express the images of the targets.
We explained in Section 6.4 that the parameters of the parameter space of the images
are the frequency band, the aspect angle α, and the bistatic angle β. We constructed
images for four different frequency bands and three different aspect angles. Images
that we constructed from values of the BS-CRCS computed at the lower half of a
frequency band belong to the learning set (LS), and images that we constructed from
values of the BS-CRCS computed at the upper half of the same frequency band belong
to the test set (TS)

As shown in Table 6.1, we arbitrarily divided the range of bistatic angle into 12
overlapping bistatic angular sectors. We do not use the bistatic angular sectors 11 and
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12 in our recognition experiments for the following reasons. For sector 11, not enough
images are constructed since the bistatic angular sector is partly defined for bistatic
angles greater than the maximum available bistatic angle (160◦). For sector 12, no
image can be constructed over that sector. Indeed, since an image is constructed from
values of the BS-CRCS that are extracted for a variation of the bistatic angle of at
least 20◦ wide, any potential constructed image belonging to sector 12 would need
values of the BS-CRCS extracted for a bistatic angle ranging from 143.5◦ to 163.5◦.
However, values of the BS-CRCS are extracted for a maximum bistatic angle of 160◦.

In the recognition experiments on MSTAR images, we showed that the recognition
method we use is insensitive to the rotation of the targets. We thus consider that
images of the same type of target computed for different azimuth angles θ and different
elevation angles φ of the target belong to the same class.

We thus consider 4×10 = 40 tiles. We build one recognizer for each tile. Table 6.16
indicates, for both the LS and the TS, the number of images per bistatic angular sector,
for each frequency band.

Frequency band Number of images per angular sector
LS TS

FB1: [20; 80] MHz 648 1152
FB2: [190; 250] MHz 1260 1134
FB3: [450; 550] MHz 1458 729
FB4: [1.2; 1.30] MHz 1404 468

Table 6.16: Number of images per angular sector, for each frequency band, for both
the LS and the TS.

6.10.2 Parameters of the recognizer

We tune the recognizer with the same values of the parameters that we used for the
recognition of the MSTAR images. The values for each of the parameters are:

• the number of windows we extract from each image of the LS and from each
image of the TS is Nls = Nts ∈ {10, 100},

• the size of each window is taken between α = 90% and β = 100% of the size of
the original image; each window is resized to get 16 × 16 pixels windows,

• the number of trees T ∈ {1, 10},

• the number of possible tests considered at each node of each tree k ∈ {1, 16, 256}.

6.10.3 Recognition results

In this section, we present the results obtained for the recognition of the four targets
of interest by using their constructed radar images. As explained in Section 6.4, we
build a recognizer for each of the four frequency bands (FB1, FB2, FB3, and FB4),
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and for each of the ten bistatic angular sectors.

We first present the recognition results achieved per frequency band, for all bistatic
angular sectors. We then present, for each frequency band, the recognition results
achieved for each of the ten bistatic angular sectors considered.

Recognition results per frequency band

We show below that the error rates are of the same order for each bistatic angular
sector. We thus present, for each frequency band (FB), the results achieved for the
first bistatic angular sector. We assign each recognition experiment a number whose
first digit corresponds to the FB, and whose second digit corresponds to the set of
parameters we use for the experiment.

Table 6.17 shows the error rates we achieve for the recognition of images for
the first frequency band, FB1 ([20; 80] MHz). As for the MSTAR data, the error
rate decreases more with the number of tests k than with the number of extracted
windows Nls = Nts, or with the number of trees T . The error rates are all very high,
ranging from 58% to 68%. This is not surprising, since both the range resolution
and the cross-range resolution are of the order of the characteristic dimension of the
airplanes.

Error rates per experiment for FB1
Experiment Nls = Nts T k Error rate

1.1 10 1 1 68.34%
1.2 10 1 16 67.30%
1.3 10 1 256 62.65%
1.4 10 10 1 65.91%
1.5 10 10 16 66.69%
1.6 10 10 256 60.11%
1.7 100 1 1 64.84%
1.8 100 1 16 65.73%
1.9 100 1 256 58.55%
1.10 100 10 1 65.74%
1.11 100 10 16 61.72%
1.12 100 10 256 63.41%

Table 6.17: Twelve distinct experiments carried out using the ONERA images at
frequency band FB1 ([20; 80] MHz). The table shows, for each experiment, the values
of the parameters Nls = Nts, T , and k, and the achieved error rate.

Table 6.18 shows the confusion matrix obtained for Experiment 1.9, which is the
best error rate obtained for FB1. The table shows that the four targets are not evenly
recognized, with the F117 being the most accurately recognized target, while the
Learjet is the least accurately recognized target. This might be explained by the fact
that the F117 has a particular shape that is very distinct from the shape of the other
airplanes. Indeed, we showed in Chapter 3 that the shape plays an important role at
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these frequencies.

Confusion matrix for Experiment 1.9
True vs. computed Beech F117 F16 Learjet Recognition rate per target

Beech 512 374 207 59 512/1152 = 44.44%
F117 82 673 366 31 673/1152 = 58.42%
F16 242 426 431 53 431/1152 = 37.41%

Learjet 532 287 39 294 294/1152 = 25.52%
Total 1368 1760 1043 437

Mean error rate = 58.55%

Table 6.18: Confusion matrix obtained for the experiment of Table 6.17 giving the
lowest error rate, i.e. 58.55% (Experiment 1.9).

Table 6.19 shows the error rates we achieve for the recognition of images for
the second frequency band, FB2 ([190; 250] MHz). The error rates are all very low,
ranging from 0% to 4%. This means that, at these frequencies, the range resolution
and the cross-range resolution are low enough to be able to distinguish among the
different airplanes.

As we described in Section 6.8, another indicator of the good performance of
the algorithm is the error rate for each individual window. One can see that, even
though the individual window error rate is high, the total error rate can be very
low. The individual window error rate decreases much more with the number of
trees T than with the number of tests k, or with the number of windows Nls = Nts.
Indeed, increasing the number of windows does not affect the correct classification of a
particular window. Table 6.20 shows the (perfect) confusion matrix obtained for any
of the Experiments 2.5 to 2.12, which all achieve error rates of 0%.

Tables 6.21 and 6.23 show the error rates we achieve for the recognition of images
for the third frequency band, FB3 ([450; 550] MHz), and the fourth frequency band,
FB4 ([1.2; 1.3] GHz), respectively. The error rates are all very low, ranging from 0%
to 4%. As expected, both the error rate and the individual window error rates are
better for the FB3 than for FB2, since the range resolution and the cross-range
resolution are smaller for images constructed for FB3 than for images constructed for
FB2. The reason why both the error rates and the individual window error rates are
worse for FB4 than for FB2 is that, for FB4, the ratio between the range resolution
and the cross-range resolution of the images is comprised between 1/2.9 and 2.9
(Chapter 5), in order to construct a sufficient number of images.

Tables 6.22 and 6.24 show the confusion matrix obtained for any experiment from
3.5 to 3.12, and from 4.4 to 4.12, respectively, which all achieve error rates of 0%. The
recognition is thus perfect.
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Error rates and individual window error rates per experiment for FB2
Experiment Nls = Nts T k Error rate Individual window error rate

2.1 10 1 1 3.88% 29.81%
2.2 10 1 16 0.99% 20.76%
2.3 10 1 256 0.68% 17.40%
2.4 10 10 1 0.07% 9.72%
2.5 10 10 16 0% 5.69%
2.6 10 10 256 0% 4.77%
2.7 100 1 1 0% 17.07%
2.8 100 1 16 0% 9.53%
2.9 100 1 256 0% 7.35%
2.10 100 10 1 0% 2.63%
2.11 100 10 16 0% 0.99%
2.12 100 10 256 0% 0.71%

Table 6.19: Twelve distinct experiments carried out using the ONERA images at
frequency band FB2 ([190; 250] MHz). The table shows, for each experiment, the
values of the parameters Nls = Nts, T , and k, and the achieved error rate.

Confusion matrix for Experiments 2.5 to 2.12
True \Given by model Beech F117 F16 Learjet Recognition rate per target

Beech 1134 0 0 0 1134/1134 = 100%
F117 0 1134 0 0 1134/1134 = 100%
F16 0 0 1134 0 1134/1134 = 100%

Learjet 0 0 0 1134 1134/1134 = 100%

Total 1134 1134 1134 1134
Mean error rate = 0%

Table 6.20: Confusion matrix obtained for the experiments of Table 6.19 giving the
lowest error rate, i.e. 0% (Experiments 2.5 to 2.12).
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Error rates and individual window error rates per experiment for FB3
Experiment Nls = Nts T k Error rate Individual window error rate

3.1 10 1 1 1.75% 24.40%
3.2 10 1 16 0.65% 17.86%
3.3 10 1 256 0.21% 15.11%
3.4 10 10 1 0.04% 7.44%
3.5 10 10 16 0% 3.82%
3.6 10 10 256 0% 3.29%
3.7 100 1 1 0% 14.18%
3.8 100 1 16 0% 7.26%
3.9 100 1 256 0% 5.87%
3.10 100 10 1 0% 1.49%
3.11 100 10 16 0% 0.52%
3.12 100 10 256 0% 0.39%

Table 6.21: Twelve distinct experiments carried out using the ONERA images at
frequency band FB3 ([450; 550] MHz). The table shows, for each experiment, the
values of the parameters Nls = Nts, T , and k, and the achieved error rate.

Confusion matrix for Experiments 3.5 to 3.12
True \Given by model Beech F117 F16 Learjet Recognition rate per target

Beech 729 0 0 0 729/729 = 100%
F117 0 729 0 0 729/729 = 100%
F16 0 0 729 0 729/729 = 100%

Learjet 0 0 0 729 729/729 = 100%

Total 729 729 729 729
Mean error rate = 0%

Table 6.22: Confusion matrix obtained for the experiments of Table 6.21 giving the
lowest error rate, i.e. 0% (Experiments 3.5 to 3.12).
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Error rates and individual window error rates per experiment for FB4
Experiment Nls = Nts T k Error rate Individual window error rate

4.1 10 1 1 4.22% 32.72%
4.2 10 1 16 1.13% 22.50%
4.3 10 1 256 1.12% 20.51%
4.4 10 10 1 0% 10.79%
4.5 10 10 16 0% 6.57%
4.6 10 10 256 0% 5.38%
4.7 100 1 1 0% 18.43%
4.8 100 1 16 0% 10.92%
4.9 100 1 256 0% 8.95%
4.10 100 10 1 0% 2.76%
4.11 100 10 16 0% 1.16%
4.12 100 10 256 0% 0.89%

Table 6.23: Twelve distinct experiments carried out using the ONERA images at
frequency band FB4 ([1.2; 1.3] GHz). The table shows, for each experiment, the
values of the parameters Nls = Nts, T , and k, and the achieved error rate.

Confusion matrix for Experiments 4.4 to 4.12
True \Given by model Beech F117 F16 Learjet Recognition rate per target

Beech 468 0 0 0 468/468 = 100%
F117 0 468 0 0 468/468 = 100%
F16 0 0 468 0 468/468 = 100%

Learjet 0 0 0 468 468/468 = 100%

Total 468 468 468 468
Mean error rate = 0%

Table 6.24: Confusion matrix obtained for the experiments of Table 6.23 giving the
lowest error rate, i.e. 0% (Experiments 4.4 to 4.12).
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Recognition results per bistatic angular sector

We stated at the beginning of this section that the recognition results are similar
from one bistatic angular sector to the other. In this section, we show that it is
indeed the case. For each frequency band and for each bistatic angular sector, we
performed 12 recognition experiments, according to the same set of parameters as
above. Figures 6.14, 6.15, 6.16, and 6.17 present the error rate for each bistatic angular
sector, for FB1, FB2, FB3, and FB4, respectively. In each figure, the x-axis represents
the index of the experiment. One can thus see that the recognition rates are similar
for all bistatic angular sectors.

Figure 6.14: Error rate as a function of the experiment index for frequency band FB1
([20; 80] MHz), for each of the ten bistatic angular sectors considered.

Discussion of the recognition results achieved for the ONERA images

We performed the recognition of the four targets of interest by constructing one
recognizer for each frequency band (FB), and for each bistatic angular sector. We
showed that the error rates we achieved for FB1 ([20; 80] MHz) are very high (at
least 58%). This is due to the fact that the range resolution and the cross-range
resolution of the constructed images of the targets are of the same order than the
characteristic dimension of these targets. Any target is thus seen as a single bright
point.

For FB2 ([190; 250] MHz), FB3 ([450; 550] MHz), and FB4 ([1.2; 1.3] GHz), we can
achieve error rates of 0%, This is due to the higher range resolution and cross-range
resolutions of the images of the targets. We also showed that even when the individual
error rates are high (up to 18%), we can achieve error rates of 0%. This is due to the
high number of windows that we extracted from each image. We also showed that the
error rates are similar for all bistatic angular sectors.
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Figure 6.15: Error rate as a function of the experiment index for frequency band FB2
([190; 250] MHz), for each of the ten bistatic angular sectors considered.

Figure 6.16: Error rate as a function of the experiment index for frequency band FB3
([450; 550] MHz), for each of the ten bistatic angular sectors considered.
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Figure 6.17: Error rate as a function of the experiment index for frequency band FB4
([1.2; 1.3] GHz), for each of the ten bistatic angular sectors considered.

The difference between the error rates achieved for FB1 and for the three other FBs
is also due to the difference in scattering mechanisms. Indeed, for FB1, the scattering
mechanisms mainly depend on the volume of the targets while, for the three other FBs,
the scattering mechanisms depend on the shape of the targets. Since the four targets
of interest have different shapes but about the same volume, no clear difference could
be made in the case of FB1.

6.11 Conclusion

In this chapter, we performed the recognition of targets by using their radar images.
We first described the physical space into which airplanes fly, and the mapping from
the physical space to the parameter space in terms of which we express the bistatic
complex radar cross-section (BS-CRCS), the bistatic radar cross-section (BS-RCS),
and the images of these airplanes. We defined the recognition strategy that we apply
for the design of the recognition stage of each of the three automatic target recognition
(ATR) systems according to this parameter space. According to the recognition
strategy we defined, we build one recognizer for each tile of the parameter space.

The recognition method is based on the joint use of window extraction and
extremely randomized trees (extra-trees). We used window extraction to produce
feature vectors (FVs) out of each image, for both the learning set (LS) and the test
set (TS). An FV consists in a set of windows extracted out of a particular image, each
window being characterized by the values of the pixels inside this window. The target
class model we built from the FVs of the LS consists of an ensemble of extra-trees.
During test and operational use, the class of a target is determined by propagating
the FV produced from the image of this target through each extra-tree of the target
class model.
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We motivated the use of such a recognition method by both its accuracy and
efficiency that are as high as that of other classification methods. Moreover, it is, to
our knowledge, one of the first use of tree-based methods in radar ATR.

We first tested our recognition method on the well-known MSTAR SAR data,
which allowed us to compare the results achieved with the extra-trees-based recog-
nition method to the results achieved by other recognition methods described in the
literature. Even though the ATR methods reported in the literature use different
versions of the MSTAR data, the comparison showed that the error rates we achieved
using this recognition method (error rate comprised between 1% and 3% depending
on the set of parameters) are among the best error rates reported in the literature.
This proves that the extra-trees-based recognition method is an efficient method for
the recognition of radar images.

We then tested the classification method on the ONERA images. According to
the recognition strategy, we built one recognizer for each frequency band (FB) and
for each bistatic angular sector. We considered neither the azimuth angle nor the
elevation angle, since it was experimentally proven that the recognition method is
insensitive to the rotation of targets. The error rates that we achieved are very high
for FB1 ([20; 80] MHz), of the order of 60%, due to the low resolution of the radar
images compared to the characteristic dimension of the targets. The error rates that
we achieved for FB2, FB3, and FB4 are very small (about 1% to 4%), and can even
tend to 0% for some particular sets of parameters. We explain theses results by
the higher resolutions of the images in these frequency bands. We also explain the
difference of the recognition results for FB1 and the three other FBs by the fact that
the scattering mechanisms for FB1 depend more on the volumes of the target than for
the three other FBs, and by the fact that the targets of interest have about the same
volumes, but different shapes.

We will compare the recognition results we achieved in this chapter for the recog-
nition of targets from their radar images to the recognition results we achieve for the
recognition of these targets from their radar cross-sections, either complex or real.
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In this chapter, we perform the recognition of targets by using either their bistatic
complex radar cross-section (BS-CRCS) or their bistatic radar cross-section (BS-RCS).
Section 7.1 states the motivation for the recognition of targets by using either their
BS-CRCS or their BS-RCS. Section 7.2 describes the block diagram of the recognizer.
Section 7.3 describes the production of the feature vectors. Section 7.4 describes the
determination of the target class model. Section 7.5 describes the determination of
the class of an unknown target based on the target class model. Section 7.6 presents

139



140 7.1. MOTIVATION

the criteria we use for the quantification of the performance of the method. Sec-
tion 7.7 presents the recognition experiments we performed and the recognition rates
we achieved. Section 7.8 concludes.

7.1 Motivation for the recognition of targets by us-

ing either their bistatic complex RCS or their

bistatic RCS

In Chapter 6, we performed the recognition of targets by using their radar images.
We constructed the radar images of targets from a two-dimensional (2D) array of
values of bistatic complex radar cross-section (BS-CRCS) of these targets. The
dimensions of this 2D array are the frequency and the bistatic angle.

However, in an operational outdoor passive-radar-based automatic target recogni-
tion (ATR) system, it is unlikely that both frequency diversity and angular diversity
will be available. We explained the reasons for not being able to achieve this 2D
diversity in Section 6.1.

To overcome the need for the necessary 2D diversity, and thus, the need for
multiple transmitters (Tx’s) and multiple receivers (Rx’s), we perform, in this chapter,
the recognition of targets directly according to either their BS-CRCS or their bistatic
radar cross-section (BS-RCS). Therefore, we could a priori use a single (Tx,Rx) pair
for the recognition of targets.

Figure 7.1 shows the block diagram of the implemented passive-radar-based auto-
matic target recognition (ATR) system. The main difference with the ATR system
discussed in Chapter 6 is that we do not construct images of the targets. We presented
the extraction of both the BS-CRCS and the BS-RCS from raw data in Chapter 4. In
this chapter, we design, implement, and test the recognition stage, i.e. the recognizer,
of this ATR system.

Figure 7.1: Block diagram of our ATR system using the bistatic complex radar cross-
sections or the bistatic radar cross-sections of targets.
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7.2 Block diagram of the recognizer

We explained our recognition strategy in Section 6.3. The input data of the
recognizer are either the bistatic complex radar cross-section (BS-CRCS) or the
bistatic radar cross-section (BS-RCS) of the targets of interest. The targets
of interest are a Beechcraft, an F117 fighter, an F16 fighter, and a Learjet. Each
type of target corresponds to a particular target class. We thus consider Nc = 4 classes.

Each value of BS-CRCS or BS-RCS is associated with a value of each of the
parameters of the parameter space, which are the frequency band f , the polarization
Pol, the aspect angle α, and the bistatic angle β (Section 6.2). As described in
Section 6.3, we divide the parameter space into tiles, and we build a recognizer for
each tile. As explained in Chapter 4, values of both the BS-CRCS and the BS-RCS are
available for four polarizations, four frequency bands, three aspect angles, and several
bistatic angles ranging from 6◦ to 160◦. We arbitrarily divide the range of bistatic
angle into 12 overlapping sectors, as described in Table 6.1, which we reproduce in
Table 7.1 for convenience. We thus build 4 × 4 × 3 × 12 = 576 recognizers, one for
each polarization, for each frequency band, and for each tile of the (α, β) plane.

For each frequency band, we use the values of both the BS-CRCS and the BS-RCS
that we computed for the lower half of this frequency band for the learning set (LS),
and the values of both the BS-CRCS and the BS-RCS that we computed for the upper
half of this frequency band for the test set (TS).

Bistatic angular sector index Bistatic angular sector (degrees)

1 (6, 43.5)
2 (18.5, 56)
3 (31, 68.5)
4 (43.5, 81)
5 (56, 93.5)
6 (68.5, 106)
7 (81, 118.5)
8 (93.5, 131)
9 (106, 143.5)
10 (118.5, 156)
11 (131, 168.5)
12 (143.5, 181)

Table 7.1: Bistatic angular sectors considered.

Figure 7.2 gives the block diagrams of the recognizer we build for any given
tile. The first block diagram concerns the "construction" of the corresponding
sub-recognizer, which uses the LS data for all Nc classes to produce a target class
model consisting of a list of subspaces. We describe the determination of the target
class model in Section 7.4. For each of the Nc classes, one first produces feature vectors
(FVs). Each FV consists of an ensemble of values of either BS-CRCS or BS-RCS. We
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describe the production of FVs in Section 7.3.

Figure 7.2: Block diagrams summarizing the architecture of any of the sub-recognizers
of the recognition stage. (a) shows the successive steps in building the target class
model, and (b) the successive steps in performing the actual recognition, either for
testing (and performance evaluation) or for operational use.

The second block diagram concerns the "test" of the (sub-)recognizer and its "oper-
ational use". In both cases, one first produces one FV (at a time) from the appropriate
data for the region of interest. One then projects this FV on all Nc subspaces, and
computes some corresponding (projection) metric. The best metric value determines
the class that the (sub-)recognizer assigns to this FV. The difference between test (TS)
and operational use (operational data) is the availability of the ground truth for the
TS, which allows one to quantify the performance of the (sub-)recognizer for the region
considered.

7.3 Production of feature vectors

For each polarization, each frequency band, and a given region in the (α, β)
plane of a specific class (i.e. with one of the indices 1 to Nc, or x), we must
produce a set of feature vectors (FVs) from the data in this region, i.e. from (α, β)
trajectories with either associated complex bistatic radar cross-section (BS-CRCS)
values or associated bistatic radar cross-section (BS-RCS) values. The process
for producing the FVs is the same for any region and for any class. The follow-
ing description is thus generic for the data in one region of the (α, β) plane of one class.

The size N of each FV, and the number M of FVs for this generic region must
obey the following constraints: (1) for subsequent processing, N must be the same for
all classes; (2) M must be much larger than N to ensure adequate classification. The
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value of N is chosen experimentally.

In the experiments described later, we build the FVs as follows. For each frequency
band, each polarization, and each (α, β) region, the aspect angle α has a fixed value,
since the targets were kept fixed in the anechoic chamber (Chapter 4). Thus, the
variation is expressed only in terms of the bistatic angle β. Each FV represents the
variation of either the BS-CRCS or the BS-RCS during a variation of the bistatic angle
of β = 25◦, for a fixed polarization pair and a fixed frequency. Several other ways of
constructing the list and of sampling it can be envisioned, but this is not discussed
here.

7.4 Determination of the target class model by vec-

tor spaces

The target class model consists in a list of vector spaces, simply called subspaces.
We first describe the motivation for using subspace methods for recognition. We then
describe the construction of the subspaces, and the determination of the size of each
subspace.

7.4.1 Motivation for using subspace methods for recognition

In Chapter 6, the recognizer used to classify targets by using their radar images was
based on extremely randomized trees. Here, we propose to use another recognition
method based on subspace methods of pattern recognition [141]. Each class of target
is represented by the best-approximating subspace.

Subspace methods of pattern recognition were introduced by Karhunen, Kohonen,
Oja, and Watanabe, and are summarized in [141]. Subspace methods of pattern
recognition are used in different applications, such as speech recognition [5, 79], and
image recognition [230]. In the radar domain, subspace methods are mainly used for
detection purposes [10–12, 16, 36, 70, 96]. In particular, [15, 29, 58, 176] use subspace
methods for the detection of man-made objects in the context of foliage penetration
(FOPEN) radar. To our knowledge, the use of subspace methods for radar automatic
target recognition (ATR) is novel.

Subspace methods in the context of recognition present a particular advantage.
Since each target class is characterized by a particular subspace, adding a new tar-
get class does not require to re-compute the entire target class model. Instead, the
subspace representing the new target class just needs to be computed, and added to
the target class model. Recognition techniques such as tree-based methods, support
vector machines (SVM), and neural networks (NN) require to recompute the target
class model when a new class is added.

7.4.2 Subspaces

We generically denote the feature vectors (FVs) for one region and one class by xm,
with m ∈ [1,M ]. A significant feature of our approach is that we represent the class
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(for this region) by the best-approximating subspace, and that we project new FVs on
it.

To give a true statistical spin to the problem, we consider that the xm’s are real-
izations of a random vector x. The statistical correlation matrix of x is denoted by Rs

x

and defined as Rs
x = E

{
xxH

}
, where E{.} is the expected-value operator. To go back

to a deterministic formulation, one can approximate Rs
x as follows,

Rs
x ≈ 1

M

M∑

m=1

xmx
H
m. (7.1)

To go further, we introduce the data matrix X obtained by juxtaposing the xm’s,
i.e. X = (x1, . . . xm, . . . , xM). It is easy to see that

Rs
x ≈ 1

M

M∑

m=1

xmx
H
m =

1

M
XXH . (7.2)

We thus refer to the right-hand side as the deterministic correlation matrix, denoted
by Rd

x, with

Rd
x =

1

M
XXH . (7.3)

We thus have Rs
x ≈ Rd

x. R
d
x is known to be the maximum-likelihood estimate of Rs

x.
Observe that both Rs

x and Rd
x have size N , typically with N ≪ M .

In the considerations to follow, it is more convenient to deal with XXH than with
(1/M)XXH. We thus introduce

C = XXH , (7.4)

keeping in mind that C is not the true deterministic correlation matrix Rd
x of the

xm’s, but is related to it via Rd
x = (1/M)C. However, we will loosely refer to C as the

correlation matrix.

Any symmetric matrix can be diagonalized by an orthonormal matrix, i.e. by a
matrix the columns of which are both orthogonal and normalized to unit length. C
being symmetric, we can write C = UHΛU , where U is the orthonormal matrix the
columns of which are the eigenvectors ui of C normalized to unit length, and Λ is the di-
agonal matrix the diagonal elements of which are the corresponding eigenvalues λi of C.

The eigenvalues of any real symmetric matrix are real. Furthermore, a matrix of
the form UUH is not only symmetric but positive semi-definite, and the eigenvalues
of such a matrix are non-negative. Therefore, the eigenvalues of C are real and
non-negative.

Rather than using the correlation matrix, we could use the covariance matrix,
which simply amounts to removing the mean from the random vector x or its
realizations.

It is useful to visualize Rs
x - and thus Rd

x and C - as an ellipsoid in RN if the
bistatic radar cross-section (BS-RCS) is considered or in CN if the bistatic complex
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radar cross-section (BS-CRCS) is considered, with its principal directions given by the
columns ui of U and its "extent" along each ui by the corresponding λi. This gives a
conceptual, pictorial representation of the distribution of the xm’s in relation to the
ui’s. The basic idea of subspace (and dimensionality-reduction) techniques is to ignore
the directions ui where the ellipsoid is relatively thin, i.e. for which the λi’s are very
small and, especially, zero.

Let us order the λi’s by decreasing values, i.e. λ1 ≥ λ2 ≥ . . . ≥ λN , and keep only
the ui’s corresponding to the K largest λi’s, i.e. to λ1, . . . , λK . The selected vectors
ui can be used to define a subspace of RN (for BS-RCS) or of CN (for BS-CRCS).
Furthermore, since the ui’s are orthonormal, they constitute a basis for this subspace,
which is of size K. It is useful to introduce a matrix Q, the columns of which are the K
selected ui’s, i.e. Q = (u1, . . . , uK). Q is of size N×K and, thus, generally rectangular.
It is also orthonormal, with QHQ = I, where I is the K × K identity matrix. This
matrix Q constitutes a representation of the subspace built from the xm’s.

7.4.3 Size of subspaces

Each subspace is defined by a certain number of vectors corresponding to the K
largest singular values. The choice of the parameter K is crucial. On the one hand,
if K is chosen too small, the corresponding subspace does not represent exactly the
target class. On the other hand, if K is chosen too large, the corresponding subspace
will over-describe the target of interest.

In order to choose the best value of K, we plan to use the Time Reversal Operator
(TRO), defined in [107, 117, 160–163, 233]. However, the TRO method assumes that
the BS-CRCS and the BS-RCS of targets can be approximated by the bright point
model [35]. In short, the bright point model assumes that targets are made of a finite
number of isotropic scatterers [57], which is not the case of complex targets such as
airplanes. Indeed, the bright point model neglects different scattering mechanisms
such as multiple reflections.

We thus choose the size of each subspace, i.e. the number K of singular vectors
of each subspace, such that the sum of their corresponding singular values is at least
equal to some percentage γ of the sum of all singular values. We tested different values
of γ. According to the results achieved, we choose γ equal to 95%.

7.5 Determination of the target class

In this section, we describe the determination of the class of an unknown target from
the feature vector (FV) we produced the way described in Section 7.3. We first describe
the orthogonal projection of this FV onto each of the subspaces of the target class
model. We then describe the determination of the target class from these projections.
We also describe some reasons for not using oblique projections.
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7.5.1 Orthogonal projection

Before showing how to project on the subspace defined by an orthonormal matrix
such as Q, let us review how to project on the subspace defined by a general rectangular
matrix A consisting of K linearly independent columns am [14]. The columns define a
subspace, called the columnspace of A [193].

One can show that the matrix that projects any vector b ∈ RN (or CN) into this
subspace is given by the projection matrix [193]

P = A(AHA)−1AH . (7.5)

The result of the projection is then Pb. It is well known that any such projection
matrix P is symmetric and such that P 2 = P (idempotency).

In the particular case where A is an orthonormal matrix, say Q, the projection
matrix P is P = Q(QHQ)−1QH . Since QHQ = I, this reduces to

P = QQH . (7.6)

This matrix P projects any vector b into the subspace defined by the K columns ui of Q.

The result of projecting b into the subspace defined by the columns of Q is the
projection (vector)

p = Pb = QQHb . (7.7)

The component xi of this vector along ui, where i ∈ [1, K], is given by xi = uHi p. The
vector x = (x1 . . . xK)H of all the components is given by

x =




uH1
...
uHK


 p = QHp. (7.8)

Using Eq. (7.7), one gets x = QHQQHb = (QHQ)QHb . Since QHQ = I, this reduces
to

x = QHb, (7.9)

which is simply a statement of the well-known fact that the components of an arbitrary
vector b ∈ RN (or in CN) corresponding to the axes of an orthonormal basis are
obtained via the scalar product of b with each of the corresponding unit vectors ui.

The orthonormal matrix U containing the orthonormal eigenvectors of C clearly
plays a crucial role above. Of course, it can be obtained by performing the eigenvalues
decomposition (EVD) of C = XXH. However, this requires the calculation of the
product XXH . Since N is typically much smaller than M , the matrix C = XXH ,
which is of size N × N , is typically of reasonable size. However, the determination of
the value of each element of C requires the calculation of N × N scalar products of
size 1 ×M , where M can be very large.

As it is well known, there is a way to get U quite simply by working directly with
X, rather than with XXH . The solution is to use the singular value decomposition
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(SVD) [193]. The SVD allows one to decompose any rectangular N ×M matrix X as
X = UΣV H , where U is a first N ×N orthonormal matrix, Σ an N × M rectangular
diagonal matrix, and V a second M ×M orthonormal matrix.

The columns of U are called the left singular vectors of U and are denoted by
ui. One can show that the ui’s are the eigenvectors of C = XXH . The matrix U
obtained by SVD is thus exactly the one needed to build the matrix Q appearing in
the expression for the projection matrix P .

In summary, it is generally very advantageous to compute the required projection
matrix Q (and the projection components xi) by using the SVD of X rather than the
EVD of XXT .

7.5.2 Metrics

In our experimental work, we use four different metrics. The first metric is the norm
of the projection error e = b− p [141, 164,219,226], i.e.

|e| = |b− p| = |b− Pb| = |(I − P )b|, (7.10)

where P = QQH . The subspace for which the projection error is the lowest corresponds
to the class labelled to vector b.

Since we are dealing with orthogonal projections, the measure of the energy of the
projection of vector b onto subspace defined by Q is equivalent to the norm of the
projection vector. It is referred to in [72,110,141,164,226] as the "basic decision rule",
which is expressed as

E0 =
bHPb

bHb
. (7.11)

The subspace for which the energy is the largest corresponds to the class labelled to
vector b. Taking the minimum of the projection error (Eq. (7.10)) is equivalent to
taking the maximum of the projection ((7.11)). For coherency with the other metrics,
we use Eq. (7.11) as the first metric.

The second and third metrics used also measure the energy Eρ of the projection
of vector b [141] onto subspace defined by Q. The difference with the first metric is
that the projection of vector b onto each of the vectors ui’s of Q is weighted by the
ratio of the singular value λi corresponding to the appropriate singular vector ui to the
first singular value, λ1. This means that the directions of the singular vectors of each
subspace are weighted by their corresponding singular values. The second and third
metrics are expressed as [113]

Eρ =
K∑

i=1

(
λi
λ1

)ρ
bHuiu

H
i b

bHb
, (7.12)

where ρ is a factor defining the importance of the weighting. When ρ = 0, the
right-hand side of Eq. (7.12) reduces to the right-hand side of Eq. (7.11). This is why
we denoted the first metric by E0.
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For the second metric, we choose ρ = 1, as in the Multiple Similarity Method [113].
We thus denote the second metric by E1. For the third metric, we choose ρ = 0.05, as
in [113]. We thus denote the third metric by E0.05. These values have proven to give
the highest classification rates, as reported in [113]. As for the first metric, the class
assigned to vector b corresponds to the subspace Q for which the energy z is the highest.

The fourth metric consists in the fusion of the first three metrics. We use the
majority voting rule. Each of the three metrics described above votes for a particular
class. The majority voting rule consists in assigning to an object the class for which the
number of votes is the largest. One could also envision fusing the data according to the
Dempster-Schafer Theory of Evidence as in [34, 105]. This approach is not considered
here, since the classes are mutually exclusive.

7.5.3 Oblique projection

Until now, we proposed metrics based on the orthogonal projection of a vector z
onto a subspace Q. In [14], the oblique projection has been defined for detection
problems. We thus explore the possibility of using such a metric in our work.

Let us consider that the target is modelled by a subspace H and the noise subspace
is represented by subspace S. The oblique projection onto a subspace H according to
direction defined by subspace S is defined in [14] as

EHS = H(HHP⊥
S H)−1HHP⊥

S , (7.13)

where
P⊥
S = I − PS, (7.14)

and PS stands for the orthogonal projector onto subspace S.

While the orthogonal projection PH defined in Section 7.5.1 only requires the
definition of the subspace H , the oblique projection requires that the subspaces H and
S be both defined.

In the case of recognition, let us consider N classes, each class being represented
by a subspace denoted by Hi, with i = 1 . . . N . To define the oblique projection onto
subspace H1, one could think about defining the subspace H of Eq. (7.13) as H1, and
the subspace S of Eq. (7.13) as the subspace computed from the feature vectors of all
other subspaces [H2 . . .HN ]. However, this does not imply that the subspaces H and
S are separated. Moreover, the addition of an extra class requires one to recompute
all the oblique projectors. Eventually, the computation of the oblique projection EHS
is more computationally intensive than the computation of the orthogonal projection
PH . Therefore, the oblique projection will not be used in this work.

7.6 Quantification of performance

We quantify the performance of the recognizer during the test phase, according to
the probability of correct recognition. The probability of correct recognition is defined
as the ratio of the number of feature vectors (FVs) that are correctly recognized to
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the total number of FVs. The probability of correct recognition is computed from the
confusion matrix, as described in Section 6.8.

7.7 Recognition experiments

We first describe the experimental sets we use for the recognition experiments. We
then present the recognition results achieved for a single transmitter (Tx) and a single
receiver (Rx), and for three (Tx,Rx) pairs. For each case, the recognition results are
presented for the use of both the bistatic complex radar cross-sections (BS-CRCSs) and
the bistatic radar cross-sections (BS-RCSs) of targets. We then discuss the different
results achieved.

7.7.1 Experimental sets

BS-CRCSs and BS-RCSs of targets are available for four frequency bands and for
four polarizations. For each frequency band and for each polarization, we divide the
parameter space (α, β) into 3 × 12 overlapping tiles, where 3 is the number of aspect
angles of the targets, and 12 the number of bistatic angular sectors considered. As
described in Section 7.2, we build one recognizer for each tile. Therefore, we build a
total of 4 × 4 × 3 × 12 = 576 recognizers.

We first consider only a single (Tx,Rx) pair. We thus perform 576 recognition
experiments, one per recognizer. We give the recognition results in Section 7.7.2 for
each frequency band and for each polarization.

We then consider multiple (Tx,Rx) pairs. For computational reasons, we choose
to consider three (Tx,Rx) pairs, with a single Tx operating on a particular frequency
and a particular polarization, and three Rx’s. All three Rx’s operate on the same
polarization, either H or V , which can be distinct from the polarization of the Tx.
The three Rx’s are assumed to operate at locations that differ in bistatic angle. There
are thus C3

12 = 220 possible combinations of the three receivers, for each polarization,
and each frequency band. We thus perform 4 × 4 × 3 × 220 = 10560 experiments. As
for the case of a single (Tx,Rx) pair, we give the recognition results for each frequency
band and for each polarization.

Table 7.2 lists the different recognition experiments we performed. Each experiment
is assigned a label n1.n2, where n1 stands for the number of (Tx,Rx) pairs we consider,
and n2 stands for the frequency band, and whose third digit stands for the polarization
used.

7.7.2 Recognition results achieved for a single (Tx,Rx) pair

We present the results achieved for a single (Tx,Rx) pair, and by using either the
BS-CRCS or the BS-RCS of the targets to classify. For both the BS-CRCS and the
BS-RCS cases, we show the recognition rate for each of the four metrics that we in-
troduced in Section 7.5.2. For conciseness, we present in details the results achieved
for the HH polarization pair. The results achieved for the three other polarization
pairs are similar to the results achieved for the HH polarization pair. Thus, referring
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Experiment
index for
1 (Tx,Rx)
pair

Experiment
index for
3 (Tx,Rx)
pairs

Frequency
band

Polarization Aspect
angles

Bistatic
angular
sectors

Number
of experi-
ments

Exp. 1.1.1 Exp. 2.1.1 [20; 80]
MHz

HH All (3) All (12) 36

Exp. 1.1.2 Exp. 2.1.2 [20; 80]
MHz

HV All (3) All (12) 36

Exp. 1.1.3 Exp. 2.1.3 [20; 80]
MHz

V H All (3) All (12) 36

Exp. 1.1.4 Exp. 2.1.4 [20; 80]
MHz

V V All (3) All (12) 36

Exp. 1.2.1 Exp. 2.2.1 [190; 250]
MHz

HH All (3) All (12) 36

Exp. 1.2.2 Exp. 2.2.2 [190; 250]
MHz

HV All (3) All (12) 36

Exp. 1.2.3 Exp. 2.2.3 [190; 250]
MHz

V H All (3) All (12) 36

Exp. 1.2.4 Exp. 2.2.4 [190; 250]
MHz

V V All (3) All (12) 36

Exp. 1.3.1 Exp. 2.3.1 [450; 550]
MHz

HH All (3) All (12) 36

Exp. 1.3.2 Exp. 2.3.2 [450; 550]
MHz

HV All (3) All (12) 36

Exp. 1.3.3 Exp. 2.3.3 [450; 550]
MHz

V H All (3) All (12) 36

Exp. 1.3.4 Exp. 2.3.4 [450; 550]
MHz

V V All (3) All (12) 36

Exp. 1.4.1 Exp. 2.4.1 [1.2; 1.3]
GHz

HH All (3) All (12) 36

Exp. 1.4.2 Exp. 2.4.2 [1.2; 1.3]
GHz

HV All (3) All (12) 36

Exp. 1.4.3 Exp. 2.4.3 [1.2; 1.3]
GHz

V H All (3) All (12) 36

Exp. 1.4.4 Exp. 2.4.4 [1.2; 1.3]
GHz

V V All (3) All (12) 36

Total number of experiments 576

Table 7.2: Recognition experiments performed.
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to Table 7.2, we present the results for the recognition Experiments 1.1.1, 1.2.1, 1.3.1,
and 1.4.1, i.e. experiments for each frequency band and for the HH polarization.

Probabilities of correct recognition for FB1 ([20; 80] MHz)

Tables 7.3, 7.4, 7.5, and 7.6 present the probabilities of correct recognition obtained
for the recognition of targets for the first frequency band, FB1 ([20; 80] MHz), for the
criteria E0, E1, E0.05, and for the aggregation of these three criteria, respectively. As
one can see on the four tables, the probability of correct recognition is always very low
for either the BS-CRCS or the BS-RCS, ranging from 0.25, which is the probability of
correct recognition that would be obtained by recognizing targets randomly, and 0.63,
depending on the tile of the (α, β) plane, and on the metric used. The reasons for
such a low probability of correct recognition are that the BS-CRCS and the BS-RCS
vary more with volume than with shape at these frequencies, and that the targets have
about the same volume, as discussed in Chapter 4.

Probabilities of correct recognition for FB1
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.41 0.33 0.45 0.36 0.32 0.38
β ∈ [18.5◦, 56◦] 0.57 0.55 0.60 0.34 0.35 0.47
β ∈ [31◦, 68.5◦] 0.57 0.48 0.53 0.33 0.34 0.30
β ∈ [43.5◦, 81◦] 0.60 0.45 0.38 0.31 0.29 0.35
β ∈ [56◦, 93.5◦] 0.50 0.27 0.47 0.34 0.35 0.30
β ∈ [68.5◦, 106◦] 0.32 0.25 0.48 0.35 0.31 0.34
β ∈ [81◦, 118.5◦] 0.35 0.32 0.31 0.32 0.29 0.33
β ∈ [93.5◦, 131◦] 0.39 0.32 0.36 0.27 0.34 0.34
β ∈ [106◦, 143.5◦] 0.63 0.32 0.33 0.37 0.38 0.35
β ∈ [118.5◦, 156◦] 0.42 0.33 0.47 0.33 0.34 0.34

Table 7.3: Probabilities of correct recognition, shown tile-by-tile, for metric E0

applied to BS-CRCS and BS-RCS, computed for the frequency band FB1 ([20; 80]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.
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Probabilities of correct recognition for FB1
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.46 0.46 0.41 0.36 0.33 0.38
β ∈ [18.5◦, 56◦] 0.60 0.50 0.44 0.42 0.47 0.44
β ∈ [31◦, 68.5◦] 0.63 0.44 0.47 0.31 0.41 0.51
β ∈ [43.5◦, 81◦] 0.55 0.37 0.41 0.35 0.33 0.39
β ∈ [56◦, 93.5◦] 0.49 0.39 0.39 0.34 0.35 0.36
β ∈ [68.5◦, 106◦] 0.50 0.52 0.43 0.33 0.38 0.34
β ∈ [81◦, 118.5◦] 0.63 0.47 0.37 0.39 0.37 0.34
β ∈ [93.5◦, 131◦] 0.54 0.48 0.40 0.39 0.35 0.36
β ∈ [106◦, 143.5◦] 0.38 0.49 0.34 0.39 0.42 0.31
β ∈ [118.5◦, 156◦] 0.42 0.5 0.29 0.40 0.40 0.31

Table 7.4: Probabilities of correct recognition, shown tile-by-tile, for metric E1

applied to BS-CRCS and BS-RCS, computed for the frequency band FB1 ([20; 80]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.

Probabilities of correct recognition for FB1
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.42 0.38 0.36 0.36 0.32 0.40
β ∈ [18.5◦, 56◦] 0.52 0.42 0.39 0.36 0.43 0.49
β ∈ [31◦, 68.5◦] 0.49 0.42 0.34 0.33 0.39 0.48
β ∈ [43.5◦, 81◦] 0.48 0.35 0.31 0.35 0.35 0.39
β ∈ [56◦, 93.5◦] 0.45 0.37 0.36 0.37 0.38 0.32
β ∈ [68.5◦, 106◦] 0.41 0.41 0.38 0.37 0.40 0.38
β ∈ [81◦, 118.5◦] 0.51 0.35 0.32 0.36 0.39 0.36
β ∈ [93.5◦, 131◦] 0.42 0.41 0.29 0.32 0.38 0.36
β ∈ [106◦, 143.5◦] 0.29 0.40 0.26 0.36 0.43 0.35
β ∈ [118.5◦, 156◦] 0.32 0.43 0.24 0.37 0.38 0.33

Table 7.5: Probabilities of correct recognition, shown tile-by-tile, for metric E0.05

applied to BS-CRCS and BS-RCS, computed for the frequency band FB1 ([20; 80]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.
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Probabilities of correct recognition for FB1
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.47 0.47 0.41 0.37 0.33 0.41
β ∈ [18.5◦, 56◦] 0.63 0.51 0.45 0.42 0.46 0.47
β ∈ [31◦, 68.5◦] 0.63 0.47 0.46 0.33 0.40 0.51
β ∈ [43.5◦, 81◦] 0.55 0.39 0.41 0.36 0.34 0.41
β ∈ [56◦, 93.5◦] 0.52 0.41 0.38 0.34 0.39 0.33
β ∈ [68.5◦, 106◦] 0.49 0.50 0.42 0.36 0.41 0.37
β ∈ [81◦, 118.5◦] 0.63 0.48 0.38 0.41 0.38 0.36
β ∈ [93.5◦, 131◦] 0.49 0.49 0.37 0.43 0.39 0.38
β ∈ [106◦, 143.5◦] 0.35 0.48 0.32 0.37 0.43 0.32
β ∈ [118.5◦, 156◦] 0.42 0.51 0.30 0.36 0.40 0.35

Table 7.6: Probabilities of correct recognition, shown tile-by-tile, for the aggrega-

tion of the three metrics applied to BS-RCS and BS-RCS, computed for the
frequency band FB1 ([20; 80] MHz) and polarization HH. The table is divided in
tiles in the same way as the (α, β) plane is.
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Probabilities of correct recognition for FB2 ([190; 250] MHz)

Tables 7.7, 7.8, 7.9, and 7.10 present the probabilities of correct recognition obtained
for the recognition of targets for the second frequency band, FB2 ([190; 250] MHz), for
the criteria E0, E1, E0.05, and for the aggregation of these three criteria, respectively.
The probability of correct recognition ranges from 0.32 to 0.90, depending on the tile
of the (α, β) plane, and on the metric used. The probabilities of correct recognition
are higher than for the lowest frequency band when using either the BS-CRCSs or the
BS-RCSs. This can be explained by the fact that the BS-CRCS is influenced by both
the volume of the targets, as at the lowest frequency band, and the shape of the targets.
One can also see that, for a constant β, the highest probabilities of correct recognition
are obtained for α = 0◦. This is due to the shape of the targets. No bistatic angular
sector seems to be preferable. When using BS-CRCSs, metric E0, that does not weight
the vectors of the subspaces, appears to give better results than the weighting metrics
E1 and E0.05, while, when using BS-RCSs, metric E0.05 appears to give the best results.

Probabilities of correct recognition for FB2
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.80 0.78 0.68 0.43 0.49 0.40
β ∈ [18.5◦, 56◦] 0.84 0.65 0.81 0.53 0.41 0.64
β ∈ [31◦, 68.5◦] 0.68 0.69 0.72 0.48 0.40 0.67
β ∈ [43.5◦, 81◦] 0.73 0.47 0.78 0.43 0.38 0.43
β ∈ [56◦, 93.5◦] 0.64 0.62 0.50 0.57 0.55 0.40
β ∈ [68.5◦, 106◦] 0.74 0.56 0.58 0.59 0.48 0.41
β ∈ [81◦, 118.5◦] 0.72 0.66 0.66 0.57 0.38 0.39
β ∈ [93.5◦, 131◦] 0.90 0.57 0.55 0.67 0.43 0.44
β ∈ [106◦, 143.5◦] 0.86 0.68 0.59 0.52 0.49 0.45
β ∈ [118.5◦, 156◦] 0.87 0.67 0.64 0.50 0.58 0.48

Table 7.7: Probabilities of correct recognition, shown tile-by-tile, for metric E0

applied to BS-CRCS and BS-RCS, computed for the frequency band FB2 ([190; 250]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.
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Probabilities of correct recognition for FB2
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.73 0.56 0.50 0.45 0.42 0.36
β ∈ [18.5◦, 56◦] 0.80 0.58 0.76 0.53 0.37 0.57
β ∈ [31◦, 68.5◦] 0.74 0.52 0.78 0.49 0.32 0.63
β ∈ [43.5◦, 81◦] 0.71 0.50 0.63 0.45 0.42 0.47
β ∈ [56◦, 93.5◦] 0.77 0.66 0.60 0.48 0.47 0.53
β ∈ [68.5◦, 106◦] 0.76 0.62 0.48 0.52 0.41 0.39
β ∈ [81◦, 118.5◦] 0.67 0.56 0.52 0.44 0.35 0.42
β ∈ [93.5◦, 131◦] 0.81 0.65 0.64 0.50 0.34 0.42
β ∈ [106◦, 143.5◦] 0.81 0.70 0.59 0.53 0.39 0.50
β ∈ [118.5◦, 156◦] 0.82 0.71 0.58 0.60 0.51 0.45

Table 7.8: Probabilities of correct recognition, shown tile-by-tile, for metric E1

applied to BS-CRCS and BS-RCS, computed for the frequency band FB2 ([190; 250]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.

Probabilities of correct recognition for FB2
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.60 0.43 0.35 0.52 0.53 0.41
β ∈ [18.5◦, 56◦] 0.61 0.45 0.62 0.60 0.47 0.69
β ∈ [31◦, 68.5◦] 0.62 0.39 0.60 0.54 0.41 0.69
β ∈ [43.5◦, 81◦] 0.52 0.40 0.48 0.48 0.45 0.51
β ∈ [56◦, 93.5◦] 0.52 0.57 0.47 0.59 0.63 0.55
β ∈ [68.5◦, 106◦] 0.59 0.49 0.41 0.65 0.54 0.44
β ∈ [81◦, 118.5◦] 0.60 0.47 0.41 0.59 0.41 0.43
β ∈ [93.5◦, 131◦] 0.67 0.47 0.54 0.69 0.47 0.46
β ∈ [106◦, 143.5◦] 0.57 0.54 0.49 0.56 0.51 0.49
β ∈ [118.5◦, 156◦] 0.67 0.53 0.41 0.68 0.66 0.51

Table 7.9: Probabilities of correct recognition, shown tile-by-tile, for metric E0.05

applied to BS-CRCS and BS-RCS, computed for the frequency band FB2 ([190; 250]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.
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Probabilities of correct recognition for FB2
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.74 0.59 0.47 0.56 0.54 0.41
β ∈ [18.5◦, 56◦] 0.8 0.55 0.75 0.64 0.46 0.66
β ∈ [31◦, 68.5◦] 0.74 0.49 0.78 0.56 0.40 0.70
β ∈ [43.5◦, 81◦] 0.67 0.49 0.62 0.50 0.47 0.57
β ∈ [56◦, 93.5◦] 0.73 0.68 0.58 0.58 0.59 0.62
β ∈ [68.5◦, 106◦] 0.75 0.60 0.48 0.69 0.53 0.45
β ∈ [81◦, 118.5◦] 0.71 0.55 0.53 0.58 0.44 0.47
β ∈ [93.5◦, 131◦] 0.82 0.62 0.65 0.72 0.49 0.48
β ∈ [106◦, 143.5◦] 0.79 0.70 0.60 0.61 0.53 0.55
β ∈ [118.5◦, 156◦] 0.82 0.68 0.57 0.71 0.64 0.52

Table 7.10: Probabilities of correct recognition, shown tile-by-tile, for the aggrega-

tion of the three metrics applied to BS-CRCS and BS-RCS, computed for the
frequency band FB2 ([190; 250] MHz) and polarization HH. The table is divided in
tiles in the same way as the (α, β) plane is.
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Probabilities of correct recognition for FB3 ([450; 550] MHz)

Tables 7.11, 7.12, 7.13, and 7.14 present the probabilities of correct recognition
obtained for the recognition of targets for the third frequency band, FB3 ([450; 550]
MHz), for the criteria E0, E1, E0.05, and for the aggregation of these three criteria,
respectively. The probability of correct recognition ranges between 0.36 and 0.98,
depending on the tile of the (α, β) plane, and on the metric used. The probability of
correct recognition is better than for FB1 and FB2. This is explained by the fact that,
for FB3, the shape of the targets influence the BS-CRCS more than their volume, as
depicted in Chapter 6. The same other conclusions can be drawn as for FB2.

Probabilities of correct recognition for FB3
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.85 0.88 0.77 0.65 0.72 0.54
β ∈ [18.5◦, 56◦] 0.89 0.58 0.89 0.66 0.54 0.68
β ∈ [31◦, 68.5◦] 0.79 0.56 0.95 0.58 0.52 0.68
β ∈ [43.5◦, 81◦] 0.93 0.72 0.93 0.61 0.36 0.67
β ∈ [56◦, 93.5◦] 0.96 0.88 0.65 0.81 0.46 0.58
β ∈ [68.5◦, 106◦] 0.98 0.78 0.84 0.87 0.64 0.52
β ∈ [81◦, 118.5◦] 0.96 0.75 0.92 0.79 0.63 0.56
β ∈ [93.5◦, 131◦] 0.97 0.64 0.81 0.72 0.63 0.56
β ∈ [106◦, 143.5◦] 0.96 0.90 0.79 0.72 0.74 0.59
β ∈ [118.5◦, 156◦] 0.93 0.88 0.82 0.72 0.78 0.57

Table 7.11: Probabilities of correct recognition, shown tile-by-tile, for metric E0

applied to BS-CRCS and BS-RCS, computed for the frequency band FB3 ([450; 550]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.
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Probabilities of correct recognition for FB3
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.77 0.63 0.59 0.56 0.46 0.42
β ∈ [18.5◦, 56◦] 0.86 0.73 0.85 0.63 0.45 0.53
β ∈ [31◦, 68.5◦] 0.73 0.71 0.81 0.52 0.41 0.57
β ∈ [43.5◦, 81◦] 0.85 0.60 0.78 0.55 0.46 0.53
β ∈ [56◦, 93.5◦] 0.73 0.78 0.76 0.48 0.47 0.58
β ∈ [68.5◦, 106◦] 0.92 0.80 0.58 0.70 0.57 0.38
β ∈ [81◦, 118.5◦] 0.82 0.77 0.60 0.61 0.52 0.51
β ∈ [93.5◦, 131◦] 0.78 0.82 0.76 0.52 0.60 0.56
β ∈ [106◦, 143.5◦] 0.83 0.83 0.70 0.48 0.56 0.58
β ∈ [118.5◦, 156◦] 0.92 0.73 0.59 0.65 0.54 0.37

Table 7.12: Probabilities of correct recognition, shown tile-by-tile, for metric E1

applied to BS-CRCS and BS-RCS, computed for the frequency band FB3 ([450; 550]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.

Probabilities of correct recognition for FB3
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.62 0.53 0.40 0.76 0.73 0.56
β ∈ [18.5◦, 56◦] 0.66 0.54 0.69 0.77 0.62 0.77
β ∈ [31◦, 68.5◦] 0.62 0.55 0.64 0.68 0.56 0.72
β ∈ [43.5◦, 81◦] 0.68 0.48 0.61 0.72 0.44 0.71
β ∈ [56◦, 93.5◦] 0.54 0.65 0.58 0.83 0.60 0.70
β ∈ [68.5◦, 106◦] 0.72 0.66 0.46 0.92 0.74 0.56
β ∈ [81◦, 118.5◦] 0.65 0.62 0.52 0.87 0.67 0.65
β ∈ [93.5◦, 131◦] 0.62 0.58 0.67 0.81 0.70 0.68
β ∈ [106◦, 143.5◦] 0.70 0.65 0.51 0.75 0.79 0.71
β ∈ [118.5◦, 156◦] 0.64 0.66 0.45 0.74 0.82 0.60

Table 7.13: Probabilities of correct recognition, shown tile-by-tile, for metric E0.05

applied to BS-CRCS and BS-RCS, computed for the frequency band FB3 ([450; 550]
MHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.
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Probabilities of correct recognition for FB3
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.77 0.66 0.54 0.75 0.70 0.60
β ∈ [18.5◦, 56◦] 0.84 0.71 0.85 0.77 0.63 0.76
β ∈ [31◦, 68.5◦] 0.76 0.70 0.80 0.67 0.57 0.72
β ∈ [43.5◦, 81◦] 0.85 0.60 0.76 0.73 0.47 0.69
β ∈ [56◦, 93.5◦] 0.73 0.81 0.75 0.82 0.61 0.71
β ∈ [68.5◦, 106◦] 0.91 0.81 0.57 0.92 0.72 0.55
β ∈ [81◦, 118.5◦] 0.83 0.78 0.62 0.86 0.64 0.65
β ∈ [93.5◦, 131◦] 0.77 0.79 0.80 0.83 0.74 0.70
β ∈ [106◦, 143.5◦] 0.83 0.83 0.70 0.77 0.80 0.77
β ∈ [118.5◦, 156◦] 0.90 0.76 0.58 0.77 0.77 0.57

Table 7.14: Probabilities of correct recognition, shown tile-by-tile, for the aggrega-

tion of the three metrics applied to BS-CRCS and BS-RCS, computed for the
frequency band FB3 ([450; 550] MHz) and polarization HH. The table is divided in
tiles in the same way as the (α, β) plane is.
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Probabilities of correct recognition for FB4 ([1.2; 1.3] GHz)

Tables 7.15, 7.16, 7.17, and 7.18 present the probabilities of correct recognition
obtained for the recognition of targets for the fourth frequency band, FB4 ([1.2; 1.3]
GHz), for the criteria E0, E1, E0.05, and for the aggregation of these three criteria,
respectively. The probability of correct recognition ranges from 0.27 to 1, depending
on the tile of the (α, β) plane, and on the metric used. The same conclusions can be
drawn as for FB3.

Probabilities of correct recognition for FB4
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 1.0 0.77 0.67 0.73 0.27 0.48
β ∈ [18.5◦, 56◦] 0.99 0.95 0.98 0.56 0.60 0.84
β ∈ [31◦, 68.5◦] 0.99 0.84 0.96 0.68 0.53 0.83
β ∈ [43.5◦, 81◦] 0.99 0.79 0.93 0.68 0.36 0.78
β ∈ [56◦, 93.5◦] 1.0 0.91 0.92 0.83 0.33 0.81
β ∈ [68.5◦, 106◦] 1.0 0.93 0.94 0.83 0.63 0.59
β ∈ [81◦, 118.5◦] 1.0 0.86 0.98 0.84 0.66 0.59
β ∈ [93.5◦, 131◦] 0.99 0.94 0.86 0.73 0.73 0.61
β ∈ [106◦, 143.5◦] 1.0 0.91 0.95 0.75 0.84 0.65
β ∈ [118.5◦, 156◦] 0.96 0.97 0.92 0.62 0.81 0.63

Table 7.15: Probabilities of correct recognition, shown tile-by-tile, for metric E0

applied to BS-CRCS and BS-RCS, computed for the frequency band FB4 ([1.2; 1.3]
GHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.
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Probabilities of correct recognition for FB4
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.76 0.69 0.75 0.64 0.37 0.44
β ∈ [18.5◦, 56◦] 0.89 0.88 0.89 0.52 0.49 0.50
β ∈ [31◦, 68.5◦] 0.90 0.78 0.90 0.52 0.48 0.67
β ∈ [43.5◦, 81◦] 0.89 0.81 0.80 0.53 0.46 0.65
β ∈ [56◦, 93.5◦] 0.84 0.81 0.82 0.58 0.58 0.64
β ∈ [68.5◦, 106◦] 0.87 0.84 0.67 0.70 0.51 0.39
β ∈ [81◦, 118.5◦] 0.83 0.83 0.67 0.66 0.41 0.61
β ∈ [93.5◦, 131◦] 0.88 0.77 0.71 0.61 0.55 0.60
β ∈ [106◦, 143.5◦] 0.91 0.85 0.78 0.58 0.61 0.53
β ∈ [118.5◦, 156◦] 0.80 0.82 0.70 0.59 0.46 0.41

Table 7.16: Probabilities of correct recognition, shown tile-by-tile, for metric E1

applied to BS-CRCS and BS-RCS, computed for the frequency band FB4 ([1.2; 1.3]
GHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.

Probabilities of correct recognition for FB4
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.68 0.58 0.59 0.85 0.33 0.51
β ∈ [18.5◦, 56◦] 0.82 0.68 0.78 0.68 0.67 0.86
β ∈ [31◦, 68.5◦] 0.75 0.65 0.81 0.78 0.61 0.85
β ∈ [43.5◦, 81◦] 0.75 0.65 0.75 0.72 0.48 0.83
β ∈ [56◦, 93.5◦] 0.64 0.69 0.69 0.87 0.50 0.84
β ∈ [68.5◦, 106◦] 0.74 0.71 0.49 0.94 0.74 0.63
β ∈ [81◦, 118.5◦] 0.70 0.67 0.53 0.92 0.71 0.74
β ∈ [93.5◦, 131◦] 0.71 0.62 0.50 0.80 0.84 0.81
β ∈ [106◦, 143.5◦] 0.74 0.73 0.56 0.78 0.90 0.77
β ∈ [118.5◦, 156◦] 0.70 0.75 0.53 0.75 0.85 0.75

Table 7.17: Probabilities of correct recognition, shown tile-by-tile, for metric E0.05

applied to BS-CRCS and BS-RCS, computed for the frequency band FB4 ([1.2; 1.3]
GHz) and polarization HH. The table is divided in tiles in the same way as the
(α, β) plane is.
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Probabilities of correct recognition for FB4
For BS-CRCS For BS-RCS

α = 0◦ α = 45◦ α = 90◦ α = 0◦ α = 45◦ α = 90◦

β ∈ [6◦, 43.5◦] 0.78 0.70 0.75 0.85 0.34 0.50
β ∈ [18.5◦, 56◦] 0.91 0.87 0.90 0.67 0.65 0.81
β ∈ [31◦, 68.5◦] 0.90 0.78 0.91 0.75 0.58 0.85
β ∈ [43.5◦, 81◦] 0.90 0.81 0.82 0.74 0.57 0.83
β ∈ [56◦, 93.5◦] 0.86 0.83 0.83 0.85 0.58 0.84
β ∈ [68.5◦, 106◦] 0.91 0.86 0.66 0.92 0.73 0.63
β ∈ [81◦, 118.5◦] 0.89 0.84 0.68 0.88 0.70 0.75
β ∈ [93.5◦, 131◦] 0.89 0.78 0.68 0.79 0.83 0.79
β ∈ [106◦, 143.5◦] 0.92 0.87 0.76 0.78 0.85 0.76
β ∈ [118.5◦, 156◦] 0.83 0.86 0.69 0.78 0.75 0.76

Table 7.18: Probabilities of correct recognition, shown tile-by-tile, for the aggrega-

tion of the three metrics applied to BS-CRCS and BS-RCS, computed for the
frequency band FB4 ([1.2; 1.3] GHz) and polarization HH. The table is divided in
tiles in the same way as the (α, β) plane is.
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Discussion of the recognition results achieved for a single (Tx,Rx) pair

We showed above that, for a particular frequency band and for a particular
polarization, the probability of correct recognition varies according to the tile of the
(α, β) plane, and according to the metric used. While it appears that there is no
particular bistatic angular sector that favors a high probability of correct recognition,
the value α = 0◦ gives a higher probability of correct recognition, for any value of β,
when considering the BS-CRCS. This can be explained by the fact that the shapes of
the front of the targets are very different, while the shapes of the sides of the targets
are rather similar. When considering the BS-RCS of targets, no particular value of α
seems to be preferable.

The best metric appears to be the non-weighting metric E0 when using BS-CRCS.
This means that the vectors of the subspaces must be considered of equal importance.
When using BS-RCS, the best metric appears to be metric E0.05, thus giving more
importance to the vectors corresponding to the largest eigenvalues.

To illustrate the variation of the probability of correct recognition with frequency
and polarization, the overall probability of correct recognition achieved for each
frequency band, each polarization, and each metric, when considering the BS-CRCS
of targets, is shown in Table 7.19, and in Table 7.20 when considering the BS-RCS of
targets. One can clearly see that the probability of correct recognition increases with
frequency. This is explained by the fact that, for the higher frequencies considered, the
BS-CRCS is more influenced by the shape of the targets than by their volume, while
it is exactly the opposite at the lower frequencies considered. One can also see that
we achieve the highest probabilities of correct recognition for the HH polarization,
even though the probabilities of correct recognition we achieve for the three other
polarizations are not much smaller. This can be intuitively understood by the fact
that the shapes of the different targets differ more according to their horizontal
planes than their vertical planes. One can also see that the E0 metric gives the best
probabilities of correct recognition when considering BS-CRCS, and that the metric
E0.05 gives the best probabilities of correct recognition when considering BS-RCS.

We achieve higher probabilities of correct recognition for the BS-CRCS of targets
than for their BS-RCS. For FB2, FB3, and FB4, the difference is on the order of 10%
to 20%, when comparing the results of the best metric for each case. The phase of
the BS-CRCS differs from one airplane to the other, and is thus significant for the
recognition of these four targets.

7.7.3 Recognition results achieved for three (Tx,Rx) pairs

We showed in Section 7.7.2 the probabilities of correct recognition we achieved
when considering either the BS-CRCS or the BS-RCS of the targets of interest, and a
single (Tx,Rx) pair. This means that we considered a one-dimensional (1D) diversity
(the bistatic angle). In Chapter 6, we achieved probabilities of correct recognition of
about 1 for the frequency bands FB2, FB3, and FB4. As we explained in Chapter 5,
we built the radar images from the BS-CRCS extracted with a 2D diversity. In order
to increase the diversity of the data used to recognize targets, and thus in order to
hopefully increase the probability of correct recognition, we can use multiple (Tx,Rx)
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Overall probabilities of correct recognition for BS-CRCS
Frequency
band

Polarization Metric E0 Metric E1 Metric E0.05 Aggregation

FB1: [20; 80]
MHz

HH 0.43 0.46 0.38 0.46

FB1: [20; 80]
MHz

HV 0.37 0.42 0.39 0.43

FB1: [20; 80]
MHz

V H 0.34 0.38 0.34 0.38

FB1: [20; 80]
MHz

V V 0.38 0.47 0.44 0.48

FB2:
[190; 250]
MHz

HH 0.69 0.66 0.52 0.65

FB2:
[190; 250]
MHz

HV 0.60 0.60 0.49 0.60

FB2:
[190; 250]
MHz

V H 0.62 0.61 0.48 0.60

FB2:
[190; 250]
MHz

V V 0.63 0.59 0.50 0.60

FB3:
[450; 550]
MHz

HH 0.84 0.76 0.60 0.75

FB3:
[450; 550]
MHz

HV 0.76 0.69 0.54 0.69

FB3:
[450; 550]
MHz

V H 0.82 0.69 0.54 0.69

FB3:
[450; 550]
MHz

V V 0.79 0.70 0.56 0.70

FB4: [1.2; 1.3]
GHz

HH 0.93 0.81 0.67 0.82

FB4: [1.2; 1.3]
GHz

HV 0.87 0.75 0.61 0.76

FB4: [1.2; 1.3]
GHz

V H 0.93 0.78 0.62 0.79

FB4: [1.2; 1.3]
GHz

V V 0.89 0.80 0.65 0.81

Table 7.19: Overall probabilities of correct recognition achieved per frequency band
and per polarization, for the four different metrics, when using the BS-CRCS of
targets.
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Overall probabilities of correct recognition for BS-RCS
Frequency
band

Polarization Metric E0 Metric E1 Metric E0.05 Aggregation

FB1: [20; 80]
MHz

HH 0.34 0.37 0.38 0.39

FB1: [20; 80]
MHz

HV 0.30 0.33 0.32 0.32

FB1: [20; 80]
MHz

V H 0.32 0.35 0.36 0.35

FB1: [20; 80]
MHz

V V 0.30 0.34 0.33 0.34

FB2:
[190; 250]
MHz

HH 0.49 0.46 0.54 0.56

FB2:
[190; 250]
MHz

HV 0.38 0.38 0.42 0.43

FB2:
[190; 250]
MHz

V H 0.41 0.39 0.46 0.47

FB2:
[190; 250]
MHz

V V 0.43 0.36 0.46 0.47

FB3:
[450; 550]
MHz

HH 0.64 0.53 0.71 0.71

FB3:
[450; 550]
MHz

HV 0.46 0.40 0.52 0.53

FB3:
[450; 550]
MHz

V H 0.51 0.43 0.57 0.57

FB3:
[450; 550]
MHz

V V 0.53 0.41 0.57 0.57

FB4: [1.2; 1.3]
GHz

HH 0.66 0.54 0.74 0.74

FB4: [1.2; 1.3]
GHz

HV 0.60 0.45 0.66 0.67

FB4: [1.2; 1.3]
GHz

V H 0.67 0.47 0.72 0.71

FB4: [1.2; 1.3]
GHz

V V 0.63 0.45 0.69 0.68

Table 7.20: Overall probabilities of correct recognition achieved per frequency band and
per polarization, for the four different metrics, when using the BS-RCS of targets.



166 7.7. RECOGNITION EXPERIMENTS

pairs. For computational reasons, we choose to use three (Tx,Rx) pairs, and more
specifically, we consider a single Tx and three Rx’s.

We determine the class of a target by performing a majority vote on the class
assigned by each single (Tx,Rx) pair considered. The class assigned by each (Tx,Rx)
pair is the class obtained by aggregating the results for each of the four metrics.
We present, in Tables 7.21 and 7.22, the overall probabilities of correct recognition
we achieve for each experiment, from 2.1.1 to 2.4.4, and for each of the three
aspect angles of the targets (α = {0◦, 45◦, 90◦}) and the mean value among all
aspect angles. Indeed, we showed in the previous section that the probability of cor-
rect recognition varies more with the aspect angle than with the bistatic angular sector.

Overall probabilities of correct recognition for BS-CRCS
Frequency band Polarization α = 0◦ α = 45◦ α = 90◦ Overall

FB1: [20; 80] MHz HH 0.49 0.36 0.33 0.39
FB1: [20; 80] MHz HV 0.38 0.36 0.43 0.39
FB1: [20; 80] MHz V H 0.25 0.27 0.3 0.28
FB1: [20; 80] MHz V V 0.35 0.5 0.43 0.42
FB2: [190; 250] MHz HH 0.76 0.59 0.53 0.63
FB2: [190; 250] MHz HV 0.72 0.53 0.33 0.53
FB2: [190; 250] MHz V H 0.67 0.56 0.49 0.58
FB2: [190; 250] MHz V V 0.63 0.5 0.5 0.54
FB3: [450; 550] MHz HH 0.93 0.8 0.82 0.85
FB3: [450; 550] MHz HV 0.91 0.81 0.67 0.8
FB3: [450; 550] MHz V H 0.84 0.83 0.71 0.79
FB3: [450; 550] MHz V V 0.92 0.72 0.73 0.79
FB4: [1.2; 1.3] GHz HH 0.98 0.92 0.87 0.92
FB4: [1.2; 1.3] GHz HV 0.94 0.85 0.81 0.87
FB4: [1.2; 1.3] GHz V H 0.95 0.95 0.86 0.92
FB4: [1.2; 1.3] GHz V V 0.96 0.88 0.89 0.91

Table 7.21: Probabilities of correct recognition achieved when considering the BS-
CRCS of targets, and three (Tx,Rx) pairs.

The probabilities of correct recognition we achieve for three (Tx,Rx) pairs are of
about 10% higher than for a single (Tx,Rx) pair. It is thus experimentally proven that
considering multiple (Tx,Rx) pairs improves the probability of correct recognition. As
we can also expect from the previous experiments, the probabilities of correct recogni-
tion are lower when considering the BS-RCS of targets rather than their BS-CRCS.
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Overall probabilities of correct recognition for BS-RCS
Frequency band Polarization α = 0◦ α = 45◦ α = 90◦ Overall

FB1: [20; 80] MHz HH 0.28 0.3 0.35 0.31
FB1: [20; 80] MHz HV 0.28 0.23 0.21 0.24
FB1: [20; 80] MHz V H 0.19 0.25 0.26 0.24
FB1: [20; 80] MHz V V 0.27 0.32 0.19 0.26
FB2: [190; 250] MHz HH 0.5 0.41 0.42 0.44
FB2: [190; 250] MHz HV 0.24 0.27 0.24 0.25
FB2: [190; 250] MHz V H 0.34 0.34 0.28 0.32
FB2: [190; 250] MHz V V 0.45 0.35 0.28 0.36
FB3: [450; 550] MHz HH 0.84 0.73 0.69 0.75
FB3: [450; 550] MHz HV 0.64 0.49 0.46 0.53
FB3: [450; 550] MHz V H 0.68 0.6 0.45 0.58
FB3: [450; 550] MHz V V 0.7 0.57 0.52 0.6
FB4: [1.2; 1.3] GHz HH 0.91 0.69 0.83 0.81
FB4: [1.2; 1.3] GHz HV 0.82 0.56 0.65 0.68
FB4: [1.2; 1.3] GHz V H 0.89 0.81 0.76 0.82
FB4: [1.2; 1.3] GHz V V 0.76 0.72 0.73 0.73

Table 7.22: Probabilities of correct recognition achieved when considering the BS-RCS
of targets, and three (Tx,Rx) pairs.

7.8 Conclusion

In this chapter, we performed the recognition of targets by using either their bistatic
complex radar cross-section (BS-CRCS) or their bistatic radar cross-section (BS-RCS).
According to the recognition strategy, we built one recognizer for each region of the
parameter space, i.e. one recognizer for each of the four frequency bands (FB), for
each of the four polarizations, for each of the three aspect angles, and for each of the
twelve bistatic angular sectors.

The recognition method is based on subspace methods. From a discrete-space
trajectory, we produced feature vectors (FVs) that consist of an ensemble of values
of either the BS-CRCS or the BS-RCS of targets. Each value of either the BS-CRCS
or the BS-RCS is associated with a value of each paramater of the parameter space.
The target class model we built from FVs of the learning set (LS) consists in a list of
subspaces. We determined the class of an unknown target by four different metrics
that are based on a measure of the energy of the projection of the FV of this target
onto each subspace of the target class model.

We motivated the use of such a recognition method by the fact that subspace
methods are mainly used in the radar area for detection purposes. The use of
subspaces for recognition purposes is, to our knowledge, novel. Moreover, when each
target class is characterized by a subspace, the addition of a target class does not
require to re-compute the entire target class model.

We first performed recognition experiments by using FVs computed for a single
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(Tx,Rx) pair. We successively used FVs consisting of the BS-CRCS and of the BS-RCS.
The recognition results show that an overall probability of correct recognition of 0.93
can be achieved for a single (Tx,Rx) pair operating at a frequency between 1.2 GHz
and 1.3 GHz. The achieved probability of correct recognition increases with frequency.
The probability of correct recognition is sensitive to the aspect angle α, but not to the
bistatic angle β. The probability of correct recognition also varies according to the
polarization used, HH being the best polarization for the targets considered. This
can be intuitively understood by the fact that the shapes of the different targets differ
more according to their horizontal planes than their vertical planes. We also showed
that recognizing targets by using their BS-CRCS gives better results than by using
their BS-RCS.

We then performed recognition experiments by using FVs computed for three
(Tx,Rx) pairs. We successively used FVs consisting of the BS-CRCS and of the
BS-RCS. An overall probability of correct recognition of 0.98 can be achieved at
the highest frequency band considered, and at polarization HH , when considering
the BS-CRCS of targets. As for a single (Tx,Rx) pair, the probability of correct
recognition increases with frequency, and varies according to polarization, HH being
the best polarization. The recognizer is less sensitive to the aspect angle α when
considering three (Tx,Rx) pairs.

Compared to the recognition of targets by using their radar images (Chapter 6),
we need fewer transmitters and receivers to recognize targets. Indeed, while we need
2D diversity to compute radar images of targets, we simply need a 1D diversity to
compute FVs of either BS-CRCS or BS-RCS.

In comparison to the probabilities of correct recognition achieved for the recognition
of targets by using their radar images, the probabilities of correct recognition achieved
for a single (Tx,Rx) pair are of the same order for the first frequency band ([20; 80]
MHz), and are lower for the three other frequency bands. This can be explained by
the fact that the images contain much more information than the FVs of BS-CRCS or
BS-RCS. When using multiple (Tx,Rx) pairs, i.e. three in the experiments performed
here, the probability of correct recognition rises by about 10%, thus approaching
the probabilities of correct recognition achieved when dealing with radar images of
targets. Increasing the number of (Tx,Rx) pairs thus increases the probability of
correct recognition.

The recognition results we obtained in this chapter showed experimentally that
the recognition of targets by using either their BS-CRCS or their BS-RCS, without
reconstructing their radar images, is efficient, especially when considering multiple
(Tx,Rx) pairs. In Chapter 8, we apply this recognition method on experimentally-
acquired, real-life BS-RCS of airplanes.
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In this chapter, we perform the recognition of air targets by using their bistatic
radar cross-section (BS-RCS) that we compute from real-life signals acquired using
a passive radar testbed. Section 8.1 describes the motivation for this problem. Sec-
tion 8.2 presents the block diagram of the implemented automatic target recognition
(ATR) system. Section 8.3 presents the detection and discrimination stages of this
ATR system. Section 8.4 discusses the grouping of the types of detected airplanes
into classes. Section 8.5 describes the computation of the scene geometry. Section 8.6
presents the extraction of the BS-RCS of detected airplanes, and the generation of the
BS-RCS for small airplanes, which we cannot detect. Section 8.7 presents the recogni-
tion stage of the ATR system. Section 8.8 presents the experimental setup that we use
to collect real-life signals. Section 8.9 presents the collected data, and shows example
of received signals. Section 8.10 describes the error on the position of the airplanes,
its influence on the value of the BS-RCS, and the reasons for using the BS-RCS of the
airplanes instead of their bistatic complex radar cross-section (BS-CRCS). Section 8.11
presents the recognition experiments we perform and the achieved probabilities of cor-
rect recognition. Section 8.12 concludes.

8.1 Motivation for the recognition of targets by us-

ing their real-life bistatic RCSs

In Chapter 7, we performed the recognition of (air) targets by using either their
bistatic complex radar cross-section (BS-CRCS) or their bistatic radar cross-section
(BS-RCS). The BS-CRCS and the BS-RCS of the targets of interest were extracted
from signals transmitted and received in an anechoic chamber. We now plan to test
the recognizer developed in Chapter 7 on BS-RCS of (air) targets computed from
real-life signals, acquired in the real, outdoor world. In this chapter, we deal with
the recognition of targets by using their BS-RCS, which are extracted from real-life
passive bistatic radar signals.

To demonstrate the validity of our approach, we built a passive-radar-system
testbed consisting of one transmitter (Tx) of opportunity and one receiver (Rx). We
deployed the testbed - produced by the SONDRA lab of SUPELEC - in the vicinity
of Orly Airport, near Paris, France. We collected the data almost continuously for
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ten days, which allows us to perform recognition experiments involving three classes of
airplanes. (The data for the last class were generated by simulation.)

8.2 Block diagram of the automatic target recogni-

tion system

Figure 8.1 shows the block diagram of the automatic target recognition (ATR)
system. Since we are in a real, outdoor configuration, we first detect targets in the
detection stage. We then determine whether the detected targets are of interest
or not in the discrimination and pre-classification stage. These detection and
discrimination/pre-classification stages are the only differences with the ATR system
that is discussed in Chapter 7. For each target of interest, we extract its bistatic
radar cross-section (BS-RCS) from (1) the signal transmitted by an illuminator of
opportunity and scattered on the target, and (2) the scene parameters, which consist
in the scene geometry, the polarizations of the Tx and the Rx, and the frequency of
the Tx. We assume that the scene parameters are known.

Figure 8.1: Block diagram of our ATR system using real-life bistatic radar cross-
sections of air targets.

For a particular detected target, the scattered signals belong to either the learning
set (LS) or the test set (TS). The LS is used to generate the target class model, while
the TS is used to evaluate the performance of the target class model by assigning a
class to each object of the TS.

8.3 Detection, discrimination, and pre-

classification

We must first detect targets, one at a time. Among the signals scattered by targets,
we must discriminate whether a scattered signal corresponds to a target of interest to
us. We define a target of interest as being the air target that we detected. For both
the detection and the discrimination (and pre-classification), we use the automatic
dependent surveillance - broadcast (ADS-B) signals that are sent by airplanes following
an interrogation.

As described in Chapter 1, secondary surveillance radars (SSRs), in S-mode, send
interrogation signals to the airplanes, on request from the control tower. The airplane
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transponder transmits omnidirectional (DPSK) signals at 1090 MHz. ADS-B receivers
collect such signals. In our testbed, we detect airplanes from the analysis of ADS-B
signals. In an operational system, the detection of an air target would be performed
by a conventional moving target detector (MTD) radar, such as an airport primary
radar.

ADS-B signals provide the International Civil Aviation Organization (ICAO) code
(such as AFR for Air France) and the callsign (such as AFR123) of the detected
airplane. By interrogating an Internet database such as [67], we can determine the
type of airplane we detect. We use this information to define the different classes of
airplanes (8.4).

We discriminate between targets of interest and other targets in two ways. First, a
detected target is thus necessarily an airplane, since only airplanes send ADS-B signals.
Second, in order to discriminate between the signals scattered by different airplanes
that might be in the vicinity of the ground ADS-B receiver at the same time, we use
the position information contained in ADS-B signals to compute the Doppler shift of
the detected airplane. Therefore, by using a Doppler filter, we select the part of the
received signal that corresponds to the signal scattered by the appropriate airplane, as
shown in Fig. 8.2.

f

t

Signal scattered

Direct-path signalDoppler filter

by airplane 1 Signal scattered
by airplane 2

Figure 8.2: Illustration of the Doppler filter applied to select the signal scattered by
airplane 1 when two airplanes are in the vicinity of the passive radar system at the
same time.

8.4 Classes of targets

In this section, we present the types of airplanes that we detected during the mea-
surement campaign. We then discuss the grouping of airplanes into classes.

8.4.1 Types of detected airplanes

We detected a total of 1329 airplanes during the measurement campaign. We list
the 32 different types of airplanes per type of airplane family in Table 8.1.
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Family Number of observations Type Number of observations
A300 4 A30B 4

A320 661

A318 6
A319 235
A320 308
A321 112

A330 156
A332 79
A333 77

A340 47
A342 1
A343 45
A346 1

B737 206

B733 9
B734 2
B735 3
B736 4
B737 13
B738 175

B747 53 B744 53

B757 18
B752 11
B753 7

B767 70
B762 8
B763 54
B764 8

B777 99

B772 35
B773 55
B77F 2
B77L 1
B77W 6

Embraer 190 3 E190 3
Avro RJ85 5 RJ85 5
Avro RJ100 1 RJ1H 1
Falcon FA10 1 FA10 1
Fokker F100 1 F100 1
Unidentified 6

Table 8.1: List of the types and families of airplanes we detected during the measure-
ment campaign.
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We define the classes of airplanes according to the physical characteristics of these
airplanes. We thus describe the characteristics of the different airplanes we detected in
Tables 8.2, 8.3, 8.4, 8.5, and 8.6. For each type of airplane, we show its length, height,
wingspan, wing area, wing position, fuselage width, and number of engines.

Type of Plane A300 A310 A318 A319
Length [m] 54.10 46.66 34.10 33.84
Height [m] 16.5 15.8 12.51 11.76

Wing span [m] 44.84 43.89 34.10 34.10
Wing area [m2] 260.0 219.0 122.0 122.4
Wing position low low low low

Fuselage width [m] 5.64 5.64 3.95 3.95
Number of engines 2 2 2 2

Table 8.2: Characteristics of the Airbus airplanes, from A300 to A319 [2].

Type of Plane A320 A321 A330 A340
Length [m] 37.57 44.51 63.69 67.93
Height [m] 11.0 11.76 16.83 17.28

Wing span [m] 34.10 34.10 60.30 63.45
Wing area [m2] 122.6 123.0 363.1 363.1
Wing position low low low low

Fuselage width [m] 3.95 3.95 5.64 5.64
Number of engines 2 2 2 4

Table 8.3: Characteristics of the Airbus airplanes, from A320 to A340 [2].

Type of Plane BAe Avro RJ85 BAe Avro RJ100
Length [m] 28.60 26.34
Height [m] 8.59 8.59

Wing span [m] 26.34 26.34
Wing area [m2] 77.3 77.3
Wing position high high

Fuselage width [m] 3.56 3.56
Number of engines 4 4

Table 8.4: Characteristics of the British Aerospace airplanes RJ85 and RJ100 [90].

8.4.2 Grouping of targets into classes

Tables 8.2, 8.3, 8.4, 8.5, and 8.6 show that the size, and thus, the characteristic
dimension of the (detected) airplanes vary from 26 m to 74 m. At the frequency
of the transmitter of opportunity (further discussed below) of 114.7 MHz, with
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Type of Plane B737 B747 B757 B767-400 B777-300
Length [m] 42.1 70.66 46.7 61.3 73.9
Height [m] 12.6 19.41 6.45 16.8 18.5

Wing span [m] 35.8 64.44 38.05 51.9 60.9
Wing area [m2] 91.1 511.0 181.25 - 427.8
Wing position low low low low low

Fuselage width [m] 5.7 6.50 3.76 9.3 6.50
Number of engines 2 4 2 2 2

Table 8.5: Characteristics of the Boeing airplanes [19].

Type of Plane Embraer E190 Falcon 10 Fokker 100
Length [m] 36.24 13.86 35.53
Height [m] 10.28 4.61 8.50

Wing span [m] 28.72 13.08 28.08
Wing area [m2] 92.5 24.1 93.5
Wing position low low low

Fuselage width [m] 3.01 - 3.08
Number of engines 2 2 2

Table 8.6: Characteristics of various other airplanes [90].

corresponding wavelength λ of 2.62 m, the key ratio λ/D varies from 0.035 to 0.1.
We saw in Chapter 3 that, for such ratios, the scattering mechanisms are mainly a
function of the shape of the airplanes.

The tables show that all detected commercial airplanes have essentially the same
shapes, except for the overall size and the number of engines. It thus makes sense to
define two classes for commercial airplanes: large-size airplane with four engines and
mid-size airplanes with two engines.

Table 8.1 does not include smaller airplanes, such as private planes, because most
of the smaller airplanes do not have ADS-B, the result being that we were unable to
detect them. However, it makes sense to define a third class to include these smaller
airplanes. We thus decide to define the following three classes based upon the overall
size S [m] (the largest of wing span and fuselage length) and the number of engines

• S < 20 : class of small-size airplanes

• 20 ≤ S < 30: no class defined

• 30 ≤ S < 40 and 2 engines: class of mid-size airplanes

• 40 ≤ S < 50: no class defined

• 50 ≤ S and 2 engines: no class defined

• 50 ≤ S and 4 four engines: class of large-size airplanes.
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8.5 Scene parameters

The scene parameters, i.e. the positions of the transmitter (Tx) and the receiver
(Rx), the position of a detected airplane throughout its trajectory, the polarizations of
the Tx and the Rx, and the frequency of the Tx, are an input of the automatic target
recognition (ATR) system. The positions of both the Tx and the Rx are known since
they are fixed. The polarizations of the Tx and the Rx, and the frequency of the Tx
are known by construction of the passive radar testbed.

In order to compute the position of a detected airplane, we use the information
sent via the ADS-B signals. In an operational system, the position of a detected
airplane would be given by a radar such as an airport primary surveillance radar.

The information sent by the ADS-B system aboard an airplane (upon interrogation)
contains the position of the airplane. Each position is provided as latitude, longitude,
and barometric altitude, and is encoded according to the Compact Position Reporting
(CPR) format. We use the position of the airplane over time to compute the Doppler
shift of the signal scattered by this airplane, as explained in Section 8.3. We also
use the position of the airplane to compute its bistatic radar cross-section (BS-RCS),
aspect angle α, and bistatic angle β, which are the parameters of the parameter space
(Section 6.2).

We also know the polarization and the frequency of the Tx, and the polarization of
the Rx.

8.6 Extraction of the bistatic RCS for the three

airplane classes of interest

We describe our method for the extraction of the bistatic radar cross-section
(BS-RCS) from real-life data for the mid-size and large-size airplanes. Since we could
not detect small-size airplanes, we generate the BS-RCS of small-size airplanes from a
simple, adjustable model.

8.6.1 Extraction of the bistatic RCS from real-life data for

mid-size and large-size airplane classes.

Consider the bistatic (BS) configuration shown in Fig. 8.3 for a single (Tx,Rx) pair.
The transmitter (Tx) is located at T and the receiver (Rx) at R. The object of interest
is located at S. We assume that the geometry is known. The Tx sends out a transmit
signal - which can be viewed as being a continuous-wave (CW) signal - and the Rx
receives the sum of the direct signal (from R) and the scattered signal (from S) [186].
However, as explained later, our technique requires that we are able to separate these
two signals.

These signals differ by their different arrival times, but the difference between
these signals is too short to allow one to separate the signals in the time domain, the
reason for this being the sampling frequency of 48 kHz. The different arrival times
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Figure 8.3: Bistatic (BS) radar configuration corresponding to one (Tx,Rx) pair look-
ing at one object. T , R, and S are the positions of the Tx, Rx, and object, respec-
tively. The figure shows the antenna beampatterns for the Tx and Rx. It also shows
the transmit path TS, the scattering path SR, and the direct path TR, along each of
which the corresponding signal travels. The various parameters shown are discussed
in the text. The figure is used as a support to explain how the BS-RCS of the object
is obtained from the signal received at R, which is the sum of the direct signal and
the scattered signal (if any).

could be computed if the sampling frequency was much higher. However, the motion
of the object induces a Doppler shift in the scattered signal received from S, and this
leads to both signals being generally (but not always) well separated in frequency. The
only hope is thus to separate the two signals of interest in the frequency domain. In
the analysis below, we assume that the direct and scattered signals can be separated.
This allows us to get their respective power.

We denote by PT the power transmitted (by the Tx). We denote by PRX the power
received (by the Rx), with X replaced by D for the direct path, and by S for the
scattering path.

The scattered power PRS received from S is given by the BS radar equation [224],
expressed in natural units (i.e. Watts),

PRS =
PTGTSGRSλ

2σ

(4π)3R2
TSR

2
RS

, (8.1)

where the GXS’s and RXS’s are the antenna gains and the ranges shown in Fig. 8.3,
λ the wavelength of the transmitted signal, and σ the BS-RCS of the object for the
given configuration and object orientation. More specifically, GTS is the gain of the
Tx antenna in the direction of S, and GRS is the combined gain of the Rx antenna in
the direction of S and of the gain of the Rx chain.

The power PRD received directly from T is given by the link budget equation [99],
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expressed in natural units,

PRD =
PTGTRGRT

L
, (8.2)

where GTR and GRT are the antenna gains shown in Fig. 8.3, and L the propagation
loss, which is further discussed later.

The desired BS-RCS σ is directly obtained from the ratio

PRS
PRD

=
GTSGRSλ

2σL

(4π)3R2
TSR

2
RSGTRGRT

. (8.3)

One finds

σ =
PRS
PRD

GTRGRT

GTSGRS

(4π)3R2
TSR

2
RS

λ2L
. (8.4)

Observe that PT , which is unknown (since the Tx is an illuminator of opportunity),
does not appear in the above equation for σ.

By introducing the gain-ratio parameter G = GTR/GTS, we can rewrite the last
equation as

σ =
PRS
PRD

GRT

GRS

G
(4π)3R2

TSR
2
RS

λ2L
. (8.5)

On the right-hand side of this equation, the two powers PRS and PRD can be measured
from the received signals; the ranges RTS and RRS can easily be found since the
configuration geometry is known; the gains GRT and GRS of the Rx antenna can be
obtained from the configuration geometry and the Rx antenna beampattern (and thus,
for each position S of the object); and, of course, λ is known. Since the beampattern
of the Tx antenna is unknown, the gains of the transmitted signals GTR and GTS are
unknown. The last quantity to be discussed is the loss L.

If the direct path TR between T and R is unobstructed, i.e. "line of sight (LOS)",
also called "free space (FS)", then the corresponding loss L is denoted by LLOS, or LFS ,
and is given by [99]

LLOS =
(

4πRTR

λ

)2

, (8.6)

where λ = c/f is the wavelength, and RTR the distance from T to R (in km).

If the path TR is obstructed, i.e. "non-LOS (NLOS)", then the corresponding loss
is denoted by LNLOS, and is given by

LNLOS = LLOSLTER, (8.7)

and, in dBs, by
LNLOS = LLOS + LTER [dB], (8.8)

where LTER is the additional loss due to the terrain and other obstructions, referred
to here as the terrain loss.

The terrain loss LTER is unknown. However, it is important to observe that, for
our configuration geometry, LTER is approximately constant. While we could try to
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estimate LTER, here we simply use LLOS in Eq. (8.5), which yields a "biased" BS-RCS,
denoted by σ′, and given by

σ′ = K
G

LLOS
, (8.9)

where

K =
PRS
PRD

GRT

GRS

(4π)3R2
TSR

2
RS

λ2
. (8.10)

This biased BS-RCS σ′ is related to the true BS-RCS σ = KG/LNLOS via

σ′ = G
LNLOS
LLOS

σ = GLTER σ, (8.11)

and, in dBs, via
σ′ = σ +G+ LTER [dB]. (8.12)

More generally, the value σ′ obtained for the BS-RCS is related to the true BS-RCS
σ via σ′ = σ + ∆σ [dB], where ∆σ includes the terrain loss, the non-omnidirectional
beampattern of the Tx antenna, and other systematic errors that are assumed to remain
quasi constant during the measurement campaign, as shown in Fig. 8.4. Our recognizer
is trained and tested on the biased σ′, rather than on the true σ. However, the biased
BS-RCS will, in the sequel, still be denoted by σ, rather than by σ′.
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Figure 8.4: Histogram of the power of the received direct signal. One clearly sees that
the terrain loss and other systematic errors are quasi constant through the measure-
ment campaign, thus validating the approach for the computation of the BS-RCS.
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8.6.2 Generation of the bistatic RCS from a simple, adjustable
model for small-size airplane class

Since we could not detect small-size airplanes, we produced BS-RCS data for the
small-size airplane class by using a simple model consisting of one wire for the body
and one wire for each wing (Fig. 8.5).

φ2φ3

L2

L3

L1

Figure 8.5: Model for the airplanes in the small-size airplane class. This simple
model consists of three wires, one for the body and one for each wing.

The BS-RCS σ corresponding to a model consisting of N wires of length Li and
angle φi is computed according to the following formula,

σ =
N∑

i=1

Li sinc(Xi), (8.13)

where

Xi =
2πLi
λ

sin
αT + αR + φi

2
cos

β

2
, (8.14)

and where αT and αR are the angles between the pointing direction of the airplane
and TS and SR, respectively (Fig. 6.4).

To position and orient the small-size airplanes, we use the information recorded
for all real mid-size airplanes observed. Therefore, we have as many samples for the
small-size airplanes as we have for the mid-size airplanes. To provide size diversity, the
length of each model wire was varied randomly in an interval centered on 4 m for the
body, and 2 m for each wing, the width of the intervals being 20% of the center value.

8.7 Recognition stage

We use the same recognizer that we used in Chapter 7. For each tile of the parameter
space (α, β), we build one recognizer. Each of the three target classes is characterized
by a subspace. The subspaces are formed from feature vectors (FVs) exactly as
described in Section 7.4.2. We produce FVs exactly as in Section 7.3. Each FV is a
one-dimensional array of N bistatic radar cross-section (BS-RCS) values expressed in
decibel units. Each BS-RCS value is associated to a point in the parameter space.
We emphasize that, for a given airplane, and thus a given trajectory, we can produce
several FVs that correspond to several tiles of the parameter space.
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The class assigned to an unknown target, characterized by its FV, is decided based
on the projection and metrics defined in Sections 7.5.1 and 7.5.2, respectively.

We separate the detected airplanes of each of the three classes into a learning set
(LS) and a test set (TS). For each class of airplanes, the first third of the total number
of detected airplanes (and thus their corresponding trajectories and their corresponding
BS-RCS values) is used for the LS, and the last two thirds for the TS.

8.8 Experimental setup

Our goal is to perform the recognition of airplanes of three categories, i.e. large-size
airplanes (e.g. A343), mid-size airplanes (e.g. A319), and small-size airplanes (e.g.
private planes and UAVs), by using the bistatic radar cross-section (BS-RCS) of these
airplanes. We describe the experimental setup we deployed to get real-life data for the
large-size and mid-size airplanes.

8.8.1 Testbed

The passive-radar testbed was designed and put together by Sylvain Azarian from
SUPELEC/SONDRA, and then deployed in the vicinity of Orly Airport, south of
Paris, France (Fig. 8.6). This allowed us to observe airplanes in approach for landing,
climbing after take-off, or following airways.

The testbed ends up consisting of a single (Tx,Rx) pair. The transmitter (Tx) of
opportunity is the VOR (VHF Omni Range) Tx located at Rambouillet, with identifier
RMB, and operating on frequency of 114.7 MHz and vertical polarization (Fig. 8.6). A
VOR is a navigation aid widely used in aviation. The choice of such an illuminator of
opportunity is discussed below. The receiver (Rx) is based on a software-defined radio
(SDR) [135] designed at SONDRA lab. The Rx is located at the point marked "Rx" in
Fig. 8.6, and operates on vertical polarization. The distance between the Tx and the
Rx is of 15.5 km. To obtain the necessary information about each observed airplane,
i.e. identity (such as callsign) and position, we use an ADS-B receiver co-located with
the SDR-based Rx.

We planned to use, as a second Tx of opportunity, the VOR located at Epernon
(EPR, 115.65 MHz), but the corresponding signal-to-noise ratio (SNR) at our Rx
proved to be too small to be usable.

Using this experimental setup, we recorded the trajectories of 1329 airplanes of 32
different types (as defined according to [67]) of airplanes listed in Section 8.4, over a
period of ten days.

8.8.2 The VOR as a simple illuminator of opportunity

We define the following requirements for the choice of the transmitter of opportunity
of our passive-radar-based system:
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Illustrative trajectories
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Figure 8.6: Schematic of the Orly Airport area showing the location of the Tx and Rx
used in our passive radar testbed. The Tx is the RMB VOR located at Rambouillet.
The Rx - consisting of a software-defined radio (SDR) - is located at a private home.
The figure also shows the EPR VOR of Epernon, which we tried to use, but the SNR
of which was too small to be usable. The figure also shows samples of four different
airplanes trajectories (dashed lines).

• The transmitting power shall be constant through time since it is used in the
computation of the BS-RCS. The knowledge of the transmitting power is not
required (Section 8.6)

• The transmitted signal shall not be modulated, in order to keep the system
simple. The ideal case is that of a carrier frequency.

• The transmitter shall operate on low frequencies, i.e. on frequencies smaller than
1 GHz. The operating frequency shall remain constant through time.

• The beampattern of the transmitting antenna shall not be only directed towards
the ground, since we want the transmitted signal to be scattered by airplanes.

The VHF Omni-Range (VOR) is a quasi-ideal transmitter of opportunity, since
it satisfies all of these constraints. Figure 8.7 shows the spectrum of the signal
transmitted by a VOR. The spectrum of the signal of the VOR consists of one hump
centered at the carrier frequency fc corresponding to audio information (such as
the VOR callsign), one "sinusoid" (or at least one very narrow-band signal) at the
frequency of fc + 9, 960 Hz, called the subcarrier, and two weaker sinusoids located
30 Hz away on each side of the subcarrier, and due to the physical rotation of the
VOR antenna. The subcarrier is important because it is well separated from the
other frequency components and is thus an almost ideal monochromatic illuminator of
opportunity.
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Figure 8.7: Idealized spectrum of a VOR. The "sinusoid" corresponding to the sub-
carrier is the effective signal used as an illuminator of opportunity.

The chosen illuminator of opportunity is the VOR transmitter located at Ram-
bouillet, with callsign RMB, and operating on 114.7 MHz. The spectrogram of a direct
signal received from the VOR is shown in Section 8.9.

8.8.3 Collecting the direct and scattered signals by an SDR
receiver

As shown in Section 8.6, we have to collect (1) the direct signal, which is the
signal transmitted by the VOR and directly (i.e. without any scattering) collected
by the Rx, and (2) the scattered signal, which is the signal transmitted by the VOR,
scattered by the target, and collected by the Rx.

We collect these two signals by using a software-defined radio (SDR) re-
ceiver [3, 99, 135]. The role of the SDR is to convert the radiofrequency (RF) signals
to their baseband in-phase and quadrature components. Figure 8.8 shows a schematic
of the SDR used in our experiments. The SDR converts the RF signals to baseband
by using a cascade of three filters and three mixers.

The input RF signal is first passed through an 8th-order low-pass filter with cutoff
frequency of 200 MHz, and then through a band-pass filter centered on 115 MHz (about
the frequency of the VOR). The resulting signal is mixed to an intermediate frequency
(IF) fIF = 22.94 MHz. The resulting signal is passed through a band-pass filter
centered on fIF . The resulting IF signal is mixed to produce the baseband in-phase
and quadrature components, I(t) and Q(t), respectively.

8.8.4 Digital processing of received signals

The I(t) and Q(t) components are digitized by using a computer sound card, to get
the digital in-phase and quadrature components, I[n] and Q[n], respectively. A setup
procedure is performed before acquisition to compensate the I/Q mismatch caused by
different gains and delays in the left and right audio channel.
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Figure 8.8: Conversion of the RF input signals to baseband performed by the SDR
receiver. The input signal is first filtered twice and then successively converted from
RF to IF and from IF to baseband.

The Fast Fourier Transform (FFTs) is applied to successive segments of the complex
sequence I[n] + jQ[n] to obtain the spectrum of the received signal. A spectrogram,
which shows the variation of the spectrum as a function of time, of the received signal
is obtained by repeating the same operations at successive time instants. Examples of
spectrograms are shown in Section 8.9.

8.9 Data collected and examples of received signals

In this section, we present the data available for our recognition experiments. We
also show examples of data computed from the received ADS-B signals. We then show
examples of spectrograms of signals received by the SDR receiver. We then show the
signal-to-noise ratios of both the direct and the scattered signals, and an example of the
variations of the bistatic radar cross-section (BS-RCS) as a function of time. Finally,
we last show, for each class of airplanes, the distributions of the BS-RCS in the (α, β)
parameter space.

8.9.1 Data available for our recognition experiments

The first two sections of Table 8.7 summarize the part of the real data we collected
with our passive radar testbed during the measurement campaign that lasted ten
days, and that we use for our recognition experiments. The table only shows the types
of airplanes for which a significant amount of data is available. Airplanes are divided
into the three classes defined earlier. The first two consist of real data. For each type
of airplane (in each class), the table gives the number of trajectories observed and the
total number of samples obtained, for both the learning set (LS) and the test set (TS).
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The number of trajectories is also the number of times an airplane of a given type was
tracked. The number of samples is also the number of BS-RCS values available for all
trajectories. The last section of Table 8.7 summarizes the synthetic data produced.

Learning set Test set
Type of air-
plane

Number of
trajectories

Number of
samples

Number of
trajectories

Number of
samples

Large-size airplanes - Real data
A342 1 11 0 0
A343 15 973 30 1680
A346 1 8 0 0
Total 17 992 30 1680

Mid-size airplanes - Real data
A318 2 56 4 159
A319 78 3316 157 6208
A320 102 5472 206 10530
Total 182 8844 367 16897

Small-size airplanes - Synthetic data
Misc. 182 8546 367 17195

Total (all) 381 18382 764 35772

Table 8.7: Data available for our recognition experiments. The types of airplanes are
organized in the three categories of large-size, mid-size, and small-size airplanes.
The first two categories contain real data collected with our passive radar testbed.
The last one contains synthetic data we produced. The table gives the number of
trajectories and samples available for each type of airplane.

8.9.2 Received ADS-B data

We compute the trajectory of airplanes from the positions received by ADS-B signals.
Figure 8.9 shows the reconstructed trajectory of an airplane. We also compute the
bistatic angle and the (smoothed) Doppler shift as a function of time, i.e. essentially
along the airplane trajectory, shown in Figs. 8.10 and 8.11, respectively. The Doppler
shift is smoothed by using a low-pass filter. Indeed, since commercial airplanes fly
according to simple trajectories such as straight lines, the Doppler shift varies smoothly
along the airplane trajectory, i.e. from one time instant to the next.

8.9.3 Spectrograms

Figure 8.12 shows a spectrogram of the signal received by our (SDR) Rx tuned to the
frequency of the RMB VOR, this in the absence of any airplane in the field of view. The
spectrogram thus corresponds to the direct signal only. By definition, the spectrogram
shows the variation of the power received as a function of frequency and time. The
figure also shows a cut at a given time, i.e. the spectrum of the signal at that time.
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Figure 8.9: Reconstructed trajectory of an airplane. The locations of the Tx and the
Rx are also shown.
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Figure 8.10: Variation of the bistatic angle β as a function of time, i.e. essentially
along the trajectory of an airplane. (Same as Fig. 4.6.)
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Figure 8.11: Variation of the Doppler shift as a function of time, i.e. essentially
along the trajectory of an airplane.

Not surprisingly, the spectrum remains virtually the same at all times. This spec-
trum can be understood in terms of the idealized spectrum of a VOR shown in Fig. 8.7.

Figure 8.13 shows a spectrogram of the signal consisting in the sum of the direct
signal and the scattered signal, the latter being due to an (A319) airplane. It is clear
that the three vertical traces correspond to the direct signal received from the VOR,
and that the three curved traces correspond to the scattered signal from the airplane.
The "curving" is due to the time-dependent Doppler shift due to the motion of the
airplane.

Spectrograms such as that of Fig. 8.13 automatically separate (at least to the eye)
the direct signal and the scattered signal. At any time t, and as long as the separation
in frequency is sufficient, we can easily read off the powers PRS and PRD (Fig. 8.3)
that are required to compute the airplane radar cross-section (RCS) σ at this time.

8.9.4 Signal-to-noise-ratios

To read off the above powers of the direct and scattered signals, the signal-to-noise
ratios (SNRs) must be sufficient. The SNR at some instant is defined as the ratio of
the signal power to the noise power at this instant, for a given frequency bandwidth.
The power of the noise is measured at any time instant by taking the mean of the
power of the received signal in zones outside that of the signal of interest, such as in
frequency indices 120 to 140 in Fig. 8.13.

Figure 8.14 shows the SNR of the received direct signal from the RMB VOR as a
function of time. As expected, this SNR is relatively constant. Its value is from 40 to
50 dB. Figure 8.15 shows the SNR of the scattered signal as a function of time. As
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Figure 8.12: Spectrogram (in "waterfall view") of the signal received in the absence
of airplanes. It thus corresponds to the spectrogram of the signal received from the
RMB VOR over the direct path. The spectrogram can be interpreted with the help of
Fig. 8.7.
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Figure 8.13: Spectrogram (in "waterfall view") of the signal received in the presence
of one airplane. The figure only shows the frequency region near the subcarrier
frequency. At most instants, one can easily distinguish between the straight traces
due to the direct signal and the curved traces due to the scattered signal. We exploit
the separation in frequency between these two components at most instants to get the
powers required to compute the RCS values.
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time increases, the position and "view" of the airplane varies, resulting in variations of
its bistatic radar cross-section (BS-RCS). The observed variations in SNR with time
are directly linked to the variations in BS-RCS with time. However, the value of the
SNR is almost always above 25 dB, which guarantees an accurate calculation of the
BS-RCS from the measurement of the powers PRS and PRD. We were not able to use
the VOR of Epernon, France, precisely because the SNR of the received signal was
too small. The sharp transition at the beginning of each of Figs. 8.14 and 8.15 can be
ignored.
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Figure 8.14: Variation, as a function of time, of the signal-to-noise ratio (SNR)
of the signal received in the absence of airplanes and, thus, corresponding to the
direct-signal component only.

8.9.5 Variations of the bistatic RCS as a function of time

Using the values of PRS and PRD obtained as a function of time from a spectrogram
such as that of Fig. 8.13, one can determine, from Eq (8.5), the value of the BS-RCS
as a function of time. Figure 8.16 shows an example of the variation of BS-RCS as
a function of time. Once again, as time increases, the airplane moves and presents
different aspect angles.

8.9.6 Distributions of the bistatic RCS in (α, β) plane

Since we know the configuration geometry at any time, we can map the mea-
sured (discrete space (DS)) trajectories and corresponding BS-RCS values from
the (x, y) plane to the (α, β) plane. The resulting distributions of BS-RCS in the
(α, β) plane are illustrated in Figs. 8.17, 8.18, and 8.19 for the three classes of
airplanes. Figure 8.17 shows the 2672 real BS-RCS values corresponding to the 47
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Figure 8.15: Variation, as a function of time, of the signal-to-noise ratio (SNR) of
the signal received from one airplane and, thus, corresponding to the scattered-signal
component only. The variations are due to the changes in aspect angle and in bistatic
angle as the airplane goes by.
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Figure 8.16: Variation, as a function of time, of the BS-RCS extracted from the
received data, via a spectrogram, such as the one shown in Fig. 8.13.
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large-size airplanes observed during our measurement campaign; Fig. 8.18 shows
the 25741 real BS-RCS values corresponding to the 549 mid-size airplanes observed
over this campaign; Fig. 8.19 shows the 25741 BS-RCS values produced syntheti-
cally for the small-size airplanes. The various numbers just cited are those of Table 8.7.

Figure 8.17: Values of the bistatic RCS for all our (real) large-size airplanes, shown
in the (α, β) plane.

The comparison of the plots of Figs. 8.17, 8.18, and 8.19 shows that the three
BS-RCS values at, or near, a given (α, β) point are generally quite different. Of course,
our recognition system is designed to exploit these differences.
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Figure 8.18: Values of the bistatic RCS for all our (real) mid-size airplanes, shown
in the (α, β) plane.

Figure 8.19: Values of the bistatic RCS for all our (synthetic) small-size airplanes,
shown in the (α, β) plane.
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8.10 Errors on the position, the bistatic angle, and

the bistatic RCS

The data we receive from ADS-B signals in not free of errors. In this section, we
first quantify the error on the position of the airplane. We then express the influence
of the error on the position on the values of the bistatic angle and the bistatic radar
cross-section (BS-RCS). We also express the reasons for using the BS-RCS instead of
the bistatic complex radar cross-section (BS-CRCS).

8.10.1 Error on the position of a target

As shown in Section 8.6, we compute the BS-RCS of an airplane by using the dis-
tances transmitter-target (RTS) and receiver-target (RRS) and the powers of both the
received scattered signal (PRS) and the received direct signal (PRD). Equation (8.10)
is valid for any particular time instant, provided that RTS, RRS,PRD, and PRS are
known at the same particular time instant. However, there is some delay between
the time instant at which any ADS-B signal is sent from the plane transponder, and
the time instant at which the ADS-B signal is received (and decoded) at the ADS-B
receiver. There is also some delay for the data processing. These delays induce an
error between the computed position of the airplane and to its true position.

To compute the maximum error on the position of an airplane, we assume that the
maximum speed of an aircraft is 1000 km/h, i.e. roughly 280 m/s. The position is
given by a GPS on-board the aircraft, once every second. The accuracy of the GPS is
assumed to be of 10 m. The encoding error due to the Compact Position Reporting
format (CPR) is of 5.1 m.

In the worst case, there is a delay of 1 s between the times the airplane ac-
quires its position and sends it. Assuming a decoding and post-processing delay of
100 ms at the receiver, the total delay is of 1.1 s between the times the airplane
acquires its position and the actual position of the airplane for which we collect
the scattered signal. We assume the delay due to the propagation to be negligible.
By converting the delay into distances, the maxium distance difference between the
position the airplane transmits and its actual position is of 10+5.1+280+28 = 323.1 m.

As can be seen in Figs. 8.20 and 8.21, RTS and RRS are of the order of several
kilometers. Therefore, the error ǫPos on the position is limited to about 5% of the
distances RTS and RRS .

8.10.2 Influence of the error in position on the value of the
bistatic RCS

Let us assume that errors in measurement lead us to estimate that the object is
positioned at S ′ rather than at S. The parameters of interest below are the distances
between the Tx and S, and between the Rx and S, i.e. RTS and RRS . We naturally
denote the corresponding distances for S ′ by RTS′ and RRS′ .
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Figure 8.20: Histogram of the distance RTS between the transmitter and the airplane.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Distance [m]

N
um

be
r 

of
 o

cc
ur

en
ce

s

Histogram of R
RS

Figure 8.21: Histogram of the distance RRS between the receiver and the airplane.
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When we compute the BS-RCS based on the true position S of the object (and
thus on the corresponding RTS and RRS), we denote this BS-RCS by σ. When we
compute this BS-RCS based on the erroneous position S ′ of the object (and thus
based on the corresponding RTS′ and RRS′), we denote the erroneous BS-RCS by σ′.
(This σ′ should not be confused with the σ′ used in Section 8.6.1.)

The relative error on the value of the BS-RCS, denoted by ǫσ, is defined as

ǫσ =
| σ − σ′ |

σ
. (8.15)

Below, we assume that the antenna gains GTS and GRS are not significantly
affected by the error in the position of the object. In other words, we assume that
GTS ≈ GTS′ and GRS ≈ GRS′ .

The expression for σ is given by Eq. (8.5), and the corresponding expression for σ′

is obtained by using the same equation, with the appropriate adjustments,

σ′ =
PRS′

PRD

GRT

GRS′

GTR

GTS′

(4π)3

λ2L

R2
TS′R2

RS′

R2
TR

. (8.16)

By substituting Eqs (8.5) and (8.16) into Eq. (8.15), one gets

ǫσ =

∣∣∣∣∣1 − R2
TS′R2

RS′

R2
TSR

2
RS

∣∣∣∣∣ . (8.17)

In the worst case, RTS′ and RRS′ can be expressed in terms of RTS and RRS respectively
as

RTS′ = RTS + ǫPos, (8.18)

RRS′ = RRS + ǫPos. (8.19)

By neglecting factors of order two and higher, Eq. (8.17) reduces to

ǫσ =
∣∣∣∣2ǫPos

(
1

RTS

+
1

RRS

)∣∣∣∣ . (8.20)

This shows that the highest relative error ǫσ is achieved for the minimum values of RTS

and RRS . Histograms of RTS and RRS are shown in Figs. 8.20 and 8.21, respectively.
According to the histograms, the minimum distances are 3478 m and 3653 m. Due
to the geometry of the configuration, these two values cannot hold simultaneously.
We however use them for the computation of the value of the maximum error on the
BS-RCS. We also use the maximum error on the position of the object, which is 323
m. We thus get a maximum relative error on the value of the BS-RCS of 36.44%. In
dB units, this gives an error of maximum 10 log 1.3644 < 1.35 dB on the value of the
BS-RCS. This error is negligible compared to the values of the BS-RCS, as seen in
Section 8.9.6.



196 8.11. RECOGNITION EXPERIMENTS PERFORMED

8.10.3 Reasons for using the bistatic RCS instead of the
bistatic complex RCS

Whereas the recognizer of Chapter 7 used bistatic complex radar cross-section
(BS-CRCS) of targets the present recognizer uses their bistatic radar cross-section
(BS-RCS). We explain the reasons for this below.

We use here the bright point model, which is widely used in the radar domain [35].
According to this model, a target can be considered as being made of a number N of
isotropic bright points. According to this model, the scattered signal received at any
instant t, sRS(t), is expressed as

sRS(t) =
N∑

n=1

√
σne

j[2πf(t−τn)+φT x], (8.21)

where
√
σn is the complex radar cross-section associated to bright point n, f the

frequency of the signal, τn the time delay due to the position of the bright point n,
and φTx the phase of the transmitted signal. Equation (8.21) shows that the scattered
signal sRS(t) depends on τn and φTx.

The time delay τn depends on the distances from any bright point n of the target
to both the transmitter and the receiver. As seen above, the error on the position of
the target can be up to 323 m. Since the wavelength of the VOR signal is of about
3 m, the error on the phase due to the error on the position of the bright points can
range from 0 to 2π. Therefore, we cannot use the phase of the scattered signal, and,
as a consequence, not the (complex-valued) BS-CRCS.

8.11 Recognition experiments performed

We can perform two main types of recognition experiments, corresponding to narrow
and broad classes, respectively. In the first type, we take one type of airplane in each
of the three categories, e.g. an A343, an A319, and a small airplane (of a specific
size). We then build the corresponding recognizer and quantify its performance.
In the second type, we lump together several types of airplanes from the same
category. This amounts to effectively considering the three categories/classes of
large-size airplanes, mid-size airplanes, and small-size airplanes. We then build the
corresponding recognizer and quantify its performance. Here, we only describe a
recognition experiment of the second type.

We compactly denote the three broad classes of airplanes by CL, CM, and CS,
respectively, where C stands for "class" and the second letter for the size of the air-
planes. We perform four recognition experiments. Each experiment performed aims at
discriminating between the following classes of targets:

• Experiment 1: large-size airplanes and small-size airplanes

• Experiment 2: mid-size airplanes and small-size airplanes

• Experiment 3: large-size airplanes and mid-size airplanes

• Experiment 4: large-size airplanes, mid-size airplanes, and small-size airplanes.
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8.11.1 Amount of data

For each experiment, the central part of the (α, β) plane is arbitrarily divided into a
covering of 12×6 rectangular tiles, corresponding to tiles that are 30◦ wide on each side.
All tables below reflect this structure, providing tile-by-tile information. The 30◦ width
is chosen based upon the typical variations of these angles for the observed trajectories.

Tables 8.8 and 8.9 provide, for the learning set (LS), the numbers of available
trajectories (TR), available BS-RCS values (RCS), and computed feature vectors
(FV) for each of the three classes (CL, CM, and CS) for each tile. Table 8.8 is
for α ∈ [−π, 0[, and Table 8.9 for α ∈ [0, π[. For memory, the FVs are the basic
ingredients for building the class subspaces that make up the target class model.
Tables 8.10 and 8.11 provide the corresponding information for the test set (TS).



α ∈ [−180◦, −150◦ ] α ∈ [−150◦, −120◦ ] α ∈ [−120◦, −90◦] α ∈ [−90◦, −60◦ ] α ∈ [−60◦, −30◦ ] α ∈ [−30◦, 0◦]
CL CM CS CL CM CS CL CM CS CL CM CS CL CM CS CL CM CS

β ∈ [0◦, 30◦]
TR 2 3 3 1 3 3 4 4 4 4 4 6 1 1 1 0 0 0

RCS 50 175 175 308 344 344 577 1185 1185 1273 2468 2514 532 299 299 0 0 0
FV 0 0 0 0 0 0 0 0 0 8 190 190 37 28 28 0 0 0

β ∈ [30◦, 60◦ ]
TR 3 25 25 4 19 19 7 15 15 6 15 16 2 13 13 0 0 0

RCS 176 4261 4261 1469 8895 8895 2442 5757 5757 4365 11073 11089 1653 2523 2523 0 0 0
FV 0 152 152 27 2127 2127 0 180 180 184 1123 1123 54 66 66 0 183 183

β ∈ [60◦, 90◦ ]
TR 3 24 24 4 19 19 7 20 20 6 24 25 2 21 22 0 0 0

RCS 298 6894 6894 2570 6871 6871 4078 10435 10435 7269 17008 17382 3255 4148 4258 0 0 0
FV 0 881 881 46 682 682 213 892 892 143 1732 1732 27 3 3 0 1 1

β ∈ [90◦, 120◦ ]
TR 2 9 9 2 7 7 2 6 6 1 7 7 1 7 7 0 0 0

RCS 260 3700 3700 2776 2988 2988 3518 7939 7939 5428 8387 8387 4484 1652 1652 0 0 0
FV 0 516 516 12 1 1 124 2659 2659 385 704 704 0 0 0 0 0 0

β ∈ [120◦, 150◦ ]
TR 1 2 2 1 3 3 1 2 2 0 2 2 0 2 2 0 0 0

RCS 8 226 226 60 422 422 32 945 945 0 924 924 0 192 192 0 0 0
FV 0 0 0 0 0 0 0 15 15 0 0 0 0 0 0 0 0 0

β ∈ [150◦, 180◦ ]
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.8: High-level description of the first part (i.e. for α ∈ [−180◦,−0◦]) of the learning set used in our experiments. The table is
divided in tiles in the same way as the (α, β) plane is. Each tile shows the number of trajectories (TR), the number of BS-RCS values
(RCS), and the number of feature vectors (FVs), for each of the three classes of large-size airplanes (CL), mid-size airplanes (CM),
and small-size airplanes (CS).
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α ∈ [0◦, 30◦ ] α ∈ [30◦, 60◦] α ∈ [60◦, 90◦ ] α ∈ [90◦, 120◦ ] α ∈ [120◦, 150◦ ] α ∈ [150◦, 180◦ ]
CL CM CS CL CM CS CL CM CS CL CM CS CL CM CS CL CM CS

β ∈ [0◦, 30◦ ]
TR 1 1 1 1 4 4 2 6 17 8 5 18 7 13 13 3 7 7

RCS 28 98 98 60 2015 2015 3028 3167 6313 1876 119 2560 2431 1818 1818 1864 858 858
FV 0 0 0 0 189 189 1228 332 332 12 0 0 207 1 1 15 45 45

β ∈ [30◦, 60◦]
TR 2 16 16 1 27 32 3 29 46 8 36 49 8 89 89 3 87 87

RCS 987 4246 4246 636 23114 24267 1806 18368 23049 4069 4231 9893 5721 31042 31042 6483 42097 42097
FV 70 320 320 0 3706 3706 0 2017 2017 559 431 431 32 371 371 2098 8359 8359

β ∈ [60◦, 90◦]
TR 2 15 15 1 17 17 3 21 22 6 38 39 6 86 86 3 83 83

RCS 867 7441 7441 492 22731 22731 1512 17899 17995 3859 4056 4136 7369 39773 39773 10757 55172 55172
FV 0 28 28 33 4868 4868 559 4272 4272 254 1 1 564 6896 6896 526 3539 3539

β ∈ [90◦, 120◦ ]
TR 1 4 4 0 4 4 1 6 6 1 12 12 1 29 29 1 28 28

RCS 236 625 625 0 2931 2931 236 1664 1664 590 748 748 6018 49419 49419 6490 81878 81878
FV 0 0 0 0 1184 1184 0 0 0 0 0 0 1065 12088 12088 198 10679 10679

β ∈ [120◦, 150◦ ]
TR 0 0 0 0 0 0 0 1 1 0 3 3 0 4 4 0 4 4

RCS 0 0 0 0 0 0 0 24 24 0 375 375 0 6474 6474 0 5383 5383
FV 00 0 0 0 0 0 0 0 0 0 0 0 0 2141 2141 0 155 155

β ∈ [150◦, 180◦ ]
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FV 0 0 0 0 0 0 0 0 0 0 0 0 0 2158 2158 0 0 0

Table 8.9: High-level description of the second part (i.e. for α ∈ [0◦, 180◦]) of the learning set used in our experiments. See Table
8.8 for additional comments.
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α ∈ [−180◦, −150◦ ] α ∈ [−150◦, −120◦ ] α ∈ [−120◦, −90◦ ] α ∈ [−90◦, −60◦] α ∈ [−60◦, −30◦ ] α ∈ [−30◦, 0◦ ]
CL CM CS CL CM CS CL CM CS CL CM CS CL CM CS CL CM CS

β ∈ [0◦, 30◦ ]
TR 0 5 5 0 4 5 0 4 4 0 3 3 0 2 2 0 0 0

RCS 0 146 146 0 127 130 0 471 471 0 1460 1460 0 186 186 0 0 0
FV 0 0 0 0 0 0 0 0 0 8 190 190 37 28 28 0 0 0

β ∈ [30◦, 60◦ ]
TR 0 38 39 4 36 37 4 35 35 5 31 31 2 27 27 0 0 0

RCS 0 3721 3769 1452 4233 4247 2017 13181 13181 1487 13713 13713 92 5123 5123 0 0 0
FV 0 152 152 46 2127 2127 0 180 180 184 1123 1123 54 66 66 0 183 183

β ∈ [60◦, 90◦ ]
TR 0 37 37 5 33 33 6 42 42 6 42 42 2 38 38 0 0 0

RCS 0 8633 8633 3631 4754 4754 5219 21119 21119 2796 23332 23332 150 7254 7254 0 0 0
FV 0 881 881 46 682 682 242 892 892 171 1732 1732 27 3 3 0 1 1

β ∈ [90◦, 120◦ ]
TR 0 14 14 3 17 17 3 19 19 2 18 18 1 16 16 0 0 0

RCS 0 7474 7474 3000 4693 4693 4184 31422 31422 1637 28020 28020 41 9757 9757 0 0 0
FV 0 516 516 12 1 1 124 2659 2659 385 704 704 0 0 0 0 0 0

β ∈ [120◦, 150◦ ]
TR 0 2 2 3 12 12 3 13 13 2 12 12 1 12 12 0 0 0

RCS 0 151 151 3855 1995 1995 5082 12456 12456 2030 10500 10500 48 3699 3699 0 0 0
FV 0 0 0 0 0 0 0 15 15 0 0 0 0 0 0 0 0 0

β ∈ [150◦, 180◦ ]
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.10: High-level description of the first part (i.e. for α ∈ [−180◦, 0◦]) of the test set used in our experiments. See Table 8.8 for
additional comments.
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α ∈ [0◦, 30◦ ] α ∈ [30◦, 60◦ ] α ∈ [60◦, 90◦ ] α ∈ [90◦, 120◦ ] α ∈ [120◦, 150◦ ] α ∈ [150◦, 180◦ ]
CL CM CS CL CM CS CL CM CS CL CM CS CL CM CS CL CM CS

β ∈ [0◦, 30◦ ]
TR 3 2 2 5 12 12 5 13 39 13 6 32 10 38 39 3 17 17

RCS 318 100 100 4122 1928 1928 8772 3819 11393 8186 62 4926 2645 4326 4371 45 1019 1019
FV 0 0 0 0 189 189 1228 564 564 12 0 0 207 1 1 15 45 45

β ∈ [30◦, 60◦]
TR 3 30 30 5 55 60 7 62 89 16 69 89 15 191 195 6 178 179

RCS 2243 6005 6005 4888 49296 50589 7651 40712 47973 6691 10189 20595 6578 58002 58305 1787 71019 71103
FV 70 320 320 0 3588 3588 0 2017 2017 559 431 431 32 371 371 2199 8636 8636

β ∈ [60◦, 90◦]
TR 3 28 28 4 34 34 4 45 48 6 67 70 7 162 162 4 169 169

RCS 2107 16020 16020 2877 44889 44889 5364 39856 39898 3046 9826 9956 1881 77973 77973 2179 105930 105930
FV 0 28 28 33 4868 4868 559 4272 4272 254 1 1 565 7100 7100 526 3539 3539

β ∈ [90◦, 120◦ ]
TR 0 2 2 0 4 4 0 8 8 0 17 17 1 63 63 1 68 68

RCS 0 408 408 0 1245 1245 0 1245 1245 0 5319 5319 1794 107743 107743 5175 185494 185494
FV 0 0 0 0 1184 1184 0 0 0 0 0 0 1065 12088 12088 198 10679 10679

β ∈ [120◦, 150◦ ]
TR 0 0 0 0 2 2 0 2 2 0 4 4 0 9 9 0 9 9

RCS 0 0 0 0 50 50 0 440 440 0 6606 6606 0 17224 17224 0 13959 13959
FV 0 0 0 0 0 0 0 0 0 0 0 0 0 2141 2141 0 155 155

β ∈ [150◦, 180◦ ]
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FV 0 0 0 0 0 0 0 0 0 0 0 0 0 2158 2158 0 0 0

Table 8.11: High-level description of the second part (i.e. for α ∈ [0◦, 180◦]) of the test set used in our experiments. See Table 8.8
for additional comments.
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8.11.2 Statistics of the feature vectors and brief analysis
thereof

For each tile, we can compute the mean and standard deviation of each of the N
components of all FVs built for this tile, for one class, and for one set (either the LS
or the TS). Figure 8.22 shows, for one tile, for each of the three classes, and for the
TS, the N values of the mean of the components of the corresponding FVs. Similarly,
the figure shows the standard deviation of these components.

One can view the graph as showing representations of the mean vector and standard
deviation vector. Note that this last vector corresponds to the values along the diagonal
of the covariance matrix of the FVs of interest.
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Figure 8.22: The figure shows the representation of the mean vector and the standard
deviation vector (diagonal of covariance matrix) of all FVs corresponding to the tile
defined by α ∈ [90◦; 120◦] and β ∈ [30◦; 60◦] and to the TS.

In Fig. 8.22, the mean vectors and the standard deviation vectors are about the
same for classes 1 and 2. Therefore, the probability of correct recognition is expected
to be low for the tile considered in the figure, as seen in Table 8.12.

In Fig. 8.23, the mean vectors and the standard deviation vectors are different for
all three classes. Therefore, the probability of correct recognition is expected to be
high for the tile considered in the figure, as seen in Table 8.12.

8.11.3 Recognition results for the three-class experiment

We present in details the probabilities of correct recognition for the recognition
experiments involving the three classes of targets. Tables 8.12, 8.13, 8.14, and 8.15
give the probabilities of correct recognition for each of the four metrics defined in
Section 7.5. We give in Appendix A the confusion matrices obtained for each metric
and for each tile.
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Figure 8.23: The figure shows the representation of the mean vector and the standard
deviation vector (diagonal of covariance matrix) of all FVs corresponding to the tile
defined by α ∈ [−120◦; −90◦] and β ∈ [30◦; 60◦] and to the TS.

For all metrics, the probability of correct recognition varies from tile to tile. For
metric E0, it ranges from 0.39 to 1. The overall probability of correct recognition,
i.e. the probability of correct recognition achieved over all tiles, is of about 0.66,
which is quite low. For metric E1, the probability of correct recognition varies
from 0.35 to 0.99. The overall classification rate is of about 0.79, which is better
than the overall classification rate achieved for the metric E0. For metric E0.05, the
probability of correct recognition varies from 0.49 to 1. The overall probability of
correct recognition is of about 0.83, which is better than the overall probability of
correct recognition achieved for metrics E0 and E1. For the aggregation of the three
metrics, the probability of correct recognition varies from 0.49 to 0.99. The overall
probability of correct recognition is of about 0.82. Therefore, it seems that metric
E0.05 is to be preferred over the other metrics.

For all metrics, there are tiles for which the recognition is almost perfect. A high
probability of correct recognition is reached for α ≤ 0◦, for a constant β. No conclusion
can be drawn concerning suitable values of β, since the values of the BS-RCS are
available for values of β ranging from 30◦ to 120◦. According to the high variation
of probability of correct recognition from one tile to the other, a high probability of
correct recognition can be achieved by suitably locating the receiver(s) of the passive
bistatic radar.



α ∈

[−180◦, −150◦ ]
α ∈

[−150◦, −120◦ ]
α ∈

[−120◦, −90◦ ]
α ∈

[−90◦, −60◦]
α ∈

[−60◦, −30◦]
α ∈

[−30◦, 0◦]
α ∈ [0◦, 30◦ ] α ∈ [30◦, 60◦ ] α ∈ [60◦, 90◦ ] α ∈

[90◦, 120◦ ]
α ∈

[120◦, 150◦ ]
α ∈

[150◦, 180◦ ]

β ∈ [0◦, 30◦] - - - 0.55 - - - 0.65 0.47 - - -
β ∈ [30◦, 60◦ ] 1.0 0.76 0.99 0.52 0.92 0.88 0.66 0.58 0.61 0.66 0.63 0.51
β ∈ [60◦, 90◦ ] 0.5 0.77 0.61 0.54 - - - 0.62 0.52 - 0.56 0.39
β ∈

[90◦, 120◦ ]
0.82 - 0.77 0.54 - - - 0.9 - - 0.4 0.5

β ∈

[120◦, 150◦ ]
- - - - - - - - - - 0.62 0.9

β ∈

[150◦, 180◦ ]
- - - - - - - - - - 0.75 -

Table 8.12: Weighted probabilities of correct recognition for metric E0, shown tile-by-tile, in a way similar to that of Table 8.8.
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α ∈

[−180◦, −150◦ ]
α ∈

[−150◦, −120◦ ]
α ∈

[−120◦, −90◦ ]
α ∈

[−90◦, −60◦]
α ∈

[−60◦, −30◦]
α ∈

[−30◦, 0◦]
α ∈ [0◦, 30◦ ] α ∈ [30◦, 60◦] α ∈ [60◦, 90◦ ] α ∈

[90◦, 120◦ ]
α ∈

[120◦, 150◦ ]
α ∈

[150◦, 180◦ ]

β ∈ [0◦, 30◦] - - - 0.92 - - - 0.7 0.72 - - -
β ∈ [30◦, 60◦ ] 0.93 0.85 0.88 0.86 0.88 0.93 0.74 0.77 0.89 0.84 0.82 0.77
β ∈ [60◦, 90◦ ] 0.93 0.78 0.77 0.72 - - - 0.71 0.69 - 0.77 0.5
β ∈

[90◦, 120◦ ]
0.89 - 0.87 0.71 - - - 0.89 - - 0.72 0.35

β ∈

[120◦, 150◦ ]
- - - - - - - - - - 0.77 0.99

β ∈

[150◦, 180◦ ]
- - - - - - - - - - 0.8 -

Table 8.13: Weighted probabilities of correct recognition for metric E1, shown tile-by-tile, in a way similar to that of Table 8.8.
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α ∈

[−180◦, −150◦ ]
α ∈

[−150◦, −120◦ ]
α ∈

[−120◦, −90◦ ]
α ∈

[−90◦, −60◦]
α ∈

[−60◦, −30◦]
α ∈

[−30◦, 0◦]
α ∈ [0◦, 30◦ ] α ∈ [30◦, 60◦ ] α ∈ [60◦, 90◦ ] α ∈

[90◦, 120◦ ]
α ∈

[120◦, 150◦ ]
α ∈

[150◦, 180◦ ]

β ∈ [0◦, 30◦] - - - 1.0 - - - 0.6 0.76 - - -
β ∈ [30◦, 60◦ ] 0.98 0.98 1.0 0.84 0.99 0.99 0.92 0.68 0.82 0.76 0.99 0.78
β ∈ [60◦, 90◦ ] 0.87 0.94 0.69 0.79 - - - 0.86 0.78 - 0.85 0.49
β ∈

[90◦, 120◦ ]
0.94 - 0.91 0.72 - - - 0.98 - - 0.73 0.5

β ∈

[120◦, 150◦ ]
- - - - - - - - - - 0.77 1.0

β ∈

[150◦, 180◦ ]
- - - - - - - - - - 0.86 -

Table 8.14: Weighted probabilities of correct recognition for metric E0.05, shown tile-by-tile, in a way similar to that of Table 8.8.
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α ∈

[−180◦, −150◦ ]
α ∈

[−150◦, −120◦ ]
α ∈

[−120◦, −90◦ ]
α ∈

[−90◦, −60◦]
α ∈

[−60◦, −30◦]
α ∈

[−30◦, 0◦]
α ∈ [0◦, 30◦ ] α ∈ [30◦, 60◦] α ∈ [60◦, 90◦ ] α ∈

[90◦, 120◦ ]
α ∈

[120◦, 150◦ ]
α ∈

[150◦, 180◦ ]

β ∈ [0◦, 30◦] - - - 0.99 - - - 0.7 0.76 - - -
β ∈ [30◦, 60◦ ] 0.98 0.91 0.96 0.88 0.99 0.96 0.88 0.78 0.91 0.85 0.93 0.79
β ∈ [60◦, 90◦ ] 0.93 0.87 0.79 0.74 - - - 0.81 0.74 - 0.8 0.5
β ∈

[90◦, 120◦ ]
0.91 - 0.88 0.72 - - - 0.93 - - 0.73 0.49

β ∈

[120◦, 150◦ ]
- - - - - - - - - - 0.77 0.99

β ∈

[150◦, 180◦ ]
- - - - - - - - - - 0.83 -

Table 8.15: Weighted probabilities of correct recognition for the aggregation of the three metrics, shown tile-by-tile, in a way
similar to that of Table 8.8.
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8.11.4 Recognition results for all four recognition experiments

In order to give a general overview of the performance of the recognition system, we
show in Table 8.16 the overall probability of correct recognition for each metric and
for each of the four experiments. As can be expected from the recognition experiment
involving the three classes of targets described above, the best probability of correct
recognition is always obtained by the E0.05 metric, for each experiment. For the
three-class experiment, the overall correct recognition rate is of 0.82. The recognition
rate is a few percent higher for the three other experiments.

Metric used Recognition experiment
CL vs. CS CM vs. CS CL vs. CM CL vs. CM vs. CS

E0 0.78 0.74 0.76 0.66
E1 0.77 0.87 0.76 0.79
E0.05 0.87 0.88 0.83 0.84

Aggregation 0.86 0.88 0.83 0.82

Table 8.16: Overall probability of correct recognition for each of the four metrics and
for each of the four recognition experiments performed.

The probabilities of correct recognition are of the same order as the probabilities
of correct recognition achieved for the recognition of the airplanes from their bistatic
complex radar cross-sections, when considering a single (Tx,Rx) pair in an anechoic
chamber. But, the comparison with the results achieved on data acquired in the ane-
choic chamber is not pursued further as the airplanes, the frequencies, and the covering
of the (α, β) plane are different. We simply draw the conclusion that the recognizer pro-
posed in Chapter 7 has been successfully tested on data acquired both in an anechoic
chamber and in real outdoor conditions.

8.12 Conclusion

In this chapter, we performed the recognition of air targets by using their bistatic
radar cross-sections (BS-RCSs) that we extracted from real-life signals. We presented
the operational passive radar testdbed that we used for the acquisition of these
real-life signals. We deployed the testbed in the vicinity of Orly Airport, using a VOR
as transmitter of opportunity and a software-defined radio (SDR) as receiver. We
collected signals from a total of 1329 trajectories for 32 types of airplanes.

We performed the detection of airplanes by using the ADS-B signals they transmit
following interrogation. We computed the Doppler shift, the aspect angle α, the
bistatic angle β, and the scene geometry from the position information present in the
transmitted ADS-B signals. We discriminated between an airplane of interest and
other targets by using a Doppler filter.

We then discussed the grouping of the different detected airplanes into classes. We
defined three classes that are the large-size airplanes, the mid-size airplanes, and the
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small-size airplanes. For both the large-size and the mid-size airplanes, we presented
the computation of their BS-RCS. Since small-size airplanes could not be detected by
our testbed, we presented the generation of their BS-RCS from a simple model.

We also presented the data we collected, and we showed examples of received
signals, including spectrograms, signal-to-noise ratios, and distributions of the BS-RCS
of each class of airplanes in the (α, β) plane.

We discussed the error on the position of an airplane, and showed that it has
a limited influence on the value of the BS-RCS. We also expressed the reasons for
using the BS-RCS of the airplanes instead of their bistatic complex radar cross-section
(BS-CRCS).

We used the recognizer described in Chapter 7. A significant feature of this
recognizer is that it breaks the overall recognition problem down into a set of
recognition sub-problems by decomposing the central part of the (α, β) parameter
plane into regions. We partitioned the central part of the parameter plane into a
covering of 12 × 6 rectangular regions. For each region, we built one recognizer, and
thus one target class model that consists in a list of subspaces that are computed from
the feature vectors (FVs) of the airplanes. Each FV is a vector of values of BS-RCS.

We performed four recognition experiments involving the three classes of airplanes.
Recognition experiment consisting in classifying air vehicles of two broad classes
(large-size airplanes such as A343’s, and/or mid-size airplanes such as A319’s, and/or
small-size airplanes such as private airplanes and UAVs), led to an overall probability
of correct recognition varying between 0.82 and 0.88. The recognition experiment
consisting in classifying air vehicles of the three broad classes, led to an overall
probability of correct recognition of about 0.82. However, the probability of correct
recognition varies strongly according to the tile, i.e. according to the region of
the parameter space, in which the recognition experiment is performed, ranging
from 0.49 to 0.99. Therefore, in an operational system, one should choose the loca-
tion of the receiver(s) appropriately to achieve a high probability of correct recognition.

This overall probability of correct recognition of 0.82 achieved when recognizing
the three broad classes of targets is lower than the probability of correct recognition
achieved when recognizing targets based on their radar images (Chapter 6), since fea-
ture vectors contain less information than images. The overall probability of correct
recognition is however of the same order as the overall probability of correct recognition
achieved when recognizing targets based on their BS-CRCS, for a single (Tx,Rx) pair
(Chapter 7). This demonstrates the potential of the recognition strategy defined in
Chapters 7 and 8.
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Chapter 9

Conclusions and perspectives
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9.1 Conclusions

9.1.1 Summary of the thesis

In this thesis, we discuss the recognition of non-cooperative air targets based on
passive bistatic radar signals, i.e. on signals transmitted by one or more illuminators
of opportunity (operating at low frequency) and scattered by an air target. The use
of passive bistatic radar signals for recognition purposes is a key feature of this thesis.
We indeed explained that passive bistatic radars are usually used for detection and
location purposes. Since illuminators of opportunity are already present, the cost of
the passive radar system is put on the receiver(s).

We focus on the recognition process. We thus assume that the targets of interest
are detected and tracked, and that we know their position. We also know the
locations, the operating frequency, and the polarization of the transmitter(s) (Tx) and
the receiver(s) (Rx). We thus know the parameters of the scene.

We implement three automatic target recognition (ATR) systems. For the first
ATR system, we perform the recognition of air targets by using their radar images,
since many ATR systems reported in the literature use radar images for the recognition
of targets. (We explained some reasons for not recognizing targets by using their
high-resolution range profiles in the case of passive bistatic radar.) A radar image
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of a target is defined as the spatial representation of the bistatic complex radar
cross-section (BS-CRCS) of this target. We construct the radar images of the targets
by applying a two-dimensional (2D) inverse Fourier Transform to a 2D array of values
of BS-CRCS of these targets.

However, we explain that the 2D diversity needed to compute 2D arrays of
values of BS-CRCS would hardly be met in an operational system. For the
second ATR system, we thus perform the recognition of the air targets by directly
using either the BS-CRCS or the bistatic radar cross-section (BS-RCS) of these targets.

Since the second ATR system is successfully tested on BS-CRCS values and BS-RCS
values computed from signals that are acquired in an anechoic chamber, we test this
ATR system on BS-RCS values that we compute from real-life signals acquired using a
passive radar testbed that we deploy around Orly airport, France. We use the ADS-B
signals transmitted by commercial airplanes to detect and locate these airplanes. We
use a VOR Tx as illuminator of opportunity, and a software-defined radio (SDR) as Rx.

Each of the three ATR systems relies on either the BS-CRCS or the BS-RCS of the
targets of interest. We thus present the parameters the BS-CRCS and the BS-RCS are
functions of, which are the nature of the target, the polarization of both the Tx and
the Rx, the frequency of the transmitted signal, the aspect angle of the target, and
the bistatic angle between the Tx and the Rx. In particular, the variations of both
the BS-CRCS and the BS-RCS as a function of frequency allows one to define three
scattering regions. For each scattering region, the scattering mechanisms are function
of either the shape of the target, its volume, or a combination of both.

The frequency f , the polarization couple Pol, the aspect angle α, and the bistatic
angle β make up the parameter space in terms of which we express both the BS-CRCS
and the BS-RCS. We use this parameter space for the design of the recognition stage
of each of the three ATR systems. For each recognizer, we cover the parameter space
with tiles (overlapping or not). For each tile, we build one recognizer. The covering
of the parameter space into tiles is a key feature of the recognizer of each of the three
ATR systems, and thus of this thesis.

We build each recognizer in the following way. From the input data, we
produce feature vectors (FVs). From the FVs, we construct a target class model.
The class of an unknown target is determined by passing its FV through the recognizer.

For the first ATR system, an FV consists in pixel values of an ensemble of windows
extracted out of each image. The target class model consists in an ensemble of
extremely randomized trees (extra-trees). The class of an unknown target is deter-
mined by propagating each window extracted from the image of this target through
each of the extra-trees. The use of tree-based methods and, thus, of extra-trees, for
recognition purposes in the radar domain is, to our knowledge, novel. Prior to our
application to radar images, this classification/recognition method has been used by
others on non-radar images.

For the second and third ATR systems, an FV consists in a vector of values of
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either BS-CRCS or BS-RCS. The target class model consists in an ensemble of sub-
spaces, each subspace characterizing a target class. The class of an unknown target is
determined by projecting the FV of this target onto each of the subspaces of the target
class model. We use four projection metrics to assign a class to the FV. The use of
subspace methods for recognition purposes in the radar domain is, to our knowledge,
novel.

9.1.2 Comparison of the performances of the three ATR sys-
tems

We express the performances of the different ATR systems in terms of their
probability of correct recognition, and in terms of the number of Tx’s and Rx’s used.
In this section, we compare the performances of each of the three ATR systems.

We first test the first ATR system on different configurations of the well-known
MSTAR data, consisting of SAR images of ground-vehicle targets, non-targets, and
SLICY targets. The highest achieved probabilities of correct recognition vary between
0.96 and 0.99, depending on the configuration of the MSTAR data (targets of interest
only, targets of interest and non-targets, targets of interest and SLICY targets, or
targets of interest and SLICY and non-targets). The recognizer also proves to be quasi
insensitive to the rotation of targets.

We then test the first ATR system is on the images constructed from the ONERA
data. The images are constructed for four frequency bands, for a single polarization,
for three aspect angles, and for a range of bistatic angles. We separated the range
of bistatic angles into overlapping bistatic angular sectors. The probabilities of
correct recognition are very low for the lowest frequency band, and are almost perfect
for the three highest frequency bands, this for any bistatic angular sector. The
low probabilities of correct recognition achieved at the lowest frequency band is
explained by the fact that, at theses frequencies, the BS-RCS of targets, and thus
the images, are more influenced by the volume of the targets than by their shape,
the four targets having the same characteristic dimension, but different shapes.
The high probabilities of correct recognition achieved at the higher frequencies are
explained by the fact that, at these frequencies, the BS-RCS of targets, and thus
the images, are more influenced by the shapes of the targets than by their volume.
Even though the probabilities of correct recognition are very high, we need a high
number of Tx’s and Rx’s in order to be able to construct the radar images of the targets.

We test the second ATR system on the ONERA data. We first recognize targets by
using their BS-CRCSs extracted for a single (Tx,Rx) pair. For the same reason as for
the images, the probabilities of correct recognition achieved for the lowest frequency
band are low, this for any polarization, any aspect angle, and any bistatic angular
sector. Exactly for the same reason as for the images, the probabilities of correct
recognition increase with frequency. The probabilities of correct recognition also vary
according to the tile of the parameter space, i.e. according to the polarization, the as-
pect angle, and the bistatic angular sector. The best probabilities of correct recognition
vary from 0.33 for the lowest frequency band, up to 0.93 for the highest frequency band.
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We then recognize targets by using their BS-RCSs, for a single (Tx,Rx) pair. The
best probabilities of correct recognition vary from 0.29 for the lowest frequency band,
up to 0.74 for the highest frequency band. The conclusions are exactly the same as for
the BS-RCSs. However, one must notice that the probabilities of correct recognition
achieved for the BS-CRCSs are higher than for the BS-RCSs. Therefore, the phase of
the BS-CRCS is important, since the targets of interest have the same volume, but
different shapes.

The probabilities of correct recognition achieved for the recognition of targets by
using either their BS-CRCSs or their BS-RCSs extracted for a single (Tx,Rx) pair, are
much lower than the probabilities of correct recognition achieved for the recognition
of targets by using their radar images. We thus perform the recognition of targets by
using either their BS-CRCSs or their BS-RCSs extracted for three (Tx,Rx) pairs. The
probabilities of correct recognition increase by about 10%. Therefore, increasing the
number of (Tx,Rx) pairs allows one to increase the probability of correct recognition.

We then test the third ATR system on real-life BS-RCSs of commercial airplanes,
extracted for a single (Tx,Rx) pair. We achieve an overall probability of correct
recognition of about 0.82, with significant differences among the tiles of the (α, β)
plane. We thus experimentally proved that the recognition of targets by using either
their BS-CRCSs or their BS-RCSs extracted from signals acquired at low frequency,
in a bistatic configuration, using a limited number of (Tx,Rx) pairs gives high
probabilities of correct recognition.

According to the work presented in this thesis, an ATR system recognizing air-
planes by using either their BS-CRCS or their BS-RCS, is viable, and the achieved
probabilities of correct recognition are promising. The achieved probabilities of cor-
rect recognition for RCS tend to be similar to the probabilities of correct recognition
achieved for radar images, depending on the nature of the targets of interest, their
aspect angle, the bistatic angle of the configuration, the polarization of both the trans-
mitter and the receiver, the frequency of the transmitted signals, and the number of
(Tx,Rx) pairs used.

9.2 Perspectives

In order to completely develop and assess the performances of an ATR system using
either the BS-RCS or the BS-RCS of targets, we need to perform further work. We
suggest perspectives for this. These perspectives fall into four categories, discussed
below:

• Addition of different types of targets

• Study of bistatic radar phenomenology

• Use of different illuminators of opportunity

• Refinement of the recognizer.
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9.2.1 Addition of different types of targets

In this work, we considered a small number of different types of airplanes. Indeed,
we tested the ATR systems on two different sets of data. The airplanes of the first
dataset were of the same size and different shapes, and the airplanes of the second
dataset were of about the same shape and different sizes. In order to validate the
principle of recognizing air targets by using either their BS-CRCS or their BS-RCS,
we should consider on a wider variety of airplanes, e.g. airplanes having both different
sizes and different shapes.

In Chapter 8, a detection stage was added to the ATR system in order to be able to
detect and locate airplanes. The detection and location of airplanes, based on ADS-B
signals, limited us to consider cooperative targets. In future work, other detection and
location means should be envisioned, so that we can consider other targets, such as
small-size airplanes (whose BS-RCS was simulated since our testbed could not detect
them).

We could also potentially apply our ATR system to other types of targets, such as
ground vehicles, sea vehicles, or a mix of air, ground, and sea vehicles.

9.2.2 Study of bistatic radar phenomenology

In Chapter 3, we showed that both the BS-CRCS and the BS-RCS of targets vary
according to the shape and size of the target, the frequency of the incident wave,
the polarization of both the incident and scattered signals, the aspect angle of the
target, and the bistatic angle between the transmitter and the receiver. In particular,
we saw that the scattering mechanisms differ, for a given target, according to the
frequency band. We also experimentally showed in Chapter 6 that both the BS-CRCS
and the BS-RCS of targets vary according to frequency, aspect angle, and bistatic angle.

However, a complete theoretical study of the variations of both the BS-CRCS and
the BS-RCS of different targets according to polarization, aspect angle, and bistatic
angle would allow one to understand the achieved probabilities of correct recognition in
terms of these physical parameters. Indeed, we can simply conclude that transmitting
and receiving signals at some polarization (here HH) gives higher probabilities of
correct recognition than at other polarizations, but we did not investigate the physical
meaning of this observation.

Moreover, a complete phenomenological study of both the BS-CRCS and the
BS-RCS would allow one to define the target classes a priori and objectively. In
this work, targets were separated into different classes according to either their shape
(Chapters 6 and 7) or their size (Chapter 8). Other ways of defining target classes can
be envisioned according, for example, to the effect of the polarization on the BS-CRCS
and the BS-RCS of targets.

9.2.3 Use of different illuminators of opportunity

As we experimentally showed in Chapter 7, the probability of correct recognition
increases when using multiple (Tx,Rx) pairs. For computational reasons, we simulated
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the use of three (Tx,Rx) pairs, with a single Tx and three Rx’s. In future work, one
should envision the use of more than three (Tx,Rx) pairs. Intuitively, the use of as
many (Tx,Rx) pairs as for the construction of the radar images should give similar
probabilities of correct recognition for both the images and the BS-CRCS (or the
BS-RCS).

However, according to the work performed in Chapter 7, high probabilities of
correct recognition could be achieved even by using fewer (Tx,Rx) pairs than for the
construction of radar images. Moreover, the use of more than a single Tx would allow
one to perform recognition experiments over different frequency bands and different
polarizations. The recognizer would assign a class to a given unknown target for each
frequency band or each polarization. The final class would be given by performing a
majority vote on all classes, thus resulting in a higher confidence in the recognition
results.

The consideration of multiple (Tx,Rx) pairs would also allow one to obtain values
of either the BS-CRCS or the BS-RCS, or both, of different targets at different
frequencies, different polarizations, different aspect angles, and different bistatic
angles, which could be used for other purposes than recognition, such as validating
the theoretical study of bistatic phenomenology suggested above.

The VOR transmitter is the only illuminator of opportunity that we used in this
thesis, for simplicity reasons (Chapter 8). In future work, one should envision the
use of other illuminators of opportunity. The different illuminators of opportunity
could be used, simultaneously for detection, location, and recognition purposes, at low
frequency, in a passive multistatic configuration.

In Chapter 8, we tested the ATR system on outdoor, real-life BS-RCSs. In future
work, one could process the phase of the scattered signal in order to use the BS-CRCS
instead of the BS-RCS, since we achieved higher probabilities of correct recognition for
the BS-CRCS than for the BS-RCS.

9.2.4 Refinement of the recognizer

In this thesis, we considered the recognition problem as a classification problem
(in the sense of machine learning), and thus as a supervised learning problem. We
performed the recognition of targets by using either extremely randomized trees
or subspace methods. Even though we justified the use of these two recognition
techniques in Chapters 6 and 7, one should envision investigating other classifica-
tion/recognition techniques.

In this thesis, we forced the recognizer to assign a class to each unknown target,
among the Nc pre-defined classes. In future work, one could envision adding the class
"none" (which would stand for "none of the above"), thereby allowing the recognizer to
assign to a target this additional class. This would require assigning a target class with
some degree of confidence, and to define margins between the degrees of confidence.

The partitioning of the parameter space in any number of regions offers the
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possibility of running several recognizers in parallel, e.g. on a graphics processing unit
(GPU), thereby enabling real-time operation.

In the different recognition experiments we performed, we defined the target classes
according to the sizes and shapes of the different targets. The use of unsupervised
learning techniques, such as a clustering, would allow one to experimentally define the
separation of targets into classes. Moreover, the clustering of different types of targets
should allow one to experimentally assess the phenomenological study suggested above.

If more types of targets had been available, we could have considered classes and
meta-classes of targets, where meta-classes would be defined as groups of classes.
We could have applied the Dempster-Schafer Theory of Evidence to compute the
probabilities of correct recognition of these meta-classes.
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Appendix A

Confusion matrices for the
recognition of targets by using their
experimentally-acquired, real-life
bistatic RCS

In Chapter 8, we perform the recognition of targets by using the bistatic radar
cross-section (BS-RCS) of airplanes. The recognition experiments involve three classes
of targets, which are the large-size airplanes (CL), the mid-size airplanes (CM), and
the small-size airplanes (CS). We use the recognizer we defined in Chapter 7. For
each recognition experiment, i.e. for each tile of the parameter space, the class of an
unknown target is determined by four different metrics, which are E0, E1, E0.05, and
the aggregation of the three metrics. In this appendix, we give the confusion matrix
that we obtained for each metric and for each tile of the parameter space. In each
confusion matrix, the rows correspond to the true classes, and the columns to the
computed classes.

Tables A.1 and A.2 show the confusion matrices achieved for each tile by using
metric E0. Tables A.3 and A.4 show the confusion matrices achieved for each tile by
using metric E1. Tables A.5 and A.6 show the confusion matrices achieved for each
tile by using metric E0.05. Tables A.7 and A.8 show the confusion matrices achieved
for each tile for the aggregation of the three metrics.
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α ∈ [−180◦, −150◦ ] α ∈ [−150◦, −120◦ ] α ∈ [−120◦, −90◦] α ∈ [−90◦, −60◦] α ∈ [−60◦, −30◦ ] α ∈ [−30◦, 0◦]
CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc

β ∈ [0◦, 30◦ ]
CMt - - - - - - - - - 0.11 - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - 0.89 - 1.0 - - - - - -

β ∈ [30◦, 60◦ ]
CMt 1.0 - - 0.54 - 0.014 1.0 - 0.011 0.25 0.13 0.12 0.97 0.24 - 0.77 - 0
CLt - - - 0.008 - 0.0028 - - - 0.17 0.42 0.064 - 0.76 - - - -
CSt - - 1.0 0.45 - 0.98 - - 0.99 0.58 0.45 0.81 0.03 - 1.0 0.23 - 1.0

β ∈ [60◦, 90◦ ]
CMt - - - 0.55 - 0.021 0.48 0.26 0.1 0.29 0.16 0.11 - - - - - -
CLt - - - - - - 0.053 0.07 0.019 0.14 0.33 0.098 - - - - - -
CSt 1.0 - 1.0 0.45 - 0.98 0.47 0.67 0.88 0.57 0.5 0.8 - - - - - -

β ∈ [90◦, 120◦ ]
CMt 0.7 - 0.066 - - - 0.68 0.19 0.11 0.33 0.19 0.11 - - - - - -
CLt - - - - - - 0.12 0.71 0.024 0.29 0.5 0.12 - - - - - -
CSt 0.3 - 0.93 - - - 0.2 0.1 0.87 0.38 0.31 0.77 - - - - - -

β ∈ [120◦, 150◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - - - - - - -

β ∈ [150◦, 180◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - - - - - - -

Table A.1: First set of confusion matrices (for α ∈ [−180◦, 0◦]) obtained for metric E0, shown tile-by-tile. The table is divided in
tiles in the same way as the (α, β) plane is. The subscripts "t" and "c" attached to CL, CM, and CS stand for "true" and "computed",
respectively.
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α ∈ [0◦, 30◦ ] α ∈ [30◦, 60◦] α ∈ [60◦, 90◦] α ∈ [90◦, 120◦ ] α ∈ [120◦, 150◦ ] α ∈ [150◦, 180◦ ]
CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc

β ∈ [0◦, 30◦ ]
CMt - - - 0.5 - 0.21 0.1 0.027 0.013 - - - - - - - - -
CLt - - - - - - 0.19 0.22 0.081 - - - - - - - - -
CSt - - - 0.5 - 0.79 0.71 0.76 0.91 - - - - - - - - -

β ∈ [30◦, 60◦ ]
CMt 0.62 0.34 0.19 0.39 - 0.23 0.18 - 0.068 0.2 0.068 0.029 0.28 - 0.032 0.17 0.32 0.051
CLt - 0.19 - - - - - - - 0.088 0.13 0.02 - - - 0.049 0.17 0.0087
CSt 0.38 0.47 0.81 0.61 - 0.77 0.82 - 0.93 0.71 0.81 0.95 0.72 - 0.97 0.78 0.51 0.94

β ∈ [60◦, 90◦ ]
CMt - - - 0.48 - 0.23 0.31 0.32 0.18 - - - 0.81 0.72 0.66 0.72 0.14 0.7
CLt - - - 0.005 - 0.0002 0.092 0.22 0.043 - - - 0.03 0.11 0.01 0.28 0.86 0.27
CSt - - - 0.52 - 0.77 0.6 0.47 0.78 - - - 0.16 0.17 0.33 - - -

β ∈ [90◦, 120◦ ]
CMt - - - 0.92 - 0.12 - - - - - - 0.43 0.31 0.36 1.0 0.81 1.0
CLt - - - - - - - - - - - - 0.3 0.44 0.27 0.0008 0.19 0.0002
CSt - - - 0.084 - 0.88 - - - - - - 0.27 0.26 0.37 - - -

β ∈ [120◦, 150◦ ]
CMt - - - - - - - - - - - - 0.6 - 0.35 0.81 - 0.013
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - 0.4 - 0.65 0.19 - 0.99

β ∈ [150◦, 180◦ ]
CMt - - - - - - - - - - - - 0.66 - 0.15 - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - 0.34 - 0.85 - - -

Table A.2: Second set of confusion matrices (for α ∈ [0◦, 180◦]) obtained for metric E0, shown tile-by-tile. The table is divided in
tiles in the same way as the (α, β) plane is. The subscripts "t" and "c" attached to CL, CM, and CS stand for "true" and "computed",
respectively.
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α ∈ [−180◦, −150◦ ] α ∈ [−150◦, −120◦ ] α ∈ [−120◦, −90◦] α ∈ [−90◦, −60◦] α ∈ [−60◦, −30◦ ] α ∈ [−30◦, 0◦ ]
CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc

β ∈ [0◦, 30◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - 1.0 - 0.16 - - - - - -
CSt - - - - - - - - - - - 0.84 - - - - - -

β ∈ [30◦, 60◦ ]
CMt 1.0 - 0.13 0.92 - 0.19 0.86 - - 0.8 0.16 0.041 0.83 - 0.061 1.0 - 0.016
CLt - - - 0.077 - 0.041 0.14 - 0.11 0.2 0.84 0.023 0.17 1.0 0.12 - - 0.12
CSt - - 0.87 - - 0.77 - - 0.89 - - 0.94 - - 0.82 - - 0.86

β ∈ [60◦, 90◦ ]
CMt 0.95 - 0.095 0.87 - 0.3 0.78 0.49 0.068 0.69 0.34 0.077 - - - - - -
CLt - - - 0.13 - 0.004 0.13 0.15 - 0.29 0.58 0.15 - - - - - -
CSt 0.054 - 0.9 - - 0.69 0.095 0.36 0.93 0.024 0.082 0.77 - - - - - -

β ∈ [90◦, 120◦ ]
CMt 1.0 - 0.21 - - - 0.92 0.1 0.049 0.63 0.3 0.077 - - - - - -
CLt - - - - - - 0.075 0.9 0.13 0.37 0.65 0.11 - - - - - -
CSt - - 0.79 - - - 0.001 - 0.82 0.001 0.044 0.82 - - - - - -

β ∈ [120◦, 150◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - - - - - - -

β ∈ [150◦, 180◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - - - - - - - - - 0
CSt - - - - - - - - - - - - - - - - - -

Table A.3: First set of confusion matrices (for α ∈ [−180◦, 0◦]) obtained for metric E1, shown tile-by-tile. The table is divided in
tiles in the same way as the (α, β) plane is. The subscripts "t" and "c" attached to CL, CM, and CS stand for "true" and "computed",
respectively.
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α ∈ [0◦, 30◦] α ∈ [30◦, 60◦ ] α ∈ [60◦, 90◦ ] α ∈ [90◦, 120◦ ] α ∈ [120◦, 150◦ ] α ∈ [150◦, 180◦ ]
CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc

β ∈ [0◦, 30◦ ]
CMt - - - 0.66 - 0.25 0.66 0.31 0.15 - - - - - - - - -
CLt - - - - - - 0.32 0.69 0.067 - - - - - - - - -
CSt - - - 0.34 - 0.75 0.016 0.004 0.78 - - - - - - - - -

β ∈ [30◦, 60◦ ]
CMt 0.69 0.39 0.17 0.74 - 0.19 0.92 - 0.13 0.52 0.31 0.0006 0.8 - 0.13 0.77 0.34 0.007
CLt 0.31 0.61 0.025 - - - - - - 0.38 0.59 0.001 0.2 - 0.024 0.14 0.66 0.19
CSt - - 0.81 0.26 - 0.81 0.083 - 0.87 0.097 0.095 1.0 - - 0.85 0.09 - 0.81

β ∈ [60◦, 90◦ ]
CMt - - - 0.74 - 0.24 0.7 0.33 0.27 - - - 0.78 0.33 0.2 0.94 0.13 0.39
CLt - - - 0.19 - 0.084 0.28 0.63 0.045 - - - 0.15 0.67 0.04 0.06 0.87 0.59
CSt - - - 0.065 - 0.67 0.026 0.038 0.69 - - - 0.066 - 0.76 - - -

β ∈ [90◦, 120◦ ]
CMt - - - 0.98 - 0.2 - - - - - - 0.83 0.24 0.24 0.7 0.4 0.93
CLt - - - - - - - - - - - - 0.093 0.33 0.1 0.3 0.6 0.065
CSt - - - 0.016 - 0.8 - - - - - - 0.08 0.44 0.65 - - -

β ∈ [120◦, 150◦ ]
CMt - - - - - - - - - - - - 0.87 - 0.33 1.0 - 0.026
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - 0.13 - 0.67 - - 0.97

β ∈ [150◦, 180◦ ]
CMt - - - - - - - - - - - - 0.86 - 0.27 - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - 0.14 - 0.73 - - -

Table A.4: Second set of confusion matrices (for α ∈ [0◦; 180◦]) obtained for metric E1, shown tile-by-tile. The table is divided in
tiles in the same way as the (α, β) plane is. The subscripts "t" and "c" attached to CL, CM, and CS stand for "true" and "computed",
respectively.
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α ∈ [−180◦, −150◦ ] α ∈ [−150◦, −120◦ ] α ∈ [−120◦, −90◦ ] α ∈ [−90◦, −60◦] α ∈ [−60◦, −30◦ ] α ∈ [−30◦, 0◦]
CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc

β ∈ [0◦, 30◦ ]
CMt - - - - - - - - - 1.0 - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - 1.0 - - - - - -

β ∈ [30◦, 60◦]
CMt 1.0 - 0.039 0.98 - 0.01 1.0 - 0.006 0.7 0.14 0.021 0.98 - - 1.0 - -
CLt - - - 0.024 - 0.004 - - - 0.18 0.85 0.001 0.015 1.0 - - - 0.016
CSt - - 0.96 0.0005 - 0.99 - - 0.99 0.12 0.011 0.98 - - 1.0 - - 0.98

β ∈ [60◦, 90◦]
CMt 0.74 - 0.008 0.92 - 0.034 0.59 0.29 0.02 0.67 0.22 0.059 - - - - - -
CLt - - - 0.004 - - 0.034 0.05 - 0.26 0.64 0.031 - - - - - -
CSt 0.26 - 0.99 0.075 - 0.97 0.38 0.66 0.98 0.065 0.13 0.91 - - - - - -

β ∈ [90◦, 120◦ ]
CMt 0.98 - 0.11 - - - 0.9 0.056 0.03 0.51 0.2 0.06 - - - - - -
CLt - - - - - - 0.083 0.94 0.055 0.45 0.74 0.018 - - - - - -
CSt 0.016 - 0.89 - - - 0.015 - 0.91 0.036 0.062 0.92 - - - - - -

β ∈ [120◦, 150◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - - - - - - -

β ∈ [150◦, 180◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - - - - - - -

Table A.5: First set of confusion matrices (for α ∈ [−180◦, 0◦]) obtained for metric E0.05, shown tile-by-tile. The table is divided in
tiles in the same way as the (α, β) plane is. The subscripts "t" and "c" attached to CL, CM, and CS stand for "true" and "computed",
respectively..
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α ∈ [0◦, 30◦ ] α ∈ [30◦, 60◦] α ∈ [60◦, 90◦] α ∈ [90◦, 120◦ ] α ∈ [120◦, 150◦ ] α ∈ [150◦, 180◦ ]
CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc

β ∈ [0◦, 30◦ ]
CMt - - - 0.43 - 0.22 0.37 0.2 0.011 - - - - - - - - -
CLt - - - - - - 0.32 0.73 0.018 - - - - - - - - -
CSt - - - 0.57 - 0.78 0.31 0.068 0.97 - - - - - - - - -

β ∈ [30◦, 60◦ ]
CMt 0.97 0.56 0.037 0.43 - 0.081 0.6 - 0.02 0.43 0.21 0.001 0.99 - 0.016 0.62 0.33 0.002
CLt 0.025 0.44 - - - - - - - 0.13 0.31 - 0.011 - - 0.089 0.65 0.007
CSt - - 0.96 0.57 - 0.92 0.4 - 0.98 0.43 0.48 1.0 - - 0.98 0.29 0.018 0.99

β ∈ [60◦, 90◦ ]
CMt - - - 0.85 - 0.12 0.77 0.42 0.15 - - - 0.9 0.46 0.17 0.93 0.14 0.64
CLt - - - 0.016 - 0.003 0.097 0.31 0.011 - - - 0.035 0.49 0.004 0.072 0.86 0.33
CSt - - - 0.14 - 0.87 0.13 0.27 0.84 - - - 0.07 0.051 0.83 - - -

β ∈ [90◦, 120◦ ]
CMt - - - 0.98 - 0.024 - - - - - - 0.8 0.17 0.24 1.0 0.69 1.0
CLt - - - - - - - - - - - - 0.1 0.46 0.077 0.003 0.31 0.0005
CSt - - - 0.017 - 0.98 - - - - - - 0.099 0.37 0.69 - - -

β ∈ [120◦, 150◦ ]
CMt - - - - - - - - - - - - 0.85 - 0.3 1.0 - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - 0.15 - 0.7 - - 1.0

β ∈ [150◦, 180◦ ]
CMt - - - - - - - - - - - - 0.82 - 0.091 - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - 0.18 - 0.91 - - -

Table A.6: Second set of confusion matrices (for α ∈ [0◦; 180◦]) obtained for metric E0.05, shown tile-by-tile. The table is divided in
tiles in the same way as the (α, β) plane is. The subscripts "t" and "c" attached to CL, CM, and CS stand for "true" and "computed",
respectively.
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α ∈ [−180◦, −150◦ ] α ∈ [−150◦, −120◦ ] α ∈ [−120◦, −90◦ ] α ∈ [−90◦, −60◦] α ∈ [−60◦, −30◦ ] α ∈ [−30◦, 0◦ ]
CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc

β ∈ [0◦, 30◦]
CMt - - - - - - - - - 1.0 - 0.016 - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - 0.98 - - - - - -

β ∈ [30◦, 60◦ ]
CMt 1.0 - 0.046 0.95 - 0.12 0.92 - - 0.82 0.11 0.038 0.97 - - 1.0 - 0.006
CLt - - - 0.047 - 0.016 0.083 - - 0.18 0.89 0.013 0.03 1.0 - - - 0.077
CSt - - 0.95 - - 0.87 - - 1.0 0.005 - 0.95 - - 1.0 - - 0.92

β ∈ [60◦, 90◦ ]
CMt 0.94 - 0.07 0.97 - 0.23 0.79 0.46 0.027 0.71 0.25 0.13 - - - - - -
CLt - - - 0.028 - 0.002 0.059 0.095 - 0.27 0.66 0.097 - - - - - -
CSt 0.064 - 0.93 0.003 - 0.77 0.15 0.44 0.97 0.027 0.094 0.78 - - - - - -

β ∈ [90◦, 120◦ ]
CMt 1.0 - 0.18 - - - 0.92 0.081 0.052 0.63 0.25 0.089 - - - - - -
CLt - - - - - - 0.079 0.92 0.11 0.37 0.7 0.082 - - - - - -
CSt - - 0.82 - - - 0.001 - 0.83 0.001 0.042 0.83 - - - - - -

β ∈ [120◦, 150◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - - - - - - -

β ∈ [150◦, 180◦ ]
CMt - - - - - - - - - - - - - - - - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - - - - - - -

Table A.7: First set of confusion matrices (for α ∈ [−180◦; 0◦]) obtained for the aggregation of the three metrics, shown tile-by-
tile. The table is divided in tiles in the same way as the (α, β) plane is. The subscripts "t" and "c" attached to CL, CM, and CS stand
for "true" and "computed", respectively.
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α ∈ [0◦, 30◦] α ∈ [30◦, 60◦] α ∈ [60◦, 90◦] α ∈ [90◦, 120◦ ] α ∈ [120◦, 150◦ ] α ∈ [150◦, 180◦ ]
CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc CMc CLc CSc

β ∈ [0◦, 30◦ ]
CMt - - - 0.64 - 0.25 0.57 0.25 0.063 - - - - - - - - -
CLt - - - - - - 0.41 0.74 0.07 - - - - - - - - -
CSt - - - 0.36 - 0.75 0.023 0.015 0.87 - - - - - - - - -

β ∈ [30◦, 60◦ ]
CMt 0.97 0.49 0.14 0.69 - 0.14 0.87 - 0.056 0.61 0.31 0.001 0.95 - 0.092 0.76 0.34 0.004
CLt 0.028 0.51 - - - - - - - 0.26 0.57 - 0.051 - 0.003 0.13 0.66 0.13
CSt - - 0.86 0.31 - 0.86 0.13 - 0.94 0.13 0.12 1.0 - - 0.91 0.11 - 0.86

β ∈ [60◦, 90◦ ]
CMt - - - 0.88 - 0.25 0.76 0.36 0.25 - - - 0.84 0.35 0.22 0.94 0.12 0.55
CLt - - - 0.049 - 0.015 0.2 0.61 0.024 - - - 0.079 0.65 0.017 0.059 0.88 0.45
CSt - - - 0.068 - 0.74 0.037 0.036 0.73 - - - 0.077 - 0.77 - - -

β ∈ [90◦, 120◦ ]
CMt - - - 0.98 - 0.12 - - - - - - 0.83 0.22 0.25 0.99 0.56 1.0
CLt - - - - - - - - - - - - 0.089 0.35 0.093 0.01 0.44 0.002
CSt - - - 0.017 - 0.88 - - - - - - 0.084 0.44 0.66 - - -

β ∈ [120◦, 150◦ ]
CMt - - - - - - - - - - - - 0.87 - 0.32 1.0 - 0.013
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - 0.13 - 0.68 - - 0.99

β ∈ [150◦, 180◦ ]
CMt - - - - - - - - - - - - 0.86 - 0.2 - - -
CLt - - - - - - - - - - - - - - - - - -
CSt - - - - - - - - - - - - 0.14 - 0.8 - - -

Table A.8: Second set of confusion matrices (for α ∈ [0◦; 180◦]) obtained for the aggregation of the three metrics, shown
tile-by-tile. The table is divided in tiles in the same way as the (α, β) plane is. The subscripts "t" and "c" attached to CL, CM, and CS
stand for "true" and "computed", respectively.
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Appendix B

Publications

Different parts of this work have been published as journal articles or as conference
papers. We list them below.

2.1 Journal articles

• J. Pisane, S. Azarian, M. Lesturgie, J. G. Verly, Automatic target recognition
(ATR) for passive radar, To appear in IEEE Transactions on Aerospace and
Electronic Systems.

2.2 Conference papers

• J. Pisane, S. Azarian, M. Lesturgie, J. G. Verly, Passive radar testbed and prelim-
inary experiments in recognition of non-cooperative aircraft intruding into con-
trolled airspace, URSI Benelux Forum, Sept. 2012 [150].

• J. Pisane, S. Azarian, M. Lesturgie, J. G. Verly, Automatic real-time collection of
RCS of airplanes in a real bistatic low-frequency configuration using a software
defined passive radar based on illuminators of opportunity, International Radar
Conference, May 2012 [149].

• J. Pisane, M. Lesturgie, J. G. Verly, Target classification system based on the
characterization of targets by subspaces, IEEE CIE International Conference on
Radar, Oct. 2011 [154].

• J. Pisane, M. Lesturgie, J. G. Verly, Passive target classification based on low-
frequency bistatic backscattering coefficients, Ocean & Coastal Observation: Sen-
sors and Systems, Passive Session, June 2010 [152].

• J. Pisane, R. Marée, L. Wehenkel, and J. G. Verly, Robust Automatic Target
Recognition Using Extra-trees, International Radar Conference, IEEE, May 2010
[157].

• J. Pisane, M. Lesturgie, and J. G. Verly. Target classification of experimentally-
acquired low-frequency backscattering coefficients by construction of subspaces,
URSI Benelux Forum, April 2010 [153].
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232 2.3. OTHER PUBLICATIONS

• J. Pisane, R. Marée, P. Ries, L. Wehenkel, and J. G. Verly, An Extra-trees-based
Automatic Target Recognition Algorithm, International Radar Conference, IEEE,
Oct. 2009 [155].

2.3 Other publications

• J. Pisane, S. Azarian, M. Lesturgie, J. G. Verly, Target classification in bistatic
low frequency radar, 2nd Thales Radar PhD Day, Sept. 2012 [151].

• J. Pisane, R. Marée, L. Wehenkel, and J. G. Verly, Radar Classification based on
Extra-Trees, SONDRA Workshop, May 2010 [156].
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